Science.gov

Sample records for activated m2 macrophages

  1. Purinergic signaling during macrophage differentiation results in M2 alternative activated macrophages.

    PubMed

    Barberà-Cremades, Maria; Baroja-Mazo, Alberto; Pelegrín, Pablo

    2016-02-01

    Macrophages represent a highly heterogenic cell population of the innate immune system, with important roles in the initiation and resolution of the inflammatory response. Purinergic signaling regulates both M1 and M2 macrophage function at different levels by controlling the secretion of cytokines, phagocytosis, and the production of reactive oxygen species. We found that extracellular nucleotides arrest macrophage differentiation from bone marrow precursors via adenosine and P2 receptors. This results in a mature macrophage with increased expression of M2, but not M1, genes. Similar to adenosine and ATP, macrophage growth arrested with LPS treatment resulted in an increase of the M2-related marker Ym1. Recombinant Ym1 was able to affect macrophage proliferation and could, potentially, be involved in the arrest of macrophage growth during hematopoiesis. PMID:26382298

  2. Understanding the Mysterious M2 Macrophage through Activation Markers and Effector Mechanisms

    PubMed Central

    Rőszer, Tamás

    2015-01-01

    The alternatively activated or M2 macrophages are immune cells with high phenotypic heterogeneity and are governing functions at the interface of immunity, tissue homeostasis, metabolism, and endocrine signaling. Today the M2 macrophages are identified based on the expression pattern of a set of M2 markers. These markers are transmembrane glycoproteins, scavenger receptors, enzymes, growth factors, hormones, cytokines, and cytokine receptors with diverse and often yet unexplored functions. This review discusses whether these M2 markers can be reliably used to identify M2 macrophages and define their functional subdivisions. Also, it provides an update on the novel signals of the tissue environment and the neuroendocrine system which shape the M2 activation. The possible evolutionary roots of the M2 macrophage functions are also discussed. PMID:26089604

  3. Nitroxyl (HNO) reduces endothelial and monocyte activation and promotes M2 macrophage polarization.

    PubMed

    Andrews, Karen L; Sampson, Amanda K; Irvine, Jennifer C; Shihata, Waled A; Michell, Danielle L; Lumsden, Natalie G; Lim, Chloe; Huet, Olivier; Drummond, Grant R; Kemp-Harper, Barbara K; Chin-Dusting, Jaye P F

    2016-09-01

    Nitroxyl anion (HNO) donors are currently being assessed for their therapeutic utility in several cardiovascular disorders including heart failure. Here, we examine their effect on factors that precede atherosclerosis including endothelial cell and monocyte activation, leucocyte adhesion to the endothelium and macrophage polarization. Similar to the NO donor glyceryl trinitrate (GTN), the HNO donors Angeli's salt (AS) and isopropylamine NONOate (IPA/NO) decreased leucocyte adhesion to activated human umbilical vein endothelial cells (HUVECs) and mouse isolated aorta. This reduction in adhesion was accompanied by a reduction in intercellular adhesion molecule-1 (ICAM-1) and the cytokines monocyte chemoattractant protein 1 (MCP-1) and interleukin 6 (IL-6) which was inhibitor of nuclear factor κB (NFκB) α (IκBα)- and subsequently NFκB-dependent. Intriguingly, the effects of AS on leucocyte adhesion, like those on vasodilation, were found to not be susceptible to pharmacological tolerance, unlike those observed with GTN. As well, HNO reduces monocyte activation and promotes polarization of M2 macrophages. Taken together, our data demonstrate that HNO donors can reduce factors that are associated with and which precede atherosclerosis and may thus be useful therapeutically. Furthermore, since the effects of the HNO donors were not subject to tolerance, this confers an additional advantage over NO donors. PMID:27231254

  4. In vitro evaluation of inhibitory effect of nuclear factor-kappaB activity by small interfering RNA on pro-tumor characteristics of M2-like macrophages.

    PubMed

    Kono, Yusuke; Kawakami, Shigeru; Higuchi, Yuriko; Yamashita, Fumiyoshi; Hashida, Mitsuru

    2014-01-01

    Tumor-associated macrophages (TAMs) have an alternatively activated macrophage phenotype (M2) and promote cancer cell proliferation, angiogenesis and metastasis. Nuclear factor-kappaB (NF-κB) is one of the master regulators of macrophage polarization. Here, we investigated the effect of inhibition of NF-κB activity by small interfering RNA (siRNA) on the pro-tumor response of macrophages located in the tumor microenvironment in vitro. We used mouse peritoneal macrophages cultured in conditioned medium from colon-26 cancer cells as an in vitro TAM model (M2-like macrophages). Transfection of NF-κB (p50) siRNA into M2-like macrophages resulted in a significant decrease in the secretion of interleukin (IL)-10 (a T helper 2 (Th2) cytokine) and a significant increase of T helper 1 (Th1) cytokine production (IL-12, tumor necrosis factor-α, and IL-6). Furthermore, vascular endothelial growth factor production and matrix metalloproteinase-9 mRNA expression in M2-like macrophages were suppressed by inhibition of NF-κB expression with NF-κB (p50) siRNA. In addition, there was a reduction of arginase mRNA expression and increase in nitric oxide production. The cytokine secretion profiles of macrophages cultured in conditioned medium from either B16BL6 or PAN-02 cancer cells were also converted from M2 to classically activated (M1) macrophages by transfection of NF-κB (p50) siRNA. These results suggest that inhibition of NF-κB activity in M2-like macrophages alters their phenotype toward M1. PMID:24141263

  5. Serum Stability and Affinity Optimization of an M2 Macrophage-Targeting Peptide (M2pep).

    PubMed

    Ngambenjawong, Chayanon; Gustafson, Heather H; Pineda, Julio M; Kacherovsky, Nataly A; Cieslewicz, Maryelise; Pun, Suzie H

    2016-01-01

    Tumor associated macrophages (TAMs) are a major stromal component of the tumor microenvironment in several cancers. TAMs are a potential target for adjuvant cancer therapies due to their established roles in promoting proliferation of cancer cells, angiogenesis, and metastasis. We previously discovered an M2 macrophage-targeting peptide (M2pep) which was successfully used to target and deliver a pro-apoptotic KLA peptide to M2-like TAMs in a CT-26 colon carcinoma model. However, the effectiveness of in vivo TAM-targeting using M2pep is limited by its poor serum stability and low binding affinity. In this study, we synthesized M2pep derivatives with the goals of increasing serum stability and binding affinity. Serum stability evaluation of M2pepBiotin confirmed its rapid degradation attributed to exolytic cleavage from the N-terminus and endolytic cleavages at the W10/W11 and S16/K17 sites. N-terminal acetylation of M2pepBiotin protected the peptide against the exolytic degradation while W10w and K(17,18,19)k substitutions were able to effectively protect endolytic degradation at their respective cleavage sites. However, no tested amino acid changes at the W10 position resulted in both protease resistance at that site and retention of binding activity. Therefore, cyclization of M2pep was investigated. Cyclized M2pep better resisted serum degradation without compromising binding activity to M2 macrophages. During the serum stability optimization process, we also discovered that K9R and W10Y substitutions significantly enhanced binding affinity of M2pep. In an in vitro binding study of different M2pep analogs pre-incubated in mouse serum, cyclic M2pep with K9R and W10Y modifications (cyclic M2pep(RY)) retained the highest binding activity to M2 macrophages over time due to its improved serum stability. Finally, we evaluated the in vivo accumulation of sulfo-Cy5-labeled M2pep and cyclic M2pep(RY) in both the CT-26 and 4T1 breast carcinoma models. Cyclic M2pep

  6. Serum Stability and Affinity Optimization of an M2 Macrophage-Targeting Peptide (M2pep)

    PubMed Central

    Ngambenjawong, Chayanon; Gustafson, Heather H.; Pineda, Julio M.; Kacherovsky, Nataly A.; Cieslewicz, Maryelise; Pun, Suzie H.

    2016-01-01

    Tumor associated macrophages (TAMs) are a major stromal component of the tumor microenvironment in several cancers. TAMs are a potential target for adjuvant cancer therapies due to their established roles in promoting proliferation of cancer cells, angiogenesis, and metastasis. We previously discovered an M2 macrophage-targeting peptide (M2pep) which was successfully used to target and deliver a pro-apoptotic KLA peptide to M2-like TAMs in a CT-26 colon carcinoma model. However, the effectiveness of in vivo TAM-targeting using M2pep is limited by its poor serum stability and low binding affinity. In this study, we synthesized M2pep derivatives with the goals of increasing serum stability and binding affinity. Serum stability evaluation of M2pepBiotin confirmed its rapid degradation attributed to exolytic cleavage from the N-terminus and endolytic cleavages at the W10/W11 and S16/K17 sites. N-terminal acetylation of M2pepBiotin protected the peptide against the exolytic degradation while W10w and K(17,18,19)k substitutions were able to effectively protect endolytic degradation at their respective cleavage sites. However, no tested amino acid changes at the W10 position resulted in both protease resistance at that site and retention of binding activity. Therefore, cyclization of M2pep was investigated. Cyclized M2pep better resisted serum degradation without compromising binding activity to M2 macrophages. During the serum stability optimization process, we also discovered that K9R and W10Y substitutions significantly enhanced binding affinity of M2pep. In an in vitro binding study of different M2pep analogs pre-incubated in mouse serum, cyclic M2pep with K9R and W10Y modifications (cyclic M2pep(RY)) retained the highest binding activity to M2 macrophages over time due to its improved serum stability. Finally, we evaluated the in vivo accumulation of sulfo-Cy5-labeled M2pep and cyclic M2pep(RY) in both the CT-26 and 4T1 breast carcinoma models. Cyclic M2pep

  7. Microbial metabolite butyrate facilitates M2 macrophage polarization and function

    PubMed Central

    Ji, Jian; Shu, Dingming; Zheng, Mingzhu; Wang, Jie; Luo, Chenglong; Wang, Yan; Guo, Fuyou; Zou, Xian; Lv, Xiaohui; Li, Ying; Liu, Tianfei; Qu, Hao

    2016-01-01

    Metabolites from intestinal microbes modulate the mucosal immune system by regulating the polarization and expansion of T cells. Whether the microbial metabolites influence macrophage polarization, however, is poorly understood. Here, we show that the large bowel microbial fermentation product, butyrate, facilitates M2 macrophage polarization, in vitro and in vivo. The supernatant from butyrate-treated M2 macrophage increased the migration and enhanced the wound closure rate of MLE-12 cells. Butyrate attenuated intestinal inflammation in mice with dextran sulfate sodium (DSS)-induced colitis, with a significant increase in colonic expression of the M2 macrophage-associated protein, Arg1. M2 macrophage treated with butyrate, had increased activation of the H3K9/STAT6 signaling pathway, suggesting a mechanism for butyrate facilitated M2 macrophage polarization. Collectively, our study indicated that commensal microbe-derived butyrate is a novel activator of STAT6-mediated transcription through H3K9 acetylation driving M2 macrophage polarization, and delineated new insights into the immune interplay underlying inflammatory bowel disease. PMID:27094081

  8. Microbial metabolite butyrate facilitates M2 macrophage polarization and function.

    PubMed

    Ji, Jian; Shu, Dingming; Zheng, Mingzhu; Wang, Jie; Luo, Chenglong; Wang, Yan; Guo, Fuyou; Zou, Xian; Lv, Xiaohui; Li, Ying; Liu, Tianfei; Qu, Hao

    2016-01-01

    Metabolites from intestinal microbes modulate the mucosal immune system by regulating the polarization and expansion of T cells. Whether the microbial metabolites influence macrophage polarization, however, is poorly understood. Here, we show that the large bowel microbial fermentation product, butyrate, facilitates M2 macrophage polarization, in vitro and in vivo. The supernatant from butyrate-treated M2 macrophage increased the migration and enhanced the wound closure rate of MLE-12 cells. Butyrate attenuated intestinal inflammation in mice with dextran sulfate sodium (DSS)-induced colitis, with a significant increase in colonic expression of the M2 macrophage-associated protein, Arg1. M2 macrophage treated with butyrate, had increased activation of the H3K9/STAT6 signaling pathway, suggesting a mechanism for butyrate facilitated M2 macrophage polarization. Collectively, our study indicated that commensal microbe-derived butyrate is a novel activator of STAT6-mediated transcription through H3K9 acetylation driving M2 macrophage polarization, and delineated new insights into the immune interplay underlying inflammatory bowel disease. PMID:27094081

  9. Pyruvate kinase M2 regulates Hif-1α activity and IL-1β induction and is a critical determinant of the warburg effect in LPS-activated macrophages.

    PubMed

    Palsson-McDermott, Eva M; Curtis, Anne M; Goel, Gautam; Lauterbach, Mario A R; Sheedy, Frederick J; Gleeson, Laura E; van den Bosch, Mirjam W M; Quinn, Susan R; Domingo-Fernandez, Raquel; Johnston, Daniel G W; Jiang, Jian-Kang; Jiang, Jain-Kang; Israelsen, William J; Keane, Joseph; Thomas, Craig; Clish, Clary; Vander Heiden, Matthew; Vanden Heiden, Matthew; Xavier, Ramnik J; O'Neill, Luke A J

    2015-01-01

    Macrophages activated by the TLR4 agonist LPS undergo dramatic changes in their metabolic activity. We here show that LPS induces expression of the key metabolic regulator Pyruvate Kinase M2 (PKM2). Activation of PKM2 using two well-characterized small molecules, DASA-58 and TEPP-46, inhibited LPS-induced Hif-1α and IL-1β, as well as the expression of a range of other Hif-1α-dependent genes. Activation of PKM2 attenuated an LPS-induced proinflammatory M1 macrophage phenotype while promoting traits typical of an M2 macrophage. We show that LPS-induced PKM2 enters into a complex with Hif-1α, which can directly bind to the IL-1β promoter, an event that is inhibited by activation of PKM2. Both compounds inhibited LPS-induced glycolytic reprogramming and succinate production. Finally, activation of PKM2 by TEPP-46 in vivo inhibited LPS and Salmonella typhimurium-induced IL-1β production, while boosting production of IL-10. PKM2 is therefore a critical determinant of macrophage activation by LPS, promoting the inflammatory response. PMID:25565206

  10. Tumor hypoxia enhances non-small cell lung cancer metastasis by selectively promoting macrophage M2 polarization through the activation of ERK signaling

    PubMed Central

    Ma, Shenglin; Dong, Rong; Meng, Wen; Ying, Meidan; Weng, Qinjie; Chen, Zibo; Ma, Jian; Fang, Qingxia; He, Qiaojun; Yang, Bo

    2014-01-01

    Hypoxia is a common phenomenon occurring in the majority of human tumors and has been proved to play an important role in tumor progression. However, it remains unclear that whether the action of hypoxia on macrophages is a main driving force of hypoxia-mediated aggressive tumor behaviors. In the present study, we observe that high density of M2 macrophages is associated with metastasis in adenocarcinoma Non-Small Cell Lung Cancer (NSCLC) patients. By applying the in vivo hypoxia model, the results suggest that intermittent hypoxia significantly promotes the metastasis of Lewis lung carcinoma (LLC), accompanied with more CD209+ macrophages infiltrated in primary tumor tissue. More intriguingly, by skewing macrophages polarization away from the M1- to a tumor-promoting M2-like phenotype, hypoxia and IL-6 cooperate to enhance the LLC metastasis both in vitro and in vivo. In addition, we also demonstrate that skewing of macrophage M2 polarization by hypoxia relies substantially on activation of ERK signaling. Collectively, these observations unveil a novel tumor hypoxia concept involving the macrophage phenotype shift and provide direct evidence for lung cancer intervention through modulating the phenotype of macrophages. PMID:25313135

  11. Higenamine promotes M2 macrophage activation and reduces Hmgb1 production through HO-1 induction in a murine model of spinal cord injury.

    PubMed

    Zhang, Zhenyu; Li, Mingchao; Wang, Yan; Wu, Jian; Li, Jiaping

    2014-12-01

    Spinal cord injury (SCI) is considered to be primarily associated with loss of motor function and leads to the activation of diverse cellular mechanisms in the central nervous system to attempt to repair the damaged spinal cord tissue. Higenamine (HG) (1-[(4-hydroxyphenyl) methyl]-1,2,3,4-tetrahydroisoquinoline-6,7-diol), an active ingredient of Aconiti Lateralis Radix Praeparata, has been traditionally used as a heart stimulant and anti-inflammatory agent in oriental countries. However, the function and related mechanism of HG on SCI have never been investigated. In our current study, HG treatment displayed increased myelin sparring and enhanced spinal cord repair process. The numbers of CD4(+) T cells, CD8(+) T cells, Ly6G(+) neutrophils and CD11b(+) macrophages were all significantly lower in the HG-treated group than that in the control group after SCI. HG administration increased the expression of IL-4 and IL-10 and promoted M2 macrophage activation. Significantly reduced Hmgb1 expression was also observed in HG-treated mice with SCI. Furthermore, HG treatment promoted HO-1 production. The increased number of M2 macrophages, decreased expression of Hmgb1 and promoted locomotor recovery induced by HG were all reversed with additional HO-1 inhibitor treatment. In conclusion, HG promotes M2 macrophage activation and reduces Hmgb1 expression dependent on HO-1 induction and then promotes locomotor function after SCI. PMID:25445960

  12. The human tissue-biomaterial interface: a role for PPARγ-dependent glucocorticoid receptor activation in regulating the CD163+ M2 macrophage phenotype.

    PubMed

    Bullers, Samuel J; Baker, Simon C; Ingham, Eileen; Southgate, Jennifer

    2014-09-01

    In vivo studies of implanted acellular biological scaffolds in experimental animals have shown constructive remodeling mediated by anti-inflammatory macrophages. Little is known about the human macrophage response to such biomaterials, or the nature of the signaling mechanisms that govern the macrophage phenotype in this environment. The cellular events at the interface of a tissue and implanted decellularized biomaterial were examined by establishing a novel ex vivo tissue culture model in which surgically excised human urinary tract tissue was combined with porcine acellular bladder matrix (PABM). Evaluation of the tissue-biomaterial interface showed a time-dependent infiltration of the biomaterial by CD68(+) CD80(-) macrophages. The migration of CD68(+) cells from the tissue to the interface was accompanied by maturation to a CD163(hi) phenotype, suggesting that factor(s) associated with the biomaterial or the wound edge was/were responsible for the active recruitment and polarization of local macrophages. Glucocorticoid receptor (GR) and peroxisome proliferator activated receptor gamma (PPARγ) signaling was investigated as candidate pathways for integrating inflammatory responses; both showed intense nuclear labeling in interface macrophages. GR and PPARγ activation polarized peripheral blood-derived macrophages from a default M1 (CD80(+)) toward an M2 (CD163(+)) phenotype, but PPARγ signaling predominated, as its antagonism blocked any GR-mediated effect. Seeding on PABM was effective at polarizing peripheral blood-derived macrophages from a default CD80(+) phenotype on glass to a CD80(-) phenotype, with intense nuclear localization of PPARγ. These results endorse in vivo observations that the infiltration of decellularized biological scaffolds, exemplified here by PABM, is pioneered by macrophages. Thus, it appears that natural factors present in PABM are involved in the active recruitment and polarization of macrophages to a CD163(+) phenotype, with

  13. The Human Tissue–Biomaterial Interface: A Role for PPARγ-Dependent Glucocorticoid Receptor Activation in Regulating the CD163+ M2 Macrophage Phenotype

    PubMed Central

    Bullers, Samuel J.; Baker, Simon C.; Ingham, Eileen

    2014-01-01

    In vivo studies of implanted acellular biological scaffolds in experimental animals have shown constructive remodeling mediated by anti-inflammatory macrophages. Little is known about the human macrophage response to such biomaterials, or the nature of the signaling mechanisms that govern the macrophage phenotype in this environment. The cellular events at the interface of a tissue and implanted decellularized biomaterial were examined by establishing a novel ex vivo tissue culture model in which surgically excised human urinary tract tissue was combined with porcine acellular bladder matrix (PABM). Evaluation of the tissue–biomaterial interface showed a time-dependent infiltration of the biomaterial by CD68+ CD80− macrophages. The migration of CD68+ cells from the tissue to the interface was accompanied by maturation to a CD163hi phenotype, suggesting that factor(s) associated with the biomaterial or the wound edge was/were responsible for the active recruitment and polarization of local macrophages. Glucocorticoid receptor (GR) and peroxisome proliferator activated receptor gamma (PPARγ) signaling was investigated as candidate pathways for integrating inflammatory responses; both showed intense nuclear labeling in interface macrophages. GR and PPARγ activation polarized peripheral blood-derived macrophages from a default M1 (CD80+) toward an M2 (CD163+) phenotype, but PPARγ signaling predominated, as its antagonism blocked any GR-mediated effect. Seeding on PABM was effective at polarizing peripheral blood-derived macrophages from a default CD80+ phenotype on glass to a CD80− phenotype, with intense nuclear localization of PPARγ. These results endorse in vivo observations that the infiltration of decellularized biological scaffolds, exemplified here by PABM, is pioneered by macrophages. Thus, it appears that natural factors present in PABM are involved in the active recruitment and polarization of macrophages to a CD163+ phenotype, with activation of

  14. Extensive macrophage accumulation in young and old Niemann-Pick C1 model mice involves the alternative, M2, activation pathway and inhibition of macrophage apoptosis.

    PubMed

    Deutsch, Gail; Muralidhar, Akshay; Le, Ellen; Borbon, Ivan A; Erickson, Robert P

    2016-03-10

    We have studied the pathophysiology of lung disease which occurs in two mouse models of Niemann-Pick C1 disease. We utilized Npc1(-/-) mice transgenic for normal gene expression in glia or neurons and glia at ages several fold the usual and a mouse model of the juvenile form of NPC1, a point mutation, at one age to confirm some findings. Lung weights, as per cent of body weight, increase much more than liver and spleen weights. Although pulmonary function parameters only vary for hysteresis between young and older Npc1(-/-) mice, they are markedly different than those found in normal control mice. Cholesterol accumulation continued in the older mice but sphingosine-1-phosphate was not increased. Bronchoalveolar lavage (BAL) showed a massive increase (26×) in the number of macrophages. Histologic examination from the older, transgenic Npc1(-/-) mice showed small foci of alveolar proteinosis and evidence of hemorrhage, as well as dense macrophage accumulation. A large subset of macrophages was immunopositive for Fizz1 or arginase-1, markers of the alternative activation pathway, while no Fizz1 or arginase-1 positive macrophages were found in wild-type mice. The percentage of marker positive macrophages was relatively stable at 5-10% at various ages and within the 2 transgenic models. Phosphohistone H3 and Ki67 showed low levels of proliferation of these macrophages. Apoptosis was prominent within lung capillary endothelial cells, but limited within macrophages. Thus, activation of the alternative pathway is involved in Niemann-Pick C1 associated pulmonary macrophage accumulation, with low proliferation of these cells balanced by low levels of apoptosis. PMID:26707209

  15. Interleukin-10 conjugated electrospun polycaprolactone (PCL) nanofibre scaffolds for promoting alternatively activated (M2) macrophages around the peripheral nerve in vivo.

    PubMed

    Potas, Jason R; Haque, Farhia; Maclean, Francesca L; Nisbet, David R

    2015-05-01

    Macrophages play a key role in tissue regeneration following peripheral nerve injury by preparing the surrounding parenchyma for regeneration, however, they can be damaging if the response is excessive. Interleukin 10 (IL-10) is a cytokine that promotes macrophages toward an anti-inflammatory/wound healing state (M2 phenotype). The bioactive half-life of IL-10 is dependent on the cellular microenvironment and ranges from minutes to hours in vivo. Our objective was to extend the in vivo bioavailability and bioactivity of IL-10 by attaching the protein onto nanofibrous scaffolds and demonstrating increased expression levels of M2 macrophages when placed around healthy intact peripheral nerves. IL-10 was adsorbed and covalently bound to electrospun poly(ε-caprolactone) (PCL) nanofibrous scaffolds. In vivo bioavailability and bioactivity of IL-10 was confirmed by wrapping IL-10 conjugated nanofibres around the sciatic nerves of Wistar rats and quantifying M2 macrophages immunohistochemically double labelled with ED1 and either arginase 1 or CD206. IL-10 remained immobilised to PCL scaffolds for more than 120 days when stored in phosphate buffered saline at room temperature and for up to 14d ays when implanted around the sciatic nerve. IL-10 conjugated nanofibres successfully induced macrophage polarisation towards the M2 activated state within the scaffold material as well as the adjacent tissue surrounding the nerve. PCL biofunctionalised nanofibres are useful for manipulating the cellular microenvironment. Materials such as these could potentially lead to new therapeutic strategies for nervous tissue injuries as well as provide novel investigative tools for biological research. PMID:25837415

  16. Cervical Cancer Cell Supernatants Induce a Phenotypic Switch from U937-Derived Macrophage-Activated M1 State into M2-Like Suppressor Phenotype with Change in Toll-Like Receptor Profile

    PubMed Central

    Sánchez-Reyes, Karina; Bravo-Cuellar, Alejandro; Hernández-Flores, Georgina; Lerma-Díaz, José Manuel; Jave-Suárez, Luis Felipe; Gómez-Lomelí, Paulina; de Celis, Ruth; Aguilar-Lemarroy, Adriana; Domínguez-Rodríguez, Jorge Ramiro; Ortiz-Lazareno, Pablo Cesar

    2014-01-01

    Cervical cancer (CC) is the second most common cancer among women worldwide. Infection with human papillomavirus (HPV) is the main risk factor for developing CC. Macrophages are important immune effector cells; they can be differentiated into two phenotypes, identified as M1 (classically activated) and M2 (alternatively activated). Macrophage polarization exerts profound effects on the Toll-like receptor (TLR) profile. In this study, we evaluated whether the supernatant of human CC cells HeLa, SiHa, and C-33A induces a shift of M1 macrophage toward M2 macrophage in U937-derived macrophages. Results. The results showed that soluble factors secreted by CC cells induce a change in the immunophenotype of macrophages from macrophage M1 into macrophage M2. U937-derived macrophages M1 released proinflammatory cytokines and nitric oxide; however, when these cells were treated with the supernatant of CC cell lines, we observed a turnover of M1 toward M2. These cells increased CD163 and IL-10 expression. The expression of TLR-3, -7, and -9 is increased when the macrophages were treated with the supernatant of CC cells. Conclusions. Our result strongly suggests that CC cells may, through the secretion of soluble factors, induce a change of immunophenotype M1 into M2 macrophages. PMID:25309919

  17. Novel Markers to Delineate Murine M1 and M2 Macrophages

    PubMed Central

    Jablonski, Kyle A.; Amici, Stephanie A.; Webb, Lindsay M.; Ruiz-Rosado, Juan de Dios; Popovich, Phillip G.; Partida-Sanchez, Santiago; Guerau-de-Arellano, Mireia

    2015-01-01

    Classically (M1) and alternatively activated (M2) macrophages exhibit distinct phenotypes and functions. It has been difficult to dissect macrophage phenotypes in vivo, where a spectrum of macrophage phenotypes exists, and also in vitro, where low or non-selective M2 marker protein expression is observed. To provide a foundation for the complexity of in vivo macrophage phenotypes, we performed a comprehensive analysis of the transcriptional signature of murine M0, M1 and M2 macrophages and identified genes common or exclusive to either subset. We validated by real-time PCR an M1-exclusive pattern of expression for CD38, G-protein coupled receptor 18 (Gpr18) and Formyl peptide receptor 2 (Fpr2) whereas Early growth response protein 2 (Egr2) and c-Myc were M2-exclusive. We further confirmed these data by flow cytometry and show that M1 and M2 macrophages can be distinguished by their relative expression of CD38 and Egr2. Egr2 labeled more M2 macrophages (~70%) than the canonical M2 macrophage marker Arginase-1, which labels 24% of M2 macrophages. Conversely, CD38 labeled most (71%) in vitro M1 macrophages. In vivo, a similar CD38+ population greatly increased after LPS exposure. Overall, this work defines exclusive and common M1 and M2 signatures and provides novel and improved tools to distinguish M1 and M2 murine macrophages. PMID:26699615

  18. Cyclooxygenase-2 inhibition attenuates hypoxic cancer cells induced m2-polarization of macrophages.

    PubMed

    Dubey, P; Shrivastava, R; Tripathi, C; Jain, N K; Tewari, B N; Lone, M-U-D; Baghel, K S; Kumar, V; Misra, S; Bhadauria, S; Bhatt, M L B

    2014-01-01

    Tumor-associated macrophages (TAMs), represent a major subpopulation of tumor infiltrating immune cells. These alternatively activated M2-polarized macrophages are well known for their pro-tumor functions. Owing to their established role in potentiating tumor-neovasculogenesis and metastasis, TAMs have emerged as promising target for anti-cancer immunotherapy. One of the key TAMs related phenomenon that is amenable to therapeutic intervention is their phenotype switching into alternatively activated M2-polarized macrophages. Hindering macrophage polarization towards a pro-tumor M2 phenotype, or better still reprogramming the M2 like TAMs towards M1 subtype is being considered a beneficial anti-cancer strategy. Hypoxic tumor milieu has been proposed as one of the most plausible factor governing M2-polarization of macrophages. We recently demonstrated that hypoxic tumor cells imparted a pro—angiogenic M2 skewed phenotype to macrophages. Furthermore, sizeable body of data indicates for participation of cyclooxygenase-2 (COX-2) in macrophage polarization. Concordantly, inhibition of COX-2 is associated with impaired macrophage polarization. Prompted by this in the current study we decided to explore if inhibition of COX-2 activity via chemical inhibitors may prevent hypoxic cancer cell induced M2-polarization of macrophages. We observed that treatment with Flunixin meglumine, an established preferential inhibitor of COX-2 activity markedly inhibited hypoxic cancer cell induced of M2-polarization of macrophages thereby indicating for usage of COX-2 inhibition as possible anti-cancer treatment modality. PMID:25210855

  19. M2 polarization enhances silica nanoparticle uptake by macrophages.

    PubMed

    Hoppstädter, Jessica; Seif, Michelle; Dembek, Anna; Cavelius, Christian; Huwer, Hanno; Kraegeloh, Annette; Kiemer, Alexandra K

    2015-01-01

    While silica nanoparticles have enabled numerous industrial and medical applications, their toxicological safety requires further evaluation. Macrophages are the major cell population responsible for nanoparticle clearance in vivo. The prevailing macrophage phenotype largely depends on the local immune status of the host. Whereas M1-polarized macrophages are considered as pro-inflammatory macrophages involved in host defense, M2 macrophages exhibit anti-inflammatory and wound-healing properties, but also promote tumor growth. We employed different models of M1 and M2 polarization: granulocyte-macrophage colony-stimulating factor/lipopolysaccharide (LPS)/interferon (IFN)-γ was used to generate primary human M1 cells and macrophage colony-stimulating factor (M-CSF)/interleukin (IL)-10 to differentiate M2 monocyte-derived macrophages (MDM). PMA-differentiated THP-1 cells were polarized towards an M1 type by LPS/IFN-γ and towards M2 by IL-10. Uptake of fluorescent silica nanoparticles (Ø26 and 41 nm) and microparticles (Ø1.75 μm) was quantified. At the concentration used (50 μg/ml), silica nanoparticles did not influence cell viability as assessed by MTT assay. Nanoparticle uptake was enhanced in M2-polarized primary human MDM compared with M1 cells, as shown by flow cytometric and microscopic approaches. In contrast, the uptake of microparticles did not differ between M1 and M2 phenotypes. M2 polarization was also associated with increased nanoparticle uptake in the macrophage-like THP-1 cell line. In accordance, in vivo polarized M2-like primary human tumor-associated macrophages obtained from lung tumors took up more nanoparticles than M1-like alveolar macrophages isolated from the surrounding lung tissue. In summary, our data indicate that the M2 polarization of macrophages promotes nanoparticle internalization. Therefore, the phenotypical differences between macrophage subsets should be taken into consideration in future investigations on nanosafety, but

  20. M2 polarization enhances silica nanoparticle uptake by macrophages

    PubMed Central

    Hoppstädter, Jessica; Seif, Michelle; Dembek, Anna; Cavelius, Christian; Huwer, Hanno; Kraegeloh, Annette; Kiemer, Alexandra K.

    2015-01-01

    While silica nanoparticles have enabled numerous industrial and medical applications, their toxicological safety requires further evaluation. Macrophages are the major cell population responsible for nanoparticle clearance in vivo. The prevailing macrophage phenotype largely depends on the local immune status of the host. Whereas M1-polarized macrophages are considered as pro-inflammatory macrophages involved in host defense, M2 macrophages exhibit anti-inflammatory and wound-healing properties, but also promote tumor growth. We employed different models of M1 and M2 polarization: granulocyte-macrophage colony-stimulating factor/lipopolysaccharide (LPS)/interferon (IFN)-γ was used to generate primary human M1 cells and macrophage colony-stimulating factor (M-CSF)/interleukin (IL)-10 to differentiate M2 monocyte-derived macrophages (MDM). PMA-differentiated THP-1 cells were polarized towards an M1 type by LPS/IFN-γ and towards M2 by IL-10. Uptake of fluorescent silica nanoparticles (Ø26 and 41 nm) and microparticles (Ø1.75 μm) was quantified. At the concentration used (50 μg/ml), silica nanoparticles did not influence cell viability as assessed by MTT assay. Nanoparticle uptake was enhanced in M2-polarized primary human MDM compared with M1 cells, as shown by flow cytometric and microscopic approaches. In contrast, the uptake of microparticles did not differ between M1 and M2 phenotypes. M2 polarization was also associated with increased nanoparticle uptake in the macrophage-like THP-1 cell line. In accordance, in vivo polarized M2-like primary human tumor-associated macrophages obtained from lung tumors took up more nanoparticles than M1-like alveolar macrophages isolated from the surrounding lung tissue. In summary, our data indicate that the M2 polarization of macrophages promotes nanoparticle internalization. Therefore, the phenotypical differences between macrophage subsets should be taken into consideration in future investigations on nanosafety, but

  1. Unprimed, M1 and M2 Macrophages Differentially Interact with Porphyromonas gingivalis

    PubMed Central

    Lenzo, Jason C.; Fong, Shao B.; Reynolds, Eric C.

    2016-01-01

    Porphyromonas gingivalis is a keystone pathogen in the development of chronic periodontitis. Tissue macrophages are amongst the first immune cells to respond to bacteria and depending on the cytokine profile at the infection site, macrophages are primed to react to infection in different ways. Priming of naive macrophages with IFN-γ produces a classical pro-inflammatory, antibacterial M1 macrophage after TLR ligation, whereas priming with IL-4 induces an anti-inflammatory tissue-repair M2 phenotype. Previous work has shown that M1 are preferentially generated in gingival tissue following infection with P. gingivalis. However, few studies have investigated the interactions of macrophage subsets with P. gingivalis cells. The aim of this study was to determine the ability of naive, M1 and M2 macrophages to phagocytose P. gingivalis and investigate how this interaction affects both the bacterial cell and the macrophage. M1 and M2 macrophages were both found to have enhanced phagocytic capacity compared with that of naive macrophages, however only the naive and M1 macrophages were able to produce a respiratory burst in order to clear the bacteria from the phagosome. P. gingivalis was found to persist in naive and M2, but not M1 macrophages for 24 hours. Phagocytosis of P. gingivalis also induced high levels of TNF-α, IL-12 and iNOS in M1 macrophages, but not in naive or M2 macrophages. Furthermore, infection of macrophages with P. gingivalis at high bacteria to macrophage ratios, while inducing an inflammatory response, was also found to be deleterious to macrophage longevity, with high levels of apoptotic cell death found in macrophages after infection. The activation of M1 macrophages observed in this study may contribute to the initiation and maintenance of a pro-inflammatory state during chronic periodontitis. PMID:27383471

  2. Metformin prevents cancer metastasis by inhibiting M2-like polarization of tumor associated macrophages

    PubMed Central

    Ding, Ling; Liang, Guikai; Yao, Zhangting; Zhang, Jieqiong; Liu, Ruiyang; Chen, Huihui; Zhou, Yulu; Wu, Honghai; Yang, Bo; He, Qiaojun

    2015-01-01

    Accumulated evidence suggests that M2-like polarized tumor associated macrophages (TAMs) plays an important role in cancer progression and metastasis, establishing TAMs, especially M2-like TAMs as an appealing target for therapy intervention. Here we found that metformin significantly suppressed IL-13 induced M2-like polarization of macrophages, as illustrated by reduced expression of CD206, down-regulation of M2 marker mRNAs, and inhibition of M2-like macrophages promoted migration of cancer cells and endothelial cells. Metformin triggered AMPKα1 activation in macrophage and silencing of AMPKα1 partially abrogated the inhibitory effect of metformin in IL-13 induced M2-like polarization. Administration of AICAR, another activator of AMPK, also blocked the M2-like polarization of macrophages. Metformin greatly reduced the number of metastases of Lewis lung cancer without affecting tumor growth. In tumor tissues, the percentage of M2-like macrophage was decreased and the area of pericyte-coated vessels was increased. Further, the anti-metastatic effect of metformin was abolished when the animals were treated with macrophages eliminating agent clodronate liposome. These findings suggest that metformin is able to block the M2-like polarization of macrophages partially through AMPKα1, which plays an important role in metformin inhibited metastasis of Lewis lung cancer. PMID:26497364

  3. β-Adrenergic-stimulated macrophages: Comprehensive localization in the M1-M2 spectrum.

    PubMed

    Lamkin, Donald M; Ho, Hsin-Yun; Ong, Tiffany H; Kawanishi, Carly K; Stoffers, Victoria L; Ahlawat, Nivedita; Ma, Jeffrey C Y; Arevalo, Jesusa M G; Cole, Steve W; Sloan, Erica K

    2016-10-01

    β-Adrenergic signaling can regulate macrophage involvement in several diseases and often produces anti-inflammatory properties in macrophages, which are similar to M2 properties in a dichotomous M1 vs. M2 macrophage taxonomy. However, it is not clear that β-adrenergic-stimulated macrophages may be classified strictly as M2. In this in vitro study, we utilized recently published criteria and transcriptome-wide bioinformatics methods to map the relative polarity of murine β-adrenergic-stimulated macrophages within a wider M1-M2 spectrum. Results show that β-adrenergic-stimulated macrophages did not fit entirely into any one pre-defined category of the M1-M2 spectrum but did express genes that are representative of some M2 side categories. Moreover, transcript origin analysis of genome-wide transcriptional profiles located β-adrenergic-stimulated macrophages firmly on the M2 side of the M1-M2 spectrum and found active suppression of M1 side gene transcripts. The signal transduction pathways involved were mapped through blocking experiments and bioinformatics analysis of transcription factor binding motifs. M2-promoting effects were mediated specifically through β2-adrenergic receptors and were associated with CREB, C/EBPβ, and ATF transcription factor pathways but not with established M1-M2 STAT pathways. Thus, β-adrenergic-signaling induces a macrophage transcriptome that locates on the M2 side of the M1-M2 spectrum but likely accomplishes this effect through a signaling pathway that is atypical for M2-spectrum macrophages. PMID:27485040

  4. Ovarian cancer stem-like cells elicit the polarization of M2 macrophages.

    PubMed

    Zhang, Qing; Cai, Da-Jun; Li, Bin

    2015-06-01

    Ovarian cancer is a life‑threatening disease in females worldwide. The polarization of macrophages is crucial in oncogenesis and the development of ovarian cancer. Increasing evidence has supported the correlation between ovarian cancer stem‑like cells (OCSCs) and macrophages, however, whether OCSCs can affect the polarization of macrophages and the underlying mechanisms involved remain to be elucidated. To examine the interplay between OCSCs and macrophages, a co‑culture system was used to detect the effect of OCSCs on macrophage polarization. The expression of cluster of differentiation 206+ and the secretion of interleukin‑10 were significantly increased and the production of tumor necrosis factor‑α was suppressed, confirming macrophage polarization to M2 macrophages. Further investigation of the macrophages in a Transwell culture system with OCSCs revealed polarization to the M2 macrophages to a similar extent, indicating that the cytokines of the OCSCs, rather than direct cell‑cell contact, are important for the polarization of M2 macrophages. Furthermore, the expression levels of chemokine (C‑C motif) ligand (CCL)2, cyclooxygenase (COX)‑2 and prostaglandin E2 (PGE2) were increased in the Transwell system and the inhibition of COX‑2, but not CCL2, significantly decreased the polarization of the M2 macrophages. In addition, mechanistic analysis revealed the importance of the COX‑2/PGE2 pathway in OCSCs to activate Janus kinase (JAK) signaling in macrophages to elicit M2 polarization. These findings provided the first evidence, to the best of our knowledge, that OCSCs are capable of altering macrophages into the M2 phenotype via the overexpression of COX‑2 and the increased production of PGE2 cytokines and that the JAK signaling pathway in macrophages is important for this alteration. The present study provided evidence supporting possible molecular targets for cancer treatment. PMID:25672286

  5. Anatomy of a Discovery: M1 and M2 Macrophages

    PubMed Central

    Mills, Charles Dudley

    2015-01-01

    M1 and M2 macrophage-type responses kill or repair in vivo. The unique ability of macrophages to make these polar opposite type of responses provides primary host protection and maintains tissue homeostasis throughout the animal kingdom. In humans and other higher animals, M1 and M2-type macrophage responses also initiate and direct T cells/adaptive immunity to provide additional protection such as Th1 (cytotoxic) or Th2 (antibody-mediated) type responses. Hence, macrophages were renamed M1 and M2 to indicate the central role of macrophages/innate immunity in immune systems. These findings indicate that the long held notion that adaptive immunity controls innate immunity was backward: a sea change in understanding how immune responses occur. The clinical impact of M1/kill and M2/repair responses is immense playing pivotal roles in curing (or causing) many diseases including infections, cancer, autoimmunity, and atherosclerosis. How M1/M2 came to be is an interesting story that, like life, involved Direction, Determination, Discouragement, and Discovery. PMID:25999950

  6. Much More than M1 and M2 Macrophages, There are also CD169+ and TCR+ Macrophages

    PubMed Central

    Chávez-Galán, Leslie; Olleros, Maria L.; Vesin, Dominique; Garcia, Irene

    2015-01-01

    Monocytes are considered to be precursor cells of the mononuclear phagocytic system, and macrophages are one of the leading members of this cellular system. Macrophages play highly diverse roles in maintaining an organism’s integrity by either directly participating in pathogen elimination or repairing tissue under sterile inflammatory conditions. There are different subpopulations of macrophages and each one has its own characteristics and functions. In this review, we summarize present knowledge on the polarization of macrophages that allows the generation of subpopulations called classically activated macrophages or M1 and alternative activated macrophages or M2. Furthermore, there are macrophages that their origin and characterization still remain unclear but have been involved as main players in some human pathologies. Thus, we also review three other categories of macrophages: tumor-associated macrophages, CD169+ macrophages, and the recently named TCR+ macrophages. Based on the literature, we provide information on the molecular characterization of these macrophage subpopulations and their specific involvement in several human pathologies such as cancer, infectious diseases, obesity, and asthma. The refined characterization of the macrophage subpopulations can be useful in designing new strategies, supplementing those already established for the treatment of diseases using macrophages as a therapeutic target. PMID:26074923

  7. Molecular Mechanisms That Influence the Macrophage M1–M2 Polarization Balance

    PubMed Central

    Wang, Nan; Liang, Hongwei; Zen, Ke

    2014-01-01

    As an essential component of innate immunity, macrophages have multiple functions in both inhibiting or promoting cell proliferation and tissue repair. Diversity and plasticity are hallmarks of macrophages. Classical M1 and alternative M2 activation of macrophages, mirroring the Th1–Th2 polarization of T cells, represent two extremes of a dynamic changing state of macrophage activation. M1-type macrophages release cytokines that inhibit the proliferation of surrounding cells and damage contiguous tissue, and M2-type macrophages release cytokines that promote the proliferation of contiguous cells and tissue repair. M1–M2 polarization of macrophage is a tightly controlled process entailing a set of signaling pathways, transcriptional and posttranscriptional regulatory networks. An imbalance of macrophage M1–M2 polarization is often associated with various diseases or inflammatory conditions. Therefore, identification of the molecules associated with the dynamic changes of macrophage polarization and understanding their interactions is crucial for elucidating the molecular basis of disease progression and designing novel macrophage-mediated therapeutic strategies. PMID:25506346

  8. Perivascular M2 Macrophages Stimulate Tumor Relapse after Chemotherapy

    PubMed Central

    Hughes, Russell; Qian, Bin-Zhi; Rowan, Charlotte; Muthana, Munitta; Keklikoglou, Ioanna; Olson, Oakley C.; Tazzyman, Simon; Danson, Sarah; Addison, Christina; Clemons, Mark; Gonzalez-Angulo, Ana Maria; Joyce, Johanna A.; De Palma, Michele; Pollard, Jeffrey W.; Lewis, Claire E.

    2016-01-01

    Tumor relapse after chemotherapy-induced regression is a major clinical problem, because it often involves inoperable metastatic disease. Tumor-associated macrophages (TAM) are known to limit the cytotoxic effects of chemotherapy in preclinical models of cancer. Here, we report that an alternatively activated (M2) subpopulation of TAMs (MRC1+TIE2HiCXCR4Hi) accumulate around blood vessels in tumors after chemotherapy, where they promote tumor revascularization and relapse, in part, via VEGF-A release. A similar perivascular, M2-related TAM subset was present in human breast carcinomas and bone metastases after chemotherapy. Although a small proportion of M2 TAMs were also present in hypoxic tumor areas, when we genetically ablated their ability to respond to hypoxia via hypoxia-inducible factors 1 and 2, tumor relapse was unaffected. TAMs were the predominant cells expressing immunoreactive CXCR4 in chemotherapy-treated mouse tumors, with the highest levels expressed by MRC1+ TAMs clustering around the tumor vasculature. Furthermore, the primary CXCR4 ligand, CXCL12, was upregulated in these perivascular sites after chemotherapy, where it was selectively chemotactic for MRC1+ TAMs. Interestingly, HMOX-1, a marker of oxidative stress, was also upregulated in perivascular areas after chemotherapy. This enzyme generates carbon monoxide from the breakdown of heme, a gas known to upregulate CXCL12. Finally, pharmacologic blockade of CXCR4 selectively reduced M2-related TAMs after chemotherapy, especially those in direct contact with blood vessels, thereby reducing tumor revascularization and regrowth. Our studies rationalize a strategy to leverage chemotherapeutic efficacy by selectively targeting this perivascular, relapse-promoting M2-related TAM cell population. PMID:26269531

  9. The regulatory peptide pidotimod facilitates M2 macrophage polarization and its function.

    PubMed

    Hu, Shenglan; Fu, Xudong; Fu, Aikun; Du, Wei; Ji, Jian; Li, Weifen

    2014-05-01

    Pidotimod is a synthetic dipeptide with biological and immunological activity in innate immune responses. It has been reported that pidotimod could promote functional maturation of dendritic cells, but little is known about the regulation of macrophages. Recent studies have demonstrated that M1 or M2 polarized macrophages are of great importance for responses to microorganism infection or host mediators. The aim of this study was to determine the effectiveness of pidotimod on mouse bone marrow-derived macrophage polarization and its function. The results showed that pidotimod had no influence on M1-polarized macrophage. While interestingly, a significant increase of M2 marker gene expression (Arg1, Fizz1, Ym1, MR) was observed (p < 0.01) in IL-4-induced M2 macrophage treated with pidotimod. In addition, cell surface expression of mannose receptor was dramatically enhanced using fluorescence activated cell sorter (FACS) analysis. Furthermore, the function of M2 macrophage was also determinated. The results showed that the supernatant of pidotimod-treated M2 macrophage could increase the migration (p < 0.05) and enhance the wound closure rate (p < 0.05) of MLE-12 cells. Collectively, it could be concluded that pidotimod significantly facilitated IL-4-induced M2 macrophage polarization and improves its function. PMID:24481486

  10. ICAM-1 suppresses tumor metastasis by inhibiting macrophage M2 polarization through blockade of efferocytosis.

    PubMed

    Yang, M; Liu, J; Piao, C; Shao, J; Du, J

    2015-01-01

    Efficient clearance of apoptotic cells (efferocytosis) can profoundly influence tumor-specific immunity. Tumor-associated macrophages are M2-polarized macrophages that promote key processes in tumor progression. Efferocytosis stimulates M2 macrophage polarization and contributes to cancer metastasis, but the signaling mechanism underlying this process is unclear. Intercellular cell adhesion molecule-1 (ICAM-1) is a transmembrane glycoprotein member of the immunoglobulin superfamily, which has been implicated in mediating cell-cell interaction and outside-in cell signaling during the immune response. We report that ICAM-1 expression is inversely associated with macrophage infiltration and the metastasis index in human colon tumors by combining Oncomine database analysis and immunohistochemistry for ICAM-1. Using a colon cancer liver metastasis model in ICAM-1-deficient (ICAM-1(-/-)) mice and their wild-type littermates, we found that loss of ICAM-1 accelerated liver metastasis of colon carcinoma cells. Moreover, ICAM-1 deficiency increased M2 macrophage polarization during tumor progression. We further demonstrated that ICAM-1 deficiency in macrophages led to promotion of efferocytosis of apoptotic tumor cells through activation of the phosphatidylinositol 3 kinase/Akt signaling pathway. More importantly, coculture of ICAM-1(-/-) macrophages with apoptotic cancer cells resulted in an increase of M2-like macrophages, which was blocked by an efferocytosis inhibitor. Our findings demonstrate a novel role for ICAM-1 in suppressing M2 macrophage polarization via downregulation of efferocytosis in the tumor microenvironment, thereby inhibiting metastatic tumor progression. PMID:26068788

  11. Polarized M2 macrophages in dogs with visceral leishmaniasis.

    PubMed

    Moreira, Pamela Rodrigues Reina; Fernando, Filipe Santos; Montassier, Hélio José; André, Marcos Rogério; de Oliveira Vasconcelos, Rosemeri

    2016-08-15

    The objective of the present study was to analyze the skin (nasal surface and ear regions), lymph nodes (popliteal and pre-scapular), spleen and liver of dogs with visceral leishmaniasis (VL), in order to investigate the relationship between the parasite load measured as DNA copy number of Alpha gene of DNA polymerase of Leishmania infantum by quantitative PCR and the number of M2 macrophages by immunohistochemistry. A set of 29 naturally infected dogs from an endemic area for VL were sampled and another set of six dogs negative for VL and from a non-endemic area were analyzed as the control group (C). The spleen presented the highest number of Leishmania DNA copies, with significant differences between the groups G1 and G2 (with and without skin lesions, respectively). The M2 phenotype immunostaining predominated among the macrophages in granulomas and inflammatory infiltrates of samples from the skin, lymph nodes and spleens examined. The presence of M2 macrophages in dogs from infected group differed significantly from the control group, in all organs analyzed, excepted liver. The highest proportion of M2 macrophages coincided with the highest parasitism loads found in more susceptible organs of VL dogs, even in the skin, considered a more resistant organ, while the liver showed low parasitism load and low immunostaining for M2 macrophages with no significant differences between infected and negative groups. It was concluded that the predominance of M2 phenotype in VL dogs favored the multiplication of Leishmania infantum in organs of dogs that are more susceptible to Leishmania infection, as skin, lymph nodes and spleen. PMID:27514887

  12. Effect of rTsP53 on the M1/M2 activation of bone-marrow derived macrophage in vitro

    PubMed Central

    Chen, Zhibin; Li, Fan; Yang, Wen; Liang, Yanbing; Tang, Hao; Li, Zhenyu; Wu, Jingguo; Liang, Huaping; Ma, Zhongfu

    2015-01-01

    We investigated that if rTsP53 could be used to activate bone-marrow derived macrophage (BMDM) into M2 macrophage and stop M1 macrophage activation. After 72 h incubation in blank culture medium, cells with PE-CCR7 (-) and FITC-CD206 (-) was extracted and its mean proportion was 92.30 ± 0.22%. With the stimulation of 20 μg/ml IFN-γ for 72 h, cells with PE-CCR7 (+) was extracted and its mean proportion was 16.24 ± 0.82%. With the stimulation of IL-3/IL-14 (both 10 μg/ml) for 72 h, cells with FICT-CD206 (+) was extracted and its mean proportion was 87.32 ± 4.29%. Co-incubation with different dose of rTsP53 (0.001 μg/ml, 0.01 μg/ml, 0.1 μg/ml, 1 μg/ml, 2 μg/ml, 5 μg/ml, 10 μg/ml, respectively) for 72 h, FITC-CD206 (+) macrophage was extracted. The mean proportion in each group was 1.09 ± 0.22%, 2.13 ± 0.13%, 4.91 ± 0.07%, 5.48 ± 0.29%, 9.81 ± 0.06%, 12.83 ± 0.55%, 17.87 ± 0.02%, respectively. The dose of rTsP53 was significantly positive correlated to the proportion of FITC-CD206 (+) macrophage. Co-incubation with 20 μg/ml IFN-γ and 5 μg/ml rTsP53 for 72 h, cells with PE-CCR7 (+) was extracted and its mean proportion was 10.60 ± 0.19%. Compared to that of mere co-incubation with IFN-γ, there was significant difference between the two groups. ELISA showed that Th1 cytokines’ (IFN-γ, IL-6 and TNF-α) level decreased in the culture medium supernatant of BMDM co-incubated with rTsP53. There was negative correlation between the Th1 cytokines’ level and the dose of rTsP53. Both Th2 cytokines (IL-4 and IL-13) and regulatory cytokines in the culture medium increased. There was positive correlation between the Th2 cytokines’ level and the dose of rTsP53. There was also positive correlation between the regulatory cytokines’ level and the dose of rTsP53. Compared to that of BMDM co-incubated with IFN-γ, levels of TNF-α and IL-6 were significant lower than that of BMDM co-incubated with both IFN-γ and rTsP53 (both P < 0.05), while the levels

  13. KIT oncogene inhibition drives intratumoral macrophage M2 polarization.

    PubMed

    Cavnar, Michael J; Zeng, Shan; Kim, Teresa S; Sorenson, Eric C; Ocuin, Lee M; Balachandran, Vinod P; Seifert, Adrian M; Greer, Jonathan B; Popow, Rachel; Crawley, Megan H; Cohen, Noah A; Green, Benjamin L; Rossi, Ferdinand; Besmer, Peter; Antonescu, Cristina R; DeMatteo, Ronald P

    2013-12-16

    Tumor-associated macrophages (TAMs) are a major component of the cancer microenvironment. Modulation of TAMs is under intense investigation because they are thought to be nearly always of the M2 subtype, which supports tumor growth. Gastrointestinal stromal tumor (GIST) is the most common human sarcoma and typically results from an activating mutation in the KIT oncogene. Using a spontaneous mouse model of GIST and 57 freshly procured human GISTs, we discovered that TAMs displayed an M1-like phenotype and function at baseline. In both mice and humans, the KIT oncoprotein inhibitor imatinib polarized TAMs to become M2-like, a process which involved TAM interaction with apoptotic tumor cells leading to the induction of CCAAT/enhancer binding protein (C/EBP) transcription factors. In human GISTs that eventually developed resistance to imatinib, TAMs reverted to an M1-like phenotype and had a similar gene expression profile as TAMs from untreated human GISTs. Therefore, TAM polarization depends on tumor cell oncogene activity and has important implications for immunotherapeutic strategies in human cancers. PMID:24323358

  14. [Adipose-derived stem cells promote the polarization from M1 macrophages to M2 macrophages].

    PubMed

    Yin, Xuehong; Pang, Chunyan; Bai, Li; Zhang, Ying; Geng, Lixia

    2016-03-01

    Objective To investigate the effects of adipose-derived stem cells (ADSCs) on M1/M2 macrophages and whether ADSCs are able to promote the polarization from M1 macrophages to M2 macrophages. Methods M1 macrophages were induced from J774.1 macrophages by 24-hour stimulation of lipopolysaccharide (LPS) and interferon γ (IFN-γ), and M2 macrophages were induced from J774.1 macrophages by interleukin 4 (IL-4) for another 24 hours. Then M1/M2 macrophages were separately cultured in the presence of ADSCs for 24 hours. The M1/M2 macrophages and their corresponding supernatants were collected for further analysis. The expressions of IL-6, tumor necrosis factor α (TNF-α), inducible nitric oxide synthase (iNOS), CC chemokine ligand 2 (CCL2), CD86, arginase 1 (Arg1), mannose receptors/CD206 (MR/CD206), IL-10, found in inflammatory zone 1 (FIZZ1), chitinase 3-like 3 (Ym-1) were detected by real-time PCR and ELISA. Results ADSCs significantly decreased the levels of IL-6, TNF-α, iNOS, CCL2 and CD86, and increased the levels of Arg1, CD206 and IL-10 in M1 macrophages. In the supernatant of M1 macrophages, the expressions of IL-6 and TNF-α were reduced, while those of CD206 were enhanced. In M2 macrophages, ADSCs resulted in down-regulation of IL-6, TNF-α, iNOS, CD86 and up-regulation of Arg1, CD206, FIZZ-1, Ym-1 and IL-10. In the supernatant of M2 macrophages, the expression levels of IL-6 and TNF-α were down-regulated and those of CD206 were up-regulated. Conclusion ADSCs can inhibit the gene expression of M1 macrophages and promote the gene expression of M2 macrophages, as well as mediate the polarization from M1 macrophages to M2 macrophages. PMID:26927552

  15. M1 and M2 Macrophages: The Chicken and the Egg of Immunity

    PubMed Central

    Mills, Charles D.; Ley, Klaus

    2015-01-01

    The purpose of this perspective is to describe a critical advance in understanding how immune responses work. Macrophages are required for all animal life: ‘Inhibit’ type macrophages in all animals (called M1) can rapidly kill pathogens, and are thus the primary host defense, and ‘Heal’ type macrophages (M2) routinely repair and maintain tissue integrity. Macrophages perform these activities in all animals without T cells, and also in T cell-deficient vertebrates. Although adaptive immunity can amplify macrophage polarization, the long-held notion that macrophages need to be ‘activated’ or ‘alternatively activated’ by T cells is incorrect; indeed, immunology has had it backward. M1/M2-type macrophages necessarily direct T cells toward Th1- or Th2-like activities, respectively. That such macrophage-innate activities are the central directing element in immune responses is a dramatic change in understanding how immune systems operate. Most important, this revelation is opening up whole new approaches to immunotherapy. For example, many modern diseases, such as cancer and atherosclerosis, may not display ‘foreign’ antigens. However, there are clear imbalances in M1/M2-type responses. Correcting such innate imbalances can result in better health. Macrophages are the chicken and the egg of immunity. PMID:25138714

  16. Adoptive transfer of M2 macrophages promotes locomotor recovery in adult rats after spinal cord injury.

    PubMed

    Ma, Shan-Feng; Chen, Yue-Juan; Zhang, Jing-Xing; Shen, Lin; Wang, Rui; Zhou, Jian-Sheng; Hu, Jian-Guo; Lü, He-Zuo

    2015-03-01

    Classically activated pro-inflammatory (M1) and alternatively activated anti-inflammatory (M2) macrophages populate the local microenvironment after spinal cord injury (SCI). The former type is neurotoxic while the latter has positive effects on neuroregeneration and is less toxic. In addition, while the M1 macrophage response is rapidly induced and sustained, M2 induction is transient. A promising strategy for the repair of SCI is to increase the fraction of M2 cells and prolong their residence time. This study investigated the effect of M2 macrophages induced from bone marrow-derived macrophages on the local microenvironment and their possible role in neuroprotection after SCI. M2 macrophages produced anti-inflammatory cytokines such as interleukin (IL)-10 and transforming growth factor β and infiltrated into the injured spinal cord, stimulated M2 and helper T (Th)2 cells, and produced high levels of IL-10 and -13 at the site of injury. M2 cell transfer decreased spinal cord lesion volume and resulted in increased myelination of axons and preservation of neurons. This was accompanied by significant locomotor improvement as revealed by Basso, Beattie and Bresnahan locomotor rating scale, grid walk and footprint analyses. These results indicate that M2 adoptive transfer has beneficial effects for the injured spinal cord, in which the increased number of M2 macrophages causes a shift in the immunological response from Th1- to Th2-dominated through the production of anti-inflammatory cytokines, which in turn induces the polarization of local microglia and/or macrophages to the M2 subtype, and creates a local microenvironment that is conducive to the rescue of residual myelin and neurons and preservation of neuronal function. PMID:25476600

  17. Rac2 Controls Tumor Growth, Metastasis and M1-M2 Macrophage Differentiation In Vivo

    PubMed Central

    Joshi, Shweta; Singh, Alok R.; Zulcic, Muamera; Bao, Lei; Messer, Karen; Ideker, Trey; Dutkowski, Janusz; Durden, Donald L.

    2014-01-01

    Although it is well-established that the macrophage M1 to M2 transition plays a role in tumor progression, the molecular basis for this process remains incompletely understood. Herein, we demonstrate that the small GTPase, Rac2 controls macrophage M1 to M2 differentiation and the metastatic phenotype in vivo. Using a genetic approach, combined with syngeneic and orthotopic tumor models we demonstrate that Rac2-/- mice display a marked defect in tumor growth, angiogenesis and metastasis. Microarray, RT-PCR and metabolomic analysis on bone marrow derived macrophages isolated from the Rac2-/- mice identify an important role for Rac2 in M2 macrophage differentiation. Furthermore, we define a novel molecular mechanism by which signals transmitted from the extracellular matrix via the α4β1 integrin and MCSF receptor lead to the activation of Rac2 and potentially regulate macrophage M2 differentiation. Collectively, our findings demonstrate a macrophage autonomous process by which the Rac2 GTPase is activated downstream of the α4β1 integrin and the MCSF receptor to control tumor growth, metastasis and macrophage differentiation into the M2 phenotype. Finally, using gene expression and metabolomic data from our Rac2-/- model, and information related to M1-M2 macrophage differentiation curated from the literature we executed a systems biologic analysis of hierarchical protein-protein interaction networks in an effort to develop an iterative interactome map which will predict additional mechanisms by which Rac2 may coordinately control macrophage M1 to M2 differentiation and metastasis. PMID:24770346

  18. MMP28 promotes macrophage polarization toward M2 cells and augments pulmonary fibrosis

    PubMed Central

    Gharib, Sina A.; Johnston, Laura K.; Huizar, Isham; Birkland, Timothy P.; Hanson, Josiah; Wang, Ying; Parks, William C.; Manicone, Anne M.

    2014-01-01

    Members of the MMP family function in various processes of innate immunity, particularly in controlling important steps in leukocyte trafficking and activation. MMP28 (epilysin) is a member of this family of proteinases, and we have found that MMP28 is expressed by macrophages and regulates their recruitment to the lung. We hypothesized that MMP28 regulates other key macrophage responses, such as macrophage polarization. Furthermore, we hypothesized that these MMP28-dependent changes in macrophage polarization would alter fibrotic responses in the lung. We examined the gene expression changes in WT and Mmp28−/− BMDMs, stimulated with LPS or IL-4/IL-13 to promote M1 and M2 cells, respectively. We also collected macrophages from the lungs of Pseudomonas aeruginosa-exposed WT and Mmp28−/− mice to evaluate changes in macrophage polarization. Lastly, we evaluated the macrophage polarization phenotypes during bleomycin-induced pulmonary fibrosis in WT and Mmp28−/− mice and assessed mice for differences in weight loss and total collagen levels. We found that MMP28 dampens proinflammatory macrophage function and promots M2 programming. In both in vivo models, we found deficits in M2 polarization in Mmp28−/− mice. In bleomycin-induced lung injury, these changes were associated with reduced fibrosis. MMP28 is an important regulator of macrophage polarization, promoting M2 function. Loss of MMP28 results in reduced M2 polarization and protection from bleomycin-induced fibrosis. These findings highlight a novel role for MMP28 in macrophage biology and pulmonary disease. PMID:23964118

  19. RAD001 (everolimus) attenuates experimental autoimmune neuritis by inhibiting the mTOR pathway, elevating Akt activity and polarizing M2 macrophages.

    PubMed

    Han, Ranran; Gao, Juan; Zhai, Hui; Xiao, Jinting; Ding, Ya'nan; Hao, Junwei

    2016-06-01

    Guillain-Barre' syndrome (GBS) is an acute, postinfectious, immune-mediated, demyelinating disease of peripheral nerves and nerve roots. As a classical animal model of GBS, experimental autoimmune neuritis (EAN) has become well-accepted. Additionally, the potent immune modulation exerted by mammalian target of rapamycin (mTOR) inhibitors has been used to treat cancers and showed beneficial effects. Here we demonstrate that the mTOR inhibitor RAD001 (everolimus) protected rats from the symptoms of EAN, as shown by decreased paralysis, diminished inflammatory cell infiltration, reductions in demyelination of peripheral nerves and improved nerve conduction. Furthermore, RAD001 shifted macrophage polarization toward the protective M2 phenotype and modified the inflammatory milieu by downregulating the production of pro-inflammatory cytokines including IFN-γ and IL-17as well as upregulating the release of anti-inflammatory cytokines such as IL-4 and TGF-β. Amounts of the mTOR downstream targets p-P70S6K and p-4E-BP1 in sciatic nerves decreased, whereas the level of its upstream protein p-Akt was elevated. This demonstrated that RAD001 inhibited the mTOR pathway and encouraged the expression of p-Akt, which led to M2 macrophage polarization, thus improved the outcome of EAN in rats. Consequently, RAD001 exhibits strong potential as a therapeutic strategy for ameliorating peripheral poly-neuropathy. PMID:27063582

  20. From Monocytes to M1/M2 Macrophages: Phenotypical vs. Functional Differentiation

    PubMed Central

    Italiani, Paola; Boraschi, Diana

    2014-01-01

    Studies on monocyte and macrophage biology and differentiation have revealed the pleiotropic activities of these cells. Macrophages are tissue sentinels that maintain tissue integrity by eliminating/repairing damaged cells and matrices. In this M2-like mode, they can also promote tumor growth. Conversely, M1-like macrophages are key effector cells for the elimination of pathogens, virally infected, and cancer cells. Macrophage differentiation from monocytes occurs in the tissue in concomitance with the acquisition of a functional phenotype that depends on microenvironmental signals, thereby accounting for the many and apparently opposed macrophage functions. Many questions arise. When monocytes differentiate into macrophages in a tissue (concomitantly adopting a specific functional program, M1 or M2), do they all die during the inflammatory reaction, or do some of them survive? Do those that survive become quiescent tissue macrophages, able to react as naïve cells to a new challenge? Or, do monocyte-derived tissue macrophages conserve a “memory” of their past inflammatory activation? This review will address some of these important questions under the general framework of the role of monocytes and macrophages in the initiation, development, resolution, and chronicization of inflammation. PMID:25368618

  1. Endoplasmic Reticulum Stress Controls M2 Macrophage Differentiation and Foam Cell Formation*

    PubMed Central

    Oh, Jisu; Riek, Amy E.; Weng, Sherry; Petty, Marvin; Kim, David; Colonna, Marco; Cella, Marina; Bernal-Mizrachi, Carlos

    2012-01-01

    Macrophages are essential in atherosclerosis progression, but regulation of the M1 versus M2 phenotype and their role in cholesterol deposition are unclear. We demonstrate that endoplasmic reticulum (ER) stress is a key regulator of macrophage differentiation and cholesterol deposition. Macrophages from diabetic patients were classically or alternatively stimulated and then exposed to oxidized LDL. Alternative stimulation into M2 macrophages lead to increased foam cell formation by inducing scavenger receptor CD36 and SR-A1 expression. ER stress induced by alternative stimulation was necessary to generate the M2 phenotype through JNK activation and increased PPARγ expression. The absence of CD36 or SR-A1 signaling independently of modified cholesterol uptake decreased ER stress and prevented the M2 differentiation typically induced by alternative stimulation. Moreover, suppression of ER stress shifted differentiated M2 macrophages toward an M1 phenotype and subsequently suppressed foam cell formation by increasing HDL- and apoA-1-induced cholesterol efflux indicating suppression of macrophage ER stress as a potential therapy for atherosclerosis. PMID:22356914

  2. The Phenotypic and Functional Features of Human M2 Macrophages Generated Under Low Serum Conditions.

    PubMed

    Sakhno, L V; Shevela, E Ya; Tikhonova, M A; Ostanin, A A; Chernykh, E R

    2016-02-01

    The phenotypic and functional features of human M2 macrophages, in particular, their immunosuppressive activity, can considerably vary depending on M2 polarizing stimulus. This study was aimed at the investigation of cytokine production and pro-apoptogenic/inhibitory molecule expression in macrophages generated with GM-CSF using either standard conditions (M1) or deficiency of serum/growth factors (M2-LS cells). In contrast to M1, M2-LS cells were characterized by an enhanced content of CD206(+), B7-H1(+), FasL(+) and TRAIL(+) cells along with a decreased production of IFN-γ, IL-5, IL-6, IL-13, TNF-α, IL-17 and MCP-1. In addition, M2-LS exhibited a lower T cell stimulatory activity in MLC that was associated with the higher numbers of apoptotic and the lower numbers of proliferating T cells. B7-H1 plays a key role in M2-LS-mediated cytotoxic effects as the neutralization of B7-H1 reduces the apoptosis-inducing activity of M2-LS, while the blocking of CD206 and TRAIL reduces the cytostatic activity of M2 macrophages. PMID:26678544

  3. Baicalin ameliorates experimental inflammatory bowel disease through polarization of macrophages to an M2 phenotype.

    PubMed

    Zhu, Wei; Jin, Zaishun; Yu, Jianbo; Liang, Jun; Yang, Qingdong; Li, Fujuan; Shi, Xuekui; Zhu, Xiaodong; Zhang, Xiaoli

    2016-06-01

    Inflammatory bowel diseases (IBDs) are chronic inflammatory disorders of the intestinal tract. Baicalin, originally isolated from the root of the Chinese herb Huangqin (Scutellaria baicalensis Georgi) and its main active ingredient, has a protective effect against inflammatory responses in several diseases. The present study investigated the effects of baicalin on macrophage polarization and its therapeutic role in IBD. Murine peritoneal macrophages and mice with colitis were treated with baicalin. Macrophage subset distribution, M1 and M2 macrophage-associated mRNA expression, and interferon regulatory factor 4 and 5 (IRF4 and IRF5) expression were analyzed. siRNA transfection into mouse peritoneal macrophages was utilized to suppress IRF4. Fluorescence-activated cell sorting, western blot, and real-time PCR analyses were performed. Baicalin (50μM) limited lipopolysaccharide (LPS)-induced M1 macrophage polarization; decreased LPS-induced tumor necrosis factor α, interleukin (IL)-23, and IRF5 expression; and increased IL-10, arginase-1 (Arg-1), and IRF4 expression. siRNA-mediated IRF4 silencing significantly impaired baicalin activity. Furthermore, pretreatment with baicalin (100mg/kg) in mice with dextran sodium sulfate (DSS)-induced colitis ameliorated the severity of colitis and significantly decreased the disease activity index (baicalin group, 3.33±0.52 vs. DSS group, 5.67±1.03). Baicalin (100mg/kg) also repressed IRF5 protein expression and promoted IRF4 protein expression in the lamina propria mononuclear cells, and induced macrophage polarization to the M2 phenotype. In summary, our results showed that baicalin upregulates IRF4 protein expression and reverses LPS-induced macrophage subset redistribution. Thus, baicalin alleviates DSS-induced colitis by modulating macrophage polarization to the M2 phenotype. PMID:27039210

  4. MicroRNA 21 Is a Homeostatic Regulator of Macrophage Polarization and Prevents Prostaglandin E2-Mediated M2 Generation

    PubMed Central

    Wang, Zhuo; Brandt, Stephanie; Medeiros, Alexandra; Wang, Soujuan; Wu, Hao; Dent, Alexander; Serezani, C. Henrique

    2015-01-01

    Macrophages dictate both initiation and resolution of inflammation. During acute inflammation classically activated macrophages (M1) predominate, and during the resolution phase alternative macrophages (M2) are dominant. The molecular mechanisms involved in macrophage polarization are understudied. MicroRNAs are differentially expressed in M1 and M2 macrophages that influence macrophage polarization. We identified a role of miR-21 in macrophage polarization, and found that cross-talk between miR-21 and the lipid mediator prostaglandin E2 (PGE2) is a determining factor in macrophage polarization. miR-21 inhibition impairs expression of M2 signature genes but not M1 genes. PGE2 and its downstream effectors PKA and Epac inhibit miR-21 expression and enhance expression of M2 genes, and this effect is more pronounced in miR-21-/- cells. Among potential targets involved in macrophage polarization, we found that STAT3 and SOCS1 were enhanced in miR-21-/- cells and further enhanced by PGE2. We found that STAT3 was a direct target of miR-21 in macrophages. Silencing the STAT3 gene abolished PGE2-mediated expression of M2 genes in miR-21-/- macrophages. These data shed light on the molecular brakes involved in homeostatic macrophage polarization and suggest new therapeutic strategies to prevent inflammatory responses. PMID:25706647

  5. EXTENDED CULTURE OF MACROPHAGES FROM DIFFERENT SOURCES AND MATURATION RESULTS IN A COMMON M2 PHENOTYPE

    PubMed Central

    Chamberlain, Lisa M.; Holt-Casper, Dolly; Gonzalez-Juarrero, Mercedes; Grainger, David W.

    2015-01-01

    Inflammatory responses to biomaterials heavily influence the environment surrounding implanted devices, often producing foreign body reactions. The macrophage is a key immunomodulatory cell type consistently associated with implanted biomaterials and routinely employed in short term in vitro cell studies of biomaterials aiming to reproduce host responses. Inconsistencies within these studies, including differently sourced cells, different durations of culture, and assessment of different activation markers, lead to many conflicting results in vitro that confound consistency and conclusions. We hypothesize that different experimentally popular monocyte-macrophage cell types have intrinsic in vitro culture-specific differences that yield conflicting results. Recent studies demonstrate changes in cultured macrophage cytokine expression over time, leading to the hypothesis that changes in macrophage phenotype also occur in response to extended culture. Here, macrophage cells of different transformed and primary-derived origins were cultured for 21 days on model polymer biomaterials. Cell type-based differences in morphology and cytokine/chemokine expression as well as changes in cell surface biomarkers associated with differentiation stage, activation state, and adhesion were compared. Results reflect consistent macrophage development towards an M2 phenotype via up-regulation of the macrophage mannose receptor for all cell types following 21-day extended culture. Significantly, implanted biomaterials experiencing the foreign body response and encapsulation in vivo often elicit a shift towards an analogous M2 macrophage phenotype. In vitro “default” of macrophage cultures, regardless of lineage, to this M2 state in the presence of biomaterials at long culture periods is not recognized but has important implications to in vitro modeling of in vivo host response. PMID:25684281

  6. Extended culture of macrophages from different sources and maturation results in a common M2 phenotype.

    PubMed

    Chamberlain, Lisa M; Holt-Casper, Dolly; Gonzalez-Juarrero, Mercedes; Grainger, David W

    2015-09-01

    Inflammatory responses to biomaterials heavily influence the environment surrounding implanted devices, often producing foreign-body reactions. The macrophage is a key immunomodulatory cell type consistently associated with implanted biomaterials and routinely used in short-term in vitro cell studies of biomaterials aiming to reproduce host responses. Inconsistencies within these studies, including differently sourced cells, different durations of culture, and assessment of different activation markers, lead to many conflicting results in vitro that confound consistency and conclusions. We hypothesize that different experimentally popular monocyte-macrophage cell types have intrinsic in vitro culture-specific differences that yield conflicting results. Recent studies demonstrate changes in cultured macrophage cytokine expression over time, leading to the hypothesis that changes in macrophage phenotype also occur in response to extended culture. Here, macrophage cells of different transformed and primary-derived origins were cultured for 21 days on model polymer biomaterials. Cell type-based differences in morphology and cytokine/chemokine expression as well as changes in cell surface biomarkers associated with differentiation stage, activation state, and adhesion were compared. Results reflect consistent macrophage development toward an M2 phenotype via up-regulation of the macrophage mannose receptor for all cell types following 21-day extended culture. Significantly, implanted biomaterials experiencing the foreign-body response and encapsulation in vivo often elicit a shift toward an analogous M2 macrophage phenotype. In vitro "default" of macrophage cultures, regardless of lineage, to this M2 state in the presence of biomaterials at long culture periods is not recognized, but has important implications to in vitro modeling of in vivo host response. PMID:25684281

  7. Chop Deficiency Protects Mice Against Bleomycin-induced Pulmonary Fibrosis by Attenuating M2 Macrophage Production.

    PubMed

    Yao, Yingying; Wang, Yi; Zhang, Zhijun; He, Long; Zhu, Jianghui; Zhang, Meng; He, Xiaoyu; Cheng, Zhenshun; Ao, Qilin; Cao, Yong; Yang, Ping; Su, Yunchao; Zhao, Jianping; Zhang, Shu; Yu, Qilin; Ning, Qin; Xiang, Xudong; Xiong, Weining; Wang, Cong-Yi; Xu, Yongjian

    2016-05-01

    C/EBP homologous protein (Chop) has been shown to have altered expression in patients with idiopathic pulmonary fibrosis (IPF), but its exact role in IPF pathoaetiology has not been fully addressed. Studies conducted in patients with IPF and Chop(-/-) mice have dissected the role of Chop and endoplasmic reticulum (ER) stress in pulmonary fibrosis pathogenesis. The effect of Chop deficiency on macrophage polarization and related signalling pathways were investigated to identify the underlying mechanisms. Patients with IPF and mice with bleomycin (BLM)-induced pulmonary fibrosis were affected by the altered Chop expression and ER stress. In particular, Chop deficiency protected mice against BLM-induced lung injury and fibrosis. Loss of Chop significantly attenuated transforming growth factor β (TGF-β) production and reduced M2 macrophage infiltration in the lung following BLM induction. Mechanistic studies showed that Chop deficiency repressed the M2 program in macrophages, which then attenuated TGF-β secretion. Specifically, loss of Chop promoted the expression of suppressors of cytokine signaling 1 and suppressors of cytokine signaling 3, and through which Chop deficiency repressed signal transducer and activator of transcription 6/peroxisome proliferator-activated receptor gamma signaling, the essential pathway for the M2 program in macrophages. Together, our data support the idea that Chop and ER stress are implicated in IPF pathoaetiology, involving at least the induction and differentiation of M2 macrophages. PMID:26883801

  8. Fasciola hepatica tegumental antigens indirectly induce an M2 macrophage-like phenotype in vivo.

    PubMed

    Adams, P N; Aldridge, A; Vukman, K V; Donnelly, S; O'Neill, S M

    2014-10-01

    The M2 subset of macrophages has a critical role to play in host tissue repair, tissue fibrosis and modulation of adaptive immunity during helminth infection. Infection with the helminth, Fasciola hepatica, is associated with M2 macrophages in its mammalian host, and this response is mimicked by its excretory-secretory products (FhES). The tegumental coat of F. hepatica (FhTeg) is another major source of immune-modulatory molecules; we have previously shown that FhTeg can modulate the activity of both dendritic cells and mast cells inhibiting their ability to prime a Th1 immune response. Here, we report that FhTeg does not induce Th2 immune responses but can induce M2-like phenotype in vivo that modulates cytokine production from CD4(+) cells in response to anti-CD3 stimulation. FhTeg induces a RELMα expressing macrophage population in vitro, while in vivo, the expression of Arg1 and Ym-1/2 but not RELMα in FhTeg-stimulated macrophages was STAT6 dependent. To support this finding, FhTeg induces RELMα expression in vivo prior to the induction of IL-13. FhTeg can induce IL-13-producing peritoneal macrophages following intraperitoneal injection This study highlights the important role of FhTeg as an immune-modulatory source during F. hepatica infection and sheds further light on helminth-macrophage interactions. PMID:25039932

  9. Induction of M2 regulatory macrophages through the β2 adrenergic receptor with protection during endotoxemia and acute lung injury

    PubMed Central

    Grailer, Jamison J.; Haggadone, Mikel D.; Sarma, J. Vidya; Zetoune, Firas S.; Ward, Peter A.

    2014-01-01

    Main drivers of acute inflammation are macrophages, which are known to have receptors for catecholamines. Based on their function, macrophages are broadly categorized as either M1 (pro-inflammatory) or M2 phenotypes (anti-inflammatory). In this study, we investigated catecholamine-induced alterations in the phenotype of activated macrophages. In the presence of lipopolysaccharide (LPS), mouse peritoneal macrophages acquired an M1 phenotype. However, the co-presence of LPS and either epinephrine or norepinephrine resulted in a strong M2 phenotype including high levels of arginase-1 and interleukin (IL) -10, and reduced expression of M1 markers. Furthermore, epinephrine enhanced macrophage phagocytosis and promoted type 2 T cell responses in vitro, which are known features of M2 macrophages. Analysis of M2 subtype-specific markers indicated that LPS and catecholamine co-treated macrophages were not alternatively activated, but of the regulatory macrophage subtype. Interestingly, catecholamines signaled through the β2 adrenergic receptor, but not the canonical cAMP/protein kinase A signaling pathway. Instead, the M2 pathway required an intact phosphoinositol 3-kinase pathway. Blockade of the β2 adrenergic receptor reduced survival and enhanced injury during mouse models of endotoxemia and LPS-induced acute lung injury, respectively. These results demonstrate a role for the β2 adrenergic receptor in promoting the M2 macrophage phenotype. PMID:24642449

  10. Azithromycin protects mice against ischemic stroke injury by promoting macrophage transition towards M2 phenotype.

    PubMed

    Amantea, Diana; Certo, Michelangelo; Petrelli, Francesco; Tassorelli, Cristina; Micieli, Giuseppe; Corasaniti, Maria Tiziana; Puccetti, Paolo; Fallarino, Francesca; Bagetta, Giacinto

    2016-01-01

    To develop novel and effective treatments for ischemic stroke, we investigated the neuroprotective effects of the macrolide antibiotic azithromycin in a mouse model system of transient middle cerebral artery occlusion. Intraperitoneal administration of azithromycin significantly reduced blood-brain barrier damage and cerebral infiltration of myeloid cells, including neutrophils and inflammatory macrophages. These effects resulted in a dose-dependent reduction of cerebral ischemic damage, and in a remarkable amelioration of neurological deficits up to 7 days after the insult. Neuroprotection was associated with increased arginase activity in peritoneal exudate cells, which was followed by the detection of Ym1- and arginase I-immunopositive M2 macrophages in the ischemic area at 24-48 h of reperfusion. Pharmacological inhibition of peritoneal arginase activity counteracted azithromycin-induced neuroprotection, pointing to a major role for drug-induced polarization of migratory macrophages towards a protective, non-inflammatory M2 phenotype. PMID:26518285

  11. Adiponectin Enhances Cold-Induced Browning of Subcutaneous Adipose Tissue via Promoting M2 Macrophage Proliferation.

    PubMed

    Hui, Xiaoyan; Gu, Ping; Zhang, Jialiang; Nie, Tao; Pan, Yong; Wu, Donghai; Feng, Tianshi; Zhong, Cheng; Wang, Yu; Lam, Karen S L; Xu, Aimin

    2015-08-01

    Adiponectin is an abundant adipokine with pleiotropic protective effects against a cluster of obesity-related cardiometabolic disorders. However, its role in adaptive thermogenesis has scarcely been explored. Here we showed that chronic cold exposure led to a markedly elevated production of adiponectin in adipocytes of subcutaneous white adipose tissue (scWAT), which in turn bound to M2 macrophages in the stromal vascular fraction. Chronic cold exposure-induced accumulation of M2 macrophages, activation of beige cells, and thermogenic program were markedly impaired in scWAT of adiponectin knockout (ADN KO) mice, whereas these impairments were reversed by replenishment with adiponectin. Mechanistically, adiponectin was recruited to the cell surface of M2 macrophages via its binding partner T-cadherin and promoted the cell proliferation by activation of Akt, consequently leading to beige cell activation. These findings uncover adiponectin as a key efferent signal for cold-induced adaptive thermogenesis by mediating the crosstalk between adipocytes and M2 macrophages in scWAT. PMID:26166748

  12. Contact-dependent carcinoma aggregate dispersion by M2a macrophages via ICAM-1 and β2 integrin interactions.

    PubMed

    Bai, Jing; Adriani, Giulia; Dang, Truong-Minh; Tu, Ting-Yuan; Penny, Hwei-Xian Leong; Wong, Siew-Cheng; Kamm, Roger D; Thiery, Jean-Paul

    2015-09-22

    Tumor-associated macrophages (TAMs) can constitute up to 50% of the tumor mass and have strong implications in tumor progression and metastasis. Macrophages are plastic and can polarize to various subtypes that differ in terms of surface receptor expression as well as cytokine and chemokine production and effector function. Conventionally, macrophages are grouped into two major subtypes: the classically activated M1 macrophages and the alternatively activated M2 macrophages. M1 macrophages are pro-inflammatory, promote T helper (Th) 1 responses, and show tumoricidal activity, whereas M2 macrophages contribute to tissue repair and promote Th2 responses. Herein, we present a microfluidic system integrating tumor cell aggregates and subtypes of human monocyte-derived macrophages in a three-dimensional hydrogel scaffold, in close co-culture with an endothelial monolayer to create an in vitro tumor microenvironment. This platform was utilized to study the role of individual subtypes of macrophages (M0, M1, M2a, M2b and M2c) in human lung adenocarcinoma (A549) aggregate dispersion, as a representation of epithelial-mesenchymal transition (EMT). A significant difference was observed when M2a macrophages were in direct contact with or separated from A549 aggregates, suggesting a possible mechanism for proximity-induced, contact-dependent dissemination via ICAM-1 and integrin β2 interactions. Indeed, M2a macrophages tended to infiltrate and release cells from carcinoma cell aggregates. These findings may help in the development of immunotherapies based on enhancing the tumor-suppressive properties of TAMs. PMID:26231039

  13. Contact-dependent carcinoma aggregate dispersion by M2a macrophages via ICAM-1 and β2 integrin interactions

    PubMed Central

    Dang, Truong-Minh; Tu, Ting-Yuan; Leong Penny, Hwei-Xian; Wong, Siew-Cheng; Kamm, Roger D.; Thiery, Jean-Paul

    2015-01-01

    Tumor-associated macrophages (TAMs) can constitute up to 50% of the tumor mass and have strong implications in tumor progression and metastasis. Macrophages are plastic and can polarize to various subtypes that differ in terms of surface receptor expression as well as cytokine and chemokine production and effector function. Conventionally, macrophages are grouped into two major subtypes: the classically activated M1 macrophages and the alternatively activated M2 macrophages. M1 macrophages are pro-inflammatory, promote T helper (Th) 1 responses, and show tumoricidal activity, whereas M2 macrophages contribute to tissue repair and promote Th2 responses. Herein, we present a microfluidic system integrating tumor cell aggregates and subtypes of human monocyte-derived macrophages in a three-dimensional hydrogel scaffold, in close co-culture with an endothelial monolayer to create an in vitro tumor microenvironment. This platform was utilized to study the role of individual subtypes of macrophages (M0, M1, M2a, M2b and M2c) in human lung adenocarcinoma (A549) aggregate dispersion, as a representation of epithelial-mesenchymal transition (EMT). A significant difference was observed when M2a macrophages were in direct contact with or separated from A549 aggregates, suggesting a possible mechanism for proximity-induced, contact-dependent dissemination via ICAM-1 and integrin β2 interactions. Indeed, M2a macrophages tended to infiltrate and release cells from carcinoma cell aggregates. These findings may help in the development of immunotherapies based on enhancing the tumor-suppressive properties of TAMs. PMID:26231039

  14. Bone morphogenetic protein 7 polarizes THP-1 cells into M2 macrophages.

    PubMed

    Rocher, Crystal; Singla, Reetu; Singal, Pawan K; Parthasarathy, Sampath; Singla, Dinender K

    2012-07-01

    It was hypothesized that monocyte treatment with bone morphogenetic protein 7 (BMP7) would significantly enhance monocyte polarization into M2 macrophages as well as increasing the levels of anti-inflammatory cytokines. In a cell culture system using monocytes (human acute monocytic leukemia cell line THP-1), we studied the effects of BMP7 on monocytes polarizing into M2 macrophages. The data demonstrate that THP-1 cells contain a BMP type II receptor (BMPR2), and that its activation is significantly (p < 0.05) increased following treatment with BMP7. Furthermore, there was an increase of M2 macrophages, BMPR2, and anti-inflammatory cytokines interleukin (IL)-10 and IL-1ra compared with the respective controls. Moreover, treatment with BMP7 caused a significant (p < 0.05) decrease in the levels of pro-inflammatory cytokines IL-6, tumour necrosis factor (TNF-α), and monocyte chemotactic protein-1 (MCP-1), compared with the controls. In conclusion, we suggest for the first time that BMP7 has a unique potential to polarize monocytes into M2 macrophages, required for tissue repair, which will have significant applications for the treatment of atherosclerosis. PMID:22720873

  15. PPARγ Ligands Switched High Fat Diet-Induced Macrophage M2b Polarization toward M2a Thereby Improving Intestinal Candida Elimination

    PubMed Central

    Olagnier, David; Bernad, José; Perez, Laurence; Burcelin, Rémy; Valentin, Alexis; Auwerx, Johan; Pipy, Bernard; Coste, Agnès

    2010-01-01

    Obesity is associated with a chronic low-grade inflammation that predisposes to insulin resistance and the development of type 2 diabetes. In this metabolic context, gastrointestinal (GI) candidiasis is common. We recently demonstrated that the PPARγ ligand rosiglitazone promotes the clearance of Candida albicans through the activation of alternative M2 macrophage polarization. Here, we evaluated the impact of high fat diet (HFD)-induced obesity and the effect of rosiglitazone (PPARγ ligand) or WY14643 (PPARα ligand) both on the phenotypic M1/M2 polarization of peritoneal and cecal tissue macrophages and on the outcome of GI candidiasis. We demonstrated that the peritoneal macrophages and the cell types present in the cecal tissue from HF fed mice present a M2b polarization (TNF-αhigh, IL-10high, MR, Dectin-1). Interestingly, rosiglitazone induces a phenotypic M2b-to-M2a (TNF-αlow, IL-10low, MRhigh, Dectin-1high) switch of peritoneal macrophages and of the cells present in the cecal tissue. The incapacity of WY14643 to switch this polarization toward M2a state, strongly suggests the specific involvement of PPARγ in this mechanism. We showed that in insulin resistant mice, M2b polarization of macrophages present on the site of infection is associated with an increased susceptibility to GI candidiasis, whereas M2a polarization after rosiglitazone treatment favours the GI fungal elimination independently of reduced blood glucose. In conclusion, our data demonstrate a dual benefit of PPARγ ligands because they promote mucosal defence mechanisms against GI candidiasis through M2a macrophage polarization while regulating blood glucose level. PMID:20877467

  16. Macrophages in Langerhans cell histiocytosis are differentiated toward M2 phenotype: their possible involvement in pathological processes.

    PubMed

    Ohnishi, Koji; Komohara, Yoshihiro; Sakashita, Naomi; Iyama, Ken-Ichi; Murayama, Toshihiko; Takeya, Motohiro

    2010-01-01

    Although numerous macrophages are found in the lesions of Langerhans cell histiocytosis (LCH), their activation phenotypes and their roles in the disease process have not been clarified. Paraffin-embedded LCH samples were examined on immunohistochemistry and it was found that CD163 can be used to distinguish infiltrated macrophages from neoplastic Langerhans cells (LC). The number of CD163-positve macrophages was positively correlated with the number of multinucleated giant cells (MGC), indicating that most MGC are derived from infiltrated macrophages. A significant number of CD163-positive macrophages were positive for interleukin (IL)-10 and phospho-signal transducer and activator of transcription-3 (pSTAT3), an IL-10-induced signal transduction molecule. This indicates that these macrophages are polarized to anti-inflammatory macrophages of M2 phenotype. Tumor-derived macrophage-colony-stimulating factor (M-CSF) was considered to responsible for inducing M2 differentiation of infiltrated macrophages. The number of CD163-positive macrophages in different cases of LCH varied, and interestingly the density of CD163-positive macrophages was inversely correlated with the Ki-67-positivity of LC. Although the underlying mechanism is not fully elucidated, macrophage-derived IL-10 was considered to be involved in the suppression of tumor cell proliferation via activation of STAT3. PMID:20055949

  17. Quantitative changes in tumor-associated M2 macrophages characterize cholangiocarcinoma and their association with metastasis.

    PubMed

    Thanee, Malinee; Loilome, Watcharin; Techasen, Anchalee; Namwat, Nisana; Boonmars, Thidarut; Pairojkul, Chawalit; Yongvanit, Puangrat

    2015-01-01

    The tumor microenvironment (TME) includes numerous non-neoplastic cells such as leukocytes and fibroblasts that surround the neoplasm and influence its growth. Tumor-associated macrophages (TAMs) and cancer-associated fibroblasts (CAFs) are documented as key players in facilitating cancer appearance and progression. Alteration of the macrophage (CD68, CD163) and fibroblast (α-SMA, FSP-1) cells in Opisthorchis viverrini (Ov)-induced cholangiocarcinoma (CCA) was here assessed using liver tissues from an established hamster model and from 43 human cases using immunohistochemistry. We further investigated whether M2-activated TAMs influence CCA cell migration ability by wound healing assay and Western blot analysis. Macrophages and fibroblasts change their phenotypes to M2-TAMs (CD68+, CD163+) and CAFs (α-SMA+, FSP-1+), respectively in the early stages of carcinogenesis. Interestingly, a high density of the M2-TAMs CCA in patients is significantly associated with the presence of extrahepatic metastases (p=0.021). Similarly, CD163+ CCA cells are correlated with metastases (p=0.002), and they may be representative of an epithelial-to-mesenchymal transition (EMT) with increased metastatic activity. We further showed that M2-TAM conditioned medium can induce CCA cell migration as well as increase N-cadherin expression (mesenchymal marker). The present work revealed that significant TME changes occur at an early stage of Ov-induced carcinogenesis and that M2-TAMs are key factors contributing to CCA metastasis, possibly via EMT processes. PMID:25854403

  18. Oxysterol mixture and, in particular, 27-hydroxycholesterol drive M2 polarization of human macrophages.

    PubMed

    Marengo, Barbara; Bellora, Francesca; Ricciarelli, Roberta; De Ciucis, Chiara; Furfaro, AnnaLisa; Leardi, Riccardo; Colla, Renata; Pacini, Davide; Traverso, Nicola; Moretta, Alessandro; Pronzato, Maria Adelaide; Bottino, Cristina; Domenicotti, Cinzia

    2016-01-01

    Macrophages play a crucial role in atherosclerosis progression. Classically activated M1 macrophages have been found in rupture-prone atherosclerotic plaques whereas alternatively activated macrophages, M2, localize in stable plaque. Macrophage accumulation of cholesterol and of its oxidized derivatives (oxysterols) leads to the formation of foam cells, a hallmark of atherosclerotic lesions. In this study, the effects of oxysterols in determining the functional polarization of human macrophages were investigated. Monocytes, purified from peripheral blood mononuclear cells of healthy donors, were differentiated into macrophages (M0) and treated with an oxysterol mixture, cholesterol, or ethanol, every 4 H for a total of 4, 8, and 12 H. The administration of the compounds was repeated in order to maintain the levels of oxysterols constant throughout the treatment. Compared with ethanol treatment, the oxysterol mixture decreased the surface expression of CD36 and CD204 scavenger receptors and reduced the amount of reactive oxygen species whereas it did not affect either cell viability or matrix metalloprotease-9 activity. Moreover, the oxysterol mixture increased the expression of both liver X receptor α and ATP-binding cassette transporter 1. An enhanced secretion of the immunoregulatory cytokine IL-10 accompanied these events. The results supported the hypothesis that the constant levels of oxysterols and, in particular, of 27-hydroxycholesterol stimulate macrophage polarization toward the M2 immunomodulatory functional phenotype, contributing to the stabilization of atherosclerotic plaques. © 2015 The Authors BioFactors published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology, 42(1):80-92, 2016. PMID:26669587

  19. Regulation of Macrophage Motility by the Water Channel Aquaporin-1: Crucial Role of M0/M2 Phenotype Switch

    PubMed Central

    Tyteca, Donatienne; Nishino, Tomoya; Debaix, Huguette; Van Der Smissen, Patrick; N'Kuli, Francisca; Hoffmann, Delia; Cnops, Yvette; Rabolli, Virginie; van Loo, Geert; Beyaert, Rudi; Huaux, François; Devuyst, Olivier; Courtoy, Pierre J.

    2015-01-01

    The water channel aquaporin-1 (AQP1) promotes migration of many cell types. Although AQP1 is expressed in macrophages, its potential role in macrophage motility, particularly in relation with phenotype polarization, remains unknown. We here addressed these issues in peritoneal macrophages isolated from AQP1-deficient mice, either undifferentiated (M0) or stimulated with LPS to orientate towards pro-inflammatory phenotype (classical macrophage activation; M1). In non-stimulated macrophages, ablation of AQP1 (like inhibition by HgCl2) increased by 2–3 fold spontaneous migration in a Src/PI3K/Rac-dependent manner. This correlated with cell elongation and formation of lamellipodia/ruffles, resulting in membrane lipid and F4/80 recruitment to the leading edge. This indicated that AQP1 normally suppresses migration of resting macrophages, as opposed to other cell types. Resting Aqp1-/- macrophages exhibited CD206 redistribution into ruffles and increased arginase activity like IL4/IL13 (alternative macrophage activation; M2), indicating a M0-M2 shift. In contrast, upon M1 orientation by LPS in vitro or peritoneal inflammation in vivo, migration of Aqp1-/- macrophages was reduced. Taken together, these data indicate that AQP1 oppositely regulates macrophage migration, depending on stimulation or not by LPS, and that macrophage phenotypic and migratory changes may be regulated independently of external cues. PMID:25719758

  20. Regulation of macrophage motility by the water channel aquaporin-1: crucial role of M0/M2 phenotype switch.

    PubMed

    Tyteca, Donatienne; Nishino, Tomoya; Debaix, Huguette; Van Der Smissen, Patrick; N'Kuli, Francisca; Hoffmann, Delia; Cnops, Yvette; Rabolli, Virginie; van Loo, Geert; Beyaert, Rudi; Huaux, François; Devuyst, Olivier; Courtoy, Pierre J

    2015-01-01

    The water channel aquaporin-1 (AQP1) promotes migration of many cell types. Although AQP1 is expressed in macrophages, its potential role in macrophage motility, particularly in relation with phenotype polarization, remains unknown. We here addressed these issues in peritoneal macrophages isolated from AQP1-deficient mice, either undifferentiated (M0) or stimulated with LPS to orientate towards pro-inflammatory phenotype (classical macrophage activation; M1). In non-stimulated macrophages, ablation of AQP1 (like inhibition by HgCl2) increased by 2-3 fold spontaneous migration in a Src/PI3K/Rac-dependent manner. This correlated with cell elongation and formation of lamellipodia/ruffles, resulting in membrane lipid and F4/80 recruitment to the leading edge. This indicated that AQP1 normally suppresses migration of resting macrophages, as opposed to other cell types. Resting Aqp1-/- macrophages exhibited CD206 redistribution into ruffles and increased arginase activity like IL4/IL13 (alternative macrophage activation; M2), indicating a M0-M2 shift. In contrast, upon M1 orientation by LPS in vitro or peritoneal inflammation in vivo, migration of Aqp1-/- macrophages was reduced. Taken together, these data indicate that AQP1 oppositely regulates macrophage migration, depending on stimulation or not by LPS, and that macrophage phenotypic and migratory changes may be regulated independently of external cues. PMID:25719758

  1. IL4I1 Is a Novel Regulator of M2 Macrophage Polarization That Can Inhibit T Cell Activation via L-Tryptophan and Arginine Depletion and IL-10 Production

    PubMed Central

    Yue, Yinpu; Huang, Wei; Liang, Jingjing; Guo, Jing; Ji, Jian; Yao, Yunliang; Zheng, Mingzhu; Cai, Zhijian; Lu, Linrong; Wang, Jianli

    2015-01-01

    Interleukin 4-induced gene-1 (IL4I1) was initially described as an early IL-4-inducible gene in B cells. IL4I1 protein can inhibit T cell proliferation by releasing its enzymatic catabolite, H2O2, and this effect is associated with transient down-regulation of T cell CD3 receptor-zeta (TCRζ) expression. Herein, we show that IL4I1 contributes to the regulation of macrophage programming. We found that expression of IL4I1 increased during bone marrow-derived macrophage (BMDM) differentiation, expression of IL4I1 is much higher in primary macrophages than monocytes, and IL4I1 expression in BMDMs could be induced by Th1 and Th2 cytokines in two different patterns. Gene expression analysis revealed that overexpression of IL4I1 drove the expression of M2 markers (Fizz1, Arg1, YM-1, MR) and inhibited the expression of M1-associated cytokines. Conversely, knockdown of IL4I1 by siRNA resulted in opposite effects, and also attenuated STAT-3 and STAT-6 phosphorylation. Furthermore, IL4I1 produced by macrophages catalyzed L-tryptophan degradation, while levo-1-methyl-tryptophan (L-1-MT), but not dextro-1-methyl-tryptophan, partially rescued IL4I1-dependent inhibition of T cell activation. Other inhibitors, such as diphenylene iodonium (DPI), an anti-IL-10Rα blocking antibody, and a nitric oxide synthase inhibitor, NG-monomethyl-L-arginine, also had this effect. Overall, our findings indicate that IL4I1 promotes an enhanced M2 functional phenotype, which is most likely associated with the phosphorylation of STAT-6 and STAT-3. Moreover, DPI, L-1-MT, NG-monomethyl-L-arginine, and anti-IL-10Rα blocking antibody were all found to be effective IL4I1 inhibitors in vitro. PMID:26599209

  2. Wound administration of M2-polarized macrophages does not improve murine cutaneous healing responses.

    PubMed

    Jetten, Nadine; Roumans, Nadia; Gijbels, Marion J; Romano, Andrea; Post, Mark J; de Winther, Menno P J; van der Hulst, Rene R W J; Xanthoulea, Sofia

    2014-01-01

    Macrophages play a crucial role in all stages of cutaneous wound healing responses and dysregulation of macrophage function can result in derailed wound repair. The phenotype of macrophages is influenced by the wound microenvironment and evolves during healing from a more pro-inflammatory (M1) profile in early stages, to a less inflammatory pro-healing (M2) phenotype in later stages of repair. The aim of the current study was to investigate the potential of exogenous administration of M2 macrophages to promote wound healing in an experimental mouse model of cutaneous injury. Bone marrow derived macrophages were stimulated in-vitro with IL-4 or IL-10 to obtain two different subsets of M2-polarized cells, M2a or M2c respectively. Polarized macrophages were injected into full-thickness excisional skin wounds of either C57BL/6 or diabetic db/db mice. Control groups were injected with non-polarized (M0) macrophages or saline. Our data indicate that despite M2 macrophages exhibit an anti-inflammatory phenotype in-vitro, they do not improve wound closure in wild type mice while they delay healing in diabetic mice. Examination of wounds on day 15 post-injury indicated delayed re-epithelialization and persistence of neutrophils in M2 macrophage treated diabetic wounds. Therefore, topical application of ex-vivo generated M2 macrophages is not beneficial and contraindicated for cell therapy of skin wounds. PMID:25068282

  3. Wound Administration of M2-Polarized Macrophages Does Not Improve Murine Cutaneous Healing Responses

    PubMed Central

    Jetten, Nadine; Roumans, Nadia; Gijbels, Marion J.; Romano, Andrea; Post, Mark J.; de Winther, Menno P. J.; van der Hulst, Rene R. W. J.; Xanthoulea, Sofia

    2014-01-01

    Macrophages play a crucial role in all stages of cutaneous wound healing responses and dysregulation of macrophage function can result in derailed wound repair. The phenotype of macrophages is influenced by the wound microenvironment and evolves during healing from a more pro-inflammatory (M1) profile in early stages, to a less inflammatory pro-healing (M2) phenotype in later stages of repair. The aim of the current study was to investigate the potential of exogenous administration of M2 macrophages to promote wound healing in an experimental mouse model of cutaneous injury. Bone marrow derived macrophages were stimulated in-vitro with IL-4 or IL-10 to obtain two different subsets of M2-polarized cells, M2a or M2c respectively. Polarized macrophages were injected into full-thickness excisional skin wounds of either C57BL/6 or diabetic db/db mice. Control groups were injected with non-polarized (M0) macrophages or saline. Our data indicate that despite M2 macrophages exhibit an anti-inflammatory phenotype in-vitro, they do not improve wound closure in wild type mice while they delay healing in diabetic mice. Examination of wounds on day 15 post-injury indicated delayed re-epithelialization and persistence of neutrophils in M2 macrophage treated diabetic wounds. Therefore, topical application of ex-vivo generated M2 macrophages is not beneficial and contraindicated for cell therapy of skin wounds. PMID:25068282

  4. Parthenolide Relieves Pain and Promotes M2 Microglia/Macrophage Polarization in Rat Model of Neuropathy

    PubMed Central

    Popiolek-Barczyk, Katarzyna; Kolosowska, Natalia; Makuch, Wioletta; Rojewska, Ewelina; Jurga, Agnieszka M.; Pilat, Dominika

    2015-01-01

    Neuropathic pain treatment remains a challenge because pathomechanism is not fully understood. It is believed that glial activation and increased spinal nociceptive factors are crucial for neuropathy. We investigated the effect of parthenolide (PTL) on the chronic constriction injury to the sciatic nerve (CCI)-induced neuropathy in rat. We analyzed spinal changes in glial markers and M1 and M2 polarization factors, as well as intracellular signaling pathways. PTL (5 µg; i.t.) was preemptively and then daily administered for 7 days after CCI. PTL attenuated the allodynia and hyperalgesia and increased the protein level of IBA1 (a microglial/macrophage marker) but did not change GFAP (an astrocyte marker) on day 7 after CCI. PTL reduced the protein level of M1 (IL-1β, IL-18, and iNOS) and enhanced M2 (IL-10, TIMP1) factors. In addition, it downregulated the phosphorylated form of NF-κB, p38MAPK, and ERK1/2 protein level and upregulated STAT3. In primary microglial cell culture we have shown that IL-1β, IL-18, iNOS, IL-6, IL-10, and TIMP1 are of microglial origin. Summing up, PTL directly or indirectly attenuates neuropathy symptoms and promotes M2 microglia/macrophages polarization. We suggest that neuropathic pain therapies should be shifted from blanketed microglia/macrophage suppression toward maintenance of the balance between neuroprotective and neurotoxic microglia/macrophage phenotypes. PMID:26090236

  5. Notch signaling regulates M2 type macrophage polarization during the development of proliferative vitreoretinopathy.

    PubMed

    Zhang, Jingjing; Zhou, Qingjun; Yuan, Gongqiang; Dong, Muchen; Shi, Weiyun

    2015-01-01

    Macrophages play an important role in the pathogenesis of proliferative vitreoretinopathy (PVR). M2 macrophages can promote tissue remodeling and repair. In this study, CD206 positive M2 type macrophages were found in preretinal fibrous membranes of the mouse model of PVR induced by the intravitreal injection of retinal pigment epithelial (RPE) cells. Notch signaling determines M2 macrophage polarization. The specific inhibition of Notch signaling pathway by the intravitreal injection of γ-secretase inhibitor DAPT attenuated RPE cells-induced PVR formation as demonstrated by the decreased expression of α-SMA, and inhibited M2 type macrophage infiltation as demonstrated by the decreased expression of Arg-1. Notch signaling may modulate PVR formation by regulating M2 type macrophage polarization. PMID:26410397

  6. TPL-2 Regulates Macrophage Lipid Metabolism and M2 Differentiation to Control TH2-Mediated Immunopathology

    PubMed Central

    Entwistle, Lewis J.; Khoury, Hania; Papoutsopoulou, Stamatia; Mahmood, Radma; Mansour, Nuha R.; Ching-Cheng Huang, Stanley; Pearce, Edward J.; Pedro S. de Carvalho, Luiz; Ley, Steven C.

    2016-01-01

    Persistent TH2 cytokine responses following chronic helminth infections can often lead to the development of tissue pathology and fibrotic scarring. Despite a good understanding of the cellular mechanisms involved in fibrogenesis, there are very few therapeutic options available, highlighting a significant medical need and gap in our understanding of the molecular mechanisms of TH2-mediated immunopathology. In this study, we found that the Map3 kinase, TPL-2 (Map3k8; Cot) regulated TH2-mediated intestinal, hepatic and pulmonary immunopathology following Schistosoma mansoni infection or S. mansoni egg injection. Elevated inflammation, TH2 cell responses and exacerbated fibrosis in Map3k8–/–mice was observed in mice with myeloid cell-specific (LysM) deletion of Map3k8, but not CD4 cell-specific deletion of Map3k8, indicating that TPL-2 regulated myeloid cell function to limit TH2-mediated immunopathology. Transcriptional and metabolic assays of Map3k8–/–M2 macrophages identified that TPL-2 was required for lipolysis, M2 macrophage activation and the expression of a variety of genes involved in immuno-regulatory and pro-fibrotic pathways. Taken together this study identified that TPL-2 regulated TH2-mediated inflammation by supporting lipolysis and M2 macrophage activation, preventing TH2 cell expansion and downstream immunopathology and fibrosis. PMID:27487182

  7. TPL-2 Regulates Macrophage Lipid Metabolism and M2 Differentiation to Control TH2-Mediated Immunopathology.

    PubMed

    Kannan, Yashaswini; Perez-Lloret, Jimena; Li, Yanda; Entwistle, Lewis J; Khoury, Hania; Papoutsopoulou, Stamatia; Mahmood, Radma; Mansour, Nuha R; Ching-Cheng Huang, Stanley; Pearce, Edward J; Pedro S de Carvalho, Luiz; Ley, Steven C; Wilson, Mark S

    2016-08-01

    Persistent TH2 cytokine responses following chronic helminth infections can often lead to the development of tissue pathology and fibrotic scarring. Despite a good understanding of the cellular mechanisms involved in fibrogenesis, there are very few therapeutic options available, highlighting a significant medical need and gap in our understanding of the molecular mechanisms of TH2-mediated immunopathology. In this study, we found that the Map3 kinase, TPL-2 (Map3k8; Cot) regulated TH2-mediated intestinal, hepatic and pulmonary immunopathology following Schistosoma mansoni infection or S. mansoni egg injection. Elevated inflammation, TH2 cell responses and exacerbated fibrosis in Map3k8-/-mice was observed in mice with myeloid cell-specific (LysM) deletion of Map3k8, but not CD4 cell-specific deletion of Map3k8, indicating that TPL-2 regulated myeloid cell function to limit TH2-mediated immunopathology. Transcriptional and metabolic assays of Map3k8-/-M2 macrophages identified that TPL-2 was required for lipolysis, M2 macrophage activation and the expression of a variety of genes involved in immuno-regulatory and pro-fibrotic pathways. Taken together this study identified that TPL-2 regulated TH2-mediated inflammation by supporting lipolysis and M2 macrophage activation, preventing TH2 cell expansion and downstream immunopathology and fibrosis. PMID:27487182

  8. Role of the tumor suppressor ARF in macrophage polarization: Enhancement of the M2 phenotype in ARF-deficient mice.

    PubMed

    Herranz, Sandra; Través, Paqui G; Luque, Alfonso; Hortelano, Sonsoles

    2012-11-01

    The ARF locus is frequently inactivated in human cancer. The oncosuppressor ARF has indeed been described as a general sensor for different situation of cellular stress. We have previously demonstrated that ARF deficiency severely impairs inflammatory responses in vitro and in vivo, establishing a role for ARF in the regulation of innate immunity. The aim of the present work was to get further insights into the immune functions of ARF and to evaluate its possible contribution to the polarization of macrophages toward the M1 or M2 phenotype. Our results demonstrate that resting Arf(-/-) macrophages express high levels of Ym1 and Fizz-1, two typical markers of alternatively-activated macrophages (M2). Additionally, Arf(-/-) peritoneal macrophages showed an impaired response to lipopolysaccharide (a classical inducer of M1 polaryzation) and a reduced production of pro-inflammatory cytokines/chemokines. Moreover, upon stimulation with interleukin-4 (IL-4), an inducer of the M2 phenotype, well established M2 markers such as Fizz-1, Ym1 and arginase-1 were upregulated in Arf(-/-) as compared with wild type macrophages. Accordingly, the cytokine and chemokine profile associated with the M2 phenotype was significantly overexpressed in Arf(-/-) macrophages responding to IL-4. In addition, multiple pro-angiogenic factors such as VEGF and MMP-9 were also increased. In summary, these results indicate that ARF contributes to the polarization and functional plasticity of macrophages. PMID:23243586

  9. MicroRNA-720 suppresses M2 macrophage polarization by targeting GATA3

    PubMed Central

    Zhong, Yan; Yi, Chun

    2016-01-01

    Macrophages are highly plastic cells with the ability to differentiate into both M1- and M2-polarized phenotypes. As a distinct M2-polarized population, tumour-associated macrophages (TAMs) promote tumorigenesis owing to their pro-angiogenic and immune-suppressive functions in tumour microenvironment. In the present study, we found that the microRNA-720 (miR-720) was down-regulated in TAMs isolated from breast carcinomas and M2-polarization macrophages. Overexpression of miR-720 attenuated M2 phenotype expression and thus inhibited M2 polarization. We further identified GATA binding protein 3 (GATA3), a transcriptional factor that plays an important role in M2 macrophage polarization, was the downstream target of miR-720. Ectopic expression of GATA3 restored the M2 phenotype in miR-720 overexpressed macrophages. Importantly, overexpression of miR-720 inhibited pro-migration behaviour and phagocytic ability of M2-polarized macrophages. Thus, our data suggest that miR-720 plays an important role in regulating M2 macrophage polarization and function. PMID:27354564

  10. Elastin-Derived Peptides Promote Abdominal Aortic Aneurysm Formation by Modulating M1/M2 Macrophage Polarization.

    PubMed

    Dale, Matthew A; Xiong, Wanfen; Carson, Jeffrey S; Suh, Melissa K; Karpisek, Andrew D; Meisinger, Trevor M; Casale, George P; Baxter, B Timothy

    2016-06-01

    Abdominal aortic aneurysm is a dynamic vascular disease characterized by inflammatory cell invasion and extracellular matrix degradation. Damage to elastin in the extracellular matrix results in release of elastin-derived peptides (EDPs), which are chemotactic for inflammatory cells such as monocytes. Their effect on macrophage polarization is less well known. Proinflammatory M1 macrophages initially are recruited to sites of injury, but, if their effects are prolonged, they can lead to chronic inflammation that prevents normal tissue repair. Conversely, anti-inflammatory M2 macrophages reduce inflammation and aid in wound healing. Thus, a proper M1/M2 ratio is vital for tissue homeostasis. Abdominal aortic aneurysm tissue reveals a high M1/M2 ratio in which proinflammatory cells and their associated markers dominate. In the current study, in vitro treatment of bone marrow-derived macrophages with EDPs induced M1 macrophage polarization. By using C57BL/6 mice, Ab-mediated neutralization of EDPs reduced aortic dilation, matrix metalloproteinase activity, and proinflammatory cytokine expression at early and late time points after aneurysm induction. Furthermore, direct manipulation of the M1/M2 balance altered aortic dilation. Injection of M2-polarized macrophages reduced aortic dilation after aneurysm induction. EDPs promoted a proinflammatory environment in aortic tissue by inducing M1 polarization, and neutralization of EDPs attenuated aortic dilation. The M1/M2 imbalance is vital to aneurysm formation. PMID:27183603

  11. M2 polarized macrophages induced by CSE promote proliferation, migration, and invasion of alveolar basal epithelial cells.

    PubMed

    Fu, Xiao; Shi, Hengfei; Qi, Yue; Zhang, Weiyun; Dong, Ping

    2015-09-01

    Cigarette smoking plays an important role in the genesis of lung cancer, and tumor-associated macrophages (TAMs) are believed to accelerate the process. We therefore sought to clarify the relationship between cigarette smoking, TAMs and tumorigenesis. We treated macrophages (THP-1) with cigarette smoke extract (CSE) and found that the mRNA levels of IL-6, IL-10, IL-12 and TNF-α decreased, while TGF-β mRNA levels increased. CSE significantly inhibited the phagocytic ability of macrophages, as assessed by flow cytometric analysis of FITC-dextran internalization. JAK2/STAT3 was significantly activated by CSE, as determined by Western blot analysis. When the scavenger receptor CD163, a specific marker of M2 macrophages, was analyzed by flow cytometry, its expression was significantly increased. After inducing M2 polarization of THP-1 cells, we co-cultured macrophages and alveolar basal epithelial cells (A549). The proliferation of A549 cells was detected by the MTT assay and cell cycle analysis, while their migration and invasion were detected by scratch wound assay and transwell assay. The results showed that the proliferation, migration and invasion of A549 cells were significantly promoted by M2 macrophages but were slightly inhibited by CSE. In conclusion, we demonstrated that macrophage M2 polarization induced by CSE promotes proliferation, migration, and invasion of alveolar basal epithelial cells. PMID:26253658

  12. M2 Polarization of Monocytes-Macrophages Is a Hallmark of Indian Post Kala-Azar Dermal Leishmaniasis.

    PubMed

    Mukhopadhyay, Debanjan; Mukherjee, Shibabrata; Roy, Susmita; Dalton, Jane E; Kundu, Sunanda; Sarkar, Avijit; Das, Nilay K; Kaye, Paul M; Chatterjee, Mitali

    2015-10-01

    The high level of functional diversity and plasticity in monocytes/macrophages has been defined within in vitro systems as M1 (classically activated), M2 (alternatively activated) and deactivated macrophages, of which the latter two subtypes are associated with suppression of cell mediated immunity, that confers susceptibility to intracellular infection. Although the Leishmania parasite modulates macrophage functions to ensure its survival, what remains an unanswered yet pertinent question is whether these macrophages are deactivated or alternatively activated. This study aimed to characterize the functional plasticity and polarization of monocytes/macrophages and delineate their importance in the immunopathogenesis of Post kala-azar dermal leishmaniasis (PKDL), a chronic dermatosis of human leishmaniasis. Monocytes from PKDL patients showed a decreased expression of TLR-2/4, along with an attenuated generation of reactive oxidative/nitrosative species. At disease presentation, an increased mRNA expression of classical M2 markers CD206, ARG1 and PPARG in monocytes and lesional macrophages indicated M2 polarization of macrophages which was corroborated by increased expression of CD206 and arginase-1. Furthermore, altered vitamin D signaling was a key feature in PKDL, as disease presentation was associated with raised plasma levels of monohydroxylated vitamin D3 and vitamin D3- associated genes, features of M2 polarization. Taken together, in PKDL, monocyte/macrophage subsets appear to be alternatively activated, a phenotype that might sustain disease chronicity. Importantly, repolarization of these monocytes to M1 by antileishmanial drugs suggests that switching from M2 to M1 phenotype might represent a therapeutic opportunity, worthy of future pharmacological consideration. PMID:26496711

  13. Pomegranate juice polyphenols induce a phenotypic switch in macrophage polarization favoring a M2 anti-inflammatory state.

    PubMed

    Aharoni, Saar; Lati, Yoni; Aviram, Michael; Fuhrman, Bianca

    2015-01-01

    It was documented that pomegranate has anti-inflammatory effects. In this study, we investigated a direct effect of pomegranate juice (PJ) and its polyphenols on macrophage inflammatory phenotype. In vitro, PJ and its major polyphenols dose-dependently attenuated macrophage response to M1 proinflammatory activation in J774.A1 macrophage-like cell line. This was evidenced by a significant decrease in TNFα and IL-6 secretion in response to stimulation by IFNγ and Lipopolysaccharide. In addition, PJ and punicalagin dose-dependently promoted the macrophages toward a M2 anti-inflammatory phenotype, as determined by a significant increase in the spontaneous secretion of IL-10. In mice, supplementation with dietary PJ substantially inhibited the M2 to M1 macrophage phenotypic shift associated with age, toward a favorable anti-inflammatory M2 phenotype. This effect was also reflected in the mice atherosclerotic plaques, as evaluated by the distinct expression of arginase isoforms. PJ consumption inhibited the increment of arginase II (Arg II, M1) mRNA expression during aging, and maintained the levels of Arg I (M2) expression similar to those in young mice aorta. This study demonstrates, for the first time, that pomegranate polyphenols directly suppress macrophage inflammatory responses and promote M1 to M2 switch in macrophage phenotype. Furthermore, this study indicates that PJ consumption may inhibit the progressive proinflammatory state in the aorta along atherosclerosis development with aging, due to a switch in macrophage phenotype from proinflammatory M1 to anti-inflammatory M2. PMID:25650983

  14. M2-like macrophages are responsible for collagen degradation through a mannose receptor–mediated pathway

    PubMed Central

    Madsen, Daniel H.; Leonard, Daniel; Masedunskas, Andrius; Moyer, Amanda; Jürgensen, Henrik Jessen; Peters, Diane E.; Amornphimoltham, Panomwat; Selvaraj, Arul; Yamada, Susan S.; Brenner, David A.; Burgdorf, Sven; Engelholm, Lars H.; Behrendt, Niels; Holmbeck, Kenn; Weigert, Roberto

    2013-01-01

    Tissue remodeling processes critically depend on the timely removal and remodeling of preexisting collagen scaffolds. Nevertheless, many aspects related to the turnover of this abundant extracellular matrix component in vivo are still incompletely understood. We therefore took advantage of recent advances in optical imaging to develop an assay to visualize collagen turnover in situ and identify cell types and molecules involved in this process. Collagen introduced into the dermis of mice underwent cellular endocytosis in a partially matrix metalloproteinase–dependent manner and was subsequently routed to lysosomes for complete degradation. Collagen uptake was predominantly executed by a quantitatively minor population of M2-like macrophages, whereas more abundant Col1a1-expressing fibroblasts and Cx3cr1-expressing macrophages internalized collagen at lower levels. Genetic ablation of the collagen receptors mannose receptor (Mrc1) and urokinase plasminogen activator receptor–associated protein (Endo180 and Mrc2) impaired this intracellular collagen degradation pathway. This study demonstrates the importance of receptor-mediated cellular uptake to collagen turnover in vivo and identifies a key role of M2-like macrophages in this process. PMID:24019537

  15. Expression of area-specific M2-macrophage phenotype by recruited rat monocytes in duct-ligation pancreatitis.

    PubMed

    Yu, Enqiao; Goto, Mataro; Ueta, Hisashi; Kitazawa, Yusuke; Sawanobori, Yasushi; Kariya, Taro; Sasaki, Masaru; Matsuno, Kenjiro

    2016-06-01

    Acute pancreatitis remains a disease of uncertain pathogenesis and no established specific therapy. Previously, we found a predominant increase and active proliferation of macrophages in the inflamed tissues of a rat duct-ligation pancreatitis model. To analyze the origin and possible role of these macrophages, we investigated their in situ cellular kinetics in a rat model of duct-ligation pancreatitis using a recently established method of multicolor immunostaining for macrophage markers and for proliferating cells with ethynyl deoxyuridine. To detect monocyte-derived macrophages, green fluorescent protein-transgenic (GFP(+)) leukocytes were transferred to monocyte-depleted recipients. In the inflamed pancreas, infiltrating macrophages were mainly two phenotypes, CD68(+)CD163(-) round cells and CD68(+)CD163(+) large polygonal cells, both of which showed active proliferation. In the interlobular area, the proportions of CD68(+)CD163(low) and CD68(+)CD163(high) cells increased over time. Most expressed the M2-macrophage markers CD206 and arginase 1. In contrast, in the interacinar area, CD68(+) cells did not upregulate CD163 and CD206, but ~30 % of them expressed the M1 marker nitric oxide synthase 2 on day 4. GFP(+)-recruited cells were primarily CD68(+)CD163(-) monocytes on day 1 and showed phenotypic changes similar to those of the monocyte non-depleted groups. In conclusion, infiltrating macrophages mostly formed two distinct subpopulations in different areas: monocyte-derived macrophages with the M2 phenotype in the interlobular area or non-M2 phenotype in the interacinar area. Involvement of resident macrophages might be minor in this model. These results are the first demonstration of an upregulated M2 phenotype in rat inflammatory monocytes, which may promote tissue repair. PMID:26860866

  16. M2 Polarization of Human Macrophages Favors Survival of the Intracellular Pathogen Chlamydia pneumoniae

    PubMed Central

    Buchacher, Tanja; Ohradanova-Repic, Anna; Stockinger, Hannes

    2015-01-01

    Intracellular pathogens have developed various strategies to escape immunity to enable their survival in host cells, and many bacterial pathogens preferentially reside inside macrophages, using diverse mechanisms to penetrate their defenses and to exploit their high degree of metabolic diversity and plasticity. Here, we characterized the interactions of the intracellular pathogen Chlamydia pneumoniae with polarized human macrophages. Primary human monocytes were pre-differentiated with granulocyte macrophage colony-stimulating factor or macrophage colony-stimulating factor for 7 days to yield M1-like and M2-like macrophages, which were further treated with interferon-γ and lipopolysaccharide or with interleukin-4 for 48 h to obtain fully polarized M1 and M2 macrophages. M1 and M2 cells exhibited distinct morphology with round or spindle-shaped appearance for M1 and M2, respectively, distinct surface marker profiles, as well as different cytokine and chemokine secretion. Macrophage polarization did not influence uptake of C. pneumoniae, since comparable copy numbers of chlamydial DNA were detected in M1 and M2 at 6 h post infection, but an increase in chlamydial DNA over time indicating proliferation was only observed in M2. Accordingly, 72±5% of M2 vs. 48±7% of M1 stained positive for chlamydial lipopolysaccharide, with large perinuclear inclusions in M2 and less clearly bordered inclusions for M1. Viable C. pneumoniae was present in lysates from M2, but not from M1 macrophages. The ability of M1 to restrict chlamydial replication was not observed in M1-like macrophages, since chlamydial load showed an equal increase over time for M1-like and M2-like macrophages. Our findings support the importance of macrophage polarization for the control of intracellular infection, and show that M2 are the preferred survival niche for C. pneumoniae. M1 did not allow for chlamydial proliferation, but failed to completely eliminate chlamydial infection, giving further evidence

  17. M2 Polarization of Human Macrophages Favors Survival of the Intracellular Pathogen Chlamydia pneumoniae.

    PubMed

    Buchacher, Tanja; Ohradanova-Repic, Anna; Stockinger, Hannes; Fischer, Michael B; Weber, Viktoria

    2015-01-01

    Intracellular pathogens have developed various strategies to escape immunity to enable their survival in host cells, and many bacterial pathogens preferentially reside inside macrophages, using diverse mechanisms to penetrate their defenses and to exploit their high degree of metabolic diversity and plasticity. Here, we characterized the interactions of the intracellular pathogen Chlamydia pneumoniae with polarized human macrophages. Primary human monocytes were pre-differentiated with granulocyte macrophage colony-stimulating factor or macrophage colony-stimulating factor for 7 days to yield M1-like and M2-like macrophages, which were further treated with interferon-γ and lipopolysaccharide or with interleukin-4 for 48 h to obtain fully polarized M1 and M2 macrophages. M1 and M2 cells exhibited distinct morphology with round or spindle-shaped appearance for M1 and M2, respectively, distinct surface marker profiles, as well as different cytokine and chemokine secretion. Macrophage polarization did not influence uptake of C. pneumoniae, since comparable copy numbers of chlamydial DNA were detected in M1 and M2 at 6 h post infection, but an increase in chlamydial DNA over time indicating proliferation was only observed in M2. Accordingly, 72±5% of M2 vs. 48±7% of M1 stained positive for chlamydial lipopolysaccharide, with large perinuclear inclusions in M2 and less clearly bordered inclusions for M1. Viable C. pneumoniae was present in lysates from M2, but not from M1 macrophages. The ability of M1 to restrict chlamydial replication was not observed in M1-like macrophages, since chlamydial load showed an equal increase over time for M1-like and M2-like macrophages. Our findings support the importance of macrophage polarization for the control of intracellular infection, and show that M2 are the preferred survival niche for C. pneumoniae. M1 did not allow for chlamydial proliferation, but failed to completely eliminate chlamydial infection, giving further evidence

  18. Combined 17β-Estradiol with TCDD Promotes M2 Polarization of Macrophages in the Endometriotic Milieu with Aid of the Interaction between Endometrial Stromal Cells and Macrophages.

    PubMed

    Wang, Yun; Chen, Hong; Wang, NingLing; Guo, HaiYan; Fu, Yonglun; Xue, Songguo; Ai, Ai; Lyu, Qifeng; Kuang, Yanping

    2015-01-01

    The goal of this study is to elucidate the effects of 17β-estradiol and TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) on macrophage phenotypes in the endometriotic milieu. Co-culture of endometrial stromal cells (ESCs) and U937 cells (macrophage cell line) was performed to simulate the endometriotic milieu and to determine the effects of 17β-estradiol and/or TCDD on IL10, IL12 production and HLA-DR, CD86 expression by U937 macrophages. We found that combining 17β-estradiol with TCDD has a synergistic effect on inducing M2 activation when macrophages are co-cultured with ESCs. Moreover, the combination of 17β-estradiol and TCDD significantly enhanced STAT3 and P38 phosphorylation in macrophages. Differentiation of M2 macrophages induced by 17β-estradiol and TCDD were effectively abrogated by STAT3 and P38MAPK inhibitors, but not by ERK1/2 and JNK inhibitors. In conclusion, 17β-estradiol and TCDD in the ectopic milieu may lead to the development of endometriosis by inducing M2 polarization of macrophages through activation of the STAT3 and P38MAPK pathways. PMID:25950905

  19. Combined 17β-Estradiol with TCDD Promotes M2 Polarization of Macrophages in the Endometriotic Milieu with Aid of the Interaction between Endometrial Stromal Cells and Macrophages

    PubMed Central

    Wang, NingLing; Guo, HaiYan; Fu, Yonglun; Xue, Songguo; Ai, Ai; Lyu, Qifeng; Kuang, Yanping

    2015-01-01

    The goal of this study is to elucidate the effects of 17β-estradiol and TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) on macrophage phenotypes in the endometriotic milieu. Co-culture of endometrial stromal cells (ESCs) and U937 cells (macrophage cell line) was performed to simulate the endometriotic milieu and to determine the effects of 17β-estradiol and/or TCDD on IL10, IL12 production and HLA-DR, CD86 expression by U937 macrophages. We found that combining 17β-estradiol with TCDD has a synergistic effect on inducing M2 activation when macrophages are co-cultured with ESCs. Moreover, the combination of 17β-estradiol and TCDD significantly enhanced STAT3 and P38 phosphorylation in macrophages. Differentiation of M2 macrophages induced by 17β-estradiol and TCDD were effectively abrogated by STAT3 and P38MAPK inhibitors, but not by ERK1/2 and JNK inhibitors. In conclusion, 17β-estradiol and TCDD in the ectopic milieu may lead to the development of endometriosis by inducing M2 polarization of macrophages through activation of the STAT3 and P38MAPK pathways. PMID:25950905

  20. Differences in forward angular light scattering distributions between M1 and M2 macrophages.

    PubMed

    Halaney, David L; Zahedivash, Aydin; Phipps, Jennifer E; Wang, Tianyi; Dwelle, Jordan; Saux, Claude Jourdan Le; Asmis, Reto; Milner, Thomas E; Feldman, Marc D

    2015-11-01

    The ability to distinguish macrophage subtypes noninvasively could have diagnostic potential in cancer, atherosclerosis, and diabetes, where polarized M1 and M2 macrophages play critical and often opposing roles. Current methods to distinguish macrophage subtypes rely on tissue biopsy. Optical imaging techniques based on light scattering are of interest as they can be translated into biopsy-free strategies. Because mitochondria are relatively strong subcellular light scattering centers, and M2 macrophages are known to have enhanced mitochondrial biogenesis compared to M1, we hypothesized that M1 and M2 macrophages may have different angular light scattering profiles. To test this, we developed an in vitro angle-resolved forward light scattering measurement system. We found that M1 and M2 macrophage monolayers scatter relatively unequal amounts of light in the forward direction between 1.6 deg and 3.2 deg with M2 forward scattering significantly more light than M1 at increasing angles. The ratio of forward scattering can be used to identify the polarization state of macrophage populations in culture. PMID:26538329

  1. Differences in forward angular light scattering distributions between M1 and M2 macrophages

    NASA Astrophysics Data System (ADS)

    Halaney, David L.; Zahedivash, Aydin; Phipps, Jennifer E.; Wang, Tianyi; Dwelle, Jordan; Saux, Claude Jourdan Le; Asmis, Reto; Milner, Thomas E.; Feldman, Marc D.

    2015-11-01

    The ability to distinguish macrophage subtypes noninvasively could have diagnostic potential in cancer, atherosclerosis, and diabetes, where polarized M1 and M2 macrophages play critical and often opposing roles. Current methods to distinguish macrophage subtypes rely on tissue biopsy. Optical imaging techniques based on light scattering are of interest as they can be translated into biopsy-free strategies. Because mitochondria are relatively strong subcellular light scattering centers, and M2 macrophages are known to have enhanced mitochondrial biogenesis compared to M1, we hypothesized that M1 and M2 macrophages may have different angular light scattering profiles. To test this, we developed an in vitro angle-resolved forward light scattering measurement system. We found that M1 and M2 macrophage monolayers scatter relatively unequal amounts of light in the forward direction between 1.6 deg and 3.2 deg with M2 forward scattering significantly more light than M1 at increasing angles. The ratio of forward scattering can be used to identify the polarization state of macrophage populations in culture.

  2. Xuebijing Injection Promotes M2 Polarization of Macrophages and Improves Survival Rate in Septic Mice

    PubMed Central

    Liu, Yan-Cun; Yao, Feng-Hua; Chai, Yan-Fen; Dong, Ning; Sheng, Zhi-Yong; Yao, Yong-Ming

    2015-01-01

    Xuebijing (XBJ) injection, a concoction of several Chinese herbs, has been widely used as an immunomodulator for the treatment of severe sepsis in China. However, the precise mechanisms responsible for its efficacy have not been fully elucidated. In our study, we determined the flow cytometry markers (F4/80, CD11c, and CD206), the levels of secreted cytokines (TNF-α, IL-6, and IL-10), and the expression of specific proteins of M2 (Ym1, Fizz1, and Arg1) to assess macrophage polarization. Treatment with XBJ lowered M1 associated cytokine levels and increased the level of M2 associated cytokine level. The percentage of M2 phenotype cells of XBJ group was much higher than that of the control group. Expressions of phosphorylated Janus kinase 1 (JAK1) and signal transducer and activator of transcription 6 (STAT6) were markedly enhanced after the administration of XBJ; on the other hand, the M2 associated cytokines and proteins were decreased following treatment with JAK1 or STAT6 inhibitor. In addition, the treatment of XBJ significantly improved the survival rate of septic mice. These studies demonstrate that XBJ can markedly promote M2 polarization and improve the survival rate of septic mice, thereby contributing to therapeutic effect in the treatment of septic complications. PMID:26064161

  3. Myeloid PTEN deficiency protects livers from ischemia reperfusion injury by facilitating M2 macrophage differentiation.

    PubMed

    Yue, Shi; Rao, Jianhua; Zhu, Jianjun; Busuttil, Ronald W; Kupiec-Weglinski, Jerzy W; Lu, Ling; Wang, Xuehao; Zhai, Yuan

    2014-06-01

    Although the role of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) in regulating cell proliferation is well established, its function in immune responses remains to be fully appreciated. In the current study, we analyzed myeloid-specific PTEN function in regulating tissue inflammatory immune response in a murine liver partial warm ischemia model. Myeloid-specific PTEN knockout (KO) resulted in liver protection from ischemia reperfusion injury (IRI) by deviating the local innate immune response against ischemia reperfusion toward the regulatory type: expression of proinflammatory genes was selectively decreased and anti-inflammatory IL-10 was simultaneously increased in ischemia reperfusion livers of PTEN KO mice compared with those of wild-type (WT) mice. PI3K inhibitor and IL-10-neutralizing Abs, but not exogenous LPS, recreated liver IRI in these KO mice. At the cellular level, Kupffer cells and peritoneal macrophages isolated from KO mice expressed higher levels of M2 markers and produced lower TNF-α and higher IL-10 in response to TLR ligands than did their WT counterparts. They had enhanced Stat3- and Stat6-signaling pathway activation, but diminished Stat1-signaling pathway activation, in response to TLR4 stimulation. Inactivation of Kupffer cells by gadolinium chloride enhanced proinflammatory immune activation and increased IRI in livers of myeloid PTEN KO mice. Thus, myeloid PTEN deficiency protects livers from IRI by facilitating M2 macrophage differentiation. PMID:24771857

  4. A novel role of breast cancer-derived hyaluronan on inducement of M2-like tumor-associated macrophages formation.

    PubMed

    Zhang, Guoliang; Guo, Lin; Yang, Cuixia; Liu, Yiwen; He, Yiqing; Du, Yan; Wang, Wenjuan; Gao, Feng

    2016-06-01

    Microenvironmental signals determine the differentiation types and distinct functions of macrophages. Tumor-associated macrophages (TAM) constitute major infiltrates around solid tumor cells and accelerate tumor progression due to their immunosuppressive functions. However, the mechanisms through which tumor microenvironment modulates macrophages transition are not completely elucidated. Hyaluronan (HA), a prominent component in tumor microenvironment, is a notable immunoregulator and its high level is often related to poor prognosis. Herein, we found that the number of M2 macrophages was highly correlated with HA expression in tumor tissues from breast cancer patients. Experimental data showed that breast cancer-derived HA stimulated M2-like TAM formation in a mouse model and had multiple effects on macrophages transformation in vitro, including upregulating CD204, CD206, IL-10 and TGF-β, activating STAT3 signal, and suppressing killing capacity. These data indicate that HA derived from breast cancer activates macrophages in an alternative manner. Further mechanism study revealed that HA-CD44-ERK1/2-STAT3 pathway served as an important regulator in M2-like TAM formation. Therefore, targeting TAM by abrogating HA-CD44 interaction may be a potential strategy for breast cancer immunotherapy. PMID:27471651

  5. Gut dysbiosis promotes M2 macrophage polarization and allergic airway inflammation via fungi-induced PGE2

    PubMed Central

    Kim, Yun-Gi; Udayanga, Kankanam Gamage Sanath; Totsuka, Naoya; Weinberg, Jason B.; Núñez, Gabriel; Shibuya, Akira

    2014-01-01

    SUMMARY Although imbalances in gut microbiota composition, or “dysbiosis”, are associated with many diseases, the effects of gut dysbiosis on host systemic physiology are less well characterized. We report that gut dysbiosis induced by antibiotic (Abx)-treatment promotes allergic airway inflammation by shifting macrophage polarization in the lung toward the alternatively activated M2 phenotype. Adoptive transfer of alveolar macrophages derived from Abx-treated mice was sufficient to increase allergic airway inflammation. Abx-treatment resulted in the overgrowth of a commensal fungal Candida species in the gut and increased plasma concentrations of prostaglandin E2 (PGE2), which induced M2 macrophage polarization in the lung. Suppression of PGE2 synthesis by the cyclooxygenase inhibitors aspirin and celecoxib suppressed M2 macrophage polarization and decreased allergic airway inflammatory cell infiltration in Abx-treated mice. Thus, Abx-treatment can cause overgrowth of particular fungal species in the gut and promote M2 macrophage activation at distant sites to influence systemic responses including allergic inflammation. PMID:24439901

  6. Induction of Murine Macrophage M2 Polarization by Cigarette Smoke Extract via the JAK2/STAT3 Pathway

    PubMed Central

    Shi, Hengfei; Chen, Guopu; Dong, Ping; Zhang, Weiyun

    2014-01-01

    Cigarette smoking is a major pathogenic factor in lung cancer. Macrophages play an important role in host defense and adaptive immunity. These cells display diverse phenotypes for performing different functions. M2 type macrophages usually exhibit immunosuppressive and tumor-promoting characteristics. Although macrophage polarization toward the M2 phenotype has been observed in the lungs of cigarette smokers, the molecular basis of the process remains unclear. In this study, we evaluated the possible mechanisms for the polarization of mouse macrophages that are induced by cigarette smoking (CS) or cigarette smoke extract (CSE). The results showed that exposure to CSE suppressed the production of reactive oxygen species (ROS) and nitric oxide (NO) and down-regulated the phagocytic ability of Ana-1 cells. The CD163 expressions on the surface of macrophages from different sources were significantly increased in in vivo and in vitro studies. The M1 macrophage cytokines TNF-α, IL-12p40 and enzyme iNOS decreased in the culture supernatant, and their mRNA levels decreased depending on the time and concentration of CSE. In contrast, the M2 phenotype macrophage cytokines IL-10, IL-6, TGF-β1 and TGF-β2 were up-regulated. Moreover, phosphorylation of JAK2 and STAT3 was observed after the Ana-1 cells were treated with CSE. In addition, pretreating the Ana-1 cells with the STAT3 phosphorylation inhibitor WP1066 inhibited the CSE-induced CD163 expression, increased the mRNA level of IL-10 and significantly decreased the mRNA level of IL-12. In conclusion, we demonstrated that the M2 polarization of macrophages induced by CS could be mediated through JAK2/STAT3 pathway activation. PMID:25198511

  7. Regulation of Notch 1 signaling in THP-1 cells enhances M2 macrophage differentiation.

    PubMed

    Singla, Reetu D; Wang, Jing; Singla, Dinender K

    2014-12-01

    Macrophage polarization is emerging as an important area of research for the development of novel therapeutics to treat inflammatory diseases. Within the current study, the role of Notch1R in macrophage differentiation was investigated as well as downstream effects in THP-1 monocytes cultured in "inflammation mimicry" media. Interference of Notch signaling was achieved using either the pharmaceutical inhibitor DAPT or Notch1R small interfering RNA (siRNA), and Notch1R expression, macrophage phenotypes, and anti- and proinflammatory cytokine expression were evaluated. Data presented show that Notch1R expression on M1 macrophages as well as M1 macrophage differentiation is significantly elevated during cellular stress (P < 0.05). However, under identical culture conditions, interference to Notch signaling via Notch1R inhibition mitigated these results as well as promoted M2 macrophage differentiation. Moreover, when subjected to cellular stress, macrophage secretion of proinflammatory cytokines was significantly heightened (P < 0.05). Importantly, Notch1R inhibition not only diminished proinflammatory cytokine secretion but also enhanced anti-inflammatory protein release (P < 0.05). Our data suggest that Notch1R plays a pivotal role in M1 macrophage differentiation and heightened inflammatory responses. Therefore, we conclude that inhibition of Notch1R and subsequent downstream signaling enhances monocyte to M2 polarized macrophage outcomes and promotes anti-inflammatory mediation during cellular stress. PMID:25260616

  8. Myeloid Angiogenic Cells Act as Alternative M2 Macrophages and Modulate Angiogenesis through Interleukin-8

    PubMed Central

    Medina, Reinhold J; O’Neill, Christina L; O’Doherty, T Michelle; Knott, Henry; Guduric-Fuchs, Jasenka; Gardiner, Tom A; Stitt, Alan W

    2011-01-01

    Endothelial progenitor cells (EPCs) promote angiogenesis, and clinical trials have shown such cell therapy to be feasible for treating ischemic disease. However, clinical outcomes have been contradictory owing to the diverse range of EPC types used. We recently characterized two EPC subtypes, and identified outgrowth endothelial cells as the only EPC type with true progenitor and endothelial characteristics. By contrast, myeloid angiogenic cells (MACs) were shown to be monocytic cells without endothelial characteristics despite being widely described as “EPCs.” In the current study we demonstrated that although MACs do not become endothelial cells or directly incorporate into a microvascular network, they can significantly induce endothelial tube formation in vitro and vascular repair in vivo. MAC-derived interleukin-8 (IL-8) was identified as a key paracrine factor, and blockade of IL-8 but not vascular endothelial growth factor (VEGF) prevented MAC-induced angiogenesis. Extracellular IL-8 transactivates VEGFR2 and induces phosphorylation of extracellular signal-regulated kinases. Further transcriptomic and immunophenotypic analysis indicates that MACs represent alternative activated M2 macrophages. Our findings demonstrate an unequivocal role for MACs in angiogenesis, which is linked to paracrine release of cytokines such as IL-8. We also show, for the first time, the true identity of these cells as alternative M2 macrophages with proangiogenic, antiinflammatory and pro–tissue-repair properties. PMID:21670847

  9. Neisseria gonorrhoeae Modulates Immunity by Polarizing Human Macrophages to a M2 Profile.

    PubMed

    Ortiz, María Carolina; Lefimil, Claudia; Rodas, Paula I; Vernal, Rolando; Lopez, Mercedes; Acuña-Castillo, Claudio; Imarai, Mónica; Escobar, Alejandro

    2015-01-01

    Current data suggest that Neisseria gonorrhoeae is able to suppress the protective immune response at different levels, such as B and T lymphocytes and antigen-presenting cells. The present report is focused on gonococcus evasion mechanism on macrophages (MФ) and its impact in the subsequent immune response. In response to various signals MФ may undergo classical-M1 (M1-MФ) or alternative-M2 (M2-MФ) activation. Until now there are no reports of the gonococcus effects on human MФ polarization. We assessed the phagocytic ability of monocyte-derived MФ (MDM) upon gonococcal infection by immunofluorescence and gentamicin protection experiments. Then, we evaluated cytokine profile and M1/M2 specific-surface markers on MФ challenged with N. gonorrhoeae and their proliferative effect on T cells. Our findings lead us to suggest N. gonorrhoeae stimulates a M2-MФ phenotype in which some of the M2b and none of the M1-MФ-associated markers are induced. Interestingly, N. gonorrhoeae exposure leads to upregulation of a Programmed Death Ligand 1 (PD-L1), widely known as an immunosuppressive molecule. Moreover, functional results showed that N. gonorrhoeae-treated MФ are unable to induce proliferation of human T-cells, suggesting a more likely regulatory phenotype. Taken together, our data show that N. gonorroheae interferes with MФ polarization. This study has important implications for understanding the mechanisms of clearance versus long-term persistence of N. gonorroheae infection and might be applicable for the development of new therapeutic strategies. PMID:26125939

  10. Neisseria gonorrhoeae Modulates Immunity by Polarizing Human Macrophages to a M2 Profile

    PubMed Central

    Ortiz, María Carolina; Lefimil, Claudia; Rodas, Paula I.; Vernal, Rolando; Lopez, Mercedes; Acuña-Castillo, Claudio; Imarai, Mónica; Escobar, Alejandro

    2015-01-01

    Current data suggest that Neisseria gonorrhoeae is able to suppress the protective immune response at different levels, such as B and T lymphocytes and antigen-presenting cells. The present report is focused on gonococcus evasion mechanism on macrophages (MФ) and its impact in the subsequent immune response. In response to various signals MФ may undergo classical-M1 (M1-MФ) or alternative-M2 (M2-MФ) activation. Until now there are no reports of the gonococcus effects on human MФ polarization. We assessed the phagocytic ability of monocyte-derived MФ (MDM) upon gonococcal infection by immunofluorescence and gentamicin protection experiments. Then, we evaluated cytokine profile and M1/M2 specific-surface markers on MФ challenged with N. gonorrhoeae and their proliferative effect on T cells. Our findings lead us to suggest N. gonorrhoeae stimulates a M2-MФ phenotype in which some of the M2b and none of the M1-MФ-associated markers are induced. Interestingly, N. gonorrhoeae exposure leads to upregulation of a Programmed Death Ligand 1 (PD-L1), widely known as an immunosuppressive molecule. Moreover, functional results showed that N. gonorrhoeae-treated MФ are unable to induce proliferation of human T-cells, suggesting a more likely regulatory phenotype. Taken together, our data show that N. gonorroheae interferes with MФ polarization. This study has important implications for understanding the mechanisms of clearance versus long-term persistence of N. gonorroheae infection and might be applicable for the development of new therapeutic strategies. PMID:26125939

  11. M1 and M2 macrophage proteolytic and angiogenic profile analysis in atherosclerotic patients reveals a distinctive profile in type 2 diabetes.

    PubMed

    Roma-Lavisse, Charlotte; Tagzirt, Madjid; Zawadzki, Christophe; Lorenzi, Rodrigo; Vincentelli, André; Haulon, Stephan; Juthier, Francis; Rauch, Antoine; Corseaux, Delphine; Staels, Bart; Jude, Brigitte; Van Belle, Eric; Susen, Sophie; Chinetti-Gbaguidi, Giulia; Dupont, Annabelle

    2015-07-01

    This study aimed to investigate atherosclerotic mediators' expression levels in M1 and M2 macrophages and to focus on the influence of diabetes on M1/M2 profiles. Macrophages from 36 atherosclerotic patients (19 diabetics and 17 non-diabetics) were cultured with interleukin-1β (IL-1β) or IL-4 to induce M1 or M2 phenotype, respectively. The atherosclerotic mediators' expression was evaluated by quantitative reverse transcription-polymerase chain reaction (RT-PCR). The results showed that M1 and M2 macrophages differentially expressed mediators involved in proteolysis and angiogenesis processes. The proteolytic balance (matrix metalloproteinase-9 (MMP-9)/tissue inhibitor of metalloproteinase-1 (TIMP-1), MMP-9/plasminogen activator inhibitor-1 (PAI-1) and MMP-9/tissue factor pathway inhibitor-2 (TFPI-2) ratios) was higher in M1 versus M2, whereas M2 macrophages presented higher angiogenesis properties (increased vascular endothelial growth factor/TFPI-2 and tissue factor/TFPI-2 ratios). Moreover, M1 macrophages from diabetics displayed more important proangiogenic and proteolytic activities than non-diabetics. This study reveals that M1 and M2 macrophages could differentially modulate major atherosclerosis-related pathological processes. Moreover, M1 macrophages from diabetics display a deleterious phenotype that could explain the higher plaque vulnerability observed in these subjects. PMID:25966737

  12. IL-33 Contributes to Schistosoma japonicum-induced Hepatic Pathology through Induction of M2 Macrophages

    PubMed Central

    Peng, Hui; Zhang, Qixian; Li, Xiaojuan; Liu, Zhen; Shen, Jia; Sun, Rui; Wei, Jie; Zhao, Jia; Wu, Xiaoying; Feng, Feng; Zhong, Shuping; Sun, Xi; Wu, Zhongdao

    2016-01-01

    Interleukin (IL)-33 is involved in T helper (Th)2-biased immune responses in mice infected with Schistosoma, but the precise mechanism remains to be elucidated. Herein, we investigated the role of IL-33 and its receptor ST2L in hepatic granuloma pathology induced by Schistosoma japonicum infection. We found that IL-33 induced the increased production of IL-5 and IL-13 from splenocytes and liver mononuclear cells (MNCs) of infected mice. The infected mice developed significantly higher number of ST2L-expressing cells in spleen and liver. Most of the ST2L-expressing cells in liver were F4/80+ macrophages, indicating the key role of macrophages in the response to IL-33. However, the liver MNCs in male-only worm infection had a poor response to IL-33, though elevated serum IL-33 was observed. ST2L+F4/80+ cells were lower in male-only worm infection than that of mixed infection. IL-33 and soluble egg antigen (SEA) upregulated ST2L expression on macrophages in vitro and ST2L-expressing macrophage displayed MHCII-CD11b+M2 phenotype. Macrophage deletion significantly attenuated IL-33-induced type 2 immunity and egg granuloma formation during S. japonicum infection. These data demonstrate that IL-33 contributes to hepatic granuloma pathology through induction of M2 macrophages during S. japonicum infection. PMID:27445267

  13. Predominance of M2-polarized macrophages in bladder cancer affects angiogenesis, tumor grade and invasiveness

    PubMed Central

    TAKEUCHI, HISASHI; TANAKA, MICHIO; TANAKA, AYAKO; TSUNEMI, AKISA; YAMAMOTO, HIDENOBU

    2016-01-01

    Tumor-associated macrophages (TAMs) often assume an immunoregulatory M2 phenotype. Thus, the aim of the present study was to clarify the correlation of vascularity and TAMs, in particular the M2 phenotype in the stroma and tumor areas, with the clinical and pathological outcomes of patients with bladder cancer. The TAM counts and microvessel counts (MVCs) were determined immunohistochemically in 21 patients with bladder cancer. The number of infiltrating TAMs was measured using immunohistochemistry with anti-cluster of differentiation (CD)68 and anti-CD163 antibodies, to identify a macrophage lineage marker and an M2-polarized-specific cell surface receptor, respectively. CD68+ and CD163+ macrophages were evaluated in the stroma and tumor areas, and areas with a high density of infiltrating cell spots were counted. MVCs were determined using immunohistochemistry with anti-CD34 antibodies. The results revealed that the higher ratio of CD163+/CD68+ macrophages in the stroma, tumor and total tumor tissues were correlated with a higher stage and grade (P<0.05). In addition, the low ratio of CD68+/CD34+ microvessels was correlated with a higher stage (P<0.05). There was also a positive correlation between TAMs and MVC (r2=0.25; P<0.05). These results suggest that the TAM polarized M2 phenotype affects microvessels, pathological outcome, tumor grade and invasiveness. PMID:27123124

  14. Bioinformatics approach to evaluate differential gene expression of M1/M2 macrophage phenotypes and antioxidant genes in atherosclerosis.

    PubMed

    da Rocha, Ricardo Fagundes; De Bastiani, Marco Antônio; Klamt, Fábio

    2014-11-01

    Atherosclerosis is a pro-inflammatory process intrinsically related to systemic redox impairments. Macrophages play a major role on disease development. The specific involvement of classically activated, M1 (pro-inflammatory), or the alternatively activated, M2 (anti-inflammatory), on plaque formation and disease progression are still not established. Thus, based on meta-data analysis of public micro-array datasets, we compared differential gene expression levels of the human antioxidant genes (HAG) and M1/M2 genes between early and advanced human atherosclerotic plaques, and among peripheric macrophages (with or without foam cells induction by oxidized low density lipoprotein, oxLDL) from healthy and atherosclerotic subjects. Two independent datasets, GSE28829 and GSE9874, were selected from gene expression omnibus (http://www.ncbi.nlm.nih.gov/geo/) repository. Functional interactions were obtained with STRING (http://string-db.org/) and Medusa (http://coot.embl.de/medusa/). Statistical analysis was performed with ViaComplex(®) (http://lief.if.ufrgs.br/pub/biosoftwares/viacomplex/) and gene score enrichment analysis (http://www.broadinstitute.org/gsea/index.jsp). Bootstrap analysis demonstrated that the activity (expression) of HAG and M1 gene sets were significantly increased in advance compared to early atherosclerotic plaque. Increased expressions of HAG, M1, and M2 gene sets were found in peripheric macrophages from atherosclerotic subjects compared to peripheric macrophages from healthy subjects, while only M1 gene set was increased in foam cells from atherosclerotic subjects compared to foam cells from healthy subjects. However, M1 gene set was decreased in foam cells from healthy subjects compared to peripheric macrophages from healthy subjects, while no differences were found in foam cells from atherosclerotic subjects compared to peripheric macrophages from atherosclerotic subjects. Our data suggest that, different to cancer, in atherosclerosis there is

  15. BMP-7 Treatment Increases M2 Macrophage Differentiation and Reduces Inflammation and Plaque Formation in Apo E-/- Mice

    PubMed Central

    Singla, Dinender K.; Singla, Reetu; Wang, Jing

    2016-01-01

    Inflammation plays a fundamental role in the inception and development of atherosclerosis (ATH). Mechanisms of inflammation include the infiltration of monocytes into the injured area and subsequent differentiation into either pro-inflammatory M1 macrophages or anti-inflammatory M2 macrophages. We have previously published data suggesting bone morphogenetic protein-7 (BMP-7) enhances M2 macrophage differentiation and anti-inflammatory cytokine secretion in vitro. In this regard, we hypothesized BMP-7 would inhibit plaque formation in an animal model of ATH through monocytic plasticity mediation. ATH was generated in male and female Apo E-/- mice via partial left carotid artery (PLCA) ligation and mice were divided into 3 groups: Sham, PLCA, and PLCA+BMP-7 (200ug/kg; i.v.). Our data suggest that BMP-7 inhibits plaque formation and increases arterial systolic velocity. Furthermore, we report inhibition of monocyte infiltration and a decrease in associated pro-inflammatory cytokines (MCP-1, TNF-α, and IL-6) in the PLCA+BMP-7 mice. In contrast, our data suggest a significant (p<0.05) increase in M2 macrophage populations with consequential enhanced anti-inflammatory cytokine (IL-1RA, IL-10, and Arginase 1) expression following BMP-7 treatment. We have also observed that mechanisms promoting monocyte into M2 macrophage differentiation by BMP-7 involve the upregulation and activation of the BMP-7 receptor (BMP-7RII). In conclusion, we report that BMP-7 has the potential to mediate cellular plasticity and mitigate the inflammatory immune response, which results in decreased plaque formation and improved blood velocity. PMID:26824441

  16. BMP-7 Treatment Increases M2 Macrophage Differentiation and Reduces Inflammation and Plaque Formation in Apo E-/- Mice.

    PubMed

    Singla, Dinender K; Singla, Reetu; Wang, Jing

    2016-01-01

    Inflammation plays a fundamental role in the inception and development of atherosclerosis (ATH). Mechanisms of inflammation include the infiltration of monocytes into the injured area and subsequent differentiation into either pro-inflammatory M1 macrophages or anti-inflammatory M2 macrophages. We have previously published data suggesting bone morphogenetic protein-7 (BMP-7) enhances M2 macrophage differentiation and anti-inflammatory cytokine secretion in vitro. In this regard, we hypothesized BMP-7 would inhibit plaque formation in an animal model of ATH through monocytic plasticity mediation. ATH was generated in male and female Apo E(-/-) mice via partial left carotid artery (PLCA) ligation and mice were divided into 3 groups: Sham, PLCA, and PLCA+BMP-7 (200 ug/kg; i.v.). Our data suggest that BMP-7 inhibits plaque formation and increases arterial systolic velocity. Furthermore, we report inhibition of monocyte infiltration and a decrease in associated pro-inflammatory cytokines (MCP-1, TNF-α, and IL-6) in the PLCA+BMP-7 mice. In contrast, our data suggest a significant (p<0.05) increase in M2 macrophage populations with consequential enhanced anti-inflammatory cytokine (IL-1RA, IL-10, and Arginase 1) expression following BMP-7 treatment. We have also observed that mechanisms promoting monocyte into M2 macrophage differentiation by BMP-7 involve the upregulation and activation of the BMP-7 receptor (BMP-7RII). In conclusion, we report that BMP-7 has the potential to mediate cellular plasticity and mitigate the inflammatory immune response, which results in decreased plaque formation and improved blood velocity. PMID:26824441

  17. Dopamine induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages in rat C6 glioma

    SciTech Connect

    Qin, Tian; Wang, Chenlong; Chen, Xuewei; Duan, Chenfan; Zhang, Xiaoyan; Zhang, Jing; Chai, Hongyan; Tang, Tian; Chen, Honglei; Yue, Jiang; Li, Ying; Yang, Jing

    2015-07-15

    Dopamine (DA), a monoamine catecholamine neurotransmitter with antiangiogenic activity, stabilizes tumor vessels in colon, prostate and ovarian cancers, thus increases chemotherapeutic efficacy. Here, in the rat C6 glioma models, we investigated the vascular normalization effects of DA and its mechanisms of action. DA (25, 50 mg/kg) inhibited tumor growth, while a precursor of DA (levodopa) prolonged the survival time of rats bearing orthotopic C6 glioma. DA improved tumor perfusion, with significant effects from day 3, and a higher level at days 5 to 7. In addition, DA decreased microvessel density and hypoxia-inducible factor-1α expression in tumor tissues, while increasing the coverage of pericyte. Conversely, an antagonist of dopamine receptor 2 (DR2) (eticlopride) but not DR1 (butaclamol) abrogated DA-induced tumor regression and vascular normalization. Furthermore, DA improved the delivery and efficacy of temozolomide therapy. Importantly, DA increased representative M1 markers (iNOS, CXCL9, etc.), while decreasing M2 markers (CD206, arginase-1, etc.). Depletion of macrophages by clodronate or zoledronic acid attenuated the effects of DA. Notably, DA treatment induced M2-to-M1 polarization in RAW264.7 cells and mouse peritoneal macrophages, and enhanced the migration of pericyte-like cells (10T1/2), which was reversed by eticlopride or DR2-siRNA. Such changes were accompanied by the downregulation of VEGF/VEGFR2 signaling. In summary, DA induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages. Thus, targeting the tumor microvasculature by DA represents a promising strategy for human glioma therapy. - Highlights: • Dopamine induces tumor growth inhibition and vascular normalization in rat C6 glioma. • Dopamine switches macrophage phenotype from M2 to M1. • Dopamine-induced vascular normalization is mediated by macrophage polarization. • Dopamine is a promising agent targeting the microvasculature in tumor

  18. Interleukin-17 induces an atypical M2-like macrophage subpopulation that regulates intestinal inflammation.

    PubMed

    Nishikawa, Kenichiro; Seo, Naohiro; Torii, Mie; Ma, Nei; Muraoka, Daisuke; Tawara, Isao; Masuya, Masahiro; Tanaka, Kyosuke; Takei, Yoshiyuki; Shiku, Hiroshi; Katayama, Naoyuki; Kato, Takuma

    2014-01-01

    Interleukin 17 (IL-17) is a pleiotropic cytokine that acts on both immune and non-immune cells and is generally implicated in inflammatory and autoimmune diseases. Although IL-17 as well as their source, mainly but not limited to Th17 cells, is also abundant in the inflamed intestine, the role of IL-17 in inflammatory bowel disease remains controversial. In the present study, by using IL-17 knockout (KO) mice, we investigated the role of IL-17 in colitis, with special focus on the macrophage subpopulations. Here we show that IL-17KO mice had increased susceptibility to DSS-induced colitis which was associated with decrease in expression of mRNAs implicated in M2 and/or wound healing macrophages, such as IL-10, IL-1 receptor antagonist, arginase 1, cyclooxygenase 2, and indoleamine 2,3-dioxygenase. Lamina propria leukocytes from inflamed colon of IL-17KO mice contained fewer CD11b+Ly6C+MHC Class II+ macrophages, which were derived, at least partly, from blood monocytes, as compared to those of WT mice. FACS-purified CD11b+ cells from WT mice, which were more abundant in Ly6C+MHC Class II+ cells, expressed increased levels of genes associated M2/wound healing macrophages and also M1/proinflammatory macrophages. Depletion of this population by topical administration of clodronate-liposome in the colon of WT mice resulted in the exacerbation of colitis. These results demonstrate that IL-17 confers protection against the development of severe colitis through the induction of an atypical M2-like macrophage subpopulation. Our findings reveal a previously unappreciated mechanism by which IL-17 exerts a protective function in colitis. PMID:25254662

  19. Interleukin-36 potently stimulates human M2 macrophages, Langerhans cells and keratinocytes to produce pro-inflammatory cytokines.

    PubMed

    Dietrich, Damien; Martin, Praxedis; Flacher, Vincent; Sun, Yu; Jarrossay, David; Brembilla, Nicolo; Mueller, Christopher; Arnett, Heather A; Palmer, Gaby; Towne, Jennifer; Gabay, Cem

    2016-08-01

    Interleukin (IL)-36 cytokines belong to the IL-1 family and include three agonists, IL-36 α, β and γ and one inhibitor, IL-36 receptor antagonist (IL-36Ra). IL-36 and IL-1 (α and β) activate similar intracellular pathways via their related heterodimeric receptors, IL-36R/IL-1RAcP and IL-1R1/IL-1RAcP, respectively. However, excessive IL-36 versus IL-1 signaling induces different phenotypes in humans, which may be related to differential expression of their respective receptors. We examined the expression of IL-36R, IL-1R1 and IL-1RAcP mRNA in human peripheral blood, tonsil and skin immune cells by RT-qPCR. Monocyte-derived dendritic cells (MDDC), M0, M1 or M2-polarized macrophages, primary keratinocytes, dermal macrophages and Langerhans cells (LC) were stimulated with IL-1β or IL-36β. Cytokine production was assessed by RT-qPCR and immunoassays. The highest levels of IL-36R mRNA were found in skin-derived keratinocytes, LC, dermal macrophages and dermal CD1a(+) DC. In the blood and in tonsils, IL-36R mRNA was predominantly found in myeloid cells. By contrast, IL-1R1 mRNA was detected in almost all cell types with higher levels in tonsil and skin compared to peripheral blood immune cells. IL-36β was as potent as IL-1β in stimulating M2 macrophages, keratinocytes and LC, less potent than IL-1β in stimulating M0 macrophages and MDDC, and exerted no effects in M1 and dermal macrophages. Levels of IL-1Ra diminished the ability of M2 macrophages to respond to IL-1. Taken together, these data are consistent with the association of excessive IL-36 signaling with an inflammatory skin phenotype and identify human LC and M2 macrophages as new IL-36 target cells. PMID:27259168

  20. Arctigenin ameliorates inflammation in vitro and in vivo by inhibiting the PI3K/AKT pathway and polarizing M1 macrophages to M2-like macrophages.

    PubMed

    Hyam, Supriya R; Lee, In-Ah; Gu, Wan; Kim, Kyung-Ah; Jeong, Jin-Ju; Jang, Se-Eun; Han, Myung Joo; Kim, Dong-Hyun

    2013-05-15

    Seeds of Arctium lappa, containing arctigenin and its glycoside arctiin as main constituents, have been used as a diuretic, anti-inflammatory and detoxifying agent in Chinese traditional medicine. In our preliminary study, arctigenin inhibited IKKβ and NF-κB activation in peptidoglycan (PGN)- or lipopolysaccharide (LPS)-induced peritoneal macrophages. To understand the anti-inflammatory effect of arctigenin, we investigated its anti-inflammatory effect in LPS-stimulated peritoneal macrophages and on LPS-induced systemic inflammation as well as 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis in mice. Arctigenin inhibited LPS-increased IL-1β, IL-6 and TNF-α expression in LPS-stimulated peritoneal macrophages, but increased LPS-reduced IL-10 and CD204 expression. Arctigenin inhibited LPS-induced PI3K, AKT and IKKβ phosphorylation, but did not suppress LPS-induced IRAK-1 phosphorylation. However, arctigenin did not inhibit NF-κB activation in LPS-stimulated PI3K siRNA-treated peritoneal macrophages. Arctigenin suppressed the binding of p-PI3K antibody and the nucleus translocation of NF-κB p65 in LPS-stimulated peritoneal macrophages. Arctigenin suppressed blood IL-1β and TNF-α level in mice systemically inflamed by intraperitoneal injection of LPS. Arctigenin also inhibited colon shortening, macroscopic scores and myeloperoxidase activity in TNBS-induced colitic mice. Arctigenin inhibited TNBS-induced IL-1β, TNF-α and IL-6 expression, as well as PI3K, AKT and IKKβ phosphorylation and NF-κB activation in mice, but increased IL-10 and CD204 expression. However, it did not affect IRAK-1 phosphorylation. Based on these findings, arctigenin may ameliorate inflammatory diseases, such as colitis, by inhibiting PI3K and polarizing M1 macrophages to M2-like macrophages. PMID:23375938

  1. 1,25-Dihydroxyvitamin D3 Promotes High Glucose-Induced M1 Macrophage Switching to M2 via the VDR-PPARγ Signaling Pathway

    PubMed Central

    Zhang, Xiaoliang; Zhou, Min; Guo, Yinfeng; Song, Zhixia; Liu, Bicheng

    2015-01-01

    Macrophages, especially their activation state, are closely related to the progression of diabetic nephropathy. Classically activated macrophages (M1) are proinflammatory effectors, while alternatively activated macrophages (M2) exhibit anti-inflammatory properties. 1,25-Dihydroxyvitamin D3 has renoprotective roles that extend beyond the regulation of mineral metabolism, and PPARγ, a nuclear receptor, is essential for macrophage polarization. The present study investigates the effect of 1,25-dihydroxyvitamin D3 on macrophage activation state and its underlying mechanism in RAW264.7 cells. We find that, under high glucose conditions, RAW264.7 macrophages tend to switch to the M1 phenotype, expressing higher iNOS and proinflammatory cytokines, including TNFα and IL-12. While 1,25-dihydroxyvitamin D3 significantly inhibited M1 activation, it enhanced M2 macrophage activation; namely, it upregulated the expression of MR, Arg-1, and the anti-inflammatory cytokine IL-10 but downregulated the M1 markers. However, the above effects of 1,25-dihydroxyvitamin D3 were abolished when the expression of VDR and PPARγ was inhibited by VDR siRNA and a PPARγ antagonist. In addition, PPARγ was also decreased upon treatment with VDR siRNA. The above results demonstrate that active vitamin D promoted M1 phenotype switching to M2 via the VDR-PPARγ pathway. PMID:25961000

  2. Isoliquiritigenin, a flavonoid from licorice, blocks M2 macrophage polarization in colitis-associated tumorigenesis through downregulating PGE{sub 2} and IL-6

    SciTech Connect

    Zhao, Haixia; Zhang, Xinhua; Chen, Xuewei; Li, Ying; Ke, Zunqiong; Tang, Tian; Chai, Hongyan; Guo, Austin M.; Chen, Honglei; Yang, Jing

    2014-09-15

    M2 macrophage polarization is implicated in colorectal cancer development. Isoliquiritigenin (ISL), a flavonoid from licorice, has been reported to prevent azoxymethane (AOM) induced colon carcinogenesis in animal models. Here, in a mouse model of colitis-associated tumorigenesis induced by AOM/dextran sodium sulfate (DSS), we investigated the chemopreventive effects of ISL and its mechanisms of action. Mice were treated with AOM/DSS and randomized to receive either vehicle or ISL (3, 15 and 75 mg/kg). Tumor load, histology, immunohistochemistry, and gene and protein expressions were determined. Intragastric administration of ISL for 12 weeks significantly decreased colon cancer incidence, multiplicity and tumor size by 60%, 55.4% and 42.6%, respectively. Moreover, ISL inhibited M2 macrophage polarization. Such changes were accompanied by downregulation of PGE{sub 2} and IL-6 signaling. Importantly, depletion of macrophages by clodronate (Clod) or zoledronic acid (ZA) reversed the effects of ISL. In parallel, in vitro studies also demonstrated that ISL limited the M2 polarization of RAW264.7 cells and mouse peritoneal macrophages with concomitant inactivation of PGE{sub 2}/PPARδ and IL-6/STAT3 signaling. Conversely, exogenous addition of PGE{sub 2} or IL-6, or overexpression of constitutively active STAT3 reversed ISL-mediated inhibition of M2 macrophage polarization. In summary, dietary flavonoid ISL effectively inhibits colitis-associated tumorigenesis through hampering M2 macrophage polarization mediated by the interplay between PGE{sub 2} and IL-6. Thus, inhibition of M2 macrophage polarization is likely to represent a promising strategy for chemoprevention of colorectal cancer. - Highlights: • Isoliquiritigenin (ISL) prevents colitis-associated tumorigenesis. • ISL inhibits M2 macrophage polarization in vivo and in vitro. • ISL inhibits PGE{sub 2} and IL-6 signaling in colitis-associated tumorigenesis. • ISL may be an attractive candidate agent for

  3. Anti-CD47 Treatment Stimulates Phagocytosis of Glioblastoma by M1 and M2 Polarized Macrophages and Promotes M1 Polarized Macrophages In Vivo.

    PubMed

    Zhang, Michael; Hutter, Gregor; Kahn, Suzana A; Azad, Tej D; Gholamin, Sharareh; Xu, Chelsea Y; Liu, Jie; Achrol, Achal S; Richard, Chase; Sommerkamp, Pia; Schoen, Matthew Kenneth; McCracken, Melissa N; Majeti, Ravi; Weissman, Irving; Mitra, Siddhartha S; Cheshier, Samuel H

    2016-01-01

    Tumor-associated macrophages (TAMs) represent an important cellular subset within the glioblastoma (WHO grade IV) microenvironment and are a potential therapeutic target. TAMs display a continuum of different polarization states between antitumorigenic M1 and protumorigenic M2 phenotypes, with a lower M1/M2 ratio correlating with worse prognosis. Here, we investigated the effect of macrophage polarization on anti-CD47 antibody-mediated phagocytosis of human glioblastoma cells in vitro, as well as the effect of anti-CD47 on the distribution of M1 versus M2 macrophages within human glioblastoma cells grown in mouse xenografts. Bone marrow-derived mouse macrophages and peripheral blood-derived human macrophages were polarized in vitro toward M1 or M2 phenotypes and verified by flow cytometry. Primary human glioblastoma cell lines were offered as targets to mouse and human M1 or M2 polarized macrophages in vitro. The addition of an anti-CD47 monoclonal antibody led to enhanced tumor-cell phagocytosis by mouse and human M1 and M2 macrophages. In both cases, the anti-CD47-induced phagocytosis by M1 was more prominent than that for M2. Dissected tumors from human glioblastoma xenografted within NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice and treated with anti-CD47 showed a significant increase of M1 macrophages within the tumor. These data show that anti-CD47 treatment leads to enhanced tumor cell phagocytosis by both M1 and M2 macrophage subtypes with a higher phagocytosis rate by M1 macrophages. Furthermore, these data demonstrate that anti-CD47 treatment alone can shift the phenotype of macrophages toward the M1 subtype in vivo. PMID:27092773

  4. Anti-CD47 Treatment Stimulates Phagocytosis of Glioblastoma by M1 and M2 Polarized Macrophages and Promotes M1 Polarized Macrophages In Vivo

    PubMed Central

    Kahn, Suzana A.; Azad, Tej D.; Gholamin, Sharareh; Xu, Chelsea Y.; Liu, Jie; Achrol, Achal S.; Richard, Chase; Sommerkamp, Pia; Schoen, Matthew Kenneth; McCracken, Melissa N.; Majeti, Ravi; Weissman, Irving; Mitra, Siddhartha S.; Cheshier, Samuel H.

    2016-01-01

    Tumor-associated macrophages (TAMs) represent an important cellular subset within the glioblastoma (WHO grade IV) microenvironment and are a potential therapeutic target. TAMs display a continuum of different polarization states between antitumorigenic M1 and protumorigenic M2 phenotypes, with a lower M1/M2 ratio correlating with worse prognosis. Here, we investigated the effect of macrophage polarization on anti-CD47 antibody-mediated phagocytosis of human glioblastoma cells in vitro, as well as the effect of anti-CD47 on the distribution of M1 versus M2 macrophages within human glioblastoma cells grown in mouse xenografts. Bone marrow-derived mouse macrophages and peripheral blood-derived human macrophages were polarized in vitro toward M1 or M2 phenotypes and verified by flow cytometry. Primary human glioblastoma cell lines were offered as targets to mouse and human M1 or M2 polarized macrophages in vitro. The addition of an anti-CD47 monoclonal antibody led to enhanced tumor-cell phagocytosis by mouse and human M1 and M2 macrophages. In both cases, the anti-CD47-induced phagocytosis by M1 was more prominent than that for M2. Dissected tumors from human glioblastoma xenografted within NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice and treated with anti-CD47 showed a significant increase of M1 macrophages within the tumor. These data show that anti-CD47 treatment leads to enhanced tumor cell phagocytosis by both M1 and M2 macrophage subtypes with a higher phagocytosis rate by M1 macrophages. Furthermore, these data demonstrate that anti-CD47 treatment alone can shift the phenotype of macrophages toward the M1 subtype in vivo. PMID:27092773

  5. Substance P induces M2-type macrophages after spinal cord injury.

    PubMed

    Jiang, Mei H; Chung, Eunkyung; Chi, Guang F; Ahn, Woosung; Lim, Ji E; Hong, Hyun S; Kim, Dae W; Choi, Hyeongwon; Kim, Jiyoung; Son, Youngsook

    2012-09-12

    The potential benefits or the tissue-damaging effects of inflammatory response after central nervous system injuries have long been disputed. Recent studies have noted that substance P (SP), a neuropeptide, plays an important role in the wound-healing process by recruiting bone marrow stem cells to the injured tissue. In this study, we examined whether SP can enhance recovery from spinal cord injury (SCI) in Sprague-Dawley rats through its known function of stem cell mobilization and/or through the modulation of inflammation. We examined proinflammatory and anti-inflammatory cytokines and markers for macrophage subtypes. SP treatment modulated the SCI microenvironment toward a more anti-inflammatory and reparative one by inducing interleukin-10 and M2 macrophages and suppressing inducible nitric oxide synthase and tumor necrosis factor-α. This modulation was achieved at 1 day much earlier than SP-stimulated bone marrow stem cells' mobilization. Early intervention of the devastating inflammatory response by SP treatment caused the lesion cavity to become filled with robust axonal outgrowth that overlaid the M2 macrophages at 2 weeks--all of which culminated in tissue sparing and improvement in functional recovery from the SCI. SP is therefore a potential anti-inflammatory modulator for the treatment of injury-induced inflammatory central nervous system disorders. PMID:22825006

  6. The M2 macrophages induce autophagic vascular disorder and promote mouse sensitivity to urethane-related lung carcinogenesis.

    PubMed

    Li, G-G; Guo, Z-Z; Ma, X-F; Cao, N; Geng, S-N; Zheng, Y-Q; Meng, M-J; Lin, H-H; Han, G; Du, G-J

    2016-06-01

    Tumor vessels are known to be abnormal, with typically aberrant, leaky and disordered vessels. Here, we investigated whether polarized macrophage phenotypes are involved in tumor abnormal angiogenesis and what is its mechanism. We found that there was no difference in chemotaxis of polarized M1 and M2 macrophages to lewis lung carcinoma (LLC) cells and that either M1 or M2 macrophage-conditioned media had no effect on LLC cell proliferation. Unexpectedly, the M2 but not M1 macrophage-conditioned media promoted the proliferation of human umbilical vein endothelial cells (HUVECs) and simultaneously increased endothelial cell permeability in vitro and angiogenic index in the chick embryo chorioallantoic membrane (CAM). The treatment with M2 but not M1 macrophage-conditioned media increased autophagosomes as well as microtubule-associated protein light chain 3B (LC3-B) expression (a robust marker of autophagosomes) but decreased p62 protein expression (a selective autophagy substrate) in HUVECs, the treatment with chloroquine that blocked autophagy abrogated the abnormal angiogenic efficacy of M2 macrophage-conditioned media. These results were confirmed in urethane-induced lung carcinogenic progression. Urethane-induced lung carcinogenesis led to more M2 macrophage phenotype and increased abnormal angiogenesis concomitant with the upregulation of LC3-B and the downregulation of p62. Clodronate liposome-induced macrophage depletion, chloroquine-induced autophagic prevention or salvianolic acid B-induced vascular protection decreased abnormal angiogenesis and lung carcinogenesis. In addition, we found that the tendency of age-related M2 macrophage polarization also promoted vascular permeability and carcinogenesis in urethane carcinogenic progression. These findings indicate that the M2 macrophages induce autophagic vascular disorder to promote lung cancer progression, and the autophagy improvement represents an efficacious strategy for abnormal angiogenesis and cancer

  7. Interleukin-17A neutralization alleviated ocular neovascularization by promoting M2 and mitigating M1 macrophage polarization.

    PubMed

    Zhu, Yanji; Tan, Wei; Demetriades, Anna M; Cai, Yujuan; Gao, Yushuo; Sui, Ailing; Lu, Qing; Shen, Xi; Jiang, Chunhui; Xie, Bing; Sun, Xinghuai

    2016-04-01

    Neovascularization (NV), as a cardinal complication of several ocular diseases, has been intensively studied, and research has shown its close association with inflammation and immune cells. In the present study, the role of interleukin-17A (IL-17A) in angiogenesis in the process of ocular NV both in vivo and in vitro was investigated. Also, a paracrine role of IL-17A was demonstrated in the crosstalk between endothelial cells and macrophages in angiogenesis. In the retinas of mice with retinopathy of prematurity, the IL-17A expression increased significantly at postnatal day 15 (P15) and P18 during retinal NV. Mice given IL-17A neutralizing antibody (NAb) developed significantly reduced choroidal NV and retinal NV. Studies on vascular endothelial growth factor (VEGF) over-expressing mice suggested that IL-17A modulated NV through the VEGF pathway. Furthermore, IL-17A deficiency shifted macrophage polarization toward an M2 phenotype during retinal NV with significantly reduced M1 cytokine expression compared with wild-type controls. In vitro assays revealed that IL-17A treated macrophage supernatant gave rise to elevated human umbilical vascular endothelial cell proliferation, tube formation and VEGF receptor 1 and receptor 2 expression. Therefore, IL-17A could potentially serve as a novel target for treating ocular NV diseases. The limitation of this study involved the potential mechanisms, such as which transcription accounted for macrophage polarization and how the subsequent cytokines were modulated when macrophages were polarized. Further studies need to be undertaken to definitively determine the extent to which IL-17A neutralizing anti-angiogenic activity depends on macrophage modulation compared with anti-VEGF treatment. PMID:26694999

  8. M2/M1 ratio of tumor associated macrophages and PPAR-gamma expression in uveal melanomas with class 1 and class 2 molecular profiles.

    PubMed

    Herwig, Martina C; Bergstrom, Chris; Wells, Jill R; Höller, Tobias; Grossniklaus, Hans E

    2013-02-01

    Macrophages have been found to be negative predictors of outcome in patients with uveal melanoma. In particular, recent studies point toward a disease-progressing role of proangiogenic M2 macrophages in melanomas with monosomy 3. Although most studies implicate a protective effect of PPAR-gamma activation in tumors, PPAR-gamma has also been shown to promote the polarization of M1 macrophages toward the M2 phenotype. The purpose of this investigation was first, to characterize the phenotype of tumor infiltrating macrophages and second, to study PPAR-gamma expression in uveal melanomas with molecular gene expression profile as prognostic predictors for patients' outcome. Twenty specimens from patients with uveal melanoma were analyzed for clinical and histologic tumor characteristics. The molecular RNA profile (class 1 or class 2) was commercially determined. Using immunohistochemical techniques, the specimens were dual labeled for CD68 and CD163. CD68 + CD163- M1 macrophages and CD68 + CD163+ M2 macrophages were analyzed in ten high power fields sparing macrophage-poor areas and a mean value was calculated for each tumor. The tumors were immunostained for von Willebrand factor and the micro vascular density (MVD) was analyzed according to Foss. To assess the proliferative rate of each tumor, Ki67 expression was evaluated in ten high power fields followed by calculation of a mean value. Expression of PPAR-gamma was evaluated using a score from 0 (no staining) to 3 (tumor entirely stained). Statistical analysis and a respective correlation were made between histologic characteristics, molecular profile, type of tumor infiltrating macrophages (M1 vs. M2), MVD, proliferative rate, and PPAR-gamma expression. Our results showed a correlation between the ratio of M2/M1 macrophages and the molecular profile with a ratio of approximately 1 corresponding to molecular class 1 and a ratio of approximately 2 corresponding to molecular class 2 (p = 0.01). The ratio of M2/M1

  9. Macrophage Ablation Reduces M2-Like Populations and Jeopardizes Tumor Growth in a MAFIA-Based Glioma Model.

    PubMed

    Gabrusiewicz, Konrad; Hossain, Mohammad B; Cortes-Santiago, Nahir; Fan, Xuejun; Kaminska, Bozena; Marini, Frank C; Fueyo, Juan; Gomez-Manzano, Candelaria

    2015-04-01

    Monocytes/macrophages are an influential component of the glioma microenvironment. However, understanding their diversity and plasticity constitute one of the most challenging areas of research due to the paucity of models to study these cells' inherent complexity. Herein, we analyzed the role of monocytes/macrophages in glioma growth by using a transgenic model that allows for conditional ablation of this cell population. We modeled glioma using intracranial GL261-bearing CSF-1R-GFP(+) macrophage Fas-induced apoptosis (MAFIA) transgenic mice. Conditional macrophage ablation was achieved by exposure to the dimerizer AP20187. Double immunofluorescence was used to characterize M1- and M2-like monocytes/macrophages during tumor growth and after conditional ablation. During glioma growth, the monocyte/macrophage population consisted predominantly of M2 macrophages. Conditional temporal depletion of macrophages reduced the number of GFP(+) cells, targeting mainly the repopulation of M2-polarized cells, and altered the appearance of M1-like monocytes/macrophages, which suggested a shift in the M1/M2 macrophage balance. Of interest, compared with control-treated mice, macrophage-depleted mice had a lower tumor mitotic index, microvascular density, and reduced tumor growth. These results demonstrated the possibility of studying in vivo the role and phenotype of macrophages in gliomas and suggested that transitory depletion of CSF-1R(+) population influences the reconstitutive phenotypic pool of these cells, ultimately suppressing tumor growth. The MAFIA model provides a much needed advance in defining the role of macrophages in gliomas. PMID:25925380

  10. Macrophage Ablation Reduces M2-Like Populations and Jeopardizes Tumor Growth in a MAFIA-Based Glioma Model12

    PubMed Central

    Gabrusiewicz, Konrad; Hossain, Mohammad B.; Cortes-Santiago, Nahir; Fan, Xuejun; Kaminska, Bozena; Marini, Frank C.; Fueyo, Juan; Gomez-Manzano, Candelaria

    2015-01-01

    Monocytes/macrophages are an influential component of the glioma microenvironment. However, understanding their diversity and plasticity constitute one of the most challenging areas of research due to the paucity of models to study these cells' inherent complexity. Herein, we analyzed the role of monocytes/macrophages in glioma growth by using a transgenic model that allows for conditional ablation of this cell population. We modeled glioma using intracranial GL261-bearing CSF-1R–GFP+ macrophage Fas-induced apoptosis (MAFIA) transgenic mice. Conditional macrophage ablation was achieved by exposure to the dimerizer AP20187. Double immunofluorescence was used to characterize M1- and M2-like monocytes/macrophages during tumor growth and after conditional ablation. During glioma growth, the monocyte/macrophage population consisted predominantly of M2 macrophages. Conditional temporal depletion of macrophages reduced the number of GFP+ cells, targeting mainly the repopulation of M2-polarized cells, and altered the appearance of M1-like monocytes/macrophages, which suggested a shift in the M1/M2 macrophage balance. Of interest, compared with control-treated mice, macrophage-depleted mice had a lower tumor mitotic index, microvascular density, and reduced tumor growth. These results demonstrated the possibility of studying in vivo the role and phenotype of macrophages in gliomas and suggested that transitory depletion of CSF-1R+ population influences the reconstitutive phenotypic pool of these cells, ultimately suppressing tumor growth. The MAFIA model provides a much needed advance in defining the role of macrophages in gliomas. PMID:25925380

  11. Different pathways of macrophage activation and polarization.

    PubMed

    Juhas, Ulana; Ryba-Stanisławowska, Monika; Szargiej, Patryk; Myśliwska, Jolanta

    2015-01-01

    Monocytes are short-lived cells and undergo spontaneous apoptosis every day. Inflammatory responses may induce dramatic up-regulation of monocyte survival and differentiation. When monocytes are recruited to an area of infection they may differentiate into macrophages. In different microenvironments macrophages polarize into two types. The M1 or classically activated macrophages are characterized by the high ability to produce pro-inflammatory cytokines and the production of NO through the induced synthesis of iNOS. The M2 or alternatively activated macrophages are divided into 3 subtypes, M2 a, b and c, and they have anti-inflammatory properties. Mediators of M1 macrophage TLR-dependent polarization include transcription factors such as NF-κB, AP-1, PU.1, CCAAT/enhancer-binding protein α (C/EBP-α), STAT1 as well as interferon regulatory factor 5 (IRF5), while the transcription factors which promote M2 activation include IRF4, C/EBP-β, Krüppel-like factor 4 (KLF4), STAT6 and PPARγ receptor. PMID:25983288

  12. Modulation of Osteoclastogenesis with Macrophage M1- and M2-Inducing Stimuli

    PubMed Central

    Jeganathan, Sujeeve; Fiorino, Cara; Naik, Urja; Sun, He song; Harrison, Rene E.

    2014-01-01

    Macrophages are generated through the differentiation of monocytes in tissues and they have important functions in innate and adaptive immunity. In addition to their roles as phagocytes, macrophages can be further differentiated, in the presence of receptor activator of nuclear factor kappa-B ligand (RANKL) and macrophage colony-stimulating factor (M-CSF), into osteoclasts (multinucleated giant cells that are responsible for bone resorption). In this work, we set out to characterize whether various inflammatory stimuli, known to induce macrophage polarization, can alter the type of multinucleated giant cell obtained from RANKL differentiation. Following a four-day differentiation protocol, along with lipopolysaccharide (LPS)/interferon gamma (IFNγ) as one stimulus, and interleukin-4 (IL-4) as the other, three types of multinucleated cells were generated. Using various microscopy techniques (bright field, epifluorescence and scanning electron), functional assays, and western blotting for osteoclast markers, we found that, as expected, RANKL treatment alone resulted in osteoclasts, whereas the addition of LPS/IFNγ to RANKL pre-treated macrophages generated Langhans-type giant cells, while IL-4 led to giant cells resembling foreign body giant cells with osteoclast-like characteristics. Finally, to gain insight into the modulation of osteoclastogenesis, we characterized the formation and morphology of RANKL and LPS/IFNγ-induced multinucleated giant cells. PMID:25101660

  13. M1- and M2-Type Macrophage Responses Are Predictive of Adverse Outcomes in Human Atherosclerosis

    PubMed Central

    de Gaetano, Monica; Crean, Daniel; Barry, Mary; Belton, Orina

    2016-01-01

    Atherosclerosis is an inflammatory disease caused by endothelial injury, lipid deposition, and oxidative stress. This progressive disease can be converted into an acute clinical event by plaque rupture and thrombosis. In the context of atherosclerosis, the underlying cause of myocardial infarction and stroke, macrophages uniquely possess a dual functionality, regulating lipid accumulation and metabolism and sustaining the chronic inflammatory response, two of the most well-documented pathways associated with the pathogenesis of the disease. Macrophages are heterogeneous cell populations and it is hypothesized that, during the pathogenesis of atherosclerosis, macrophages in the developing plaque can switch from a pro-inflammatory (MΦ1) to an anti-inflammatory (MΦ2) phenotype and vice versa, depending on the microenvironment. The aim of this study was to identify changes in macrophage subpopulations in the progression of human atherosclerotic disease. Established atherosclerotic plaques from symptomatic and asymptomatic patients with existing coronary artery disease undergoing carotid endarterectomy were recruited to the study. Comprehensive histological and immunohistochemical analyses were performed to quantify the cellular content and macrophage subsets of atherosclerotic lesion. In parallel, expression of MΦ1 and MΦ2 macrophage markers were analyzed by real-time PCR and Western blot analysis. Gross analysis and histological staining demonstrated that symptomatic plaques presented greater hemorrhagic activity and the internal carotid was the most diseased segment, based on the predominant prevalence of fibrotic and necrotic tissue, calcifications, and hemorrhagic events. Immunohistochemical analysis showed that both MΦ1 and MΦ2 macrophages are present in human plaques. However, MΦ2 macrophages are localized to more stable locations within the lesion. Importantly, gene and protein expression analysis of MΦ1/MΦ2 markers evidenced that MΦ1 markers and Th1

  14. M2-polarized macrophages contribute to neovasculogenesis, leading to relapse of oral cancer following radiation

    PubMed Central

    Okubo, Makiko; Kioi, Mitomu; Nakashima, Hideyuki; Sugiura, Kei; Mitsudo, Kenji; Aoki, Ichiro; Taniguchi, Hideki; Tohnai, Iwai

    2016-01-01

    Despite the fact that radiation is one of the standard therapies in the treatment of patients with oral cancer, tumours can recur even in the early stages of the disease, negatively impacting prognosis and quality of life. We previously found that CD11b+ bone marrow-derived cells (BMDCs) were recruited into human glioblastoma multiforme (GBM), leading to re-organization of the vasculature and tumour regrowth. However, it is not yet known how these cells contribute to tumour vascularization. In the present study, we investigated the role of infiltrating CD11b+ myeloid cells in the vascularization and recurrence of oral squamous cell carcinoma (OSCC). In a xenograft mouse model, local irradiation caused vascular damage and hypoxia in the tumour and increased infiltration of CD11b+ myeloid cells. These infiltrating cells showed characteristics of M2 macrophages (M2Mφs) and are associated with the promotion of vascularization. M2Mφs promoted tumour progression in recurrence after irradiation compared to non-irradiated tumours. In addition, we found that CD11b+ myeloid cells, as well as CD206+ M2Mφs, are increased during recurrence after radiotherapy in human OSCC specimens. Our findings may lead to the development of potential clinical biomarkers or treatment targets in irradiated OSCC patients. PMID:27271009

  15. M2-polarized macrophages contribute to neovasculogenesis, leading to relapse of oral cancer following radiation.

    PubMed

    Okubo, Makiko; Kioi, Mitomu; Nakashima, Hideyuki; Sugiura, Kei; Mitsudo, Kenji; Aoki, Ichiro; Taniguchi, Hideki; Tohnai, Iwai

    2016-01-01

    Despite the fact that radiation is one of the standard therapies in the treatment of patients with oral cancer, tumours can recur even in the early stages of the disease, negatively impacting prognosis and quality of life. We previously found that CD11b(+) bone marrow-derived cells (BMDCs) were recruited into human glioblastoma multiforme (GBM), leading to re-organization of the vasculature and tumour regrowth. However, it is not yet known how these cells contribute to tumour vascularization. In the present study, we investigated the role of infiltrating CD11b(+) myeloid cells in the vascularization and recurrence of oral squamous cell carcinoma (OSCC). In a xenograft mouse model, local irradiation caused vascular damage and hypoxia in the tumour and increased infiltration of CD11b(+) myeloid cells. These infiltrating cells showed characteristics of M2 macrophages (M2Mφs) and are associated with the promotion of vascularization. M2Mφs promoted tumour progression in recurrence after irradiation compared to non-irradiated tumours. In addition, we found that CD11b(+) myeloid cells, as well as CD206(+) M2Mφs, are increased during recurrence after radiotherapy in human OSCC specimens. Our findings may lead to the development of potential clinical biomarkers or treatment targets in irradiated OSCC patients. PMID:27271009

  16. Triggering TLR2, -3, -4, -5, and -8 Reinforces the Restrictive Nature of M1- and M2-Polarized Macrophages to HIV

    PubMed Central

    Schlaepfer, Erika; Rochat, Mary-Aude; Duo, Li

    2014-01-01

    ABSTRACT Macrophages must react to a large number of pathogens and their effects. In chronic HIV infection, the microenvironment changes with an influx of microbial products that trigger Toll-like receptors (TLRs). That dynamic nature can be replicated ex vivo by the proinflammatory (M1-polarized) and alternatively activated (M2-polarized) macrophages. Thus, we determined how polarized macrophages primed by various TLR agonists support HIV replication. Triggering of TLR2, -3, -4, -5, and -8 reinforced the low level of permissiveness in polarized macrophages. HIV was inhibited even more in M1-polarized macrophages than in macrophages activated only by TLR agonists. HIV was inhibited before its integration into the host chromosome. Polarization and triggering by various TLR agonists resulted in distinct cytokine profiles, endocytic activity, and distinct upregulation of restriction factors of HIV. Thus, different mechanisms likely contribute to the HIV-inhibitory effects. In chronic HIV infection, macrophages might become less permissive to HIV due to changes in the microenvironment. The high level of reactivity of polarized macrophages to TLR triggering may be exploited for immunotherapeutic strategies. IMPORTANCE Macrophages are a major target of HIV-1 infection. Different cell types in this very heterogeneous cell population respond differently to stimuli. In vitro, the heterogeneity is mimicked by their polarization into proinflammatory and alternatively activated macrophages. Here we explored the extent to which agonists triggering the TLR family affect HIV replication in polarized macrophages. We found that a number of TLR agonists blocked HIV replication substantially when given before infection. We also report the mechanisms of how TLR agonists exert their inhibitory action. Our findings may advance our understanding of which and how TLR agonists block HIV infection in polarized macrophages and may facilitate the design of novel immunotherapeutic approaches

  17. Isoliquiritigenin, a flavonoid from licorice, blocks M2 macrophage polarization in colitis-associated tumorigenesis through downregulating PGE2 and IL-6.

    PubMed

    Zhao, Haixia; Zhang, Xinhua; Chen, Xuewei; Li, Ying; Ke, Zunqiong; Tang, Tian; Chai, Hongyan; Guo, Austin M; Chen, Honglei; Yang, Jing

    2014-09-15

    M2 macrophage polarization is implicated in colorectal cancer development. Isoliquiritigenin (ISL), a flavonoid from licorice, has been reported to prevent azoxymethane (AOM) induced colon carcinogenesis in animal models. Here, in a mouse model of colitis-associated tumorigenesis induced by AOM/dextran sodium sulfate (DSS), we investigated the chemopreventive effects of ISL and its mechanisms of action. Mice were treated with AOM/DSS and randomized to receive either vehicle or ISL (3, 15 and 75 mg/kg). Tumor load, histology, immunohistochemistry, and gene and protein expressions were determined. Intragastric administration of ISL for 12 weeks significantly decreased colon cancer incidence, multiplicity and tumor size by 60%, 55.4% and 42.6%, respectively. Moreover, ISL inhibited M2 macrophage polarization. Such changes were accompanied by downregulation of PGE2 and IL-6 signaling. Importantly, depletion of macrophages by clodronate (Clod) or zoledronic acid (ZA) reversed the effects of ISL. In parallel, in vitro studies also demonstrated that ISL limited the M2 polarization of RAW264.7 cells and mouse peritoneal macrophages with concomitant inactivation of PGE2/PPARδ and IL-6/STAT3 signaling. Conversely, exogenous addition of PGE2 or IL-6, or overexpression of constitutively active STAT3 reversed ISL-mediated inhibition of M2 macrophage polarization. In summary, dietary flavonoid ISL effectively inhibits colitis-associated tumorigenesis through hampering M2 macrophage polarization mediated by the interplay between PGE2 and IL-6. Thus, inhibition of M2 macrophage polarization is likely to represent a promising strategy for chemoprevention of colorectal cancer. PMID:25026504

  18. Inhibition of Sprouty2 polarizes macrophages toward an M2 phenotype by stimulation with interferon γ and Porphyromonas gingivalis lipopolysaccharide.

    PubMed

    Atomura, Ryo; Sanui, Terukazu; Fukuda, Takao; Tanaka, Urara; Toyoda, Kyosuke; Taketomi, Takaharu; Yamamichi, Kensuke; Akiyama, Hajime; Nishimura, Fusanori

    2016-03-01

    Periodontitis is a chronic inflammatory disorder caused by specific bacteria residing in the biofilm, particularly Porphyromonas gingivalis (Pg). Sprouty2 (Spry2) functions as a negative regulator of the fibroblast growth factor (FGF) signaling pathway. We previously demonstrated that sequestration of Spry2 induced proliferation and osteogenesis in osteoblastic cells by basic FGF (bFGF) and epidermal growth factor (EGF) stimulation in vitro, but diminished cell proliferation in gingival epithelial cells. In addition, Spry2 knockdown in combination with bFGF and EGF stimulation increases periodontal ligament cell proliferation and migration accompanied by prevention of osteoblastic differentiation. In this study, we investigated the mechanisms through which Spry2 depletion by interferon (IFN) γ and Pg lipopolysaccharide (LPS) stimulation affected the physiology of macrophages in vitro. Transfection of macrophages with Spry2 small-interfering RNA (siRNA) promoted the expression of genes characteristic of M2 alternative activated macrophages, induced interleukin (IL)-10 expression, and enhanced arginase activity, even in cells stimulated with IFNγ and Pg LPS. In addition, we found that phosphoinositide 3-kinase (PI3K) and AKT activation by Spry2 downregulation enhanced efferocytosis of apoptotic cells by increasing Rac1 activation and decreasing nuclear factor kappa B (NFκB) p65 phosphorylation but not signal transducer and activator of transcription 1 (STAT1) phosphorylation. Collectively, our results suggested that topical administration of Spry2 inhibitors may efficiently resolve inflammation in periodontal disease as macrophage-based anti-inflammatory immunotherapy and may create a suitable environment for periodontal wound healing. These in vitro findings provide a molecular basis for new therapeutic approaches in periodontal tissue regeneration. PMID:27042307

  19. Monocyte Differentiation towards Protumor Activity Does Not Correlate with M1 or M2 Phenotypes

    PubMed Central

    Chimal-Ramírez, G. Karina; Espinoza-Sánchez, Nancy Adriana; Chávez-Sánchez, Luis; Arriaga-Pizano, Lourdes

    2016-01-01

    Macrophages facilitate breast cancer progression. Macrophages were initially classified as M1 or M2 based on their distinct metabolic programs and then expanded to include antitumoral (M1) and protumoral (M2) activities. However, it is still uncertain what markers define the pro- and antitumoral phenotypes and what conditions lead to their formation. In this study, monocytic cell lines and primary monocytes were subjected to commonly reported protocols of M1/M2 polarization and conditions known to engage monocytes into protumoral functions. The results showed that only IDO enzyme and CD86 M1 markers were upregulated correlating with M1 polarization. TNF-α, CCR7, IL-10, arginase I, CD36, and CD163 were expressed indistinguishably from M1 or M2 polarization. Similarly, protumoral engaging resulted in upregulation of both M1 and M2 markers, with conditioned media from the most aggressive breast cancer cell line promoting the greatest changes. In spite of the mixed phenotype, M1-polarized macrophages exhibited the highest expression/secretion of inflammatory mediators, many of which have previously been associated with breast cancer aggressiveness. These data argue that although the existence of protumoral macrophages is unquestionable, their associated phenotypes and the precise conditions driving their formation are still unclear, and those conditions may need both M1 and M2 stimuli. PMID:27376091

  20. NMAAP1 Expressed in BCG-Activated Macrophage Promotes M1 Macrophage Polarization

    PubMed Central

    Liu, Qihui; Tian, Yuan; Zhao, Xiangfeng; Jing, Haifeng; Xie, Qi; Li, Peng; Li, Dong; Yan, Dongmei; Zhu, Xun

    2015-01-01

    Macrophages are divided into two subpopulations: classically activated macrophages (M1) and alternatively activated macrophages (M2). BCG (Bacilli Calmette-Guérin) activates disabled naïve macrophages to M1 macrophages, which act as inflammatory, microbicidal and tumoricidal cells through cell-cell contact and/or the release of soluble factors. Various transcription factors and signaling pathways are involved in the regulation of macrophage activation and polarization. We discovered that BCG-activated macrophages (BAM) expressed a new molecule, and we named it Novel Macrophage Activated Associated Protein 1 (NMAAP1). The current study found that the overexpression of NMAAP1 in macrophages results in M1 polarization with increased expression levels of M1 genes, such as inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α), Interleukin 6 (IL-6), Interleukin 12 (IL-12), Monocyte chemoattractant protein-1 (MCP-1) and Interleukin-1 beta (IL-1β), and decreased expression of some M2 genes, such as Kruppel-like factor 4 (KLF4) and suppressor of cytokine signaling 1 (SOCS1), but not other M2 genes, including arginase-1 (Arg-1), Interleukin (IL-10), transforming growth factor beta (TGF-β) and found in inflammatory zone 1 (Fizz1). Moreover, NMAAP1 overexpression in the RAW264.7 cell line increased cytotoxicity against MCA207 tumor cells, which depends on increased inflammatory cytokines rather than cell-cell contact. NMAAP1 also substantially enhanced the phagocytic ability of macrophages, which implies that NMAAP1 promoted macrophage adhesive and clearance activities. Our results indicate that NMAAP1 is an essential molecule that modulates macrophages phenotype and plays an important role in macrophage tumoricidal functions. PMID:26429502

  1. Update on the role of alternatively activated macrophages in asthma

    PubMed Central

    Jiang, Zhilong; Zhu, Lei

    2016-01-01

    Lung macrophages link innate and adaptive immune responses during allergic airway inflammatory responses. Alveolar macrophages (AMs) and interstitial macrophages are two different phenotypes that differentially exert immunological function under physiological and pathological conditions. Exposure to pathogen induces polarization of AM cells into classically activated macrophages (M1 cells) and alternatively activated macrophages (M2 cells). M1 cells dominantly express proinflammatory cytokines such as TNF-α and IL-1 β and induce lung inflammation and tissue damage. M2 cells are further divided into M2a and M2c subsets. M2a cells dominantly produce allergic cytokines IL-4 and IL-13, but M2c cells dominantly produce anti-inflammatory cytokine IL-10. M2a and M2c cells are differently involved in initiation, inflammation resolution, and tissue remodeling in the different stages of asthma. Microenvironment dynamically influences polarization of AM cells. Cytokines, chemokines, and immune-regulatory cells interplay and affect the balance between the polarization of M1 and M2 cells, subsequently influencing disease progression. Thus, modulation of AM phenotypes through molecular intervention has therapeutic potential in the treatment of asthma and other allergic inflammatory diseases. This review updated recent advances in polarization and functional specialization of these macrophage subtypes with emphasis on modulation of polarization of M2 cells in asthma of human subjects and animal models. PMID:27350756

  2. Phosphocholine‐containing ligands direct CRP induction of M2 macrophage polarization independent of T cell polarization: Implication for chronic inflammatory states

    PubMed Central

    Cieslik, Katarzyna A.; Entman, Mark L.

    2016-01-01

    Introduction We studied monocyte transendothelial migration and subsequent polarization into M1/M2 macrophages in response to C‐reactive protein (CRP) with two disease‐related ligands: (1) phosphocholine (PC) and (2) multilamellar liposomes containing both unoxidized and oxidized forms of the lipid, phosphatidylcholine. These ligands differ in biological origin: PC is present on bacterial cell walls while oxidized lipids are present in atherogenic lipids. Methods We used an in vitro model of human monocyte transendothelial migration and assessed the polarization of monocytes and T cells and signaling through Fcγ receptors in monocytes. Results CRP without ligands did not promote M2 macrophage differentiation over background levels. However, when paired with either ligand, it increased M2 numbers. M2 differentiation was dependent on IL‐13, and in the case of CRP with PC, was associated with a Th2 response. Paradoxically, while CRP with PC initiated a Th2 response, the combination of liposomes with CRP resulted in a Th1 response without any change in Th2 numbers despite association with M2 macrophage polarization. To resolve the conundrum of an anti‐inflammatory macrophage response coexisting with a proinflammatory T cell response, we investigated signaling of CRP and its ligands through Fcγ receptors, which leads to macrophage activation independent of T cell signaling. We found that CRP plus PC acted via FcγRI, whereas CRP with liposomes bound to FcγRII. Both were activating signals as evidenced by SYK phosphorylation. Conclusion We conclude that CRP with ligands can promote M2 macrophage differentiation to fibroblasts through FcγR activation, and this may result in an anti‐inflammatory influence despite a proinflammatory T cell environment caused by oxidized lipids. The potential relationship of this mechanism to chronic inflammatory disease is discussed. PMID:27621811

  3. Alcohol-Induced miR-27a Regulates Differentiation and M2 Macrophage Polarization of Normal Human Monocytes

    PubMed Central

    Saha, Banishree; Bruneau, Johanna C.; Kodys, Karen; Szabo, Gyongyi

    2015-01-01

    Alcohol abuse is a leading cause of liver disease characterized by liver inflammation, fatty liver, alcoholic hepatitis, or liver cirrhosis. Immunomodulatory effects of alcohol on monocytes and macrophages contribute to alcoholic liver disease. Alcohol use, an independent risk factor for progression of hepatitis C virus (HCV) infection–mediated liver disease, impairs host defense and alters cytokine production and monocyte/macrophage activation. We hypothesized that alcohol and HCV have synergistic effects on the phenotype and function of monocytes. Our data show that acute alcohol binge drinking in healthy volunteers results in increased frequency of CD16+ and CD68+ and M2-type (CD206+, dendritic cell [DC]-SIGN+–expressing and IL-10–secreting) circulating CD14+ monocytes. Expression of HCV-induced CD68 and M2 markers (CD206 and DC-SIGN) in normal monocytes was further enhanced in the presence of alcohol. The levels of microRNA (miR)-27a was significantly upregulated in monocytes cultured in the presence of alcohol or alcohol and HCV as compared with HCV alone. The functional role of miR-27a in macrophage polarization was demonstrated by transfecting monocytes with an miR-27a inhibitor that resulted in reduced alcohol- and HCV- mediated monocyte activation (CD14 and CD68 expression), polarization (CD206 and DC-SIGN expression), and IL-10 secretion. Over-expression of miR-27a in monocytes enhanced IL-10 secretion via activation of the ERK signaling pathway. We found that miR-27a promoted ERK phosphorylation by downregulating the expression of ERK inhibitor sprouty2 in monocytes. Thus, we identified that sprouty2 is a target of miR-27a in human monocytes. In summary, our study demonstrates the regulatory role of miR-27a in alcohol-induced monocyte activation and polarization. PMID:25716995

  4. E-cadherin expression in macrophages dampens their inflammatory responsiveness in vitro, but does not modulate M2-regulated pathologies in vivo

    PubMed Central

    Van den Bossche, Jan; Laoui, Damya; Naessens, Thomas; Smits, Hermelijn H.; Hokke, Cornelis H.; Stijlemans, Benoît; Grooten, Johan; De Baetselier, Patrick; Van Ginderachter, Jo A.

    2015-01-01

    IL-4/IL-13-induced alternatively activated macrophages (M(IL-4/IL-13), AAMs or M2) are known to express E-cadherin, enabling them to engage in heterotypic cellular interactions and IL-4-driven macrophage fusion in vitro. Here we show that E-cadherin overexpression in Raw 264.7 macrophages inhibits their inflammatory response to LPS stimulation, as demonstrated by a reduced secretion of inflammatory mediators like interleukin (IL)-6, tumor necrosis factor (TNF) and nitric oxide (NO). To study the function of E-cadherin in M(IL-4/IL-13) macrophages in vivo, we generated macrophage-specific E-cadherin-deficient C57BL/6 mice. Using this new tool, we analyzed immunological parameters during two typical AAM-associated Th2-driven diseases and assessed Th2-associated granuloma formation. Although E-cadherin is strongly induced in AAMs during Taenia crassiceps helminth infections and allergic airway inflammation, its deletion in macrophages does not affect the course of both Th2 cytokine-driven diseases. Moreover, macrophage E-cadherin expression is largely redundant for granuloma formation around Schistosoma mansoni ova. Overall, we conclude that E-cadherin is a valuable AAM marker which suppresses the inflammatory response when overexpressed. Yet E-cadherin deletion in macrophages does not affect M(LPS+IFNγ) and M(IL-4) polarization in vitro, nor in vivo macrophage function, at least in the conditions tested. PMID:26226941

  5. Macrophage activation and polarization: nomenclature and experimental guidelines.

    PubMed

    Murray, Peter J; Allen, Judith E; Biswas, Subhra K; Fisher, Edward A; Gilroy, Derek W; Goerdt, Sergij; Gordon, Siamon; Hamilton, John A; Ivashkiv, Lionel B; Lawrence, Toby; Locati, Massimo; Mantovani, Alberto; Martinez, Fernando O; Mege, Jean-Louis; Mosser, David M; Natoli, Gioacchino; Saeij, Jeroen P; Schultze, Joachim L; Shirey, Kari Ann; Sica, Antonio; Suttles, Jill; Udalova, Irina; van Ginderachter, Jo A; Vogel, Stefanie N; Wynn, Thomas A

    2014-07-17

    Description of macrophage activation is currently contentious and confusing. Like the biblical Tower of Babel, macrophage activation encompasses a panoply of descriptors used in different ways. The lack of consensus on how to define macrophage activation in experiments in vitro and in vivo impedes progress in multiple ways, including the fact that many researchers still consider there to be only two types of activated macrophages, often termed M1 and M2. Here, we describe a set of standards encompassing three principles-the source of macrophages, definition of the activators, and a consensus collection of markers to describe macrophage activation-with the goal of unifying experimental standards for diverse experimental scenarios. Collectively, we propose a common framework for macrophage-activation nomenclature. PMID:25035950

  6. Carboxyl- and amino-functionalized polystyrene nanoparticles differentially affect the polarization profile of M1 and M2 macrophage subsets.

    PubMed

    Fuchs, Ann-Kathrin; Syrovets, Tatiana; Haas, Karina A; Loos, Cornelia; Musyanovych, Anna; Mailänder, Volker; Landfester, Katharina; Simmet, Thomas

    2016-04-01

    Macrophages are key regulators of innate and adaptive immune responses. Exposure to microenvironmental stimuli determines their polarization into proinflammatory M1 and anti-inflammatory M2 macrophages. M1 exhibit high expression of proinflammatory TNF-α and IL-1β, and M2 promote tissue repair, but likewise support tumor growth and cause immune suppression by expressing IL-10. Thus, the M1/M2 balance critically determines tissue homeostasis. By using carboxyl- (PS-COOH) and amino-functionalized (PS-NH2) polystyrene nanoparticles, the effects of surface decoration on the polarization of human macrophages were investigated. The nanoparticles did not compromise macrophage viability nor did they affect the expression of the M1 markers CD86, NOS2, TNF-α, and IL-1β. By contrast, in M2, both nanoparticles impaired expression of scavenger receptor CD163 and CD200R, and the release of IL-10. PS-NH2 also inhibited phagocytosis of Escherichia coli by both, M1 and M2. PS-COOH did not impair phagocytosis by M2, but increased protein mass in M1 and M2, TGF-β1 release by M1, and ATP levels in M2. Thus, nanoparticles skew the M2 macrophage polarization without affecting M1 markers. Given the critical role of the M1 and M2 polarization for the immunological balance in patients with cancer or chronic inflammation, functionalized nanoparticles might serve as tools for reprogramming the M1/M2 polarization. PMID:26854393

  7. The Many Alternative Faces of Macrophage Activation.

    PubMed

    Hume, David A

    2015-01-01

    Monocytes and macrophages provide the first line of defense against pathogens. They also initiate acquired immunity by processing and presenting antigens and provide the downstream effector functions. Analysis of large gene expression datasets from multiple cells and tissues reveals sets of genes that are co-regulated with the transcription factors that regulate them. In macrophages, the gene clusters include lineage-specific genes, interferon-responsive genes, early inflammatory genes, and genes required for endocytosis and lysosome function. Macrophages enter tissues and alter their function to deal with a wide range of challenges related to development and organogenesis, tissue injury, malignancy, sterile, or pathogenic inflammatory stimuli. These stimuli alter the gene expression to produce "activated macrophages" that are better equipped to eliminate the cause of their influx and to restore homeostasis. Activation or polarization states of macrophages have been classified as "classical" and "alternative" or M1 and M2. These proposed states of cells are not supported by large-scale transcriptomic data, including macrophage-associated signatures from large cancer tissue datasets, where the supposed markers do not correlate with other. Individual macrophage cells differ markedly from each other, and change their functions in response to doses and combinations of agonists and time. The most studied macrophage activation response is the transcriptional cascade initiated by the TLR4 agonist lipopolysaccharide. This response is reviewed herein. The network topology is conserved across species, but genes within the transcriptional network evolve rapidly and differ between mouse and human. There is also considerable divergence in the sets of target genes between mouse strains, between individuals, and in other species such as pigs. The deluge of complex information related to macrophage activation can be accessed with new analytical tools and new databases that provide

  8. M2 tumour-associated macrophages contribute to tumour progression via legumain remodelling the extracellular matrix in diffuse large B cell lymphoma

    PubMed Central

    Shen, Long; Li, Honghao; Shi, Yuzhi; Wang, Dekun; Gong, Junbo; Xun, Jing; Zhou, Sifan; Xiang, Rong; Tan, Xiaoyue

    2016-01-01

    Effects of M2 tumour-associated macrophages on the pathogenesis of diffuse large B cell lymphoma (DLBCL) are still controversial. Our data showed that the number of CD163-positive M2 macrophages correlated negatively with DLBCL prognosis. Macrophage depletion by clodronate liposomes significantly suppressed tumour growth in a xenograft mouse model of DLBCL using OCI-Ly3 cells. Moreover, M2 polarization of macrophages induced legumain expression in U937 cells. Exogenous legumain promoted degradation of fibronectin and collagen I, which was abolished by administration of a legumain inhibitor RR-11a. Overexpression of legumain in Raw 264.7 cells also induced tube formation of endothelial cells in matrigel. In the xenograft mouse model of DLBCL, decreased fibronectin and collagen I, as well as increased legumain expression and angiogenesis were found at the late stage tumours compared with early stage tumours. Co-localization of legumain and fibronectin was observed in the extracellular matrix of tumour tissues. Administration of the legumain inhibitor to the xenograft DLBCL model suppressed tumour growth, angiogenesis and collagen deposition compared with the control. Taken together, our results suggest that M2 tumour-associated macrophages affect degradation of the extracellular matrix and angiogenesis via overexpression of legumain, and therefore play an active role in the progression of DLBCL. PMID:27464733

  9. M2 tumour-associated macrophages contribute to tumour progression via legumain remodelling the extracellular matrix in diffuse large B cell lymphoma.

    PubMed

    Shen, Long; Li, Honghao; Shi, Yuzhi; Wang, Dekun; Gong, Junbo; Xun, Jing; Zhou, Sifan; Xiang, Rong; Tan, Xiaoyue

    2016-01-01

    Effects of M2 tumour-associated macrophages on the pathogenesis of diffuse large B cell lymphoma (DLBCL) are still controversial. Our data showed that the number of CD163-positive M2 macrophages correlated negatively with DLBCL prognosis. Macrophage depletion by clodronate liposomes significantly suppressed tumour growth in a xenograft mouse model of DLBCL using OCI-Ly3 cells. Moreover, M2 polarization of macrophages induced legumain expression in U937 cells. Exogenous legumain promoted degradation of fibronectin and collagen I, which was abolished by administration of a legumain inhibitor RR-11a. Overexpression of legumain in Raw 264.7 cells also induced tube formation of endothelial cells in matrigel. In the xenograft mouse model of DLBCL, decreased fibronectin and collagen I, as well as increased legumain expression and angiogenesis were found at the late stage tumours compared with early stage tumours. Co-localization of legumain and fibronectin was observed in the extracellular matrix of tumour tissues. Administration of the legumain inhibitor to the xenograft DLBCL model suppressed tumour growth, angiogenesis and collagen deposition compared with the control. Taken together, our results suggest that M2 tumour-associated macrophages affect degradation of the extracellular matrix and angiogenesis via overexpression of legumain, and therefore play an active role in the progression of DLBCL. PMID:27464733

  10. Cathepsin S-mediated autophagic flux in tumor-associated macrophages accelerate tumor development by promoting M2 polarization

    PubMed Central

    2014-01-01

    Background Tumor-associated macrophages (TAMs) are the major component of tumor-infiltrating leukocytes. TAMs are heterogeneous, with distinct phenotypes influenced by the microenvironment surrounding tumor tissues, but relatively little is known about the key molecular in these cells that contribute to malignant phenotypes. Autophagic activity is a critical factor in tumor development that contributes to enhancing cellular fitness and survival in the hostile tumor microenvironment. However, the molecular basis and relations between autophagy and TAMs polarization remain unclear. Methods Cathepsin S (Cat S) expression was analyzed in human colon carcinoma and normal colon tissues. In vivo effects were evaluated using PancO2 subcutaneous tumor model and SL4 hepatic metastasis model. Immunofluorescence staining, flow cytometry and real-time PCR were done to examine TAMs polarization. Western blotting assay, transmission electron microscopy, mCherry-GFP-LC3 transfection and DQ-BSA degradation assays were carried out to determine its role in regulating autophagy. Results In the present study, we showed that the enhanced expression of Cat S correlated with the severity of histologic grade as well as clinical stage, metastasis, and recurrence, which are known indicators of a relatively poor prognosis of human colon carcinoma. Cat S knockout led to decreased tumor growth and metastasis. Moreover, Cat S knockout inhibited M2 macrophage polarization during tumor development. We further demonstrated that Cat S was required for not only autophagic flux but also the fusion processes of autophagosomes and lysosomes in TAMs. Importantly, we found that Cat S contributed to tumor development by regulating the M2 phenotype of TAMs through the activation of autophagy. Conclusions These results indicated that Cat S-mediated autophagic flux is an important mechanism for inducing M2-type polarization of TAMs, which leads to tumor development. These data provide strong evidence for a

  11. Phosphatase regulation of macrophage activation.

    PubMed

    Kozicky, Lisa K; Sly, Laura M

    2015-08-01

    Macrophages are innate immune cells that play critical roles in tissue homeostasis and the immune response to invading pathogens or tumor cells. A hallmark of macrophages is their "plasticity," that is, their ability to respond to cues in their local microenvironment and adapt their activation state or phenotype to mount an appropriate response. During the inflammatory response, macrophages may be required to mount a profound anti-bacterial or anti-tumor response, an anti-inflammatory response, an anti-parasitic response, or a wound healing response. To do so, macrophages express cell surface receptors for growth factors, chemokines and cytokines, as well pathogen and danger associated molecular patterns. Downstream of these cell surface receptors, cell signalling cascades are activated and deactivated by reversible and competing activities of lipid and protein kinases and phosphatases. While kinases drive the activation of cell signalling pathways critical for macrophage activation, the strength and duration of the signalling is regulated by phosphatases. Hence, gene knockout mouse models have revealed critical roles for lipid and protein phosphatases in macrophage activation. Herein, we describe our current understanding and the key roles of specific cellular phosphatases in the regulation of the quality of macrophage polarization as well as the quantity of cytokines produced by activated macrophages. PMID:26216598

  12. The human fetal placenta promotes tolerance against the semiallogeneic fetus by inducing regulatory T cells and homeostatic M2 macrophages.

    PubMed

    Svensson-Arvelund, Judit; Mehta, Ratnesh B; Lindau, Robert; Mirrasekhian, Elahe; Rodriguez-Martinez, Heriberto; Berg, Göran; Lash, Gendie E; Jenmalm, Maria C; Ernerudh, Jan

    2015-02-15

    A successful pregnancy requires that the maternal immune system is instructed to a state of tolerance to avoid rejection of the semiallogeneic fetal-placental unit. Although increasing evidence supports that decidual (uterine) macrophages and regulatory T cells (Tregs) are key regulators of fetal tolerance, it is not known how these tolerogenic leukocytes are induced. In this article, we show that the human fetal placenta itself, mainly through trophoblast cells, is able to induce homeostatic M2 macrophages and Tregs. Placental-derived M-CSF and IL-10 induced macrophages that shared the CD14(+)CD163(+)CD206(+)CD209(+) phenotype of decidual macrophages and produced IL-10 and CCL18 but not IL-12 or IL-23. Placental tissue also induced the expansion of CD25(high)CD127(low)Foxp3(+) Tregs in parallel with increased IL-10 production, whereas production of IFN-γ (Th1), IL-13 (Th2), and IL-17 (Th17) was not induced. Tregs expressed the suppressive markers CTLA-4 and CD39, were functionally suppressive, and were induced, in part, by IL-10, TGF-β, and TRAIL. Placental-derived factors also limited excessive Th cell activation, as shown by decreased HLA-DR expression and reduced secretion of Th1-, Th2-, and Th17-associated cytokines. Thus, our data indicate that the fetal placenta has a central role in promoting the homeostatic environment necessary for successful pregnancy. These findings have implications for immune-mediated pregnancy complications, as well as for our general understanding of tissue-induced tolerance. PMID:25560409

  13. ABCG1 regulates mouse adipose tissue macrophage cholesterol levels and ratio of M1 to M2 cells in obesity and caloric restriction.

    PubMed

    Wei, Hao; Tarling, Elizabeth J; McMillen, Timothy S; Tang, Chongren; LeBoeuf, Renée C

    2015-12-01

    In addition to triacylglycerols, adipocytes contain a large reserve of unesterified cholesterol. During adipocyte lipolysis and cell death seen during severe obesity and weight loss, free fatty acids and cholesterol become available for uptake and processing by adipose tissue macrophages (ATMs). We hypothesize that ATMs become cholesterol enriched and participate in cholesterol clearance from adipose tissue. We previously showed that ABCG1 is robustly upregulated in ATMs taken from obese mice and further enhanced by caloric restriction. Here, we found that ATMs taken from obese and calorie-restricted mice derived from transplantation of WT or Abcg1-deficient bone marrow are cholesterol enriched. ABCG1 levels regulate the ratio of classically activated (M1) to alternatively activated (M2) ATMs and their cellular cholesterol content. Using WT and Abcg1(-/-) cultured macrophages, we found that Abcg1 is most highly expressed by M2 macrophages and that ABCG1 deficiency is sufficient to retard macrophage chemotaxis. However, changes in myeloid expression of Abcg1 did not protect mice from obesity or impaired glucose homeostasis. Overall, ABCG1 modulates ATM cholesterol content in obesity and weight loss regimes leading to an alteration in M1 to M2 ratio that we suggest is due to the extent of macrophage egress from adipose tissue. PMID:26489644

  14. PTEN inhibits macrophage polarization from M1 to M2 through CCL2 and VEGF-A reduction and NHERF-1 synergism.

    PubMed

    Li, Ning; Qin, Junfang; Lan, Lan; Zhang, Hongyao; Liu, Fang; Wu, Zhaozhen; Ni, Hong; Wang, Yue

    2015-01-01

    PTEN has been studied in several tumor models as a tumor suppressor. In this study, we explored the role of PTEN in the inhibition state of polarized M2 subtype of macrophage in tumor microenvironment (TME) and the underlying mechanisms. To elucidate the potential effect in TME, RAW 264.7 macrophages and 4T1 mouse breast cancer cells were co-cultured to reconstruct tumor microenvironment. After PTEN was down-regulated with shRNA, the expression of CCL2 and VEGF-A, which are definited to promote the formation of M2 macrophages, have a dramatically increase on the level of both gene and protein in co-cultured RAW 264.7 macrophages. And at the same time, NHERF-1 (Na(+)/H(+) exchanger regulating factor-1), another tumor suppressor has a similar tendency to PTEN. Q-PCR and WB results suggested that PTEN and NHERF-1 were consistent with one another no matter at mRNA or protein level when exposed to the same stimulus. Coimmunoprecipitation and immunofluorescence techniques confirmed that PTEN and NHERF-1 were coprecipitated, and NHERF-1 protein expression was properly reduced with rCCL2 effect. In addition, cell immunofluorescence images revealed a profound transferance, in co-cultured RAW 264.7 macrophages, an up-regulation of NHERF-1 could promote the PTEN marked expression on the cell membrane, and this form for the interaction was not negligible. These observations illustrate PTEN with a certain synergy of NHERF-1, as well as down-regulation of CCL2 suppressing M2 macrophage transformation pathway. The results suggest that the activation of PTEN and NHERF-1 may impede the evolution of macrophages beyond the M1 into M2 phenotype in tumor microenvironment. PMID:25756512

  15. The Many Alternative Faces of Macrophage Activation

    PubMed Central

    Hume, David A.

    2015-01-01

    Monocytes and macrophages provide the first line of defense against pathogens. They also initiate acquired immunity by processing and presenting antigens and provide the downstream effector functions. Analysis of large gene expression datasets from multiple cells and tissues reveals sets of genes that are co-regulated with the transcription factors that regulate them. In macrophages, the gene clusters include lineage-specific genes, interferon-responsive genes, early inflammatory genes, and genes required for endocytosis and lysosome function. Macrophages enter tissues and alter their function to deal with a wide range of challenges related to development and organogenesis, tissue injury, malignancy, sterile, or pathogenic inflammatory stimuli. These stimuli alter the gene expression to produce “activated macrophages” that are better equipped to eliminate the cause of their influx and to restore homeostasis. Activation or polarization states of macrophages have been classified as “classical” and “alternative” or M1 and M2. These proposed states of cells are not supported by large-scale transcriptomic data, including macrophage-associated signatures from large cancer tissue datasets, where the supposed markers do not correlate with other. Individual macrophage cells differ markedly from each other, and change their functions in response to doses and combinations of agonists and time. The most studied macrophage activation response is the transcriptional cascade initiated by the TLR4 agonist lipopolysaccharide. This response is reviewed herein. The network topology is conserved across species, but genes within the transcriptional network evolve rapidly and differ between mouse and human. There is also considerable divergence in the sets of target genes between mouse strains, between individuals, and in other species such as pigs. The deluge of complex information related to macrophage activation can be accessed with new analytical tools and new databases

  16. CD200+ and CD200- macrophages accumulated in ischemic lesions of rat brain: the two populations cannot be classified as either M1 or M2 macrophages.

    PubMed

    Matsumoto, Shirabe; Tanaka, Junya; Yano, Hajime; Takahashi, Hisaaki; Sugimoto, Kana; Ohue, Shiro; Inoue, Akihiro; Aono, Hitomi; Kusakawa, Akari; Watanabe, Hideaki; Kumon, Yoshiaki; Ohnishi, Takanori

    2015-05-15

    Two types of macrophages in lesion core of rat stroke model were identified according to NG2 chondroitin sulfate proteoglycan (NG2) and CD200 expression. NG2(+) macrophages were CD200(-), and vice versa. NG2(-) macrophages expressed two splice variants of CD200 that are CD200L and CD200S. CD200(+) macrophages expressed CD8, CD68, CD163, CCL2, inducible nitric oxide synthase, interleukin-1β, Toll-like receptor 4 and transforming growth factor β, whilst NG2(+) cells expressed a costimulatory factor CD86. Both cell types expressed insulin-like growth factor 1 and CD200R. These results demonstrate that the two macrophage types cannot be classified as either M1 or M2. PMID:25903723

  17. Glioma-Associated Microglia/Macrophages Display an Expression Profile Different from M1 and M2 Polarization and Highly Express Gpnmb and Spp1

    PubMed Central

    Szulzewsky, Frank; Pelz, Andreas; Feng, Xi; Synowitz, Michael; Markovic, Darko; Langmann, Thomas; Holtman, Inge R.; Wang, Xi; Eggen, Bart J. L.; Boddeke, Hendrikus W. G. M.; Hambardzumyan, Dolores; Wolf, Susanne A.; Kettenmann, Helmut

    2015-01-01

    Malignant glioma belong to the most aggressive neoplasms in humans with no successful treatment available. Patients suffering from glioblastoma multiforme (GBM), the highest-grade glioma, have an average survival time of only around one year after diagnosis. Both microglia and peripheral macrophages/monocytes accumulate within and around glioma, but fail to exert effective anti-tumor activity and even support tumor growth. Here we use microarray analysis to compare the expression profiles of glioma-associated microglia/macrophages and naive control cells. Samples were generated from CD11b+ MACS-isolated cells from naïve and GL261-implanted C57BL/6 mouse brains. Around 1000 genes were more than 2-fold up- or downregulated in glioma-associated microglia/macrophages when compared to control cells. A comparison with published data sets of M1, M2a,b,c-polarized macrophages revealed a gene expression pattern that has only partial overlap with any of the M1 or M2 gene expression patterns. Samples for the qRT-PCR validation of selected M1 and M2a,b,c-specific genes were generated from two different glioma mouse models and isolated by flow cytometry to distinguish between resident microglia and invading macrophages. We confirmed in both models the unique glioma-associated microglia/macrophage phenotype including a mixture of M1 and M2a,b,c-specific genes. To validate the expression of these genes in human we MACS-isolated CD11b+ microglia/macrophages from GBM, lower grade brain tumors and control specimens. Apart from the M1/M2 gene analysis, we demonstrate that the expression of Gpnmb and Spp1 is highly upregulated in both murine and human glioma-associated microglia/macrophages. High expression of these genes has been associated with poor prognosis in human GBM, as indicated by patient survival data linked to gene expression data. We also show that microglia/macrophages are the predominant source of these transcripts in murine and human GBM. Our findings provide new

  18. Pyropia yezoensis glycoprotein promotes the M1 to M2 macrophage phenotypic switch via the STAT3 and STAT6 transcription factors.

    PubMed

    Choi, Jeong-Wook; Kwon, Mi-Jin; Kim, In-Hye; Kim, Young-Min; Lee, Min-Kyeong; Nam, Taek-Jeong

    2016-08-01

    Macrophage polarization has been well documented. Macrophages can aquire two phenotypes, the pro-inflammatory M1 phenotype, and the anti-inflammatory and wound healing M2 phenotype. The M1 macrophage phenotype has been linked to metabolic disease and is also associated with cancer-related inflammation. Of note, macrophage polarization can be influenced by the extracellular environment. In the current study, we examined the effects of Pyropia yezoensis glycoprotein (PYGP) on M1 to M2 macrophage polarization in lipopolysaccharide (LPS)-stimulated macrophages. RAW 264.7 macrophages stimulated with LPS exhibited an upregulated expression of pro-inflammatory mediators, namely of the M1 markers, nitric oxide (NO), reactive oxygen species (ROS), interleukin (IL)-6, IL-1β, tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ) and nitric oxide synthase‑2 (NOS-2). Treatment with PYGP inhibited the production of M1 markers and increased arginase 1 (ARG1), chitinase-like 3 (Chil3; also known as Ym1), resistin like beta (RETNLB; also known as FIZZ1), IL-10, CD163, CD206, peroxisome proliferator-activated receptor γ (PPARγ) and Krüppel-like factor 4 (KLF4) M2 marker gene expression. The signal transducer and activator of transcription (STAT)3 and STAT6 transcription factors were phosphorylated following treatment with PYGP. However, the silencing of STAT3 and STAT6 using siRNA in the macrophages decreased ARG1, Ym1 and FIZZ1 M2 marker gene expression in spite of treatment of PYGP. These findings suggest that PYGP exerts anti-inflammatory effects by regulating the M1 to M2 phenotypic switch through STAT3 and STAT6. Thus, PYGP may have potential for use as a natural remedy for inflammatory diseases. PMID:27353313

  19. Silencing MicroRNA-155 Attenuates Cardiac Injury and Dysfunction in Viral Myocarditis via Promotion of M2 Phenotype Polarization of Macrophages.

    PubMed

    Zhang, Yingying; Zhang, Mengying; Li, Xueqin; Tang, Zongsheng; Wang, Xiangmin; Zhong, Min; Suo, Qifeng; Zhang, Yao; Lv, Kun

    2016-01-01

    Macrophage infiltration is a hallmark feature of viral myocarditis. As studies have shown that microRNA-155 regulates the differentiation of macrophages, we aimed to investigate the role of microRNA-155 in VM. We report that silencing microRNA-155 protects mice from coxsackievirus B3 induced myocarditis. We found that microRNA-155 expression was upregulated and localized primarily in heart-infiltrating macrophages and CD4(+) T lymphocytes during acute myocarditis. In contrast with wildtype (WT) mice, microRNA-155(-/-) mice developed attenuated viral myocarditis, which was characterized by decreased cardiac inflammation and decreased intracardiac CD45(+) leukocytes. Hearts of microRNA-155(-/-) mice expressed decreased levels of the IFN-γ and increased levels of the cytokines IL-4 and IL-13. Although total CD4(+) and regulatory T cells were unchanged in miR-155(-/-) spleen proportionally, the activation of T cells and CD4(+) T cell proliferation in miR-155(-/-) mice were significantly decreased. Beyond the acute phase, microRNA-15(5-/-) mice had reduced mortality and improved cardiac function during 5 weeks of follow-up. Moreover, silencing microRNA-155 led to increased levels of alternatively-activated macrophages (M2) and decreased levels of classically-activated macrophages (M1) in the heart. Combined, our studies suggest that microRNA-155 confers susceptibility to viral myocarditis by affecting macrophage polarization, and thus may be a potential therapeutic target for viral myocarditis. PMID:26931072

  20. Recruitment of Beneficial M2 Macrophages to Injured Spinal Cord Is Orchestrated by Remote Brain Choroid Plexus

    PubMed Central

    Shechter, Ravid; Miller, Omer; Yovel, Gili; Rosenzweig, Neta; London, Anat; Ruckh, Julia; Kim, Ki-Wook; Klein, Eugenia; Kalchenko, Vyacheslav; Bendel, Peter; Lira, Sergio A.; Jung, Steffen; Schwartz, Michal

    2014-01-01

    SUMMARY Monocyte-derived macrophages are essential for recovery after spinal cord injury, but their homing mechanism is poorly understood. Here, we show that although of common origin, the homing of proinflammatory (M1) and the “alternatively activated” anti-inflammatory (M2) macrophages to traumatized spinal cord (SC) was distinctly regulated, neither being through breached blood-brain barrier. The M1 macrophages (Ly6chiCX3CR1lo) derived from monocytes homed in a CCL2 chemokine-dependent manner through the adjacent SC leptomeninges. The resolving M2 macrophages (Ly6cloCX3CR1hi) derived from monocytes trafficked through a remote blood-cerebrospinal-fluid (CSF) barrier, the brain-ventricular choroid plexus (CP), via VCAM-1-VLA-4 adhesion molecules and epithelial CD73 enzyme for extravasation and epithelial transmigration. Blockage of these determinants, or mechanical CSF flow obstruction, inhibited M2 macrophage recruitment and impaired motor-function recovery. The CP, along with the CSF and the central canal, provided an anti-inflammatory supporting milieu, potentially priming the trafficking monocytes. Overall, our finding demonstrates that the route of monocyte entry to central nervous system provides an instructional environment to shape their function. PMID:23477737

  1. Hepatocellular carcinomas promote tumor-associated macrophage M2-polarization via increased B7-H3 expression.

    PubMed

    Kang, Fu-Biao; Wang, Ling; Li, Dong; Zhang, Yin-Ge; Sun, Dian-Xing

    2015-01-01

    B7 family members are aberrantly expressed on the human hepatocellular carcinoma (HCC) cell surface, and induce local and systemic immunosuppression. Tumor-associated macrophages (TAMs) are a significant immune cell subpopulation in HCC and may be induced to express co-inhibitory molecules including B7 homologue 3 (B7-H3). In the present study, 79.3% of the HCC tissue samples showed high expression of B7-H3 which was positively correlated with the number of TAMs in the evaluated cancer tissues. Furthermore, high levels of TAMs or B7-H3 were associated with a shorter survival time of the HCC patients. In vitro, B7-H3 expression was upregulated at both the mRNA and protein levels in phorbol 12-myristate 13-acetate (PMA)-induced THP-1 cells cocultured with HepG2 cells in a Transwell system. In addition, B7-H3 promoted PMA-induced THP-1 cells to differentiate into the M2 phenotype, with evidence of increases in arginase 1 (Arg1), vascular endothelial cell growth factor (VEGF) and macrophage-derived chemokine (CCL22) mRNA following coculture with HepG2 cells. However, this phenomenon was abrogated through knockdown of B7-H3 by RNA interference or by blocking the signal transducer and activator of trans-cription 3 (STAT3) signaling pathway. Overall, these results suggest that the B7-H3-mediated STAT3 signaling pathway is an important mechanism for inducing M2-type polarization of TAMs, which accelerates HCC development. Our findings may support the development of novel therapeutic strategies for HCC patients through the skewing of the TAM phenotype by targeting the B7-H3 signaling pathway. PMID:25370943

  2. HDL Induces the Expression of the M2 Macrophage Markers Arginase 1 and Fizz-1 in a STAT6-Dependent Process

    PubMed Central

    Fisher, Edward A.

    2013-01-01

    Our lab has previously shown in a mouse model that normalization of a low HDL level achieves atherosclerotic plaque regression. This included the shift from a pro (“M1”) to an anti-inflammatory (“M2”) phenotypic state of plaque macrophages. Whether HDL can directly cause this phenotypic change and, if so, what the signaling mechanism is, were explored in the present studies. Murine primary macrophages treated with HDL showed increased gene expression for the M2 markers Arginase-1 (Arg-1) and Fizz-1, which are classically induced by IL-4. HDL was able to potentiate the IL-4-induced changes in Arg-1, and tended to do the same for Fizz-1, while suppressing the expression of inflammatory genes in response to IFNγ. The effects of either IL-4 or HDL were suppressed when macrophages were from STAT6-/- mice, but inhibitor studies suggested differential utilization of JAK isoforms by IL-4 and HDL to activate STAT6 by phosphorylation. Overall, our results describe a new function of HDL, namely its ability to directly enrich macrophages in markers of the M2, anti-inflammatory, state in a process requiring STAT6. PMID:23991225

  3. Treatment with Recombinant Trichinella spiralis Cathepsin B-like Protein Ameliorates Intestinal Ischemia/Reperfusion Injury in Mice by Promoting a Switch from M1 to M2 Macrophages.

    PubMed

    Liu, Wei-Feng; Wen, Shi-Hong; Zhan, Jian-Hua; Li, Yun-Sheng; Shen, Jian-Tong; Yang, Wen-Jing; Zhou, Xing-Wang; Liu, Ke-Xuan

    2015-07-01

    Intestinal ischemia/reperfusion (I/R) injury, in which macrophages play a key role, can cause high morbidity and mortality. The switch from classically (M1) to alternatively (M2) activated macrophages, which is dependent on the activation of STAT6 signaling, has been shown to protect organs from I/R injuries. In the current study, the effects of recombinant Trichinella spiralis cathepsin B-like protein (rTsCPB) on intestinal I/R injury and the potential mechanism related to macrophage phenotypes switch were investigated. In a mouse I/R model undergoing 60-min intestinal ischemia followed by 2-h or 7-d reperfusion, we demonstrated that intestinal I/R caused significant intestinal injury and induced a switch from M2 to M1 macrophages, evidenced by a decrease in levels of M2 markers (arginase-1 and found in inflammatory zone protein), an increase in levels of M1 markers (inducible NO synthase and CCR7), and a decrease in the ratio of M2/M1 macrophages. RTsCPB reversed intestinal I/R-induced M2-M1 transition and promoted M1-M2 phenotype switch evidenced by a significant decrease in M1 markers, an increase in M2 markers, and the ratio of M2/M1 macrophages. Meanwhile, rTsCPB significantly ameliorated intestinal injury and improved intestinal function and survival rate of animals, accompanied by a decrease in neutrophil infiltration and an increase in cell proliferation in the intestine. However, a selective STAT6 inhibitor, AS1517499, reversed the protective effects of rTsCPB by inhibiting M1 to M2 transition. These findings suggest that intestinal I/R injury causes a switch from M2 to M1 macrophages and that rTsCPB ameliorates intestinal injury by promoting STAT6-dependent M1 to M2 transition. PMID:25987744

  4. Resolvin D1 protects the liver from ischemia/reperfusion injury by enhancing M2 macrophage polarization and efferocytosis.

    PubMed

    Kang, Jung-Woo; Lee, Sun-Mee

    2016-09-01

    Resolution of inflammation is an active process involving a novel category of lipid factors known as specialized pro-resolving lipid mediators, which includes Resolvin D1 (RvD1). While accumulating evidence suggests that RvD1 counteracts proinflammatory signaling and promotes resolution, the specific cellular targets and mechanisms of action of RvD1 remain largely unknown. In the present study, we investigated the role and molecular mechanisms of RvD1 in ischemia/reperfusion (IR)-induced sterile liver inflammation. Male C57BL/6 mice underwent 70% hepatic ischemia for 60min, followed by reperfusion. RvD1 (5, 10, and 15μg/kg, i.p.) was administered to the mice 1h before ischemia and then immediately prior to reperfusion. RvD1 attenuated IR-induced hepatocellular damage and the proinflammatory response. In purified Kupffer cells (KCs) from mice exposed to IR, the levels of M1 marker genes (Nos2a and Cd40) increased, while those of M2 marker genes (Arg1, Cd206, and Mst1r) decreased, demonstrating a proinflammatory shift. RvD1 markedly attenuated these changes. Depletion of KCs by liposome clodronate abrogated the effects of RvD1 on proinflammatory mediators and macrophage polarization. In addition, RvD1 attenuated increases in myeloperoxidase activity and Cxcl1 and Cxcl2 mRNA expression. RvD1 markedly augmented the efferocytic activity of KCs, as indicated by increases in F4/80(+)Gr-1(+) cells in the liver. However, antagonist pretreatment or gene silencing of the RvD1 receptor, ALX/FPR2, abrogated the anti-inflammatory and pro-resolving actions of RvD1. These data indicate that RvD1 ameliorates IR-induced liver injury, and this protection is associated with enhancement of M2 polarization and efferocytosis via ALX/FPR2 activation. PMID:27317426

  5. Conditioned medium from alternatively activated macrophages induce mesangial cell apoptosis via the effect of Fas

    SciTech Connect

    Huang, Yuan; Luo, Fangjun; Li, Hui; Jiang, Tao; Zhang, Nong

    2013-11-15

    During inflammation in the glomerulus, the proliferation of myofiroblast-like mesangial cells is commonly associated with the pathological process. Macrophages play an important role in regulating the growth of resident mesangial cells in the glomeruli. Alternatively activated macrophage (M2 macrophage) is a subset of macrophages induced by IL-13/IL-4, which is shown to play a repair role in glomerulonephritis. Prompted by studies of development, we performed bone marrow derived macrophage and rat mesangial cell co-culture study. Conditioned medium from IL-4 primed M2 macrophages induced rat mesangial cell apoptosis. The pro-apoptotic effect of M2 macrophages was demonstrated by condensed nuclei stained with Hoechst 33258, increased apoptosis rates by flow cytometry analysis and enhanced caspase-3 activation by western blot. Fas protein was up-regulated in rat mesangial cells, and its neutralizing antibody ZB4 partly inhibited M2 macrophage-induced apoptosis. The up-regulated arginase-1 expression in M2 macrophage also contributed to this apoptotic effect. These results indicated that the process of apoptosis triggered by conditioned medium from M2 macrophages, at least is partly conducted through Fas in rat mesangial cells. Our findings provide compelling evidence that M2 macrophages control the growth of mesangial cells in renal inflammatory conditions. - Highlights: • Conditioned-medium from M2 macrophages induces rat mesangial cell (MsC) apoptosis. • M2 macrophage conditioned medium exerts its pro-apoptotic effects via Fas ligand. • Arginase-1 activity in M2 macrophages plays a role in inducing apoptosis in rat MsC.

  6. Ginsenoside Rg1 improves lipopolysaccharide-induced acute lung injury by inhibiting inflammatory responses and modulating infiltration of M2 macrophages.

    PubMed

    Bao, Suhong; Zou, Yun; Wang, Bing; Li, Yinjiao; Zhu, Jiali; Luo, Yan; Li, Jinbao

    2015-09-01

    Ginsenoside Rg1 (Rg1), the major effective component of ginseng, has been reported to have potent anti-inflammatory properties. However, the effect of ginsenoside Rg1 on lipopolysaccharide (LPS) -induced acute lung injury (ALI) in mice was unknown. The present study was designed to investigate the protective role of Rg1 on LPS-induced ALI and explore the potential mechanisms. The mice were divided randomly into four groups: the sham group, the LPS group and the LPS+Rg1 (40 mg/kg or 200mg/kg) pretreatment groups. All mice received Rg1 or an equivalent volume of phosphate buffer saline (PBS) intraperitoneally 1h before LPS administration. Edema quantification, histology, and apoptosis were detected 6h after LPS administration. The number of inflammatory cells, the percentage of alternative activated (M2) macrophages and the exudate quantification in bronchoalveolar lavage fluid (BALF) were evaluated. The caspase 3 expression, and the levels of phosphorylated IκB-α and p65 were tested. The results showed that the Rg1 pretreatment group markedly improved lung damage, modulated the infiltration of neutrophils and M2 macrophages, prevented the production of protein and proinflammatory cytokines in BALF, and inhibited apoptosis in lung. We also found that Rg1 suppressed NF-κB and caspase 3 activation. These data suggest that Rg1 plays a protective role against LPS-induced ALI by ameliorating inflammatory responses, regulating the infiltration of M2 macrophages, and inhibiting pulmonary cell apoptosis. PMID:26122136

  7. Tumour hypoxia promotes melanoma growth and metastasis via High Mobility Group Box-1 and M2-like macrophages

    PubMed Central

    Huber, Roman; Meier, Barbara; Otsuka, Atsushi; Fenini, Gabriele; Satoh, Takashi; Gehrke, Samuel; Widmer, Daniel; Levesque, Mitchell P.; Mangana, Joanna; Kerl, Katrin; Gebhardt, Christoffer; Fujii, Hiroko; Nakashima, Chisa; Nonomura, Yumi; Kabashima, Kenji; Dummer, Reinhard; Contassot, Emmanuel; French, Lars E.

    2016-01-01

    Hypoxia is a hallmark of cancer that is strongly associated with invasion, metastasis, resistance to therapy and poor clinical outcome. Tumour hypoxia affects immune responses and promotes the accumulation of macrophages in the tumour microenvironment. However, the signals linking tumour hypoxia to tumour-associated macrophage recruitment and tumour promotion are incompletely understood. Here we show that the damage-associated molecular pattern High-Mobility Group Box 1 protein (HMGB1) is released by melanoma tumour cells as a consequence of hypoxia and promotes M2-like tumour-associated macrophage accumulation and an IL-10 rich milieu within the tumour. Furthermore, we demonstrate that HMGB1 drives IL-10 production in M2-like macrophages by selectively signalling through the Receptor for Advanced Glycation End products (RAGE). Finally, we show that HMGB1 has an important role in murine B16 melanoma growth and metastasis, whereas in humans its serum concentration is significantly increased in metastatic melanoma. Collectively, our findings identify a mechanism by which hypoxia affects tumour growth and metastasis in melanoma and depict HMGB1 as a potential therapeutic target. PMID:27426915

  8. Induced Differentiation of Human Myeloid Leukemia Cells into M2 Macrophages by Combined Treatment with Retinoic Acid and 1α,25-Dihydroxyvitamin D3

    PubMed Central

    Takahashi, Hiromichi; Hatta, Yoshihiro; Iriyama, Noriyoshi; Hasegawa, Yuichiro; Uchida, Hikaru; Nakagawa, Masaru; Makishima, Makoto; Takeuchi, Jin; Takei, Masami

    2014-01-01

    Retinoids and 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) induce differentiation of myeloid leukemia cells into granulocyte and macrophage lineages, respectively. All-trans retinoic acid (ATRA), which is effective in the treatment of acute promyelocytic leukemia, can induce differentiation of other types of myeloid leukemia cells, and combined treatment with retinoid and 1,25(OH)2D3 effectively enhances the differentiation of leukemia cells into macrophage-like cells. Recent work has classified macrophages into M1 and M2 types. In this study, we investigated the effect of combined treatment with retinoid and 1,25(OH)2D3 on differentiation of myeloid leukemia THP-1 and HL60 cells. 9-cis Retinoic acid (9cRA) plus 1,25(OH)2D3 inhibited proliferation of THP-1 and HL60 cells and increased myeloid differentiation markers including nitroblue tetrazolium reducing activity and expression of CD14 and CD11b. ATRA and the synthetic retinoic acid receptor agonist Am80 exhibited similar effects in combination with 1,25(OH)2D3 but less effectively than 9cRA, while the retinoid X receptor agonist HX630 was not effective. 9cRA plus 1,25(OH)2D3 effectively increased expression of M2 macrophage marker genes, such as CD163, ARG1 and IL10, increased surface CD163 expression, and induced interleukin-10 secretion in myeloid leukemia cells, while 9cRA alone had weaker effects on these phenotypes and 1,25(OH)2D3 was not effective. Taken together, our results demonstrate selective induction of M2 macrophage markers in human myeloid leukemia cells by combined treatment with 9cRA and 1,25(OH)2D3. PMID:25409436

  9. Peroxisome proliferator-activated receptor ɣ activation induces 11β-hydroxysteroid dehydrogenase type 1 activity in human alternative macrophages

    PubMed Central

    Chinetti-Gbaguidi, Giulia; Bouhlel, Mohamed Amine; Copin, Corinne; Duhem, Christian; Derudas, Bruno; Neve, Bernardette; Noel, Benoit; Eeckhoute, Jerome; Lefebvre, Philippe; Seckl, Jonathan R.; Staels, Bart

    2012-01-01

    Objectives 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) catalyses the intracellular reduction of inactive cortisone to active cortisol, the natural ligand activating the glucocorticoid receptor (GR). Peroxisome Proliferator-Activated Receptor gamma (PPARγ) is a nuclear receptor controlling inflammation, lipid metabolism and the macrophage polarization state. In this study, we investigated the impact of macrophage polarization on the expression and activity of 11β-HSD1 and the role of PPAR therein. Methods and Results 11β-HSD1 gene expression is higher in pro-inflammatory M1 and anti-inflammatory M2 macrophages than in resting macrophages (RM), whereas its activity is highest in M2 macrophages. Interestingly, PPARγ activation induces 11β-HSD1 enzyme activity in M2 macrophages, but not in RM or M1 macrophages. Consequently, human M2 macrophages displayed enhanced responsiveness to the 11β-HSD1 substrate cortisone, an effect amplified by PPAR -induction of 11β-HSD1 activity, as illustrated by an increased expression of GR target genes. Conclusions Our data identify a positive cross-talk between PPARγ and GR in human M2 macrophages via the induction of 11β-HSD1 expression and activity. PMID:22207732

  10. Macrophages migrate in an activation-dependent manner to chemokines involved in neuroinflammation

    PubMed Central

    2014-01-01

    Background In neuroinflammatory diseases, macrophages can play a dual role in the process of tissue damage, depending on their activation status (M1 / M2). M1 macrophages are considered to exert damaging effects to neurons, whereas M2 macrophages are reported to aid regeneration and repair of neurons. Their migration within the central nervous system may be of critical importance in the final outcome of neurodegeneration in neuroinflammatory diseases e.g. multiple sclerosis (MS). To provide insight into this process, we examined the migratory capacity of human monocyte-derived M1 and M2 polarised macrophages towards chemoattractants, relevant for neuroinflammatory diseases like MS. Methods Primary cultures of human monocyte-derived macrophages were exposed to interferon gamma and lipopolysaccharide (LPS) to evoke proinflammatory (M1) activation or IL-4 to evoke anti-inflammatory (M2) activation. In a TAXIScan assay, migration of M0, M1 and M2 towards chemoattractants was measured and quantified. Furthermore the adhesion capacity and the expression levels of integrins as well as chemokine receptors of M0, M1 and M2 were assessed. Alterations in cell morphology were analysed using fluorescent labelling of the cytoskeleton. Results Significant differences were observed between M1 and M2 macrophages in the migration towards chemoattractants. We show that M2 macrophages migrated over longer distances towards CCL2, CCL5, CXCL10, CXCL12 and C1q compared to non-activated (M0) and M1 macrophages. No differences were observed in the adhesion of M0, M1 and M2 macrophages to multiple matrix components, nor in the expression of integrins and chemokine receptors. Significant changes were observed in the cytoskeleton organization upon stimulation with CCL2, M0, M1 and M2 macrophages adopt a spherical morphology and the cytoskeleton is rapidly rearranged. M0 and M2 macrophages are able to form filopodia, whereas M1 macrophages only adapt a spherical morphology. Conclusions

  11. Silencing MicroRNA-155 Attenuates Cardiac Injury and Dysfunction in Viral Myocarditis via Promotion of M2 Phenotype Polarization of Macrophages

    PubMed Central

    Zhang, Yingying; Zhang, Mengying; Li, Xueqin; Tang, Zongsheng; Wang, Xiangmin; Zhong, Min; Suo, Qifeng; Zhang, Yao; Lv, Kun

    2016-01-01

    Macrophage infiltration is a hallmark feature of viral myocarditis. As studies have shown that microRNA-155 regulates the differentiation of macrophages, we aimed to investigate the role of microRNA-155 in VM. We report that silencing microRNA-155 protects mice from coxsackievirus B3 induced myocarditis. We found that microRNA-155 expression was upregulated and localized primarily in heart-infiltrating macrophages and CD4+ T lymphocytes during acute myocarditis. In contrast with wildtype (WT) mice, microRNA-155−/− mice developed attenuated viral myocarditis, which was characterized by decreased cardiac inflammation and decreased intracardiac CD45+ leukocytes. Hearts of microRNA-155−/− mice expressed decreased levels of the IFN-γ and increased levels of the cytokines IL-4 and IL-13. Although total CD4+ and regulatory T cells were unchanged in miR-155−/− spleen proportionally, the activation of T cells and CD4+ T cell proliferation in miR-155−/− mice were significantly decreased. Beyond the acute phase, microRNA-155−/− mice had reduced mortality and improved cardiac function during 5 weeks of follow-up. Moreover, silencing microRNA-155 led to increased levels of alternatively-activated macrophages (M2) and decreased levels of classically-activated macrophages (M1) in the heart. Combined, our studies suggest that microRNA-155 confers susceptibility to viral myocarditis by affecting macrophage polarization, and thus may be a potential therapeutic target for viral myocarditis. PMID:26931072

  12. MicroRNA Cargo of Extracellular Vesicles from Alcohol-exposed Monocytes Signals Naive Monocytes to Differentiate into M2 Macrophages.

    PubMed

    Saha, Banishree; Momen-Heravi, Fatemeh; Kodys, Karen; Szabo, Gyongyi

    2016-01-01

    Membrane-coated extracellular vesicles (EVs) released by cells can serve as vehicles for delivery of biological materials and signals. Recently, we demonstrated that alcohol-treated hepatocytes cross-talk with immune cells via exosomes containing microRNA (miRNAs). Here, we hypothesized that alcohol-exposed monocytes can communicate with naive monocytes via EVs. We observed increased numbers of EVs, mostly exosomes, secreted by primary human monocytes and THP-1 monocytic cells in the presence of alcohol in a concentration- and time-dependent manner. EVs derived from alcohol-treated monocytes stimulated naive monocytes to polarize into M2 macrophages as indicated by increased surface expression of CD68 (macrophage marker), M2 markers (CD206 (mannose receptor) and CD163 (scavenger receptor)), secretion of IL-10, and TGFβ and increased phagocytic activity. miRNA profiling of the EVs derived from alcohol-treated THP-1 monocytes revealed high expression of the M2-polarizing miRNA, miR-27a. Treatment of naive monocytes with control EVs overexpressing miR-27a reproduced the effect of EVs from alcohol-treated monocytes on naive monocytes and induced M2 polarization, suggesting that the effect of alcohol EVs was mediated by miR-27a. We found that miR-27a modulated the process of phagocytosis by targeting CD206 expression on monocytes. Importantly, analysis of circulating EVs from plasma of alcoholic hepatitis patients revealed increased numbers of EVs that contained high levels of miR-27a as compared with healthy controls. Our results demonstrate the following: first, alcohol increases EV production in monocytes; second, alcohol-exposed monocytes communicate with naive monocytes via EVs; and third, miR-27a cargo in monocyte-derived EVs can program naive monocytes to polarize into M2 macrophages. PMID:26527689

  13. ROS play a critical role in the differentiation of alternatively activated macrophages and the occurrence of tumor-associated macrophages

    PubMed Central

    Zhang, Yan; Choksi, Swati; Chen, Kun; Pobezinskaya, Yelena; Linnoila, Ilona; Liu, Zheng-Gang

    2013-01-01

    Differentiation to different types of macrophages determines their distinct functions. Tumor-associated macrophages (TAMs) promote tumorigenesis owing to their proangiogenic and immune-suppressive functions similar to those of alternatively activated (M2) macrophages. We report that reactive oxygen species (ROS) production is critical for macrophage differentiation and that inhibition of superoxide (O2−) production specifically blocks the differentiation of M2 macrophages. We found that when monocytes are triggered to differentiate, O2− is generated and is needed for the biphasic ERK activation, which is critical for macrophage differentiation. We demonstrated that ROS elimination by butylated hydroxyanisole (BHA) and other ROS inhibitors blocks macrophage differentiation. However, the inhibitory effect of ROS elimination on macrophage differentiation is overcome when cells are polarized to classically activated (M1), but not M2, macrophages. More importantly, the continuous administration of the ROS inhibitor BHA efficiently blocked the occurrence of TAMs and markedly suppressed tumorigenesis in mouse cancer models. Targeting TAMs by blocking ROS can be a potentially effective method for cancer treatment. PMID:23752925

  14. Angiogenic capacity of M1- and M2-polarized macrophages is determined by the levels of TIMP-1 complexed with their secreted proMMP-9

    PubMed Central

    Zajac, Ewa; Schweighofer, Bernhard; Kupriyanova, Tatyana A.; Juncker-Jensen, Anna; Minder, Petra

    2013-01-01

    A proangiogenic function of tissue-infiltrating monocytes/macrophages has long been attributed to their matrix metalloproteinase-9 zymogen (proMMP-9). Herein, we evaluated the capacity of human monocytes, mature M0 macrophages, and M1- and M2-polarized macrophages to induce proMMP-9-mediated angiogenesis. Only M2 macrophages induced angiogenesis at levels comparable with highly angiogenic neutrophils previously shown to release their proMMP-9 in a unique form, free of tissue inhibitor of metalloproteinases-1 (TIMP-1). Macrophage differentiation was accompanied by induction of low-angiogenic, TIMP-1–encumbered proMMP-9. However, polarization toward the M2, but not the M1 phenotype, caused a substantial downregulation of TIMP-1 expression, resulting in production of angiogenic, TIMP-deficient proMMP-9. Correspondingly, the angiogenic potency of M2 proMMP-9 was lost after its complexing with TIMP-1, whereas TIMP-1 silencing in M0/M1 macrophages rendered them both angiogenic. Similar to human cells, murine bone marrow–derived M2 macrophages also shut down their TIMP-1 expression and produced proMMP-9 unencumbered by TIMP-1. Providing proof that angiogenic capacity of murine M2 macrophages depended on their TIMP-free proMMP-9, Mmp9-null M2 macrophages were nonangiogenic, although their TIMP-1 was severely downregulated. Our study provides a unifying molecular mechanism for high angiogenic capacity of TIMP-free proMMP-9 that would be uniquely produced in a pathophysiological microenvironment by influxing neutrophils and/or M2 polarized macrophages. PMID:24174628

  15. CDDO-Me Redirects Activation of Breast Tumor Associated Macrophages

    PubMed Central

    Ball, Michael S.; Shipman, Emilie P.; Kim, Hyunjung; Liby, Karen T.; Pioli, Patricia A.

    2016-01-01

    Tumor-associated macrophages can account for up to 50% of the tumor mass in breast cancer patients and high TAM density is associated with poor clinical prognosis. Because TAMs enhance tumor growth, development, and metastatic potential, redirection of TAM activation may have significant therapeutic benefit. Our studies in primary human macrophages and murine breast TAMs suggest that the synthetic oleanane triterpenoid CDDO-methyl ester (CDDO-Me) reprograms the activation profile of TAMs from tumor-promoting to tumor-inhibiting. We show that CDDO-Me treatment inhibits expression of IL-10 and VEGF in stimulated human M2 macrophages and TAMs but increases expression of TNF-α and IL-6. Surface expression of CD206 and CD163, which are characteristic of M2 activation, is significantly attenuated by CDDO-Me. In contrast, CDDO-Me up-regulates surface expression of HLA-DR and CD80, which are markers of M1 activation, and importantly potentiates macrophage activation of autologous T cells but inhibits endothelial cell vascularization. These results show for the first time that CDDO-Me redirects activation of M2 macrophages and TAMs from immune-suppressive to immune-stimulatory, and implicate a role for CDDO-Me as an immunotherapeutic in the treatment of breast and potentially other types of cancer. PMID:26918785

  16. CDDO-Me Redirects Activation of Breast Tumor Associated Macrophages.

    PubMed

    Ball, Michael S; Shipman, Emilie P; Kim, Hyunjung; Liby, Karen T; Pioli, Patricia A

    2016-01-01

    Tumor-associated macrophages can account for up to 50% of the tumor mass in breast cancer patients and high TAM density is associated with poor clinical prognosis. Because TAMs enhance tumor growth, development, and metastatic potential, redirection of TAM activation may have significant therapeutic benefit. Our studies in primary human macrophages and murine breast TAMs suggest that the synthetic oleanane triterpenoid CDDO-methyl ester (CDDO-Me) reprograms the activation profile of TAMs from tumor-promoting to tumor-inhibiting. We show that CDDO-Me treatment inhibits expression of IL-10 and VEGF in stimulated human M2 macrophages and TAMs but increases expression of TNF-α and IL-6. Surface expression of CD206 and CD163, which are characteristic of M2 activation, is significantly attenuated by CDDO-Me. In contrast, CDDO-Me up-regulates surface expression of HLA-DR and CD80, which are markers of M1 activation, and importantly potentiates macrophage activation of autologous T cells but inhibits endothelial cell vascularization. These results show for the first time that CDDO-Me redirects activation of M2 macrophages and TAMs from immune-suppressive to immune-stimulatory, and implicate a role for CDDO-Me as an immunotherapeutic in the treatment of breast and potentially other types of cancer. PMID:26918785

  17. Inhibition of Notch signaling pathway attenuates sympathetic hyperinnervation together with the augmentation of M2 macrophages in rats post-myocardial infarction.

    PubMed

    Yin, Jie; Hu, Hesheng; Li, Xiaolu; Xue, Mei; Cheng, Wenjuan; Wang, Ye; Xuan, Yongli; Li, Xinran; Yang, Na; Shi, Yugen; Yan, Suhua

    2016-01-01

    Inflammation-dominated sympathetic sprouting adjacent to the necrotic region following myocardial infarction (MI) has been implicated in the etiology of arrhythmias resulting in sudden cardiac death; however, the mechanisms responsible remain to be elucidated. Although being a key immune mediator, the role of Notch has yet to be explored. We investigated whether Notch regulates macrophage responses to inflammation and affects cardiac sympathetic reinnervation in rats undergoing MI. MI was induced by coronary artery ligation. A high level of Notch intracellular domain was observed in the macrophages that infiltrated the infarct area at 3 days post-MI. The administration of the Notch inhibitor N-N-(3,5-difluorophenacetyl-L-alanyl)-S-phenylglycine-t-butyl ester (DAPT) (intravenously 30 min before MI and then daily until death) decreased the number of macrophages and significantly increased the M2 macrophage activation profile in the early stages and attenuated the expression of nerve growth factor (NGF). Eventually, NGF-induced sympathetic hyperinnervation was blunted, as assessed by the immunofluorescence of tyrosine hydroxylase. At 7 days post-MI, the arrhythmia score of programmed electric stimulation in the vehicle-treated infarcted rats was higher than that in rats treated with DAPT. Further deterioration in cardiac function and decreases in the plasma levels of TNF-α and IL-1β were also detected. In vitro studies revealed that LPS/IFN-γ upregulated the surface expression of NGF in M1 macrophages in a Notch-dependent manner. We concluded that Notch inhibition during the acute inflammatory response phase is associated with the downregulation of NGF, probably through a macrophage-dependent pathway, thus preventing the process of sympathetic hyperinnervation. PMID:26491050

  18. Opuntia ficus-indica seed attenuates hepatic steatosis and promotes M2 macrophage polarization in high-fat diet-fed mice.

    PubMed

    Kang, Jung-Woo; Shin, Jun-Kyu; Koh, Eun-Ji; Ryu, Hyojeong; Kim, Hyoung Ja; Lee, Sun-Mee

    2016-04-01

    Opuntia ficus-indica (L.) is a popular edible plant that possesses considerable nutritional value and exhibits diverse biological actions including anti-inflammatory and antidiabetic activities. In this study, we hypothesized that DWJ504, an extract of O ficus-indica seed, would ameliorate hepatic steatosis and inflammation by regulating hepatic de novo lipogenesis and macrophage polarization against experimental nonalcoholic steatohepatitis. Mice were fed a normal diet or a high-fat diet (HFD) for 10 weeks. DWJ504 (250, 500, and 1000 mg/kg) or vehicle (0.5% carboxymethyl cellulose) were orally administered for the last 4 weeks of the 10-week HFD feeding period. DWJ504 treatment remarkably attenuated HFD-induced increases in hepatic lipid content and hepatocellular damage. DWJ504 attenuated increases in sterol regulatory element-binding protein 1 and carbohydrate-responsive element-binding protein expression and a decrease in carnitine palmitoyltransferase 1A. Although DWJ504 augmented peroxisome proliferator-activated receptor α protein expression, it attenuated peroxisome proliferator-activated receptor γ expression. Moreover, DWJ504 promoted hepatic M2 macrophage polarization as indicated by attenuation of the M1 marker genes and enhancement of M2 marker genes. Finally, DWJ504 attenuated expression of toll-like receptor 4, nuclear factor κB, tumor necrosis factor α, interleukin 6, TIR-domain-containing adapter-inducing interferon β, and interferon β levels. Our results demonstrate that DWJ504 prevented intrahepatic lipid accumulation, induced M2 macrophage polarization, and suppressed the toll-like receptor 4-mediated inflammatory signaling pathway. Thus, DWJ504 has therapeutic potential in the prevention of nonalcoholic fatty liver disease. PMID:27001282

  19. Liver X receptor activation stimulates iron export in human alternative macrophages

    PubMed Central

    Bories, Gael; Colin, Sophie; Vanhoutte, Jonathan; Derudas, Bruno; Copin, Corinne; Fanchon, Melanie; Daoudi, Mehdi; Belloy, Loic; Haulon, Stephan; Zawadzki, Christophe; Jude, Brigitte; Staels, Bart; Chinetti-Gbaguidi, Giulia

    2013-01-01

    Rationale In atherosclerotic plaques, iron preferentially accumulates in macrophages where it can exert pro-oxidant activities. Objective The objective of this study is, first, to better characterize the iron distribution and metabolism in macrophage sub-populations in human atherosclerotic plaques and, second, to determine whether iron homeostasis is under the control of nuclear receptors, such as the Liver X Receptors (LXR). Methods and Results Here we report that iron depots accumulate in human atherosclerotic plaque areas enriched in CD68 and Mannose Receptor (MR) positive (CD68+MR+) alternative M2 macrophages. In vitro IL-4 polarization of human monocytes into M2 macrophages also resulted in a gene expression profile and phenotype favouring iron accumulation. However, upon iron exposure, M2 macrophages acquire a phenotype favouring iron release, through a strong increase in ferroportin expression, illustrated by a more avid oxidation of extra-cellular LDL by iron-loaded M2 macrophages. In line, in human atherosclerotic plaques, CD68+MR+ macrophages accumulate oxidized lipids, which activate Liver X Receptors (LXRα and LXRβ), resulting in the induction of ABCA1, ABCG1 and ApoE expression. Moreover, in iron-loaded M2 macrophages, LXR activation induces nuclear factor erythroid 2-like 2 (NRF2) expression, hence increasing ferroportin expression, which, together with a decrease of hepcidin mRNA levels, promotes iron export. Conclusions These data identify a role for M2 macrophages in iron handling, a process which is regulated by LXR activation. PMID:24036496

  20. Genetic programs expressed in resting and IL-4 alternatively activated mouse and human macrophages: similarities and differences.

    PubMed

    Martinez, Fernando O; Helming, Laura; Milde, Ronny; Varin, Audrey; Melgert, Barbro N; Draijer, Christina; Thomas, Benjamin; Fabbri, Marco; Crawshaw, Anjali; Ho, Ling Pei; Ten Hacken, Nick H; Cobos Jiménez, Viviana; Kootstra, Neeltje A; Hamann, Jörg; Greaves, David R; Locati, Massimo; Mantovani, Alberto; Gordon, Siamon

    2013-02-28

    The molecular repertoire of macrophages in health and disease can provide novel biomarkers for diagnosis, prognosis, and treatment. Th2-IL-4–activated macrophages (M2) have been associated with important diseases in mice, yet no specific markers are available for their detection in human tissues. Although mouse models are widely used for macrophage research, translation to the human can be problematic and the human macrophage system remains poorly described. In the present study, we analyzed and compared the transcriptome and proteome of human and murine macrophages under resting conditions (M0) and after IL-4 activation (M2). We provide a resource for tools enabling macrophage detection in human tissues by identifying a set of 87 macrophage-related genes. Furthermore, we extend current understanding of M2 activation in different species and identify Transglutaminase 2 as a conserved M2 marker that is highly expressed by human macrophages and monocytes in the prototypic Th2 pathology asthma. PMID:23293084

  1. CCL2 Mediates Neuron-Macrophage Interactions to Drive Proregenerative Macrophage Activation Following Preconditioning Injury.

    PubMed

    Kwon, Min Jung; Shin, Hae Young; Cui, Yuexian; Kim, Hyosil; Thi, Anh Hong Le; Choi, Jun Young; Kim, Eun Young; Hwang, Dong Hoon; Kim, Byung Gon

    2015-12-01

    CNS neurons in adult mammals do not spontaneously regenerate axons after spinal cord injury. Preconditioning peripheral nerve injury allows the dorsal root ganglia (DRG) sensory axons to regenerate beyond the injury site by promoting expression of regeneration-associated genes. We have previously shown that peripheral nerve injury increases the number of macrophages in the DRGs and that the activated macrophages are critical to the enhancement of intrinsic regeneration capacity. The present study identifies a novel chemokine signal mediated by CCL2 that links regenerating neurons with proregenerative macrophage activation. Neutralization of CCL2 abolished the neurite outgrowth activity of conditioned medium obtained from neuron-macrophage cocultures treated with cAMP. The neuron-macrophage interactions that produced outgrowth-promoting conditioned medium required CCL2 in neurons and CCR2/CCR4 in macrophages. The conditioning effects were abolished in CCL2-deficient mice at 3 and 7 d after sciatic nerve injury, but CCL2 was dispensable for the initial growth response and upregulation of GAP-43 at the 1 d time point. Intraganglionic injection of CCL2 mimicked conditioning injury by mobilizing M2-like macrophages. Finally, overexpression of CCL2 in DRGs promoted sensory axon regeneration in a rat spinal cord injury model without harmful side effects. Our data suggest that CCL2-mediated neuron-macrophage interaction plays a critical role for amplification and maintenance of enhanced regenerative capacity by preconditioning peripheral nerve injury. Manipulation of chemokine signaling mediating neuron-macrophage interactions may represent a novel therapeutic approach to promote axon regeneration after CNS injury. PMID:26631474

  2. Fibroblast Growth Factor-9 Enhances M2 Macrophage Differentiation and Attenuates Adverse Cardiac Remodeling in the Infarcted Diabetic Heart

    PubMed Central

    Singla, Dinender K.; Singla, Reetu D.; Abdelli, Latifa S.; Glass, Carley

    2015-01-01

    Inflammation has been implicated as a perpetrator of diabetes and its associated complications. Monocytes, key mediators of inflammation, differentiate into pro-inflammatory M1 macrophages and anti-inflammatory M2 macrophages upon infiltration of damaged tissue. However, the inflammatory cell types, which propagate diabetes progression and consequential adverse disorders, remain unclear. The current study was undertaken to assess monocyte infiltration and the role of fibroblast growth factor-9 (FGF-9) on monocyte to macrophage differentiation and cardioprotection in the diabetic infarcted heart. Db/db diabetic mice were assigned to sham, myocardial infarction (MI), and MI+FGF-9 groups. MI was induced by permanent coronary artery ligation and animals were subjected to 2D transthoracic echocardiography two weeks post-surgery. Immunohistochemical and immunoassay results from heart samples collected suggest significantly increased infiltration of monocytes (Mean ± SEM; MI: 2.02% ± 0.23% vs. Sham 0.75% ± 0.07%; p<0.05) and associated pro-inflammatory cytokines (TNF-α, MCP-1, and IL-6), adverse cardiac remodeling (Mean ± SEM; MI: 33% ± 3.04% vs. Sham 2.2% ± 0.33%; p<0.05), and left ventricular dysfunction (Mean ± SEM; MI: 35.4% ± 1.25% vs. Sham 49.19% ± 1.07%; p<0.05) in the MI group. Importantly, treatment of diabetic infarcted myocardium with FGF-9 resulted in significantly decreased monocyte infiltration (Mean ± SEM; MI+FGF-9: 1.39% ± 0.1% vs. MI: 2.02% ± 0.23%; p<0.05), increased M2 macrophage differentiation (Mean ± SEM; MI+FGF-9: 4.82% ± 0.86% vs. MI: 0.85% ± 0.3%; p<0.05) and associated anti-inflammatory cytokines (IL-10 and IL-1RA), reduced adverse remodeling (Mean ± SEM; MI+FGF-9: 11.59% ± 1.2% vs. MI: 33% ± 3.04%; p<0.05), and improved cardiac function (Fractional shortening, Mean ± SEM; MI+FGF-9: 41.51% ± 1.68% vs. MI: 35.4% ± 1.25%; p<0.05). In conclusion, our data suggest FGF-9 possesses novel therapeutic potential in its ability to

  3. Storage xyloglucans: potent macrophages activators.

    PubMed

    do Rosário, Marianna Maia Taulois; Kangussu-Marcolino, Mônica Mendes; do Amaral, Alex Evangelista; Noleto, Guilhermina Rodrigues; Petkowicz, Carmen Lúcia de Oliveira

    2011-01-15

    Storage xyloglucans from the seeds of Copaifera langsdorffii, Hymenaea courbaril and Tamarindus indica were obtained by aqueous extraction from the milled and defatted cotyledons, XGC, XGJ and XGT, respectively. The resulting fractions showed similar monosaccharide composition with Glc:Xyl:Gal molar ratios of 2.4:1.5:1.0, 3.8:1.5:1,0 and 3.6:2.4:1.0 for XGC, XGJ and XGT, respectively. High-performance size-exclusion chromatography of the polysaccharides showed unimodal profiles, and the average molar mass (M(w)) was obtained for XGC (9.6 × 10⁵ g/mol), XGJ (9.1 × 10⁵ g/mol) and XGT (7.3 × 10⁵ g/mol). The immunomodulatory effects of the xyloglucans on peritoneal macrophages were evaluated. Phagocytic activity was observed in macrophages treated with XGT. The effect of XGT was tested on the production of O₂(.-) and NO. At 25 μg/ml XGT caused a 100% increase in NO production when compared to the control group; however, it did not affect O₂(.-) production in the absence of PMA. The production of TNF-α, interleukins 1β and 6 by macrophages in the presence of the xyloglucans was evaluated. The polysaccharides affected the production of the cytokines by macrophages to different degrees. XGC caused an enhancement of IL-1β and TNF-α production, compared to the other xyloglucans. For IL-6 production, XGT gave greater stimulation than XGC and XGJ, reaching 87% at 50 μg/ml. XGJ promoted a statistically significant effect on all cytokine productions tested. The results indicate that the xyloglucans from C. langsdorffii, H. courbaril and T. indica can be classified as biological response modifiers (BRM). PMID:20888807

  4. The chemokine system in diverse forms of macrophage activation and polarization.

    PubMed

    Mantovani, Alberto; Sica, Antonio; Sozzani, Silvano; Allavena, Paola; Vecchi, Annunciata; Locati, Massimo

    2004-12-01

    Plasticity and functional polarization are hallmarks of the mononuclear phagocyte system. Here we review emerging key properties of different forms of macrophage activation and polarization (M1, M2a, M2b, M2c), which represent extremes of a continuum. In particular, recent evidence suggests that differential modulation of the chemokine system integrates polarized macrophages in pathways of resistance to, or promotion of, microbial pathogens and tumors, or immunoregulation, tissue repair and remodeling. PMID:15530839

  5. A double feedback loop mediated by microRNA-23a/27a/24-2 regulates M1 versus M2 macrophage polarization and thus regulates cancer progression

    PubMed Central

    Ma, Sisi; Liu, Min; Xu, Zhenbiao; Li, Yanshuang; Guo, Hui; Ge, Yehua; Liu, Yanxin; Zheng, Dexian; Shi, Juan

    2016-01-01

    In response to microenvironmental signals, macrophages undergo different types of activation, including the “classic” pro-inflammatory phenotype (also called M1) and the “alternative” anti-inflammatory phenotype (also called M2). Macrophage polarized activation has profound effects on immune and inflammatory responses, but mechanisms underlying the various types of macrophage is still in its infancy. In this study, we reported that M1-type stimulation could down-regulate miR-23a/27a/24-2 cluster transcription through the binding of NF-κB to this cluster's promoter and that miR-23a in turn activated the NF-κB pathway by targeting A20 and thus promoted the production of pro-inflammatory cytokines. Furthermore, STAT6 occupied the miR-23a/27a/24-2 cluster promoter and activated their transcription in IL-4-stimulated macrophages. In addition, miR-23a in turn suppressed the JAK1/STAT-6 pathway and reduced the production of M2 type cytokines by targeting JAK1 and STAT-6 directly, while miR-27a showed the same phenotype by targeting IRF4 and PPAR-γ. The miR-23a/27a/24-2 cluster was shown to be significantly decreased in TAMs of breast cancer patients, and macrophages overexpressing the miR-23a/27a/24-2 cluster inhibited tumor growth in vivo. Taken together, these data integrated microRNA expression and function into macrophage polarization networks and identified a double feedback loop consisting of the miR-23a/27a/24-2 cluster and the key regulators of the M1 and M2 macrophage polarization pathway. Moreover, miR-23a/27a/24-2 regulates the polarization of tumor-associated macrophages and thus promotes cancer progression. PMID:26540574

  6. A double feedback loop mediated by microRNA-23a/27a/24-2 regulates M1 versus M2 macrophage polarization and thus regulates cancer progression.

    PubMed

    Ma, Sisi; Liu, Min; Xu, Zhenbiao; Li, Yanshuang; Guo, Hui; Ge, Yehua; Liu, Yanxin; Zheng, Dexian; Shi, Juan

    2016-03-22

    In response to microenvironmental signals, macrophages undergo different types of activation, including the "classic" pro-inflammatory phenotype (also called M1) and the "alternative" anti-inflammatory phenotype (also called M2). Macrophage polarized activation has profound effects on immune and inflammatory responses, but mechanisms underlying the various types of macrophage is still in its infancy. In this study, we reported that M1-type stimulation could down-regulate miR-23a/27a/24-2 cluster transcription through the binding of NF-κB to this cluster's promoter and that miR-23a in turn activated the NF-κB pathway by targeting A20 and thus promoted the production of pro-inflammatory cytokines. Furthermore, STAT6 occupied the miR-23a/27a/24-2 cluster promoter and activated their transcription in IL-4-stimulated macrophages. In addition, miR-23a in turn suppressed the JAK1/STAT-6 pathway and reduced the production of M2 type cytokines by targeting JAK1 and STAT-6 directly, while miR-27a showed the same phenotype by targeting IRF4 and PPAR-γ. The miR-23a/27a/24-2 cluster was shown to be significantly decreased in TAMs of breast cancer patients, and macrophages overexpressing the miR-23a/27a/24-2 cluster inhibited tumor growth in vivo. Taken together, these data integrated microRNA expression and function into macrophage polarization networks and identified a double feedback loop consisting of the miR-23a/27a/24-2 cluster and the key regulators of the M1 and M2 macrophage polarization pathway. Moreover, miR-23a/27a/24-2 regulates the polarization of tumor-associated macrophages and thus promotes cancer progression. PMID:26540574

  7. MACROPHAGE FUNCTIONAL POLARIZATION (M1/M2) IN RESPONSE TO VARYING FIBER AND PORE DIMENSIONS OF ELECTROSPUN SCAFFOLDS

    PubMed Central

    Garg, K.; Pullen, N.A.; Oskeritzian, C.A.; Ryan, J.J.; Bowlin, G.L.

    2013-01-01

    In this study, we investigated the effect of fiber and pore size of an electrospun scaffold on the polarization of mouse bone marrow-derived macrophages (BMMΦs) towards regenerative (M2) or inflammatory (M1) phenotypes. BMMΦs were seeded on Polydioxanone (PDO) scaffolds electrospun from varying polymer concentrations (60, 100, and 140 mg/ml). Higher polymer concentrations yielded larger diameter fibers with larger pore sizes and porosity. BMMΦ cultured on these scaffolds showed a correlation between increasing fiber/pore size and increased expression of the M2 marker Arginase 1 (Arg1), along with decreased expression of the M1 marker inducible nitric oxide synthase (iNOS). Secretion of the angiogenic cytokines VEGF, TGF-β1 and bFGF was higher among cultures employing larger fiber/pore size scaffolds (140 mg/ml). Using a 3D in vitro angiogenesis bead assay, we have demonstrated that the M2-like profile of BMMΦ induced by the 140 mg/ml is functional. Furthermore, our results show that the pore size of a scaffold is a more critical regulator of the BMMΦ polarization compared to the fiber diameter. The study also shows a potential role for MyD88 in regulating M1 BMMΦ signaling on the large vs. small fiber/pore size PDO scaffold. These data are instructive for the rationale design of implantable prosthetics designed to promote in situ regeneration. PMID:23515178

  8. Heme Oxygenase-1 Induction Prevents Autoimmune Diabetes in Association With Pancreatic Recruitment of M2-Like Macrophages, Mesenchymal Cells, and Fibrocytes.

    PubMed

    Husseini, Mahmoud; Wang, Gen-Sheng; Patrick, Christopher; Crookshank, Jennifer A; MacFarlane, Amanda J; Noel, J Ariana; Strom, Alexander; Scott, Fraser W

    2015-11-01

    Immunoregulatory and regenerative processes are activated in the pancreas during the development of type 1 diabetes (T1D) but are insufficient to prevent the disease. We hypothesized that the induction of cytoprotective heme oxygenase-1 (HO-1) by cobalt protophoryrin (CoPP) would prevent T1D by promoting anti-inflammatory and pro-repair processes. Diabetes-prone BioBreeding rats received ip CoPP or saline twice per week for 3 weeks, starting at 30 days and were monitored for T1D. Immunohistochemistry, confocal microscopy, quantitative RT-PCR, and microarrays were used to evaluate postinjection pancreatic changes at 51 days, when islet inflammation is first visible. T1D was prevented in CoPP-treated rats (29% vs 73%). Pancreatic Hmox1 was up-regulated along with islet-associated CD68(+)HO-1(+) cells, which were also observed in a striking peri-lobular interstitial infiltrate. Most interstitial cells expressed the mesenchymal marker vimentin and the hematopoietic marker CD34. Spindle-shaped, CD34(+)vimentin(+) cells coexpressed collagen V, characteristic of fibrocytes. M2 macrophage factors Krüppel-like factor 4, CD163, and CD206 were expressed by interstitial cells, consistent with pancreatic upregulation of several M2-associated genes. CoPP upregulated islet-regenerating REG genes and increased neogenic REG3β(+) and insulin(+) clusters. Thus, short-term induction of HO-1 promoted a protective M2-like milieu in the pancreas and recruited mesenchymal cells, M2 macrophages, and fibrocytes that imparted immunoregulatory and pro-repair effects, preventing T1D. PMID:26252059

  9. Parkin Regulates the Activity of Pyruvate Kinase M2*

    PubMed Central

    Liu, Kun; Li, Fanzhou; Han, Haichao; Chen, Yue; Mao, Zebin; Luo, Jianyuan; Zhao, Yingming; Zheng, Bin; Gu, Wei; Zhao, Wenhui

    2016-01-01

    Parkin, a ubiquitin E3 ligase, is mutated in most cases of autosomal recessive early onset Parkinson disease. It was discovered that Parkin is also mutated in glioblastoma and other human malignancies and that it inhibits tumor cell growth. Here, we identified pyruvate kinase M2 (PKM2) as a unique substrate for parkin through biochemical purification. We found that parkin interacts with PKM2 both in vitro and in vivo, and this interaction dramatically increases during glucose starvation. Ubiquitylation of PKM2 by parkin does not affect its stability but decreases its enzymatic activity. Parkin regulates the glycolysis pathway and affects the cell metabolism. Our studies revealed the novel important roles of parkin in tumor cell metabolism and provided new insight for therapy of Parkinson disease. PMID:26975375

  10. Parkin Regulates the Activity of Pyruvate Kinase M2.

    PubMed

    Liu, Kun; Li, Fanzhou; Han, Haichao; Chen, Yue; Mao, Zebin; Luo, Jianyuan; Zhao, Yingming; Zheng, Bin; Gu, Wei; Zhao, Wenhui

    2016-05-01

    Parkin, a ubiquitin E3 ligase, is mutated in most cases of autosomal recessive early onset Parkinson disease. It was discovered that Parkin is also mutated in glioblastoma and other human malignancies and that it inhibits tumor cell growth. Here, we identified pyruvate kinase M2 (PKM2) as a unique substrate for parkin through biochemical purification. We found that parkin interacts with PKM2 both in vitro and in vivo, and this interaction dramatically increases during glucose starvation. Ubiquitylation of PKM2 by parkin does not affect its stability but decreases its enzymatic activity. Parkin regulates the glycolysis pathway and affects the cell metabolism. Our studies revealed the novel important roles of parkin in tumor cell metabolism and provided new insight for therapy of Parkinson disease. PMID:26975375

  11. MMP-12 Deficiency Attenuates Angiotensin II-Induced Vascular Injury, M2 Macrophage Accumulation, and Skin and Heart Fibrosis

    PubMed Central

    Stawski, Lukasz; Haines, Paul; Fine, Alan; Rudnicka, Lidia; Trojanowska, Maria

    2014-01-01

    MMP-12, a macrophage-secreted elastase, is elevated in fibrotic diseases, including systemic sclerosis (SSc) and correlates with vasculopathy and fibrosis. The goal of this study was to investigate the role of MMP-12 in cardiac and cutaneous fibrosis induced by angiotensin II infusion. Ang II-induced heart and skin fibrosis was accompanied by a marked increase of vascular injury markers, including vWF, Thrombospondin-1 (TSP-1) and MMP-12, as well as increased number of PDGFRβ+ cells. Furthermore Ang II infusion led to an accumulation of macrophages (Mac3+) in the skin and in the perivascular and interstitial fibrotic regions of the heart. However, alternatively activated (Arg 1+) macrophages were mainly present in the Ang II infused mice and were localized to the perivascular heart regions and to the skin, but were not detected in the interstitial heart regions. Elevated expression of MMP-12 was primarily found in macrophages and endothelial cells (CD31+) cells, but MMP-12 was not expressed in the collagen producing cells. MMP-12 deficient mice (MMP12KO) showed markedly reduced expression of vWF, TSP1, and PDGFRβ around vessels and attenuation of dermal fibrosis, as well as the perivascular fibrosis in the heart. However, MMP-12 deficiency did not affect interstitial heart fibrosis, suggesting a heterogeneous nature of the fibrotic response in the heart. Furthermore, MMP-12 deficiency almost completely prevented accumulation of Arg 1+ cells, whereas the number of Mac3+ cells was partially reduced. Moreover production of profibrotic mediators such as PDGFBB, TGFβ1 and pSMAD2 in the skin and perivascular regions of the heart was also inhibited. Together, the results of this study show a close correlation between vascular injury markers, Arg 1+ macrophage accumulation and fibrosis and suggest an important role of MMP-12 in regulating these processes. PMID:25302498

  12. Eosinophils Reduce Chronic Inflammation in Adipose Tissue by Secreting Th2 Cytokines and Promoting M2 Macrophages Polarization

    PubMed Central

    Zhang, Yi; Yang, Peng; Cui, Ran; Zhang, Manna; Li, Hong; Qian, Chunhua; Sheng, Chunjun; Qu, Shen; Bu, Le

    2015-01-01

    Obesity is now recognized as a low-grade, chronic inflammatory disease that is linked to a myriad of disorders including cardiovascular diseases, type 2 diabetes, and liver diseases. Recently it is found that eosinophils accelerate alternative activation macrophage (AAM) polarization by secreting Th2 type cytokines such as interleukin-4 and interleukin-13, thereby reducing metainflammation in adipose tissue. In this review, we focused on the role of eosinophils in regulating metabolic homeostasis and obesity. PMID:26688684

  13. Periostin Secreted by Glioblastoma Stem Cells Recruits M2 Tumor-associated Macrophages and Promotes Malignant Growth

    PubMed Central

    Zhou, Wenchao; Ke, Susan Q.; Huang, Zhi; Flavahan, William; Fang, Xiaoguang; Paul, Jeremy; Wu, Ling; Sloan, Andrew E.; McLendon, Roger E.; Li, Xiaoxia; Rich, Jeremy N.; Bao, Shideng

    2014-01-01

    Tumor-associated macrophages (TAMs) are enriched in glioblastoma (GBM) that contains glioma stem cells (GSCs) at the apex of its cellular hierarchy. The correlation between TAM density and glioma grade suggests a supportive role of TAMs in tumor progression. Here we interrogated the molecular link between GSCs and TAM recruitment in GBMs and demonstrated that GSCs secrete Periostin (POSTN) to recruit TAMs. TAM density correlates with POSTN levels in human GBMs. Silencing POSTN in GSCs markedly reduced TAM density, inhibited tumor growth, and increased survival of mice bearing GSC-derived xenografts. We found that TAMs in GBMs are not brain-resident microglia, but mainly monocyte-derived macrophages from peripheral blood. Disrupting POSTN specifically attenuated the tumor supportive M2 type of TAMs in xenografts. POSTN recruits TAMs through integrin αvβ3 as blocking this signaling by an RGD peptide inhibited TAM recruitment. Our findings highlight the possibility of improving GBM treatment by targeting POSTN-mediated TAM recruitment. PMID:25580734

  14. Stromelysin-2 (MMP10) Moderates Inflammation by Controlling Macrophage Activation.

    PubMed

    McMahan, Ryan S; Birkland, Timothy P; Smigiel, Kate S; Vandivort, Tyler C; Rohani, Maryam G; Manicone, Anne M; McGuire, John K; Gharib, Sina A; Parks, William C

    2016-08-01

    Several members of the matrix metalloproteinase (MMP) family control a range of immune processes, such as leukocyte influx and chemokine activity. Stromelysin-2 (MMP10) is expressed by macrophages in numerous tissues after injury; however, little is known of its function. In this study, we report that MMP10 is expressed by macrophages in human lungs from patients with cystic fibrosis and induced in mouse macrophages in response to Pseudomonas aeruginosa infection both in vivo and by isolated resident alveolar and bone marrow-derived macrophages (BMDM). Our data indicates that macrophage MMP10 serves a beneficial function in response to acute infection. Whereas wild-type mice survived infection with minimal morbidity, 50% of Mmp10(-/-) mice died and all showed sustained weight loss (morbidity). Although bacterial clearance and neutrophil influx did not differ between genotypes, macrophage numbers were ∼3-fold greater in infected Mmp10(-/-) lungs than in wild-types. Adoptive transfer of wild-type BMDM normalized infection-induced morbidity in Mmp10(-/-) recipients to wild-type levels, demonstrating that the protective effect of MMP10 was due to its production by macrophages. Both in vivo and in cultured alveolar macrophages and BMDM, expression of several M1 macrophage markers was elevated, whereas M2 markers were reduced in Mmp10(-/-) tissue and cells. Global gene expression analysis revealed that infection-mediated transcriptional changes persisted in Mmp10(-/-) BMDM long after they were downregulated in wild-type cells. These results indicate that MMP10 serves a beneficial role in response to acute infection by moderating the proinflammatory response of resident and infiltrating macrophages. PMID:27316687

  15. IL-10 is required for polarization of macrophages to M2-like phenotype by mycobacterial DnaK (heat shock protein 70).

    PubMed

    Lopes, Rafael L; Borges, Thiago J; Zanin, Rafael F; Bonorino, Cristina

    2016-09-01

    Macrophages are key cells in the innate immune system. They phagocytose pathogens and cellular debris, promote inflammation, and have important roles in tumor immunity. Depending on the microenvironment, macrophages can polarize to M1 (inflammatory) or M2 (anti-inflammatory) phenotypes. Extracellular DnaK (the bacterial ortholog of the mammalian Hsp70) from Mycobacterium tuberculosis (Mtb) was described to exert immune modulatory roles in an IL-10 dependent manner. We have previously observed that endotoxin-free DnaK can polarize macrophages to an M2-like phenotype. However, the mechanisms that underlie this polarization need to be further investigated. IL-10 has been described to promote macrophage polarization, so we investigated the involvement of this cytokine in macrophages stimulated with extracellular DnaK. IL-10 was required to induce the expression of M2 markers - Ym1 and Fizz, when macrophages were treated with DnaK. Blockade of IL-10R also impaired DnaK induced polarization, demonstrating the requirement of the IL-10/IL-10R signaling pathway in this polarization. DnaK was able to induce TGF-β mRNA in treated macrophages in an IL-10 dependent manner. However, protein TGF-β could not be detected in culture supernatants. Finally, using an in vivo allogeneic melanoma model, we observed that DnaK-treated macrophages can promote tumor growth in an IL-10-dependent manner. Our results indicate that the IL-10/IL-10R axis is required for DnaK-induced M2-like polarization in murine macrophages. PMID:27337694

  16. Identification of a 6-Cytokine Prognostic Signature in Patients with Primary Glioblastoma Harboring M2 Microglia/Macrophage Phenotype Relevance

    PubMed Central

    Li, Mingyang; Zhang, Chuanbao; Wang, Zheng; Hu, Huimin; Liu, Yanwei; Li, Qingbin; Wen, Jinchong; Sun, Bo; Wang, Xiaofeng; Jiang, Tao; Jiang, Chuanlu

    2015-01-01

    Background Glioblastomas (GBM) are comprised of a heterogeneous population of tumor cells, immune cells, and extracellular matrix. Interactions among these different cell types and pro-/anti-inflammatory cytokines may promote tumor development and progression. Aims The objective of this study was to develop a cytokine-related gene signature to improve outcome prediction for patients with primary GBM. Methods Here, we used Cox regression and risk-score analysis to develop a cytokine-related gene signature in primary GBMs from the whole transcriptome sequencing profile of the Chinese Glioma Genome Atlas (CGGA) database (n=105). We also examined differences in immune cell phenotype and immune factor expression between the high-risk and low-risk groups. Results Cytokine-related genes were ranked based on their ability to predict survival in the CGGA database. The six genes showing the strongest predictive value were CXCL10, IL17R, CCR2, IL17B, IL10RB, and CCL2. Patients with a high-risk score had poor overall survival and progression-free survival. Additionally, the high-risk group was characterized by increased mRNA expression of M2 microglia/macrophage markers and elevated levels of IL10 and TGFβ1. Conclusion The six cytokine-related gene signature is sufficient to predict survival and to identify a subgroup of primary GBM exhibiting the M2 cell phenotype. PMID:25978454

  17. Graft-Infiltrating Macrophages Adopt an M2 Phenotype and Are Inhibited by Purinergic Receptor P2X7 Antagonist in Chronic Rejection.

    PubMed

    Wu, C; Zhao, Y; Xiao, X; Fan, Y; Kloc, M; Liu, W; Ghobrial, R M; Lan, P; He, X; Li, X C

    2016-09-01

    Macrophages exhibit diverse phenotypes and functions; they are also a major cell type infiltrating chronically rejected allografts. The exact phenotypes and roles of macrophages in chronic graft loss remain poorly defined. In the present study, we used a mouse heart transplant model to examine macrophages in chronic allograft rejection. We found that treatment of C57BL/6 mice with CTLA4 immunoglobulin fusion protein (CTLA4-Ig) prevented acute rejection of a Balb/c heart allograft but allowed chronic rejection to develop over time, characterized by prominent neointima formation in the graft. There was extensive macrophage infiltration in the chronically rejected allografts, and the graft-infiltrating macrophages expressed markers associated with M2 cells but not M1 cells. In an in vitro system in which macrophages were polarized into either M1 or M2 cells, we screened phenotypic differences between M1 and M2 cells and identified purinergic receptor P2X7 (P2x7r), an adenosine triphosphate (ATP)-gated ion channel protein that was preferentially expressed by M2 cells. We further showed that blocking the P2x7r using oxidized ATP (oATP) inhibited M2 induction in a dose-dependent fashion in vitro. Moreover, treatment of C57BL/6 recipients with the P2x7r antagonist oATP, in addition to CTLA4-Ig treatment, inhibited graft-infiltrating M2 cells, prevented transplant vasculopathy, and induced long-term heart allografts survival. These findings highlight the importance of the P2x7r-M2 axis in chronic rejection and establish P2x7r as a potential therapeutic target in suppression of chronic rejection. PMID:27575724

  18. Effect of hydroxyapatite microcrystals on macrophage activity.

    PubMed

    Fukuchi, N; Akao, M; Sato, A

    1995-01-01

    Hydroxyapatite (HAp) microcrystals were synthesized by a neutralization reaction of Ca(OH)2 suspension and H3PO4 solution using an ultrasonic homogenizer. The in vitro interaction of HAp microcrystals with rat peritoneal macrophages was investigated by measuring the viability, acid phosphatase (ACP) activity, lactate dehydrogenase (LDH) activity and intracellular calcium content. HAp calcined at 800 degrees C and alpha-alumina particles (alumina) were used as comparative materials. Macrophages actively phagocytosed HAp microcrystals by dissolving them. However, no damage in macrophages exposed to HAp microcrystals was observed by transmission electron microscopy. Macrophages in the presence of HAp microcrystals showed less ACP and LDH activity and higher intracellular calcium content than those in the presence of calcined HAp and alumina. HAp microcrystals had excellent biocompatibility to macrophages as well as sintered HAp. PMID:8785507

  19. Macrophage activation by OM-85 BV.

    PubMed

    Mauël, J

    1992-01-01

    Peritoneal or bone-marrow-derived murine macrophages were exposed for 24 h in vitro to dilutions of the bacterial extract OM-85 BV, in the presence or absence of other added compounds [macrophage-activating factor (MAF), recombinant murine interferon-gamma (IFN-gamma)]. Various metabolic responses and functional activities were then measured. Glucose oxidation through the hexose monophosphate shunt pathway was markedly stimulated in OM-85 BV-treated macrophages compared to control macrophages. Similarly, OM-85 BV primed macrophages for superoxide production upon triggering by phorbol myristate acetate. Both effects were further enhanced by simultaneous treatment of the cells with MAF with OM-85 BV. The bacterial extract also induced macrophages to release large amounts of nitrite (a marker of the activated state). As regards functional responses, coincubation with MAF and OM-85 BV activated macrophages to destroy target cells as well as intracellular microorganisms; in the latter case, similar results were obtained when MAF was replaced by IFN-gamma. In all these tests, the possibility that the observed effects were due to contamination of the bacterial extracts by endotoxin could be excluded. The above results indicate that OM-85 BV induces metabolic and functional properties in macrophages that are characteristic of the activated state and are important for host defence. PMID:1332156

  20. IL-35 Decelerates the Inflammatory Process by Regulating Inflammatory Cytokine Secretion and M1/M2 Macrophage Ratio in Psoriasis.

    PubMed

    Zhang, Junfeng; Lin, Yi; Li, Chunlei; Zhang, Xiaomei; Cheng, Lin; Dai, Lei; Wang, Youcui; Wang, Fangfang; Shi, Gang; Li, Yiming; Yang, Qianmei; Cui, Xueliang; Liu, Yi; Wang, Huiling; Zhang, Shuang; Yang, Yang; Xiang, Rong; Li, Jiong; Yu, Dechao; Wei, Yuquan; Deng, Hongxin

    2016-09-15

    IL-35 downregulates Th17 cell development and suppresses certain types of autoimmune inflammation such as collagen-induced arthritis and experimental autoimmune uveitis. Psoriasis is thought to be initiated by abnormal interactions between cutaneous keratinocytes and systemic immune cells. However, the role of IL-35 in psoriasis remains unclear. In this study, we assessed IL-35 in three well-known psoriasis models: a human keratinocyte cell line (HaCaT), a keratin 14 (K14)-vascular endothelial growth factor A (VEGF-A)-transgenic (Tg) mouse model, and an imiquimod-induced psoriasis mouse model. First, we found that IL-35 suppressed the expression of IL-6, CXCL8, and S100A7, which are highly upregulated by a mixture of five proinflammatory cytokines in HaCaT. Second, a plasmid coding for the human IL-35 sequence coated with cationic liposomes showed potent immunosuppressive effects on K14-VEGF-A-Tg and imiquimod-induced psoriasis mouse models. In the K14-VEGF-A-Tg model, our results showed that several types of proinflammatory cytokines were significantly reduced, whereas IL-10 was remarkably induced by IL-35. Compared with pcDNA3.1, there was a small number of CD4(+)IL-17(+) T cells and a large number of CD4(+)IL-10(+) and CD4(+)CD25(+)Foxp3(+) T cells in the IL-35 group. Most importantly, we found that IL-35 decreased the total number of macrophages and ratio of M1/M2 macrophages, which has not been reported previously. In addition, compared with dexamethasone, IL-35 showed long-term therapeutic efficacy. In summary, our results strongly indicate that IL-35 plays a potent immunosuppressive role in psoriasis. Thus, IL-35 has potential for development as a new therapeutic strategy for patients with chronic psoriasis and other cutaneous inflammatory diseases. PMID:27527600

  1. Conditioned media from macrophages of M1, but not M2 phenotype, inhibit the proliferation of the colon cancer cell lines HT-29 and CACO-2

    PubMed Central

    ENGSTRÖM, ALEXANDER; ERLANDSSON, ANN; DELBRO, DICK; WIJKANDER, JONNY

    2014-01-01

    Solid tumors are infiltrated by stroma cells including macrophages and these cells can affect tumor growth, metastasis and angiogenesis. We have investigated the effects of conditioned media (CM) from different macrophages on the proliferation of the colon cancer cell lines HT-29 and CACO-2. CM from THP-1 macrophages and monocyte-derived human macrophages of the M1 phenotype, but not the M2 phenotype, inhibited proliferation of the tumor cells in a dose-dependent manner. Lipopolysaccaharide and interferon γ was used for differentiation of macrophages towards the M1 phenotype and CM were generated both during differentiation (M1DIFF) and after differentiation (M1). M1 and M1DIFF CM as well as THP-1 macrophage CM resulted in cell cycle arrest in HT-29 cells with a decrease of cells in S phase and an increase in G2/M phase. Treatment of HT-29 cells with M1DIFF, but not M1 or THP-1 macrophage CM, resulted in apoptosis of about 20% of the tumor cells and this was accompanied by lack of recovery of cell growth after removal of CM and subsequent culture in fresh media. A protein array was used to identify cytokines released from M1 and M2 macrophages. Among the cytokines released by M1 macrophages, tumor necrosis factor α and CXCL9 were tested by direct addition to HT-29 cells, but neither affected proliferation. Our results indicate that M1 macrophages inhibit colon cancer cell growth and have the potential of contributing to reducing tumor growth in vivo. PMID:24296981

  2. M1-/M2-macrophages contribute to the development of GST-P-positive preneoplastic lesions in chemically-induced rat cirrhosis.

    PubMed

    Wijesundera, Kavindra Kumara; Izawa, Takeshi; Tennakoon, Anusha Hemamali; Golbar, Hossain M; Tanaka, Miyuu; Kuwamura, Mitsuru; Yamate, Jyoji

    2015-09-01

    Glutathione S-transferase placental form (GST-P) expression in hepatocyte foci is regarded as a preneoplastic change in rats. We aimed to reveal the contribution of polarized macrophages in development of GST-P-positive pseudolobules (PLs) in chemically-induced rat cirrhosis. F344 rats were injected with thioacetamide (100mg/kg BW, twice a week, intraperitoneally). Macrophage immunophenotypes and expression of M1-/M2-related factors were analyzed by immunohistochemistry, real-time RT-PCR and laser microdissection. GST-P-positive foci/clusters were clearly observed at post-first injection week 15. GST-P-positive PLs were distinguishable at weeks 20-32. Microarray analysis revealed upregulation of preneoplastic genes in GST-P-positive PLs at week 32. M1 (CD68(+), Iba1(+))-and M2 (CD163(+), CD204(+), Gal-3(+))-macrophages were greater in number in the GST-P-positive PLs, whereas MHC class II-positive (M1) macrophage number was fewer in the GST-P-positive PLs. Expression of both M1 (IFN-γ, IL-1β, TNF-α, Iba1)- and M2 (IL-4, TGF-β1, IL-10)-related factors were higher in GST-P-positive PLs. Our results showed that both M1- and M2-macrophage populations contribute to the development of hepatic preneoplastic lesions. MHC class II-positive macrophages may be related to anti-tumor progression, since their kinetics showed reverse pattern to other macrophage phenotypes. PMID:26205097

  3. Peroxisome proliferator-activated receptor-gamma agonist rosiglitazone attenuates postincisional pain by regulating macrophage polarization

    SciTech Connect

    Hasegawa-Moriyama, Maiko; Ohnou, Tetsuya; Godai, Kohei; Kurimoto, Tae; Nakama, Mayo; Kanmura, Yuichi

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Rosiglitazone attenuated postincisional pain. Black-Right-Pointing-Pointer Rosiglitazone alters macrophage polarization to F4/80{sup +}CD206{sup +} M2 macrophages at the incisional sites. Black-Right-Pointing-Pointer Transplantation of rosiglitazone-treated macrophages produced analgesic effects. -- Abstract: Acute inflammation triggered by macrophage infiltration to injured tissue promotes wound repair and may induce pain hypersensitivity. Peroxisome proliferator-activated receptor {gamma} (PPAR){gamma} signaling is known to regulate heterogeneity of macrophages, which are often referred to as classically activated (M1) and alternatively activated (M2) macrophages. M1 macrophages have considerable antimicrobial activity and produce a wide variety of proinflammatory cytokines. In contrast, M2 macrophages are involved in anti-inflammatory and homeostatic functions linked to wound healing and tissue repair. Although it has been suggested that PPAR{gamma} agonists attenuate pain hypersensitivity, the molecular mechanism of macrophage-mediated effects of PPAR{gamma} signaling on pain development has not been explored. In this study, we investigated the link between the phenotype switching of macrophage polarization induced by PPAR{gamma} signaling and the development of acute pain hypersensitivity. Local administration of rosiglitazone significantly ameliorated hypersensitivity to heat and mechanical stimuli, and paw swelling. Consistent with the down-regulation of nuclear factor {kappa}B (NF{kappa}B) phosphorylation by rosiglitazone at the incisional sites, the number of F4/80{sup +}iNOS{sup +} M1 macrophages was decreased whereas numbers of F4/80{sup +}CD206{sup +} M2 macrophages were increased in rosiglitazone-treated incisional sites 24 h after the procedure. In addition, gene induction of anti-inflammatory M2-macrophage-associated markers such as arginase1, FIZZ1 and interleukin (IL)-10 were significantly increased, whereas

  4. Macrophage Activation by Ursolic and Oleanolic Acids during Mycobacterial Infection.

    PubMed

    López-García, Sonia; Castañeda-Sanchez, Jorge Ismael; Jiménez-Arellanes, Adelina; Domínguez-López, Lilia; Castro-Mussot, Maria Eugenia; Hernández-Sanchéz, Javier; Luna-Herrera, Julieta

    2015-01-01

    Oleanolic (OA) and ursolic acids (UA) are triterpenes that are abundant in vegetables, fruits and medicinal plants. They have been described as active moieties in medicinal plants used for the treatment of tuberculosis. In this study, we analyzed the effects of these triterpenes on macrophages infected in vitro with Mycobacterium tuberculosis (MTB). We evaluated production of nitric oxide (NO), reactive oxygen species (ROS), and cytokines (TNF-α and TGF-β) as well as expression of cell membrane receptors (TGR5 and CD36) in MTB-infected macrophages following treatment with OA and UA. Triterpenes caused reduced MTB growth in macrophages, stimulated production of NO and ROS in the early phase, stimulated TNF-α, suppressed TGF-β and caused over-expression of CD36 and TGR5 receptors. Thus, our data suggest immunomodulatory properties of OA and UA on MTB infected macrophages. In conclusion, antimycobacterial effects induced by these triterpenes may be attributable to the conversion of macrophages from stage M2 (alternatively activated) to M1 (classically activated). PMID:26287131

  5. Phenotypic, functional, and plasticity features of classical and alternatively activated human macrophages.

    PubMed

    Tarique, Abdullah A; Logan, Jayden; Thomas, Emma; Holt, Patrick G; Sly, Peter D; Fantino, Emmanuelle

    2015-11-01

    Macrophages are dynamic cells that mature under the influence of signals from the local microenvironment into either classically (M1) or alternatively (M2) activated macrophages with specific functional and phenotypic properties. Although the phenotypic identification of M1 and M2 macrophages is well established in mice, this is less clear for human macrophages. In addition, the persistence and reversibility of polarized human phenotypes is not well established. Human peripheral blood monocytes were differentiated into uncommitted macrophages (M0) and then polarized to M1 and M2 phenotypes using LPS/IFN-γ and IL-4/IL-13, respectively. M1 and M2 were identified as CD64(+)CD80(+) and CD11b(+)CD209(+), respectively, by flow cytometry. Polarized M1 cells secreted IP-10, IFN-γ, IL-8, TNF-α, IL-1β, and RANTES, whereas M2 cells secreted IL-13, CCL17, and CCL18. Functionally, M2 cells were highly endocytic. In cytokine-deficient medium, the polarized macrophages reverted back to the M0 state within 12 days. If previously polarized macrophages were given the alternative polarizing stimulus after 6 days of resting in cytokine-deficient medium, a switch in polarization was seen (i.e., M1 macrophages switched to M2 and expressed CD11b(+)CD209(+) and vice versa). In summary, we report phenotypic identification of human M1 and M2 macrophages, their functional characteristics, and their ability to be reprogrammed given the appropriate stimuli. PMID:25870903

  6. Expression of the Homeobox Gene HOXA9 in Ovarian Cancer Induces Peritoneal Macrophages to Acquire an M2 Tumor-Promoting Phenotype

    PubMed Central

    Ko, Song Yi; Ladanyi, Andras; Lengyel, Ernst; Naora, Honami

    2015-01-01

    Tumor-associated macrophages (TAMs) exhibit an M2 macrophage phenotype that suppresses anti-tumor immune responses and often correlates with poor outcomes in patients with cancer. Patients with ovarian cancer frequently present with peritoneal carcinomatosis, but the mechanisms that induce naïve peritoneal macrophages into TAMs are poorly understood. In this study, we found an increased abundance of TAMs in mouse i.p. xenograft models of ovarian cancer that expressed HOXA9, a homeobox gene that is associated with poor prognosis in patients with ovarian cancer. HOXA9 expression in ovarian cancer cells stimulated chemotaxis of peritoneal macrophages and induced macrophages to acquire TAM-like features. These features included induction of the M2 markers, CD163 and CD206, and the immunosuppressive cytokines, IL-10 and chemokine ligand 17, and down-regulation of the immunostimulatory cytokine, IL-12. HOXA9-mediated induction of TAMs was primarily due to the combinatorial effects of HOXA9-induced, tumor-derived transforming growth factor-β2 and chemokine ligand 2 levels. High HOXA9 expression in clinical specimens of ovarian cancer was strongly associated with increased abundance of TAMs and intratumoral T-regulatory cells and decreased abundance of CD8+ tumor-infiltrating lymphocytes. Levels of immunosuppressive cytokines were also elevated in ascites fluid of patients with tumors that highly expressed HOXA9. HOXA9 may, therefore, stimulate ovarian cancer progression by promoting an immunosuppressive microenvironment via paracrine effects on peritoneal macrophages. PMID:24332016

  7. Immunomodulatory Effect of Bisphosphonate Risedronate Sodium on CD163+ Arginase 1+ M2 Macrophages: The Development of a Possible Supportive Therapy for Angiosarcoma

    PubMed Central

    Kambayashi, Yumi; Furudate, Sadanori; Kakizaki, Aya; Aiba, Setsuya

    2013-01-01

    An imbalance of immunosuppressive cells and cytotoxic cells plays an important role in inhibiting the antitumor immune response of the tumor-bearing host. We previously reported the profiles of tumor infiltrating leukocytes in cutaneous angiosarcoma (AS) and suggested that a combination of docetaxel (DTX) with bisphosphonate risedronate sodium (RS) might be effective for MMP9-expressing AS by targeting immunosuppressive cells such as M2 macrophages. To further confirm the effect of this combination therapy, in this report we investigated the immunomodulatory effect of DTX and RS on CD163+ arginase 1 (Arg1)+ M2 macrophages in vitro. Interestingly, our present study demonstrated that DTX in combination with RS significantly upregulated the mRNA expression of CXCL10 on M2 macrophages and significantly decreased the mRNA expression of CCL17 and Arg1. Moreover, the production of CXCL10 and CXCL11 from M2 macrophages was significantly increased by DTX with RS though there was no effect of DTX with RS on the production of CCL5 and CCL17. Furthermore, DTX with RS significantly decreased the production of CCL18, which was previously reported to correlate with the severity and prognosis in cancer patients. Our present report suggests one of the possible mechanisms of DTX with RS in the supportive therapy for angiosarcoma. PMID:24489574

  8. Macrophage activation and its role in repair and pathology after spinal cord injury.

    PubMed

    Gensel, John C; Zhang, Bei

    2015-09-01

    The injured spinal cord does not heal properly. In contrast, tissue repair and functional recovery occur after skin or muscle injuries. The reason for this dichotomy in wound repair is unclear but inflammation, and specifically macrophage activation, likely plays a key role. Macrophages have the ability to promote the repair of injured tissue by regulating transitions through different phase of the healing response. In the current review we compare and contrast the healing and inflammatory responses between spinal cord injuries and tissues that undergo complete wound resolution. Through this comparison, we identify key macrophage phenotypes that are inaptly triggered or absent after spinal cord injury and discuss spinal cord stimuli that contribute to this maladaptive response. Sequential activation of classic, pro-inflammatory, M1 macrophages and alternatively activated, M2a, M2b, and M2c macrophages occurs during normal healing and facilitates transitions through the inflammatory, proliferative, and remodeling phases of repair. In contrast, in the injured spinal cord, pro-inflammatory macrophages potentiate a prolonged inflammatory phase and remodeling is not properly initiated. The desynchronized macrophage activation after spinal cord injury is reminiscent of the inflammation present in chronic, non-healing wounds. By refining the role macrophages play in spinal cord injury repair we bring to light important areas for future neuroinflammation and neurotrauma research. This article is part of a Special Issue entitled SI: Spinal cord injury. PMID:25578260

  9. Alternatively activated macrophages determine repair of the infarcted adult murine heart

    PubMed Central

    Shiraishi, Manabu; Shintani, Yasunori; Shintani, Yusuke; Ishida, Hidekazu; Saba, Rie; Yamaguchi, Atsushi; Adachi, Hideo; Yashiro, Kenta

    2016-01-01

    Alternatively activated (also known as M2) macrophages are involved in the repair of various types of organs. However, the contribution of M2 macrophages to cardiac repair after myocardial infarction (MI) remains to be fully characterized. Here, we identified CD206+F4/80+CD11b+ M2-like macrophages in the murine heart and demonstrated that this cell population predominantly increases in the infarct area and exhibits strengthened reparative abilities after MI. We evaluated mice lacking the kinase TRIB1 (Trib1–/–), which exhibit a selective depletion of M2 macrophages after MI. Compared with control animals, Trib1–/– mice had a catastrophic prognosis, with frequent cardiac rupture, as the result of markedly reduced collagen fibril formation in the infarct area due to impaired fibroblast activation. The decreased tissue repair observed in Trib1–/– mice was entirely rescued by an external supply of M2-like macrophages. Furthermore, IL-1α and osteopontin were suggested to be mediators of M2-like macrophage–induced fibroblast activation. In addition, IL-4 administration achieved a targeted increase in the number of M2-like macrophages and enhanced the post-MI prognosis of WT mice, corresponding with amplified fibroblast activation and formation of more supportive fibrous tissues in the infarcts. Together, these data demonstrate that M2-like macrophages critically determine the repair of infarcted adult murine heart by regulating fibroblast activation and suggest that IL-4 is a potential biological drug for treating MI. PMID:27140396

  10. High salt reduces the activation of IL-4- and IL-13-stimulated macrophages.

    PubMed

    Binger, Katrina J; Gebhardt, Matthias; Heinig, Matthias; Rintisch, Carola; Schroeder, Agnes; Neuhofer, Wolfgang; Hilgers, Karl; Manzel, Arndt; Schwartz, Christian; Kleinewietfeld, Markus; Voelkl, Jakob; Schatz, Valentin; Linker, Ralf A; Lang, Florian; Voehringer, David; Wright, Mark D; Hubner, Norbert; Dechend, Ralf; Jantsch, Jonathan; Titze, Jens; Müller, Dominik N

    2015-11-01

    A high intake of dietary salt (NaCl) has been implicated in the development of hypertension, chronic inflammation, and autoimmune diseases. We have recently shown that salt has a proinflammatory effect and boosts the activation of Th17 cells and the activation of classical, LPS-induced macrophages (M1). Here, we examined how the activation of alternative (M2) macrophages is affected by salt. In stark contrast to Th17 cells and M1 macrophages, high salt blunted the alternative activation of BM-derived mouse macrophages stimulated with IL-4 and IL-13, M(IL-4+IL-13) macrophages. Salt-induced reduction of M(IL-4+IL-13) activation was not associated with increased polarization toward a proinflammatory M1 phenotype. In vitro, high salt decreased the ability of M(IL-4+IL-13) macrophages to suppress effector T cell proliferation. Moreover, mice fed a high salt diet exhibited reduced M2 activation following chitin injection and delayed wound healing compared with control animals. We further identified a high salt-induced reduction in glycolysis and mitochondrial metabolic output, coupled with blunted AKT and mTOR signaling, which indicates a mechanism by which NaCl inhibits full M2 macrophage activation. Collectively, this study provides evidence that high salt reduces noninflammatory innate immune cell activation and may thus lead to an overall imbalance in immune homeostasis. PMID:26485286

  11. High salt reduces the activation of IL-4– and IL-13–stimulated macrophages

    PubMed Central

    Binger, Katrina J.; Gebhardt, Matthias; Heinig, Matthias; Rintisch, Carola; Schroeder, Agnes; Neuhofer, Wolfgang; Hilgers, Karl; Manzel, Arndt; Schwartz, Christian; Kleinewietfeld, Markus; Voelkl, Jakob; Schatz, Valentin; Linker, Ralf A.; Lang, Florian; Voehringer, David; Wright, Mark D.; Hubner, Norbert; Dechend, Ralf; Jantsch, Jonathan; Titze, Jens; Müller, Dominik N.

    2015-01-01

    A high intake of dietary salt (NaCl) has been implicated in the development of hypertension, chronic inflammation, and autoimmune diseases. We have recently shown that salt has a proinflammatory effect and boosts the activation of Th17 cells and the activation of classical, LPS-induced macrophages (M1). Here, we examined how the activation of alternative (M2) macrophages is affected by salt. In stark contrast to Th17 cells and M1 macrophages, high salt blunted the alternative activation of BM-derived mouse macrophages stimulated with IL-4 and IL-13, M(IL-4+IL-13) macrophages. Salt-induced reduction of M(IL-4+IL-13) activation was not associated with increased polarization toward a proinflammatory M1 phenotype. In vitro, high salt decreased the ability of M(IL-4+IL-13) macrophages to suppress effector T cell proliferation. Moreover, mice fed a high salt diet exhibited reduced M2 activation following chitin injection and delayed wound healing compared with control animals. We further identified a high salt–induced reduction in glycolysis and mitochondrial metabolic output, coupled with blunted AKT and mTOR signaling, which indicates a mechanism by which NaCl inhibits full M2 macrophage activation. Collectively, this study provides evidence that high salt reduces noninflammatory innate immune cell activation and may thus lead to an overall imbalance in immune homeostasis. PMID:26485286

  12. Dysregulation of Macrophage Activation Profiles by Engineered Nanoparticles

    SciTech Connect

    Kodali, Vamsi; Littke, Matthew H.; Tilton, Susan C.; Teeguarden, Justin G.; Shi, Liang; Frevert, Charles W.; Wang, Wei; Pounds, Joel G.; Thrall, Brian D.

    2013-08-27

    Although the potential human health impacts from exposure to engineered nanoparticles (ENPs) are uncertain, past epidemiological studies have established correlations between exposure to ambient air pollution particulates and the incidence of pneumonia and lung infections. Using amorphous silica and superparamagnetic iron oxide (SPIO) as model high production volume ENPs, we examined how macrophage activation by bacterial lipopolysaccharide (LPS) or the lung pathogen Streptococcus pneumoniae is altered by ENP pretreatment. Neither silica nor SPIO treatment elicited direct cytotoxic or pro-inflammatory effects in bone marrow-derived macrophages. However, pretreatment of macrophages with SPIO caused extensive reprogramming of nearly 500 genes regulated in response to LPS challenge, hallmarked by exaggerated activation of oxidative stress response pathways and suppressed activation of both pro- and anti-inflammatory pathways. Silica pretreatment altered regulation of only 67 genes, but there was strong correlation with gene sets affected by SPIO. Macrophages exposed to SPIO displayed a phenotype suggesting an impaired ability to transition from an M1 to M2-like activation state, characterized by suppressed IL-10 induction, enhanced TNFα production, and diminished phagocytic activity toward S. pneumoniae. Studies in macrophages deficient in scavenger receptor A (SR-A) showed SR-A participates in cell uptake of both the ENPs and S. pneumonia and co-regulates the anti-inflammatory IL-10 pathway. Thus, mechanisms for dysregulation of innate immunity exist by virtue that common receptor recognition pathways are used by some ENPs and pathogenic bacteria, although the extent of transcriptional reprogramming of macrophage function depends on the physicochemical properties of the ENP after internalization. Our results also illustrate that biological effects of ENPs may be indirectly manifested only after challenging normal cell function. Finally, nanotoxicology screening

  13. Dysregulation of Macrophage Activation Profiles by Engineered Nanoparticles

    PubMed Central

    Kodali, Vamsi; Littke, Matthew H.; Tilton, Susan C.; Teeguarden, Justin G.; Shi, Liang; Frevert, Charles W.; Wang, Wei; Pounds, Joel G.; Thrall, Brian D.

    2013-01-01

    Although the potential human health impacts from exposure to engineered nanoparticles (ENPs) are uncertain, past epidemiological studies have established correlations between exposure to ambient air pollution particulates and the incidence of pneumonia and lung infections. Using amorphous silica and superparamagnetic iron oxide (SPIO) as model high production volume ENPs, we examined how macrophage activation by bacterial lipopolysaccharide (LPS) or the lung pathogen Streptococcus pneumoniae is altered by ENP pre-treatment. Neither silica nor SPIO treatment elicited direct cytotoxic or pro-inflammatory effects in bone marrow-derived macrophages. However, pre-treatment of macrophages with SPIO caused extensive reprogramming of nearly 500 genes regulated in response to LPS challenge, hallmarked by exaggerated activation of oxidative stress response pathways and suppressed activation of both pro- and anti-inflammatory pathways. Silica pre-treatment altered regulation of only 67 genes, but there was strong correlation with gene sets affected by SPIO. Macrophages exposed to SPIO displayed a phenotype suggesting an impaired ability to transition from a M1 to M2-like activation state, characterized by suppressed IL-10 induction, enhanced TNFα production, and diminished phagocytic activity toward S. pneumoniae. Studies in macrophages deficient in scavenger receptor A (SR-A) showed SR-A participates in cell uptake of both the ENPs and S. pneumonia, and co-regulates the anti-inflammatory IL-10 pathway. Thus, mechanisms for dysregulation of innate immunity exist by virtue that common receptor recognition pathways are used by some ENPs and pathogenic bacteria, although the extent of transcriptional reprogramming of macrophage function depends on the physicochemical properties of the ENP after internalization. Our results also illustrate that biological effects of ENPs may be indirectly manifested only after challenging normal cell function. Nanotoxicology screening strategies

  14. Targeting macrophage activation for the prevention and treatment of S. aureus biofilm infections†

    PubMed Central

    Hanke, Mark L.; Heim, Cortney E.; Angle, Amanda; Sanderson, Sam D.; Kielian, Tammy

    2013-01-01

    Biofilm infections often lead to significant morbidity due to their chronicity and recalcitrance to antibiotics. We have demonstrated that methicillin-resistant Staphylococcus aureus (MRSA) biofilms can evade macrophage antibacterial effector mechanisms by skewing macrophages towards an alternatively activated M2 phenotype. To overcome this immune evasion, we have utilized two complementary approaches. In the first, a proinflammatory milieu was elicited by local administration of classically-activated M1 macrophages and second, by treatment with the C5a receptor (CD88) agonist EP67, which invokes macrophage proinflammatory activity. Early administration of M1-activated macrophages or EP67 significantly attenuated biofilm formation in a mouse model of MRSA catheter-associated infection. Several proinflammatory mediators were significantly elevated in biofilm infected tissues from macrophage- and EP67-treated animals, revealing effective reprogramming of the biofilm environment to a proinflammatory milieu. A requirement for macrophage proinflammatory activity was demonstrated by the fact that transfer of MyD88-deficient macrophages had minimal impact on biofilm growth. Likewise, neutrophil administration had no effect on biofilm formation. Treatment of established biofilm infections with M1-activated macrophages also significantly reduced catheter-associated biofilm burdens compared to antibiotic treatment. Collectively, these results demonstrate that targeting macrophage proinflammatory activity can overcome the local immune inhibitory environment created during biofilm infections and represents a novel therapeutic strategy. PMID:23365077

  15. Melanoma exosome induction of endothelial cell GM-CSF in pre-metastatic lymph nodes may result in different M1 and M2 macrophage mediated angiogenic processes.

    PubMed

    Hood, Joshua L

    2016-09-01

    Angiogenesis is a key process in the preparation of lymph nodes for melanoma metastasis. Granulocyte macrophage colony stimulating factor (GM-CSF) induces hypoxia inducible factor 1 alpha (HIF-1α) in M1 or HIF-2α in M2 polarized macrophages. HIF-1α promotes neoangiogenesis while HIF-2α facilitates morphogenic normalization of neovasculature. Melanoma exosomes induce GM-CSF expression by endothelial cells in vitro and HIF-1α expression in pre-metastatic lymph nodes in vivo. This suggest a relationship between melanoma exosome induced endothelial GM-CSF and macrophage mediated angiogenesis in lymph nodes. Theoretically, induction of endothelial cell derived GM-CSF by melanoma exosomes mediates different angiogenic functions in pre-metastatic lymph nodes depending on subcapsular sinus (SCS) macrophage polarity. To explore this hypothesis, experiments utilizing melanoma exosomes in a lymph node model are outlined. Despite their opposing immune functions, indirect melanoma exosome stimulation of M1 or M2 SCS macrophages via endothelial derived GM-CSF in lymph nodes may induce different although complementary pro-tumor angiogenic processes. PMID:27515216

  16. Effects of the eukaryotic initiation factor 6 gene on expression levels of inflammatory mediators in M2 macrophages during scar repair.

    PubMed

    Bai, Yong-Qiang; Feng, Jian-Ke; Zhang, Qing-Fu; Wu, Hong-Zhi; Du, Ya-Ru; Wei, Wei

    2016-07-01

    The aim of the present study was to evaluate the effects of the eukaryotic initiation factor 6 (eIF6) gene on the secretion of M2 macrophage fibrosis‑associated factors and the expression levels of key proteases during scar repair. Male eIF6 wild‑type (eIF6+/+) and knockout (eIF6+/‑) C57BL/6 mice were intraperitoneally lavaged to obtain macrophages, which were induced to the M2 type using interleukin‑4. Differences between the gene expression profiles of these macrophages were compared with gene microarrays, and the results were validated using reverse transcription-quantitative polymerase chain reaction analysis and ELISA. Compared with the eIF6+/‑ mice, the mRNA and protein expression levels of vascular endothelial growth factor (VEGF) and tissue inhibitor of metalloproteinase‑2 (TIMP‑2) in the M2 macrophages of the eIF6+/+ mice were significantly downregulated (P<0.05), whereas the mRNA and protein expression levels of matrix metalloproteinase‑2 (MMP‑2) were significantly upregulated (P<0.05). Therefore, the results indicated that eIF6 alleviated cicatrization, possibly by inhibiting the generation of VEGF, in order to prevent overgrowth of blood vessels and granulation tissues, and to regulate the MMP-2/TIMP-2 ratio to balance the degradation and deposition of the extracellular matrix. PMID:27220600

  17. M2 macrophage accumulation in the aortic wall during angiotensin II infusion in mice is associated with fibrosis, elastin loss, and elevated blood pressure.

    PubMed

    Moore, Jeffrey P; Vinh, Antony; Tuck, Kellie L; Sakkal, Samy; Krishnan, Shalini M; Chan, Christopher T; Lieu, Maggie; Samuel, Chrishan S; Diep, Henry; Kemp-Harper, Barbara K; Tare, Marianne; Ricardo, Sharon D; Guzik, Tomasz J; Sobey, Christopher G; Drummond, Grant R

    2015-09-01

    Macrophages accumulate in blood vessels during hypertension. However, their contribution to vessel remodeling is unknown. In the present study, we examined the polarization state of macrophages (M1/M2) in aortas of mice during hypertension and investigated whether antagonism of chemokine receptors involved in macrophage accumulation reduces vessel remodeling and blood pressure (BP). Mice treated with ANG II (0.7 mg·kg(-1)·day(-1), 14 days) had elevated systolic BP (158 ± 3 mmHg) compared with saline-treated animals (122 ± 3 mmHg). Flow cytometry revealed that ANG II infusion increased numbers of CD45(+)CD11b(+)Ly6C(hi) monocytes and CD45(+)CD11b(+)F4/80(+) macrophages by 10- and 2-fold, respectively. The majority of macrophages were positive for the M2 marker CD206 but negative for the M1 marker inducible nitric oxide synthase. Expression of other M2 genes (arginase-1, Fc receptor-like S scavenger receptor, and receptor-1) was elevated in aortas from ANG II-treated mice, whereas M1 genes [TNF and chemokine (C-X-C motif) ligand 2] were unaltered. A PCR array to identify chemokine receptor targets for intervention revealed chemokine (C-C motif) receptor 2 (CCR2) to be upregulated in aortas from ANG II-treated mice, while flow cytometry identified Ly6C(hi) monocytes as the main CCR2-expressing cell type. Intervention with a CCR2 antagonist (INCB3344; 30 mg·kg(-1)·day(-1)), 7 days after the commencement of ANG II infusion, reduced aortic macrophage numbers. INCB334 also reduced aortic collagen deposition, elastin loss, and BP in ANG II-treated mice. Thus, ANG II-dependent hypertension in mice is associated with Ly6C(hi) monocyte and M2 macrophage accumulation in the aorta. Inhibition of macrophage accumulation with a CCR2 antagonist prevents ANG II-induced vessel fibrosis and elevated BP, highlighting this as a promising approach for the future treatment of vessel remodeling/stiffening in hypertension. PMID:26071547

  18. Monocytes and macrophages, implications for breast cancer migration and stem cell-like activity and treatment.

    PubMed

    Ward, Rebecca; Sims, Andrew H; Lee, Alexander; Lo, Christina; Wynne, Luke; Yusuf, Humza; Gregson, Hannah; Lisanti, Michael P; Sotgia, Federica; Landberg, Göran; Lamb, Rebecca

    2015-06-10

    Macrophages are a major cellular constituent of the tumour stroma and contribute to breast cancer prognosis. The precise role and treatment strategies to target macrophages remain elusive. As macrophage infiltration is associated with poor prognosis and high grade tumours we used the THP-1 cell line to model monocyte-macrophage differentiation in co-culture with four breast cancer cell lines (MCF7, T47D, MDA-MB-231, MDA-MB-468) to model in vivo cellular interactions. Polarisation into M1 and M2 subtypes was confirmed by specific cell marker expression of ROS and HLA-DR, respectively. Co-culture with all types of macrophage increased migration of ER-positive breast cancer cell lines, while M2-macrophages increased mammosphere formation, compared to M1-macrophages, in all breast cancer cells lines. Treatment of cells with Zoledronate in co-culture reduced the "pro-tumourigenic" effects (increased mammospheres/migration) exerted by macrophages. Direct treatment of breast cancer cells in homotypic culture was unable to reduce migration or mammosphere formation.Macrophages promote "pro-tumourigenic" cellular characteristics of breast cancer cell migration and stem cell activity. Zoledronate targets macrophages within the microenvironment which in turn, reduces the "pro-tumourigenic" characteristics of breast cancer cells. Zoledronate offers an exciting new treatment strategy for both primary and metastatic breast cancer. PMID:26008983

  19. Alternative activation of macrophages and pulmonary fibrosis are modulated by scavenger receptor, macrophage receptor with collagenous structure.

    PubMed

    Murthy, Shubha; Larson-Casey, Jennifer L; Ryan, Alan J; He, Chao; Kobzik, Lester; Carter, A Brent

    2015-08-01

    Alternative activation of alveolar macrophages is linked to fibrosis following exposure to asbestos. The scavenger receptor, macrophage receptor with collagenous structure (MARCO), provides innate immune defense against inhaled particles and pathogens; however, a receptor for asbestos has not been identified. We hypothesized that MARCO acts as an initial signaling receptor for asbestos, polarizes macrophages to a profibrotic M2 phenotype, and is required for the development of asbestos-induced fibrosis. Compared with normal subjects, alveolar macrophages isolated from patients with asbestosis express higher amounts of MARCO and have greater profibrotic polarization. Arginase 1 (40-fold) and IL-10 (265-fold) were higher in patients. In vivo, the genetic deletion of MARCO attenuated the profibrotic environment and pulmonary fibrosis in mice exposed to chrysotile. Moreover, alveolar macrophages from MARCO(-/-) mice polarize to an M1 phenotype, whereas wild-type mice have higher Ym1 (>3.0-fold) and nearly 7-fold more active TGF-β1 in bronchoalveolar lavage (BAL) fluid (BALF). Arg(432) and Arg(434) in domain V of MARCO are required for the polarization of macrophages to a profibrotic phenotype as mutation of these residues reduced FIZZ1 expression (17-fold) compared with cells expressing MARCO. These observations demonstrate that a macrophage membrane protein regulates the fibrotic response to lung injury and suggest a novel target for therapeutic intervention. PMID:25953850

  20. IL-10 Cytokine Released from M2 Macrophages Is Crucial for Analgesic and Anti-inflammatory Effects of Acupuncture in a Model of Inflammatory Muscle Pain

    PubMed Central

    da Silva, Morgana D.; Bobinski, Franciane; Sato, Karina L.; Kolker, Sandra J.; Sluka, Kathleen A.; Santos, Adair R. S.

    2014-01-01

    Muscle pain is a common medical problem that is difficult to treat. One nonpharmacological treatment used is acupuncture, a procedure in which fine needles are inserted into body points with the intent of relieving pain and other symptoms. Here we investigated the effects of manual acu-puncture (MA) on modulating macrophage phenotype and interleukin-10 (IL-10) concentrations in animals with muscle inflammation. Carrageenan, injected in the gastrocnemius muscle of mice, induces an inflammatory response characterized by mechanical hyperalgesia and edema. The inflammation is initially a neutrophilic infiltration that converts to a macrophage-dominated inflammation by 48 h. MA of the Sanyinjiao or Spleen 6 (SP6) acupoint reduces nociceptive behaviors, heat, and mechanical hyperalgesia and enhanced escape/avoidance and the accompanying edema. SP6 MA increased muscle IL-10 levels and was ineffective in reducing pain behaviors and edema in IL-10 knockout (IL-10−/−) mice. Repeated daily treatments with SP6 MA induced a phenotypic switch of muscle macrophages with reduced M1 macrophages (pro-inflammatory cells) and an increase of M2 macrophages (anti-inflammatory cells and important IL-10 source). These findings provide new evidence that MA produces a phenotypic switch in macrophages and increases IL-10 concentrations in muscle to reduce pain and inflammation. PMID:24961568

  1. Noble metal nanoparticle-induced oxidative stress modulates tumor associated macrophages (TAMs) from an M2 to M1 phenotype: An in vitro approach.

    PubMed

    Pal, Ramkrishna; Chakraborty, Biswajit; Nath, Anupam; Singh, Leichombam Mohindro; Ali, Mohammed; Rahman, Dewan Shahidur; Ghosh, Sujit Kumar; Basu, Abhishek; Bhattacharya, Sudin; Baral, Rathindranath; Sengupta, Mahuya

    2016-09-01

    Diagnosis of cancer and photothermal therapy using optoelectronic properties of noble metal nanoparticles (NPs) has established a new therapeutic approach for treating cancer. Here we address the intrinsic properties of noble metal NPs (gold and silver) as well as the mechanism of their potential antitumor activity. For this, the study addresses the functional characterization of tumor associated macrophages (TAMs) isolated from murine fibrosarcoma induced by a chemical carcinogen, 3-methylcholanthrene (MCA). We have previously shown antitumor activity of both gold nanoparticles (AuNPs) and silver nanoparticle (AgNPs) in vivo in a murine fibrosarcoma model. In the present study, it has been seen that AuNPs and AgNPs modulate the reactive oxygen species (ROS) and reactive nitrogen species (RNS) production, suppressing the antioxidant system of cells (TAMs). Moreover, the antioxidant-mimetic action of these NPs maintain the ROS and RNS levels in TAMs which act as second messengers to activate the proinflammatory signaling cascades. Thus, while there is a downregulation of tumor necrosis factor-α (TNF-α) and Interleukin-10 (IL-10) in the TAMs, the proinflammatory cytokine Interleukin-12 (IL-12) is upregulated resulting in a polarization of TAMs from M2 (anti-inflammatory) to M1 (pro-inflammatory) nature. PMID:27344639

  2. TGFβ signaling plays a critical role in promoting alternative macrophage activation

    PubMed Central

    2012-01-01

    Background Upon stimulation with different cytokines, macrophages can undergo classical or alternative activation to become M1 or M2 macrophages. Alternatively activated (or M2) macrophages are defined by their expression of specific gene products and play an important role in containing inflammation, removing apoptotic cells and repairing tissue damage. Whereas it is well-established that IL-4 can drive alternative activation, if lack of TGFβ signaling at physiological levels affects M2 polarization has not been addressed. Results Vav1-Cre x TβRIIfx/fx mice, lacking TβRII function in hematopoietic cells, exhibited uncontrolled pulmonary inflammation and developed a lethal autoimmune syndrome at young age. This was accompanied by significantly increased numbers of splenic neutrophils and T cells as well as elevated hepatic macrophage infiltration and bone marrow monocyte counts. TβRII-/- CD4+ and CD8+ T-cells in the lymph nodes and spleen expressed increased cell surface CD44, and CD69 was also higher on CD4+ lymph node T-cells. Loss of TβRII in bone marrow-derived macrophages (BMDMs) did not affect the ability of these cells to perform efferocytosis. However, these cells were defective in basal and IL-4-induced arg1 mRNA and Arginase-1 protein production. Moreover, the transcription of genes that are typically upregulated in M2-polarized macrophages, such as ym1, mcr2 and mgl2, was also decreased in peritoneal macrophages and IL-4-stimulated TβRII-/- BMDMs. We found that cell surface and mRNA expression of Galectin-3, which also regulates M2 macrophage polarization, was lower in TβRII-/- BMDMs. Very interestingly, the impaired ability of these null mutant BMDMs to differentiate into IL-4 polarized macrophages was Stat6- and Smad3-independent, but correlated with reduced levels of phospho-Akt and β-catenin. Conclusions Our results establish a novel biological role for TGFβ signaling in controlling expression of genes characteristic for alternatively

  3. A lovastatin-elicited genetic program inhibits M2 macrophage polarization and enhances T cell infiltration into spontaneous mouse mammary tumors

    PubMed Central

    Mira, Emilia; Carmona-Rodríguez, Lorena; Tardáguila, Manuel; Azcoitia, Iñigo; González-Martín, Alicia; Almonacid, Luis; Casas, Josefina; Fabriás, Gemma; Mañes, Santos

    2013-01-01

    Beyond their ability to inhibit cholesterol biosynthesis, the statins have pleiotropic effects that include anti-inflammatory and immunomodulatory activities. Statins could have clinical utility, alone or in combination with other chemotherapeutics, in the treatment of cancer. The mechanisms that underlie the anti-tumor activity of the statins are nonetheless poorly defined. No studies have analyzed how they alter the tumor-associated leukocyte infiltrate, a central factor that influences tumor stroma and cancer evolution. Here we used HER2/neu transgenic (Tg-neu) mice to analyze the effect of lovastatin (Lov) on the inflammatory reaction of spontaneous mammary tumors. Lov treatment of tumor-bearing Tg-neu mice did not alter growth of established tumors, but significantly reduced the number of new oncogenic lesions in these mice. Moreover, Lov inhibited the growth of newly implanted Tg-neu tumors in immunocompetent but not in immunodeficient mice. We found that Lov enhanced tumor infiltration by effector T cells, and reduced the number of immunosuppressive and pro-angiogenic M2-like tumor-associated macrophages (TAM). Concomitantly, the drug improved the structure and function of the tumor vasculature, measured as enhanced tumor oxygenation and penetration of cytotoxic drugs. Microarray analysis identified a Lov-elicited genetic program in Tg-neu tumors that might explain these effects; we observed Lov-induced downregulation of placental growth factor, which triggers aberrant angiogenesis and M2-like TAM polarization. Our results identify a role for lovastatin in the shaping and re-education of the inflammatory infiltrate in tumors, with functional consequences in angiogenesis and antitumor immunity. PMID:24317954

  4. Macrophage phenotypes in atherosclerosis.

    PubMed

    Colin, Sophie; Chinetti-Gbaguidi, Giulia; Staels, Bart

    2014-11-01

    Initiation and progression of atherosclerosis depend on local inflammation and accumulation of lipids in the vascular wall. Although many cells are involved in the development and progression of atherosclerosis, macrophages are fundamental contributors. For nearly a decade, the phenotypic heterogeneity and plasticity of macrophages has been studied. In atherosclerotic lesions, macrophages are submitted to a large variety of micro-environmental signals, such as oxidized lipids and cytokines, which influence the phenotypic polarization and activation of macrophages resulting in a dynamic plasticity. The macrophage phenotype spectrum is characterized, at the extremes, by the classical M1 macrophages induced by T-helper 1 (Th-1) cytokines and by the alternative M2 macrophages induced by Th-2 cytokines. M2 macrophages can be further classified into M2a, M2b, M2c, and M2d subtypes. More recently, additional plaque-specific macrophage phenotypes have been identified, termed as Mox, Mhem, and M4. Understanding the mechanisms and functional consequences of the phenotypic heterogeneity of macrophages will contribute to determine their potential role in lesion development and plaque stability. Furthermore, research on macrophage plasticity could lead to novel therapeutic approaches to counteract cardiovascular diseases such as atherosclerosis. The present review summarizes our current knowledge on macrophage subsets in atherosclerotic plaques and mechanism behind the modulation of the macrophage phenotype. PMID:25319333

  5. Model-Based Characterization of Inflammatory Gene Expression Patterns of Activated Macrophages

    PubMed Central

    Ehlting, Christian; Thomas, Maria; Zanger, Ulrich M.; Sawodny, Oliver; Häussinger, Dieter; Bode, Johannes G.

    2016-01-01

    Macrophages are cells with remarkable plasticity. They integrate signals from their microenvironment leading to context-dependent polarization into classically (M1) or alternatively (M2) activated macrophages, representing two extremes of a broad spectrum of divergent phenotypes. Thereby, macrophages deliver protective and pro-regenerative signals towards injured tissue but, depending on the eliciting damage, may also be responsible for the generation and aggravation of tissue injury. Although incompletely understood, there is emerging evidence that macrophage polarization is critical for these antagonistic roles. To identify activation-specific expression patterns of chemokines and cytokines that may confer these distinct effects a systems biology approach was applied. A comprehensive literature-based Boolean model was developed to describe the M1 (LPS-activated) and M2 (IL-4/13-activated) polarization types. The model was validated using high-throughput transcript expression data from murine bone marrow derived macrophages. By dynamic modeling of gene expression, the chronology of pathway activation and autocrine signaling was estimated. Our results provide a deepened understanding of the physiological balance leading to M1/M2 activation, indicating the relevance of co-regulatory signals at the level of Akt1 or Akt2 that may be important for directing macrophage polarization. PMID:27464342

  6. Model-Based Characterization of Inflammatory Gene Expression Patterns of Activated Macrophages.

    PubMed

    Rex, Julia; Albrecht, Ute; Ehlting, Christian; Thomas, Maria; Zanger, Ulrich M; Sawodny, Oliver; Häussinger, Dieter; Ederer, Michael; Feuer, Ronny; Bode, Johannes G

    2016-07-01

    Macrophages are cells with remarkable plasticity. They integrate signals from their microenvironment leading to context-dependent polarization into classically (M1) or alternatively (M2) activated macrophages, representing two extremes of a broad spectrum of divergent phenotypes. Thereby, macrophages deliver protective and pro-regenerative signals towards injured tissue but, depending on the eliciting damage, may also be responsible for the generation and aggravation of tissue injury. Although incompletely understood, there is emerging evidence that macrophage polarization is critical for these antagonistic roles. To identify activation-specific expression patterns of chemokines and cytokines that may confer these distinct effects a systems biology approach was applied. A comprehensive literature-based Boolean model was developed to describe the M1 (LPS-activated) and M2 (IL-4/13-activated) polarization types. The model was validated using high-throughput transcript expression data from murine bone marrow derived macrophages. By dynamic modeling of gene expression, the chronology of pathway activation and autocrine signaling was estimated. Our results provide a deepened understanding of the physiological balance leading to M1/M2 activation, indicating the relevance of co-regulatory signals at the level of Akt1 or Akt2 that may be important for directing macrophage polarization. PMID:27464342

  7. Crocodylus siamensis serum and macrophage phagocytic activity.

    PubMed

    Aree, Kalaya; Siruntawineti, Jindawan; Chaeychomsri, Win

    2011-12-01

    Antimicrobial activity of sera from many crocodilian species has been recognized. This activity was proposed to be mediated, at least in part, by complement. Due to the fact that complement proteins have different functions in the immune system, they may be involved in phagocytic process of phagocytes. In the present study, the effects of Siamese crocodile serum on phagocytic activity of macrophages as well as the possible involvement of complement in this process were examined. The results showed increases in the phagocytosis of both Escherichia coli and to a lesser extent, Staphylococcus aureus upon incubation of murine macrophage cell line with fresh crocodile serum (FS). Similar to FS, other crocodile blood products, including freeze dried serum (DS) and freeze dried whole blood (DWB) exhibited phagocytosis-enhancing property. However the ability of DWB to enhance phagocytosis was less efficient than that of FS and DS, suggesting that serum factors were involved in this process. Treatment of FS with heat at 56 degrees C for 30 min deteriorated the effect of FS on bacterial uptake of macrophages, suggesting that complement proteins play a role in the modulation of the phagocytic process. Collectively, the results of the present study suggested that crocodile serum enhances the macrophage phagocytic activity through complement activity and, therefore, may be taken as an alternative medicine for supporting the human immune responses. PMID:22619919

  8. Co-existence of classical and alternative activation programs in macrophages responding to Toxoplasma gondii

    PubMed Central

    Patil, Veerupaxagouda; Zhao, Yanlin; Shah, Suhagi; Fox, Barbara A.; Rommereim, Leah M.; Bzik, David J.; Yap, George S.

    2013-01-01

    Pro-inflammatory M1 macrophages are critical for defense against intracellular pathogens while alternatively-activated M2 macrophages mediate tissue homeostasis and repair. Whether these distinct activation programs are mutually exclusive or can co-exist within the same cell is unclear. Here, we report the co-existence of these programs in Toxoplasma gondii-elicited inflammatory macrophages. This is independent of parasite expression of the virulence factor ROP16 and host cell expression of signal transducer and activator of transcription 6 (STAT6). Furthermore, this observation was recapitulated by IFN-γ and IL-4 treated bone marrow-derived macrophages in vitro. These results highlight the multi-functionality of macrophages as they respond to diverse microbial and endogenous stimuli. PMID:24083945

  9. Co-existence of classical and alternative activation programs in macrophages responding to Toxoplasma gondii.

    PubMed

    Patil, Veerupaxagouda; Zhao, Yanlin; Shah, Suhagi; Fox, Barbara A; Rommereim, Leah M; Bzik, David J; Yap, George S

    2014-02-01

    Pro-inflammatory M1 macrophages are critical for defense against intracellular pathogens while alternatively-activated M2 macrophages mediate tissue homeostasis and repair. Whether these distinct activation programs are mutually exclusive or can co-exist within the same cell is unclear. Here, we report the co-existence of these programs in Toxoplasma gondii-elicited inflammatory macrophages. This is independent of parasite expression of the virulence factor ROP16 and host cell expression of signal transducer and activator of transcription 6 (STAT6). Furthermore, this observation was recapitulated by IFN-γ and IL-4 treated bone marrow-derived macrophages in vitro. These results highlight the multi-functionality of macrophages as they respond to diverse microbial and endogenous stimuli. PMID:24083945

  10. PROTEASOME ACTIVITY DECLINES IN AGED MACROPHAGES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ubiquitin-proteasome pathway is involved in regulation of a variety of biologically important processes including antigen presentation by macrophages. Age-related decrease in proteasome activity has been reported in other tissues. However, the effect of aging on the ubiquitin-proteasome pathway ...

  11. PROTEASOME ACTIVITY DECLINES IN AGED MACROPHAGES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ubiquitin-proteasome pathway is involved in regulation of a variety of biologically important processes including antigen presentation by macrophages (Mf). Age-related decrease in proteasome activity has been reported in other tissues. However, the effect of aging on the ubiquitin-proteasome pat...

  12. Transcriptomic Analysis of Human Polarized Macrophages: More than One Role of Alternative Activation?

    PubMed Central

    Derlindati, Eleonora; Dei Cas, Alessandra; Montanini, Barbara; Spigoni, Valentina; Curella, Valentina; Aldigeri, Raffaella; Ardigò, Diego; Zavaroni, Ivana; Bonadonna, Riccardo C.

    2015-01-01

    Background Macrophages are a heterogeneous cell population which in response to the cytokine milieu polarize in either classically activated macrophages (M1) or alternatively activated macrophages (M2). This plasticity makes macrophages essential in regulating inflammation, immune response and tissue remodeling and a novel therapeutic target in inflammatory diseases such as atherosclerosis. The aim of the study was to describe the transcriptomic profiles of differently polarized human macrophages to generate new hypotheses on the biological function of the different macrophage subtypes. Methods and Results Polarization of circulating monocytes/macrophages of blood donors was induced in vitro by IFN-γ and LPS (M1), by IL-4 (M2a), and by IL-10 (M2c). Unstimulated cells (RM) served as time controls. Gene expression profile of M1, M2a, M2c and RM was assessed at 6, 12 and 24h after polarization with Whole Human Genome Agilent Microarray technique. When compared to RM, M1 significantly upregulated pathways involved in immunity and inflammation, whereas M2a did the opposite. Conversely, decreased and increased expression of mitochondrial metabolism, consistent with insulin resistant and insulin sensitive patterns, was seen in M1 and M2a, respectively. The time sequence in the expression of some pathways appeared to have some specific bearing on M1 function. Finally, canonical and non-canonical Wnt genes and gene groups, promoting inflammation and tissue remodeling, were upregulated in M2a compared to RM. Conclusion Our data in in vitro polarized human macrophages: 1. confirm and extend known inflammatory and anti-inflammatory gene expression patterns; 2. demonstrate changes in mitochondrial metabolism associated to insulin resistance and insulin sensitivity in M1 and M2a, respectively; 3. highlight the potential relevance of gene expression timing in M1 function; 4. unveil enhanced expression of Wnt pathways in M2a suggesting a potential dual (pro-inflammatory and anti

  13. Cx3cr1 deficiency in mice attenuates hepatic granuloma formation during acute schistosomiasis by enhancing the M2-type polarization of macrophages

    PubMed Central

    Ran, Lin; Yu, Qilin; Zhang, Shu; Xiong, Fei; Cheng, Jia; Yang, Ping; Xu, Jun-Fa; Nie, Hao; Zhong, Qin; Yang, Xueli; Yang, Fei; Gong, Quan; Kuczma, Michal; Kraj, Piotr; Gu, Weikuan; Ren, Bo-Xu; Wang, Cong-Yi

    2015-01-01

    ABSTRACT Acute schistosomiasis is characterized by pro-inflammatory responses against tissue- or organ-trapped parasite eggs along with granuloma formation. Here, we describe studies in Cx3cr1−/− mice and demonstrate the role of Cx3cr1 in the pathoetiology of granuloma formation during acute schistosomiasis. Mice deficient in Cx3cr1 were protected from granuloma formation and hepatic injury induced by Schistosoma japonicum eggs, as manifested by reduced body weight loss and attenuated hepatomegaly along with preserved liver function. Notably, S. japonicum infection induced high levels of hepatic Cx3cr1 expression, which was predominantly expressed by infiltrating macrophages. Loss of Cx3cr1 rendered macrophages preferentially towards M2 polarization, which then led to a characteristic switch of the host immune defense from a conventional Th1 to a typical Th2 response during acute schistosomiasis. This immune switch caused by Cx3cr1 deficiency was probably associated with enhanced STAT6/PPAR-γ signaling and increased expression of indoleamine 2,3-dioxygenase (IDO), an enzyme that promotes M2 polarization of macrophages. Taken together, our data provide evidence suggesting that CX3CR1 could be a viable therapeutic target for treatment of acute schistosomiasis. PMID:26035381

  14. Adipogenic role of alternatively activated macrophages in β-adrenergic remodeling of white adipose tissue.

    PubMed

    Lee, Yun-Hee; Kim, Sang-Nam; Kwon, Hyun-Jung; Maddipati, Krishna Rao; Granneman, James G

    2016-01-01

    De novo brown adipogenesis involves the proliferation and differentiation of progenitors, yet the mechanisms that guide these events in vivo are poorly understood. We previously demonstrated that treatment with a β3-adrenergic receptor (ADRB3) agonist triggers brown/beige adipogenesis in gonadal white adipose tissue following adipocyte death and clearance by tissue macrophages. The close physical relationship between adipocyte progenitors and tissue macrophages suggested that the macrophages that clear dying adipocytes might generate proadipogenic factors. Flow cytometric analysis of macrophages from mice treated with CL 316,243 identified a subpopulation that contained elevated lipid and expressed CD44. Lipidomic analysis of fluorescence-activated cell sorting-isolated macrophages demonstrated that CD44+ macrophages contained four- to five-fold higher levels of the endogenous peroxisome-proliferator activated receptor gamma (PPARγ) ligands 9-hydroxyoctadecadienoic acid (HODE), and 13-HODE compared with CD44- macrophages. Gene expression profiling and immunohistochemistry demonstrated that ADRB3 agonist treatment upregulated expression of ALOX15, the lipoxygenase responsible for generating 9-HODE and 13-HODE. Using an in vitro model of adipocyte efferocytosis, we found that IL-4-primed tissue macrophages accumulated lipid from dying fat cells and upregulated expression of Alox15. Furthermore, treatment of differentiating adipocytes with 9-HODE and 13-HODE potentiated brown/beige adipogenesis. Collectively, these data indicate that noninflammatory removal of adipocyte remnants and coordinated generation of PPARγ ligands by M2 macrophages provides localized adipogenic signals to support de novo brown/beige adipogenesis. PMID:26538237

  15. Proinflammatory-activated glioma cells induce a switch in microglial polarization and activation status, from a predominant M2b phenotype to a mixture of M1 and M2a/B polarized cells

    PubMed Central

    Lisi, Lucia; Stigliano, Egidio; Lauriola, Libero; Navarra, Pierluigi; Russo, Cinzia Dello

    2014-01-01

    Malignant gliomas are primary brain tumors characterized by morphological and genetic complexities, as well as diffuse infiltration into normal brain parenchyma. Within gliomas, microglia/macrophages represent the largest tumor-infiltrating cell population, contributing by at least one-third to the total tumor mass. Bi-directional interactions between glioma cells and microglia may therefore play an important role on tumor growth and biology. In the present study, we have characterized the influence of glioma-soluble factors on microglial function, comparing the effects of media harvested under basal conditions with those of media obtained after inducing a pro-inflammatory activation state in glioma cells. We found that microglial cells undergo a different pattern of activation depending on the stimulus; in the presence of activated glioma-derived factors, i.e. a condition mimicking the late stage of pathology, microglia presents as a mixture of polarization phenotypes (M1 and M2a/b), with up-regulation of iNOS (inducible nitric oxide synthase), ARG (arginase) and IL (interleukine)-10. At variance, microglia exposed to basal glioma-derived factors, i.e. a condition resembling the early stage of pathology, shows a more specific pattern of activation, with increased M2b polarization status and up-regulation of IL-10 only. As far as viability and cell proliferation are concerned, both LI-CM [LPS (lipopolysaccharide)–IFNγ (interferon γ) conditioned media] and C-CM (control-conditioned media) induce similar effects on microglial morphology. Finally, in human glioma tissue obtained from surgical resection of patients with IV grade glioblastoma, we detected a significant amount of CD68 positive cells, which is a marker of macrophage/microglial phagocytic activity, suggesting that in vitro findings presented here might have a relevance in the human pathology as well. PMID:24689533

  16. MACROPHAGE ACTIVATION SYNDROME AND CYTOKINE DIRECTED THERAPIES

    PubMed Central

    Grom, Alexei A.

    2014-01-01

    Macrophage activation syndrome (MAS) is an episode of overwhelming inflammation that occurs most commonly in children with systemic juvenile idiopathic arthritis. It is characterized by expansion and activation of T lymphocytes and hemophagocytic macrophages, and bears great similarity to hemophagocytic lymphohistiocytosis (HLH). This disorder has substantial morbidity and mortality, and there is frequently a delay in recognition and initiation of treatment. Here, we will review what is known about the pathogenesis of MAS and in particular its similarities to HLH. The development of MAS is characterized by a cytokine storm, with the elaboration of numerous proinflammatory cytokines. We will examine the evidence for various cytokines in the initiation and pathogenesis of MAS, and discuss how new biologic therapies may alter the risk of MAS. Finally we will review current treatment options for MAS, and examine how cytokine-directed therapy could serve as novel treatment modalities. PMID:24974063

  17. Macrophage activation syndrome in autoimmune disease.

    PubMed

    Deane, Sean; Selmi, Carlo; Teuber, Suzanne S; Gershwin, M Eric

    2010-01-01

    Macrophage activation syndrome (MAS) is a phenomenon characterized by cytopenia, organ dysfunction, and coagulopathy associated with an inappropriate activation of macrophages. Current diagnostic criteria are imprecise, but the syndrome is now recognized as a form of hemophagocytic lymphohistiocytosis that is characteristically associated with autoimmune diatheses. The diagnosis of incipient MAS in patients with autoimmune disease requires a high index of suspicion, as several characteristics of the disorder may be present in the underlying condition or infectious complications associated with the treatment thereof. Proposed treatment regimens include aggressive approaches that require validation in future controlled studies. This review discusses the major aspects of the pathophysiology, diagnosis, and management of MAS with a focus on the association with autoimmune disease. PMID:20407267

  18. Redefining the transcriptional regulatory dynamics of classically and alternatively activated macrophages by deepCAGE transcriptomics

    PubMed Central

    Roy, Sugata; Schmeier, Sebastian; Arner, Erik; Alam, Tanvir; Parihar, Suraj P.; Ozturk, Mumin; Tamgue, Ousman; Kawaji, Hideya; de Hoon, Michiel J. L.; Itoh, Masayoshi; Lassmann, Timo; Carninci, Piero; Hayashizaki, Yoshihide; Forrest, Alistair R. R.; Bajic, Vladimir B.; Guler, Reto; Consortium, FANTOM; Brombacher, Frank; Suzuki, Harukazu

    2015-01-01

    Classically or alternatively activated macrophages (M1 and M2, respectively) play distinct and important roles for microbiocidal activity, regulation of inflammation and tissue homeostasis. Despite this, their transcriptional regulatory dynamics are poorly understood. Using promoter-level expression profiling by non-biased deepCAGE we have studied the transcriptional dynamics of classically and alternatively activated macrophages. Transcription factor (TF) binding motif activity analysis revealed four motifs, NFKB1_REL_RELA, IRF1,2, IRF7 and TBP that are commonly activated but have distinct activity dynamics in M1 and M2 activation. We observe matching changes in the expression profiles of the corresponding TFs and show that only a restricted set of TFs change expression. There is an overall drastic and transient up-regulation in M1 and a weaker and more sustainable up-regulation in M2. Novel TFs, such as Thap6, Maff, (M1) and Hivep1, Nfil3, Prdm1, (M2) among others, were suggested to be involved in the activation processes. Additionally, 52 (M1) and 67 (M2) novel differentially expressed genes and, for the first time, several differentially expressed long non-coding RNA (lncRNA) transcriptome markers were identified. In conclusion, the finding of novel motifs, TFs and protein-coding and lncRNA genes is an important step forward to fully understand the transcriptional machinery of macrophage activation. PMID:26117544

  19. Akt-mTORC1 signaling regulates Acly to integrate metabolic input to control of macrophage activation

    PubMed Central

    Covarrubias, Anthony J; Aksoylar, Halil Ibrahim; Yu, Jiujiu; Snyder, Nathaniel W; Worth, Andrew J; Iyer, Shankar S; Wang, Jiawei; Ben-Sahra, Issam; Byles, Vanessa; Polynne-Stapornkul, Tiffany; Espinosa, Erika C; Lamming, Dudley; Manning, Brendan D; Zhang, Yijing; Blair, Ian A; Horng, Tiffany

    2016-01-01

    Macrophage activation/polarization to distinct functional states is critically supported by metabolic shifts. How polarizing signals coordinate metabolic and functional reprogramming, and the potential implications for control of macrophage activation, remains poorly understood. Here we show that IL-4 signaling co-opts the Akt-mTORC1 pathway to regulate Acly, a key enzyme in Ac-CoA synthesis, leading to increased histone acetylation and M2 gene induction. Only a subset of M2 genes is controlled in this way, including those regulating cellular proliferation and chemokine production. Moreover, metabolic signals impinge on the Akt-mTORC1 axis for such control of M2 activation. We propose that Akt-mTORC1 signaling calibrates metabolic state to energetically demanding aspects of M2 activation, which may define a new role for metabolism in supporting macrophage activation. DOI: http://dx.doi.org/10.7554/eLife.11612.001 PMID:26894960

  20. Curcumin alleviates renal dysfunction and suppresses inflammation by shifting from M1 to M2 macrophage polarization in daunorubicin induced nephrotoxicity in rats.

    PubMed

    Karuppagounder, Vengadeshprabhu; Arumugam, Somasundaram; Thandavarayan, Rajarajan A; Sreedhar, Remya; Giridharan, Vijayasree V; Afrin, Rejina; Harima, Meilei; Miyashita, Shizuki; Hara, Masanori; Suzuki, Kenji; Nakamura, Masahiko; Ueno, Kazuyuki; Watanabe, Kenichi

    2016-08-01

    The molecular mechanism of curcumin in macrophage polarization remains unknown in renal failure. We examined, whether curcumin treatment is associated with the modulation of renal function and macrophage phenotype switch in daunorubicin (DNR) induced nephrotoxicity model. Sprague-Dawley rats were treated with a cumulative dose of 9mg/kg DNR (i.v). Followed by curcumin (100mg/kg) administration orally every day for 6weeks. DNR treated rats showed nephrotoxicity as evidenced by worsening renal function, which was assessed by measuring creatinine and blood urea nitrogen in serum. These changes were reversed by treatment with curcumin, which resulted in significant improvement in renal function. Furthermore, curcumin increased cluster of differentiation (CD)163 expression, and down-regulated renal expression of antigen II type I receptor (AT1R), endothelin (ET)1, ET receptor type A and B (ETAR and ETBR), CD68 and CD80. Renal protein expression of extracellular signal-regulated kinase (ERK)1/2 and nuclear factor (NF)κB p65 were increased in DNR treated rats, and treatment with curcumin attenuated these increased expression. Curcumin mediated a further increase in the levels of interleukin (IL)-10. In addition, the expression of M1 phenotype was increased in DNR treated rats, which were attenuated by curcumin. Taken together, our results demonstrated that polyphenol curcumin has an ability to improve renal function and might induce the phenotypic switching from M1 to M2 macrophage polarization in DNR induced nephrotoxicity in rats. PMID:27203664

  1. Epigenetic Control of Macrophage Shape Transition towards an Atypical Elongated Phenotype by Histone Deacetylase Activity.

    PubMed

    Cabanel, Mariana; Brand, Camila; Oliveira-Nunes, Maria Cecilia; Cabral-Piccin, Mariela Pires; Lopes, Marcela Freitas; Brito, Jose Marques; de Oliveira, Felipe Leite; El-Cheikh, Marcia Cury; Carneiro, Katia

    2015-01-01

    Inflammatory chronic pathologies are complex processes characterized by an imbalance between the resolution of the inflammatory phase and the establishment of tissue repair. The main players in these inflammatory pathologies are bone marrow derived monocytes (BMDMs). However, how monocyte differentiation is modulated to give rise to specific macrophage subpopulations (M1 or M2) that may either maintain the chronic inflammatory process or lead to wound healing is still unclear. Considering that inhibitors of Histone Deacetylase (HDAC) have an anti-inflammatory activity, we asked whether this enzyme would play a role on monocyte differentiation into M1 or M2 phenotype and in the cell shape transition that follows. We then induced murine bone marrow progenitors into monocyte/macrophage differentiation pathway using media containing GM-CSF and the HDAC blocker, Trichostatin A (TSA). We found that the pharmacological inhibition of HDAC activity led to a shape transition from the typical macrophage pancake-like shape into an elongated morphology, which was correlated to a mixed M1/M2 profile of cytokine and chemokine secretion. Our results present, for the first time, that HDAC activity acts as a regulator of macrophage differentiation in the absence of lymphocyte stimuli. We propose that HDAC activity down regulates macrophage plasticity favoring the pro-inflammatory phenotype. PMID:26196676

  2. Mouse macrophage polarity and ROCK1 activity depend on RhoA and non-apoptotic Caspase 3.

    PubMed

    Liu, Yianzhu; Minze, Laurie J; Mumma, Lindsay; Li, Xian C; Ghobrial, Rafik M; Kloc, Malgorzata

    2016-02-15

    The macrophages have different subtypes with different functions in immune response and disease. It has been generally accepted that M1 macrophages are responsible for stimulation of immune system and inflammation while M2 macrophages play a role in tissue repair. Irrespective of the type, macrophage functions depend on actin cytoskeleton, which is under the control of small GTPase RhoA pathway and its downstream effector ROCK1. We generated RhoA-deleted macrophages and compared the effect of RhoA deletion on M0, M1 and M2 macrophage phenotype. Our studies showed that, unexpectedly, the RhoA deletion did not eliminate macrophage ROCK1 expression and increased ROCK1 activity. The RhoA deletion effect on macrophage phenotype, structure and polarity was different for each subtype. Moreover, our study indicates that the up-regulation of ROCK1 activity in RhoA-deleted macrophages and macrophage phenotype/polarity are dependent on non-apoptotic Caspase-3 and are sensitive to Caspase-3 inhibition. These novel findings will revise/complement our understanding of RhoA pathway regulation of cell structure and polarity. PMID:26875770

  3. A humanized anti-M2 scFv shows protective in vitro activity against influenza

    SciTech Connect

    Bradbury, Andrew M; Velappan, Nileena; Schmidt, Jurgen G

    2008-01-01

    M2 is one of the most conserved influenza proteins, and has been widely prospected as a potential universal vaccine target, with protection predominantly mediated by antibodies. In this paper we describe the creation of a humanized single chain Fv from 14C2, a potent monoclonal antibody against M2. We show that the humanized scFv demonstrates similar activity to the parental mAb: it is able to recognize M2 in its native context on cell surfaces and is able to show protective in vitro activity against influenza, and so represents a potential lead antibody candidate for universal prophylactic or therapeutic intervention in influenza.

  4. Regulation of Thrombospondin-1 expression in alternatively activated macrophages and adipocytes: role of cellular crosstalk and omega-3 fatty acids

    PubMed Central

    Finlin, Brian S.; Zhu, Beibei; Starnes, Catherine P.; McGehee, Robert E.; Peterson, Charlotte A.; Kern, Philip A.

    2013-01-01

    Thrombospondin-1 (TSP-1) expression in human adipose positively correlates with body mass index and may contribute to adipose dysfunction by activating TGF-β and/or inhibiting angiogenesis. Our objective was to determine how TSP-1 is regulated in adipocytes and polarized macrophages using a coculture system and to determine whether fatty acids, including the ω-3 fatty acid DHA, regulate TSP-1 expression. Coculture of M1, M2a, or M2c macrophages with adipocytes induced TSP-1 gene expression in adipocytes (from 2.4 to 4.2-fold, P<0.05), and adipocyte coculture induced TSP-1 gene expression in M1 and M2c macrophages (M1:8.6-fold; M2c 26-fold, P<0.05). TSP-1 protein levels in the shared media of adipocytes and M2c cells was also strongly induced by coculture (>10 fold, P<0.05). DHA treatment during the coculture of adipocytes and M2c macrophages potently inhibited theM2c macrophage TSP-1 mRNA level (97% inhibition, P<0.05). Adipocyte coculture induced IL-10 expression in M2c macrophages (10.1-fold, P<0.05), and this increase in IL-10 mRNA expression was almost completely blocked with DHA treatment (96% inhibition, P<0.05); thus, IL-10 expression closely paralleled TSP-1 expression. Since IL-10 has been shown to regulate TSP-1 in other cell types, we reduced IL-10 expression with siRNA in the M2c cells and found that this caused TSP-1 to be reduced in response to adipocyte coculture by 60% (P<0.05), suggesting that IL-10 regulates TSP-1 expression in M2c macrophages. These results suggest that supplementation with dietary ω-3 fatty acids could potentially be beneficial to adipose tissue in obesity by reducing TSP-1 and fibrosis. PMID:23528972

  5. Direct imaging of macrophage activation during PDT treatment

    NASA Astrophysics Data System (ADS)

    Song, Sheng; Zhou, Feifan; Chen, Wei R.; Xing, Da

    2011-11-01

    Mounting evidence describes a more complex progress of macrophage activation during photodynamic therapy (PDT), which performing distinct immunological functions and different physiologies on surrounding cells and tissues. Macrophage-targeted PDT has been applied in the selective killing of cells involved in inflammation and tumor. We have previously shown that PDT-mediated tumor cells apoptosis can induce a higher level immune response than necrosis, and enhance the macrophage activation. However, the molecular mechanism of macrophage activation during PDT-induced apoptotic cells (AC) still unclear. Here, we use confocal microscopy to image the phagocytosis of tumor cells by macrophages. We also observed that PDT-treated AC can activate Toll-like receptors (TLRs) which are present on macrophages surface. Besides, the increase in nitric oxide (NO) formation in macrophages was detected in real time by a laser scanning microscopy. This study provided more details for understanding the molecular mechanism of the immune response induced by PDT-treated AC.

  6. Direct imaging of macrophage activation during PDT treatment

    NASA Astrophysics Data System (ADS)

    Song, Sheng; Zhou, Feifan; Chen, Wei R.; Xing, Da

    2012-03-01

    Mounting evidence describes a more complex progress of macrophage activation during photodynamic therapy (PDT), which performing distinct immunological functions and different physiologies on surrounding cells and tissues. Macrophage-targeted PDT has been applied in the selective killing of cells involved in inflammation and tumor. We have previously shown that PDT-mediated tumor cells apoptosis can induce a higher level immune response than necrosis, and enhance the macrophage activation. However, the molecular mechanism of macrophage activation during PDT-induced apoptotic cells (AC) still unclear. Here, we use confocal microscopy to image the phagocytosis of tumor cells by macrophages. We also observed that PDT-treated AC can activate Toll-like receptors (TLRs) which are present on macrophages surface. Besides, the increase in nitric oxide (NO) formation in macrophages was detected in real time by a laser scanning microscopy. This study provided more details for understanding the molecular mechanism of the immune response induced by PDT-treated AC.

  7. Macrophage activation and induction of macrophage cytotoxicity by purified polysaccharide fractions from the plant Echinacea purpurea.

    PubMed Central

    Stimpel, M; Proksch, A; Wagner, H; Lohmann-Matthes, M L

    1984-01-01

    Purified polysaccharides (EPS) prepared from the plant Echinacea purpurea are shown to strongly activate macrophages. Macrophages activated with these substances develop pronounced extracellular cytotoxicity against tumor targets. The activation is brought about by EPS alone and is independent of any cooperative effect with lymphocytes. Also the production and secretion of oxygen radicals and interleukin 1 by macrophages is increased after activation with EPS. Cells of the macrophages lineage seem to be the main target for the action of these polysaccharides. EPS has no effect on T lymphocytes. B lymphocytes show a comparatively modest proliferation after incubation with E. purpurea EPS. Thus, these compounds, which are at least in tissue culture completely nontoxic, may be suited to activate in vivo cells of the macrophage system to cytotoxicity. They may therefore be of relevance in tumor and infectious systems. PMID:6389368

  8. METEORIN-LIKE is a cytokine associated with barrier tissues and alternatively activated macrophages

    PubMed Central

    Ushach, Irina; Burkhardt, Amanda M.; Martinez, Cynthia; Hevezi, Peter A.; Gerber, Peter Arne; Buhren, Bettina Alexandra; Schrumpf, Holger; Valle-Rios, Ricardo; Vazquez, Monica I.; Homey, Bernhard; Zlotnik, Albert

    2014-01-01

    Cytokines are involved in many functions of the immune system including initiating, amplifying and resolving immune responses. Through bioinformatics analyses of a comprehensive database of gene expression (BIGE: Body Index of Gene Expression) we observed that a small secreted protein encoded by a poorly characterized gene called meteorin-like (METRNL), is highly expressed in mucosal tissues, skin and activated macrophages. Further studies indicate that Metrnl is produced by Alternatively Activated Macrophages (AAM) and M-CSF cultured bone marrow macrophages (M2-like macrophages). In the skin, METRNL is expressed by resting fibroblasts and IFNγ-treated keratinocytes. A screen of human skin-associated diseases showed significant over-expression of METRNL in psoriasis, prurigo nodularis, actinic keratosis and atopic dermatitis. METRNL is also up-regulated in synovial membranes of human rheumatoid arthritis. Taken together, these results indicate that Metrnl represents a novel cytokine, which is likely involved in both innate and acquired immune responses. PMID:25486603

  9. [The biological activity of macrophages in health and disease].

    PubMed

    Nazimek, Katarzyna; Bryniarski, Krzysztof

    2012-01-01

    Macrophages are involved in immune response as phagocytes, antigen presenting cells and as effector cells of delayed-type hypersensitivity. Moreover, the activity of macrophages is associated with modulation of many biological processes during the whole life and depends on the actual macrophage phenotype induced under the influence of various microenvironmental stimuli. In pregnancy, placental macrophages induce the development of maternal tolerance to fetal antigens, while fetal macrophages are responsible for proper formation of tissues and organs. Residual macrophages play a very important role in tissue homeostasis, apoptotic cell clearance to prevent autoimmunization and first defense in infections. The inflammatory response of macrophages may be modulated by pathogens. Their suppressive activity is observed in immunologically privileged organs such as testes. In pathologies, macrophages are responsible for tissue damage in a case of nonspecific activation followed by overproduction of proinflammatory factors. Suppression of a specific immune response against tumors is mainly the effect of tumor associated macrophage (TAM) action. On the other hand, presentation of allergens or self-antigens by macrophages and their nonspecific activation by necrotic adipocytes leads to the induction of a chronic inflammatory response and impairment of immunity. Therefore, modulation of macrophage functions may be the key for improvement of therapy of cancer and allergic, autoimmune, metabolic, cardiovascular and Alzheimer's diseases. PMID:22922151

  10. High MUC2 expression in ovarian cancer is inversely associated with the M1/M2 ratio of tumor-associated macrophages and patient survival time.

    PubMed

    He, Yi-feng; Zhang, Mei-ying; Wu, Xin; Sun, Xiang-jun; Xu, Ting; He, Qi-zhi; Di, Wen

    2013-01-01

    Mucin 2 (MUC2) is a mucin molecule aberrantly expressed by ovarian cancer cells. Previous in vitro studies have indicated that MUC2 promotes cancer growth and metastasis through a tumor-associated macrophage (TAM)-dependent mechanism. However, this mechanism has never been linked to clinical oncology, and its prognostic significance needed to be clarified. Here, we collected 102 consecutive ovarian cancer specimens and used the multiple immuno-histo-chemical/-fluorescent technique to determine the correlations between the MUC2 expression status, the ratio of M1/M2 TAMs and the densities of cyclooxygenase-2 (COX-2)(+) TAMs and COX-2(+) cancer cells. The Kaplan-Meier survival analysis and multivariate Cox regression analysis were used to evaluate the prognostic influences of these parameters. As a result, we found that the MUC2 overexpression (immunostaining ++/+++) was significantly correlated with a reduced ratio of M1/M2 TAMs (p<0.001), an increased density of COX-2(+) TAMs (p<0.001) and an increased density of COX-2(+) cancer cells (p=0.017). Moreover, most of the M2 TAMs (93%-100%) and COX-2(+) TAMs (63%-89%) overlapped; and the COX-2(+) cancer cells were frequently observed near the COX-2(+) TAMs. In the Cox regression analysis, MUC2 overexpression was found to be an independent prognostic factor for ovarian cancer patients, of which the hazard ratio (HR) was 2.354 (95% confidence interval (CI): 1.031-10.707, p=0.005). Also, the reduced ratio of M1/M2 TAMs and the increased densities of COX-2(+) TAMs and COX-2(+) cancer cells were demonstrated to be the predictors of poor prognosis, among which the reduced M1/M2 ratio possessed the highest HR (1.767, 95% CI: 1.061-6.957, p=0.019). All these findings revealed that MUC2 can concurrently exert M2-polarizing and COX-2-inducing effects on TAMs, by which it causes an imbalanced TAM M1-/M2-polarization pattern and induces local PGE2 synthesis (in both TAMs and cancer cells). The positive feedback between local PGE2

  11. Cytolytic activity against tumor cells by macrophage cell lines and augmentation by macrophage stimulants.

    PubMed

    Taniyama, T; Holden, H T

    1980-07-15

    Previous studies have shown that macrophage cell lines retained the ability to phagocytize, to secrete lysosomal enzymes, and to function as effector cells in antibody-dependent cellular cytoxicity. In this paper, the cytolytic activity of murine macrophage cell lines against tumor target cells was assessed using an 18-h 51Cr release assay. Of the macrophage cell lines tested, RAW 264, PU5-1.8 and IC-21 had intermediate to high levels of spontaneous cytolytic activity, P388D, and J774 had low to intermediate levels, while /WEHI-3 showed little or no cytolytic activity against RBL-5, MBL-2 and TU-5 target cells. Tumor-cell killing by macrophage cell lines could be augmented by the addition of macrophage stimulants, such as bacterial lipopolysaccharide and poly I:C, indicating that the activation of macrophages by these stimulants does not require the participation of other cell types. Treatment with interferon also augmented the tumor-cell killing by macrophage cell lines. Although the mechanism by which these cell lines exert their spontaneous or boosted cytotoxic activity is not clear, it does not appear to be due to depletion of nutrients since cell lines with high metabolic and proliferative activities, such as WEHI-3 and RBL-5, showed little or no cytotoxicity and supernatants from the macrophage cell lines did not exert any cytotoxic effects in their essay. Thus, it appears that the different macrophage cell lines represent different levels of activation and/or differentiation and may be useful for studying the development of these processes as well as providing a useful tool for analyzing the mechanisms of macrophage-mediated cytolysis. PMID:6165690

  12. Myelin alters the inflammatory phenotype of macrophages by activating PPARs

    PubMed Central

    2013-01-01

    Background Foamy macrophages, containing myelin degradation products, are abundantly found in active multiple sclerosis (MS) lesions. Recent studies have described an altered phenotype of macrophages after myelin internalization. However, mechanisms by which myelin affects the phenotype of macrophages and how this phenotype influences lesion progression remain unclear. Results We demonstrate that myelin as well as phosphatidylserine (PS), a phospholipid found in myelin, reduce nitric oxide production by macrophages through activation of peroxisome proliferator-activated receptor β/δ (PPARβ/δ). Furthermore, uptake of PS by macrophages, after intravenous injection of PS-containing liposomes (PSLs), suppresses the production of inflammatory mediators and ameliorates experimental autoimmune encephalomyelitis (EAE), an animal model of MS. The protective effect of PSLs in EAE animals is associated with a reduced immune cell infiltration into the central nervous system and decreased splenic cognate antigen specific proliferation. Interestingly, PPARβ/δ is activated in foamy macrophages in active MS lesions, indicating that myelin also activates PPARβ/δ in macrophages in the human brain. Conclusion Our data show that myelin modulates the phenotype of macrophages by PPAR activation, which may subsequently dampen MS lesion progression. Moreover, our results suggest that myelin-derived PS mediates PPARβ/δ activation in macrophages after myelin uptake. The immunoregulatory impact of naturally-occurring myelin lipids may hold promise for future MS therapeutics. PMID:24252308

  13. Local Injection of Lenti-BDNF at the Lesion Site Promotes M2 Macrophage Polarization and Inhibits Inflammatory Response After Spinal Cord Injury in Mice.

    PubMed

    Ji, Xin-Chao; Dang, Yuan-Yuan; Gao, Hong-Yan; Wang, Zhao-Tao; Gao, Mou; Yang, Yi; Zhang, Hong-Tian; Xu, Ru-Xiang

    2015-08-01

    There is much evidence to suggest that brain-derived neurotrophic factor (BDNF) is a prominent candidate in promoting neuroprotection, axonal regeneration, and synaptic plasticity following spinal cord injury (SCI). Although some evidence indicates that BDNF has potent anti-oxidative effects and may be involved in the regulation of the immune response, the effects of BDNF in the inflammatory response during the course of secondary damage after SCI is still unclear. The present study was designed to investigate the effects of BDNF with a special focus on their effect on macrophage polarization after SCI. Adult C57 mice underwent T10 spinal cord clip compression injury and received lenti-BDNF vector injections at the epicenter of the lesion site. Four days later, total BDNF levels were greatly increased in animals that received lenti-BDNF injections. Confocal imaging showed that more than 80 % of the lenti-virus infected cells were CD11b-positive macrophages. In addition, the expression of arginase-1 and CD206 (associated with M2 macrophage phenotype) significantly increased in the animals that received lenti-BDNF injections compared with those that received lenti-EGFP injections. On the contrary, the expression of CD16/32 and inducible nitric oxide synthase (M1 phenotype marker) was down-regulated as demonstrated using flow cytometry and immunohistochemistry. Furthermore, the production of interleukin 1β and tumor necrosis factor alpha was significantly reduced whereas the levels of interleukin 10 and interleukin 13 were elevated in subjects that received lenti-BDNF vector injections. The time course of functional recovery revealed that gradual recovery was observed in the subacute phase in lenti-BDNF group, little improvement was observed in lenti-EGFP group. At the axonal level, significant retraction of the CST axons were observed in lenti-EGFP injected animals relative to lenti-BDNF group by biotinylated dextran amine tracing. In addition, compared to lenti

  14. The age-related neuroinflammatory environment promotes macrophage activation, which negatively impacts synaptic function.

    PubMed

    Costello, Derek A; Keenan, Kathryn; McManus, Róisín M; Falvey, Aidan; Lynch, Marina A

    2016-07-01

    The impact of infiltration of macrophages into the brain is debatable with evidence of both beneficial and detrimental effects. Recent work suggests that inflammatory macrophages, with an inflammatory phenotype that resembles the M1 activation state, may be detrimental, whereas anti-inflammatory M2-like macrophages may be beneficial. We set up a model to examine the response of bone marrow-derived macrophages to the inflammatory milieu that occurs in the aged brain. Expression of MHCII and CD40 was increased in macrophages incubated with soluble brain extract prepared from aged, compared with young, mice and this was accompanied by increased production of tumor necrosis factor-α and interleukin-6. Analysis of soluble brain extract indicated that it contained increased concentrations of several inflammatory mediators and, importantly, when bone marrow-derived macrophages were incubated in the inflammatory cytokines that were increased and applied to hippocampal slices, long-term potentiation was inhibited. The data suggest that infiltrating macrophages respond to local conditions and, in the case of aging, adopt an inflammatory phenotype that ultimately has a neurodetrimental effect. PMID:27255823

  15. Whole-cell MALDI-TOF MS: a new tool to assess the multifaceted activation of macrophages.

    PubMed

    Ouedraogo, Richard; Daumas, Aurélie; Ghigo, Eric; Capo, Christian; Mege, Jean-Louis; Textoris, Julien

    2012-10-22

    Whole-cell MALDI-TOF MS is routinely used to identify bacterial species in clinical samples. This technique has also proven to allow identification of intact mammalian cells, including macrophages. Here, we wondered whether this approach enabled the assessment human macrophages plasticity. The whole-cell MALDI-TOF spectra of macrophages stimulated with IFN-γ and IL-4, two inducers of M1 and M2 macrophage polarisation, consisted of peaks ranging from 2 to 12 kDa. The spectra of unstimulated and stimulated macrophages were clearly different. The fingerprints induced by the M1 agonists, IFN-γ, TNF, LPS and LPS+IFN-γ, and the M2 agonists, IL-4, TGF-β1 and IL-10, were specific and readily identifiable. Thus, whole-cell MALDI-TOF MS was able to characterise M1 and M2 macrophage subtypes. In addition, the fingerprints induced by extracellular (group B Streptococcus, Staphylococcus aureus) or intracellular (BCG, Orientia tsutsugamushi, Coxiella burnetii) bacteria were bacterium-specific. The whole-cell MALDI-TOF MS fingerprints therefore revealed the multifaceted activation of human macrophages. This approach opened a new avenue of studies to assess the immune response in the clinical setting, by monitoring the various activation patterns of immune cells in pathological conditions. PMID:22967923

  16. Cellular and Molecular Mechanisms Underpinning Macrophage Activation during Remyelination

    PubMed Central

    Lloyd, Amy F.; Miron, Veronique E.

    2016-01-01

    Remyelination is an example of central nervous system (CNS) regeneration, whereby myelin is restored around demyelinated axons, re-establishing saltatory conduction and trophic/metabolic support. In progressive multiple sclerosis, remyelination is limited or fails altogether which is considered to contribute to axonal damage/loss and consequent disability. Macrophages have critical roles in both CNS damage and regeneration, such as remyelination. This diverse range in functions reflects the ability of macrophages to acquire tissue microenvironment-specific activation states. This activation is dynamically regulated during efficient regeneration, with a switch from pro-inflammatory to inflammation-resolution/pro-regenerative phenotypes. Although, some molecules and pathways have been implicated in the dynamic activation of macrophages, such as NFκB, the cellular and molecular mechanisms underpinning plasticity of macrophage activation are unclear. Identifying mechanisms regulating macrophage activation to pro-regenerative phenotypes may lead to novel therapeutic strategies to promote remyelination in multiple sclerosis. PMID:27446913

  17. Exopolysaccharide from Trichoderma pseudokoningii induces macrophage activation.

    PubMed

    Wang, Guodong; Zhu, Lei; Yu, Bo; Chen, Ke; Liu, Bo; Liu, Jun; Qin, Guozheng; Liu, Chunyan; Liu, Huixia; Chen, Kaoshan

    2016-09-20

    In this study, we evaluated the immunomodulatory activity of an exopolysaccharide (EPS) derived from Trichoderma pseudokoningii and investigated the molecular mechanism of EPS-mediated activation of macrophages. Results revealed that EPS could significantly induce the production of nitric oxide (NO), tumor necrosis factor (TNF)-α and interleukin (IL)-1β and enhance phagocytic activity in RAW 264.7 cells. Immunofluorescence staining indicated that EPS promoted the nuclear translocation of nuclear factor (NF)-κB p65 subunit. Western blot analysis showed that EPS increased the expression of inducible nitric oxide synthase (iNOS) protein, the degradation of IκB-α and the phosphorylation of mitogen-activated protein kinases (MAPKs). Furthermore, pretreatment of RAW 264.7 cells with specific inhibitors of NF-κB and MAPKs significantly attenuated EPS-induced TNF-α and IL-1β production. EPS also induced the inhibition of cytokine secretion by special antibodies against Toll-like receptor-4 (TLR4) and Dectin-1. These data suggest that EPS from Trichoderma pseudokoningii activates RAW 264.7 cells through NF-κB and MAPKs signaling pathways via TLR4 and Dectin-1. PMID:27261736

  18. Glycyrrhizic Acid Promotes M1 Macrophage Polarization in Murine Bone Marrow-Derived Macrophages Associated with the Activation of JNK and NF-κB

    PubMed Central

    Mao, Yulong; Wang, Baikui; Xu, Xin; Du, Wei; Li, Weifen; Wang, Youming

    2015-01-01

    The roots and rhizomes of Glycyrrhiza species (licorice) have been widely used as natural sweeteners and herbal medicines. The aim of this study is to investigate the effect of glycyrrhizic acid (GA) from licorice on macrophage polarization. Both phenotypic and functional activities of murine bone marrow-derived macrophages (BMDMs) treated by GA were assessed. Our results showed that GA obviously increased the cell surface expression of CD80, CD86, and MHCII molecules. Meanwhile, GA upregulated the expression of CCR7 and the production of TNF-α, IL-12, IL-6, and NO (the markers of classically activated (M1) macrophages), whereas it downregulated the expression of MR, Ym1, and Arg1 (the markers of alternatively activated (M2) macrophage). The functional tests showed that GA dramatically enhanced the uptake of FITC-dextran and E. coli K88 by BMDMs and decreased the intracellular survival of E. coli K88 and S. typhimurium. Moreover, we demonstrated that JNK and NF-κB activation are required for GA-induced NO and M1-related cytokines production, while ERK1/2 pathway exhibits a regulatory effect via induction of IL-10. Together, these findings indicated that GA promoted polarization of M1 macrophages and enhanced its phagocytosis and bactericidal capacity. The results expanded our knowledge about the role of GA in macrophage polarization. PMID:26664149

  19. Loss of monocyte chemoattractant protein-1 alters macrophage polarization and reduces NFκB activation in the foreign body response.

    PubMed

    Moore, Laura Beth; Sawyer, Andrew J; Charokopos, Antonios; Skokos, Eleni A; Kyriakides, Themis R

    2015-01-01

    Implantation of biomaterials elicits a foreign body response characterized by fusion of macrophages to form foreign body giant cells and fibrotic encapsulation. Studies of the macrophage polarization involved in this response have suggested that alternative (M2) activation is associated with more favorable outcomes. Here we investigated this process in vivo by implanting mixed cellulose ester filters or polydimethylsiloxane disks in the peritoneal cavity of wild-type (WT) and monocyte chemoattractant protein-1 (MCP-1) knockout mice. We analyzed classical (M1) and alternative (M2) gene expression via quantitative polymerase chain reaction, immunohistochemistry and enzyme-linked immunosorbent assay in both non-adherent cells isolated by lavage and implant-adherent cells. Our results show that macrophages undergo unique activation that displays features of both M1 and M2 polarization including induction of tumor necrosis factor α (TNF), which induces the expression and nuclear translocation of p50 and RelA determined by immunofluorescence and Western blot. Both processes were compromised in fusion-deficient MCP-1 KO macrophages in vitro and in vivo. Furthermore, inclusion of BAY 11-7028, an inhibitor of NFκB activation, reduced nuclear translocation of RelA and fusion in WT macrophages. Our studies suggest that peritoneal implants elicit a unique macrophage polarization phenotype leading to induction of TNF and activation of the NFκB pathway. PMID:25242651

  20. Loss of MCP-1 alters macrophage polarization and reduces NFκB activation in the foreign body response

    PubMed Central

    Moore, Laura Beth; Sawyer, Andrew J.; Charokopos, Antonios; Skokos, Eleni A.; Kyriakides, Themis R.

    2014-01-01

    Implantation of biomaterials elicits a foreign body response characterized by fusion of macrophages to form foreign body giant cells and fibrotic encapsulation. Studies of macrophage polarization in this response have suggested that alternative (M2) activation is associated with more favorable outcomes. Here we investigated this process in vivo by implanting mixed cellulose ester filters or PDMS disks in the peritoneal cavity of WT and MCP-1 KO mice. We analyzed classical (M1) and alternative (M2) gene expression via Q-PCR, immunohistochemistry, and ELISA in both non-adherent cells isolated by lavage and implant-adherent cells. Our results show that macrophages undergo unique activation that displays features of both M1 and M2 polarization including induction of TNF, which induces the expression and nuclear translocation of p50 and RelA determined by immunofluorescence and western blot. Both processes were compromised in fusion-deficient MCP-1 KO macrophages in vitro and in vivo. Furthermore, inclusion of BAY 11-7028, an inhibitor of NFκB activation, reduced nuclear translocation of RelA and fusion in WT macrophages. Our studies suggest that peritoneal implants elicit a unique macrophage polarization phenotype leading to induction of TNF and activation of the NFκB pathway. PMID:25242651

  1. Activation of mesenchymal stem cells by macrophages promotes tumor progression through immune suppressive effects

    PubMed Central

    Jia, Xiao-hua; Feng, Guo-wei; Wang, Zhong-liang; Du, Yang; Shen, Chen; Hui, Hui; Peng, Dong; Li, Zong-jin; Kong, De-ling; Tian, Jie

    2016-01-01

    Cancer development and progression is linked to tumor-associated macrophages (TAMs). Distinct TAMs subsets perform either protective or pathogenic effects in cancer. A protective role in carcinogenesis has been described for M1 macrophages, which activate antitumor mechanisms. By comparison, TAMs isolated from solid and metastatic tumors have a suppressive M2-like phenotype, which could support multiple aspects of tumor progression. Currently, it has not been clearly understood how macrophages in tumor-associated stroma could be hijacked to support tumor growth. Mesenchymal stem cells (MSCs) actively interact with components of the innate immune system and display both anti-inflammatory and pro-inflammatory effects. Here, we tested whether MSCs could favor the tumor to escape from immunologic surveillance in the presence of M1 macrophages. We found that MSCs educated by M1 condition medium (cMSCs) possessed a greatly enhanced ability in promoting tumor growth in vivo. Examination of cytokines/chemokines showed that the cMSCs acquired a regulatory profile, which expressed high levels of iNOS and MCP1. Consistent with an elevated MCP1 expression in cMSCs, the tumor-promoting effect of the cMSCs depended on MCP1 mediated macrophage recruitment to tumor sites. Furthermore, IL-6 secreted by the cMSCs could polarize infiltrated TAMs into M2-like macrophages. Therefore, when macrophages changed into M1 pro-inflammation type in tumor microenvironment, the MSCs would act as poor sensors and switchers to accelerate tumor growth. PMID:26988913

  2. Forced Activation of Notch in Macrophages Represses Tumor Growth by Upregulating miR-125a and Disabling Tumor-Associated Macrophages.

    PubMed

    Zhao, Jun-Long; Huang, Fei; He, Fei; Gao, Chun-Chen; Liang, Shi-Qian; Ma, Peng-Fei; Dong, Guang-Ying; Han, Hua; Qin, Hong-Yan

    2016-03-15

    Tumor-associated macrophages (TAM) contribute greatly to hallmarks of cancer. Notch blockade was shown to arrest TAM differentiation, but the precise role and underlying mechanisms require elucidation. In this study, we employed a transgenic mouse model in which the Notch1 intracellular domain (NIC) is activated conditionally to define the effects of active Notch1 signaling in macrophages. NIC overexpression had no effect on TAM differentiation, but it abrogated TAM function, leading to repressed growth of transplanted tumors. Macrophage miRNA profiling identified a novel downstream mediator of Notch signaling, miR-125a, which was upregulated through an RBP-J-binding site at the first intronic enhancer of the host gene Spaca6A. miR-125a functioned downstream of Notch signaling to reciprocally influence polarization of M1 and M2 macrophages by regulating factor inhibiting hypoxia inducible factor-1α and IRF4, respectively. Notably, macrophages transfected with miR-125a mimetics increased phagocytic activity and repressed tumor growth by remodeling the immune microenvironment. We also identified a positive feedback loop for miR-125a expression mediated by RYBP and YY1. Taken together, our results showed that Notch signaling not only supported the differentiation of TAM but also antagonized their protumorigenic function through miR-125a. Targeting this miRNA may reprogram macrophages in the tumor microenvironment and restore their antitumor potential. PMID:26759236

  3. Niacin and olive oil promote skewing to the M2 phenotype in bone marrow-derived macrophages of mice with metabolic syndrome.

    PubMed

    Montserrat-de la Paz, Sergio; Naranjo, Maria C; Lopez, Sergio; Abia, Rocio; Muriana, Francisco J G; Bermudez, Beatriz

    2016-05-18

    Metabolic syndrome (MetS) is associated with obesity, dyslipemia, type 2 diabetes and chronic low-grade inflammation. The aim of this study was to determine the role of high-fat low-cholesterol diets (HFLCDs) rich in SFAs (HFLCD-SFAs), MUFAs (HFLCD-MUFAs) or MUFAs plus omega-3 long-chain PUFAs (HFLCD-PUFAs) on polarisation and inflammatory potential in bone marrow-derived macrophages (BMDMs) from niacin (NA)-treated Lep(ob/ob)LDLR(-/-) mice. Animals fed with HFLCD-SFAs had increased weight and serum triglycerides, and their BMDMs accumulated triglycerides over the animals fed with HFLCD-MUFAs or -PUFAs. Furthermore, BMDMs from animals fed with HFLCD-SFAs were polarised towards the M1 phenotype with functional competence to produce pro-inflammatory cytokines, whereas BMDMs from animals fed with HFLCD-MUFAs or -PUFAs were skewed to the anti-inflammatory M2 phenotype. These findings open opportunities for developing novel nutritional strategies with olive oil as the most important dietary source of MUFAs (notably oleic acid) to prevent development and progression of metabolic complications in the NA-treated MetS. PMID:27116638

  4. Effect of lectins on mouse peritoneal macrophage phagocytic activity.

    PubMed

    Maldonado, G; Porras, F; Fernández, L; Vázquez, L; Zenteno, E

    1994-11-01

    We studied the in vitro ability of lectin-treated murine peritoneal macrophages to attach and phagocytize particulate antigens. Glucose and mannose specific lectins such as Con-A and lentil lectin, as well as complex lactosamine residues specific lectins, such as Phaseolus vulgaris var. cacahuate and Phaseolus coccineus var. alubia, increased the macrophage phagocytic activity towards heterologous erythrocytes, whereas peanut agglutinin, a galactose-specific lectin, diminished the macrophage phagocytic activity. These results suggest that a galactose-N-acetyl-D galactosamine-containing structure could participate as negative modulator of the phagocytic activity. PMID:7851961

  5. Effects of lipopolysaccharide on the catabolic activity of macrophages

    SciTech Connect

    Cluff, C.; Ziegler, H.K.

    1986-03-05

    The ability of macrophages to degrade and catabolize antigens is of relevance both as a means to process complex antigens prior to presentation to T cells, as well as a way to down regulate immune responses by destroying the antigenicity of polypeptides. With these considerations, the authors have investigated the regulation of macrophage catabolic activity by lipopolysaccharide (LPS). Catabolic activity was quantitated by following the distribution and molecular form of /sup 125/-I labelled surface components of heat-killed Listeria monocytogenes (HKLM) subsequent to their uptake by macrophages. They have compared the catabolic activity of macrophages from peritoneal exudates of mice injected i.p. with saline or LPS and have found that LPS-elicited macrophages display a greatly enhanced (3 fold) rate of catabolism. This increase in catabolic activity peaks 3 days after LPS injection and steadily declines thereafter, approaching a baseline level after 3 weeks. The enhancement of catabolic activity is under LPS gene control. LPS-elicited macrophages rapidly destroy the antigenicity of bacterial antigens and function poorly as antigen presenting cells in vitro. These results suggest that LPS elicits a macrophage population specialized for antigen degradation functions with negative regulatory effects on the induction of specific immune responses.

  6. Antiorthostatic suspension stimulates profiles of macrophage activation in mice

    NASA Technical Reports Server (NTRS)

    Miller, E. S.; Bates, R. A.; Koebel, D. A.; Sonnenfeld, G.

    1999-01-01

    The antiorthostatic suspension model simulates certain physiological effects of spaceflight. We have previously reported BDF1 mice suspended by the tail in the antiorthostatic orientation for 4 days express high levels of resistance to virulent Listeria monocytogenesinfection. In the present study, we examined whether the increased resistance to this organism correlates with profiles of macrophage activation, given the role of the macrophage in killing this pathogen in vivo. We infected BDF1 mice with a lethal dose of virulent L. monocytogenes on day 4 of antiorthostatic suspension and 24 h later constructed profiles of macrophage activation. Viable listeria could not be detected in mice suspended in the antiorthostatic orientation 24 h after infection. Flow cytometric analysis revealed the numbers of granulocytes and mononuclear phagocytes in the spleen of infected mice were not significantly altered as a result of antiorthostatic suspension. Splenocytes from antiorthostatically suspended infected mice produced increased titers of IL-1. Serum levels of neopterin, a nucleotide metabolite secreted by activated macrophages, were enhanced in mice infected during antiorthostatic suspension, but not in antiorthostatically suspended naive mice. Splenic macrophages from mice infected on day 4 of suspension produced enhanced levels of lysozyme. In contrast to the results from antiorthostatically suspended infected mice, macrophages from antiorthostatically suspended uninfected mice did not express enhanced bactericidal activities. The collective results indicate that antiorthostatic suspension can stimulate profiles of macrophage activation which correlate with increased resistance to infection by certain classes of pathogenic bacteria.

  7. Salicylate improves macrophage cholesterol homeostasis via activation of Ampk.

    PubMed

    Fullerton, Morgan D; Ford, Rebecca J; McGregor, Chelsea P; LeBlond, Nicholas D; Snider, Shayne A; Stypa, Stephanie A; Day, Emily A; Lhoták, Šárka; Schertzer, Jonathan D; Austin, Richard C; Kemp, Bruce E; Steinberg, Gregory R

    2015-05-01

    Atherosclerosis stems from imbalances in lipid metabolism and leads to maladaptive inflammatory responses. The AMP-activated protein kinase (Ampk) is a highly conserved serine/threonine kinase that regulates many aspects of lipid and energy metabolism, although its specific role in controlling macrophage cholesterol homeostasis remains unclear. We sought to address this question by testing the effects of direct Ampk activators in primary bone marrow-derived macrophages from Ampk β1-deficient (β1(-/-)) mice. Macrophages from Ampk β1(-/-) mice had enhanced lipogenic capacity and diminished cholesterol efflux, although cholesterol uptake was unaffected. Direct activation of Ampk β1 via salicylate (the unacetylated form of aspirin) or A-769662 (a small molecule activator), decreased the synthesis of FAs and sterols in WT but not Ampk β1(-/-) macrophages. In lipid-laden macrophages, Ampk activation decreased cholesterol content (foam cell formation) and increased cholesterol efflux to HDL and apoA-I, effects that occurred in an Ampk β1-dependent manner. Increased cholesterol efflux was also associated with increased gene expression of the ATP binding cassette transporters, Abcg1 and Abca1. Moreover, in vivo reverse cholesterol transport was suppressed in mice that received Ampk β1(-/-) macrophages compared with the WT control. Our data highlight the therapeutic potential of targeting macrophage Ampk with new or existing drugs for the possible reduction in foam cell formation during the early stages of atherosclerosis. PMID:25773887

  8. Telmisartan prevention of LPS-induced microglia activation involves M2 microglia polarization via CaMKKβ-dependent AMPK activation.

    PubMed

    Xu, Yuan; Xu, Yazhou; Wang, Yurong; Wang, Yunjie; He, Ling; Jiang, Zhenzhou; Huang, Zhangjian; Liao, Hong; Li, Jia; Saavedra, Juan M; Zhang, Luyong; Pang, Tao

    2015-11-01

    Brain inflammation plays an important role in the pathophysiology of many psychiatric and neurological diseases. During brain inflammation, microglia cells are activated, producing neurotoxic molecules and neurotrophic factors depending on their pro-inflammatory M1 and anti-inflammatory M2 phenotypes. It has been demonstrated that Angiotensin II type 1 receptor blockers (ARBs) ameliorate brain inflammation and reduce M1 microglia activation. The ARB telmisartan suppresses glutamate-induced upregulation of inflammatory genes in cultured primary neurons. We wished to clarify whether telmisartan, in addition, prevents microglia activation through polarization to an anti-inflammatory M2 phenotype. We found that telmisartan promoted M2 polarization and reduced M1 polarization in LPS-stimulated BV2 and primary microglia cells, effects partially dependent on PPARγ activation. The promoting effects of telmisartan on M2 polarization, were attenuated by an AMP-activated protein kinase (AMPK) inhibitor or AMPK knockdown, indicating that AMPK activation participates on telmisartan effects. Moreover, in LPS-stimulated BV2 cells, telmisartan enhancement of M2 gene expression was prevented by the inhibitor STO-609 and siRNA of calmodulin-dependent protein kinase kinase β (CaMKKβ), an upstream kinase of AMPK. Furthermore, telmisartan enhanced brain AMPK activation and M2 gene expression in a mouse model of LPS-induced neuroinflammation. In addition, telmisartan reduced the LPS-induced sickness behavior in this in vivo model, and this effect was prevented by prior administration of an AMPK inhibitor. Our results indicate that telmisartan can be considered as a novel AMPK activator, suppressing microglia activation by promoting M2 polarization. Telmisartan may provide a novel, safe therapeutic approach to treat brain disorders associated with enhanced inflammation. PMID:26188187

  9. Toxoplasma gondii Chitinase Induces Macrophage Activation

    PubMed Central

    Almeida, Fausto; Sardinha-Silva, Aline; da Silva, Thiago Aparecido; Pessoni, André Moreira; Pinzan, Camila Figueiredo; Alegre-Maller, Ana Claudia Paiva; Cecílio, Nerry Tatiana; Moretti, Nilmar Silvio; Damásio, André Ricardo Lima; Pedersoli, Wellington Ramos; Mineo, José Roberto; Silva, Roberto Nascimento; Roque-Barreira, Maria Cristina

    2015-01-01

    Toxoplasma gondii is an obligate intracellular protozoan parasite found worldwide that is able to chronically infect almost all vertebrate species, especially birds and mammalians. Chitinases are essential to various biological processes, and some pathogens rely on chitinases for successful parasitization. Here, we purified and characterized a chitinase from T. gondii. The enzyme, provisionally named Tg_chitinase, has a molecular mass of 13.7 kDa and exhibits a Km of 0.34 mM and a Vmax of 2.64. The optimal environmental conditions for enzymatic function were at pH 4.0 and 50°C. Tg_chitinase was immunolocalized in the cytoplasm of highly virulent T. gondii RH strain tachyzoites, mainly at the apical extremity. Tg_chitinase induced macrophage activation as manifested by the production of high levels of pro-inflammatory cytokines, a pathogenic hallmark of T. gondii infection. In conclusion, to our knowledge, we describe for the first time a chitinase of T. gondii tachyzoites and provide evidence that this enzyme might influence the pathogenesis of T. gondii infection. PMID:26659253

  10. Exploring the activated adipogenic niche: interactions of macrophages and adipocyte progenitors.

    PubMed

    Lee, Yun-Hee; Thacker, Robert I; Hall, Brian Eric; Kong, Raymond; Granneman, James G

    2014-01-01

    Adult adipose tissue contains a large supply of progenitors that can renew fat cells for homeostatic tissue maintenance and adaptive growth or regeneration in response to external challenges. However, the in vivo mechanisms that control adipocyte progenitor behavior are poorly characterized. We recently demonstrated that recruitment of adipocyte progenitors by macrophages is a central feature of adipose tissue remodeling under various adipogenic conditions. Catabolic remodeling of white adipose tissue by β3-adrenergic receptor stimulation requires anti-inflammatory M2-polarized macrophages to clear dying adipocytes and to recruit new brown adipocytes from progenitors. In this Extra Views article, we discuss in greater detail the cellular elements of adipogenic niches and report a strategy to isolate and characterize the subpopulations of macrophages and adipocyte progenitors that actively participate in adrenergic tissue remodeling. Further characterization of these subpopulations may facilitate identification of new cellular targets to improve metabolic and immune function of adipose tissue. PMID:24394850

  11. Reactive oxygen species in the tumor niche triggers altered activation of macrophages and immunosuppression: Role of fluoxetine.

    PubMed

    Ghosh, Sayan; Mukherjee, Sudeshna; Choudhury, Sreetama; Gupta, Payal; Adhikary, Arghya; Baral, Rathindranath; Chattopadhyay, Sreya

    2015-07-01

    Macrophages are projected as one of the key players responsible for the progression of cancer. Classically activated (M1) macrophages are pro-inflammatory and have a central role in host defense, while alternatively activated (M2) macrophages are associated with immunosuppression. Macrophages residing at the site of neoplastic growth are alternately activated and are referred to as tumor-associated macrophages (TAMs). These "cooperate" with tumor tissue, promoting increased proliferation and immune escape. Selective serotonin reuptake inhibitors like fluoxetine have recently been reported to possess anti-inflammatory activity. We used fluoxetine to target tumor-associated inflammation and consequent alternate polarization of macrophages. We established that murine peritoneal macrophages progressed towards an altered activation state when exposed to cell-free tumor fluid, as evidenced by increased IL-6, IL-4 and IL-10 levels. These polarized macrophages showed significant pro-oxidant bias and increased p65 nuclear localization. It was further observed that these altered macrophages could induce oxidative insult and apoptosis in cultured mouse CD3(+) T cells. To validate these findings, we replicated key experiments in vivo, and observed that there was increased serum IL-6, IL-4 and IL-10 in tumor-bearing animals, with increased % CD206(+) cells within the tumor niche. TAMs showed increased nuclear localization of p65 with decreased Nrf2 expression in the nucleus. These results were associated with increase in apoptosis of CD3(+) T cells co-cultured with TAM-spent media. We could establish that fluoxetine treatment could specifically re-educate the macrophages both in vitro and in vivo by skewing their phenotype such that immune suppression mediated by tumor-dictated macrophages was successfully mitigated. PMID:25819340

  12. Macrophage Polarization in Inflammatory Diseases

    PubMed Central

    Liu, Yan-Cun; Zou, Xian-Biao; Chai, Yan-Fen; Yao, Yong-Ming

    2014-01-01

    Diversity and plasticity are two hallmarks of macrophages. M1 macrophages (classically activated macrophages) are pro-inflammatory and have a central role in host defense against infection, while M2 macrophages (alternatively activated macrophages) are associated with responses to anti-inflammatory reactions and tissue remodeling, and they represent two terminals of the full spectrum of macrophage activation. Transformation of different phenotypes of macrophages regulates the initiation, development, and cessation of inflammatory diseases. Here we reviewed the characters and functions of macrophage polarization in infection, atherosclerosis, obesity, tumor, asthma, and sepsis, and proposed that targeting macrophage polarization and skewing their phenotype to adapt to the microenvironment might hold great promise for the treatment of inflammatory diseases. PMID:24910531

  13. Macrophage activation and polarization modify P2X7 receptor secretome influencing the inflammatory process

    PubMed Central

    de Torre-Minguela, Carlos; Barberà-Cremades, Maria; Gómez, Ana I.; Martín-Sánchez, Fátima; Pelegrín, Pablo

    2016-01-01

    The activation of P2X7 receptor (P2X7R) on M1 polarized macrophages induces the assembly of the NLRP3 inflammasome leading to the release of pro-inflammatory cytokines and the establishment of the inflammatory response. However, P2X7R signaling to the NLRP3 inflammasome is uncoupled on M2 macrophages without changes on receptor activation. In this study, we analyzed P2X7R secretome in wild-type and P2X7R-deficient macrophages polarized either to M1 or M2 and proved that proteins released after P2X7R stimulation goes beyond caspase-1 secretome. The characterization of P2X7R-secretome reveals a new function of this receptor through a fine-tuning of protein release. We found that P2X7R stimulation in macrophages is able to release potent anti-inflammatory proteins, such as Annexin A1, independently of their polarization state suggesting for first time a potential role for P2X7R during resolution of the inflammation and not linked to the release of pro-inflammatory cytokines. These results are of prime importance for the development of therapeutics targeting P2X7R. PMID:26935289

  14. Jacalin-Activated Macrophages Exhibit an Antitumor Phenotype

    PubMed Central

    Danella Polli, Cláudia; Pereira Ruas, Luciana; Chain Veronez, Luciana; Herrero Geraldino, Thais; Rossetto de Morais, Fabiana; Roque-Barreira, Maria Cristina; Pereira-da-Silva, Gabriela

    2016-01-01

    Tumor-associated macrophages (TAMs) have an ambiguous and complex role in the carcinogenic process, since these cells can be polarized into different phenotypes (proinflammatory, antitumor cells or anti-inflammatory, protumor cells) by the tumor microenvironment. Given that the interactions between tumor cells and TAMs involve several players, a better understanding of the function and regulation of TAMs is crucial to interfere with their differentiation in attempts to skew TAM polarization into cells with a proinflammatory antitumor phenotype. In this study, we investigated the modulation of macrophage tumoricidal activities by the lectin jacalin. Jacalin bound to macrophage surface and induced the expression and/or release of mainly proinflammatory cytokines via NF-κB signaling, as well as increased iNOS mRNA expression, suggesting that the lectin polarizes macrophages toward the antitumor phenotype. Therefore, tumoricidal activities of jacalin-stimulated macrophages were evaluated. High rates of tumor cell (human colon, HT-29, and breast, MCF-7, cells) apoptosis were observed upon incubation with supernatants from jacalin-stimulated macrophages. Taken together, these results indicate that jacalin, by exerting a proinflammatory activity, can direct macrophages to an antitumor phenotype. Deep knowledge of the regulation of TAM functions is essential for the development of innovative anticancer strategies. PMID:27119077

  15. Jacalin-Activated Macrophages Exhibit an Antitumor Phenotype.

    PubMed

    Danella Polli, Cláudia; Pereira Ruas, Luciana; Chain Veronez, Luciana; Herrero Geraldino, Thais; Rossetto de Morais, Fabiana; Roque-Barreira, Maria Cristina; Pereira-da-Silva, Gabriela

    2016-01-01

    Tumor-associated macrophages (TAMs) have an ambiguous and complex role in the carcinogenic process, since these cells can be polarized into different phenotypes (proinflammatory, antitumor cells or anti-inflammatory, protumor cells) by the tumor microenvironment. Given that the interactions between tumor cells and TAMs involve several players, a better understanding of the function and regulation of TAMs is crucial to interfere with their differentiation in attempts to skew TAM polarization into cells with a proinflammatory antitumor phenotype. In this study, we investigated the modulation of macrophage tumoricidal activities by the lectin jacalin. Jacalin bound to macrophage surface and induced the expression and/or release of mainly proinflammatory cytokines via NF-κB signaling, as well as increased iNOS mRNA expression, suggesting that the lectin polarizes macrophages toward the antitumor phenotype. Therefore, tumoricidal activities of jacalin-stimulated macrophages were evaluated. High rates of tumor cell (human colon, HT-29, and breast, MCF-7, cells) apoptosis were observed upon incubation with supernatants from jacalin-stimulated macrophages. Taken together, these results indicate that jacalin, by exerting a proinflammatory activity, can direct macrophages to an antitumor phenotype. Deep knowledge of the regulation of TAM functions is essential for the development of innovative anticancer strategies. PMID:27119077

  16. The activation of Wnt signaling by a STAT6-dependent macrophage phenotype promotes mucosal repair in murine IBD.

    PubMed

    Cosín-Roger, J; Ortiz-Masiá, D; Calatayud, S; Hernández, C; Esplugues, J V; Barrachina, M D

    2016-07-01

    The complete repair of the mucosa constitutes a key goal in inflammatory bowel disease (IBD) treatment. The Wnt signaling pathway mediates mucosal repair and M2 macrophages that coordinate efficient healing have been related to Wnt ligand expression. Signal transducer and activator of transcription 6 (STAT6) mediates M2 polarization in vitro and we hypothesize that a STAT6-dependent macrophage phenotype mediates mucosal repair in acute murine colitis by activating the Wnt signaling pathway. Our results reveal an impaired mucosal expression of M2 macrophage-associated genes and delayed wound healing in STAT6(-/-) mice treated with 2,4,6-trinitrobenzenesulfonic acid (TNBS). These mice also exhibited decreased mucosal expression of Wnt2b, Wnt7b, and Wnt10a, diminished protein levels of nuclear β-catenin that is mainly located in crypts adjacent to damage, and reduced mRNA expression of two Wnt/β-catenin target molecules Lgr5 and c-Myc when compared with wild-type (WT) mice. Murine peritoneal macrophages treated with interleukin-4 (IL-4) and polarized toward an M2a phenotype overexpressed Wnt2b, Wnt7b, and Wnt10a in a STAT6-dependent manner. Administration of a Wnt agonist as well as transfer of properly polarized M2a macrophages to STAT6(-/-) mice activated the Wnt signaling pathway in the damaged mucosa and accelerated wound healing. Our results demonstrate that a STAT6-dependent macrophage phenotype promotes mucosal repair in TNBS-treated mice through activation of the Wnt signaling pathway. PMID:26601901

  17. Ginger extract inhibits LPS induced macrophage activation and function

    PubMed Central

    2008-01-01

    Background Macrophages play a dual role in host defence. They act as the first line of defence by mounting an inflammatory response to antigen exposure and also act as antigen presenting cells and initiate the adaptive immune response. They are also the primary infiltrating cells at the site of inflammation. Inhibition of macrophage activation is one of the possible approaches towards modulating inflammation. Both conventional and alternative approaches are being studied in this regard. Ginger, an herbal product with broad anti inflammatory actions, is used as an alternative medicine in a number of inflammatory conditions like rheumatic disorders. In the present study we examined the effect of ginger extract on macrophage activation in the presence of LPS stimulation. Methods Murine peritoneal macrophages were stimulated by LPS in presence or absence of ginger extract and production of proinflammatory cytokines and chemokines were observed. We also studied the effect of ginger extract on the LPS induced expression of MHC II, B7.1, B7.2 and CD40 molecules. We also studied the antigen presenting function of ginger extract treated macrophages by primary mixed lymphocyte reaction. Results We observed that ginger extract inhibited IL-12, TNF-α, IL-1β (pro inflammatory cytokines) and RANTES, MCP-1 (pro inflammatory chemokines) production in LPS stimulated macrophages. Ginger extract also down regulated the expression of B7.1, B7.2 and MHC class II molecules. In addition ginger extract negatively affected the antigen presenting function of macrophages and we observed a significant reduction in T cell proliferation in response to allostimulation, when ginger extract treated macrophages were used as APCs. A significant decrease in IFN-γ and IL-2 production by T cells in response to allostimulation was also observed. Conclusion In conclusion ginger extract inhibits macrophage activation and APC function and indirectly inhibits T cell activation. PMID:18173849

  18. The macrophages in rheumatic diseases

    PubMed Central

    Laria, Antonella; Lurati, Alfredomaria; Marrazza, Mariagrazia; Mazzocchi, Daniela; Re, Katia Angela; Scarpellini, Magda

    2016-01-01

    Macrophages belong to the innate immune system giving us protection against pathogens. However it is known that they are also involved in rheumatic diseases. Activated macrophages have two different phenotypes related to different stimuli: M1 (classically activated) and M2 (alternatively activated). M1 macrophages release high levels of pro-inflammatory cytokines, reactive nitrogen and oxygen intermediates killing microorganisms and tumor cells; while M2 macrophages are involved in resolution of inflammation through phagocytosis of apoptotic neutrophils, reduced production of pro-inflammatory cytokines, and increased synthesis of mediators important in tissue remodeling, angiogenesis, and wound repair. The role of macrophages in the different rheumatic diseases is different according to their M1/M2 macrophages phenotype. PMID:26929657

  19. Carbon Nanotube-Induced Pulmonary Granulomatous Disease: Twist1 and Alveolar Macrophage M1 Activation

    PubMed Central

    Barna, Barbara P.; Huizar, Isham; Malur, Anagha; McPeek, Matthew; Marshall, Irene; Jacob, Mark; Dobbs, Larry; Kavuru, Mani S.; Thomassen, Mary Jane

    2013-01-01

    Sarcoidosis, a chronic granulomatous disease of unknown cause, has been linked to several environmental risk factors, among which are some that may favor carbon nanotube formation. Using gene array data, we initially observed that bronchoalveolar lavage (BAL) cells from sarcoidosis patients displayed elevated mRNA of the transcription factor, Twist1, among many M1-associated genes compared to healthy controls. Based on this observation we hypothesized that Twist1 mRNA and protein expression might become elevated in alveolar macrophages from animals bearing granulomas induced by carbon nanotube instillation. To address this hypothesis, wild-type and macrophage-specific peroxisome proliferator-activated receptor gamma (PPARγ) knock out mice were given oropharyngeal instillation of multiwall carbon nanotubes (MWCNT). BAL cells obtained 60 days later exhibited significantly elevated Twist1 mRNA expression in granuloma-bearing wild-type or PPARγ knock out alveolar macrophages compared to sham controls. Overall, Twist1 expression levels in PPARγ knock out mice were higher than those of wild-type. Concurrently, BAL cells obtained from sarcoidosis patients and healthy controls validated gene array data: qPCR and protein analysis showed significantly elevated Twist1 in sarcoidosis compared to healthy controls. In vitro studies of alveolar macrophages from healthy controls indicated that Twist1 was inducible by classical (M1) macrophage activation stimuli (LPS, TNFα) but not by IL-4, an inducer of alternative (M2) macrophage activation. Findings suggest that Twist1 represents a PPARγ-sensitive alveolar macrophage M1 biomarker which is induced by inflammatory granulomatous disease in the MWCNT model and in human sarcoidosis. PMID:24322444

  20. Elimination of Leishmania donovani amastigotes by activated macrophages.

    PubMed Central

    Haidaris, C G; Bonventre, P F

    1981-01-01

    Tissue macrophages are the obligatory host cells for Leishmania donovani, the causative agent of visceral leishmaniasis. In this study we sought to determine whether activated macrophages, as defined by the functional criterion of tumor cell cytotoxicity, were also able to exert a microbicidal effect on ingested L. donovani amastigotes. We found that mouse peritoneal macrophages activated by a variety of means exerted a cytotoxic effect on tumor cell targets but were not able to kill L. donovani amastigotes unless the infected macrophages were exposed continually to an activating stimulus. Corynebacterium parvum, Mycobacterium tuberculosis H37Ra, and lymphokine-activated peritoneal macrophages from C57BL/6J mice were cytotoxic for EMT6 tumor cell targets. However, L. donovani Sudan strain 1S amastigotes were not killed by these macrophages unless the activated state was maintained by daily addition of lymphokine to the infected monolayers for several days postinfection. The killing of amastigotes was dependent on the time of exposure to lymphokine, as well as on the concentration of lymphokine added to the culture. Images PMID:7287190

  1. Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis

    SciTech Connect

    Anastasiou, Dimitrios; Yu, Yimin; Israelsen, William J.; Jiang, Jian-Kang; Boxer, Matthew B.; Hong, Bum Soo; Tempel, Wolfram; Dimov, Svetoslav; Shen, Min; Jha, Abhishek; Yang, Hua; Mattaini, Katherine R.; Metallo, Christian M.; Fiske, Brian P.; Courtney, Kevin D.; Malstrom, Scott; Khan, Tahsin M.; Kung, Charles; Skoumbourdis, Amanda P.; Veith, Henrike; Southall, Noel; Walsh, Martin J.; Brimacombe, Kyle R.; Leister, William; Lunt, Sophia Y.; Johnson, Zachary R.; Yen, Katharine E.; Kunii, Kaiko; Davidson, Shawn M.; Christofk, Heather R.; Austin, Christopher P.; Inglese, James; Harris, Marian H.; Asara, John M.; Stephanopoulos, Gregory; Salituro, Francesco G.; Jin, Shengfang; Dang, Lenny; Auld, Douglas S.; Park, Hee-Won; Cantley, Lewis C.; Thomas, Craig J.; Vander Heiden, Matthew G.

    2012-08-26

    Cancer cells engage in a metabolic program to enhance biosynthesis and support cell proliferation. The regulatory properties of pyruvate kinase M2 (PKM2) influence altered glucose metabolism in cancer. The interaction of PKM2 with phosphotyrosine-containing proteins inhibits enzyme activity and increases the availability of glycolytic metabolites to support cell proliferation. This suggests that high pyruvate kinase activity may suppress tumor growth. We show that expression of PKM1, the pyruvate kinase isoform with high constitutive activity, or exposure to published small-molecule PKM2 activators inhibits the growth of xenograft tumors. Structural studies reveal that small-molecule activators bind PKM2 at the subunit interaction interface, a site that is distinct from that of the endogenous activator fructose-1,6-bisphosphate (FBP). However, unlike FBP, binding of activators to PKM2 promotes a constitutively active enzyme state that is resistant to inhibition by tyrosine-phosphorylated proteins. This data supports the notion that small-molecule activation of PKM2 can interfere with anabolic metabolism.

  2. Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis

    PubMed Central

    Anastasiou, Dimitrios; Yu, Yimin; Israelsen, William J.; Jiang, Jian-kang; Boxer, Matthew B.; Hong, Bum Soo; Tempel, Wolfram; Dimov, Svetoslav; Shen, Min; Jha, Abhishek; Yang, Hua; Mattaini, Katherine R.; Metallo, Christian M.; Fiske, Brian P.; Courtney, Kevin D.; Malstrom, Scott; Khan, Tahsin M.; Kung, Charles; Skoumbourdis, Amanda P.; Veith, Henrike; Southall, Noel; Walsh, Martin J.; Brimacombe, Kyle R.; Leister, William; Lunt, Sophia Y.; Johnson, Zachary R.; Yen, Katharine E.; Kunii, Kaiko; Davidson, Shawn M.; Christofk, Heather R.; Austin, Christopher P.; Inglese, James; Harris, Marian H.; Asara, John M.; Stephanopoulos, Gregory; Salituro, Francesco G.; Jin, Shengfang; Dang, Lenny; Auld, Douglas S.; Park, Hee-Won; Cantley, Lewis C.; Thomas, Craig J.; Vander Heiden, Matthew G.

    2012-01-01

    Cancer cells engage in a metabolic program to enhance biosynthesis and support cell proliferation. The regulatory properties of pyruvate kinase M2 (PKM2) influence altered glucose metabolism in cancer. PKM2 interaction with phosphotyrosine-containing proteins inhibits enzyme activity and increases availability of glycolytic metabolites to support cell proliferation. This suggests that high pyruvate kinase activity may suppress tumor growth. We show that expression of PKM1, the pyruvate kinase isoform with high constitutive activity, or exposure to published small molecule PKM2 activators inhibit growth of xenograft tumors. Structural studies reveal that small molecule activators bind PKM2 at the subunit interaction interface, a site distinct from that of the endogenous activator fructose-1,6-bisphosphate (FBP). However, unlike FBP, binding of activators to PKM2 promotes a constitutively active enzyme state that is resistant to inhibition by tyrosine-phosphorylated proteins. These data support the notion that small molecule activation of PKM2 can interfere with anabolic metabolism. PMID:22922757

  3. Evaluation of macrophage antiviral activity in patients affected by neoplasia.

    PubMed

    Merendino, R A; Iannello, D; Arena, A; Bonina, L; Greco, V; Mesiti, M; Chillemi, S; Mastroeni, P

    1988-01-01

    The intrinsic antiviral activity of macrophages has been studied in healthy donors and in patients affected by breast cancer and melanoma. In vitro differentiated macrophages from blood-derived monocytes were infected with measles virus, herpes simplex virus type 2 and adenovirus 17. The challenge was carried out with different multiplicities of infection and the synthesis of virus was tested by evaluating the single cycle growth curve in 24 h. The results obtained show that the restriction of virus infectivity by macrophages is strongly influenced by the multiplicity of infection. This was particularly evident with the adenovirus 17. Moreover, macrophages from patients with melanoma and breast cancer showed an impairment of the intrinsic antiviral activity in comparison with normal subjects. PMID:2842553

  4. Macrophages require different nucleoside transport systems for proliferation and activation.

    PubMed

    Soler, C; García-Manteiga, J; Valdés, R; Xaus, J; Comalada, M; Casado, F J; Pastor-Anglada, M; Celada, A; Felipe, A

    2001-09-01

    To evaluate the mechanisms involved in macrophage proliferation and activation, we studied the regulation of the nucleoside transport systems. In murine bone marrow-derived macrophages, the nucleosides required for DNA and RNA synthesis are recruited from the extracellular medium. M-CSF induced macrophage proliferation and DNA and RNA synthesis, whereas interferon gamma (IFN-gamma) led to activation, blocked proliferation, and induced only RNA synthesis. Macrophages express at least the concentrative systems N1 and N2 (CNT2 and CNT1 genes, respectively) and the equilibrative systems es and ei (ENT1 and ENT2 genes, respectively). Incubation with M-CSF only up-regulated the equilibrative system es. Inhibition of this transport system blocked M-CSF-dependent proliferation. Treatment with IFN-gamma only induced the concentrative N1 and N2 systems. IFN-gamma also down-regulated the increased expression of the es equilibrative system induced by M-CSF. Thus, macrophage proliferation and activation require selective regulation of nucleoside transporters and may respond to specific requirements for DNA and RNA synthesis. This report also shows that the nucleoside transporters are critical for macrophage proliferation and activation. PMID:11532978

  5. Unlike PPAR{gamma}, PPAR{alpha} or PPAR{beta}/{delta} activation does not promote human monocyte differentiation toward alternative macrophages

    SciTech Connect

    Bouhlel, Mohamed Amine; Brozek, John; Derudas, Bruno; Zawadzki, Christophe; Jude, Brigitte; Staels, Bart; Chinetti-Gbaguidi, Giulia

    2009-08-28

    Macrophages adapt their response to micro-environmental signals. While Th1 cytokines promote pro-inflammatory M1 macrophages, Th2 cytokines promote an 'alternative' anti-inflammatory M2 macrophage phenotype. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors expressed in macrophages where they control the inflammatory response. It has been shown that PPAR{gamma} promotes the differentiation of monocytes into anti-inflammatory M2 macrophages in humans and mice, while a role for PPAR{beta}/{delta} in this process has been reported only in mice and no data are available for PPAR{alpha}. Here, we show that in contrast to PPAR{gamma}, expression of PPAR{alpha} and PPAR{beta}/{delta} overall does not correlate with the expression of M2 markers in human atherosclerotic lesions, whereas a positive correlation with genes of lipid metabolism exists. Moreover, unlike PPAR{gamma}, PPAR{alpha} or PPAR{beta}/{delta} activation does not influence human monocyte differentiation into M2 macrophages in vitro. Thus, PPAR{alpha} and PPAR{beta}/{delta} do not appear to modulate the alternative differentiation of human macrophages.

  6. IL-4Rα-Dependent Alternative Activation of Macrophages Is Not Decisive for Mycobacterium tuberculosis Pathology and Bacterial Burden in Mice

    PubMed Central

    Savvi, Suzana; Logan, Erin; Schwegmann, Anita; Roy, Sugata; Nieuwenhuizen, Natalie E.; Ozturk, Mumin; Schmeier, Sebastian; Suzuki, Harukazu; Brombacher, Frank

    2015-01-01

    Classical activation of macrophages (caMph or M1) is crucial for host protection against Mycobacterium tuberculosis (Mtb) infection. Evidence suggests that IL-4/IL-13 alternatively activated macrophages (aaMph or M2) are exploited by Mtb to divert microbicidal functions of caMph. To define the functions of M2 macrophages during tuberculosis (TB), we infected mice deficient for IL-4 receptor α on macrophages (LysMcreIL-4Rα-/lox) with Mtb. We show that absence of IL-4Rα on macrophages does not play a major role during infection with Mtb H37Rv, or the clinical Beijing strain HN878. This was demonstrated by similar mortality, bacterial burden, histopathology and T cell proliferation between infected wild-type (WT) and LysMcreIL-4Rα-/lox mice. Interestingly, we observed no differences in the lung expression of inducible nitric oxide synthase (iNOS) and Arginase 1 (Arg1), well-established markers for M1/M2 macrophages among the Mtb-infected groups. Kinetic expression studies of IL-4/IL-13 activated bone marrow-derived macrophages (BMDM) infected with HN878, followed by gene set enrichment analysis, revealed that the MyD88 and IL-6, IL-10, G-CSF pathways are significantly enriched, but not the IL-4Rα driven pathway. Together, these results suggest that IL-4Rα-macrophages do not play a central role in TB disease progression. PMID:25790379

  7. Vibrio cholerae porin OmpU mediates M1-polarization of macrophages/monocytes via TLR1/TLR2 activation.

    PubMed

    Khan, Junaid; Sharma, Praveen K; Mukhopadhaya, Arunika

    2015-11-01

    Polarization of the monocytes and macrophages toward the M1 and M2 states is important for hosts' defense against the pathogens. Moreover, it plays a crucial role to resolve the overwhelming inflammatory responses that can be harmful to the host. Polarization of macrophages/monocytes can be induced by pathogen-associated molecular patterns (PAMPs). PAMP-mediated monocyte/macrophage polarization is important during the infection, as pathogen can suppress host immune system by altering the polarization status of the macrophages/monocytes. OmpU, an outer membrane porin protein of Vibrio cholerae, possesses the ability to induce pro-inflammatory responses in monocytes/macrophages. It is also able to down-regulate the LPS-mediated activation of the monocytes/macrophages. Such observation leads us to believe that OmpU may induce a state that can be called as M1/M2-intermediate state. In the present study, we evaluated a set of M1 and M2 markers in RAW 264.7 murine macrophage cell line, and THP-1 human monocytic cell line, in response to the purified OmpU protein. We observed that OmpU, as a PAMP, induced M1-polarization by activating the Toll-like receptor (TLR) signaling pathway. OmpU induced formation of TLR1/TLR2-heterodimers. OmpU-mediated TLR-activation led to the MyD88 recruitment to the TLR1/TLR2 complex. MyD88, in turn, recruited IRAK1. Ultimately, OmpU-mediated signaling led to the activation and subsequent nuclear translocation of the NFκB p65 subunit. We also observed that blocking of the TLR1, TLR2, IRAK1, and NFκB affected OmpU-mediated production of M1-associated pro-inflammatory cytokines such as TNFα and IL-6. PMID:26093918

  8. Pyruvate Kinase M2 Activates mTORC1 by Phosphorylating AKT1S1.

    PubMed

    He, Chang-Liang; Bian, Yang-Yang; Xue, Yu; Liu, Ze-Xian; Zhou, Kai-Qiang; Yao, Cui-Fang; Lin, Yan; Zou, Han-Fa; Luo, Fang-Xiu; Qu, Yuan-Yuan; Zhao, Jian-Yuan; Ye, Ming-Liang; Zhao, Shi-Min; Xu, Wei

    2016-01-01

    In cancer cells, the mammalian target of rapamycin complex 1 (mTORC1) that requires hormonal and nutrient signals for its activation, is constitutively activated. We found that overexpression of pyruvate kinase M2 (PKM2) activates mTORC1 signaling through phosphorylating mTORC1 inhibitor AKT1 substrate 1 (AKT1S1). An unbiased quantitative phosphoproteomic survey identified 974 PKM2 substrates, including serine202 and serine203 (S202/203) of AKT1S1, in the proteome of renal cell carcinoma (RCC). Phosphorylation of S202/203 of AKT1S1 by PKM2 released AKT1S1 from raptor and facilitated its binding to 14-3-3, resulted in hormonal- and nutrient-signals independent activation of mTORC1 signaling and led accelerated oncogenic growth and autophagy inhibition in cancer cells. Decreasing S202/203 phosphorylation by TEPP-46 treatment reversed these effects. In RCCs and breast cancers, PKM2 overexpression was correlated with elevated S202/203 phosphorylation, activated mTORC1 and inhibited autophagy. Our results provided the first phosphorylome of PKM2 and revealed a constitutive mTORC1 activating mechanism in cancer cells. PMID:26876154

  9. Pyruvate Kinase M2 Activates mTORC1 by Phosphorylating AKT1S1

    PubMed Central

    He, Chang-Liang; Bian, Yang-Yang; Xue, Yu; Liu, Ze-Xian; Zhou, Kai-Qiang; Yao, Cui-Fang; Lin, Yan; Zou, Han-Fa; Luo, Fang-Xiu; Qu, Yuan-Yuan; Zhao, Jian-Yuan; Ye, Ming-Liang; Zhao, Shi-Min; Xu, Wei

    2016-01-01

    In cancer cells, the mammalian target of rapamycin complex 1 (mTORC1) that requires hormonal and nutrient signals for its activation, is constitutively activated. We found that overexpression of pyruvate kinase M2 (PKM2) activates mTORC1 signaling through phosphorylating mTORC1 inhibitor AKT1 substrate 1 (AKT1S1). An unbiased quantitative phosphoproteomic survey identified 974 PKM2 substrates, including serine202 and serine203 (S202/203) of AKT1S1, in the proteome of renal cell carcinoma (RCC). Phosphorylation of S202/203 of AKT1S1 by PKM2 released AKT1S1 from raptor and facilitated its binding to 14-3-3, resulted in hormonal- and nutrient-signals independent activation of mTORC1 signaling and led accelerated oncogenic growth and autophagy inhibition in cancer cells. Decreasing S202/203 phosphorylation by TEPP-46 treatment reversed these effects. In RCCs and breast cancers, PKM2 overexpression was correlated with elevated S202/203 phosphorylation, activated mTORC1 and inhibited autophagy. Our results provided the first phosphorylome of PKM2 and revealed a constitutive mTORC1 activating mechanism in cancer cells. PMID:26876154

  10. Secretion of macrophage urokinase plasminogen activator is dependent on proteoglycans.

    PubMed

    Pejler, Gunnar; Winberg, Jan-Olof; Vuong, Tram T; Henningsson, Frida; Uhlin-Hansen, Lars; Kimata, Koji; Kolset, Svein O

    2003-10-01

    The importance of proteoglycans for secretion of proteolytic enzymes was studied in the murine macrophage cell line J774. Untreated or 4beta-phorbol 12-myristate 13-acetate (PMA)-stimulated macrophages were treated with hexyl-beta-d-thioxyloside to interfere with the attachment of glycosaminoglycan chains to their respective protein cores. Activation of the J774 macrophages with PMA resulted in increased secretion of trypsin-like serine proteinase activity. This activity was completely inhibited by plasminogen activator inhibitor 1 and by amiloride, identifying the activity as urokinase plasminogen activator (uPA). Treatment of both the unstimulated or PMA-stimulated macrophages with xyloside resulted in decreased uPA activity and Western blotting analysis revealed an almost complete absence of secreted uPA protein after xyloside treatment of either control- or PMA-treated cells. Zymography analyses with gels containing both gelatin and plasminogen confirmed these findings. The xyloside treatment did not reduce the mRNA levels for uPA, indicating that the effect was at the post-translational level. Treatment of the macrophages with xylosides did also reduce the levels of secreted matrix metalloproteinase 9. Taken together, these findings indicate a role for proteoglycans in the secretion of uPA and MMP-9. PMID:14511379

  11. Suppression of microRNA activity amplifies IFN-γ-induced macrophage activation and promotes anti-tumour immunity.

    PubMed

    Baer, Caroline; Squadrito, Mario Leonardo; Laoui, Damya; Thompson, Danielle; Hansen, Sarah K; Kiialainen, Anna; Hoves, Sabine; Ries, Carola H; Ooi, Chia-Huey; De Palma, Michele

    2016-07-01

    Tumour-associated macrophages (TAMs) largely express an alternatively activated (or M2) phenotype, which entails immunosuppressive and tumour-promoting capabilities. Reprogramming TAMs towards a classically activated (M1) phenotype may thwart tumour-associated immunosuppression and unleash anti-tumour immunity. Here we show that conditional deletion of the microRNA (miRNA)-processing enzyme DICER in macrophages prompts M1-like TAM programming, characterized by hyperactive IFN-γ/STAT1 signalling. This rewiring abated the immunosuppressive capacity of TAMs and fostered the recruitment of activated cytotoxic T lymphocytes (CTLs) to the tumours. CTL-derived IFN-γ exacerbated M1 polarization of Dicer1-deficient TAMs and inhibited tumour growth. Remarkably, DICER deficiency in TAMs negated the anti-tumoral effects of macrophage depletion by anti-CSF1R antibodies, and enabled complete tumour eradication by PD1 checkpoint blockade or CD40 agonistic antibodies. Finally, genetic rescue of Let-7 miRNA activity in Dicer1-deficient TAMs partly restored their M2-like phenotype and decreased tumour-infiltrating CTLs. These findings suggest that DICER/Let-7 activity opposes IFN-γ-induced, immunostimulatory M1-like TAM activation, with potential therapeutic implications. PMID:27295554

  12. Macrophages inhibit human osteosarcoma cell growth after activation with the bacterial cell wall derivative liposomal muramyl tripeptide in combination with interferon-γ

    PubMed Central

    2014-01-01

    Background In osteosarcoma, the presence of tumor-infiltrating macrophages positively correlates with patient survival in contrast to the negative effect of tumor-associated macrophages in patients with other tumors. Liposome-encapsulated muramyl tripeptide (L-MTP-PE) has been introduced in the treatment of osteosarcoma patients, which may enhance the potential anti-tumor activity of macrophages. Direct anti-tumor activity of human macrophages against human osteosarcoma cells has not been described so far. Hence, we assessed osteosarcoma cell growth after co-culture with human macrophages. Methods Monocyte-derived M1-like and M2-like macrophages were polarized with LPS + IFN-γ, L-MTP-PE +/− IFN-γ or IL-10 and incubated with osteosarcoma cells. Two days later, viable tumor cell numbers were analyzed. Antibody-dependent effects were investigated using the therapeutic anti-EGFR antibody cetuximab. Results M1-like macrophages inhibited osteosarcoma cell growth when activated with LPS + IFN-γ. Likewise, stimulation of M1-like macrophages with liposomal muramyl tripeptide (L-MTP-PE) inhibited tumor growth, but only when combined with IFN-γ. Addition of the tumor-reactive anti-EGFR antibody cetuximab did not further improve the anti-tumor activity of activated M1-like macrophages. The inhibition was mediated by supernatants of activated M1-like macrophages, containing TNF-α and IL-1β. However, specific blockage of these cytokines, nitric oxide or reactive oxygen species did not inhibit the anti-tumor effect, suggesting the involvement of other soluble factors released upon macrophage activation. While LPS + IFN-γ–activated M2-like macrophages had low anti-tumor activity, IL-10–polarized M2-like macrophages were able to reduce osteosarcoma cell growth in the presence of the anti-EGFR cetuximab involving antibody-dependent tumor cell phagocytosis. Conclusion This study demonstrates that human macrophages can be induced to exert direct anti

  13. M2L4 coordination capsules with tunable anticancer activity upon guest encapsulation.

    PubMed

    Ahmedova, Anife; Mihaylova, Rositsa; Momekova, Denitsa; Shestakova, Pavletta; Stoykova, Silviya; Zaharieva, Joana; Yamashina, Masahiro; Momekov, Georgi; Akita, Munetaka; Yoshizawa, Michito

    2016-08-16

    Metallosupramolecular cages and capsules have gained increasing popularity as both molecular containers and anticancer agents. For successful combination of these properties a thorough analysis of the effect of guest encapsulation on the host's cytotoxic properties is highly required. Here we report on the cytotoxicity modulation of Pt(ii) and Pd(ii)-linked M2L4 coordination capsules upon encapsulation of guest molecules such as pyrene and caffeine. The anticancer activity of the capsules against various human cancer cells (HT-29, T-24, HL-60 and its resistant counterparts HL-60/Dox and HL-60/CDDP) significantly altered upon the guest encapsulation. The encapsulation of pyrene molecules causes a decrease in the cytotoxicity of the Pt(ii) capsule, which is stronger than that of the Pd(ii) capsule. The cytotoxicities of the caffeine containing capsules are lower than that of the empty capsules (except for HL-60), but still superior to cisplatin under the same conditions. The observed trends in the anticancer activity of the capsules and their host-guest complexes correlate with their different stabilities toward glutathione, estimated by NMR-based kinetic experiments. Mechanistic insights into the observed cytotoxicities are obtained by fluorescence microscopy imaging of tumor cells treated with the capsules and their pyrene complexes. The data suggest the glutathione-triggered disassembly of the capsular structures as a potential activation pathway for their cytotoxicities. PMID:27488015

  14. Inhibitory and Activating Effects of Some Flavonoid Derivatives on Human Pyruvate Kinase Isoenzyme M2.

    PubMed

    Adem, Sevki; Aslan, Abdulselam; Ahmed, Ishtiaq; Krohn, Karsten; Guler, Caglar; Comaklı, Veysel; Demirdag, Ramazan; Kuzu, Muslum

    2016-02-01

    Pyruvate kinase isoenzyme M2 (PKM2) is expressed excessively in many different cancer types and it plays an important role in the control of glucose metabolism. Thus, it is evaluated as an important target in the development of medication for cancer. The flavonoids comprise a large group of natural products with variable phenolic structures and occur mainly in plants. They are of great interest due to their biological properties. In this study, the effects of various flavonoid derivatives on the PKM2 enzyme activity were analyzed in vitro. The flavonoid derivatives 1 and 2 showed inhibition effect with IC50 values of <60 μM. IC50 values of compounds 3-8 were calculated as 134, 415, 145, 163, 295 μM, and 3.5 mM, respectively. The molecules 9-12 showed an activation effect with values of AC50 of less than 90 μM. The IC50 values of the derivatives 13-17 were calculated as 115, 150, 200, 221, and 275 μM, respectively. The results show that catechin derivatives can be probably used as lead compounds for the design of PKM2 enzyme activators and inhibitors. PMID:26708302

  15. Effect of lipopolysaccharide on protein accumulation by murine peritoneal macrophages: the correlation to activation for macrophage tumoricidal function

    SciTech Connect

    Tannenbaum, C.S.

    1987-01-01

    The protein synthetic patterns of tumoricidal murine peritoneal macrophage populations have been compared to those of non-tumoricidal populations utilizing two dimensional polyacrylamide gel electrophoresis (2D PAGE) of (/sup 35/S)-methionine-labeled proteins. While the protein synthetic patterns exhibited by resident, inflammatory and activated macrophages had numerous common features which distinguished them from the other normal non-macrophage cell types examined, unique proteins also distinguished each macrophage population from the others. Peritoneal macrophages elicited by treatment with heat killed Propionibacterium acnes, the live, attenuated Mycobacterium bovis strain BCG, Listeria monocytogenes and the protozoan flagellate Trypanosoma rhodesiense, all exhibited tumoricidal activity in 16h or 72h functional assays, and shared a common protein synthetic profile which differentiated them from the synthetic patterns characteristic of the non-tumoricidal resident and inflammatory macrophages.

  16. Enforced Expression of Hoxa3 Inhibits Classical and Promotes Alternative Activation of Macrophages In Vitro and In Vivo

    PubMed Central

    Al Sadoun, Hadeel; Burgess, Matthew; Hentges, Kathryn E.

    2016-01-01

    The regulated differentiation of macrophages (mφs) and their subsequent activation into proinflammatory or prohealing subtypes is critical for efficient wound healing. Chronic wounds such as diabetic (db) ulcers are associated with dysregulation of macrophage function. Whereas non-db mφs polarize to an M2-like, prohealing phenotype during the late stages of healing, db-derived mφs continue to display an M1-like, proinflammatory, or a mixed M1-like/M2-like phenotype. We have previously shown that sustained expression of Hoxa3 reduces the excessive number of leukocytes within the db wound; however, the effect of Hoxa3 on mφ polarization was unknown. In this study, we show that Hoxa3 protein transduction of mφs in vitro enhances macrophage maturation, inhibits M1 polarization, and promotes M2 polarization, in part via regulation of Pu.1/Spi1 and Stat6. Sustained expression of Hoxa3 in vivo in db wounds reduces the number of Nos2+ (M1-like) mφs, increases the number of Arg1+ and VEGF+ (M2-like) mφs, and accelerates healing in a DNA-binding independent manner. Our findings suggest a role for Hox protein activity in promoting M1-to-M2-like phenotypic switching via interactions with myeloid transcription factors and provide insight into mechanisms regulating this process in db wound healing. PMID:27342843

  17. Enforced Expression of Hoxa3 Inhibits Classical and Promotes Alternative Activation of Macrophages In Vitro and In Vivo.

    PubMed

    Al Sadoun, Hadeel; Burgess, Matthew; Hentges, Kathryn E; Mace, Kimberly A

    2016-08-01

    The regulated differentiation of macrophages (mφs) and their subsequent activation into proinflammatory or prohealing subtypes is critical for efficient wound healing. Chronic wounds such as diabetic (db) ulcers are associated with dysregulation of macrophage function. Whereas non-db mφs polarize to an M2-like, prohealing phenotype during the late stages of healing, db-derived mφs continue to display an M1-like, proinflammatory, or a mixed M1-like/M2-like phenotype. We have previously shown that sustained expression of Hoxa3 reduces the excessive number of leukocytes within the db wound; however, the effect of Hoxa3 on mφ polarization was unknown. In this study, we show that Hoxa3 protein transduction of mφs in vitro enhances macrophage maturation, inhibits M1 polarization, and promotes M2 polarization, in part via regulation of Pu.1/Spi1 and Stat6. Sustained expression of Hoxa3 in vivo in db wounds reduces the number of Nos2(+) (M1-like) mφs, increases the number of Arg1(+) and VEGF(+) (M2-like) mφs, and accelerates healing in a DNA-binding independent manner. Our findings suggest a role for Hox protein activity in promoting M1-to-M2-like phenotypic switching via interactions with myeloid transcription factors and provide insight into mechanisms regulating this process in db wound healing. PMID:27342843

  18. Proatherogenic macrophage activities are targeted by the flavonoid quercetin.

    PubMed

    Lara-Guzman, Oscar J; Tabares-Guevara, Jorge H; Leon-Varela, Yudy M; Álvarez, Rafael M; Roldan, Miguel; Sierra, Jelver A; Londoño-Londoño, Julian A; Ramirez-Pineda, Jose R

    2012-11-01

    Many studies have demonstrated that the flavonoid quercetin protects against cardiovascular disease (CVD) and related risk factors. Atherosclerosis, the underlying cause of CVD, is also attenuated by oral quercetin administration in animal models. Although macrophages are key players during fatty streak formation and plaque progression and aggravation, little is known about the effects of quercetin on atherogenic macrophages. Here, we report that primary bone marrow-derived macrophages internalized less oxidized low-density lipoprotein (oxLDL) and accumulated less intracellular cholesterol in the presence of quercetin. This reduction of foam cell formation correlated with reduced surface expression of the oxLDL receptor CD36. Quercetin also targeted the lipopolysaccharide-dependent, oxLDL-independent pathway of lipid droplet formation in macrophages. In oxLDL-stimulated macrophages, quercetin inhibited reactive oxygen species production and interleukin (IL)-6 secretion. In a system that evaluated cholesterol crystal-induced IL-1β secretion via nucleotide-binding domain and leucine-rich repeat containing protein 3 inflammasome activation, quercetin also exhibited an inhibitory effect. Dyslipidemic apolipoprotein E-deficient mice chronically treated with intraperitoneal quercetin injections had smaller atheromatous lesions, reduced lipid deposition, and less macrophage and T cell inflammatory infiltrate in the aortic roots than vehicle-treated animals. Serum levels of total cholesterol and the lipid peroxidation product malondialdehyde were also reduced in these mice. Our results demonstrate that quercetin interferes with both key proatherogenic activities of macrophages, namely foam cell formation and pro-oxidant/proinflammatory responses, and these effects may explain the atheroprotective properties of this common flavonoid. PMID:22869926

  19. Mesenchymal Stromal Cells Induce Peculiar Alternatively Activated Macrophages Capable of Dampening Both Innate and Adaptive Immune Responses.

    PubMed

    Chiossone, Laura; Conte, Romana; Spaggiari, Grazia Maria; Serra, Martina; Romei, Cristina; Bellora, Francesca; Becchetti, Flavio; Andaloro, Antonio; Moretta, Lorenzo; Bottino, Cristina

    2016-07-01

    Mesenchymal stromal cells (MSCs) support hematopoiesis and exert immunoregulatory activities. Here, we analyzed the functional outcome of the interactions between MSCs and monocytes/macrophages. We showed that MSCs supported the survival of monocytes that underwent differentiation into macrophages, in the presence of macrophage colony-stimulating factor. However, MSCs skewed their polarization toward a peculiar M2-like functional phenotype (M(MSC) ), through a prostaglandin E2-dependent mechanism. M(MSC) were characterized by high expression of scavenger receptors, increased phagocytic capacity, and high production of interleukin (IL)-10 and transforming growth factor-β. These cytokines contributed to the immunoregulatory properties of M(MSC) , which differed from those of typical IL-4-induced macrophages (M2). In particular, interacting with activated natural killer (NK) cells, M(MSC) inhibited both the expression of activating molecules such as NKp44, CD69, and CD25 and the production of IFNγ, while M2 affected only IFNγ production. Moreover, M(MSC) inhibited the proliferation of CD8(+) T cells in response to allogeneic stimuli and induced the expansion of regulatory T cells (Tregs). Toll-like receptor engagement reverted the phenotypic and functional features of M(MSC) to those of M1 immunostimulatory/proinflammatory macrophages. Overall our data show that MSCs induce the generation of a novel type of alternatively activated macrophages capable of suppressing both innate and adaptive immune responses. These findings may help to better understand the role of MSCs in healthy tissues and inflammatory diseases including cancer, and provide clues for novel therapeutic approaches. Stem Cells 2016;34:1909-1921. PMID:27015881

  20. Innate immunity and monocyte-macrophage activation in atherosclerosis

    PubMed Central

    2011-01-01

    Innate inflammation is a hallmark of both experimental and human atherosclerosis. The predominant innate immune cell in the atherosclerotic plaque is the monocyte-macrophage. The behaviour of this cell type within the plaque is heterogeneous and depends on the recruitment of diverse monocyte subsets. Furthermore, the plaque microenvironment offers polarisation and activation signals which impact on phenotype. Microenvironmental signals are sensed through pattern recognition receptors, including toll-like and NOD-like receptors - the latter of which are components of the inflammasome - thus dictating macrophage behaviour and outcome in atherosclerosis. Recently cholesterol crystals and modified lipoproteins have been recognised as able to directly engage these pattern recognition receptors. The convergent role of such pathways in terms of macrophage activation is discussed in this review. PMID:21526997

  1. Fine-tuning of macrophage activation using synthetic rocaglate derivatives

    PubMed Central

    Bhattacharya, Bidisha; Chatterjee, Sujoy; Devine, William G.; Kobzik, Lester; Beeler, Aaron B.; Porco, John A.; Kramnik, Igor

    2016-01-01

    Drug-resistant bacteria represent a significant global threat. Given the dearth of new antibiotics, host-directed therapies (HDTs) are especially desirable. As IFN-gamma (IFNγ) plays a central role in host resistance to intracellular bacteria, including Mycobacterium tuberculosis, we searched for small molecules to augment the IFNγ response in macrophages. Using an interferon-inducible nuclear protein Ipr1 as a biomarker of macrophage activation, we performed a high-throughput screen and identified molecules that synergized with low concentration of IFNγ. Several active compounds belonged to the flavagline (rocaglate) family. In primary macrophages a subset of rocaglates 1) synergized with low concentrations of IFNγ in stimulating expression of a subset of IFN-inducible genes, including a key regulator of the IFNγ network, Irf1; 2) suppressed the expression of inducible nitric oxide synthase and type I IFN and 3) induced autophagy. These compounds may represent a basis for macrophage-directed therapies that fine-tune macrophage effector functions to combat intracellular pathogens and reduce inflammatory tissue damage. These therapies would be especially relevant to fighting drug-resistant pathogens, where improving host immunity may prove to be the ultimate resource. PMID:27086720

  2. Opposite cross-talk by oleate and palmitate on insulin signaling in hepatocytes through macrophage activation.

    PubMed

    Pardo, Virginia; González-Rodríguez, Águeda; Guijas, Carlos; Balsinde, Jesús; Valverde, Ángela M

    2015-05-01

    Chronic low grade inflammation in adipose tissue during obesity is associated with an impairment of the insulin signaling cascade. In this study, we have evaluated the impact of palmitate or oleate overload of macrophage/Kupffer cells in triggering stress-mediated signaling pathways, in lipoapoptosis, and in the cross-talk with insulin signaling in hepatocytes. RAW 264.7 macrophages or Kupffer cells were stimulated with oleate or palmitate, and levels of M1/M2 polarization markers and the lipidomic profile of eicosanoids were analyzed. Whereas proinflammatory cytokines and total eicosanoids were elevated in macrophages/Kupffer cells stimulated with palmitate, enhanced arginase 1 and lower leukotriene B4 (LTB4) levels were detected in macrophages stimulated with oleate. When hepatocytes were pretreated with conditioned medium (CM) from RAW 264.7 or Kupffer cells loaded with palmitate (CM-P), phosphorylation of stress kinases and endoplasmic reticulum stress signaling was increased, insulin signaling was impaired, and lipoapoptosis was detected. Conversely, enhanced insulin receptor-mediated signaling and reduced levels of the phosphatases protein tyrosine phosphatase 1B (PTP1B) and phosphatase and tensin homolog (PTEN) were found in hepatocytes treated with CM from macrophages stimulated with oleate (CM-O). Supplementation of CM-O with LTB4 suppressed insulin sensitization and increased PTP1B and PTEN. Furthermore, LTB4 decreased insulin receptor tyrosine phosphorylation in hepatocytes, activated the NFκB pathway, and up-regulated PTP1B and PTEN, these effects being mediated by LTB4 receptor BTL1. In conclusion, oleate and palmitate elicit an opposite cross-talk between macrophages/Kupffer cells and hepatocytes. Whereas CM-P interferes at the early steps of insulin signaling, CM-O increases insulin sensitization, possibly by reducing LTB4. PMID:25792746

  3. Early Macrophage Recruitment and Alternative Activation Are Critical for the Later Development of Hypoxia-induced Pulmonary Hypertension

    PubMed Central

    Vergadi, Eleni; Chang, Mun Seog; Lee, Changjin; Liang, Olin; Liu, Xianlan; Fernandez-Gonzalez, Angeles; Mitsialis, S. Alex; Kourembanas, Stella

    2011-01-01

    Background Lung inflammation precedes the development of hypoxia-induced pulmonary hypertension (HPH); however its role in the pathogenesis of HPH is poorly understood. We sought to characterize the hypoxic inflammatory response and elucidate its role in the development of HPH. We also aimed to investigate the mechanisms by which heme oxygenase-1 (HO-1), an anti-inflammatory enzyme, is protective in HPH. Methods and Results We generated bitransgenic mice that overexpress human HO-1 under doxycycline (dox) control in an inducible, lung-specific manner. Hypoxic exposure of mice in the absence of dox resulted in early transient accumulation of monocytes/macrophages in the bronchoalveolar lavage. Alveolar macrophages acquired an alternatively activated phenotype (M2) in response to hypoxia, characterized by the expression of Found in Inflammatory Zone-1, Arginase-1 and Chitinase-3-like-3. A brief, two-day pulse of dox delayed but did not prevent the peak of hypoxic inflammation, and could not protect from HPH. In contrast, a seven-day dox treatment sustained high HO-1 levels during the entire period of hypoxic inflammation, inhibited macrophage accumulation and activation, induced macrophage IL-10 expression, and prevented the development of HPH. Supernatants from hypoxic M2 macrophages promoted proliferation of pulmonary artery smooth muscle cells while treatment with carbon monoxide, a HO-1 enzymatic product, abrogated this effect. Conclusions Early recruitment and alternative activation of macrophages in hypoxic lungs is critical for the later development of HPH. HO-1 may confer protection from HPH by effectively modifing macrophage activation state in hypoxia. PMID:21518986

  4. Dynamic M2-like remodeling phenotypes of CD11c+ adipose tissue macrophages during high fat diet-induced obesity in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chronic inflammation is a pathogenic factor in obesity complications, in particular insulin resistance (IR). A significant advance in our understanding of obesity-associated inflammation and insulin resistance has been the recognition of the underlying role of adipose tissue macrophages (ATM's). The...

  5. Activation and proton transport mechanism in influenza A M2 channel.

    PubMed

    Wei, Chenyu; Pohorille, Andrew

    2013-11-01

    Molecular dynamics trajectories 2 μs in length have been generated for the pH-activated, tetrameric M2 proton channel of the influenza A virus in all protonation states of the pH sensor located at the His(37) tetrad. All simulated structures are in very good agreement with high-resolution structures. Changes in the channel caused by progressive protonation of His(37) provide insight into the mechanism of proton transport. The channel is closed at both His(37) and Trp(41) sites in the singly and doubly protonated states, but it opens at Trp(41) upon further protonation. Anions access the charged His(37) and by doing so stabilize the protonated states of the channel. The narrow opening at the His(37) site, further blocked by anions, is inconsistent with the water-wire mechanism of proton transport. Instead, conformational interconversions of His(37) correlated with hydrogen bonding to water molecules indicate that these residues shuttle protons in high-protonation states. Hydrogen bonds between charged and uncharged histidines are rare. The valve at Val(27) remains on average quite narrow in all protonation states but fluctuates sufficiently to support water and proton transport. A proton transport mechanism in which the channel, depending on pH, opens at either the histidine or valine gate is only partially supported by the simulations. PMID:24209848

  6. Genome-wide analysis of antiviral signature genes in porcine macrophages at different activation statuses.

    PubMed

    Sang, Yongming; Brichalli, Wyatt; Rowland, Raymond R R; Blecha, Frank

    2014-01-01

    Macrophages (MФs) can be polarized to various activation statuses, including classical (M1), alternative (M2), and antiviral states. To study the antiviral activation status of porcine MФs during porcine reproductive and respiratory syndrome virus (PRRSV) infection, we used RNA Sequencing (RNA-Seq) for transcriptomic analysis of differentially expressed genes (DEGs). Sequencing assessment and quality evaluation showed that our RNA-Seq data met the criteria for genome-wide transcriptomic analysis. Comparisons of any two activation statuses revealed more than 20,000 DEGs that were normalized to filter out 153-5,303 significant DEGs [false discovery rate (FDR) ≤0.001, fold change ≥2] in each comparison. The highest 5,303 significant DEGs were found between lipopolysaccharide- (LPS) and interferon (IFN)γ-stimulated M1 cells, whereas only 153 significant DEGs were detected between interleukin (IL)-10-polarized M2 cells and control mock-activated cells. To identify signature genes for antiviral regulation pertaining to each activation status, we identified a set of DEGs that showed significant up-regulation in only one activation state. In addition, pathway analyses defined the top 20-50 significantly regulated pathways at each activation status, and we further analyzed DEGs pertinent to pathways mediated by AMP kinase (AMPK) and epigenetic mechanisms. For the first time in porcine macrophages, our transcriptomic analyses not only compared family-wide differential expression of most known immune genes at different activation statuses, but also revealed transcription evidence of multiple gene families. These findings show that using RNA-Seq transcriptomic analyses in virus-infected and status-synchronized macrophages effectively profiled signature genes and gene response pathways for antiviral regulation, which may provide a framework for optimizing antiviral immunity and immune homeostasis. PMID:24505295

  7. Genome-Wide Analysis of Antiviral Signature Genes in Porcine Macrophages at Different Activation Statuses

    PubMed Central

    Sang, Yongming; Brichalli, Wyatt; Rowland, Raymond R. R.; Blecha, Frank

    2014-01-01

    Macrophages (MФs) can be polarized to various activation statuses, including classical (M1), alternative (M2), and antiviral states. To study the antiviral activation status of porcine MФs during porcine reproductive and respiratory syndrome virus (PRRSV) infection, we used RNA Sequencing (RNA-Seq) for transcriptomic analysis of differentially expressed genes (DEGs). Sequencing assessment and quality evaluation showed that our RNA-Seq data met the criteria for genome-wide transcriptomic analysis. Comparisons of any two activation statuses revealed more than 20,000 DEGs that were normalized to filter out 153–5,303 significant DEGs [false discovery rate (FDR) ≤0.001, fold change ≥2] in each comparison. The highest 5,303 significant DEGs were found between lipopolysaccharide- (LPS) and interferon (IFN)γ-stimulated M1 cells, whereas only 153 significant DEGs were detected between interleukin (IL)-10-polarized M2 cells and control mock-activated cells. To identify signature genes for antiviral regulation pertaining to each activation status, we identified a set of DEGs that showed significant up-regulation in only one activation state. In addition, pathway analyses defined the top 20–50 significantly regulated pathways at each activation status, and we further analyzed DEGs pertinent to pathways mediated by AMP kinase (AMPK) and epigenetic mechanisms. For the first time in porcine macrophages, our transcriptomic analyses not only compared family-wide differential expression of most known immune genes at different activation statuses, but also revealed transcription evidence of multiple gene families. These findings show that using RNA-Seq transcriptomic analyses in virus-infected and status-synchronized macrophages effectively profiled signature genes and gene response pathways for antiviral regulation, which may provide a framework for optimizing antiviral immunity and immune homeostasis. PMID:24505295

  8. Oxygen tension limits nitric oxide synthesis by activated macrophages.

    PubMed Central

    McCormick, C C; Li, W P; Calero, M

    2000-01-01

    Previous studies have established that constitutive calcium-dependent ('low-output') nitric oxide synthase (NOS) is regulated by oxygen tension. We have investigated the role of oxygen tension in the synthesis of NO by the 'high-output' calcium-independent NOS in activated macrophages. Hypoxia increased macrophage NOS gene expression in the presence of one additional activator, such as lipopolysaccharide or interferon-gamma, but not in the presence of both. Hypoxia markedly reduced the synthesis of NO by activated macrophages (as measured by accumulation of nitrite and citrulline), such that, at 1% oxygen tension, NO accumulation was reduced by 80-90%. The apparent K(m) for oxygen calculated from cells exposed to a range of oxygen tensions was found to be 10.8%, or 137 microM, O(2) This value is considerably higher than the oxygen tension in tissues, and is virtually identical to that reported recently for purified recombinant macrophage NOS. The decrease in NO synthesis did not appear to be due to diminished arginine or cofactor availability, since arginine transport and NO synthesis during recovery in normoxia were normal. Analysis of NO synthesis during hypoxia as a function of extracellular arginine indicated that an altered V(max), but not K(m)(Arg), accounted for the observed decrease in NO synthesis. We conclude that oxygen tension regulates the synthesis of NO in macrophages by a mechanism similar to that described previously for the calcium-dependent low-output NOS. Our data suggest that oxygen tension may be an important physiological regulator of macrophage NO synthesis in vivo. PMID:10970783

  9. Tumor-Cell Co-Culture Induced Alternative Activation of Macrophages Is Modulated by Interferons In Vitro

    PubMed Central

    Müller-Quernheim, Ulrike Carolin; Potthast, Lars; Müller-Quernheim, Joachim

    2012-01-01

    Tumor-associated macrophages infiltrate tumors and facilitate tumor growth. Here, we analyzed M1 and M2 marker expression in the course of co-culture-driven macrophage differentiation and investigated the influence of interferons (IFNs) on this differentiation. To generate monocyte-derived macrophages (MDMs) 1×106 monocytes of healthy volunteers were cultivated either with 25×103 adherent A549/mL or in medium containing 50% A549 conditioned medium (CM) for 72 h in the presence or absence of IFN-α, β or γ, respectively. Supernatants were tested for CCL18 (M2 marker) and CXCL10 (M1 marker) by enzyme-linked immunosorbent assay. CCL18 and CXCL10 release by MDM is increased by the presence of A549 cells, but also when cultured in A549 CM. On stimulation with IFN-γ, we observe an increased release of the M1 marker CXCL10 and a decreased release of CCL18. Type I IFNs also increases CXCL10 release. Thus, A549 releases a soluble factor which enhances CCL18 production and M2 polarization, indicating that a localized specific cytokine milieu, as found in the environment of a tumor or in fibrotic lung tissue, favors alternative activation of macrophages. In the presence of IFN-γ, M2 differentiation is attenuated as shown by the decrease of the M2 chemokine CCL18 and by the increase of the M1 chemokine CXCL10. However, CXCL10 levels were also increased by the co-culture, which indicates a simultaneous classical activation (M1) or the formation of a M1/M2 hybrid. PMID:22280057

  10. Dopamine Receptor Activation Increases HIV Entry into Primary Human Macrophages

    PubMed Central

    Gaskill, Peter J.; Yano, Hideaki H.; Kalpana, Ganjam V.; Javitch, Jonathan A.; Berman, Joan W.

    2014-01-01

    Macrophages are the primary cell type infected with HIV in the central nervous system, and infection of these cells is a major component in the development of neuropathogenesis and HIV-associated neurocognitive disorders. Within the brains of drug abusers, macrophages are exposed to increased levels of dopamine, a neurotransmitter that mediates the addictive and reinforcing effects of drugs of abuse such as cocaine and methamphetamine. In this study we examined the effects of dopamine on HIV entry into primary human macrophages. Exposure to dopamine during infection increased the entry of R5 tropic HIV into macrophages, irrespective of the concentration of the viral inoculum. The entry pathway affected was CCR5 dependent, as antagonizing CCR5 with the small molecule inhibitor TAK779 completely blocked entry. The effect was dose-dependent and had a steep threshold, only occurring above 108 M dopamine. The dopamine-mediated increase in entry required dopamine receptor activation, as it was abrogated by the pan-dopamine receptor antagonist flupenthixol, and could be mediated through both subtypes of dopamine receptors. These findings indicate that the effects of dopamine on macrophages may have a significant impact on HIV pathogenesis. They also suggest that drug-induced increases in CNS dopamine may be a common mechanism by which drugs of abuse with distinct modes of action exacerbate neuroinflammation and contribute to HIV-associated neurocognitive disorders in infected drug abusers. PMID:25268786

  11. Carbon nanohorns allow acceleration of osteoblast differentiation via macrophage activation

    NASA Astrophysics Data System (ADS)

    Hirata, Eri; Miyako, Eijiro; Hanagata, Nobutaka; Ushijima, Natsumi; Sakaguchi, Norihito; Russier, Julie; Yudasaka, Masako; Iijima, Sumio; Bianco, Alberto; Yokoyama, Atsuro

    2016-07-01

    Carbon nanohorns (CNHs), formed by a rolled graphene structure and terminating in a cone, are promising nanomaterials for the development of a variety of biological applications. Here we demonstrate that alkaline phosphatase activity is dramatically increased by coculture of human monocyte derived macrophages (hMDMs) and human mesenchymal stem cells (hMSCs) in the presence of CNHs. CNHs were mainly localized in the lysosome of macrophages more than in hMSCs during coculturing. At the same time, the amount of Oncostatin M (OSM) in the supernatant was also increased during incubation with CNHs. Oncostatin M (OSM) from activated macrophage has been reported to induce osteoblast differentiation and matrix mineralization through STAT3. These results suggest that the macrophages engulfed CNHs and accelerated the differentiation of mesenchymal stem cells into the osteoblast via OSM release. We expect that the proof-of-concept on the osteoblast differentiation capacity by CNHs will allow future studies focused on CNHs as ideal therapeutic materials for bone regeneration.Carbon nanohorns (CNHs), formed by a rolled graphene structure and terminating in a cone, are promising nanomaterials for the development of a variety of biological applications. Here we demonstrate that alkaline phosphatase activity is dramatically increased by coculture of human monocyte derived macrophages (hMDMs) and human mesenchymal stem cells (hMSCs) in the presence of CNHs. CNHs were mainly localized in the lysosome of macrophages more than in hMSCs during coculturing. At the same time, the amount of Oncostatin M (OSM) in the supernatant was also increased during incubation with CNHs. Oncostatin M (OSM) from activated macrophage has been reported to induce osteoblast differentiation and matrix mineralization through STAT3. These results suggest that the macrophages engulfed CNHs and accelerated the differentiation of mesenchymal stem cells into the osteoblast via OSM release. We expect that the

  12. Diet Modifies the Neuroimmune System by Influencing Macrophage Activation

    ERIC Educational Resources Information Center

    Sherry, Christina Lynn

    2009-01-01

    It has long been appreciated that adequate nutrition is required for proper immune function and it is now recognized that dietary components contribute to modulation of immune cells, subsequently impacting the whole body's response during an immune challenge. Macrophage activation plays a critical role in the immune system and directs the…

  13. Proteomic analysis of macrophage activated with salmonella lipopolysaccharide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Macrophages play pivotal role in immunity. They are activated by many pathogen derived molecules such as lipopolysaccharides (LPS) which trigger the production of various proteins and peptides that drive and resolve inflammation. There are numerous studies on the effect of LPS at the genome level bu...

  14. Dynamics of lung macrophage activation in response to helminth infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most of our understanding of the development and phenotype of alternatively activated macrophages (AAM) has been obtained from studies investigating the response of bone marrow- and peritoneal-derived cells to IL-4 or IL-13 stimulation. Comparatively little is known about the development of the AAM...

  15. Protumoral TSP50 Regulates Macrophage Activities and Polarization via Production of TNF-α and IL-1β, and Activation of the NF-κB Signaling Pathway

    PubMed Central

    Yang, Cheng; Zhang, Dong-Mei; Song, Zhen-Bo; Hou, Ya-Qin; Bao, Yong-Li; Sun, Lu-Guo; Yu, Chun-Lei; Li, Yu-Xin

    2015-01-01

    Testes-specific protease 50 (TSP50) is abnormally overexpressed in many kinds of cancers and promotes cell proliferation and migration. However, whether TSP50 can influence the tumor microenvironment, especially the function of immune cells in the microenvironment, remains largely unknown. We demonstrated that exposure to the conditioned medium from TSP50-overexpressing cells, or co-culture with TSP50-overexpressing cells, enhanced the cytokine production and phagocytic activities of macrophages, and induced M2b polarization. Further investigation showed that production of TNF-α and IL-1β was strongly induced by TSP50 in TSP50-overexpressing cells. TSP50-induced TNF-α and IL-1β were main factors that mediated the effects of TSP50-overexpressing cells on macrophages. The NF-κB pathway could be activated in macrophages upon the treatment of conditioned medium of TSP50-overexpressing cells and its activation is necessary for the observed effects on macrophages. Taken together, our results suggested that oncogenic TSP50 expressed in cells could activate surrounding macrophages and induce M2b polarization, partly through inducing TNF-α/ IL-1β secretion and subsequent NF-κB pathway activation. This implies a potential mechanism by which oncogene TSP50 regulates tumor microenvironment to support tumor development. PMID:26684869

  16. The Metabolic Prospective and Redox Regulation of Macrophage Polarization

    PubMed Central

    He, Chao; Carter, A Brent

    2016-01-01

    Macrophage plasticity is an important feature of these innate immune cells. Macrophage phenotypes are divided into two categories, the classically activated macrophages (CAM, M1 phenotype) and the alternatively activated macrophages (AAM, M2 phenotype). M1 macrophages are commonly associated with the generation of proinflammatory cytokines, whereas M2 macrophages are anti-inflammatory and often associated with tumor progression and fibrosis development. Macrophages produce high levels of reactive oxygen species (ROS). Recent evidence suggests ROS can potentially regulate macrophage phenotype. In addition, macrophages phenotypes are closely related to their metabolic patterns, particularly fatty acid/cholesterol metabolism. In this review, we briefly summarize recent advances in macrophage polarization with special attention to their relevance to specific disease conditions and metabolic regulation of polarization. Understanding these metabolic switches can facilitate the development of targeted therapies for various diseases. PMID:26962470

  17. Nitro-oleic acid modulates classical and regulatory activation of macrophages and their involvement in pro-fibrotic responses.

    PubMed

    Ambrozova, Gabriela; Martiskova, Hana; Koudelka, Adolf; Ravekes, Thorben; Rudolph, Tanja K; Klinke, Anna; Rudolph, Volker; Freeman, Bruce A; Woodcock, Steven R; Kubala, Lukas; Pekarova, Michaela

    2016-01-01

    Inflammation is an immune response triggered by microbial invasion and/or tissue injury. While acute inflammation is directed toward invading pathogens and injured cells, thus enabling tissue regeneration, chronic inflammation can lead to severe pathologies and tissue dysfunction. These processes are linked with macrophage polarization into specific inflammatory "M1-like" or regulatory "M2-like" subsets. Nitro-fatty acids (NO2-FAs), produced endogenously as byproducts of metabolism and oxidative inflammatory conditions, may be useful for treating diseases associated with dysregulated immune homeostasis. The goal of this study was to characterize the role of nitro-oleic acid (OA-NO2) in regulating the functional specialization of macrophages induced by bacterial lipopolysaccharide or interleukin-4, and to reveal specific signaling mechanisms which can account for OA-NO2-dependent modulation of inflammation and fibrotic responses. Our results show that OA-NO2 inhibits lipopolysaccharide-stimulated production of both pro-inflammatory and immunoregulatory cytokines (including transforming growth factor-β) and inhibits nitric oxide and superoxide anion production. OA-NO2 also decreases interleukin-4-induced macrophage responses by inhibiting arginase-I expression and transforming growth factor-β production. These effects are mediated via downregulation of signal transducers and activators of transcription, mitogen-activated protein kinase and nuclear factor-кB signaling responses. Finally, OA-NO2 inhibits fibrotic processes in an in vivo model of angiotensin II-induced myocardial fibrosis by attenuating expression of α-smooth muscle actin, systemic transforming growth factor-β levels and infiltration of both "M1-" and "M2-like" macrophage subsets into afflicted tissue. Overall, the electrophilic fatty acid derivative OA-NO2 modulates a broad range of "M1-" and "M2-like" macrophage functions and represents a potential therapeutic approach to target diseases

  18. Modulation of nitric oxide synthase activity in macrophages

    PubMed Central

    Jorens, P. G.; Matthys, K. E.

    1995-01-01

    L-Arginine is converted to the highly reactive and unstable nitric oxide (NO) and L-citrulline by an enzyme named nitric oxide synthase (NOS). NO decomposes into other nitrogen oxides such as nitrite (NO2-) and nitrate (NO2-), and in the presence of superoxide anion to the potent oxidizing agent peroxynitrite (ONOO−). Activated rodent macrophages are capable of expressing an inducible form of this enzyme (iNOS) in response to appropriate stimuli, i.e., lipopolysaccharide (LPS) and interferon-γ (IFNγ). Other cytokines can modulate the induction of NO biosynthesis in macrophages. NO is a major effector molecule of the anti-microbial and cytotoxic activity of rodent macrophages against certain micro-organisms and tumour cells, respectively. The NO synthesizing pathway has been demonstrated in human monocytes and other cells, but its role in host defence seems to be accessory. A delicate functional balance between microbial stimuli, host-derived cytokines and hormones in the microenvironment regulates iNOS expression. This review will focus mainly on the known and proposed mechanisms of the regulation of iNOS induction, and on agents that can modulate NO release once the active enzyme has been expressed in the macrophage. PMID:18475620

  19. Carbon nanohorns allow acceleration of osteoblast differentiation via macrophage activation.

    PubMed

    Hirata, Eri; Miyako, Eijiro; Hanagata, Nobutaka; Ushijima, Natsumi; Sakaguchi, Norihito; Russier, Julie; Yudasaka, Masako; Iijima, Sumio; Bianco, Alberto; Yokoyama, Atsuro

    2016-08-14

    Carbon nanohorns (CNHs), formed by a rolled graphene structure and terminating in a cone, are promising nanomaterials for the development of a variety of biological applications. Here we demonstrate that alkaline phosphatase activity is dramatically increased by coculture of human monocyte derived macrophages (hMDMs) and human mesenchymal stem cells (hMSCs) in the presence of CNHs. CNHs were mainly localized in the lysosome of macrophages more than in hMSCs during coculturing. At the same time, the amount of Oncostatin M (OSM) in the supernatant was also increased during incubation with CNHs. Oncostatin M (OSM) from activated macrophage has been reported to induce osteoblast differentiation and matrix mineralization through STAT3. These results suggest that the macrophages engulfed CNHs and accelerated the differentiation of mesenchymal stem cells into the osteoblast via OSM release. We expect that the proof-of-concept on the osteoblast differentiation capacity by CNHs will allow future studies focused on CNHs as ideal therapeutic materials for bone regeneration. PMID:27412794

  20. CX3CR1 deficiency suppresses activation and neurotoxicity of microglia/macrophage in experimental ischemic stroke

    PubMed Central

    2014-01-01

    Background Chemokine (C-X3-C motif) ligand 1 (CX3CL1)/ CX3C chemokine receptor 1 (CX3CR1) signaling is important in modulating the communication between neurons and resident microglia/migrated macrophages in the central nervous system (CNS). Although CX3CR1 deficiency is associated with an improved outcome following ischemic brain injury, the mechanism of this observation is largely unknown. The aim of this study was to investigate how CX3CR1 deficiency influences microglia/macrophage functions in the context of its protection following brain ischemia. Methods Wild-type (WT) and CX3CR1-deficient (CX3CR1-/-) mice were subjected to transient middle cerebral artery occlusion (MCAO) and reperfusion. The ischemic brain damage was monitored by rodent high-field magnetic resonance imaging. Neurological deficit was assessed daily. Neuronal apoptotic death and reactive oxygen species (ROS) production were analyzed by immunostaining and live imaging. Activation/inflammatory response of microglia/macrophage were assessed using immunohistochemistry, flow cytometry, 5-bromo-2-deoxyuridine labeling, cytokine ELISA, and real-time PCR. Results CX3CR1-/- mice displayed significantly smaller infarcts and less severe neurological deficits compared to WT controls, following MCAO. In addition, CX3CR1-/- MCAO mice displayed fewer apoptotic neurons and reduced ROS levels. Impaired CX3CR1 signaling abrogated the recruitment of monocyte-derived macrophages from the periphery, suppressed the proliferation of CNS microglia and infiltrated macrophage, facilitated the alternative activation (M2 state) of microglia/macrophages, and attenuated their ability to synthesize and release inflammatory cytokines. Conclusion Our results suggest that inhibition of CX3CR1 signaling could function as a therapeutic modality in ischemic brain injury, by reducing recruitment of peripheral macrophages and expansion/activation of CNS microglia and macrophages, resulting in protection of neurological function

  1. DMXAA causes tumor site-specific vascular disruption in murine non-small cell lung cancer, and like the endogenous non-canonical cyclic dinucleotide STING agonist, 2'3'-cGAMP, induces M2 macrophage repolarization.

    PubMed

    Downey, Charlene M; Aghaei, Mehrnoosh; Schwendener, Reto A; Jirik, Frank R

    2014-01-01

    The vascular disrupting agent 5,6-dimethylxanthenone-4-acetic acid (DMXAA), a murine agonist of the stimulator of interferon genes (STING), appears to target the tumor vasculature primarily as a result of stimulating pro-inflammatory cytokine production from tumor-associated macrophages (TAMs). Since there were relatively few reports of DMXAA effects in genetically-engineered mutant mice (GEMM), and models of non-small cell lung cancer (NSCLC) in particular, we examined both the effectiveness and macrophage dependence of DMXAA in various NSCLC models. The DMXAA responses of primary adenocarcinomas in K-rasLA1/+ transgenic mice, as well as syngeneic subcutaneous and metastatic tumors, generated by a p53R172HΔg/+; K-rasLA1/+ NSCLC line (344SQ-ELuc), were assessed both by in vivo bioluminescence imaging as well as by histopathology. Macrophage-dependence of DMXAA effects was explored by clodronate liposome-mediated TAM depletion. Furthermore, a comparison of the vascular structure between subcutaneous tumors and metastases was carried out using micro-computed tomography (micro-CT). Interestingly, in contrast to the characteristic hemorrhagic necrosis produced by DMXAA in 344SQ-ELuc subcutaneous tumors, this agent failed to cause hemorrhagic necrosis of either 344SQ-ELuc-derived metastases or autochthonous K-rasLA1/+ NSCLCs. In addition, we found that clodronate liposome-mediated depletion of TAMs in 344SQ-ELuc subcutaneous tumors led to non-hemorrhagic necrosis due to tumor feeding-vessel occlusion. Since NSCLC were comprised exclusively of TAMs with anti-inflammatory M2-like phenotype, the ability of DMXAA to re-educate M2-polarized macrophages was examined. Using various macrophage phenotypic markers, we found that the STING agonists, DMXAA and the non-canonical endogenous cyclic dinucleotide, 2'3'-cGAMP, were both capable of re-educating M2 cells towards an M1 phenotype. Our findings demonstrate that the choice of preclinical model and the anatomical site of a

  2. DMXAA Causes Tumor Site-Specific Vascular Disruption in Murine Non-Small Cell Lung Cancer, and like the Endogenous Non-Canonical Cyclic Dinucleotide STING Agonist, 2′3′-cGAMP, Induces M2 Macrophage Repolarization

    PubMed Central

    Downey, Charlene M.; Aghaei, Mehrnoosh; Schwendener, Reto A.; Jirik, Frank R.

    2014-01-01

    The vascular disrupting agent 5,6-dimethylxanthenone-4-acetic acid (DMXAA), a murine agonist of the stimulator of interferon genes (STING), appears to target the tumor vasculature primarily as a result of stimulating pro-inflammatory cytokine production from tumor-associated macrophages (TAMs). Since there were relatively few reports of DMXAA effects in genetically-engineered mutant mice (GEMM), and models of non-small cell lung cancer (NSCLC) in particular, we examined both the effectiveness and macrophage dependence of DMXAA in various NSCLC models. The DMXAA responses of primary adenocarcinomas in K-rasLA1/+ transgenic mice, as well as syngeneic subcutaneous and metastatic tumors, generated by a p53R172HΔg/+; K-rasLA1/+ NSCLC line (344SQ-ELuc), were assessed both by in vivo bioluminescence imaging as well as by histopathology. Macrophage-dependence of DMXAA effects was explored by clodronate liposome-mediated TAM depletion. Furthermore, a comparison of the vascular structure between subcutaneous tumors and metastases was carried out using micro-computed tomography (micro-CT). Interestingly, in contrast to the characteristic hemorrhagic necrosis produced by DMXAA in 344SQ-ELuc subcutaneous tumors, this agent failed to cause hemorrhagic necrosis of either 344SQ-ELuc-derived metastases or autochthonous K-rasLA1/+ NSCLCs. In addition, we found that clodronate liposome-mediated depletion of TAMs in 344SQ-ELuc subcutaneous tumors led to non-hemorrhagic necrosis due to tumor feeding-vessel occlusion. Since NSCLC were comprised exclusively of TAMs with anti-inflammatory M2-like phenotype, the ability of DMXAA to re-educate M2-polarized macrophages was examined. Using various macrophage phenotypic markers, we found that the STING agonists, DMXAA and the non-canonical endogenous cyclic dinucleotide, 2′3′-cGAMP, were both capable of re-educating M2 cells towards an M1 phenotype. Our findings demonstrate that the choice of preclinical model and the anatomical site of a

  3. Plasminogen activator inhibitor-1 stimulates macrophage activation through Toll-like Receptor-4.

    PubMed

    Gupta, Kamlesh K; Xu, Zhi; Castellino, Francis J; Ploplis, Victoria A

    2016-08-26

    While inflammation is often associated with increased Plasminogen Activator Inhibitor-1 (PAI-1), the functional consequences of PAI-1 in inflammation have yet to be fully determined. The aim of this study was to establish the in vivo relevance of PAI-1 in inflammation. A mouse model of systemic inflammation was employed in wild-type (WT) and PAI-1 deficient (PAI-1(-/-)) mice. Mice survival, macrophage infiltration into the lungs, and plasma levels of pro-inflammatory cytokines were assessed after lipopolysaccharide (LPS) infusion. In vitro experiments were conducted to examine changes in LPS-induced inflammatory responses after PAI-1 exposure. PAI-1 was shown to regulate inflammation, in vivo, and affect macrophage infiltration into lungs. Further, PAI-1 activated macrophages, and increased pro-inflammatory cytokines at both the mRNA and protein levels in these cells. The effect of PAI-1 on macrophage activation was dose-dependent and LPS-independent. Proteolytic inhibitory activity and Lipoprotein Receptor-related Protein (LRP) and vitronectin (VN) binding functions, were not involved in PAI-1-mediated activation of macrophages. However, the effect of PAI-1 on macrophage activation was partially blocked by a TLR4 neutralizing antibody. Furthermore, PAI-1-induced Tumor Necrosis Factor-alpha (TNF-α) and Macrophage Inflammatory Protein-2 (MIP-2) expression was reduced in TLR4(-/-) macrophages compared to WT macrophages. These results demonstrate that PAI-1 is involved in the regulation of host inflammatory responses through Toll-like Receptor-4 (TLR4)-mediated macrophage activation. PMID:27317488

  4. Alternatively activated macrophages derived from monocytes and tissue macrophages are phenotypically and functionally distinct

    PubMed Central

    Gundra, Uma Mahesh; Girgis, Natasha M.; Ruckerl, Dominik; Jenkins, Stephen; Ward, Lauren N.; Kurtz, Zachary D.; Wiens, Kirsten E.; Tang, Mei San; Basu-Roy, Upal; Mansukhani, Alka; Allen, Judith E.

    2014-01-01

    Macrophages adopt an alternatively activated phenotype (AAMs) when activated by the interleukin-4receptor(R)α. AAMs can be derived either from proliferation of tissue resident macrophages or recruited inflammatory monocytes, but it is not known whether these different sources generate AAMs that are phenotypically and functionally distinct. By transcriptional profiling analysis, we show here that, although both monocyte and tissue-derived AAMs expressed high levels of Arg1, Chi3l3, and Retnla, only monocyte-derived AAMs up-regulated Raldh2 and PD-L2. Monocyte-derived AAMs were also CX3CR1-green fluorescent protein (GFP)high and expressed CD206, whereas tissue-derived AAMs were CX3CR1-GFP and CD206 negative. Monocyte-derived AAMs had high levels of aldehyde dehydrogenase activity and promoted the differentiation of FoxP3+ cells from naïve CD4+ cells via production of retinoic acid. In contrast, tissue-derived AAMs expressed high levels of uncoupling protein 1. Hence monocyte-derived AAM have properties associated with immune regulation, and the different physiological properties associated with AAM function may depend on the distinct lineage of these cells. PMID:24695852

  5. Cryptococcal heat shock protein 70 homolog Ssa1 contributes to pulmonary expansion of Cryptococcus neoformans during the afferent phase of the immune response by promoting macrophage M2 polarization.

    PubMed

    Eastman, Alison J; He, Xiumiao; Qiu, Yafeng; Davis, Michael J; Vedula, Priya; Lyons, Daniel M; Park, Yoon-Dong; Hardison, Sarah E; Malachowski, Antoni N; Osterholzer, John J; Wormley, Floyd L; Williamson, Peter R; Olszewski, Michal A

    2015-06-15

    Numerous virulence factors expressed by Cryptococcus neoformans modulate host defenses by promoting nonprotective Th2-biased adaptive immune responses. Prior studies demonstrate that the heat shock protein 70 homolog, Ssa1, significantly contributes to serotype D C. neoformans virulence through the induction of laccase, a Th2-skewing and CNS tropic factor. In the present study, we sought to determine whether Ssa1 modulates host defenses in mice infected with a highly virulent serotype A strain of C. neoformans (H99). To investigate this, we assessed pulmonary fungal growth, CNS dissemination, and survival in mice infected with either H99, an SSA1-deleted H99 strain (Δssa1), and a complement strain with restored SSA1 expression (Δssa1::SSA1). Mice infected with the Δssa1 strain displayed substantial reductions in lung fungal burden during the innate phase (days 3 and 7) of the host response, whereas less pronounced reductions were observed during the adaptive phase (day 14) and mouse survival increased only by 5 d. Surprisingly, laccase activity assays revealed that Δssa1 was not laccase deficient, demonstrating that H99 does not require Ssa1 for laccase expression, which explains the CNS tropism we still observed in the Ssa1-deficient strain. Lastly, our immunophenotyping studies showed that Ssa1 directly promotes early M2 skewing of lung mononuclear phagocytes during the innate phase, but not the adaptive phase, of the immune response. We conclude that Ssa1's virulence mechanism in H99 is distinct and laccase-independent. Ssa1 directly interferes with early macrophage polarization, limiting innate control of C. neoformans, but ultimately has no effect on cryptococcal control by adaptive immunity. PMID:25972480

  6. Rickettsia australis Activates Inflammasome in Human and Murine Macrophages

    PubMed Central

    Smalley, Claire; Bechelli, Jeremy; Rockx-Brouwer, Dedeke; Saito, Tais; Azar, Sasha R.; Ismail, Nahed; Walker, David H.; Fang, Rong

    2016-01-01

    Rickettsiae actively escape from vacuoles and replicate free in the cytoplasm of host cells, where inflammasomes survey the invading pathogens. In the present study, we investigated the interactions of Rickettsia australis with the inflammasome in both mouse and human macrophages. R. australis induced a significant level of IL-1β secretion by human macrophages, which was significantly reduced upon treatment with an inhibitor of caspase-1 compared to untreated controls, suggesting caspase-1-dependent inflammasome activation. Rickettsia induced significant secretion of IL-1β and IL-18 in vitro by infected mouse bone marrow-derived macrophages (BMMs) as early as 8–12 h post infection (p.i.) in a dose-dependent manner. Secretion of these cytokines was accompanied by cleavage of caspase-1 and was completely abrogated in BMMs deficient in caspase-1/caspase-11 or apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC), suggesting that R. australis activate the ASC-dependent inflammasome. Interestingly, in response to the same quantity of rickettsiae, NLRP3-/- BMMs significantly reduced the secretion level of IL-1β compared to wild type (WT) controls, suggesting that NLRP3 inflammasome contributes to cytosolic recognition of R. australis in vitro. Rickettsial load in spleen, but not liver and lung, of R. australis-infected NLRP3-/- mice was significantly greater compared to WT mice. These data suggest that NLRP3 inflammasome plays a role in host control of bacteria in vivo in a tissue-specific manner. Taken together, our data, for the first time, illustrate the activation of ASC-dependent inflammasome by R. australis in macrophages in which NLRP3 is involved. PMID:27362650

  7. Ceramic modifications of porous titanium: effects on macrophage activation.

    PubMed

    Scislowska-Czarnecka, A; Menaszek, E; Szaraniec, B; Kolaczkowska, E

    2012-12-01

    Porous titanium is one of the most widely used implant materials because of its mechanical properties, however, it is also characterised by low bioactivity. To improve the above parameter we prepared three modifications of the porous (30 wt%) titanium (Ti) surface by covering it with bioactive hydroxyapatite (HA), bioglass (BG) and calcium silicate (CS). Subsequently we tested the impact of the modifications on macrophages directing the inflammatory response that might compromise the implant bioactivity. In the study we investigated the in vitro effects of the materials on murine cell line RAW 264.7 macrophage adherence, morphology and activation (production/release of metalloproteinase MMP-9 and pro- and anti-inflammatory cytokines). CS Ti decreased the macrophage adherence and up-regulated the release of several pro-inflammatory mediators, including TNF-α, IL-6, IL-12. Also HA Ti reduced the cell adherence but other parameters were generally not increased, except of TNF-α. In contrast, BG Ti improved macrophage adherence and either decreased production of multiple mediators (MMP-9, TNF-α, IFN-γ, MCP-1) or did not change it in comparison to the porous titanium. We can conclude that analyzing the effects on the inflammatory response initiated by macrophages in vitro, calcium silicate did not improve the biological properties of the porous titanium. The improved bioactivity of titanium was, however, achieved by the application of the hydroxyapatite and bioglass layers. The present in vitro results suggest that these materials, HA Ti and especially BG Ti, may be suitable for in vivo application and thus justify their further investigation. PMID:22939219

  8. A Distinctive Alveolar Macrophage Activation State Induced by Cigarette Smoking

    PubMed Central

    Woodruff, Prescott G.; Koth, Laura L.; Yang, Yee Hwa; Rodriguez, Madeleine W.; Favoreto, Silvio; Dolganov, Gregory M.; Paquet, Agnes C.; Erle, David J.

    2005-01-01

    Rationale: Macrophages are believed to play a central role in emphysema based largely on data from mouse models. However, the relevance of these models to smoking-related lung disease in humans is uncertain. Objectives: We sought to comprehensively characterize the effects of smoking on gene expression in human alveolar macrophages and to compare these with effects seen in transgenic mouse models of emphysema. Methods: We used DNA microarrays with genomewide coverage to analyze alveolar macrophages from 15 smokers, 15 nonsmokers, and 15 subjects with asthma (disease control). Selected gene expression changes were validated by polymerase chain reaction and ELISA. Expression changes were compared with those identified by microarray analysis of interleukin-13–overexpressing and integrin-β6–deficient mice, which both develop emphysema. Measurements and Main Results: All 15 smokers shared a common pattern of macrophage gene expression that distinguished them from nonsmokers, a finding not observed in subjects with asthma. We identified 110 genes as differentially expressed in smokers despite using conservative statistical methods. Matrix metalloproteinase 12, a proteinase that plays a critical role in mouse models, was the third most highly induced gene in smokers (ninefold, p < 0.0001). However, most changes in smokers were not reflected in mouse models. One such finding was increased osteopontin expression in smokers (fourfold, p = 0.006), which was confirmed at the protein level and correlated with the degree of airway obstruction. Conclusions: Smoking induces a remarkably consistent and distinctive pattern of alveolar macrophage activation. These studies identify aspects of mouse models that are directly relevant to human smokers and also reveal novel potential mediators of smoking-related diseases. PMID:16166618

  9. [Macrophage activation syndrome associated with adult-onset Still's disease].

    PubMed

    Iwamoto, Masahiro

    2007-12-01

    Macrophage activation syndrome (MAS) is a rare and potentially lethal disease, resulting from uncontrolled activation and proliferation of T lymphocytes and macrophages. Adult-onset Still's disease (AOSD) is an inflammatory disease. AOSD resemble reactive MAS in its symptoms and laboratory data. Moreover, AOSD per se induces MAS. It is, therefore, quite difficult to differentiate these syndrome and disease. The immunodeficiency state induced by treatment in AOSD could reactivate latent viruses such as Epstein-Barr virus, which could potentially lead to MAS. The therapeutic agents for AOSD, such as sulfasalazine, also could provoke reactive MAS. Because multiple factors are involved in inducing MAS to a different degree, the main cause should be searched for and targeted for the therapy. PMID:18174671

  10. Myelin-Derived Lipids Modulate Macrophage Activity by Liver X Receptor Activation

    PubMed Central

    Huynh-Thu, Vân Anh; Irrthum, Alexandre; Smeets, Hubert J. M.; Gustafsson, Jan-Åke; Steffensen, Knut R.; Mulder, Monique; Stinissen, Piet; Hellings, Niels; Hendriks, Jerome J. A.

    2012-01-01

    Multiple sclerosis is a chronic, inflammatory, demyelinating disease of the central nervous system in which macrophages and microglia play a central role. Foamy macrophages and microglia, containing degenerated myelin, are abundantly found in active multiple sclerosis lesions. Recent studies have described an altered macrophage phenotype after myelin internalization. However, it is unclear by which mechanisms myelin affects the phenotype of macrophages and how this phenotype can influence lesion progression. Here we demonstrate, by using genome wide gene expression analysis, that myelin-phagocytosing macrophages have an enhanced expression of genes involved in migration, phagocytosis and inflammation. Interestingly, myelin internalization also induced the expression of genes involved in liver-X-receptor signaling and cholesterol efflux. In vitro validation shows that myelin-phagocytosing macrophages indeed have an increased capacity to dispose intracellular cholesterol. In addition, myelin suppresses the secretion of the pro-inflammatory mediator IL-6 by macrophages, which was mediated by activation of liver-X-receptor β. Our data show that myelin modulates the phenotype of macrophages by nuclear receptor activation, which may subsequently affect lesion progression in demyelinating diseases such as multiple sclerosis. PMID:22984598

  11. Myelin-derived lipids modulate macrophage activity by liver X receptor activation.

    PubMed

    Bogie, Jeroen F J; Timmermans, Silke; Huynh-Thu, Vân Anh; Irrthum, Alexandre; Smeets, Hubert J M; Gustafsson, Jan-Åke; Steffensen, Knut R; Mulder, Monique; Stinissen, Piet; Hellings, Niels; Hendriks, Jerome J A

    2012-01-01

    Multiple sclerosis is a chronic, inflammatory, demyelinating disease of the central nervous system in which macrophages and microglia play a central role. Foamy macrophages and microglia, containing degenerated myelin, are abundantly found in active multiple sclerosis lesions. Recent studies have described an altered macrophage phenotype after myelin internalization. However, it is unclear by which mechanisms myelin affects the phenotype of macrophages and how this phenotype can influence lesion progression. Here we demonstrate, by using genome wide gene expression analysis, that myelin-phagocytosing macrophages have an enhanced expression of genes involved in migration, phagocytosis and inflammation. Interestingly, myelin internalization also induced the expression of genes involved in liver-X-receptor signaling and cholesterol efflux. In vitro validation shows that myelin-phagocytosing macrophages indeed have an increased capacity to dispose intracellular cholesterol. In addition, myelin suppresses the secretion of the pro-inflammatory mediator IL-6 by macrophages, which was mediated by activation of liver-X-receptor β. Our data show that myelin modulates the phenotype of macrophages by nuclear receptor activation, which may subsequently affect lesion progression in demyelinating diseases such as multiple sclerosis. PMID:22984598

  12. Cardiac Tissue Injury and Remodeling Is Dependent Upon MR Regulation of Activation Pathways in Cardiac Tissue Macrophages.

    PubMed

    Shen, Jimmy Z; Morgan, James; Tesch, Greg H; Rickard, Amanda J; Chrissobolis, Sophocles; Drummond, Grant R; Fuller, Peter J; Young, Morag J

    2016-08-01

    Macrophage mineralocorticoid receptor (MR) signaling is an important mediator of cardiac tissue inflammation and fibrosis. The goal of the present study was to determine the cellular mechanisms of MR signaling in macrophages that promote cardiac tissue injury and remodeling. We sought to identify specific markers of MR signaling in isolated tissue macrophages (cardiac, aortic) vs splenic mononuclear cells from wild-type and myeloid MR-null mice given vehicle/salt or deoxycorticosterone (DOC)/salt for 8 weeks. Cardiac tissue fibrosis in response to 8 weeks of DOC/salt treatment was found in the hearts from wild-type but not myeloid MR-null mice. This was associated with an increased expression of the profibrotic markers TGF-β1 and matrix metalloproteinase-12 and type 1 inflammatory markers TNFα and chemokine (C-X-C motif) ligand-9 in cardiac macrophages. Differential expression of immunomodulatory M2-like markers (eg, arginase-1, macrophage scavenger receptor 1) was dependent on the tissue location of wild-type and MR-null macrophages. Finally, intact MR signaling is required for the phosphorylation of c-Jun NH2-terminal kinase in response to a proinflammatory stimulus in bone marrow monocytes/macrophages in culture. These data suggest that the activation of the c-Jun NH2-terminal kinase pathway in macrophages after a tissue injury and inflammatory stimuli in the DOC/salt model is MR dependent and regulates the transcription of downstream profibrotic factors, which may represent potential therapeutic targets in heart failure patients. PMID:27253999

  13. Inhibition of tristetraprolin expression by dexamethasone in activated macrophages.

    PubMed

    Jalonen, Ulla; Lahti, Aleksi; Korhonen, Riku; Kankaanranta, Hannu; Moilanen, Eeva

    2005-03-01

    Tristetraprolin (TTP) is a factor that regulates mRNA stability and the expression of certain inflammatory genes. In the present study, we found that TTP expression was increased in macrophages exposed to bacterial lipopolysaccharide (LPS). Dexamethasone and dissociated steroid RU24858 inhibited LPS-induced TTP protein and mRNA expression and the inhibitory effect was reversed by a glucocorticoid receptor antagonist mifepristone. Histone deacetylase inhibitors trichostatin A (TSA) and apicidin reduced the inhibitory effect of dexamethasone and RU24858 on TTP expression, but the glucocorticoids did not alter TTP mRNA half-life. These results suggest that anti-inflammatory steroids reduce TTP expression in activated macrophages by a glucocorticoid response element (GRE)-independent mechanism, possibly through histone deacetylation and transcriptional silencing. PMID:15710351

  14. Delineation of Diverse Macrophage Activation Programs in Response to Intracellular Parasites and Cytokines

    PubMed Central

    Zhang, Shuyi; Kim, Charles C.; Batra, Sajeev; McKerrow, James H.; Loke, P'ng

    2010-01-01

    Background The ability to reside and proliferate in macrophages is characteristic of several infectious agents that are of major importance to public health, including the intracellular parasites Trypanosoma cruzi (the etiological agent of Chagas disease) and Leishmania species (etiological agents of Kala-Azar and cutaneous leishmaniasis). Although recent studies have elucidated some of the ways macrophages respond to these pathogens, the relationships between activation programs elicited by these pathogens and the macrophage activation programs elicited by bacterial pathogens and cytokines have not been delineated. Methodology/Principal Findings To provide a global perspective on the relationships between macrophage activation programs and to understand how certain pathogens circumvent them, we used transcriptional profiling by genome-wide microarray analysis to compare the responses of mouse macrophages following exposure to the intracellular parasites T. cruzi and Leishmania mexicana, the bacterial product lipopolysaccharide (LPS), and the cytokines IFNG, TNF, IFNB, IL-4, IL-10, and IL-17. We found that LPS induced a classical activation state that resembled macrophage stimulation by the Th1 cytokines IFNG and TNF. However, infection by the protozoan pathogen L. mexicana produced so few transcriptional changes that the infected macrophages were almost indistinguishable from uninfected cells. T. cruzi activated macrophages produced a transcriptional signature characterized by the induction of interferon-stimulated genes by 24 h post-infection. Despite this delayed IFN response by T. cruzi, the transcriptional response of macrophages infected by the kinetoplastid pathogens more closely resembled the transcriptional response of macrophages stimulated by the cytokines IL-4, IL-10, and IL-17 than macrophages stimulated by Th1 cytokines. Conclusions/Significance This study provides global gene expression data for a diverse set of biologically significant pathogens and

  15. Intratumoral Delivery of IL-21 Overcomes Anti-Her2/Neu Resistance through Shifting Tumor-Associated Macrophages from M2 to M1 Phenotype.

    PubMed

    Xu, Meng; Liu, Mingyue; Du, Xuexiang; Li, Sirui; Li, Hang; Li, Xiaozhu; Li, Ying; Wang, Yang; Qin, Zhihai; Fu, Yang-Xin; Wang, Shengdian

    2015-05-15

    Tumor resistance is a major hurdle to anti-Her2/neu Ab-based cancer therapy. Current strategies to overcome tumor resistance focus on tumor cell-intrinsic resistance. However, the extrinsic mechanisms, especially the tumor microenvironment, also play important roles in modulating the therapeutic response and resistance of the Ab. In this study, we demonstrate that tumor progression is highly associated with TAMs with immune-suppressive M2 phenotypes, and deletion of TAMs markedly enhanced the therapeutic effects of anti-Her2/neu Ab in a HER2/neu-dependent breast cancer cell TUBO model. Tumor local delivery of IL-21 can skew TAM polarization away from the M2 phenotype to a tumor-inhibiting M1 phenotype, which rapidly stimulates T cell responses against tumor and dramatically promotes the therapeutic effect of anti-Her2 Ab. Skewing of TAM polarization by IL-21 relies substantially on direct action of IL-21 on TAMs rather than stimulation of T and NK cells. Thus, our findings identify the abundant TAMs as a major extrinsic barrier for anti-Her2/neu Ab therapy and present a novel approach to combat this extrinsic resistance by tumor local delivery of IL-21 to skew TAM polarization. This study offers a therapeutic strategy to modulate the tumor microenvironment to overcome tumor-extrinsic resistance. PMID:25876763

  16. Effects of inhibitors of tumoricidal activity upon schistosomulum killing by activated macrophages.

    PubMed

    James, S L; Glaven, J A

    1987-12-01

    Larvae of the helminth parasite Schistosoma mansoni are efficiently killed in vitro by lymphokine-activated macrophages, leading to the hypothesis that these cells may participate in the effector mechanism of protective immunity against schistosomiasis. Larvacidal activity has also been demonstrated in the IC-21 macrophage cell line in the absence of a demonstrable respiratory burst, indicating that macrophages possess nonoxidative mechanisms of schistosomulum killing. In this study, we demonstrated that IC-21 larval killing was most effective when contact was allowed between cells and target. Nonoxidative larvacidal activity was prevented by protein synthesis inhibitors, by the inhibition of microtubule polymerization, and by tosyllysylchloromethylketone but not by other inhibitors or substrates of tryptic or chymotryptic protease activity. The addition of excess iron to the culture also prevented IC-21-mediated larval killing, suggesting that the production of an iron-binding molecule may be involved. In contrast, the addition of excess thymidine or arginine did not reverse macrophage larvacidal activity, nor did lysosomotropic agents that depress the activity of acid hydrolases. Under appropriate conditions of activation and surface membrane stimulation, IC-21 cells could be induced to release soluble cytotoxic factors retaining larvacidal activity. These observations provide insight into the mechanism of macrophage-mediated schistosome killing, in comparison to the cytotoxic mechanisms described in the better-studied tumoricidal models, and supply a basis for further biochemical investigation of macrophage function against a multicellular target. PMID:3119500

  17. Effects of inhibitors of tumoricidal activity upon schistosomulum killing by activated macrophages.

    PubMed Central

    James, S L; Glaven, J A

    1987-01-01

    Larvae of the helminth parasite Schistosoma mansoni are efficiently killed in vitro by lymphokine-activated macrophages, leading to the hypothesis that these cells may participate in the effector mechanism of protective immunity against schistosomiasis. Larvacidal activity has also been demonstrated in the IC-21 macrophage cell line in the absence of a demonstrable respiratory burst, indicating that macrophages possess nonoxidative mechanisms of schistosomulum killing. In this study, we demonstrated that IC-21 larval killing was most effective when contact was allowed between cells and target. Nonoxidative larvacidal activity was prevented by protein synthesis inhibitors, by the inhibition of microtubule polymerization, and by tosyllysylchloromethylketone but not by other inhibitors or substrates of tryptic or chymotryptic protease activity. The addition of excess iron to the culture also prevented IC-21-mediated larval killing, suggesting that the production of an iron-binding molecule may be involved. In contrast, the addition of excess thymidine or arginine did not reverse macrophage larvacidal activity, nor did lysosomotropic agents that depress the activity of acid hydrolases. Under appropriate conditions of activation and surface membrane stimulation, IC-21 cells could be induced to release soluble cytotoxic factors retaining larvacidal activity. These observations provide insight into the mechanism of macrophage-mediated schistosome killing, in comparison to the cytotoxic mechanisms described in the better-studied tumoricidal models, and supply a basis for further biochemical investigation of macrophage function against a multicellular target. PMID:3119500

  18. Modified Low Density Lipoprotein Stimulates Complement C3 Expression and Secretion via Liver X Receptor and Toll-like Receptor 4 Activation in Human Macrophages*

    PubMed Central

    Mogilenko, Denis A.; Kudriavtsev, Igor V.; Trulioff, Andrey S.; Shavva, Vladimir S.; Dizhe, Ella B.; Missyul, Boris V.; Zhakhov, Alexander V.; Ischenko, Alexander M.; Perevozchikov, Andrej P.; Orlov, Sergey V.

    2012-01-01

    Complement C3 is a pivotal component of three cascades of complement activation. C3 is expressed in human atherosclerotic lesions and is involved in atherogenesis. However, the mechanism of C3 accumulation in atherosclerotic lesions is not well elucidated. We show that acetylated low density lipoprotein and oxidized low density lipoprotein (oxLDL) increase C3 gene expression and protein secretion by human macrophages. Modified LDL (mLDL)-mediated activation of C3 expression mainly depends on liver X receptor (LXR) and partly on Toll-like receptor 4 (TLR4), whereas C3 secretion is increased due to TLR4 activation by mLDL. LXR agonist TO901317 stimulates C3 gene expression in human monocyte-macrophage cells but not in human hepatoma (HepG2) cells. We find LXR-responsive element inside of the promoter region of the human C3 gene, which binds to LXRβ in macrophages but not in HepG2 cells. We show that C3 expression and secretion is decreased in IL-4-treated (M2) and increased in IFNγ/LPS-stimulated (M1) human macrophages as compared with resting macrophages. LXR agonist TO901317 potentiates LPS-induced C3 gene expression and protein secretion in macrophages, whereas oxLDL differently modulates LPS-mediated regulation of C3 in M1 or M2 macrophages. Treatment of human macrophages with anaphylatoxin C3a results in stimulation of C3 transcription and secretion as well as increased oxLDL accumulation and augmented oxLDL-mediated up-regulation of the C3 gene. These data provide a novel mechanism of C3 gene regulation in macrophages and suggest new aspects of cross-talk between mLDL, C3, C3a, and TLR4 during development of atherosclerotic lesions. PMID:22194611

  19. Multimodality PET/MRI agents targeted to activated macrophages.

    PubMed

    Tu, Chuqiao; Ng, Thomas S C; Jacobs, Russell E; Louie, Angelique Y

    2014-02-01

    The recent emergence of multimodality imaging, particularly the combination of PET and MRI, has led to excitement over the prospect of improving detection of disease. Iron oxide nanoparticles have become a popular platform for the fabrication of PET/MRI probes owing to their advantages of high MRI detection sensitivity, biocompatibility, and biodegradability. In this article, we report the synthesis of dextran-coated iron oxide nanoparticles (DIO) labeled with the positron emitter (64)Cu to generate a PET/MRI probe, and modified with maleic anhydride to increase the negative surface charge. The modified nanoparticulate PET/MRI probe (MDIO-(64)Cu-DOTA) bears repetitive anionic charges on the surface that facilitate recognition by scavenger receptor type A (SR-A), a ligand receptor found on activated macrophages but not on normal vessel walls. MDIO-(64)Cu-DOTA has an average iron oxide core size of 7-8 nm, an average hydrodynamic diameter of 62.7 nm, an r1 relaxivity of 16.8 mM(-1) s(-1), and an r 2 relaxivity of 83.9 mM(-1) s(-1) (37 °C, 1.4 T). Cell studies confirmed that the probe was nontoxic and was specifically taken up by macrophages via SR-A. In comparison with the nonmodified analog, the accumulation of MDIO in macrophages was substantially improved. These characteristics demonstrate the promise of MDIO-(64)Cu-DOTA for identification of vulnerable atherosclerotic plaques via the targeting of macrophages. PMID:24166283

  20. Shaping the Murine Macrophage Phenotype: IL-4 and cAMP Synergistically Activate the Arginase I Promoter

    PubMed Central

    Sheldon, Kathryn E.; Shandilya, Harish; Kepka-Lenhart, Diane; Poljakovic, Mirjana; Ghosh, Arundhati; Morris, Sidney M.

    2013-01-01

    Arginase I is a marker of murine M2 macrophages and is highly expressed in many inflammatory diseases. The basis for high arginase I expression in macrophages in vivo is incompletely understood but likely reflects integrated responses to combinations of stimuli. Our objective was to elucidate mechanisms involved in modulating arginase I induction by IL-4, the prototypical activator of M2 macrophages. IL-4 and 8-bromo-cAMP (8-Br-cAMP) individually induce arginase I, but together they rapidly and synergistically induce arginase I mRNA, protein, and promoter activity in murine macrophage cells. Arginase I induction by IL-4 requires binding of the transcription factors STAT6 and C/EBPβ to the IL-4 response element of the arginase I gene. Chromatin immunoprecipitation (ChIP) showed that the synergistic response involves binding of both transcription factors to the IL-4 response element at levels significantly greater than in response to IL-4 alone. The results suggest that C/EBPβ is a limiting factor for the level of STAT6 bound to the IL-4 response element. The enhanced binding in the synergistic response was not due to increased expression of either STAT6 or C/EBPβ but correlated primarily with increased nuclear abundance of C/EBPβ. Our findings also suggest that induction of arginase I expression is stochastic; i.e., differences in induction reflect differences in probability of transcriptional activation and not simply differences in rate of transcription. Results of the present study also may be useful for understanding mechanisms underlying regulated expression of other genes in macrophages and other myeloid-derived cells in health and disease. PMID:23913966

  1. New insights into the multidimensional concept of macrophage ontogeny, activation and function.

    PubMed

    Ginhoux, Florent; Schultze, Joachim L; Murray, Peter J; Ochando, Jordi; Biswas, Subhra K

    2016-01-01

    Macrophages have protective roles in immunity to pathogens, tissue development, homeostasis and repair following damage. Maladaptive immunity and inflammation provoke changes in macrophage function that are causative of disease. Despite a historical wealth of knowledge about macrophages, recent advances have revealed unknown aspects of their development and function. Following development, macrophages are activated by diverse signals. Such tissue microenvironmental signals together with epigenetic changes influence macrophage development, activation and functional diversity, with consequences in disease and homeostasis. We discuss here how recent discoveries in these areas have led to a multidimensional concept of macrophage ontogeny, activation and function. In connection with this, we also discuss how technical advances facilitate a new roadmap for the isolation and analysis of macrophages at high resolution. PMID:26681460

  2. GM-CSF Promotes Macrophage Alternative Activation after Renal Ischemia/Reperfusion Injury

    PubMed Central

    Huynh, Larry; Marlier, Arnaud; Lee, Yashang; Moeckel, Gilbert W.; Cantley, Lloyd G.

    2015-01-01

    After kidney ischemia/reperfusion (I/R) injury, monocytes home to the kidney and differentiate into activated macrophages. Whereas proinflammatory macrophages contribute to the initial kidney damage, an alternatively activated phenotype can promote normal renal repair. The microenvironment of the kidney during the repair phase mediates the transition of macrophage activation from a proinflammatory to a reparative phenotype. In this study, we show that macrophages isolated from murine kidneys during the tubular repair phase after I/R exhibit an alternative activation gene profile that differs from the canonical alternative activation induced by IL-4–stimulated STAT6 signaling. This unique activation profile can be reproduced in vitro by stimulation of bone marrow-derived macrophages with conditioned media from serum-starved mouse proximal tubule cells. Secreted tubular factors were found to activate macrophage STAT3 and STAT5 but not STAT6, leading to induction of the unique alternative activation pattern. Using STAT3-deficient bone marrow-derived macrophages and pharmacologic inhibition of STAT5, we found that tubular cell-mediated macrophage alternative activation is regulated by STAT5 activation. Both in vitro and after renal I/R, tubular cells expressed GM-CSF, a known STAT5 activator, and this pathway was required for in vitro alternative activation of macrophages by tubular cells. Furthermore, administration of a neutralizing antibody against GM-CSF after renal I/R attenuated kidney macrophage alternative activation and suppressed tubular proliferation. Taken together, these data show that tubular cells can instruct macrophage activation by secreting GM-CSF, leading to a unique macrophage reparative phenotype that supports tubular proliferation after sterile ischemic injury. PMID:25388222

  3. Pyrimidinergic Receptor Activation Controls Toxoplasma gondii Infection in Macrophages

    PubMed Central

    Moreira-Souza, Aline Cristina Abreu; Marinho, Ygor; Correa, Gladys; Santoro, Giani França; Coutinho, Claudia Mara Lara Melo; Vommaro, Rossiane Claudia; Coutinho-Silva, Robson

    2015-01-01

    Infection by the protozoan parasite Toxoplasma gondii is highly prevalent worldwide and may have serious clinical manifestations in immunocompromised patients. T. gondii is an obligate intracellular parasite that infects almost any cell type in mammalian hosts, including immune cells. The immune cells express purinergic P2 receptors in their membrane – subdivided into P2Y and P2X subfamilies - whose activation is important for infection control. Here, we examined the effect of treatment with UTP and UDP in mouse peritoneal macrophages infected with T. gondii tachyzoites. Treatment with these nucleotides reduced parasitic load by 90%, but did not increase the levels of the inflammatory mediators NO and ROS, nor did it modulate host cell death by apoptosis or necrosis. On the other hand, UTP and UDP treatments induced early egress of tachyzoites from infected macrophages, in a Ca2+-dependent manner, as shown by scanning electron microscopy analysis, and videomicroscopy. In subsequent infections, prematurely egressed parasites had reduced infectivity, and could neither replicate nor inhibit the fusion of lysosomes to the parasitophorous vacuole. The use of selective agonists and antagonists of the receptor subtypes P2Y2 and P2Y4 and P2Y6 showed that premature parasite egress may be mediated by the activation of these receptor subtypes. Our results suggest that the activity of P2Y host cell receptors controls T. gondii infection in macrophages, highlighting the importance of pyrimidinergic signaling for innate immune system response against infection. Finally the P2Y receptors should be considered as new target for the development of drugs against T. gondii infection. PMID:26192447

  4. Successful therapy of macrophage activation syndrome with dexamethasone palmitate.

    PubMed

    Nakagishi, Yasuo; Shimizu, Masaki; Kasai, Kazuko; Miyoshi, Mari; Yachie, Akihiro

    2016-07-01

    Macrophage activation syndrome (MAS) is a severe and potential life-threatening complication of childhood systemic inflammatory disorders. Corticosteroids are commonly used as the first-line therapy for MAS. We report four patients with MAS who were successfully treated with dexamethasone palmitate (DexP), a liposome-incorporated dexamethasone, much more efficient than free corticosteroids. DexP effectively inhibited inflammation in MAS patients in whom the response to pulse methylprednisolone was not sufficient to manage their diseases. DexP was also effective as the first-line therapy for MAS. Based on these findings, DexP is an effective therapy in treating MAS patients. PMID:24754272

  5. Control of macrophage metabolism and activation by mTOR and Akt signaling

    PubMed Central

    Covarrubias, Anthony J.; Aksoylar, H. Ibrahim; Horng, Tiffany

    2015-01-01

    Macrophages are pleiotropic cells that assume a variety of functions depending on their tissue of residence and tissue state. They maintain homeostasis as well as coordinate responses to stresses such as infection and metabolic challenge. The ability of macrophages to acquire diverse, context-dependent activities requires their activation (or polarization) to distinct functional states. While macrophage activation is well understood at the level of signal transduction and transcriptional regulation, the metabolic underpinnings are poorly understood. Importantly, emerging studies indicate that metabolic shifts play a pivotal role in control of macrophage activation and acquisition of context-dependent effector activities. The signals that drive macrophage activation impinge on metabolic pathways, allowing for coordinate control of macrophage activation and metabolism. Here we discuss how mTOR and Akt, major metabolic regulators and targets of such activation signals, control macrophage metabolism and activation. Dysregulated macrophage activities contribute to many diseases, including infectious, inflammatory, and metabolic diseases and cancer, thus a better understanding of metabolic control of macrophage activation could pave the way to the development of new therapeutic strategies. PMID:26360589

  6. LPS-inducible factor(s) from activated macrophages mediates cytolysis of Naegleria fowleri amoebae

    SciTech Connect

    Cleary, S.F.; Marciano-Cabral, F.

    1986-03-01

    Soluble cytolytic factors of macrophage origin have previously been described with respect to their tumoricidal activity. The purpose of this study was to investigate the mechanism and possible factor(s) responsible for cytolysis of the amoeba Naegleria fowleri by activated peritoneal macrophages from B6C3F1 mice. Macrophages or conditioned medium (CM) from macrophage cultures were incubated with /sup 3/H-Uridine labeled amoebae. Percent specific release of label served as an index of cytolysis. Bacille Calmette-Guerin (BCG) and Corynebacterium parvum macrophages demonstrated significant cytolysis of amoebae at 24 h with an effector to target ratio of 10:1. Treatment of macrophages with inhibitors of RNA or protein synthesis blocked amoebicidal activity. Interposition of a 1 ..mu..m pore membrane between macrophages and amoebae inhibited killing. Inhibition in the presence of the membrane was overcome by stimulating the macrophages with LPS. CM from SPS-stimulated, but not unstimulated, cultures of activated macrophages was cytotoxic for amoebae. The activity was heat sensitive and was recovered from ammonium sulfate precipitation of the CM. Results indicate that amoebicidal activity is mediated by a protein(s) of macrophage origin induced by target cell contact or stimulation with LPS.

  7. LL-37 immunomodulatory activity during Mycobacterium tuberculosis infection in macrophages.

    PubMed

    Torres-Juarez, Flor; Cardenas-Vargas, Albertina; Montoya-Rosales, Alejandra; González-Curiel, Irma; Garcia-Hernandez, Mariana H; Enciso-Moreno, Jose A; Hancock, Robert E W; Rivas-Santiago, Bruno

    2015-12-01

    Tuberculosis is one of the most important infectious diseases worldwide. The susceptibility to this disease depends to a great extent on the innate immune response against mycobacteria. Host defense peptides (HDP) are one of the first barriers to counteract infection. Cathelicidin (LL-37) is an HDP that has many immunomodulatory effects besides its weak antimicrobial activity. Despite advances in the study of the innate immune response in tuberculosis, the immunological role of LL-37 during M. tuberculosis infection has not been clarified. Monocyte-derived macrophages were infected with M. tuberculosis strain H37Rv and then treated with 1, 5, or 15 μg/ml of exogenous LL-37 for 4, 8, and 24 h. Exogenous LL-37 decreased tumor necrosis factor alpha (TNF-α) and interleukin-17 (IL-17) while inducing anti-inflammatory IL-10 and transforming growth factor β (TGF-β) production. Interestingly, the decreased production of anti-inflammatory cytokines did not reduce antimycobacterial activity. These results are consistent with the concept that LL-37 can modulate the expression of cytokines during mycobacterial infection and this activity was independent of the P2X7 receptor. Thus, LL-37 modulates the response of macrophages during infection, controlling the expression of proinflammatory and anti-inflammatory cytokines. PMID:26351280

  8. LL-37 Immunomodulatory Activity during Mycobacterium tuberculosis Infection in Macrophages

    PubMed Central

    Torres-Juarez, Flor; Cardenas-Vargas, Albertina; Montoya-Rosales, Alejandra; González-Curiel, Irma; Garcia-Hernandez, Mariana H.; Enciso-Moreno, Jose A.; Hancock, Robert E. W.

    2015-01-01

    Tuberculosis is one of the most important infectious diseases worldwide. The susceptibility to this disease depends to a great extent on the innate immune response against mycobacteria. Host defense peptides (HDP) are one of the first barriers to counteract infection. Cathelicidin (LL-37) is an HDP that has many immunomodulatory effects besides its weak antimicrobial activity. Despite advances in the study of the innate immune response in tuberculosis, the immunological role of LL-37 during M. tuberculosis infection has not been clarified. Monocyte-derived macrophages were infected with M. tuberculosis strain H37Rv and then treated with 1, 5, or 15 μg/ml of exogenous LL-37 for 4, 8, and 24 h. Exogenous LL-37 decreased tumor necrosis factor alpha (TNF-α) and interleukin-17 (IL-17) while inducing anti-inflammatory IL-10 and transforming growth factor β (TGF-β) production. Interestingly, the decreased production of anti-inflammatory cytokines did not reduce antimycobacterial activity. These results are consistent with the concept that LL-37 can modulate the expression of cytokines during mycobacterial infection and this activity was independent of the P2X7 receptor. Thus, LL-37 modulates the response of macrophages during infection, controlling the expression of proinflammatory and anti-inflammatory cytokines. PMID:26351280

  9. Posttranscriptional control of NLRP3 inflammasome activation in colonic macrophages.

    PubMed

    Filardy, A A; He, J; Bennink, J; Yewdell, J; Kelsall, B L

    2016-07-01

    Colonic macrophages (cMPs) are important for intestinal homeostasis as they kill microbes and yet produce regulatory cytokines. Activity of the NLRP3 (nucleotide-binding leucine-rich repeat-containing pyrin receptor 3) inflammasome, a major sensor of stress and microorganisms that results in pro-inflammatory cytokine production and cell death, must be tightly controlled in the intestine. We demonstrate that resident cMPs are hyporesponsive to NLRP3 inflammasome activation owing to a remarkable level of posttranscriptional control of NLRP3 and pro-interleukin-1β (proIL-1β) protein expression, which was also seen for tumor necrosis factor-α and IL-6, but lost during experimental colitis. Resident cMPs rapidly degraded NLRP3 and proIL-1β proteins by the ubiquitin/proteasome system. Finally, blocking IL-10R-signaling in vivo enhanced NLRP3 and proIL-1β protein but not mRNA levels in resident cMPs, implicating a role for IL-10 in environmental conditioning of cMPs. These data are the first to show dramatic posttranscriptional control of inflammatory cytokine production by a relevant tissue-derived macrophage population and proteasomal degradation of proIL-1β and NLRP3 as a mechanism to control inflammasome activation, findings which have broad implications for our understanding of intestinal and systemic inflammatory diseases. PMID:26627461

  10. Bioelectric modulation of macrophage polarization

    NASA Astrophysics Data System (ADS)

    Li, Chunmei; Levin, Michael; Kaplan, David L.

    2016-02-01

    Macrophages play a critical role in regulating wound healing and tissue regeneration by changing their polarization state in response to local microenvironmental stimuli. The native roles of polarized macrophages encompass biomaterials and tissue remodeling needs, yet harnessing or directing the polarization response has been largely absent as a potential strategy to exploit in regenerative medicine to date. Recent data have revealed that specific alteration of cells’ resting potential (Vmem) is a powerful tool to direct proliferation and differentiation in a number of complex tissues, such as limb regeneration, craniofacial patterning and tumorigenesis. In this study, we explored the bioelectric modulation of macrophage polarization by targeting ATP sensitive potassium channels (KATP). Glibenclamide (KATP blocker) and pinacidil (KATP opener) treatment not only affect macrophage polarization, but also influence the phenotype of prepolarized macrophages. Furthermore, modulation of cell membrane electrical properties can fine-tune macrophage plasticity. Glibenclamide decreased the secretion and gene expression of selected M1 markers, while pinacidil augmented M1 markers. More interestingly, glibencalmide promoted macrophage alternative activation by enhancing certain M2 markers during M2 polarization. These findings suggest that control of bioelectric properties of macrophages could offer a promising approach to regulate macrophage phenotype as a useful tool in regenerative medicine.

  11. Bioelectric modulation of macrophage polarization

    PubMed Central

    Li, Chunmei; Levin, Michael; Kaplan, David L.

    2016-01-01

    Macrophages play a critical role in regulating wound healing and tissue regeneration by changing their polarization state in response to local microenvironmental stimuli. The native roles of polarized macrophages encompass biomaterials and tissue remodeling needs, yet harnessing or directing the polarization response has been largely absent as a potential strategy to exploit in regenerative medicine to date. Recent data have revealed that specific alteration of cells’ resting potential (Vmem) is a powerful tool to direct proliferation and differentiation in a number of complex tissues, such as limb regeneration, craniofacial patterning and tumorigenesis. In this study, we explored the bioelectric modulation of macrophage polarization by targeting ATP sensitive potassium channels (KATP). Glibenclamide (KATP blocker) and pinacidil (KATP opener) treatment not only affect macrophage polarization, but also influence the phenotype of prepolarized macrophages. Furthermore, modulation of cell membrane electrical properties can fine-tune macrophage plasticity. Glibenclamide decreased the secretion and gene expression of selected M1 markers, while pinacidil augmented M1 markers. More interestingly, glibencalmide promoted macrophage alternative activation by enhancing certain M2 markers during M2 polarization. These findings suggest that control of bioelectric properties of macrophages could offer a promising approach to regulate macrophage phenotype as a useful tool in regenerative medicine. PMID:26869018

  12. Bioelectric modulation of macrophage polarization.

    PubMed

    Li, Chunmei; Levin, Michael; Kaplan, David L

    2016-01-01

    Macrophages play a critical role in regulating wound healing and tissue regeneration by changing their polarization state in response to local microenvironmental stimuli. The native roles of polarized macrophages encompass biomaterials and tissue remodeling needs, yet harnessing or directing the polarization response has been largely absent as a potential strategy to exploit in regenerative medicine to date. Recent data have revealed that specific alteration of cells' resting potential (Vmem) is a powerful tool to direct proliferation and differentiation in a number of complex tissues, such as limb regeneration, craniofacial patterning and tumorigenesis. In this study, we explored the bioelectric modulation of macrophage polarization by targeting ATP sensitive potassium channels (KATP). Glibenclamide (KATP blocker) and pinacidil (KATP opener) treatment not only affect macrophage polarization, but also influence the phenotype of prepolarized macrophages. Furthermore, modulation of cell membrane electrical properties can fine-tune macrophage plasticity. Glibenclamide decreased the secretion and gene expression of selected M1 markers, while pinacidil augmented M1 markers. More interestingly, glibencalmide promoted macrophage alternative activation by enhancing certain M2 markers during M2 polarization. These findings suggest that control of bioelectric properties of macrophages could offer a promising approach to regulate macrophage phenotype as a useful tool in regenerative medicine. PMID:26869018

  13. Autophagy-induced RelB/p52 activation mediates tumour-associated macrophage repolarisation and suppression of hepatocellular carcinoma by natural compound baicalin.

    PubMed

    Tan, H-Y; Wang, N; Man, K; Tsao, S-W; Che, C-M; Feng, Y

    2015-01-01

    The plasticity of tumour-associated macrophages (TAMs) has implicated an influential role in hepatocellular carcinoma (HCC). Repolarisation of TAM towards M1 phenotype characterises an immune-competent microenvironment that favours tumour regression. To investigate the role and mechanism of TAM repolarisation in suppression of HCC by a natural compound baicalin, Orthotopic HCC implantation model was used to investigate the effect of baicalin on HCC; liposome-clodronate was introduced to suppress macrophage populations in mice; bone marrow-derived monocytes (BMDMs) were induced to unpolarised, M1-like, M2-like macrophages and TAM using different conditioned medium. We observed that oral administration of baicalin (50 mg/kg) completely blocked orthotopic growth of implanted HCC. Suppression of HCC by baicalin was diminished when mice macrophage was removed by clodronate treatment. Baicalin induced repolarisation of TAM to M1-like phenotype without specific toxicity to either phenotype of macrophages. Baicalin initiated TAM reprogramming to M1-like macrophage, and promoted pro-inflammatory cytokines production. Co-culturing of HCC cells with baicalin-treated TAMs resulted in reduced proliferation and motility in HCC. Baicalin had minimal effect on derivation of macrophage polarisation factors by HCC cells, while directly induced repolarisation of TAM and M2-like macrophage. This effect was associated with elevated autophagy, and transcriptional activation of RelB/p52 pathway. Suppression of autophagy or RelB abolished skewing of baicalin-treated TAM. Autophagic degradation of TRAF2 in baicalin-treated TAM might be responsible for RelB/p52 activation. Our findings unveil the essential role of TAM repolarisation in suppressive effect of baicalin on HCC, which requires autophagy-associated activation of RelB/p52. PMID:26492375

  14. Autophagy-induced RelB/p52 activation mediates tumour-associated macrophage repolarisation and suppression of hepatocellular carcinoma by natural compound baicalin

    PubMed Central

    Tan, H-Y; Wang, N; Man, K; Tsao, S-W; Che, C-M; Feng, Y

    2015-01-01

    The plasticity of tumour-associated macrophages (TAMs) has implicated an influential role in hepatocellular carcinoma (HCC). Repolarisation of TAM towards M1 phenotype characterises an immune-competent microenvironment that favours tumour regression. To investigate the role and mechanism of TAM repolarisation in suppression of HCC by a natural compound baicalin, Orthotopic HCC implantation model was used to investigate the effect of baicalin on HCC; liposome-clodronate was introduced to suppress macrophage populations in mice; bone marrow-derived monocytes (BMDMs) were induced to unpolarised, M1-like, M2-like macrophages and TAM using different conditioned medium. We observed that oral administration of baicalin (50 mg/kg) completely blocked orthotopic growth of implanted HCC. Suppression of HCC by baicalin was diminished when mice macrophage was removed by clodronate treatment. Baicalin induced repolarisation of TAM to M1-like phenotype without specific toxicity to either phenotype of macrophages. Baicalin initiated TAM reprogramming to M1-like macrophage, and promoted pro-inflammatory cytokines production. Co-culturing of HCC cells with baicalin-treated TAMs resulted in reduced proliferation and motility in HCC. Baicalin had minimal effect on derivation of macrophage polarisation factors by HCC cells, while directly induced repolarisation of TAM and M2-like macrophage. This effect was associated with elevated autophagy, and transcriptional activation of RelB/p52 pathway. Suppression of autophagy or RelB abolished skewing of baicalin-treated TAM. Autophagic degradation of TRAF2 in baicalin-treated TAM might be responsible for RelB/p52 activation. Our findings unveil the essential role of TAM repolarisation in suppressive effect of baicalin on HCC, which requires autophagy-associated activation of RelB/p52. PMID:26492375

  15. Macrophage activation syndrome in the course of monogenic autoinflammatory disorders.

    PubMed

    Rigante, Donato; Emmi, Giacomo; Fastiggi, Michele; Silvestri, Elena; Cantarini, Luca

    2015-08-01

    An overwhelming activation of cytotoxic T cells and well-differentiated macrophages leading to systemic overload of inflammatory mediators characterizes the so-called macrophage activation syndrome (MAS); this potentially life-threatening clinical entity may derive from several genetic defects involved in granule-mediated cytotoxicity but has been largely observed in patients with juvenile idiopathic arthritis, many rheumatologic diseases, infections, and malignancies. The occurrence of MAS in the natural history or as the revealing clue of monogenic autoinflammatory disorders (AIDs), rare conditions caused by disrupted innate immunity pathways with overblown release of proinflammatory cytokines, has been only reported in few isolated patients with cryopyrin-associated periodic syndrome, mevalonate kinase deficiency, familial Mediterranean fever, and tumor necrosis factor receptor-associated periodic syndrome since 2001. All these patients displayed various clinical, laboratory, and histopathologic features of MAS and have often required intensive care support. Only one patient has died due to MAS. Defective cytotoxic cell function was documented in a minority of patients. Corticosteroids were the first-line treatment, but anakinra was clinically effective in three refractory cases. Even if MAS and AIDs share multiple clinical features as well as heterogeneous pathogenetic scenes and a potential response to anti-interleukin-1 targeted therapies, MAS requires a prompt specific recognition in the course of AIDs due to its profound severity and high mortality rate. PMID:25846831

  16. Macrophage immunomodulatory activity of polysaccharides isolated from Opuntia polyacantha

    PubMed Central

    Schepetkin, Igor A.; Xie, Gang; Kirpotina, Liliya N.; Klein, Robyn A.; Jutila, Mark A.; Quinn, Mark T.

    2008-01-01

    Opuntia polyacantha (prickly pear cactus) has been used extensively for its nutritional properties; however, less is known regarding medicinal properties of Opuntia tissues. In the present study, we extracted polysaccharides from O. polyacantha and used size-exclusion chromatography to fractionate the crude polysaccharides into four polysaccharide fractions (designated as Opuntia polysaccharides C-I to C-IV). The average Mr of fractions C-I through C-IV was estimated to be 733, 550, 310, and 168 kDa, respectively, and sugar composition analysis revealed that Opuntia polysaccharides consisted primarily of galactose, galacturonic acid, xylose, arabinose, and rhamnose. Analysis of the effects of Opuntia polysaccharides on human and murine macrophages demonstrated that all four fractions had potent immunomodulatory activity, inducing production of reactive oxygen species, nitric oxide, tumor necrosis factor α, and interleukin 6. Furthermore, modulation of macrophage function by Opuntia polysaccharides was mediated, at least in part, through activation of nuclear factor κB. Together, our results provide a molecular basis to explain a portion of the beneficial therapeutic properties of extracts from O. polyacantha and support the concept of using Opuntia polysaccharides as an immunotherapeutic adjuvant. PMID:18597716

  17. Macrophage Activation Syndrome-Associated Markers in Severe Dengue.

    PubMed

    Ab-Rahman, Hasliana Azrah; Rahim, Hafiz; AbuBakar, Sazaly; Wong, Pooi-Fong

    2016-01-01

    Hemophagocytosis, a phenomenon of which activated macrophages phagocytosed hematopoietic elements was reportedly observed in severe dengue patients. In the present study, we investigated whether markers of macrophage activation syndrome (MAS) can be used as differential diagnostic markers of severe dengue. Two hundred and eight confirmed dengue patients were recruited for the study. Sandwich ELISA was used to determine serum ferritin, soluble CD163 (sCD163), and soluble CD25 (sCD25) levels. The population of circulating CD163 (mCD163) monocytes was determined using flow cytometry. Receiver operating characteristic (ROC) analysis was plotted to determine the predictive validity of the biomarkers. Serum ferritin and sCD163 were found significantly increased in severe dengue patients compared to dengue fever patients (P = 0.003). A fair area under ROC curves (AUC) at 0.72 with a significant P value of 0.004 was observed for sCD163. sCD25 and mCD163 levels were not significantly different between severe dengue and dengue fever patients. Our findings suggest that in addition to serum ferritin, sCD163 can differentiate severe dengue from that of dengue fever patients. Hence, sCD163 level can be considered for use as a predictive marker for impending severe dengue. PMID:26941578

  18. Macrophage Activation Syndrome-Associated Markers in Severe Dengue

    PubMed Central

    Ab-Rahman, Hasliana Azrah; Rahim, Hafiz; AbuBakar, Sazaly; Wong, Pooi-Fong

    2016-01-01

    Hemophagocytosis, a phenomenon of which activated macrophages phagocytosed hematopoietic elements was reportedly observed in severe dengue patients. In the present study, we investigated whether markers of macrophage activation syndrome (MAS) can be used as differential diagnostic markers of severe dengue. Two hundred and eight confirmed dengue patients were recruited for the study. Sandwich ELISA was used to determine serum ferritin, soluble CD163 (sCD163), and soluble CD25 (sCD25) levels. The population of circulating CD163 (mCD163) monocytes was determined using flow cytometry. Receiver operating characteristic (ROC) analysis was plotted to determine the predictive validity of the biomarkers. Serum ferritin and sCD163 were found significantly increased in severe dengue patients compared to dengue fever patients (P = 0.003). A fair area under ROC curves (AUC) at 0.72 with a significant P value of 0.004 was observed for sCD163. sCD25 and mCD163 levels were not significantly different between severe dengue and dengue fever patients. Our findings suggest that in addition to serum ferritin, sCD163 can differentiate severe dengue from that of dengue fever patients. Hence, sCD163 level can be considered for use as a predictive marker for impending severe dengue. PMID:26941578

  19. A defect in the inflammation-primed macrophage-activation cascade in osteopetrotic rats.

    PubMed

    Yamamoto, N; Lindsay, D D; Naraparaju, V R; Ireland, R A; Popoff, S N

    1994-05-15

    Macrophages were activated by administration of lysophosphatidylcholine (lyso-Pc) or dodecylglycerol (DDG) to wild-type rats but not in osteopetrotic (op) mutant rats. In vitro treatment of wild-type rat peritoneal cells with lyso-Pc or DDG efficiently activated macrophages whereas treatment of op mutant rat peritoneal cells with lyso-Pc or DDG did not activate macrophages. The inflammation-primed macrophage activation cascade in rats requires participation of B lymphocytes and vitamin D binding protein (DBP). Lyso-Pc-inducible beta-galactosidase of wild-type rat B lymphocytes can convert DBP to the macrophage-activating factor (MAF), whereas B lymphocytes of the op mutant rats were shown to be deficient in lyso-Pc-inducible beta-galactosidase. DBP is conserved among mammalian species. Treatment of human DBP (Gc1 protein) with commercial glycosidases yields an extremely high titrated MAF as assayed on mouse and rat macrophages. Because the enzymatically generated MAF (GcMAF) bypasses the role of lymphocytes in macrophage activation, the op mutant rat macrophages were efficiently activated by administration of a small quantity (100 pg/rat) of GcMAF. Likewise, in vitro treatment of op rat peritoneal cells with as little as 40 pg GcMAF/ml activated macrophages. PMID:8176226

  20. STAT1 signaling within macrophages is required for antifungal activity against Cryptococcus neoformans.

    PubMed

    Leopold Wager, Chrissy M; Hole, Camaron R; Wozniak, Karen L; Olszewski, Michal A; Mueller, Mathias; Wormley, Floyd L

    2015-12-01

    Cryptococcus neoformans, the predominant etiological agent of cryptococcosis, is an opportunistic fungal pathogen that primarily affects AIDS patients and patients undergoing immunosuppressive therapy. In immunocompromised individuals, C. neoformans can lead to life-threatening meningoencephalitis. Studies using a virulent strain of C. neoformans engineered to produce gamma interferon (IFN-γ), denoted H99γ, demonstrated that protection against pulmonary C. neoformans infection is associated with the generation of a T helper 1 (Th1)-type immune response and signal transducer and activator of transcription 1 (STAT1)-mediated classical (M1) macrophage activation. However, the critical mechanism by which M1 macrophages mediate their anti-C. neoformans activity remains unknown. The current studies demonstrate that infection with C. neoformans strain H99γ in mice with macrophage-specific STAT1 ablation resulted in severely increased inflammation of the pulmonary tissue, a dysregulated Th1/Th2-type immune response, increased fungal burden, deficient M1 macrophage activation, and loss of protection. STAT1-deficient macrophages produced significantly less nitric oxide (NO) than STAT1-sufficient macrophages, correlating with an inability to control intracellular cryptococcal proliferation, even in the presence of reactive oxygen species (ROS). Furthermore, macrophages from inducible nitric oxide synthase knockout mice, which had intact ROS production, were deficient in anticryptococcal activity. These data indicate that STAT1 activation within macrophages is required for M1 macrophage activation and anti-C. neoformans activity via the production of NO. PMID:26351277

  1. Prostaglandin D2-loaded microspheres effectively activate macrophage effector functions.

    PubMed

    Pereira, Priscilla Aparecida Tartari; Bitencourt, Claudia da Silva; dos Santos, Daiane Fernanda; Nicolete, Roberto; Gelfuso, Guilherme Martins; Faccioli, Lúcia Helena

    2015-10-12

    Biodegradable lactic-co-glycolic acid (PLGA) microspheres (MS) improve the stability of biomolecules stability and allow enable their sustained release. Lipid mediators represent a strategy for improving host defense; however, most of these mediators, such as prostaglandin D2 (PGD2), have low water solubility and are unstable. The present study aimed to develop and characterize MS loaded with PGD2 (PGD2-MS) to obtain an innovative tool to activate macrophages. PGD2-MS were prepared using an oil-in-water emulsion solvent extraction-evaporation process, and the size, zeta potential, surface morphology and encapsulation efficiency were determined. It was also evaluated in vitro the phagocytic index, NF-κB activation, as well as nitric oxide and cytokine production by alveolar macrophages (AMs) in response to PGD2-MS. PGD2-MS were spherical with a diameter of 5.0±3.3 μm and regular surface, zeta potential of -13.4±5.6 mV, and 36% of encapsulation efficiency, with 16-26% release of entrapped PGD2 at 4 and 48 h, respectively. PGD2-MS were more efficiently internalized by AMs than unloaded-MS, and activated NF-κB more than free PGD2. Moreover, PGD2-MS stimulated the production of nitric oxide, TNF-α, IL-1β, and TGF-β, more than free PGD2, indicating that microencapsulation increased the activating effect of PGD2 on cells. In LPS-pre-treated AMs, PGD2-MS decreased the release of IL-6 but increased the production of nitric oxide and IL-1β. These results show that the morphological characteristics of PGD2-MS facilitated interaction with, and activation of phagocytic cells; moreover, PGD2-MS retained the biological activities of PGD2 to trigger effector mechanisms in AMs. It is suggested that PGD2-MS represent a strategy for therapeutic intervention in the lungs of immunocompromised subjects. PMID:26143263

  2. Anxiolytic activity of pyridoindole derivatives SMe1EC2 and SMe1M2: behavioral analysis using rat model

    PubMed Central

    Sedláčková, Natália; Ponechalová, Veronika; Ujházy, Eduard; Dubovický, Michal; Mach, Mojmír

    2011-01-01

    Anxiety and mood disorders have become very significant affections in the last decades. According to WHO at least one mental disease occurred per year in 27% of EU inhabitants (more than 82 mil. people). It is estimated that by 2020, depression will be the main cause of morbidity in the developed countries. These circumstances call for research for new prospective drugs with anxiolytic and antidepressive properties exhibiting no toxicity and withdrawal effect and possessing beneficial properties, like antioxidant and/or neuroprotective effects. The aim of this study was to obtain information about psychopharmacological properties of pyridoindole derivatives SMe1EC2 and SMe1M2, using non-invasive behavioral methods in rats. The battery of ethological tests (open field, elevated plus-maze, light/dark box exploration, forced swim test) was used to obtain information about anxiolytic and antidepressant activity of the pyridoindole derivatives. The substances were administered intraperitoneally 30 minutes before the tests at doses of 1, 10 and 25 mg/kg. In the behavioral tests, SMe1EC2 was found to exert anxiolytic activity in elevated plus maze with no affection of locomotor activity. The highest dose of SMe1M2 increased the time spent in the lit part of the Light/Dark box, however this result was influenced by inhibition of motor activity of the rats. Similar findings were observed also in elevated plus-maze, although these results were not statistically significant. In conclusion, from the results of our study it is evident that both pyridoindoles acted on the CNS. In the highest dose, SMe1M2 was found to possess rather sedative than anxiolytic or antidepressant activity. PMID:22319256

  3. Macrophage-oriented cytotoxic activity of novel triterpene saponins extracted from roots of Securidaca inappendiculata.

    PubMed

    Yui, S; Ubukata, K; Hodono, K; Kitahara, M; Mimaki, Y; Kuroda, M; Sashida, Y; Yamazaki, M

    2001-10-01

    It is recognized that macrophages in peripheral tissues often proliferate under pathological conditions such as tumors, inflammation and atherosclerosis. Because the growth state of macrophages is believed to be a factor regulating the pathological process of the diseases, substances that regulate macrophage growth or survival may be useful for disease control. In this paper, we identified the activity inhibiting macrophage growth in a hot water extract of roots of Securidaca inappendiculata. The extract markedly inhibited macrophage colony-stimulating factor (M-CSF/CSF-1)-induced growth of macrophages, whereas it exerted a less potent effect on growth of Concanavalin A (Con A)-stimulated thymocytes or M-CSF-stimulated bone marrow cells. The inhibition of macrophage growth was caused by a cytotoxic effect rather than a cytostatic effect. Cell death was due to the induction of apoptosis, as judged by staining with terminal deoxynucleotidyl transferase-mediated d-UTP nick end labelling (TUNEL). The cytotoxic activity seemed to be specific to peripheral macrophages; it showed a weak effect on the growth and survival of tumor cell lines including a macrophage-like cell line, J-774.1. Moreover, the saponin fraction induced apoptotic cell death of macrophages only when they were stimulated by M-CSF; it did not affect the viability of macrophages cultured without M-CSF or with granulocyte/macrophage-CSF. We determined the structures of the two active triterpene saponin compounds in the fraction, named securioside A and securioside B having a 3,4-dimethoxycinnamic group which is essential for the cell death-inducing activity. They are believed to be the primary compounds of new drugs for the treatment of pathological states in which macrophage proliferation occurs. PMID:11606030

  4. Phagocyte respiratory burst activates macrophage erythropoietin signalling to promote acute inflammation resolution.

    PubMed

    Luo, Bangwei; Wang, Jinsong; Liu, Zongwei; Shen, Zigang; Shi, Rongchen; Liu, Yu-Qi; Liu, Yu; Jiang, Man; Wu, Yuzhang; Zhang, Zhiren

    2016-01-01

    Inflammation resolution is an active process, the failure of which causes uncontrolled inflammation which underlies many chronic diseases. Therefore, endogenous pathways that regulate inflammation resolution are fundamental and of wide interest. Here, we demonstrate that phagocyte respiratory burst-induced hypoxia activates macrophage erythropoietin signalling to promote acute inflammation resolution. This signalling is activated following acute but not chronic inflammation. Pharmacological or genetical inhibition of the respiratory burst suppresses hypoxia and macrophage erythropoietin signalling. Macrophage-specific erythropoietin receptor-deficient mice and chronic granulomatous disease (CGD) mice, which lack the capacity for respiratory burst, display impaired inflammation resolution, and exogenous erythropoietin enhances this resolution in WT and CGD mice. Mechanistically, erythropoietin increases macrophage engulfment of apoptotic neutrophils via PPARγ, promotes macrophage removal of debris and enhances macrophage migration to draining lymph nodes. Together, our results provide evidences of an endogenous pathway that regulates inflammation resolution, with important implications for treating inflammatory conditions. PMID:27397585

  5. Extracellular magnesium and calcium blockers modulate macrophage activity.

    PubMed

    Libako, Patrycja; Nowacki, Wojciech; Castiglioni, Sara; Mazur, Andrzej; Maier, Jeanette A M

    2016-03-01

    Magnesium (Mg) possesses anti-inflammatory properties, partly because it antagonizes calcium (Ca) and inhibits L-type Ca channels. Our aim was to determine the effects of different concentrations of extracellular Mg, with or without Ca-channel blockers, in macrophages. A macrophage-like cell line J774.E was cultured in different concentrations of extracellular Mg and exposed to i) the phorbol ester PMA to induce the production of reactive oxygen species ii) lipopolysaccharide to induce the production of pro-inflammatory cytokines, or iii) ovalbumin to study endocytosis. The Ca antagonists verapamil and/or TMB-8 were used to interfere with Ca homeostasis. Different concentrations of extracellular Mg did not impact on endocytosis, while Ca antagonists markedly decreased it. Low extracellular Mg exacerbated, whereas Ca antagonists inhibited, PMA-induced production of free radicals. Ca blockers prevented lipopolysaccharide-induced transcription and release of IL-1β, IL-6 and TNF-α, while extracellular Mg had only a marginal effect. Ca channel inhibitors markedly reduced the activity of J774.E cells, thus underscoring the critical role of Ca in the non-specific immune response, a role which was, in some instances, also modulated by extracellular Mg. PMID:27160489

  6. Serum Amyloid P Therapeutically Attenuates Murine Bleomycin-Induced Pulmonary Fibrosis via Its Effects on Macrophages

    PubMed Central

    Murray, Lynne A.; Rosada, Rogerio; Moreira, Ana Paula; Joshi, Amrita; Kramer, Michael S.; Hesson, David P.; Argentieri, Rochelle L.; Mathai, Susan; Gulati, Mridu; Herzog, Erica L.; Hogaboam, Cory M.

    2010-01-01

    Macrophages promote tissue remodeling but few mechanisms exist to modulate their activity during tissue fibrosis. Serum amyloid P (SAP), a member of the pentraxin family of proteins, signals through Fcγ receptors which are known to affect macrophage activation. We determined that IPF/UIP patients have increased protein levels of several alternatively activated pro-fibrotic (M2) macrophage-associated proteins in the lung and monocytes from these patients show skewing towards an M2 macrophage phenotype. SAP therapeutically inhibits established bleomycin-induced pulmonary fibrosis, when administered systemically or locally to the lungs. The reduction in aberrant collagen deposition was associated with a reduction in M2 macrophages in the lung and increased IP10/CXCL10. These data highlight the role of macrophages in fibrotic lung disease, and demonstrate a therapeutic action of SAP on macrophages which may extend to many fibrotic indications caused by over-exuberant pro-fibrotic macrophage responses. PMID:20300636

  7. Biosynthesis of nitric oxide activates iron regulatory factor in macrophages.

    PubMed Central

    Drapier, J C; Hirling, H; Wietzerbin, J; Kaldy, P; Kühn, L C

    1993-01-01

    Biosynthesis of nitric oxide (NO) from L-arginine modulates activity of iron-dependent enzymes, including mitochondrial acontiase, an [Fe-S] protein. We examined the effect of NO on the activity of iron regulatory factor (IRF), a cytoplasmic protein which modulates both ferritin mRNA translation and transferrin receptor mRNA stability by binding to specific mRNA sequences called iron responsive elements (IREs). Murine macrophages were activated with interferon-gamma and lipopolysaccharide to induce NO synthase activity and cultured in the presence or absence of NG-substituted analogues of L-arginine which served as selective inhibitors of NO synthesis. Measurement of the nitrite concentration in the culture medium was taken as an index of NO production. Mitochondria-free cytosols were then prepared and aconitase activity as well as IRE binding activity and induction of IRE binding activity were correlated and depended on NO synthesis after IFN-gamma and/or LPS stimulation. Authentic NO gas as well as the NO-generating compound 3-morpholinosydnonimine (SIN-1) also conversely modulated aconitase and IRE binding activities of purified recombinant IRF. These results provide evidence that endogenously produced NO may modulate the post-transcriptional regulation of genes involved in iron homeostasis and support the hypothesis that the [Fe-S] cluster of IRF mediates iron-dependent regulation. Images PMID:7504626

  8. M2 priority screening system for near-term activities: Project documentation. Final report December 11, 1992--May 31, 1994

    SciTech Connect

    1993-08-12

    From May through August, 1993, the M-2 Group within M Division at LANL conducted with the support of the LANL Integration and Coordination Office (ICO) and Applied Decision Analysis, Inc. (ADA), whose purpose was to develop a system for setting priorities among activities. This phase of the project concentrated on prioritizing near-tenn activities (i.e., activities that must be conducted in the next six months) necessary for setting up this new group. Potential future project phases will concentrate on developing a tool for setting priorities and developing annual budgets for the group`s operations. The priority screening system designed to address the near-term problem was developed, applied in a series of meeting with the group managers, and used as an aid in the assignment of tasks to group members. The model was intended and used as a practical tool for documenting and explaining decisions about near-term priorities, and not as a substitute for M-2 management judgment and decision-making processes.

  9. Phospholipid Ozonation Products Activate the 5-Lipoxygenase Pathway in Macrophages.

    PubMed

    Zemski Berry, Karin A; Murphy, Robert C

    2016-08-15

    Ozone is a highly reactive environmental toxicant that can react with the double bonds of lipids in pulmonary surfactant. This study was undertaken to investigate the proinflammatory properties of the major lipid-ozone product in pulmonary surfactant, 1-palmitoyl-2-(9'-oxo-nonanoyl)-glycerophosphocholine (16:0/9al-PC), with respect to eicosanoid production. A dose-dependent increase in the formation of 5-lipoxygenase (5-LO) products was observed in murine resident peritoneal macrophages (RPM) and alveolar macrophages (AM) upon treatment with 16:0/9al-PC. In contrast, the production of cyclooxygenase (COX) derived eicosanoids did not change from basal levels in the presence of 16:0/9al-PC. When 16:0/9al-PC and the TLR2 ligand, zymosan, were added to RPM or AM, an enhancement of 5-LO product formation along with a concomitant decrease in COX product formation was observed. Neither intracellular calcium levels nor arachidonic acid release was influenced by the addition of 16:0/9al-PC to RPM. Results from mitogen-activated protein kinase (MAPK) inhibitor studies and direct measurement of phosphorylation of MAPKs revealed that 16:0/9al-PC activates the p38 MAPK pathway in RPM, which results in the activation of 5-LO. Our results indicate that 16:0/9al-PC has a profound effect on the eicosanoid pathway, which may have implications in inflammatory pulmonary disease states where eicosanoids have been shown to play a role. PMID:27448436

  10. Biological markers of macrophage activation: applications for fish phagocytes.

    PubMed Central

    Enane, N A; Frenkel, K; O'Connor, J M; Squibb, K S; Zelikoff, J T

    1993-01-01

    The immune defence mechanisms of fish seem to be related and similarly competent to those of mammals. Because of this, there is an increased interest in the immune responses of fish as models for higher vertebrates in immunological/immunotoxicological studies. Macrophages (M phi), phagocytic cells of the mammalian and teleost immune system which reside in tissues, represent a quiescent population of cells. However, upon stimulation, alterations in the physiology of these resident M phi occur which can be defined in terms of activation. This study was undertaken to determine whether biological markers used to assess mammalian M phi activation are applicable for use with fish M phi. Cells were recovered from the peritoneal cavity of non-injected and Aeromonas salmonicida-injected fish, and differences between resident and elicited M phi were evaluated with respect to protein content, phagocytic competence, enzyme activities and hydrogen peroxide production. Results demonstrate that biological markers used to assess mammalian M phi activation, with the exception of acid phosphatase activity, can be used to characterize the activation state of trout M phi, and that the activation process in both fish and mammals may occur by similar mechanism(s). PMID:8244466

  11. Secretion of monocyte chemotactic activity by alveolar macrophages.

    PubMed Central

    Denholm, E. M.; Wolber, F. M.; Phan, S. H.

    1989-01-01

    The purpose of this study was to determine if alveolar macrophages (AMs) are a source of monocyte chemoattractants and the role bleomycin interaction with AMs may play in the recruitment of monocytes to the lung in a rodent model of bleomycin-induced pulmonary fibrosis. AMs isolated from rats with bleomycin-induced fibrosis secreted significantly greater amounts of monocyte chemoattractants than those isolated from normal rats. When AMs from normal rats were stimulated with bleomycin in vitro, monocyte chemotactic activity was secreted into the medium. Chemotactic activity secretion by AM stimulated with 0.01 to 0.1 micrograms/ml bleomycin was significantly higher than that of cells incubated in medium alone. This activity was truly chemotactic for monocytes, but caused only minimal migration of normal AMs. Bleomycin itself at concentrations of 1 pg/ml to 10 micrograms/ml had no monocyte chemoattractant activity. Characterization of the chemotactic activity in conditioned media (CM) from bleomycin-stimulated AM demonstrated that the major portion of the activity bound to gelatin, was heterogeneous, with estimated molecular weights of 20 to 60 kd, and was inactivated by specific antifibronectin antibody. These findings suggest that fibronectin fragments are primarily responsible for the monocyte chemotactic activity secreted by AMs. Through increased secretion of such chemotactic substances, AMs could play a key role in the recruitment of peripheral blood monocytes into the lung in inflammatory lung disease and fibrosis. PMID:2476935

  12. Liver X Receptor (LXR) activation negatively regulates visfatin expression in macrophages

    SciTech Connect

    Mayi, Therese Hervee; Rigamonti, Elena; Pattou, Francois; Staels, Bart; Chinetti-Gbaguidi, Giulia

    2011-01-07

    Research highlights: {yields} Synthetic LXR ligands decreased visfatin expression in human macrophages. {yields} LXR activation leads to a modest and transient decrease of NAD{sup +} concentration. {yields} LXR activation decreased PPAR{gamma}-induced visfatin in human macrophages. -- Abstract: Adipose tissue macrophages (ATM) are the major source of visfatin, a visceral fat adipokine upregulated during obesity. Also known to play a role in B cell differentiation (pre-B cell colony-enhancing factor (PBEF)) and NAD biosynthesis (nicotinamide phosphoribosyl transferase (NAMPT)), visfatin has been suggested to play a role in inflammation. Liver X Receptor (LXR) and Peroxisome Proliferator-Activated Receptor (PPAR){gamma} are nuclear receptors expressed in macrophages controlling the inflammatory response. Recently, we reported visfatin as a PPAR{gamma} target gene in human macrophages. In this study, we examined whether LXR regulates macrophage visfatin expression. Synthetic LXR ligands decreased visfatin gene expression in a LXR-dependent manner in human and murine macrophages. The decrease of visfatin mRNA was paralleled by a decrease of protein secretion. Consequently, a modest and transient decrease of NAD{sup +} concentration was observed. Interestingly, LXR activation decreased the PPAR{gamma}-induced visfatin gene and protein secretion in human macrophages. Our results identify visfatin as a gene oppositely regulated by the LXR and PPAR{gamma} pathways in human macrophages.

  13. Low density of CD204-positive M2-type tumor-associated macrophages in Epstein-Barr virus-associated gastric cancer: a clinicopathologic study with digital image analysis.

    PubMed

    Ichimura, Takashi; Abe, Hiroyuki; Morikawa, Teppei; Yamashita, Hiroharu; Ishikawa, Shumpei; Ushiku, Tetsuo; Seto, Yasuyuki; Fukayama, Masashi

    2016-10-01

    Recent studies suggest that CD204-positive (CD204(+)) M2-type tumor-associated macrophages (TAMs) are associated with the aggressive behavior of various cancers. However, the clinicopathologic significance of tumor-infiltrating CD204(+) macrophages and their correlation with Epstein-Barr virus (EBV) in gastric cancer is unclear. Tissue microarrays were constructed from 119 surgically resected gastric cancer specimens (86 EBV-negative and 28 EBV-positive cases). After immunohistochemistry of CD204, the density of CD204(+) cells was calculated using image analysis software, and associations between CD204 and clinicopathologic factors including patient survival were examined. High CD204(+) cell density was significantly associated with several adverse prognostic factors, including older age (P = .008), advanced tumor depth (P < .001), lymph node metastasis (P < .001), presence of venous invasion (P < .001), and lymphatic invasion (P = .03). Low CD204(+) cell density was significantly associated with EBV infection. Advanced tumor depth and presence of lymph node metastasis were significantly associated with high CD204(+) cell density in both EBV-positive and EBV-negative subgroups. High CD204(+) cell density was significantly associated with shorter cancer-specific survival (P = .0015). In conclusion, a high density of CD204(+) TAMs was associated with the aggressive behavior and worse survival of gastric cancer. Low density of CD204(+) TAMs was associated with infection of EBV, which may explain the favorable outcome of EBV-associated gastric carcinoma. Our results suggest that a specific immune microenvironment may be associated with the biological behavior of gastric cancer and that EBV-associated gastric carcinoma is distinctive from other gastric carcinomas in tumor immunity. PMID:27342912

  14. Macrophage activation syndrome in the era of biologic therapy.

    PubMed

    Grom, Alexei A; Horne, AnnaCarin; De Benedetti, Fabrizio

    2016-05-01

    Macrophage activation syndrome (MAS) refers to acute overwhelming inflammation caused by a 'cytokine storm'. Although increasingly recognized as a life-threatening complication of various rheumatic diseases, clinically, MAS is strikingly similar to primary and secondary forms of haemophagocytic lymphohistiocytosis (HLH). Not surprisingly, many rheumatologists prefer the term secondary HLH rather than MAS to describe this condition, and efforts to change the nomenclature are in progress. The pathophysiology of MAS remains elusive, but observations in animal models, as well as data on the effects of new anticytokine therapies on rates and clinical presentations of MAS in patients with systemic juvenile idiopathic arthritis (sJIA), provide clues to the understanding of this perplexing clinical phenomenon. In this Review, we explore the latest available evidence and discuss potential diagnostic challenges in the era of increasing use of biologic therapies. PMID:27009539

  15. Activation effect of Ganoderma lucidum polysaccharides liposomes on murine peritoneal macrophages.

    PubMed

    Liu, Zhenguang; Xing, Jie; Huang, Yee; Bo, Ruonan; Zheng, Sisi; Luo, Li; Niu, Yale; Zhang, Yan; Hu, Yuanliang; Liu, Jiaguo; Wu, Yi; Wang, Deyun

    2016-01-01

    The activation of murine peritoneal macrophages by Ganoderma lucidum polysaccharides liposomes (GLPL) was investigated in vitro. After treatment with GLPL, the changes of the nitric oxide (NO) secretion and iNOS (inducible nitric oxide synthase) activity were evaluated. The results showed that NO production and iNOS activity of macrophages were enhanced compared to GLP and BL group. In addition, both the phagocytic activity and levels of cytokines IL-1β, TNF-α and IFN-γ were enhanced in the peritoneal macrophages of mice by stimulation of GLPL. The expression of the major histocompatibility complex class II molecule (MHC II) on the surface of peritoneal macrophages significantly increased. These indicated that GLPL could enhance the activation of peritoneal macrophages and their potential for use as a delivery system of GLP. PMID:26529190

  16. Adsorption of Reactive Red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon.

    PubMed

    Machado, Fernando M; Bergmann, Carlos P; Fernandes, Thais H M; Lima, Eder C; Royer, Betina; Calvete, Tatiana; Fagan, Solange B

    2011-09-15

    Multi-walled carbon nanotubes and powdered activated carbon were used as adsorbents for the successful removal of Reactive Red M-2BE textile dye from aqueous solutions. The adsorbents were characterised by infrared spectroscopy, N(2) adsorption/desorption isotherms and scanning electron microscopy. The effects of pH, shaking time and temperature on adsorption capacity were studied. In the acidic pH region (pH 2.0), the adsorption of the dye was favourable using both adsorbents. The contact time to obtain equilibrium at 298K was fixed at 1h for both adsorbents. The activation energy of the adsorption process was evaluated from 298 to 323K for both adsorbents. The Avrami fractional-order kinetic model provided the best fit to the experimental data compared with pseudo-first-order or pseudo-second-order kinetic adsorption models. For Reactive Red M-2BE dye, the equilibrium data were best fitted to the Liu isotherm model. Simulated dyehouse effluents were used to check the applicability of the proposed adsorbents for effluent treatment. PMID:21724329

  17. Activated prostaglandin D2 receptors on macrophages enhance neutrophil recruitment into the lung

    PubMed Central

    Jandl, Katharina; Stacher, Elvira; Bálint, Zoltán; Sturm, Eva Maria; Maric, Jovana; Peinhaupt, Miriam; Luschnig, Petra; Aringer, Ida; Fauland, Alexander; Konya, Viktoria; Dahlen, Sven-Erik; Wheelock, Craig E.; Kratky, Dagmar; Olschewski, Andrea; Marsche, Gunther; Schuligoi, Rufina; Heinemann, Akos

    2016-01-01

    Background Prostaglandin (PG) D2 is an early-phase mediator in inflammation, but its action and the roles of the 2 D-type prostanoid receptors (DPs) DP1 and DP2 (also called chemoattractant receptor–homologous molecule expressed on TH2 cells) in regulating macrophages have not been elucidated to date. Objective We investigated the role of PGD2 receptors on primary human macrophages, as well as primary murine lung macrophages, and their ability to influence neutrophil action in vitro and in vivo. Methods In vitro studies, including migration, Ca2+ flux, and cytokine secretion, were conducted with primary human monocyte-derived macrophages and neutrophils and freshly isolated murine alveolar and pulmonary interstitial macrophages. In vivo pulmonary inflammation was assessed in male BALB/c mice. Results Activation of DP1, DP2, or both receptors on human macrophages induced strong intracellular Ca2+ flux, cytokine release, and migration of macrophages. In a murine model of LPS-induced pulmonary inflammation, activation of each PGD2 receptor resulted in aggravated airway neutrophilia, tissue myeloperoxidase activity, cytokine contents, and decreased lung compliance. Selective depletion of alveolar macrophages abolished the PGD2-enhanced inflammatory response. Activation of PGD2 receptors on human macrophages enhanced the migratory capacity and prolonged the survival of neutrophils in vitro. In human lung tissue specimens both DP1 and DP2 receptors were located on alveolar macrophages along with hematopoietic PGD synthase, the rate-limiting enzyme of PGD2 synthesis. Conclusion For the first time, our results show that PGD2 markedly augments disease activity through its ability to enhance the proinflammatory actions of macrophages and subsequent neutrophil activation. PMID:26792210

  18. Macrophage Infiltration and Alternative Activation during Wound Healing Promote MEK1-Induced Skin Carcinogenesis.

    PubMed

    Weber, Christine; Telerman, Stephanie B; Reimer, Andreas S; Sequeira, Ines; Liakath-Ali, Kifayathullah; Arwert, Esther N; Watt, Fiona M

    2016-02-15

    Macrophages are essential for the progression and maintenance of many cancers, but their role during the earliest stages of tumor formation is unclear. To test this, we used a previously described transgenic mouse model of wound-induced skin tumorigenesis, in which expression of constitutively active MEK1 in differentiating epidermal cells results in chronic inflammation (InvEE mice). Upon wounding, the number of epidermal and dermal monocytes and macrophages increased in wild-type and InvEE skin, but the increase was greater, more rapid, and more sustained in InvEE skin. Macrophage ablation reduced tumor incidence. Furthermore, bioluminescent imaging in live mice to monitor macrophage flux at wound sites revealed that macrophage accumulation was predictive of tumor formation; wounds with the greatest number of macrophages at day 5 went on to develop tumors. Gene expression profiling of flow-sorted monocytes, macrophages, and T cells from InvEE and wild-type skin showed that as wound healing progressed, InvEE macrophages altered their phenotype. Throughout wound healing and after wound closure, InvEE macrophages demonstrated sustained upregulation of several markers implicated in alternative macrophage activation including arginase-1 (ARG1) and mannose receptor (CD206). Notably, inhibition of ARG1 activity significantly reduced tumor formation and epidermal proliferation in vivo, whereas addition of L-arginase to cultured keratinocytes stimulated proliferation. We conclude that macrophages play a key role in early, inflammation-mediated skin tumorigenesis, with mechanistic evidence suggesting that ARG1 secretion drives tumor development by stimulating epidermal cell proliferation. These findings highlight the importance of cancer immunotherapies aiming to polarize tumor-associated macrophages toward an antitumor phenotype. PMID:26754935

  19. Hypoxia and classical activation limits Mycobacterium tuberculosis survival by Akt-dependent glycolytic shift in macrophages

    PubMed Central

    Matta, S K; Kumar, D

    2016-01-01

    Cellular reactive oxygen species (ROS) is a major antibacterial defense mechanism used by macrophages upon activation. Exposure of Mycobacterium tuberculosis (Mtb)-infected macrophages to hypoxia is known to compromise the survival of the pathogen. Here we report that the hypoxia-induced control of intracellular Mtb load in RAW 264.7 macrophages was mediated by regulating the cellular ROS levels. We show that similar to classical activation, hypoxia incubation of macrophages resulted in decreased mitochondrial outer membrane potential (MOMP) and a concomitant increase in the cellular ROS levels. Mitochondrial depolarization and consequently higher ROS could be blocked by knocking down Akt using siRNAs, which acted by inhibiting the switch to glycolytic mode of metabolism, an essential adaptive response upon classical activation or hypoxic incubation of macrophages. Moreover, in the classically activated macrophages or in the macrophages under hypoxia incubation, supplementation with additional glucose had similar effects as Akt knockdown. Interestingly, in both the cases, the reversal of phenotype was linked with the ability of the mitochondrial F0–F1 ATP synthase activity to maintain the MOMP in the absence of oxidative phosphorylation. Both Akt knockdown and glucose supplementation were also able to rescue Mtb survival in these macrophages upon classical activation or hypoxia incubation. These results provide a framework for better understanding of how the interplay between oxygen supply, which is limiting in the human tubercular granulomas, and nutrient availability could together direct the outcome of infections in vivo. PMID:27551515

  20. Sub-THz and Hα Activity during the Preflare and Main Phases of a GOES Class M2 Event

    NASA Astrophysics Data System (ADS)

    Kaufmann, Pierre; Marcon, Rogério; Guillermo Giménez de Castro, C.; White, Stephen M.; Raulin, Jean-Pierre; Correia, Emilia; Olavo Fernandes, Luis; de Souza, Rodney V.; Godoy, Rodolfo; Marun, Adolfo; Pereyra, Pablo

    2011-12-01

    Radio and optical observations of the evolution of flare-associated phenomena have shown an initial and rapid burst at 0.4 THz only followed subsequently by a localized chromospheric heating producing an Hα brightening with later heating of the whole active region. A major instability occurred several minutes later producing one impulsive burst at microwaves only, associated with an M2.0 GOES X-ray flare that exhibited the main Hα brightening at the same site as the first flash.The possible association between long-enduring time profiles at soft X-rays, microwaves, Hα, and sub-THz wavelengths is discussed. In the decay phase, the Hα movie shows a disrupting magnetic arch structure ejecting dark, presumably chromospheric, material upward. The time sequence of events suggests genuine interdependent and possibly non-thermal instabilities triggering phenomena, with concurrent active region plasma heating and material ejection.

  1. Modulation of pulmonary macrophage superoxide release and tumoricidal activity following activation by biological response modifiers.

    PubMed

    Drath, D B

    1986-10-01

    Following immunologic activation, pulmonary macrophages may prevent or cause regression of lung metastases by mechanisms which remain largely unknown. The studies described here were designed to determine if enhanced oxygen metabolite release was related to postactivation tumoricidal activity. We have shown that in vitro activation of Fischer 344 rat pulmonary macrophages by either free or liposome-encapsulated muramyl dipeptide leads to both enhanced release of superoxide anions and marked tumoricidal activity against syngenic (Fischer 13762), allogeneic (Schmidt-Ruppin RR 1022) and xenogeneic (Fibrosarcoma MCA-F) 125I-deoxyuridine-labeled target cells. This immune modulator did not, however, metabolically activate pulmonary macrophages as effectively as liposome-encapsulated lipopolysaccharide. A 24-h in vitro incubation with either 150 U or 300 U of interferon-gamma (3 X 10(6) U/mg) or 30 U, 150 U or 300 U of interferon-alpha (6 X 10(5) U/mg) caused a significant elevation in superoxide release above controls, whereas short-term exposure (2 or 4 h) had little or no effect. Free or encapsulated 6-O-stearoyl muramyl dipeptide, on the other hand, did increase superoxide levels at all 3 time periods. When either interferon-gamma or free or encapsulated muramyl dipeptide derivative were administered to intact rats by either i.v. injection, intratracheal instillation or osmotic minipump infusion, pulmonary macrophage tumoricidal activity was observed 96 h after cell harvesting. Zymosan-stimulated superoxide release, however, was not consistently elevated above control or empty liposome treatment following this course of in vivo activation. The data collectively suggest that in vivo pulmonary macrophage activation to a tumoricidal state and metabolic activation resulting in enhanced superoxide may be separable events. PMID:3021650

  2. Macrophages contribute to the cyclic activation of adult hair follicle stem cells.

    PubMed

    Castellana, Donatello; Paus, Ralf; Perez-Moreno, Mirna

    2014-12-01

    Skin epithelial stem cells operate within a complex signaling milieu that orchestrates their lifetime regenerative properties. The question of whether and how immune cells impact on these stem cells within their niche is not well understood. Here we show that skin-resident macrophages decrease in number because of apoptosis before the onset of epithelial hair follicle stem cell activation during the murine hair cycle. This process is linked to distinct gene expression, including Wnt transcription. Interestingly, by mimicking this event through the selective induction of macrophage apoptosis in early telogen, we identify a novel involvement of macrophages in stem cell activation in vivo. Importantly, the macrophage-specific pharmacological inhibition of Wnt production delays hair follicle growth. Thus, perifollicular macrophages contribute to the activation of skin epithelial stem cells as a novel, additional cue that regulates their regenerative activity. This finding may have translational implications for skin repair, inflammatory skin diseases and cancer. PMID:25536657

  3. Macrophages Contribute to the Cyclic Activation of Adult Hair Follicle Stem Cells

    PubMed Central

    Castellana, Donatello; Paus, Ralf; Perez-Moreno, Mirna

    2014-01-01

    Skin epithelial stem cells operate within a complex signaling milieu that orchestrates their lifetime regenerative properties. The question of whether and how immune cells impact on these stem cells within their niche is not well understood. Here we show that skin-resident macrophages decrease in number because of apoptosis before the onset of epithelial hair follicle stem cell activation during the murine hair cycle. This process is linked to distinct gene expression, including Wnt transcription. Interestingly, by mimicking this event through the selective induction of macrophage apoptosis in early telogen, we identify a novel involvement of macrophages in stem cell activation in vivo. Importantly, the macrophage-specific pharmacological inhibition of Wnt production delays hair follicle growth. Thus, perifollicular macrophages contribute to the activation of skin epithelial stem cells as a novel, additional cue that regulates their regenerative activity. This finding may have translational implications for skin repair, inflammatory skin diseases and cancer. PMID:25536657

  4. Cell Motility Is Decreased in Macrophages Activated by Cancer Cell-Conditioned Medium

    PubMed Central

    Go, Ahreum; Ryu, Yun-Kyoung; Lee, Jae-Wook; Moon, Eun-Yi

    2013-01-01

    Macrophages play a role in innate immune responses to various foreign antigens. Many products from primary tumors influence the activation and transmigration of macrophages. Here, we investigated a migration of macrophages stimulated with cancer cell culture-conditioned medium (CM). Macrophage activation by treatment with CM of B16F10 cells were judged by the increase in protein levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX2). The location where macrophages were at 4 h-incubation with control medium or CM was different from where they were at 5 h-incubation in culture dish. Percentage of superimposed macrophages at every 1 h interval was gradually increased by CM treatment as compared to control. Total coverage of migrated track expressed in coordinates was smaller and total distance of migration was shorter in CM-treated macrophages than that in control. Rac1 activity in CM-treated macrophages was also decreased as compared to that in control. When macrophages were treated with CM in the presence of dexamethasone (Dex), an increase in COX2 protein levels, and a decrease in Rac1 activity and total coverage of migration were reversed. In the meanwhile, biphasic changes were detected by Dex treatment in section distance of migration at each time interval, which was more decreased at early time and then increased at later time. Taken together, data demonstrate that macrophage motility could be reduced in accordance with activation in response to cancer cell products. It suggests that macrophage motility could be a novel marker to monitor cancer-associated inflammatory diseases and the efficacy of anti-inflammatory agents. PMID:24404340

  5. Macrophage Migration Inhibitory Factor (MIF) Enzymatic Activity and Lung Cancer

    PubMed Central

    Mawhinney, Leona; Armstrong, Michelle E; O’ Reilly, Ciaran; Bucala, Richard; Leng, Lin; Fingerle-Rowson, Gunter; Fayne, Darren; Keane, Michael P; Tynan, Aisling; Maher, Lewena; Cooke, Gordon; Lloyd, David; Conroy, Helen; Donnelly, Seamas C

    2014-01-01

    The cytokine macrophage migration inhibitory factor (MIF) possesses unique tautomerase enzymatic activity, which contributes to the biological functional activity of MIF. In this study, we investigated the effects of blocking the hydrophobic active site of the tautomerase activity of MIF in the pathogenesis of lung cancer. To address this, we initially established a Lewis lung carcinoma (LLC) murine model in Mif-KO and wild-type (WT) mice and compared tumor growth in a knock-in mouse model expressing a mutant MIF lacking enzymatic activity (Mif P1G). Primary tumor growth was significantly attenuated in both Mif-KO and Mif P1G mice compared with WT mice. We subsequently undertook a structure-based, virtual screen to identify putative small molecular weight inhibitors specific for the tautomerase enzymatic active site of MIF. From primary and secondary screens, the inhibitor SCD-19 was identified, which significantly attenuated the tautomerase enzymatic activity of MIF in vitro and in biological functional screens. In the LLC murine model, SCD-19, given intraperitoneally at the time of tumor inoculation, was found to significantly reduce primary tumor volume by 90% (p < 0.001) compared with the control treatment. To better replicate the human disease scenario, SCD-19 was given when the tumor was palpable (at d 7 after tumor inoculation) and, again, treatment was found to significantly reduce tumor volume by 81% (p < 0.001) compared with the control treatment. In this report, we identify a novel inhibitor that blocks the hydrophobic pocket of MIF, which houses its specific tautomerase enzymatic activity, and demonstrate that targeting this unique active site significantly attenuates lung cancer growth in in vitro and in vivo systems. PMID:25826675

  6. Hybrid-Actuating Macrophage-Based Microrobots for Active Cancer Therapy.

    PubMed

    Han, Jiwon; Zhen, Jin; Du Nguyen, Van; Go, Gwangjun; Choi, Youngjin; Ko, Seong Young; Park, Jong-Oh; Park, Sukho

    2016-01-01

    Using macrophage recruitment in tumors, we develop active, transportable, cancer theragnostic macrophage-based microrobots as vector to deliver therapeutic agents to tumor regions. The macrophage-based microrobots contain docetaxel (DTX)-loaded poly-lactic-co-glycolic-acid (PLGA) nanoparticles (NPs) for chemotherapy and Fe3O4 magnetic NPs (MNPs) for active targeting using an electromagnetic actuation (EMA) system. And, the macrophage-based microrobots are synthesized through the phagocytosis of the drug NPs and MNPs in the macrophages. The anticancer effects of the microrobots on tumor cell lines (CT-26 and 4T1) are evaluated in vitro by cytotoxic assay. In addition, the active tumor targeting by the EMA system and macrophage recruitment, and the chemotherapeutic effect of the microrobots are evaluated using three-dimensional (3D) tumor spheroids. The microrobots exhibited clear cytotoxicity toward tumor cells, with a low survivability rate (<50%). The 3D tumor spheroid assay showed that the microrobots demonstrated hybrid actuation through active tumor targeting by the EMA system and infiltration into the tumor spheroid by macrophage recruitment, resulting in tumor cell death caused by the delivered antitumor drug. Thus, the active, transportable, macrophage-based theragnostic microrobots can be considered to be biocompatible vectors for cancer therapy. PMID:27346486

  7. Hybrid-Actuating Macrophage-Based Microrobots for Active Cancer Therapy

    PubMed Central

    Han, Jiwon; Zhen, Jin; Du Nguyen, Van; Go, Gwangjun; Choi, Youngjin; Ko, Seong Young; Park, Jong-Oh; Park, Sukho

    2016-01-01

    Using macrophage recruitment in tumors, we develop active, transportable, cancer theragnostic macrophage-based microrobots as vector to deliver therapeutic agents to tumor regions. The macrophage-based microrobots contain docetaxel (DTX)-loaded poly-lactic-co-glycolic-acid (PLGA) nanoparticles (NPs) for chemotherapy and Fe3O4 magnetic NPs (MNPs) for active targeting using an electromagnetic actuation (EMA) system. And, the macrophage-based microrobots are synthesized through the phagocytosis of the drug NPs and MNPs in the macrophages. The anticancer effects of the microrobots on tumor cell lines (CT-26 and 4T1) are evaluated in vitro by cytotoxic assay. In addition, the active tumor targeting by the EMA system and macrophage recruitment, and the chemotherapeutic effect of the microrobots are evaluated using three-dimensional (3D) tumor spheroids. The microrobots exhibited clear cytotoxicity toward tumor cells, with a low survivability rate (<50%). The 3D tumor spheroid assay showed that the microrobots demonstrated hybrid actuation through active tumor targeting by the EMA system and infiltration into the tumor spheroid by macrophage recruitment, resulting in tumor cell death caused by the delivered antitumor drug. Thus, the active, transportable, macrophage-based theragnostic microrobots can be considered to be biocompatible vectors for cancer therapy. PMID:27346486

  8. Peroxidatic activity distinct from myeloperoxidase in human monocytes cultured in vitro and in alveolar macrophages.

    PubMed

    Breton-Gorius, J; Vildé, J L; Guichard, J; Vainchenker, W; Basset, F

    1982-01-01

    Human monocytes develop a peroxidatic activity (PA) in rough endoplasmic reticulum (RER) after adherence or after culture in semi-solid medium. This enzyme activity disappears after three days of culture in the majority of macrophages derived from adult monocytes but persists for one week in macrophages derived from neonatal monocytes. The PA is due to an enzyme distinct from myeloperoxidase (MPO), since monocytes from a patient with MPO deficiency develop the same PA as that of normal monocytes after adherence. By its localization and other characteristics, PA of adherent monocytes resembles that of rodent macrophages. We therefore investigated whether human alveolar macrophages exhibit PA, using a sensitive cytochemical method which prevents inhibition by aldehyde in adherent monocytes. In various pathological cases, four types of macrophages could be identified: the majority were peroxidase-negative, a small percentage was of exudate type exhibiting a PA in granules as blood monocytes, while few macrophages were intermediate, possessing only PA in RER i.e. of type resident and a smaller proportion had PA in RER and in granules i.e. exudate-resident macrophages. These findings demonstrate that human macrophages and adherent monocytes may exhibit PA in RER as has been reported for rodent macrophages. The true nature and function of the enzyme responsible for this PA, which is distinct from MPO, remains unknown, but some arguments seem to suggest its role in prostaglandin synthesis. PMID:6283838

  9. Puerarin Inhibits oxLDL-Induced Macrophage Activation and Foam Cell Formation in Human THP1 Macrophage.

    PubMed

    Zhang, Heng; Zhai, Zhenhua; Zhou, Hongyu; Li, Yao; Li, Xiaojie; Lin, Yuhan; Li, Weihong; Shi, Yueping; Zhou, Ming-Sheng

    2015-01-01

    Puerarin, an isoflavone derived from Kudzu roots, has been widely used for treatment of cardiovascular and cerebral vascular diseases in China and other Asian countries. However, the underlying mechanisms are largely unknown. The present study investigated whether puerarin inhibited atherogenic lipid oxLDL-mediated macrophage activation and foam cell formation in human THP1 macrophage. Treatment with oxLDL significantly increased the mRNA expression of proinflammatory cytokines tumor necrosis factor α (TNFα, 160%) and interleukin (IL) 1β (13 fold) accompanied by upregulation of toll-like receptor 4 (TLR4, 165%) and the ratio of phospho-IκBα/IκBα in THP1 macrophage. Puerarin dose-dependently prevented an increase in oxLDL-induced proinflammatory gene expression with downregulation of TLR4 and the ratio of phospho-IκBα/IκBα. Furthermore, puerarin prevented oxLDL-mediated lipid deposition and foam cell formation associated with downregulation of scavenger receptor CD36. Flow cytometry analysis showed that puerarin reduced the number of early apoptotic cells of macrophages induced by oxLDL. Our results show that puerarin has anti-inflammatory and antiatherogenic effects in vitro; the underlying mechanisms may involve the inhibition of TLR4/NFκB pathway and downregulation of CD36 expression. The results from the present study provide scientific evidence and may expand our armamentarium to use puerarin for prevention and treatment of cardiovascular and atherosclerotic diseases. PMID:26576421

  10. Chronic Trypanosoma cruzi infection potentiates adipose tissue macrophage polarization toward an anti-inflammatory M2 phenotype and contributes to diabetes progression in a diet-induced obesity model

    PubMed Central

    Cabalén, María E.; Cabral, María F.; Sanmarco, Liliana M.; Andrada, Marta C.; Onofrio, Luisina I.; Ponce, Nicolás E.; Aoki, María P.; Gea, Susana; Cano, Roxana C.

    2016-01-01

    Chronic obesity and Chagas disease (caused by the protozoan Trypanosoma cruzi) represent serious public health concerns. The interrelation between parasite infection, adipose tissue, immune system and metabolism in an obesogenic context, has not been entirely explored. A novel diet-induced obesity model (DIO) was developed in C57BL/6 wild type mice to examine the effect of chronic infection (DIO+I) on metabolic parameters and on obesity-related disorders. Dyslipidemia, hyperleptinemia, and cardiac/hepatic steatosis were strongly developed in DIO mice. Strikingly, although these metabolic alterations were collectively improved by infection, plasmatic apoB100 levels remain significantly increased in DIO+I, suggesting the presence of pro-atherogenic small and dense LDL particles. Moreover, acute insulin resistance followed by chronic hyperglycemia with hypoinsulinemia was found, evidencing an infection-related-diabetes progression. These lipid and glucose metabolic changes seemed to be highly dependent on TLR4 expression since TLR4−/− mice were protected from obesity and its complications. Notably, chronic infection promoted a strong increase in MCP-1 producing macrophages with a M2 (F4/80+CD11c-CD206+) phenotype associated to oxidative stress in visceral adipose tissue of DIO+I mice. Importantly, infection reduced lipid content but intensified inflammatory infiltrates in target tissues. Thus, parasite persistence in an obesogenic environment and the resulting host immunometabolic dysregulation may contribute to diabetes/atherosclerosis progression. PMID:26921251

  11. Differences in angiogenic potential of classically vs alternatively activated macrophages.

    PubMed

    Kodelja, V; Müller, C; Tenorio, S; Schebesch, C; Orfanos, C E; Goerdt, S

    1997-11-01

    Macrophages (M phi) are important for angiogenesis during inflammation, wound repair, and tumor growth. However, well-characterized M phi subsets such as IFN-gamma-induced, classically activated (ca) M phi or IL-4/glucocorticoid-induced, alternatively activated (aa) M phi have not been thoroughly examined for a positive or negative association with angiogenesis. While caM phi populate early inflammatory reactions and high-turnover granulomas, aaM phi occur in healing wounds and chronic inflammation. In contrast to caM phi-dominated lesions, aaM phi-rich lesions are highly vascularized. In order to determine their angiogenic potential in vitro, these M phi subsets as well as unstimulated control macrophages (coM phi) were analyzed by RT-PCR for mRNA expression of 10 angiogenic factors after 3 and 6 days of culture. Early during activation, caM phi and coM phi expressed equal levels of 8 of 10 angiogenic factors (PDGF-A, MK, TNF-alpha, TGF-beta 1, PDGF-B, HGF, TGF-alpha, IGF-1), while aaM phi showed expression of only 4 of these factors (TGF-beta 1, PDGF-B, HGF, GF-1). After maturation, TGF-alpha and IGF-1 showed a shift in mRNA expression from caM phi to aaM phi resulting in a considerably enhanced expression of these factors in day-6 aaM phi as compared to day-6 caM phi and coM phi while PDGF-A, MK, and TNF-alpha remained suppressed in day 6 aaM phi. In all M phi subsets including controls, mRNA expression of aFGF and bFGF was minimal or absent while TGFG-beta 1, HGF, and ODGF-B were constitutively expressed. In order to functionally integrate angiogenic factor mRNA expression profiles, mitogenic activity of M phi subsets towards microvascular endothelium was assessed by cocultivation. Coculture experiments revealed that endothelial proliferation induced by aaM phi was 3.0-3.5x higher than induced by caM phi. In conclusion, mature aaM phi are well equipped to play an important role in protracted M phi-associated angiogenic processes. Presumably due to expression of

  12. Mitogen-Activated Protein Kinases and Mitogen Kinase Phosphatase 1: A Critical Interplay in Macrophage Biology

    PubMed Central

    Lloberas, Jorge; Valverde-Estrella, Lorena; Tur, Juan; Vico, Tania; Celada, Antonio

    2016-01-01

    Macrophages are necessary in multiple processes during the immune response or inflammation. This review emphasizes the critical role of the mitogen-activated protein kinases (MAPKs) and mitogen kinase phosphatase-1 (MKP-1) in the functional activities of macrophages. While the phosphorylation of MAPKs is required for macrophage activation or proliferation, MKP-1 dephosphorylates these kinases, thus playing a balancing role in the control of macrophage behavior. MKP-1 is a nuclear-localized dual-specificity phosphatase whose expression is regulated at multiple levels, including at the transcriptional and post-transcriptional level. The regulatory role of MKP-1 in the interplay between MAPK phosphorylation/dephosphorylation makes this molecule a critical regulator of macrophage biology and inflammation. PMID:27446931

  13. IL-33 Priming Enhances Peritoneal Macrophage Activity in Response to Candida albicans.

    PubMed

    Tran, Vuvi G; Cho, Hong R; Kwon, Byungsuk

    2014-08-01

    IL-33 is a member of the IL-1 cytokine family and plays a role in the host defense against bacteria, viruses, and fungi. In this study, we investigated the function of IL-33 and its receptor in in vitro macrophage responses to Candida albicans. Our results demonstrate that pre-sensitization of isolated peritoneal macrophages with IL-33 enhanced their pro-inflammatory cytokine production and phagocytic activity in response to C. albicans. These macrophage activities were entirely dependent on the ST2-MyD88 signaling pathway. In addition, pre-sensitization with IL-33 also increased ROS production and the subsequent killing ability of macrophages following C. albicans challenge. These results indicate that IL-33 may increase anti-fungal activity against Candida through macrophage-mediated resistance mechanisms. PMID:25177252

  14. Troglitazone regulates peroxisome proliferator-activated receptors and inducible nitric oxide synthase in murine ovarian macrophages.

    PubMed

    Minge, Cadence E; Ryan, Natalie K; Van Der Hoek, Kylie H; Robker, Rebecca L; Norman, Robert J

    2006-01-01

    Peroxisome proliferator-activated receptor-gamma (PPARG) and PPAR-alpha (PPARA) control metabolic processes in many cell types and act as anti-inflammatory regulators in macrophages. PPAR-activating ligands include thiazolidinediones (TZDs), such as troglitazone, once frequently used to treat insulin resistance as well as symptoms of polycystic ovary syndrome (PCOS). Since macrophages within the ovary mediate optimal follicle development, TZD actions to improve PCOS symptoms are likely to be partly mediated through these specifically localized immune cells. In mouse ovary, PPARG protein was expressed in granulosa cells and in isolated cells localized to theca, stroma, and corpora lutea, consistent with EMR1+ macrophages. Isolation of immune cells (EMR1+ or H2+) showed that Pparg and Ppara were expressed in ovarian macrophages at much higher levels than in peritoneal macrophages. Ovulatory human chorionic gonadotropin downregulated expression of Pparg and Ppara in EMR1+ ovarian macrophages, but no hormonal responsiveness was observed in H2+ cells. Downstream anti-inflammatory effects of PPARG activation were analyzed by in vitro treatment of isolated macrophages with troglitazone. Interleukin-1 beta (Il1b) expression was not altered, and tumor necrosis factor-alpha (Tnf) expression was affected in peritoneal macrophages only. In ovarian macrophages, inducible nitric oxide synthase (Nos2), an important proinflammatory enzyme that regulates ovulation, was significantly reduced by troglitazone treatment, an effect that was restricted to cells from the preovulatory ovary. Thus, expression of PPARs within ovarian macrophages is hormonally regulated, reflecting the changing roles of these cells during the ovulatory cycle. Additionally, ovarian macrophages respond directly to troglitazone to downregulate expression of proinflammatory Nos2, providing mechanistic information about ovarian effects of TZD treatment. PMID:16192401

  15. Activation of α-7 nicotinic acetylcholine receptor reduces ischemic stroke injury through reduction of pro-inflammatory macrophages and oxidative stress.

    PubMed

    Han, Zhenying; Shen, Fanxia; He, Yue; Degos, Vincent; Camus, Marine; Maze, Mervyn; Young, William L; Su, Hua

    2014-01-01

    Activation of α-7 nicotinic acetylcholine receptor (α-7 nAchR) has a neuro-protective effect on ischemic and hemorrhagic stroke. However, the underlying mechanism is not completely understood. We hypothesized that α-7 nAchR agonist protects brain injury after ischemic stroke through reduction of pro-inflammatory macrophages (M1) and oxidative stress. C57BL/6 mice were treated with PHA568487 (PHA, α-7 nAchR agonist), methyllycaconitine (MLA, nAchR antagonist), or saline immediately and 24 hours after permanent occlusion of the distal middle cerebral artery (pMCAO). Behavior test, lesion volume, CD68(+), M1 (CD11b(+)/Iba1(+)) and M2 (CD206/Iba1+) microglia/macrophages, and phosphorylated p65 component of NF-kB in microglia/macrophages were quantified using histological stained sections. The expression of M1 and M2 marker genes, anti-oxidant genes and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase were quantified using real-time RT-PCR. Compared to the saline-treated mice, PHA mice had fewer behavior deficits 3 and 7 days after pMCAO, and smaller lesion volume, fewer CD68(+) and M1 macrophages, and more M2 macrophages 3 and 14 days after pMCAO, whereas MLA's effects were mostly the opposite in several analyses. PHA increased anti-oxidant genes and NADPH oxidase expression associated with decreased phosphorylation of NF-kB p65 in microglia/macrophages. Thus, reduction of inflammatory response and oxidative stress play roles in α-7 nAchR neuro-protective effect. PMID:25157794

  16. Macrophage activation by factors released from acetaminophen-injured hepatocytes: Potential role of HMGB1

    SciTech Connect

    Dragomir, Ana-Cristina; Laskin, Jeffrey D.; Laskin, Debra L.

    2011-06-15

    Toxic doses of acetaminophen (AA) cause hepatocellular necrosis. Evidence suggests that activated macrophages contribute to the pathogenic process; however, the factors that activate these cells are unknown. In these studies, we assessed the role of mediators released from AA-injured hepatocytes in macrophage activation. Treatment of macrophages with conditioned medium (CM) collected 24 hr after treatment of mouse hepatocytes with 5 mM AA (CM-AA) resulted in increased production of reactive oxygen species (ROS). Macrophage expression of heme oxygenase-1 (HO-1) and catalase mRNA was also upregulated by CM-AA, as well as cyclooxygenase (COX)-2 and 12/15-lipoxygenase (LOX). CM-AA also upregulated expression of the proinflammatory chemokines, MIP-1{alpha} and MIP-2. The effects of CM-AA on expression of COX-2, MIP-1{alpha} and MIP-2 were inhibited by blockade of p44/42 MAP kinase, suggesting a biochemical mechanism mediating macrophage activation. Hepatocytes injured by AA were found to release HMGB1, a potent macrophage activator. This was inhibited by pretreatment of hepatocytes with ethyl pyruvate (EP), which blocks HMGB1 release. EP also blocked CM-AA induced ROS production and antioxidant expression, and reduced expression of COX-2, but not MIP-1{alpha} or MIP-2. These findings suggest that HMGB1 released by AA-injured hepatocytes contributes to macrophage activation. This is supported by our observation that expression of the HMGB1 receptor RAGE is upregulated in macrophages in response to CM-AA. These data indicate that AA-injured hepatocytes contribute to the inflammatory environment in the liver through the release of mediators such as HMGB1. Blocking HMGB1/RAGE may be a useful approach to limiting classical macrophage activation and AA-induced hepatotoxicity. - Research Highlights: > These studies analyze macrophage activation by mediators released from acetaminophen-damaged hepatocytes. > Factors released from acetaminophen-injured hepatocytes induce

  17. β-glucans from Coriolus versicolor protect mice against S. typhimurium challenge by activation of macrophages.

    PubMed

    Shi, Shao-Hua; Yang, Wen-Tao; Huang, Ke-Yan; Jiang, Yan-Long; Yang, Gui-Lian; Wang, Chun-Feng; Li, Yu

    2016-05-01

    The effects of β-glucans from Coriolus versicolor (CVP), which are extracted from a well-known immune stimulator C. versicolor, have been demonstrated extensively in vitro and in vivo. However, until now, the phagocytic activity has not been elucidated. Hence, the objective of the present study was to identify the antibacterial activity of CVP or CVP-treated macrophages by an analysis of cell cytotoxicity, phagocytic activity, intracellular bacterial survival, macrophage activation, production of nitric oxide (NO) and expression of inducible nitric oxide synthase (iNOS) in CVP-treated macrophages using flow cytometry, RT-PCR, a gentamicin protection assay, a Nitric oxide assay and an iNOS enzymatic activity assay. The results indicate that CVP-treated macrophages can phagocytize and kill bacteria, probably due to the production of NO and iNOS. More importantly, CVP-treated macrophages are effective at protecting mice against the challenge of Salmonella typhimurium. The results of this study suggest that the antibacterial effects of CVP are probably caused by the activation of innate immune cells, especially macrophages, because the activated macrophage produces NO, which kills bacteria. These phenomena indicate the possibility of CVP as a potential alternative for antibiotics against resistant bacteria. PMID:26802244

  18. Activator of G-Protein Signaling 3-Induced Lysosomal Biogenesis Limits Macrophage Intracellular Bacterial Infection.

    PubMed

    Vural, Ali; Al-Khodor, Souhaila; Cheung, Gordon Y C; Shi, Chong-Shan; Srinivasan, Lalitha; McQuiston, Travis J; Hwang, Il-Young; Yeh, Anthony J; Blumer, Joe B; Briken, Volker; Williamson, Peter R; Otto, Michael; Fraser, Iain D C; Kehrl, John H

    2016-01-15

    Many intracellular pathogens cause disease by subverting macrophage innate immune defense mechanisms. Intracellular pathogens actively avoid delivery to or directly target lysosomes, the major intracellular degradative organelle. In this article, we demonstrate that activator of G-protein signaling 3 (AGS3), an LPS-inducible protein in macrophages, affects both lysosomal biogenesis and activity. AGS3 binds the Gi family of G proteins via its G-protein regulatory (GoLoco) motif, stabilizing the Gα subunit in its GDP-bound conformation. Elevated AGS3 levels in macrophages limited the activity of the mammalian target of rapamycin pathway, a sensor of cellular nutritional status. This triggered the nuclear translocation of transcription factor EB, a known activator of lysosomal gene transcription. In contrast, AGS3-deficient macrophages had increased mammalian target of rapamycin activity, reduced transcription factor EB activity, and a lower lysosomal mass. High levels of AGS3 in macrophages enhanced their resistance to infection by Burkholderia cenocepacia J2315, Mycobacterium tuberculosis, and methicillin-resistant Staphylococcus aureus, whereas AGS3-deficient macrophages were more susceptible. We conclude that LPS priming increases AGS3 levels, which enhances lysosomal function and increases the capacity of macrophages to eliminate intracellular pathogens. PMID:26667172

  19. Ultrastructural studies of the killing of schistosomula of Schistosoma mansoni by activated macrophages in vitro.

    PubMed

    McLaren, D J; James, S L

    1985-05-01

    Immunologically activated murine macrophages have been shown elsewhere to kill skin stage schistosomula of Schistosoma mansoni in vitro, in a manner analogous to the extracellular killing of tumour cell targets. In this study, the kinetics of the interaction between activated macrophages and larval targets and the resultant ultrastructural changes in parasite morphology that culminated in death have been analysed in detail. Unlike granulocyte-mediated schistosomular killing, macrophage-mediated cytotoxicity did not appear to be directed against the surface tissues of the parasite. Macrophages adhered only transiently following initiation of the cultures, yet changes in the subtegumental mitochondria and muscle cells of the larva were detected within the first hour of incubation. Progressive internal disorganisation followed rapidly, but the tegument and tegumental outer membrane remained intact, to form a 'shell' that maintained the general shape of the parasite. Such changes were recognised irrespective of whether the effector cell population comprised peritoneal macrophages activated by lymphokine treatment in vitro, or by infection with Mycobacterium bovis (strain BCG), or S. mansoni in vivo. That macrophages rather than contaminating granulocytes or lymphocytes, had mediated the observed damage was demonstrated by the use of a lymphokine treated macrophage cell line, IC-21. The observation that macrophage cytotoxicity is directed against internal organelles rather than the tegumental outer membrane of this multicellular target, may help to elucidate the general mechanism of extracellular killing by these cells. PMID:3892433

  20. Substrate Stiffness Regulates Proinflammatory Mediator Production through TLR4 Activity in Macrophages.

    PubMed

    Previtera, Michelle L; Sengupta, Amitabha

    2015-01-01

    Clinical data show that disease adversely affects tissue elasticity or stiffness. While macrophage activity plays a critical role in driving disease pathology, there are limited data available on the effects of tissue stiffness on macrophage activity. In this study, the effects of substrate stiffness on inflammatory mediator production by macrophages were investigated. Bone marrow-derived macrophages were grown on polyacrylamide gels that mimicked the stiffness of a variety of soft biological tissues. Overall, macrophages grown on soft substrates produced less proinflammatory mediators than macrophages grown on stiff substrates when the endotoxin LPS was added to media. In addition, the pathways involved in stiffness-regulated proinflammation were investigated. The TLR4 signaling pathway was examined by evaluating TLR4, p-NF-κB p65, MyD88, and p-IκBα expression as well as p-NF-κB p65 translocation. Expression and translocation of the various signaling molecules were higher in macrophages grown on stiff substrates than on soft substrates. Furthermore, TLR4 knockout experiments showed that TLR4 activity enhanced proinflammation on stiff substrates. In conclusion, these results suggest that proinflammatory mediator production initiated by TLR4 is mechanically regulated in macrophages. PMID:26710072

  1. Substrate Stiffness Regulates Proinflammatory Mediator Production through TLR4 Activity in Macrophages

    PubMed Central

    Previtera, Michelle L.; Sengupta, Amitabha

    2015-01-01

    Clinical data show that disease adversely affects tissue elasticity or stiffness. While macrophage activity plays a critical role in driving disease pathology, there are limited data available on the effects of tissue stiffness on macrophage activity. In this study, the effects of substrate stiffness on inflammatory mediator production by macrophages were investigated. Bone marrow–derived macrophages were grown on polyacrylamide gels that mimicked the stiffness of a variety of soft biological tissues. Overall, macrophages grown on soft substrates produced less proinflammatory mediators than macrophages grown on stiff substrates when the endotoxin LPS was added to media. In addition, the pathways involved in stiffness–regulated proinflammation were investigated. The TLR4 signaling pathway was examined by evaluating TLR4, p–NF–κB p65, MyD88, and p–IκBα expression as well as p–NF–κB p65 translocation. Expression and translocation of the various signaling molecules were higher in macrophages grown on stiff substrates than on soft substrates. Furthermore, TLR4 knockout experiments showed that TLR4 activity enhanced proinflammation on stiff substrates. In conclusion, these results suggest that proinflammatory mediator production initiated by TLR4 is mechanically regulated in macrophages. PMID:26710072

  2. Cathepsin Activity-Based Probes and Inhibitor for Preclinical Atherosclerosis Imaging and Macrophage Depletion

    PubMed Central

    Abd-Elrahman, Ihab; Kosuge, Hisanori; Wises Sadan, Tommy; Ben-Nun, Yael; Meir, Karen; Rubinstein, Chen; Bogyo, Matthew; McConnell, Michael V.

    2016-01-01

    Background and Purpose Cardiovascular disease is the leading cause of death worldwide, mainly due to an increasing prevalence of atherosclerosis characterized by inflammatory plaques. Plaques with high levels of macrophage infiltration are considered “vulnerable” while those that do not have significant inflammation are considered stable; cathepsin protease activity is highly elevated in macrophages of vulnerable plaques and contributes to plaque instability. Establishing novel tools for non-invasive molecular imaging of macrophages in plaques could aid in preclinical studies and evaluation of therapeutics. Furthermore, compounds that reduce the macrophage content within plaques should ultimately impact care for this disease. Methods We have applied quenched fluorescent cathepsin activity-based probes (ABPs) to a murine atherosclerosis model and evaluated their use for in vivo imaging using fluorescent molecular tomography (FMT), as well as ex vivo fluorescence imaging and fluorescent microscopy. Additionally, freshly dissected human carotid plaques were treated with our potent cathepsin inhibitor and macrophage apoptosis was evaluated by fluorescent microscopy. Results We demonstrate that our ABPs accurately detect murine atherosclerotic plaques non-invasively, identifying cathepsin activity within plaque macrophages. In addition, our cathepsin inhibitor selectively induced cell apoptosis of 55%±10% of the macrophage within excised human atherosclerotic plaques. Conclusions Cathepsin ABPs present a rapid diagnostic tool for macrophage detection in atherosclerotic plaque. Our inhibitor confirms cathepsin-targeting as a promising approach to treat atherosclerotic plaque inflammation. PMID:27532109

  3. Deficiency of Nuclear Receptor Nur77 Aggravates Mouse Experimental Colitis by Increased NFκB Activity in Macrophages.

    PubMed

    Hamers, Anouk A J; van Dam, Laura; Teixeira Duarte, José M; Vos, Mariska; Marinković, Goran; van Tiel, Claudia M; Meijer, Sybren L; van Stalborch, Anne-Marieke; Huveneers, Stephan; Te Velde, Anje A; de Jonge, Wouter J; de Vries, Carlie J M

    2015-01-01

    Nuclear receptor Nur77, also referred to as NR4A1 or TR3, plays an important role in innate and adaptive immunity. Nur77 is crucial in regulating the T helper 1/regulatory T-cell balance, is expressed in macrophages and drives M2 macrophage polarization. In this study we aimed to define the function of Nur77 in inflammatory bowel disease. In wild-type and Nur77-/- mice, colitis development was studied in dextran sodium sulphate (DSS)- and 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced models. To understand the underlying mechanism, Nur77 was overexpressed in macrophages and gut epithelial cells. Nur77 protein is expressed in colon tissues from Crohn's disease and Ulcerative colitis patients and colons from colitic mice in inflammatory cells and epithelium. In both mouse colitis models inflammation was increased in Nur77-/- mice. A higher neutrophil influx and enhanced IL-6, MCP-1 and KC production was observed in Nur77-deficient colons after DSS-treatment. TNBS-induced influx of T-cells and inflammatory monocytes into the colon was higher in Nur77-/- mice, along with increased expression of MCP-1, TNFα and IL-6, and decreased Foxp3 RNA expression, compared to wild-type mice. Overexpression of Nur77 in lipopolysaccharide activated RAW macrophages resulted in up-regulated IL-10 and downregulated TNFα, MIF-1 and MCP-1 mRNA expression through NFκB repression. Nur77 also strongly decreased expression of MCP-1, CXCL1, IL-8, MIP-1α and TNFα in gut epithelial Caco-2 cells. Nur77 overexpression suppresses the inflammatory status of both macrophages and gut epithelial cells and together with the in vivo mouse data this supports that Nur77 has a protective function in experimental colitis. These findings may have implications for development of novel targeted treatment strategies regarding inflammatory bowel disease and other inflammatory diseases. PMID:26241646

  4. Deficiency of Nuclear Receptor Nur77 Aggravates Mouse Experimental Colitis by Increased NFκB Activity in Macrophages

    PubMed Central

    Hamers, Anouk A. J.; van Dam, Laura; Teixeira Duarte, José M.; Vos, Mariska; Marinković, Goran; van Tiel, Claudia M.; Meijer, Sybren L.; van Stalborch, Anne-Marieke; Huveneers, Stephan; te Velde, Anje A.

    2015-01-01

    Nuclear receptor Nur77, also referred to as NR4A1 or TR3, plays an important role in innate and adaptive immunity. Nur77 is crucial in regulating the T helper 1/regulatory T-cell balance, is expressed in macrophages and drives M2 macrophage polarization. In this study we aimed to define the function of Nur77 in inflammatory bowel disease. In wild-type and Nur77-/- mice, colitis development was studied in dextran sodium sulphate (DSS)- and 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced models. To understand the underlying mechanism, Nur77 was overexpressed in macrophages and gut epithelial cells. Nur77 protein is expressed in colon tissues from Crohn’s disease and Ulcerative colitis patients and colons from colitic mice in inflammatory cells and epithelium. In both mouse colitis models inflammation was increased in Nur77-/- mice. A higher neutrophil influx and enhanced IL-6, MCP-1 and KC production was observed in Nur77-deficient colons after DSS-treatment. TNBS-induced influx of T-cells and inflammatory monocytes into the colon was higher in Nur77-/- mice, along with increased expression of MCP-1, TNFα and IL-6, and decreased Foxp3 RNA expression, compared to wild-type mice. Overexpression of Nur77 in lipopolysaccharide activated RAW macrophages resulted in up-regulated IL-10 and downregulated TNFα, MIF-1 and MCP-1 mRNA expression through NFκB repression. Nur77 also strongly decreased expression of MCP-1, CXCL1, IL-8, MIP-1α and TNFα in gut epithelial Caco-2 cells. Nur77 overexpression suppresses the inflammatory status of both macrophages and gut epithelial cells and together with the in vivo mouse data this supports that Nur77 has a protective function in experimental colitis. These findings may have implications for development of novel targeted treatment strategies regarding inflammatory bowel disease and other inflammatory diseases. PMID:26241646

  5. Mangiferin inhibits macrophage classical activation via downregulating interferon regulatory factor 5 expression.

    PubMed

    Wei, Zhiquan; Yan, Li; Chen, Yixin; Bao, Chuanhong; Deng, Jing; Deng, Jiagang

    2016-08-01

    Mangiferin is a natural polyphenol and the predominant effective component of Mangifera indica Linn. leaves. For hundreds of years, Mangifera indica Linn. leaf has been used as an ingredient in numerous traditional Chinese medicine preparations for the treatment of bronchitis. However, the pharmacological mechanism of mangiferin in the treatment of bronchitis remains to be elucidated. Macrophage classical activation is important role in the process of bronchial airway inflammation, and interferon regulatory factor 5 (IRF5) has been identified as a key regulatory factor for macrophage classical activation. The present study used the THP‑1 human monocyte cell line to investigate whether mangiferin inhibits macrophage classical activation via suppressing IRF5 expression in vitro. THP‑1 cells were differentiated to macrophages by phorbol 12‑myristate 13‑acetate. Macrophages were polarized to M1 macrophages following stimulation with lipopolysaccharide (LPS)/interferon‑γ (IFN‑γ). Flow cytometric analysis was conducted to detect the M1 macrophages. Reverse transcription‑quantitative polymerase chain reaction was used to investigate cellular IRF5 gene expression. Levels of proinflammatory cytokines and IRF5 were assessed following cell culture and cellular homogenization using enzyme‑linked immunosorbent assay. IRF5 protein and nuclei co‑localization was performed in macrophages with laser scanning confocal microscope immunofluorescence analysis. The results of the present study demonstrated that mangiferin significantly inhibits LPS/IFN‑γ stimulation‑induced classical activation of macrophages in vitro and markedly decreases proinflammatory cytokine release. In addition, cellular IRF5 expression was markedly downregulated. These results suggest that the inhibitory effect of mangiferin on classical activation of macrophages may be exerted via downregulation of cellular IRF5 expression levels. PMID:27277156

  6. Mangiferin inhibits macrophage classical activation via downregulating interferon regulatory factor 5 expression

    PubMed Central

    Wei, Zhiquan; Yan, Li; Chen, Yixin; Bao, Chuanhong; Deng, Jing; Deng, Jiagang

    2016-01-01

    Mangiferin is a natural polyphenol and the predominant effective component of Mangifera indica Linn. leaves. For hundreds of years, Mangifera indica Linn. leaf has been used as an ingredient in numerous traditional Chinese medicine preparations for the treatment of bronchitis. However, the pharmacological mechanism of mangiferin in the treatment of bronchitis remains to be elucidated. Macrophage classical activation is important role in the process of bronchial airway inflammation, and interferon regulatory factor 5 (IRF5) has been identified as a key regulatory factor for macrophage classical activation. The present study used the THP-1 human monocyte cell line to investigate whether mangiferin inhibits macrophage classical activation via suppressing IRF5 expression in vitro. THP-1 cells were differentiated to macrophages by phorbol 12-myristate 13-acetate. Macrophages were polarized to M1 macrophages following stimulation with lipopolysaccharide (LPS)/interferon-γ (IFN-γ). Flow cytometric analysis was conducted to detect the M1 macrophages. Reverse transcription-quantitative polymerase chain reaction was used to investigate cellular IRF5 gene expression. Levels of proinflammatory cytokines and IRF5 were assessed following cell culture and cellular homogenization using enzyme-linked immunosorbent assay. IRF5 protein and nuclei co-localization was performed in macrophages with laser scanning confocal microscope immunofluorescence analysis. The results of the present study demonstrated that mangiferin significantly inhibits LPS/IFN-γ stimulation-induced classical activation of macrophages in vitro and markedly decreases proinflammatory cytokine release. In addition, cellular IRF5 expression was markedly downregulated. These results suggest that the inhibitory effect of mangiferin on classical activation of macrophages may be exerted via downregulation of cellular IRF5 expression levels. PMID:27277156

  7. Interferon-γ regulates cellular metabolism and mRNA translation to potentiate macrophage activation.

    PubMed

    Su, Xiaodi; Yu, Yingpu; Zhong, Yi; Giannopoulou, Eugenia G; Hu, Xiaoyu; Liu, Hui; Cross, Justin R; Rätsch, Gunnar; Rice, Charles M; Ivashkiv, Lionel B

    2015-08-01

    Interferon-γ (IFN-γ) primes macrophages for enhanced microbial killing and inflammatory activation by Toll-like receptors (TLRs), but little is known about the regulation of cell metabolism or mRNA translation during this priming. We found that IFN-γ regulated the metabolism and mRNA translation of human macrophages by targeting the kinases mTORC1 and MNK, both of which converge on the selective regulator of translation initiation eIF4E. Physiological downregulation of mTORC1 by IFN-γ was associated with autophagy and translational suppression of repressors of inflammation such as HES1. Genome-wide ribosome profiling in TLR2-stimulated macrophages showed that IFN-γ selectively modulated the macrophage translatome to promote inflammation, further reprogram metabolic pathways and modulate protein synthesis. These results show that IFN-γ-mediated metabolic reprogramming and translational regulation are key components of classical inflammatory macrophage activation. PMID:26147685

  8. MicroRNAs Control Macrophage Formation and Activation: The Inflammatory Link between Obesity and Cardiovascular Diseases

    PubMed Central

    Chang, Richard Cheng-An; Ying, Wei; Bazer, Fuller W.; Zhou, Beiyan

    2014-01-01

    Activation and recruitment of resident macrophages in tissues in response to physiological stress are crucial regulatory processes in promoting the development of obesity-associated metabolic disorders and cardiovascular diseases. Recent studies have provided compelling evidence that microRNAs play important roles in modulating monocyte formation, macrophage maturation, infiltration into tissues and activation. Macrophage-dependent systemic physiological and tissue-specific responses also involve cell-cell interactions between macrophages and host tissue niche cell components, including other tissue-resident immune cell lineages, adipocytes, vascular smooth muscle and others. In this review, we highlight the roles of microRNAs in regulating the development and function of macrophages in the context of obesity, which could provide insights into the pathogenesis of obesity-related metabolic syndrome and cardiovascular diseases. PMID:25014161

  9. Evidence of drug metabolism by macrophages: possible role of macrophages in the pathogenesis of drug-induced tissue damage and in the activation of environmental procarcinogens.

    PubMed

    Wickramasinghe, S N

    1987-01-01

    After interaction with human macrophages derived from blood, bone marrow or spleen, solutions of sodium phenobarbitone, phenytoin sodium and chlorpromazine hydrochloride showed reduced cytotoxicity towards K562 cells. The reduction in cytotoxicity was partially suppressed in the presence of tetrahydrofurane, an inhibitor of cytochrome P450. These data suggest that macrophages are capable of metabolizing certain drugs, probably via a cytochrome P450-dependent mechanism. The present findings raise the possibility that some drug-induced blood dyscrasias are caused by metabolism of the drug by bone marrow macrophages and the consequent release of relatively short-lived molecules which are toxic to adjacent haemopoietic cells. The generation of cytotoxic molecules during drug metabolism by macrophages may also be responsible for drug-induced damage to other macrophage-rich tissues. In addition, since cytochrome P450-dependent reactions seem to occur within macrophages, these cells may activate environmental procarcinogens and thus plays a role in carcinogenesis and leukaemogenesis. PMID:3652639

  10. Further characterization of macrophage adsorption of suppressor cell activity from tumor-allosensitized spleen

    SciTech Connect

    Zografos-Miller, L.E.; Argyris, B.F.

    1983-06-01

    Suppressor cell activity from P815-allosensitized C57BL/6 spleen can be decreased by incubating the tumor-allosensitized spleen cells on monolayers of thioglycollate-stimulated BDF1 peritoneal macrophages for 2 or 4 hr. The adsorption response appears to be specific for macrophages, because adsorption of suppressor cell activity does not occur following incubation of P815-allosensitized spleen cells on confluent monolayers of mouse spleen cells or mouse embryonic fibroblasts. Pretreatment of macrophage monolayers with X irradiation (2,000 rads) or anti-Thy 1.2 serum (and complement) does not affect their ability to bind suppressor cell activity. Adsorption of suppressor cell activity from P815-allosensitized spleen can also be carried out by proteose peptone-stimulated or Corynebacterium parvum-stimulated macrophages. Blockage of macrophage Fc receptors decreases the ability of thioglycollate-stimulated macrophages to adsorb suppressor cell activity. Monolayers of P815 or P388 cells, two cell types positive for Fc receptors, are unable to adsorb suppressor cell activity from the tumor-allosensitized spleen. The significance of our findings is discussed in terms of the relationship between macrophages and suppressor cells in the immune response to normal or tumor allografts.

  11. Quantitative proteomics analyses of activation states of human THP-1 macrophages.

    PubMed

    Meijer, Kees; Weening, Desiree; de Vries, Marcel P; Priebe, Marion G; Vonk, Roel J; Roelofsen, Han

    2015-10-14

    Macrophages display large functional and phenotypical plasticity. They can adopt a broad range of activation states depending on their microenvironment. Various surface markers are used to characterize these differentially polarized macrophages. However, this is not informative for the functions of the macrophage. In order to have a better understanding of the functional changes of macrophages upon differential polarization, we studied differences in LPS- and IL4-stimulated macrophages. The THP-1 human monocytic cell line, was used as a model system. Cells were labeled, differentiated and stimulated with either LPS or IL-4 in a quantitative SILAC proteomics set-up. The resulting sets of proteins were functionally clustered. LPS-stimulated macrophages show increased secretion of proinflammatory peptides, leading to increased pressure on protein biosynthesis and processing. IL4-stimulated macrophages show upregulation of cell adhesion and extracellular matrix remodeling. Our approach provides an integrated view of polarization-induced functional changes and proves useful for studying functional differences between subsets of macrophages. Moreover, the identified polarization specific proteins may contribute to a better characterization of different activation states in situ and their role in various inflammatory processes. PMID:26200757

  12. Murine Macrophages Secrete Interferon γ upon Combined Stimulation with Interleukin (IL)-12 and IL-18: A Novel Pathway of Autocrine Macrophage Activation

    PubMed Central

    Munder, Markus; Mallo, Moisés; Eichmann, Klaus; Modolell, Manuel

    1998-01-01

    Interferon (IFN)-γ, a key immunoregulatory cytokine, has been thought to be produced solely by activated T cells and natural killer cells. In this study, we show that murine bone marrow– derived macrophages (BMMΦ) secrete large amounts of IFN-γ upon appropriate stimulation. Although interleukin (IL)-12 and IL-18 alone induce low levels of IFN-γ mRNA transcripts, the combined stimulation of BMMΦ with both cytokines leads to the efficient production of IFN-γ protein. The macrophage-derived IFN-γ is biologically active as shown by induction of inducible nitric oxide synthase as well as upregulation of CD40 in macrophages. Our findings uncover a novel pathway of autocrine macrophage activation by demonstrating that the macrophage is not only a key cell type responding to IFN-γ but also a potent IFN-γ–producing cell. PMID:9625771

  13. Effect of lipopolysaccharide on thymidine salvage as related to macrophage activation.

    PubMed Central

    Harada, Y; Nagao, S; Nakamura, M; Okada, F; Tanigawa, Y

    1995-01-01

    Lipopolysaccharide (LPS), known as one of the potent activators of macrophages, has inhibitory effects on the proliferation of normal macrophages and macrophage-like cell lines. We report here that LPS dose- and time-dependently suppressed the tritiated thymidine ([3H]TdR) incorporation into the acid-insoluble fraction with a significant inverse correlation to the tumour necrosis factor-alpha (TNF) production in the J774.1 macrophage cell line. Among the three tested enzymes involved in DNA synthesis, only thymidine kinase (TK) activity decreased progressively in parallel with the decline in [3H]TdR incorporation, reaching 97% inhibition within 12 hr of LPS treatment, while changes in the activities of other two enzymes, DNA polymerase alpha and thymidylate synthase (TS), were less significant. On the other hand, LPS inhibited the cell proliferation only incompletely, as judged by 62% inhibition of cell growth at 36 hr. Even in the experiments done in a TdR-free medium, cell growth was inhibited by LPS to the same extent, suggesting that TK was not directly involved in the proliferation of J774 cells. LPS also inhibited the conversion of TdR to thymidine monophosphate (TMP) in murine peritoneal exudate macrophages (PEM). Thus LPS-induced suppression of TdR salvage related to TNF production is common in both normal and neoplastic macrophages, and therefore may be of potential importance in the process of macrophage activation. PMID:7751001

  14. Macrophage polarization in pathology.

    PubMed

    Sica, Antonio; Erreni, Marco; Allavena, Paola; Porta, Chiara

    2015-11-01

    Macrophages are cells of the innate immunity constituting the mononuclear phagocyte system and endowed with remarkable different roles essential for defense mechanisms, development of tissues, and homeostasis. They derive from hematopoietic precursors and since the early steps of fetal life populate peripheral tissues, a process continuing throughout adult life. Although present essentially in every organ/tissue, macrophages are more abundant in the gastro-intestinal tract, liver, spleen, upper airways, and brain. They have phagocytic and bactericidal activity and produce inflammatory cytokines that are important to drive adaptive immune responses. Macrophage functions are settled in response to microenvironmental signals, which drive the acquisition of polarized programs, whose extremes are simplified in the M1 and M2 dichotomy. Functional skewing of monocyte/macrophage polarization occurs in physiological conditions (e.g., ontogenesis and pregnancy), as well as in pathology (allergic and chronic inflammation, tissue repair, infection, and cancer) and is now considered a key determinant of disease development and/or regression. Here, we will review evidence supporting a dynamic skewing of macrophage functions in disease, which may provide a basis for macrophage-centered therapeutic strategies. PMID:26210152

  15. Macrophages in Tumor Microenvironments and the Progression of Tumors

    PubMed Central

    Hao, Ning-Bo; Lü, Mu-Han; Fan, Ya-Han; Cao, Ya-Ling; Zhang, Zhi-Ren; Yang, Shi-Ming

    2012-01-01

    Macrophages are widely distributed innate immune cells that play indispensable roles in the innate and adaptive immune response to pathogens and in-tissue homeostasis. Macrophages can be activated by a variety of stimuli and polarized to functionally different phenotypes. Two distinct subsets of macrophages have been proposed, including classically activated (M1) and alternatively activated (M2) macrophages. M1 macrophages express a series of proinflammatory cytokines, chemokines, and effector molecules, such as IL-12, IL-23, TNF-α, iNOS and MHCI/II. In contrast, M2 macrophages express a wide array of anti-inflammatory molecules, such as IL-10, TGF-β, and arginase1. In most tumors, the infiltrated macrophages are considered to be of the M2 phenotype, which provides an immunosuppressive microenvironment for tumor growth. Furthermore, tumor-associated macrophages secrete many cytokines, chemokines, and proteases, which promote tumor angiogenesis, growth, metastasis, and immunosuppression. Recently, it was also found that tumor-associated macrophages interact with cancer stem cells. This interaction leads to tumorigenesis, metastasis, and drug resistance. So mediating macrophage to resist tumors is considered to be potential therapy. PMID:22778768

  16. Induction of classical activation of macrophage in vitro by water soluble chitin

    NASA Astrophysics Data System (ADS)

    Jeon, Dong-Won; Ahn, Woong Shick; You, Su Jung; Chae, Gue Tae; Shim, Young Bock; Chun, Heung Jae

    2012-12-01

    The purpose of this study is to understand the effect of chitin on macrophage mediated immunity, which is a significant factor to wound healing and tissue regeneration. In this work, water soluble chitin (WSC) was prepared by re-acetylation of chitosan and was treated with the murine RAW 264.7 macrophage cell lines (ATCC TIB-71). WSC induced classical activation in the RAW 264.7 cells, accompanied by the induction of associated genes. The results suggest that WSC is one of the functional chitin molecules that are responsible for the immune response, especially present in macrophage classical activation.

  17. Distinctive role of activated tumor-associated macrophages in photosensitizer accumulation

    NASA Astrophysics Data System (ADS)

    Korbelik, Mladen; Krosl, Gorazd

    1995-05-01

    Cells dissociated from tumors (carcinomas and sarcomas) growing subcutaneously in mice that have been administered Photofrin or other photosensitizers were analyzed by flow cytometry. Monoclonal antibodies were used for identification of major cellular populations contained in these tumors. The results demonstrate that a subpopulation of tumor-associated macrophages (TAMs) is unique among tumor cell populations in that it excels in the accumulation of very high levels of photosensitizers. These macrophages showed an increased expression of interleukin 2 receptor, which is indicative of their activated state. since macrophages were reported to concentrate in the periphery of human neoplasms, it is suggested that activates TAMs are the determinants of tumor-localized photosensitizer fluorescence.

  18. Polysaccharide of Dendrobium huoshanense activates macrophages via toll-like receptor 4-mediated signaling pathways.

    PubMed

    Xie, Song-Zi; Hao, Ran; Zha, Xue-Qiang; Pan, Li-Hua; Liu, Jian; Luo, Jian-Ping

    2016-08-01

    The present work aimed at investigating the pattern recognition receptor (PRR) and immunostimulatory mechanism of a purified Dendrobium huoshanense polysaccharide (DHP). We found that DHP could bind to the surface of macrophages and stimulate macrophages to secrete NO, TNF-α and IL-1β. To unravel the mechanism for the binding of DHP to macrophages, flow cytometry, confocal laser-scanning microscopy, affinity electrophoresis, SDS-PAGE and western blotting were employed to verify the type of PRR responsible for the recognition of DHP by RAW264.7 macrophages and peritoneal macrophages of C3H/HeN and C3H/HeJ macrophages. Results showed that toll-like receptor 4 (TLR4) was an essential receptor for macrophages to directly bind DHP. Further, the phosphorylation of ERK, JNK, Akt and p38 were observed to be time-dependently promoted by DHP, as well as the nuclear translocation of NF-κB p65. These results suggest that DHP activates macrophages via its direct binding to TLR4 to trigger TLR4 signaling pathways. PMID:27112877

  19. C/EBPβ-Thr217 Phosphorylation Stimulates Macrophage Inflammasome Activation and Liver Injury

    PubMed Central

    Buck, Martina; Solis-Herruzo, Jose; Chojkier, Mario

    2016-01-01

    Amplification of liver injury is mediated by macrophages but the signaling by which the macrophage inflammasome enhances liver injury is not completely understood. The CCAAT/Enhancer Binding Protein-β (C/EBPβ) is a critical signaling molecule for macrophages because expression of a dominant inhibitor of C/EBPβ DNA-binding sites or a targeted deletion of C/EBPβ results in impaired macrophage differentiation. We reported that expression of the phosphorylation-mutant C/EBPβ-Glu217, which mimics phosphorylated C/EBPβ-Thr217, was sufficient to confer macrophage survival to Anthrax lethal toxin. Here, using primary hepatocytes, primary liver macrophages, dominant positive and negative transgenic mice of the C/EBPβ-Thr217 phosphoacceptor, macrophage ablation, and an inhibitory peptide of C/EBPβ-Thr217 phosphorylation, we determined that this phosphorylation is essential for the activation of the inflammasome in liver macrophages and for the hepatocyte apoptosis induced by hepatotoxins that results in liver injury. Similar findings were observed in the livers of patients with acute injury induced by Toxic Oil Syndrome. PMID:27067260

  20. C/EBPβ-Thr217 Phosphorylation Stimulates Macrophage Inflammasome Activation and Liver Injury.

    PubMed

    Buck, Martina; Solis-Herruzo, Jose; Chojkier, Mario

    2016-01-01

    Amplification of liver injury is mediated by macrophages but the signaling by which the macrophage inflammasome enhances liver injury is not completely understood. The CCAAT/Enhancer Binding Protein-β (C/EBPβ) is a critical signaling molecule for macrophages because expression of a dominant inhibitor of C/EBPβ DNA-binding sites or a targeted deletion of C/EBPβ results in impaired macrophage differentiation. We reported that expression of the phosphorylation-mutant C/EBPβ-Glu217, which mimics phosphorylated C/EBPβ-Thr217, was sufficient to confer macrophage survival to Anthrax lethal toxin. Here, using primary hepatocytes, primary liver macrophages, dominant positive and negative transgenic mice of the C/EBPβ-Thr217 phosphoacceptor, macrophage ablation, and an inhibitory peptide of C/EBPβ-Thr217 phosphorylation, we determined that this phosphorylation is essential for the activation of the inflammasome in liver macrophages and for the hepatocyte apoptosis induced by hepatotoxins that results in liver injury. Similar findings were observed in the livers of patients with acute injury induced by Toxic Oil Syndrome. PMID:27067260