Science.gov

Sample records for activated fatty acids

  1. Fatty acid activation of peroxisome proliferator-activated receptor (PPAR).

    PubMed

    Bocos, C; Göttlicher, M; Gearing, K; Banner, C; Enmark, E; Teboul, M; Crickmore, A; Gustafsson, J A

    1995-06-01

    Peroxisome proliferators such as clofibric acid, nafenopin, and WY-14,643 have been shown to activate peroxisome proliferator-activated receptor (PPAR), a member of the steroid nuclear receptor superfamily. We have cloned the cDNA from rat that is homologous to that from mouse, which encodes a 97% similar protein. To search for physiologically occurring activators, we established a transcriptional transactivation assay by stably expressing in CHO cells a chimera of rat PPAR and the human glucocorticoid receptor that activates expression of the placental alkaline phosphatase reporter gene under the control of the mouse mammary tumor virus promoter. 150 microM concentrations of arachidonic or linoleic acid but not of dehydroepiandrosterone, cholesterol, or 25-hydroxy-cholesterol, activated the receptor chimera. In addition, saturated fatty acids induced the reporter gene. Shortening the chain length to n = 6 or introduction of an omega-terminal carboxylic group abolished the activation potential of the fatty acid. To test whether a common PPAR binding metabolite might be formed from free fatty acids we tested the effects of differentially beta-oxidizable fatty acids and inhibitors of fatty acid metabolism. The peroxisomal proliferation-inducing, non-beta-oxidizable, tetradecylthioacetic acid activated PPAR to the same extent as the strong peroxisomal proliferator WY-14,643, whereas the homologous beta-oxidizable tetradecylthiopropionic acid was only as potent as a non-substituted fatty acid. Cyclooxygenase inhibitors, radical scavengers or cytochrome P450 inhibitors did not affect activation of PPAR. In conclusion, beta-oxidation is apparently not required for the formation of the PPAR-activating molecule and this moiety might be a fatty acid, its ester with CoA, or a further derivative of the activated fatty acid prior to beta-oxidation of the acyl-CoA ester. PMID:7626496

  2. Physiological activities of hydroxyl fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the search of value-added products from surplus soybean oil, we produced many new hydroxy fatty acids through microbial bioconversion. Hydroxy fatty acids are used in a wide range of industrial products, such as resins, waxes, nylons plastics, lubricants, cosmetics, and additives in coatings and...

  3. Fatty acid alcohol ester-synthesizing activity of lipoprotein lipase.

    PubMed

    Tsujita, T; Sumiyoshi, M; Okuda, H

    1999-12-01

    The fatty acid alcohol ester-synthesizing activity of lipoprotein lipase (LPL) was characterized using bovine milk LPL. Synthesizing activities were determined in an aqueous medium using oleic acid or trioleylglycerol as the acyl donor and equimolar amounts of long-chain alcohols as the acyl acceptor. When oleic acid and hexadecanol emulsified with gum arabic were incubated with LPL, palmityl oleate was synthesized, in a time- and dose-dependent manner. Apo-very low density lipoprotein (apoVLDL) stimulated LPL-catalyzed palmityl oleate synthesis. The apparent equilibrium ratio of fatty acid alcohol ester/oleic acid was estimated using a high concentration of LPL and a long (20 h) incubation period. The equilibrium ratio was affected by the incubation pH and the alcohol chain length. When the incubation pH was below pH 7.0 and long chain fatty acyl alcohols were used as substrates, the fatty acid alcohol ester/free fatty acid equilibrium ratio favored ester formation, with an apparent equilibrium ratio of fatty acid alcohol ester/fatty acid of about 0.9/0.1. The equilibrium ratio decreased sharply at alkaline pH (above pH 8.0). The ratio also decreased when fatty alcohols with acyl chains shorter than dodecanol were used. When a trioleoylglycerol/fatty acyl alcohol emulsion was incubated with LPL, fatty acid alcohol esters were synthesized in a dose- and time-dependent fashion. Fatty acid alcohol esters were easily synthesized from trioleoylglycerol when fatty alcohols with acyl chains longer than dodecanol were used, but synthesis was decreased with fatty alcohols with acyl chain lengths shorter than decanol, and little synthesizing activity was detected with shorter-chain fatty alcohols such as butanol or ethanol. PMID:10578059

  4. Fatty acid transport and activation and the expression patterns of genes involved in fatty acid trafficking.

    PubMed

    Sandoval, Angel; Fraisl, Peter; Arias-Barrau, Elsa; Dirusso, Concetta C; Singer, Diane; Sealls, Whitney; Black, Paul N

    2008-09-15

    These studies defined the expression patterns of genes involved in fatty acid transport, activation and trafficking using quantitative PCR (qPCR) and established the kinetic constants of fatty acid transport in an effort to define whether vectorial acylation represents a common mechanism in different cell types (3T3-L1 fibroblasts and adipocytes, Caco-2 and HepG2 cells and three endothelial cell lines (b-END3, HAEC, and HMEC)). As expected, fatty acid transport protein (FATP)1 and long-chain acyl CoA synthetase (Acsl)1 were the predominant isoforms expressed in adipocytes consistent with their roles in the transport and activation of exogenous fatty acids destined for storage in the form of triglycerides. In cells involved in fatty acid processing including Caco-2 (intestinal-like) and HepG2 (liver-like), FATP2 was the predominant isoform. The patterns of Acsl expression were distinct between these two cell types with Acsl3 and Acsl5 being predominant in Caco-2 cells and Acsl4 in HepG2 cells. In the endothelial lines, FATP1 and FATP4 were the most highly expressed isoforms; the expression patterns for the different Acsl isoforms were highly variable between the different endothelial cell lines. The transport of the fluorescent long-chain fatty acid C(1)-BODIPY-C(12) in 3T3-L1 fibroblasts and 3T3-L1 adipocytes followed typical Michaelis-Menten kinetics; the apparent efficiency (k(cat)/K(T)) of this process increases over 2-fold (2.1 x 10(6)-4.5 x 10(6)s(-1)M(-1)) upon adipocyte differentiation. The V(max) values for fatty acid transport in Caco-2 and HepG2 cells were essentially the same, yet the efficiency was 55% higher in Caco-2 cells (2.3 x 10(6)s(-1)M(-1) versus 1.5 x 10(6)s(-1)M(-1)). The kinetic parameters for fatty acid transport in three endothelial cell types demonstrated they were the least efficient cell types for this process giving V(max) values that were nearly 4-fold lower than those defined form 3T3-L1 adipocytes, Caco-2 cells and HepG2 cells. The

  5. Antiproliferative activity of synthetic fatty acid amides from renewable resources.

    PubMed

    dos Santos, Daiane S; Piovesan, Luciana A; D'Oca, Caroline R Montes; Hack, Carolina R Lopes; Treptow, Tamara G M; Rodrigues, Marieli O; Vendramini-Costa, Débora B; Ruiz, Ana Lucia T G; de Carvalho, João Ernesto; D'Oca, Marcelo G Montes

    2015-01-15

    In the work, the in vitro antiproliferative activity of a series of synthetic fatty acid amides were investigated in seven cancer cell lines. The study revealed that most of the compounds showed antiproliferative activity against tested tumor cell lines, mainly on human glioma cells (U251) and human ovarian cancer cells with a multiple drug-resistant phenotype (NCI-ADR/RES). In addition, the fatty methyl benzylamide derived from ricinoleic acid (with the fatty acid obtained from castor oil, a renewable resource) showed a high selectivity with potent growth inhibition and cell death for the glioma cell line-the most aggressive CNS cancer. PMID:25510639

  6. Fatty acids - trans fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The data supporting a negative effect of dietary trans fatty acids on cardiovascular disease risk is consistent. The primary dietary sources of trans fatty acids include partially hydrogenated fat and rudiment fat. The adverse effect of trans fatty acids on plasma lipoprotein profiles is consisten...

  7. Effects of fatty acid activation on photosynthetic production of fatty acid-based biofuels in Synechocystis sp. PCC6803

    PubMed Central

    2012-01-01

    Background Direct conversion of solar energy and carbon dioxide to drop in fuel molecules in a single biological system can be achieved from fatty acid-based biofuels such as fatty alcohols and alkanes. These molecules have similar properties to fossil fuels but can be produced by photosynthetic cyanobacteria. Results Synechocystis sp. PCC6803 mutant strains containing either overexpression or deletion of the slr1609 gene, which encodes an acyl-ACP synthetase (AAS), have been constructed. The complete segregation and deletion in all mutant strains was confirmed by PCR analysis. Blocking fatty acid activation by deleting slr1609 gene in wild-type Synechocystis sp. PCC6803 led to a doubling of the amount of free fatty acids and a decrease of alkane production by up to 90 percent. Overexpression of slr1609 gene in the wild-type Synechocystis sp. PCC6803 had no effect on the production of either free fatty acids or alkanes. Overexpression or deletion of slr1609 gene in the Synechocystis sp. PCC6803 mutant strain with the capability of making fatty alcohols by genetically introducing fatty acyl-CoA reductase respectively enhanced or reduced fatty alcohol production by 60 percent. Conclusions Fatty acid activation functionalized by the slr1609 gene is metabolically crucial for biosynthesis of fatty acid derivatives in Synechocystis sp. PCC6803. It is necessary but not sufficient for efficient production of alkanes. Fatty alcohol production can be significantly improved by the overexpression of slr1609 gene. PMID:22433663

  8. Impairment of NFkappaB activity by unsaturated fatty acids.

    PubMed

    Schumann, Julia; Fuhrmann, Herbert

    2010-08-01

    Using a luciferase reporter gene assay, we identified polyunsaturated fatty acids (PUFA) to impair NF kappaB signaling. Furthermore, we could demonstrate the PUFA ability to derogate NF kappaB activity to be independent from the family the fatty acid belongs to. Instead, we found a relation between the number of bis-allyl-methylene positions of the PUFA added and the NF kappaB activity of stimulated, long-term supplemented cells. The data presented provide new insights into the biological mechanisms PUFA exert their anti-inflammatory effects. Since suppression of NF kappaB activity could be of benefit in a number of inflammatory diseases as well as cancer, our findings are of clinical implication. According to our data dietary supplementation with PUFA-containing oils is likely to provide an at least palliative therapy for disorders linked to inappropriate NF kappaB signaling. PMID:20580946

  9. Toxocara canis: Larvicidal activity of fatty acid amides.

    PubMed

    Mata-Santos, Taís; D'Oca, Caroline da Ros Montes; Mata-Santos, Hílton Antônio; Fenalti, Juliana; Pinto, Nitza; Coelho, Tatiane; Berne, Maria Elisabeth; da Silva, Pedro Eduardo Almeida; D'Oca, Marcelo Gonçalves Montes; Scaini, Carlos James

    2016-02-01

    Considering the therapeutic potential of fatty acid amides, the present study aimed to evaluate their in vitro activity against Toxocara canis larvae and their cytotoxicity for the first time. Linoleylpyrrolidilamide was the most potent, with a minimal larvicidal concentration (MLC) of 0.05 mg/mL and 27% cytotoxicity against murine peritoneal macrophages C57BL/6 mice, as assessed by the MTT assay. PMID:26783180

  10. Reconciling Ligase Ribozyme Activity with Fatty Acid Vesicle Stability

    PubMed Central

    Anella, Fabrizio; Danelon, Christophe

    2014-01-01

    The “RNA world” and the “Lipid world” theories for the origin of cellular life are often considered incompatible due to the differences in the environmental conditions at which they can emerge. One obstacle resides in the conflicting requirements for divalent metal ions, in particular Mg2+, with respect to optimal ribozyme activity, fatty acid vesicle stability and protection against RNA strand cleavage. Here, we report on the activity of a short L1 ligase ribozyme in the presence of myristoleic acid (MA) vesicles at varying concentrations of Mg2+. The ligation rate is significantly lower at low-Mg2+ conditions. However, the loss of activity is overcompensated by the increased stability of RNA leading to a larger amount of intact ligated substrate after long reaction periods. Combining RNA ligation assays with fatty acid vesicles we found that MA vesicles made of 5 mM amphiphile are stable and do not impair ligase ribozyme activity in the presence of approximately 2 mM Mg2+. These results provide a scenario in which catalytic RNA and primordial membrane assembly can coexist in the same environment. PMID:25513761

  11. Fatty Acid-Elongating Activity in Rapidly Expanding Leek Epidermis.

    PubMed Central

    Evenson, K. J.; Post-Beittenmiller, D.

    1995-01-01

    A microsomal fatty acid elongase activity measured in epidermis of rapidly expanding leek (Allium porrum L.) was 10-fold higher in specific activity than preparations from store-bought leek. These preparations elongated acyl chains effectively using endogenous or supplied primers. Elongation of C20:0 was specifically inhibited by 2 [mu]M cerulenin, and labeling experiments with [3H]cerulenin labeled two polypeptides (65 and 88 kD). ATP was required for maximal elongase activity in expanding leaves but was lost in nonexpanding tissues. Both [14C]stearoyl-coenzyme A (CoA) and [14C]stearate were maximally elongated in the presence of ATP. Addition of fully reduced CoA, however, inhibited [14C]stearate elongation, suggesting that stearoyl-CoA synthesis was not a prerequisite for elongation. Furthermore, microsomes preincubated with [14C]stearoyl-CoA plus ATP resulted in loss of radiolabel from the acyl-CoA pool without a corresponding loss in elongating activity. The lack of correlation between elongating activity and the label retained in the putative acyl-CoA substrate pool suggests that acyl-CoAs may not be the immediate precursors for elongation and that ATP plays a critical, yet undefined, role in the elongation process. We propose that an ATP-dependent elongating activity may generate the long-chain fatty acids required for wax biosynthesis. PMID:12228624

  12. Fatty acid extracts from Lucilia sericata larvae promote murine cutaneous wound healing by angiogenic activity

    PubMed Central

    2010-01-01

    Background fatty acids are considered to be effective components to promote wound healing and Lucilia sericata larvae are applied clinically to treat intractable wounds. We aimed to investigat the effect of fatty acid extracts from dried Lucilia sericata larvae on murine cutaneuous wound healing as well as angiogenesis. Results On day 7 and 10 after murine acute excision wounds creation, the percent wound contraction of fatty acid extracts group was higher than that of vaseline group. On day 3, 7 and 10 after wounds creation, the wound healing quality of fatty acid extracts group was better than that of vaseline group on terms of granulation formation and collagen organization. On day 3 after wounds creation, the micro vessel density and vascular endothelial growth factor expression of fatty acid extracts group were higher than that of vaseline group. Component analysis of the fatty acid extracts by gas chromatography-mass spectrometry showed there were 10 kinds of fatty acids in total and the ratio of saturated fatty acid, monounsaturated fatty acid and polyunsaturated fatty acid (PUFA) was: 20.57%:60.32%:19.11%. Conclusions Fatty acid extracts from dried Lucilia sericata larvae, four fifths of which are unsaturated fatty acids, can promote murine cutaneous wound healing probably resulting from the powerful angiogenic activity of the extracts. PMID:20211009

  13. Mutant fatty acid desaturase

    DOEpatents

    Shanklin, John; Cahoon, Edgar B.

    2004-02-03

    The present invention relates to a method for producing mutants of a fatty acid desaturase having a substantially increased activity towards fatty acid substrates with chains containing fewer than 18 carbons relative to an unmutagenized precursor desaturase having an 18 carbon atom chain length substrate specificity. The method involves inducing one or more mutations in the nucleic acid sequence encoding the precursor desaturase, transforming the mutated sequence into an unsaturated fatty acid auxotroph cell such as MH13 E. coli, culturing the cells in the absence of supplemental unsaturated fatty acids, thereby selecting for recipient cells which have received and which express a mutant fatty acid desaturase with an elevated specificity for fatty acid substrates having chain lengths of less than 18 carbon atoms. A variety of mutants having 16 or fewer carbon atom chain length substrate specificities are produced by this method. Mutant desaturases produced by this method can be introduced via expression vectors into prokaryotic and eukaryotic cells and can also be used in the production of transgenic plants which may be used to produce specific fatty acid products.

  14. Soraphen A, an inhibitor of acetyl CoA carboxylase activity, interferes with fatty acid elongation

    PubMed Central

    Jump, Donald B.; Torres-Gonzalez, Moises; Olson, L. Karl

    2010-01-01

    Acetyl CoA carboxylase (ACC1 & ACC2) generates malonyl CoA, a substrate for de novo lipogenesis (DNL) and an inhibitor of mitochondrial fatty acid β-oxidation (FAO). Malonyl CoA is also a substrate for microsomal fatty acid elongation, an important pathway for saturated (SFA), mono- (MUFA) and polyunsaturated fatty acid (PUFA) synthesis. Despite the interest in ACC as a target for obesity and cancer therapy, little attention has been given to the role ACC plays in long chain fatty acid synthesis. This report examines the effect of pharmacological inhibition of ACC on DNL & palmitate (16:0) and linoleate (18:2,n-6) metabolism in HepG2 and LnCap cells. The ACC inhibitor, soraphen A, lowers cellular malonyl CoA, attenuates DNL and the formation of fatty acid elongation products derived from exogenous fatty acids, i.e., 16:0 & 18:2,n-6; IC50 ~ 5 nM. Elevated expression of fatty acid elongases (Elovl5, Elovl6) or desaturases (FADS1, FADS2) failed to override the soraphen A effect on SFA, MUFA or PUFA synthesis. Inhibition of fatty acid elongation leads to the accumulation of 16- and 18-carbon unsaturated fatty acids derived from 16:0 and 18:2,n-6, respectively. Pharmacological inhibition of ACC activity will not only attenuate DNL and induce FAO, but will also attenuate the synthesis of very long chain saturated, mono- and polyunsaturated fatty acids. PMID:21184748

  15. Bioactive Fatty Acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxygenated fatty acids are useful as specialty chemicals, plasticizers, and biomedicals. Microbial enzymes convert fatty acids to mono-, di-, and trihydroxy fatty acid products. Among them, Bacillus megaterium ALA2 converted n-6 and n-3 PUFAs to many new oxygenated fatty acids. Linoleic acid was ...

  16. Mammalian Fatty Acid Elongases

    PubMed Central

    Jump, Donald B.

    2009-01-01

    Summary Very long chain fatty acids confer functional diversity on cells by variations in their chain length and degree of unsaturation. Microsomal fatty acid elongation represents the major pathway for determining the chain length of saturated, monounsaturated, and polyunsaturated fatty acids in cellular lipids. The overall reaction for fatty acid elongation involves four enzymes and utilizes malonyl CoA, NADPH, and fatty acyl CoA as substrates. While the fundamental pathway and its requirements have been known for many years, recent advances have revealed a family of enzymes involved in the first step of the reaction, i.e., the condensation reaction. Seven fatty acid elongase subtypes (Elovl #1–7) have been identified in the mouse, rat, and human genomes. These enzymes determine the rate of overall fatty acid elongation. Moreover, these enzymes also display differential substrate specificity, tissue distribution, and regulation, making them important regulators of cellular lipid composition as well as specific cellular functions. Herein, methods are described to measure elongase activity, analyze elongation products, and alter cellular elongase expression. PMID:19763486

  17. Bactericidal Activity of the Human Skin Fatty Acid cis-6-Hexadecanoic Acid on Staphylococcus aureus

    PubMed Central

    Cartron, Michaël L.; England, Simon R.; Chiriac, Alina Iulia; Josten, Michaele; Turner, Robert; Rauter, Yvonne; Hurd, Alexander; Sahl, Hans-Georg; Jones, Simon

    2014-01-01

    Human skin fatty acids are a potent aspect of our innate defenses, giving surface protection against potentially invasive organisms. They provide an important parameter in determining the ecology of the skin microflora, and alterations can lead to increased colonization by pathogens such as Staphylococcus aureus. Harnessing skin fatty acids may also give a new avenue of exploration in the generation of control measures against drug-resistant organisms. Despite their importance, the mechanism(s) whereby skin fatty acids kill bacteria has remained largely elusive. Here, we describe an analysis of the bactericidal effects of the major human skin fatty acid cis-6-hexadecenoic acid (C6H) on the human commensal and pathogen S. aureus. Several C6H concentration-dependent mechanisms were found. At high concentrations, C6H swiftly kills cells associated with a general loss of membrane integrity. However, C6H still kills at lower concentrations, acting through disruption of the proton motive force, an increase in membrane fluidity, and its effects on electron transfer. The design of analogues with altered bactericidal effects has begun to determine the structural constraints on activity and paves the way for the rational design of new antistaphylococcal agents. PMID:24709265

  18. Unraveling fatty acid transport and activation mechanisms in Yarrowia lipolytica.

    PubMed

    Dulermo, Rémi; Gamboa-Meléndez, Heber; Ledesma-Amaro, Rodrigo; Thévenieau, France; Nicaud, Jean-Marc

    2015-09-01

    Fatty acid (FA) transport and activation have been extensively studied in the model yeast species Saccharomyces cerevisiae but have rarely been examined in oleaginous yeasts, such as Yarrowia lipolytica. Because the latter begins to be used in biodiesel production, understanding its FA transport and activation mechanisms is essential. We found that Y. lipolytica has FA transport and activation proteins similar to those of S. cerevisiae (Faa1p, Pxa1p, Pxa2p, Ant1p) but mechanism of FA peroxisomal transport and activation differs greatly with that of S. cerevisiae. While the ScPxa1p/ScPxa2p heterodimer is essential for growth on long-chain FAs, ΔYlpxa1 ΔYlpxa2 is not impaired for growth on FAs. Meanwhile, ScAnt1p and YlAnt1p are both essential for yeast growth on medium-chain FAs, suggesting they function similarly. Interestingly, we found that the ΔYlpxa1 ΔYlpxa2 ΔYlant1 mutant was unable to grow on short-, medium-, or long-chain FAs, suggesting that YlPxa1p, YlPxa2p, and YlAnt1p belong to two different FA degradation pathways. We also found that YlFaa1p is involved in FA storage in lipid bodies and that FA remobilization largely depended on YlFat1p, YlPxa1p and YlPxa2p. This study is the first to comprehensively examine FA intracellular transport and activation in oleaginous yeast. PMID:25887939

  19. Serum Paraoxonase 1 Activity Is Associated with Fatty Acid Composition of High Density Lipoprotein

    PubMed Central

    Boshtam, Maryam; Pourfarzam, Morteza; Ani, Mohsen; Naderi, Gholam Ali; Basati, Gholam; Mansourian, Marjan; Dinani, Narges Jafari; Asgary, Seddigheh; Abdi, Soheila

    2013-01-01

    Introduction. Cardioprotective effect of high density lipoprotein (HDL) is, in part, dependent on its related enzyme, paraoxonase 1 (PON1). Fatty acid composition of HDL could affect its size and structure. On the other hand, PON1 activity is directly related to the structure of HDL. This study was designed to investigate the association between serum PON1 activity and fatty acid composition of HDL in healthy men. Methods. One hundred and forty healthy men participated in this research. HDL was separated by sequential ultracentrifugation, and its fatty acid composition was analyzed by gas chromatography. PON1 activity was measured spectrophotometrically using paraxon as substrate. Results. Serum PON1 activity was directly correlated with the amount of stearic acid and dihomo-gamma-linolenic acid (DGLA). PON1/HDL-C was directly correlated with the amount of miristic acid, stearic acid, and DGLA and was inversely correlated with total amount of ω6 fatty acids of HDL. Conclusion. The fatty acid composition of HDL could affect the activity of its associated enzyme, PON1. As dietary fats are the major determinants of serum lipids and lipoprotein composition, consuming some special dietary fatty acids may improve the activity of PON1 and thereby have beneficial effects on health. PMID:24167374

  20. Plant fatty acid hydroxylases

    DOEpatents

    Somerville, Chris; Broun, Pierre; van de Loo, Frank

    2001-01-01

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  1. Activation of peroxisome proliferator-activated receptor-{alpha} enhances fatty acid oxidation in human adipocytes

    SciTech Connect

    Lee, Joo-Young; Hashizaki, Hikari; Goto, Tsuyoshi; Sakamoto, Tomoya; Takahashi, Nobuyuki; Kawada, Teruo

    2011-04-22

    Highlights: {yields} PPAR{alpha} activation increased mRNA expression levels of adipocyte differentiation marker genes and GPDH activity in human adipocytes. {yields} PPAR{alpha} activation also increased insulin-dependent glucose uptake in human adipocytes. {yields} PPAR{alpha} activation did not affect lipid accumulation in human adipocytes. {yields} PPAR{alpha} activation increased fatty acid oxidation through induction of fatty acid oxidation-related genes in human adipocytes. -- Abstract: Peroxisome proliferator-activated receptor-{alpha} (PPAR{alpha}) is a key regulator for maintaining whole-body energy balance. However, the physiological functions of PPAR{alpha} in adipocytes have been unclarified. We examined the functions of PPAR{alpha} using human multipotent adipose tissue-derived stem cells as a human adipocyte model. Activation of PPAR{alpha} by GW7647, a potent PPAR{alpha} agonist, increased the mRNA expression levels of adipocyte differentiation marker genes such as PPAR{gamma}, adipocyte-specific fatty acid-binding protein, and lipoprotein lipase and increased both GPDH activity and insulin-dependent glucose uptake level. The findings indicate that PPAR{alpha} activation stimulates adipocyte differentiation. However, lipid accumulation was not changed, which is usually observed when PPAR{gamma} is activated. On the other hand, PPAR{alpha} activation by GW7647 treatment induced the mRNA expression of fatty acid oxidation-related genes such as CPT-1B and AOX in a PPAR{alpha}-dependent manner. Moreover, PPAR{alpha} activation increased the production of CO{sub 2} and acid soluble metabolites, which are products of fatty acid oxidation, and increased oxygen consumption rate in human adipocytes. The data indicate that activation of PPAR{alpha} stimulates both adipocyte differentiation and fatty acid oxidation in human adipocytes, suggesting that PPAR{alpha} agonists could improve insulin resistance without lipid accumulation in adipocytes. The expected

  2. Fatty acid synthase plays a role in cancer metabolism beyond providing fatty acids for phospholipid synthesis or sustaining elevations in glycolytic activity

    SciTech Connect

    Hopperton, Kathryn E.; Duncan, Robin E.; Bazinet, Richard P.; Archer, Michael C.

    2014-01-15

    Fatty acid synthase is over-expressed in many cancers and its activity is required for cancer cell survival, but the role of endogenously synthesized fatty acids in cancer is unknown. It has been suggested that endogenous fatty acid synthesis is either needed to support the growth of rapidly dividing cells, or to maintain elevated glycolysis (the Warburg effect) that is characteristic of cancer cells. Here, we investigate both hypotheses. First, we compared utilization of fatty acids synthesized endogenously from {sup 14}C-labeled acetate to those supplied exogenously as {sup 14}C-labeled palmitate in the culture medium in human breast cancer (MCF-7 and MDA-MB-231) and untransformed breast epithelial cells (MCF-10A). We found that cancer cells do not produce fatty acids that are different from those derived from exogenous palmitate, that these fatty acids are esterified to the same lipid and phospholipid classes in the same proportions, and that their distribution within neutral lipids is not different from untransformed cells. These results suggest that endogenously synthesized fatty acids do not fulfill a specific function in cancer cells. Furthermore, we observed that cancer cells excrete endogenously synthesized fatty acids, suggesting that they are produced in excess of requirements. We next investigated whether lipogenic activity is involved in the maintenance of high glycolytic activity by culturing both cancer and non-transformed cells under anoxic conditions. Although anoxia increased glycolysis 2–3 fold, we observed no concomitant increase in lipogenesis. Our results indicate that breast cancer cells do not have a specific qualitative or quantitative requirement for endogenously synthesized fatty acids and that increased de novo lipogenesis is not required to sustain elevations in glycolytic activity induced by anoxia in these cells. - Highlights: • Fatty acid synthase (FASN) is over-expressed in cancer but its function is unknown. • We compare

  3. Brain microsomal fatty acid elongation is increased in abcd1-deficient mouse during active myelination phase.

    PubMed

    Morita, Masashi; Kawamichi, Misato; Shimura, Yusuke; Kawaguchi, Kosuke; Watanabe, Shiro; Imanaka, Tsuneo

    2015-12-01

    The dysfunction of ABCD1, a peroxisomal ABC protein, leads to the perturbation of very long chain fatty acid (VLCFA) metabolism and is the cause of X-linked adrenoleukodystrophy. Abcd1-deficient mice exhibit an accumulation of saturated VLCFAs, such as C26:0, in all tissues, especially the brain. The present study sought to measure microsomal fatty acid elongation activity in the brain of wild-type (WT) and abcd1-deficient mice during the course of development. The fatty acid elongation activity in the microsomal fraction was measured by the incorporation of [2-(14)C]malonyl-CoA into fatty acids in the presence of C16:0-CoA or C20:0-CoA. Cytosolic fatty acid synthesis activity was completely inhibited by the addition of N-ethylmaleimide (NEM). The microsomal fatty acid elongation activity in the brain was significantly high at 3 weeks after birth and decreased substantially at 3 months after birth. Furthermore, we detected two different types of microsomal fatty acid elongation activity by using C16:0-CoA or C20:0-CoA as the substrate and found the activity toward C20:0-CoA in abcd1-deficient mice was higher than the WT 3-week-old animals. These results suggest that during the active myelination phase the microsomal fatty acid elongation activity is stimulated in abcd1-deficient mice, which in turn perturbs the lipid composition in myelin. PMID:26108493

  4. Omega-3 Fatty Acids

    MedlinePlus

    Omega-3 fatty acids are used together with lifestyle changes (diet, weight-loss, exercise) to reduce the amount ... the blood in people with very high triglycerides. Omega-3 fatty acids are in a class of medications ...

  5. Omega-6 Fatty Acids

    MedlinePlus

    Omega-6 fatty acids are types of fats. Some types are found in vegetable oils, including corn, evening primrose seed, safflower, and soybean oils. Other types of omega-6 fatty acids are found in black currant seed, borage seed, ...

  6. Omega-6 Fatty Acids

    MedlinePlus

    ... types of fats. Some types are found in vegetable oils, including corn, evening primrose seed, safflower, and soybean ... from studying specific omega-6 fatty acids or plant oils containing omega-6 fatty acids. See the separate ...

  7. Fatty acid analogs

    DOEpatents

    Elmaleh, David R.; Livni, Eli

    1985-01-01

    In one aspect, a radioactively labeled analog of a fatty acid which is capable of being taken up by mammalian tissue and which exhibits an in vivo beta-oxidation rate below that with a corresponding radioactively labeled fatty acid.

  8. The effects of nutritional polyunsaturated fatty acids on locomotor activity in spontaneously hypertensive rats.

    PubMed

    Hauser, Joachim; Makulska-Gertruda, Ewelina; Reissmann, Andreas; Sontag, Thomas-A; Tucha, Oliver; Lange, Klaus W

    2014-06-01

    The present study investigated the effects of nutritional omega-3 polyunsaturated fatty acids on locomotor activity in spontaneously hypertensive rats (SHRs), which are used as an animal model of attention-deficit/hyperactivity disorder (ADHD). For 6 weeks, two groups of randomly assigned SHRs received food either enriched with or deficient in omega-3 fatty acids (based on the American Institute of Nutrition-93 G/AIN93G). Using an open field, locomotor activity was subsequently assessed for 6 days. A marked difference in locomotor activity as assessed by the distance travelled in the open field was found between the two groups of rats. In comparison with rats fed with omega-3 fatty acid-enriched food, the animals on the omega-3 fatty acid-deficient diet showed a significantly higher locomotor activity. The present findings demonstrated that nutritional enrichment with omega-3 fatty acids was associated with reduced motor activity in an established animal model of ADHD and support the notion that omega-3 polyunsaturated fatty acids may play a role in the pathophysiology of ADHD. PMID:24415401

  9. Effect of low temperature on highly unsaturated fatty acid biosynthesis in activated sludge.

    PubMed

    He, Su; Ding, Li-Li; Xu, Ke; Geng, Jin-Ju; Ren, Hong-Qiang

    2016-07-01

    Low temperature is a limiting factor for the microbial activity of activated sludge for sewage treatment plant in winter. Highly unsaturated fatty acid (UFA) biosynthesis, phospholipid fatty acid (PLFA) constituents and microbial structure in activated sludge at low temperature were investigated. Over 12 gigabases of metagenomic sequence data were generated with the Illumina HiSeq 2000 platform. The result showed 43.11% of phospholipid fatty acid (PLFA) in the activated sludge participated in UFA biosynthesis, and γ-Linolenic could be converted to Arachidonic acid at low temperature. The highly UFA biosynthesis in activated sludge was n-6 highly UFA biosynthesis, rather than n-3 highly UFA biosynthesis. The microbial community structures of activated sludge were analyzed by PLFA and high-throughput sequencing (HiSeq) simultaneously. Acidovorax, Pseudomonas, Flavobacterium and Polaromonas occupied higher percentage at 5°C, and genetic changes of highly UFA biosynthesis derived from microbial community structures change. PMID:27035483

  10. [Primary research on anti-tumor activity of panaxadiol fatty acid esters].

    PubMed

    Zhang, Chun-Hong; Zhang, Lian-Xue; Li, Xiang-Gao; Gao, Yu-Gang; Liu, Ya-Jing

    2006-11-01

    For making use of Ginseng resources and finding new anti-tumor drugs, the anti-tumor activity of three kinds of new panaxadiol fatty acid ester derivates: 3beta-acetoxy panaxadiol (I), 3beta-palmitic acid aceloxy panaxadiol (II), 3beta-octadecanoic acid aceloxy panaxadiol (Ill) and panaxaiol were compared through the method of cell stain and counting. Tumor cell was Vero cell line. Positive control was 5-FU. Blank was RPM11640 culture medium. Negative control was RPM11640 culture medium and the solvent for subjected drugs. The result showed that compound I had the strongest anti-tumor activity, second was panaxadiol, II and III had the same and the weakest antitumor activity. Furthermore, the anti-tumor activities of panaxadiol fatty acid ester derivates showed positive correlation with subjects' concentrations, but no relationship with molecular weight of fatty acid. PMID:17228662

  11. Nitrogen dioxide induced changes in level of free fatty acids, triglyceride, esterified fatty acid, ganglioside and lipase activity in the guinea pig brain

    SciTech Connect

    Farahani, H.; Hasan, M. )

    1992-02-01

    The biochemical response to controlled inhalation of nitrogen dioxide (NO2) was studied in 18 male guinea pigs. Animals were exposed to 2.5, 5.0, and 10 ppm NO2 for 2h daily for 35 consecutive days, and the results compared with six control animals exposed to filtered air for 2h daily for same period. Five biochemical parameters, including triglyceride, free fatty acids, esterified fatty acid, ganglioside and lipase activity were measured immediately after the last day of exposure. At 2.5 ppm NO2 inhalation no significant changes occurred in any region of the central nervous system (CNS). While as the dose concentration was increased to 5 and 10 ppm nitrogen dioxide, significant dose-related alteration were observed in the levels of triglyceride, free fatty acid, esterified fatty acid, ganglioside and lipase activity in the different regions of the guinea pig CNS.

  12. Saturated fatty acids activate TLR-mediated pro-inflammatory signaling pathways

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Toll-like receptor 4 (TLR4) and TLR2 were shown to be activated by saturated fatty acids (SFAs) but inhibited by docosahexaenoic acid (DHA). However, one report (ATVB 11:1944, 2009) suggested that SFA-induced TLR activation in cell culture systems is due to contaminants in BSA used for conjugating f...

  13. Omega-3 fatty acid deficiency selectively up-regulates delta6-desaturase expression and activity indices in rat liver: prevention by normalization of omega-3 fatty acid status.

    PubMed

    Hofacer, Rylon; Jandacek, Ronald; Rider, Therese; Tso, Patrick; Magrisso, I Jack; Benoit, Stephen C; McNamara, Robert K

    2011-09-01

    This study investigated the effects of perinatal dietary omega-3 (n-3) fatty acid depletion and subsequent repletion on the expression of genes that regulate long-chain (LC) polyunsaturated fatty acid biosynthesis in rat liver and brain. It was hypothesized that chronic n-3 fatty acid deficiency would increase liver Fads1 and Fads2 messenger RNA (mRNA) expression/activity and that n-3 fatty acid repletion would normalize this response. Adult rats fed the n-3-free diet during perinatal development exhibited significantly lower erythrocyte, liver, and frontal cortex LCn-3 fatty acid composition and reciprocal elevations in LC omega-6 (n-6) fatty acid composition compared with controls (CONs) and repleted rats. Liver Fads2, but not Fads1, Elovl2, or Elovl5, mRNA expression was significantly greater in n-3-deficient (DEF) rats compared with CONs and was partially normalized in repleted rats. The liver 18:3n-6/18:2n-6 ratio, an index of delta6-desturase activity, was significantly greater in DEF rats compared with CON and repleted rats and was positively correlated with Fads2 mRNA expression among all rats. The liver 18:3n-6/18:2n-6 ratio, but not Fads2 mRNA expression, was also positively correlated with erythrocyte and frontal cortex LCn-6 fatty acid compositions. Neither Fads1 or Fads2 mRNA expression was altered in brain cortex of DEF rats. These results confirm previous findings that liver, but not brain, delta6-desaturase expression and activity indices are negatively regulated by dietary n-3 fatty acids. PMID:22024496

  14. Epicuticular Wax Accumulation and Fatty Acid Elongation Activities Are Induced during Leaf Development of Leeks1

    PubMed Central

    Rhee, Yoon; Hlousek-Radojcic, Alenka; Ponsamuel, Jayakumar; Liu, Dehua; Post-Beittenmiller, Dusty

    1998-01-01

    Epicuticular wax production was evaluated along the length of expanding leek (Allium porrum L.) leaves to gain insight into the regulation of wax production. Leaf segments from the bottom to the top were analyzed for (a) wax composition and load; (b) microsomal fatty acid elongase, plastidial fatty acid synthase, and acyl-acyl carrier protein (ACP) thioesterase activities; and (c) tissue and cellular morphological changes. The level of total wax, which was low at the bottom, increased 23-fold along the length of the leaf, whereas accumulation of the hentriacontan-16-one increased more than 1000-fold. The onset of wax accumulation was not linked to cell elongation but, rather, occurred several centimeters above the leaf base. Peak microsomal fatty acid elongation activity preceded the onset of wax accumulation, and the maximum fatty acid synthase activity was coincident with the onset. The C16:0- and C18:0-ACP-hydrolyzing activities changed relatively little along the leaf, whereas C18:1-ACP-hydrolyzing activity increased slightly prior to the peak elongase activity. Electron micrographic analyses revealed that wax crystal formation was asynchronous among cells in the initial stages of wax deposition, and morphological changes in the cuticle and cell wall preceded the appearance of wax crystals. These studies demonstrated that wax production and microsomal fatty acid elongation activities were induced within a defined and identifiable region of the expanding leek leaf and provide the foundation for future molecular studies. PMID:9501123

  15. Liver Fatty acid binding protein (L-Fabp) modulates murine stellate cell activation and diet induced nonalcoholic fatty liver disease

    PubMed Central

    Chen, Anping; Tang, Youcai; Davis, Victoria; Hsu, Fong-Fu; Kennedy, Susan M.; Song, Haowei; Turk, John; Brunt, Elizabeth M.; Newberry, Elizabeth P.; Davidson, Nicholas O.

    2013-01-01

    Activation of hepatic stellate cells (HSCs) is crucial to the development of fibrosis in nonalcoholic fatty liver disease. Quiescent HSCs contain lipid droplets (LDs), whose depletion upon activation induces a fibrogenic gene program. Here we show that liver fatty acid-binding protein (L-Fabp), an abundant cytosolic protein that modulates fatty acid (FA) metabolism in enterocytes and hepatocytes also modulates HSC FA utilization and in turn regulates the fibrogenic program. L-Fabp expression decreased 10-fold following HSC activation, concomitant with depletion of LDs. Primary HSCs isolated from L-FABP−/− mice contain fewer LDs than wild type (WT) HSCs, and exhibit upregulated expression of genes involved in HSC activation. Adenoviral L-Fabp transduction inhibited activation of passaged WT HSCs and increased both the expression of prolipogenic genes and also augmented intracellular lipid accumulation, including triglyceride and FA, predominantly palmitate. Freshly isolated HSCs from L-FABP−/− mice correspondingly exhibited decreased palmitate in the free FA pool. To investigate whether L-FABP deletion promotes HSC activation in vivo, we fed L-FABP−/− and WT mice a high fat diet supplemented with trans-fatty acids and fructose (TFF). TFF-fed L-FABP−/− mice exhibited reduced hepatic steatosis along with decreased LD abundance and size compared to WT mice. In addition, TFF-fed L-FABP−/− mice exhibited decreased hepatic fibrosis, with reduced expression of fibrogenic genes, compared to WT mice. Conclusion L-FABP deletion attenuates both diet-induced hepatic steatosis and fibrogenesis, despite the observation that L-Fabp paradoxically promotes FA and LD accumulation and inhibits HSC activation in vitro. These findings highlight the importance of cell-specific modulation of hepatic lipid metabolism in promoting fibrogenesis in nonalcoholic fatty liver disease. PMID:23401290

  16. Role of bioactive fatty acids in nonalcoholic fatty liver disease.

    PubMed

    Juárez-Hernández, Eva; Chávez-Tapia, Norberto C; Uribe, Misael; Barbero-Becerra, Varenka J

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD) is characterized by fat deposition in hepatocytes, and a strong association with nutritional factors. Dietary fatty acids are classified according to their biochemical properties, which confer their bioactive roles. Monounsaturated fatty acids have a dual role in various human and murine models. In contrast, polyunsaturated fatty acids exhibit antiobesity, anti steatosic and anti-inflammatory effects. The combination of these forms of fatty acids-according to dietary type, daily intake and the proportion of n-6 to n-3 fats-can compromise hepatic lipid metabolism. A chemosensory rather than a nutritional role makes bioactive fatty acids possible biomarkers for NAFLD. Bioactive fatty acids provide health benefits through modification of fatty acid composition and modulating the activity of liver cells during liver fibrosis. More and better evidence is necessary to elucidate the role of bioactive fatty acids in nutritional and clinical treatment strategies for patients with NAFLD. PMID:27485440

  17. Influence of ethylenediamine-n,n’-disuccinic acid (EDDS) concentration on the bactericidal activity of fatty acids in vitro

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The antibacterial activity of mixtures of ethylenediamine-N,N’-disuccinic acid (EDDS) and antibacterial fatty acids (FA) was examined using the agar diffusion assay. Solutions of caproic, caprylic, capric, and lauric acids dissolved in potassium hydroxide (KOH) were supplemented with 0, 5, or 10 mM ...

  18. Fatty acid-releasing activities in Sinorhizobium meliloti include unusual diacylglycerol lipase.

    PubMed

    Sahonero-Canavesi, Diana X; Sohlenkamp, Christian; Sandoval-Calderón, Mario; Lamsa, Anne; Pogliano, Kit; López-Lara, Isabel M; Geiger, Otto

    2015-09-01

    Phospholipids are well known for their membrane-forming properties and thereby delimit any cell from the exterior world. In addition, membrane phospholipids can act as precursors for signals and other biomolecules during their turnover. Little is known about phospholipid signalling, turnover and remodelling in bacteria. Recently, we showed that a FadD-deficient mutant of Sinorhizobium meliloti, unable to convert free fatty acids to their coenzyme A derivatives, accumulates free fatty acids during the stationary phase of growth. Enzymatic activities responsible for the generation of these free fatty acids were unknown in rhizobia. Searching the genome of S. meliloti, we identified a potential lysophospholipase (SMc04041) and two predicted patatin-like phospholipases A (SMc00930, SMc01003). Although SMc00930 as well as SMc01003 contribute to the release of free fatty acids in S. meliloti, neither one can use phospholipids as substrates. Here we show that SMc01003 converts diacylglycerol to monoacylglycerol and a fatty acid, and that monoacylglycerol can be further degraded by SMc01003 to another fatty acid and glycerol. A SMc01003-deficient mutant of S. meliloti transiently accumulates diacylglycerol, suggesting that SMc01003 also acts as diacylglycerol lipase (DglA) in its native background. Expression of the DglA lipase in Escherichia coli causes lysis of cells in stationary phase of growth. PMID:25711932

  19. Fatty acids and glucose increase neutral endopeptidase activity in human microvascular endothelial cells.

    PubMed

    Muangman, Pornprom; Spenny, Michelle L; Tamura, Richard N; Gibran, Nicole S

    2003-06-01

    Neutral endopeptidase (NEP), a membrane-bound metallopeptidase enzyme that degrades neuropeptides, bradykinin, atrial natriuretic factor, enkephalins, and endothelin may regulate response to injury. We have previously demonstrated increased NEP localization and enzyme activity in diabetic wounds and skin compared with normal controls. We hypothesized that hyperlipidemia and hyperglycemia associated with type 2 diabetes mellitus may induce excessive NEP activity and thereby diminish normal response to injury. Human microvascular endothelial cells were treated with five different fatty acids (40 microM) with varying degrees of saturation, including oleic acid, linoleic acid, palmitic acid, stearic acid, and linolenic acid and/or glucose (40 mM) for 48 h. The effect of the antioxidative agents vitamin E and C on NEP enzyme activation was determined by treating the cultured cells with alpha-tocopherol succinate and/or L-ascorbic acid. Cell membrane preparations were assayed for NEP activity by incubation with glutaryl-Ala-Ala-Phe-4-methoxy-beta naphthylamide to generate a fluorescent degradation product methoxy 2 naphthylamine. High glucose or fatty acid concentration upregulated NEP activity. The highest NEP activity was observed with combined elevated glucose, linoleic acid, and oleic acid (P < 0.05). Antioxidant vitamin E and C treatment significantly reduced NEP enzyme activity after fatty acid exposure (P < 0.05). Thus, hyperglycemia and hyperlipidemia associated with type 2 diabetes mellitus may increase endothelial cell NEP activity and thereby decrease early pro-inflammatory responses. The modulator effect of vitamin E and C on NEP membrane enzyme activity after exposure to fatty acid stimulation suggests that lipid oxidation may activate NEP. PMID:12785004

  20. Peroxisome proliferators and fatty acids negatively regulate liver X receptor-mediated activity and sterol biosynthesis.

    PubMed

    Johnson, T E; Ledwith, B J

    2001-04-01

    Peroxisome proliferators (PPs) are potent tumor promoters in rodents. The mechanism of hepatocarcinogenesis requires the nuclear receptor peroxisome proliferator activated receptor-alpha (PPARalpha), but might also involve the PPARalpha independent alteration of signaling pathways that regulate cell growth. Here, we studied the effects of PPs on the mevalonate pathway, a critical pathway that controls cell proliferation. Liver X receptors (LXRs) are nuclear receptors that act as sterol sensors in the mevalonate pathway. In gene reporter assays in COS-7 cells, the basal activity of the LXR responsive reporter gene (LXRE-luc) was suppressed by 10 microM lovastatin and zaragozic acid A, suggesting that this activity was attributed to the activation of native LXRs, by endogenously produced mevalonate products. The potent PP and rodent tumor promoter, pirinixic acid (WY-14643) also inhibited LXR-mediated transcription in a dose related manner (approximate IC(50) of 100 microM). As did several other PPs including ciprofibric acid and mono-ethylhexylphthalate. Polyunsaturated and medium to long chain fatty acids at 100 microM were also potent inhibitors; the arachidonic acid analogue eicosatetraynoic acid being the most active (approximate IC(50) of 10 microM). Of the PPs and fatty acids tested, there was a strong correlation between the ability of these agents to suppress de novo sterol synthesis in a rat hepatoma cell line, H4IIEC3, and inhibit LXR-mediated transcription in COS-7 cells, but a discordance between these endpoints and PPARalpha activation and fatty acid acyl-CoA oxidase induction. Taken together, these results suggest that PPs and fatty acids negatively regulate the mevalonate pathway through a mechanism that is not entirely dependent on PPARalpha activation. Because of the importance of the mevalonate pathway in regulating cell proliferation, the modulation of this pathway by PPs and fatty acids might contribute to their actions on cell growth

  1. Bactericidal activity of alkaline salts of fatty acids towards bacteria associated with poultry processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Antibacterial activity of alkaline salts of caproic, caprylic, capric, lauric, and myristic acids were determined using the agar diffusion assay. A 0.5M concentration of each fatty acid (FA) was dissolved in 1.0 M potassium hydroxide (KOH), and pH of the mixtures was adjusted to 10.5 with citric aci...

  2. Catalytic Decarboxylation of Fatty Acids to Aviation Fuels over Nickel Supported on Activated Carbon

    NASA Astrophysics Data System (ADS)

    Wu, Jianghua; Shi, Juanjuan; Fu, Jie; Leidl, Jamie A.; Hou, Zhaoyin; Lu, Xiuyang

    2016-06-01

    Decarboxylation of fatty acids over non-noble metal catalysts without added hydrogen was studied. Ni/C catalysts were prepared and exhibited excellent activity and maintenance for decarboxylation. Thereafter, the effects of nickel loading, catalyst loading, temperature, and carbon number on the decarboxylation of fatty acids were investigated. The results indicate that the products of cracking increased with high nickel loading or catalyst loading. Temperature significantly impacted the conversion of stearic acid but did not influence the selectivity. The fatty acids with large carbon numbers tend to be cracked in this reaction system. Stearic acid can be completely converted at 370 °C for 5 h, and the selectivity to heptadecane was around 80%.

  3. Catalytic Decarboxylation of Fatty Acids to Aviation Fuels over Nickel Supported on Activated Carbon

    PubMed Central

    Wu, Jianghua; Shi, Juanjuan; Fu, Jie; Leidl, Jamie A.; Hou, Zhaoyin; Lu, Xiuyang

    2016-01-01

    Decarboxylation of fatty acids over non-noble metal catalysts without added hydrogen was studied. Ni/C catalysts were prepared and exhibited excellent activity and maintenance for decarboxylation. Thereafter, the effects of nickel loading, catalyst loading, temperature, and carbon number on the decarboxylation of fatty acids were investigated. The results indicate that the products of cracking increased with high nickel loading or catalyst loading. Temperature significantly impacted the conversion of stearic acid but did not influence the selectivity. The fatty acids with large carbon numbers tend to be cracked in this reaction system. Stearic acid can be completely converted at 370 °C for 5 h, and the selectivity to heptadecane was around 80%. PMID:27292280

  4. Catalytic Decarboxylation of Fatty Acids to Aviation Fuels over Nickel Supported on Activated Carbon.

    PubMed

    Wu, Jianghua; Shi, Juanjuan; Fu, Jie; Leidl, Jamie A; Hou, Zhaoyin; Lu, Xiuyang

    2016-01-01

    Decarboxylation of fatty acids over non-noble metal catalysts without added hydrogen was studied. Ni/C catalysts were prepared and exhibited excellent activity and maintenance for decarboxylation. Thereafter, the effects of nickel loading, catalyst loading, temperature, and carbon number on the decarboxylation of fatty acids were investigated. The results indicate that the products of cracking increased with high nickel loading or catalyst loading. Temperature significantly impacted the conversion of stearic acid but did not influence the selectivity. The fatty acids with large carbon numbers tend to be cracked in this reaction system. Stearic acid can be completely converted at 370 °C for 5 h, and the selectivity to heptadecane was around 80%. PMID:27292280

  5. The biological activities of protein/oleic acid complexes reside in the fatty acid.

    PubMed

    Fontana, Angelo; Spolaore, Barbara; Polverino de Laureto, Patrizia

    2013-06-01

    A complex formed by human α-lactalbumin (α-LA) and oleic acid (OA), named HAMLET, has been shown to have an apoptotic activity leading to the selective death of tumor cells. In numerous publications it has been reported that in the complex α-LA is monomeric and adopts a partly folded or "molten globule" state, leading to the idea that partly folded proteins can have "beneficial effects". The protein/OA molar ratio initially has been reported to be 1:1, while recent data have indicated that the OA-complex is given by an oligomeric protein capable of binding numerous OA molecules per protein monomer. Proteolytic fragments of α-LA, as well as other proteins unrelated to α-LA, can form OA-complexes with biological activities similar to those of HAMLET, thus indicating that a generic protein can form a cytotoxic complex under suitable experimental conditions. Moreover, even the selective tumoricidal activity of HAMLET-like complexes has been questioned. There is recent evidence that the biological activity of long chain unsaturated fatty acids, including OA, can be ascribed to their effect of perturbing the structure of biological membranes and consequently the function of membrane-bound proteins. In general, it has been observed that the cytotoxic effects exerted by HAMLET-like complexes are similar to those reported for OA alone. Overall, these findings can be interpreted by considering that the protein moiety does not have a toxic effect on its own, but merely acts as a solubilising agent for the inherently toxic fatty acid. PMID:23499846

  6. Omega-3 Fatty Acids Moderate Effects of Physical Activity on Cognitive Function

    PubMed Central

    Leckie, Regina L.; Manuck, Stephen B.; Bhattacharee, Neha; Muldoon, Matthew F.; Flory, Janine M.; Erickson, Kirk I.

    2014-01-01

    Greater amounts of physical activity (PA) and omega-3 fatty acids have both been independently associated with better cognitive performance. Because of the overlapping biological effects of omega-3 fatty acids and PA, fatty acid intake may modify the effects of PA on neurocognitive function. The present study tested this hypothesis by examining whether the ratio of serum omega-6 to omega-3 fatty acid levels would moderate the association between PA and executive and memory functions in 344 participants (Mean age = 44.42 years, SD = 6.72). The Paffenbarger Physical Activity Questionnaire (PPAQ), serum fatty acid levels, and performance on a standard neuropsychological battery were acquired on all subjects. A principal component analysis reduced the number of cognitive outcomes to three factors: n-back working memory, Trail Making test, and Logical Memory. We found a significant interaction between PA and the ratio of omega-6 to omega-3 fatty acid serum levels on Trail Making performance and n-back performance, such that higher amounts of omega-3 levels offset the deleterious effects of lower amounts of PA. These effects remained significant in a subsample (n=299) controlling for overall dietary fat consumption. There were no significant additive or multiplicative benefits of higher amounts of both omega-3 and PA on cognitive performance. Our results demonstrate that a diet high in omega-3 fatty acids might mitigate the effect of lower levels of PA on cognitive performance. This study illuminates the importance of understanding dietary and PA factors in tandem when exploring their effects on neurocognitive health. PMID:24813150

  7. Omega-3 fatty acids moderate effects of physical activity on cognitive function.

    PubMed

    Leckie, Regina L; Manuck, Stephen B; Bhattacharjee, Neha; Muldoon, Matthew F; Flory, Janine M; Erickson, Kirk I

    2014-07-01

    Greater amounts of physical activity (PA) and omega-3 fatty acids have both been independently associated with better cognitive performance. Because of the overlapping biological effects of omega-3 fatty acids and PA, fatty acid intake may modify the effects of PA on neurocognitive function. The present study tested this hypothesis by examining whether the ratio of serum omega-6 to omega-3 fatty acid levels would moderate the association between PA and executive and memory functions in 344 participants (Mean age=44.42 years, SD=6.72). The Paffenbarger Physical Activity Questionnaire (PPAQ), serum fatty acid levels, and performance on a standard neuropsychological battery were acquired on all subjects. A principal component analysis reduced the number of cognitive outcomes to three factors: n-back working memory, Trail Making test, and Logical Memory. We found a significant interaction between PA and the ratio of omega-6 to omega-3 fatty acid serum levels on Trail Making performance and n-back performance, such that higher amounts of omega-3 levels offset the deleterious effects of lower amounts of PA. These effects remained significant in a subsample (n=299) controlling for overall dietary fat consumption. There were no significant additive or multiplicative benefits of higher amounts of both omega-3 and PA on cognitive performance. Our results demonstrate that a diet high in omega-3 fatty acids might mitigate the effect of lower levels of PA on cognitive performance. This study illuminates the importance of understanding dietary and PA factors in tandem when exploring their effects on neurocognitive health. PMID:24813150

  8. Active role of fatty acid amino acid conjugates in nitrogen metabolidm by Spodoptera litura larvae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since the first fatty acid amino acid conjugate (FAC) was isolated from regurgitant of Spodoptera exigua larvae in 1997 [volicitin: N-(17-hydroxylinolenoyl)- L-glutamine], their role as elicitors of induced responses in plants has been well documented. However, studies of the biosyntheses as well as...

  9. New bioactive fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many oxygenated fatty acids are bioactive compounds. Nocardia cholesterolicum and Flavobacterium DS5 convert oleic acid to 10 hydroxy stearic acid and linoleic acid to 10-hydroxy-12(Z)-octadecanoic acid. Pseudomonas aeruginosa PR3 converts oleic acid to the new compounds, 7,10-dihydroxy-8(E)-octad...

  10. New Bioactive Fatty Acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many oxygenated fatty acids are bioactive compounds. Nocardia cholesterolicum and Flavobacterium DS5 convert oleic acid to 10 hydroxy stearic acid and linoleic acid to 10-hydroxy-12(Z)-octadecanoic acid. Pseudomonas aeruginosa PR3 converts oleic acid to new compounds, 7,10-dihydroxy-8(E)-octadecen...

  11. Antioxidant activities and fatty acid composition of wild grown myrtle (Myrtus communis L.) fruits

    PubMed Central

    Serce, Sedat; Ercisli, Sezai; Sengul, Memnune; Gunduz, Kazim; Orhan, Emine

    2010-01-01

    The fruits of eight myrtles, Myrtus communis L. accessions from the Mediterranean region of Turkey were evaluated for their antioxidant activities and fatty acid contents. The antioxidant activities of the fruit extracts were determined by using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and β-carotene-linoleic acid assays. The fatty acid contents of fruits were determined by using gas chromatography. The methanol extracts of fruits exhibited a high level of free radical scavenging activity. There was a wide range (74.51-91.65%) of antioxidant activity among the accessions in the β-carotene-linoleic acid assay. The amount of total phenolics (TP) was determined to be between 44.41-74.44 μg Gallic acid equivalent (GAE)/mg, on a dry weight basis. Oleic acid was the dominant fatty acid (67.07%), followed by palmitic (10.24%), and stearic acid (8.19%), respectively. These results suggest the future utilization of myrtle fruit extracts as food additives or in chemoprevention studies. PMID:20548930

  12. Fats and fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The absolute fat requirement of the human species is the amount of essential fatty acids needed to maintain optimal fatty acid composition of all tissues and normal eicosanoid synthesis. At most, this requirement is no more than about 5% of an adequate energy intake. However, fat accounts for appro...

  13. Omega-3 Fatty Acids

    MedlinePlus

    Omega-3 fatty acids are used together with lifestyle changes (diet, weight-loss, exercise) to reduce the amount of triglycerides (a fat-like ... people with very high triglycerides. Omega-3 fatty acids are in a class of medications called antilipemic ...

  14. Esterification and transesterification of greases to fatty acid methyl esters with highly active diphanylammonium salts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have conducted an investigation designed to identify alternate catalysts for the production of fatty acid methyl esters (FAME) to be used as biodiesel. Diphenylammonium sulfate (DPAS) and diphenylammonium chloride (DPA-HCl) salts were found to be highly active homogeneous catalysts for the simu...

  15. Esterification and Transesterification of greases to fatty acid methyl esters with highly active diphenylamine salts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diphenylamine sulfate (DPAS) and diphenylamine hydrochloride (DPACl) salts were found to be highly active catalysts for esterification and transesterification of inexpensive greases to fatty acid methyl esters (FAME). In the presence of catalytic amounts of DPAS or DPACl and excess methanol, the fr...

  16. Metabolically inert perfluorinated fatty acids directly activate uncoupling protein 1 in brown-fat mitochondria.

    PubMed

    Shabalina, Irina G; Kalinovich, Anastasia V; Cannon, Barbara; Nedergaard, Jan

    2016-05-01

    The metabolically inert perfluorinated fatty acids perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) can display fatty acid-like activity in biological systems. The uncoupling protein 1 (UCP1) in brown adipose tissue is physiologically (re)activated by fatty acids, including octanoate. This leads to bioenergetically uncoupled energy dissipation (heat production, thermogenesis). We have examined here the possibility that PFOA/PFOS can directly (re)activate UCP1 in isolated mouse brown-fat mitochondria. In wild-type brown-fat mitochondria, PFOS and PFOA overcame GDP-inhibited thermogenesis, leading to increased oxygen consumption and dissipated membrane potential. The absence of this effect in brown-fat mitochondria from UCP1-ablated mice indicated that it occurred through activation of UCP1. A competitive type of inhibition by increased GDP concentrations indicated interaction with the same mechanistic site as that utilized by fatty acids. No effect was observed in heart mitochondria, i.e., in mitochondria without UCP1. The stimulatory effect of PFOA/PFOS was not secondary to non-specific mitochondrial membrane permeabilization or to ROS production. Thus, metabolic effects of perfluorinated fatty acids could include direct brown adipose tissue (UCP1) activation. The possibility that this may lead to unwarranted extra heat production and thus extra utilization of food resources, leading to decreased fitness in mammalian wildlife, is discussed, as well as possible negative effects in humans. However, a possibility to utilize PFOA-/PFOS-like substances for activating UCP1 therapeutically in obesity-prone humans may also be envisaged. PMID:26041126

  17. Production of Biologically Active Hydroxy Fatty Acids from Vegetable Oils by Pseudomonas aeruginosa PR3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydroxy fatty acids have gained industrial attention because of their special properties such as higher viscosity and reactivity compared with other non-hydroxy fatty acids. The bacterial isolate Pseudomonas aeruginosa (PR3) had been reported to produce mono-, di-, and tri-hydroxy fatty acids from ...

  18. Production of Biologically Active Hydroxy Fatty Acids by Pseudomonas aeruginosa PR3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydroxy fatty acids (HFA) have gained important attentions because of their special properties such as higher viscosity and reactivity compared with other non-hydroxy fatty acids. Pseudomonas aeruginosa (PR3) had been reported to produce mono-, di-, and tri-hydroxy fatty acids from different unsatu...

  19. Aedes aegypti (Diptera: Culicidae) biting deterrence: structure-activity relationship of saturated and unsaturated fatty acids.

    PubMed

    Ali, Abbas; Cantrell, Charles L; Bernier, Ulrich R; Duke, Stephen O; Schneider, John C; Agramonte, Natasha M; Khan, Ikhlas

    2012-11-01

    In this study we evaluated the biting deterrent effects of a series of saturated and unsaturated fatty acids against Aedes aegypti (L), yellow fever mosquito (Diptera: Culicidae) using the K & Dbioassay module system. Saturated (C6:0 to C16:0 and C18:0) and unsaturated fatty acids (C11:1 to C14:1, C16:1, C18:1, and C18:2) showed biting deterrence index (BDI) values significantly greater than ethanol, the negative control. Among the saturated fatty acids, mid chain length acids (C10:0 to C13:0) showed higher biting deterrence than short (C6:0 to C9:0) and long chain length acids (C14:0 to C18:0), except for C8:0 and C16:0 that were more active than the other short and long chain acids. The BDI values of mid chain length acids (C10:0 to C13:0) were not significantly less than N, N-diethyl-meta-toluamide (DEET), the positive control. Among the unsaturated fatty acids, C11:1 showed the highest activity (BDI = 1.05) and C18:2 had the lowest activity (BDI = 0.7). In C11:1, C12:1, and C14:1 BDI values were not significantly less than DEET. After the preliminary observations, residual activity bioassays were performed on C11:0, C12:0, C11:1, and C12:1 over a 24-h period. All the fatty acids (C11:0, C12:0, C11:1, and C12:1) and DEET showed significantly higher activity at all test intervals than the solvent control. At treatment and 1-h posttreatment, all fatty acids showed proportion not biting (PNB) values not significantly less than DEET. At 3-, 6-, and 12-h posttreatment, all fatty acids showed PNB values significantly greater than DEET. At 24-h posttreatment, only the PNB value for C12:0 was significantly higher than DEET. The dose-responses of C12:0 and DEET were determined at concentrations of 5-25 nmol/cm2. As in the residual activity bioassays, the PNB values for C12:0 and DEET at 25 nmol/cm(2) were not significantly different. However, at lower concentrations, the PNB values for C12:0 were significantly greater than DEET. These results clearly indicate that mid

  20. Active synthesis of C24:5, n-3 fatty acid in retina.

    PubMed Central

    Rotstein, N P; Pennacchiotti, G L; Sprecher, H; Aveldaño, M I

    1996-01-01

    The formation of 14C-labelled long-chain and very-long-chain (n-3) pentaenoic and hexaenoic fatty acids was studied in bovine retina by following the metabolism of. [14C]-docosapentaenoate [C22:5, n-3 fatty acid (22:5 n-3)], [14C]-docosahexaenoate (22:6 n-3), and [14C]acetate. With similar amounts of 22:5 n-3 and 22:6 n-3 as substrates, the former was actively transformed into 24:5 n-3, whereas the latter was virtually unmodified. Labelled 24:5, 26:5, 24:6 and 22:6 were formed from [1-14C]22:5 n-3, showing that pentaenoic fatty acids including 24:5 n-3 can be elongated and desaturated within the retina. When retinal microsomes were incubated with [1-14C]22:5 n-3, 24:5 n-3 was the only fatty acid formed. In retinas incubated with [14C]acetate, 24:5 n-3 was the most highly labelled fatty acid among the polyenes synthesized, 24:6 n-3 being a minor product. Such selectivity in the elongation of two fatty acids identical in length, 22:5 n-3 and 22:6 n-3, despite the fact that 22:5 is a minor and 22:6 a major fatty acid constituent of retina, suggests that the active formation of 24:5 n-3 plays a key role in n-3 polyunsaturated fatty acid (PUFA) metabolism. This compound might give rise to even longer pentaenes via elongation, and to the major PUFAs of retina, 22:6 n-3, by 6-desaturation and chain shortening. Of all retinal lipids, a minor component, triacylglycerol (TG), incorporated the largest amounts of [14C]22:5 and 22:6. TG also concentrated most of the [14C]24:5 formed in retina, whether from [14C]22:5 n-3 or from [14C]acetate, suggesting an important role for this lipid in supporting PUFA metabolism and the synthesis of 22:6 n-3. PMID:8670163

  1. Characterization of fatty acid modifying enzyme activity in staphylococcal mastitis isolates and other bacteria

    PubMed Central

    2012-01-01

    Background Fatty acid modifying enzyme (FAME) has been shown to modify free fatty acids to alleviate their bactericidal effect by esterifying fatty acids to cholesterol or alcohols. Although it has been shown in previous studies that FAME is required for Staphylococcus aureus survival in skin abscesses, FAME is poorly studied compared to other virulence factors. FAME activity had also been detected in coagulase-negative staphylococci (CNS). However, FAME activity was only surveyed after a bacterial culture was grown for 24 h. Therefore if FAME activity was earlier in the growth phase, it would not have been detected by the assay and those strains would have been labeled as FAME negative. Results Fifty CNS bovine mastitis isolates and several S. aureus, Escherichia coli, and Streptococcus uberis strains were assayed for FAME activity over 24 h. FAME activity was detected in 54% of CNS and 80% S. aureus strains surveyed but none in E. coli or S. uberis. While some CNS strains produced FAME activity comparable to the lab strain of S. aureus, the pattern of FAME activity varied among strains and across species of staphylococci. All CNS that produced FAME activity also exhibited lipase activity. Lipase activity relative to colony forming units of these CNS decreased over the 24 h growth period. No relationship was observed between somatic cell count in the milk and FAME activity in CNS. Conclusions Some staphylococcal species surveyed produced FAME activity, but E. coli and S. uberis strains did not. All FAME producing CNS exhibited lipase activity which may indicate that both these enzymes work in concert to alter fatty acids in the bacterial environment. PMID:22726316

  2. Trans Fatty Acids

    NASA Astrophysics Data System (ADS)

    Doyle, Ellin

    1997-09-01

    Fats and their various fatty acid components seem to be a perennial concern of nutritionists and persons concerned with healthful diets. Advice on the consumption of saturated, polyunsaturated, monounsaturated, and total fat bombards us from magazines and newspapers. One of the newer players in this field is the group of trans fatty acids found predominantly in partially hydrogenated fats such as margarines and cooking fats. The controversy concerning dietary trans fatty acids was recently addressed in an American Heart Association (AHA) science advisory (1) and in a position paper from the American Society of Clinical Nutrition/American Institute of Nutrition (ASCN/AIN) (2). Both reports emphasize that the best preventive strategy for reducing risk for cardiovascular disease and some types of cancer is a reduction in total and saturated fats in the diet, but a reduction in the intake of trans fatty acids was also recommended. Although the actual health effects of trans fatty acids remain uncertain, experimental evidence indicates that consumption of trans fatty acids adversely affects serum lipid levels. Since elevated levels of serum cholesterol and triacylglycerols are associated with increased risk of cardiovascular disease, it follows that intake of trans fatty acids should be minimized.

  3. Enzymatic Synthesis of l-Ascorbyl Fatty Acid Esters Under Ultrasonic Irradiation and Comparison of Their Antioxidant Activity and Stability.

    PubMed

    Jiang, Chen; Lu, Yuyun; Li, Zhuo; Li, Cunzhi; Yan, Rian

    2016-06-01

    A series of novel l-ascorbyl fatty acid esters were synthesized by catalization of Novozym(®) 435 under ultrasonic irradiation and characterized by infrared spectroscopy, electrospray ionization mass spectra, and nuclear magnetic resonance. Their properties especially antioxidant activity and stability were investigated. The results showed that the reducing power, the scavenging activity of hydroxyl radical and 2,2-diphenyl-1-picrylhydrazyl radical were decreased with the increase of the number of carbon atoms in fatty acid. The hydroxyl radical scavenging activity and reducing power of l-ascorbyl saturated fatty acid esters were better than that of tert-butylhydroquinone. The induction period in lipid oxidation of l-ascorbyl saturated fatty acid esters and tert-butylhydroquinone were longer than that of l-ascorbyl unsaturated fatty acid esters and l-ascorbic acid both in soybean oil and lard. Besides, the l-ascorbyl fatty acid esters showed different stabilities in different conditions by comparing with l-ascorbic acid, and the l-ascorbyl saturated fatty acid esters were more stable than l-ascorbyl unsaturated fatty acid esters in ethanol solution. PMID:27100741

  4. Antimicrobial activity of n-6, n-7 and n-9 fatty acids and their esters for oral microorganisms

    PubMed Central

    Huang, Chifu B.; George, Brian; Ebersole, Jeffery L.

    2010-01-01

    Objective This study is to assess the antibacterial activity of omega-6, -7, -9 (n-6, n-7, n-9) fatty acids against various oral microorganisms. Methods The n-6, n-7, n-9 fatty acids, such as γ-linoleic acid (GLA), linoleic acid (LA), arachidonic acid (ARA), palmitoleic acid (PA), and oleic acid (OA), their fatty acid ethyl esters, GLA-EE, LA-EE, ARA-EE, PA-EE, OA-EE, and their fatty acid methyl esters, GLA-ME, LA-ME, ARA-ME, PA-ME, OA-ME were investigated for antimicrobial activity against oral pathogens Streptococcus mutans, Candida albicans, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, and Porphyromonas gingivalis. Various concentrations of the fatty acids, their methyl and ethyl esters were tested against various oral pathogens in 96-well plates and blood-agar plate. The plates were incubated anaerobically or aerobically at 37°C for 48 hours, and the colony forming units (CFU) were determined. Results The data demonstrated that select n-6, n-7, n-9 fatty acids and their esters exhibited strong antimicrobial activity against these oral microorganisms, demonstrating some specificity for individual microbial species. Conclusion The potential use or the combinations of the n-6, n-7, n-9 fatty acids and/or their esters, provided in a local delivery vehicle to infected sites in the oral cavity, could be considered as an additional therapeutic approach to improving oral health. PMID:20541177

  5. Oleic Acid Stimulates Complete Oxidation of Fatty Acids through Protein Kinase A-dependent Activation of SIRT1-PGC1α Complex*

    PubMed Central

    Lim, Ji-Hong; Gerhart-Hines, Zachary; Dominy, John E.; Lee, Yoonjin; Kim, Sungjin; Tabata, Mitsuhisa; Xiang, Yang K.; Puigserver, Pere

    2013-01-01

    Fatty acids are essential components of the dynamic lipid metabolism in cells. Fatty acids can also signal to intracellular pathways to trigger a broad range of cellular responses. Oleic acid is an abundant monounsaturated omega-9 fatty acid that impinges on different biological processes, but the mechanisms of action are not completely understood. Here, we report that oleic acid stimulates the cAMP/protein kinase A pathway and activates the SIRT1-PGC1α transcriptional complex to modulate rates of fatty acid oxidation. In skeletal muscle cells, oleic acid treatment increased intracellular levels of cyclic adenosine monophosphate (cAMP) that turned on protein kinase A activity. This resulted in SIRT1 phosphorylation at Ser-434 and elevation of its catalytic deacetylase activity. A direct SIRT1 substrate is the transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator 1-α (PGC1α), which became deacetylated and hyperactive after oleic acid treatment. Importantly, oleic acid, but not other long chain fatty acids such as palmitate, increased the expression of genes linked to fatty acid oxidation pathway in a SIRT1-PGC1α-dependent mechanism. As a result, oleic acid potently accelerated rates of complete fatty acid oxidation in skeletal muscle cells. These results illustrate how a single long chain fatty acid specifically controls lipid oxidation through a signaling/transcriptional pathway. Pharmacological manipulation of this lipid signaling pathway might provide therapeutic possibilities to treat metabolic diseases associated with lipid dysregulation. PMID:23329830

  6. In vitro biological activities and fatty acid profiles of Pistacia terebinthus fruits and Pistacia khinjuk seeds.

    PubMed

    Hacıbekiroğlu, Işil; Yılmaz, Pelin Köseoğlu; Haşimi, Nesrin; Kılınç, Ersin; Tolan, Veysel; Kolak, Ufuk

    2015-01-01

    This study reports in vitro anticholinesterase, antioxidant and antimicrobial effects of the n-hexane, dichloromethane, ethanol and ethanol-water extracts prepared from Pistacia terebinthus L. fruits and Pistacia khinjuk Stocks seeds as well as their total phenolic and flavonoid contents, and fatty acid compositions. Ethanol and ethanol-water extracts of both species exhibited higher anticholinesterase activity than galanthamine. Among ABTS, DPPH and CUPRAC assays, the highest antioxidant capacity of the extracts was found in the last one. P. terebinthus ethanol extract being rich in flavonoid content showed the best cupric reducing effect. All extracts possessed no antimicrobial activity. The main fatty acid in P. terebinthus fruits (52.52%) and P. khinjuk seeds (59.44%) was found to be oleic acid. Our results indicate that P. terebinthus fruits and P. khinjuk seeds could be a good source of anticholinesterase compounds, and could be phytochemically investigated. PMID:25115646

  7. Complestatin exerts antibacterial activity by the inhibition of fatty acid synthesis.

    PubMed

    Kwon, Yun-Ju; Kim, Hyun-Ju; Kim, Won-Gon

    2015-01-01

    Bacterial enoyl-acyl carrier protein (ACP) reductase has been confirmed as a novel target for antibacterial drug development. In the screening of inhibitors of Staphylococcus aureus enoyl-ACP reductase (FabI), complestatin was isolated as a potent inhibitor of S. aureus FabI together with neuroprotectin A and chloropeptin I from Streptomyces chartreusis AN1542. Complestatin and related compounds inhibited S. aureus FabI with IC₅₀ of 0.3-0.6 µM. They also prevented the growth of S. aureus as well as methicillin-resistance S. aureus (MRSA) and quinolone-resistant S. aureus (QRSA), with minimum inhibitory concentrations (MICs) of 2-4 µg/mL. Consistent with its FabI-inhibition, complestatin selectively inhibited the intracellular fatty acid synthesis in S. aureus, whereas it did not affect the macromolecular biosynthesis of other cellular components, such as DNA, RNA, proteins, and the cell wall. Additionally, supplementation with exogenous fatty acids reversed the antibacterial effect of complestatin, demonstrating that it targets fatty acid synthesis. In this study, we reported that complestatin and related compounds showed potent antibacterial activity via inhibiting fatty acid synthesis. PMID:25947917

  8. Abiotic synthesis of fatty acids

    NASA Technical Reports Server (NTRS)

    Leach, W. W.; Nooner, D. W.; Oro, J.

    1978-01-01

    The formation of fatty acids by Fischer-Tropsch-type synthesis was investigated with ferric oxide, ammonium carbonate, potassium carbonate, powdered Pueblito de Allende carbonaceous chondrite, and filings from the Canyon Diablo meteorite used as catalysts. Products were separated and identified by gas chromatography and mass spectrometry. Iron oxide, Pueblito de Allende chondrite, and Canyon Diablo filings in an oxidized catalyst form yielded no fatty acids. Canyon Diablo filings heated overnight at 500 C while undergoing slow purging by deuterium produced fatty acids only when potassium carbonate was admixed; potassium carbonate alone also produced these compounds. The active catalytic combinations gave relatively high yields of aliphatic and aromatic hydrocarbons; substantial amounts of n-alkenes were almost invariably observed when fatty acids were produced; the latter were in the range C6 to C18, with maximum yield in C9 or 10.

  9. bZIP67 Regulates the Omega-3 Fatty Acid Content of Arabidopsis Seed Oil by Activating FATTY ACID DESATURASE3[W][OPEN

    PubMed Central

    Mendes, Ana; Kelly, Amélie A.; van Erp, Harrie; Shaw, Eve; Powers, Stephen J.; Kurup, Smita; Eastmond, Peter J.

    2013-01-01

    Arabidopsis thaliana seed maturation is accompanied by the deposition of storage oil, rich in the essential ω-3 polyunsaturated fatty acid α-linolenic acid (ALA). The synthesis of ALA is highly responsive to the level of FATTY ACID DESATURASE3 (FAD3) expression, which is strongly upregulated during embryogenesis. By screening mutants in LEAFY COTYLEDON1 (LEC1)–inducible transcription factors using fatty acid profiling, we identified two mutants (lec1-like and bzip67) with a seed lipid phenotype. Both mutants share a substantial reduction in seed ALA content. Using a combination of in vivo and in vitro assays, we show that bZIP67 binds G-boxes in the FAD3 promoter and enhances FAD3 expression but that activation is conditional on bZIP67 association with LEC1-LIKE (L1L) and NUCLEAR FACTOR-YC2 (NF-YC2). Although FUSCA3 and ABSCISIC ACID INSENSITIVE3 are required for L1L and bZIP67 expression, neither protein is necessary for [bZIP67:L1L:NF-YC2] to activate FAD3. We conclude that a transcriptional complex containing L1L, NF-YC2, and bZIP67 is induced by LEC1 during embryogenesis and specifies high levels of ALA production for storage oil by activating FAD3 expression. PMID:23995083

  10. Fatty acid composition of plasma lipids and erythrocyte membranes during simulated extravehicular activity

    NASA Astrophysics Data System (ADS)

    Skedina, M. A.; Katuntsev, V. P.; Buravkova, L. B.; Naidina, V. P.

    Ten subjects (from 27 to 41 years) have been participated in 32 experiments. They were decompressed from ground level to 40-35 kPa in altitude chamber when breathed 100% oxygen by mask and performed repeated cycles of exercises (3.0 Kcal/min). The intervals between decompressions were 3-5 days. Plasma lipid and erythrocyte membrane fatty acid composition was evaluated in the fasting venous blood before and immediately after hypobaric exposure. There were 7 cases decompression sickness (DCS). Venous gas bubbles (GB) were detected in 27 cases (84.4%). Any significant changes in the fatty acid composition of erythrocyte membranes and plasma didn't practically induce after the first decompression. However, by the beginning of the second decompression the total lipid level in erythrocyte membranes decreased from 54.6 mg% to 40.4 mg% in group with DCS symptoms and from 51.2 mg% to 35.2 mg% (p < 0.05) without DCS symptoms. In group with DCS symptoms a tendency to increased level of saturated fatty acids in erythrocyte membranes (16:0, 18:0), the level of the polyunsaturated linoleic fatty acid (18:2) and arachidonic acid (20:4) tended to be decreased by the beginning of the second decompression. Insignificant changes in blood plasma fatty acid composition was observed in both groups. The obtained biochemical data that indicated the simulated extravehicular activity (EVA) condition is accompanied by the certain changes in the blood lipid metabolism, structural and functional state of erythrocyte membranes, which are reversible. The most pronounced changes are found in subjects with DCS symptoms.

  11. Mechanisms for the activation of Toll-like receptor 2/4 by saturated fatty acids and inhibition by docosahexaenoic acid.

    PubMed

    Hwang, Daniel H; Kim, Jeong-A; Lee, Joo Young

    2016-08-15

    Saturated fatty acids can activate Toll-like receptor 2 (TLR2) and TLR4 but polyunsaturated fatty acids, particularly docosahexaenoic acid (DHA) inhibit the activation. Lipopolysaccharides (LPS) and lipopetides, ligands for TLR4 and TLR2, respectively, are acylated by saturated fatty acids. Removal of these fatty acids results in loss of their ligand activity suggesting that the saturated fatty acyl moieties are required for the receptor activation. X-ray crystallographic studies revealed that these saturated fatty acyl groups of the ligands directly occupy hydrophobic lipid binding domains of the receptors (or co-receptor) and induce the dimerization which is prerequisite for the receptor activation. Saturated fatty acids also induce the dimerization and translocation of TLR4 and TLR2 into lipid rafts in plasma membrane and this process is inhibited by DHA. Whether saturated fatty acids induce the dimerization of the receptors by interacting with these lipid binding domains is not known. Many experimental results suggest that saturated fatty acids promote the formation of lipid rafts and recruitment of TLRs into lipid rafts leading to ligand independent dimerization of the receptors. Such a mode of ligand independent receptor activation defies the conventional concept of ligand induced receptor activation; however, this may enable diverse non-microbial molecules with endogenous and dietary origins to modulate TLR-mediated immune responses. Emerging experimental evidence reveals that TLRs play a key role in bridging diet-induced endocrine and metabolic changes to immune responses. PMID:27085899

  12. Fatty acid-induced NLRP3-PYCARD inflammasome activation interferes with insulin signaling

    PubMed Central

    Wen, Haitao; Gris, Denis; Lei, Yu; Jha, Sushmita; Zhang, Lu; Huang, Max Tze-Han; Brickey, Willie June; Ting, Jenny P.-Y.

    2014-01-01

    High-fat diet (HFD) and inflammation are key contributors to insulin resistance and type 2 diabetes (T2D). Interleukin (IL)-1β plays a role in insulin resistance; yet, how IL-1β is induced by fatty acid with HFD, and how this alters insulin signaling is unclear. We show that the saturated fatty acid, palmitate, but not unsaturated oleate, induces the activation of NLRP3-PYCARD inflammasome, causing caspase-1, IL-1β, and IL-18 production. This involves mitochondrial reactive oxygen species and the AMP-activated protein kinase and ULK1 autophagy signaling cascade. Inflammasome activation in hematopoietic cells impairs insulin signaling in several target tissues to reduce glucose tolerance and insulin sensitivity. Furthermore, IL-1β affects insulin sensitivity via TNF-independent and dependent pathways. These findings provide insights into the association of inflammation, diet and T2D. PMID:21478880

  13. Stimulation of proximal tubular cell apoptosis by albumin-bound fatty acids mediated by peroxisome proliferator activated receptor-gamma.

    PubMed

    Arici, Mustafa; Chana, Ravinder; Lewington, Andrew; Brown, Jez; Brunskill, Nigel John

    2003-01-01

    In nephrotic syndrome, large quantities of albumin enter the kidney tubule. This albumin carries with it a heavy load of fatty acids to which the proximal tubule cells are exposed at high concentration. It is postulated that exposure to fatty acids in this way is injurious to proximal tubule cells. This study has examined the ability of fatty acids to interact with peroxisome proliferator-activated receptors (PPAR) in primary cultures of human proximal tubule cells. Luciferase reporter assays in transiently transfected human proximal tubule cells were used to show that albumin bound fatty acids and other agonists activate PPARgamma in a dose-dependent manner. One of the consequences of this activation is apoptosis of the cells as determined by changes in cell morphology, evidence of PARP cleavage, and appearance of DNA laddering. Overexpression of PPARgamma in these cells also results in enhanced apoptosis. Both fatty acid-induced PPAR activation and apoptosis in these cells can be blocked by PPAR response element decoy oligonucleotides. Activation of PPARgamma by the specific agonist PGJ(2) is associated with inhibition of cell proliferation, whereas activation by albumin bound fatty acids is accompanied by increased proliferation. However, the net balance of apoptosis/proliferation favors deletion of cells. These results implicate albumin-bound fatty acids as important mediators of tubular injury in nephrosis and provide fresh impetus for pursuit of lipid-lowering strategies in proteinuric renal disease. PMID:12506134

  14. Understanding Fatty Acid Metabolism through an Active Learning Approach

    ERIC Educational Resources Information Center

    Fardilha, M.; Schrader, M.; da Cruz e Silva, O. A. B.; da Cruz e Silva, E. F.

    2010-01-01

    A multi-method active learning approach (MALA) was implemented in the Medical Biochemistry teaching unit of the Biomedical Sciences degree at the University of Aveiro, using problem-based learning as the main learning approach. In this type of learning strategy, students are involved beyond the mere exercise of being taught by listening. Less…

  15. Apolipoprotein D Transgenic Mice Develop Hepatic Steatosis through Activation of PPARγ and Fatty Acid Uptake.

    PubMed

    Labrie, Marilyne; Lalonde, Simon; Najyb, Ouafa; Thiery, Maxime; Daneault, Caroline; Des Rosiers, Chrisitne; Rassart, Eric; Mounier, Catherine

    2015-01-01

    Transgenic mice (Tg) overexpressing human apolipoprotein D (H-apoD) in the brain are resistant to neurodegeneration. Despite the use of a neuron-specific promoter to generate the Tg mice, they expressed significant levels of H-apoD in both plasma and liver and they slowly develop hepatic steatosis and insulin resistance. We show here that hepatic PPARγ expression in Tg mice is increased by 2-fold compared to wild type (WT) mice. Consequently, PPARγ target genes Plin2 and Cide A/C are overexpressed, leading to increased lipid droplets formation. Expression of the fatty acid transporter CD36, another PPARgamma target, is also increased in Tg mice associated with elevated fatty acid uptake as measured in primary hepatocytes. Elevated expression of AMPK in the liver of Tg leads to phosphorylation of acetyl CoA carboxylase, indicating a decreased activity of the enzyme. Fatty acid synthase expression is also induced but the hepatic lipogenesis measured in vivo is not significantly different between WT and Tg mice. In addition, expression of carnitine palmitoyl transferase 1, the rate-limiting enzyme of beta-oxidation, is slightly upregulated. Finally, we show that overexpressing H-apoD in HepG2 cells in presence of arachidonic acid (AA), the main apoD ligand, increases the transcriptional activity of PPARγ. Supporting the role of apoD in AA transport, we observed enrichment in hepatic AA and a decrease in plasmatic AA concentration. Taken together, our results demonstrate that the hepatic steatosis observed in apoD Tg mice is a consequence of increased PPARγ transcriptional activity by AA leading to increased fatty acid uptake by the liver. PMID:26083030

  16. Fatty Acid Profile and Biological Activities of Linseed and Rapeseed Oils.

    PubMed

    Lewinska, Anna; Zebrowski, Jacek; Duda, Magdalena; Gorka, Anna; Wnuk, Maciej

    2015-01-01

    It has been postulated that fatty acids found in edible oils may exert beneficial health effects by the modulation of signaling pathways regulating cell differentiation and proliferation, especially in the treatment of cardiovascular diseases. In the present study, the biological effects of selected edible oils--linseed (LO) and rapeseed (RO) oils--were tested in vitro on fibroblast cells. The fatty acid profile of the oils was determined using gas chromatography and FTIR spectroscopy. LO was found to be rich in α-linolenic acid (ALA), whereas oleic acid was the most abundant species in RO. Fatty acids were taken up by the cells and promoted cell proliferation. No oxidative stress-mediated cytotoxic or genotoxic effects were observed after oil stimulation. Oils ameliorated the process of wound healing as judged by improved migration of fibroblasts to the wounding area. As ALA-rich LO exhibited the most potent wound healing activity, ALA may be considered a candidate for promoting the observed effect. PMID:26703545

  17. Surface-Active and Performance Properties of Cationic Imidazolinium Surfactants Based on Different Fatty Acids

    NASA Astrophysics Data System (ADS)

    Bajpai, Divya; Tyagi, V. K.

    Imidazoline surfactants belong to the category of cationic surfactants. Cationic surfactants are often quaternary nitrogen salts and are widely used both in nonaqueous systems and in applications such as textile softeners, dispersants, and emulsifiers. This study describes the surface-active properties of cationic imidazolinium surfactants synthesized from different fatty acids. Their laundry performance in combination with nonionic surfactants like detergency, foaming property, softening property, rewettability etc., is also emphasized.

  18. Antioxidant activity and fatty acid profile of fermented milk prepared by Pediococcus pentosaceus.

    PubMed

    Balakrishnan, Gayathri; Agrawal, Renu

    2014-12-01

    Probiotics are the class of beneficial microorganisms that have positive influence on the health when ingested in adequate amounts. Probiotic fermented milk is one of the dairy products that is prepared by using probiotic lactic acid bacteria. The study comprised preparation of fermented milk from various sources such as cow, goat and camel. Pediococcus pentosaceus which is a native laboratory isolate from cheese was utilized for the product formation. Changes in functional properties in the fermented milks obtained from three different species were evaluated. Antioxidant activity determined by DPPH assay showed activity in probiotic fermented milk obtained from all the products being highest in goat milk (93 %) followed by product from camel milk (86 %) and then product from cow milk (79 %). The composition of beneficial fatty acids such as stearic acid, oleic acid and linoleic acid were higher in fermented milk than the unfermented ones. Results suggested that probiotic bacteria are able to utilize the nutrients in goat and camel milk more efficiently compared to cow milk. Increase in antioxidant activity and fatty acid profile of fermented milks enhances the therapeutic value of the products. PMID:25477694

  19. Bioconversion of volatile fatty acids derived from waste activated sludge into lipids by Cryptococcus curvatus.

    PubMed

    Liu, Jia; Liu, Jia-Nan; Yuan, Ming; Shen, Zi-Heng; Peng, Kai-Ming; Lu, Li-Jun; Huang, Xiang-Feng

    2016-07-01

    Pure volatile fatty acid (VFA) solution derived from waste activated sludge (WAS) was used to produce microbial lipids as culture medium in this study, which aimed to realize the resource recovery of WAS and provide low-cost feedstock for biodiesel production simultaneously. Cryptococcus curvatus was selected among three oleaginous yeast to produce lipids with VFAs derived from WAS. In batch cultivation, lipid contents increased from 10.2% to 16.8% when carbon to nitrogen ratio increased from about 3.5 to 165 after removal of ammonia nitrogen by struvite precipitation. The lipid content further increased to 39.6% and the biomass increased from 1.56g/L to 4.53g/L after cultivation for five cycles using sequencing batch culture (SBC) strategy. The lipids produced from WAS-derived VFA solution contained nearly 50% of monounsaturated fatty acids, including palmitic acid, heptadecanoic acid, ginkgolic acid, stearic acid, oleic acid, and linoleic acid, which showed the adequacy of biodiesel production. PMID:27038264

  20. Unsaturated fatty acids prevent activation of NLRP3 inflammasome in human monocytes/macrophages[S

    PubMed Central

    L'homme, Laurent; Esser, Nathalie; Riva, Laura; Scheen, André; Paquot, Nicolas; Piette, Jacques; Legrand-Poels, Sylvie

    2013-01-01

    The NLRP3 inflammasome is involved in many obesity-associated diseases, such as type 2 diabetes, atherosclerosis, and gouty arthritis, through its ability to induce interleukin (IL)-1β release. The molecular link between obesity and inflammasome activation is still unclear, but free fatty acids have been proposed as one triggering event. Here we reported opposite effects of saturated fatty acids (SFAs) compared with unsaturated fatty acids (UFAs) on NLRP3 inflammasome in human monocytes/macrophages. Palmitate and stearate, both SFAs, triggered IL-1β secretion in a caspase-1/ASC/NLRP3-dependent pathway. Unlike SFAs, the UFAs oleate and linoleate did not lead to IL-1β secretion. In addition, they totally prevented the IL-1β release induced by SFAs and, with less efficiency, by a broad range of NLRP3 inducers, including nigericin, alum, and monosodium urate. UFAs did not affect the transcriptional effect of SFAs, suggesting a specific effect on the NLRP3 activation. These results provide a new anti-inflammatory mechanism of UFAs by preventing the activation of the NLRP3 inflammasome and, therefore, IL-1β processing. By this way, UFAs might play a protective role in NLRP3-associated diseases. PMID:24006511

  1. Discovery of essential fatty acids

    PubMed Central

    Spector, Arthur A.; Kim, Hee-Yong

    2015-01-01

    Dietary fat was recognized as a good source of energy and fat-soluble vitamins by the first part of the 20th century, but fatty acids were not considered to be essential nutrients because they could be synthesized from dietary carbohydrate. This well-established view was challenged in 1929 by George and Mildred Burr who reported that dietary fatty acid was required to prevent a deficiency disease that occurred in rats fed a fat-free diet. They concluded that fatty acids were essential nutrients and showed that linoleic acid prevented the disease and is an essential fatty acid. The Burrs surmised that other unsaturated fatty acids were essential and subsequently demonstrated that linolenic acid, the omega-3 fatty acid analog of linoleic acid, is also an essential fatty acid. The discovery of essential fatty acids was a paradigm-changing finding, and it is now considered to be one of the landmark discoveries in lipid research. PMID:25339684

  2. Aedes aegypti (Diptera: culicidae) biting deterrence: structure-activity relationship of saturated and unsaturated fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study we systematically evaluated for the first time the biting deterrent effects of a series of saturated and unsaturated fatty acids against Aedes aegypti [yellow fever mosquito (Diptera: Culicidae)] using the K & D bioassay system (Klun et al 2005). The saturated fatty acids (C6:0 to C16...

  3. Fatty Acids of Thiobacillus thiooxidans

    PubMed Central

    Levin, Richard A.

    1971-01-01

    Fatty acid spectra were made on Thiobacillus thiooxidans cultures both in the presence and absence of organic compounds. Small additions of glucose or acetate had no significant effect either on growth or fatty acid content. The addition of biotin had no stimulatory effect but did result in slight quantitative changes in the fatty acid spectrum. The predominant fatty acid was a C19 cyclopropane acid. PMID:4945206

  4. Polyunsaturated Fatty Acids in Children

    PubMed Central

    2013-01-01

    Polyunsaturated fatty acids (PUFAs) are the major components of brain and retina, and are the essential fatty acids with important physiologically active functions. Thus, PUFAs should be provided to children, and are very important in the brain growth and development for fetuses, newborn infants, and children. Omega-3 fatty acids decrease coronary artery disease and improve blood flow. PUFAs have been known to have anti-inflammatory action and improved the chronic inflammation such as auto-immune diseases or degenerative neurologic diseases. PUFAs are used for metabolic syndrome related with obesity or diabetes. However, there are several considerations related with intake of PUFAs. Obsession with the intake of unsaturated fatty acids could bring about the shortage of essential fatty acids that are crucial for our body, weaken the immune system, and increase the risk of heart disease, arrhythmia, and stroke. In this review, we discuss types, physiologic mechanism of action of PUFAs, intake of PUFAs for children, recommended intake of PUFAs, and considerations for the intake of PUFAs. PMID:24224148

  5. Electrophilic Nitro-fatty Acids Activate NRF2 by a KEAP1 Cysteine 151-independent Mechanism*

    PubMed Central

    Kansanen, Emilia; Bonacci, Gustavo; Schopfer, Francisco J.; Kuosmanen, Suvi M.; Tong, Kit I.; Leinonen, Hanna; Woodcock, Steven R.; Yamamoto, Masayuki; Carlberg, Carsten; Ylä-Herttuala, Seppo; Freeman, Bruce A.; Levonen, Anna-Liisa

    2011-01-01

    Nitro-fatty acids (NO2-FAs) are electrophilic signaling mediators formed in vivo via nitric oxide (NO)- and nitrite (NO2−)-dependent reactions. Nitro-fatty acids modulate signaling cascades via reversible covalent post-translational modification of nucleophilic amino acids in regulatory proteins and enzymes, thus altering downstream signaling events, such as Keap1-Nrf2-antioxidant response element (ARE)-regulated gene expression. In this study, we investigate the molecular mechanisms by which 9- and 10-nitro-octadec-9-enoic acid (OA-NO2) activate the transcription factor Nrf2, focusing on the post-translational modifications of cysteines in the Nrf2 inhibitor Keap1 by nitroalkylation and its downstream responses. Of the two regioisomers, 9-nitro-octadec-9-enoic acid was a more potent ARE inducer than 10-nitro-octadec-9-enoic acid. The most OA-NO2-reactive Cys residues in Keap1 were Cys38, Cys226, Cys257, Cys273, Cys288, and Cys489. Of these, Cys273 and Cys288 accounted for ∼50% of OA-NO2 reactions in a cellular milieu. Notably, Cys151 was among the least OA-NO2-reactive of the Keap1 Cys residues, with mutation of Cys151 having no effect on net OA-NO2 reaction with Keap1 or on ARE activation. Unlike many other Nrf2-activating electrophiles, OA-NO2 enhanced rather than diminished the binding between Keap1 and the Cul3 subunit of the E3 ligase for Nrf2. OA-NO2 can therefore be categorized as a Cys151-independent Nrf2 activator, which in turn can influence the pattern of gene expression and therapeutic actions of nitroalkenes. PMID:21357422

  6. Omega-3 fatty acids (image)

    MedlinePlus

    Omega-3 fatty acids are a form of polyunsaturated fat that the body derives from food. Omega-3s (and omega-6s) are known as essential fatty acids (EFAs) because they are important for good health. ...

  7. Inhibitory activities of omega-3 Fatty acids and traditional african remedies on keloid fibroblasts.

    PubMed

    Olaitan, Peter B; Chen, I-Ping; Norris, James E C; Feinn, Richard; Oluwatosin, Odunayo M; Reichenberger, Ernst J

    2011-04-01

    Keloids develop when scar tissue responds to skin trauma with proliferative fibrous growths that extend beyond the boundaries of the original wound and progress for several months or years. Keloids most frequently occur in individuals of indigenous sub-Saharan African origin. The etiology for keloids is still unknown and treatment can be problematic as patients respond differently to various treatment modalities. Keloids have a high rate of recurrence following surgical excision. Some West African patients claim to have had successful outcomes with traditional African remedies-boa constrictor oil (BCO) and shea butter-leading the authors to investigate their effects on cultured fibroblasts. The effects of emulsions of BCO, fish oil, isolated omega-3 fatty acids, and shea butter were tested in comparison to triamcinolone regarding inhibition of cell growth in keloid and control fibroblast cultures. In a series of controlled studies, it was observed that fish oil and BCO were more effective than triamcinolone, and that cis-5, 8, 11, 14, 17-eicosapentaenoic acid was more effective than -linolenic acid. While cell counts in control cultures continuously decreased over a period of 5 days, cell counts in keloid cultures consistently declined between day 1 and day 3, and then increased between day 3 and day 5 for all tested reagents except for fish oil. These results suggest that oils rich in omega-3 fatty acids may be effective in reducing actively proliferating keloid fibroblasts. Additional studies are warranted to investigate whether oils rich in omega-3 fatty acids offer effective and affordable treatment for some keloid patients, especially in the developing world. PMID:24489452

  8. Study on Synthesis, Characterization and Antiproliferative Activity of Novel Diisopropylphenyl Esters of Selected Fatty Acids.

    PubMed

    Reddy, Yasa Sathyam; Kaki, Shiva Shanker; Rao, Bala Bhaskara; Jain, Nishant; Vijayalakshmi, Penumarthy

    2016-01-01

    The present study describes the synthesis, characterization and evaluation of antiproliferative activity of novel diisopropylphenyl esters of alpha-linolenic acid (ALA), valproic acid (VA), butyric acid (BA) and 2-ethylhexanoic acid (2-EHA). These esters were chemically synthesized by the esterification of fatty acids with 2,6-diisopropylphenol and 2,4-diisopropylphenol (propofol). The structure of new conjugates viz. propofol-(alpha-linolenic acid) (2,6P-ALA and 2,4P-ALA), propofol-valproic acid (2,6P-VA and 2,4P-VA), propofol-butyric acid (2,6P-BA and 2,4P-BA) and propofol-(2-ethylhexanoic acid) (2,6P2-EHA and 2,4P-2-EHA) were characterized by FT-IR, NMR ((1)H, (13)C) and mass spectral data. The synthesized conjugates having more lipophilic character were tested for antiproliferative in vitro studies on A549, MDA-MB-231, HeLa, Mia-Pa-Ca and HePG2 cancer cell lines. All the conjugates showed specific growth inhibition on studied cancer cell lines. Among the synthesized esters, the conjugates synthesized from BA, VA and 2-EHA exhibited prominent growth inhibition against A549, HeLa, Mia-Pa-Ca and HePG2 cancer cell lines. The preliminary results suggest that the entire novel conjugates possess antiproliferative properties that reduce the proliferation of cancer cells in vitro. PMID:26666272

  9. Mitochondrial long chain fatty acid oxidation, fatty acid translocase/CD36 content and carnitine palmitoyltransferase I activity in human skeletal muscle during aerobic exercise

    PubMed Central

    Holloway, Graham P; Bezaire, Veronic; Heigenhauser, George J F; Tandon, Narendra N; Glatz, Jan F C; Luiken, Joost J F P; Bonen, Arend; Spriet, Lawrence L

    2006-01-01

    Mitochondrial fatty acid transport is a rate-limiting step in long chain fatty acid (LCFA) oxidation. In rat skeletal muscle, the transport of LCFA at the level of mitochondria is regulated by carnitine palmitoyltransferase I (CPTI) activity and the content of malonyl-CoA (M-CoA); however, this relationship is not consistently observed in humans. Recently, fatty acid translocase (FAT)/CD36 was identified on mitochondria isolated from rat and human skeletal muscle and found to be involved in LCFA oxidation. The present study investigated the effects of exercise (120 min of cycling at ∼60% V̇O2peak) on CPTI palmitoyl-CoA and M-CoA kinetics, and on the presence and functional significance of FAT/CD36 on skeletal muscle mitochondria. Whole body fat oxidation rates progressively increased during exercise (P < 0.05), and concomitantly M-CoA inhibition of CPTI was progressively attenuated. Compared to rest, 120 min of cycling reduced (P < 0.05) the inhibition of 0.7, 2, 5 and 10 μm M-CoA by 16%, 21%, 30% and 34%, respectively. Whole body fat oxidation and palmitate oxidation rates in isolated mitochondria progressively increased (P < 0.05) during exercise, and were positively correlated (r = 0.78). Mitochondrial FAT/CD36 protein increased by 63% (P < 0.05) during exercise and was significantly (P < 0.05) correlated with mitochondrial palmitate oxidation rates at all time points (r= 0.41). However, the strongest (P < 0.05) correlation was observed following 120 min of cycling (r= 0.63). Importantly, the addition of sulfo-N-succimidyloleate, a specific inhibitor of FAT/CD36, reduced mitochondrial palmitate oxidation to ∼20%, indicating FAT/CD36 is functionally significant with respect to LCFA oxidation. We hypothesize that exercise-induced increases in fatty acid oxidation occur as a result of an increased ability to transport LCFA into mitochondria. We further suggest that decreased CPTI M-CoA sensitivity and increased mitochondrial FAT/CD36 protein are both

  10. Omega 3 but not omega 6 fatty acids inhibit AP-1 activity and cell transformation in JB6 cells

    PubMed Central

    Liu, Guangming; Bibus, Douglas M.; Bode, Ann M.; Ma, Wei-Ya; Holman, Ralph T.; Dong, Zigang

    2001-01-01

    Epidemiological and animal-based investigations have indicated that the development of skin cancer is in part associated with poor dietary practices. Lipid content and subsequently the derived fatty acid composition of the diet are believed to play a major role in the development of tumorigenesis. Omega 3 (ω3) fatty acids, including docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), can effectively reduce the risk of skin cancer whereas omega 6 (ω6) fatty acids such as arachidonic acid (AA) reportedly promote risk. To investigate the effects of fatty acids on tumorigenesis, we performed experiments to examine the effects of the ω3 fatty acids EPA and DHA and of the ω6 fatty acid AA on phorbol 12-tetradecanoate 13-acetate (TPA)-induced or epidermal growth factor (EGF)-induced transcription activator protein 1 (AP-1) transactivation and on the subsequent cellular transformation in a mouse epidermal JB6 cell model. DHA treatment resulted in marked inhibition of TPA- and EGF-induced cell transformation by inhibiting AP-1 transactivation. EPA treatment also inhibited TPA-induced AP-1 transactivation and cell transformation but had no effect on EGF-induced transformation. AA treatment had no effect on either TPA- or EGF-induced AP-1 transactivation or transformation, but did abrogate the inhibitory effects of DHA on TPA- or EGF-induced AP-1 transactivation and cell transformation in a dose-dependent manner. The results of this study demonstrate that the inhibitory effects of ω3 fatty acids on tumorigenesis are more significant for DHA than for EPA and are related to an inhibition of AP-1. Similarly, because AA abrogates the beneficial effects of DHA, the dietary ratio of ω6 to ω3 fatty acids may be a significant factor in mediating tumor development. PMID:11416221

  11. Activation of Short and Long Chain Fatty Acid Sensing Machinery in the Ileum Lowers Glucose Production in Vivo.

    PubMed

    Zadeh-Tahmasebi, Melika; Duca, Frank A; Rasmussen, Brittany A; Bauer, Paige V; Côté, Clémence D; Filippi, Beatrice M; Lam, Tony K T

    2016-04-15

    Evidence continues to emerge detailing the myriad of ways the gut microbiota influences host energy homeostasis. Among the potential mechanisms, short chain fatty acids (SCFAs), the byproducts of microbial fermentation of dietary fibers, exhibit correlative beneficial metabolic effects in humans and rodents, including improvements in glucose homeostasis. The underlying mechanisms, however, remain elusive. We here report that one of the main bacterially produced SCFAs, propionate, activates ileal mucosal free fatty acid receptor 2 to trigger a negative feedback pathway to lower hepatic glucose production in healthy rats in vivo We further demonstrate that an ileal glucagon-like peptide-1 receptor-dependent neuronal network is necessary for ileal propionate and long chain fatty acid sensing to regulate glucose homeostasis. These findings highlight the potential to manipulate fatty acid sensing machinery in the ileum to regulate glucose homeostasis. PMID:26896795

  12. Transcription of the Escherichia coli Fatty Acid Synthesis Operon fabHDG Is Directly Activated by FadR and Inhibited by ppGpp

    PubMed Central

    My, Laetitia; Rekoske, Brian; Lemke, Justin J.; Viala, Julie P.; Gourse, Richard L.

    2013-01-01

    In Escherichia coli, FadR and FabR are transcriptional regulators that control the expression of fatty acid degradation and unsaturated fatty acid synthesis genes, depending on the availability of fatty acids. In this report, we focus on the dual transcriptional regulator FadR. In the absence of fatty acids, FadR represses the transcription of fad genes required for fatty acid degradation. However, FadR is also an activator, stimulating transcription of the products of the fabA and fabB genes responsible for unsaturated fatty acid synthesis. In this study, we show that FadR directly activates another fatty acid synthesis promoter, PfabH, which transcribes the fabHDG operon, indicating that FadR is a global regulator of both fatty acid degradation and fatty acid synthesis. We also demonstrate that ppGpp and its cofactor DksA, known primarily for their role in regulation of the synthesis of the translational machinery, directly inhibit transcription from the fabH promoter. ppGpp also inhibits the fadR promoter, thereby reducing transcription activation of fabH by FadR indirectly. Our study shows that both ppGpp and FadR have direct roles in the control of fatty acid promoters, linking expression in response to both translation activity and fatty acid availability. PMID:23772072

  13. Fatty acid ethyl ester-synthesizing activity of lipoprotein lipase from rat postheparin plasma.

    PubMed

    Tsujita, T; Okuda, H

    1994-02-25

    Lipoprotein lipase (LPL) was obtained from rat postheparin plasma by chromatographies on heparin-Sepharose and hydroxyapatite. The enzyme was associated with fatty acid ethyl ester synthase (FAEE synthase) as judged by their co-elution profiles and identical profiles of inhibition by diisopropyl fluorophosphate. Only one polypeptide of molecular weight 57,000 in purified LPL fraction was labeled by affinity labeling with [3H]-diisopropyl fluorophosphate. The FAEE synthase activity of LPL was not affected by addition of apolipoprotein C-II. Digestion of the enzyme with trypsin resulted in almost complete loss of the triolein-hydrolyzing activity without change in FAEE synthase activity. The tributyrin-hydrolyzing activity of LPL was also not affected by addition of apolipoprotein C-II or trypsin digestion. On addition at progressively higher concentrations, bovine serum albumin increased FAEE synthesis to a maximum at 2 mg/ml and at higher concentrations inhibited its activity. On incubation of purified LPL with chylomicrons in an ethanol/water mixture, FAEE was formed in the presence of a high concentration of bovine serum albumin. The specific activity of FAEE synthesis from chylomicrons was about 65 times that from oleic acid. Triolein/gum arabic emulsion was used for identification of reaction products. We propose the following mechanism of FAEE formation from chylomicrons by LPL. The enzyme attacks chylomicrons forming an acyl-enzyme intermediate, and during the deacylation process, ethanol binds to fatty acids as an acceptor. These results suggest that LPL contributes to nonoxidative ethanol metabolism (FAEE formation) through degradation of triglyceride-rich lipoproteins such as chylomicrons. PMID:8119932

  14. Relationship of lipogenic enzyme activities to the rate of rat liver fatty acid synthesis

    SciTech Connect

    Nelson, G.; Kelley, D.; Schmidt, P.; Virk, S.; Serrato, C.

    1986-05-01

    The mechanism by which diet regulates liver lipogenesis is unclear. Here the authors report how dietary alterations effect the activities of key enzymes of fatty acid (FA) synthesis. Male Sprague-Dawley rats, 400-500 g, were fasted for 48h and then refed a fat-free, high carbohydrate (HC) diet (75% cal. from sucrose) for 0,3,9,24 and 48h, or refed a HC diet for 48h, then fed a high-fat (HF) diet (44% cal. from corn oil) for 3,9,24 and 48h. The FA synthesis rate and the activities of acetyl CoA carboxylase (AC), fatty acid synthase (FAS), ATP citrate lyase (CL), and glucose 6-phosphate dehydrogenase (G6PDH) were determined in the livers. FA synthesis was assayed with /sup 3/H/sub 2/O, enzyme activities were measured spectrophotometrically except for AC which was assayed with /sup 14/C-bicarbonate. There was no change in the activity of AC during fasting or on the HC diet. Fasting decreased the rate of FA synthesis by 25% and the activities of FAS and CL by 50%; refeeding the HC diet induced parallel changes in FA synthesis and the activities of FAS, CL, and G6PDH. After 9h on the HF diet, FA synthesis had decreased sharply, AC activity increased significantly while no changes were detected in the other activities. Subsequently FA synthesis did not change while the activities of the enzymes decreased slowly. These enzymes did not appear to regulate FA synthesis during inhibition of lipogenesis, but FAS, CL or G6PDH may be rate limiting in the induction phase. Other key factors may regulate FA synthesis during dietary alterations.

  15. (Radioiodinated free fatty acids)

    SciTech Connect

    Knapp, Jr., F. F.

    1987-12-11

    The traveler participated in the Second International Workshop on Radioiodinated Free Fatty Acids in Amsterdam, The Netherlands where he presented an invited paper describing the pioneering work at the Oak Ridge National Laboratory (ORNL) involving the design, development and testing of new radioiodinated methyl-branched fatty acids for evaluation of heart disease. He also chaired a technical session on the testing of new agents in various in vitro and in vivo systems. He also visited the Institute for Clinical and Experimental Nuclear Medicine in Bonn, West Germany, to review, discuss, plan and coordinate collaborative investigations with that institution. In addition, he visited the Cyclotron Research Center in Liege, Belgium, to discuss continuing collaborative studies with the Osmium-191/Iridium-191m radionuclide generator system, and to complete manuscripts and plan future studies.

  16. One-step production of a biologically active novel furan fatty acid from 7,10-dihydroxy-8(E)-octadecenoic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Furan fatty acids (F-acids) gain special attentions since they are known to play important roles in biological systems including humans. Specifically F-acids are known to have strong antioxidant activity like radical scavenging activity. Although widely distributed in most biological systems, F-ac...

  17. Fatty acid composition in serum correlates with that in the liver and non-alcoholic fatty liver disease activity scores in mice fed a high-fat diet.

    PubMed

    Wang, Xing-He; Li, Chun-Yan; Muhammad, Ishfaq; Zhang, Xiu-Ying

    2016-06-01

    In this study, we investigated the correlation between the serum fatty acid composition and hepatic steatosis, inflammation, hepatocellular ballooning scores, and liver fatty acids composition in mice fed a high-fat diet. Livers were collected for non-alcoholic fatty liver disease score analysis. Fatty acid compositions were analysed by gas chromatography. Correlations were determined by Pearson correlation coefficient. Exposed to a high-fat diet, mice developed fatty liver disease with varying severity without fibrosis. The serum fatty acid variation became more severe with prolonged exposure to a high-fat diet. This variation also correlated significantly with the variation in livers, with the types of fatty acids corresponding to liver steatosis, inflammation, and hepatocellular ballooning scores. Results of this study lead to the following hypothesis: the extent of serum fatty acid variation may be a preliminary biomarker of fatty liver disease caused by high-fat intake. PMID:27179602

  18. Omega-3 fatty acid oxidation products prevent vascular endothelial cell activation by coplanar polychlorinated biphenyls

    SciTech Connect

    Majkova, Zuzana; Layne, Joseph; Sunkara, Manjula; Morris, Andrew J.; Toborek, Michal; Hennig, Bernhard

    2011-02-15

    Coplanar polychlorinated biphenyls (PCBs) may facilitate development of atherosclerosis by stimulating pro-inflammatory pathways in the vascular endothelium. Nutrition, including fish oil-derived long-chain omega-3 fatty acids, such as docosahexaenoic acid (DHA, 22:6{omega}-3), can reduce inflammation and thus the risk of atherosclerosis. We tested the hypothesis that cyclopentenone metabolites produced by oxidation of DHA can protect against PCB-induced endothelial cell dysfunction. Oxidized DHA (oxDHA) was prepared by incubation of the fatty acid with the free radical generator 2,2-azo-bis(2-amidinopropane) dihydrochloride (AAPH). Cellular pretreatment with oxDHA prevented production of superoxide induced by PCB77, and subsequent activation of nuclear factor-{kappa}B (NF-{kappa}B). A{sub 4}/J{sub 4}-neuroprostanes (NPs) were identified and quantitated using HPLC ESI tandem mass spectrometry. Levels of these NPs were markedly increased after DHA oxidation with AAPH. The protective actions of oxDHA were reversed by treatment with sodium borohydride (NaBH{sub 4}), which concurrently abrogated A{sub 4}/J{sub 4}-NP formation. Up-regulation of monocyte chemoattractant protein-1 (MCP-1) by PCB77 was markedly reduced by oxDHA, but not by un-oxidized DHA. These protective effects were proportional to the abundance of A{sub 4}/J{sub 4} NPs in the oxidized DHA sample. Treatment of cells with oxidized eicosapentaenoic acid (EPA, 20:5{omega}-3) also reduced MCP-1 expression, but less than oxDHA. Treatment with DHA-derived cyclopentenones also increased DNA binding of NF-E2-related factor-2 (Nrf2) and downstream expression of NAD(P)H:quinone oxidoreductase (NQO1), similarly to the Nrf-2 activator sulforaphane. Furthermore, sulforaphane prevented PCB77-induced MCP-1 expression, suggesting that activation of Nrf-2 mediates the observed protection against PCB77 toxicity. Our data implicate A{sub 4}/J{sub 4}-NPs as mediators of omega-3 fatty acid-mediated protection against the

  19. Omega-3 fatty acid oxidation products prevent vascular endothelial cell activation by coplanar polychlorinated biphenyls

    PubMed Central

    Majkova, Zuzana; Layne, Joseph; Sunkara, Manjula; Morris, Andrew J.; Toborek, Michal; Hennig, Bernhard

    2011-01-01

    Coplanar polychlorinated biphenyls (PCBs) may facilitate development of atherosclerosis by stimulating pro-inflammatory pathways in the vascular endothelium. Nutrition, including fish oil-derived long-chain omega-3 fatty acids, such as docosahexaenoic acid (DHA, 22:6ω-3), can reduce inflammation and thus the risk of atherosclerosis. We tested the hypothesis that cyclopentenone metabolites produced by oxidation of DHA can protect against PCB-induced endothelial cell dysfunction. Oxidized DHA (oxDHA) was prepared by incubation of the fatty acid with the free radical generator 2,2-azo-bis(2-amidinopropane) dihydrochloride (AAPH). Cellular pretreatment with oxDHA prevented production of superoxide induced by PCB77, and subsequent activation of nuclear factor-κB (NF-κB). A4/J4-neuroprostanes (NPs) were identified and quantitated using HPLC ESI tandem mass spectrometry. Levels of these NPs were markedly increased after DHA oxidation with AAPH.. The protective actions of oxDHA were reversed by treatment with sodium borohydride (NaBH4), which concurrently abrogated A4/J4-NP formation. Up-regulation of monocyte chemoattractant protein-1 (MCP-1)by PCB77 was markedly reduced by oxDHA, but not by un-oxidized DHA. These protective effects were proportional to the abundance of A4/J4NPs in the oxidized DHA sample. Treatment of cells with oxidized eicosapentaenoic acid (EPA, 20:5ω-3) also reduced MCP-1 expression, but less than oxDHA. Treatment with DHA-derived cyclopentenones also increased DNA binding of NF-E2-related factor-2 (Nrf2)and downstream expression of NAD(P)H:quinone oxidoreductase (NQO1), similarly to the Nrf-2 activator sulforaphane. Furthermore, sulforaphane prevented PCB77-induced MCP-1 expression, suggesting that activation of Nrf-2 mediates the observed protection against PCB77 toxicity. Our data implicate A4/J4-NPs as mediators of omega-3 fatty acid-mediated protection against the endothelial toxicity of coplanar PCBs. PMID:21130106

  20. Ozonolysis products of membrane fatty acids activate eicosanoid metabolism in human airway epithelial cells

    SciTech Connect

    Leikauf, G.D.; Zhao, Q.; Zhou, S.; Santrock, J. )

    1993-12-01

    When inhaled, ozone reacts at the airway luminal surface with unsaturated fatty acids contained in the extracellular fluid and plasma membrane to form an aldehyde and hydroxyhydroperoxide. The resulting hydroxyhydroperoxide degrades in aqueous systems to yield a second aldehyde and hydrogen peroxide (H2O2). Previously, we demonstrated that ozone can augment eicosanoid metabolism in bovine airway epithelial cells. To examine structure-activity relationships of ozone-fatty acid degradation products on eicosanoid metabolism in human airway epithelial cells, 3-, 6-, and 9-carbon saturated aldehydes and hydroxyhydroperoxides were synthesized and purified. Eicosanoid metabolism was evaluated by determination of total 3H-activity release from confluent cells previously incubated with [3H]arachidonic acid and by identification of specific metabolites with high performance liquid chromatography and radioimmunoassay. The major metabolites detected were prostaglandin E2, prostaglandin F2 alpha, and 15-hydroxyeicosatetraenoic acid. The 9-carbon aldehyde, nonanal, in contrast to 3- or 6-carbon aldehydes, stimulated release at concentrations > or = 100 microM, suggesting that the stimulatory effect increases with increasing chain length. When tested under identical conditions, the 3-, 6-, and 9-carbon hydroxyhydroperoxides were more potent than the corresponding aldehydes. Again, a greater effect was noted when the chain length was increased. One possible explanation for the increased potency of the hydroxyhydroperoxides over the aldehydes could be due to degradation of the hydroxyhydroperoxide into H2O2 and aldehyde. We consider this an unlikely explanation because responses varied with chain length (although each hydroxyhydroperoxide would produce an equivalent amount of H2O2) and because exposure to H2O2 alone or H2O2 plus hexanal produced a response dissimilar to 1-hydroxy-1-hexanehydroperoxide.

  1. Epoxide hydrolase activities and epoxy fatty acids in the mosquito Culex quinquefasciatus

    PubMed Central

    Xu, Jiawen; Morisseau, Christophe; Yang, Jun; Mamatha, Dadala M.

    2015-01-01

    Culex mosquitoes have emerged as important model organisms for mosquito biology, and are disease vectors for multiple mosquito-borne pathogens, including West Nile virus. We characterized epoxide hydrolase activities in the mosquito Culex quinquefasciatus, which suggested multiple forms of epoxide hydrolases were present. We found EH activities on epoxy eicosatrienoic acids (EETs). EETs and other eicosanoids are well-established lipid signaling molecules in vertebrates. We showed EETs can be synthesized in vitro from arachidonic acids by mosquito lysate, and EETs were also detected in vivo both in larvae and adult mosquitoes by LC-MS/MS. The EH activities on EETs can be induced by blood feeding, and the highest activity was observed in the midgut of female mosquitoes. The enzyme activities on EETs can be inhibited by urea-based inhibitors designed for mammalian soluble epoxide hydrolases (sEH). The sEH inhibitors have been shown to play diverse biological roles in mammalian systems, and they can be useful tools to study the function of EETs in mosquitoes. Besides juvenile hormone metabolism and detoxification, insect epoxide hydrolases may also play a role in regulating lipid signaling molecules, such as EETs and other epoxy fatty acids, synthesized in vivo or obtained from blood feeding by female mosquitoes. PMID:25686802

  2. SFH2 regulates fatty acid synthase activity in the yeast Saccharomyces cerevisiae and is critical to prevent saturated fatty acid accumulation in response to haem and oleic acid depletion.

    PubMed

    Desfougères, Thomas; Ferreira, Thierry; Bergès, Thierry; Régnacq, Matthieu

    2008-01-01

    The yeast Saccharomyces cerevisiae is a facultative anaerobic organism. Under anaerobiosis, sustained growth relies on the presence of exogenously supplied unsaturated fatty acids and ergosterol that yeast is unable to synthesize in the absence of oxygen or upon haem depletion. In the absence of exogenous supplementation with unsaturated fatty acid, a net accumulation of SFA (saturated fatty acid) is observed that induces significant modification of phospholipid profile [Ferreira, Régnacq, Alimardani, Moreau-Vauzelle and Bergès (2004) Biochem. J. 378, 899-908]. In the present paper, we focus on the role of SFH2/CSR1, a hypoxic gene related to SEC14 and its involvement in lipid metabolism upon haem depletion in the absence of oleic acid supplementation. We observed that inactivation of SFH2 results in enhanced accumulation of SFA and phospholipid metabolism alterations. It results in premature growth arrest and leads to an exacerbated sensitivity to exogenous SFA. This phenotype is suppressed in the presence of exogenous oleic acid, or by a controlled expression of FAS1, one of the two genes encoding FAS. We present several lines of evidence to suggest that Sfh2p and oleic acid regulate SFA synthase in yeast at different levels: whereas oleic acid acts on FAS2 at the transcriptional level, we show that Sfh2p inhibits fatty acid synthase activity in response to haem depletion. PMID:17803462

  3. Synthesis and evaluation of fatty acid amides on the N-oleoylethanolamide-like activation of peroxisome proliferator activated receptor α.

    PubMed

    Takao, Koichi; Noguchi, Kaori; Hashimoto, Yosuke; Shirahata, Akira; Sugita, Yoshiaki

    2015-01-01

    A series of fatty acid amides were synthesized and their peroxisome proliferator-activated receptor α (PPAR-α) agonistic activities were evaluated in a normal rat liver cell line, clone 9. The mRNAs of the PPAR-α downstream genes, carnitine-palmitoyltransferase-1 and mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase, were determined by real-time reverse transcription-polymerase chain reaction (RT-PCR) as PPAR-α agonistic activities. We prepared nine oleic acid amides. Their PPAR-α agonistic activities were, in decreasing order, N-oleoylhistamine (OLHA), N-oleoylglycine, Oleamide, N-oleoyltyramine, N-oleoylsertonin, and Olvanil. The highest activity was found with OLHA. We prepared and evaluated nine N-acylhistamines (N-acyl-HAs). Of these, OLHA, C16:0-HA, and C18:1Δ(9)-trans-HA showed similar activity. Activity due to the different chain length of the saturated fatty acid peaked at C16:0-HA. The PPAR-α antagonist, GW6471, inhibited the induction of the PPAR-α downstream genes by OLHA and N-oleoylethanolamide (OEA). These data suggest that N-acyl-HAs could be considered new PPAR-α agonists. PMID:25832022

  4. Alteration of seed fatty acid composition by an ethyl methanesulfonate-induced mutation in Arabidopsis thaliana affecting diacylglycerol acyltransferase activity.

    PubMed Central

    Katavic, V; Reed, D W; Taylor, D C; Giblin, E M; Barton, D L; Zou, J; Mackenzie, S L; Covello, P S; Kunst, L

    1995-01-01

    In characterizing the enzymes involved in the formation of very long-chain fatty acids (VLCFAs) in the Brassicaceae, we have generated a series of mutants of Arabidopsis thaliana that have reduced VLCFA content. Here we report the characterization of a seed lipid mutant, AS11, which, in comparison to wild type (WT), has reduced levels of 20:1 and 18:1 and accumulates 18:3 as the major fatty acid in triacylglycerols. Proportions of 18:2 remain similar to WT. Genetic analyses indicate that the fatty acid phenotype is caused by a semidominant mutation in a single nuclear gene, designated TAG1, located on chromosome 2. Biochemical analyses have shown that the AS11 phenotype is not due to a deficiency in the capacity to elongate 18:1 or to an increase in the relative delta 15 or delta 12 desaturase activities. Indeed, the ratio of desaturase/elongase activities measured in vitro is virtually identical in developing WT and AS11 seed homogenates. Rather, the fatty acid phenotype of AS11 is the result of reduced diacylglycerol acyltransferase activity throughout development, such that triacylglycerol biosynthesis is reduced. This leads to a reduction in 20:1 biosynthesis during seed development, leaving more 18:1 available for desaturation. Thus, we have demonstrated that changes to triacylglycerol biosynthesis can result in dramatic changes in fatty acid composition and, in particular, in the accumulation of VLCFAs in seed storage lipids. PMID:7784510

  5. AMPK activation promotes lipid droplet dispersion on detyrosinated microtubules to increase mitochondrial fatty acid oxidation

    PubMed Central

    Herms, Albert; Bosch, Marta; Reddy, Babu J.N.; Schieber, Nicole L.; Fajardo, Alba; Rupérez, Celia; Fernández-Vidal, Andrea; Ferguson, Charles; Rentero, Carles; Tebar, Francesc; Enrich, Carlos; Parton, Robert G.; Gross, Steven P.; Pol, Albert

    2015-01-01

    Lipid droplets (LDs) are intracellular organelles that provide fatty acids (FAs) to cellular processes including synthesis of membranes and production of metabolic energy. While known to move bidirectionally along microtubules (MTs), the role of LD motion and whether it facilitates interaction with other organelles are unclear. Here we show that during nutrient starvation, LDs and mitochondria relocate on detyrosinated MT from the cell centre to adopt a dispersed distribution. In the cell periphery, LD–mitochondria interactions increase and LDs efficiently supply FAs for mitochondrial beta-oxidation. This cellular adaptation requires the activation of the energy sensor AMPK, which in response to starvation simultaneously increases LD motion, reorganizes the network of detyrosinated MTs and activates mitochondria. In conclusion, we describe the existence of a specialized cellular network connecting the cellular energetic status and MT dynamics to coordinate the functioning of LDs and mitochondria during nutrient scarcity. PMID:26013497

  6. Effects of Omega-3 Fatty Acids Supplement on Antioxidant Enzymes Activity in Type 2 Diabetic Patients

    PubMed Central

    TOORANG, Fatemeh; DJAZAYERY, Abolghassem; DJALALI, Mahmoud

    2016-01-01

    Background: Diabetes is a major cause of death. Oxidative stress mainly caused by hyperglycemia is the primary reason of related complications. Omega-3 fatty acids are prescribed in diabetes but the effect on antioxidant defense is controversial. This study investigated effects of omega-3 supplementation on antioxidant enzymes activity in type 2 diabetic patients. Methods: A randomized, placebo controlled, double blind clinical trial was performed on 90 type2 diabetic patients. The treatment group took, daily, three capsules of omega-3 for two mo, which totally provided 2714mg omega-3 (EPA=1548 mg, DHA=828 mg and 338 mg of other omega=3 fatty acids). Placebo contained 2100 mg sunflower oil (12% SFA, 65% linoleic acid, 23% MUFA), which is the main oil used in the study population. Food intakes, anthropometric and demographic characteristics, and therapeutic regimen data were recorded before and after the intervention. Fasting blood samples were taken before and after the intervention to measure super oxide dismutase, glutathione peroxidase, glutathione reductase, catalase and total antioxidant capacity in erythrocytes. Results: A total of 81 subjects completed the study. Two study groups were similar as regards duration of diabetes, age and the enzymes at baseline. Energy and macro- and micronutrients intakes, weight and hypoglycemic agent consumption were similar in the two groups at baseline and did not change. Supplementation had no effect on antioxidant enzyme status. Glycated hemoglobin showed a significant reduction by supplementation. Conclusion: Daily supplementation of 2714 mg mega-3 for two mo results in a significant reduction in HbA1c level in type2 diabetic patients with no effects on antioxidant enzymes activity. PMID:27141496

  7. n-3 Polyunsaturated fatty acids inhibit Fc ε receptor I-mediated mast cell activation.

    PubMed

    Wang, Xiaofeng; Ma, David W L; Kang, Jing X; Kulka, Marianna

    2015-12-01

    In vivo models show that n-3 polyunsaturated fatty acids (PUFA) inhibit some of the processes associated with allergic inflammation but the direct effect of n-3 PUFA on mast cells, the major effector cells in allergy, is poorly understood. We sought to determine the effect and mechanism of n-3 PUFA on Fc ε receptor I (FcεRI)-mediated signal transduction and mast cell activation. Bone marrow-derived mast cells (BMMC) were differentiated from bone marrow obtained from C57BL/6 wild-type (WT) and fat-1 transgenic mice. The fat-1 mice express fatty acid n-3 desaturase and produce endogenous n-3 PUFA. For comparison, exogenous n-3 PUFA were supplemented to WT BMMC and human mast cell (LAD2) cultures. Fat-1 BMMC released less β-hexosaminidase (β-hex) and cysteinyl leukotrienes and produced less tumor necrosis factor and chemokine (C-C motif) ligand 2. n-3 PUFA supplementation reduced LAD2 and BMMC degranulation (β-hex release) following FcεRI activation. Fat-1 BMMC expressed less constitutive Lyn and linker of activated T cells (LAT), and FcεRI-mediated phosphorylation of Lyn, spleen tyrosine kinase and LAT were reduced in fat-1 BMMC. Although the expression of surface and whole cell FcεRI was similar in WT and fat-1 BMMC, unstimulated fat-1 BMMC showed reduced FcεRI localization to lipid rafts, and stimulation with antigen resulted in aberrant FcεRI shuttling to the rafts. Our results show that n-3 PUFA suppress FcεRI-mediated activation of mast cells, which results in reduced mediator release. This effect is associated with a decrease in LAT and Lyn expression as well as abnormal shuttling of FcεRI to lipid rafts. PMID:26363927

  8. Hemolytic activity and solubilizing capacity of raffinose and melezitose fatty acid monoesters prepared by enzymatic synthesis.

    PubMed

    Carvalho, Luis; Morales, Juan C; Pérez-Victoria, José M; Pérez-Victoria, Ignacio

    2015-05-01

    The hemolytic activity and solubilizing capacity of two families of non-reducing trisaccharide fatty acid monoesters have been studied to assess their usefulness as surfactants for pharmaceutical applications. The carbohydrate-based surfactants investigated included homologous series of raffinose and melezitose monoesters bearing C10 to C18 acyl chains prepared by lipase-catalyzed synthesis in organic media. The hemolytic activity was determined in vitro using a static method based on the addition of the surfactants to an erythrocyte suspension and subsequent spectrophotometric determination of the released hemoglobin. The effect of the carbohydrate head group, the acyl chain length and the regioisomeric purity was investigated. In all cases, the carbohydrate monoester surfactants decreased their hemolytic activity (with respect to their critical micelle concentration) when increasing the length of the acyl chain. A very similar behaviour was observed either the carbohydrate head-group (raffinose and melezitose) or regardless of the regioisomeric purity. Interestingly, decanoyl (C10) and lauroyl (C12) monoesters were just marginally hemolytic at their critical micelle concentrations while the longer palmitoyl (C16) and (C18) stearoyl monoesters become hemolytic at concentrations much higher than their respective cmc. The palmitoyl and stearoyl monoesters also displayed higher solubilization capacity than the shorter acyl chain monoesters in a solubilization assay of a hydrophobic dye as a model drug mimic. These results suggest that raffinose and melezitose monoesters with long-chain fatty acids (C16 to C18) are promising surfactants for pharmaceutical applications and could be an alternative to the use of current commercial nonionic polyoxyethylene-based surfactants in parenteral formulations. PMID:25753196

  9. Nickel Inhibits Mitochondrial Fatty Acid Oxidation

    PubMed Central

    Uppala, Radha; McKinney, Richard W.; Brant, Kelly A.; Fabisiak, James P.; Goetzman, Eric S.

    2015-01-01

    Nickel exposure is associated with changes in cellular energy metabolism which may contribute to its carcinogenic properties. Here, we demonstrate that nickel strongly represses mitochondrial fatty acid oxidation—the pathway by which fatty acids are catabolized for energy—in both primary human lung fibroblasts and mouse embryonic fibroblasts. At the concentrations used, nickel suppresses fatty acid oxidation without globally suppressing mitochondrial function as evidenced by increased glucose oxidation to CO2. Pre-treatment with L-carnitine, previously shown to prevent nickel-induced mitochondrial dysfunction in neuroblastoma cells, did not prevent the inhibition of fatty acid oxidation. The effect of nickel on fatty acid oxidation occurred only with prolonged exposure (>5 hr), suggesting that direct inhibition of the active sites of metabolic enzymes is not the mechanism of action. Nickel is a known hypoxia-mimetic that activates hypoxia inducible factor-1α (HIF1α). Nickel-induced inhibition of fatty acid oxidation was blunted in HIF1α knockout fibroblasts, implicating HIF1α as one contributor to the mechanism. Additionally, nickel down-regulated the protein levels of the key fatty acid oxidation enzyme very long-chain acyl-CoA dehydrogenase (VLCAD) in a dose-dependent fashion. In conclusion, inhibition of fatty acid oxidation by nickel, concurrent with increased glucose metabolism, represents a form of metabolic reprogramming that may contribute to nickel-induced carcinogenesis. PMID:26051273

  10. Biological short-chain fatty acids (SCFAs) production from waste-activated sludge affected by surfactant.

    PubMed

    Jiang, Su; Chen, Yinguang; Zhou, Qi; Gu, Guowei

    2007-07-01

    Short-chain fatty acids (SCFAs), the preferred carbon sources for biological nutrient removal, are the important intermediate products in sludge anaerobic fermentation. Sodium dodecylbenzene sulfonate (SDBS) is a widespread used surfactant, which can be easily found in waste-activated sludge (WAS). In this investigation, the effect of SDBS on SCFAs production from WAS was investigated, and the potential of using fermentative SCFAs to promote enhanced biological phosphorus removal (EBPR) was tested. Results showed that the total SCFAs production increased significantly in the presence of SDBS at room temperature. At fermentation time of 6 days, the maximum SCFAs was 2599.1mg chemical oxygen demand (COD)/L in the presence of SDBS 0.02g/g, whereas it was only 339.1mg (COD)/L in the absence of SDBS. The SCFAs produced in the case of SDBS 0.02g/g and fermentation time 6 days consisted of acetic acid (27.1%), propionic acid (22.8%), iso-valeric acid (20.1%), iso-butyric acid (11.9%), n-butyric acid (10.4%) and n-valeric acid (7.7%). It was found that during sludge anaerobic fermentation, the solubilization of sludge particulate organic-carbon and hydrolysis of solubilized substrate as well as acidification of hydrolyzed products were all increased in the presence of SDBS, while the methane formation was decreased, the SCFAs production was therefore remarkably improved. Further investigation showed that the production of SCFAs enhanced by SDBS was caused mainly by biological effects, rather than by chemical effects and SDBS decomposition. With the fermentative SCFAs as the main carbon source, the EBPR maintained high phosphorus removal efficiency ( approximately 97%). PMID:17499838

  11. Fatty acid synthesis is inhibited by inefficient utilization of unusual fatty acids for glycerolipid assembly

    PubMed Central

    Bates, Philip D.; Johnson, Sean R.; Cao, Xia; Li, Jia; Nam, Jeong-Won; Jaworski, Jan G.; Ohlrogge, John B.; Browse, John

    2014-01-01

    Degradation of unusual fatty acids through β-oxidation within transgenic plants has long been hypothesized as a major factor limiting the production of industrially useful unusual fatty acids in seed oils. Arabidopsis seeds expressing the castor fatty acid hydroxylase accumulate hydroxylated fatty acids up to 17% of total fatty acids in seed triacylglycerols; however, total seed oil is also reduced up to 50%. Investigations into the cause of the reduced oil phenotype through in vivo [14C]acetate and [3H]2O metabolic labeling of developing seeds surprisingly revealed that the rate of de novo fatty acid synthesis within the transgenic seeds was approximately half that of control seeds. RNAseq analysis indicated no changes in expression of fatty acid synthesis genes in hydroxylase-expressing plants. However, differential [14C]acetate and [14C]malonate metabolic labeling of hydroxylase-expressing seeds indicated the in vivo acetyl–CoA carboxylase activity was reduced to approximately half that of control seeds. Therefore, the reduction of oil content in the transgenic seeds is consistent with reduced de novo fatty acid synthesis in the plastid rather than fatty acid degradation. Intriguingly, the coexpression of triacylglycerol synthesis isozymes from castor along with the fatty acid hydroxylase alleviated the reduced acetyl–CoA carboxylase activity, restored the rate of fatty acid synthesis, and the accumulation of seed oil was substantially recovered. Together these results suggest a previously unidentified mechanism that detects inefficient utilization of unusual fatty acids within the endoplasmic reticulum and activates an endogenous pathway for posttranslational reduction of fatty acid synthesis within the plastid. PMID:24398521

  12. Volatile fatty acids produced by co-fermentation of waste activated sludge and henna plant biomass.

    PubMed

    Huang, Jingang; Zhou, Rongbing; Chen, Jianjun; Han, Wei; Chen, Yi; Wen, Yue; Tang, Junhong

    2016-07-01

    Anaerobic co-fermentation of waste activated sludge (WAS) and henna plant biomass (HPB) for the enhanced production of volatile fatty acids (VFAs) was investigated. The results indicated that VFAs was the main constituents of the released organics; the accumulation of VFAs was much higher than that of soluble carbohydrates and proteins. HPB was an advantageous substrate compared to WAS for VFAs production; and the maximum VFAs concentration in an HPB mono-fermentation system was about 2.6-fold that in a WAS mono-fermentation system. In co-fermentation systems, VFAs accumulation was positively related to the proportion of HPB in the mixed substrate, and the accumulated VFAs concentrations doubled when HPB was increased from 25% to 75%. HPB not only adjust the C/N ratio; the associated and/or released lawsone might also have a positive electron-shuttling effect on VFAs production. PMID:27003793

  13. Bioproduction of volatile fatty acid from the fermentation of waste activated sludge for in situ denitritation.

    PubMed

    Wang, Bo; Peng, Yongzhen; Guo, Yuanyuan; Wang, Shuying

    2016-04-01

    Waste activated sludge (WAS) fermentation integrated with denitritation (the reduction of nitrite to dinitrogen gas) at different pHs was investigated in batch-mode reactors over a 24-day period. The results showed that in comparison with controlled pHs, the volatile fatty acid (VFA) bioproduction for in situ denitritation was significantly improved at uncontrolled pH. VFA fermented from WAS was quickly consumed by denitritation at uncontrolled pH, which accelerated sludge degradation. On the other hand, sludge digestion was benefited from the alkalinity produced from denitritation, while methanogenesis was prohibited by alkalinity and nitrite. The integrated sludge fermentation and denitritation can be cost-effectively applied to wastewater treatment plants, so that organic substrates (e.g., VFAs) are produced for denitritation via simultaneous sludge fermentation, which enables WAS reutilization and enhances nitrogen removal efficiency without the need of external carbon sources. PMID:26475401

  14. A Novel Allosteric Activator of Free Fatty Acid 2 Receptor Displays Unique Gi-functional Bias*

    PubMed Central

    Bolognini, Daniele; Moss, Catherine E.; Nilsson, Karolina; Petersson, Annika U.; Donnelly, Iona; Sergeev, Eugenia; König, Gabriele M.; Kostenis, Evi; Kurowska-Stolarska, Mariola; Miller, Ashley; Dekker, Niek; Tobin, Andrew B.

    2016-01-01

    The short chain fatty acid receptor FFA2 is able to stimulate signaling via both Gi- and Gq/G11-promoted pathways. These pathways are believed to control distinct physiological end points but FFA2 receptor ligands appropriate to test this hypothesis have been lacking. Herein, we characterize AZ1729, a novel FFA2 regulator that acts as a direct allosteric agonist and as a positive allosteric modulator, increasing the activity of the endogenously produced short chain fatty acid propionate in Gi-mediated pathways, but not at those transduced by Gq/G11. Using AZ1729 in combination with direct inhibitors of Gi and Gq/G11 family G proteins demonstrated that although both arms contribute to propionate-mediated regulation of phospho-ERK1/2 MAP kinase signaling in FFA2-expressing 293 cells, the Gq/G11-mediated pathway is predominant. We extend these studies by employing AZ1729 to dissect physiological FFA2 signaling pathways. The capacity of AZ1729 to act at FFA2 receptors to inhibit β-adrenoreceptor agonist-promoted lipolysis in primary mouse adipocytes and to promote chemotaxis of isolated human neutrophils confirmed these as FFA2 processes mediated by Gi signaling, whereas, in concert with blockade by the Gq/G11 inhibitor FR900359, the inability of AZ1729 to mimic or regulate propionate-mediated release of GLP-1 from mouse colonic preparations defined this physiological response as an end point transduced via activation of Gq/G11. PMID:27385588

  15. A Novel Allosteric Activator of Free Fatty Acid 2 Receptor Displays Unique Gi-functional Bias.

    PubMed

    Bolognini, Daniele; Moss, Catherine E; Nilsson, Karolina; Petersson, Annika U; Donnelly, Iona; Sergeev, Eugenia; König, Gabriele M; Kostenis, Evi; Kurowska-Stolarska, Mariola; Miller, Ashley; Dekker, Niek; Tobin, Andrew B; Milligan, Graeme

    2016-09-01

    The short chain fatty acid receptor FFA2 is able to stimulate signaling via both Gi- and Gq/G11-promoted pathways. These pathways are believed to control distinct physiological end points but FFA2 receptor ligands appropriate to test this hypothesis have been lacking. Herein, we characterize AZ1729, a novel FFA2 regulator that acts as a direct allosteric agonist and as a positive allosteric modulator, increasing the activity of the endogenously produced short chain fatty acid propionate in Gi-mediated pathways, but not at those transduced by Gq/G11 Using AZ1729 in combination with direct inhibitors of Gi and Gq/G11 family G proteins demonstrated that although both arms contribute to propionate-mediated regulation of phospho-ERK1/2 MAP kinase signaling in FFA2-expressing 293 cells, the Gq/G11-mediated pathway is predominant. We extend these studies by employing AZ1729 to dissect physiological FFA2 signaling pathways. The capacity of AZ1729 to act at FFA2 receptors to inhibit β-adrenoreceptor agonist-promoted lipolysis in primary mouse adipocytes and to promote chemotaxis of isolated human neutrophils confirmed these as FFA2 processes mediated by Gi signaling, whereas, in concert with blockade by the Gq/G11 inhibitor FR900359, the inability of AZ1729 to mimic or regulate propionate-mediated release of GLP-1 from mouse colonic preparations defined this physiological response as an end point transduced via activation of Gq/G11. PMID:27385588

  16. Synthesis of Phenoxyacyl-Ethanolamides and Their Effects on Fatty Acid Amide Hydrolase Activity*

    PubMed Central

    Faure, Lionel; Nagarajan, Subbiah; Hwang, Hyeondo; Montgomery, Christa L.; Khan, Bibi Rafeiza; John, George; Koulen, Peter; Blancaflor, Elison B.; Chapman, Kent D.

    2014-01-01

    N-Acylethanolamines (NAEs) are involved in numerous biological activities in plant and animal systems. The metabolism of these lipids by fatty acid amide hydrolase (FAAH) is a key regulatory point in NAE signaling activity. Several active site-directed inhibitors of FAAH have been identified, but few compounds have been described that enhance FAAH activity. Here we synthesized two sets of phenoxyacyl-ethanolamides from natural products, 3-n-pentadecylphenolethanolamide and cardanolethanolamide, with structural similarity to NAEs and characterized their effects on the hydrolytic activity of FAAH. Both compounds increased the apparent Vmax of recombinant FAAH proteins from both plant (Arabidopsis) and mammalian (Rattus) sources. These NAE-like compounds appeared to act by reducing the negative feedback regulation of FAAH activity by free ethanolamine. Both compounds added to seedlings relieved, in part, the negative growth effects of exogenous NAE12:0. Cardanolethanolamide reduced neuronal viability and exacerbated oxidative stress-mediated cell death in primary cultured neurons at nanomolar concentrations. This was reversed by FAAH inhibitors or exogenous NAE substrate. Collectively, our data suggest that these phenoxyacyl-ethanolamides act to enhance the activity of FAAH and may stimulate the turnover of NAEs in vivo. Hence, these compounds might be useful pharmacological tools for manipulating FAAH-mediated regulation of NAE signaling in plants or animals. PMID:24558037

  17. Synthesis of phenoxyacyl-ethanolamides and their effects on fatty acid amide hydrolase activity.

    PubMed

    Faure, Lionel; Nagarajan, Subbiah; Hwang, Hyeondo; Montgomery, Christa L; Khan, Bibi Rafeiza; John, George; Koulen, Peter; Blancaflor, Elison B; Chapman, Kent D

    2014-03-28

    N-Acylethanolamines (NAEs) are involved in numerous biological activities in plant and animal systems. The metabolism of these lipids by fatty acid amide hydrolase (FAAH) is a key regulatory point in NAE signaling activity. Several active site-directed inhibitors of FAAH have been identified, but few compounds have been described that enhance FAAH activity. Here we synthesized two sets of phenoxyacyl-ethanolamides from natural products, 3-n-pentadecylphenolethanolamide and cardanolethanolamide, with structural similarity to NAEs and characterized their effects on the hydrolytic activity of FAAH. Both compounds increased the apparent Vmax of recombinant FAAH proteins from both plant (Arabidopsis) and mammalian (Rattus) sources. These NAE-like compounds appeared to act by reducing the negative feedback regulation of FAAH activity by free ethanolamine. Both compounds added to seedlings relieved, in part, the negative growth effects of exogenous NAE12:0. Cardanolethanolamide reduced neuronal viability and exacerbated oxidative stress-mediated cell death in primary cultured neurons at nanomolar concentrations. This was reversed by FAAH inhibitors or exogenous NAE substrate. Collectively, our data suggest that these phenoxyacyl-ethanolamides act to enhance the activity of FAAH and may stimulate the turnover of NAEs in vivo. Hence, these compounds might be useful pharmacological tools for manipulating FAAH-mediated regulation of NAE signaling in plants or animals. PMID:24558037

  18. Fatty acids composition of Tunisian Ziziphus lotus L. (Desf.) fruits and variation in biological activities between leaf and fruit extracts.

    PubMed

    Ghazghazi, Hanene; Aouadhi, Chedia; Riahi, Leila; Maaroufi, Abderrazak; Hasnaoui, Brahim

    2014-01-01

    This study was conceived to evaluate the essential fatty acids, secondary metabolites, antiradical and antimicrobial activities of unexploited Tunisian Ziziphus lotus L. The obtained results indicated that the major components of fatty acids were oleic acid (88.12%) and elaidic acid (7.88%). Leaves contained higher amount of total phenols, flavonoids and tannins than fruits, although both methanolic extracts had significant antioxidant activities. Significant correlations were observed between the total phenol or flavonoid contents in methanolic extracts and antioxidant activity estimated by using both 2,2'-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic radical-scavenging methods. In addition, both methanolic extracts exhibited strong antibacterial and antifungal activities. The inhibition zone diameters and the minimal inhibition concentration values were in the range of 10-17 mm and 3.1-50 mg/mL, respectively. PMID:24805194

  19. Fatty Acid Elongation Is Independent of Acyl-Coenzyme A Synthetase Activities in Leek and Brassica napus1

    PubMed Central

    Hlousek-Radojcic, Alenka; Evenson, Kimberly J.; Jaworski, Jan G.; Post-Beittenmiller, Dusty

    1998-01-01

    In both animal and plant acyl elongation systems, it has been proposed that fatty acids are first activated to acyl-coenzyme A (CoA) before their elongation, and that the ATP dependence of fatty acid elongation is evidence of acyl-CoA synthetase involvement. However, because CoA is not supplied in standard fatty acid elongation assays, it is not clear if CoA-dependent acyl-CoA synthetase activity can provide levels of acyl-CoAs necessary to support typical rates of fatty acid elongation. Therefore, we examined the role of acyl-CoA synthetase in providing the primer for acyl elongation in leek (Allium porrum L.) epidermal microsomes and Brassica napus L. cv Reston oil bodies. As presented here, fatty acid elongation was independent of CoA and proceeded at maximum rates with CoA-free preparations of malonyl-CoA. We also showed that stearic acid ([1-14C]18:0)-CoA was synthesized from [1-14C]18:0 in the presence of CoA-free malonyl-CoA or acetyl-CoA, and that [1-14C]18:0-CoA synthesis under these conditions was ATP dependent. Furthermore, the appearance of [1-14C]18:0 in the acyl-CoA fraction was simultaneous with its appearance in phosphatidylcholine. These data, together with the s of a previous study (A. Hlousek-Radojcic, H. Imai, J.G. Jaworski [1995] Plant J 8: 803–809) showing that exogenous [14C]acyl-CoAs are diluted by a relatively large endogenous pool before they are elongated, strongly indicated that acyl-CoA synthetase did not play a direct role in fatty acid elongation, and that phosphatidylcholine or another glycerolipid was a more likely source of elongation primers than acyl-CoAs.

  20. Antibacterial activity of long-chain polyunsaturated fatty acids against Propionibacterium acnes and Staphylococcus aureus.

    PubMed

    Desbois, Andrew P; Lawlor, Keelan C

    2013-11-01

    New compounds are needed to treat acne and superficial infections caused by Propionibacterium acnes and Staphylococcus aureus due to the reduced effectiveness of agents used at present. Long-chain polyunsaturated fatty acids (LC-PUFAs) are attracting attention as potential new topical treatments for Gram-positive infections due to their antimicrobial potency and anti-inflammatory properties. This present study aimed to investigate the antimicrobial effects of six LC-PUFAs against P. acnes and S. aureus to evaluate their potential to treat infections caused by these pathogens. Minimum inhibitory concentrations were determined against P. acnes and S. aureus, and the LC-PUFAs were found to inhibit bacterial growth at 32-1024 mg/L. Generally, P. acnes was more susceptible to the growth inhibitory actions of LC-PUFAs, but these compounds were bactericidal only for S. aureus. This is the first report of antibacterial activity attributed to 15-hydroxyeicosapentaenoic acid (15-OHEPA) and 15-hydroxyeicosatrienoic acid (HETrE), while the anti-P. acnes effects of the six LC-PUFAs used herein are novel observations. During exposure to the LC-PUFAs, S. aureus cells were killed within 15-30 min. Checkerboard assays demonstrated that the LC-PUFAs did not antagonise the antimicrobial potency of clinical agents used presently against P. acnes and S. aureus. However, importantly, synergistic interactions against S. aureus were detected for combinations of benzoyl peroxide with 15-OHEPA, dihomo-γ-linolenic acid (DGLA) and HETrE; and neomycin with 15-OHEPA, DGLA, eicosapentaenoic acid, γ-linolenic acid and HETrE. In conclusion, LC-PUFAs warrant further evaluation as possible new agents to treat skin infections caused by P. acnes and S. aureus, especially in synergistic combinations with antimicrobial agents already used clinically. PMID:24232668

  1. Antibacterial Activity of Long-Chain Polyunsaturated Fatty Acids against Propionibacterium acnes and Staphylococcus aureus

    PubMed Central

    Desbois, Andrew P.; Lawlor, Keelan C.

    2013-01-01

    New compounds are needed to treat acne and superficial infections caused by Propionibacterium acnes and Staphylococcus aureus due to the reduced effectiveness of agents used at present. Long-chain polyunsaturated fatty acids (LC-PUFAs) are attracting attention as potential new topical treatments for Gram-positive infections due to their antimicrobial potency and anti-inflammatory properties. This present study aimed to investigate the antimicrobial effects of six LC-PUFAs against P. acnes and S. aureus to evaluate their potential to treat infections caused by these pathogens. Minimum inhibitory concentrations were determined against P. acnes and S. aureus, and the LC-PUFAs were found to inhibit bacterial growth at 32–1024 mg/L. Generally, P. acnes was more susceptible to the growth inhibitory actions of LC-PUFAs, but these compounds were bactericidal only for S. aureus. This is the first report of antibacterial activity attributed to 15-hydroxyeicosapentaenoic acid (15-OHEPA) and 15-hydroxyeicosatrienoic acid (HETrE), while the anti-P. acnes effects of the six LC-PUFAs used herein are novel observations. During exposure to the LC-PUFAs, S. aureus cells were killed within 15–30 min. Checkerboard assays demonstrated that the LC-PUFAs did not antagonise the antimicrobial potency of clinical agents used presently against P. acnes and S. aureus. However, importantly, synergistic interactions against S. aureus were detected for combinations of benzoyl peroxide with 15-OHEPA, dihomo-γ-linolenic acid (DGLA) and HETrE; and neomycin with 15-OHEPA, DGLA, eicosapentaenoic acid, γ-linolenic acid and HETrE. In conclusion, LC-PUFAs warrant further evaluation as possible new agents to treat skin infections caused by P. acnes and S. aureus, especially in synergistic combinations with antimicrobial agents already used clinically. PMID:24232668

  2. Activation of a novel long-chain free fatty acid generation and export system in mitochondria of diabetic rat hearts.

    PubMed

    Gerber, Lamar K; Aronow, Bruce J; Matlib, Mohammed A

    2006-12-01

    A number of reports indicate that a long-chain free fatty acid export system may be operating in mitochondria. In this study, we sought evidence of its existence in rat heart mitochondria. To determine its potential role, we also sought evidence of its activation or inhibition in streptozotocin (STZ)-induced diabetic rat heart mitochondria. If confirmed, it could be a novel mechanism for regulation of long-chain fatty acid oxidation (FAO) in mitochondria. To obtain evidence of its existence, we tested whether heart mitochondria presented with palmitoyl-carnitine can generate and export palmitate. We found that intact mitochondria indeed generate and export palmitate. We have also found that the rates of these processes are markedly higher in STZ-diabetic rat heart mitochondria, in which palmitoyl-carnitine oxidation is also increased. Since mitochondrial thioesterase-1 (MTE-1) hydrolyzes acyl-CoA to CoA-SH + free fatty acid, and uncoupling protein-3 (UCP-3), reconstituted in liposomes, transports free fatty acids, we examined whether these proteins are also increased in STZ-diabetic rat heart mitochondria. We found that both of these proteins are indeed increased. Gene expression profile analysis revealed striking expression of mitochondrial long-chain fatty acid transport and oxidation genes, accompanying overexpression of MTE-1 and UCP-3 in STZ-diabetic rat hearts. Our findings provide the first direct evidence for the existence of a long-chain free fatty acid generation and export system in mitochondria and its activation in STZ-diabetic rat hearts in which FAO is enhanced. We suggest that its activation may facilitate, and inhibition may limit, enhancement of FAO. PMID:16855217

  3. Fatty acid-producing hosts

    SciTech Connect

    Pfleger, Brian F; Lennen, Rebecca M

    2013-12-31

    Described are hosts for overproducing a fatty acid product such as a fatty acid. The hosts include an exogenous nucleic acid encoding a thioesterase and, optionally, an exogenous nucleic acid encoding an acetyl-CoA carboxylase, wherein an acyl-CoA synthetase in the hosts are functionally delected. The hosts prefereably include the nucleic acid encoding the thioesterase at an intermediate copy number. The hosts are preferably recominantly stable and growth-competent at 37.degree. C. Methods of producing a fatty acid product comprising culturing such hosts at 37.degree. C. are also described.

  4. Increased Flow of Fatty Acids toward β-Oxidation in Developing Seeds of Arabidopsis Deficient in Diacylglycerol Acyltransferase Activity or Synthesizing Medium-Chain-Length Fatty Acids1

    PubMed Central

    Poirier, Yves; Ventre, Giovanni; Caldelari, Daniela

    1999-01-01

    Synthesis of polyhydroxyalkanoates (PHAs) from intermediates of fatty acid β-oxidation was used as a tool to study fatty acid degradation in developing seeds of Arabidopsis. Transgenic plants expressing a peroxisomal PHA synthase under the control of a napin promoter accumulated PHA in developing seeds to a final level of 0.06 mg g−1 dry weight. In plants co-expressing a plastidial acyl-acyl carrier protein thioesterase from Cuphea lanceolata and a peroxisomal PHA synthase, approximately 18-fold more PHA accumulated in developing seeds. The proportion of 3-hydroxydecanoic acid monomer in the PHA was strongly increased, indicating a large flow of capric acid toward β-oxidation. Furthermore, expression of the peroxisomal PHA synthase in an Arabidopsis mutant deficient in the enzyme diacylglycerol acyltransferase resulted in a 10-fold increase in PHA accumulation in developing seeds. These data indicate that plants can respond to the inadequate incorporation of fatty acids into triacylglycerides by recycling the fatty acids via β-oxidation and that a considerable flow toward β-oxidation can occur even in a plant tissue primarily devoted to the accumulation of storage lipids. PMID:10594123

  5. Nitrated Fatty Acids Reverse Cigarette Smoke-Induced Alveolar Macrophage Activation and Inhibit Protease Activity via Electrophilic S-Alkylation

    PubMed Central

    Reddy, Aravind T.; Lakshmi, Sowmya P.; Muchumarri, Ramamohan R.; Reddy, Raju C.

    2016-01-01

    Nitrated fatty acids (NFAs), endogenous products of nonenzymatic reactions of NO-derived reactive nitrogen species with unsaturated fatty acids, exhibit substantial anti-inflammatory activities. They are both reversible electrophiles and peroxisome proliferator-activated receptor γ (PPARγ) agonists, but the physiological implications of their electrophilic activity are poorly understood. We tested their effects on inflammatory and emphysema-related biomarkers in alveolar macrophages (AMs) of smoke-exposed mice. NFA (10-nitro-oleic acid or 12-nitrolinoleic acid) treatment downregulated expression and activity of the inflammatory transcription factor NF-κB while upregulating those of PPARγ. It also downregulated production of inflammatory cytokines and chemokines and of the protease cathepsin S (Cat S), a key mediator of emphysematous septal destruction. Cat S downregulation was accompanied by decreased AM elastolytic activity, a major mechanism of septal destruction. NFAs downregulated both Cat S expression and activity in AMs of wild-type mice, but only inhibited its activity in AMs of PPARγ knockout mice, pointing to a PPARγ-independent mechanism of enzyme inhibition. We hypothesized that this mechanism was electrophilic S-alkylation of target Cat S cysteines, and found that NFAs bind directly to Cat S following treatment of intact AMs and, as suggested by in silico modeling and calculation of relevant parameters, elicit S-alkylation of Cys25 when incubated with purified Cat S. These results demonstrate that NFAs’ electrophilic activity, in addition to their role as PPARγ agonists, underlies their protective effects in chronic obstructive pulmonary disease (COPD) and support their therapeutic potential in this disease. PMID:27119365

  6. Antioomycete activity of gamma-oxocrotonate fatty acids against P. infestans.

    PubMed

    Eschen-Lippold, Lennart; Draeger, Tobias; Teichert, Axel; Wessjohann, Ludger; Westermann, Bernhard; Rosahl, Sabine; Arnold, Norbert

    2009-10-28

    Infections with Phytophthora infestans, the causal agent of potato and tomato late blight disease, are difficult to control and can lead to considerable agricultural losses. Thus, the development of new effective agents against the pathogen is of great interest. In previous work, (E)-4-oxohexadec-2-enoic acid (3) was isolated from Hygrophorus eburneus, which exhibited fungicidal activity against Cladosporium cucumerinum. Here, the inhibitory effect of 3 on P. infestans spore germination and mycelium growth in vitro is demonstrated. The in vivo effect on infections of whole potato plants was investigated by spraying plants with the sodium salt of 3, sodium (2E)-4-oxohexadec-2-enoic acid (4), prior to P. infestans inoculation. Additionally, the influence of 3 on mycelium growth of Colletotrichum coccodes, the causal agent of potato black dot disease, was analyzed. In all approaches, a significant inhibition of pathogen development was achieved. Importantly, the unsaturated fatty acid exerted no toxic effect when sprayed on plants, a prerequisite for its commercial use. PMID:19778058

  7. Increased physical activity decreases hepatic free fatty acid uptake: a study in human monozygotic twins.

    PubMed

    Hannukainen, Jarna C; Nuutila, Pirjo; Borra, Ronald; Ronald, Borra; Kaprio, Jaakko; Kujala, Urho M; Janatuinen, Tuula; Heinonen, Olli J; Kapanen, Jukka; Viljanen, Tapio; Haaparanta, Merja; Rönnemaa, Tapani; Parkkola, Riitta; Knuuti, Juhani; Kalliokoski, Kari K

    2007-01-01

    Exercise is considered to be beneficial for free fatty acid (FFA) metabolism, although reports of the effects of increased physical activity on FFA uptake and oxidation in different tissues in vivo in humans have been inconsistent. To investigate the heredity-independent effects of physical activity and fitness on FFA uptake in skeletal muscle, the myocardium, and liver we used positron emission tomography (PET) in nine healthy young male monozygotic twin pairs discordant for physical activity and fitness. The cotwins with higher physical activity constituting the more active group had a similar body mass index but less body fat and 18 +/- 10% higher (P < 0.001) compared to the less active brothers with lower physical activity. Low-intensity knee-extension exercise increased skeletal muscle FFA and oxygen uptake six to 10 times compared to resting values but no differences were observed between the groups at rest or during exercise. At rest the more active group had lower hepatic FFA uptake compared to the less active group (5.5 +/- 4.3 versus 9.0 +/- 6.1 micromol (100 ml)(-1) min(-1), P = 0.04). Hepatic FFA uptake associated significantly with body fat percentage (P = 0.05). Myocardial FFA uptake was similar between the groups. In conclusion, in the absence of the confounding effects of genetic factors, moderately increased physical activity and aerobic fitness decrease body adiposity even in normal-weighted healthy young adult men. Further, increased physical activity together with decreased intra-abdominal adiposity seems to decrease hepatic FFA uptake but has no effects on skeletal muscle or myocardial FFA uptake. PMID:17053033

  8. Fatty Acid Amide Hydrolase (FAAH) Inhibition Enhances Memory Acquisition through Activation of PPAR-alpha Nuclear Receptors

    ERIC Educational Resources Information Center

    Mazzola, Carmen; Medalie, Julie; Scherma, Maria; Panlilio, Leigh V.; Solinas, Marcello; Tanda, Gianluigi; Drago, Filippo; Cadet, Jean Lud; Goldberg, Steven R.; Yasar, Sevil

    2009-01-01

    Inhibitors of fatty acid amide hydrolase (FAAH) increase endogenous levels of anandamide (a cannabinoid CB[subscript 1]-receptor ligand) and oleoylethanolamide and palmitoylethanolamide (OEA and PEA, ligands for alpha-type peroxisome proliferator-activated nuclear receptors, PPAR-alpha) when and where they are naturally released in the brain.…

  9. ω-6 Polyunsaturated fatty acids extend life span through the activation of autophagy.

    PubMed

    O'Rourke, Eyleen J; Kuballa, Petric; Xavier, Ramnik; Ruvkun, Gary

    2013-02-15

    Adaptation to nutrient scarcity depends on the activation of metabolic programs to efficiently use internal reserves of energy. Activation of these programs in abundant food regimens can extend life span. However, the common molecular and metabolic changes that promote adaptation to nutritional stress and extend life span are mostly unknown. Here we present a response to fasting, enrichment of ω-6 polyunsaturated fatty acids (PUFAs), which promotes starvation resistance and extends Caenorhabditis elegans life span. Upon fasting, C. elegans induces the expression of a lipase, which in turn leads to an enrichment of ω-6 PUFAs. Supplementing C. elegans culture media with these ω-6 PUFAs increases their resistance to starvation and extends their life span in conditions of food abundance. Supplementation of C. elegans or human epithelial cells with these ω-6 PUFAs activates autophagy, a cell recycling mechanism that promotes starvation survival and slows aging. Inactivation of C. elegans autophagy components reverses the increase in life span conferred by supplementing the C. elegans diet with these fasting-enriched ω-6 PUFAs. We propose that the salubrious effects of dietary supplementation with ω-3/6 PUFAs (fish oils) that have emerged from epidemiological studies in humans may be due to a similar activation of autophagic programs. PMID:23392608

  10. Biological denitrification of brine: the effect of compatible solutes on enzyme activities and fatty acid degradation.

    PubMed

    Cyplik, Paweł; Piotrowska-Cyplik, Agnieszka; Marecik, Roman; Czarny, Jakub; Drozdzyńska, Agnieszka; Chrzanowski, Łukasz

    2012-09-01

    The effect of the addition of compatible solutes (ectoine and trehalose) on the denitrification process of saline wastewater was studied. In saline wastewater, it was observed that the initial concentration of nitrates was 500 mg N l⁻¹. A fatty substance isolated from oiled bleaching earth (waste of vegetable oil refining process) was used as a source of carbon.The consortium, which was responsible for the denitrification process originated from the wastewater of the vegetable oil industry. The consortium of microorganisms was identified by the use of restriction fragment length polymorphism of 16S rRNA gene amplicons and sequencing techniques. It was noted that ectoine affects significantly the activity of lipase and nitrate reductase, and resulted in faster denitrification compared to saline wastewater with the addition of trehalose or control saline wastewater (without compatible solutes). It was observed that relative enzyme activities of lipase and nitrate reductase increased by 32 and 35%, respectively, in the presence of 1 mM ectoine. This resulted in an increase in specific nitrate reduction rate in the presence of 1 mM ectoine to 5.7 mg N g⁻¹ VSS h⁻¹, which was higher than in the absence of ectoine (3.2 mg N g⁻¹ VSS h⁻¹). The addition of trehalose did not have an effect on nitrate removals. Moreover, it was found that trehalose was used up completely by bacteria as a source of carbon in the denitrification process. The fatty acids were biodegraded by 74% in the presence of 1 mM ectoine. PMID:22286267

  11. Ligand-activated PPARα-dependent DNA demethylation regulates the fatty acid β-oxidation genes in the postnatal liver.

    PubMed

    Ehara, Tatsuya; Kamei, Yasutomi; Yuan, Xunmei; Takahashi, Mayumi; Kanai, Sayaka; Tamura, Erina; Tsujimoto, Kazutaka; Tamiya, Takashi; Nakagawa, Yoshimi; Shimano, Hitoshi; Takai-Igarashi, Takako; Hatada, Izuho; Suganami, Takayoshi; Hashimoto, Koshi; Ogawa, Yoshihiro

    2015-03-01

    The metabolic function of the liver changes sequentially during early life in mammals to adapt to the marked changes in nutritional environment. Accordingly, hepatic fatty acid β-oxidation is activated after birth to produce energy from breast milk lipids. However, how it is induced during the neonatal period is poorly understood. Here we show DNA demethylation and increased mRNA expression of the fatty acid β-oxidation genes in the postnatal mouse liver. The DNA demethylation does not occur in the fetal mouse liver under the physiologic condition, suggesting that it is specific to the neonatal period. Analysis of mice deficient in the nuclear receptor peroxisome proliferator-activated receptor α (PPARα) and maternal administration of a PPARα ligand during the gestation and lactation periods reveal that the DNA demethylation is PPARα dependent. We also find that DNA methylation of the fatty acid β-oxidation genes are reduced in the adult human liver relative to the fetal liver. This study represents the first demonstration that the ligand-activated PPARα-dependent DNA demethylation regulates the hepatic fatty acid β-oxidation genes during the neonatal period, thereby highlighting the role of a lipid-sensing nuclear receptor in the gene- and life-stage-specific DNA demethylation of a particular metabolic pathway. PMID:25311726

  12. Effect of Selection for High Activity-Related Metabolism on Membrane Phospholipid Fatty Acid Composition in Bank Voles.

    PubMed

    Stawski, Clare; Valencak, Teresa G; Ruf, Thomas; Sadowska, Edyta T; Dheyongera, Geoffrey; Rudolf, Agata; Maiti, Uttaran; Koteja, Paweł

    2015-01-01

    Endothermy, high basal metabolic rates (BMRs), and high locomotor-related metabolism were important steps in the evolution of mammals. It has been proposed that the composition of membrane phospholipid fatty acids plays an important role in energy metabolism and exercise muscle physiology. In particular, the membrane pacemaker theory of metabolism suggests that an increase in cell membrane fatty acid unsaturation would result in an increase in BMR. We aimed to determine whether membrane phospholipid fatty acid composition of heart, liver, and gastrocnemius muscles differed between lines of bank voles selected for high swim-induced aerobic metabolism-which also evolved an increased BMR-and unselected control lines. Proportions of fatty acids significantly differed among the organs: liver was the least unsaturated, whereas the gastrocnemius muscles were most unsaturated. However, fatty acid proportions of the heart and liver did not differ significantly between selected and control lines. In gastrocnemius muscles, significant differences between selection directions were found: compared to control lines, membranes of selected voles were richer in saturated C18:0 and unsaturated C18:2n-6 and C18:3n-3, whereas the pattern was reversed for saturated C16:0 and unsaturated C20:4n-6. Neither unsaturation index nor other combined indexes of fatty acid proportions differed between lines. Thus, our results do not support the membrane pacemaker hypothesis. However, the differences between selected and control lines in gastrocnemius muscles reflect chain lengths rather than number of double bonds and are probably related to differences in locomotor activity per se rather than to differences in the basal or routine metabolic rate. PMID:26658414

  13. Treatment of Fatty Acid Oxidation Disorders

    MedlinePlus

    ... of fatty acid oxidation disorders Treatment of fatty acid oxidation disorders E-mail to a friend Please ... page It's been added to your dashboard . Fatty acid oxidation disorders are rare health conditions that affect ...

  14. Fatty acids, essential oil and phenolics composition of Silybum marianum seeds and their antioxidant activities.

    PubMed

    Mhamdi, Baya; Abbassi, Feten; Smaoui, Abderrazak; Abdelly, Chedly; Marzouk, Brahim

    2016-05-01

    The presentstudydescribes the biochemical evaluation of Silybum marianum seed. The analysis of essential oil composition of Silybum marianum seed by Gas Chromatography-Mass Spectrometry GC-MS showed the presence of14 volatile components with the predominance of γ-cadinene (49.8%) and α-pinene (24.5%). Whereas, the analysis of fatty acids composition, showed the predominance of linoleic (50.5%) and oleic (30.2%) acids. Silybum marainum presented also an important polyphenol contents with 29mgGAE/g DW, a good antiradical activity (CI(50)=39μg/ml) but a lower reducing power ability. Flavonoid and condensed tannin contents were about 3.39mg EC/g DW and 1.8mg EC/gDW, respectively. The main phenolic compounds identified by RP-HPLC, were silybin A (12.2%), silybin B (17.67%), isosilybin A (21.9%), isosilybin B (12.8%), silychristin (7.9%) andsilydianin (7.5%). PMID:27166539

  15. Probing fatty acid metabolism in bacteria, cyanobacteria, green microalgae and diatoms with natural and unnatural fatty acids.

    PubMed

    Beld, Joris; Abbriano, Raffaela; Finzel, Kara; Hildebrand, Mark; Burkart, Michael D

    2016-04-22

    In both eukaryotes and prokaryotes, fatty acid synthases are responsible for the biosynthesis of fatty acids in an iterative process, extending the fatty acid by two carbon units every cycle. Thus, odd numbered fatty acids are rarely found in nature. We tested whether representatives of diverse microbial phyla have the ability to incorporate odd-chain fatty acids as substrates for their fatty acid synthases and their downstream enzymes. We fed various odd and short chain fatty acids to the bacterium Escherichia coli, cyanobacterium Synechocystis sp. PCC 6803, green microalga Chlamydomonas reinhardtii and diatom Thalassiosira pseudonana. Major differences were observed, specifically in the ability among species to incorporate and elongate short chain fatty acids. We demonstrate that E. coli, C. reinhardtii, and T. pseudonana can produce longer fatty acid products from short chain precursors (C3 and C5), while Synechocystis sp. PCC 6803 lacks this ability. However, Synechocystis can incorporate and elongate longer chain fatty acids due to acyl-acyl carrier protein synthetase (AasS) activity, and knockout of this protein eliminates the ability to incorporate these fatty acids. In addition, expression of a characterized AasS from Vibrio harveyii confers a similar capability to E. coli. The ability to desaturate exogenously added fatty acids was only observed in Synechocystis and C. reinhardtii. We further probed fatty acid metabolism of these organisms by feeding desaturase inhibitors to test the specificity of long-chain fatty acid desaturases. In particular, supplementation with thia fatty acids can alter fatty acid profiles based on the location of the sulfur in the chain. We show that coupling sensitive gas chromatography mass spectrometry to supplementation of unnatural fatty acids can reveal major differences between fatty acid metabolism in various organisms. Often unnatural fatty acids have antibacterial or even therapeutic properties. Feeding of short

  16. Oil Content, Fatty Acid Composition and Distributions of Vitamin-E-Active Compounds of Some Fruit Seed Oils.

    PubMed

    Matthäus, Bertrand; Musazcan Özcan, Mehmet

    2015-01-01

    Oil content, fatty acid composition and the distribution of vitamin-E-active compounds of selected Turkish seeds that are typically by-products of the food processing industries (linseed, apricot, pear, fennel, peanut, apple, cotton, quince and chufa), were determined. The oil content of the samples ranged from 16.9 to 53.4 g/100 g. The dominating fatty acids were oleic acid (apricot seed oil, peanut oil, and chufa seed oil) in the range of 52.5 to 68.4 g/100 g and linoleic acid (pear seed oil, apple seed oil, cottonseed oil and quince seed oil) with 48.1 to 56.3 g/100 g, while in linseed oil mainly α-linolenic acid (53.2 g/100 g) and in fennel seed oil mainly 18:1 fatty acids (80.5 g/100 g) with petroselinic acid predominating. The total content of vitamin-E-active compounds ranged from 20.1 (fennel seed oil) to 96 mg/100 g (apple seed oil). The predominant isomers were established as α- and γ-tocopherol. PMID:26785341

  17. Oil Content, Fatty Acid Composition and Distributions of Vitamin-E-Active Compounds of Some Fruit Seed Oils

    PubMed Central

    Matthäus, Bertrand; Özcan, Mehmet Musa

    2015-01-01

    Oil content, fatty acid composition and the distribution of vitamin-E-active compounds of selected Turkish seeds that are typically by-products of the food processing industries (linseed, apricot, pear, fennel, peanut, apple, cotton, quince and chufa), were determined. The oil content of the samples ranged from 16.9 to 53.4 g/100 g. The dominating fatty acids were oleic acid (apricot seed oil, peanut oil, and chufa seed oil) in the range of 52.5 to 68.4 g/100 g and linoleic acid (pear seed oil, apple seed oil, cottonseed oil and quince seed oil) with 48.1 to 56.3 g/100 g, while in linseed oil mainly α-linolenic acid (53.2 g/100 g) and in fennel seed oil mainly 18:1 fatty acids (80.5 g/100 g) with petroselinic acid predominating. The total content of vitamin-E-active compounds ranged from 20.1 (fennel seed oil) to 96 mg/100 g (apple seed oil). The predominant isomers were established as α- and γ-tocopherol. PMID:26785341

  18. Directed tagging of the Arabidopsis FATTY ACID ELONGATION1 (FAE1) gene with the maize transposon activator.

    PubMed Central

    James, D W; Lim, E; Keller, J; Plooy, I; Ralston, E; Dooner, H K

    1995-01-01

    The FATTY ACID ELONGATION1 (FAE1) gene of Arabidopsis is required for the synthesis of very long chain fatty acids in the seed. The product of the FAE1 gene is presumed to be a condensing enzyme that extends the chain length of fatty acids from C18 to C20 and C22. We report here the cloning of FAE1 by directed transposon tagging with the maize element Activator (Ac). An unstable fae1 mutant was isolated in a line carrying Ac linked to the FAE1 locus on chromosome 4. Cosegregation and reversion analyses established that the new mutant was tagged by Ac. A DNA fragment flanking Ac was cloned by inverse polymerase chain reaction and used to isolate FAE1 genomic clones and a cDNA clone from a library made from immature siliques. The predicted amino acid sequence of the FAE1 protein shares homology with those of other condensing enzymes (chalcone synthase, stilbene synthases, and beta-ketoacyl-acyl carrier protein synthase III), supporting the notion that FAE1 is the structural gene for a synthase or condensing enzyme. FAE1 is expressed in developing seed, but not in leaves, as expected from the effect of the fae1 mutation on the fatty acid compositions of those tissues. PMID:7734965

  19. Characterisation of fatty acid, carotenoid, tocopherol/tocotrienol compositions and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes.

    PubMed

    Tang, Yao; Li, Xihong; Chen, Peter X; Zhang, Bing; Hernandez, Marta; Zhang, Hua; Marcone, Massimo F; Liu, Ronghua; Tsao, Rong

    2015-05-01

    Composition of fatty acids, tocopherols, tocotrienols, and carotenoids, and their contribution to antioxidant activities were investigated in seeds of three coloured quinoa cultivars (white, red and black). The major components and individual compounds were significantly different, and their concentrations were higher in darker seeds (p < 0.05). The oil yield was 6.58-7.17% which contained predominantly unsaturated fatty acids (89.42%). The ratio of omega-6/omega-3 fatty acid was ca. 6/1. The total tocopherol content ranged from 37.49 to 59.82 μg/g and mainly consisted of γ-tocopherol. Trace amount of α- and β-tocotrienols was also found. Black quinoa had the highest vitamin E followed by red and white quinoas. Carotenoids, mainly trans-lutein (84.7-85.6%) and zeaxanthin were confirmed for the first time in quinoa seeds, and the concentration was also the highest in black seeds. The antioxidant activities of lipophilic extracts were positively correlated with polyunsaturated fatty acids, total carotenoids and total tocopherols. PMID:25529712

  20. Yarrowia lipolytica AAL genes are involved in peroxisomal fatty acid activation.

    PubMed

    Dulermo, Rémi; Gamboa-Meléndez, Heber; Ledesma-Amaro, Rodrigo; Thevenieau, France; Nicaud, Jean-Marc

    2016-07-01

    In yeast, β-oxidation of fatty acids (FAs) essentially takes place in peroxisomes, and FA activation must precede FA oxidation. In Saccharomyces cerevisiae, a single fatty-acyl–CoA-synthetase, ScFaa2p, mediates peroxisomal FA activation. We have previously shown that this reaction also exists in the oleaginous yeast Yarrowia lipolytica; however, the protein involved in this process remains unknown. Here, we found that proteins, named Aal proteins (Acyl/Aryl-CoA-ligases), resembling the 4-coumarate–CoA-ligase-like enzymes found in plants are involved in peroxisomal FA activation in Y. lipolytica; Y. lipolytica has 10 AAL genes, eight of which are upregulated by oleate. All the Aal proteins contain a PTS1-type peroxisomal targeting sequence (A/SKL), suggesting a peroxisomal localization. The function of the Aal proteins was analyzed using the faa1Δant1Δ mutant strain, which demonstrates neither cytoplasmic FA activation (direct result of FAA1 deletion) nor peroxisomal FA activation (indirect result of ANT1 deletion, a gene coding an ATP transporter). This strain is thus highly sensitive to external FA levels and unable to store external FAs in lipid bodies (LBs). Whereas the overexpression of (cytoplasmic) AAL1ΔPTS1 was able to partially complement the growth defect observed in the faa1Δant1Δ mutant on short-, medium- and long-chain FA media, the presence of Aal2p to Aal10p only allowed growth on the short-chain FA medium. Additionally, partial LB formation was observed in the oleate medium for strains overexpressing Aal1ΔPTS1p, Aal4ΔPTS1p, Aal7ΔPTS1p, and Aal8ΔPTS1p. Finally, an analysis of the FA content of cells grown in the oleate medium suggested that Aal4p and Aal6p present substrate specificity for C16:1 and/or C18:0. PMID:27067366

  1. Fatty Acid Desaturases, Polyunsaturated Fatty Acid Regulation, and Biotechnological Advances.

    PubMed

    Lee, Je Min; Lee, Hyungjae; Kang, SeokBeom; Park, Woo Jung

    2016-01-01

    Polyunsaturated fatty acids (PUFAs) are considered to be critical nutrients to regulate human health and development, and numerous fatty acid desaturases play key roles in synthesizing PUFAs. Given the lack of delta-12 and -15 desaturases and the low levels of conversion to PUFAs, humans must consume some omega-3 and omega-6 fatty acids in their diet. Many studies on fatty acid desaturases as well as PUFAs have shown that fatty acid desaturase genes are closely related to different human physiological conditions. Since the first front-end desaturases from cyanobacteria were cloned, numerous desaturase genes have been identified and animals and plants have been genetically engineered to produce PUFAs such as eicosapentaenoic acid and docosahexaenoic acid. Recently, a biotechnological approach has been used to develop clinical treatments for human physiological conditions, including cancers and neurogenetic disorders. Thus, understanding the functions and regulation of PUFAs associated with human health and development by using biotechnology may facilitate the engineering of more advanced PUFA production and provide new insights into the complexity of fatty acid metabolism. PMID:26742061

  2. Fatty Acid Desaturases, Polyunsaturated Fatty Acid Regulation, and Biotechnological Advances

    PubMed Central

    Lee, Je Min; Lee, Hyungjae; Kang, SeokBeom; Park, Woo Jung

    2016-01-01

    Polyunsaturated fatty acids (PUFAs) are considered to be critical nutrients to regulate human health and development, and numerous fatty acid desaturases play key roles in synthesizing PUFAs. Given the lack of delta-12 and -15 desaturases and the low levels of conversion to PUFAs, humans must consume some omega-3 and omega-6 fatty acids in their diet. Many studies on fatty acid desaturases as well as PUFAs have shown that fatty acid desaturase genes are closely related to different human physiological conditions. Since the first front-end desaturases from cyanobacteria were cloned, numerous desaturase genes have been identified and animals and plants have been genetically engineered to produce PUFAs such as eicosapentaenoic acid and docosahexaenoic acid. Recently, a biotechnological approach has been used to develop clinical treatments for human physiological conditions, including cancers and neurogenetic disorders. Thus, understanding the functions and regulation of PUFAs associated with human health and development by using biotechnology may facilitate the engineering of more advanced PUFA production and provide new insights into the complexity of fatty acid metabolism. PMID:26742061

  3. Volatile fatty acid impacts on nitrite oxidation and carbon dioxide fixation in activated sludge.

    PubMed

    Oguz, Merve T; Robinson, Kevin G; Layton, Alice C; Sayler, Gary S

    2006-02-01

    Batch test were performed to assess nitrite removal, nitrate formation, CO2 fixation, gaseous nitrogen production and microbial density in activated sludge exposed to volatile fatty acid (VFA) mixtures. Nitrite removal and nitrate formation were both affected by the presence of VFAs, but to different degrees. Nitrate formation rates were reduced to a greater extent (79%) than nitrite removal rates (36%) resulting in an apparent unbalanced nitrite oxidation reaction. Since the total bacterial density and the nitrite oxidizing bacteria (NOB, Nitrospira) concentration remained essentially constant under all test conditions, the reduction in rates was not due to heterotrophic uptake of nitrogen or to a decrease in the NOB population. In contrast to the nitrogen results, VFAs were not found to impact CO2 fixation efficiency. It appeared that nitrite oxidation occurred when VFAs were present since the oxidation of nitrite provides energy for CO2 fixation. However, nitrate produced from the oxidation of nitrite was reduced to gaseous nitrogen products. N2O gas was detected in the presence of VFAs which was a clear indication that VFAs stimulated an alternative pathway, such as aerobic denitrification, during biotransformation of nitrogen in activated sludge. PMID:16436292

  4. Relation of fatty acid composition in lead-exposed mallards to fat mobilization, lipid peroxidation and alkaline phosphatase activity

    USGS Publications Warehouse

    Mateo, R.; Beyer, W.N.; Spann, J.W.; Hoffman, D.J.

    2003-01-01

    The increase of n-6 polyunsaturated fatty acids (PUFA) in animal tissues has been proposed as a mechanism of Pb poisoning through lipid peroxidation or altered eicosanoids metabolism. We have studied fatty acid (FA) composition in liver and brain of mallards (Anas platyrhynchos) feeding for three weeks on diets containing combinations of low or high levels of vitamin E (20 or 200 UI/kg) and Pb (0 or 2 g/kg). Saturated FA, n-6 PUFA and total concentrations of FA were higher in livers of Pb-exposed mallards, but not in their brains. The percentage of n-6 PUFA in liver and brain was slightly higher in Pb-exposed mallards. The increase of n-6 PUFA in liver was associated with increased triglycerides and cholesterol in plasma, thus could be in part attributed to feed refusal and fat mobilization. The hepatic ratios between adrenic acid (22:4 n-6) and arachidonic acid (20:4 n-6) or between adrenic acid and linoleic acid (18:2 n-6) were higher in Pb exposed birds, supporting the existing hypothesis of increased fatty acid elongation by Pb. Among the possible consequences of increased n-6 PUFA concentration in tissues, we found increased lipid peroxidation in liver without important histopathological changes, and decreased plasma alkaline phosphatase activity that may reflect altered bone metabolism in birds.

  5. Effect of humic acids with different characteristics on fermentative short-chain fatty acids production from waste activated sludge.

    PubMed

    Liu, Kun; Chen, Yinguang; Xiao, Naidong; Zheng, Xiong; Li, Mu

    2015-04-21

    Recently, the use of waste activated sludge to bioproduce short-chain fatty acids (SCFA) has attracted much attention as the sludge-derived SCFA can be used as a preferred carbon source to drive biological nutrient removal or biopolymer (polyhydroxyalkanoates) synthesis. Although large number of humic acid (HA) has been reported in sludge, the influence of HA on SCFA production has never been documented. This study investigated the effects on sludge-derived SCFA production of two commercially available humic acids (referred to as SHHA and SAHA purchased respectively from Shanghai Reagent Company and Sigma-Aldrich) that differ in chemical structure, hydrophobicity, surfactant properties, and degree of aromaticity. It was found that SHHA remarkably enhanced SCFA production (1.7-3.5 folds), while SAHA had no obvious effect. Mechanisms study revealed that all four steps (solubilization, hydrolysis, acidification, and methanogenesis) involved in sludge fermentation were unaffected by SAHA. However, SHHA remarkably improved the solubilization of sludge protein and carbohydrate and the activity of hydrolysis enzymes (protease and α-glucosidase) owing to its greater hydrophobicity and protection of enzyme activity. SHHA also enhanced the acidification step by accelerating the bioreactions of glyceradehyde-3P → d-glycerate 1,3-diphosphate, and pyruvate → acetyl-CoA due to its abundant quinone groups which served as electron acceptor. Further investigation showed that SHHA negatively influenced the activity of acetoclastic methanogens for its competition for electrons and inhibition on the reaction of acetyl-CoA → 5-methyl-THMPT, which caused less SCFA being consumed. All these observations were in correspondence with SHHA significantly enhancing the production of sludge derived SCFA. PMID:25825920

  6. Fatty Acid Biosynthesis Revisited: Structure Elucidation and Metabolic Engineering

    PubMed Central

    Beld, Joris; Lee, D. John

    2014-01-01

    Fatty acids are primary metabolites synthesized by complex, elegant, and essential biosynthetic machinery. Fatty acid synthases resemble an iterative assembly line, with an acyl carrier protein conveying the growing fatty acid to necessary enzymatic domains for modification. Each catalytic domain is a unique enzyme spanning a wide range of folds and structures. Although they harbor the same enzymatic activities, two different types of fatty acid synthase architectures are observed in nature. During recent years, strained petroleum supplies have driven interest in engineering organisms to either produce more fatty acids or specific high value products. Such efforts require a fundamental understanding of the enzymatic activities and regulation of fatty acid synthases. Despite more than one hundred years of research, we continue to learn new lessons about fatty acid synthases’ many intricate structural and regulatory elements. In this review, we summarize each enzymatic domain and discuss efforts to engineer fatty acid synthases, providing some clues to important challenges and opportunities in the field. PMID:25360565

  7. Fatty acid biosynthesis revisited: structure elucidation and metabolic engineering.

    PubMed

    Beld, Joris; Lee, D John; Burkart, Michael D

    2015-01-01

    Fatty acids are primary metabolites synthesized by complex, elegant, and essential biosynthetic machinery. Fatty acid synthases resemble an iterative assembly line, with an acyl carrier protein conveying the growing fatty acid to necessary enzymatic domains for modification. Each catalytic domain is a unique enzyme spanning a wide range of folds and structures. Although they harbor the same enzymatic activities, two different types of fatty acid synthase architectures are observed in nature. During recent years, strained petroleum supplies have driven interest in engineering organisms to either produce more fatty acids or specific high value products. Such efforts require a fundamental understanding of the enzymatic activities and regulation of fatty acid synthases. Despite more than one hundred years of research, we continue to learn new lessons about fatty acid synthases' many intricate structural and regulatory elements. In this review, we summarize each enzymatic domain and discuss efforts to engineer fatty acid synthases, providing some clues to important challenges and opportunities in the field. PMID:25360565

  8. Synthesis of new optically active propargylic fluorides and application to the enantioselective synthesis of monofluorinated analogues of fatty acid metabolites.

    PubMed

    Prakesch, M; Grée, D; Grée, R

    2001-05-01

    A new approach to obtain optically active unsaturated or polyunsaturated systems with a single fluorine atom in an allylic or propargylic position is reported. Central to this strategy is the high regio- and stereocontrol observed during the fluorination of propargylic alcohols allowing a short and efficient synthesis of 1. Further, simple functional group transformations gave the enals 2 and 3. These three key intermediates were used for the preparation of optically active monofluorinated analogues of fatty acid metabolites. PMID:11325281

  9. Enhanced volatile fatty acids production of waste activated sludge under salinity conditions: Performance and mechanisms.

    PubMed

    Su, Gaoqiang; Wang, Shuying; Yuan, Zhiguo; Peng, Yongzhen

    2016-03-01

    Volatile fatty acids (VFAs) are essential for removing biological nitrogen and phosphorus in wastewater treatment plants. The purpose of this work was to investigate whether and how the addition of NaCl could improve the production of VFAs from waste activated sludge (WAS). Sludge solubilization was efficiently improved by the addition of NaCl. Both protein and carbohydrate in the fermentation liquid increased with the dosage of NaCl, and it provided a larger amount of organic compounds for the production of the VFAs. NaCl had inhibitory effects on the production of methane and a high dosage of NaCl could severely suppress the growth of methanogens, which decreased the consumption of the VFAs. Consequently, the production of VFAs was significantly enhanced by the addition of NaCl. The maximum production of VFAs was achieved with the highest dosage of NaCl (3316 mg (COD)/L at the NaCl dosage 0.5 mol/L; 783 mg (COD)/L without the addition of NaCl). Therefore, this study indicates that using NaCl could be an efficient method for improving the production of VFAs from WAS. PMID:26320405

  10. Structure–Activity Relationships of α-Keto Oxazole Inhibitors of Fatty Acid Amide Hydrolase

    PubMed Central

    Hardouin, Christophe; Kelso, Michael J.; Romero, F. Anthony; Rayl, Thomas J.; Leung, Donmienne; Hwang, Inkyu; Cravatt, Benjamin F.; Boger, Dale L.

    2008-01-01

    A systematic study of the structure–activity relationships (SAR) of 2b (OL-135), a potent inhibitor of fatty acid amide hydrolase (FAAH), is detailed targeting the C2 acyl side chain. A series of aryl replacements or substituents for the terminal phenyl group provided effective inhibitors (e.g., 5c, aryl = 1-napthyl, Ki = 2.6 nM) with 5hh (aryl = 3-Cl-Ph, Ki = 900 pM) being 5-fold more potent than 2b. Conformationally-restricted C2 side chains were examined and many provided exceptionally potent inhibitors of which 11j (ethylbiphenyl side chain) was established to be a 750 pM inhibitor. A systematic series of heteroatoms (O, NMe, S), electron-withdrawing groups (SO, SO2), and amides positioned within and hydroxyl substitutions on the linking side chain were investigated which typically led to a loss in potency. The most tolerant positions provided effective inhibitors (12p, 6-position S, Ki = 3 nM or 13d, 2-position OH, Ki = 8 nM) comparable in potency to 2b. Proteomic-wide screening of selected inhibitors from the systematic series of >100 candidates prepared revealed that they are selective for FAAH over all other mammalian serine proteases. PMID:17559203

  11. An ortholog of farA of Aspergillus nidulans is implicated in the transcriptional activation of genes involved in fatty acid utilization in the yeast Yarrowia lipolytica

    SciTech Connect

    Poopanitpan, Napapol; Kobayashi, Satoshi; Fukuda, Ryouichi; Horiuchi, Hiroyuki; Ohta, Akinori

    2010-11-26

    Research highlights: {yields} POR1 is a Yarrowia lipolytica ortholog of farA involved in fatty acid response in A. nidulans. {yields} Deletion of POR1 caused growth defects on fatty acids. {yields} {Delta}por1 strain exhibited defects in the induction of genes involved in fatty acid utilization. -- Abstract: The yeast Yarrowia lipolytica effectively utilizes hydrophobic substrates such as fatty acids and n-alkanes. To identify a gene(s) regulating fatty acid utilization in Y. lipolytica, we first studied homologous genes to OAF1 and PIP2 of Saccharomyces cerevisiae, but their disruption did not change growth on oleic acid at all. We next characterized a Y. lipolytica gene, POR1 (primary oleate regulator 1), an ortholog of farA encoding a transcriptional activator that regulates fatty acid utilization in Aspergillus nidulans. The deletion mutant of POR1 was defective in the growth on various fatty acids, but not on glucose, glycerol, or n-hexadecane. It exhibited slight defect on n-decane. The transcriptional induction of genes involved in {beta}-oxidation and peroxisome proliferation by oleate was distinctly diminished in the {Delta}por1 strains. These data suggest that POR1 encodes a transcriptional activator widely regulating fatty acid metabolism in Y. lipolytica.

  12. Activation of the Constitutive Androstane Receptor Inhibits Gluconeogenesis without Affecting Lipogenesis or Fatty Acid Synthesis in Human Hepatocytes

    PubMed Central

    Lynch, Caitlin; Pan, Yongmei; Li, Linhao; Heyward, Scott; Moeller, Timothy; Swaan, Peter W.; Wang, Hongbing

    2014-01-01

    Objective Accumulating evidence suggests that activation of mouse constitutive androstane receptor (mCAR) alleviates type 2 diabetes and obesity by inhibiting hepatic gluconeogenesis, lipogenesis, and fatty acid synthesis. However, the role of human (h) CAR in energy metabolism is largely unknown. The present study aims to investigate the effects of selective hCAR activators on hepatic energy metabolism in human primary hepatocytes (HPH). Methods Ligand-based structure-activity models were used for virtual screening of the Specs database (www.specs.net) followed by biological validation in cell-based luciferase assays. The effects of two novel hCAR activators (UM104 and UM145) on hepatic energy metabolism were evaluated in HPH. Results Real-time PCR and Western blotting analyses reveal that activation of hCAR by UM104 and UM145 significantly repressed the expression of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase, two pivotal gluconeogenic enzymes, while exerting negligible effects on the expression of genes associated with lipogenesis and fatty acid synthesis. Functional experiments show that UM104 and UM145 markedly inhibit hepatic synthesis of glucose but not triglycerides in HPH. In contrast, activation of mCAR by 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene, a selective mCAR activator, repressed the expression of genes associated with gluconeogenesis, lipogenesis, and fatty acid synthesis in mouse primary hepatocytes, which were consistent with previous observations in mouse model in vivo. Conclusion Our findings uncover an important species difference between hCAR and mCAR in hepatic energy metabolism, where hCAR selectively inhibits gluconeogenesis without suppressing fatty acid synthesis. Implications Such species selectivity should be considered when exploring CAR as a potential therapeutic target for metabolic disorders. PMID:24878338

  13. Cancer cell-associated fatty acid synthase activates endothelial cells and promotes angiogenesis in colorectal cancer.

    PubMed

    Zaytseva, Yekaterina Y; Elliott, Victoria A; Rychahou, Piotr; Mustain, W Conan; Kim, Ji Tae; Valentino, Joseph; Gao, Tianyan; O'Connor, Kathleen L; Neltner, Janna M; Lee, Eun Y; Weiss, Heidi L; Evers, B Mark

    2014-06-01

    Upregulation of fatty acid synthase (FASN), a key enzyme of de novo lipogenesis, is associated with metastasis in colorectal cancer (CRC). However, the mechanisms of regulation are unknown. Since angiogenesis is crucial for metastasis, we investigated the role of FASN in the neovascularization of CRC. The effect of FASN on tumor vasculature was studied in orthotopic CRCs, the chick embryo chorioallantoic membrane (CAM) and Matrigel plug models using immunohistochemistry, immunofluorescent staining and confocal microscopy. Cell secretion was evaluated by ELISA and antibody arrays. Proliferation, migration and tubulogenesis of endothelial cells (ECs) were assessed in CRC-EC coculture models. In this study, we found that stable knockdown of FASN decreased microvessel density in HT29 and HCT116 orthotopic CRCs and resulted in 'normalization' of tumor vasculature in both orthotopic and CAM models. Furthermore, FASN regulated secretion of pro- and antiangiogenic factors, including vascular endothelial growth factor-A (VEGF-A). Mechanisms associated with the antiangiogenic activity noted with knockdown of FASN included: downregulation of VEGF(189), upregulation of antiangiogenic isoform VEGF(165b) and a decrease in expression and activity of matrix metalloproteinase-9. Furthermore, conditioned medium from FASN knockdown CRC cells inhibited activation of vascular endothelial growth factor receptor-2 and its downstream signaling and decreased proliferation, migration and tubulogenesis of ECs as compared with control medium. Together, these results suggest that cancer cell-associated FASN regulates tumor vasculature through alteration of the profile of secreted angiogenic factors and regulation of their bioavailability. Inhibition of FASN upstream of VEGF-A and other angiogenic pathways can be a novel therapeutic strategy to prevent or inhibit metastasis in CRC. PMID:24510238

  14. Cancer cell-associated fatty acid synthase activates endothelial cells and promotes angiogenesis in colorectal cancer

    PubMed Central

    Evers, B.Mark

    2014-01-01

    Upregulation of fatty acid synthase (FASN), a key enzyme of de novo lipogenesis, is associated with metastasis in colorectal cancer (CRC). However, the mechanisms of regulation are unknown. Since angiogenesis is crucial for metastasis, we investigated the role of FASN in the neovascularization of CRC. The effect of FASN on tumor vasculature was studied in orthotopic CRCs, the chick embryo chorioallantoic membrane (CAM) and Matrigel plug models using immunohistochemistry, immunofluorescent staining and confocal microscopy. Cell secretion was evaluated by ELISA and antibody arrays. Proliferation, migration and tubulogenesis of endothelial cells (ECs) were assessed in CRC–EC coculture models. In this study, we found that stable knockdown of FASN decreased microvessel density in HT29 and HCT116 orthotopic CRCs and resulted in ‘normalization’ of tumor vasculature in both orthotopic and CAM models. Furthermore, FASN regulated secretion of pro- and antiangiogenic factors, including vascular endothelial growth factor-A (VEGF-A). Mechanisms associated with the antiangiogenic activity noted with knockdown of FASN included: downregulation of VEGF189, upregulation of antiangiogenic isoform VEGF165b and a decrease in expression and activity of matrix metalloproteinase-9. Furthermore, conditioned medium from FASN knockdown CRC cells inhibited activation of vascular endothelial growth factor receptor-2 and its downstream signaling and decreased proliferation, migration and tubulogenesis of ECs as compared with control medium. Together, these results suggest that cancer cell-associated FASN regulates tumor vasculature through alteration of the profile of secreted angiogenic factors and regulation of their bioavailability. Inhibition of FASN upstream of VEGF-A and other angiogenic pathways can be a novel therapeutic strategy to prevent or inhibit metastasis in CRC. PMID:24510238

  15. Identification and functional characterization of genes encoding omega-3 polyunsaturated fatty acid biosynthetic activities from unicellular microalgae.

    PubMed

    Vaezi, Royah; Napier, Johnathan A; Sayanova, Olga

    2013-12-01

    In order to identify novel genes encoding enzymes involved in the biosynthesis of nutritionally important omega-3 long chain polyunsaturated fatty acids, a database search was carried out in the genomes of the unicellular photoautotrophic green alga Ostreococcus RCC809 and cold-water diatom Fragilariopsis cylindrus. The search led to the identification of two putative "front-end" desaturases (Δ6 and Δ4) from Ostreococcus RCC809 and one Δ6-elongase from F. cylindrus. Heterologous expression of putative open reading frames (ORFs) in yeast revealed that the encoded enzyme activities efficiently convert their respective substrates: 54.1% conversion of α-linolenic acid for Δ6-desaturase, 15.1% conversion of 22:5n-3 for Δ4-desaturase and 38.1% conversion of γ-linolenic acid for Δ6-elongase. The Δ6-desaturase from Ostreococcus RCC809 displays a very strong substrate preference resulting in the predominant synthesis of stearidonic acid (C18:4Δ6,9,12,15). These data confirm the functional characterization of omega-3 long chain polyunsaturated fatty acid biosynthetic genes from these two species which have until now not been investigated for such activities. The identification of these new genes will also serve to expand the repertoire of activities available for metabolically engineering the omega-3 trait in heterologous hosts as well as providing better insights into the synthesis of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in marine microalgae. PMID:24351909

  16. Identification and Functional Characterization of Genes Encoding Omega-3 Polyunsaturated Fatty Acid Biosynthetic Activities from Unicellular Microalgae

    PubMed Central

    Vaezi, Royah; Napier, Johnathan A.; Sayanova, Olga

    2013-01-01

    In order to identify novel genes encoding enzymes involved in the biosynthesis of nutritionally important omega-3 long chain polyunsaturated fatty acids, a database search was carried out in the genomes of the unicellular photoautotrophic green alga Ostreococcus RCC809 and cold-water diatom Fragilariopsis cylindrus. The search led to the identification of two putative “front-end” desaturases (Δ6 and Δ4) from Ostreococcus RCC809 and one Δ6-elongase from F. cylindrus. Heterologous expression of putative open reading frames (ORFs) in yeast revealed that the encoded enzyme activities efficiently convert their respective substrates: 54.1% conversion of α-linolenic acid for Δ6-desaturase, 15.1% conversion of 22:5n-3 for Δ4-desaturase and 38.1% conversion of γ-linolenic acid for Δ6-elongase. The Δ6-desaturase from Ostreococcus RCC809 displays a very strong substrate preference resulting in the predominant synthesis of stearidonic acid (C18:4Δ6,9,12,15). These data confirm the functional characterization of omega-3 long chain polyunsaturated fatty acid biosynthetic genes from these two species which have until now not been investigated for such activities. The identification of these new genes will also serve to expand the repertoire of activities available for metabolically engineering the omega-3 trait in heterologous hosts as well as providing better insights into the synthesis of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in marine microalgae. PMID:24351909

  17. Polyunsaturated fatty acid supplementation reverses cystic fibrosis-related fatty acid abnormalities in CFTR-/- mice by suppressing fatty acid desaturases.

    PubMed

    Njoroge, Sarah W; Laposata, Michael; Boyd, Kelli L; Seegmiller, Adam C

    2015-01-01

    Cystic fibrosis patients and model systems exhibit consistent abnormalities in metabolism of polyunsaturated fatty acids that appear to play a role in disease pathophysiology. Recent in vitro studies have suggested that these changes are due to overexpression of fatty acid desaturases that can be reversed by supplementation with the long-chain polyunsaturated fatty acids docosahexaenoate and eicosapentaenoate. However, these findings have not been tested in vivo. The current study aimed to test these results in an in vivo model system, the CFTR(-/-) knockout mouse. When compared with wild-type mice, the knockout mice exhibited fatty acid abnormalities similar to those seen in cystic fibrosis patients and other model systems. The abnormalities were confined to lung, ileum and pancreas, tissues that are affected by the disease. Similar to in vitro models, these fatty acid changes correlated with increased expression of Δ5- and Δ6-desaturases and elongase 5. Dietary supplementation with high-dose free docosahexaenoate or a combination of lower-dose docosahexaenoate and eicosapentaenoate in triglyceride form corrected the fatty acid abnormalities and reduced expression of the desaturase and elongase genes in the ileum and liver of knockout mice. Only the high-dose docosahexaenoate reduced histologic evidence of disease, reducing mucus accumulation in ileal sections. These results provide in vivo support for the hypothesis that fatty acid abnormalities in cystic fibrosis result from abnormal expression and activity of metabolic enzymes in affected cell types. They further demonstrate that these changes can be reversed by dietary n-3 fatty acid supplementation, highlighting the potential therapeutic benefit for cystic fibrosis patients. PMID:25448610

  18. The liver-enriched transcription factor CREBH is nutritionally regulated and activated by fatty acids and PPAR{alpha}

    SciTech Connect

    Danno, Hirosuke; Ishii, Kiyo-aki; Nakagawa, Yoshimi; Mikami, Motoki; Yamamoto, Takashi; Yabe, Sachiko; Furusawa, Mika; Kumadaki, Shin; Watanabe, Kazuhisa; Shimizu, Hidehisa; Matsuzaka, Takashi; Kobayashi, Kazuto; Takahashi, Akimitsu; Yatoh, Shigeru; Suzuki, Hiroaki; Yamada, Nobuhiro; Shimano, Hitoshi

    2010-01-08

    To elucidate the physiological role of CREBH, the hepatic mRNA and protein levels of CREBH were estimated in various feeding states of wild and obesity mice. In the fast state, the expression of CREBH mRNA and nuclear protein were high and profoundly suppressed by refeeding in the wild-type mice. In ob/ob mice, the refeeding suppression was impaired. The diet studies suggested that CREBH expression was activated by fatty acids. CREBH mRNA levels in the mouse primary hepatocytes were elevated by addition of the palmitate, oleate and eicosapenonate. It was also induced by PPAR{alpha} agonist and repressed by PPAR{alpha} antagonist. Luciferase reporter gene assays indicated that the CREBH promoter activity was induced by fatty acids and co-expression of PPAR{alpha}. Deletion studies identified the PPRE for PPAR{alpha} activation. Electrophoretic mobility shift assay and chromatin immunoprecipitation (ChIP) assay confirmed that PPAR{alpha} directly binds to the PPRE. Activation of CREBH at fasting through fatty acids and PPAR{alpha} suggest that CREBH is involved in nutritional regulation.

  19. Effects of synthetic alkamides on Arabidopsis fatty acid amide hydrolase activity and plant development.

    PubMed

    Faure, Lionel; Cavazos, Ronaldo; Khan, Bibi Rafeiza; Petros, Robby A; Koulen, Peter; Blancaflor, Elison B; Chapman, Kent D

    2015-02-01

    Alkamides and N-acylethanolamines (NAEs) are bioactive, amide-linked lipids that influence plant development. Alkamides are restricted to several families of higher plants and some fungi, whereas NAEs are widespread signaling molecules in both plants and animals. Fatty acid amide hydrolase (FAAH) has been described as a key contributor to NAE hydrolysis; however, no enzyme has been associated with alkamide degradation in plants. Herein reported is synthesis of 12 compounds structurally similar to a naturally occurring alkamide (N-isobutyl-(2E,6Z,8E)decatrienamide or affinin) with different acyl compositions more similar to plant NAEs and various amino alkyl head groups. These "hybrid" synthetic alkamides were tested for activity toward recombinant Arabidopsis FAAH and for their effects on plant development (i.e., cotyledon expansion and primary root length). A substantial increase in FAAH activity was discovered toward NAEs in vitro in the presence of some of these synthetic alkamides, such as N-ethyllauroylamide (4). This "enhancement" effect was found to be due, at least in part, to relief from product inhibition of FAAH by ethanolamine, and not due to an alteration in the oligomerization state of the FAAH enzyme. For several of these alkamides, an inhibition of seedling growth was observed with greater results in FAAH knockouts and less in FAAH over-expressing plants, suggesting that these alkamides could be hydrolyzed by FAAH in planta. The tight regulation of NAE levels in vivo appears to be important for proper seedling establishment, and as such, some of these synthetic alkamides may be useful pharmacological tools to manipulate the effects of NAEs in situ. PMID:25491532

  20. Activation of the constitutive androstane receptor inhibits gluconeogenesis without affecting lipogenesis or fatty acid synthesis in human hepatocytes

    SciTech Connect

    Lynch, Caitlin; Pan, Yongmei; Li, Linhao; Heyward, Scott; Moeller, Timothy; Swaan, Peter W.; Wang, Hongbing

    2014-08-15

    Objective: Accumulating evidence suggests that activation of mouse constitutive androstane receptor (mCAR) alleviates type 2 diabetes and obesity by inhibiting hepatic gluconeogenesis, lipogenesis, and fatty acid synthesis. However, the role of human (h) CAR in energy metabolism is largely unknown. The present study aims to investigate the effects of selective hCAR activators on hepatic energy metabolism in human primary hepatocytes (HPH). Methods: Ligand-based structure–activity models were used for virtual screening of the Specs database ( (www.specs.net)) followed by biological validation in cell-based luciferase assays. The effects of two novel hCAR activators (UM104 and UM145) on hepatic energy metabolism were evaluated in HPH. Results: Real-time PCR and Western blotting analyses reveal that activation of hCAR by UM104 and UM145 significantly repressed the expression of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase, two pivotal gluconeogenic enzymes, while exerting negligible effects on the expression of genes associated with lipogenesis and fatty acid synthesis. Functional experiments show that UM104 and UM145 markedly inhibit hepatic synthesis of glucose but not triglycerides in HPH. In contrast, activation of mCAR by 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene, a selective mCAR activator, repressed the expression of genes associated with gluconeogenesis, lipogenesis, and fatty acid synthesis in mouse primary hepatocytes, which were consistent with previous observations in mouse model in vivo. Conclusion: Our findings uncover an important species difference between hCAR and mCAR in hepatic energy metabolism, where hCAR selectively inhibits gluconeogenesis without suppressing fatty acid synthesis. Implications: Such species selectivity should be considered when exploring CAR as a potential therapeutic target for metabolic disorders. - Highlights: • Novel hCAR activators were identified by computational and biological approaches. • The role

  1. Oxidized omega-3 fatty acids in fish oil inhibit leukocyte-endothelial interactions through activation of PPAR alpha.

    PubMed

    Sethi, Sanjeev; Ziouzenkova, Ouliana; Ni, Heyu; Wagner, Denisa D; Plutzky, Jorge; Mayadas, Tanya N

    2002-08-15

    Omega-3 fatty acids, which are abundant in fish oil, improve the prognosis of several chronic inflammatory diseases although the mechanism for such effects remains unclear. These fatty acids, such as eicosapentaenoic acid (EPA), are highly polyunsaturated and readily undergo oxidation. We show that oxidized, but not native unoxidized, EPA significantly inhibited human neutrophil and monocyte adhesion to endothelial cells in vitro by inhibiting endothelial adhesion receptor expression. In transcriptional coactivation assays, oxidized EPA potently activated the peroxisome proliferator-activated receptor alpha (PPAR alpha), a member of the nuclear receptor family. In vivo, oxidized, but not native, EPA markedly reduced leukocyte rolling and adhesion to venular endothelium of lipopolysaccharide (LPS)-treated mice. This occurred via a PPAR alpha-dependent mechanism because oxidized EPA had no such effect in LPS-treated PPAR alpha-deficient mice. Therefore, the beneficial effects of omega-3 fatty acids may be explained by a PPAR alpha-mediated anti-inflammatory effect of oxidized EPA. PMID:12149216

  2. Supercritical carbon dioxide extraction of seed oil from winter melon (Benincasa hispida) and its antioxidant activity and fatty acid composition.

    PubMed

    Bimakr, Mandana; Rahman, Russly Abdul; Taip, Farah Saleena; Adzahan, Noranizan Mohd; Sarker, Md Zaidul Islam; Ganjloo, Ali

    2013-01-01

    In the present study, supercritical carbon dioxide (SC-CO(2)) extraction of seed oil from winter melon (Benincasa hispida) was investigated. The effects of process variables namely pressure (150-300 bar), temperature (40-50 °C) and dynamic extraction time (60-120 min) on crude extraction yield (CEY) were studied through response surface methodology (RSM). The SC-CO(2) extraction process was modified using ethanol (99.9%) as co-solvent. Perturbation plot revealed the significant effect of all process variables on the CEY. A central composite design (CCD) was used to optimize the process conditions to achieve maximum CEY. The optimum conditions were 244 bar pressure, 46 °C temperature and 97 min dynamic extraction time. Under these optimal conditions, the CEY was predicted to be 176.30 mg-extract/g-dried sample. The validation experiment results agreed with the predicted value. The antioxidant activity and fatty acid composition of crude oil obtained under optimized conditions were determined and compared with published results using Soxhlet extraction (SE) and ultrasound assisted extraction (UAE). It was found that the antioxidant activity of the extract obtained by SC-CO(2) extraction was strongly higher than those obtained by SE and UAE. Identification of fatty acid composition using gas chromatography (GC) showed that all the extracts were rich in unsaturated fatty acids with the most being linoleic acid. In contrast, the amount of saturated fatty acids extracted by SE was higher than that extracted under optimized SC-CO(2) extraction conditions. PMID:23322066

  3. Fatty acid oxidation and ketogenesis in astrocytes

    SciTech Connect

    Auestad, N.

    1988-01-01

    Astrocytes were derived from cortex of two-day-old rat brain and grown in primary culture to confluence. The metabolism of the fatty acids, octanoate and palmitate, to CO{sub 2} in oxidative respiration and to the formation of ketone bodies was examined by radiolabeled tracer methodology. The net production of acetoacetate was also determined by measurement of its mass. The enzymes in the ketogenic pathway were examined by measuring enzymic activity and/or by immunoblot analyses. Labeled CO{sub 2} and labeled ketone bodies were produced from the oxidation of fatty acids labeled at carboxy- and {omega}-terminal carbons, indicating that fatty acids were oxidized by {beta}-oxidation. The results from the radiolabeled tracer studies also indicated that a substantial proportion of the {omega}-terminal 4-carbon unit of the fatty acids bypassed the {beta}-ketothiolase step of the {beta}-oxidation pathway. The ({sup 14}C)acetoacetate formed from the (1-{sup 14}C)labeled fatty acids, obligated to pass through the acetyl-CoA pool, contained 50% of the label at carbon 3 and 50% at carbon 1. In contrast, the ({sup 14}C)acetoacetate formed from the ({omega}-1)labeled fatty acids contained 90% of the label at carbon 3 and 10% at carbon 1.

  4. Fatty acids and sterols composition, and antioxidant activity of oils extracted from plant seeds.

    PubMed

    Kozłowska, Mariola; Gruczyńska, Eliza; Ścibisz, Iwona; Rudzińska, Magdalena

    2016-12-15

    This study determined and compared the contents of bioactive components in plant seed oils extracted with n-hexane (Soxhlet method) and chloroform/methanol (Folch method) from coriander, caraway, anise, nutmeg and white mustard seeds. Oleic acid dominated among unsaturated fatty acids in nutmeg and anise seed oils while petroselinic acid was present in coriander and caraway oils. Concerning sterols, β-sitosterol was the main component in seed oils extracted with both methods. The content of total phenolics in nutmeg, white mustard and coriander seed oils extracted with chloroform/methanol was higher than in their counterparts prepared with n-hexane. The seed oil samples extracted according to the Folch method exhibited a higher ability to scavenge DPPH radicals compared to the oil samples prepared with the Soxhlet method. DPPH values of the methanolic extracts derived from oils produced with the Folch method were also higher than in the oils extracted with n-hexane. PMID:27451203

  5. Subcellular localization of dinoflagellate polyketide synthases and fatty acid synthase activity.

    PubMed

    Van Dolah, Frances M; Zippay, Mackenzie L; Pezzolesi, Laura; Rein, Kathleen S; Johnson, Jillian G; Morey, Jeanine S; Wang, Zhihong; Pistocchi, Rossella

    2013-12-01

    Dinoflagellates are prolific producers of polyketide secondary metabolites. Dinoflagellate polyketide synthases (PKSs) have sequence similarity to Type I PKSs, megasynthases that encode all catalytic domains on a single polypeptide. However, in dinoflagellate PKSs identified to date, each catalytic domain resides on a separate transcript, suggesting multiprotein complexes similar to Type II PKSs. Here, we provide evidence through coimmunoprecipitation that single-domain ketosynthase and ketoreductase proteins interact, suggesting a predicted multiprotein complex. In Karenia brevis (C.C. Davis) Gert Hansen & Ø. Moestrup, previously observed chloroplast localization of PKSs suggested that brevetoxin biosynthesis may take place in the chloroplast. Here, we report that PKSs are present in both cytosol and chloroplast. Furthermore, brevetoxin is not present in isolated chloroplasts, raising the question of what chloroplast-localized PKS enzymes might be doing. Antibodies to K. brevis PKSs recognize cytosolic and chloroplast proteins in Ostreopsis cf. ovata Fukuyo, and Coolia monotis Meunier, which produce different suites of polyketide toxins, suggesting that these PKSs may share common pathways. Since PKSs are closely related to fatty acid synthases (FAS), we sought to determine if fatty acid biosynthesis colocalizes with either chloroplast or cytosolic PKSs. [(3) H]acetate labeling showed fatty acids are synthesized in the cytosol, with little incorporation in chloroplasts, consistent with a Type I FAS system. However, although 29 sequences in a K. brevis expressed sequence tag database have similarity (BLASTx e-value <10(-10) ) to PKSs, no transcripts for either Type I (cytosolic) or Type II (chloroplast) FAS are present. Further characterization of the FAS complexes may help to elucidate the functions of the PKS enzymes identified in dinoflagellates. PMID:27007632

  6. Synthesis, and Surface-Active Properties of Palm Fatty Acid and 1(2-HYDROXYETHYL - Esteramide Quat

    NASA Astrophysics Data System (ADS)

    Mishra, Shilpi; Tyagi, V. K.

    In this study, an attempt has been made to synthesize esteramide quat by esterification of palm fatty acids with 1(2-hydroxyethyl piperazine) followed by quaternization with dimethyl sulphate (DMS). The optimum reaction conditions for esterification of palm fatty acids and 1(2-hydroxyethyl piperazine) were found to be 170°C reaction temperature and 150 mmHg pressure. The obtained esteramide was subjected to quaternization with different molar ratios of DMS. The consequences revealed that esteramide to DMS ratio of 1 : 0.95 and duration of quaternization for 2 h yielded esteramide quat of maximum cationic content, i.e., 64.9%. The instrumental analysis, viz. FT-IR, 1H NMR, 13C NMR verified the esterification and subsequent quaternization of the obtained esteramide quat. Furthermore, the surface-active and performance properties of synthesized esteramide quat were also evaluated.

  7. Viability, infectivity and fatty acid synthetic activity of Perkinsus marinus meront cells incubated in estuarine and artificial seawater.

    PubMed

    Chu, Fu-Lin E; Lund, Eric D

    2006-07-25

    We investigated the viability and fatty acid synthetic activity of in vitro cultured Perkinsus marinus (Dermo) in lipid-free medium and estuarine water, and the infectivity of P. marinus maintained in artificial seawater (ASW). Viability and fatty acid synthetic activity in 7 d old P. marinus meronts maintained in lipid-free medium and estuarine water were tested. The infectivity of meronts incubated in ASW was examined by first incubating P. marinus meronts in ASW for 2, 3 or 7 d, and then inoculating viable ASW-incubated meronts into the shell cavity of individual oysters Crassostrea virginica. P. marinus infection prevalence and intensity in oysters were determined 9 wk post-inoculation. Heavy mortality occurred in meronts maintained in estuarine water, a drop from an initial value of 100% viable to 7.8 and 6.1% after 3 and 14 d incubation, respectively. Viability was 85 and 67% in meronts maintained in lipid-free medium for 3 and 24 d, respectively. Meronts kept in lipid-free medium for 14 d retained their ability to synthesize fatty acids. Viable meronts incubated in ASW remained infective for up to 7 d. The infection prevalences were 85, 48 and 100%, in the treatments inoculated with viable meronts that were incubated in ASW for 2, 3 and 7 d, respectively. Infection prevalence in the group inoculated with viable meronts immediately after they were transferred to ASW ranged from 61 to 85%. Our results suggest that in nature meronts can survive for at least 14 d outside the host. Viable meronts are not only infective, but are also able to replicate and retain their fatty acid synthetic ability for 7 d. PMID:16956060

  8. [6]-Gingerol inhibits de novo fatty acid synthesis and carnitine palmitoyltransferase-1 activity which triggers apoptosis in HepG2

    PubMed Central

    Impheng, Hathaichanok; Richert, Lysiane; Pekthong, Dumrongsak; Scholfield, C Norman; Pongcharoen, Sutatip; Pungpetchara, Ittipon; Srisawang, Piyarat

    2015-01-01

    The de novo fatty acid synthesis catalyzed by key lipogenic enzymes, including fatty acid synthase (FASN) has emerged as one of the novel targets of anti-cancer approaches. The present study explored the possible inhibitory efficacy of [6]-gingerol on de novo fatty acid synthesis associated with mitochondrial-dependent apoptotic induction in HepG2 cells. We observed a dissipation of mitochondrial membrane potential accompanied by a reduction of fatty acid levels. [6]-gingerol administration manifested inhibition of FASN expression, indicating FASN is a major target of [6]-gingerol inducing apoptosis in HepG2 cells. Indeed, we found that increased ROS generation could likely be a mediator of the anti-cancer effect of [6]-gingerol. A reduction of fatty acid levels and induction of apoptosis were restored by inhibition of acetyl-CoA carboxylase (ACC) activity, suggesting an accumulation of malonyl-CoA level could be the major cause of apoptotic induction of [6]-gingerol in HepG2 cells. The present study also showed that depletion of fatty acid following [6]-gingerol treatment caused an inhibitory effect on carnitine palmitoyltransferase-1 activity (CPT-1), whereas C75 augmented CPT-1 activity, indicating that [6]-gingerol exhibits the therapeutic benefit on suppression of fatty acid β-oxidation. PMID:26101700

  9. [6]-Gingerol inhibits de novo fatty acid synthesis and carnitine palmitoyltransferase-1 activity which triggers apoptosis in HepG2.

    PubMed

    Impheng, Hathaichanok; Richert, Lysiane; Pekthong, Dumrongsak; Scholfield, C Norman; Pongcharoen, Sutatip; Pungpetchara, Ittipon; Srisawang, Piyarat

    2015-01-01

    The de novo fatty acid synthesis catalyzed by key lipogenic enzymes, including fatty acid synthase (FASN) has emerged as one of the novel targets of anti-cancer approaches. The present study explored the possible inhibitory efficacy of [6]-gingerol on de novo fatty acid synthesis associated with mitochondrial-dependent apoptotic induction in HepG2 cells. We observed a dissipation of mitochondrial membrane potential accompanied by a reduction of fatty acid levels. [6]-gingerol administration manifested inhibition of FASN expression, indicating FASN is a major target of [6]-gingerol inducing apoptosis in HepG2 cells. Indeed, we found that increased ROS generation could likely be a mediator of the anti-cancer effect of [6]-gingerol. A reduction of fatty acid levels and induction of apoptosis were restored by inhibition of acetyl-CoA carboxylase (ACC) activity, suggesting an accumulation of malonyl-CoA level could be the major cause of apoptotic induction of [6]-gingerol in HepG2 cells. The present study also showed that depletion of fatty acid following [6]-gingerol treatment caused an inhibitory effect on carnitine palmitoyltransferase-1 activity (CPT-1), whereas C75 augmented CPT-1 activity, indicating that [6]-gingerol exhibits the therapeutic benefit on suppression of fatty acid β-oxidation. PMID:26101700

  10. Accumulation of fatty acids in Chlorella vulgaris under heterotrophic conditions in relation to activity of acetyl-CoAcarboxylase, temperature, and co-immobilization with Azospirillum brasilense [corrected].

    PubMed

    Leyva, Luis A; Bashan, Yoav; Mendoza, Alberto; de-Bashan, Luz E

    2014-10-01

    The relation between fatty acid accumulation, activity of acetyl-CoA carboxylase (ACC), and consequently lipid accumulation was studied in the microalgae Chlorella vulgaris co-immobilized with the plant growth-promoting bacterium Azospirillum brasilense under dark heterotrophic conditions with Na acetate as a carbon source. In C. vulgaris immobilized alone, cultivation experiments for 6 days showed that ACC activity is directly related to fatty acid accumulation, especially in the last 3 days. In co-immobilization experiments, A. brasilense exerted a significant positive effect over ACC activity, increased the quantity in all nine main fatty acids, increased total lipid accumulation in C. vulgaris, and mitigated negative effects of nonoptimal temperature for growth. No correlation between ACC activity and lipid accumulation in the cells was established for three different temperatures. This study demonstrated that the interaction between A. brasilense and C. vulgaris has a significant effect on fatty acid and lipid accumulation in the microalgae. PMID:25129521

  11. Accumulation fatty acids of in Chlorella vulgaris under heterotrophic conditions in relation to activity of acetyl-CoA carboxylase, temperature, and co-immobilization with Azospirillum brasilense

    NASA Astrophysics Data System (ADS)

    Leyva, Luis A.; Bashan, Yoav; Mendoza, Alberto; de-Bashan, Luz E.

    2014-10-01

    The relation between fatty acid accumulation, activity of acetyl-CoA carboxylase (ACC), and consequently lipid accumulation was studied in the microalgae Chlorella vulgaris co-immobilized with the plant growth-promoting bacterium Azospirillum brasilense under dark heterotrophic conditions with Na acetate as a carbon source. In C. vulgaris immobilized alone, cultivation experiments for 6 days showed that ACC activity is directly related to fatty acid accumulation, especially in the last 3 days. In co-immobilization experiments, A. brasilense exerted a significant positive effect over ACC activity, increased the quantity in all nine main fatty acids, increased total lipid accumulation in C. vulgaris, and mitigated negative effects of nonoptimal temperature for growth. No correlation between ACC activity and lipid accumulation in the cells was established for three different temperatures. This study demonstrated that the interaction between A. brasilense and C. vulgaris has a significant effect on fatty acid and lipid accumulation in the microalgae.

  12. The adjuvant activity of fatty acid esters. The role of acyl chain length and degree of saturation.

    PubMed Central

    Bomford, R

    1981-01-01

    Water-in-oil emulsions of metabolizable fatty acid esters, with the non-toxic surfactant Pluronic L122 as emulsifying agent, potentiated the humoral response to bovine serum albumin and staphylococcal toxoid in the mouse. Adjuvant activity was increased by changing the chemical nature of the esters as follows: (i) using a series of ethyl esters, adjuvant activity appeared when the acyl chain length of the fatty acid component was 16 or greater; (ii) isobutyl and isopropyl esters of palmitic acid (C16:0) were superior to ethyl; (iii) the ethyl esters of oleic (C18:1) and linoleic (C18:2) acids were better than stearic (C18:0). Since emulsions prepared with longer chain saturated esters are very viscous or solid at room temperature, and unsaturated esters are chemically reactive, emulsions were prepared with differing proportions of ethyl caprate (C10:0) and butyl stearate. At a ratio of 9:1 the emulsions possessed the low viscosity of ethyl caprate, but gained the adjuvant activity of butyl stearate. 125I-labelled BSA was retained in the footpad to a significantly greater extent than with a caprate emulsion, but reasons are given for believing that slow release of antigen is not the only mechanism of adjuvant activity. The ester emulsions caused more acute but less chronic local inflammation (footpad swelling) than Freund's incomplete adjuvant. PMID:7275184

  13. Angiotensin (1-7)/Mas receptor axis activation ameliorates the changes in fatty acid composition in diabetic rats with nephropathy

    PubMed Central

    Singh, Kulwinder; Singh, Tajinder; Sharma, PL

    2010-01-01

    Diabetes mellitus is often associated with altered fatty acids composition. This study was designed to investigate the role of angiotensin (Ang) (1-7)/Mas receptor in improving fatty acids composition in streptozotocin (STZ)-induced diabetic nephropathy (DN) in rats. Rats treated with STZ (50 mg/kg, i.p. once) developed DN after 8 weeks. Fatty acid composition was estimated in renal cortical tissue by gas chromatography. Treatment with Ang (1-7), A-779, and Ang (1-7) plus A-779 was given from week 4 to week 8. Diabetic rats exhibited a significant increase in levels of saturated fatty acids and a significant decrease in levels of polyunsaturated fatty acids (PUFAs). Treatment with Ang (1-7) significantly attenuated these diabetes-induced changes. In diabetic rats, prior administration of A-779 significantly attenuated the increase in PUFAs produced by Ang (1-7); however, for saturated fatty acids, A-779 significantly blocked the decrease in palmitic acid only. Our study, for the first time, documented that endogenous Ang (1-7) modulates fatty acid composition in rats. Further, treatment with Ang (1-7) significantly attenuated diabetes-induced changes in fatty acids composition. This may be an additional mechanism implying the renoprotective role of Ang (1-7) in diabetic rats.

  14. Transcription activator-like effector nucleases mediated metabolic engineering for enhanced fatty acids production in Saccharomyces cerevisiae.

    PubMed

    Aouida, Mustapha; Li, Lixin; Mahjoub, Ali; Alshareef, Sahar; Ali, Zahir; Piatek, Agnieszka; Mahfouz, Magdy M

    2015-10-01

    Targeted engineering of microbial genomes holds much promise for diverse biotechnological applications. Transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats/Cas9 systems are capable of efficiently editing microbial genomes, including that of Saccharomyces cerevisiae. Here, we demonstrate the use of TALENs to edit the genome of S. cerevisiae with the aim of inducing the overproduction of fatty acids. Heterodimeric TALENs were designed to simultaneously edit the FAA1 and FAA4 genes encoding acyl-CoA synthetases in S. cerevisiae. Functional yeast double knockouts generated using these TALENs over-produce large amounts of free fatty acids into the cell. This study demonstrates the use of TALENs for targeted engineering of yeast and demonstrates that this technology can be used to stimulate the enhanced production of free fatty acids, which are potential substrates for biofuel production. This proof-of-principle study extends the utility of TALENs as excellent genome editing tools and highlights their potential use for metabolic engineering of yeast and other organisms, such as microalgae and plants, for biofuel production. PMID:25907574

  15. Hepatic ATF6 Increases Fatty Acid Oxidation to Attenuate Hepatic Steatosis in Mice Through Peroxisome Proliferator-Activated Receptor α.

    PubMed

    Chen, Xuqing; Zhang, Feifei; Gong, Qi; Cui, Aoyuan; Zhuo, Shu; Hu, Zhimin; Han, Yamei; Gao, Jing; Sun, Yixuan; Liu, Zhengshuai; Yang, Zhongnan; Le, Yingying; Gao, Xianfu; Dong, Lily Q; Gao, Xin; Li, Yu

    2016-07-01

    The endoplasmic reticulum quality control protein activating transcription factor 6 (ATF6) has emerged as a novel metabolic regulator. Here, we show that adenovirus-mediated overexpression of the dominant-negative form of ATF6 (dnATF6) increases susceptibility to develop hepatic steatosis in diet-induced insulin-resistant mice and fasted mice. Overexpression of dnATF6 or small interfering RNA-mediated knockdown of ATF6 decreases the transcriptional activity of peroxisome proliferator-activated receptor α (PPARα)/retinoid X receptor complex, and inhibits oxygen consumption rates in hepatocytes, possibly through inhibition of the binding of PPARα to the promoter of its target gene. Intriguingly, ATF6 physically interacts with PPARα, enhances the transcriptional activity of PPARα, and triggers activation of PPARα downstream targets, such as CPT1α and MCAD, in hepatocytes. Furthermore, hepatic overexpression of the active form of ATF6 promotes hepatic fatty acid oxidation and protects against hepatic steatosis in diet-induced insulin-resistant mice. These data delineate the mechanism by which ATF6 controls the activity of PPARα and hepatic mitochondria fatty acid oxidation. Therefore, strategies to activate ATF6 could be used as an alternative avenue to improve liver function and treat hepatic steatosis in obesity. PMID:27207533

  16. Indices of fatty acid desaturase activity in healthy human subjects: effects of different types of dietary fat.

    PubMed

    Vessby, Bengt; Gustafsson, Inga-Britt; Tengblad, Siv; Berglund, Lars

    2013-09-14

    Δ9-Desaturase (stearoyl-CoA desaturase 1, SCD-1) regulates the desaturation of SFA, mainly stearic and palmitic, to MUFA. Δ6-Desaturase (D6D) and Δ5-desaturase (D5D) are involved in the metabolism of linoleic and α-linolenic acid to polyunsaturated metabolites. The objective of the present study was to study the effects of different types of dietary fat on indices of fatty acid desaturase (FADS) activity (evaluated as product:precursor ratios) in plasma and skeletal muscle in human subjects. A high SCD-1 index has been related to obesity and metabolic disorders, while the D5D index is associated with insulin sensitivity. Fatty acid composition of serum and skeletal muscle lipids was analysed by GLC during a randomised, controlled, 3-month dietary intervention in healthy subjects. A comparison of the effects of a diet containing butter fat (SFA, n 17) with a diet containing monounsaturated fat (MUFA, n 17), keeping all other dietary components constant, showed a reduced SCD-1 activity index by 20% on the MUFA diet compared with the SFA diet assessed in serum cholesteryl esters. The D6D and D5D indices remained unaffected. Supplementation with long-chain n-3 fatty acids reduced the SCD-1 index by a similar magnitude while the D6D index decreased and the D5D index increased. It is concluded that changes in the type of fat in the diet affect the indices of FADS activity in serum and skeletal muscle in human subjects. The desaturase activity indices estimated from the serum lipid ester composition are significantly related to corresponding indices studied in skeletal muscle phospholipids. PMID:23414551

  17. Hepatoprotective activity of polyherbal formulation (Normeta) in oxidative stress induced by alcohol, polyunsaturated fatty acids and iron in rats.

    PubMed

    Patere, Shilpa N; Saraf, Madhusudan N; Majumdar, Anuradha S

    2009-09-01

    In recent years, oxidative stress has been implicated in the pathophysiology of a large number of diseases or disorders which are initiated and/or exacerbated by pro-oxidants such as various drugs including alcohol and food additives. The present study was carried out to evaluate the effects of oral treatment with polyherbal formulation Normeta (2 ml and 4 ml/kg) on hepatic damage induced by alcohol 10-30% (blood alcohol was maintained at levels between 150 and 350 mg/dl), thermally oxidized oil (polyunsaturated fatty acids) (15% of diet) and carbonyl iron (1.5-2% of diet) for 30 days in rats. In vitro studies with 1, 1-Diphenyl, 2-Picrylhydrazyl (DPPH), Nitric oxide and Ferric chloride (Fe(+3) ions) showed that Normeta possesses antioxidant and metal chelating activity. Alcohol, polyunsaturated fatty acids and iron feeding produced an increase in serum levels of iron, serum glutamate pyruvate transaminase and decrease in serum proteins. It was also associated with elevated lipid peroxidation (thiobarbituric acid reactive substances) and disruption of antioxidant defence mechanism in liver, decreased body weight and increased liver to body weight ratio. Oral administration of Normeta along with alcohol, polyunsaturated fatty acids and iron decreased the serum iron, serum glutamate pyruvate transaminase levels and increased serum protein levels. The levels of liver thiobarbituric acid reactive substances were decreased and the activities of antioxidant enzymes superoxide dismutase and catalase were increased. Improvement in body weight and liver to body weight ratio was also observed. The effects of Normeta on physico-metabolic parameters were comparable with silymarin. This indicates that Normeta has favourable effect in bringing down the severity of hepatotoxicity. PMID:19486336

  18. Studies on antioxidant activity, volatile compound and fatty acid composition of different parts of Glycyrrhiza echinata L.

    PubMed Central

    Çakmak, Yavuz Selim; Aktumsek, Abdurrahman; Duran, Ahmet

    2012-01-01

    The essential oil compound, fatty acid composition and the in vitro antioxidant activity of the root and aerial of Glycyrrhiza echinata L., a medicinal plant growing in Turkey, have been studied. The antioxidant capacity tests were designed to evaluate the antioxidant activities of methanol extracts. Total phenolic and flavonoid concentrations of each extract were also determined by using both Folin-Ciocalteu reagent and aluminum chloride. The aerial part was found to possess the highest total phenolic content (146.30 ± 4.58 mg GAE/g) and total antioxidant capacity (175.33 ± 3.98 mg AE/g). The essential oil from root and aerial parts was analyzed by gas chromatography mass spectroscopy (GC-MS) systems. The major components identified were n-hexadecanoic acid, hexahydro farnesyl acetone, α-caryophyllen, hexanal and phytol. In fatty acid profiles of plant, palmitic, stearic, oleic and linoleic acid were detected as the main components. The results of this study have shown that the extracts G. echinata are suitable as a natural antioxidant and food supplement source for pharmacological and food industries due to their beneficial chemical composition and antioxidant capacity. PMID:27418901

  19. A potential plant-derived antifungal acetylenic acid mediates its activity by interfering with fatty acid homeostasis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    6-Nonadecynoic acid (6-NDA), a plant-derived acetylenic acid, exhibits strong inhibitory activity against the human fungal pathogens Candida albicans, Aspergillus fumigatus, and Trichophyton mentagrophytes. In the present study, transcriptional profiling coupled with mutant and biochemical analyses...

  20. Dietary ɛ-Polylysine Decreased Serum and Liver Lipid Contents by Enhancing Fecal Lipid Excretion Irrespective of Increased Hepatic Fatty Acid Biosynthesis-Related Enzymes Activities in Rats

    PubMed Central

    Hosomi, Ryota; Yamamoto, Daiki; Otsuka, Ren; Nishiyama, Toshimasa; Yoshida, Munehiro; Fukunaga, Kenji

    2015-01-01

    ɛ-Polylysine (EPL) is used as a natural preservative in food. However, few studies have been conducted to assess the beneficial functions of dietary EPL. The purpose of this study was to elucidate the mechanism underlying the inhibition of neutral and acidic sterol absorption and hepatic enzyme activity-related fatty acid biosynthesis following EPL intake. EPL digest prepared using an in vitro digestion model had lower lipase activity and micellar lipid solubility and higher bile acid binding capacity than casein digest. Male Wistar rats were fed an AIN-93G diet containing 1% (wt/wt) EPL or l-lysine. After 4 weeks of feeding these diets, the marked decrease in serum and liver triacylglycerol contents by the EPL diet was partly attributed to increased fecal fatty acid excretion. The activities of hepatic acetyl-coenzyme A carboxylase and glucose-6-phosphate dehydrogenase, which are key enzymes of fatty acid biosynthesis, were enhanced in rats fed EPL diet. The increased fatty acid biosynthesis activity due to dietary EPL may be prevented by the enhancement of fecal fatty acid excretion. The hypocholesterolemic effect of EPL was mediated by increased fecal neutral and acidic sterol excretions due to the EPL digest suppressing micellar lipid solubility and high bile acid binding capacity. These results show that dietary EPL has beneficial effects that could help prevent lifestyle-related diseases such as hyperlipidemia and atherosclerosis. PMID:25866749

  1. Dietary ɛ-Polylysine Decreased Serum and Liver Lipid Contents by Enhancing Fecal Lipid Excretion Irrespective of Increased Hepatic Fatty Acid Biosynthesis-Related Enzymes Activities in Rats.

    PubMed

    Hosomi, Ryota; Yamamoto, Daiki; Otsuka, Ren; Nishiyama, Toshimasa; Yoshida, Munehiro; Fukunaga, Kenji

    2015-03-01

    ɛ-Polylysine (EPL) is used as a natural preservative in food. However, few studies have been conducted to assess the beneficial functions of dietary EPL. The purpose of this study was to elucidate the mechanism underlying the inhibition of neutral and acidic sterol absorption and hepatic enzyme activity-related fatty acid biosynthesis following EPL intake. EPL digest prepared using an in vitro digestion model had lower lipase activity and micellar lipid solubility and higher bile acid binding capacity than casein digest. Male Wistar rats were fed an AIN-93G diet containing 1% (wt/wt) EPL or l-lysine. After 4 weeks of feeding these diets, the marked decrease in serum and liver triacylglycerol contents by the EPL diet was partly attributed to increased fecal fatty acid excretion. The activities of hepatic acetyl-coenzyme A carboxylase and glucose-6-phosphate dehydrogenase, which are key enzymes of fatty acid biosynthesis, were enhanced in rats fed EPL diet. The increased fatty acid biosynthesis activity due to dietary EPL may be prevented by the enhancement of fecal fatty acid excretion. The hypocholesterolemic effect of EPL was mediated by increased fecal neutral and acidic sterol excretions due to the EPL digest suppressing micellar lipid solubility and high bile acid binding capacity. These results show that dietary EPL has beneficial effects that could help prevent lifestyle-related diseases such as hyperlipidemia and atherosclerosis. PMID:25866749

  2. Fatty Acid and Essential Oil Compositions of Trifolium angustifolium var. angustifolium with Antioxidant, Anticholinesterase and Antimicrobial Activities

    PubMed Central

    Ertaş, Abdulselam; Boğa, Mehmet; Haşimi, Nesrin; Yılmaz, Mustafa Abdullah

    2015-01-01

    This study represents the first report on the chemical composition and biological activity of Trifolium angustifolium var. angustifolium. The major components of the essential oil were identified as hexatriacontene (23.0%), arachidic acid (15.5%) and α-selinene (10.0%). The main constituents of the fatty acid obtained from the petroleum ether extract were identified as palmitic acid (29.8%), linoleic acid (18.6%) and oleic acid (10.5%). In particular, the water extract exhibited higher activity than α-tocopherol and BHT, which were used as standards in the ABTS cation radical scavenging assay and indicated higher inhibitory effect against acetylcholinesterase enzyme than the reference compound, galanthamine but exhibited weak activity in β-carotene bleaching, DPPH-free radical scavenging, and cupric-reducing antioxidant capacity assays. The petroleum ether extract exhibited higher activity than α-tocopherol which was used as standard in the β-carotene bleaching method at concentration 100 μg/mL. The acetone extract exhibited higher activity than α-tocopherol which was used as standard cupric reducing antioxidant capacity (CUPRAC) method at 100 μg/mL concentration. The acetone and methanol extracts were active on all microorganisms tested with a small zone diameter indicating weak activity. PMID:25561929

  3. Antibacterial Activity of Sphingoid Bases and Fatty Acids against Gram-Positive and Gram-Negative Bacteria

    PubMed Central

    Fischer, Carol L.; Drake, David R.; Dawson, Deborah V.; Blanchette, Derek R.; Brogden, Kim A.

    2012-01-01

    There is growing evidence that the role of lipids in innate immunity is more important than previously realized. How lipids interact with bacteria to achieve a level of protection, however, is still poorly understood. To begin to address the mechanisms of antibacterial activity, we determined MICs and minimum bactericidal concentrations (MBCs) of lipids common to the skin and oral cavity—the sphingoid bases d-sphingosine, phytosphingosine, and dihydrosphingosine and the fatty acids sapienic acid and lauric acid—against four Gram-negative bacteria and seven Gram-positive bacteria. Exact Kruskal-Wallis tests of these values showed differences among lipid treatments (P < 0.0001) for each bacterial species except Serratia marcescens and Pseudomonas aeruginosa. d-Sphingosine (MBC range, 0.3 to 19.6 μg/ml), dihydrosphingosine (MBC range, 0.6 to 39.1 μg/ml), and phytosphingosine (MBC range, 3.3 to 62.5 μg/ml) were active against all bacteria except S. marcescens and P. aeruginosa (MBC > 500 μg/ml). Sapienic acid (MBC range, 31.3 to 375.0 μg/ml) was active against Streptococcus sanguinis, Streptococcus mitis, and Fusobacterium nucleatum but not active against Escherichia coli, Staphylococcus aureus, S. marcescens, P. aeruginosa, Corynebacterium bovis, Corynebacterium striatum, and Corynebacterium jeikeium (MBC > 500 μg/ml). Lauric acid (MBC range, 6.8 to 375.0 μg/ml) was active against all bacteria except E. coli, S. marcescens, and P. aeruginosa (MBC > 500 μg/ml). Complete killing was achieved as early as 0.5 h for some lipids but took as long as 24 h for others. Hence, sphingoid bases and fatty acids have different antibacterial activities and may have potential for prophylactic or therapeutic intervention in infection. PMID:22155833

  4. Use of agar diffusion assay to measure bactericidal activity of alkaline salts of fatty acids against bacteria associated with poultry processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The agar diffusion assay was used to examine antibacterial activity of alkaline salts of caproic, caprylic, capric, lauric, and myristic acids. A 0.5M concentration of each fatty acid was dissolved in 1.0 M potassium hydroxide (KOH), and pH of the mixtures was adjusted to 10.5 with citric acid. Solu...

  5. Medium Chain Fatty Acids Are Selective Peroxisome Proliferator Activated Receptor (PPAR) γ Activators and Pan-PPAR Partial Agonists

    PubMed Central

    Ayers, Steven D.; Lin, Jean Z.; Cvoro, Aleksandra; Silveira, Rodrigo L.; Martínez, Leandro; Souza, Paulo C. T.; Saidemberg, Daniel; Deng, Tuo; Amato, Angela Angelica; Togashi, Marie; Hsueh, Willa A.; Phillips, Kevin; Palma, Mário Sérgio; Neves, Francisco A. R.; Skaf, Munir S.; Webb, Paul; Polikarpov, Igor

    2012-01-01

    Thiazolidinediones (TZDs) act through peroxisome proliferator activated receptor (PPAR) γ to increase insulin sensitivity in type 2 diabetes (T2DM), but deleterious effects of these ligands mean that selective modulators with improved clinical profiles are needed. We obtained a crystal structure of PPARγ ligand binding domain (LBD) and found that the ligand binding pocket (LBP) is occupied by bacterial medium chain fatty acids (MCFAs). We verified that MCFAs (C8–C10) bind the PPARγ LBD in vitro and showed that they are low-potency partial agonists that display assay-specific actions relative to TZDs; they act as very weak partial agonists in transfections with PPARγ LBD, stronger partial agonists with full length PPARγ and exhibit full blockade of PPARγ phosphorylation by cyclin-dependent kinase 5 (cdk5), linked to reversal of adipose tissue insulin resistance. MCFAs that bind PPARγ also antagonize TZD-dependent adipogenesis in vitro. X-ray structure B-factor analysis and molecular dynamics (MD) simulations suggest that MCFAs weakly stabilize C-terminal activation helix (H) 12 relative to TZDs and this effect is highly dependent on chain length. By contrast, MCFAs preferentially stabilize the H2-H3/β-sheet region and the helix (H) 11-H12 loop relative to TZDs and we propose that MCFA assay-specific actions are linked to their unique binding mode and suggest that it may be possible to identify selective PPARγ modulators with useful clinical profiles among natural products. PMID:22649490

  6. AMP kinase activation with AICAR further increases fatty acid oxidation and blunts triacylglycerol hydrolysis in contracting rat soleus muscle

    PubMed Central

    Smith, Angela C; Bruce, Clinton R; Dyck, David J

    2005-01-01

    Muscle contraction increases glucose uptake and fatty acid (FA) metabolism in isolated rat skeletal muscle, due at least in part to an increase in AMP-activated kinase activity (AMPK). However, the extent to which AMPK plays a role in the regulation of substrate utilization during contraction is not fully understood. We examined the acute effects of 5-aminoimidazole-4-carboxamide riboside (AICAR; 2 mm), a pharmacological activator of AMPK, on FA metabolism and glucose oxidation during high intensity tetanic contraction in isolated rat soleus muscle strips. Muscle strips were exposed to two different FA concentrations (low fatty acid, LFA, 0.2 mm; high fatty acid, HFA, 1 mm) to examine the role that FA availability may play in both exogenous and endogenous FA metabolism with contraction and AICAR. Synergistic increases in AMPK α2 activity (+45%; P < 0.05) were observed after 30 min of contraction with AICAR, which further increased exogenous FA oxidation (LFA: +71%, P < 0.05; HFA: +46%, P < 0.05) regardless of FA availability. While there were no changes in triacylglycerol (TAG) esterification, AICAR did increase the ratio of FA partitioned to oxidation relative to TAG esterification (LFA: +65%, P < 0.05). AICAR significantly blunted endogenous TAG hydrolysis (LFA: −294%, P < 0.001; HFA: −117%, P < 0.05), but had no effect on endogenous oxidation rates, suggesting a better matching between TAG hydrolysis and subsequent oxidative needs of the muscle. There was no effect of AICAR on the already elevated rates of glucose oxidation during contraction. These results suggest that FA metabolism is very sensitive to AMPK α2 stimulation during contraction. PMID:15774529

  7. Brain Lipotoxicity of Phytanic Acid and Very Long-chain Fatty Acids. Harmful Cellular/Mitochondrial Activities in Refsum Disease and X-Linked Adrenoleukodystrophy

    PubMed Central

    Schönfeld, Peter; Reiser, Georg

    2016-01-01

    It is increasingly understood that in the aging brain, especially in the case of patients suffering from neurodegenerative diseases, some fatty acids at pathologically high concentrations exert detrimental activities. To study such activities, we here analyze genetic diseases, which are due to compromised metabolism of specific fatty acids, either the branched-chain phytanic acid or very long-chain fatty acids (VLCFAs). Micromolar concentrations of phytanic acid or of VLCFAs disturb the integrity of neural cells by impairing Ca2+ homeostasis, enhancing oxidative stress or de-energizing mitochondria. Finally, these combined harmful activities accelerate cell death. Mitochondria are more severely targeted by phytanic acid than by VLCFAs. The insertion of VLCFAs into the inner membrane distorts the arrangement of membrane constituents and their functional interactions. Phytanic acid exerts specific protonophoric activity, induces reactive oxygen species (ROS) generation, and reduces ATP generation. A clear inhibition of the Na+, K+-ATPase activity by phytanic acid has also been reported. In addition to the instantaneous effects, a chronic exposure of brain cells to low micromolar concentrations of phytanic acid may produce neuronal damage in Refsum disease by altering epigenetic transcriptional regulation. Myelin-producing oligodendrocytes respond with particular sensitivity to VLCFAs. Deleterious activity of VLCFAs on energy-dependent mitochondrial functions declines with increasing the hydrocarbon chain length (C22:0 > C24:0 > C26:0). In contrast, the reverse sequence holds true for cell death induction by VLCFAs (C22:0 < C24:0 < C26:0). In adrenoleukodystrophy, the uptake of VLCFAs by peroxisomes is impaired by defects of the ABCD1 transporter. Studying mitochondria from ABCD1-deficient and wild-type mice proves that the energy-dependent functions are not altered in the disease model. Thus, a defective ABCD1 apparently exerts no obvious adaptive pressure on

  8. Suicide Deaths of Active Duty U.S. Military and Omega-3 Fatty Acid Status: A Case Control Comparison

    PubMed Central

    Lewis, Michael D.; Hibbeln, Joseph R.; Johnson, Jeremiah E.; Lin, Yu Hong; Hyun, Duk Y.; Loewke, James D.

    2011-01-01

    Background The recent escalation of US Military suicide deaths to record numbers has been an sentinel for impaired force efficacy and has accelerated the search for reversible risk factors. Objective Determine if deficiencies of neuroactive highly unsaturated omega-3 essential fatty acids (n-3 HUFA), in particular docosahexaenoic acid (DHA), are associated with increased risk of suicide death among a large random sample of active duty US military. Methods Serum fatty acids were quantified as % of total fatty acids, among US military suicide deaths (n= 800) and controls (n=800) matched for age, date of collection, sex, rank and year of incident. Participants were Active Duty US Military personnel (2002–2008). Outcome measures, included death by suicide, post deployment health assessment questionnaire and ICD-9 mental health diagnosis data. Results Risks of suicide death was 14% higher, per standard deviation [SD] lower DHA % (OR =1.14, 95% CI; 1.02–1.27, p<0.03), in adjusted logistic regressions. Among men risk of suicide death was 62% greater with low serum DHA status (adjusted Odds Ratio [OR] =1.62, 95% CI 1.12–2.34, p<0.01, comparing DHA below 1.75% [n=1,389] to above [n=141]). Risk of suicide death was 54% greater in those who reported having seen wounded, dead or killed coalition personnel (OR = 1.54, 95% CI; 1.12–2.12, p< 0.007.) Conclusion This US military population had a very low and narrow range of n-3 HUFA status. Although these data suggest that low serum DHA may be a risk factor for suicides, well designed intervention trials are needed to evaluate causality. PMID:21903029

  9. Yhhu981, a novel compound, stimulates fatty acid oxidation via the activation of AMPK and ameliorates lipid metabolism disorder in ob/ob mice

    PubMed Central

    Zeng, Hong-liang; Huang, Su-ling; Xie, Fu-chun; Zeng, Li-min; Hu, You-hong; Leng, Ying

    2015-01-01

    Aim: Defects in fatty acid metabolism contribute to the pathogenesis of insulin resistance and obesity. In this study, we investigated the effects of a novel compound yhhu981 on fatty acid metabolism in vitro and in vivo. Methods: The capacity to stimulate fatty acid oxidation was assessed in C2C12 myotubes. The fatty acid synthesis was studied in HepG2 cells using isotope tracing. The phosphorylation of AMPK and acetyl-CoA carboxylase (ACC) was examined with Western blot analysis. For in vivo experiments, ob/ob mice were orally treated with yhhu981 acutely (300 mg/kg) or chronically (150 or 300 mg·kg−1·d−1 for 22 d). On the last day of treatment, serum and tissue samples were collected for analysis. Results: Yhhu981 (12.5–25 μmol/L) significantly increased fatty acid oxidation and the expression of related genes (Sirt1, Pgc1α and Mcad) in C2C12 myotubes, and inhibited fatty acid synthesis in HepG2 cells. Furthermore, yhhu981 dose-dependently increased the phosphorylation of AMPK and ACC in both C2C12 myotubes and HepG2 cells. Compound C, an AMPK inhibitor, blocked fatty acid oxidation in yhhu981-treated C2C12 myotubes and fatty acid synthesis decrease in yhhu981-treated HepG2 cells. Acute administration of yhhu981 decreased the respiratory exchange ratio in ob/ob mice, whereas chronic treatment with yhhu981 ameliorated the lipid abnormalities and ectopic lipid deposition in skeletal muscle and liver of ob/ob mice. Conclusion: Yhhu981 is a potent compound that stimulates fatty acid oxidation, and exerts pleiotropic effects on lipid metabolism by activating AMPK. PMID:25732571

  10. Dietary fatty acids affect semen quality: a review.

    PubMed

    Esmaeili, V; Shahverdi, A H; Moghadasian, M H; Alizadeh, A R

    2015-05-01

    Mammalian spermatozoa are characterized by a high proportion of polyunsaturated fatty acids (PUFA) which play a crucial role in fertilization. This review focuses on analysis of sperm fatty acid profiles and the effects of omega-3, saturated and trans dietary and sperm fatty acids on sperm parameters. Two major points have been pivotal points of investigation in the field of sperm fatty acid profiles: first, the comparison between fatty acid profiles of fertile and infertile men and second, the effect of dietary fatty acids on sperm fatty acid profiles as well as sperm quality and quantity. Docosahexaenoic acid (DHA, C22:6n-3), and palmitic acid (C16:0) are the predominant PUFA and saturated fatty acids, respectively, in human sperm cells. Higher levels of DHA are concentrated on the sperm's head or tail varying among different species. However, the human sperm head contains a higher concentration of DHA. Dietary fatty acids influence on sperm fatty acid profiles and it seems that sperm fatty acid profiles are most sensitive to dietary omega-3 PUFA. Although improvements in sperm parameters are a response to omega-3 sources after more than 4 weeks of supplementation in the male diet, time-dependent and dose-dependent responses may explain the failure in some experiments. In human spermatozoa, elevated saturated or trans fatty acid concentration and a low DHA level is a concern. The regulations of the sperm fatty acid mean melting point as well as expression regulation of peroxisome proliferator-activated receptor gamma (PPARG) alongside with spermatozoon assembly, anti-apoptosis effects, eicosanoid formation, and hormone activity are the putative key factors that induce a response by inclusion of omega-3 PUFA. PMID:25951427

  11. Dietary fatty acids and minerals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accumulating evidence in animals and humans shows that dietary fatty acids influence the absorption and utilization of certain mineral elements. Fat intake exceeding 10% of energy intake reduces calcium uptake and use by the body, and this effect is more pronounced with saturated compared to unsatu...

  12. Bioluminescent determination of free fatty acids.

    PubMed

    Kather, H; Wieland, E

    1984-08-01

    A simple, highly specific, and sensitive bioluminescent method for determination of free fatty acids in unextracted plasma or serum has been developed. The method is based on the activation of free fatty acids by acyl-CoA synthetase (EC 6.2.1.3). The pyrophosphate formed is used to phosphorylate fructose 6-phosphate in a reaction catalyzed by the enzyme pyrophosphate-fructose-6-phosphate phosphotransferase (EC 4.1.2.13). The triosephosphates produced from fructose 1,6-bisphosphate by aldolase are oxidized by NAD in the presence of arsenate to 3-phosphoglycerate. The NADH is detected via the bacterial NADH-linked luciferase system. Excellent agreement has been obtained by comparison with accepted methods. In addition, for the determination of serum free fatty acids, the method is particularly applicable for following lipolysis of isolated adipocytes. PMID:6486422

  13. Fenofibrate, a PPARα agonist, protect proximal tubular cells from albumin-bound fatty acids induced apoptosis via the activation of NF-kB

    PubMed Central

    Zuo, Nan; Zheng, Xiaoyu; Liu, Hanzhe; Ma, Xiaoli

    2015-01-01

    Albumin-bound fatty acids is the main cause of renal damage, PPARα is responsible in the metabolism of fatty acids. Previous study found that PPARα played a protective role in fatty acids overload associated tubular injury. The aim of the present study is to investigate whether fenofibrate, a PPARα ligands, could contribute to the renoprotective action in fatty acids overload proximal tubule epithelial cells. We observed in HK-2 cells that fenofibrate significantly inhibited fatty acids bound albumin (FA-BSA) induced up-regulation of MCP-1 and IL-8. Treatment with fenofibrate attenuated renal oxidative stress induced by FA-BSA as evidenced by decreased MDA level, increased SOD activity and catalase, GPx-1 expression. FA-BSA induced apoptosis of HK-2 cells were also obviously prevented by fenofibrate. Furthermore, fenofibrate significantly increased the expression of PPARα mRNA and protein in FA-BSA treated cells. Finally, the activation of NF-kB induced by FA-BSA was markedly suppressed by fenofibrate. Taken together, our study describes a renoprotective role of fenofibrate in fatty acids associated tubular toxicity, and the transcriptional activation of PPARα and suppression of NF-kB were at least partially involved. PMID:26617775

  14. Fenofibrate, a PPARα agonist, protect proximal tubular cells from albumin-bound fatty acids induced apoptosis via the activation of NF-kB.

    PubMed

    Zuo, Nan; Zheng, Xiaoyu; Liu, Hanzhe; Ma, Xiaoli

    2015-01-01

    Albumin-bound fatty acids is the main cause of renal damage, PPARα is responsible in the metabolism of fatty acids. Previous study found that PPARα played a protective role in fatty acids overload associated tubular injury. The aim of the present study is to investigate whether fenofibrate, a PPARα ligands, could contribute to the renoprotective action in fatty acids overload proximal tubule epithelial cells. We observed in HK-2 cells that fenofibrate significantly inhibited fatty acids bound albumin (FA-BSA) induced up-regulation of MCP-1 and IL-8. Treatment with fenofibrate attenuated renal oxidative stress induced by FA-BSA as evidenced by decreased MDA level, increased SOD activity and catalase, GPx-1 expression. FA-BSA induced apoptosis of HK-2 cells were also obviously prevented by fenofibrate. Furthermore, fenofibrate significantly increased the expression of PPARα mRNA and protein in FA-BSA treated cells. Finally, the activation of NF-kB induced by FA-BSA was markedly suppressed by fenofibrate. Taken together, our study describes a renoprotective role of fenofibrate in fatty acids associated tubular toxicity, and the transcriptional activation of PPARα and suppression of NF-kB were at least partially involved. PMID:26617775

  15. p38 mitogen-activated protein kinase interacts with vinculin at focal adhesions during fatty acid-stimulated cell adhesion

    PubMed Central

    George, Margaret D.; Wine, Robert N.; Lackford, Brad; Kissling, Grace E.; Akiyama, Steven K.; Olden, Kenneth; Roberts, John D.

    2014-01-01

    Arachidonic acid stimulates cell adhesion by activating α2β1 integrins in a process that depends on protein kinases, including p38 mitogen activated protein kinase. Here, we describe the interaction of cytoskeletal components with key signaling molecules that contribute to spreading of, and morphological changes in, arachidonic acid-treated MDA-MB-435 human breast carcinoma cells. Arachidonic acid-treated cells showed increased attachment and spreading on collagen type IV as measured by electric cell-substrate impedance sensing. Fatty acid-treated cells displayed short cortical actin filaments associated with an increased number of β1 integrin-containing pseudopodia whereas untreated cells displayed elongated stress fibers and fewer clusters of β1 integrins. Confocal microscopy of arachidonic acid-treated cells showed that vinculin and phospho-p38 both appeared enriched in pseudopodia and at the tips of actin filaments, and fluorescence ratio imaging indicated the increase was specific for the phospho-(active) form of p38. Immunoprecipitates of phospho-p38 from extracts of arachidonic acid-treated cells contained vinculin, and GST-vinculin fusion proteins carrying the central region of vinculin bound phospho-p38, whereas fusion proteins expressing the terminal portions of vinculin did not. These data suggest that phospho-p38 associates with particular domains on critical focal adhesion proteins that are involved in tumor cell adhesion and spreading and that this association can be regulated by factors in the tumor microenvironment. PMID:24219282

  16. Enhancement of neutrophil-mediated killing of Plasmodium falciparum asexual blood forms by fatty acids: importance of fatty acid structure.

    PubMed Central

    Kumaratilake, L M; Ferrante, A; Robinson, B S; Jaeger, T; Poulos, A

    1997-01-01

    Effects of fatty acids on human neutrophil-mediated killing of Plasmodium falciparum asexual blood forms were investigated by using a quantitative radiometric assay. The results showed that the antiparasitic activity of neutrophils can be greatly increased (>threefold) by short-term treatment with fatty acids with 20 to 24 carbon atoms and at least three double bonds. In particular, the n-3 polyenoic fatty acids, eicosapentaenoic and docosahexaenoic acids, and the n-6 fatty acid, arachidonic acid, significantly enhanced neutrophil antiparasitic activity. This effect was >1.5-fold higher than that induced by an optical concentration of the known agonist cytokine tumor necrosis factor alpha (TNF-alpha). At suboptimal concentrations, the combination of arachidonic acid and TNF-alpha caused a synergistic increase in neutrophil-mediated parasite killing. The fatty acid-induced effect was independent of the availability of serum opsonins but dependent on the structure of the fatty acids. The length of the carbon chain, degree of unsaturation, and availability of a free carboxyl group were important determinants of fatty acid activity. The fatty acids which increased neutrophil-mediated killing primed the enhanced superoxide radical generation of neutrophils in response to P. falciparum as detected by chemiluminescence. Scavengers of oxygen radicals significantly reduced the fatty acid-enhanced parasite killing, but cyclooxygenase and lipoxygenase inhibitors had no effect. These findings have identified a new class of immunoenhancers that could be exploited to increase resistance against Plasmodium species. PMID:9317021

  17. AMP-Activated Protein Kinase Interacts with the Peroxisome Proliferator-Activated Receptor Delta to Induce Genes Affecting Fatty Acid Oxidation in Human Macrophages.

    PubMed

    Kemmerer, Marina; Finkernagel, Florian; Cavalcante, Marcela Frota; Abdalla, Dulcineia Saes Parra; Müller, Rolf; Brüne, Bernhard; Namgaladze, Dmitry

    2015-01-01

    AMP-activated protein kinase (AMPK) maintains energy homeostasis by suppressing cellular ATP-consuming processes and activating catabolic, ATP-producing pathways such as fatty acid oxidation (FAO). The transcription factor peroxisome proliferator-activated receptor δ (PPARδ) also affects fatty acid metabolism, stimulating the expression of genes involved in FAO. To question the interplay of AMPK and PPARδ in human macrophages we transduced primary human macrophages with lentiviral particles encoding for the constitutively active AMPKα1 catalytic subunit, followed by microarray expression analysis after treatment with the PPARδ agonist GW501516. Microarray analysis showed that co-activation of AMPK and PPARδ increased expression of FAO genes, which were validated by quantitative PCR. Induction of these FAO-associated genes was also observed upon infecting macrophages with an adenovirus coding for AMPKγ1 regulatory subunit carrying an activating R70Q mutation. The pharmacological AMPK activator A-769662 increased expression of several FAO genes in a PPARδ- and AMPK-dependent manner. Although GW501516 significantly increased FAO and reduced the triglyceride amount in very low density lipoproteins (VLDL)-loaded foam cells, AMPK activation failed to potentiate this effect, suggesting that increased expression of fatty acid catabolic genes alone may be not sufficient to prevent macrophage lipid overload. PMID:26098914

  18. AMP-Activated Protein Kinase Interacts with the Peroxisome Proliferator-Activated Receptor Delta to Induce Genes Affecting Fatty Acid Oxidation in Human Macrophages

    PubMed Central

    Kemmerer, Marina; Finkernagel, Florian; Cavalcante, Marcela Frota; Abdalla, Dulcineia Saes Parra; Müller, Rolf; Brüne, Bernhard; Namgaladze, Dmitry

    2015-01-01

    AMP-activated protein kinase (AMPK) maintains energy homeostasis by suppressing cellular ATP-consuming processes and activating catabolic, ATP-producing pathways such as fatty acid oxidation (FAO). The transcription factor peroxisome proliferator-activated receptor δ (PPARδ) also affects fatty acid metabolism, stimulating the expression of genes involved in FAO. To question the interplay of AMPK and PPARδ in human macrophages we transduced primary human macrophages with lentiviral particles encoding for the constitutively active AMPKα1 catalytic subunit, followed by microarray expression analysis after treatment with the PPARδ agonist GW501516. Microarray analysis showed that co-activation of AMPK and PPARδ increased expression of FAO genes, which were validated by quantitative PCR. Induction of these FAO-associated genes was also observed upon infecting macrophages with an adenovirus coding for AMPKγ1 regulatory subunit carrying an activating R70Q mutation. The pharmacological AMPK activator A-769662 increased expression of several FAO genes in a PPARδ- and AMPK-dependent manner. Although GW501516 significantly increased FAO and reduced the triglyceride amount in very low density lipoproteins (VLDL)-loaded foam cells, AMPK activation failed to potentiate this effect, suggesting that increased expression of fatty acid catabolic genes alone may be not sufficient to prevent macrophage lipid overload. PMID:26098914

  19. Mutation of Arg-115 of human class III alcohol dehydrogenase: a binding site required for formaldehyde dehydrogenase activity and fatty acid activation.

    PubMed Central

    Engeland, K; Höög, J O; Holmquist, B; Estonius, M; Jörnvall, H; Vallee, B L

    1993-01-01

    The origin of the fatty acid activation and formaldehyde dehydrogenase activity that distinguishes human class III alcohol dehydrogenase (alcohol:NAD+ oxidoreductase, EC 1.1.1.1) from all other alcohol dehydrogenases has been examined by site-directed mutagenesis of its Arg-115 residue. The Ala- and Asp-115 mutant proteins were expressed in Escherichia coli and purified by affinity chromatography and ion-exchange HPLC. The activities of the recombinant native and mutant enzymes toward ethanol are essentially identical, but mutagenesis greatly decreases the kcat/Km values for glutathione-dependent formaldehyde oxidation. The catalytic efficiency for the Asp variant is < 0.1% that of the unmutated enzyme, due to both a higher Km and a lower kcat value. As with the native enzyme, neither mutant can oxidize methanol, be saturated by ethanol, or be inhibited by 4-methylpyrazole; i.e., they retain these class III characteristics. In contrast, however, their activation by fatty acids, another characteristic unique to class III alcohol dehydrogenase, is markedly attenuated. The Ala mutant is activated only slightly, but the Asp mutant is not activated at all. The results strongly indicate that Arg-115 in class III alcohol dehydrogenase is a component of the binding site for activating fatty acids and is critical for the binding of S-hydroxymethylglutathione in glutathione-dependent formaldehyde dehydrogenase activity. PMID:8460164

  20. Synthesis, gp120 binding and anti-HIV activity of fatty acid esters of 1,1-linked disaccharides

    PubMed Central

    Bachan, Stewart; Fantini, Jacques; Joshi, AnJali; Garg, Himanshu; Mootoo, David R.

    2011-01-01

    Inspired by the anti-human immunodeficiency virus (HIV) activity of analogues of β-galactosylceramide (GalCer), a set of mono- and di- saccharide fatty acid esters were designed as GalCer mimetics and their binding to the V3 loop peptide of HIV-1 and anti-HIV activity evaluated. 1,1-linked Gal-Man and Glu-Man disaccharides with an ester on the Man subunit bound the V3 loop peptide and inhibited HIV infectivity in single round infection assays with the TZM-bl cell line. IC50's were in the 50 μM range with no toxicity to the cells at concentrations up to 200 μM. These compounds appear to inhibit virus entry at early steps in viral infection since they were inactive if added post viral entry. Although these compounds were found to bind to the V3 loop peptide of gp120, it is not clear that this interaction is responsible for their anti-HIV activity because the relative binding affinity of closely related analogues did not correlate with their antiviral behavior. The low cytotoxicity of these 1,1-linked disaccharide fatty acid esters, combined with the easy accessibility to structurally diverse analogues make these molecules attractive leads for new topical anti-viral agents. PMID:21783371

  1. Plant fatty acid hydroxylase

    DOEpatents

    Somerville, Chris; van de Loo, Frank

    2000-01-01

    The present invention relates to the identification of nucleic acid sequences and constructs, and methods related thereto, and the use of these sequences and constructs to produce genetically modified plants for the purpose of altering the composition of plant oils, waxes and related compounds.

  2. The condensing activities of the Mycobacterium tuberculosis type II fatty acid synthase are differentially regulated by phosphorylation.

    PubMed

    Molle, Virginie; Brown, Alistair K; Besra, Gurdyal S; Cozzone, Alain J; Kremer, Laurent

    2006-10-01

    Phosphorylation of proteins by Ser/Thr protein kinases (STPKs) has recently become of major physiological importance because of its possible involvement in virulence of bacterial pathogens. Although Mycobacterium tuberculosis has eleven STPKs, the nature and function of the substrates of these enzymes remain largely unknown. In this work, we have identified for the first time STPK substrates in M. tuberculosis forming part of the type II fatty acid synthase (FAS-II) system involved in mycolic acid biosynthesis: the malonyl-CoA::AcpM transacylase mtFabD, and the beta-ketoacyl AcpM synthases KasA and KasB. All three enzymes were phosphorylated in vitro by different kinases, suggesting a complex network of interactions between STPKs and these substrates. In addition, both KasA and KasB were efficiently phosphorylated in M. bovis BCG each at different sites and could be dephosphorylated by the M. tuberculosis Ser/Thr phosphatase PstP. Enzymatic studies revealed that, whereas phosphorylation decreases the activity of KasA in the elongation process of long chain fatty acids synthesis, this modification enhances that of KasB. Such a differential effect of phosphorylation may represent an unusual mechanism of FAS-II system regulation, allowing pathogenic mycobacteria to produce full-length mycolates, which are required for adaptation and intracellular survival in macrophages. PMID:16873379

  3. Fatty Acids Composition and Antibacterial Activity of Aristolochia longa L. and Bryonia dioïca Jacq. Growing Wild in Tunisia.

    PubMed

    Dhouioui, Mouna; Boulila, Abdennacer; Jemli, Maroua; Schiets, Fréderic; Casabianca, Hervé; Zina, Mongia Saïd

    2016-08-01

    The composition of the fatty acids of the roots and aerial parts of Aritolochia longa (Aristolacheae) and Bryonia dioïca (Cucurbutaceae) was analyzed by gas chromatography (GC-FID) and gas chromatography-mass spectrometry (GC-MS). The oils extracted from the aerial parts of both species were rich in polyunsaturated fatty acids with the essential linolenic and linoleic acids being the most prominent compounds. Oleic and linoleic acids were the majors fatty acids in the roots of both species. Whatever the plant part analyzed and the species, the saturated fatty acids were predominantly composed of palmitic and stearic acids. The antibacterial activity, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the lipid extracts were determined against a panel of five bacterial strains. The results showed that the sensitivity to the lipid extracts was different for the test bacterial strains, and the susceptibility of gram positive bacteria was found to be greater than gram negative bacteria. The antibacterial activity of the root lipid extracts was particularly important against Enterococcus feacium (CMI value of 125 µg/mL; CMB values > 250 µg/mL) and Streptococcus agalactiae (CMI value of 125 µg/mL; CMB values 250 µg/mL for A. longa roots). These results indicate that A. longa and B. dioïca could be considered as good sources of essential fatty acids which can act as natural antibacterial agents. PMID:27430383

  4. Expression and characterization of an epoxide hydrolase from Anopheles gambiae with high activity on epoxy fatty acids

    PubMed Central

    Xu, Jiawen; Morisseau, Christophe; Hammock, Bruce D.

    2014-01-01

    In insects, epoxide hydrolases (EHs) play critical roles in the metabolism of xenobiotic epoxides from the food resources and in the regulation of endogenous chemical mediators, such as juvenile hormones. Using the baculovirus expression system, we expressed and characterized an epoxide hydrolase from Anopheles gambiae (AgEH) that is distinct in evolutionary history from insect juvenile hormone epoxide hydrolases (JHEHs). We partially purified the enzyme by ion exchange chromatography and isoelectric focusing. The experimentally determined molecular weight and pI were estimated to be 35kD and 6.3 respectively, different than the theoretical ones. The AgEH had the greatest activity on long chain epoxy fatty acids such as 14,15-epoxyeicosatrienoic acids (14,15-EET) and 9,10-epoxy-12Z-octadecenoic acids (9,10-EpOME or leukotoxin) among the substrates evaluated. Juvenile hormone III, a terpenoid insect growth regulator, was the next best substrate tested. The AgEH showed kinetics comparable to the mammalian soluble epoxide hydrolases, and the activity could be inhibited by AUDA [12-(3-adamantan-1-yl-ureido) dodecanoic acid], a urea-based inhibitor designed to inhibit the mammalian soluble epoxide hydrolases. The rabbit serum generated against the soluble epoxide hydrolase of Mus musculus can both cross-react with natural and denatured forms of the AgEH, suggesting immunologically they are similar. The study suggests there are mammalian sEH homologs in insects, and epoxy fatty acids may be important chemical mediators in insects. PMID:25173592

  5. Regulation of Thrombospondin-1 expression in alternatively activated macrophages and adipocytes: role of cellular crosstalk and omega-3 fatty acids

    PubMed Central

    Finlin, Brian S.; Zhu, Beibei; Starnes, Catherine P.; McGehee, Robert E.; Peterson, Charlotte A.; Kern, Philip A.

    2013-01-01

    Thrombospondin-1 (TSP-1) expression in human adipose positively correlates with body mass index and may contribute to adipose dysfunction by activating TGF-β and/or inhibiting angiogenesis. Our objective was to determine how TSP-1 is regulated in adipocytes and polarized macrophages using a coculture system and to determine whether fatty acids, including the ω-3 fatty acid DHA, regulate TSP-1 expression. Coculture of M1, M2a, or M2c macrophages with adipocytes induced TSP-1 gene expression in adipocytes (from 2.4 to 4.2-fold, P<0.05), and adipocyte coculture induced TSP-1 gene expression in M1 and M2c macrophages (M1:8.6-fold; M2c 26-fold, P<0.05). TSP-1 protein levels in the shared media of adipocytes and M2c cells was also strongly induced by coculture (>10 fold, P<0.05). DHA treatment during the coculture of adipocytes and M2c macrophages potently inhibited theM2c macrophage TSP-1 mRNA level (97% inhibition, P<0.05). Adipocyte coculture induced IL-10 expression in M2c macrophages (10.1-fold, P<0.05), and this increase in IL-10 mRNA expression was almost completely blocked with DHA treatment (96% inhibition, P<0.05); thus, IL-10 expression closely paralleled TSP-1 expression. Since IL-10 has been shown to regulate TSP-1 in other cell types, we reduced IL-10 expression with siRNA in the M2c cells and found that this caused TSP-1 to be reduced in response to adipocyte coculture by 60% (P<0.05), suggesting that IL-10 regulates TSP-1 expression in M2c macrophages. These results suggest that supplementation with dietary ω-3 fatty acids could potentially be beneficial to adipose tissue in obesity by reducing TSP-1 and fibrosis. PMID:23528972

  6. Omega-3 fatty acids protect the brain against ischemic injury by activating Nrf2 and upregulating heme oxygenase 1.

    PubMed

    Zhang, Meijuan; Wang, Suping; Mao, Leilei; Leak, Rehana K; Shi, Yejie; Zhang, Wenting; Hu, Xiaoming; Sun, Baoliang; Cao, Guodong; Gao, Yanqin; Xu, Yun; Chen, Jun; Zhang, Feng

    2014-01-29

    Ischemic stroke is a debilitating clinical disorder that affects millions of people, yet lacks effective neuroprotective treatments. Fish oil is known to exert beneficial effects against cerebral ischemia. However, the underlying protective mechanisms are not fully understood. The present study tests the hypothesis that omega-3 polyunsaturated fatty acids (n-3 PUFAs) attenuate ischemic neuronal injury by activating nuclear factor E2-related factor 2 (Nrf2) and upregulating heme oxygenase-1 (HO-1) in both in vitro and in vivo models. We observed that pretreatment of rat primary neurons with docosahexaenoic acid (DHA) significantly reduced neuronal death following oxygen-glucose deprivation. This protection was associated with increased Nrf2 activation and HO-1 upregulation. Inhibition of HO-1 activity with tin protoporphyrin IX attenuated the protective effects of DHA. Further studies showed that 4-hydroxy-2E-hexenal (4-HHE), an end-product of peroxidation of n-3 PUFAs, was a more potent Nrf2 inducer than 4-hydroxy-2E-nonenal derived from n-6 PUFAs. In an in vivo setting, transgenic mice overexpressing fatty acid metabolism-1, an enzyme that converts n-6 PUFAs to n-3 PUFAs, were remarkably resistant to focal cerebral ischemia compared with their wild-type littermates. Regular mice fed with a fish oil-enhanced diet also demonstrated significant resistance to ischemia compared with mice fed with a regular diet. As expected, the protection was associated with HO-1 upregulation, Nrf2 activation, and 4-HHE generation. Together, our data demonstrate that n-3 PUFAs are highly effective in protecting the brain, and that the protective mechanisms involve Nrf2 activation and HO-1 upregulation by 4-HHE. Further investigation of n-3 PUFA neuroprotective mechanisms may accelerate the development of stroke therapies. PMID:24478369

  7. n-3 Fatty acids preserve insulin sensitivity in vivo in a peroxisome proliferator-activated receptor-alpha-dependent manner.

    PubMed

    Neschen, Susanne; Morino, Katsutaro; Dong, Jianying; Wang-Fischer, Yanlin; Cline, Gary W; Romanelli, Anthony J; Rossbacher, Jörg C; Moore, Irene K; Regittnig, Werner; Munoz, David S; Kim, Jung H; Shulman, Gerald I

    2007-04-01

    Recent studies have suggested that n-3 fatty acids, abundant in fish oil, protect against high-fat diet-induced insulin resistance through peroxisome proliferator-activated receptor (PPAR)-alpha activation and a subsequent decrease in intracellular lipid abundance. To directly test this hypothesis, we fed PPAR-alpha null and wild-type mice for 2 weeks with isocaloric high-fat diets containing 27% fat from either safflower oil or safflower oil with an 8% fish oil replacement (fish oil diet). In both genotypes the safflower oil diet blunted insulin-mediated suppression of hepatic glucose production (P < 0.02 vs. genotype control) and PEPCK gene expression. Feeding wild-type mice a fish oil diet restored hepatic insulin sensitivity (hepatic glucose production [HGP], P < 0.002 vs. wild-type mice fed safflower oil), whereas in contrast, in PPAR-alpha null mice failed to counteract hepatic insulin resistance (HGP, P = NS vs. PPAR-alpha null safflower oil-fed mice). In PPAR-alpha null mice fed the fish oil diet, safflower oil plus fish oil, hepatic insulin resistance was dissociated from increases in hepatic triacylglycerol and acyl-CoA but accompanied by a more than threefold increase in hepatic diacylglycerol concentration (P < 0.0001 vs. genotype control). These data support the hypothesis that n-3 fatty acids protect from high-fat diet-induced hepatic insulin resistance in a PPAR-alpha-and diacylglycerol-dependent manner. PMID:17251275

  8. Intestinal acyl-CoA synthetase 5: activation of long chain fatty acids and behind.

    PubMed

    Klaus, Christina; Jeon, Min Kyung; Kaemmerer, Elke; Gassler, Nikolaus

    2013-11-14

    The intestinal mucosa is characterized by a high complexity in terms of structure and functions and allows for a controlled demarcation towards the gut lumen. On the one hand it is responsible for pulping and selective absorption of alimentary substances ensuring the immunological tolerance, on the other hand it prevents the penetration of micro-organisms as well as bacterial outgrowth. The continuous regeneration of surface epithelia along the crypt-villus-axis in the small intestine is crucial to assuring these various functions. The core phenomena of intestinal epithelia regeneration comprise cell proliferation, migration, differentiation, and apoptosis. These partly contrarily oriented processes are molecularly balanced through numerous interacting signaling pathways like Wnt/β-catenin, Notch and Hedgehog, and regulated by various modifying factors. One of these modifiers is acyl-CoA synthetase 5 (ACSL5). It plays a key role in de novo lipid synthesis, fatty acid degradation and membrane modifications, and regulates several intestinal processes, primarily through different variants of protein lipidation, e.g., palmitoylation. ACSL5 was shown to interact with proapoptotic molecules, and besides seems to inhibit proliferation along the crypt-villus-axis. Because of its proapoptotic and antiproliferative characteristics it could be of significant relevance for intestinal homeostasis, cellular disorder and tumor development. PMID:24259967

  9. Triiodothyronine activates lactate oxidation without impairing fatty acid oxidation and improves weaning from extracorporeal membrane oxygenation

    SciTech Connect

    Kajimoto, Masaki; Ledee, Dolena R.; Xu, Chun; Kajimoto, Hidemi; Isern, Nancy G.; Portman, Michael A.

    2014-01-01

    Background: Extracorporeal membrane oxygenation (ECMO) provides a rescue for children with severe cardiac failure. We previously showed that triiodothyronine (T3) improves cardiac function by modulating pyruvate oxidation during weaning. This study was focused on fatty acid (FA) metabolism modulated by T3 for weaning from ECMO after cardiac injury. Methods: Nineteen immature piglets (9.1-15.3 kg) were separated into 3 groups with ECMO (6.5 hours) and wean: normal circulation (Group-C);transient coronary occlusion (10 minutes) followed by ECMO (Group-IR); and IR with T3 supplementation (Group-IR-T3). 13-Carbon labeled lactate, medium-chain and long-chain FAs were infused as oxidative substrates. Substrate fractional contribution to the citric acid cycle (FC) was analyzed by 13-Carbon nuclear magnetic resonance. Results: ECMO depressed circulating T3 levels to 40% baseline at 4 hours and were restored in Group-IR-T3. Group-IR decreased cardiac power, which was not fully restorable and 2 pigs were lost because of weaning failure. Group-IR also depressed FC-lactate, while the excellent contractile function and energy efficiency in Group-IR-T3 occurred along with a marked FC-lactate increase and [ATP]/[ADP] without either decreasing FC-FAs or elevating myocardial oxygen consumption over Group-C or -IR. Conclusions: T3 releases inhibition of lactate oxidation following ischemia-reperfusion injury without impairing FA oxidation. These findings indicate that T3 depression during ECMO is maladaptive, and that restoring levels improves metabolic flux and enhances contractile function during weaning.

  10. Nitrated fatty acids: Synthesis and measurement

    PubMed Central

    Woodcock, Steven R.; Bonacci, Gustavo; Gelhaus, Stacy L.; Schopfer, Francisco J.

    2012-01-01

    Nitrated fatty acids are the product of nitrogen dioxide reaction with unsaturated fatty acids. The discovery of peroxynitrite and peroxidase-induced nitration of biomolecules led to the initial reports of endogenous nitrated fatty acids. These species increase during ischemia reperfusion, but concentrations are often at or near the limits of detection. Here, we describe multiple methods for nitrated fatty acid synthesis, sample extraction from complex biological matrices, and a rigorous method of qualitative and quantitative detection of nitrated fatty acids by LC-MS. In addition, optimized instrument conditions and caveats regarding data interpretation are discussed. PMID:23200809

  11. Effects of waste activated sludge and surfactant addition on primary sludge hydrolysis and short-chain fatty acids accumulation.

    PubMed

    Ji, Zhouying; Chen, Guanlan; Chen, Yinguang

    2010-05-01

    This paper focused on the effects of waste activated sludge (WAS) and surfactant sodium dodecylbenzene sulfonate (SDBS) addition on primary sludge (PS) hydrolysis and short-chain fatty acids (SCFA) accumulation in fermentation. The results showed that sludge hydrolysis, SCFA accumulation, NH(4)(+)-N and PO(4)(3-)-P release, and volatile suspended solids (VSS) reduction were increased by WAS addition to PS, which were further increased by the addition of SDBS to the mixture of PS and WAS. Acetic, propionic and valeric acids were the top three SCFA in all experiments. Also, the fermentation liquids of PS, PS+WAS, and PS+WAS+SDBS were added, respectively, to municipal wastewater to examine their effects on biological municipal wastewater treatment, and the enhancement of both wastewater nitrogen and phosphorus removals was observed compared with no fermentation liquid addition. PMID:20096564

  12. Activation of peroxisome proliferator-activated receptor-{alpha} (PPAR{alpha}) suppresses postprandial lipidemia through fatty acid oxidation in enterocytes

    SciTech Connect

    Kimura, Rino; Takahashi, Nobuyuki; Murota, Kaeko; Yamada, Yuko; Niiya, Saori; Kanzaki, Noriyuki; Murakami, Yoko; Moriyama, Tatsuya; Goto, Tsuyoshi; Kawada, Teruo

    2011-06-24

    Highlights: {yields} PPAR{alpha} activation increased mRNA expression levels of fatty acid oxidation-related genes in human intestinal epithelial Caco-2 cells. {yields} PPAR{alpha} activation also increased oxygen consumption rate and CO{sub 2} production and decreased secretion of triglyceride and ApoB from Caco-2 cells. {yields} Orally administration of bezafibrate increased mRNA expression levels of fatty acid oxidation-related genes and CO{sub 2} production in small intestinal epithelial cells. {yields} Treatment with bezafibrate decreased postprandial serum concentration of triglyceride after oral injection of olive oil in mice. {yields} It suggested that intestinal lipid metabolism regulated by PPAR{alpha} activation suppresses postprandial lipidemia. -- Abstract: Activation of peroxisome proliferator-activated receptor (PPAR)-{alpha} which regulates lipid metabolism in peripheral tissues such as the liver and skeletal muscle, decreases circulating lipid levels, thus improving hyperlipidemia under fasting conditions. Recently, postprandial serum lipid levels have been found to correlate more closely to cardiovascular diseases than fasting levels, although fasting hyperlipidemia is considered an important risk of cardiovascular diseases. However, the effect of PPAR{alpha} activation on postprandial lipidemia has not been clarified. In this study, we examined the effects of PPAR{alpha} activation in enterocytes on lipid secretion and postprandial lipidemia. In Caco-2 enterocytes, bezafibrate, a potent PPAR{alpha} agonist, increased mRNA expression levels of fatty acid oxidation-related genes, such as acyl-CoA oxidase, carnitine palmitoyl transferase, and acyl-CoA synthase, and oxygen consumption rate (OCR) and suppressed secretion levels of both triglycerides and apolipoprotein B into the basolateral side. In vivo experiments revealed that feeding high-fat-diet containing bezafibrate increased mRNA expression levels of fatty acid oxidation-related genes and

  13. New radiohalogenated alkenyl tellurium fatty acids

    SciTech Connect

    Srivastava, P.C.; Knapp, F.F. Jr.; Kabalka, G.W.

    1987-01-01

    Radiolabeled long-chain fatty acids have diagnostic value as radiopharmaceutical tools in myocardial imaging. Some applications of these fatty acids are limited due to their natural metabolic degradation in vivo with subsequent washout of the radioactivity from the myocardium. The identification of structural features that will increase the myocardial residence time without decreasing the heart uptake of long-chain fatty acids is of interest. Fatty acids containing the tellurium heteroatom were the first modified fatty acids developed that show unique prolonged myocardial retention and low blood levels. Our detailed studies with radioiodinated vinyliodide substituted tellurium fatty acids demonstrate that heart uptake is a function of the tellurium position. New techniques of tellurium and organoborane chemistry have been developed for the synthesis of a variety of radioiodinated iodoalkenyl tellurium fatty acids. 9 refs., 3 figs., 2 tabs.

  14. Effect of fatty acids on energy coupling processes in mitochondria.

    PubMed

    Wojtczak, L; Schönfeld, P

    1993-11-01

    Long-chain fatty acids are natural uncouplers of oxidative phosphorylation in mitochondria. The protonophoric mechanism of this action is due to transbilayer movement of undissociated fatty acid in one direction and the passage of its anion in the opposite direction. The transfer of the dissociated form of fatty acid can be, at least in some kinds of mitochondrion, facilitated by adenine nucleotide translocase. Apart from dissipating the electrochemical proton gradient, long-chain fatty acids decrease the activity of the respiratory chain by mechanism(s) not fully understood. In intact cells and tissues fatty acids operate mostly as excellent respiratory substrates, providing electrons to the respiratory chain. This function masks their potential uncoupling effect which becomes apparent only under special physiological or pathological conditions characterized by unusual fatty acid accumulation. Short- and medium-chain fatty acids do not have protonophoric properties. Nevertheless, they contribute to energy dissipation because of slow intramitochondrial hydrolysis of their activation products, acyl-AMP and acyl-CoA. Long-chain fatty acids increase permeability of mitochondrial membranes to alkali metal cations. This is due to their ionophoric mechanism of action. Regulatory function of fatty acids with respect to specific cation channels has been postulated for the plasma membrane of muscle cells, but not demonstrated in mitochondria. Under cold stress, cold acclimation and arousal from hibernation the uncoupling effect of fatty acids may contribute to increased thermogenesis, especially in the muscle tissue. In brown adipose tissue, the special thermogenic organ of mammals, long-chain fatty acids promote operation of the unique natural uncoupling protein, thermogenin. As anionic amphiphiles, long-chain fatty acids increase the negative surface charge of biomembranes, thus interfering in their enzymic and transporting functions. PMID:8399375

  15. Immobilized MAS1 lipase showed high esterification activity in the production of triacylglycerols with n-3 polyunsaturated fatty acids.

    PubMed

    Wang, Xiumei; Li, Daoming; Qu, Man; Durrani, Rabia; Yang, Bo; Wang, Yonghua

    2017-02-01

    Immobilization of lipase MAS1 from marine Streptomyces sp. strain W007 and its application in catalyzing esterification of n-3 polyunsaturated fatty acids (PUFA) with glycerol were investigated. The resin XAD1180 was selected as a suitable support for the immobilization of lipase MAS1, and its absorption ability was 75mg/g (lipase/resin ratio) with initial buffer pH value of 8.0. The thermal stability of immobilized MAS1 was improved significantly compared with that of the free lipase. Immobilized MAS1 had no regiospecificity in the hydrolysis of triolein. The highest esterification degree (99.31%) and TAG content (92.26%) by immobilized MAS1-catalyzed esterification were achieved under the optimized conditions, which were significantly better than those (82.16% and 47.26%, respectively) by Novozym 435. More than 92% n-3 PUFA was incorporated into TAG that had similar fatty acids composition to the substrate (n-3 PUFA). The immobilized MAS1 exhibited 50% of its initial activity after being used for five cycles. PMID:27596418

  16. Molten fatty acid based microemulsions.

    PubMed

    Noirjean, Cecile; Testard, Fabienne; Dejugnat, Christophe; Jestin, Jacques; Carriere, David

    2016-06-21

    We show that ternary mixtures of water (polar phase), myristic acid (MA, apolar phase) and cetyltrimethylammonium bromide (CTAB, cationic surfactant) studied above the melting point of myristic acid allow the preparation of microemulsions without adding a salt or a co-surfactant. The combination of SANS, SAXS/WAXS, DSC, and phase diagram determination allows a complete characterization of the structures and interactions between components in the molten fatty acid based microemulsions. For the different structures characterized (microemulsion, lamellar or hexagonal phases), a similar thermal behaviour is observed for all ternary MA/CTAB/water monophasic samples and for binary MA/CTAB mixtures without water: crystalline myristic acid melts at 52 °C, and a thermal transition at 70 °C is assigned to the breaking of hydrogen bounds inside the mixed myristic acid/CTAB complex (being the surfactant film in the ternary system). Water determines the film curvature, hence the structures observed at high temperature, but does not influence the thermal behaviour of the ternary system. Myristic acid is partitioned in two "species" that behave independently: pure myristic acid and myristic acid associated with CTAB to form an equimolar complex that plays the role of the surfactant film. We therefore show that myristic acid plays the role of a solvent (oil) and a co-surfactant allowing the fine tuning of the structure of oil and water mixtures. This solvosurfactant behaviour of long chain fatty acid opens the way for new formulations with a complex structure without the addition of any extra compound. PMID:27241163

  17. Liquid fructose downregulates Sirt1 expression and activity and impairs the oxidation of fatty acids in rat and human liver cells.

    PubMed

    Rebollo, Alba; Roglans, Núria; Baena, Miguel; Sánchez, Rosa M; Merlos, Manel; Alegret, Marta; Laguna, Juan C

    2014-04-01

    Fructose ingestion is associated with the production of hepatic steatosis and hypertriglyceridemia. For fructose to attain these effects in rats, simultaneous induction of fatty acid synthesis and inhibition of fatty acid oxidation is required. We aimed to determine the mechanism involved in the inhibition of fatty acid oxidation by fructose and whether this effect occurs also in human liver cells. Female rats were supplemented or not with liquid fructose (10% w/v) for 7 or 14 days; rat (FaO) and human (HepG2) hepatoma cells, and human hepatocytes were incubated with fructose 25mM for 24h. The expression and activity of the enzymes and transcription factors relating to fatty acid β-oxidation were evaluated. Fructose inhibited the activity of fatty acid β-oxidation only in livers of 14-day fructose-supplemented rats, as well as the expression and activity of peroxisome proliferator activated receptor α (PPARα). Similar results were observed in FaO and HepG2 cells and human hepatocytes. PPARα downregulation was not due to an osmotic effect or to an increase in protein-phosphatase 2A activity caused by fructose. Rather, it was related to increased content in liver of inactive and acetylated peroxisome proliferator activated receptor gamma coactivator 1α, due to a reduction in sirtuin 1 expression and activity. In conclusion, fructose inhibits liver fatty acid oxidation by reducing PPARα expression and activity, both in rat and human liver cells, by a mechanism involving sirtuin 1 down-regulation. PMID:24434080

  18. Fatty acid uptake in normal human myocardium

    SciTech Connect

    Vyska, K.; Meyer, W.; Stremmel, W.; Notohamiprodjo, G.; Minami, K.; Machulla, H.J.; Gleichmann, U.; Meyer, H.; Koerfer, R. )

    1991-09-01

    Fatty acid binding protein has been found in rat aortic endothelial cell membrane. It has been identified to be a 40-kDa protein that corresponds to a 40-kDa fatty acid binding protein with high affinity for a variety of long chain fatty acids isolated from rat heart myocytes. It is proposed that this endothelial membrane fatty acid binding protein might mediate the myocardial uptake of fatty acids. For evaluation of this hypothesis in vivo, influx kinetics of tracer-labeled fatty acids was examined in 15 normal subjects by scintigraphic techniques. Variation of the plasma fatty acid concentration and plasma perfusion rate has been achieved by modulation of nutrition state and exercise conditions. The clinical results suggest that the myocardial fatty acid influx rate is saturable by increasing fatty acid plasma concentration as well as by increasing plasma flow. For analysis of these data, functional relations describing fatty acid transport from plasma into myocardial tissue in the presence and absence of an unstirred layer were developed. The fitting of these relations to experimental data indicate that the free fatty acid influx into myocardial tissue reveals the criteria of a reaction on a capillary surface in the vicinity of flowing plasma but not of a reaction in extravascular space or in an unstirred layer and that the fatty acid influx into normal myocardium is a saturable process that is characterized by the quantity corresponding to the Michaelis-Menten constant, Km, and the maximal velocity, Vmax, 0.24 {plus minus} 0.024 mumol/g and 0.37 {plus minus} 0.013 mumol/g(g.min), respectively. These data are compatible with a nondiffusional uptake process mediated by the initial interaction of fatty acids with the 40-kDa membrane fatty acid binding protein of cardiac endothelial cells.

  19. Inflammation increases NOTCH1 activity via MMP9 and is counteracted by Eicosapentaenoic Acid-free fatty acid in colon cancer cells

    PubMed Central

    Fazio, Chiara; Piazzi, Giulia; Vitaglione, Paola; Fogliano, Vincenzo; Munarini, Alessandra; Prossomariti, Anna; Milazzo, Maddalena; D’Angelo, Leonarda; Napolitano, Manuela; Chieco, Pasquale; Belluzzi, Andrea; Bazzoli, Franco; Ricciardiello, Luigi

    2016-01-01

    Aberrant NOTCH1 signalling is critically involved in multiple models of colorectal cancer (CRC) and a prominent role of NOTCH1 activity during inflammation has emerged. Epithelial to Mesenchymal Transition (EMT), a crucial event promoting malignant transformation, is regulated by inflammation and Metalloproteinase-9 (MMP9) plays an important role in this process. Eicosapentaenoic Acid (EPA), an omega-3 polyunsaturated fatty acid, was shown to prevent colonic tumors in different settings. We recently found that an extra-pure formulation of EPA as Free Fatty Acid (EPA-FFA) protects from colon cancer development in a mouse model of Colitis-Associated Cancer (CAC) through modulation of NOTCH1 signalling. In this study, we exposed colon cancer cells to an inflammatory stimulus represented by a cytokine-enriched Conditioned Medium (CM), obtained from THP1-differentiated macrophages. We found, for the first time, that CM strongly up-regulated NOTCH1 signalling and EMT markers, leading to increased invasiveness. Importantly, NOTCH1 signalling was dependent on MMP9 activity, upon CM exposure. We show that a non-cytotoxic pre-treatment with EPA-FFA antagonizes the effect of inflammation on NOTCH1 signalling, with reduction of MMP9 activity and invasiveness. In conclusion, our data suggest that, in CRC cells, inflammation induces NOTCH1 activity through MMP9 up-regulation and that this mechanism can be counteracted by EPA-FFA. PMID:26864323

  20. Fatty acid biosynthesis in pea root plastids

    SciTech Connect

    Stahl, R.J.; Sparace, S.A. )

    1989-04-01

    Fatty acid biosynthesis from (1-{sup 14}C)acetate was optimized in plastids isolated from primary root tips of 7-day-old germinating pea seeds. Fatty acid synthesis was maximum at approximately 80 nmoles/hr/mg protein in the presence of 200 {mu}M acetate, 0.5 mM each of NADH, NADPH and CoA, 6 mM each of ATP and MgCl{sub 2}, 1 mM each of the MnCl{sub 2} and glycerol-3-phosphate, 15 mM KHCO{sub 3}, and 0.1M Bis-tris-propane, pH 8.0 incubated at 35C. At the standard incubation temperature of 25C, fatty acid synthesis was linear from up to 6 hours with 80 to 100 {mu}g/mL plastid protein. ATP and CoA were absolute requirements, whereas KHCO{sub 3}, divalent cations and reduced nucleotides all improved activity by 80 to 85%. Mg{sup 2+} and NADH were the preferred cation and nucleotide, respectively. Dithiothreitol and detergents were generally inhibitory. The radioactive products of fatty acid biosynthesis were approximately 33% 16:0, 10% 18:0 and 56% 18:1 and generally did not vary with increasing concentrations of each cofactor.

  1. Perfluorooctanoic acid exposure alters polyunsaturated fatty acid composition, induces oxidative stress and activates the AKT/AMPK pathway in mouse epididymis.

    PubMed

    Lu, Yin; Pan, Yitao; Sheng, Nan; Zhao, Allan Z; Dai, Jiayin

    2016-09-01

    Perfluorooctanoic acid (PFOA) is a degradation-resistant compound with a carbon-fluorine bond. Although PFOA emissions have been reduced since 2000, it remains persistent in the environment. Several studies on laboratory animals indicate that PFOA exposure can impact male fertility. Here, adult male mice received either PFOA (1.25, 5 or 20 mg/kg/d) or an equal volume of water for 28 d consecutively. PFOA accumulated in the epididymis in a dose-dependent manner and resulted in reduced epididymis weight, lower levels of triglycerides (TG), cholesterol (CHO), and free fatty acids (FFA), and activated AKT/AMPK signaling in the epididymis. Altered polyunsaturated fatty acid (PUFA) compositions, such as a higher arachidonic acid:linoleic acid (AA:LA) ratio, concomitant with excessive oxidative stress, as demonstrated by increased malonaldehyde (MDA) and decreased glutathione peroxidase (GSH-Px) in the epididymis, were observed in epididymis tissue following treatment with PFOA. These results indicate that the epididymis is a potential target of PFOA. Oxidative stress and PUFA alteration might help explain the sperm injury and male reproductive dysfunction induced by PFOA exposure. PMID:27262104

  2. Fatty acids and hypolipidemic drugs regulate peroxisome proliferator-activated receptors α- and γ-mediated gene expression via liver fatty acid binding protein: A signaling path to the nucleus

    PubMed Central

    Wolfrum, Christian; Borrmann, Carola M.; Börchers, Torsten; Spener, Friedrich

    2001-01-01

    Peroxisome proliferator-activated receptor α (PPARα) is a key regulator of lipid homeostasis in hepatocytes and target for fatty acids and hypolipidemic drugs. How these signaling molecules reach the nuclear receptor is not known; however, similarities in ligand specificity suggest the liver fatty acid binding protein (L-FABP) as a possible candidate. In localization studies using laser-scanning microscopy, we show that L-FABP and PPARα colocalize in the nucleus of mouse primary hepatocytes. Furthermore, we demonstrate by pull-down assay and immunocoprecipitation that L-FABP interacts directly with PPARα. In a cell biological approach with the aid of a mammalian two-hybrid system, we provide evidence that L-FABP interacts with PPARα and PPARγ but not with PPARβ and retinoid X receptor-α by protein–protein contacts. In addition, we demonstrate that the observed interaction of both proteins is independent of ligand binding. Final and quantitative proof for L-FABP mediation was obtained in transactivation assays upon incubation of transiently and stably transfected HepG2 cells with saturated, monounsaturated, and polyunsaturated fatty acids as well as with hypolipidemic drugs. With all ligands applied, we observed strict correlation of PPARα and PPARγ transactivation with intracellular concentrations of L-FABP. This correlation constitutes a nucleus-directed signaling by fatty acids and hypolipidemic drugs where L-FABP acts as a cytosolic gateway for these PPARα and PPARγ agonists. Thus, L-FABP and the respective PPARs could serve as targets for nutrients and drugs to affect expression of PPAR-sensitive genes. PMID:11226238

  3. Specific variations of fatty acid composition of Pseudomonas aeruginosa ATCC 15442 induced by quaternary ammonium compounds and relation with resistance to bactericidal activity.

    PubMed

    Guérin-Méchin, L; Dubois-Brissonnet, F; Heyd, B; Leveau, J Y

    1999-11-01

    The role of membrane fatty acid composition in the resistance of Pseudomonas aeruginosa ATCC 15442 to the bactericidal activity of Quaternary Ammonium Compounds (QACs) was investigated. The strain was grown in a medium with increasing concentrations of a QAC, benzyldimethyltetradecylammonium chloride (C14) and two non-QACs, sodium dichloroisocyanurate and tri-sodium phosphate. In the presence of C14 only, the strain was able to grow in concentrations higher than the minimal inhibitory concentration. As the strain adapted to C14, resistance to bactericidal activity of the same biocide increased. For the non-QACs, no change was noted when cells were grown in the presence of biocides. The C14-adapted cells showed variations in membrane fatty acid composition. A hierarchical clustering analysis was used to compare all fatty acid compositions of cultures in the presence, or not, of the three biocides used here and another QAC studied previously. The clusters obtained underlined specific variations of membrane fatty acids in response to the presence of QACs. Furthermore, with a simple linear regression analysis, a relationship was shown between the membrane fatty acids and the resistance developed by the strain against the bactericidal activity of C14. PMID:10594715

  4. Effect of liver fatty acid binding protein on fatty acid movement between liposomes and rat liver microsomes.

    PubMed Central

    McCormack, M; Brecher, P

    1987-01-01

    Although movement of fatty acids between bilayers can occur spontaneously, it has been postulated that intracellular movement is facilitated by a class of proteins named fatty acid binding proteins (FABP). In this study we have incorporated long chain fatty acids into multilamellar liposomes made of phosphatidylcholine, incubated them with rat liver microsomes containing an active acyl-CoA synthetase, and measured formation of acyl-CoA in the absence or presence of FABP purified from rat liver. FABP increased about 2-fold the accumulation of acyl-CoA when liposomes were the fatty acid donor. Using fatty acid incorporated into liposomes made either of egg yolk lecithin or of dipalmitoylphosphatidylcholine, it was found that the temperature dependence of acyl-CoA accumulation in the presence of FABP correlated with both the physical state of phospholipid molecules in the liposomes and the binding of fatty acid to FABP, suggesting that fatty acid must first desorb from the liposomes before FABP can have an effect. An FABP-fatty acid complex incubated with microsomes, in the absence of liposomes, resulted in greater acyl-CoA formation than when liposomes were present, suggesting that desorption of fatty acid from the membrane is rate-limiting in the accumulation of acyl-CoA by this system. Finally, an equilibrium dialysis cell separating liposomes from microsomes on opposite sides of a Nuclepore filter was used to show that liver FABP was required for the movement and activation of fatty acid between the compartments. These studies show that liver FABP interacts with fatty acid that desorbs from phospholipid bilayers, and promotes movement to a membrane-bound enzyme, suggesting that FABP may act intracellularly by increasing net desorption of fatty acid from cell membranes. PMID:3446187

  5. c-AMP dependent protein kinase A inhibitory activity of six algal extracts from southeastern Australia and their fatty acid composition.

    PubMed

    Zivanovic, Ana; Skropeta, Danielle

    2012-07-01

    c-AMP dependent protein kinase (protein kinase A, PKA) is an important enzyme involved in the regulation of an increasing number of physiological processes including immune function, cardiovascular disease, memory disorders and cancer. The objective of this study was to evaluate the PKA inhibitory activity of a range of algal extracts, along with their fatty acid composition. Six algal species were investigated including two Chlorophyta (Codium dimorphum and Ulva lactuca), two Phaeophyta (Phyllospora comosa and Sargassum sp.) and two Rhodophyta (Prionitis linearis and Corallina vancouveriensis), with the order of PKA inhibitory activity of their extracts identified as follows: brown seaweeds > red seaweeds > green seaweeds with the brown alga Sargassum sp. exhibiting the highest PKA inhibitory activity (84% at 100 microg/mL). GC/MS analysis identified a total of 18 fatty acids in the six algal extracts accounting for 72-87% of each extract, with hexadecanoic acid and 9,12-octadecadienoic acid as the dominant components. The most active extract (Sargassum sp.) also contained the highest percentage of the saturated C14:0 fatty acid (12.8% of the total extract), which is a known to inhibit PKA. These results provide the first description of the PKA inhibitory activity of marine algae along with the first description of the fatty acid composition of these six algal species from South Eastern Australian waters. Importantly, this study reveals that abundant and readily available marine algae are a new and relatively unexplored source of PKA inhibitory compounds. PMID:22908583

  6. Fatty Acid Blood Levels, Vitamin D Status, Physical Performance, Activity, and Resiliency: A Novel Potential Screening Tool for Depressed Mood in Active Duty Soldiers.

    PubMed

    Barringer, Nicholas D; Kotwal, Russ S; Lewis, Michael D; Funderburk, Leslee K; Elliott, Timothy R; Crouse, Stephen F; Smith, Stephen B; Greenwood, Michael; Kreider, Richard B

    2016-09-01

    This study examined whether blood fatty acid levels, vitamin D status, and/or physical activity are associated with physical fitness scores; a measure of mood, Patient Health Questionnaire-9; and a measure of resiliency, Dispositional Resiliency Scale-15 in active duty Soldiers. 100 active duty males at Fort Hood, Texas, underwent a battery of psychometric tests, anthropometric measurements, and fitness tests, and they also provided fasting blood samples for fatty acid and vitamin D analysis. Pearson bivariate correlation analysis revealed significant correlations among psychometric tests, anthropometric measurements, physical performance, reported physical inactivity (sitting time), and fatty acid and vitamin D blood levels. On the basis of these findings, a regression equation was developed to predict a depressed mood status as determined by the Patient Health Questionnaire-9. The equation accurately predicted depressed mood status in 80% of our participants with a sensitivity of 76.9% and a specificity of 80.5%. Results indicate that the use of a regression equation may be helpful in identifying Soldiers at higher risk for mental health issues. Future studies should evaluate the impact of exercise and diet as a means of improving resiliency and reducing depressed mood in Soldiers. PMID:27612362

  7. Long-chain polyunsaturated fatty acids stimulate cellular fatty acid uptake in human placental choriocarcinoma (BeWo) cells.

    PubMed

    Johnsen, G M; Weedon-Fekjaer, M S; Tobin, K A R; Staff, A C; Duttaroy, A K

    2009-12-01

    Supplementation of long-chain polyunsaturated fatty acids (LCPUFAs) is advocated during pregnancy in some countries although very little information is available on their effects on placental ability to take up these fatty acids for fetal supply to which the fetal growth and development are critically dependent. To identify the roles of LCPUFAs on placental fatty acid transport function, we examined the effects of LCPUFAs on the uptake of fatty acids and expression of fatty acid transport/metabolic genes using placental trophoblast cells (BeWo). Following 24 h incubation of these cells with 100 microM of LCPUFAs (arachidonic acid, 20:4n-6, eicosapentaenoic acid, 20:5n-3, or docosahexaenoic acid, 22:6n-3), the cellular uptake of [(14)C] fatty acids was increased by 20-50%, and accumulated fatty acids were preferentially incorporated into phospholipid fractions. Oleic acid (OA, 18:1n-9), on the other hand, could not stimulate fatty acid uptake. LCPUFAs and OA increased the gene expression of ADRP whilst decreased the expression of ASCL3, ACSL4, ACSL6, LPIN1, and FABP3 in these cells. However, LCPUFAs but not OA increased expression of ACSL1 and ACSL5. Since acyl-CoA synthetases are involved in cellular uptake of fatty acids via activation for their channelling to lipid metabolism and/or for storage, the increased expression of ACSL1 and ACLS5 by LCPUFAs may be responsible for the increased fatty acid uptake. These findings demonstrate that LCPUFA may function as an important regulator of general fatty acid uptake in trophoblast cells and may thus have impact on fetal growth and development. PMID:19880178

  8. Computer Simulation Model for the Biosynthesis of Galactosyldiacylglycerols and Fatty Acid Desaturation in Plants (Determination of Rates of Desaturase Activity in Monogalactosyldiacylglycerol).

    PubMed Central

    Williams, J. P.; Khan, M. U.; Wong, D.

    1993-01-01

    The level of unsaturation of the constituent fatty acids of many glycerolipids in plant membranes is modified by environmental factors. The measurement of the rate of the desaturation of these fatty acids is essential to an understanding of how plants adapt to changing environments. This is difficult because of the complexity of the system and the problems involved in measuring rates of these enzyme reactions in cell-free preparations. A computer program has been developed that simulates the synthesis of galactosyldiacylglycerols and desaturation of their fatty acids in chloroplasts. The program uses the rate of incorporation and distribution of 14C in fatty acids after 14CO2 feeding to estimate rates of desaturation in the fatty acids of glycerolipids. Data are presented to demonstrate the use of the program in comparing rates of desaturation in the five enzyme reactions associated with monogalactosyldiacylglycerol in the chloroplastic pathway of leaves from Brassica napus. The method represents a quick, reliable, and accurate measure of desaturase activity in vivo and is the only method available to estimate desaturase activity of all five enzymes at the same time. PMID:12231750

  9. Dietary long-chain unsaturated fatty acids acutely and differently reduce the activities of lipogenic enzymes and of citrate carrier in rat liver.

    PubMed

    Gnoni, Antonio; Giudetti, Anna M

    2016-09-01

    The activities of lipogenic enzymes appear to fluctuate with changes in the level and type of dietary fats. Polyunsaturated fatty acids (PUFAs) are known to induce on hepatic de novo lipogenesis (DNL) the highest inhibitory effect, which occurs through a long-term adaptation. Data on the acute effects of dietary fatty acids on DNL are lacking. In this study with rats, the acute 1-day effect of high-fat (15 % w/w) diets (HFDs) enriched in saturated fatty acids (SFAs) or unsaturated fatty acids (UFAs), i.e., monounsaturated (MUFA) and PUFA, of the ω-6 and ω-3 series on DNL and plasma lipid level was investigated; a comparison with a longer time feeding (21 days) was routinely carried out. After 1-day HFD administration UFA, when compared to SFA, reduced plasma triacylglycerol (TAG) level and the activities of the lipogenic enzymes acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS), a decreased activity of the citrate carrier (CIC), a mitochondrial protein linked to lipogenesis, was also detected. In this respect, ω-3 PUFA was the most effective. On the other hand, PUFA maintained the effects at longer times, and the acute inhibition induced by MUFA feeding on DNL enzyme and CIC activities was almost nullified at 21 days. Mitochondrial fatty acid composition was slightly but significantly changed both at short- and long-term treatment, whereas the early changes in mitochondrial phospholipid composition vanished in long-term experiments. Our results suggest that in the early phase of administration, UFA coordinately reduced both the activities of de novo lipogenic enzymes and of CIC. ω-3 PUFA showed the greatest effect. PMID:27312217

  10. Increased Long Chain acyl-Coa Synthetase Activity and Fatty Acid Import Is Linked to Membrane Synthesis for Development of Picornavirus Replication Organelles

    PubMed Central

    Scott, Alison J.; Ford, Lauren A.; Pei, Zhengtong; Watkins, Paul A.; Ernst, Robert K.; Belov, George A.

    2013-01-01

    All positive strand (+RNA) viruses of eukaryotes replicate their genomes in association with membranes. The mechanisms of membrane remodeling in infected cells represent attractive targets for designing future therapeutics, but our understanding of this process is very limited. Elements of autophagy and/or the secretory pathway were proposed to be hijacked for building of picornavirus replication organelles. However, even closely related viruses differ significantly in their requirements for components of these pathways. We demonstrate here that infection with diverse picornaviruses rapidly activates import of long chain fatty acids. While in non-infected cells the imported fatty acids are channeled to lipid droplets, in infected cells the synthesis of neutral lipids is shut down and the fatty acids are utilized in highly up-regulated phosphatidylcholine synthesis. Thus the replication organelles are likely built from de novo synthesized membrane material, rather than from the remodeled pre-existing membranes. We show that activation of fatty acid import is linked to the up-regulation of cellular long chain acyl-CoA synthetase activity and identify the long chain acyl-CoA syntheatse3 (Acsl3) as a novel host factor required for polio replication. Poliovirus protein 2A is required to trigger the activation of import of fatty acids independent of its protease activity. Shift in fatty acid import preferences by infected cells results in synthesis of phosphatidylcholines different from those in uninfected cells, arguing that the viral replication organelles possess unique properties compared to the pre-existing membranes. Our data show how poliovirus can change the overall cellular membrane homeostasis by targeting one critical process. They explain earlier observations of increased phospholipid synthesis in infected cells and suggest a simple model of the structural development of the membranous scaffold of replication complexes of picorna-like viruses, that may be

  11. First total synthesis and antileishmanial activity of (Z)-16-methyl-11-heptadecenoic acid, a new marine fatty acid from the sponge Dragmaxia undata

    PubMed Central

    Carballeira, Néstor M.; Montano, Nashbly; Cintrón, Gabriel A.; Márquez, Carmary; Rubio, Celia Fernández; Prada, Christopher Fernández; Balaña-Fouce, Rafael

    2010-01-01

    The first total synthesis for the (Z)-16-methyl-11-heptadecenoic acid, a novel fatty acid from the sponge Dragmaxia undata, was accomplished in seven steps and in a 44% overall yield. The use of (trimethylsilyl)acetylene was key in the synthesis. Based on a previous developed strategy in our laboratory the best synthetic route towards the title compound was first acetylide coupling of (trimethylsilyl)acetylene to the long-chain protected 10-bromo-1-decanol followed by a second acetylide coupling to the short-chain 1-bromo-4-methylpentane, which resulted in higher yields. Complete spectral data is also presented for the first time for this recently discovered fatty acid and the cis double bond stereochemistry of the natural acid was established. The title compound displayed antiprotozoal activity against Leishmania donovani (IC50 = 165.5 ± 23.4 µM) and inhibited the leishmania DNA topoisomerase IB enzyme (LdTopIB) with an IC50 = 62.3 ± 0.7 µM. PMID:21129369

  12. Cardiac lipoprotein lipase activity in the hypertrophied heart may be regulated by fatty acid flux

    PubMed Central

    Hauton, David; Caldwell, Germaine M.

    2012-01-01

    Cardiac hypertrophy is characterised by an imbalance between lipid uptake and fatty acid β-oxidation leading to an accumulation of lipids, particularly triacylglycerol (TAG). It is unclear whether uptake mechanisms such as lipoprotein lipase (LPL) can be attenuated to diminish this uptake. Rats were cold acclimated to induce cardiac hypertrophy and increase cardiac LPL. Lipid uptake and metabolism were altered by feeding a ‘Western-style’ high fat diet (WSD) or feeding oxfenicine (2 g/L) in the drinking water. Diastolic stiffness (increased volume change/unit pressure change) was induced in hypertrophied hearts for rats fed WSD (P < 0.05) or WSD + oxfenicine (P < 0.01), although absolute performance of cardiac muscle, estimated from stress–strain calculations was unchanged. Cold acclimation increased cardiac endothelial LPL (P < 0.05) but this was diminished following oxfenicine. Following WSD LPL was further decreased below WSD-fed control hearts (P < 0.05) with no further decrease by oxfenicine supplementation. A negative correlation was noted between plasma TAG and endothelial LPL (correlation coefficient = − 0.654; P < 0.001) but not cardiac TAG concentration. Transcript levels of angiopoietin-like protein-4 (ANGPTL4) were increased 6-fold by WSD (P < 0.05) and increased 15-fold following WSD + oxfenicine (P < 0.001). For CA-hearts fed WSD or WSD + oxfenicine ANGPTL4 mRNA levels were preserved at chow-fed levels. VLDLR protein levels were increased 10-fold (P < 0.01) by CA. ANGPTL4 protein levels were increased 2-fold (P < 0.05) by WSD, but restored following oxfenicine. For CA-hearts WSD increased ANGPTL4 protein levels 3-fold (P < 0.01) with WSD + oxfenicine increasing ANGPTL4 protein 4-fold (P < 0.01). These data suggest that endothelial LPL levels in the heart are altered to maintain FA flux and may exploit ANGPTL4. PMID:22226882

  13. Fatty acids of lipid fractions in extracellular polymeric substances of activated sludge flocs.

    PubMed

    Conrad, Arnaud; Suutari, Merja Kontro; Keinänen, Minna M; Cadoret, Aurore; Faure, Pierre; Mansuy-Huault, Laurence; Block, Jean-Claude

    2003-10-01

    Phospholipid (PL), glycolipid (GL), and neutral lipid (NL) FA, and the lipopolysaccharide 2- and 3-hydroxy (LPS 2-OH and 3-OH) FA of activated sludges and extracted extracellular polymeric substances (EPS) were determined on samples collected from two wastewater treatment plants. EPS extracted from sludges by means of sonication and cation exchange contained proteins (43.4%), humic-like substances (11.5%), nucleic acids (10.9%), carbohydrates (9.9%), and lipid-bound FA (1.8%). The lipids associated with EPS were composed of GL, PL, NL, and LPS acids in proportions of 61, 21, 16, and 2%, respectively. The profiles of lipid-bound FA in activated sludges and EPS were similar (around 85 separate FA were identified). The FA signatures observed can be attributed to the likely presence of yeasts, fungi, sulfate-reducing bacteria, gram-positive and gram-negative bacteria, and, in lesser quantities, mycobacteria. Comparison of data from the dates of sampling (January and September) showed that there were more unsaturated PLFA in the EPS extracted from the activated sludges sampled in January. This observation could be partly related to microorganism adaptation to temperature variations. The comparison between two wastewater treatment plants showed that the FA profiles were similar, although differences in microbial community structure were also seen. Most of the FA in sludges had an even number of carbons. PMID:14669975

  14. Complex I assembly function and fatty acid oxidation enzyme activity of ACAD9 both contribute to disease severity in ACAD9 deficiency

    PubMed Central

    Schiff, Manuel; Haberberger, Birgit; Xia, Chuanwu; Mohsen, Al-Walid; Goetzman, Eric S.; Wang, Yudong; Uppala, Radha; Zhang, Yuxun; Karunanidhi, Anuradha; Prabhu, Dolly; Alharbi, Hana; Prochownik, Edward V.; Haack, Tobias; Häberle, Johannes; Munnich, Arnold; Rötig, Agnes; Taylor, Robert W.; Nicholls, Robert D.; Kim, Jung-Ja; Prokisch, Holger; Vockley, Jerry

    2015-01-01

    Acyl-CoA dehydrogenase 9 (ACAD9) is an assembly factor for mitochondrial respiratory chain Complex I (CI), and ACAD9 mutations are recognized as a frequent cause of CI deficiency. ACAD9 also retains enzyme ACAD activity for long-chain fatty acids in vitro, but the biological relevance of this function remains controversial partly because of the tissue specificity of ACAD9 expression: high in liver and neurons and minimal in skin fibroblasts. In this study, we hypothesized that this enzymatic ACAD activity is required for full fatty acid oxidation capacity in cells expressing high levels of ACAD9 and that loss of this function is important in determining phenotype in ACAD9-deficient patients. First, we confirmed that HEK293 cells express ACAD9 abundantly. Then, we showed that ACAD9 knockout in HEK293 cells affected long-chain fatty acid oxidation along with Cl, both of which were rescued by wild type ACAD9. Further, we evaluated whether the loss of ACAD9 enzymatic fatty acid oxidation affects clinical severity in patients with ACAD9 mutations. The effects on ACAD activity of 16 ACAD9 mutations identified in 24 patients were evaluated using a prokaryotic expression system. We showed that there was a significant inverse correlation between residual enzyme ACAD activity and phenotypic severity of ACAD9-deficient patients. These results provide evidence that in cells where it is strongly expressed, ACAD9 plays a physiological role in fatty acid oxidation, which contributes to the severity of the phenotype in ACAD9-deficient patients. Accordingly, treatment of ACAD9 patients should aim at counteracting both CI and fatty acid oxidation dysfunctions. PMID:25721401

  15. Mimicking the lipid peroxidation inhibitory activity of phospholipid hydroperoxide glutathione peroxidase (GPx4) by using fatty acid conjugates of a water-soluble selenolane.

    PubMed

    Iwaoka, Michio; Katakura, Arisa; Mishima, Jun; Ishihara, Yoshimi; Kunwar, Amit; Priyadarsini, Kavirayani Indira

    2015-01-01

    A series of fatty acid conjugates of trans-3,4-dihydroxy-1-selenolane (DHS) were synthesized by reacting DHS with appropriate acid chlorides. The obtained monoesters were evaluated for their antioxidant capacities by the lipid peroxidation assay using a lecithin/cholesterol liposome as a model system. The observed antioxidant capacities against accumulation of the lipid hydroperoxide (LOOH) increased with increasing the alkyl chain length and became saturated for dodecanoic acid (C12) or higher fatty acid monoesters, for which the capacities were much greater than those of DHS, its tridecanoic acid (C13) diester, and PhSeSePh. On the other hand, the bacteriostatic activity of myristic acid (C14) monoester, evaluated through the colony formation assay using Bacillus subtilis, indicated that it has higher affinity to bacterial cell membranes than parent DHS. Since DHS-fatty acid conjugates would inhibit lipid peroxidation through glutathione peroxidase (GPx)-like 2e- mechanism, higher fatty acid monoesters of DHS can mimic the function of GPx4, which interacts with LOOH to reduce it to harmless alcohol (LOH). Importance of the balance between hydrophilicity and lipophilicity for the design of effective GPx4 mimics was suggested. PMID:26198222

  16. Derivatives of the cationic plant alkaloids berberine and palmatine amplify protonophorous activity of fatty acids in model membranes and mitochondria.

    PubMed

    Pustovidko, Antonina V; Rokitskaya, Tatiana I; Severina, Inna I; Simonyan, Ruben A; Trendeleva, Tatiana A; Lyamzaev, Konstantin G; Antonenko, Yuri N; Rogov, Anton G; Zvyagilskaya, Renata A; Skulachev, Vladimir P; Chernyak, Boris V

    2013-09-01

    Previously it has been shown by our group that berberine and palmatine, penetrating cations of plant origin, when conjugated with plastoquinone (SkQBerb and SkQPalm), can accumulate in isolated mitochondria or in mitochondria of living cells and effectively protect them from oxidative damage. In the present work, we demonstrate that SkQBerb, SkQPalm, and their analogs lacking the plastoquinone moiety (C10Berb and C10Palm) operate as mitochondria-targeted compounds facilitating protonophorous effect of free fatty acids. These compounds induce proton transport mediated by small concentrations of added fatty acids both in planar and liposomal model lipid membranes. In mitochondria, such an effect can be carried out by endogenous fatty acids and the adenine nucleotide translocase. PMID:23026390

  17. Fatty acids as modulators of neutrophil recruitment, function and survival.

    PubMed

    Rodrigues, Hosana G; Takeo Sato, Fabio; Curi, Rui; Vinolo, Marco A R

    2016-08-15

    Neutrophils are well-known to act in the destruction of invading microorganisms. They have also been implicated in the activation of other immune cells including B- and T-lymphocytes and in the resolution of inflammation and tissue regeneration. Neutrophils are produced in the bone marrow and released into the circulation from where they migrate to tissues to perform their effector functions. Neutrophils are in constant contact with fatty acids that can modulate their function, activation and fate (survival or cell death) through different mechanisms. In this review, the effects of fatty acids pertaining to five classes, namely, long-chain saturated fatty acids (LCSFAs), short-chain fatty acids (SCFAs), and omega-3 (n-3), omega-6 (n-6) and omega-9 (n-9) unsaturated fatty acids, on neutrophils and the relevance of these effects for disease development are discussed. PMID:25987417

  18. Cross-sectional associations of food consumption with plasma fatty acid composition and estimated desaturase activities in Finnish children.

    PubMed

    Venäläinen, Taisa; Schwab, Ursula; Ågren, Jyrki; de Mello, Vanessa; Lindi, Virpi; Eloranta, Aino-Maija; Kiiskinen, Sanna; Laaksonen, David; Lakka, Timo A

    2014-05-01

    Plasma fatty acid (FA) composition is known to be an indicator of dietary fat quality, but the associations of other dietary factors with plasma FA composition remain unknown in children. We investigated the cross-sectional associations of food consumption with the proportions of FA and estimated desaturase activities in plasma cholesteryl esters (CE) and phospholipids (PL) among children. The subjects were a population sample of 423 children aged 6–8 years examined at baseline of The Physical Activity and Nutrition in Children (PANIC) Study. We assessed food consumption by food records and plasma FA composition by gas chromatography. We used linear regression models adjusted for age, sex, physical activity and total energy intake to analyze the associations. A higher consumption of vegetable oil-based margarine (fat 60–80 %) was associated with a higher proportion of linoleic and α-linolenic acids in plasma CE and PL. A higher consumption of high-fiber grain products was related to a lower proportion of oleic acid in CE and PL. The consumption of candy was directly associated with the proportion of palmitoleic and oleic acid in plasma CE. The consumption of vegetable oil-based margarine was inversely associated with estimated stearoyl-CoA-desaturase activity in plasma CE and PL and the consumption of candy was directly related to it in plasma CE. The results of our study suggest that plasma FA composition is not only a biomarker for dietary fat quality but also reflects the consumption of high-fiber grain products and foods high in sugar among children. PMID:24659110

  19. Serum phospholipid monounsaturated fatty acid composition and Δ-9-desaturase activity are associated with early alteration of fasting glycemic status.

    PubMed

    Cho, Jae Sun; Baek, Seung Han; Kim, Ji Young; Lee, Jong Ho; Kim, Oh Yoen

    2014-09-01

    Because alterations in blood fatty acid (FA) composition by dietary lipids are associated with insulin resistance and related metabolic disorders, we hypothesized that serum phospholipid FA composition would reflect the early alteration of fasting glycemic status, even in people without metabolic syndrome (MetS). To examine this hypothesis, serum phospholipid FA, desaturase activities, fasting glycemic status, and cardiometabolic parameters were measured in study participants (n = 1022; 30-69 years; male, n = 527; female, n = 495; nondiabetics without disease) who were stratified into normal fasting glucose (NFG) and impaired fasting glucose (IFG) groups. Total monounsaturated FA (MUFA), oleic acid (OA; 18:1n-9), dihomo-γ-linolenic acid (DGLA; 20:3n-6), Δ-9-desaturase activity (D9D; 18:1n-9/18:0), and DGLA/linoleic acid (20:3n-6/18:2n-6) in serum phospholipids were significantly higher in IFG subjects than NFG controls. Study subjects were subdivided into 4 groups, based on fasting glucose levels and MetS status. Palmitoleic acid (16:1n-7) was highest in IFG-MetS and lowest in NFG-non-MetS subjects. Oleic acid and D9D were higher in IFG-MetS than in the other 3 groups. Dihomo-γ-linolenic acid and DGLA/linoleic acid were higher in MetS than in non-MetS, regardless of fasting glucose levels. The high-sensitivity C-reactive proteins (hs-CRPs) and 8-epi-prostaglandin-F2α were higher in IFG than in NFG, regardless of MetS status. Oxidized low-density lipoproteins were higher in IFG-MetS than in the other 3 groups. Total MUFAs, OA, and D9D were positively correlated with homeostasis model assessment of insulin resistance, fasting glucose, triglyceride, hs-CRP, and 8-epi-prostaglandin-F2α. Palmitoleic acid was positively correlated with triglyceride and hs-CRP. Lastly, total MUFA, OA, palmitoleic acid, and D9D were associated with early alteration of fasting glycemic status, therefore suggesting that these may be useful markers for predicting the risk of type 2

  20. Fibroblast Growth Factor 21 Limits Lipotoxicity by Promoting Hepatic Fatty Acid Activation in Mice on Methionine and Choline-deficient Diets

    PubMed Central

    Fisher, ffolliott M.; Chui, Patricia C.; Nasser, Imad A.; Popov, Yury; Cunniff, Jeremy C.; Lundasen, Thomas; Kharitonenkov, Alexei; Schuppan, Detlef; Flier, Jeffrey S.; Maratos-Flier, Eleftheria

    2014-01-01

    Background & Aims Nonalcoholic fatty liver disease (NAFLD) is a common consequence of human and rodent obesity. Disruptions in lipid metabolism lead to accumulation of triglycerides and fatty acids, which can promote inflammation and fibrosis and lead to nonalcoholic steatohepatitis (NASH). Circulating levels of fibroblast growth factor (FGF)21 increase in patients with NAFLD or NASH, so we assessed the role of FGF21 in the progression of murine fatty liver disease, independent of obesity, caused by methionine and choline deficiency. Methods C57BL/6 wild-type and FGF21-knockout (FGF21-KO) mice were placed on methionine- and choline-deficient (MCD), high-fat, or control diets for 8–16 weeks. Mice were weighed; serum and liver tissues were collected and analyzed for histology, levels of malondialdehyde and liver enzymes, gene expression, and lipid content. Results The MCD diet increased hepatic levels of FGF21 mRNA more than 50-fold and serum levels 16-fold, compared with the control diet. FGF21-KO mice had more severe steatosis, fibrosis, inflammation, and peroxidative damage than wild-type C57BL/6 mice. FGF21-KO mice had reduced hepatic fatty acid activation and β oxidation, resulting in increased levels of free fatty acid. FGF21-KO mice given continuous subcutaneous infusions of FGF21 for 4 weeks while on MCD diets had reduced steatosis and peroxidative damage, compared with mice not receiving FGF21. The expression of genes that regulate inflammation and fibrosis were reduced in FGF21-KO mice given FGF21, similar to those of wild-type mice. Conclusions FGF21 regulates fatty acid activation and oxidation in livers of mice. In the absence of FGF21, accumulation of inactivated fatty acids results in lipotoxic damage and increased steatosis. PMID:25083607

  1. Relationship between Single Nucleotide Polymorphisms in the Peroxisome Proliferator-Activated Receptor Gamma Gene and Fatty Acid Composition in Korean Native Cattle

    PubMed Central

    Lee, Jea-young; Ha, Jae-jung; Park, Yong-soo; Yi, Jun-koo; Lee, Seunguk; Mun, Seyoung; Han, Kyudong; Kim, J.-J.; Kim, Hyun-Ji; Oh, Dong-yep

    2016-01-01

    The peroxisome proliferator-activated receptor gamma (PPARγ) gene plays an important role in the biosynthesis process controlled by a number of fatty acid transcription factors. This study investigates the relationships between 130 single-nucleotide polymorphisms (SNPs) in the PPARγ gene and the fatty acid composition of muscle fat in the commercial population of Korean native cattle. We identified 38 SNPs and verified relationships between 3 SNPs (g.1159-71208 A>G, g.42555-29812 G>A, and g.72362 G>T) and the fatty acid composition of commercial Korean native cattle (n = 513). Cattle with the AA genotype of g.1159-71208 A>G and the GG genotype of g.42555-29812 G>A and g.72362 G>T had higher levels of monounsaturated fatty acids and carcass traits (p<0.05). The results revealed that the 3 identified SNPs in the PPARγ gene affected fatty acid composition and carcass traits, suggesting that these 3 SNPs may improve the flavor and quality of beef in commercial Korean native cattle. PMID:26732443

  2. Active Lactobacillus rhamnosus LA68 or Lactobacillus plantarum WCFS1 administration positively influences liver fatty acid composition in mice on a HFD regime.

    PubMed

    Ivanovic, Nevena; Minic, Rajna; Djuricic, Ivana; Radojevic Skodric, Sanja; Zivkovic, Irena; Sobajic, Sladjana; Djordjevic, Brizita

    2016-06-15

    Western life style, and high calorie diet in particular is causing major health problems such as insulin resistance, hepatic steatosis and heart disease in the modern age. High fat diet (HFD) induces similar changes in mice, such as increased body weight, hypercholesterolemia and accumulation of triglycerides in the liver. These changes can be ameliorated by the administration of some Lactobacillus species. The focus of this study was to analyze the fatty acid content of liver, heart and brain tissues of mice fed HFD and administered with either Lactobacillus plantarum WCFS1 or Lactobacillus rhamnosus LA68, and to analyze the fatty acid content of these organs after a two months washout period. The fatty acid composition of mouse liver tissue changed significantly due to probiotic administration during a 12 weeks HFD regime and active Lactobacillus administration had a slightly reversing effect toward the standard mouse diet group, but after the washout period these changes disappeared. The fatty acid composition of the heart and brain tissues was significantly changed in the HFD regime but probiotic administration had no significant influence on the fatty acid profile of these two organs. Upon the 8 weeks washout period the only remaining beneficial effect was the significantly lower mouse weight in the supplemented groups compared to the HFD group. PMID:27231730

  3. Relationship between Single Nucleotide Polymorphisms in the Peroxisome Proliferator-Activated Receptor Gamma Gene and Fatty Acid Composition in Korean Native Cattle.

    PubMed

    Lee, Jea-Young; Ha, Jae-Jung; Park, Yong-Soo; Yi, Jun-Koo; Lee, Seunguk; Mun, Seyoung; Han, Kyudong; Kim, J-J; Kim, Hyun-Ji; Oh, Dong-Yep

    2016-02-01

    The peroxisome proliferator-activated receptor gamma (PPARγ) gene plays an important role in the biosynthesis process controlled by a number of fatty acid transcription factors. This study investigates the relationships between 130 single-nucleotide polymorphisms (SNPs) in the PPARγ gene and the fatty acid composition of muscle fat in the commercial population of Korean native cattle. We identified 38 SNPs and verified relationships between 3 SNPs (g.1159-71208 A>G, g.42555-29812 G>A, and g.72362 G>T) and the fatty acid composition of commercial Korean native cattle (n = 513). Cattle with the AA genotype of g.1159-71208 A>G and the GG genotype of g.42555-29812 G>A and g.72362 G>T had higher levels of monounsaturated fatty acids and carcass traits (p<0.05). The results revealed that the 3 identified SNPs in the PPARγ gene affected fatty acid composition and carcass traits, suggesting that these 3 SNPs may improve the flavor and quality of beef in commercial Korean native cattle. PMID:26732443

  4. [About effect of habitat and motor activity of molluscs on fatty acid composition of triglycerides and phospholipids].

    PubMed

    Arakelova, E S; Chebotareva, M A; Zabelinskiĭ, S A; Ivanova, V P

    2009-01-01

    A comparative analysis of fatty acids (FA) in neutral and phospholipids of digestive gland and pedal muscle has been performed in molluscs from various ecological groups differing by belonging to sea or fresh water, trophic types or the associated motor activity. In freshwater pulmonary gastropods Lymnaea stagnalis and Limnaea ovalis and marine prosobranchial molluscs Buccinum undatum and Littorina littorea the total content of omega3-acids in phospholipids of the studied tissues differed more than twice, predominantly due to the combined effect of temperature and salinity of the habitat. The lower viscosity of cell membranes in marine species (omega3/omega6 < 1) is determined to the greatest degree by the presence of eicosapentaenoic acid that accounts for 22-25 % of the FA sum in marine species. Comparison of the molluscs by their trophic belonging has revealed the presence of linoleic acid in triglycerides in digestive glands of phytophages (8-12 %), but the practically complete absence of this acid in the predator B. undulatum (<0.8 %. By mobility, L. littorea inhabiting the high-low tide littoral was inferior to freshwater pulmonary gastropods and to marine predator, as it stops moving twice a day during the low tide. In phospholipids of pedal muscle of this mollusc the amount of long-chain polyunsaturated C:22 FA was 3-6 times lower than that in other studied species, which might possibly indicate the role of these acids in functioning of the pedal muscle contractile tissue. On the whole, use of the FA characteristics as parameters determining belonging to certain ecological group requires a certain caution due to a complex action of biotic and abiotic factors on the animal metabolism. The exception is the omega3/omega6 ratio in total phospholipids of freshwater and marine gastropods. PMID:19370988

  5. Molecular recognition of nitrated fatty acids by PPAR[gamma

    SciTech Connect

    Li, Yong; Zhang, Jifeng; Schopfer, Francisco J.; Martynowski, Dariusz; Garcia-Barrio, Minerva T.; Kovach, Amanda; Suino-Powell, Kelly; Baker, Paul R.S.; Freeman, Bruce A.; Chen, Y. Eugene; Xu, H. Eric

    2010-03-08

    Peroxisome proliferator activated receptor-{gamma} (PPAR{gamma}) regulates metabolic homeostasis and adipocyte differentiation, and it is activated by oxidized and nitrated fatty acids. Here we report the crystal structure of the PPAR{gamma} ligand binding domain bound to nitrated linoleic acid, a potent endogenous ligand of PPAR{gamma}. Structural and functional studies of receptor-ligand interactions reveal the molecular basis of PPAR{gamma} discrimination of various naturally occurring fatty acid derivatives.

  6. Fatty acids of Pinus elliottii tissues.

    NASA Technical Reports Server (NTRS)

    Laseter, J. L.; Lawler, G. C.; Walkinshaw, C. H.; Weete, J. D.

    1973-01-01

    The total fatty constituents of slash pine (Pinus elliottii) tissue cultures, seeds, and seedlings were examined by GLC and MS. Qualitatively, the fatty acid composition of these tissues was found to be very similar to that reported for other pine species. The fatty acid contents of the tissue cultures resembled that of the seedling tissues. The branched-chain C(sub 17) acid reported for several other Pinus species was confirmed as the anteiso isomer.

  7. Fatty acid profile of kenaf seed oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fatty acid profile of kenaf (Hibiscus cannabinus L.) seed oil has been the subject of several previous reports in the literature. These reports vary considerably regarding the presence and amounts of specific fatty acids, notably epoxyoleic acid but also cyclic (cyclopropene and cyclopropane) fa...

  8. Parallel activation of mitochondrial oxidative metabolism with increased cardiac energy expenditure is not dependent on fatty acid oxidation in pigs

    PubMed Central

    Zhou, Lufang; Cabrera, Marco E; Huang, Hazel; Yuan, Celvie L; Monika, Duda K; Sharma, Naveen; Bian, Fang; Stanley, William C

    2007-01-01

    Steady state concentrations of ATP and ADP in vivo are similar at low and high cardiac workloads; however, the mechanisms that regulate the activation of substrate metabolism and oxidative phosphorylation that supports this stability are poorly understood. We tested the hypotheses that (1) there is parallel activation of mitochondrial and cytosolic dehydrogenases in the transition from low to high workload, which increases NADH/NAD+ ratio in both compartments, and (2) this response does not require an increase in fatty acid oxidation (FAO). Anaesthetized pigs were subjected to either sham treatment, or an abrupt increase in cardiac workload for 5 min with dobutamine infusion and aortic constriction. Myocardial oxygen consumption and FAO were increased 3- and 2-fold, respectively, but ATP and ADP concentrations did not change. NADH-generating pathways were rapidly activated in both the cytosol and mitochondria, as seen in a 40% depletion in glycogen stores, a 3.6-fold activation of pyruvate dehydrogenase, and a 50% increase in tissue NADH/NAD+. Simulations from a multicompartmental computational model of cardiac energy metabolism predicted that parallel activation of glycolysis and mitochondrial metabolism results in an increase in the NADH/NAD+ ratio in both cytosol and mitochondria. FAO was blocked by 75% in a third group of pigs, and a similar increase in and the NAHD/NAD+ ratio was observed. In conclusion, in the transition to a high cardiac workload there is rapid parallel activation of substrate oxidation that results in an increase in the NADH/NAD+ ratio. PMID:17185335

  9. Ultrasonic-Assisted Extraction of Raspberry Seed Oil and Evaluation of Its Physicochemical Properties, Fatty Acid Compositions and Antioxidant Activities

    PubMed Central

    Huang, Qun; Wang, Jinli; Lin, Qiyang; Liu, Mingxin; Lee, Won Young; Song, Hongbo

    2016-01-01

    Ultrasonic-assisted extraction was employed for highly efficient separation of aroma oil from raspberry seeds. A central composite design with two variables and five levels was employed and effects of process variables of sonication time and extraction temperature on oil recovery and quality were investigated. Optimal conditions predicted by response surface methodology were sonication time of 37 min and extraction temperature of 54°C. Specifically, ultrasonic-assisted extraction (UAE) was able to provide a higher content of beneficial unsaturated fatty acids, whereas conventional Soxhlet extraction (SE) resulted in a higher amount of saturated fatty acids. Moreover, raspberry seed oil contained abundant amounts of edible linoleic acid and linolenic acid, which suggest raspberry seeds could be valuable edible sources of natural γ-linolenic acid products. In comparison with SE, UAE exerted higher free radical scavenging capacities. In addition, UAE significantly blocked H2O2-induced intracellular reactive oxygen species (ROS) generation. PMID:27120053

  10. Changes in lipid peroxidation and antioxidant enzyme activities by triiodothyronine (T3) and polyunsaturated fatty acids (PUFA) in rat liver.

    PubMed

    Varghese, S; Lakshmy, P S; Oommen, O V

    2001-11-01

    Thyroid hormones play an important role in the control of metabolism of vertebrates. This investigation was carried out to examine the effects of triiodothyronine (T3) and polyunsaturated fatty acids (PUFA) on lipid peroxidation in rat liver. Male Wistar strain of rats treated with 6-propylthiouracil (6-PTU) showed no significant change in lipid peroxidation as evident from the generation of malondialdehyde and conjugated dienes. However, in PUFA fed animals as well as 6-PTU + PUFA + T3 treated groups, increased peroxidation products were found. Superoxide dismutase (SOD) activity was low in 6-PTU, 6-PTU + PUFA, PUFA, 6-PTU + PUFA + T3 treated animals while glutathione peroxidase (GPx) activity was high in these groups. Catalase activity was low in all treated groups except PUFA alone fed animals. Glutathione reductase (GR) activity was decreased by 6-PTU treatment and increased in PTU + PUFA fed rats. Cellular glutathione level was high in PUFA and low in PTU-treated groups. From these results it can be concluded that both T3 and PUFA have profound influence on lipid peroxidation and antioxidant enzyme activities in rat liver. PMID:11794465

  11. The Fatty Acid Signaling Molecule cis-2-Decenoic Acid Increases Metabolic Activity and Reverts Persister Cells to an Antimicrobial-Susceptible State

    PubMed Central

    Morozov, Aleksey; Planzos, Penny; Zelaya, Hector M.

    2014-01-01

    Persister cells, which are tolerant to antimicrobials, contribute to biofilm recalcitrance to therapeutic agents. In turn, the ability to kill persister cells is believed to significantly improve efforts in eradicating biofilm-related, chronic infections. While much research has focused on elucidating the mechanism(s) by which persister cells form, little is known about the mechanism or factors that enable persister cells to revert to an active and susceptible state. Here, we demonstrate that cis-2-decenoic acid (cis-DA), a fatty acid signaling molecule, is able to change the status of Pseudomonas aeruginosa and Escherichia coli persister cells from a dormant to a metabolically active state without an increase in cell number. This cell awakening is supported by an increase of the persister cells' respiratory activity together with changes in protein abundance and increases of the transcript expression levels of several metabolic markers, including acpP, 16S rRNA, atpH, and ppx. Given that most antimicrobials target actively growing cells, we also explored the effect of cis-DA on enhancing antibiotic efficacy in killing persister cells due to their inability to keep a persister cell state. Compared to antimicrobial treatment alone, combinational treatments of persister cell subpopulations with antimicrobials and cis-DA resulted in a significantly greater decrease in cell viability. In addition, the presence of cis-DA led to a decrease in the number of persister cells isolated. We thus demonstrate the ability of a fatty acid signaling molecule to revert bacterial cells from a tolerant phenotype to a metabolically active, antimicrobial-sensitive state. PMID:25192989

  12. Engineered Production of Short Chain Fatty Acid in Escherichia coli Using Fatty Acid Synthesis Pathway

    PubMed Central

    Jawed, Kamran; Mattam, Anu Jose; Fatma, Zia; Wajid, Saima; Abdin, Malik Z.; Yazdani, Syed Shams

    2016-01-01

    Short-chain fatty acids (SCFAs), such as butyric acid, have a broad range of applications in chemical and fuel industries. Worldwide demand of sustainable fuels and chemicals has encouraged researchers for microbial synthesis of SCFAs. In this study we compared three thioesterases, i.e., TesAT from Anaerococcus tetradius, TesBF from Bryantella formatexigens and TesBT from Bacteroides thetaiotaomicron, for production of SCFAs in Escherichia coli utilizing native fatty acid synthesis (FASII) pathway and modulated the genetic and bioprocess parameters to improve its yield and productivity. E. coli strain expressing tesBT gene yielded maximum butyric acid titer at 1.46 g L-1, followed by tesBF at 0.85 g L-1 and tesAT at 0.12 g L-1. The titer of butyric acid varied significantly depending upon the plasmid copy number and strain genotype. The modulation of genetic factors that are known to influence long chain fatty acid production, such as deletion of the fadD and fadE that initiates the fatty acid degradation cycle and overexpression of fadR that is a global transcriptional activator of fatty acid biosynthesis and repressor of degradation cycle, did not improve the butyric acid titer significantly. Use of chemical inhibitor cerulenin, which restricts the fatty acid elongation cycle, increased the butyric acid titer by 1.7-fold in case of TesBF, while it had adverse impact in case of TesBT. In vitro enzyme assay indicated that cerulenin also inhibited short chain specific thioesterase, though inhibitory concentration varied according to the type of thioesterase used. Further process optimization followed by fed-batch cultivation under phosphorous limited condition led to production of 14.3 g L-1 butyric acid and 17.5 g L-1 total free fatty acid at 28% of theoretical yield. This study expands our understanding of SCFAs production in E. coli through FASII pathway and highlights role of genetic and process optimization to enhance the desired product. PMID:27466817

  13. Engineered Production of Short Chain Fatty Acid in Escherichia coli Using Fatty Acid Synthesis Pathway.

    PubMed

    Jawed, Kamran; Mattam, Anu Jose; Fatma, Zia; Wajid, Saima; Abdin, Malik Z; Yazdani, Syed Shams

    2016-01-01

    Short-chain fatty acids (SCFAs), such as butyric acid, have a broad range of applications in chemical and fuel industries. Worldwide demand of sustainable fuels and chemicals has encouraged researchers for microbial synthesis of SCFAs. In this study we compared three thioesterases, i.e., TesAT from Anaerococcus tetradius, TesBF from Bryantella formatexigens and TesBT from Bacteroides thetaiotaomicron, for production of SCFAs in Escherichia coli utilizing native fatty acid synthesis (FASII) pathway and modulated the genetic and bioprocess parameters to improve its yield and productivity. E. coli strain expressing tesBT gene yielded maximum butyric acid titer at 1.46 g L-1, followed by tesBF at 0.85 g L-1 and tesAT at 0.12 g L-1. The titer of butyric acid varied significantly depending upon the plasmid copy number and strain genotype. The modulation of genetic factors that are known to influence long chain fatty acid production, such as deletion of the fadD and fadE that initiates the fatty acid degradation cycle and overexpression of fadR that is a global transcriptional activator of fatty acid biosynthesis and repressor of degradation cycle, did not improve the butyric acid titer significantly. Use of chemical inhibitor cerulenin, which restricts the fatty acid elongation cycle, increased the butyric acid titer by 1.7-fold in case of TesBF, while it had adverse impact in case of TesBT. In vitro enzyme assay indicated that cerulenin also inhibited short chain specific thioesterase, though inhibitory concentration varied according to the type of thioesterase used. Further process optimization followed by fed-batch cultivation under phosphorous limited condition led to production of 14.3 g L-1 butyric acid and 17.5 g L-1 total free fatty acid at 28% of theoretical yield. This study expands our understanding of SCFAs production in E. coli through FASII pathway and highlights role of genetic and process optimization to enhance the desired product. PMID:27466817

  14. Fatty acids, eicosanoids and PPAR gamma.

    PubMed

    Marion-Letellier, Rachel; Savoye, Guillaume; Ghosh, Subrata

    2016-08-15

    Peroxisome proliferator-activated receptor γ (PPARγ) belongs to the family of nuclear nuclear receptors and is mainly expressed in adipose tissue, hematopoietic cells and the large intestine. Contrary to other nuclear receptors that mainly bind a single specific ligand, there are numerous natural PPARγ ligands, in particular fatty acids or their derivatives called eicosanoids. PPARγ have pleiotropic functions: (i) glucose and lipid metabolism regulation, (ii) anti-inflammatory properties, (iii) oxidative stress inhibition, (iv) improvement of endothelial function. Its role has been mainly studied by the use synthetic agonists. In this review, we will focus on the effects of PPARγ mediated through fatty acids and how these have beneficial health properties. PMID:26632493

  15. Non-Alcoholic Fatty Liver Disease: The Bile Acid-Activated Farnesoid X Receptor as an Emerging Treatment Target

    PubMed Central

    Fuchs, Michael

    2012-01-01

    Non-alcoholic fatty liver disease (NAFLD) is currently evolving as the most common liver disease worldwide. It may progress to liver cirrhosis and liver cancer and is poised to represent the most common indication for liver transplantation in the near future. The pathogenesis of NAFLD is multifactorial and not fully understood, but it represents an insulin resistance state characterized by a cluster of cardiovascular risk factors including obesity, dyslipidemia, hyperglycemia, and hypertension. Importantly, NAFLD also has evolved as independent risk factor for cardiovascular disease. Unfortunately thus far no established treatment does exist for NAFLD. The bile acid-activated nuclear farnesoid X receptor (FXR) has been shown to play a role not only in bile acid but also in lipid and glucose homeostasis. Specific targeting of FXR may be an elegant and very effective way to readjust dysregulated nuclear receptor-mediated metabolic pathways. This review discusses the body's complex response to the activation of FXR with its beneficial actions but also potential undesirable side effects. PMID:22187656

  16. Sex and depot differences in ex vivo adipose tissue fatty acid storage and glycerol-3-phosphate acyltransferase activity

    PubMed Central

    Morgan-Bathke, Maria; Chen, Liang; Oberschneider, Elisabeth; Harteneck, Debra

    2015-01-01

    Adipose tissue fatty acid storage varies according to sex, adipose tissue depot, and degree of fat gain. However, the mechanism(s) for these variations is not completely understood. We examined whether differences in adipose tissue glycerol-3-phosphate acyltransferase (GPAT) might play a role in these variations. We optimized an enzyme activity assay for total GPAT and GPAT1 activity in human adipose tissue and measured GPAT activity. Omental and subcutaneous adipose tissue was collected from obese and nonobese adults for measures of GPAT and GPAT1 activities, ex vivo palmitate storage, acyl-CoA synthetase (ACS) and diacylglycerol-acyltransferase (DGAT) activities, and CD36 protein. Total GPAT and GPAT1 activities decreased as a function of adipocyte size in both omental (r = −0.71, P = 0.003) and subcutaneous (r = −0.58, P = 0.04) fat. The relative contribution of GPAT1 to total GPAT activity increased as a function of adipocyte size, accounting for up to 60% of GPAT activity in those with the largest adipocytes. We found strong, positive correlations between ACS, GPAT, and DGAT activities for both sexes and depots (r values 0.58–0.91) and between these storage factors and palmitate storage rates into TAG (r values 0.55–0.90). We conclude that: 1) total GPAT activity decreases as a function of adipocyte size; 2) GPAT1 can account for over half of adipose GPAT activity in hypertrophic obesity; and 3) ACS, GPAT, and DGAT are coordinately regulated. PMID:25738782

  17. Use of agar diffusion assay to evaluate bactericidal activity of formulations of alkaline salts of fatty acids against bacteria associated with poultry processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The agar diffusion assay was used to examine antibacterial activity of alkaline salts of fatty acids (FA). Wells in agar media seeded with bacteria were filled with FA-potassium hydroxide (KOH) solutions, plates were incubated, and zones of inhibition were measured. The relationship between bacteric...

  18. Addition of an N-terminal epitope tag significantly increases the activity of plant fatty acid desaturases expressed in yeast cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Saccharomyces cerevisiae shows great potential for development of bioreactor systems geared towards the production of high-value lipids such as polyunsaturated omega-3 fatty acids, the yields of which are largely dependent on the activity of ectopically-expressed enzymes. Here we show that the addit...

  19. First total synthesis and antiprotozoal activity of (Z)-17-methyl-13-octadecenoic acid, a new marine fatty acid from the sponge Polymastia penicillus

    PubMed Central

    Carballeira, Néstor M.; Montano, Nashbly; Balaña-Fouce, Rafael; Prada, Christopher Fernández

    2009-01-01

    The first total synthesis for the (Z)-17-methyl-13-octadecenoic acid was accomplished in seven steps and in a 45% overall yield. The use of (trimethylsilyl)acetylene was key in the synthesis. Based on a previous developed strategy in our laboratory the best synthetic route towards the title compound was first acetylide coupling of (trimethylsilyl)acetylene to the long-chain protected 12-bromo-1-dodecanol followed by a second acetylide coupling to the short-chain 3-methyl-1-bromobutane, which resulted in higher yields. Complete spectral data is also presented for the first time for this recently discovered fatty acid. The title compound displayed antiprotozoal activity against Leishmania donovani (EC50 = 19.8 μg/ml) and inhibited the leishmania DNA topoisomerase IB at concentrations of 50 μM. PMID:19527698

  20. 21 CFR 172.859 - Sucrose fatty acid esters.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sucrose fatty acid esters. 172.859 Section 172.859... CONSUMPTION Multipurpose Additives § 172.859 Sucrose fatty acid esters. Sucrose fatty acid esters identified...) Sucrose fatty acid esters are the mono-, di-, and tri-esters of sucrose with fatty acids and are...

  1. 21 CFR 862.1290 - Fatty acids test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Fatty acids test system. 862.1290 Section 862.1290....1290 Fatty acids test system. (a) Identification. A fatty acids test system is a device intended to measure fatty acids in plasma and serum. Measurements of fatty acids are used in the diagnosis...

  2. Activation of type 2 cannabinoid receptors (CB2R) promotes fatty acid oxidation through the SIRT1/PGC-1α pathway

    SciTech Connect

    Zheng, Xuqin; Sun, Tao; Wang, Xiaodong

    2013-07-05

    Highlights: •TC, a CB2R specific agonist, stimulates SIRT1 activity by PKA/CREB pathway. •TC promotes PGC-1α transcriptional activity by increasing its deacetylation. •TC increases the expression of genes linked to FAO and promotes the rate of FAO. •The effects of TC in FAO are dependent on CB2R. •Suggesting CB2R as a target to treat diseases with lipid dysregulation. -- Abstract: Abnormal fatty acid oxidation has been associated with obesity and type 2 diabetes. At the transcriptional level, peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α) has been reported to strongly increase the ability of hormone nuclear receptors PPARα and ERRα to drive transcription of fatty acid oxidation enzymes. In this study, we report that a specific agonist of the type 2 cannabinoid receptor (CB2R) can lead to fatty acid oxidation through the PGC-1α pathway. We have found that CB2R is expressed in differentiated C2C12 myotubes, and that use of the specific agonist trans-caryophyllene (TC) stimulates sirtuin 1 (SIRT1) deacetylase activity by increasing the phosphorylation of cAMP response element-binding protein (CREB), thus leading to increased levels of PGC-1α deacetylation. This use of TC treatment increases the expression of genes linked to the fatty acid oxidation pathway in a SIRT1/PGC-1α-dependent mechanism and also drastically accelerates the rate of complete fatty acid oxidation in C2C12 myotubes, neither of which occur when CB2R mRNA is knocked down using siRNA. These results reveal that activation of CB2R by a selective agonist promotes lipid oxidation through a signaling/transcriptional pathway. Our findings imply that pharmacological manipulation of CB2R may provide therapeutic possibilities to treat metabolic diseases associated with lipid dysregulation.

  3. Desaturation of fatty acids in Trypanosoma cruzi

    SciTech Connect

    de Lema, M.G.; Aeberhard, E.E.

    1986-11-01

    Uptake and metabolism of saturated (16:0, 18:0) and unsaturated (18:1(n-9), 18:2(n-6), 18:3(n-3)) fatty acids by cultured epimastigotes of Trypanosoma cruzi were studied. Between 17.5 and 33.5% of the total radioactivity of (1-/sup 14/C)labeled fatty acids initially added to the culture medium was incorporated into the lipids of T. cruzi and mostly choline and ethanolamine phospholipids. As demonstrated by argentation thin layer chromatography, gas liquid chromatography and ozonolysis of the fatty acids synthesized, exogenous palmitic acid was elongated to stearic acid, and the latter was desaturated to oleic acid and 18:2 fatty acid. The 18:2 fatty acid was tentatively identified as linoleic acid with the first bond in the delta 9 position and the second bond toward the terminal methyl end. Exogenous stearic acid was also desaturated to oleic and 18:2 fatty acid, while oleic acid was only converted into 18:2. All of the saturated and unsaturated fatty acids investigated were also converted to a small extent (2-4%) into polyunsaturated fatty acids. No radioactive aldehyde methyl ester fragments of less than nine carbon atoms were detected after ozonolysis of any of the fatty acids studied. These results demonstrate the existence of delta 9 and either delta 12 or delta 15 desaturases, or both, in T. cruzi and suggest that delta 6 desaturase or other desaturases of the animal type are likely absent in cultured forms of this organism.

  4. Trans Fatty Acid Derived Phospholipids Show Increased Membrane Cholesterol and Reduced Receptor Activation as Compared to Their Cis Analogs

    PubMed Central

    Niu, Shui-Lin; Mitchell, Drake C.; Litman, Burton J.

    2005-01-01

    The consumption of trans fatty acid (TFA) is linked to the elevation of LDL cholesterol and is considered to be a major health risk factor for coronary heart disease. Despite several decades of extensive research on this subject, the underlying mechanism of how TFA modulates serum cholesterol levels remains elusive. In this study, we examined the molecular interaction of TFA-derived phospholipid with cholesterol and the membrane receptor rhodopsin in model membranes. Rhodopsin is a prototypical member of the G-protein coupled receptor family. It has a well-characterized structure and function and serves as a model membrane receptor in this study. Phospholipid–cholesterol affinity was quantified by measuring cholesterol partition coefficients. Phospholipid–receptor interactions were probed by measuring the level of rhodopsin activation. Our study shows that phospholipid derived from TFA had a higher membrane cholesterol affinity than their cis analogues. TFA phospholipid membranes also exhibited a higher acyl chain packing order, which was indicated by the lower acyl chain packing free volume as determined by DPH fluorescence and the higher transition temperature for rhodopsin thermal denaturation. The level of rhodopsin activation was diminished in TFA phospholipids. Since membrane cholesterol level and membrane receptors are involved in the regulation of cholesterol homeostasis, the combination of higher cholesterol content and reduced receptor activation associated with the presence of TFA–phospholipid could be factors contributing to the elevation of LDL cholesterol. PMID:15766276

  5. Omega-3 polyunsaturated fatty acids selectively inhibit growth in neoplastic oral keratinocytes by differentially activating ERK1/2

    PubMed Central

    Parkinson, Eric Kenneth

    2013-01-01

    The long-chain omega-3 polyunsaturated fatty acids (n-3 PUFAs)—eicosapentaenoic acid (EPA) and its metabolite docosahexaenoic acid (DHA)—inhibit cancer formation in vivo, but their mechanism of action is unclear. Extracellular signal-regulated kinase 1/2 (ERK1/2) activation and inhibition have both been associated with the induction of tumour cell apoptosis by n-3 PUFAs. We show here that low doses of EPA, in particular, inhibited the growth of premalignant and malignant keratinocytes more than the growth of normal counterparts by a combination of cell cycle arrest and apoptosis. The growth inhibition of the oral squamous cell carcinoma (SCC) lines, but not normal keratinocytes, by both n-3 PUFAs was associated with epidermal growth factor receptor (EGFR) autophosphorylation, a sustained phosphorylation of ERK1/2 and its downstream target p90RSK but not with phosphorylation of the PI3 kinase target Akt. Inhibition of EGFR with either the EGFR kinase inhibitor AG1478 or an EGFR-blocking antibody inhibited ERK1/2 phosphorylation, and the blocking antibody partially antagonized growth inhibition by EPA but not by DHA. DHA generated more reactive oxygen species and activated more c-jun N-terminal kinase than EPA, potentially explaining its increased toxicity to normal keratinocytes. Our results show that, in part, EPA specifically inhibits SCC growth and development by creating a sustained signalling imbalance to amplify the EGFR/ERK/p90RSK pathway in neoplastic keratinocytes to a supraoptimal level, supporting the chemopreventive potential of EPA, whose toxicity to normal cells might be reduced further by blocking its metabolism to DHA. Furthermore, ERK1/2 phosphorylation may have potential as a biomarker of n-3 PUFA function in vivo. PMID:23892603

  6. Nordihydroguaiaretic acid protects against high-fat diet-induced fatty liver by activating AMP-activated protein kinase in obese mice

    SciTech Connect

    Lee, Myoung-Su; Kim, Daeyoung; Jo, Keunae; Hwang, Jae-Kwan

    2010-10-08

    Research highlights: {yields} NDGA decreases high-fat diet-induced body weight gain and adiposity. {yields} NDGA reduces high-fat diet-induced triglyceride accumulation in liver. {yields} NDGA improves lipid storage in vitro through altering lipid regulatory proteins. {yields} Inhibition of lipid storage in vivo and in vitro is mediated by AMPK activation. -- Abstract: Nonalcoholic fatty liver disease, one of the most common causes of chronic liver disease, is strongly associated with metabolic syndrome. Nordihydroguaiaretic acid (NDGA) has been reported to inhibit lipoprotein lipase; however, the effect of NDGA on hepatic lipid metabolism remains unclear. We evaluated body weight, adiposity, liver histology, and hepatic triglyceride content in high-fat diet (HFD)-fed C57BL/6J mice treated with NDGA. In addition, we characterized the underlying mechanism of NDGA's effects in HepG2 hepatocytes by Western blot and RT-PCR analysis. NDGA (100 or 200 mg/kg/day) reduced weight gain, fat pad mass, and hepatic triglyceride accumulation, and improved serum lipid parameters in mice fed a HFD for 8 weeks. NDGA significantly increased AMP-activated protein kinase (AMPK) phosphorylation in the liver and in HepG2 hepatocytes. NDGA downregulated the level of mature SREBP-1 and its target genes (acetyl-CoA carboxylase and fatty acid synthase), but, it upregulated expression of genes involved in fatty acid oxidation, such as peroxisome proliferator-activated receptor (PPAR){alpha}, PPAR{gamma} coactivator-1, carnitine palmitoyl transferase-1, and uncoupling protein-2. The specific AMPK inhibitor compound C attenuated the effects of NDGA on expression of lipid metabolism-related proteins in HepG2 hepatocytes. The beneficial effects of NDGA on HFD-induced hepatic triglyceride accumulation are mediated through AMPK signaling pathways, suggesting a potential target for preventing NAFLD.

  7. Historical perspectives on fatty acid chemistry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acids are basic renewable chemical building blocks that can be used as intermediates for a multitude of products. Today the global value of fatty acids exceeds 18 billion dollars and is expected to increase to nearly 26 billion over the period from 2014-2019. From it auspicious beginnings, the...

  8. Phylogenomic reconstruction of archaeal fatty acid metabolism

    PubMed Central

    Dibrova, Daria V.; Galperin, Michael Y.; Mulkidjanian, Armen Y.

    2014-01-01

    While certain archaea appear to synthesize and/or metabolize fatty acids, the respective pathways still remain obscure. By analyzing the genomic distribution of the key lipid-related enzymes, we were able to identify the likely components of the archaeal pathway of fatty acid metabolism, namely, a combination of the enzymes of bacterial-type β-oxidation of fatty acids (acyl-CoA-dehydrogenase, enoyl-CoA hydratase, and 3-hydroxyacyl-CoA dehydrogenase) with paralogs of the archaeal acetyl-CoA C-acetyltransferase, an enzyme of the mevalonate biosynthesis pathway. These three β-oxidation enzymes working in the reverse direction could potentially catalyze biosynthesis of fatty acids, with paralogs of acetyl-CoA C-acetyltransferase performing addition of C2 fragments. The presence in archaea of the genes for energy-transducing membrane enzyme complexes, such as cytochrome bc complex, cytochrome c oxidase, and diverse rhodopsins, was found to correlate with the presence of the proposed system of fatty acid biosynthesis. We speculate that because these membrane complexes functionally depend on fatty acid chains, their genes could have been acquired via lateral gene transfer from bacteria only by those archaea that already possessed a system of fatty acid biosynthesis. The proposed pathway of archaeal fatty acid metabolism operates in extreme conditions and therefore might be of interest in the context of biofuel production and other industrial applications. PMID:24818264

  9. Polyunsaturated fatty acids and insulin resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have reviewed results from published studies regarding the effects of polyunsaturated fatty acids (PUFA) intake on insulin resistance (IR) in human subjects. Evidence has been gathered from epidemiological, cross-sectional and interventions studies. Increased intake of trans fatty acids (TFA) inc...

  10. Alkyl polyglucose enhancing propionic acid enriched short-chain fatty acids production during anaerobic treatment of waste activated sludge and mechanisms.

    PubMed

    Luo, Jingyang; Feng, Leiyu; Chen, Yinguang; Sun, Han; Shen, Qiuting; Li, Xiang; Chen, Hong

    2015-04-15

    Adding alkyl polyglucose (APG) into an anaerobic treatment system of waste activated sludge (WAS) was reported to remarkably improve the production of short-chain fatty acids (SCFAs), especially propionic acid via simultaneously accelerating solubilization and hydrolysis, enhancing acidification, inhibiting methanogenesis and balancing carbon to nitrogen (C/N) ratio of substrate. Not only the production of SCFAs, especially propionic acid, was significantly improved by APG, but also the feasible operation time was shortened. The SCFAs yield at 0.3 g APG per gram of total suspended solids (TSS) within 4 d was 2988 ± 60 mg chemical oxygen demand (COD) per liter, much higher than that those from sole WAS or sole WAS plus sole APG. The corresponding yield of propionic acid was 1312 ± 25 mg COD/L, 7.9-fold of sole WAS. Mechanism investigation showed that during anaerobic treatment of WAS in the presence of APG both the solubilization and hydrolysis were accelerated and the acidification was enhanced, while the methanogenesis was inhibited. Moreover, the activities of key enzymes involved in WAS hydrolysis and acidification were improved through the adjustment of C/N ratio of substrates with APG. The abundance of microorganisms responsible for organic compounds hydrolysis and SCFAs production was also observed to be greatly enhanced with APG via 454 high-throughput pyrosequencing analysis. PMID:25697695

  11. Comparison of Bacillus monooxygenase genes for unique fatty acid production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper reviews Bacillus genes encoding monooxygenase enzymes producing unique fatty acid metabolites. Specifically, it examines standard monooxygenase electron transfer schemes and related domain structures of these fused domain enzymes on route to understanding the observed oxygenase activiti...

  12. Trans fatty acid intake and emotion regulation.

    PubMed

    Holt, Megan E; Lee, Jerry W; Morton, Kelly R; Tonstad, Serena

    2015-06-01

    We examined whether there is a relationship between trans fatty acid intakes and emotion regulation, mediated by positive or negative affect. Archival data on 1699 men and 3293 women were used to measure trans fatty acid intake at baseline, positive, and negative affects and emotion regulation at follow-up. Higher trans fatty acid intake related to subsequent difficulties with emotional awareness (p = 0.045), clarity (p = 0.012), and regulation strategies (p = 0.009). Affect mediated these relationships. Lower trans fatty acid intake associated with increased positive and decreased negative affects which, in turn, associated with improved emotion regulation. Trans fatty acid intakes may be associated with subsequent ability to regulate emotions. PMID:26032795

  13. Effect of high-intensity intermittent swimming training on fatty acid oxidation enzyme activity in rat skeletal muscle.

    PubMed

    Terada, Shin; Tabata, Izumi; Higuchi, Mitsuru

    2004-02-01

    We previously reported that high-intensity exercise training significantly increased citrate synthase (CS) activity, a marker of oxidative enzyme, in rat skeletal muscle to a level equaling that attained after low-intensity prolonged exercise training (Terada et al., J Appl Physiol 90: 2019-2024, 2001). Since mitochondrial oxidative enzymes and fatty acid oxidation (FAO) enzymes are often increased simultaneously, we assessed the effect of high-intensity intermittent swimming training on FAO enzyme activity in rat skeletal muscle. Male Sprague-Dawley rats (3 to 4 weeks old) were assigned to a 10-day period of high-intensity intermittent exercise training (HIT), low-intensity prolonged exercise training (LIT), or sedentary control conditions. In the HIT group, the rats repeated fourteen 20 s swimming sessions with a weight equivalent to 14-16% of their body weight. Between the exercise sessions, a 10 s pause was allowed. Rats in the LIT group swam 6 h/day in two 3 h sessions separated by 45 min of rest. CS activity in the triceps muscle of rats in the HIT and LIT groups was significantly higher than that in the control rats by 36 and 39%, respectively. Furthermore, 3-beta hydroxyacyl-CoA dehydrogenase (HAD) activity, an important enzyme in the FAO pathway in skeletal muscle, was higher in the two training groups than in the control rats (HIT: 100%, LIT: 88%). No significant difference in HAD activity was observed between the two training groups. In conclusion, the present investigation demonstrated that high-intensity intermittent swimming training elevated FAO enzyme activity in rat skeletal muscle to a level similar to that attained after 6 h of low-intensity prolonged swimming exercise training. PMID:15040848

  14. PPARδ Agonism Activates Fatty Acid Oxidation via PGC-1α but Does Not Increase Mitochondrial Gene Expression and Function

    PubMed Central

    Kleiner, Sandra; Nguyen-Tran, Van; Baré, Olivia; Huang, Xueming; Spiegelman, Bruce; Wu, Zhidan

    2009-01-01

    PPARδ (peroxisome proliferator-activated receptor δ) is a regulator of lipid metabolism and has been shown to induce fatty acid oxidation (FAO). PPARδ transgenic and knock-out mice indicate an involvement of PPARδ in regulating mitochondrial biogenesis and oxidative capacity; however, the precise mechanisms by which PPARδ regulates these pathways in skeletal muscle remain unclear. In this study, we determined the effect of selective PPARδ agonism with the synthetic ligand, GW501516, on FAO and mitochondrial gene expression in vitro and in vivo. Our results show that activation of PPARδ by GW501516 led to a robust increase in mRNA levels of key lipid metabolism genes. Mitochondrial gene expression and function were not induced under the same conditions. Additionally, the activation of Pdk4 transcription by PPARδ was coactivated by PGC-1α. PGC-1α, but not PGC-1β, was essential for full activation of Cpt-1b and Pdk4 gene expression via PPARδ agonism. Furthermore, the induction of FAO by PPARδ agonism was completely abolished in the absence of both PGC-1α and PGC-1β. Conversely, PGC-1α-driven FAO was independent of PPARδ. Neither GW501516 treatment nor knockdown of PPARδ affects PGC-1α-induced mitochondrial gene expression in primary myotubes. These results demonstrate that pharmacological activation of PPARδ induces FAO via PGC-1α. However, PPARδ agonism does not induce mitochondrial gene expression and function. PGC-1α-induced FAO and mitochondrial biogenesis appear to be independent of PPARδ. PMID:19435887

  15. Stabilized epoxygenated fatty acids regulate inflammation, pain, angiogenesis and cancer

    PubMed Central

    Zhang, Guodong; Kodani, Sean; Hammock, Bruce D.

    2014-01-01

    Epoxygenated fatty acids (EpFAs), which are lipid mediators produced by cytochrome P450 epoxygenases from polyunsaturated fatty acids, are important signaling molecules known to regulate various biological processes including inflammation, pain and angiogenesis. The EpFAs are further metabolized by soluble epoxide hydrolase (sEH) to form fatty acid diols which are usually less-active. Pharmacological inhibitors of sEH that stabilize endogenous EpFAs are being considered for human clinical uses. Here we review the biology of ω-3 and ω-6 EpFAs on inflammation, pain, angiogenesis and tumorigenesis. PMID:24345640

  16. Δ6-fatty acid desaturase and fatty acid elongase mRNA expression, phagocytic activity and weight-to-length relationships in channel catfish (Ictalurus punctatus) fed alternative diets with soy oil and a probiotic.

    PubMed

    Santerre, A; Téllez-Bañuelos, M C; Casas-Solís, J; Castro-Félix, P; Huízar-López, M R; Zaitseva, G P; Horta-Fernández, J L; Trujillo-García, E A; de la Mora-Sherer, D; Palafox-Luna, J A; Juárez-Carrillo, E

    2015-01-01

    A time-course feeding trial was conducted for 120 days on juvenile channel catfish (Ictalurus punctatus) to study the effects of diets differing in oil source (fish oil or soy oil) and supplementation with a commercial probiotic. Relative levels of Δ6-fatty acid desaturase (Δ6-FAD) and fatty acid elongase (FAE) expression were assessed in brain and liver tissues. Both genes showed similar expression levels in all groups studied. Fish weight-to-length relationships were evaluated using polynomial regression analyses, which identified a burst in weight and length in the channel catfish on day 105 of treatment; this increase was related to an increase in gene expression. Mid-intestinal lactic acid bacterium (LAB) count was determined according to morphological and biochemical criteria using API strips. There was no indication that intestinal LAB count was affected by the modified diets. The Cunningham glass adherence method was applied to evaluate phagocytic cell activity in peripheral blood. Reactive oxygen species (ROS) generation was assessed through the respiratory burst activity of spleen macrophages by the NBT reduction test. Probiotic-supplemented diets provided a good substrate for innate immune system function; the phagocytic index was significantly enhanced in fish fed soy oil and the probiotic, and at the end of the experimental period, ROS production increased in fish fed soy oil. The substitution of fish oil by soy oil is recommended for food formulation and will contribute to promoting sustainable aquaculture. Probiotics are also recommended for channel catfish farming as they may act as immunonutrients. PMID:26400353

  17. An intronic peroxisome proliferator-activated receptor-binding sequence mediates fatty acid induction of the human carnitine palmitoyltransferase 1A.

    PubMed

    Napal, Laura; Marrero, Pedro F; Haro, Diego

    2005-12-01

    The liver plays a central role in the response to fasting. The hormonal profile in this condition, low insulin, and high concentrations of glucagon in plasma, induce the release of large amounts of fatty acids from adipose tissue. Prolonged starvation can therefore induce a dramatic change in the fatty acid oxidative capacity of liver metabolism. Modulation of gene expression by PPARalpha plays a crucial role in this response. While a major role for PPARalpha in the liver is to produce ketone bodies as fuel through beta-oxidation for peripheral tissues during fast, its participation in the control of CPT1A, the rate-limiting step of the pathway, remains controversial. Using Web-based software (VISTA) combining transcription factor binding site database searches with comparative sequence analyses, we have localized a conserved functional PPAR responsive element downstream of the transcriptional start site of the human CPT1A gene. We have shown that this sequence is fundamental for fatty acids or PGC1-induced transcriptional activation of the CPT1A gene. These results corroborate the hypothesis that PPARalpha regulates the limiting step in the oxidation of fatty acids in liver mitochondria. PMID:16271724

  18. Insulin resistance reduces arterial prostacyclin synthase and eNOS activities by increasing endothelial fatty acid oxidation

    PubMed Central

    Du, Xueliang; Edelstein, Diane; Obici, Silvana; Higham, Ninon; Zou, Ming-Hui; Brownlee, Michael

    2006-01-01

    Insulin resistance markedly increases cardiovascular disease risk in people with normal glucose tolerance, even after adjustment for known risk factors such as LDL, triglycerides, HDL, and systolic blood pressure. In this report, we show that increased oxidation of FFAs in aortic endothelial cells without added insulin causes increased production of superoxide by the mitochondrial electron transport chain. FFA-induced overproduction of superoxide activated a variety of proinflammatory signals previously implicated in hyperglycemia-induced vascular damage and inactivated 2 important antiatherogenic enzymes, prostacyclin synthase and eNOS. In 2 nondiabetic rodent models — insulin-resistant, obese Zucker (fa/fa) rats and high-fat diet–induced insulin-resistant mice — inactivation of prostacyclin synthase and eNOS was prevented by inhibition of FFA release from adipose tissue; by inhibition of the rate-limiting enzyme for fatty acid oxidation in mitochondria, carnitine palmitoyltransferase I; and by reduction of superoxide levels. These studies identify what we believe to be a novel mechanism contributing to the accelerated atherogenesis and increased cardiovascular disease risk occurring in people with insulin resistance. PMID:16528409

  19. Expression of Efflux Pumps and Fatty Acid Activator One Genes in Azole Resistant Candida Glabrata Isolated From Immunocompromised Patients.

    PubMed

    Farahyar, Shirin; Zaini, Farideh; Kordbacheh, Parivash; Rezaie, Sassan; Falahati, Mehraban; Safara, Mahin; Raoofian, Reza; Hatami, Kamran; Mohebbi, Masoumeh; Heidari, Mansour

    2016-07-01

    Acquired azole resistance in opportunistic fungi causes severe clinical problems in immunosuppressed individuals. This study investigated the molecular mechanisms of azole resistance in clinical isolates of Candida glabrata. Six unmatched strains were obtained from an epidemiological survey of candidiasis in immunocompromised hosts that included azole and amphotericin B susceptible and azole resistant clinical isolates. Candida glabrata CBS 138 was used as reference strain. Antifungal susceptibility testing of clinical isolates was evaluated using Clinical and Laboratory Standards Institute (CLSI) methods. Complementary DNA-amplified fragment length polymorphism (cDNA-AFLP) technology, semi-quantitative RT-PCR, and sequencing were employed for identification of potential genes involved in azole resistance. Candida glabrata Candida drug resistance 1 (CgCDR1) and Candida glabrata Candida drug resistance 2 (CgCDR2) genes, which encode for multidrug transporters, were found to be upregulated in azole-resistant isolates (≥2-fold). Fatty acid activator 1 (FAA1) gene, belonging to Acyl-CoA synthetases, showed expression in resistant isolates ≥2-fold that of the susceptible isolates and the reference strain. This study revealed overexpression of the CgCDR1, CgCDR2, and FAA1 genes affecting biological pathways, small hydrophobic compounds transport, and lipid metabolism in the resistant clinical C.glabrata isolates. PMID:27424018

  20. Glucose Regulates Hypothalamic Long-chain Fatty Acid Metabolism via AMP-activated Kinase (AMPK) in Neurons and Astrocytes*

    PubMed Central

    Taïb, Bouchra; Bouyakdan, Khalil; Hryhorczuk, Cécile; Rodaros, Demetra; Fulton, Stephanie; Alquier, Thierry

    2013-01-01

    Hypothalamic controls of energy balance rely on the detection of circulating nutrients such as glucose and long-chain fatty acids (LCFA) by the mediobasal hypothalamus (MBH). LCFA metabolism in the MBH plays a key role in the control of food intake and glucose homeostasis, yet it is not known if glucose regulates LCFA oxidation and esterification in the MBH and, if so, which hypothalamic cell type(s) and intracellular signaling mechanisms are involved. The aim of this study was to determine the impact of glucose on LCFA metabolism, assess the role of AMP-activated Kinase (AMPK), and to establish if changes in LCFA metabolism and its regulation by glucose vary as a function of the kind of LCFA, cell type, and brain region. We show that glucose inhibits palmitate oxidation via AMPK in hypothalamic neuronal cell lines, primary hypothalamic astrocyte cultures, and MBH slices ex vivo but not in cortical astrocytes and slice preparations. In contrast, oleate oxidation was not affected by glucose or AMPK inhibition in MBH slices. In addition, our results show that glucose increases palmitate, but not oleate, esterification into neutral lipids in neurons and MBH slices but not in hypothalamic astrocytes. These findings reveal for the first time the metabolic fate of different LCFA in the MBH, demonstrate AMPK-dependent glucose regulation of LCFA oxidation in both astrocytes and neurons, and establish metabolic coupling of glucose and LCFA as a distinguishing feature of hypothalamic nuclei critical for the control of energy balance. PMID:24240094

  1. Up-regulation of fatty acid synthase induced by EGFR/ERK activation promotes tumor growth in pancreatic cancer

    SciTech Connect

    Bian, Yong; Yu, Yun; Wang, Shanshan; Li, Lin

    2015-08-07

    Lipid metabolism is dysregulated in many human diseases including atherosclerosis, type 2 diabetes and cancers. Fatty acid synthase (FASN), a key lipogenic enzyme involved in de novo lipid biosynthesis, is significantly upregulated in multiple types of human cancers and associates with tumor progression. However, limited data is available to understand underlying biological functions and clinical significance of overexpressed FASN in pancreatic ductal adenocarcinoma (PDAC). Here, upregulated FASN was more frequently observed in PDAC tissues compared with normal pancreas in a tissue microarray. Kaplan–Meier survival analysis revealed that high expression level of FASN resulted in a significantly poor prognosis of PDAC patients. Knockdown or inhibition of endogenous FASN decreased cell proliferation and increased cell apoptosis in HPAC and AsPC-1 cells. Furthermore, we demonstrated that EGFR/ERK signaling accounts for elevated FASN expression in PDAC as ascertained by performing siRNA assays and using specific pharmacological inhibitors. Collectively, our results indicate that FASN exhibits important roles in tumor growth and EGFR/ERK pathway is responsible for upregulated expression of FASN in PDAC. - Highlights: • Increased expression of FASN indicates a poor prognosis in PDAC. • Elevated FASN favors tumor growth in PDAC in vitro. • Activation of EGFR signaling contributes to elevated FASN expression.

  2. Fatty Acid and Phytosterol Content of Commercial Saw Palmetto Supplements

    PubMed Central

    Penugonda, Kavitha; Lindshield, Brian L.

    2013-01-01

    Saw palmetto supplements are one of the most commonly consumed supplements by men with prostate cancer and/or benign prostatic hyperplasia (BPH). Some studies have found significant improvements in BPH and lower urinary tract symptoms (LUTS) with saw palmetto supplementation, whereas others found no benefits. The variation in the efficacy in these trials may be a result of differences in the putative active components, fatty acids and phytosterols, of the saw palmetto supplements. To this end, we quantified the major fatty acids (laurate, myristate, palmitate, stearate, oleate, linoleate) and phytosterols (campesterol, stigmasterol, β-sitosterol) in 20 commercially available saw palmetto supplements using GC-FID and GC-MS, respectively. Samples were classified into liquids, powders, dried berries, and tinctures. Liquid saw palmetto supplements contained significantly higher (p < 0.05) concentrations of total fatty acids (908.5 mg/g), individual fatty acids, total phytosterols (2.04 mg/g), and individual phytosterols, than the other supplement categories. Powders contained significantly higher (p < 0.05) concentrations of total fatty acids than tinctures, which contain negligible amounts of fatty acids (46.3 mg/g) and phytosterols (0.10 mg/g). Our findings suggest that liquid saw palmetto supplements may be the best choice for individuals who want to take a saw palmetto supplement with the highest concentrations of both fatty acids and phytosterols. PMID:24067389

  3. Fatty acid mobilization and comparison to milk fatty acid content in northern elephant seals.

    PubMed

    Fowler, Melinda A; Debier, Cathy; Mignolet, Eric; Linard, Clementine; Crocker, Daniel E; Costa, Daniel P

    2014-01-01

    A fundamental feature of the life history of true seals, bears and baleen whales is lactation while fasting. This study examined the mobilization of fatty acids from blubber and their subsequent partitioning into maternal metabolism and milk production in northern elephant seals (Mirounga angustirostris). The fatty acid composition of blubber and milk was measured in both early and late lactation. Proportions of fatty acids in milk and blubber were found to display a high degree of similarity both early and late in lactation. Seals mobilized an enormous amount of lipid (~66 kg in 17 days), but thermoregulatory fatty acids, those that remain fluid at low temperatures, were relatively conserved in the outer blubber layer. Despite the stratification, the pattern of mobilization of specific fatty acids conforms to biochemical predictions. Long chain (>20C) monounsaturated fatty acids (MUFAs) were the least mobilized from blubber and the only class of fatty acids that showed a proportional increase in milk in late lactation. Polyunsaturated fatty acids (PUFAs) and saturated fatty acids (SFAs) were more mobilized from the blubber, but neither proportion increased in milk at late lactation. These data suggest that of the long chain MUFA mobilized, the majority is directed to milk synthesis. The mother may preferentially use PUFA and SFA for her own metabolism, decreasing the availability for deposition into milk. The potential impacts of milk fatty acid delivery on pup diving development and thermoregulation are exciting avenues for exploration. PMID:24126964

  4. Orthogonal Fatty Acid Biosynthetic Pathway Improves Fatty Acid Ethyl Ester Production in Saccharomyces cerevisiae.

    PubMed

    Eriksen, Dawn T; HamediRad, Mohammad; Yuan, Yongbo; Zhao, Huimin

    2015-07-17

    Fatty acid ethyl esters (FAEEs) are a form of biodiesel that can be microbially produced via a transesterification reaction of fatty acids with ethanol. The titer of microbially produced FAEEs can be greatly reduced by unbalanced metabolism and an insufficient supply of fatty acids, resulting in a commercially inviable process. Here, we report on a pathway engineering strategy in Saccharomyces cerevisiae for enhancing the titer of microbially produced FAEEs by providing the cells with an orthogonal route for fatty acid synthesis. The fatty acids generated from this heterologous pathway would supply the FAEE production, safeguarding endogenous fatty acids for cellular metabolism and growth. We investigated the heterologous expression of a Type-I fatty acid synthase (FAS) from Brevibacterium ammoniagenes coupled with WS/DGAT, the wax ester synthase/acyl-coenzyme that catalyzes the transesterification reaction with ethanol. Strains harboring the orthologous fatty acid synthesis yielded a 6.3-fold increase in FAEE titer compared to strains without the heterologous FAS. Variations in fatty acid chain length and degree of saturation can affect the quality of the biodiesel; therefore, we also investigated the diversity of the fatty acid production profile of FAS enzymes from other Actinomyces organisms. PMID:25594225

  5. An efficient and green pretreatment to stimulate short-chain fatty acids production from waste activated sludge anaerobic fermentation using free nitrous acid.

    PubMed

    Li, Xiaoming; Zhao, Jianwei; Wang, Dongbo; Yang, Qi; Xu, Qiuxiang; Deng, Yongchao; Yang, Weiqiang; Zeng, Guangming

    2016-02-01

    Short-chain fatty acid (SCFA) production from waste activated sludge (WAS) anaerobic fermentation is often limited by the slow hydrolysis rate and poor substrate availability, thus a long fermentation time is required. This paper reports a new pretreatment approach, i.e., using free nitrous acid (FNA) to pretreat sludge, for significantly enhanced SCFA production. Experimental results showed the highest SCFA production occurred at 1.8 mg FNA/L with time of day 6, which was 3.7-fold of the blank at fermentation time of day 12. Mechanism studies revealed that FNA pretreatment accelerated disruption of both extracellular polymeric substances and cell envelope. It was also found that FNA pretreatment benefited hydrolysis and acidification processes but inhibited the activities of methanogens, thereby promoting the yield of SCFA. In addition, the FNA pretreatment substantially stimulated the activities of key enzymes responsible for hydrolysis and acidification, which were consistent with the improvement of solubilization, hydrolysis and acidification of WAS anaerobic fermentation. PMID:26363316

  6. Proto-oncogene FBI-1 (Pokemon) and SREBP-1 synergistically activate transcription of fatty-acid synthase gene (FASN).

    PubMed

    Choi, Won-Il; Jeon, Bu-Nam; Park, Hyejin; Yoo, Jung-Yoon; Kim, Yeon-Sook; Koh, Dong-In; Kim, Myung-Hwa; Kim, Yu-Ri; Lee, Choong-Eun; Kim, Kyung-Sup; Osborne, Timothy F; Hur, Man-Wook

    2008-10-24

    FBI-1 (Pokemon/ZBTB7A) is a proto-oncogenic transcription factor of the BTB/POZ (bric-à-brac, tramtrack, and broad complex and pox virus zinc finger) domain family. Recent evidence suggested that FBI-1 might be involved in adipogenic gene expression. Coincidentally, expression of FBI-1 and fatty-acid synthase (FASN) genes are often increased in cancer and immortalized cells. Both FBI-1 and FASN are important in cancer cell proliferation. SREBP-1 is a major regulator of many adipogenic genes, and FBI-1 and SREBP-1 (sterol-responsive element (SRE)-binding protein 1) interact with each other directly via their DNA binding domains. FBI-1 enhanced the transcriptional activation of SREBP-1 on responsive promoters, pGL2-6x(SRE)-Luc and FASN gene. FBI-1 and SREBP-1 synergistically activate transcription of the FASN gene by acting on the proximal GC-box and SRE/E-box. FBI-1, Sp1, and SREBP-1 can bind to all three SRE, GC-box, and SRE/E-box. Binding competition among the three transcription factors on the GC-box and SRE/E-box appears important in the transcription regulation. FBI-1 is apparently changing the binding pattern of Sp1 and SREBP-1 on the two elements in the presence of induced SREBP-1 and drives more Sp1 binding to the proximal promoter with less of an effect on SREBP-1 binding. The changes induced by FBI-1 appear critical in the synergistic transcription activation. The molecular mechanism revealed provides insight into how proto-oncogene FBI-1 may attack the cellular regulatory mechanism of FASN gene expression to provide more phospholipid membrane components needed for rapid cancer cell proliferation. PMID:18682402

  7. Inhibitors of fatty acid biosynthesis in sunflower seeds.

    PubMed

    Pleite, Rafael; Martínez-Force, Enrique; Garcés, Rafael

    2006-09-01

    During de novo fatty acid synthesis in sunflower seeds, saturated fatty acid production is influenced by the competition between the enzymes of the principal pathways and the saturated acyl-ACP thioesterases. Genetic backgrounds with more efficient saturated acyl-ACP thioesterase alleles only express their phenotypic effects when the alleles for the enzymes in the main pathway are less efficient. For this reason, we studied the incorporation of [2-(14)C]acetate into the lipids of developing sunflower seeds (Helianthus annuus L.) from several mutant lines in vivo. The labelling of different triacylglycerol fatty acids in different oilseed mutants reflects the fatty acid composition of the seed and supports the channelling theory of fatty acid biosynthesis. Incubation with methyl viologen diminished the conversion of stearoyl-ACP to oleoyl-ACP in vivo through a decrease in the available reductant power. In turn, this led to the accumulation of stearoyl-ACP to the levels detected in seeds from high stearic acid mutants. The concomitant reduction of oleoyl-ACP content inside the plastid allowed us to study the activity of acyl-ACP thioesterases on saturated fatty acids. In these mutants, we verified that the accumulation of saturated fatty acids requires efficient thioesterase activity on saturated-ACPs. By studying the effects of cerulenin on the in vivo incorporation of [2-(14)C]acetate into lipids and on the in vitro activity of beta-ketoacyl-ACP synthase II, we found that elongation to very long chain fatty acids can occur both inside and outside of the plastid in sunflower seeds. PMID:16500723

  8. Fatty acids of Treponema pallidum and Borrelia burgdorferi lipoproteins.

    PubMed Central

    Belisle, J T; Brandt, M E; Radolf, J D; Norgard, M V

    1994-01-01

    A fundamental ultrastructural feature shared by the spirochetal pathogens Treponema pallidum subsp. pallidum (T. pallidum) and Borrelia burgdorferi, the etiological agents of venereal syphilis and Lyme disease, respectively, is that their most abundant membrane proteins contain covalently attached fatty acids. In this study, we identified the fatty acids covalently bound to lipoproteins of B. burgdorferi and T. pallidum and examined potential acyl donors to these molecules. Palmitate was the predominant fatty acid of both B. burgdorferi and T. pallidum lipoproteins. T. pallidum lipoproteins also contained substantial amounts of stearate, a fatty acid not typically prevalent in prokaryotic lipoproteins. In both spirochetes, the fatty acids of cellular lipids differed from those of their respective lipoproteins. To characterize phospholipids in these organisms, spirochetes were metabolically labeled with [3H]palmitate or [3H]oleate; B. burgdorferi contained only phosphatidylglycerol and phosphatidylcholine, while T. pallidum contained phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, and cardiolipin. Although palmitate predominated in the lipoproteins, there were no apparent differences in the incorporation of these two fatty acids into phospholipids (putative acyl donors). Phospholipase A1 and A2 digestion of phosphatidylcholine from B. burgdorferi and T. pallidum labeled with either [3H]palmitate or [3H]oleate also revealed that neither fatty acid was incorporated preferentially into the 1 and 2 positions (potential acyl donor sites) of the glycerol backbone. The combined findings suggest that fatty acid utilization during lipoprotein synthesis is determined largely by the fatty acid specificities of the lipoprotein acyl transferases. These findings also provide the basis for ongoing efforts to elucidate the relationship between lipoprotein acylation and the physiological functions and inflammatory

  9. Omega-3 Fatty Acid supplementation during pregnancy.

    PubMed

    Greenberg, James A; Bell, Stacey J; Ausdal, Wendy Van

    2008-01-01

    Omega-3 fatty acids are essential and can only be obtained from the diet. The requirements during pregnancy have not been established, but likely exceed that of a nonpregnant state. Omega-3 fatty acids are critical for fetal neurodevelopment and may be important for the timing of gestation and birth weight as well. Most pregnant women likely do not get enough omega-3 fatty acids because the major dietary source, seafood, is restricted to 2 servings a week. For pregnant women to obtain adequate omega-3 fatty acids, a variety of sources should be consumed: vegetable oils, 2 low-mercury fish servings a week, and supplements (fish oil or algae-based docosahexaenoic acid). PMID:19173020

  10. The role of essential fatty acids in development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acids are aliphatic monocarboxylic acids. They are classified as saturated, monounsaturated, or polyunsaturated fatty acids depending upon the number of double bonds in the carbon chain. Saturated fatty acids have no double bonds, monounsaturated fatty acids have 1 double bond, and polyunsat...

  11. High maternal intake of polyunsaturated fatty acids during pregnancy in mice alters offsprings' aggressive behavior, immobility in the swim test, locomotor activity and brain protein kinase C activity.

    PubMed

    Raygada, M; Cho, E; Hilakivi-Clarke, L

    1998-12-01

    Populations in Western countries consume an excess of polyunsaturated fatty acids (PUFA), even during pregnancy. Since (n-6) PUFA is critical for brain development, we studied whether a high maternal consumption of this fatty acid alters offsprings' affective-like behaviors and (n-6) PUFA-induced protein kinase C (PKC) activity in the brain. Three different strains of pregnant mice were fed isocaloric diets containing either 16% (control) or 43% (high) energy derived from fat high in (n-6) PUFA (corn oil: Balb/c and CD-1 mice, or soybean oil: C3H mice) throughout gestation. From birth onward dams and offspring were fed a nonpurified diet containing 12% energy from a variety of fats. Two- to 12-month-old female and male offspring of dams exposed to a high (n-6) PUFA diet during pregnancy were significantly more active in an open field, more aggressive in the resident-intruder test and spent less time immobile in the swim test than offspring of dams exposed to a control (n-6) PUFA diet. Significantly greater PKC activity in the hypothalamus and moderately less PKC activity in the whole brain (P = 0.10) were seen in the 2-month-old female and male high (n-6) PUFA offspring compared to controls. Our findings indicate that in utero exposure to a high (n-6) PUFA diet subsequently increases locomotor activity and aggression, and reduces immobility in the swim test. The mechanism mediating these effects may be linked to an increased PKC activity in the hypothalamus. PMID:9868200

  12. 21 CFR 172.860 - Fatty acids.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Fatty acids. 172.860 Section 172.860 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.860 Fatty...

  13. Serum fatty acids and breast cancer incidence.

    PubMed

    Rissanen, Harri; Knekt, Paul; Järvinen, Ritva; Salminen, Irma; Hakulinen, Timo

    2003-01-01

    Fatty acid composition of the diet may be essential to the development of breast cancer. We studied the ability of several fatty acids of serum total lipids to predict breast cancer incidence in a case-control study nested within a longitudinal population study. The proportions of fatty acids in serum total lipids were determined from stored serum samples collected at baseline for 127 incident breast cancer cases and 242 matched controls. Women with a higher proportion of total polyunsaturated fatty acids (PUFAs) in serum had a reduced risk of breast cancer. The odds ratio (OR) between the highest and lowest tertiles of serum PUFA was 0.31 (95% confidence interval, CI = 0.12-0.77). This association was mainly due to n-6 PUFAs and especially to linoleic acid. The ORs were 0.35 (CI = 0.14-0.84) and 0.29 (CI = 0.12-0.73), respectively. Of the monounsaturated fatty acids (MUFAs), higher trans-11-18:1 levels were related to an increased breast cancer risk (OR = 3.69, CI = 1.35-10.06). The association was stronger in postmenopausal than in premenopausal women. The present study suggests that higher serum proportions of the n-6 PUFA linoleic acid and lower proportions of the MUFA trans-11-18:1 fatty acid predict a reduced incidence of breast cancer. PMID:12881010

  14. CYP4 Enzymes as potential drug targets: focus on enzyme multiplicity, inducers and inhibitors, and therapeutic modulation of 20-hydroxyeicosatetraenoic acid (20-HETE) synthase and fatty acid ω-hydroxylase activities

    PubMed Central

    Edson, Katheryne Z.; Rettie, Allan E.

    2014-01-01

    The Cytochrome P450 4 (CYP4) family of enzymes in humans is comprised of thirteen isozymes that typically catalyze the ω-oxidation of endogenous fatty acids and eicosanoids. Several CYP4 enzymes can biosynthesize 20-hydroxyeicosatetraenoic acid or 20-HETE, an important signaling eicosanoid involved in regulation of vascular tone and kidney reabsorption. Additionally, accumulation of certain fatty acids is a hallmark of the rare genetic disorders, Refsum disease and X-ALD. Therefore, modulation of CYP4 enzyme activity, either by inhibition or induction, is a potential strategy for drug discovery. Here we review the substrate specificities, sites of expression, genetic regulation, and inhibition by exogenous chemicals of the human CYP4 enzymes, and discuss the targeting of CYP4 enzymes in the development of new treatments for hypertension, stroke, certain cancers and the fatty acid-linked orphan diseases. PMID:23688133

  15. Splanchnic free fatty acid kinetics.

    PubMed

    Jensen, Michael D; Cardin, Sylvain; Edgerton, Dale; Cherrington, Alan

    2003-06-01

    These studies were conducted to assess the relationship between visceral adipose tissue free fatty acid (FFA) release and splanchnic FFA release. Steady-state splanchnic bed palmitate ([9,10-(3)H]palmitate) kinetics were determined from 14 sampling intervals from eight dogs with chronic indwelling arterial, portal vein, and hepatic vein catheters. We tested a model designed to predict the proportion of FFAs delivered to the liver from visceral fat by use of hepatic vein data. The model predicted that 15 +/- 2% of hepatic palmitate delivery originated from visceral lipolysis, which was greater (P = 0.004) than the 11 +/- 2% actually observed. There was a good relationship (r(2) = 0.63) between the predicted and observed hepatic palmitate delivery values, but the model overestimated visceral FFA release more at lower than at higher palmitate concentrations. The discrepancy could be due to differential uptake of FFAs arriving from the arterial vs. the portal vein or to release of FFAs in the hepatic circulatory bed. Splanchnic FFA release measured using hepatic vein samples was strongly related to visceral adipose tissue FFA release into the portal vein. This finding suggests that splanchnic FFA release is a good indicator of visceral adipose tissue lipolysis. PMID:12736157

  16. Fatty Acids Inhibit Apical Membrane Chloride Channels in Airway Epithelia

    NASA Astrophysics Data System (ADS)

    Anderson, Matthew P.; Welsh, Michael J.

    1990-09-01

    Apical membrane Cl^- channels control the rate of transepithelial Cl^- secretion in airway epithelia. cAMP-dependent protein kinase and protein kinase C regulate Cl^- channels by phosphorylation; in cystic fibrosis cells, phosphorylation-dependent activation of Cl^- channels is defective. Another important signaling system involves arachidonic acid, which is released from cell membranes during receptor-mediated stimulation. Here we report that arachidonic acid reversibly inhibited apical membrane Cl^- channels in cell-free patches of membrane. Arachidonic acid itself inhibited the channel and not a cyclooxygenase or lipoxygenase metabolite because (i) inhibitors of these enzymes did not block the response, (ii) fatty acids that are not substrates for the enzymes had the same effect as arachidonic acid, and (iii) metabolites of arachidonic acid did not inhibit the channel. Inhibition occurred only when fatty acids were added to the cytosolic surface of the membrane patch. Unsaturated fatty acids were more potent than saturated fatty acids. Arachidonic acid inhibited Cl^- channels from both normal and cystic fibrosis cells. These results suggest that fatty acids directly inhibit apical membrane Cl^- channels in airway epithelial cells.

  17. Genetic dissection of polyunsaturated fatty acid synthesis in Caenorhabditis elegans

    PubMed Central

    Watts, Jennifer L.; Browse, John

    2002-01-01

    Polyunsaturated fatty acids (PUFAs) are important membrane components and precursors of signaling molecules. To investigate the roles of these fatty acids in growth, development, and neurological function in an animal system, we isolated Caenorhabditis elegans mutants deficient in PUFA synthesis by direct analysis of fatty acid composition. C. elegans possesses all the desaturase and elongase activities to synthesize arachidonic acid and eicosapentaenoic acid from saturated fatty acid precursors. In our screen we identified mutants with defects in each fatty acid desaturation and elongation step of the PUFA biosynthetic pathway. The fatty acid compositions of the mutants reveal the substrate preferences of the desaturase and elongase enzymes and clearly demarcate the steps of this pathway. The mutants show that C. elegans does not require n3 or Δ5-unsaturated PUFAs for normal development under laboratory conditions. However, mutants with more severe PUFA deficiencies display growth and neurological defects. The mutants provide tools for investigating the roles of PUFAs in membrane biology and cell function in this animal model. PMID:11972048

  18. DPPH radical scavenging activity of a mixture of fatty acids and peptide-containing compounds in a protein hydrolysate of Jatropha curcas seed cake.

    PubMed

    Phengnuam, Thanyarat; Goroncy, Alexander K; Rutherfurd, Shane M; Moughan, Paul J; Suntornsuk, Worapot

    2013-12-01

    Jatropha curcas, a tropical plant, has great potential commercial relevance as its seeds have high oil content. The seeds can be processed into high-quality biofuel producing seed cake as a byproduct. The seed cake, however, has not gotten much attention toward its potential usefulness. This work was aimed to determine the antioxidant activity of different fractions of a protein hydrolysate from J. curcas seed cake and to elucidate the molecular structures of the antioxidants. Seed cake was first processed into crude protein isolate and the protein was hydrolyzed by Neutrase. The hydrolysate obtained from 1 h of Neutrase hydrolysis showed the strongest antioxidant activity against DPPH radical (2,2-diphenyl-1-picrylhydrazyl). After a purification series of protein hydrolysate by liquid chromatography, chemicals acting as DPPH radical inhibitors were found to be a mixture of fatty acids, fatty acid derivatives, and a small amount of peptides characterized by mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy. PMID:24191657

  19. Plasma fatty acid profile and alternative nutrition.

    PubMed

    Krajcovicová-Kudlácková, M; Simoncic, R; Béderová, A; Klvanová, J

    1997-01-01

    Plasma profile of fatty acids was examined in a group of children consisting of 7 vegans, 15 lactoovovegetarians and 10 semivegetarians. The children were 11-15 years old and the average period of alternative nutrition was 3.4 years. The results were compared with a group of 19 omnivores that constituted an average sample with respect to biochemical and hematological parameters from a larger study of health and nutritional status of children in Slovakia. Alternative nutrition groups had significantly lower values of saturated fatty acids. The content of oleic acid was identical to omnivores. A significant increase was observed for linoleic and alpha-linolenic (n-3) acids. The dihomo-gamma-linolenic (n-6) acid and arachidonic (n-6) acid values were comparable to omnivores for all alternative nutrition groups. Values of n-3 polyunsaturated fatty acids in lactoovovegetarians were identical to those of omnivores whereas they were significantly increased in semivegetarians consuming fish twice a week. Due to the total exclusion of animal fats from the diet, vegans had significantly reduced values of palmitoleic acid as well as eicosapentaenoic (n-3) acid and docosahexaenoic (n-3) acid resulting in an increased n-6/n-3 ratio. Values of plasma fatty acids found in alternative nutrition groups can be explained by the higher intake of common vegetable oils (high content of linoleic acid), oils rich in alpha-linolenic acid (cereal germs, soybean oil, walnuts), as well as in n-3 polyunsaturated fatty acids (fish). The results of fatty acids (except n-3 in vegans) and other lipid parameters confirm the beneficial effect of vegetarian nutrition in the prevention of cardiovascular diseases. PMID:9491192

  20. In Silico Structure Prediction of Human Fatty Acid Synthase–Dehydratase: A Plausible Model for Understanding Active Site Interactions

    PubMed Central

    John, Arun; Umashankar, Vetrivel; Samdani, A.; Sangeetha, Manoharan; Krishnakumar, Subramanian; Deepa, Perinkulam Ravi

    2016-01-01

    Fatty acid synthase (FASN, UniProt ID: P49327) is a multienzyme dimer complex that plays a critical role in lipogenesis. Consequently, this lipogenic enzyme has gained tremendous biomedical importance. The role of FASN and its inhibition is being extensively researched in several clinical conditions, such as cancers, obesity, and diabetes. X-ray crystallographic structures of some of its domains, such as β-ketoacyl synthase, acetyl transacylase, malonyl transacylase, enoyl reductase, β-ketoacyl reductase, and thioesterase, (TE) are already reported. Here, we have attempted an in silico elucidation of the uncrystallized dehydratase (DH) catalytic domain of human FASN. This theoretical model for DH domain was predicted using comparative modeling methods. Different stand-alone tools and servers were used to validate and check the reliability of the predicted models, which suggested it to be a highly plausible model. The stereochemical analysis showed 92.0% residues in favorable region of Ramachandran plot. The initial physiological substrate β-hydroxybutyryl group was docked into active site of DH domain using Glide. The molecular dynamics simulations carried out for 20 ns in apo and holo states indicated the stability and accuracy of the predicted structure in solvated condition. The predicted model provided useful biochemical insights into the substrate–active site binding mechanisms. This model was then used for identifying potential FASN inhibitors using high-throughput virtual screening of the National Cancer Institute database of chemical ligands. The inhibitory efficacy of the top hit ligands was validated by performing molecular dynamics simulation for 20 ns, where in the ligand NSC71039 exhibited good enzyme inhibition characteristics and exhibited dose-dependent anticancer cytotoxicity in retinoblastoma cancer cells in vitro. PMID:27559295

  1. In Silico Structure Prediction of Human Fatty Acid Synthase-Dehydratase: A Plausible Model for Understanding Active Site Interactions.

    PubMed

    John, Arun; Umashankar, Vetrivel; Samdani, A; Sangeetha, Manoharan; Krishnakumar, Subramanian; Deepa, Perinkulam Ravi

    2016-01-01

    Fatty acid synthase (FASN, UniProt ID: P49327) is a multienzyme dimer complex that plays a critical role in lipogenesis. Consequently, this lipogenic enzyme has gained tremendous biomedical importance. The role of FASN and its inhibition is being extensively researched in several clinical conditions, such as cancers, obesity, and diabetes. X-ray crystallographic structures of some of its domains, such as β-ketoacyl synthase, acetyl transacylase, malonyl transacylase, enoyl reductase, β-ketoacyl reductase, and thioesterase, (TE) are already reported. Here, we have attempted an in silico elucidation of the uncrystallized dehydratase (DH) catalytic domain of human FASN. This theoretical model for DH domain was predicted using comparative modeling methods. Different stand-alone tools and servers were used to validate and check the reliability of the predicted models, which suggested it to be a highly plausible model. The stereochemical analysis showed 92.0% residues in favorable region of Ramachandran plot. The initial physiological substrate β-hydroxybutyryl group was docked into active site of DH domain using Glide. The molecular dynamics simulations carried out for 20 ns in apo and holo states indicated the stability and accuracy of the predicted structure in solvated condition. The predicted model provided useful biochemical insights into the substrate-active site binding mechanisms. This model was then used for identifying potential FASN inhibitors using high-throughput virtual screening of the National Cancer Institute database of chemical ligands. The inhibitory efficacy of the top hit ligands was validated by performing molecular dynamics simulation for 20 ns, where in the ligand NSC71039 exhibited good enzyme inhibition characteristics and exhibited dose-dependent anticancer cytotoxicity in retinoblastoma cancer cells in vitro. PMID:27559295

  2. PPARα (Peroxisome Proliferator-activated Receptor α) Activation Reduces Hepatic CEACAM1 Protein Expression to Regulate Fatty Acid Oxidation during Fasting-refeeding Transition.

    PubMed

    Ramakrishnan, Sadeesh K; Khuder, Saja S; Al-Share, Qusai Y; Russo, Lucia; Abdallah, Simon L; Patel, Payal R; Heinrich, Garrett; Muturi, Harrison T; Mopidevi, Brahma R; Oyarce, Ana Maria; Shah, Yatrik M; Sanchez, Edwin R; Najjar, Sonia M

    2016-04-01

    Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is expressed at high levels in the hepatocyte, consistent with its role in promoting insulin clearance in liver. CEACAM1 also mediates a negative acute effect of insulin on fatty acid synthase activity. Western blot analysis reveals lower hepatic CEACAM1 expression during fasting. Treating of rat hepatoma FAO cells with Wy14,643, an agonist of peroxisome proliferator-activated receptor α (PPARα), rapidly reduces Ceacam1 mRNA and CEACAM1 protein levels within 1 and 2 h, respectively. Luciferase reporter assay shows a decrease in the promoter activity of both rat and mouse genes by Pparα activation, and 5'-deletion and block substitution analyses reveal that the Pparα response element between nucleotides -557 and -543 is required for regulation of the mouse promoter activity. Chromatin immunoprecipitation analysis demonstrates binding of liganded Pparα toCeacam1promoter in liver lysates ofPparα(+/+), but notPparα(-/-)mice fed a Wy14,643-supplemented chow diet. Consequently, Wy14,643 feeding reduces hepatic Ceacam1 mRNA and CEACAM1 protein levels, thus decreasing insulin clearance to compensate for compromised insulin secretion and maintain glucose homeostasis and insulin sensitivity in wild-type mice. Together, the data show that the low hepatic CEACAM1 expression at fasting is mediated by Pparα-dependent mechanisms. Changes in CEACAM1 expression contribute to the coordination of fatty acid oxidation and insulin action in the fasting-refeeding transition. PMID:26846848

  3. Surface-active novel glycolipid and linked 3-hydroxy fatty acids produced by Serratia rubidaea.

    PubMed Central

    Matsuyama, T; Kaneda, K; Ishizuka, I; Toida, T; Yano, I

    1990-01-01

    A Serratia rubidaea isolate with wetting activity when grown at 30 but not 37 degrees C was examined for the production of specific lipids. Two novel lipids (rubiwettins R1 and RG1) were isolated and shown to be able to lower the surface tension of saline to 26 mN/m. These lipids were located in extracellular vesicles found in a 30 degrees C culture of S. rubidaea. Chemical structures of these biosurfactants were determined by degradation product analyses, infrared spectroscopy, mass spectrometry, and proton nuclear magnetic resonance spectroscopy. Rubiwettin R1 was proposed to be a mixture of 3-(3'-hydroxytetradecanoyloxy)decanoate, 3-(3'-hydroxyhexadecenoyloxy)decanoate, and minor molecular isomers. The structure of rubiwettin RG1 was proposed to be beta-D-glucopyranosyl 3-(3'-hydroxytetradecanoyloxy)decanoate. The importance of such surface-active exolipids in bacterial occupancy on surfaces was suggested. Images PMID:2345132

  4. Influence of selenium supplementation on fatty acids profile and biological activity of four edible amaranth sprouts as new kind of functional food.

    PubMed

    Pasko, Pawel; Gdula-Argasinska, Joanna; Podporska-Carroll, Joanna; Quilty, Brid; Wietecha-Posluszny, Renata; Tyszka-Czochara, Malgorzata; Zagrodzki, Pawel

    2015-08-01

    Suitability assessment of amaranth sprouts as a new functional food was carried out. The optimisation of sprouting process and the influence of selenium supplementation, in doses 10, 15, and 30 mg/l of selenium as sodium selenite, on amaranth growth and fatty acid profile were examined. Methods such as FRAP, DPPH, polyphenols content and GPX activity were applied to characterize antioxidant potential of seeds and sprouts of four different edible amaranth genera. E. coli, S. aureus, C. albicans were used to evaluate amaranth sprouts antimicrobial properties. Interaction between amaranth sprouts and biological systems was assessed by analysing antibacterial and antifungal properties with a disc diffusion test. The studies proved amaranth sprouts to be potentially attractive as functional food. As confirmed by all the data amaranth sprouts are suitable as a moderate selenium accumulator and are rich in essential fatty acids, especially linoleic and alpha-linolenic acids, which are precursors of long chain polyunsaturated fatty acids. Thus, it opens dietary opportunities for amaranth sprouts. They can also serve as a moderate source of antioxidant compounds. Nevertheless, the experiments revealed neither antibacterial, nor antifungal properties of sprouts. In general, amaranth sprouts biological activity under evaluation has failed to prove to be significantly impacted by selenium fertilization. PMID:26243894

  5. Evaluation of fatty acid content of some Iranian fast foods with emphasis on trans fatty acids.

    PubMed

    Asgary, Seddigheh; Nazari, Bahar; Sarrafzadegan, Nizal; Parkhideh, Sahar; Saberi, Salbali; Esmaillzadeh, Ahmad; Azadbakht, Leila

    2009-01-01

    Although the disadvantages of trans fatty acids (TFAs) are widely mentioned, limited data are available on the TFAs contents of Iranian foods, including fast foods. The aim of this study was to quantify the amounts of common fatty acids in several fast foods in Iran, with specific focus on TFAs. The most commonly consumed fast foods in Iran: sausage, calbas, hamburgers and pizzas, were randomly selected seven times from products available in supermarkets and restaurants. Each time a 10 g sample was drawn and prepared for fatty acid analysis. Total and individual fatty acids were quantified according to standard methods by gas chromatography with 60 meter capillary column and flame ionization detector. The most common saturated fatty acids in Iranian fast foods is stearic acid (C18:0) which ranged from 14.0% to 20.9%. Saturated fatty acid content in calbas was significantly higher than that found in other groups. Trans fatty acids constitute almost 23.6% to 30.6% of total fatty acids of these products. The most common TFA in these fast foods was elaidic acid (C18:1 9t). Total cis unsaturated fatty acid content of tested fast foods varied from 25.3%(in sausage) to 46.8(in calbas) with oleic acid (C18:1 9c) followed by linoleic acid (C18:2) being the most common fatty acids in these products. This study showed higher TFAs contents in commercially available fast foods compared to the amounts recommended by dietary guidelines in Iran. Further studies must assess the effects of these fatty acids on human health. PMID:19713177

  6. Non-esterified fatty acids activate the AMP-activated protein kinase signaling pathway to regulate lipid metabolism in bovine hepatocytes.

    PubMed

    Li, Xinwei; Li, Xiaobing; Chen, Hui; Lei, Liancheng; Liu, Juxiong; Guan, Yuan; Liu, Zhaoxi; Zhang, Liang; Yang, Wentao; Zhao, Chenxu; Fu, Shixin; Li, Peng; Liu, Guowen; Wang, Zhe

    2013-01-01

    Non-esterified fatty acids (NEFAs) act as signaling molecules involved in regulating genes expression to modulate lipid metabolism. However, the regulation mechanism of NEFAs on lipid metabolism in dairy cows is unclear. The AMP-activated protein kinase (AMPK) signaling pathway plays a key role in regulating hepatic lipid metabolism. In vitro, bovine hepatocytes were cultured and treated with different concentrations of NEFAs and AMPKα inhibitors (BML-275). NEFAs increased AMPKα phosphorylation through up-regulating the protein levels of liver kinase B1. Activated AMPKα increased the expression and transcriptional activity of peroxisome proliferator-activated receptor α (PPARα). NEFAs also directly activate the PPARα independent of AMPKα. Activated PPARα increased the lipolytic genes expression to increase lipid oxidation. Furthermore, activated AMPKα inhibited the expression and transcriptional activity of the sterol regulatory element-binding protein 1c and carbohydrate responsive element-binding protein, which reduced the expression of lipogenic genes, thereby decreasing lipid synthesis. Activated AMPKα phosphorylated and inhibited acetyl-CoA carboxylase and increased carnitine palmitoyltransferase-1 activity, which increased lipid oxidation. Consequently, the triglyceride content in the NEFAs-treated hepatocytes was significantly decreased. These results indicate that NEFAs activate the AMPKα signaling pathway to increase lipid oxidation and decrease lipid synthesis in hepatocytes, which in turn, generates more ATP to relieve the negative energy balance in transition dairy cows. PMID:23690240

  7. Oxygenases for aliphatic hydrocarbons and fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxygenases catalyzing the insertion of oxygen into either aliphatic hydrocarbons or fatty acids have great similarity. There are two classes of oxygenases: monooxygenases and dioxygenases. Dioxygenase inserts both atoms of molecular oxygen into a substrate, whereas monooxygenase incorporates one a...

  8. Hypolipidemic Activity of Peony Seed Oil Rich in α-Linolenic, is Mediated Through Inhibition of Lipogenesis and Upregulation of Fatty Acid β-Oxidation.

    PubMed

    Su, Jianhui; Ma, Chaoyang; Liu, Chengxiang; Gao, Chuanzhong; Nie, Rongjing; Wang, Hongxin

    2016-04-01

    Peony seed oil (PSO) is a new resource food rich in α-Linolenic Acid(ALA) (38.66%). The objective of this study was to assess the modulatory effect of PSO on lipid metabolism. Lard oil, safflower oil (SFO), and PSO were fed to wistar rats with 1% cholesterol in the diet for 60 d. Serum and liver lipids showed significant decrease in total cholesterol (TC), triglyceride (TG), and low density lipoprotein-cholesterol (LDL-C) levels in PSO fed rats compared to lard oil and SFO fed rats. ALA, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), contents were significantly increased, whereas linoleic acid (LA), arachidonic acid (AA) levels decreased in serum and liver of PSO fed rats. Feeding PSO increased ALA level and decreased n-6 to n-3 polyunsaturated fatty acid (PUFA) ratio. The hypolipidemic result of PSO indicated that PSO participated in the regulation of plasma lipid concentration and cholesterol metabolism in liver. The decreased expression of sterol regulatory element-binding proteins 1C (SREBP-1c), acetyl-CoA carboxylase (ACC), and fatty acid synthase (FAS)-reduced lipid synthesis; Activation of peroxisome proliferator-activator receptor (PPARα) accompanied by increase of uncoupling protein2 (UP2) and acyl-CoA oxidase (AOX) stimulated lipid metabolism and exerted an antiobesity effect via increasing energy expenditure for prevention of obesity. PMID:26930155

  9. Polyhydroxy Fatty Acids Derived from Sophorolipids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starting from 17-hydroxyoleic acid, which is readily available from acid alcoholysis of sophorolipids, several new polyhydroxy fatty acids have been synthesized. These compounds contain from 2 to 5 hydroxy groups, in some instances combined with other functional groups. The added hydroxy groups ca...

  10. Dietary omega-3 fatty acids for women.

    PubMed

    Bourre, Jean-Marie

    2007-01-01

    This review details the specific needs of women for omega-3 fatty acids, including alpha linoleic acid (ALA) and the very long chain fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Omega-3 fatty acid (dietary or in capsules) ensures that a woman's adipose tissue contains a reserve of these fatty acids for the developing fetus and the breast-fed newborn infant. This ensures the optimal cerebral and cognitive development of the infant. The presence of large quantities of EPA and DHA in the diet slightly lengthens pregnancy, and improves its quality. Human milk contains both ALA and DHA, unlike that of other mammals. Conditions such as diabetes can alter the fatty acid profile of mother's milk, while certain diets, like those of vegetarians, vegans, or even macrobiotic diets, can have the same effect, if they do not include seafood. ALA, DHA and EPA, are important for preventing ischemic cardiovascular disease in women of all ages. Omega-3 fatty acids can help to prevent the development of certain cancers, particularly those of the breast and colon, and possibly of the uterus and the skin, and are likely to reduce the risk of postpartum depression, manic-depressive psychosis, dementias (Alzheimer's disease and others), hypertension, toxemia, diabetes and, to a certain extend, age-related macular degeneration. Omega-3 fatty acids could play a positive role in the prevention of menstrual syndrome and postmenopausal hot flushes. The normal western diet contains little ALA (less than 50% of the RDA). The only adequate sources are rapeseed oil (canola), walnuts and so-called "omega-3" eggs (similar to wild-type or Cretan eggs). The amounts of EPA and DHA in the diet vary greatly from person to person. The only good sources are fish and seafood, together with "omega-3" eggs. PMID:17254747

  11. Nutritional properties of trans fatty acids.

    PubMed

    Sambaiah, K; Lokesh, B R

    1999-08-01

    The role of trans fatty acids (TFA) present in partially hydrogenated fats widely consumed in food and their link with coronary heart disease has been examined in this review. Most of the studies carried out have been on the effects of TFA on blood-lipid profile. The perceived effects of TFA intake depend on the fat or oil with which they are compared and appears to be in between that of dietary saturated fats and monounsaturated fatty acids. When compared to saturated fat, TFA intake shows lower levels of total and LDL-cholesterol in blood. But when both TFA and saturated fatty acids are compared with cis fatty acids or native unhydrogenated oil, increase in total and LDL-cholesterol are noted. The effects of TFA on HDL-cholesterol and Lp(a) are not clearly established. The undesirable effects of TFA can be overcome by inclusion of essential fatty acids at a minimum of 2 energy per cent level in the diet. The link between trans fatty acid intake and coronary heart disease (CHD) are not unequivocally established. PMID:10650721

  12. 21 CFR 172.848 - Lactylic esters of fatty acids.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... are prepared from lactic acid and fatty acids meeting the requirements of § 172.860(b) and/or oleic acid derived from tall oil fatty acids meeting the requirements of § 172.862. (b) They are used...

  13. 21 CFR 172.848 - Lactylic esters of fatty acids.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... accordance with the following prescribed conditions: (a) They are prepared from lactic acid and fatty acids meeting the requirements of § 172.860(b) and/or oleic acid derived from tall oil fatty acids meeting...

  14. 21 CFR 172.848 - Lactylic esters of fatty acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... are prepared from lactic acid and fatty acids meeting the requirements of § 172.860(b) and/or oleic acid derived from tall oil fatty acids meeting the requirements of § 172.862. (b) They are used...

  15. 21 CFR 172.848 - Lactylic esters of fatty acids.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... are prepared from lactic acid and fatty acids meeting the requirements of § 172.860(b) and/or oleic acid derived from tall oil fatty acids meeting the requirements of § 172.862. (b) They are used...

  16. Kefir Grains Change Fatty Acid Profile of Milk during Fermentation and Storage

    PubMed Central

    Vieira, C. P.; Álvares, T. S.; Gomes, L. S.; Torres, A. G.; Paschoalin, V. M. F.; Conte-Junior, C. A.

    2015-01-01

    Several studies have reported that lactic acid bacteria may increase the production of free fatty acids by lipolysis of milk fat, though no studies have been found in the literature showing the effect of kefir grains on the composition of fatty acids in milk. In this study the influence of kefir grains from different origins [Rio de Janeiro (AR), Viçosa (AV) e Lavras (AD)], different time of storage, and different fat content on the fatty acid content of cow milk after fermentation was investigated. Fatty acid composition was determined by gas chromatography. Values were considered significantly different when p<0.05. The highest palmitic acid content, which is antimutagenic compost, was seen in AV grain (36.6g/100g fatty acids), which may have contributed to increasing the antimutagenic potential in fermented milk. Higher monounsaturated fatty acid (25.8g/100g fatty acids) and lower saturated fatty acid (72.7g/100g fatty acids) contents were observed in AV, when compared to other grains, due to higher Δ9-desaturase activity (0.31) that improves the nutritional quality of lipids. Higher oleic acid (25.0g/100g fatty acids) and monounsaturated fatty acid (28.2g/100g fatty acids) and lower saturated fatty acid (67.2g/100g fatty acids) contents were found in stored kefir relatively to fermented kefir leading to possible increase of antimutagenic and anticarcinogenic potential and improvement of nutritional quality of lipids in storage milk. Only high-lipidic matrix displayed increase polyunsaturated fatty acids after fermentation. These findings open up new areas of study related to optimizing desaturase activity during fermentation in order to obtaining a fermented product with higher nutritional lipid quality. PMID:26444286

  17. Expression of fatty acid synthase in nonalcoholic fatty liver disease

    PubMed Central

    Dorn, Christoph; Riener, Marc-Oliver; Kirovski, Georgi; Saugspier, Michael; Steib, Kathrin; Weiss, Thomas S; Gäbele, Erwin; Kristiansen, Glen; Hartmann, Arndt; Hellerbrand, Claus

    2010-01-01

    Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic lipid accumulation which starts with simple hepatic steatosis and may progress toward inflammation (nonalcoholic steatohepatitis [NASH]). Fatty acid synthase (FASN) catalyzes the last step in fatty acid biosynthesis, and thus, it is believed to be a major determinant of the maximal hepatic capacity to generate fatty acids by de novo lipogenesis. The aim of this study was to analyze the correlation between hepatic steatosis and inflammation with FASN expression. In vitro incubation of primary human hepatocytes with fatty acids dose-dependently induced cellular lipid-accumulation and FASN expression, while stimulation with TNF did not affect FASN levels. Further, hepatic FASN expression was significantly increased in vivo in a murine model of hepatic steatosis without significant inflammation but not in a murine NASH model as compared to control mice. Also, FASN expression was not increased in mice subjected to bile duct ligation, an experimental model characterized by severe hepatocellular damage and inflammation. Furthermore, FASN expression was analyzed in 102 human control or NAFLD livers applying tissue micro array technology and immunohistochemistry, and correlated significantly with the degree of hepatic steatosis, but not with inflammation or ballooning of hepatocytes. Quantification of FASN mRNA expression in human liver samples confirmed significantly higher FASN levels in hepatic steatosis but not in NASH, and expression of SREBP1, which is the main transcriptional regulator of FASN, paralleled FASN expression levels in human and experimental NAFLD. In conclusion, the transcriptional induction of FASN expression in hepatic steatosis is impaired in NASH, while hepatic inflammation in the absence of steatosis does not affect FASN expression, suggesting that FASN may serve as a new diagnostic marker or therapeutic target for the progression of NAFLD. PMID:20606731

  18. Expression of fatty acid synthase in nonalcoholic fatty liver disease.

    PubMed

    Dorn, Christoph; Riener, Marc-Oliver; Kirovski, Georgi; Saugspier, Michael; Steib, Kathrin; Weiss, Thomas S; Gäbele, Erwin; Kristiansen, Glen; Hartmann, Arndt; Hellerbrand, Claus

    2010-01-01

    Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic lipid accumulation which starts with simple hepatic steatosis and may progress toward inflammation (nonalcoholic steatohepatitis [NASH]). Fatty acid synthase (FASN) catalyzes the last step in fatty acid biosynthesis, and thus, it is believed to be a major determinant of the maximal hepatic capacity to generate fatty acids by de novo lipogenesis. The aim of this study was to analyze the correlation between hepatic steatosis and inflammation with FASN expression. In vitro incubation of primary human hepatocytes with fatty acids dose-dependently induced cellular lipid-accumulation and FASN expression, while stimulation with TNF did not affect FASN levels. Further, hepatic FASN expression was significantly increased in vivo in a murine model of hepatic steatosis without significant inflammation but not in a murine NASH model as compared to control mice. Also, FASN expression was not increased in mice subjected to bile duct ligation, an experimental model characterized by severe hepatocellular damage and inflammation. Furthermore, FASN expression was analyzed in 102 human control or NAFLD livers applying tissue micro array technology and immunohistochemistry, and correlated significantly with the degree of hepatic steatosis, but not with inflammation or ballooning of hepatocytes. Quantification of FASN mRNA expression in human liver samples confirmed significantly higher FASN levels in hepatic steatosis but not in NASH, and expression of SREBP1, which is the main transcriptional regulator of FASN, paralleled FASN expression levels in human and experimental NAFLD. In conclusion, the transcriptional induction of FASN expression in hepatic steatosis is impaired in NASH, while hepatic inflammation in the absence of steatosis does not affect FASN expression, suggesting that FASN may serve as a new diagnostic marker or therapeutic target for the progression of NAFLD. PMID:20606731

  19. Functional characterization of flax fatty acid desaturase FAD2 and FAD3 isoforms expressed in yeast reveals a broad diversity in activity.

    PubMed

    Radovanovic, Natasa; Thambugala, Dinushika; Duguid, Scott; Loewen, Evelyn; Cloutier, Sylvie

    2014-07-01

    With 45 % or more oil content that contains more than 55 % alpha linolenic (LIN) acid, linseed (Linum usitatissimum L.) is one of the richest plant sources of this essential fatty acid. Fatty acid desaturases 2 (FAD2) and 3 (FAD3) are the main enzymes responsible for the Δ12 and Δ15 desaturation in planta. In linseed, the oilseed morphotype of flax, two paralogous copies, and several alleles exist for each gene. Here, we cloned three alleles of FAD2A, four of FAD2B, six of FAD3A, and seven of FAD3B into a pYES vector and transformed all 20 constructs and an empty construct in yeast. The transformants were induced in the presence of oleic (OLE) acid substrate for FAD2 constructs and linoleic (LIO) acid for FAD3. Conversion rates of OLE acid into LIO acid and LIO acid into LIN acid were measured by gas chromatography. Conversion rate of FAD2 exceeded that of FAD3 enzymes with FAD2B having a conversion rate approximately 10 % higher than FAD2A. All FAD2 isoforms were active, but significant differences existed between isoforms of both FAD2 enzymes. Two FAD3A and three FAD3B isoforms were not functional. Some nonfunctional enzymes resulted from the presence of nonsense mutations causing premature stop codons, but FAD3B-C and FAD3B-F seem to be associated with single amino acid changes. The activity of FAD3A-C was more than fivefold greater than the most common isoform FAD3A-A, while FAD3A-F was fourfold greater. Such isoforms could be incorporated into breeding lines to possibly further increase the proportion of LIN acid in linseed. PMID:24522837

  20. Effect of n-3 and n-6 Polyunsaturated Fatty Acids on Microsomal P450 Steroidogenic Enzyme Activities and In Vitro Cortisol Production in Adrenal Tissue From Yorkshire Boars.

    PubMed

    Xie, Xuemei; Wang, Xudong; Mick, Gail J; Kabarowski, Janusz H; Wilson, Landon Shay; Barnes, Stephen; Walcott, Gregory P; Luo, Xiaoping; McCormick, Kenneth

    2016-04-01

    Dysregulation of adrenal glucocorticoid production is increasingly recognized to play a supportive role in the metabolic syndrome although the mechanism is ill defined. The adrenal cytochrome P450 (CYP) enzymes, CYP17 and CYP21, are essential for glucocorticoid synthesis. The omega-3 and omega-6 polyunsaturated fatty acids (PUFA) may ameliorate metabolic syndrome, but it is unknown whether they have direct actions on adrenal CYP steroidogenic enzymes. The aim of this study was to determine whether PUFA modify adrenal glucocorticoid synthesis using isolated porcine microsomes. The enzyme activities of CYP17, CYP21, 11β-hydroxysteroid dehydrogenase type 1, hexose-6-phosphate dehydrogenase (H6PDH), and CYP2E1 were measured in intact microsomes treated with fatty acids of disparate saturated bonds. Cortisol production was measured in a cell-free in vitro model. Microsomal lipid composition after arachidonic acid (AA) exposure was determined by sequential window acquisition of all theoretical spectra-mass spectrometry. Results showed that adrenal microsomal CYP21 activity was decreased by docosapentaenoic acid (DPA), docosahexaenoic acid (DHA), eicosapentaenoic acid, α-linolenic acid, AA, and linoleic acid, and CYP17 activity was inhibited by DPA, DHA, eicosapentaenoic acid, and AA. Inhibition was associated with the number of the PUFA double bonds. Similarly, cortisol production in vitro was decreased by DPA, DHA, and AA. Endoplasmic enzymes with intraluminal activity were unaffected by PUFA. In microsomes exposed to AA, the level of AA or oxidative metabolites of AA in the membrane was not altered. In conclusion, these observations suggest that omega-3 and omega-6 PUFA, especially those with 2 or more double bonds (DPA, DHA, and AA), impede adrenal glucocorticoid production. PMID:26889941

  1. Oxidation of fatty aldehydes to fatty acids by Escherichia coli cells expressing the Vibrio harveyi fatty aldehyde dehydrogenase (FALDH).

    PubMed

    Buchhaupt, Markus; Guder, Jan; Sporleder, Fenja; Paetzold, Melanie; Schrader, Jens

    2013-03-01

    Fatty acids represent an important renewable feedstock for the chemical industry. To enable biotechnological one carbon truncations of fatty acids, the enzymes α-dioxygenase and fatty aldehyde dehydrogenase (FALDH) have to be combined in a two-step process. We expressed an FALDH from V. harveyi in E. coli and characterized its substrate spectrum with a focus on the number and position of double bonds in the fatty aldehyde molecules. Synthesis of the expected fatty acid products was proven by analysis of whole cell biotransformation products. Coexpression of a H(2)O-forming NADPH oxidase (NOX) from Lactobacillus sanfranciscensis led to the implementation of a cofactor regeneration cycle in in vitro oxidation experiments. The presence of NOX in whole cell biotransformations improved reaction velocity but did not result in higher product yields. We could further demonstrate that at least part of the endogenous NAD(P)(+) regeneration capacity in the resting cells results from the respiratory chain. The whole cell catalyst with the high broad range FALDH activity described here is an important biotechnological module for lipid biotransformation processes, especially the shortening of fatty acids. PMID:23180547

  2. Effect of extracellular fatty acids on lipid metabolism in cultured rabbit articular chondrocytes

    SciTech Connect

    Nagao, M.; Ishii, S.; Murata, Y.; Akino, T. )

    1991-05-01

    Rabbit articular chondrocytes were cultured for 8 h in the presence of various concentrations (5-500 microM) of {sup 14}C oleic, {sup 14}C linoleic, and {sup 3H} arachidonic acids. The radioactive unsaturated fatty acids were incorporated into triacylglycerol (TG) and phosphatidylcholine (PC) in a concentration-dependent manner; more fatty acids were incorporated into TG than into PC, at higher concentrations of extracellular fatty acids. Among these fatty acids, arachidonic acid was incorporated into TG much more than into PC, in spite of a very low concentration of arachidonic acid in TG. After transfer of the labeled cells to maintenance medium, the radioactivity in TG declined rapidly and {sup 3}H arachidonic acid radioactivity in PC increased continuously during the chase time periods. Palmitoyl-unsaturated species were mainly formed in PC when cultured at a concentration of 5 microM of each fatty acid. However, when cultured at 500 microM, unsaturated-unsaturated species, specific for each unsaturated fatty acid were actively formed. These findings indicate that (1) fatty acid composition of TG and PC in articular chondrocytes is influenced by the degree of fatty acid supply, (2) formation and turnover of TG plays a role in fatty acid metabolism of cells, and (3) fatty acid pairing in PC is modulated by extracellular fatty acid concentrations.

  3. 21 CFR 172.863 - Salts of fatty acids.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Salts of fatty acids. 172.863 Section 172.863 Food... of fatty acids. The food additive salts of fatty acids may be safely used in food and in the... salts of the fatty acids conforming with § 172.860 and/or oleic acid derived from tall oil fatty...

  4. Gut Microbial Fatty Acid Metabolites Reduce Triacylglycerol Levels in Hepatocytes.

    PubMed

    Nanthirudjanar, Tharnath; Furumoto, Hidehiro; Zheng, Jiawen; Kim, Young-Il; Goto, Tsuyoshi; Takahashi, Nobuyuki; Kawada, Teruo; Park, Si-Bum; Hirata, Akiko; Kitamura, Nahoko; Kishino, Shigenobu; Ogawa, Jun; Hirata, Takashi; Sugawara, Tatsuya

    2015-11-01

    Hydroxy and oxo fatty acids were recently found to be produced as intermediates during gut microbial fatty acid metabolism. Lactobacillus plantarum produces these fatty acids from unsaturated fatty acids such as linoleic acid. In this study, we investigated the effects of these gut microbial fatty acid metabolites on the lipogenesis in liver cells. We screened their effect on sterol regulatory element binding protein-1c (SREBP-1c) expression in HepG2 cells treated with a synthetic liver X receptor α (LXRα) agonist (T0901317). The results showed that 10-hydroxy-12(Z)-octadecenoic acid (18:1) (HYA), 10-hydroxy-6(Z),12(Z)-octadecadienoic acid (18:2) (γHYA), 10-oxo-12(Z)-18:1 (KetoA), and 10-oxo-6(Z),12(Z)-18:2 (γKetoA) significantly decreased SREBP-1c mRNA expression induced by T0901317. These fatty acids also downregulated the mRNA expression of lipogenic genes by suppressing LXRα activity and inhibiting SREBP-1 maturation. Oral administration of KetoA, which effectively reduced triacylglycerol accumulation and acetyl-CoA carboxylase 2 (ACC2) expression in HepG2 cells, for 2 weeks significantly decreased Srebp-1c, Scd-1, and Acc2 expression in the liver of mice fed a high-sucrose diet. Our findings suggest that the hypolipidemic effect of the fatty acid metabolites produced by L. plantarum can be exploited in the treatment of cardiovascular diseases or dyslipidemia. PMID:26399511

  5. The relationship between fatty acid profiles in milk identified by Fourier transform infrared spectroscopy and onset of luteal activity in Norwegian dairy cattle.

    PubMed

    Martin, A D; Afseth, N K; Kohler, A; Randby, Å; Eknæs, M; Waldmann, A; Dørum, G; Måge, I; Reksen, O

    2015-08-01

    To investigate the feasibility of milk fatty acids as predictors of onset of luteal activity (OLA), 87 lactations taken from 73 healthy Norwegian Red cattle were surveyed over 2 winter housing seasons. The feasibility of using frozen milk samples for dry-film Fourier transform infrared (FTIR) determination of milk samples was also tested. Morning milk samples were collected thrice weekly (Monday, Wednesday, Friday) for the first 10 wk in milk (WIM). These samples had bronopol (2-bromo-2-nitropropane-1,3-diol) added to them before being frozen at -20°C, thawed, and analyzed by ELISA to determine progesterone concentration and the concentrations of the milk fatty acids C4:0, C14:0, C16:0, C18:0, and cis-9 C18:1 as a proportion of total milk fatty acid content using dry-film FTIR, and averaged by WIM. Onset of luteal activity was defined as the first day that milk progesterone concentrations were >3 ng/mL for 2 successive measurements; the study population was categorized as early (n=47) or late (n=40) OLA, using the median value of 21 DIM as the cutoff. Further milk samples were collected 6 times weekly, from morning and afternoon milkings, these were pooled by WIM, and one proportional sample was analyzed fresh for fat, protein, and lactose content by the dairy company Tine SA, using traditional FTIR spectrography in the wet phase of milk. Daily energy-balance calculations were performed in 42 lactations and averaged by WIM. Animals experiencing late OLA had a more negative energy balance in WIM 1, 3, 4, and 5, with the greatest differences been seen in WIM 3 and 4. A higher proportion of the fatty acids were medium chained, C14:0 and C16:0, in the early than in the late OLA group from WIM 1. In WIM 4, the proportion of total fatty acid content that was C16:0 predicted late OLA, with 74% sensitivity and 80% specificity. The long-chain proportion of the fatty acids C18:0 and cis-9 C18:1 were lower in the early than in the late OLA group. Differences were greatest in

  6. Effect of media compositions on α-glucosidase inhibitory activity, growth and fatty acid content in mycelium extracts of Colletotrichum sp. TSC13 from Taxus Sumatrana (Miq.) de Laub.

    PubMed

    Artanti, Nina; Tachibana, Sanro; Kardono, Leonardus B S

    2014-07-01

    The active α-glucosidase inhibitor compounds in the endophytic fungus Colletotrichum sp. TSC13 were found to be the unsaturated fatty acids (oleic, linoleic and linolenic acids). These compounds have potential as antidiabetic agents. The aim of the present study is to investigate the effects of various media composition on growth (mycelium dry weight) and the fatty acids content (μg mg(-1) mycelium DW) of Colletotrichum sp. TSC13 in relation to its α-glucosidase inhibitory activity. For that purpose, the experiments were set up by varying the carbon and nitrogen sources, metal ions and desaturase and fatty acid synthase inhibitors in the media. Colletotrichum sp. TSC13 grown on potato dextrose broth (PDB) was used as control. The α-glucosidase inhibitory activities were (range from 43.9 ± 2.5 to 88.6 ± 5.2%) at 10 μg mL(-1). This activity seemed to correlate with the unsaturated fatty acids content of the samples. Different sugars as carbon source experiment showed that xylose gave the highest growth (938.7 ± 141.6 mg). However, the highest fatty acids content was obtained from fructose medium which containing linoleic acid (38.8 ± 4.9 μ g mg(-1) DW). Soluble starch gave better growth (672.5 ± 62.3 mg) but very low fatty acids content (2.8 ± 0.1 μg mg(-1) DW) was obtained. Yeast extract was the best nitrogen source. Fatty acids production was better as compared to beef extract and soytone. This is the first report of various media compositions on fatty acids content in Colletotrichum sp. TSC13 in relation to its α-glucosidase inhibitory activity. PMID:26035936

  7. Essential fatty acid nutrition of the American alligator (Alligator mississippiensis).

    PubMed

    Staton, M A; Edwards, H M; Brisbin, I L; Joanen, T; McNease, L

    1990-07-01

    The essential fatty acid (EFA) nutrition of young American alligators (Alligator mississippiensis) was examined by feeding a variety of fats/oils with potential EFA activity. Over a 12-wk period, alligators fed diets containing 2.5 or 5.0% chicken liver oil grew longer and heavier and converted feed to body mass more efficiently than alligators fed other fat/oil combinations that lacked or contained only trace amounts of arachidonic acid [20:4(n-6)]. Alligators fed an EFA-deficient diet (containing only coconut fat as the dietary fat) were the slowest-growing animals and converted feed to body mass least efficiently. However, over a 41-wk feeding period, alligators fed this diet showed no obvious external signs of deficiency other than being reduced in size and unthrifty. Fatty acid composition of heart, liver, muscle, skin and adipose tissue lipids was influenced markedly by dietary fat composition. Tissues varied significantly in response to dietary fat composition. Heart lipids contained the lowest levels of short- and medium-chain fatty acids and the highest levels of arachidonic acid. Arachidonic acid levels were less influenced by diet than were levels of other 20- and 22-carbon polyunsaturated fatty acids. Radiotracer studies indicated that linoleic acid was converted to arachidonic acid in the liver. Nevertheless, tissue arachidonic acid levels also appeared to be maintained by concentration from dietary sources and selective conservation. It appears that a dietary source of arachidonic acid may be required for a maximum rate of growth. PMID:2114472

  8. Evaluation of chemical constitute, fatty acids and antioxidant activity of the fruit and seed of sea buckthorn (Hippophae rhamnoides L.) grown wild in Iran.

    PubMed

    Saeidi, Keramatollah; Alirezalu, Abolfazl; Akbari, Zahra

    2016-01-01

    In this investigation, the chemical compositions of berries from sea buckthorn were studied. The amount of ascorbic acid and β-carotene determined by HPLC was 170 mg/100 g FW and 0.20 mg/g FW, respectively. Total phenols, anthocyanins, acidity and total soluble solids (TSS) contents were 247 mg GAE/100 g FW, 3 mg/L (cyanidin-3-glucoside), 5.32% and 13.8%, respectively. Fruit antioxidant activity determined by the ferric reducing ability of plasma (FRAP) method was 24.85 mM Fe/100 g FW. Results confirmed the presence of six dominant fatty acids (determined by GC) in fruit including linoleic (34.2%), palmitoleic (21.37%), palmitic (17.2%), oleic (12.8%), linolenic (5.37%) and stearic acid (1.67%). Five dominant fatty acids of the seeds were linoleic (42.36%), linolenic (21.27%), oleic (21.34%), palmitic (6.54%) and stearic acid (2.54%). The nitrogen content was 3.96%. The P, K, Ca, Mg, Fe, Zn, Mn, Cu, Cd and Cl contents of fruit were 491, 1674, 1290, 990, 291, 29.77, 108.37, 17.87, 0.021 and 2.18 mg/kg DW, respectively. PMID:26214249

  9. Short-Chain Fatty Acids Stimulate Angiopoietin-Like 4 Synthesis in Human Colon Adenocarcinoma Cells by Activating Peroxisome Proliferator-Activated Receptor γ

    PubMed Central

    Alex, Sheril; Lange, Katja; Amolo, Tom; Grinstead, Jeffrey S.; Haakonsson, Anders K.; Szalowska, Ewa; Koppen, Arjen; Mudde, Karin; Haenen, Daniëlle; Al-Lahham, Sa'ad; Roelofsen, Han; Houtman, René; van der Burg, Bart; Mandrup, Susanne; Bonvin, Alexandre M. J. J.; Kalkhoven, Eric; Müller, Michael; Hooiveld, Guido J.

    2013-01-01

    Angiopoietin-like protein 4 (ANGPTL4/FIAF) has been proposed as a circulating mediator between the gut microbiota and fat storage. Here, we show that transcription and secretion of ANGPTL4 in human T84 and HT29 colon adenocarcinoma cells is highly induced by physiological concentrations of short-chain fatty acids (SCFA). SCFA induce ANGPTL4 by activating the nuclear receptor peroxisome proliferator activated receptor γ (PPARγ), as demonstrated using PPARγ antagonist, PPARγ knockdown, and transactivation assays, which show activation of PPARγ but not PPARα and PPARδ by SCFA. At concentrations required for PPARγ activation and ANGPTL4 induction in colon adenocarcinoma cells, SCFA do not stimulate PPARγ in mouse 3T3-L1 and human SGBS adipocytes, suggesting that SCFA act as selective PPARγ modulators (SPPARM), which is supported by coactivator peptide recruitment assay and structural modeling. Consistent with the notion that fermentation leads to PPAR activation in vivo, feeding mice a diet rich in inulin induced PPAR target genes and pathways in the colon. We conclude that (i) SCFA potently stimulate ANGPTL4 synthesis in human colon adenocarcinoma cells and (ii) SCFA transactivate and bind to PPARγ. Our data point to activation of PPARs as a novel mechanism of gene regulation by SCFA in the colon, in addition to other mechanisms of action of SCFA. PMID:23339868

  10. Seaweed extracts and unsaturated fatty acid constituents from the green alga Ulva lactuca as activators of the cytoprotective Nrf2–ARE pathway

    PubMed Central

    Wang, Rui; Paul, Valerie J.; Luesch, Hendrik

    2013-01-01

    Increased amounts of reactive oxygen species (ROS) have been implicated in many pathological conditions, including cancer. The major machinery that the cell employs to neutralize excess ROS is through the activation of the antioxidant-response element (ARE) that controls the activation of many phase II detoxification enzymes. The transcription factor that recognizes the ARE, Nrf2, can be activated by a variety of small molecules, most of which contain an α,β-unsaturated carbonyl system. In the pursuit of chemopreventive agents from marine organisms, we built, fractionated, and screened a library of 30 field-collected eukaryotic algae from Florida. An edible green alga, Ulva lactuca, yielded multiple active fractions by ARE–luciferase reporter assay. We isolated three monounsaturated fatty acid (MUFA) derivatives as active components, including a new keto-type C18 fatty acid (1), the corresponding shorter chain C16 acid (2), and an amide derivative (3) of the C18 acid. Their chemical structures were elucidated by NMR and mass spectrometry. All three contain the conjugated enone motif between C7 and C9, which is thought to be responsible for the ARE activity. Subsequent biological studies focused on 1, the most active and abundant ARE activator isolated. C18 acid 1 induced the expression of ARE-regulated cytoprotective genes, including NAD(P)H:quinone oxidoreductase 1, heme oxygenase 1, thioredoxin reductase 1, both subunits of the glutamate–cysteine ligase (catalytic subunit and modifier subunit), and the cystine/glutamate exchange transporter, in IMR-32 human neuroblastoma cells. Its cellular activity requires the presence of Nrf2 and PI3K function, based on RNA interference and pharmacological inhibitor studies, respectively. Treatment with 1 led only to Nrf2 activation, and not the increase in production of NRF2 mRNA. To test its ARE activity and cytoprotective potential in vivo, we treated mice with a single dose of a U. lactuca fraction that was enriched

  11. Seaweed extracts and unsaturated fatty acid constituents from the green alga Ulva lactuca as activators of the cytoprotective Nrf2-ARE pathway.

    PubMed

    Wang, Rui; Paul, Valerie J; Luesch, Hendrik

    2013-04-01

    Increased amounts of reactive oxygen species (ROS) have been implicated in many pathological conditions, including cancer. The major machinery that the cell employs to neutralize excess ROS is through the activation of the antioxidant-response element (ARE) that controls the activation of many phase II detoxification enzymes. The transcription factor that recognizes the ARE, Nrf2, can be activated by a variety of small molecules, most of which contain an α,β-unsaturated carbonyl system. In the pursuit of chemopreventive agents from marine organisms, we built, fractionated, and screened a library of 30 field-collected eukaryotic algae from Florida. An edible green alga, Ulva lactuca, yielded multiple active fractions by ARE-luciferase reporter assay. We isolated three monounsaturated fatty acid (MUFA) derivatives as active components, including a new keto-type C18 fatty acid (1), the corresponding shorter chain C16 acid (2), and an amide derivative (3) of the C18 acid. Their chemical structures were elucidated by NMR and mass spectrometry. All three contain the conjugated enone motif between C7 and C9, which is thought to be responsible for the ARE activity. Subsequent biological studies focused on 1, the most active and abundant ARE activator isolated. C18 acid 1 induced the expression of ARE-regulated cytoprotective genes, including NAD(P)H:quinone oxidoreductase 1, heme oxygenase 1, thioredoxin reductase 1, both subunits of the glutamate-cysteine ligase (catalytic subunit and modifier subunit), and the cystine/glutamate exchange transporter, in IMR-32 human neuroblastoma cells. Its cellular activity requires the presence of Nrf2 and PI3K function, based on RNA interference and pharmacological inhibitor studies, respectively. Treatment with 1 led only to Nrf2 activation, and not the increase in production of NRF2 mRNA. To test its ARE activity and cytoprotective potential in vivo, we treated mice with a single dose of a U. lactuca fraction that was enriched with

  12. Propionate Promotes Fatty Acid Oxidation through the Up-Regulation of Peroxisome Proliferator-Activated Receptor α in Intestinal Epithelial Cells.

    PubMed

    Higashimura, Yasuki; Naito, Yuji; Takagi, Tomohisa; Uchiyama, Kazuhiko; Mizushima, Katsura; Yoshikawa, Toshikazu

    2015-01-01

    Short chain fatty acids (SCFAs) are produced in the colonic lumen mainly by bacterial fermentation of dietary fiber. Emerging evidence shows that SCFA has important physiological and pathophysiological effects on colonic and systemic events. Recently, propionate, known as a kind of SCFA, has been shown to lower fatty acid contents in plasma and reduce food intake. However, the detailed mechanism underlying the propionate-mediated lipid metabolism action remains poorly understood. The intestinal lipid metabolism process is critical for systemic energy homeostasis. Therefore, we investigate here the effects of propionate on intestinal lipid metabolism. Results show that propionate induced peroxisome proliferator-activated receptor α (PPARα) expression time-dependently and concentration-dependently in YAMC (a mouse intestinal epithelial cell line) cells. The expression levels of PPARα-responsive genes such as carnitine palmitoyl transferase II (CPTII) and trifunctional protein α (TFPα) were up-regulated in the presence of propionate, thereby suppressing triglyceride (TG) accumulation. Furthermore, propionate-mediated PPARα induction required phosphorylation of extracellular signal-regulated kinase. Collectively, these data indicate that propionate regulates intestinal lipid metabolism through the induction of PPARα expression. Results suggest that the inhibitory effect of propionate on TG accumulation partly contributes to the propionate-mediated fatty acid-lowering effect. PMID:26875495

  13. PlsX deletion impacts fatty acid synthesis and acid adaptation in Streptococcus mutans.

    PubMed

    Cross, Benjamin; Garcia, Ariana; Faustoferri, Roberta; Quivey, Robert G

    2016-04-01

    Streptococcus mutans, one of the primary causative agents of dental caries in humans, ferments dietary sugars in the mouth to produce organic acids. These acids lower local pH values, resulting in demineralization of the tooth enamel, leading to caries. To survive acidic environments, Strep. mutans employs several adaptive mechanisms, including a shift from saturated to unsaturated fatty acids in membrane phospholipids. PlsX is an acyl-ACP : phosphate transacylase that links the fatty acid synthase II (FASII) pathway to the phospholipid synthesis pathway, and is therefore central to the movement of unsaturated fatty acids into the membrane. Recently, we discovered that plsX is not essential in Strep. mutans. A plsX deletion mutant was not a fatty acid or phospholipid auxotroph. Gas chromatography of fatty acid methyl esters indicated that membrane fatty acid chain length in the plsX deletion strain differed from those detected in the parent strain, UA159. The deletion strain displayed a fatty acid shift similar to WT, but had a higher percentage of unsaturated fatty acids at low pH. The deletion strain survived significantly longer than the parent strain when cultures were subjected to an acid challenge of pH 2.5.The ΔplsX strain also exhibited elevated F-ATPase activity at pH 5.2, compared with the parent. These results indicate that the loss of plsX affects both the fatty acid synthesis pathway and the acid-adaptive response of Strep. mutans. PMID:26850107

  14. Docosahexaenoic Acid-Derived Fatty Acid Esters of Hydroxy Fatty Acids (FAHFAs) With Anti-inflammatory Properties.

    PubMed

    Kuda, Ondrej; Brezinova, Marie; Rombaldova, Martina; Slavikova, Barbora; Posta, Martin; Beier, Petr; Janovska, Petra; Veleba, Jiri; Kopecky, Jan; Kudova, Eva; Pelikanova, Terezie; Kopecky, Jan

    2016-09-01

    White adipose tissue (WAT) is a complex organ with both metabolic and endocrine functions. Dysregulation of all of these functions of WAT, together with low-grade inflammation of the tissue in obese individuals, contributes to the development of insulin resistance and type 2 diabetes. n-3 polyunsaturated fatty acids (PUFAs) of marine origin play an important role in the resolution of inflammation and exert beneficial metabolic effects. Using experiments in mice and overweight/obese patients with type 2 diabetes, we elucidated the structures of novel members of fatty acid esters of hydroxy fatty acids-lipokines derived from docosahexaenoic acid (DHA) and linoleic acid, which were present in serum and WAT after n-3 PUFA supplementation. These compounds contained DHA esterified to 9- and 13-hydroxyoctadecadienoic acid (HLA) or 14-hydroxydocosahexaenoic acid (HDHA), termed 9-DHAHLA, 13-DHAHLA, and 14-DHAHDHA, and were synthesized by adipocytes at concentrations comparable to those of protectins and resolvins derived from DHA in WAT. 13-DHAHLA exerted anti-inflammatory and proresolving properties while reducing macrophage activation by lipopolysaccharides and enhancing the phagocytosis of zymosan particles. Our results document the existence of novel lipid mediators, which are involved in the beneficial anti-inflammatory effects attributed to n-3 PUFAs, in both mice and humans. PMID:27313314

  15. 21 CFR 172.860 - Fatty acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... food additive consists of one or any mixture of the following straight-chain monobasic carboxylic acids... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Fatty acids. 172.860 Section 172.860 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR...

  16. 21 CFR 172.860 - Fatty acids.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... food additive consists of one or any mixture of the following straight-chain monobasic carboxylic acids... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Fatty acids. 172.860 Section 172.860 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR...

  17. 21 CFR 172.860 - Fatty acids.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... food additive consists of one or any mixture of the following straight-chain monobasic carboxylic acids... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Fatty acids. 172.860 Section 172.860 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR...

  18. 21 CFR 172.860 - Fatty acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... food additive consists of one or any mixture of the following straight-chain monobasic carboxylic acids... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Fatty acids. 172.860 Section 172.860 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR...

  19. 2-Alkynoic fatty acids inhibit Topoisomerase IB from Leishmania donovani

    PubMed Central

    Carballeira, Néstor M.; Cartagena, Michelle; Sanabria, David; Kaiser, Marcel; Tasdemir, Deniz; Prada, Christopher F.; Reguera, Rosa M.; Balaña-Fouce, Rafael

    2012-01-01

    2-Alkynoic fatty acids display antimycobacterial, antifungal, and pesticidal activities but their antiprotozoal activity has received little attention. In this work we synthesized the 2-octadecynoic acid (2-ODA), 2-hexadecynoic acid (2-HDA), and 2-tetradecynoic acid (2-TDA) and show that 2-ODA is the best inhibitor of the Leishmania donovani DNA topoisomerase IB enzyme (LdTopIB) with an EC50 = 5.3 ± 0.7 μM. The potency of LdTopIB inhibition follows the trend 2-ODA> 2-HDA> 2-TDA, indicating that the effectiveness of inhibition depends on the fatty acid carbon chain length. All of the studied 2-alkynoic fatty acids were less potent inhibitors of the human topoisomerase IB enzyme (hTopIB) as compared to LdTopIB. 2-ODA also displayed in vitro activity against Leishmania donovani (IC50 = 11.0 μM), but it was less effective against other protozoa, Trypanosoma cruzi (IC50 = 48.1 μM) and T. brucei rhodesiense (IC50 = 64.5 μM). The antiprotozoal activity of the 2-alkynoic fatty acids, in general, followed the trend 2-ODA> 2-HDA> 2-TDA. The experimental information gathered so far indicates that 2-ODA is a promising antileishmanial compound. PMID:22932312

  20. Modulation of fatty acid oxidation alters contact hypersensitivity to urushiols: role of aliphatic chain beta-oxidation in processing and activation of urushiols.

    PubMed

    Kalergis, A M; López, C B; Becker, M I; Díaz, M I; Sein, J; Garbarino, J A; De Ioannes, A E

    1997-01-01

    Lithraea caustica, or litre, a tree of the Anacardiaceae family that is endemic to the central region of Chile, induces a severe contact dermatitis in susceptible human beings. The allergen was previously isolated and characterized as a 3-(pentadecyl-10-enyl) catechol, a molecule belonging to the urushiol group of allergens isolated from poison ivy and poison oak plants. Because urushiols are pro-electrophilic haptens, it is believed that the reactive species are generated intracellularly by skin keratinocytes and Langerhans cells. The active species are presumed to modify self proteins which, after proteolytic processing, would generate immunogenic peptides carrying the hapten. The presence of a 15-carbon-length hydrophobic chain should impair antigen presentation of self-modified peptides by class I MHC molecules, either by steric hindrance or by limiting their sorting to the ER lumen. We have proposed that the shortening of the aliphatic chain by beta-oxidation within peroxisomes and/or mitochondria should be a requirement for the antigen presentation process. To test this hypothesis we investigated the effect of drugs that modify the fatty acid metabolism on urushiol-induced contact dermatitis in mice. Clofibrate, a peroxisomal proliferator in mice, increased the immune response to the urushiols from litre by 50%. Conversely, tetradecyl glycidic acid, an inhibitor of the uptake of fatty acids by mitochondria, decreased the hypersensitivity to the hapten. An increase in the level in glutathione by treatment of the animals with 2-oxotiazolidin-4-carboxilic acid lowered the response. Those findings strongly support a role for the fatty acid oxidative metabolism in the processing and activation of urushiols in vivo. PMID:8980288

  1. Modulation Peroxisome Proliferators Activated Receptor alpha (PPAR α) and Acyl Coenzyme A: Cholesterol Acyltransferase1 (ACAT1) Gene expression by Fatty Acids in Foam cell

    PubMed Central

    Zavvar Reza, Javad; Doosti, Mahmoud; salehipour, Masoud; PackneJad, Malehieh; Mojarrad, Majed; Heidari, Mansour; Emamian, Effat S

    2009-01-01

    Background One of the most important factors in the initiation and progression of atherosclerosis is the default in macrophage cholesterol homeostasis. Many genes and transcription factors such as Peroxisome Proliferators Activated Receptors (PPARs) and Acyl Coenzyme A: Cholesterol Acyltransferase1 (ACAT1) are involved in cholesterol homeostasis. Fatty Acids are important ligands of PPARα and the concentration of them can effect expression of ACAT1. So this study designed to clarified on the role of these genes and fatty acids on the lipid metabolism in foam cells. Methods This study examined effects of c9, t11-Conjugated Linoleic Acid(c9, t11-CLA), Alpha Linolenic Acid (LA), Eicosapentaenoic Acid (EPA) on the PPARα and ACAT1 genes expression by using Real time PCR and cholesterol homeostasis in THP-1 macrophages derived foam cells. Results Incubation of c9, t11-CLA, LA cause a significant reduction in intracellular Total Cholesterol, Free Cholesterol, cellular and Estrified Cholesterol concentrations (P ≤ 0.05). CLA and LA had no significant effect on the mRNA levels of ACAT1, but EPA increased ACAT1 mRNA expression (P = 0.003). Treatment with EPA increased PPARα mRNA levels (P ≤ 0.001), although CLA, LA had no significant effect on PPARα mRNA expression. Conclusion In conclusion, it seems that different fatty acids have different effects on gene expression and lipid metabolism and for complete conception study of the genes involved in lipid metabolism in foam cell all at once maybe is benefit. PMID:19725980

  2. Association of serum fatty acid and estimated desaturase activity with hypertension in middle-aged and elderly Chinese population

    PubMed Central

    Yang, Bo; Ding, Fang; Wang, Feng-Lei; Yan, Jing; Ye, Xiong-Wei; Yu, Wei; Li, Duo

    2016-01-01

    We aimed to investigate the cross-sectional associations of serum fatty acid (FA) and related Δ-desaturase with hypertension among 2,447 community-dwellers aged 35–79 years living in Zhejiang Province, China. Individual FA was determined in serum, Δ5-desaturase (D5D) and Δ6-desaturase (D6D) activities were indirectly estimated by FA product/precursor ratios. Participants in the highest quartile of D5D component scores (20:4n–6, 20:5n–3, 22:6n–3 and D5D) have significantly lower odds of hypertension compared with individuals in the lowest (multivariate-adjusted odds ratio (OR) = 0.68, 95% CI: 0.46–0.98). When further stratified by gender, high D5D component scores were significantly associated with lower odds of hypertension in women (OR = 0.53, 95% CI: 0.35–0.80), but not in men (OR = 0.78, 95% CI: 0.52-1.18). Multivariate-adjusted prevalent OR for an interquartile increment of individual FA and estimated desaturase was 1.27 (95% CI: 1.08–1.50) for 16:0, 1.15 (95% CI: 1.01–1.30) for 16:1n–7, 0.89 (95% CI: 0.80–0.99) for 22:6n–3, 1.32 (95% CI: 1.01–1.72) for D6D (18:3n–6/18:2n–6), and 0.74 (95% CI: 0.56, 0.98) for D5D (20:4n–6/20:3n–6). Present findings suggested that high serum 22:6n–3 and D5D as well as low 16:0, 16:1n–7 and D6D were associated with a low prevalence of hypertension in this Chinese population. PMID:27006169

  3. Production of hydroxylated fatty acids in genetically modified plants

    DOEpatents

    Somerville, Chris; Broun, Pierre; van de Loo, Frank; Boddupalli, Sekhar S.

    2005-08-30

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  4. Production of hydroxylated fatty acids in genetically modified plants

    DOEpatents

    Somerville, Chris; Broun, Pierre; van de Loo, Frank; Boddupalli, Sekhar S.

    2011-08-23

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  5. Inhibitory effects of omega-3 fatty acids on early brain injury after subarachnoid hemorrhage in rats: Possible involvement of G protein-coupled receptor 120/β-arrestin2/TGF-β activated kinase-1 binding protein-1 signaling pathway.

    PubMed

    Yin, Jia; Li, Haiying; Meng, Chengjie; Chen, Dongdong; Chen, Zhouqing; Wang, Yibin; Wang, Zhong; Chen, Gang

    2016-06-01

    Omega-3 fatty acids have been reported to improve neuron functions during aging and in patients affected by mild cognitive impairment, and mediate potent anti-inflammatory via G protein-coupled receptor 120 (GPR120) signal pathway. Neuron dysfunction and inflammatory response also contributed to the progression of subarachnoid hemorrhage (SAH)-induced early brain injury (EBI). This study was to examine the effects of omega-3 fatty acids on SAH-induced EBI. Two weeks before SAH, 30% Omega-3 fatty acids was administered by oral gavage at 1g/kg body weight once every 24h. Specific siRNA for GPR120 was exploited. Terminal deoxynucleotidyl transferase dUTP nick end labeling, fluoro-Jade B staining, and neurobehavioral scores and brain water content test showed that omega-3 fatty acids effectively suppressed SAH-induced brain cell apoptosis and neuronal degradation, behavioral impairment, and brain edema. Western blot, immunoprecipitation, and electrophoretic mobility shift assays results showed that omega-3 fatty acids effectively suppressed SAH-induced elevation of inflammatory factors, including cyclooxygenase-2, monocyte chemoattractant protein-1, and inducible nitric oxide synthase. In addition, omega-3 fatty acids could inhibit phosphorylation of transforming growth factor β activated kinase-1 (TAK1), MEK4, c-Jun N-terminal kinase, and IkappaB kinase as well as activation of nuclear factor kappa B through regulating GPR120/β-arrestin2/TAK1 binding protein-1 pathway. Furthermore, siRNA-induced GPR120 silencing blocked the protective effects of omega-3 fatty acids. Here, we show that stimulation of GPR120 with omega-3 fatty acids pretreatment causes anti-apoptosis and anti-inflammatory effects via β-arrestin2/TAK1 binding protein-1/TAK1 pathway in the brains of SAH rats. Fish omega-3 fatty acids as part of a daily diet may reduce EBI in an experimental rat model of SAH. PMID:27000704

  6. Molar extinction coefficients of some fatty acids

    NASA Astrophysics Data System (ADS)

    Sandhu, G. K.; Singh, Kulwant; Lark, B. S.; Gerward, L.

    2002-10-01

    The attenuation of gamma rays in some fatty acids, viz. formic acid (CH 2O 2), acetic acid (C 2H 4O 2), propionic acid (C 3H 6O 2), butyric acid (C 4H 8O 2), n-hexanoic acid (C 6H 12O 2), n-caprylic acid (C 8H 16O 2), lauric acid (C 12H 24O 2), myristic acid (C 14H 28O 2), palmitic acid (C 16H 32O 2), oleic acid (C 18H 34O 2) and stearic acid (C 18H 36O 2), has been measured at the photon energies 81, 356, 511, 662, 1173 and 1332 keV. Experimental values for the molar extinction coefficient, the effective atomic number and the electron density have been derived and compared with theoretical calculations. There is good agreement between experiment and theory.

  7. Antioxidant activity of phenolic compounds added to a functional emulsion containing omega-3 fatty acids and plant sterol esters.

    PubMed

    Espinosa, Raquel Rainho; Inchingolo, Raffaella; Alencar, Severino Matias; Rodriguez-Estrada, Maria Teresa; Castro, Inar Alves

    2015-09-01

    The effect of eleven compounds extracted from red propolis on the oxidative stability of a functional emulsion was evaluated. Emulsions prepared with Echium oil as omega 3 (ω-3 FA) source, containing 1.63 g/100mL of α-linolenic acid (ALA), 0.73 g/100 mL of stearidonic acid (SDA) and 0.65 g/100mL of plant sterol esters (PSE) were prepared without or with phenolic compounds (vanillic acid, caffeic acid, trans-cinnamic acid, 2,4-dihydroxycinnamic acid, p-coumaric acid, quercetin, trans-ferulic acid, trans,trans-farnesol, rutin, gallic acid or sinapic acid). tert-Butylhydroquinone and a mixture containing ascorbic acid and FeSO4 were applied as negative and positive controls of the oxidation. Hydroperoxide, thiobarbituric acid reactive substances (TBARS), malondialdehyde and phytosterol oxidation products (POPs) were evaluated as oxidative markers. Based on hydroperoxide and TBARS analysis, sinapic acid and rutin (200 ppm) showed the same antioxidant activity than TBHQ, representing a potential alternative as natural antioxidant to be applied in a functional emulsion containing ω-3 FA and PSE. PMID:25842314

  8. Effects of vitamin A, C and E, or omega-3 fatty acid supplementation on the level of paraoxonase and arylesterase activity in streptozotocin-induced diabetic rats: an investigation of activities in plasma, and heart and liver homogenates

    PubMed Central

    Zarei, Mahnaz; Fakher, Shima; Tabei, Seyed Mohammad Bagher; Javanbakht, Mohammad Hassan; Derakhshanian, Hoda; Farahbakhsh-Farsi, Payam; Sadeghi, Mohammad Reza; Mostafavi, Ebrahim; Djalali, Mahmoud

    2016-01-01

    INTRODUCTION This study was designed and conducted to evaluate the effects of vitamin A, C and E supplementation, and omega-3 fatty acid supplementation on the activity of paraoxonase and arylesterase in an experimental model of diabetes mellitus. METHODS A total of 64 male Sprague Dawley® rats, each weighing 250 g, were randomly distributed into four groups: (a) normal control; (b) diabetic control; (c) diabetic with vitamin A, C and E supplementation; and (d) diabetic with omega-3 fatty acid supplementation. The animals were anaesthetised after four weeks of intervention, and paraoxonase and arylesterase activity in blood plasma, and liver and heart homogenates were measured. RESULTS Arylesterase activity in the heart and liver homogenates was significantly lower in the diabetic control group than in the normal control group (p < 0.01). Vitamin A, C and E supplementation, and omega-3 fatty acid supplementation significantly increased liver arylesterase activity (p < 0.05). No significant change was observed in paraoxonase activity and other investigated factors. CONCLUSION Vitamin A, C and E, or omega-3 fatty acid supplementation were found to increase liver arylesterase activity in streptozotocin-induced diabetic rats. These supplements may be potential agents for the treatment of diabetes mellitus complications. PMID:26996784

  9. Distinctive roles of unsaturated and saturated fatty acids in hyperlipidemic pancreatitis

    PubMed Central

    Chang, Yu-Ting; Chang, Ming-Chu; Tung, Chien-Chih; Wei, Shu-Chen; Wong, Jau-Min

    2015-01-01

    AIM: To investigate how the saturated and unsaturated fatty acid composition influences the susceptibility of developing acute pancreatitis. METHODS: Primary pancreatic acinar cells were treated with low and high concentrations of different saturated and unsaturated fatty acids, and changes in the cytosolic Ca2+ signal and the expression of protein kinase C (PKC) were measured after treatment. RESULTS: Unsaturated fatty acids at high concentrations, including oleic acid, linoleic acid, palmitoleic acid, docosahexaenoic acid, and arachidonic acid, induced a persistent rise in cytosolic Ca2+ concentrations in acinar cells. Unsaturated fatty acids at low concentrations and saturated fatty acids, including palmitic acid, stearic acid, and triglycerides, at low and high concentrations were unable to induce a rise in Ca2+ concentrations in acinar cells. Unsaturated fatty acids at high concentrations but not saturated fatty acids induced intra-acinar cell trypsin activation and cell damage and increased PKC expression. CONCLUSION: At sufficiently high concentrations, unsaturated fatty acids were able to induce acinar cells injury and promote the development of pancreatitis. Unsaturated fatty acids may play a distinctive role in the pathogenesis of pancreatitis through the activation of PKC family members. PMID:26327761

  10. Branched Fatty Acid Esters of Hydroxy Fatty Acids Are Preferred Substrates of the MODY8 Protein Carboxyl Ester Lipase.

    PubMed

    Kolar, Matthew J; Kamat, Siddhesh S; Parsons, William H; Homan, Edwin A; Maher, Tim; Peroni, Odile D; Syed, Ismail; Fjeld, Karianne; Molven, Anders; Kahn, Barbara B; Cravatt, Benjamin F; Saghatelian, Alan

    2016-08-23

    A recently discovered class of endogenous mammalian lipids, branched fatty acid esters of hydroxy fatty acids (FAHFAs), possesses anti-diabetic and anti-inflammatory activities. Here, we identified and validated carboxyl ester lipase (CEL), a pancreatic enzyme hydrolyzing cholesteryl esters and other dietary lipids, as a FAHFA hydrolase. Variants of CEL have been linked to maturity-onset diabetes of the young, type 8 (MODY8), and to chronic pancreatitis. We tested the FAHFA hydrolysis activity of the CEL MODY8 variant and found a modest increase in activity as compared with that of the normal enzyme. Together, the data suggest that CEL might break down dietary FAHFAs. PMID:27509211

  11. Essential fatty acid consumption and risk of breast cancer.

    PubMed

    Godley, P A

    1995-07-01

    Animal and ecological studies of essential fatty acids suggest that omega-3 fatty acids found in fish oils and omega-6 fatty acids found in vegetable oils may be playing a role in the etiology of breast cancer. Essential fatty acids may modulate breast cancer risk by interacting with prostaglandins, which have immunosuppressive and platelet aggregative capabilities. The fatty acid composition of adipose tissue reflects the dietary consumption of essential fatty acids over a period of years. Biochemical techniques have been used in epidemiological studies to accurately estimate fatty acid consumption. However, analytical epidemiology studies that have used biochemical measurements of adipose tissue fatty acid composition, have not supported a relationship between consumption of these essential fatty acids and breast cancer risk. PMID:7612909

  12. Effect of fatty acids on phase behavior of hydrated dipalmitoylphosphatidylcholine bilayer: saturated versus unsaturated fatty acids.

    PubMed

    Inoue, T; Yanagihara, S; Misono, Y; Suzuki, M

    2001-02-01

    The effect of some fatty acids on the phase behavior of hydrated dipalmitoylphosphatidylcholine (DPPC) bilayer was investigated with special interest in possible difference between saturated and unsaturated fatty acids. The phase behavior of hydrated DPPC bilayer was followed by a differential scanning calorimetry and a Fourier transform infrared spectroscopy. The addition of palmitic acid (PA) increased the bilayer phase transition temperature with the increase of the PA content in the mixture. In addition, DPPC molecules in gel phase bilayer became more rigid in the presence of PA compared with those in the absence of PA. This effect of PA on the phase behavior of hydrated DPPC bilayer is common to other saturated fatty acids, stearic acid, myristic acid, and also to unsaturated fatty acid with trans double bond, elaidic acid. Contrary to these fatty acids, oleic acid (OA), the unsaturated fatty acid with cis double bond in the acyl chain, exhibited quite different behavior. The effect of OA on the bilayer phase transition temperature was rather small, although a slight decrease in the temperature was appreciable. Furthermore, the IR spectral results demonstrated that the perturbing effect of OA on the gel phase bilayer of DPPC was quite small. These results mean that OA does not disturb the hydrated DPPC bilayer significantly. PMID:11269932

  13. Fatty acid production in genetically modified cyanobacteria

    PubMed Central

    Liu, Xinyao; Sheng, Jie; Curtiss III, Roy

    2011-01-01

    To avoid costly biomass recovery in photosynthetic microbial biofuel production, we genetically modified cyanobacteria to produce and secrete fatty acids. Starting with introducing an acyl–acyl carrier protein thioesterase gene, we made six successive generations of genetic modifications of cyanobacterium Synechocystis sp. PCC6803 wild type (SD100). The fatty acid secretion yield was increased to 197 ± 14 mg/L of culture in one improved strain at a cell density of 1.0 × 109 cells/mL by adding codon-optimized thioesterase genes and weakening polar cell wall layers. Although these strains exhibited damaged cell membranes at low cell densities, they grew more rapidly at high cell densities in late exponential and stationary phase and exhibited less cell damage than cells in wild-type cultures. Our results suggest that fatty acid secreting cyanobacteria are a promising technology for renewable biofuel production. PMID:21482809

  14. Soybean Aphid Infestation Induces Changes in Fatty Acid Metabolism in Soybean

    PubMed Central

    Kanobe, Charles; McCarville, Michael T.; O’Neal, Matthew E.; Tylka, Gregory L.; MacIntosh, Gustavo C.

    2015-01-01

    The soybean aphid (Aphis glycines Matsumura) is one of the most important insect pests of soybeans in the North-central region of the US. It has been hypothesized that aphids avoid effective defenses by inhibition of jasmonate-regulated plant responses. Given the role fatty acids play in jasmonate-induced plant defenses, we analyzed the fatty acid profile of soybean leaves and seeds from aphid-infested plants. Aphid infestation reduced levels of polyunsaturated fatty acids in leaves with a concomitant increase in palmitic acid. In seeds, a reduction in polyunsaturated fatty acids was associated with an increase in stearic acid and oleic acid. Soybean plants challenged with the brown stem rot fungus or with soybean cyst nematodes did not present changes in fatty acid levels in leaves or seeds, indicating that the changes induced by aphids are not a general response to pests. One of the polyunsaturated fatty acids, linolenic acid, is the precursor of jasmonate; thus, these changes in fatty acid metabolism may be examples of “metabolic hijacking” by the aphid to avoid the induction of effective defenses. Based on the changes in fatty acid levels observed in seeds and leaves, we hypothesize that aphids potentially induce interference in the fatty acid desaturation pathway, likely reducing FAD2 and FAD6 activity that leads to a reduction in polyunsaturated fatty acids. Our data support the idea that aphids block jasmonate-dependent defenses by reduction of the hormone precursor. PMID:26684003

  15. CD4(+) T-cell activation is differentially modulated by bacteria-primed dendritic cells, but is generally down-regulated by n-3 polyunsaturated fatty acids.

    PubMed

    Brix, Susanne; Lund, Pia; Kjaer, Tanja M R; Straarup, Ellen M; Hellgren, Lars I; Frøkiaer, Hanne

    2010-03-01

    Appropriate activation of CD4(+) T cells is fundamental for efficient initiation and progression of acquired immune responses. Here, we showed that CD4(+) T-cell activation is dependent on changes in membrane n-3 polyunsaturated fatty acids (PUFAs) and is dynamically regulated by the type of signals provided by dendritic cells (DCs). Upon interaction with DCs primed by different concentrations and species of gut bacteria, CD4(+) T cells were activated according to the type of DC stimulus. The levels of CD80 were found to correlate to the levels of expression of CD28 and to the proliferation of CD4(+) T cells, while the presence of CD40 and CD86 on DCs inversely affected inducible costimulator (ICOS) and cytotoxic T-lymphocyte antigen-4 (CTLA-4) levels in CD4(+) T cells. For all DC stimuli, cells high in n-3 PUFAs showed reduced ability to respond to CD28 stimulation, to proliferate, and to express ICOS and CTLA-4. Diminished T-cell receptor (TCR) and CD28 signalling was found to be responsible for n-3 PUFA effects. Thus, the dietary fatty acid composition influences the overall level of CD4(+) T-cell activation induced by DCs, while the priming effect of the DC stimuli modulates CD80, CD86 and CD40 levels, thereby affecting and shaping activation of acquired immunity by differential regulation of proliferation and costimulatory molecule expression in CD4(+) T cells. PMID:19909377

  16. CD4+ T-cell activation is differentially modulated by bacteria-primed dendritic cells, but is generally down-regulated by n-3 polyunsaturated fatty acids

    PubMed Central

    Brix, Susanne; Lund, Pia; Kjaer, Tanja M R; Straarup, Ellen M; Hellgren, Lars I; Frøkiær, Hanne

    2010-01-01

    Appropriate activation of CD4+ T cells is fundamental for efficient initiation and progression of acquired immune responses. Here, we showed that CD4+ T-cell activation is dependent on changes in membrane n-3 polyunsaturated fatty acids (PUFAs) and is dynamically regulated by the type of signals provided by dendritic cells (DCs). Upon interaction with DCs primed by different concentrations and species of gut bacteria, CD4+ T cells were activated according to the type of DC stimulus. The levels of CD80 were found to correlate to the levels of expression of CD28 and to the proliferation of CD4+ T cells, while the presence of CD40 and CD86 on DCs inversely affected inducible costimulator (ICOS) and cytotoxic T-lymphocyte antigen-4 (CTLA-4) levels in CD4+ T cells. For all DC stimuli, cells high in n-3 PUFAs showed reduced ability to respond to CD28 stimulation, to proliferate, and to express ICOS and CTLA-4. Diminished T-cell receptor (TCR) and CD28 signalling was found to be responsible for n-3 PUFA effects. Thus, the dietary fatty acid composition influences the overall level of CD4+ T-cell activation induced by DCs, while the priming effect of the DC stimuli modulates CD80, CD86 and CD40 levels, thereby affecting and shaping activation of acquired immunity by differential regulation of proliferation and costimulatory molecule expression in CD4+ T cells. PMID:19909377

  17. Fatty acid induced remodeling within the human liver fatty acid-binding protein.

    PubMed

    Sharma, Ashwani; Sharma, Amit

    2011-09-01

    We crystallized human liver fatty acid-binding protein (LFABP) in apo, holo, and intermediate states of palmitic acid engagement. Structural snapshots of fatty acid recognition, entry, and docking within LFABP support a heads-in mechanism for ligand entry. Apo-LFABP undergoes structural remodeling, where the first palmitate ingress creates the atomic environment for placement of the second palmitate. These new mechanistic insights will facilitate development of pharmacological agents against LFABP. PMID:21757748

  18. Fatty acid composition of Swedish bakery products, with emphasis on trans-fatty acids.

    PubMed

    Trattner, Sofia; Becker, Wulf; Wretling, Sören; Öhrvik, Veronica; Mattisson, Irene

    2015-05-15

    Trans-fatty acids (TFA) have been associated with increased risk of coronary heart disease, by affecting blood lipids and inflammation factors. Current nutrition recommendations emphasise a limitation of dietary TFA intake. The aim of this study was to investigate fatty acid composition in sweet bakery products, with emphasis on TFA, on the Swedish market and compare fatty acid composition over time. Products were sampled in 2001, 2006 and 2007 and analysed for fatty acid composition by using GC. Mean TFA levels were 0.7% in 2007 and 5.9% in 2001 of total fatty acids. In 1995-97, mean TFA level was 14.3%. In 2007, 3 of 41 products had TFA levels above 2% of total fatty acids. TFA content had decreased in this product category, while the proportion of saturated (SFA) and polyunsaturated (PUFA) fatty acids had increased, mostly through increased levels of 16:0 and 18:2 n-6, respectively. The total fat content remained largely unchanged. PMID:25577101

  19. Selective Enrichment of Omega-3 Fatty Acids in Oils by Phospholipase A1.

    PubMed

    Ranjan Moharana, Tushar; Byreddy, Avinesh R; Puri, Munish; Barrow, Colin; Rao, Nalam Madhusudhana

    2016-01-01

    Omega fatty acids are recognized as key nutrients for healthier ageing. Lipases are used to release ω-3 fatty acids from oils for preparing enriched ω-3 fatty acid supplements. However, use of lipases in enrichment of ω-3 fatty acids is limited due to their insufficient specificity for ω-3 fatty acids. In this study use of phospholipase A1 (PLA1), which possesses both sn-1 specific activity on phospholipids and lipase activity, was explored for hydrolysis of ω-3 fatty acids from anchovy oil. Substrate specificity of PLA1 from Thermomyces lenuginosus was initially tested with synthetic p-nitrophenyl esters along with a lipase from Bacillus subtilis (BSL), as a lipase control. Gas chromatographic characterization of the hydrolysate obtained upon treatment of anchovy oil with these enzymes indicated a selective retention of ω-3 fatty acids in the triglyceride fraction by PLA1 and not by BSL. 13C NMR spectroscopy based position analysis of fatty acids in enzyme treated and untreated samples indicated that PLA1 preferably retained ω-3 fatty acids in oil, while saturated fatty acids were hydrolysed irrespective of their position. Hydrolysis of structured triglyceride,1,3-dioleoyl-2-palmitoylglycerol, suggested that both the enzymes hydrolyse the fatty acids at both the positions. The observed discrimination against ω-3 fatty acids by PLA1 appears to be due to its fatty acid selectivity rather than positional specificity. These studies suggest that PLA1 could be used as a potential enzyme for selective concentrationof ω-3 fatty acids. PMID:26978518

  20. Selective Enrichment of Omega-3 Fatty Acids in Oils by Phospholipase A1

    PubMed Central

    Puri, Munish; Barrow, Colin; Rao, Nalam Madhusudhana

    2016-01-01

    Omega fatty acids are recognized as key nutrients for healthier ageing. Lipases are used to release ω-3 fatty acids from oils for preparing enriched ω-3 fatty acid supplements. However, use of lipases in enrichment of ω-3 fatty acids is limited due to their insufficient specificity for ω-3 fatty acids. In this study use of phospholipase A1 (PLA1), which possesses both sn-1 specific activity on phospholipids and lipase activity, was explored for hydrolysis of ω-3 fatty acids from anchovy oil. Substrate specificity of PLA1 from Thermomyces lenuginosus was initially tested with synthetic p-nitrophenyl esters along with a lipase from Bacillus subtilis (BSL), as a lipase control. Gas chromatographic characterization of the hydrolysate obtained upon treatment of anchovy oil with these enzymes indicated a selective retention of ω-3 fatty acids in the triglyceride fraction by PLA1 and not by BSL. 13C NMR spectroscopy based position analysis of fatty acids in enzyme treated and untreated samples indicated that PLA1 preferably retained ω-3 fatty acids in oil, while saturated fatty acids were hydrolysed irrespective of their position. Hydrolysis of structured triglyceride,1,3-dioleoyl-2-palmitoylglycerol, suggested that both the enzymes hydrolyse the fatty acids at both the positions. The observed discrimination against ω-3 fatty acids by PLA1 appears to be due to its fatty acid selectivity rather than positional specificity. These studies suggest that PLA1 could be used as a potential enzyme for selective concentrationof ω-3 fatty acids. PMID:26978518

  1. Effect of long-term administration of arachidonic acid on n-3 fatty acid deficient mice.

    PubMed

    Harauma, Akiko; Tomita, Makiko; Muto, Daiki; Moriguchi, Toru

    2015-04-01

    The effect of long-term oral administration of arachidonic acid (ARA, 240 mg/kg/day) on brain function was assessed for mice maintained on an n-3 fatty acid adequate or deficient diet. The administration of ARA for 13 weeks resulted in an elevation of spontaneous motor activity, or the tendency thereof, in both the n-3 fatty acid adequate and deficient groups. However, the n-3 fatty acid deficient mice that were administered with ARA revealed marked deterioration in motor function in a motor coordination test. In the experiment to investigate changes over time, the motor activity of the ARA-administered group continued to increase mildly in n-3 deficient mice, although that of the control group showed a decrease involving habituation for both diet groups from the second week. The fatty acid composition of the brain at the end of the behavioral experiments indicated an increase in the levels of ARA and other n-6 fatty acids, as well as a decrease in the levels of docosahexaenoic acid. These results suggest that long-term administration of ARA causes an increase of futile spontaneous motor activity and the diminution of motor function by aggravation of n-3 fatty acid deficiency. PMID:25650363

  2. Betulinic acid alleviates non-alcoholic fatty liver by inhibiting SREBP1 activity via the AMPK-mTOR-SREBP signaling pathway.

    PubMed

    Quan, Hai Yan; Kim, Do Yeon; Kim, Soo Jung; Jo, Hee Kyung; Kim, Go Woon; Chung, Sung Hyun

    2013-05-01

    Non-alcoholic fatty liver disease (NAFLD) is emerging as the most common liver disease in industrialized countries. The discovery of food components that can ameliorate NAFLD is therefore of interest. Betulinic acid (BA) is a triterpenoid with many pharmacological activities, but the effect of BA on fatty liver is as yet unknown. To explore the possible anti-fatty liver effects and their underlying mechanisms, we used insulin-resistant HepG2 cells, primary rat hepatocytes and liver tissue from ICR mice fed a high-fat diet (HFD). Oil Red O staining revealed that BA significantly suppressed excessive triglyceride accumulation in HepG2 cells and in the livers of mice fed a HFD. Ca(+2)-calmodulin dependent protein kinase kinase (CAMKK) and AMP-activated protein kinase (AMPK) were both activated by BA treatment. In contrast, the protein levels of sterol regulatory element-binding protein 1 (SREBP1), mammalian target of rapamycin (mTOR) and S6 kinase (S6K) were all reduced when hepatocytes were treated with BA for up to 24h. We found that BA activates AMPK via phosphorylation, suppresses SREBP1 mRNA expression, nuclear translocation and repressed SREBP1 target gene expression in HepG2 cells and primary hepatocytes, leading to reduced lipogenesis and lipid accumulation. These effects were completely abolished in the presence of STO-609 (a CAMKK inhibitor) or compound C (an AMPK inhibitor), indicating that the BA-induced reduction in hepatic steatosis was mediated via the CAMKK-AMPK-SREBP1 signaling pathway. Taken together, our results suggest that BA effectively ameliorates intracellular lipid accumulation in liver cells and thus is a potential therapeutic agent for the prevention of fatty liver disease. PMID:23435355

  3. The science of fatty acids and inflammation.

    PubMed

    Fritsche, Kevin L

    2015-05-01

    Inflammation is believed to play a central role in many of the chronic diseases that characterize modern society. In the past decade, our understanding of how dietary fats affect our immune system and subsequently our inflammatory status has grown considerably. There are compelling data showing that high-fat meals promote endotoxin [e.g., lipopolysaccharide (LPS)] translocation into the bloodstream, stimulating innate immune cells and leading to a transient postprandial inflammatory response. The nature of this effect is influenced by the amount and type of fat consumed. The role of various dietary constituents, including fats, on gut microflora and subsequent health outcomes in the host is another exciting and novel area of inquiry. The impact of specific fatty acids on inflammation may be central to how dietary fats affect health. Three key fatty acid-inflammation interactions are briefly described. First, the evidence suggests that saturated fatty acids induce inflammation in part by mimicking the actions of LPS. Second, the often-repeated claim that dietary linoleic acid promotes inflammation was not supported in a recent systematic review of the evidence. Third, an explanation is offered for why omega-3 (n-3) polyunsaturated fatty acids are so much less anti-inflammatory in humans than in mice. The article closes with a cautionary tale from the genomic literature that illustrates why extrapolating the results from inflammation studies in mice to humans is problematic. PMID:25979502

  4. Fatty Acid-binding Proteins 1 and 2 Differentially Modulate the Activation of Peroxisome Proliferator-activated Receptor α in a Ligand-selective Manner.

    PubMed

    Hughes, Maria L R; Liu, Bonan; Halls, Michelle L; Wagstaff, Kylie M; Patil, Rahul; Velkov, Tony; Jans, David A; Bunnett, Nigel W; Scanlon, Martin J; Porter, Christopher J H

    2015-05-29

    Nuclear hormone receptors (NHRs) regulate the expression of proteins that control aspects of reproduction, development and metabolism, and are major therapeutic targets. However, NHRs are ubiquitous and participate in multiple physiological processes. Drugs that act at NHRs are therefore commonly restricted by toxicity, often at nontarget organs. For endogenous NHR ligands, intracellular lipid-binding proteins, including the fatty acid-binding proteins (FABPs), can chaperone ligands to the nucleus and promote NHR activation. Drugs also bind FABPs, raising the possibility that FABPs similarly regulate drug activity at the NHRs. Here, we investigate the ability of FABP1 and FABP2 (intracellular lipid-binding proteins that are highly expressed in tissues involved in lipid metabolism, including the liver and intestine) to influence drug-mediated activation of the lipid regulator peroxisome proliferator-activated receptor (PPAR) α. We show by quantitative fluorescence imaging and gene reporter assays that drug binding to FABP1 and FABP2 promotes nuclear localization and PPARα activation in a drug- and FABP-dependent manner. We further show that nuclear accumulation of FABP1 and FABP2 is dependent on the presence of PPARα. Nuclear accumulation of FABP on drug binding is driven largely by reduced nuclear egress rather than an increased rate of nuclear entry. Importin binding assays indicate that nuclear access occurs via an importin-independent mechanism. Together, the data suggest that specific drug-FABP complexes can interact with PPARα to effect nuclear accumulation of FABP and NHR activation. Because FABPs are expressed in a regionally selective manner, this may provide a means to tailor the patterns of NHR drug activation in a tissue-specific manner. PMID:25847235

  5. Saturated Free Fatty Acids Induce Cholangiocyte Lipoapoptosis

    PubMed Central

    Natarajan, Sathish Kumar; Ingham, Sally A.; Mohr, Ashley M.; Wehrkamp, Cody J.; Ray, Anuttoma; Roy, Sohini; Cazanave, Sophie C.; Phillippi, Mary Anne; Mott, Justin L.

    2015-01-01

    Recent studies have identified a cholestatic variant of nonalcoholic fatty liver disease (NAFLD) with portal inflammation and ductular reaction. Based on reports of biliary damage, as well as increased circulating free fatty acids (FFAs) in NAFLD, we hypothesized the involvement of cholangiocyte lipoapoptosis as a mechanism of cellular injury. Here, we demonstrate that the saturated FFAs palmitate and stearate induced robust and rapid cell death in cholangiocytes. Palmitate and stearate induced cholangiocyte lipoapoptosis in a concentration-dependent manner in multiple cholangiocyte-derived cell lines. The mechanism of lipoapoptosis relied on the activation of caspase 3/7 activity. There was also a significant up-regulation of the proapoptotic BH3-containing protein, PUMA. In addition, palmitate-induced cholangiocyte lipoapoptosis involved a time-dependent increase in the nuclear localization of forkhead family of transcription factor 3 (FoxO3). We show evidence for posttranslational modification of FoxO3, including early (6 hours) deacetylation and dephosphorylation that coincide with localization of FoxO3 in the nuclear compartment. By 16 hours, nuclear FoxO3 is both phosphorylated and acetylated. Knockdown studies confirmed that FoxO3 and its downstream target, PUMA, were critical for palmitate- and stearate-induced cholangiocyte lipoapoptosis. Interestingly, cultured cholangiocyte-derived cells did not accumulate appreciable amounts of neutral lipid upon FFA treatment. Conclusion Our data show that the saturated FFAs palmitate and stearate induced cholangiocyte lipoapoptosis by way of caspase activation, nuclear translocation of FoxO3, and increased proapoptotic PUMA expression. These results suggest that cholangiocyte injury may occur through lipoapoptosis in NAFLD and nonalcoholic steatohepatitis patients. PMID:24753158

  6. Technological Aspects of Chemoenzymatic Epoxidation of Fatty Acids, Fatty Acid Esters and Vegetable Oils: A Review.

    PubMed

    Milchert, Eugeniusz; Malarczyk, Kornelia; Kłos, Marlena

    2015-01-01

    The general subject of the review is analysis of the effect of technological parameters on the chemoenzymatic epoxidation processes of vegetable oils, fatty acids and alkyl esters of fatty acids. The technological parameters considered include temperature, concentration, amount of hydrogen peroxide relative to the number of unsaturated bonds, the amounts of enzyme catalysts, presence of solvent and amount of free fatty acids. Also chemical reactions accompanying the technological processes are discussed together with different technological options and significance of the products obtained. PMID:26633342

  7. Synthesis and structure-activity relationship studies of O-biphenyl-3-yl carbamates as peripherally restricted fatty acid amide hydrolase inhibitors.

    PubMed

    Moreno-Sanz, Guillermo; Duranti, Andrea; Melzig, Laurin; Fiorelli, Claudio; Ruda, Gian Filippo; Colombano, Giampiero; Mestichelli, Paola; Sanchini, Silvano; Tontini, Andrea; Mor, Marco; Bandiera, Tiziano; Scarpelli, Rita; Tarzia, Giorgio; Piomelli, Daniele

    2013-07-25

    The peripherally restricted fatty acid amide hydrolase (FAAH) inhibitor URB937 (3, cyclohexylcarbamic acid 3'-carbamoyl-6-hydroxybiphenyl-3-yl ester) is extruded from the brain and spinal cord by the Abcg2 efflux transporter. Despite its inability to enter the central nervous system (CNS), 3 exerts profound antinociceptive effects in mice and rats, which result from the inhibition of FAAH in peripheral tissues and the consequent enhancement of anandamide signaling at CB1 cannabinoid receptors localized on sensory nerve endings. In the present study, we examined the structure-activity relationships (SAR) for the biphenyl region of compound 3, focusing on the carbamoyl and hydroxyl groups in the distal and proximal phenyl rings. Our SAR studies generated a new series of peripherally restricted FAAH inhibitors and identified compound 35 (cyclohexylcarbamic acid 3'-carbamoyl-5-hydroxybiphenyl-3-yl ester) as the most potent brain-impermeant FAAH inhibitor disclosed to date. PMID:23822179

  8. Functional Roles of Fatty Acids and Their Effects on Human Health.

    PubMed

    Calder, Philip C

    2015-09-01

    A variety of fatty acids exists in the diet of humans, in the bloodstream of humans, and in cells and tissues of humans. Fatty acids are energy sources and membrane constituents. They have biological activities that act to influence cell and tissue metabolism, function, and responsiveness to hormonal and other signals. The biological activities may be grouped as regulation of membrane structure and function; regulation of intracellular signaling pathways, transcription factor activity, and gene expression; and regulation of the production of bioactive lipid mediators. Through these effects, fatty acids influence health, well-being, and disease risk. The effects of saturated, cis monounsaturated, ω-6 and ω-3 polyunsaturated, and trans fatty acids are discussed. Although traditionally most interest in the health impact of fatty acids related to cardiovascular disease, it is now clear that fatty acids influence a range of other diseases, including metabolic diseases such as type 2 diabetes, inflammatory diseases, and cancer. Scientists, regulators, and communicators have described the biological effects and the health impacts of fatty acids according to fatty acid class. However, it is now obvious that within any fatty acid class, different members have different actions and effects. Thus, it would seem more appropriate to describe biological effects and health impacts of individual named fatty acids, although it is recognized that this would be a challenge when communicating outside of an academic environment (eg, to consumers). PMID:26177664

  9. Omega-3 Fatty Acids and Skeletal Muscle Health

    PubMed Central

    Jeromson, Stewart; Gallagher, Iain J.; Galloway, Stuart D. R.; Hamilton, D. Lee

    2015-01-01

    Skeletal muscle is a plastic tissue capable of adapting and mal-adapting to physical activity and diet. The response of skeletal muscle to adaptive stimuli, such as exercise, can be modified by the prior nutritional status of the muscle. The influence of nutrition on skeletal muscle has the potential to substantially impact physical function and whole body metabolism. Animal and cell based models show that omega-3 fatty acids, in particular those of marine origin, can influence skeletal muscle metabolism. Furthermore, recent human studies demonstrate that omega-3 fatty acids of marine origin can influence the exercise and nutritional response of skeletal muscle. These studies show that the prior omega-3 status influences not only the metabolic response of muscle to nutrition, but also the functional response to a period of exercise training. Omega-3 fatty acids of marine origin therefore have the potential to alter the trajectory of a number of human diseases including the physical decline associated with aging. We explore the potential molecular mechanisms by which omega-3 fatty acids may act in skeletal muscle, considering the n-3/n-6 ratio, inflammation and lipidomic remodelling as possible mechanisms of action. Finally, we suggest some avenues for further research to clarify how omega-3 fatty acids may be exerting their biological action in skeletal muscle. PMID:26610527

  10. [Supplementation with omega fatty acids in various diseases].

    PubMed

    Sicińska, Paulina; Pytel, Edyta; Kurowska, Joanna; Koter-Michalak, Maria

    2015-01-01

    For some decades, an increase in propagation of coronary heart disease, obesity, diabetes, tumors and mental disorders has been observed. Consequently, new and effective methods of treatment of these diseases using drugs and diet supplements have been developed. A promising solution is the use of polyunsaturated fatty acids in the treatment of some diseases. These compounds have broad application in prevention of many diseases and are used to support standard therapies. Their activity is connected with participation in metabolic processes regulating biochemical transformations in cells and tissues. Omega-3 fatty acids regulate production of cytokines, increased levels of which may contribute to occurrence of chronic inflammatory diseases, autoaggression of the immunological system, arteriosclerosis or tumor development. These substances exert a beneficial effect on the blood system by improvement of blood circulation and nerve signal transmission. Omega-3 fatty acids reduce the risk of irregular heartbeat, stabilize arterial pressure, and restore balance in cholesterol metabolism disorders. They also play a key role in maintaining physical and mental efficiency; thus administration of these compounds for young children is of great importance. Nevertheless, administration of omega-3 fatty acids in the diet seems to be essential. The purpose of this study is to present the structure and sources of omega-3 and - 6 fatty acids and discuss the problems concerning therapeutic use of these compounds in various disorders. PMID:26206997

  11. Omega-3 Fatty Acids and Skeletal Muscle Health.

    PubMed

    Jeromson, Stewart; Gallagher, Iain J; Galloway, Stuart D R; Hamilton, D Lee

    2015-11-01

    Skeletal muscle is a plastic tissue capable of adapting and mal-adapting to physical activity and diet. The response of skeletal muscle to adaptive stimuli, such as exercise, can be modified by the prior nutritional status of the muscle. The influence of nutrition on skeletal muscle has the potential to substantially impact physical function and whole body metabolism. Animal and cell based models show that omega-3 fatty acids, in particular those of marine origin, can influence skeletal muscle metabolism. Furthermore, recent human studies demonstrate that omega-3 fatty acids of marine origin can influence the exercise and nutritional response of skeletal muscle. These studies show that the prior omega-3 status influences not only the metabolic response of muscle to nutrition, but also the functional response to a period of exercise training. Omega-3 fatty acids of marine origin therefore have the potential to alter the trajectory of a number of human diseases including the physical decline associated with aging. We explore the potential molecular mechanisms by which omega-3 fatty acids may act in skeletal muscle, considering the n-3/n-6 ratio, inflammation and lipidomic remodelling as possible mechanisms of action. Finally, we suggest some avenues for further research to clarify how omega-3 fatty acids may be exerting their biological action in skeletal muscle. PMID:26610527

  12. ACTIVATION OF VASCULAR ENDOTHELIAL NITRIC OXIDE SYNTHASE AND HEME OXYGENASE-1 EXPRESSION BY ELECTROPHILIC NITRO-FATTY ACIDS

    PubMed Central

    Khoo, Nicholas K.H.; Rudolph, Volker; Cole, Marsha P.; Golin-Bisello, Franca; Schopfer, Francisco J.; Woodcock, Steven R.; Batthyany, Carlos; Freeman, Bruce A.

    2010-01-01

    Reactive oxygen species mediate a decrease in nitric oxide (NO) bioavailability and endothelial dysfunction, with secondary oxidized and nitrated byproducts of these reactions contributing to the pathogenesis of numerous vascular diseases. While oxidized lipids and lipoproteins exacerbate inflammatory reactions in the vasculature, in stark contrast the nitration of polyunsaturated fatty acids and complex lipids yield electrophilic products that exhibit pluripotent anti-inflammatory signaling capabilities acting via both cGMP-dependent and -independent mechanisms. Herein we report that nitro-oleic acid (OA-NO2) treatment increases expression of endothelial nitric oxide synthase (eNOS) and heme oxygenase 1 (HO-1) in the vasculature, thus transducing vascular protective effects associated with enhanced NO production. Administration of OA-NO2 via osmotic pump results in a significant increase in eNOS and HO-1 mRNA in mouse aortas. Moreover, HPLC-MS/MS analysis showed that NO2-FAs are rapidly metabolized in cultured endothelial cells (ECs) and treatment with NO2-FAs stimulated the phosphorylation of eNOS at Ser1179. These post-translational modifications of eNOS, in concert with elevated eNOS gene expression, contributed to an increase in endothelial NO production. In aggregate, OA-NO2-induced eNOS and HO-1 expression by vascular cells can induce beneficial effects on endothelial function and provide a new strategy for treating various vascular inflammatory and hypertensive disorders. PMID:19857569

  13. Quantitative proteomics analysis reveals glutamine deprivation activates fatty acid β-oxidation pathway in HepG2 cells.

    PubMed

    Long, Baisheng; Muhamad, Rodiallah; Yan, Guokai; Yu, Jie; Fan, Qiwen; Wang, Zhichang; Li, Xiuzhi; Purnomoadi, Agung; Achmadi, Joelal; Yan, Xianghua

    2016-05-01

    Glutamine, a multifunctional amino acid, functions in nutrient metabolism, energy balance, apoptosis, and cell proliferation. Lipid is an important nutrient and controls a broad range of physiological processes. Previous studies have demonstrated that glutamine can affect lipolysis and lipogenesis, but the effect of glutamine on the detailed lipid metabolism remains incompletely understood. Here, we applied the quantitative proteomics approach to estimate the relative abundance of proteins in HepG2 cells treated by glutamine deprivation. The results showed that there were 212 differentially abundant proteins in response to glutamine deprivation, including 150 significantly increased proteins and 62 significantly decreased proteins. Interestingly, functional classification showed that 43 differentially abundant proteins were related to lipid metabolism. Further bioinformatics analysis and western blotting validation revealed that lipid accumulation may be affected by β-oxidation of fatty acid induced by glutamine deprivation in HepG2 cells. Together, our results may provide the potential for regulating lipid metabolism by glutamine in animal production and human nutrition. The MS data have been deposited to the ProteomeXchange Consortium with identifier PXD003387. PMID:26837383

  14. Fatty Acids as Surfactants on Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Tervahattu, H.; Juhanoja, J.; Niemi, J.

    2003-12-01

    Fatty acids (n-alcanoic acids) are common compounds in numerous anthropogenic and natural emissions. According to Rogge et al. (1993), catalyst-equipped automobiles emitted more than 600 μg km-1 of fatty acids which was over 50% of all identified organics in fine aerosol emissions. Coal burning produces fatty acids ranging from about 1700 mg kg-1 for bituminous coal to over 10000 mg kg-1 for lignite (Oros and Simoneit, 2000). Similarly, biomass burning is an important source for aerosol fatty acids. They are the major identified compound group in deciduous tree smoke, their total emission factor being measured as 1589 mg kg-1 which was 56% of all identified organic compounds (Oros and Simoneit, 2001a). Large amounts of fatty acid are also emitted from burning of conifer trees and grass (Oros and Simoneit, 2001a; Simoneit, 2002). Fatty acids have been reported to be major constituents of marine aerosols in many investigations (Barger and Garrett, 1976; Gagosian et. al, 1981; Sicre et al., 1990; Stephanou, 1992). It has been suggested that as the marine aerosol particles form, they acquire a coating of organic surfactants (Blanchard, 1964; Gill et al., 1983; Middlebrook et al., 1998; Ellison et al., 1999). Amphiphilic molecules, including lipids, can be assembled as monomolecular layers at air/water interfaces as well as transported to a solid support. Recently, we could show by time-of-flight secondary ion mass spectrometry that fatty acids are important ingredients of the outermost surface layer of the sea-salt aerosol particles (Tervahattu et al., 2002). In their TOF-SIMS studies on the surface composition of atmospheric aerosols, Peterson and Tyler (2002) found fatty acids on the surface of Montana forest fire particles. In this work we have studied by TOF-SIMS the surface chemical composition of aerosol particles emitted from field fires in the Baltic and other East European countries and transported to Finland as well as aerosol particles transported from

  15. Anthocyanin inhibits high glucose-induced hepatic mtGPAT1 activation and prevents fatty acid synthesis through PKCζ.

    PubMed

    Guo, Honghui; Li, Dan; Ling, Wenhua; Feng, Xiang; Xia, Min

    2011-05-01

    Mitochondrial acyl-CoA:glycerol-sn-3-phosphate acyltransferase 1 (mtGPAT1) controls the first step of triacylglycerol (TAG) synthesis and is critical to the understanding of chronic metabolic disorders such as primary nonalcoholic fatty liver disease (NAFLD). Anthocyanin, a large group of polyphenols, was negatively correlated with hepatic lipid accumulation, but its impact on mtGPAT1 activity and NAFLD has yet to be determined. Hepatoma cell lines and KKAy mice were used to investigate the impact of anthocyanin on high glucose-induced mtGPAT1 activation and hepatic steatosis. Treatment with anthocyanin cyanidin-3-O-β-glucoside (Cy-3-g) reduced high glucose-induced GPAT1 activity through the prevention of mtGPAT1 translocation from the endoplasmic reticulum to the outer mitochondrial membrane (OMM), thereby suppressing intracellular de novo lipid synthesis. Cy-3-g treatment also increased protein kinase C ζ phosphorylation and membrane translocation in order to phosphorylate the mtF0F1-ATPase β-subunit, reducing its enzymatic activity and thus inhibiting mtGPAT1 activation. In vivo studies further showed that Cy-3-g treatment significantly decreases hepatic mtGPAT1 activity and its presence in OMM isolated from livers, thus ameliorating hepatic steatosis in diabetic KKAy mice. Our findings reveal a novel mechanism by which anthocyanin regulates lipogenesis and thereby inhibits hepatic steatosis, suggesting its potential therapeutic application in diabetes and related steatotic liver diseases. PMID:21343633

  16. Characterization and analysis of the cotton cyclopropane fatty acid synthase family and their contribution to cyclopropane fatty acid synthesis

    SciTech Connect

    Yu X. H.; Shanklin J.; Rawat, R.

    2011-05-01

    Cyclopropane fatty acids (CPA) have been found in certain gymnosperms, Malvales, Litchi and other Sapindales. The presence of their unique strained ring structures confers physical and chemical properties characteristic of unsaturated fatty acids with the oxidative stability displayed by saturated fatty acids making them of considerable industrial interest. While cyclopropenoid fatty acids (CPE) are well-known inhibitors of fatty acid desaturation in animals, CPE can also inhibit the stearoyl-CoA desaturase and interfere with the maturation and reproduction of some insect species suggesting that in addition to their traditional role as storage lipids, CPE can contribute to the protection of plants from herbivory. Three genes encoding cyclopropane synthase homologues GhCPS1, GhCPS2 and GhCPS3 were identified in cotton. Determination of gene transcript abundance revealed differences among the expression of GhCPS1, 2 and 3 showing high, intermediate and low levels, respectively, of transcripts in roots and stems; whereas GhCPS1 and 2 are both expressed at low levels in seeds. Analyses of fatty acid composition in different tissues indicate that the expression patterns of GhCPS1 and 2 correlate with cyclic fatty acid (CFA) distribution. Deletion of the N-terminal oxidase domain lowered GhCPS's ability to produce cyclopropane fatty acid by approximately 70%. GhCPS1 and 2, but not 3 resulted in the production of cyclopropane fatty acids upon heterologous expression in yeast, tobacco BY2 cell and Arabidopsis seed. In cotton GhCPS1 and 2 gene expression correlates with the total CFA content in roots, stems and seeds. That GhCPS1 and 2 are expressed at a similar level in seed suggests both of them can be considered potential targets for gene silencing to reduce undesirable seed CPE accumulation. Because GhCPS1 is more active in yeast than the published Sterculia CPS and shows similar activity when expressed in model plant systems, it represents a strong candidate gene for

  17. Characterization and analysis of the cotton cyclopropane fatty acid synthase family and their contribution to cyclopropane fatty acid synthesis

    PubMed Central

    2011-01-01

    Background Cyclopropane fatty acids (CPA) have been found in certain gymnosperms, Malvales, Litchi and other Sapindales. The presence of their unique strained ring structures confers physical and chemical properties characteristic of unsaturated fatty acids with the oxidative stability displayed by saturated fatty acids making them of considerable industrial interest. While cyclopropenoid fatty acids (CPE) are well-known inhibitors of fatty acid desaturation in animals, CPE can also inhibit the stearoyl-CoA desaturase and interfere with the maturation and reproduction of some insect species suggesting that in addition to their traditional role as storage lipids, CPE can contribute to the protection of plants from herbivory. Results Three genes encoding cyclopropane synthase homologues GhCPS1, GhCPS2 and GhCPS3 were identified in cotton. Determination of gene transcript abundance revealed differences among the expression of GhCPS1, 2 and 3 showing high, intermediate and low levels, respectively, of transcripts in roots and stems; whereas GhCPS1 and 2 are both expressed at low levels in seeds. Analyses of fatty acid composition in different tissues indicate that the expression patterns of GhCPS1 and 2 correlate with cyclic fatty acid (CFA) distribution. Deletion of the N-terminal oxidase domain lowered GhCPS's ability to produce cyclopropane fatty acid by approximately 70%. GhCPS1 and 2, but not 3 resulted in the production of cyclopropane fatty acids upon heterologous expression in yeast, tobacco BY2 cell and Arabidopsis seed. Conclusions In cotton GhCPS1 and 2 gene expression correlates with the total CFA content in roots, stems and seeds. That GhCPS1 and 2 are expressed at a similar level in seed suggests both of them can be considered potential targets for gene silencing to reduce undesirable seed CPE accumulation. Because GhCPS1 is more active in yeast than the published Sterculia CPS and shows similar activity when expressed in model plant systems, it

  18. n-3 Fatty acids and asthma.

    PubMed

    Kumar, Aishwarya; Mastana, Sarabjit S; Lindley, Martin R

    2016-06-01

    Asthma is one of the most common and prevalent problems worldwide affecting over 300 million individuals. There is some evidence from observational and intervention studies to suggest a beneficial effect of n-3 PUFA in inflammatory diseases, specifically asthma. Marine-based n-3 PUFA have therefore been proposed as a possible complementary/alternative therapy for asthma. The proposed anti-inflammatory effects of n-3 fatty acids may be linked to a change in cell membrane composition. This altered membrane composition following n-3 fatty acid supplementation (primarily EPA and DHA) can modify lipid mediator generation via the production of eicosanoids with a reduced inflammatory potential/impact. A recently identified group of lipid mediators derived from EPA including E-series resolvins are proposed to be important in the resolution of inflammation. Reduced inflammation attenuates the severity of asthma including symptoms (dyspnoea) and exerts a bronchodilatory effect. There have been no major health side effects reported with the dietary supplementation of n-3 fatty acids or their mediators; consequently supplementing with n-3 fatty acids is an attractive non-pharmacological intervention which may benefit asthma. PMID:26809946

  19. Hydroxyl Fatty Acids and Hydroxyl Oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean oil is produced domestically in large supply, averaging over 20 billion pounds per year with an annual carryover of more than one billion pounds. It is important to find new uses for this surplus soybean oil. Hydroxyl fatty acids and hydroxyl oils are platform materials for specialty chemi...

  20. Polyunsaturated fatty acids and gene expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose of review. This review focuses on the effect(s) of n-3 polyunsaturated fatty acids (PUFA) on gene transcription as determined from data generated using cDNA microarrays. Introduced within the past decade, this methodology allows detection of the expression of thousands of genes simultaneo...

  1. Fatty acids of Beef Longissimus Muscle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to compare the fatty acid (FA) composition of the intramuscular (i.m. fat of the longissimus muscle (LM) from three divergent breeds of cattle: Angus (AN, n=9), Brahman (BR, n=7), and Romosinuano (RM, n=11). Cattle were blocked by breed and finished within an average ...

  2. Lipid and Fatty Acid Requirements of Tilapia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary lipids are an important source of highly digestible energy and are the only source of essential fatty acids required for normal growth and development. They are also carriers and assist in the absorption of fat-soluble nutrients, such as sterols and fat-soluble vitamins, serve as a source of...

  3. PLANT FATTY ACID (ETHANOL) AMIDE HYDROLASES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acid amide hydrolase (FAAH) plays a central role in modulating endogenous N-acylethanolamine (NAE) levels in vertebrates, and, in part, constitutes an “endocannabinoid” signaling pathway that regulates diverse physiological and behavioral processes in animals. Recently, an Arabidopsis FAAH hom...

  4. Lipid and fatty acid requirements of tilapias

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tilapia have been shown to have a dietary requirement for linoleic (n-6) series fatty acids (18:2n-6 or 20:4n-6). The optimum dietary levels of n-6 reported were 0.5 and 1% for redbelly tilapia (Tilapia zillii) and Nile tilapia (Oreochromis niloticus), respectively. Tilapia have been suggested to al...

  5. Changes in the physiological parameters, fatty acid metabolism, and SCD activity and expression in juvenile GIFT tilapia (Oreochromis niloticus) reared at three different temperatures.

    PubMed

    Ma, X Y; Qiang, J; He, J; Gabriel, N N; Xu, P

    2015-08-01

    We evaluated the effects of rearing temperature on the composition of fatty acids and stearoyl-CoA desaturase (SCD) activity and gene expression in GIFT (genetically improved farmed tilapia) tilapia. Three triplicate groups of fish were reared for 40 days at 22, 28, or 34 °C. At the end of the trial, the final body weight of juveniles reared at 28 °C was higher than that of fish reared at 22 or 34 °C. Feed intake, feed efficiency, and the protein efficiency ratio were also higher at 28 °C. The fatty acid composition of muscle tissue differed significantly (P < 0.05) among the treatment groups. The content of SFA decreased with decreasing temperature, whereas the UFA content increased. We observed high levels of PUFA, particularly n-3 PUFAs, in fish reared at the lower temperature. Rearing at low temperature significantly (P < 0.05) increased the expression and activity of the SCD gene. Increased SCD activity and gene expression can increase the biosynthesis of MUFAs in GIFT tilapia muscle. Additionally, cold acclimation can decrease the content of TC and TG in GIFT tilapia, which can help increase cold tolerance. PMID:25939714

  6. The mitochondrial fatty acid synthesis (mtFASII) pathway is capable of mediating nuclear-mitochondrial cross talk through the PPAR system of transcriptional activation

    SciTech Connect

    Parl, Angelika; Mitchell, Sabrina L.; Clay, Hayley B.; Reiss, Sara; Li, Zhen; Murdock, Deborah G.

    2013-11-15

    Highlights: •The function of the mitochondria fatty acid synthesis pathway is partially unknown. •Overexpression of the pathway causes transcriptional activation through PPARs. •Knock down of the pathway attenuates that activation. •The last enzyme in the pathway regulates its own transcription. •Products of the mtFASII pathway are able to drive nuclear transcription. -- Abstract: Mammalian cells contain two fatty acid synthesis pathways, the cytosolic FASI pathway, and the mitochondrial FASII pathway. The selection behind the conservation of the mitochondrial pathway is not completely understood, given the presence of the cytosolic FAS pathway. In this study, we show through heterologous gene reporter systems and PCR-based arrays that overexpression of MECR, the last step in the mtFASII pathway, causes modulation of gene expression through the PPAR pathway. Electromobility shift assays (EMSAs) demonstrate that overexpression of MECR causes increased binding of PPARs to DNA, while cell fractionation and imaging studies show that MECR remains localized to the mitochondria. Interestingly, knock down of the mtFASII pathway lessens the effect of MECR on this transcriptional modulation. Our data are most consistent with MECR-mediated transcriptional activation through products of the mtFASII pathway, although we cannot rule out MECR acting as a coactivator. Further investigation into the physiological relevance of this communication will be necessary to better understand some of the phenotypic consequences of deficits in this pathway observed in animal models and human disease.

  7. Methods of refining and producing isomerized fatty acid esters and fatty acids from natural oil feedstocks

    DOEpatents

    Snead, Thomas E.; Cohen, Steven A.; Gildon, Demond L.; Beltran, Leslie V.; Kunz, Linda A.; Pals, Tessa M.; Quinn, Jordan R; Behrends, Jr., Raymond T.; Bernhardt, Randal J.

    2016-07-05

    Methods are provided for refining natural oil feedstocks and producing isomerized esters and acids. The methods comprise providing a C4-C18 unsaturated fatty ester or acid, and isomerizing the fatty acid ester or acid in the presence of heat or an isomerization catalyst to form an isomerized fatty ester or acid. In some embodiments, the methods comprise forming a dibasic ester or dibasic acid prior to the isomerizing step. In certain embodiments, the methods further comprise hydrolyzing the dibasic ester to form a dibasic acid. In certain embodiments, the olefin is formed by reacting the feedstock in the presence of a metathesis catalyst under conditions sufficient to form a metathesized product comprising olefins and esters, separating the olefins from the esters in the metathesized product, and transesterifying the esters in the presence of an alcohol to form a transesterified product having unsaturated esters.

  8. Opposite regulation of CD36 ubiquitination by fatty acids and insulin: effects on fatty acid uptake.

    PubMed

    Smith, Jill; Su, Xiong; El-Maghrabi, Raafat; Stahl, Philip D; Abumrad, Nada A

    2008-05-16

    FAT/CD36 is a membrane scavenger receptor that facilitates long chain fatty acid uptake by muscle. Acute increases in membrane CD36 and fatty acid uptake have been reported in response to insulin and contraction. In this study we have explored protein ubiquitination as one potential mechanism for the regulation of CD36 level. CD36 expressed in Chinese hamster ovary (CHO) or HEK 293 cells was found to be polyubiquitinated via a process involving both lysines 48 and 63 of ubiquitin. Using CHO cells expressing the insulin receptor (CHO/hIR) and CD36, it is shown that addition of insulin (100 nm, 10 and 30 min) significantly reduced CD36 ubiquitination. In contrast, ubiquitination was strongly enhanced by fatty acids (200 microm palmitate or oleate, 2 h). Similarly, endogenous CD36 in C2C12 myotubes was ubiquitinated, and this was enhanced by oleic acid treatment, which also reduced total CD36 protein in cell lysates. Insulin reduced CD36 ubiquitination, increased CD36 protein, and inhibited the opposite effects of fatty acids on both parameters. These changes were paralleled by changes in fatty acid uptake, which could be blocked by the CD36 inhibitor sulfosuccinimidyl oleate. Mutation of the two lysine residues in the carboxyl-terminal tail of CD36 markedly attenuated ubiquitination of the protein expressed in CHO cells and was associated with increased CD36 level and enhanced oleate uptake and incorporation into triglycerides. In conclusion, fatty acids and insulin induce opposite alterations in CD36 ubiquitination, modulating CD36 level and fatty acid uptake. Altered CD36 turnover may contribute to abnormal fatty acid uptake in the insulin-resistant muscle. PMID:18353783

  9. Long-chain unsaturated fatty acids reduce the transcriptional activity of the rat follicle-stimulating hormone β-subunit gene

    PubMed Central

    MORIYAMA, Ryutaro; YAMAZAKI, Tsubasa; KATO, Takako; KATO, Yukio

    2016-01-01

    Here, we assessed the effects of long-chain fatty acids (LCFAs) and the LCFA receptor agonist GW9508 on the transcription of the gonadotropin subunit genes Cga, Lhb and Fshb because LCFA receptor GPR120 was observed in mouse gonadotropes in our recent study. A transcription assay using LβT2 cells demonstrated that LCFAs, oleic acid, α-linolenic acid, docosahexaenoic acid and palmitate, repressed the expression of Cga, Lhb, and Fshb at concentrations between 50 and 100 µM. On the other hand, treatment with 10 µM unsaturated LCFAs, oleic acid, α-linolenic acid and docosahexaenoic acid, repressed only Fshb expression, while the same dose of a saturated LCFA, palmitate, had no effect on the expression of gonadotropin subunit genes. Furthermore, GW9508 did not affect promoter activity. Next, we examined deletion mutants of the upstream region of Fshb and found that the upstream regulatory region (-2824 to -2343 bp) of Fshb was responsible for the notable repression by 10 µM unsaturated LCFAs. Our results suggest that the upstream region of Fshb is susceptible to unsaturated LCFAs. In addition, unsaturated LCFAs play a role in repressing Fshb expression through the distal -2824 to -2343 bp region, which might be independent of the LCFA receptor GPR120 pathway. PMID:26853521

  10. Identification and structural characterization of two peroxisome proliferator activated receptors and their transcriptional changes at different developmental stages and after feeding with different fatty acids.

    PubMed

    Liang, Xiao; Zhao, Yuntong; Li, Yang; Gao, Jian

    2016-03-01

    Peroxisome proliferator activated receptors beta1 (PPARβ1) and beta2 (PPARβ2) were investigated in loach (Misgurnus anguillicaudatus). The PPARβ1 and PPARβ2 were widely distributed in loach tissues. Multiple alignments of deduced amino acid sequences revealed homologous characteristics of the two subtypes of PPARβ with 88% identity. PPARβ1 was markedly expressed in the liver, about 100-fold higher than liver PPARβ2. The two subtypes in unfertilized ovum (UO) showed the highest transcriptions in early life stages, and there were great divergences in expression between unfertilized and fertilized stages. The regulation of PPARβ1 and PPARβ2 in response to dietary fatty acids was studied in liver of loach fed with diets containing fish oil (FO, rich in n-3 highly unsaturated fatty acid) or soybean oil (SO, rich in 18:2n-6) for 75days. Results showed that hepatic transcription of PPARβ1 in the SO group was higher than in the FO group. However, PPARβ2 expression was similar. The differences of molecular characterization, tissue expressions in early life stages, and transcriptional regulation by lipid resources indicated that PPARβ1 and PPARβ2 were functionally different. This is the first report of differential expression of PPARβ1 and PPARβ2 in various tissues and early life stages of loach are regulated by lipid resources. These results will stimulate further studies to better understand the functional characterization of PPARβ1 and PPARβ2. PMID:26654955

  11. Phospholipids and fatty acids of Neisseria gonorrhoeae.

    PubMed Central

    Sud, I J; Feingold, D S

    1975-01-01

    The phospholipids and fatty acids of two strains of Neisseria gonorrhoeae of different penicillin susceptibilities were examined. The phospholipids, which comprise about 8% of the dry weight of the cells, consisted of phosphatidylethanolamine (70%) and phosphatidylglycerol (20%); small amounts of phosphatidylcholine and traces of cardiolipin were also present. Growing and stationary-phase cells were similar in content and composition of phospholipids except for phosphatidylcholine, which increased two- to fivefold in the stationary-phase cells. The fatty acids of the phospholipids were characterized by two major acids, palmitic and a C16:1, with myristic and a C18:1 acid present in smaller amounts. The fatty acids present in purified phospholipid fractions varied considerably in relative proportions from fraction to fraction. No significant difference in the composition of phospholipids from the two strains was evident. Large amounts of beta-hydroxy lauric acid were detected only after saponification of the organisms. Differences in the lipid composition between the gonococcus and other gram-negative bacteria are discussed. PMID:810478

  12. Modulatory effect of fatty acids on fungicidal activity, respiratory burst and TNF-α and IL-6 production in J774 murine macrophages.

    PubMed

    Martins de Lima-Salgado, Thais; Coccuzzo Sampaio, Sandra; Cury-Boaventura, Maria Fernanda; Curi, Rui

    2011-04-01

    The reported effects of different families of fatty acids (FA; SFA, MUFA, n-3 and n-6 PUFA) on human health and the importance of macrophage respiratory burst and cytokine release to immune defence led us to examine the influence of palmitic acid (PA), oleic acid (OA), linoleic acid, arachidonic acid, EPA and DHA on macrophage function. We determined fungicidal activity, reactive oxygen species (ROS) and cytokine production after the treatment of J774 cells with non-toxic concentrations of the FA. PA had a late and discrete stimulating effect on ROS production, which may be associated with the reduced fungicidal activity of the cells after treatment with this FA. OA presented a sustained stimulatory effect on ROS production and increased fungicidal activity of the cells, suggesting that enrichment of diets with OA may be beneficial for pathogen elimination. The effects of PUFA on ROS production were time- and dose-dependently regulated, with no evident differences between n-3 and n-6 PUFA. It was worth noting that most changes induced after stimulation of the cells with lipopolysaccharide were suppressed by the FA. The present results suggest that supplementation of the diet with specific FA, not classes of FA, might enable an improvement in host defence mechanisms or a reduction in adverse immunological reactions. PMID:21232170

  13. Plasma Acylcarnitine Profiles Suggest Incomplete Fatty Acid ß-Oxidation and Altered Tricarboxylic Cycle Activity in Type 2 Diabetic African-American Women

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inefficient muscle long-chain fatty acid (LCFA) combustion is associated with insulin resistance, but molecular links between mitochondrial fat catabolism and insulin action remain controversial. We hypothesized that plasma acylcarnitine profiling would identify distinct metabolite patterns reflect...

  14. Accumulation of Oxygenated Fatty Acids in Oat Lipids During Storage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxygenated fatty acids were identified in oat grain by gas chromatography - mass spectrometry. We hypothesized that most of these were the results of lipoxygenase activity. This hypothesis was tested by measuring concentrations of these compounds after hydrothermal treatments and storage of oat groa...

  15. 21 CFR 172.863 - Salts of fatty acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Salts of fatty acids. 172.863 Section 172.863 Food... Multipurpose Additives § 172.863 Salts of fatty acids. The food additive salts of fatty acids may be safely..., magnesium, potassium, and sodium salts of the fatty acids conforming with § 172.860 and/or oleic...

  16. 21 CFR 172.863 - Salts of fatty acids.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Salts of fatty acids. 172.863 Section 172.863 Food... Multipurpose Additives § 172.863 Salts of fatty acids. The food additive salts of fatty acids may be safely..., magnesium, potassium, and sodium salts of the fatty acids conforming with § 172.860 and/or oleic...

  17. 21 CFR 172.863 - Salts of fatty acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Salts of fatty acids. 172.863 Section 172.863 Food... Multipurpose Additives § 172.863 Salts of fatty acids. The food additive salts of fatty acids may be safely..., magnesium, potassium, and sodium salts of the fatty acids conforming with § 172.860 and/or oleic...

  18. Fatty acid composition of chicken breast meat is dependent on genotype-related variation of FADS1 and FADS2 gene expression and desaturating activity.

    PubMed

    Boschetti, E; Bordoni, A; Meluzzi, A; Castellini, C; Dal Bosco, A; Sirri, F

    2016-04-01

    In Western countries the dietary guidance emphasizes the need to decrease the intake of saturated fatty acids and to replace them with polyunsaturated fatty acids (PUFA), particularly long chain n-3 PUFA (LC-PUFA). The production of poultry meat having a lower fat content and healthier fatty acid (FA) profile is a hot topic for the poultry industry, and the possibility to identify genotypes able to produce meat with a higher LC-PUFA content deserves attention. The aims of the present study were to evidence in chicken (i) a genotype-related different expression of the desaturating enzymes delta-6 (Δ6, EC 1.14.99.25), delta-5 (Δ5, EC 1.14.19.) and delta-9 (Δ9, EC 1.14.19.1); (ii) the impact of the hypothesized different expression on the meat FA composition; (iii) the distribution of desaturase products in the different lipid classes. Slow (SG), medium (MG) and fast (FG) growing chickens fed the same diet were evaluated either for the relative expression of FADS1, FADS2 and SCD1 genes in liver (by q-PCR), or for the FA composition of breast meat. MG and particularly SG birds showed a greater expression of FADS2 and FADS1 genes, a higher Δ6 and Δ5 activity (estimated using desaturase indices), and consequently a higher LC-PUFA content in the breast meat than FG birds. The relationship between genotype and desaturating ability was demonstrated, with a significant impact on the PUFA content of breast meat. Due to the high consumption rate of avian meat, the identification of the best genotypes for meat production could represent an important goal not only for the food industry, but also for the improvement of human nutrition. PMID:26670346

  19. Biochemical characterization of polyunsaturated fatty acid synthesis in Schizochytrium: release of the products as free fatty acids.

    PubMed

    Metz, James G; Kuner, Jerry; Rosenzweig, Bradley; Lippmeier, James C; Roessler, Paul; Zirkle, Ross

    2009-06-01

    In marine bacteria and some thraustochytrids (marine stramenopiles) long-chain polyunsaturated fatty acids (LC-PUFAs) such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are produced de novo by PUFA synthases. These large, multi-domain enzymes carry out the multitude of individual reactions required for conversion of malonyl-CoA to the final LC-PUFA products. Here we report on the release of fatty acids from the PUFA synthase found in Schizochytrium, a thraustochytrid that has been developed as a commercial source for DHA-enriched biomass and oil. Data from in vitro activity assays indicate that the PUFAs are released from the enzyme as free fatty acids (FFAs). Addition of ATP and Mg(2+) to in vitro assays facilitates appearance of radiolabel from (14)C-malonyl-CoA in a triacylglycerol fraction, suggesting the involvement of acyl-CoA synthetases (ACS). Furthermore, addition of triascin C, an inhibitor of ACSs, to the assays blocks this conversion. When the Schizochytrium PUFA synthase is expressed in Escherichia coli, the products of the enzyme accumulate as FFAs, suggesting that the thioesterase activity required for fatty acid release is an integral part of the PUFA synthase. PMID:19272783

  20. Current Progress and Future Research on the Production of Oxygenated Fatty Acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxygenated (hydroxy-, epoxy-) fatty acids such as ricinoleic, vernolic and /or sebacic acids are high value chemicals and can be used to produce polymers and specialty chemicals. Oxygenated fatty acids also have many bioactive properties, such as antimicrobial activity against Salmonella, Staphyloc...

  1. Bioconverted Products of Essential Fatty Acids as Potential Antimicrobial Agents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This review deals with the recent findings on the microbial conversion of essential fatty acids (EFAs) through Pseudomonas aeruginosa PR3 NRRL-B-18602, and the antimicrobial properties of bioconverted essential fatty acids, with particular emphasis on n-3 or n-6 fatty acids. The first section deals...

  2. 21 CFR 172.863 - Salts of fatty acids.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Multipurpose Additives § 172.863 Salts of fatty acids. The food additive salts of fatty acids may be safely... conditions: (a) The additive consists of one or any mixture of two or more of the aluminum, calcium... derived from tall oil fatty acids conforming with § 172.862. (b) The food additive is used or intended...

  3. Naturally occurring fatty acids: source, chemistry and uses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Natural occurring fatty acids are a large and complex class of compounds found in plants and animals. Fatty acids are abundant and of interest because of their renewability, biodegradability, biocompatibility, low cost, and fascinating chemistry. Of the many fatty acids, only 20-25 of them are widel...

  4. 40 CFR 721.3710 - Polyether modified fatty acids (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyether modified fatty acids... Specific Chemical Substances § 721.3710 Polyether modified fatty acids (generic). (a) Chemical substance... Polyether modified fatty acids (PMN P-99-0435) is subject to reporting under this section for...

  5. 40 CFR 721.3710 - Polyether modified fatty acids (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polyether modified fatty acids... Specific Chemical Substances § 721.3710 Polyether modified fatty acids (generic). (a) Chemical substance... Polyether modified fatty acids (PMN P-99-0435) is subject to reporting under this section for...

  6. 40 CFR 721.10320 - Fatty acid amide (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acid amide (generic). 721.10320... Substances § 721.10320 Fatty acid amide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid amide (PMN P-03-186) is...

  7. 40 CFR 721.10463 - Fatty acid amides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acid amides (generic). 721.10463... Substances § 721.10463 Fatty acid amides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid amides (PMN...

  8. Mutant fatty acid desaturase and methods for directed mutagenesis

    DOEpatents

    Shanklin, John; Whittle, Edward J.

    2008-01-29

    The present invention relates to methods for producing fatty acid desaturase mutants having a substantially increased activity towards substrates with fewer than 18 carbon atom chains relative to an unmutagenized precursor desaturase having an 18 carbon chain length specificity, the sequences encoding the desaturases and to the desaturases that are produced by the methods. The present invention further relates to a method for altering a function of a protein, including a fatty acid desaturase, through directed mutagenesis involving identifying candidate amino acid residues, producing a library of mutants of the protein by simultaneously randomizing all amino acid candidates, and selecting for mutants which exhibit the desired alteration of function. Candidate amino acids are identified by a combination of methods. Enzymatic, binding, structural and other functions of proteins can be altered by the method.

  9. Evidence for dissolution of fatty acids in sediment traps: Impact on flux estimates

    NASA Astrophysics Data System (ADS)

    KöRtzinger, Arne; Schulz-Bull, Detlef E.; Petrick, Gert; Duinker, Jan C.

    1994-02-01

    The effect of dissolution from particulates into the supernatant solution in sediment trap sample cups has been measured for fatty acids. A mooring array with time series sediment traps was deployed in the northeast Atlantic Ocean (59°N, 21°W) for 14 months. Selected representative samples from the trap at 2200 m (poisoned with NaN3) were analyzed for total and free fatty acids in both the solution and particulate phase by means of gas chromatography-mass spectrometry with an ion trap detector. The flux contribution of the dissolved total fatty acids (∑ DTFA) was found to be between 15 and 75% of the total flux (∑ TTFA, sum of the fluxes of total fatty acids in both particles and supernatants). Dissolved free fatty acids (∑ DFFA) represented 25-88% of the total flux of free fatty acids (∑ TFFA). Absolute concentrations of total and free fatty acids in both compartments are discussed in terms of the processes controlling the distribution between the two phases, for example, readsorption. Sample handling, poisoning, bacterial activity, and swimmers may also affect fatty acid distribution. Flux data (sum of particulate and dissolved fluxes) are presented for individual fatty acids. Also, the degree of dissolution of individual fatty acids is shown for one sample (dissolved fraction ranging between 16 and 98% of total flux).

  10. Fatty acid-amino acid conjugates diversification in Lepidopteran caterpillars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acid amino acid conjugates (FACs) have been found in Noctuid as well as Sphingid caterpillar oral secretions and especially volicitin [N-(17-hydroxylinolenoyl)-L-Glutamine] and its biochemical precursor, N-linolenoyl-L-glutamine, are known elicitors of induced volatile emissions in corn plants...

  11. Fatty acid composition of brown adipose tissue in genetically heat-tolerant FOK rats

    NASA Astrophysics Data System (ADS)

    Ohno, T.; Furuyama, F.; Kuroshima, A.

    The phospholipid fatty acid composition of brown adipose tissue (BAT) was examined in inbred heat-tolerant FOK rats and compared with that in conventional Wistar rats not previously exposed to heat. The FOK rats showed higher unsaturation states, as indicated by higher levels of polyunsaturated fatty acids and a higher unsaturation index and polyunsaturated fatty acids/saturated fatty acids ratio. This higher level of unsaturation was characterized by the higher amount of polyunsaturated fatty acids such as linoleic acid, arachidonic acid and docosahexaenoic acid. It may be concluded that the increased docosahexaenoic acid level in BAT phospholipids brings about the hyperplasia of BAT, causing an enhancement of its in vivo thermogernic activity as well as the systemic non-shivering thermogenesis observed in heat-tolerant FOK rats.

  12. Lipase-catalyzed synthesis of fatty acid amide (erucamide) using fatty acid and urea.

    PubMed

    Awasthi, Neeraj Praphulla; Singh, R P

    2007-01-01

    Ammonolysis of fatty acids to the corresponding fatty acid amides is efficiently catalysed by Candida antartica lipase (Novozym 435). In the present paper lipase-catalysed synthesis of erucamide by ammonolysis of erucic acid and urea in organic solvent medium was studied and optimal conditions for fatty amides synthesis were established. In this process erucic acid gave 88.74 % pure erucamide after 48 hour and 250 rpm at 60 degrees C with 1:4 molar ratio of erucic acid and urea, the organic solvent media is 50 ml tert-butyl alcohol (2-methyl-2-propanol). This process for synthesis is economical as we used urea in place of ammonia or other amidation reactant at atmospheric pressure. The amount of catalyst used is 3 %. PMID:17898456

  13. 40 CFR 721.10629 - Fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acids, tall-oil, reaction... NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10629 Fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (generic)....

  14. 40 CFR 721.10629 - Fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acids, tall-oil, reaction... NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10629 Fatty acids, tall-oil, reaction products with modified fatty acids and polyalkanolamines (generic)....

  15. Supercritical CO₂ extraction of oil, fatty acids and flavonolignans from milk thistle seeds: Evaluation of their antioxidant and cytotoxic activities in Caco-2 cells.

    PubMed

    Ben Rahal, Naila; Barba, Francisco J; Barth, Danielle; Chevalot, Isabelle

    2015-09-01

    The optimal conditions of supercritical carbon dioxide (SC-CO2) (160-220 bars, 40-80 °C) technology combined with co-solvent (ethanol), to recover oil, flavonolignans (silychristin, silydianin and silybinin) and fatty acids from milk thistle seeds, to be used as food additives and/or nutraceuticals, were studied. Moreover, the antioxidant and cytotoxic activities of the SC-CO2 oil seeds extracts were evaluated in Caco-2 carcinoma cells. Pressure and temperature had a significant effect on oil and flavonolignans recovery, although there was not observed a clear trend. SC-CO2 with co-solvent extraction at 220 bars, 40 °C was the optimum treatment to recover oil (30.8%) and flavonolignans from milk thistle seeds. Moreover, linoleic (47.64-66.70%), and oleic (19.68-24.83%) acids were the predominant fatty acids in the oil extracts recovered from milk thistle under SC-CO2. In addition, SC-CO2 extract showed a high antioxidant activity determined by DPPH and ABTS tests. Cytotoxic activities of silychristin, silydianin and silybinin and the obtained SC-CO2 extract (220 bars, 40 °C) were evaluated against Caco-2 cells. The SC-CO2 extract inhibited the proliferation of Caco-2 cells in a dose-responsive manner and induced the highest percentage of mortality of Caco-2 cells (from 43 to 71% for concentrations from 10 up to 100 μg/ml of SC-CO2 oil seeds). PMID:26172510

  16. Heterologous Reconstitution of Omega-3 Polyunsaturated Fatty Acids in Arabidopsis

    PubMed Central

    Kim, Sun Hee; Roh, Kyung Hee; Park, Jong-Sug; Kim, Kwang-Soo; Kim, Hyun Uk; Lee, Kyeong-Ryeol; Kang, Han-Chul; Kim, Jong-Bum

    2015-01-01

    Reconstitution of nonnative, very-long-chain polyunsaturated fatty acid (VLC-PUFA) biosynthetic pathways in Arabidopsis thaliana was undertaken. The introduction of three primary biosynthetic activities to cells requires the stable coexpression of multiple proteins within the same cell. Herein, we report that C22 VLC-PUFAs were synthesized from C18 precursors by reactions catalyzed by Δ6-desaturase, an ELOVL5-like enzyme involved in VLC-PUFA elongation, and Δ5-desaturase. Coexpression of the corresponding genes (McD6DES, AsELOVL5, and PtD5DES) under the control of the seed-specific vicilin promoter resulted in production of docosapentaenoic acid (22:5 n-3) and docosatetraenoic acid (22:4 n-6) as well as eicosapentaenoic acid (20:5 n-3) and arachidonic acid (20:4 n-6) in Arabidopsis seeds. The contributions of the transgenic enzymes and endogenous fatty acid metabolism were determined. Specifically, the reasonable synthesis of omega-3 stearidonic acid (18:4 n-3) could be a useful tool to obtain a sustainable system for the production of omega-3 fatty acids in seeds of a transgenic T3 line 63-1. The results indicated that coexpression of the three proteins was stable. Therefore, this study suggests that metabolic engineering of oilseed crops to produce VLC-PUFAs is feasible. PMID:26339641

  17. Palladium Catalysts for Fatty Acid Deoxygenation: Influence of the Support and Fatty Acid Chain Length on Decarboxylation Kinetics

    SciTech Connect

    Ford, JP; Immer, JG; Lamb, HH

    2012-03-29

    Supported metal catalysts containing 5 wt% Pd on silica, alumina, and activated carbon were evaluated for liquid-phase deoxygenation of stearic (octadecanoic), lauric (dodecanoic), and capric (decanoic) acids under 5 % H-2 at 300 A degrees C and 15 atm. On-line quadrupole mass spectrometry (QMS) was used to measure CO + CO2 yield, CO2 selectivity, H-2 consumption, and initial decarboxylation rate. Post-reaction analysis of liquid products by gas chromatography was used to determine n-alkane yields. The Pd/C catalyst was highly active and selective for stearic acid (SA) decarboxylation under these conditions. In contrast, SA deoxygenation over Pd/SiO2 occurred primarily via decarbonylation and at a much slower rate. Pd/Al2O3 exhibited high initial SA decarboxylation activity but deactivated under the test conditions. Similar CO2 selectivity patterns among the catalysts were observed for deoxygenation of lauric and capric acids; however, the initial decarboxylation rates tended to be lower for these substrates. The influence of alkyl chain length on deoxygenation kinetics was investigated for a homologous series of C-10-C-18 fatty acids using the Pd/C catalyst. As fatty acid carbon number decreases, reaction time and H-2 consumption increase, and CO2 selectivity and initial decarboxylation rate decrease. The increase in initial decarboxylation rates for longer chain fatty acids is attributed to their greater propensity for adsorption on the activated carbon support.

  18. Excessive fatty acid oxidation induces muscle atrophy in cancer cachexia.

    PubMed

    Fukawa, Tomoya; Yan-Jiang, Benjamin Chua; Min-Wen, Jason Chua; Jun-Hao, Elwin Tan; Huang, Dan; Qian, Chao-Nan; Ong, Pauline; Li, Zhimei; Chen, Shuwen; Mak, Shi Ya; Lim, Wan Jun; Kanayama, Hiro-Omi; Mohan, Rosmin Elsa; Wang, Ruiqi Rachel; Lai, Jiunn Herng; Chua, Clarinda; Ong, Hock Soo; Tan, Ker-Kan; Ho, Ying Swan; Tan, Iain Beehuat; Teh, Bin Tean; Shyh-Chang, Ng

    2016-06-01

    Cachexia is a devastating muscle-wasting syndrome that occurs in patients who have chronic diseases. It is most commonly observed in individuals with advanced cancer, presenting in 80% of these patients, and it is one of the primary causes of morbidity and mortality associated with cancer. Additionally, although many people with cachexia show hypermetabolism, the causative role of metabolism in muscle atrophy has been unclear. To understand the molecular basis of cachexia-associated muscle atrophy, it is necessary to develop accurate models of the condition. By using transcriptomics and cytokine profiling of human muscle stem cell-based models and human cancer-induced cachexia models in mice, we found that cachectic cancer cells secreted many inflammatory factors that rapidly led to high levels of fatty acid metabolism and to the activation of a p38 stress-response signature in skeletal muscles, before manifestation of cachectic muscle atrophy occurred. Metabolomics profiling revealed that factors secreted by cachectic cancer cells rapidly induce excessive fatty acid oxidation in human myotubes, which leads to oxidative stress, p38 activation and impaired muscle growth. Pharmacological blockade of fatty acid oxidation not only rescued human myotubes, but also improved muscle mass and body weight in cancer cachexia models in vivo. Therefore, fatty acid-induced oxidative stress could be targeted to prevent cancer-induced cachexia. PMID:27135739

  19. DIFFERENTIAL EFFECTS OF SATURATED AND UNSATURATED FATTY ACID DIETS ON CARDIOMYOCYTE APOPTOSIS, ADIPOSE DISTRIBUTION, AND SERUM LEPTIN

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acids are the primary fuel for the heart and are ligands for peroxisome proliferator-activated receptors (PPARs), which regulate the expression of genes encoding proteins involved in fatty acid metabolism. Saturated fatty acids, particularly palmitate, can be converted to the proapoptotic lipi...

  20. Properties and biosynthesis of cyclopropane fatty acids in Escherichia coli.

    PubMed Central

    Cronan, J E; Reed, R; Taylor, F R; Jackson, M B

    1979-01-01

    The lipid phase transition of Escherichia coli phospholipids containing cyclopropane fatty acids was compared with the otherwise homologous phospholipids lacking cyclopropane fatty acids. The phase transitions (determined by scanning calorimetry) of the two preparations were essentially identical. Infection of E. coli with phage T3 inhibited cyclopropane fatty acid formation over 98%, whereas infection with mutants which lack the phage coded S-adenosylmethionine cleavage enzyme had no effect on cyclopropane fatty acid synthesis. These data indicate that S-adenosylmethionine is the methylene in cyclopropane fatty acid synthesis. PMID:374358

  1. Genetic Variation of Fatty Acid Oxidation and Obesity, A Literature Review

    PubMed Central

    Freitag Luglio, Harry

    2016-01-01

    Modulation of fat metabolism is an important component of the etiology of obesity as well as individual response to weight loss program. The influence of lipolysis process had receives many attentions in recent decades. Compared to that, fatty acid oxidation which occurred after lipolysis seems to be less exposed. There are limited publications on how fatty acid oxidation influences predisposition to obesity, especially the importance of genetic variations of fatty acid oxidation proteins on development of obesity. The aim of this review is to provide recent knowledge on how polymorphism of genes related fatty acid oxidation is obtained. Studies in human as well as animal model showed that disturbance of genes related fatty acid oxidation process gave impact on body weight and risks to obesity. Several polymorphisms on CD36, CPT, ACS and FABP had been shown to be related to obesity either by regulating enzymatic activity or directly influence fatty acid oxidation process. PMID:27127449

  2. Synthesis and release of fatty acids by human trophoblast cells in culture

    SciTech Connect

    Coleman, R.A.; Haynes, E.B.

    1987-11-01

    In order to determine whether placental cells can synthesize and release fatty acids, trophoblast cells from term human placentas were established in monolayer culture. The cells continued to secrete placental lactogen and progesterone and maintained specific activities of critical enzymes of triacylglycerol and phosphatidylcholine biosynthesis for 24 to 72 hr in culture. Fatty acid was rapidly synthesized from (/sup 14/C)acetate and released by the cells. Palmitoleic, palmitic, and oleic acids were the major fatty acids synthesized from (/sup 14/C)acetate and released. Small amounts of lauric, myristic, and stearic acids were also identified. (/sup 14/C)acetate was also incorporated into cellular triacylglycerol, phospholipid, and cholesterol, but radiolabeled free fatty acid did not accumulate intracellularly. In a pulse-chase experiment, cellular glycerolipids were labeled with (1-/sup 14/C)oleate; trophoblast cells then released /sup 14/C-labeled fatty acid into the media as the cellular content of labeled phospholipid and triacylglycerol decreased without intracellular accumulation of free fatty acid. Twenty percent of the /sup 14/C-label lost from cellular glycerolipid could not be recovered as a chloroform-extractable product, suggesting that some of the hydrolyzed fatty acid had been oxidized. These data indicate that cultured placenta trophoblast cells can release fatty acids that have either been synthesized de novo or that have been hydrolyzed from cellular glycerolipids. Trophoblast cells in monolayer culture should provide an excellent model for molecular studies of placental fatty acid metabolism and release.

  3. Imaging of myocardial fatty acid oxidation.

    PubMed

    Mather, Kieren J; DeGrado, Timothy R

    2016-10-01

    Myocardial fuel selection is a key feature of the health and function of the heart, with clear links between myocardial function and fuel selection and important impacts of fuel selection on ischemia tolerance. Radiopharmaceuticals provide uniquely valuable tools for in vivo, non-invasive assessment of these aspects of cardiac function and metabolism. Here we review the landscape of imaging probes developed to provide non-invasive assessment of myocardial fatty acid oxidation (MFAO). Also, we review the state of current knowledge that myocardial fatty acid imaging has helped establish of static and dynamic fuel selection that characterizes cardiac and cardiometabolic disease and the interplay between fuel selection and various aspects of cardiac function. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk. PMID:26923433

  4. Polyunsaturated fatty acid saturation by gut lactic acid bacteria affecting host lipid composition

    PubMed Central

    Kishino, Shigenobu; Takeuchi, Michiki; Park, Si-Bum; Hirata, Akiko; Kitamura, Nahoko; Kunisawa, Jun; Kiyono, Hiroshi; Iwamoto, Ryo; Isobe, Yosuke; Arita, Makoto; Arai, Hiroyuki; Ueda, Kazumitsu; Shima, Jun; Takahashi, Satomi; Yokozeki, Kenzo; Shimizu, Sakayu; Ogawa, Jun

    2013-01-01

    In the representative gut bacterium Lactobacillus plantarum, we identified genes encoding the enzymes involved in a saturation metabolism of polyunsaturated fatty acids and revealed in detail the metabolic pathway that generates hydroxy fatty acids, oxo fatty acids, conjugated fatty acids, and partially saturated trans-fatty acids as intermediates. Furthermore, we observed these intermediates, especially hydroxy fatty acids, in host organs. Levels of hydroxy fatty acids were much higher in specific pathogen-free mice than in germ-free mice, indicating that these fatty acids are generated through polyunsaturated fatty acids metabolism of gastrointestinal microorganisms. These findings suggested that lipid metabolism by gastrointestinal microbes affects the health of the host by modifying fatty acid composition. PMID:24127592

  5. Design, synthesis and structure-activity relationship studies of novel phenoxyacetamide-based free fatty acid receptor 1 agonists for the treatment of type 2 diabetes.

    PubMed

    Li, Zheng; Wang, Xuekun; Xu, Xue; Yang, Jianyong; Qiu, Qianqian; Qiang, Hao; Huang, Wenlong; Qian, Hai

    2015-10-15

    The free fatty acid receptor 1 (FFA1) has attracted extensive attention as a novel antidiabetic target in the last decade. Several FFA1 agonists reported in the literature have been suffered from relatively high molecular weight and lipophilicity. We have previously reported the FFA1 agonist 1. Based on the common amide structural characteristic of SAR1 and NIH screened compound, we here describe the continued structure-activity exploration to decrease the molecular weight and lipophilicity of the compound 1 series by converting various amide linkers. All of these efforts lead to the discovery of the preferable lead compound 18, a compound with considerable agonistic activity, high LE and LLE values, lower lipophilicity than previously reported agonists, and appreciable efficacy on glucose tolerance in both normal and type 2 diabetic mice. PMID:26420383

  6. Neutrophil migration inhibitory properties of polyunsaturated fatty acids. The role of fatty acid structure, metabolism, and possible second messenger systems.

    PubMed Central

    Ferrante, A; Goh, D; Harvey, D P; Robinson, B S; Hii, C S; Bates, E J; Hardy, S J; Johnson, D W; Poulos, A

    1994-01-01

    The n-3 polyunsaturated fatty acids (PUFA) appear to have antiinflammatory properties that can be partly explained by their biological activity on leukocytes. Since leukocyte emigration is an essential component of the inflammatory response, we have examined the effects of the n-3 PUFA (eicosapentaenoic and docosahexaenoic acids) on neutrophil random and chemotactic movement. Preexposure of neutrophils for 15-30 min to 1-10 micrograms/ml PUFA reduced the random and chemotactic migration to both FMLP- and fungi-activated complement. The inhibitory effect diminished with increasing saturation and carbon chain length, and methylation abolished this activity. Arachidonic and docosahexaenoic acids were the most active fatty acids. The PUFA concentration required to inhibit migration was dependent on cell number, suggesting that the fatty acid effects on leukocyte migration in vivo may be governed by the stage of the inflammatory response. It was concluded that the PUFA rather than their metabolites were responsible for the inhibition since: (a) antioxidants did not prevent the PUFA-induced migration inhibition and the hydroxylated intermediates were less active, and (b) inhibitors of the cyclooxygenase and lipoxygenase pathways were without effect. Inhibitors of protein kinases and calmodulin-dependent enzyme system did not prevent the PUFA-induced migration inhibition, which was also independent of phospholipase D-catalyzed hydrolysis of phospholipids. It is also shown that PUFA decrease the FMLP-induced Ca2+ mobilization. Images PMID:8132744

  7. Nutritional Signaling via Free Fatty Acid Receptors.

    PubMed

    Miyamoto, Junki; Hasegawa, Sae; Kasubuchi, Mayu; Ichimura, Atsuhiko; Nakajima, Akira; Kimura, Ikuo

    2016-01-01

    Excess energy is stored primarily as triglycerides, which are mobilized when demand for energy arises. Dysfunction of energy balance by excess food intake leads to metabolic diseases, such as obesity and diabetes. Free fatty acids (FFAs) provided by dietary fat are not only important nutrients, but also contribute key physiological functions via FFA receptor (FFAR)-mediated signaling molecules, which depend on FFAs' carbon chain length and the ligand specificity of the receptors. Functional analyses have revealed that FFARs are critical for metabolic functions, such as peptide hormone secretion and inflammation, and contribute to energy homeostasis. In particular, recent studies have shown that the administration of selective agonists of G protein-coupled receptor (GPR) 40 and GPR120 improved glucose metabolism and systemic metabolic disorders. Furthermore, the anti-inflammation and energy metabolism effects of short chain FAs have been linked to the activation of GPR41 and GPR43. In this review, we summarize recent progress in research on FFAs and their physiological roles in the regulation of energy metabolism. PMID:27023530

  8. Nutritional Signaling via Free Fatty Acid Receptors

    PubMed Central

    Miyamoto, Junki; Hasegawa, Sae; Kasubuchi, Mayu; Ichimura, Atsuhiko; Nakajima, Akira; Kimura, Ikuo

    2016-01-01

    Excess energy is stored primarily as triglycerides, which are mobilized when demand for energy arises. Dysfunction of energy balance by excess food intake leads to metabolic diseases, such as obesity and diabetes. Free fatty acids (FFAs) provided by dietary fat are not only important nutrients, but also contribute key physiological functions via FFA receptor (FFAR)-mediated signaling molecules, which depend on FFAs’ carbon chain length and the ligand specificity of the receptors. Functional analyses have revealed that FFARs are critical for metabolic functions, such as peptide hormone secretion and inflammation, and contribute to energy homeostasis. In particular, recent studies have shown that the administration of selective agonists of G protein-coupled receptor (GPR) 40 and GPR120 improved glucose metabolism and systemic metabolic disorders. Furthermore, the anti-inflammation and energy metabolism effects of short chain FAs have been linked to the activation of GPR41 and GPR43. In this review, we summarize recent progress in research on FFAs and their physiological roles in the regulation of energy metabolism. PMID:27023530

  9. Cellular fatty acid composition of Haemophilus equigenitalis.

    PubMed Central

    Sugimoto, C; Miyagawa, E; Mitani, K; Nakazawa, M; Isayama, Y

    1982-01-01

    The cellular fatty acid composition of eight Haemophilus equigenitalis strains was determined by gas-liquid chromatography. All strains showed a grossly similar pattern characterized by large amounts of 18:1 and 16:0. The amounts of 16:1, 18:2, 18:0, 3-OH 14:0, 3-OH 16:0, and 3-OH 18:1 were relatively small. PMID:7096556

  10. Anorexia nervosa, seasonality, and polyunsaturated fatty acids.

    PubMed

    Scolnick, Barbara; Mostofsky, David I

    2015-09-01

    Anorexia nervosa is a serious neurobehavioral disorder marked by semistarvation, extreme fear of weight gain, frequently hyperactivity, and low body temperature. The etiology remains unknown. We present a speculation that a primary causative factor is that polyunsaturated fatty acids are skewed to prevent oxidative damage in phospholipid membranes. This causes a change in the trade off of oxidation protection vs homeoviscous adaptation to lower temperatures, which sets off a metabolic cascade that leads to the rogue state of anorexia nervosa. PMID:25981875

  11. Metabolic engineering of Pichia pastoris to produce ricinoleic acid, a hydroxy fatty acid of industrial importance.

    PubMed

    Meesapyodsuk, Dauenpen; Chen, Yan; Ng, Siew Hon; Chen, Jianan; Qiu, Xiao

    2015-11-01

    Ricinoleic acid (12-hydroxyoctadec-cis-9-enoic acid) has many specialized uses in bioproduct industries, while castor bean is currently the only commercial source for the fatty acid. This report describes metabolic engineering of a microbial system (Pichia pastoris) to produce ricinoleic acid using a "push" (synthesis) and "pull" (assembly) strategy. CpFAH, a fatty acid hydroxylase from Claviceps purpurea, was used for synthesis of ricinoleic acid, and CpDGAT1, a diacylglycerol acyl transferase for the triacylglycerol synthesis from the same species, was used for assembly of the fatty acid. Coexpression of CpFAH and CpDGAT1 produced higher lipid contents and ricinoleic acid levels than expression of CpFAH alone. Coexpression in a mutant haploid strain defective in the Δ12 desaturase activity resulted in a higher level of ricinoleic acid than that in the diploid strain. Intriguingly, the ricinoleic acid produced was mainly distributed in the neutral lipid fractions, particularly the free fatty acid form, but with little in the polar lipids. This work demonstrates the effectiveness of the metabolic engineering strategy and excellent capacity of the microbial system for production of ricinoleic acid as an alternative to plant sources for industrial uses. PMID:26323290

  12. Dietary n-3 polyunsaturated fatty acids modify fatty acid composition in hepatic and abdominal adipose tissue of sucrose-induced obese rats.

    PubMed

    Alexander-Aguilera, Alfonso; Berruezo, Silvia; Hernández-Diaz, Guillermo; Angulo, Ofelia; Oliart-Ros, Rosamaria

    2011-12-01

    The fatty acid profile of hepatocytes and adipocytes is determined by the composition of the dietary lipids. It remains unclear which fatty acid components contribute to the development or reduction of insulin resistance. The present work examined the fatty acid composition of both tissues in sucrose-induced obese rats receiving fish oil to determine whether the effect of dietary (n-3) polyunsaturated fatty acids (PUFAs) on the reversion of metabolic syndrome in these rats is associated to changes in the fatty acid composition of hepatocyte and adipocyte membrane lipids. Animals with metabolic syndrome were divided into a corn-canola oil diet group and a fish oil diet group, and tissues fatty acids composition were analyzed after 6 weeks of dietary treatment. Fatty acid profiles of the total membrane lipids were modified by the fatty acid composition of the diets fed to rats. N-3 PUFAs levels in animals receiving the fish oil diet plus sucrose in drinking water were significantly higher than in animals under corn-canola oil diets. It is concluded that in sucrose-induced obese rats, consumption of dietary fish oil had beneficial effects on the metabolic syndrome and that such effects would be conditioned by the changes in the n-3 PUFAs composition in hepatic and adipose tissues because they alter membrane properties and modify the type of substrates available for the production of active lipid metabolites acting on insulin resistance and obesity. PMID:21695545

  13. Dietary n-3 polyunsaturated fatty acid depletion activates caspases and decreases NMDA receptors in the brain of a transgenic mouse model of Alzheimer's disease.

    PubMed

    Calon, Frédéric; Lim, Giselle P; Morihara, Takashi; Yang, Fusheng; Ubeda, Oliver; Salem, Norman; Frautschy, Sally A; Cole, Greg M

    2005-08-01

    Epidemiological data indicate that low n-3 polyunsaturated fatty acids (PFA) intake is a readily manipulated dietary risk factor for Alzheimer's disease (AD). Studies in animals confirm the deleterious effect of n-3 PFA depletion on cognition and on dendritic scaffold proteins. Here, we show that in transgenic mice overexpressing the human AD gene APPswe (Tg2576), safflower oil-induced n-3 PFA deficiency caused a decrease in N-methyl-D-aspartate (NMDA) receptor subunits, NR2A and NR2B, in the cortex and hippocampus with no loss of the presynaptic markers, synaptophysin and synaptosomal-associated protein 25 (SNAP-25). n-3 PFA depletion also decreased the NR1 subunit in the hippocampus and Ca2+/calmodulin-dependent protein kinase (CaMKII) in the cortex of Tg2576 mice. These effects of dietary n-3 PFA deficiency were greatly amplified in Tg2576 mice compared to nontransgenic mice. Loss of the NR2B receptor subunit was not explained by changes in mRNA expression, but correlated with p85alpha phosphatidylinositol 3-kinase levels. Most interestingly, n-3 PFA deficiency dramatically increased levels of protein fragments, corresponding to caspase/calpain-cleaved fodrin and gelsolin in Tg2576 mice. This effect was minimal in nontransgenic mice suggesting that n-3 PFA depletion potentiated caspase activation in the Tg2576 mouse model of AD. Dietary supplementation with docosahexaenoic acid (DHA; 22 : 6n-3) partly protected from NMDA receptor subunit loss and accumulation of fodrin and gelsolin fragments but fully prevented CaMKII decrease. The marked effect of dietary n-3 PFA on NMDA receptors and caspase/calpain activation in the cortex of an animal model of AD provide new insights into how dietary essential fatty acids may influence cognition and AD risk. PMID:16101743

  14. Lipidomics of oxidized polyunsaturated fatty acids

    PubMed Central

    Massey, Karen A.; Nicolaou, Anna

    2013-01-01

    Lipid mediators are produced from the oxidation of polyunsaturated fatty acids through enzymatic and free radical-mediated reactions. When subject to oxygenation via cyclooxygenases, lipoxygenases, and cytochrome P450 monooxygenases, polyunsaturated fatty acids give rise to an array of metabolites including eicosanoids, docosanoids, and octadecanoids. These potent bioactive lipids are involved in many biochemical and signaling pathways, with inflammation being of particular importance. Moreover, because they are produced by more than one pathway and substrate, and are present in a variety of biological milieus, their analysis is not always possible with conventional assays. Liquid chromatography coupled to electrospray mass spectrometry offers a versatile and sensitive approach for the analysis of bioactive lipids, allowing specific and accurate quantitation of multiple species present in the same sample. Here we explain the principles of this approach to mediator lipidomics and present detailed protocols for the assay of enzymatically produced oxygenated metabolites of polyunsaturated fatty acids that can be tailored to answer biological questions or facilitate assessment of nutritional and pharmacological interventions. PMID:22940496

  15. The capacity for long-chain polyunsaturated fatty acid synthesis in a carnivorous vertebrate: Functional characterisation and nutritional regulation of a Fads2 fatty acyl desaturase with Δ4 activity and an Elovl5 elongase in striped snakehead (Channa striata).

    PubMed

    Kuah, Meng-Kiat; Jaya-Ram, Annette; Shu-Chien, Alexander Chong

    2015-03-01

    The endogenous production of long-chain polyunsaturated fatty acids (LC-PUFA) in carnivorous teleost species inhabiting freshwater environments is poorly understood. Although a predatory lifestyle could potentially supply sufficient LC-PUFA to satisfy the requirements of these species, the nutrient-poor characteristics of the freshwater food web could impede this advantage. In this study, we report the cloning and functional characterisation of an elongase enzyme in the LC-PUFA biosynthesis pathway from striped snakehead (Channa striata), which is a strict freshwater piscivore that shows high deposition of LC-PUFA in its flesh. We also functionally characterised a previously isolated fatty acyl desaturase cDNA from this species. Results showed that the striped snakehead desaturase is capable of Δ4 and Δ5 desaturation activities, while the elongase showed the characteristics of Elovl5 elongases. Collectively, these findings reveal that striped snakehead exhibits the genetic resources to synthesise docosahexaenoic acid (DHA; 22:6n-3) from eicosapentaenoic acid (EPA; 20:5n-3). Both genes are expressed at considerable levels in the brain and the liver. In liver, both genes were up-regulated by dietary C18 PUFA, although this increase did not correspond to a significant rise in the deposition of muscle LC-PUFA. Brain tissue of fish fed with plant oil diets showed higher expression of fads2 gene compared to fish fed with fish oil-based diet, which could ensure DHA levels remain constant under limited dietary DHA intake. This suggests the importance of DHA production from EPA via the ∆4 desaturation step in order to maintain an optimal reserve of DHA in the neuronal tissues of carnivores. PMID:25542509

  16. Fatty acids of Thespesia populnea: Mass spectrometry of picolinyl esters of cyclopropene fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thespesia populnea belongs to the plant family of Malvaceae which contain cyclopropane and cyclopropene fatty acids. However, previous literature reports vary regarding the content of these compounds in Thespesia populnea seed oil. In this work, the content of malvalic acid (8,9-methylene-9-heptade...

  17. 40 CFR 721.10512 - Fatty acid maleic acid amides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acid maleic acid amides (generic... Specific Chemical Substances § 721.10512 Fatty acid maleic acid amides (generic). (a) Chemical substance... fatty acid maleic acid amides (PMNs P-07-563 and P-07-564) are subject to reporting under this...

  18. 40 CFR 721.10512 - Fatty acid maleic acid amides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acid maleic acid amides (generic... Specific Chemical Substances § 721.10512 Fatty acid maleic acid amides (generic). (a) Chemical substance... fatty acid maleic acid amides (PMNs P-07-563 and P-07-564) are subject to reporting under this...

  19. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Oleic acid derived from tall oil fatty acids. 172... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and...

  20. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Oleic acid derived from tall oil fatty acids. 172... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and...

  1. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Oleic acid derived from tall oil fatty acids. 172... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and...

  2. 21 CFR 172.862 - Oleic acid derived from tall oil fatty acids.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Oleic acid derived from tall oil fatty acids. 172... FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.862 Oleic acid derived from tall oil fatty acids. The food additive oleic acid derived from tall oil fatty acids may be safely used in food and...

  3. Fatty acid profiles of some Fabaceae seed oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fatty acid profiles of six seed oils of the Fabaceae (Leguminosae) family are reported and discussed. These are the seed oils of Centrosema pubescens, Clitoria ternatea, Crotalaria mucronata, Macroptilium lathyroides, Pachyrhizus erosus, and Senna alata. The most common fatty acid in the fatty a...

  4. 40 CFR 721.3627 - Branched synthetic fatty acid.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Branched synthetic fatty acid. 721... Substances § 721.3627 Branched synthetic fatty acid. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a branched synthetic fatty...

  5. 40 CFR 721.3627 - Branched synthetic fatty acid.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Branched synthetic fatty acid. 721... Substances § 721.3627 Branched synthetic fatty acid. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a branched synthetic fatty...

  6. 40 CFR 721.3627 - Branched synthetic fatty acid.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Branched synthetic fatty acid. 721... Substances § 721.3627 Branched synthetic fatty acid. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a branched synthetic fatty...

  7. Production of hydroxylated fatty acids in genetically modified plants

    DOEpatents

    Somerville, Chris; Broun, Pierre; van de Loo, Frank

    2001-01-01

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants.

  8. Carnitine transport and fatty acid oxidation.

    PubMed

    Longo, Nicola; Frigeni, Marta; Pasquali, Marzia

    2016-10-01

    Carnitine is essential for the transfer of long-chain fatty acids across the inner mitochondrial membrane for subsequent β-oxidation. It can be synthesized by the body or assumed with the diet from meat and dairy products. Defects in carnitine biosynthesis do not routinely result in low plasma carnitine levels. Carnitine is accumulated by the cells and retained by kidneys using OCTN2, a high affinity organic cation transporter specific for carnitine. Defects in the OCTN2 carnitine transporter results in autosomal recessive primary carnitine deficiency characterized by decreased intracellular carnitine accumulation, increased losses of carnitine in the urine, and low serum carnitine levels. Patients can present early in life with hypoketotic hypoglycemia and hepatic encephalopathy, or later in life with skeletal and cardiac myopathy or sudden death from cardiac arrhythmia, usually triggered by fasting or catabolic state. This disease responds to oral carnitine that, in pharmacological doses, enters cells using the amino acid transporter B(0,+). Primary carnitine deficiency can be suspected from the clinical presentation or identified by low levels of free carnitine (C0) in the newborn screening. Some adult patients have been diagnosed following the birth of an unaffected child with very low carnitine levels in the newborn screening. The diagnosis is confirmed by measuring low carnitine uptake in the patients' fibroblasts or by DNA sequencing of the SLC22A5 gene encoding the OCTN2 carnitine transporter. Some mutations are specific for certain ethnic backgrounds, but the majority are private and identified only in individual families. Although the genotype usually does not correlate with metabolic or cardiac involvement in primary carnitine deficiency, patients presenting as adults tend to have at least one missense mutation retaining residual activity. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler

  9. Cytochrome P450 epoxygenase pathway of polyunsaturated fatty acid metabolism

    PubMed Central

    Spector, Arthur A.; Kim, Hee-Yong

    2014-01-01

    Polyunsaturated fatty acids (PUFA) are oxidized by cytochrome P450 epoxygenases to PUFA epoxides which function as potent lipid mediators. The major metabolic pathways of PUFA epoxides are incorporation into phospholipids and hydrolysis to the corresponding PUFA diols by soluble epoxide hydrolase. Inhibitors of soluble epoxide hydrolase stabilize PUFA epoxides and potentiate their functional effects. The epoxyeicosatrienoic acids (EETs) synthesized from arachidonic acid produce vasodilation, stimulate angiogenesis, have anti-inflammatory actions, and protect the heart against ischemia-reperfusion injury. EETs produce these functional effects by activating receptor-mediated signaling pathways and ion channels. The epoxyeicosatetraenoic acids synthesized from eicosapentaenoic acid and epoxydocosapentaenoic acids synthesized from docosahexaenoic acid are potent inhibitors of cardiac arrhythmias. Epoxydocosapentaenoic acids also inhibit angiogenesis, decrease inflammatory and neuropathic pain, and reduce tumor metastasis. These findings indicate that a number of the beneficial functions of PUFA may be due to their conversion to PUFA epoxides. PMID:25093613

  10. Dietary essential fatty acids change the fatty acid profile of rat neural mitochondria over time.

    PubMed

    Dyer, J R; Greenwood, C E

    1991-10-01

    This experiment examined the time course over which the amount of dietary essential fatty acids (EFA) affects brain mitochondrial fatty acids. Weanling rats were fed 20% (wt/wt) fat diets that contained either 4 or 15% (wt/wt of diet) EFA for 1, 2, 3 or 6 wk or a 10% EFA diet for 3 or 6 wk. The EFA ratio [18:2(n-6)/18:3(n-3)] of all diets was approximately 30. Fatty acid analysis of brain mitochondrial phosphatidylethanolamine, phosphatidylcholine and cardiolipin revealed that the largest dietary effect was on 18:2(n-6), which was 30% higher in rats fed the 15 vs. 4% EFA diets after 1 wk. This difference increased to twofold by 3 wk and was still twofold after 6 wk. These results demonstrate several facts: 1) the response of 18:2(n-6) in cardiolipin to dietary EFA is very fast and large, relative to changes in other quantitatively major fatty acids observed in weanling rats; 2) the 18:2(n-6) level in neural cardiolipin stabilizes after 3 wk of feeding at a level dependent upon the amount of dietary EFA; and 3) at least one neural fatty acid, 18:2(n-6), is very sensitive to amounts of dietary EFA that are well above the animal's EFA requirement. PMID:1765818

  11. Temperature Affects Fatty Acids In Methylococcus Capsulatus

    NASA Technical Reports Server (NTRS)

    Jahnke, Linda L.

    1993-01-01

    According to report, temperature of growth of thermotolerant, methane-oxidizing bacterium Methylococcus capsulatus (Bath) affects both proportion of monounsaturated fatty acids and cis/trans ratio of these acids in cell membrane. Because suboptimum growth temperature is potential stress factor, it may be possible to use such cis/trans ratios as indices of stresses upon methane-oxidizing microbial communities. Research in microbiology of methanotrophs increasing because of possible commercial exploitation of these organisms as biocatalysts or as sources of useful polymers; knowledge of effect of temperature on ability of methanotrophs to utilize methane useful in optimization of conditions of growth.

  12. Nanotechnology Formulations for Antibacterial Free Fatty Acids and Monoglycerides.

    PubMed

    Jackman, Joshua A; Yoon, Bo Kyeong; Li, Danlin; Cho, Nam-Joon

    2016-01-01

    Free fatty acids and monoglycerides have long been known to possess broad-spectrum antibacterial activity that is based on lytic behavior against bacterial cell membranes. Considering the growing challenges of drug-resistant bacteria and the need for new classes of antibiotics, the wide prevalence, affordable cost, and broad spectrum of fatty acids and monoglycerides make them attractive agents to develop for healthcare and biotechnology applications. The aim of this review is to provide a brief introduction to the history of antimicrobial lipids and their current status and challenges, and to present a detailed discussion of ongoing research efforts to develop nanotechnology formulations of fatty acids and monoglycerides that enable superior in vitro and in vivo performance. Examples of nano-emulsions, liposomes, solid lipid nanoparticles, and controlled release hydrogels are presented in order to highlight the potential that lies ahead for fatty acids and monoglycerides as next-generation antibacterial solutions. Possible application routes and future directions in research and development are also discussed. PMID:26950108

  13. Fatty acids from diet and microbiota regulate energy metabolism

    PubMed Central

    Alcock, Joe; Lin, Henry C.

    2015-01-01

    A high-fat diet and elevated levels of free fatty acids are known risk factors for metabolic syndrome, insulin resistance, and visceral obesity. Although these disease associations are well established, it is unclear how different dietary fats change the risk of insulin resistance and metabolic syndrome. Here, we review emerging evidence that insulin resistance and fat storage are linked to changes in the gut microbiota. The gut microbiota and intestinal barrier function, in turn, are highly influenced by the composition of fat in the diet. We review findings that certain fats (for example, long-chain saturated fatty acids) are associated with dysbiosis, impairment of intestinal barrier function, and metabolic endotoxemia. In contrast, other fatty acids, including short-chain and certain unsaturated fatty acids, protect against dysbiosis and impairment of barrier function caused by other dietary fats. These fats may promote insulin sensitivity by inhibiting metabolic endotoxemia and dysbiosis-driven inflammation. During dysbiosis, the modulation of metabolism by diet and microbiota may represent an adaptive process that compensates for the increased fuel demands of an activated immune system. PMID:27006755

  14. Oxalic acid alleviates chilling injury in peach fruit by regulating energy metabolism and fatty acid contents.

    PubMed

    Jin, Peng; Zhu, Hong; Wang, Lei; Shan, Timin; Zheng, Yonghua

    2014-10-15

    The effects of postharvest oxalic acid (OA) treatment on chilling injury, energy metabolism and membrane fatty acid content in 'Baifeng' peach fruit stored at 0°C were investigated. Internal browning was significantly reduced by OA treatment in peaches. OA treatment markedly inhibited the increase of ion leakage and the accumulation of malondialdehyde. Meanwhile, OA significantly increased the contents of adenosine triphosphate and energy charge in peach fruit. Enzyme activities of energy metabolism including H(+)-adenosine triphosphatase, Ca(2+)-adenosine triphosphatase, succinic dehydrogenase and cytochrome C oxidase were markedly enhanced by OA treatment. The ratio of unsaturated/saturated fatty acid in OA-treated fruit was significantly higher than that in control fruit. These results suggest that the alleviation in chilling injury by OA may be due to enhanced enzyme activities related to energy metabolism and higher levels of energy status and unsaturated/saturated fatty acid ratio. PMID:24837925

  15. Serum Fatty Acids Are Correlated with Inflammatory Cytokines in Ulcerative Colitis

    PubMed Central

    Wiese, Dawn M.; Horst, Sara N.; Brown, Caroline T.; Allaman, Margaret M.; Hodges, Mallary E.; Slaughter, James C.; Druce, Jennifer P.; Beaulieu, Dawn B.; Schwartz, David A.; Wilson, Keith T.; Coburn, Lori A.

    2016-01-01

    Background and Aims Ulcerative colitis (UC) is associated with increased dietary intake of fat and n-6 polyunsaturated fatty acids (PUFA). Modification of fat metabolism may alter inflammation and disease severity. Our aim was to assess differences in dietary and serum fatty acid levels between control and UC subjects and associations with disease activity and inflammatory cytokines. Methods Dietary histories, serum, and colonic tissue samples were prospectively collected from 137 UC subjects and 38 controls. Both histologic injury and the Mayo Disease Activity Index were assessed. Serum and tissue cytokines were measured by Luminex assay. Serum fatty acids were obtained by gas chromatography. Results UC subjects had increased total fat and oleic acid (OA) intake, but decreased arachidonic acid (AA) intake vs controls. In serum, there was less percent saturated fatty acid (SFA) and AA, with higher monounsaturated fatty acids (MUFA), linoleic acid, OA, eicosapentaenoic acid (EPA), and docosapentaenoic acid (DPA) in UC. Tissue cytokine levels were directly correlated with SFA and inversely correlated with PUFA, EPA, and DPA in UC subjects, but not controls. 5-aminosalicylic acid therapy blunted these associations. Conclusions In summary, we found differences in serum fatty acids in UC subjects that correlated with pro-inflammatory tissue cytokines. We propose that fatty acids may affect cytokine production and thus be immunomodulatory in UC. PMID:27227540

  16. Biosynthesis of platelet-activating factor in glandular gastric mucosa. Evidence for the involvement of the 'de novo' pathway and modulation by fatty acids.

    PubMed

    Fernandez-Gallardo, S; Gijon, M A; Garcia, M C; Cano, E; Sanchez Crespo, M

    1988-09-15

    The biosynthesis of platelet-activating factor (PAF), a phospholipid autocoid with potent ulcerogenic properties that is produced in secretory exocrine glands by physiological secretagogues, was assessed in microsomal preparations of glandular gastric mucosa. For this purpose, 1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine (lyso-PAF):acetyl-CoA acetyltransferase (EC 2.3.1.67); the enzymes of the 'de novo' pathway: 1-O-alkyl-2-lyso-sn-glycero-3-phosphate (alkyl-lyso-GP):acetyl-CoA acetyltransferase and 1-O-alkyl-2-acetyl-sn-glycerol (alkylacetyl-G):CDP-choline cholinephosphotransferase (EC 2.7.8.16); and some enzymes involved in the catabolism of PAF and lyso-PAF were assayed. Only the enzymes of the 'de novo' pathway and small amounts of PAF acetylhydrolase, phospholipase A2 and a lysophospholipase D acting on either lipids could be detected in the gastric preparations, whereas lyso-PAF:acetyl-CoA acetyltransferase activity was undetectable. The specific activity of alkyl-lyso-GP:acetyl-CoA acetyltransferase in the gastric mucosa was about one-tenth of that found in spleen microsomes and its apparent Km for acetyl-CoA was 454 microM compared with 277 microM in spleen microsomes. Glandular mucosa homogenates contained preformed PAF at a concentration of 2.7 +/- 0.7 ng equivalents of PAF (hexadecyl)/mg of protein. When gastric microsomes were incubated with micromolar concentrations of fatty acids (arachidonic, palmitic and oleic) prior to the assay of dithiothreitol (DTT)-insensitive cholinephosphotransferase, a dose-dependent reduction in the formation of PAF was observed, arachidonic acid being the most potent inhibitor, followed by linoleic acid (only tested on spleen microsomes) and oleic acid. By contrast, 1,2-diolein and phosphatidylcholine (dipalmitoyl) showed no or little effect. These results indicate that glandular gastric mucosa can produce PAF through the 'de novo' pathway, and that fatty acids, especially unsaturated, can reduce that synthesis by

  17. Fatty acids, endocannabinoids and inflammation.

    PubMed

    Witkamp, Renger

    2016-08-15

    From their phylogenetic and pharmacological classification it might be inferred that cannabinoid receptors and their endogenous ligands constitute a rather specialised and biologically distinct signalling system. However, the opposite is true and accumulating data underline how much the endocannabinoid system is intertwined with other lipid and non-lipid signalling systems. Endocannabinoids per se have many structural congeners, and these molecules exist in dynamic equilibria with different other lipid-derived mediators, including eicosanoids and prostamides. With multiple crossroads and shared targets, this creates a versatile system involved in fine-tuning different physiological and metabolic processes, including inflammation. A key feature of this 'expanded' endocannabinoid system, or 'endocannabinoidome', is its subtle orchestration based on interactions between a relatively small number of receptors and multiple ligands with different but partly overlapping activities. Following an update on the role of the 'endocannabinoidome' in inflammatory processes, this review continues with possible targets for intervention at the level of receptors or enzymes involved in formation or breakdown of endocannabinoids and their congeners. Although its pleiotropic character poses scientific challenges, the 'expanded' endocannabinoid system offers several opportunities for prevention and therapy of chronic diseases. In this respect, successes are more likely to come from 'multiple-target' than from 'single-target' strategies. PMID:26325095

  18. Efficient free fatty acid production in Escherichia coli using plant acyl-ACP thioesterases.

    PubMed

    Zhang, Xiujun; Li, Mai; Agrawal, Arpita; San, Ka-Yiu

    2011-11-01

    Microbial biosynthesis of fatty acid-like chemicals from renewable carbon sources has attracted significant attention in recent years. Free fatty acids can be used as precursors for the production of fuels or chemicals. Free fatty acids can be produced by introducing an acyl-acyl carrier protein thioesterase gene into Escherichia coli. The presence of the acyl-ACP thioesterase will break the fatty acid elongation cycle and release free fatty acid. Depending on their sequence similarity and substrate specificity, class FatA thioesterase is active on unsaturated acyl-ACPs and class FatB prefers saturated acyl group. Different acyl-ACP thioesterases have different degrees of chain length specificity. Although some of these enzymes have been characterized from a number of sources, information on their ability to produce free fatty acid in microbial cells has not been extensively examined until recently. In this study, we examined the effect of the overexpression of acyl-ACP thioesterase genes from Diploknema butyracea, Gossypium hirsutum, Ricinus communis and Jatropha curcas on free fatty acid production. In particular, we are interested in studying the effect of different acyl-ACP thioesterase on the quantities and compositions of free fatty acid produced by an E. coli strain ML103 carrying these constructs. It is shown that the accumulation of free fatty acid depends on the acyl-ACP thioesterase used. The strain carrying the acyl-ACP thioesterase gene from D. butyracea produced approximately 0.2g/L of free fatty acid while the strains carrying the acyl-ACP thioesterase genes from R. communis and J. curcas produced the most free fatty acid at a high level of more than 2.0 g/L at 48 h. These two strains accumulated three major straight chain free fatty acids, C14, C16:1 and C16 at levels about 40%, 35% and 20%, respectively. PMID:22001432

  19. Improvement of Medium Chain Fatty Acid Content and Antimicrobial Activity of Coconut Oil via Solid-State Fermentation Using a Malaysian Geotrichum candidum

    PubMed Central

    Khoramnia, Anahita; Ebrahimpour, Afshin; Ghanbari, Raheleh; Ajdari, Zahra; Lai, Oi-Ming

    2013-01-01

    Coconut oil is a rich source of beneficial medium chain fatty acids (MCFAs) particularly lauric acid. In this study, the oil was modified into a value-added product using direct modification of substrate through fermentation (DIMOSFER) method. A coconut-based and coconut-oil-added solid-state cultivation using a Malaysian lipolytic Geotrichum candidum was used to convert the coconut oil into MCFAs-rich oil. Chemical characteristics of the modified coconut oils (MCOs) considering total medium chain glyceride esters were compared to those of the normal coconut oil using ELSD-RP-HPLC. Optimum amount of coconut oil hydrolysis was achieved at 29% moisture content and 10.14% oil content after 9 days of incubation, where the quantitative amounts of the modified coconut oil and MCFA were 0.330 mL/g of solid media (76.5% bioconversion) and 0.175 mL/g of solid media (53% of the MCO), respectively. MCOs demonstrated improved antibacterial activity mostly due to the presence of free lauric acid. The highest MCFAs-rich coconut oil revealed as much as 90% and 80% antibacterial activities against Staphylococcus aureus and Escherichia coli, respectively. The results of the study showed that DIMOSFER by a local lipolytic G. candidum can be used to produce MCFAs as natural, effective, and safe antimicrobial agent. The produced MCOs and MCFAs could be further applied in food and pharmaceutical industries. PMID:23971051

  20. Effects of dietary n-3 fatty acids on T cell activation and T cell receptor-mediated signaling in a murine model.

    PubMed

    McMurray, D N; Jolly, C A; Chapkin, R S

    2000-09-01

    A short-term feeding paradigm in mice, with diets enriched with eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), was used to study the modulation of T cell activation via the T cell receptor (TcR) and the downstream pathways of intracellular signaling. Diets enriched in EPA and DHA suppressed antigen-specific delayed hypersensitivity reactions and mitogen-induced proliferation of T cells. Cocultures of accessory cells and T cells from mice given different diets revealed that purified fatty acid ethyl esters acted directly on the T cell, rather than through the accessory cell. The loss of proliferative capacity was accompanied by reductions in interleukin (IL)-2 secretion and IL-2 receptor alpha chain mRNA transcription, suggesting that dietary EPA and DHA act, in part, by interrupting the autocrine IL-2 activation pathway. Dietary EPA and DHA blunted the production of intracellular second messengers, including diacylglycerol and ceramide, following mitogen stimulation in vitro. Dietary effects appear to vary with the agonist employed (i.e., anti-CD3 [TcR], anti-CD28, exogenous IL-2, or phorbol myristate acetate and ionomycin). PMID:10944491

  1. Evaluation of antifungal activity of free fatty acids methyl esters fraction isolated from Algerian Linum usitatissimum L. seeds against toxigenic Aspergillus

    PubMed Central

    Abdelillah, Amrouche; Houcine, Benmehdi; Halima, Dalile; Meriem, Chabane sari; Imane, Zaaboub; Eddine, Smahi Djamal; Abdallah, Moussaoui; Daoudi, Chabane sari

    2013-01-01

    Objective The aim of this study was to evaluate the antifungal activity of the major fraction of fatty acids methyl esters (FAMEs) isolated from Linum usitatissimum L. seeds oil collected from Bechar department (Algeria). Methods The assessment of antifungal activity was carried out in terms of percentage of radial growth on solid medium (potatoes dextrose agar PDA) and biomass growth inhibition on liquid medium (potatoes dextrose broth PDB) against two fungi. Results The FAMEs was found to be effective in inhibiting the radial mycelial growth of Aspergillus flavus more than Aspergillus ochraceus on all tested concentrations. The highest antifungal index was found to be (54.19%) compared to Aspergillus ochraceus (40.48%). The results of the antifungal activity of the FAMEs inhibition of biomass on liquid medium gave no discounted results, but this does not exclude the antifungal activity. Conclusions We can assume that the observed antifungal potency may be due to the abundance of linoleic and α-linolenic acids in linseed oil which appears to be promising to treat fungal infections, storage fungi and food spoilage in food industry field. PMID:23730556

  2. Reduction of hydrogen peroxide stress derived from fatty acid beta-oxidation improves fatty acid utilization in Escherichia coli.

    PubMed

    Doi, Hidetaka; Hoshino, Yasushi; Nakase, Kentaro; Usuda, Yoshihiro

    2014-01-01

    Fatty acids are a promising raw material for substance production because of their highly reduced and anhydrous nature, which can provide higher fermentation yields than sugars. However, they are insoluble in water and are poorly utilized by microbes in industrial fermentation production. We used fatty acids as raw materials for L-lysine fermentation by emulsification and improved the limited fatty acid-utilization ability of Escherichia coli. We obtained a fatty acid-utilizing mutant strain by laboratory evolution and demonstrated that it expressed lower levels of an oxidative-stress marker than wild type. The intracellular hydrogen peroxide (H₂O₂) concentration of a fatty acid-utilizing wild-type E. coli strain was higher than that of a glucose-utilizing wild-type E. coli strain. The novel mutation rpsA(D210Y) identified in our fatty acid-utilizing mutant strain enabled us to promote cell growth, fatty-acid utilization, and L-lysine production from fatty acid. Introduction of this rpsA(D210Y) mutation into a wild-type strain resulted in lower H₂O₂ concentrations. The overexpression of superoxide dismutase (sodA) increased intracellular H₂O₂ concentrations and inhibited E. coli fatty-acid utilization, whereas overexpression of an oxidative-stress regulator (oxyS) decreased intracellular H₂O₂ concentrations and promoted E. coli fatty acid utilization and L-lysine production. Addition of the reactive oxygen species (ROS) scavenger thiourea promoted L-lysine production from fatty acids and decreased intracellular H₂O₂ concentrations. Among the ROS generated by fatty-acid β-oxidation, H₂O₂ critically affected E. coli growth and L-lysine production. This indicates that the regression of ROS stress promotes fatty acid utilization, which is beneficial for fatty acids used as raw materials in industrial production. PMID:24169950

  3. Use of tocopherol with polyunsaturated fatty acids in poultry feeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tocopherol can inhibit the oxidative degradation of polyunsaturated fatty acids by stabilizing lipid radicals that form at elevated temperatures or pro-oxidant conditions. This is particularly relevant for feeds formulated with fatty acids such as docosahexaenoic acid (DHA) or linolenic acid (ALA) T...

  4. Effect of surfactant on hydrolysis products accumulation and short-chain fatty acids (SCFA) production during mesophilic and thermophilic fermentation of waste activated sludge: kinetic studies.

    PubMed

    Zhang, Peng; Chen, Yinguang; Zhou, Qi

    2010-09-01

    In the presence of surfactant sodium dodecylbenzene sulfonate (SDBS) the hydrolysis products accumulation and the short-chain fatty acids (SCFA) production during waste activated sludge fermentation under mesophilic and thermophilic conditions was compared with that at room temperature. In order to understand the mechanism of significant amounts of mesophilic and thermophilic hydrolysis products and SCFA observed in the presence of surfactant, the kinetic models at different SDBS dosages were developed. It was found that SDBS increased the mesophilic and thermophilic hydrolysis rate significantly, and the maximum specific utilization of hydrolysis products increased at low SDBS and decreased at high one. However, the observed maximum specific utilization of SCFA decreased seriously with SDBS increase. In the presence of SDBS the decay rate of acidogenic bacteria not only was lower than that in the absence of SDBS but decreased with the increase of SDBS under either mesophilic or thermophilic conditions. PMID:20409704

  5. Synergistic interaction between oxides of copper and iron for production of fatty alcohols from fatty acids

    DOE PAGESBeta

    Kandel, Kapil; Chaudhary, Umesh; Nelson, Nicholas C.; Slowing, Igor I.

    2015-10-08

    In this study, the selective hydrogenation of fatty acids to fatty alcohols can be achieved under moderate conditions (180 °C, 30 bar H2) by simultaneously supporting copper and iron oxides on mesoporous silica nanoparticles. The activity of the cosupported oxides is significantly higher than that of each supported metal oxide and of a physical mixture of both individually supported metal oxides. A strong interaction between both metal oxides is evident from dispersion, XRD, TPR, and acetic acid TPD measurements, which is likely responsible for the synergistic behavior of the catalyst. Copper oxide is reduced in situ to its metallic formmore » and thereby activates hydrogen.« less

  6. Synergistic interaction between oxides of copper and iron for production of fatty alcohols from fatty acids

    SciTech Connect

    Kandel, Kapil; Chaudhary, Umesh; Nelson, Nicholas C.; Slowing, Igor I.

    2015-10-08

    In this study, the selective hydrogenation of fatty acids to fatty alcohols can be achieved under moderate conditions (180 °C, 30 bar H2) by simultaneously supporting copper and iron oxides on mesoporous silica nanoparticles. The activity of the cosupported oxides is significantly higher than that of each supported metal oxide and of a physical mixture of both individually supported metal oxides. A strong interaction between both metal oxides is evident from dispersion, XRD, TPR, and acetic acid TPD measurements, which is likely responsible for the synergistic behavior of the catalyst. Copper oxide is reduced in situ to its metallic form and thereby activates hydrogen.

  7. Combined Effect of Free Nitrous Acid Pretreatment and Sodium Dodecylbenzene Sulfonate on Short-Chain Fatty Acid Production from Waste Activated Sludge

    PubMed Central

    Zhao, Jianwei; Liu, Yiwen; Ni, Bingjie; Wang, Qilin; Wang, Dongbo; Yang, Qi; Sun, Yingjie; Zeng, Guangming; Li, Xiaoming

    2016-01-01

    Free nitrous acid (FNA) serving as a pretreatment is an effective approach to accelerate sludge disintegration. Also, sodium dodecylbenzene sulfonate (SDBS), a type of surfactants, has been determined at significant levels in sewage sludge, which thereby affects the characteristics of sludge. Both FNA pretreatment and sludge SDBS levels can affect short-chain fatty acid (SCFA) generation from sludge anaerobic fermentation. To date, however, the combined effect of FNA pretreatment and SDBS presence on SCFA production as well as the corresponding mechanisms have never been documented. This work therefore aims to provide such support. Experimental results showed that the combination of FNA and SDBS treatment not only improved SCFA accumulation but also shortened the fermentation time. The maximal SCFA accumulation of 334.5 mg chemical oxygen demand (COD)/g volatile suspended solids (VSS) was achieved at 1.54 mg FNA/L treatment and 0.02 g/g dry sludge, which was respectively 1.79-fold and 1.41-fold of that from FNA treatment and sludge containing SDBS alone. Mechanism investigations revealed that the combined FNA pretreatment and SDBS accelerated solubilization, hydrolysis, and acidification steps but inhibited the methanogenesis. All those observations were in agreement with SCFA enhancement. PMID:26868898

  8. Combined Effect of Free Nitrous Acid Pretreatment and Sodium Dodecylbenzene Sulfonate on Short-Chain Fatty Acid Production from Waste Activated Sludge.

    PubMed

    Zhao, Jianwei; Liu, Yiwen; Ni, Bingjie; Wang, Qilin; Wang, Dongbo; Yang, Qi; Sun, Yingjie; Zeng, Guangming; Li, Xiaoming

    2016-01-01

    Free nitrous acid (FNA) serving as a pretreatment is an effective approach to accelerate sludge disintegration. Also, sodium dodecylbenzene sulfonate (SDBS), a type of surfactants, has been determined at significant levels in sewage sludge, which thereby affects the characteristics of sludge. Both FNA pretreatment and sludge SDBS levels can affect short-chain fatty acid (SCFA) generation from sludge anaerobic fermentat