Sample records for activated relaxation process

  1. Capturing molecular multimode relaxation processes in excitable gases based on decomposition of acoustic relaxation spectra

    NASA Astrophysics Data System (ADS)

    Zhu, Ming; Liu, Tingting; Wang, Shu; Zhang, Kesheng

    2017-08-01

    Existing two-frequency reconstructive methods can only capture primary (single) molecular relaxation processes in excitable gases. In this paper, we present a reconstructive method based on the novel decomposition of frequency-dependent acoustic relaxation spectra to capture the entire molecular multimode relaxation process. This decomposition of acoustic relaxation spectra is developed from the frequency-dependent effective specific heat, indicating that a multi-relaxation process is the sum of the interior single-relaxation processes. Based on this decomposition, we can reconstruct the entire multi-relaxation process by capturing the relaxation times and relaxation strengths of N interior single-relaxation processes, using the measurements of acoustic absorption and sound speed at 2N frequencies. Experimental data for the gas mixtures CO2-N2 and CO2-O2 validate our decomposition and reconstruction approach.

  2. Ultra-Slow Dielectric Relaxation Process in Polyols

    NASA Astrophysics Data System (ADS)

    Yomogida, Yoshiki; Minoguchi, Ayumi; Nozaki, Ryusuke

    2004-04-01

    Dielectric relaxation processes with relaxation times larger than that for the structural α process are reported for glycerol, xylitol, sorbitol and their mixtures for the first time. Appearance of this ultra-slow process depends on cooling rate. More rapid cooling gives larger dielectric relaxation strength. However, relaxation time is not affected by cooling rate and shows non-Arrhenius temperature dependence with correlation to the α process. It can be considered that non-equilibrium dynamic structure causes the ultra-slow process. Scale of such structure would be much larger than that of the region for the cooperative molecular orientations for the α process.

  3. Relaxation processes in disaccharide sugar glasses

    NASA Astrophysics Data System (ADS)

    Hwang, Yoon-Hwae; Kwon, Hyun-Joung; Seo, Jeong-Ah; Shin, Dong-Myeong; Ha, Ji-Hye; Kim, Hyung-Kook

    2013-02-01

    We represented relaxation processes of disaccharide sugars (anhydrous trehalose and maltose) in supercooled and glassy states by using several spectroscopy techniques which include a broadband dielectric loss spectroscopy, photon correlation spectroscopy and X-ray diffraction (Retvield analysis) methods which are powerful tools to measure the dynamics in glass forming materials. In a dielectric loss spectroscopy study, we found that anhydrous trehalose and maltose glasses have an extra relaxation process besides α-, JG β- and γ-relaxations which could be related to a unique property of glycoside bond in disaccharides. In photon correlation spectroscopy study, we found an interesting compressed exponential relaxation at temperatures above 140°C. The q-1 dependence of its relaxation time corresponds to an ultraslow ballistic motion due to the local structure rearrangements. In the same temperature range, we found the glycosidic bond structure changes in trehalose molecule from the Raman and the Retvield X-ray diffraction measurements indicating that the observed compressed exponential relaxation in supercooled liquid trehalose could be resulted in the glycosidic bond structure change. Therefore, the overall results from this study might support the fact that the superior bioprotection ability of disaccharide sugar glasses might originate from this unique relaxation process of glycosidic bond.

  4. Ultraslow dielectric relaxation process in supercooled polyhydric alcohols

    NASA Astrophysics Data System (ADS)

    Yomogida, Yoshiki; Minoguchi, Ayumi; Nozaki, Ryusuke

    2006-04-01

    Complex permittivity was obtained on glycerol, xylitol, sorbitol and sorbitol-xylitol mixtures in the supercooled liquid state in the frequency range between 10μHz and 500MHz at temperatures near and above the glass transition temperature. For all the materials, a dielectric relaxation process was observed in addition to the well-known structural α and Johari-Goldstein β relaxation process [G. P. Johari and M. Goldstein, J. Chem. Phys. 53, 2372 (1970)]. The relaxation time for the new process is always larger than that for the α process. The relaxation time shows non-Arrhenius temperature dependence with correlation to the behavior of the α process and it depends on the molecular size systematically. The dielectric relaxation strength for the new process shows the effect of thermal history and decreases exponentially with time at a constant temperature. It can be considered that a nonequilibrium dynamics causes the new process.

  5. Difference and similarity of dielectric relaxation processes among polyols

    NASA Astrophysics Data System (ADS)

    Minoguchi, Ayumi; Kitai, Kei; Nozaki, Ryusuke

    2003-09-01

    Complex permittivity measurements were performed on sorbitol, xylitol, and sorbitol-xylitol mixture in the supercooled liquid state in an extremely wide frequency range from 10 μHz to 500 MHz at temperatures near and above the glass transition temperature. We determined detailed behavior of the relaxation parameters such as relaxation frequency and broadening against temperature not only for the α process but also for the β process above the glass transition temperature, to the best of our knowledge, for the first time. Since supercooled liquids are in the quasi-equilibrium state, the behavior of all the relaxation parameters for the β process can be compared among the polyols as well as those for the α process. The relaxation frequencies of the α processes follow the Vogel-Fulcher-Tammann manner and the loci in the Arrhenius diagram are different corresponding to the difference of the glass transition temperatures. On the other hand, the relaxation frequencies of the β processes, which are often called as the Johari-Goldstein processes, follow the Arrhenius-type temperature dependence. The relaxation parameters for the β process are quite similar among the polyols at temperatures below the αβ merging temperature, TM. However, they show anomalous behavior near TM, which depends on the molecular size of materials. These results suggest that the origin of the β process is essentially the same among the polyols.

  6. Active nematic gels as active relaxing solids

    NASA Astrophysics Data System (ADS)

    Turzi, Stefano S.

    2017-11-01

    I propose a continuum theory for active nematic gels, defined as fluids or suspensions of orientable rodlike objects endowed with active dynamics, that is based on symmetry arguments and compatibility with thermodynamics. The starting point is our recent theory that models (passive) nematic liquid crystals as relaxing nematic elastomers. The interplay between viscoelastic response and active dynamics of the microscopic constituents is naturally taken into account. By contrast with standard theories, activity is not introduced as an additional term of the stress tensor, but it is added as an external remodeling force that competes with the passive relaxation dynamics and drags the system out of equilibrium. In a simple one-dimensional channel geometry, we show that the interaction between nonuniform nematic order and activity results in either a spontaneous flow of particles or a self-organization into subchannels flowing in opposite directions.

  7. Direct simulation Monte Carlo modeling of relaxation processes in polyatomic gases

    NASA Astrophysics Data System (ADS)

    Pfeiffer, M.; Nizenkov, P.; Mirza, A.; Fasoulas, S.

    2016-02-01

    Relaxation processes of polyatomic molecules are modeled and implemented in an in-house Direct Simulation Monte Carlo code in order to enable the simulation of atmospheric entry maneuvers at Mars and Saturn's Titan. The description of rotational and vibrational relaxation processes is derived from basic quantum-mechanics using a rigid rotator and a simple harmonic oscillator, respectively. Strategies regarding the vibrational relaxation process are investigated, where good agreement for the relaxation time according to the Landau-Teller expression is found for both methods, the established prohibiting double relaxation method and the new proposed multi-mode relaxation. Differences and applications areas of these two methods are discussed. Consequently, two numerical methods used for sampling of energy values from multi-dimensional distribution functions are compared. The proposed random-walk Metropolis algorithm enables the efficient treatment of multiple vibrational modes within a time step with reasonable computational effort. The implemented model is verified and validated by means of simple reservoir simulations and the comparison to experimental measurements of a hypersonic, carbon-dioxide flow around a flat-faced cylinder.

  8. Direct simulation Monte Carlo modeling of relaxation processes in polyatomic gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfeiffer, M., E-mail: mpfeiffer@irs.uni-stuttgart.de; Nizenkov, P., E-mail: nizenkov@irs.uni-stuttgart.de; Mirza, A., E-mail: mirza@irs.uni-stuttgart.de

    2016-02-15

    Relaxation processes of polyatomic molecules are modeled and implemented in an in-house Direct Simulation Monte Carlo code in order to enable the simulation of atmospheric entry maneuvers at Mars and Saturn’s Titan. The description of rotational and vibrational relaxation processes is derived from basic quantum-mechanics using a rigid rotator and a simple harmonic oscillator, respectively. Strategies regarding the vibrational relaxation process are investigated, where good agreement for the relaxation time according to the Landau-Teller expression is found for both methods, the established prohibiting double relaxation method and the new proposed multi-mode relaxation. Differences and applications areas of these two methodsmore » are discussed. Consequently, two numerical methods used for sampling of energy values from multi-dimensional distribution functions are compared. The proposed random-walk Metropolis algorithm enables the efficient treatment of multiple vibrational modes within a time step with reasonable computational effort. The implemented model is verified and validated by means of simple reservoir simulations and the comparison to experimental measurements of a hypersonic, carbon-dioxide flow around a flat-faced cylinder.« less

  9. Relaxation of Isolated Ventricular Cardiomyocytes by a Voltage-Dependent Process

    NASA Astrophysics Data System (ADS)

    Bridge, John H. B.; Spitzer, Kenneth W.; Ershler, Philip R.

    1988-08-01

    Cell contraction and relaxation were measured in single voltage-clamped guinea pig cardiomyocytes to investigate the contribution of sarcolemmal Na+-Ca2+ exchange to mechanical relaxation. Cells clamped from -80 to 0 millivolts displayed initial phasic and subsequent tonic contractions; caffeine reduced or abolished the phasic and enlarged the tonic contraction. The rate of relaxation from tonic contractions was steeply voltage-dependent and was significantly slowed in the absence of a sarcolemmal Na+ gradient. Tonic contractions elicited in the absence of a Na+ gradient promptly relaxed when external Na+ was applied, reflecting activation of Na+-Ca2+ exchange. It appears that a voltage-dependent Na+-Ca2+ exchange can rapidly mechanically relax mammalian heart muscle.

  10. Glass transition and relaxation processes of nanocomposite polymer electrolytes.

    PubMed

    Money, Benson K; Hariharan, K; Swenson, Jan

    2012-07-05

    This study focus on the effect of δ-Al(2)O(3) nanofillers on the dc-conductivity, glass transition, and dielectric relaxations in the polymer electrolyte (PEO)(4):LiClO(4). The results show that there are three dielectric relaxation processes, α, β, and γ, in the systems, although the structural α-relaxation is hidden in the strong conductivity contribution and could therefore not be directly observed. However, by comparing an enhanced dc-conductivity, by approximately 2 orders of magnitude with 4 wt % δ-Al(2)O(3) added, with a decrease in calorimetric glass transition temperature, we are able to conclude that the dc-conductivity is directly coupled to the hidden α-relaxation, even in the presence of nanofillers (at least in the case of δ-Al(2)O(3) nanofillers at concentrations up to 4 wt %). This filler induced speeding up of the segmental polymer dynamics, i.e., the α-relaxation, can be explained by the nonattractive nature of the polymer-filler interactions, which enhance the "free volume" and mobility of polymer segments in the vicinity of filler surfaces.

  11. Collective relaxation processes in atoms, molecules and clusters

    NASA Astrophysics Data System (ADS)

    Kolorenč, Přemysl; Averbukh, Vitali; Feifel, Raimund; Eland, John

    2016-04-01

    Electron correlation is an essential driver of a variety of relaxation processes in excited atomic and molecular systems. These are phenomena which often lead to autoionization typically involving two-electron transitions, such as the well-known Auger effect. However, electron correlation can give rise also to higher-order processes characterized by multi-electron transitions. Basic examples include simultaneous two-electron emission upon recombination of an inner-shell vacancy (double Auger decay) or collective decay of two holes with emission of a single electron. First reports of this class of processes date back to the 1960s, but their investigation intensified only recently with the advent of free-electron lasers. High fluxes of high-energy photons induce multiple excitation or ionization of a system on the femtosecond timescale and under such conditions the importance of multi-electron processes increases significantly. We present an overview of experimental and theoretical works on selected multi-electron relaxation phenomena in systems of different complexity, going from double Auger decay in atoms and small molecules to collective interatomic autoionization processes in nanoscale samples.

  12. The time dependence of rock healing as a universal relaxation process, a tutorial

    NASA Astrophysics Data System (ADS)

    Snieder, Roel; Sens-Schönfelder, Christoph; Wu, Renjie

    2017-01-01

    The material properties of earth materials often change after the material has been perturbed (slow dynamics). For example, the seismic velocity of subsurface materials changes after earthquakes, and granular materials compact after being shaken. Such relaxation processes are associated by observables that change logarithmically with time. Since the logarithm diverges for short and long times, the relaxation can, strictly speaking, not have a log-time dependence. We present a self-contained description of a relaxation function that consists of a superposition of decaying exponentials that has log-time behaviour for intermediate times, but converges to zero for long times, and is finite for t = 0. The relaxation function depends on two parameters, the minimum and maximum relaxation time. These parameters can, in principle, be extracted from the observed relaxation. As an example, we present a crude model of a fracture that is closing under an external stress. Although the fracture model violates some of the assumptions on which the relaxation function is based, it follows the relaxation function well. We provide qualitative arguments that the relaxation process, just like the Gutenberg-Richter law, is applicable to a wide range of systems and has universal properties.

  13. Relaxation processes and physical aging in metallic glasses

    NASA Astrophysics Data System (ADS)

    Ruta, B.; Pineda, E.; Evenson, Z.

    2017-12-01

    Since their discovery in the 1960s, metallic glasses have continuously attracted much interest across the physics and materials science communities. In the forefront are their unique properties, which hold the alluring promise of broad application in fields as diverse as medicine, environmental science and engineering. However, a major obstacle to their wide-spread commercial use is their inherent temporal instability arising from underlying relaxation processes that can dramatically alter their physical properties. The result is a physical aging process which can bring about degradation of mechanical properties, namely through embrittlement and catastrophic mechanical failure. Understanding and controlling the effects of aging will play a decisive role in our on-going endeavor to advance the use of metallic glasses as structural materials, as well as in the more general comprehension of out-of-equilibrium dynamics in complex systems. This review presents an overview of the current state of the art in the experimental advances probing physical aging and relaxation processes in metallic glasses. Similarities and differences between other hard and soft matter glasses are highlighted. The topic is discussed in a multiscale approach, first presenting the key features obtained in macroscopic studies, then connecting them to recent novel microscopic investigations. Particular emphasis is put on the occurrence of distinct relaxation processes beyond the main structural process in viscous metallic melts and their fate upon entering the glassy state, trying to disentangle results and formalisms employed by the different groups of the glass-science community. A microscopic viewpoint is presented, in which physical aging manifests itself in irreversible atomic-scale processes such as avalanches and intermittent dynamics, ascribed to the existence of a plethora of metastable glassy states across a complex energy landscape. Future experimental challenges and the comparison with

  14. Real-time observation of cascaded electronic relaxation processes in p-Fluorotoluene

    NASA Astrophysics Data System (ADS)

    Hao, Qiaoli; Deng, Xulan; Long, Jinyou; Wang, Yanmei; Abulimiti, Bumaliya; Zhang, Bing

    2017-08-01

    Ultrafast electronic relaxation processes following two photoexcitation of 400 nm in p-Fluorotoluene (pFT) have been investigated utilizing time-resolved photoelectron imaging coupled with time-resolved mass spectroscopy. Cascaded electronic relaxation processes started from the electronically excited S2 state are directly imaged in real time and well characterized by two distinct time constants of 85 ± 10 fs and 2.4 ± 0.3 ps. The rapid component corresponds to the lifetime of the initially excited S2 state, including the structure relaxation from the Franck-Condon region to the conical intersection of S2/S1 and the subsequent internal conversion to the highly excited S1 state. While, the slower relaxation constant is attributed to the further internal conversion to the high levels of S0 from the secondarily populated S1 locating in the channel three region. Moreover, dynamical differences with benzene and toluene of analogous structures, including, specifically, the slightly slower relaxation rate of S2 and the evidently faster decay of S1, are also presented and tentatively interpreted as the substituent effects. In addition, photoelectron kinetic energy and angular distributions reveal the feature of accidental resonances with low-lying Rydberg states (the 3p, 4s and 4p states) during the multi-photon ionization process, providing totally unexpected but very interesting information for pFT.

  15. Kv7 Channel Activation Underpins EPAC-Dependent Relaxations of Rat Arteries.

    PubMed

    Stott, Jennifer B; Barrese, Vincenzo; Greenwood, Iain A

    2016-12-01

    To establish the role of Kv7 channels in EPAC (exchange protein directly activated by cAMP)-dependent relaxations of the rat vasculature and to investigate whether this contributes to β-adrenoceptor-mediated vasorelaxations. Isolated rat renal and mesenteric arteries (RA and MA, respectively) were used for isometric tension recording to study the relaxant effects of a specific EPAC activator and the β-adrenoceptor agonist isoproterenol in the presence of potassium channel inhibitors and cell signaling modulators. Isolated myocytes were used in proximity ligation assay studies to detect localization of signaling intermediaries with Kv7.4 before and after cell stimulation. Our studies showed that the EPAC activator (8-pCPT-2Me-cAMP-AM) produced relaxations and enhanced currents of MA and RA that were sensitive to linopirdine (Kv7 inhibitor). Linopirdine also inhibited isoproterenol-mediated relaxations in both RA and MA. In the MA, isoproterenol relaxations were sensitive to EPAC inhibition, but not protein kinase A inhibition. In contrast, isoproterenol relaxations in RA were attenuated by protein kinase A but not by EPAC inhibition. Proximity ligation assay showed a localization of Kv7.4 with A-kinase anchoring protein in both vessels in the basal state, which increased only in the RA with isoproterenol stimulation. In the MA, but not the RA, a localization of Kv7.4 with both Rap1a and Rap2 (downstream of EPAC) increased with isoproterenol stimulation. EPAC-dependent vasorelaxations occur in part via activation of Kv7 channels. This contributes to the isoproterenol-mediated relaxation in mesenteric, but not renal, arteries. © 2016 American Heart Association, Inc.

  16. Relaxation processes in a low-order three-dimensional magnetohydrodynamics model

    NASA Technical Reports Server (NTRS)

    Stribling, Troy; Matthaeus, William H.

    1991-01-01

    The time asymptotic behavior of a Galerkin model of 3D magnetohydrodynamics (MHD) has been interpreted using the selective decay and dynamic alignment relaxation theories. A large number of simulations has been performed that scan a parameter space defined by the rugged ideal invariants, including energy, cross helicity, and magnetic helicity. It is concluded that time asymptotic state can be interpreted as a relaxation to minimum energy. A simple decay model, based on absolute equilibrium theory, is found to predict a mapping of initial onto time asymptotic states, and to accurately describe the long time behavior of the runs when magnetic helicity is present. Attention is also given to two processes, operating on time scales shorter than selective decay and dynamic alignment, in which the ratio of kinetic to magnetic energy relaxes to values 0(1). The faster of the two processes takes states initially dominant in magnetic energy to a state of near-equipartition between kinetic and magnetic energy through power law growth of kinetic energy. The other process takes states initially dominant in kinetic energy to the near-equipartitioned state through exponential growth of magnetic energy.

  17. Energy thresholds of discrete breathers in thermal equilibrium and relaxation processes.

    PubMed

    Ming, Yi; Ling, Dong-Bo; Li, Hui-Min; Ding, Ze-Jun

    2017-06-01

    So far, only the energy thresholds of single discrete breathers in nonlinear Hamiltonian systems have been analytically obtained. In this work, the energy thresholds of discrete breathers in thermal equilibrium and the energy thresholds of long-lived discrete breathers which can remain after a long time relaxation are analytically estimated for nonlinear chains. These energy thresholds are size dependent. The energy thresholds of discrete breathers in thermal equilibrium are the same as the previous analytical results for single discrete breathers. The energy thresholds of long-lived discrete breathers in relaxation processes are different from the previous results for single discrete breathers but agree well with the published numerical results known to us. Because real systems are either in thermal equilibrium or in relaxation processes, the obtained results could be important for experimental detection of discrete breathers.

  18. Neural correlates of novelty and appropriateness processing in externally induced constraint relaxation.

    PubMed

    Huang, Furong; Tang, Shuang; Sun, Pei; Luo, Jing

    2018-05-15

    Novelty and appropriateness are considered the two fundamental features of creative thinking, including insight problem solving, which can be performed through chunk decomposition and constraint relaxation. Based on a previous study that separated the neural bases of novelty and appropriateness in chunk decomposition, in this study, we used event-related functional magnetic resonance imaging (fMRI) to further dissociate these mechanisms in constraint relaxation. Participants were guided to mentally represent the method of problem solving according to the externally provided solutions that were elaborately prepared in advance and systematically varied in their novelty and appropriateness for the given problem situation. The results showed that novelty processing was completed by the temporoparietal junction (TPJ) and regions in the executive system (dorsolateral prefrontal cortex [DLPFC]), whereas appropriateness processing was completed by the TPJ and regions in the episodic memory (hippocampus), emotion (amygdala), and reward systems (orbitofrontal cortex [OFC]). These results likely indicate that appropriateness processing can result in a more memorable and richer experience than novelty processing in constraint relaxation. The shared and distinct neural mechanisms of the features of novelty and appropriateness in constraint relaxation are discussed, enriching the representation of the change theory of insight. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Vogel-Fulcher dependence of relaxation rates in a nematic monomer and elastomer

    NASA Astrophysics Data System (ADS)

    Shenoy, D.; Filippov, S.; Aliev, F.; Keller, P.; Thomsen, D.; Ratna, B.

    2000-12-01

    Dielectric relaxation spectroscopy is used to study the relaxation processes in a nematic monomer and the corresponding cross-linked polymer nematic liquid crystal (elastomer). In the frequency window 10 mHz to 2 GHz the monomer liquid crystal shows a single relaxation whereas the polymer exhibits three relaxation processes, two of which are quantitatively analyzed. The temperature dependence of relaxation times in both the monomer and polymer follows a Vogel-Fulcher behavior. The relaxation processes are identified with specific molecular motions and activation energies are calculated in a linear approximation for comparison with literature data.

  20. [Central muscle relaxant activities of 2-methyl-3-aminopropiophenone derivatives].

    PubMed

    Kontani, H; Mano, A; Koshiura, R; Yamazaki, M; Shimada, Y; Oshita, M; Morikawa, K; Kato, H; Ito, Y

    1987-02-01

    In this experiment, we synthetized new 2-methyl-3-aminopropiophenone (MP) derivatives, whose structure is known to have central muscle relaxant activities, and quinolizidine and indan . tetralin derivatives derived from MP by cyclization, and we investigated the central muscle relaxant activity. Among the quinolizidine derivatives, there was a very strong central depressant agent, trans (3H, 9aH)-3-(p-chloro) benzoyl-quinolizidine (HSR-740), and among the indan . tetralin derivatives, there was an excitant agents, trans (1H, 2H)-5-methoxy-3, 3-dimethyl-2-piperidinomethyl indan-1-ol (HSR-719). From the results, these derivatives were not considered to be adequate for central muscle relaxant. Among the MP derivatives, (4'-chloro-2'-methoxy-3-piperidino) propiophenone HCl (HSR-733) and (4'-ethyl-2-methyl-3-pyrrolidino) propiophenone HCl (HSR-770) strongly inhibited the cooperative movement in the rotating rod method using mice, and it exerted almost the same depressant activity on the cross extensor reflex using alpha-chloralose anesthetized rats. However, the inhibitory effects of HSR-733 on the anemic decerebrate rigidity and the rigidity induced by intracollicular decerebration in rats were weaker than those of HSR-770 and eperisone. In spinal cats, at a low dose (5 mg/kg, i.v.), HSR-733 depressed monosynaptic and dorsal root reflex potentials as compared with polysynaptic reflex potentials, and inhibitory effects of HSR-733 on these three reflex potentials were more potent than those of eperisone and HSR-770. Although HSR-770 acts on the spinal cord and supraspinal level on which eperisone has been reported to act, HSR-733 may mainly act on the spinal cord. These results indicate that the MP derivative with a 2-methyl group may be suitable as a central muscle relaxant. HSR-770, which has equipotent muscle relaxant activity to eperisone, exerted strong inhibitory effects on oxotremorine-induced tremor and weak inhibitory effects on spontaneous motor activity in the

  1. Non-rigid ultrasound image registration using generalized relaxation labeling process

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Ha; Seong, Yeong Kyeong; Park, MoonHo; Woo, Kyoung-Gu; Ku, Jeonghun; Park, Hee-Jun

    2013-03-01

    This research proposes a novel non-rigid registration method for ultrasound images. The most predominant anatomical features in medical images are tissue boundaries, which appear as edges. In ultrasound images, however, other features can be identified as well due to the specular reflections that appear as bright lines superimposed on the ideal edge location. In this work, an image's local phase information (via the frequency domain) is used to find the ideal edge location. The generalized relaxation labeling process is then formulated to align the feature points extracted from the ideal edge location. In this work, the original relaxation labeling method was generalized by taking n compatibility coefficient values to improve non-rigid registration performance. This contextual information combined with a relaxation labeling process is used to search for a correspondence. Then the transformation is calculated by the thin plate spline (TPS) model. These two processes are iterated until the optimal correspondence and transformation are found. We have tested our proposed method and the state-of-the-art algorithms with synthetic data and bladder ultrasound images of in vivo human subjects. Experiments show that the proposed method improves registration performance significantly, as compared to other state-of-the-art non-rigid registration algorithms.

  2. Multiple-decker phthalocyaninato dinuclear lanthanoid(III) single-molecule magnets with dual-magnetic relaxation processes.

    PubMed

    Katoh, Keiichi; Horii, Yoji; Yasuda, Nobuhiro; Wernsdorfer, Wolfgang; Toriumi, Koshiro; Breedlove, Brian K; Yamashita, Masahiro

    2012-11-28

    The SMM behaviour of dinuclear Ln(III)-Pc multiple-decker complexes (Ln = Tb(3+) and Dy(3+)) with energy barriers and slow-relaxation behaviour were explained by using X-ray crystallography and static and dynamic susceptibility measurements. In particular, interactions among the 4f electrons of several dinuclear Ln(III)-Pc type SMMs have never been discussed on the basis of the crystal structure. For dinuclear Tb(III)-Pc complexes, a dual magnetic relaxation process was observed. The relaxation processes are due to the anisotropic centres. Our results clearly show that the two Tb(3+) ion sites are equivalent and are consistent with the crystal structure. On the other hand, the mononuclear Tb(III)-Pc complex exhibited only a single magnetic relaxation process. This is clear evidence that the magnetic relaxation mechanism depends heavily on the dipole-dipole (f-f) interactions between the Tb(3+) ions in the dinuclear systems. Furthermore, the SMM behaviour of dinuclear Dy(III)-Pc type SMMs with smaller energy barriers compared with that of Tb(III)-Pc and slow-relaxation behaviour was explained. Dinuclear Dy(III)-Pc SMMs exhibited single-component magnetic relaxation behaviour. The results indicate that the magnetic relaxation properties of dinuclear Ln(III)-Pc multiple-decker complexes are affected by the local molecular symmetry and are extremely sensitive to tiny distortions in the coordination geometry. In other words, the spatial arrangement of the Ln(3+) ions (f-f interactions) in the crystal is important. Our work shows that the SMM properties can be fine-tuned by introducing weak intermolecular magnetic interactions in a controlled SMM spatial arrangement.

  3. Theory of Cooperative Activated Structural Relaxation in Polymer Nanocomposites Composed of Small and Sticky Particles

    NASA Astrophysics Data System (ADS)

    Xie, Shijie; Schweizer, Kenneth

    Recently, Cheng, Sokolov and coworkers have discovered qualitatively new dynamic behavior (exceptionally large Tg and fragility increases, unusual thermal and viscoelastic responses) in polymer nanocomposites composed of nanoparticles comparable in size to a polymer segment which form physical bonds with both themselves and segments. We generalize the Elastically Collective Nonlinear Langevin Equation theory of deeply supercooled molecular and polymer liquids to study the cooperative activated hopping dynamics of this system based on the dynamic free energy surface concept. The theoretical calculations are consistent with segmental relaxation time measurements as a function of temperature and nanoparticle volume fraction, and also the nearly linear growth of Tg with NP loading; predictions are made for the influence of nonuniversal chemical effects. The theory suggests the alpha process involves strongly coupled activated motion of segments and nanoparticles, consistent with the observed negligible change of the heat capacity jump with filler loading. Based on cohesive energy calculations and transient network ideas, full structural relaxation is suggested to involve a second, slower bond dissociation process with distinctive features and implications.

  4. Statistical mechanical approach to secondary processes and structural relaxation in glasses and glass formers: a leading model to describe the onset of Johari-Goldstein processes and their relationship with fully cooperative processes.

    PubMed

    Crisanti, A; Leuzzi, L; Paoluzzi, M

    2011-09-01

    The interrelation of dynamic processes active on separated time-scales in glasses and viscous liquids is investigated using a model displaying two time-scale bifurcations both between fast and secondary relaxation and between secondary and structural relaxation. The study of the dynamics allows for predictions on the system relaxation above the temperature of dynamic arrest in the mean-field approximation, that are compared with the outcomes of the equations of motion directly derived within the Mode Coupling Theory (MCT) for under-cooled viscous liquids. By varying the external thermodynamic parameters, a wide range of phenomenology can be represented, from a very clear separation of structural and secondary peak in the susceptibility loss to excess wing structures.

  5. State resolved vibrational relaxation modeling for strongly nonequilibrium flows

    NASA Astrophysics Data System (ADS)

    Boyd, Iain D.; Josyula, Eswar

    2011-05-01

    Vibrational relaxation is an important physical process in hypersonic flows. Activation of the vibrational mode affects the fundamental thermodynamic properties and finite rate relaxation can reduce the degree of dissociation of a gas. Low fidelity models of vibrational activation employ a relaxation time to capture the process at a macroscopic level. High fidelity, state-resolved models have been developed for use in continuum gas dynamics simulations based on computational fluid dynamics (CFD). By comparison, such models are not as common for use with the direct simulation Monte Carlo (DSMC) method. In this study, a high fidelity, state-resolved vibrational relaxation model is developed for the DSMC technique. The model is based on the forced harmonic oscillator approach in which multi-quantum transitions may become dominant at high temperature. Results obtained for integrated rate coefficients from the DSMC model are consistent with the corresponding CFD model. Comparison of relaxation results obtained with the high-fidelity DSMC model shows significantly less excitation of upper vibrational levels in comparison to the standard, lower fidelity DSMC vibrational relaxation model. Application of the new DSMC model to a Mach 7 normal shock wave in carbon monoxide provides better agreement with experimental measurements than the standard DSMC relaxation model.

  6. The effect of a broad activation energy distribution on deuteron spin-lattice relaxation.

    PubMed

    Ylinen, E E; Punkkinen, M; Birczyński, A; Lalowicz, Z T

    2015-10-01

    Deuteron NMR spectra and spin-lattice relaxation were studied experimentally in zeolite NaY(2.4) samples containing 100% or 200% of CD3OH or CD3OD molecules of the total coverage of Na atoms in the temperature range 20-150K. The activation energies describing the methyl and hydroxyl motions show broad distributions. The relaxation data were interpreted by improving a recent model (Stoch et al., 2013 [16]) in which the nonexponential relaxation curves are at first described by a sum of three exponentials with adjustable relaxation rates and weights. Then a broad distribution of activation energies (the mean activation energy A0 and the width σ) was assumed for each essentially different methyl and hydroxyl position. The correlation times were calculated from the Arrhenius equation (containing the pre-exponential factor τ0), individual relaxation rates computed and classified into three classes, and finally initial relaxation rates and weights for each class formed. These were compared with experimental data, motional parameters changed slightly and new improved rates and weights for each class calculated, etc. This method was improved by deriving for the deuterons of the A and E species methyl groups relaxation rates, which depend explicitly on the tunnel frequency ωt. The temperature dependence of ωt and of the low-temperature correlation time were obtained by using the solutions of the Mathieu equation for a threefold potential. These dependencies were included in the simulations and as the result sets of A0, σ and τ0 obtained, which describe the methyl and hydroxyl motions in different positions in zeolite. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. One and two-phonon processes of the spin-flip relaxation in quantum dots: Spin-phonon coupling mechanism

    NASA Astrophysics Data System (ADS)

    Wang, Zi-Wu; Li, Shu-Shen

    2012-07-01

    We investigate the spin-flip relaxation in quantum dots using a non-radiation transition approach based on the descriptions for the electron-phonon deformation potential and Fröhlich interaction in the Pavlov-Firsov spin-phonon Hamiltonian. We give the comparisons of the electron relaxations with and without spin-flip assisted by one and two-phonon processes. Calculations are performed for the dependence of the relaxation time on the external magnetic field, the temperature and the energy separation between the Zeeman sublevels of the ground and first-excited state. We find that the electron relaxation time of the spin-flip process is more longer by three orders of magnitudes than that of no spin-flip process.

  8. Diffusional mechanisms augment the fluorine magnetic resonance relaxation in paramagnetic perfluorocarbon nanoparticles that provides a “relaxation switch” for detecting cellular endosomal activation

    PubMed Central

    Hu, Lingzhi; Zhang, Lei; Chen, Junjie; Lanza, Gregory M.; Wickline, Samuel A.

    2011-01-01

    Purpose To develop a physical model for the 19F relaxation enhancement in paramagnetic perfluorocarbon nanoparticles (PFC NP) and demonstrate its application in monitoring cellular endosomal functionality through a “19F relaxation switch” phenomenon. Materials and Methods An explicit expression for 19F longitudinal relaxation enhancement was derived analytically. Monte-Carlo simulation was performed to confirm the gadolinium induced magnetic field inhomogenity inside the PFC NP. Field dependent T1 measurements for three types of paramagnetic PFC NPs were carried out to validate the theoretical prediction. Based on the physical model, 19F and 1H relaxation properties of macrophage internalized paramagnetic PFC NPs were measured to evaluate the intracellular process of NPs by macrophages in vitro. Results The theoretical description was confirmed experimentally by field-dependent T1 measurements. The shortening of 19F T1 was found to be attributed to the Brownian motion of PFC molecules inside the NP in conjunction with their ability to permeate into the lipid surfactant coating. A dramatic change of 19F T1 was observed upon endocytosis, revealing the transition from intact bound PFC NP to processed constituents. Conclusion The proposed first-principle analysis of 19F spins in paramagnetic PFC NP relates their structural parameters to the special MR relaxation features. The demonstrated “19F relaxation switch” phenomenon is potentially useful for monitoring cellular endosomal functionality. PMID:21761488

  9. Structural Relaxation of Vit4Amorphous Alloy by the Enthalpy Relaxation

    NASA Astrophysics Data System (ADS)

    O'Reilly, James; Hammond, Vincent

    2002-03-01

    The structural relaxation of an amorphous alloy designated Vit4 has been investigated as a function of thermal history using differential scanning calorimetry. Results indicate that the width of the glass transition region is approximately 30 °C, which is broader than molecular or polymeric glasses but similar to inorganic glasses. The broad transition implies a large distribution of relaxation times, a low activation energy, or a combination of these effects. The Tool-Narayanaswamy model for structural relaxation has been used to analyze the change in fictive temperature that occurs for a series of cooling rates. The activation energy calculated from these data the is 187 kJ/mol, a value that is low compared to other glasses. Using optimization programs, the other relaxation parameters, the characteristic relaxation time, the non-linearity parameter, x, and the fractional exponent of distribution of relaxation times, b, were determined from the experimental specific heat curves. Although the parameters were in good agreement with values typical of other glassy materials, there appears to be less correlation between them than is observed in molecular and polymeric glasses. The results obtained in this study indicate that the structural relaxation of Vit 4 is similar to other glasses except for a low activation energy with high glass transition. This could be due to a low free volume or configurational entropy. The width of the glass transition could result from a large distribution of relaxation times or a low activation energy. The exponent of the distribution of relaxation times, b, is 0.45±0.1 and the non-linearity parameter, x =0.5±0.2. The structural relaxation of Vit 4 is dominated by a low activation energy which is related to the atomic jump motion of hard spheres. The DCp at Tg should be 11.7 J/mol. deg per bead according to Wunderlich’s rule. This means that the change in Cp at Tg in Vit4 can be accounted for by one bead although there are five metal

  10. Single-exponential activation behavior behind the super-Arrhenius relaxations in glass-forming liquids.

    PubMed

    Wang, Lianwen; Li, Jiangong; Fecht, Hans-Jörg

    2010-11-17

    The reported relaxation time for several typical glass-forming liquids was analyzed by using a kinetic model for liquids which invoked a new kind of atomic cooperativity--thermodynamic cooperativity. The broadly studied 'cooperative length' was recognized as the kinetic cooperativity. Both cooperativities were conveniently quantified from the measured relaxation data. A single-exponential activation behavior was uncovered behind the super-Arrhenius relaxations for the liquids investigated. Hence the mesostructure of these liquids and the atomic mechanism of the glass transition became clearer.

  11. Nuclear spin relaxation of methane in solid xenon

    NASA Astrophysics Data System (ADS)

    Sugimoto, Takeru; Arakawa, Ichiro; Yamakawa, Koichiro

    2018-03-01

    Nuclear spin relaxation of methane in solid xenon has been studied by infrared spectroscopy. From the analysis of the temporal changes of the rovibrational peaks, the rates of the nuclear spin relaxation of I = 2 ← 1 correlated to the rotational relaxation of J = 0 ← 1 were obtained at temperatures of 5.1-11.5 K. On the basis of the temperature dependence of the relaxation rate, the activation energy of the indirect two-phonon process was determined to be 50 ± 6 K, which is in good agreement with the rotational transition energies of J = 2 ← 1 and J = 3 ← 1. Taking into account this result and the spin degeneracy, we argue that the lowest J = 3 level in which the I = 1 and I = 2 states are degenerate acts as the intermediate point of the indirect process.

  12. Experimental evidence for simultaneous relaxation processes in super spin glass γ-Fe2O3 nanoparticle system

    NASA Astrophysics Data System (ADS)

    Nikolic, V.; Perovic, M.; Kusigerski, V.; Boskovic, M.; Mrakovic, A.; Blanusa, J.; Spasojevic, V.

    2015-03-01

    Spherical γ-Fe2O3 nanoparticles with the narrow size distribution of (5 ± 1) nm were synthesized by the method of thermal decomposition from iron acetyl acetonate precursor. The existence of super spin-glass state at low temperatures and in low applied magnetic fields was confirmed by DC magnetization measurements on a SQUID magnetometer. The comprehensive investigation of magnetic relaxation dynamics in low-temperature region was conducted through the measurements of single-stop and multiple stop ZFC memory effects, ZFC magnetization relaxation, and AC susceptibility measurements. The experimental findings revealed the peculiar change of magnetic relaxation dynamics at T ≈ 10 K, which arose as a consequence of simultaneous existence of different relaxation processes in Fe2O3 nanoparticle system. Complementarity of the applied measurements was utilized in order to single out distinct relaxation processes as well as to elucidate complex relaxation mechanisms in the investigated interacting nanoparticle system.

  13. Levcromakalim- and isoprenaline-induced relaxation of human isolated airways--role of the epithelium and of K+ channel activation.

    PubMed

    Black, J L; Johnson, P R; McKay, K O; Carey, D; Armour, C L

    1994-06-01

    In this study we have investigated the mechanism of action of levcromakalim and isoprenaline in human isolated airways with respect to the K+ channels they activate and the possibility that these smooth muscle relaxants activate K+ channels on the airway epithelium. Mechanical removal of the epithelial layer (mean percentage of epithelium present 20 +/- 3%, n = 20 tissues) did not affect the relaxation responses to levcromakalim or isoprenaline, either in terms of maximal relaxation or sensitivity. Whilst having no effect on isoprenaline-induced relaxation, studied from basal tone, the ATP-sensitive K+ channel blocker BRL 31660 (10, 30 and 50 microM) reduced relaxation responses induced (from basal tone) by levcromakalim from 74 +/- 6% (of the maximal response to isoprenaline) to 48 +/- 12% (n = 7), 9 +/- 9% (n = 4) and 0 (n = 4), respectively. Charybdotoxin, a blocker of high conductance Ca(2+)-activated K+ channels, at concentrations of 30 and 100 nM, had no effect on either levcromakalim- or or isoprenaline-induced relaxation responses and yet charybdotoxin was active at KCa channels in outside-out patches of hippocampal granule cells. Moreover, tetraethylammonium (10 mM) inhibited neither isoprenaline- nor levcromakalim-induced relaxation. This study has demonstrated that the relaxation responses elicited in human bronchus to isoprenaline and levcromakalim are likely to be the result of direct effects on the smooth muscle with no contribution from epithelial receptors or K+ channels. The actions of levcromakalim appear to be mediated only via activation of KATP channels. Further, we have made the important observation that, under the experimental conditions of our study, isoprenaline does not activate the KCa channel to produce relaxation in human bronchus.

  14. Slow secondary relaxation in a free-energy landscape model for relaxation in glass-forming liquids

    NASA Astrophysics Data System (ADS)

    Diezemann, Gregor; Mohanty, Udayan; Oppenheim, Irwin

    1999-02-01

    Within the framework of a free-energy landscape model for the relaxation in supercooled liquids the primary (α) relaxation is modeled by transitions among different free-energy minima. The secondary (β) relaxation then corresponds to intraminima relaxation. We consider a simple model for the reorientational motions of the molecules associated with both processes and calculate the dielectric susceptibility as well as the spin-lattice relaxation times. The parameters of the model can be chosen in a way that both quantities show a behavior similar to that observed in experimental studies on supercooled liquids. In particular we find that it is not possible to obtain a crossing of the time scales associated with α and β relaxation. In our model these processes always merge at high temperatures and the α process remains above the merging temperature. The relation to other models is discussed.

  15. A simple model of entropy relaxation for explaining effective activation energy behavior below the glass transition temperature.

    PubMed

    Bisquert, Juan; Henn, François; Giuntini, Jean-Charles

    2005-03-01

    Strong changes in relaxation rates observed at the glass transition region are frequently explained in terms of a physical singularity of the molecular motions. We show that the unexpected trends and values for activation energy and preexponential factor of the relaxation time tau, obtained at the glass transition from the analysis of the thermally stimulated current signal, result from the use of the Arrhenius law for treating the experimental data obtained in nonstationary experimental conditions. We then demonstrate that a simple model of structural relaxation based on a time dependent configurational entropy and Adam-Gibbs relaxation time is sufficient to explain the experimental behavior, without invoking a kinetic singularity at the glass transition region. The pronounced variation of the effective activation energy appears as a dynamic signature of entropy relaxation that governs the change of relaxation time in nonstationary conditions. A connection is demonstrated between the peak of apparent activation energy measured in nonequilibrium dielectric techniques, with the overshoot of the dynamic specific heat that is obtained in calorimetry techniques.

  16. Diffusion of point defects in crystalline silicon using the kinetic activation-relaxation technique method

    DOE PAGES

    Trochet, Mickaël; Béland, Laurent Karim; Joly, Jean -François; ...

    2015-06-16

    We study point-defect diffusion in crystalline silicon using the kinetic activation-relaxation technique (k-ART), an off-lattice kinetic Monte Carlo method with on-the-fly catalog building capabilities based on the activation-relaxation technique (ART nouveau), coupled to the standard Stillinger-Weber potential. We focus more particularly on the evolution of crystalline cells with one to four vacancies and one to four interstitials in order to provide a detailed picture of both the atomistic diffusion mechanisms and overall kinetics. We show formation energies, activation barriers for the ground state of all eight systems, and migration barriers for those systems that diffuse. Additionally, we characterize diffusion pathsmore » and special configurations such as dumbbell complex, di-interstitial (IV-pair+2I) superdiffuser, tetrahedral vacancy complex, and more. In conclusion, this study points to an unsuspected dynamical richness even for this apparently simple system that can only be uncovered by exhaustive and systematic approaches such as the kinetic activation-relaxation technique.« less

  17. Ultrafast Relaxation Dynamics of Photoexcited Zinc-Porphyrin: Electronic-Vibrational Coupling

    DOE PAGES

    Abraham, Baxter; Nieto-Pescador, Jesus; Gundlach, Lars

    2016-08-02

    Cyclic tetrapyrroles are the active core of compounds with crucial roles in living systems, such as hemoglobin and chlorophyll, and in technology as photocatalysts and light absorbers for solar energy conversion. Zinc-tetraphenylporphyrin (Zn-TPP) is a prototypical cyclic tetrapyrrole that has been intensely studied in past decades. Because of its importance for photochemical processes the optical properties are of particular interest, and, accordingly, numerous studies have focused on light absorption and excited-state dynamics of Zn-TPP. Relaxation after photoexcitation in the Soret band involves internal conversion that is preceded by an ultrafast process. This relaxation process has been observed by several groups.more » Until now, it has not been established if it involves a higher lying ”dark” state or vibrational relaxation in the excited S 2 state. Here we combine high time resolution electronic and vibrational spectroscopy to show that this process constitutes vibrational relaxation in the anharmonic 2 potential.« less

  18. Ultrafast Relaxation Dynamics of Photoexcited Zinc-Porphyrin: Electronic-Vibrational Coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abraham, Baxter; Nieto-Pescador, Jesus; Gundlach, Lars

    Cyclic tetrapyrroles are the active core of compounds with crucial roles in living systems, such as hemoglobin and chlorophyll, and in technology as photocatalysts and light absorbers for solar energy conversion. Zinc-tetraphenylporphyrin (Zn-TPP) is a prototypical cyclic tetrapyrrole that has been intensely studied in past decades. Because of its importance for photochemical processes the optical properties are of particular interest, and, accordingly, numerous studies have focused on light absorption and excited-state dynamics of Zn-TPP. Relaxation after photoexcitation in the Soret band involves internal conversion that is preceded by an ultrafast process. This relaxation process has been observed by several groups.more » Until now, it has not been established if it involves a higher lying ”dark” state or vibrational relaxation in the excited S 2 state. Here we combine high time resolution electronic and vibrational spectroscopy to show that this process constitutes vibrational relaxation in the anharmonic 2 potential.« less

  19. Activated Rho Kinase Mediates Diabetes-Induced Elevation of Vascular Arginase Activation and Contributes to Impaired Corpora Cavernosa Relaxation: Possible Involvement of p38 MAPK Activation

    PubMed Central

    Nunes, Kenia P.; Yao, Lin; Liao, James K.; Webb, R. Clinton; Caldwell, Ruth B.; Caldwell, R. William

    2013-01-01

    Introduction Activated RhoA/Rho kinase (ROCK) has been implicated in diabetes-induced erectile dysfunction. Earlier studies have demonstrated involvement of ROCK pathway in the activation of arginase in endothelial cells. However, signaling pathways activated by ROCK in the penis remain unclear. Aim We tested whether ROCK and p38 MAPK are involved in the elevation of arginase activity and subsequent impairment of corpora cavernosal (CC) relaxation in diabetes. Methods Eight weeks after streptozotocin-induced diabetes, vascular functional studies, arginase activity assay, and protein expression of RhoA, ROCK, phospho-p38 MAPK, p38 MAPK, phospho-MYPT-1Thr850, MYPT-1 and arginase levels were assessed in CC tissues from nondiabetic wild type (WT), diabetic (D) WT (WT + D), partial ROCK 2+/− knockout (KO), and ROCK 2+/− KO + D mice. Main Outcome Measures The expression of RhoA, ROCK 1 and 2, phosphorylation of MYPT-1Thr850 and p38 MAPK, arginase activity/expression, endothelial- and nitrergic-dependent relaxation of CC was assayed. Results Diabetes significantly reduced maximum relaxation (Emax) to both endothelium-dependent acetylcholine (WT + D: Emax; 61 ± 4% vs. WT: Emax; 75 ± 2%) and nitrergic nerve stimulation. These effects were associated with increased expression of active RhoA, ROCK 2, phospho-MYPT-1Thr850, phospho-p38 MAPK, arginase II, and activity of corporal arginase (1.6-fold) in WT diabetic CC. However, this impairment in CC of WT + D mice was absent in heterozygous ROCK 2+/− KO + D mice for acetylcholine (Emax: 80 ± 5%) and attenuated for nitrergic nerve-induced relaxation. CC of ROCK 2+/− KO + D mice showed much less ROCK activity, did not exhibit p38 MAPK activation, and had reduced arginase activity and arginase II expression. These findings indicate that ROCK 2 mediates diabetes-induced elevation of arginase activity. Additionally, pretreatment of WT diabetic CC with inhibitors of arginase (ABH) or p38 MAPK (SB203580) partially prevented

  20. Molecular relaxation processes in dimethyldichlorosilane studied by vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Bratu, I.; Grecu, Rodica; Iliescu, T.

    1995-04-01

    The paper presents the experimentally determined correlation functions ( CF) of the bands due to IR and Raman active vibrations ν asSiCl 2 and ν sSiCl 2 of dimethyldichlorosilane ( DMDCS) in pure liquid and in solutions. Both reorientational and vibrational relaxations (the last one being dominant) contribute to the profiles of these vibrational modes. Kubo-Rothschild's and Oxtoby's models compared with the experimental CF indicate an intermediate modulation regime.

  1. Meditation-induced neuroplastic changes in amygdala activity during negative affective processing.

    PubMed

    Leung, Mei-Kei; Lau, Way K W; Chan, Chetwyn C H; Wong, Samuel S Y; Fung, Annis L C; Lee, Tatia M C

    2018-06-01

    Recent evidence suggests that the effects of meditation practice on affective processing and resilience have the potential to induce neuroplastic changes within the amygdala. Notably, literature speculates that meditation training may reduce amygdala activity during negative affective processing. Nonetheless, studies have thus far not verified this speculation. In this longitudinal study, participants (N = 21, 9 men) were trained in awareness-based compassion meditation (ABCM) or matched relaxation training. The effects of meditation training on amygdala activity were examined during passive viewing of affective and neutral stimuli in a non-meditative state. We found that the ABCM group exhibited significantly reduced anxiety and right amygdala activity during negative emotion processing than the relaxation group. Furthermore, ABCM participants who performed more compassion practice had stronger right amygdala activity reduction during negative emotion processing. The lower right amygdala activity after ABCM training may be associated with a general reduction in reactivity and distress. As all participants performed the emotion processing task in a non-meditative state, it appears likely that the changes in right amygdala activity are carried over from the meditation practice into the non-meditative state. These findings suggest that the distress-reducing effects of meditation practice on affective processing may transfer to ordinary states, which have important implications on stress management.

  2. Depolarization current relaxation process of insulating dielectrics after corona poling under different charging conditions

    NASA Astrophysics Data System (ADS)

    Zhang, J. W.; Zhou, T. C.; Wang, J. X.; Yang, X. F.; Zhu, F.; Tian, L. M.; Liu, R. T.

    2017-10-01

    As an insulating dielectric, polyimide is favorable for the application of optoelectronics, electrical insulation system in electric power industry, insulating, and packaging materials in space aircraft, due to its excellent thermal, mechanical and electrical insulating stability. The charge storage profile of such insulating dielectric is utmost important to its application, when it is exposed to electron irradiation, high voltage corona discharge or other treatments. These treatments could induce changes in physical and chemical properties of treated samples. To investigate the charge storage mechanism of the insulating dielectrics after high-voltage corona discharge, the relaxation processes responsible for corona charged polyimide films under different poling conditions were analyzed by the Thermally Stimulated Discharge Currents method (TSDC). In the results of thermal relaxation process, the appearance of various peaks in TSDC spectra provided a deep insight into the molecular status in the dielectric material and reflected stored space charge relaxation process in the insulating polymers after corona discharge treatments. Furthermore, the different space charge distribution status under various poling temperature and different discharge voltage level were also investigated, which could partly reflect the influence of the ambiance condition on the functional dielectrics after corona poling.

  3. Time scales of relaxation dynamics during transient conditions in two-phase flow: RELAXATION DYNAMICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlüter, Steffen; Berg, Steffen; Li, Tianyi

    2017-06-01

    The relaxation dynamics toward a hydrostatic equilibrium after a change in phase saturation in porous media is governed by fluid reconfiguration at the pore scale. Little is known whether a hydrostatic equilibrium in which all interfaces come to rest is ever reached and which microscopic processes govern the time scales of relaxation. Here we apply fast synchrotron-based X-ray tomography (X-ray CT) to measure the slow relaxation dynamics of fluid interfaces in a glass bead pack after fast drainage of the sample. The relaxation of interfaces triggers internal redistribution of fluids, reduces the surface energy stored in the fluid interfaces, andmore » relaxes the contact angle toward the equilibrium value while the fluid topology remains unchanged. The equilibration of capillary pressures occurs in two stages: (i) a quick relaxation within seconds in which most of the pressure drop that built up during drainage is dissipated, a process that is to fast to be captured with fast X-ray CT, and (ii) a slow relaxation with characteristic time scales of 1–4 h which manifests itself as a spontaneous imbibition process that is well described by the Washburn equation for capillary rise in porous media. The slow relaxation implies that a hydrostatic equilibrium is hardly ever attained in practice when conducting two-phase experiments in which a flux boundary condition is changed from flow to no-flow. Implications for experiments with pressure boundary conditions are discussed.« less

  4. [Transient lower esophageal sphincter relaxation and the related esophageal motor activities].

    PubMed

    Han, Seung Hyo; Hong, Su Jin

    2012-03-01

    Transient lower esophageal sphincter (LES) relaxation (TLESR) is defined as LES relaxation without a swallow. TLESRs are observed in both of the normal individuals and the patients with gastroesophageal reflux disorder (GERD). However, TLESR is widely considered as the major mechanism of the GERD. The new equipments such as high resolution manometry and impedance pH study is helped to understand of TLESR and the related esophageal motor activities. The strong longitudinal muscle contraction was observed during development of TLESR. Most of TLESRs are terminated by TLESR related motor events such as primary peristalsis and secondary contractions. The majority of TLESRs are associated with gastroesophageal reflux. Upper esophageal sphincter (UES) contraction is mainly associated with liquid reflux during recumbent position and UES relaxation predominantly related with air reflux during upright position. The frequency of TLESR in GERD patients seems to be not different compared to normal individuals, but the refluxate of GERD patients tend to be more acidic during TLESR.

  5. Astronauts Carpenter and Glenn relax following breakfast during MA-6 activity

    NASA Image and Video Library

    1962-02-01

    S64-10801 (1962) --- Astronauts M. Scott Carpenter (far left) and John H. Glenn Jr. relax following breakfast during Mercury Atlas 6 (MA-6) preflight activity. Glenn is the MA-6 pilot. Carpenter is the MA-6 backup pilot. Photo credit: NASA

  6. String-like collective motion in the α- and β-relaxation of a coarse-grained polymer melt

    NASA Astrophysics Data System (ADS)

    Pazmiño Betancourt, Beatriz A.; Starr, Francis W.; Douglas, Jack F.

    2018-03-01

    Relaxation in glass-forming liquids occurs as a multi-stage hierarchical process involving cooperative molecular motion. First, there is a "fast" relaxation process dominated by the inertial motion of the molecules whose amplitude grows upon heating, followed by a longer time α-relaxation process involving both large-scale diffusive molecular motion and momentum diffusion. Our molecular dynamics simulations of a coarse-grained glass-forming polymer melt indicate that the fast, collective motion becomes progressively suppressed upon cooling, necessitating large-scale collective motion by molecular diffusion for the material to relax approaching the glass-transition. In each relaxation regime, the decay of the collective intermediate scattering function occurs through collective particle exchange motions having a similar geometrical form, and quantitative relationships are derived relating the fast "stringlet" collective motion to the larger scale string-like collective motion at longer times, which governs the temperature-dependent activation energies associated with both thermally activated molecular diffusion and momentum diffusion.

  7. OCT-based approach to local relaxations discrimination from translational relaxation motions

    NASA Astrophysics Data System (ADS)

    Matveev, Lev A.; Matveyev, Alexandr L.; Gubarkova, Ekaterina V.; Gelikonov, Grigory V.; Sirotkina, Marina A.; Kiseleva, Elena B.; Gelikonov, Valentin M.; Gladkova, Natalia D.; Vitkin, Alex; Zaitsev, Vladimir Y.

    2016-04-01

    Multimodal optical coherence tomography (OCT) is an emerging tool for tissue state characterization. Optical coherence elastography (OCE) is an approach to mapping mechanical properties of tissue based on OCT. One of challenging problems in OCE is elimination of the influence of residual local tissue relaxation that complicates obtaining information on elastic properties of the tissue. Alternatively, parameters of local relaxation itself can be used as an additional informative characteristic for distinguishing the tissue in normal and pathological states over the OCT image area. Here we briefly present an OCT-based approach to evaluation of local relaxation processes in the tissue bulk after sudden unloading of its initial pre-compression. For extracting the local relaxation rate we evaluate temporal dependence of local strains that are mapped using our recently developed hybrid phase resolved/displacement-tracking (HPRDT) approach. This approach allows one to subtract the contribution of global displacements of scatterers in OCT scans and separate the temporal evolution of local strains. Using a sample excised from of a coronary arteria, we demonstrate that the observed relaxation of local strains can be reasonably fitted by an exponential law, which opens the possibility to characterize the tissue by a single relaxation time. The estimated local relaxation times are assumed to be related to local biologically-relevant processes inside the tissue, such as diffusion, leaking/draining of the fluids, local folding/unfolding of the fibers, etc. In general, studies of evolution of such features can provide new metrics for biologically-relevant changes in tissue, e.g., in the problems of treatment monitoring.

  8. Secondary relaxations in supercooled and glassy sucrose-borate aqueous solutions.

    PubMed

    Longinotti, M Paula; Corti, Horacio R; Pablo, Juan J de

    2008-10-13

    The dielectric relaxation spectra of concentrated aqueous solutions of sucrose-borate mixtures have been measured in the supercooled and glassy regions in the frequency range of 40Hz to 2MHz. The secondary (beta) relaxation process was analyzed in the temperature range 183-233K at water contents between 20 and 30wt%. The relaxation times were obtained, and the activation energy of that process was calculated. In order to assess the effect of borate on the relaxation of disaccharide-water mixtures, we also studied the dielectric behavior of sucrose aqueous solutions in the same range of temperatures and water contents. Our findings support the view that, beyond a water content of approximately 20wt%, the secondary relaxation of water-sucrose and water-sucrose-borate mixtures adopts a universal character that can be explained in terms of a simple exponential function of the temperature scaled by the glass transition temperature (T(g)). The behavior observed for water-sucrose and water-sucrose-borate mixtures is compared with previous results obtained in other water-carbohydrate systems.

  9. Primary and secondary relaxation process in plastically crystalline cyanocyclohexane studied by 2H nuclear magnetic resonance. I.

    PubMed

    Micko, B; Lusceac, S A; Zimmermann, H; Rössler, E A

    2013-02-21

    We study the main (α-) and secondary (β-) relaxation in the plastically crystalline (PC) phase of cyanocyclohexane by various 2H nuclear magnetic resonance (NMR) methods (line-shape, spin-lattice relaxation, stimulated echo, and two-dimensional spectra) above and below the glass transition temperature T(g) = 134 K. Our results regarding the α-process demonstrate that molecular motion is not governed by the symmetry of the lattice. Rather it is similar to the one reported for structural glass formers and can be modeled by a reorientation proceeding via a distribution of small and large angular jumps. A solid-echo line-shape analysis regarding the β-process below T(g) yields again very similar results when compared to those of the structural glass formers ethanol and toluene. Hence we cannot confirm an intramolecular origin for the β-process in cyanocyclohexane. The fast β-process in the PC phase allows for the first time a detailed 2H NMR study of the process also at T > T(g): an additional minimum in the spin-lattice relaxation time reflecting the β-process is found. Furthermore the solid-echo spectra show a distinct deviation from the rigid limit Pake pattern, which allows a direct determination of the temperature dependent spatial restriction of the process. In Part II of this work, a quantitative analysis is carried out, where we demonstrate that within the model of a "wobbling in a cone" the mean cone angle increases above T(g) and the corresponding relaxation strength is compared to dielectric results.

  10. Activation of endogenous GABAA channels on airway smooth muscle potentiates isoproterenol-mediated relaxation.

    PubMed

    Gallos, George; Gleason, Neil R; Zhang, Yi; Pak, Sang-Woo; Sonett, J R; Yang, Jay; Emala, Charles W

    2008-12-01

    Reactive airway disease predisposes patients to episodes of acute smooth muscle mediated bronchoconstriction. We have for the first time recently demonstrated the expression and function of endogenous ionotropic GABA(A) channels on airway smooth muscle cells. We questioned whether endogenous GABA(A) channels on airway smooth muscle could augment beta-agonist-mediated relaxation. Guinea pig tracheal rings or human bronchial airway smooth muscles were equilibrated in organ baths with continuous digital tension recordings. After pretreatment with or without the selective GABA(A) antagonist gabazine (100 muM), airway muscle was contracted with acetylcholine or beta-ala neurokinin A, followed by relaxation induced by cumulatively increasing concentrations of isoproterenol (1 nM to 1 muM) in the absence or presence of the selective GABA(A) agonist muscimol (10-100 muM). In separate experiments, guinea pig tracheal rings were pretreated with the large conductance K(Ca) channel blocker iberiotoxin (100 nM) after an EC(50) contraction with acetylcholine but before cumulatively increasing concentrations of isoproterenol (1 nM to 1 uM) in the absence or presence of muscimol (100 uM). GABA(A) activation potentiated the relaxant effects of isoproterenol after an acetylcholine or tachykinin-induced contraction in guinea pig tracheal rings or an acetylcholine-induced contraction in human endobronchial smooth muscle. This muscimol-induced potentiation of relaxation was abolished by gabazine pretreatment but persisted after blockade of the maxi K(Ca) channel. Selective activation of endogenous GABA(A) receptors significantly augments beta-agonist-mediated relaxation of guinea pig and human airway smooth muscle, which may have important therapeutic implications for patients in severe bronchospasm.

  11. F-centers mechanism of long-term relaxation in lead zirconate-titanate based piezoelectric ceramics. 2. After-field relaxation

    NASA Astrophysics Data System (ADS)

    Ishchuk, V. M.; Kuzenko, D. V.

    2016-08-01

    The paper presents results of experimental study of the dielectric constant relaxation during aging process in Pb(Zr,Ti)O3 based solid solutions (PZT) after action of external DC electric field. The said process is a long-term one and is described by the logarithmic function of time. Reversible and nonreversible relaxation process takes place depending on the field intensity. The relaxation rate depends on the field strength also, and the said dependence has nonlinear and nonmonotonic form, if external field leads to domain disordering. The oxygen vacancies-based model for description of the long-term relaxation processes is suggested. The model takes into account the oxygen vacancies on the sample's surface ends, their conversion into F+- and F0-centers under external effects and subsequent relaxation of these centers into the simple oxygen vacancies after the action termination. F-centers formation leads to the violation of the original sample's electroneutrality, and generate intrinsic DC electric field into the sample. Relaxation of F-centers is accompanied by the reduction of the electric field, induced by them, and relaxation of the dielectric constant, as consequent effect.

  12. Influence of relaxation processes on the evaluation of the metastable defect density in Cu(In,Ga)Se{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maciaszek, M.; Zabierowski, P.

    2016-06-07

    In this contribution, we investigated by means of numerical simulations the influence of relaxation processes related to metastable defects on electrical characteristics of Cu(In,Ga)Se{sub 2}. In particular, we analyzed the relaxation of a metastable state induced by illumination at a fixed temperature as well as the dependence of the hole concentration on the temperature during cooling. The knowledge of these two relaxation processes is crucial in the evaluation of the hole concentration in the relaxed state and after light soaking. We have shown that the distribution of the metastable defects can be considered frozen below 200 K. The hole capture crossmore » section was estimated as ∼3 × 10{sup −15} cm{sup 2}. It was shown that the usually used cooling rates may lead to relevant changes of the hole concentration. We calculated the lower limit of the hole concentration after cooling, and we presented how it depends on densities of shallow acceptors and metastable defects. Moreover, we proposed a method which allows for the evaluation of shallow acceptor and metastable defect densities from two capacitance-voltage profiles measured in the relaxed and light soaking states. Finally, we indicated experimental conditions in which the influence of relaxation processes on the accuracy of this method is the smallest.« less

  13. TRPM8 Channel Activation Induced by Monoterpenoid Rotundifolone Underlies Mesenteric Artery Relaxation

    PubMed Central

    Silva, Darizy Flavia; de Almeida, Monica Moura; Chaves, Cinthia Guedes; Braz, Ana Letícia; Gomes, Maria Aparecida; Pinho-da-Silva, Leidiane; Pesquero, Jorge Luiz; Andrade, Viviane Aguiar; Leite, Maria de Fátima; de Albuquerque, José George Ferreira; Araujo, Islania Giselia Albuquerque; Nunes, Xirley Pereira; Barbosa-Filho, José Maria; Cruz, Jader dos Santos; Correia, Nadja de Azevedo; de Medeiros, Isac Almeida

    2015-01-01

    In this study, our aims were to investigate transient receptor potential melastatin-8 channels (TRPM8) involvement in rotundifolone induced relaxation in the mesenteric artery and to increase the understanding of the role of these thermosensitive TRP channels in vascular tissue. Thus, message and protein levels of TRPM8 were measured by semi-quantitative PCR and western blotting in superior mesenteric arteries from 12 week-old Spague-Dawley (SD) rats. Isometric tension recordings evaluated the relaxant response in mesenteric rings were also performed. Additionally, the intracellular Ca2+ changes in mesenteric artery myocytes were measured using confocal microscopy. Using PCR and western blotting, both TRPM8 channel mRNA and protein expression was measured in SD rat mesenteric artery. Rotundifolone and menthol induced relaxation in the isolated superior mesenteric artery from SD rats and improved the relaxant response induced by cool temperatures. Also, this monoterpene induced an increase in transient intracellular Ca2+. These responses were significantly attenuated by pretreatment with capsazepine or BCTC, both TRPM8 channels blockers. The response induced by rotundifolone was not significantly attenuated by ruthenium red, a non-selective TRP channels blocker, or following capsaicin-mediated desensitization of TRPV1. Our findings suggest that rotundifolone induces relaxation by activating TRPM8 channels in rat superior mesenteric artery, more selectively than menthol, the classic TRPM8 agonist, and TRPM8 channels participates in vasodilatory pathways in isolated rat mesenteric arteries. PMID:26599698

  14. TRPM8 Channel Activation Induced by Monoterpenoid Rotundifolone Underlies Mesenteric Artery Relaxation.

    PubMed

    Silva, Darizy Flavia; de Almeida, Monica Moura; Chaves, Cinthia Guedes; Braz, Ana Letícia; Gomes, Maria Aparecida; Pinho-da-Silva, Leidiane; Pesquero, Jorge Luiz; Andrade, Viviane Aguiar; Leite, Maria de Fátima; de Albuquerque, José George Ferreira; Araujo, Islania Giselia Albuquerque; Nunes, Xirley Pereira; Barbosa-Filho, José Maria; Cruz, Jader dos Santos; Correia, Nadja de Azevedo; de Medeiros, Isac Almeida

    2015-01-01

    In this study, our aims were to investigate transient receptor potential melastatin-8 channels (TRPM8) involvement in rotundifolone induced relaxation in the mesenteric artery and to increase the understanding of the role of these thermosensitive TRP channels in vascular tissue. Thus, message and protein levels of TRPM8 were measured by semi-quantitative PCR and western blotting in superior mesenteric arteries from 12 week-old Spague-Dawley (SD) rats. Isometric tension recordings evaluated the relaxant response in mesenteric rings were also performed. Additionally, the intracellular Ca2+ changes in mesenteric artery myocytes were measured using confocal microscopy. Using PCR and western blotting, both TRPM8 channel mRNA and protein expression was measured in SD rat mesenteric artery. Rotundifolone and menthol induced relaxation in the isolated superior mesenteric artery from SD rats and improved the relaxant response induced by cool temperatures. Also, this monoterpene induced an increase in transient intracellular Ca2+. These responses were significantly attenuated by pretreatment with capsazepine or BCTC, both TRPM8 channels blockers. The response induced by rotundifolone was not significantly attenuated by ruthenium red, a non-selective TRP channels blocker, or following capsaicin-mediated desensitization of TRPV1. Our findings suggest that rotundifolone induces relaxation by activating TRPM8 channels in rat superior mesenteric artery, more selectively than menthol, the classic TRPM8 agonist, and TRPM8 channels participates in vasodilatory pathways in isolated rat mesenteric arteries.

  15. EEG-based time and spatial interpretation of activation areas for relaxation and words writing between poor and capable dyslexic children.

    PubMed

    Mohamad, N B; Lee, Khuan Y; Mansor, W; Mahmoodin, Z; Fadzal, C W N F C W; Amirin, S

    2015-01-01

    Symptoms of dyslexia such as difficulties with accurate and/or fluent word recognition, and/or poor spelling as well as decoding abilities, are easily misinterpreted as laziness and defiance amongst school children. Indeed, 37.9% of 699 school dropouts and failures are diagnosed as dyslexic. Currently, Screening for dyslexia relies heavily on therapists, whom are few and subjective, yet objective methods are still unavailable. EEG has long been a popular method to study the cognitive processes in human such as language processing and motor activity. However, its interpretation is limited to time and frequency domain, without visual information, which is still useful. Here, our research intends to illustrate an EEG-based time and spatial interpretation of activated brain areas for the poor and capable dyslexic during the state of relaxation and words writing, being the first attempt ever reported. From the 2D distribution of EEG spectral at the activation areas and its progress with time, it is observed that capable dyslexics are able to relax compared to poor dyslexics. During the state of words writing, neural activities are found higher on the right hemisphere than the left hemisphere of the capable dyslexics, which suggests a neurobiological compensation pathway in the right hemisphere, during reading and writing, which is not observed in the poor dyslexics.

  16. Testosterone-induced relaxation of coronary arteries: activation of BKCa channels via the cGMP-dependent protein kinase

    PubMed Central

    Deenadayalu, Viju; Puttabyatappa, Yashoda; Liu, Alexander T.; Stallone, John N.

    2012-01-01

    Androgens are reported to have both beneficial and detrimental effects on human cardiovascular health. The aim of this study was to characterize nongenomic signaling mechanisms in coronary artery smooth muscle (CASM) and define the ionic basis of testosterone (TES) action. TES-induced relaxation of endothelium-denuded porcine coronary arteries was nearly abolished by 20 nM iberiotoxin, a highly specific inhibitor of large-conductance, calcium-activated potassium (BKCa) channels. Molecular patch-clamp studies confirmed that nanomolar concentrations of TES stimulated BKCa channel activity by ∼100-fold and that inhibition of nitric oxide synthase (NOS) activity by NG-monomethyl-l-arginine nearly abolished this effect. Inhibition of nitric oxide (NO) synthesis or guanylyl cyclase activity also attenuated TES-induced coronary artery relaxation but did not alter relaxation due to 8-bromo-cGMP. Furthermore, we detected TES-stimulated NO production in porcine coronary arteries and in human CASM cells via stimulation of the type 1 neuronal NOS isoform. Inhibition of the cGMP-dependent protein kinase (PKG) attenuated TES-stimulated BKCa channel activity, and direct assay determined that TES increased activity of PKG in a concentration-dependent fashion. Last, the stimulatory effect of TES on BKCa channel activity was mimicked by addition of purified PKG to the cytoplasmic surface of a cell-free membrane patch from CASM myocytes (∼100-fold increase). These findings indicate that TES-induced relaxation of endothelium-denuded coronary arteries is mediated, at least in part, by enhanced NO production, leading to cGMP synthesis and PKG activation, which, in turn, opens BKCa channels. These findings provide a molecular mechanism that could help explain why androgens have been reported to relax coronary arteries and relieve angina pectoris. PMID:22081702

  17. Time scale bridging in atomistic simulation of slow dynamics: viscous relaxation and defect activation

    NASA Astrophysics Data System (ADS)

    Kushima, A.; Eapen, J.; Li, Ju; Yip, S.; Zhu, T.

    2011-08-01

    Atomistic simulation methods are known for timescale limitations in resolving slow dynamical processes. Two well-known scenarios of slow dynamics are viscous relaxation in supercooled liquids and creep deformation in stressed solids. In both phenomena the challenge to theory and simulation is to sample the transition state pathways efficiently and follow the dynamical processes on long timescales. We present a perspective based on the biased molecular simulation methods such as metadynamics, autonomous basin climbing (ABC), strain-boost and adaptive boost simulations. Such algorithms can enable an atomic-level explanation of the temperature variation of the shear viscosity of glassy liquids, and the relaxation behavior in solids undergoing creep deformation. By discussing the dynamics of slow relaxation in two quite different areas of condensed matter science, we hope to draw attention to other complex problems where anthropological or geological-scale time behavior can be simulated at atomic resolution and understood in terms of micro-scale processes of molecular rearrangements and collective interactions. As examples of a class of phenomena that can be broadly classified as materials ageing, we point to stress corrosion cracking and cement setting as opportunities for atomistic modeling and simulations.

  18. The relationships between suggestibility, influenceability, and relaxability.

    PubMed

    Polczyk, Romuald; Frey, Olga; Szpitalak, Malwina

    2013-01-01

    This research explores the relationships between relaxability and various aspects of suggestibility and influenceability. The Jacobson Progressive Muscle Relaxation procedure was used to induce relaxation. Tests of direct suggestibility, relating to the susceptibility of overt suggestions, and indirect suggestibility, referring to indirect hidden influence, as well as self-description questionnaires on suggestibility and the tendency to comply were used. Thayer's Activation-Deactivation Adjective Check List, measuring various kinds of activation and used as a pre- and posttest, determined the efficacy of the relaxation procedure. Indirect, direct, and self-measured suggestibility proved to be positively related to the ability to relax, measured by Thayer's subscales relating to emotions. Compliance was not related to relaxability. The results are discussed in terms of the aspects of relaxation training connected with suggestibility.

  19. Investigation of excited-state relaxation processes of organic dyes by time-resolved spectroscopy

    NASA Astrophysics Data System (ADS)

    Przhonska, O.; Slominsky, Yu.; Kachkovsky, A.; Stahl, U.; Senoner, M.; Dähne, S.

    1996-04-01

    The results of the measurements of the fluorescence decay kinetics of the new series of polymethine dyes in liquid and solid polymeric media are reported. The effects of polymeric media on absorption-relaxation-emission processes are studied at wide excitation, emission and temperature regions.

  20. Relaxation Time of High-Density Amorphous Ice

    NASA Astrophysics Data System (ADS)

    Handle, Philip H.; Seidl, Markus; Loerting, Thomas

    2012-06-01

    Amorphous water plays a fundamental role in astrophysics, cryoelectron microscopy, hydration of matter, and our understanding of anomalous liquid water properties. Yet, the characteristics of the relaxation processes taking place in high-density amorphous ice (HDA) are unknown. We here reveal that the relaxation processes in HDA at 110-135 K at 0.1-0.2 GPa are of collective and global nature, resembling the alpha relaxation in glassy material. Measured relaxation times suggest liquid-like relaxation characteristics in the vicinity of the crystallization temperature at 145 K. By carefully relaxing pressurized HDA for several hours at 135 K, we produce a state that is closer to the ideal glass state than all HDA states discussed so far in literature.

  1. Structural relaxation processes in polyethylene glycol/CCl4 solutions by Brillouin scattering.

    PubMed

    Pochylski, M; Aliotta, F; Błaszczak, Z; Gapiński, J

    2005-03-10

    We present results of a Brillouin scattering experiment on solutions of poly(ethylene glycol) of mean molecular mass 600 g/mol (PEG600) in CCl4. The relaxation process detected has been assigned to conformational rearrangements of the polymeric chains, triggered by reorientation of the side groups. The concentration dependencies of the hypersound velocity and normalized absorption are compared against the indications from several models proposed in the literature. The concentration evolution of the system is described in terms of two distinct regimes. At high polymer content, the system is dominated by the structure of the dense polymer, where polymer-polymer interactions, together with excluded volume effects, induce the existence of a preferred local arrangement resulting in a narrow distribution of the relaxation times, with the average value of the relaxation time following a simple Arrhenius temperature dependence. As the concentration decreases, the original structure of the hydrogen bonded polymer network is destroyed, and a number of different local configuration coexist, giving rise to a wider distribution of relaxation times or to a multiple relaxation. At low concentrations, the experimental data are well fitted assuming a Vogel-Fulker-Tammon behavior for the average relaxation time. In addition, the observed deviation from the ideal behavior for the refractive index and the density suggests that CCl4 does not behave as an inert solvent, and due to polarization effects, it can develop local hetero-associated structures via electrostatic interaction with the O-H end groups of the polymeric chains. The hypothesis has been successfully tested by fitting the concentration behavior of the hypersonic velocity to a recent three-component model, suitable to describe the concentration dependence of sound velocity in moderately interacting fluids. The indication of the model furnishes a very high value for the association constant of the PEG600, confirming the

  2. Secondary and primary relaxations in hyperbranched polyglycerol: a comparative study in the frequency and time domains.

    PubMed

    Garcia-Bernabé, Abel; Dominguez-Espinosa, Gustavo; Diaz-Calleja, Ricardo; Riande, Evaristo; Haag, Rainer

    2007-09-28

    The non-Debye relaxation behavior of hyperbranched polyglycerol was investigated by broadband dielectric spectroscopy. A thorough study of the relaxations was carried out paying special attention to truncation effects on deconvolutions of overlapping processes. Hyperbranched polyglycerol exhibits two relaxations in the glassy state named in increasing order of frequency beta and gamma processes. The study of the evolution of these two fast processes with temperature in the time retardation spectra shows that the beta absorption is swallowed by the alpha in the glass-liquid transition, the gamma absorption being the only relaxation that remains operative in the liquid state. In heating, a temperature is reached at which the alpha absorption vanishes appearing the alphagamma relaxation. Two characteristics of alpha absorptions, decrease of the dielectric strength with increasing temperature and rather high activation energy, are displayed by the alphagamma process. Williams' ansatz seems to hold for these topologically complex macromolecules.

  3. Uncertainty management by relaxation of conflicting constraints in production process scheduling

    NASA Technical Reports Server (NTRS)

    Dorn, Juergen; Slany, Wolfgang; Stary, Christian

    1992-01-01

    Mathematical-analytical methods as used in Operations Research approaches are often insufficient for scheduling problems. This is due to three reasons: the combinatorial complexity of the search space, conflicting objectives for production optimization, and the uncertainty in the production process. Knowledge-based techniques, especially approximate reasoning and constraint relaxation, are promising ways to overcome these problems. A case study from an industrial CIM environment, namely high-grade steel production, is presented to demonstrate how knowledge-based scheduling with the desired capabilities could work. By using fuzzy set theory, the applied knowledge representation technique covers the uncertainty inherent in the problem domain. Based on this knowledge representation, a classification of jobs according to their importance is defined which is then used for the straightforward generation of a schedule. A control strategy which comprises organizational, spatial, temporal, and chemical constraints is introduced. The strategy supports the dynamic relaxation of conflicting constraints in order to improve tentative schedules.

  4. The WHISPER Relaxation Sounder and the CLUSTER Active Archive

    NASA Astrophysics Data System (ADS)

    Trotignon, J. G.; Décréau, P. M. E.; Rauch, J. L.; Vallières, X.; Rochel, A.; Kougblénou, S.; Lointier, G.; Facskó, G.; Canu, P.; Darrouzet, F.; Masson, A.

    The Waves of HIgh frequency and Sounder for Probing of Electron density by Relaxation (WHISPER) instrument is part of the Wave Experiment Consortium (WEC) of the CLUSTER mission. With the help of the long double sphere antennae of the Electric Field and Wave (EFW) instrument and the Digital Wave Processor (DWP), it delivers active (sounding) and natural (transmitter off) electric field spectra, respectively from 4 to 82 kHz, and from 2 to 80 kHz. These frequency ranges have been chosen to include the electron plasma frequency, which is closely related to the total electron density, in most of the regions encountered by the CLUSTER spacecraft. Presented here is an overview of the WHISPER data products available in the CLUSTER Active Archive (CAA). The instrument and its performance are first recalled. The way the WHISPER products are obtained is then described, with particular attention being paid to the density determination. Both sounding and natural measurements are commonly used in this process, which depends on the ambient plasma regime. This is illustrated using drawings similar to the Bryant plots commonly used in the CLUSTER master science plan. These give a clear overview of typical density values and the parts of the orbits where they are obtained. More information on the applied software or on the quality/reliability of the density determination can also be highlighted.

  5. Quantum process tomography with informational incomplete data of two J-coupled heterogeneous spins relaxation in a time window much greater than T1

    NASA Astrophysics Data System (ADS)

    Maciel, Thiago O.; Vianna, Reinaldo O.; Sarthour, Roberto S.; Oliveira, Ivan S.

    2015-11-01

    We reconstruct the time dependent quantum map corresponding to the relaxation process of a two-spin system in liquid-state NMR at room temperature. By means of quantum tomography techniques that handle informational incomplete data, we show how to properly post-process and normalize the measurements data for the simulation of quantum information processing, overcoming the unknown number of molecules prepared in a non-equilibrium magnetization state (Nj) by an initial sequence of radiofrequency pulses. From the reconstructed quantum map, we infer both longitudinal (T1) and transversal (T2) relaxation times, and introduce the J-coupling relaxation times ({T}1J,{T}2J), which are relevant for quantum information processing simulations. We show that the map associated to the relaxation process cannot be assumed approximated unital and trace-preserving for times greater than {T}2J.

  6. Dielectric relaxation in Li2SO4 in the intermedia-temperature regime

    NASA Astrophysics Data System (ADS)

    Diosa, J. E.; Vargas, R. A.; Fernández, M. E.; Albinsson, I.; Mellander, B.-E.

    2005-08-01

    The dielectric permittivity of polycrystalline Li2SO4 was measured from 5 Hz to 13 MHz and over the temperature range 235-460 °C. The corrected imaginary part of permittivity, , and its real part vs. frequency clearly show a new dielectric relaxation around fmax = 2 × 104 Hz at T = 256 °C, which shifts to higher frequencies (1 MHz) as the temperatures increases. The relaxation frequency (calculated from the peak position of ) vs. reciprocal T shows an activated relaxation process with activation energy Ea= 0.9 eV, which is very close to that derived from the dc conductivity, E (0.87 eV). We suggest that this dielectric relaxation could be due to the Li+ jump and SO4- reorientation that cause distortion and change of the local lattice polarizability inducing dipoles like LiSO4-.

  7. Active Components of Ginger Potentiate β-Agonist–Induced Relaxation of Airway Smooth Muscle by Modulating Cytoskeletal Regulatory Proteins

    PubMed Central

    Zhang, Yi; Xu, Carrie; Wakita, Ryo; Emala, Charles W.

    2014-01-01

    β-Agonists are the first-line therapy to alleviate asthma symptoms by acutely relaxing the airway. Purified components of ginger relax airway smooth muscle (ASM), but the mechanisms are unclear. By elucidating these mechanisms, we can explore the use of phytotherapeutics in combination with traditional asthma therapies. The objectives of this study were to: (1) determine if 6-gingerol, 8-gingerol, or 6-shogaol potentiate β-agonist–induced ASM relaxation; and (2) define the mechanism(s) of action responsible for this potentiation. Human ASM was contracted in organ baths. Tissues were relaxed dose dependently with β-agonist, isoproterenol, in the presence of vehicle, 6-gingerol, 8-gingerol, or 6-shogaol (100 μM). Primary human ASM cells were used for cellular experiments. Purified phosphodiesterase (PDE) 4D or phospholipase C β enzyme was used to assess inhibitory activity of ginger components using fluorescent assays. A G-LISA assay was used to determine the effects of ginger constituents on Ras homolog gene family member A activation. Significant potentiation of isoproterenol-induced relaxation was observed with each of the ginger constituents. 6-Shogaol showed the largest shift in isoproterenol half-maximal effective concentration. 6-Gingerol, 8-gingerol, or 6-shogaol significantly inhibited PDE4D, whereas 8-gingerol and 6-shogaol also inhibited phospholipase C β activity. 6-Shogaol alone inhibited Ras homolog gene family member A activation. In human ASM cells, these constituents decreased phosphorylation of 17-kD protein kinase C–potentiated inhibitory protein of type 1 protein phosphatase and 8-gingerol decreased myosin light chain phosphorylation. Isolated components of ginger potentiate β-agonist–induced relaxation in human ASM. This potentiation involves PDE4D inhibition and cytoskeletal regulatory proteins. Together with β-agonists, 6-gingerol, 8-gingerol, or 6-shogaol may augment existing asthma therapy, resulting in relief of symptoms

  8. Relaxation System

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Environ Corporation's relaxation system is built around a body lounge, a kind of super easy chair that incorporates sensory devices. Computer controlled enclosure provides filtered ionized air to create a feeling of invigoration, enhanced by mood changing aromas. Occupant is also surrounded by multidimensional audio and the lighting is programmed to change colors, patterns, and intensity periodically. These and other sensory stimulators are designed to provide an environment in which the learning process is stimulated, because research has proven that while an individual is in a deep state of relaxation, the mind is more receptive to new information.

  9. Electronic Relaxation Processes of Transition Metal Atoms in Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    Kautsch, Andreas; Lindebner, Friedrich; Koch, Markus; Ernst, Wolfgang E.

    2014-06-01

    Spectroscopy of doped superfluid helium nanodroplets (He_N) gives information about the influence of this cold, chemically inert, and least interacting matrix environment on the excitation and relaxation dynamics of dopant atoms and molecules. We present the results from laser induced fluorescence (LIF), photoionization (PI), and mass spectroscopy of Cr and Cu doped He_N. From these results, we can draw a comprehensive picture of the complex behavior of such transition metal atoms in He_N upon photo-excitation. The strong Cr and Cu ground state transitions show an excitation blueshift and broadening with respect to the bare atom transitions which can be taken as indication for the solvation inside the droplet. From the originally excited states the atoms relax to energetically lower states and are ejected from the He_N. The relaxation processes include bare atom spin-forbidden transitions, which clearly bears the signature of the He_N influence. Two-color resonant two-photon ionization (2CR2PI) also shows the formation of bare atoms and small Cr-He_n and Cu-He_n clusters in their ground and metastable states ^c. Currently, Cr dimer excitation studies are in progress and a brief outlook on the available results will be given. C. Callegari and W. E. Ernst, Helium Droplets as Nanocryostats for Molecular Spectroscopy - from the Vacuum Ultraviolet to the Microwave Regime, in Handbook of High-Resolution Spectroscopy, eds. M. Quack and F. Merkt, John Wiley & Sons, Chichester, 2011. A. Kautsch, M. Koch, and W. E. Ernst, J. Phys. Chem. A, 117 (2013) 9621-9625, DOI: 10.1021/jp312336m F. Lindebner, A. Kautsch, M. Koch, and W. E. Ernst, Int. J. Mass Spectrom. (2014) in press, DOI: 10.1016/j.ijms.2013.12.022 M. Koch, A. Kautsch, F. Lackner, and W. E. Ernst, submitted to J. Phys. Chem. A

  10. Low temperature detection of phase transitions and relaxation processes in strontium titanate by means of cathodoluminescence

    NASA Astrophysics Data System (ADS)

    Yang, B.; Townsend, P. D.; Fromknecht, R.

    2004-11-01

    Cathodoluminescence is an effective tool for investigating phase changes and relaxation processes in insulators and data are presented for strontium titanate. The results demonstrate considerable sensitivity to the origin of the samples as the detailed spectra and intensity changes with temperature are strongly dependent on the growth conditions, trace impurities and radiation induced defects. It is of particular note that in the defective surface layer the normal second-order phase transition cited near 105 K transforms into a sharply defined first-order transition because of the relaxation of the near surface layer in doped crystals. Detection of the other main relaxation stages is also straightforward via intensity and spectral changes. Secondary effects of phase changes incorporated within the surface layers are clearly evident, particularly for the 197 K sublimation of CO2 nanoparticle inclusions.

  11. Anomaly diffuse and dielectric relaxation in strontium doped lanthanum molybdate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiao; Fan, Huiqing, E-mail: hqfan3@163.com; Shi, Jing

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer The anomaly diffuse and dielectric relaxation behaviors are fitted by the Cole-Cole approach. Black-Right-Pointing-Pointer The peak in the LSMO is corresponding to different oxygen ion diffusion process. Black-Right-Pointing-Pointer We first give better explanation about the strange conductivity change caused by doping. Black-Right-Pointing-Pointer The oxygen ion diffusion is due to a combination of the dipolar relaxation and the motion of ions. -- Abstract: The dielectric properties of the La{sub 2-x}Sr{sub x}Mo{sub 2}O{sub 9-{delta}} (x = 0-0.2) ceramics were investigated in the temperature range of 300-800 K. Dielectric measurement reveals that two dielectric anomalies, associated with the oxygen ion diffusion,more » exist in frequency spectrum with x = 0.5. The broad dielectric peaks in tan {delta}({omega}) can be well fitted by a modified Cole-Cole approach. When x = 0.1, only one dielectric relaxation peak is observed, corresponding to different oxygen ion diffusion processes, as distinct from the only relaxation peak in the pure La{sub 2}Mo{sub 2}O{sub 9}. The relaxation parameters {tau}{sub 0}, the dielectric relaxation strength {Delta}, and the activation energy E{sub a} were obtained. The result of this work shows that, the conductivity change caused by doping between the two phases is due to the combination of the dipolar effects and motion of ions.« less

  12. Primary and secondary relaxation process in plastically crystalline cyanocyclohexane studied by 2H nuclear magnetic resonance. II. Quantitative analysis.

    PubMed

    Micko, B; Kruk, D; Rössler, E A

    2013-02-21

    We analyze the results of our previously reported 2H nuclear magnetic resonance (NMR) experiments in the plastically crystalline (PC) phase of cyanocyclohexane (Part I of this work) to study the fast secondary relaxation (or β-process) in detail. Both, the occurrence of an additional minimum in the spin-lattice relaxation T1 and the pronounced effects arising in the solid-echo spectrum above the glass transition temperature T(g) = 134 K, allow for a direct determination of the restricting geometry of the β-process in terms of the "wobbling-in-a-cone" model. Whereas at temperatures below T(g) the reorientation is confined to rather small solid angles (below 10°), the spatial restriction decreases strongly with temperature above T(g), i.e., the distribution of cone angles shifts continuously towards higher values. The β-process in the PC phase of cyanocyclohexane proceeds via the same mechanism as found in structural glass formers. This is substantiated by demonstrating the very similar behavior (for T < T(g)) of spin-lattice relaxation, stimulated echo decays, and spectral parameters when plotted as a function of (taken from dielectric spectroscopy). We do, however, not observe a clear-cut relation between the relaxation strength of the β-process observed by NMR (calculated within the wobbling-in-a-cone model) and dielectric spectroscopy.

  13. Hydrogels with tunable stress relaxation regulate stem cell fate and activity

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Ovijit; Gu, Luo; Klumpers, Darinka; Darnell, Max; Bencherif, Sidi A.; Weaver, James C.; Huebsch, Nathaniel; Lee, Hong-Pyo; Lippens, Evi; Duda, Georg N.; Mooney, David J.

    2016-03-01

    Natural extracellular matrices (ECMs) are viscoelastic and exhibit stress relaxation. However, hydrogels used as synthetic ECMs for three-dimensional (3D) culture are typically elastic. Here, we report a materials approach to tune the rate of stress relaxation of hydrogels for 3D culture, independently of the hydrogel's initial elastic modulus, degradation, and cell-adhesion-ligand density. We find that cell spreading, proliferation, and osteogenic differentiation of mesenchymal stem cells (MSCs) are all enhanced in cells cultured in gels with faster relaxation. Strikingly, MSCs form a mineralized, collagen-1-rich matrix similar to bone in rapidly relaxing hydrogels with an initial elastic modulus of 17 kPa. We also show that the effects of stress relaxation are mediated by adhesion-ligand binding, actomyosin contractility and mechanical clustering of adhesion ligands. Our findings highlight stress relaxation as a key characteristic of cell-ECM interactions and as an important design parameter of biomaterials for cell culture.

  14. Hydrogels with tunable stress relaxation regulate stem cell fate and activity

    PubMed Central

    Chaudhuri, Ovijit; Gu, Luo; Klumpers, Darinka; Darnell, Max; Bencherif, Sidi A.; Weaver, James C.; Huebsch, Nathaniel; Lee, Hong-pyo; Lippens, Evi; Duda, Georg N.; Mooney, David J.

    2015-01-01

    Natural extracellular matrices (ECMs) are viscoelastic and exhibit stress relaxation. However, hydrogels used as synthetic ECMs for three-dimensional (3D) culture are typically elastic. Here, we report a materials approach to tune the rate of stress relaxation of hydrogels for 3D culture, independently of the hydrogel’s initial elastic modulus, cell-adhesion-ligand density and degradation. We find that cell spreading, proliferation, and osteogenic differentiation of mesenchymal stem cells (MSCs) are all enhanced in cells cultured in gels with faster relaxation. Strikingly, MSCs form a mineralized, collagen-1-rich matrix similar to bone in rapidly relaxing hydrogels with an initial elastic modulus of 17 kPa. We also show that the effects of stress relaxation are mediated by adhesion-ligand binding, actomyosin contractility and mechanical clustering of adhesion ligands. Our findings highlight stress relaxation as a key characteristic of cell-ECM interactions and as an important design parameter of biomaterials for cell culture. PMID:26618884

  15. Exchange protein activated by cAMP (Epac) induces vascular relaxation by activating Ca2+-sensitive K+ channels in rat mesenteric artery

    PubMed Central

    Roberts, Owain Llŷr; Kamishima, Tomoko; Barrett-Jolley, Richard; Quayle, John M; Dart, Caroline

    2013-01-01

    Vasodilator-induced elevation of intracellular cyclic AMP (cAMP) is a central mechanism governing arterial relaxation but is incompletely understood due to the diversity of cAMP effectors. Here we investigate the role of the novel cAMP effector exchange protein directly activated by cAMP (Epac) in mediating vasorelaxation in rat mesenteric arteries. In myography experiments, the Epac-selective cAMP analogue 8-pCPT-2′-O-Me-cAMP-AM (5 μm, subsequently referred to as 8-pCPT-AM) elicited a 77.6 ± 7.1% relaxation of phenylephrine-contracted arteries over a 5 min period (mean ± SEM; n= 6). 8-pCPT-AM induced only a 16.7 ± 2.4% relaxation in arteries pre-contracted with high extracellular K+ over the same time period (n= 10), suggesting that some of Epac's relaxant effect relies upon vascular cell hyperpolarization. This involves Ca2+-sensitive, large-conductance K+ (BKCa) channel opening as iberiotoxin (100 nm) significantly reduced the ability of 8-pCPT-AM to reverse phenylephrine-induced contraction (arteries relaxed by only 35.0 ± 8.5% over a 5 min exposure to 8-pCPT-AM, n= 5; P < 0.05). 8-pCPT-AM increased Ca2+ spark frequency in Fluo-4-AM-loaded mesenteric myocytes from 0.045 ± 0.008 to 0.103 ± 0.022 sparks s-1μm-1 (P < 0.05) and reversibly increased both the frequency (0.94 ± 0.25 to 2.30 ± 0.72 s−1) and amplitude (23.9 ± 3.3 to 35.8 ± 7.7 pA) of spontaneous transient outward currents (STOCs) recorded in isolated mesenteric myocytes (n= 7; P < 0.05). 8-pCPT-AM-activated STOCs were sensitive to iberiotoxin (100 nm) and to ryanodine (30 μm). Current clamp recordings of isolated myocytes showed a 7.9 ± 1.0 mV (n= 10) hyperpolarization in response to 8-pCPT-AM that was sensitive to iberiotoxin (n= 5). Endothelial disruption suppressed 8-pCPT-AM-mediated relaxation in phenylephrine-contracted arteries (24.8 ± 4.9% relaxation after 5 min of exposure, n= 5; P < 0.05), as did apamin and TRAM-34, blockers of Ca2+-sensitive, small- and intermediate

  16. A computational atomistic study of the relaxation of ion-bombarded c-Si on experimental time-scales: an application of the kinetic Activation Relaxation Technique

    NASA Astrophysics Data System (ADS)

    Béland, Laurent Karim; Mousseau, Normand

    2012-02-01

    The kinetic activation relaxation technique (kinetic ART) method, an off-lattice, self-learning kinetic Monte Carlo (KMC) algorithm with on-the-fly event search,ootnotetextL. K. B'eland, P. Brommer, F. El-Mellouhi, J.-F. Joly and N. Mousseau, Phys. Rev. E 84, 046704 (2011). is used to study the relaxation of c-Si after Si^- bombardment at 3 keV. We describe the evolution of the damaged areas at room-temperature and above for periods of the order of seconds, treating long-range elastic deformations exactly. We assess the stability of the nanoscale structures formed by the damage cascade and the mechanisms that govern post-implantation annealing.

  17. Body mass index, metabolic factors, and striatal activation during stressful and neutral-relaxing states: an FMRI study.

    PubMed

    Jastreboff, Ania M; Potenza, Marc N; Lacadie, Cheryl; Hong, Kwangik A; Sherwin, Robert S; Sinha, Rajita

    2011-02-01

    Stress is associated with alterations in neural motivational-reward pathways in the ventral striatum (VS), hormonal/metabolic changes, and weight increases. The relationship between these different factors is not well understood. We hypothesized that body mass index (BMI) status and hormonal/metabolic factors would be associated with VS activation. We used functional magnetic resonance imaging (fMRI) to compare brain responses of overweight and obese (OW/OB: BMI ≥ 25 kg/m(2): N=27) individuals with normal weight (NW: BMI<18.5-24.9 kg/m(2): N=21) individuals during exposure to personalized stress, alcohol cue, and neutral-relaxing situations using a validated, autobiographical, script-driven, guided-imagery paradigm. Metabolic factors, including fasting plasma glucose (FPG), insulin, and leptin, were examined for their association with VS activation. Consistent with previous studies, stress and alcohol cue exposure each increased activity in cortico-limbic regions. Compared with NW individuals, OW/OB individuals showed greater VS activation in the neutral-relaxing and stress conditions. FPG was correlated with VS activation. Significant associations between VS activation and metabolic factors during stress and relaxation suggest the involvement of metabolic factors in striatal dysfunction in OW/OB individuals. This relationship may contribute to non-homeostatic feeding in obesity.

  18. Airways and vascular smooth muscles relaxant activities of Gaultheria trichophylla.

    PubMed

    Alam, Fiaz; Saqib, Qazi Najumus; Shah, Abdul Jabbar

    2017-01-01

    The aim of this experimental work was to explore the potential pharmacological activities of Gaultheria trichophylla Royle in hyperactive respiratory and vascular conditions. Gaultheria trichophylla was extracted with solvents, phytochemical detection tests were performed, and rabbit trachea and aorta strips were used to evaluate its effects on airways and vascular smooth muscles. Qualitative phytochemical tests showed the presence of flavonoids, alkaloids, anthraquinones, saponins, terpenoids, and condensed tannins. The methanol extract caused inhibition (EC 50 values of 3.12 mg/mL) of carbachol (1 μM) and partial relaxation of K + (80 mM) caused contractions in tracheal strips. The chloroform extract was comparatively more potent against carbachol than K+ induced contraction with EC 50 values of 0.64 and 2.26 mg/mL, respectively. However, the n-hexane extract showed more potency against K + than cabachol induced contractions, as in case with verapamil, with EC 50 values of 0.61 and 6.58 mg/mL, respectively. In isolated prepared trachea, the extracts displaced the carbachol concentration response curves and maximum response was suppressed. In rabbit aorta preparations, methanol and n-hexane extracts partially relaxed phenylephrine (1 μM) and K + induced vasoconstrictions. However, the chloroform extract inhibited phenylephrine induced contractions and exhibited a vasoconstrictor effect at lower concentrations and a relaxant effect at higher concentrations against K + precontractions. The data indicates that, in addition to others, the extracts of G .trichophylla possess verapamil like Ca ++ channel blocking components which explain the possible role of this plant in respiratory and vascular conditions.

  19. Relaxation Dynamics in Heme Proteins.

    NASA Astrophysics Data System (ADS)

    Scholl, Reinhard Wilhelm

    A protein molecule possesses many conformational substates that are likely arranged in a hierarchy consisting of a number of tiers. A hierarchical organization of conformational substates is expected to give rise to a multitude of nonequilibrium relaxation phenomena. If the temperature is lowered, transitions between substates of higher tiers are frozen out, and relaxation processes characteristic of lower tiers will dominate the observational time scale. This thesis addresses the following questions: (i) What is the energy landscape of a protein? How does the landscape depend on the environment such as pH and viscosity, and how can it be connected to specific structural parts? (ii) What relaxation phenomena can be observed in a protein? Which are protein specific, and which occur in other proteins? How does the environment influence relaxations? (iii) What functional form best describes relaxation functions? (iv) Can we connect the motions to specific structural parts of the protein molecule, and are these motions important for the function of the protein?. To this purpose, relaxation processes after a pressure change are studied in carbonmonoxy (CO) heme proteins (myoglobin-CO, substrate-bound and substrate-free cytochrome P450cam-CO, chloroperoxidase-CO, horseradish peroxidase -CO) between 150 K and 250 K using FTIR spectroscopy to monitor the CO bound to the heme iron. Two types of p -relaxation experiments are performed: p-release (200 to ~eq40 MPa) and p-jump (~eq40 to 200 MPa) experiments. Most of the relaxations fall into one of three groups and are characterized by (i) nonexponential time dependence and non-Arrhenius temperature dependence (FIM1( nu), FIM1(Gamma)); (ii) exponential time dependence and non-Arrhenius temperature dependence (FIM0(A_{i}to A_{j})); exponential time dependence and Arrhenius temperature dependence (FIMX( nu)). The influence of pH is studied in myoglobin-CO and shown to have a strong influence on the substate population of the

  20. Relaxed structure of typical nitro explosives in the excited state: Observation, implication and application

    NASA Astrophysics Data System (ADS)

    Chu, Genbai; Yang, Zuhua; Xi, Tao; Xin, Jianting; Zhao, Yongqiang; He, Weihua; Shui, Min; Gu, Yuqiu; Xiong, Ying; Xu, Tao

    2018-04-01

    Understanding the structural, geometrical, and chemical changes that occur after an electronic excitation is essential to elucidate the inherent mechanism of nitro explosives. Herein, relaxed structures of typical nitro explosives in the lowest singlet excited state are investigated using time-dependent density functional theory. During the excitation process, the nitro group is activated and relaxes via geometrical change. The five explosives RDX, HMX, CL-20, PETN, and LLM-105 exhibit similar relaxed structures, and the impact sensitivity is related to their excitation energy. High-sensitivity δ-HMX has a lower excitation energy for relaxed structure than β-HMX. This study offers novel insight into energetic materials.

  1. RELAX: detecting relaxed selection in a phylogenetic framework.

    PubMed

    Wertheim, Joel O; Murrell, Ben; Smith, Martin D; Kosakovsky Pond, Sergei L; Scheffler, Konrad

    2015-03-01

    Relaxation of selective strength, manifested as a reduction in the efficiency or intensity of natural selection, can drive evolutionary innovation and presage lineage extinction or loss of function. Mechanisms through which selection can be relaxed range from the removal of an existing selective constraint to a reduction in effective population size. Standard methods for estimating the strength and extent of purifying or positive selection from molecular sequence data are not suitable for detecting relaxed selection, because they lack power and can mistake an increase in the intensity of positive selection for relaxation of both purifying and positive selection. Here, we present a general hypothesis testing framework (RELAX) for detecting relaxed selection in a codon-based phylogenetic framework. Given two subsets of branches in a phylogeny, RELAX can determine whether selective strength was relaxed or intensified in one of these subsets relative to the other. We establish the validity of our test via simulations and show that it can distinguish between increased positive selection and a relaxation of selective strength. We also demonstrate the power of RELAX in a variety of biological scenarios where relaxation of selection has been hypothesized or demonstrated previously. We find that obligate and facultative γ-proteobacteria endosymbionts of insects are under relaxed selection compared with their free-living relatives and obligate endosymbionts are under relaxed selection compared with facultative endosymbionts. Selective strength is also relaxed in asexual Daphnia pulex lineages, compared with sexual lineages. Endogenous, nonfunctional, bornavirus-like elements are found to be under relaxed selection compared with exogenous Borna viruses. Finally, selection on the short-wavelength sensitive, SWS1, opsin genes in echolocating and nonecholocating bats is relaxed only in lineages in which this gene underwent pseudogenization; however, selection on the functional

  2. Mozart versus new age music: relaxation states, stress, and ABC relaxation theory.

    PubMed

    Smith, Jonathan C; Joyce, Carol A

    2004-01-01

    Smith's (2001) Attentional Behavioral Cognitive (ABC) relaxation theory proposes that all approaches to relaxation (including music) have the potential for evoking one or more of 15 factor-analytically derived relaxation states, or "R-States" (Sleepiness, Disengagement, Rested / Refreshed, Energized, Physical Relaxation, At Ease/Peace, Joy, Mental Quiet, Childlike Innocence, Thankfulness and Love, Mystery, Awe and Wonder, Prayerfulness, Timeless/Boundless/Infinite, and Aware). The present study investigated R-States and stress symptom-patterns associated with listening to Mozart versus New Age music. Students (N = 63) were divided into three relaxation groups based on previously determined preferences. Fourteen listened to a 28-minute tape recording of Mozart's Eine Kleine Nachtmusik and 14 listened to a 28-minute tape of Steven Halpern's New Age Serenity Suite. Others (n = 35) did not want music and instead chose a set of popular recreational magazines. Participants engaged in their relaxation activity at home for three consecutive days for 28 minutes a session. Before and after each session, each person completed the Smith Relaxation States Inventory (Smith, 2001), a comprehensive questionnaire tapping 15 R-States as well as the stress states of somatic stress, worry, and negative emotion. Results revealed no differences at Session 1. At Session 2, those who listened to Mozart reported higher levels of At Ease/Peace and lower levels of Negative Emotion. Pronounced differences emerged at Session 3. Mozart listeners uniquely reported substantially higher levels of Mental Quiet, Awe and Wonder, and Mystery. Mozart listeners reported higher levels, and New Age listeners slightly elevated levels, of At Ease/Peace and Rested/Refreshed. Both Mozart and New Age listeners reported higher levels of Thankfulness and Love. In summary, those who listened to Mozart's Eine Kleine Nachtmusik reported more psychological relaxation and less stress than either those who listened to

  3. Alternating-current conductivity and dielectric relaxation of bulk iodoargentate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Hai-Bao, E-mail: duanhaibao4660@163.com; Yu, Shan-Shan; Zhou, Hong

    Graphical abstract: The electric modulus shows single dielectric relaxation process in the measured frequency range. - Highlights: • The conduction mechanism is described by quantum mechanical tunneling model. • The applications of dielectric modulus give a simple method for evaluating the activation energy of the dielectric relaxation. • The [Ag{sub 2}I{sub 4}]{sup 2−}1-D chain and [Cu(en){sub 2}]{sup 2+} cation column form the layered stacks by hydrogen bond interactions. - Abstract: An inorganic-organic hybrid compound Cu(en){sub 2}Ag{sub 2}I{sub 4} (en = ethylenediamine) (1) was synthesized and single crystal structurally characterized. Along the [001] direction, the inorganic parts form an infinite 1-Dmore » chain and [Cu(en){sub 2}]{sup 2+} cations are separated by inorganic chain. The electrical conductivity and dielectric properties of 1 have been investigated over wide ranges of frequency. The alternating-current conductivities have been fitted to the Almond–West type power law expression with use of a single value of S. It is found that S values for 1 are nearly temperature-independent, which indicates that the conduction mechanism could be quantum mechanical tunneling (QMT) model. The dielectric loss and electric modulus show single dielectric relaxation process. The activation energy obtained from temperature-dependent electric modulus compare with the calculated from the dc conductivity plots.« less

  4. Ultrafast dynamics of liquid water: Energy relaxation and transfer processes of the OH stretch and the HOH bend

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imoto, Sho; Xantheas, Sotiris S.; Saito, Shinji

    2015-08-27

    The vibrational energy relaxation and transfer processes of the OH stretching and the HOH bending vibrations in liquid water are investigated via the theoretical calculation of the pump-probe spectra obtained from non-equilibrium molecular dynamics simulations with the TTM3-F interaction potential. The excitation of the OH stretch induces an instantaneous response of the high frequency librational motions in the 600-1000 cm-1 range. In addition, the excess energy of the OH stretch of a water molecule quickly transfers to the OH stretches of molecules in its first hydration shell with a time constant of ~50 fs, followed by relaxation to the HOHmore » bends of the surrounding molecules with a time constant of 230 fs. The excitation of the HOH bend also results in the ultrafast excitation of the high frequency librational motions. The energy of the excited HOH bend of a water molecule decays, with a time constant of 200 fs, mainly to the relaxation of the HOH bends of its surrounding molecules. The energies of the HOH bends were found to transfer quickly to the intermolecular motions via the coupling with the high frequency librational motions. The excess energy of the OH stretch or the HOH bend relaxes to the high frequency intermolecular librational motions and eventually to the hot ground state with a time scale of ~1 ps via the coupling with the librational and translational motions. The energy relaxation and transfer processes were found to depend on the local hydrogen bonding network; the relaxations of the excess energy of the OH stretch and the HOH bend of four- and five-coordinated molecules are faster than those of a three-coordinated molecule due to the delocalization of the vibrational motions of the former (four- and five-coordinated molecules) compared to those of the later (three-coordinated molecules). The present results highlight the importance of the high frequency intermolecular librational modes in facilitating the ultrafast energy relaxation

  5. Thermal fluctuations and elastic relaxation in the compressed exponential dynamics of colloidal gels

    NASA Astrophysics Data System (ADS)

    Bouzid, Mehdi; Colombo, Jader; Del Gado, Emanuela

    Colloidal gels belong to the class of amorphous systems, they are disordered elastic solids that can form at very low volume fraction, via aggregation into a rich variety of networks. They exhibit a slow relaxation process in the aging regime similar to the glassy dynamics. A wide range of experiments on colloidal gels show unusual compressed exponential of the relaxation dynamical properties. We use molecular dynamics simulation to investigate how the dynamic change with the age of the system. Upon breaking and reorganization of the network structure, the system may display stretched or compressed exponential relaxation. We show that the transition between these two regimes is associated to the interplay between thermally activated rearrangements and the elastic relaxation of internal stresses. In particular, ballistic-like displacements emerge from the non local relaxation of internal stresses mediated by a series of ''micro-collapses''. When thermal fluctuations dominate, the gel restructuring involves instead more homogeneous displacements across the heterogeneous gel network, leading to a stretched exponential type of relaxation.

  6. Growth and relaxation processes in Ge nanocrystals on free-standing Si(001) nanopillars.

    PubMed

    Kozlowski, G; Zaumseil, P; Schubert, M A; Yamamoto, Y; Bauer, J; Schülli, T U; Tillack, B; Schroeder, T

    2012-03-23

    We study the growth and relaxation processes of Ge crystals selectively grown by chemical vapour deposition on free-standing 90 nm wide Si(001) nanopillars. Epi-Ge with thickness ranging from 4 to 80 nm was characterized by synchrotron based x-ray diffraction and transmission electron microscopy. We found that the strain in Ge nanostructures is plastically released by nucleation of misfit dislocations, leading to degrees of relaxation ranging from 50 to 100%. The growth of Ge nanocrystals follows the equilibrium crystal shape terminated by low surface energy (001) and {113} facets. Although the volumes of Ge nanocrystals are homogeneous, their shape is not uniform and the crystal quality is limited by volume defects on {111} planes. This is not the case for the Ge/Si nanostructures subjected to thermal treatment. Here, improved structure quality together with high levels of uniformity of the size and shape is observed.

  7. Dielectric relaxation study of amorphous TiTaO thin films in a large operating temperature range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rouahi, A.; Kahouli, A.; Laboratoire Materiaux, Organisation et Proprietes

    2012-11-01

    Two relaxation processes have been identified in amorphous TiTaO thin films deposited by reactive magnetron sputtering. The parallel angle resolved x-ray photoelectron spectroscopy and field emission scanning electron microscopy analyses have shown that this material is composed of an agglomerates mixture of TiO{sub 2}, Ta{sub 2}O{sub 5}, and Ti-Ta bonds. The first relaxation process appears at low temperature with activation energy of about 0.26 eV and is related to the first ionisation of oxygen vacancies and/or the reduction of Ti{sup 4+} to Ti{sup 3+}. The second relaxation process occurs at high temperature with activation energy of 0.95 eV. This lastmore » peak is associated to the diffusion of the doubly ionized oxygen vacancies V{sub O}e. The dispersion phenomena observed at high temperature can be attributed to the development of complex defect such as (V{sub O}e - 2Ti{sup 3+}).« less

  8. Body Mass Index, Metabolic Factors, and Striatal Activation During Stressful and Neutral-Relaxing States: An fMRI Study

    PubMed Central

    Jastreboff, Ania M; Potenza, Marc N; Lacadie, Cheryl; Hong, Kwangik A; Sherwin, Robert S; Sinha, Rajita

    2011-01-01

    Stress is associated with alterations in neural motivational-reward pathways in the ventral striatum (VS), hormonal/metabolic changes, and weight increases. The relationship between these different factors is not well understood. We hypothesized that body mass index (BMI) status and hormonal/metabolic factors would be associated with VS activation. We used functional magnetic resonance imaging (fMRI) to compare brain responses of overweight and obese (OW/OB: BMI ⩾25 kg/m2: N=27) individuals with normal weight (NW: BMI<18.5–24.9 kg/m2: N=21) individuals during exposure to personalized stress, alcohol cue, and neutral-relaxing situations using a validated, autobiographical, script-driven, guided-imagery paradigm. Metabolic factors, including fasting plasma glucose (FPG), insulin, and leptin, were examined for their association with VS activation. Consistent with previous studies, stress and alcohol cue exposure each increased activity in cortico-limbic regions. Compared with NW individuals, OW/OB individuals showed greater VS activation in the neutral-relaxing and stress conditions. FPG was correlated with VS activation. Significant associations between VS activation and metabolic factors during stress and relaxation suggest the involvement of metabolic factors in striatal dysfunction in OW/OB individuals. This relationship may contribute to non-homeostatic feeding in obesity. PMID:21048702

  9. Metabolic alterations induced in cultured skeletal muscle by stretch-relaxation activity

    NASA Technical Reports Server (NTRS)

    Hatfaludy, Sophia; Shansky, Janet; Vandenburgh, Herman H.

    1989-01-01

    Muscle cells differentiated in vitro are repetitively stretched and relaxed in order to determine the presence of short- and long-term alterations occurring in glucose uptake and lactate efflux that are similar to the metabolic alterations occurring in stimulated organ-cultured muscle and in vivo skeletal muscle during the active state. It is observed that whereas mechanical stimulation increases these metabolic parameters within 4-6 h of starting activity, unstimulated basal rates in control cultures also increase during this period of time, and by 8 h, their rates have reached or exceeded the rates in continuously stimulated cells. Measurements of these parameters in media of different compositions show that activity-induced long-term alterations in the parameters occur independently of growth factors in serium and embryo extracts.

  10. Thermal Relaxation Processes and Stability in Poled Electro-Optic Polymers

    DTIC Science & Technology

    1994-06-30

    34, Gordon Research Conference on Dielectric Phenomena, Holderness School, NH July 31-August 5, 1994. 2. K.D. Singer, R. Dureiko, J. Khaydarov , and R...Fuerst, "Relaxation in Poled Electro- optic Polymers", 4th Iketani Conference, Hawaii, May 17-20, 1994. 3. J.H. Andrews, J.D.V. Khaydarov , and K.D. Singer...Dureiko, J. Khaydarov , and R. Fuerst, "Relaxation Phenomena in Poled Electro-Optic Polymers", Proc. Mat. Res. Soc. 328, 499 (1994). 5. R.A. Fuerst, "Thermal

  11. Relaxation Assessment with Varied Structured Milieu (RELAX).

    ERIC Educational Resources Information Center

    Cassel, Russell N.; Cassel, Susie L.

    1983-01-01

    Describes Relaxation Assessment with Varied Structured Milieu (RELAX), a clinical program designed to assess the degree to which an individual is able to demonstrate self-control for overall general relaxation. The program is designed for use with the Cassel Biosensors biofeedback equipment. (JAC)

  12. N-acetylcysteine does not influence the activity of endothelium-derived relaxing factor in vivo.

    PubMed

    Creager, M A; Roddy, M A; Boles, K; Stamler, J S

    1997-02-01

    Nitric oxide forms complexes with an array of biomolecular carriers that retain biological activity. This reactivity of nitric oxide in physiological systems has led to some dispute as to whether endothelium-derived relaxing factors nitric oxide or a closely related adduct thereof, such as a nitrosothiol. In vitro bioassays used to address this question are limited by the exclusion of biological thiols that are requisite for nitrosothiol formation. Thus, the purpose of this study was to obtain insight into the identity of endothelium-derived relaxing factor in vivo. We reasoned that if endothelium-derived relaxing factor in nitric oxide, infusion of physiological concentrations of thiol would potentiate its bioactivity by analogy with effects seen in vitro, whereas nitrosothiol would be resistant to such modulation. We used venous-occlusion plethysmography to study forearm blood flow in normal subjects. Methacholine (0.3 to 10 micrograms/min) and nitroglycerin (1 to 30 micrograms/min) were infused via the brachial artery to elicit endothelium-dependent and endothelium-independent vasodilation, respectively. Dose-response determinations were made for each drug before and after an intra-arterial infusion of the reduced thiol, N-acetylcysteine, at rates estimated to achieve a physiological concentration of 1 mmol/L. Methacholine increased forearm blood flow in a dose-dependent manner. Infusion of N-acetylcysteine did not change the sensitivity (ED50, 1.7 versus 1.7 micrograms/min, P = NS) or maximal response to methacholine. In contrast, thiol increased the sensitivity to nitroglycerin (ED50, 4.7 versus 2.8 micrograms/min, P < .01). Thus, conflicting with reports in vitro, thiol does not modulate endothelium-derived relaxing factor responses in vivo. These data indicate that sulfhydryl groups are not a limiting factor for endothelium-derived relaxing factor responses in forearm resistance vessels in normal humans and are in keeping with reports that nitrosothiol

  13. Synergic nature of dielectric relaxation process in the layered perovskite halide salts: The case of 1,3- diammoniumpropylenetetrabromocadmate compound

    NASA Astrophysics Data System (ADS)

    Staśkiewicz, Beata

    2018-06-01

    The negative thermal expansion (NTE) property was a prototype to discuss the origin of difference between classical Debye relaxation process and the non-Debye behavior in the layered perovskite halide salt of chemical formula NH3(CH2)3NH3CdBr4. The analysis has been taken by dielectric relaxation spectroscopy measurements in almost six decades in frequency 5 × 102 ≤ f(ω) ≤ 1.2 × 108 and in the temperature range 315 ≤ T(K) ≤ 390. It was shown that the investigated sample exhibit an antiferrodistortive nature of phase transition between two orthorhombic structural modifications i.e. Pnma (phase I) and Ima2 (phase II) at Tc1(I → II) = 326 K, leading from an antiferroelectric to a paraelectric phase. The involvement of an odd number of carbon atoms in the alkylammonium chains in dielectric properties of examined sample is proved. Higher structural modifications, i.e. Ima2 (phase II) and P21/m (phase III), have shown significant deviations from a regular circle on the Cole-Cole diagram. Presented experimental observations are essentially important for the theoretical explanation of relaxation processes in analyzed organic - inorganic compound crystallizing in a perovskite-like topology and may provide new perspective on the fundamental aspect of relaxation response in "diammonium" series.

  14. Dielectric relaxation of NdMnO{sub 3} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, Sujoy, E-mail: sahasujoy3@gmail.com; Chanda, Sadhan; Dutta, Alo

    2013-11-15

    Graphical abstract: (a) TEM image of particle distribution of NMO. (b) HRTEM image of a single NMO particle under 4,000,000× magnification. (c) SAED pattern of a single NMO nanoparticle. - Highlights: • NdMnO{sub 3} nanoparticles are synthesized by sol–gel process. • TEM micrograph shows a granular characteristic with an average particle size of ∼50 nm. • HRTEM is consistent with the spacing between the (2 0 0) planes of the orthorhombic NdMnO{sub 3}. • Band gap is found to be 4.4 eV. • Cole–Cole model has been used to explain the dielectric relaxation in the material. • The activation energymore » of the material is found to be ∼0.43 eV. - Abstract: The neodymium manganate (NdMnO{sub 3}) nanoparticles are synthesized by the sol–gel process. The phase formation and particle size of the sample are determined by X-ray diffraction analysis and transmission electron microscopy. The band gap of the material is obtained by UV–visible absorption spectroscopy using Tauc relation. Dielectric properties of the sample have been investigated in the frequency range from 42 Hz to 1 MHz and in the temperature range from 303 K to 573 K. The dielectric relaxation peaks are observed in the frequency dependent dielectric loss spectra. The Cole–Cole model is used to explain the dielectric relaxation mechanism of the material. The complex impedance plane plot confirms the existence of both the grain and grain-boundary contribution to the relaxation. The temperature dependence of both grain and grain-boundary resistances follow the Arrhenius law with the activation energy of 0.427 and 0.431 eV respectively. The frequency-dependent conductivity spectra follow the power law.« less

  15. Shear-induced conformational ordering, relaxation, and crystallization of isotactic polypropylene.

    PubMed

    An, Haining; Li, Xiangyang; Geng, Yong; Wang, Yunlong; Wang, Xiao; Li, Liangbin; Li, Zhongming; Yang, Chuanlu

    2008-10-02

    The shear-induced coil-helix transition of isotactic polypropylene (iPP) has been studied with time-resolved Fourier transform infrared spectroscopy at various temperatures. The effects of temperature, shear rate, and strain on the coil-helix transition were studied systematically. The induced conformational order increases with the shear rate and strain. A threshold of shear strain is required to induce conformational ordering. High temperature reduces the effect of shear on the conformational order, though a simple correlation was not found. Following the shear-induced conformational ordering, relaxation of helices occurs, which follows the first-order exponential decay at temperatures well above the normal melting point of iPP. The relaxation time versus temperature is fitted with an Arrhenius law, which generates an activation energy of 135 kJ/mol for the helix-coil transition of iPP. At temperatures around the normal melting point, two exponential decays are needed to fit well on the relaxation kinetic of helices. This suggests that two different states of helices are induced by shear: (i) isolated single helices far away from each other without interactions, which have a fast relaxation kinetic; (ii) aggregations of helices or helical bundles with strong interactions among each other, which have a much slower relaxation process. The helical bundles are assumed to be the precursors of nuclei for crystallization. The different helix concentrations and distributions are the origin of the three different processes of crystallization after shear. The correlation between the shear-induced conformational order and crystallization is discussed.

  16. Chloride channel blockade relaxes airway smooth muscle and potentiates relaxation by β-agonists

    PubMed Central

    Yim, Peter; Rinderspacher, Alison; Fu, Xiao Wen; Zhang, Yi; Landry, Donald W.; Emala, Charles W.

    2014-01-01

    Severe bronchospasm refractory to β-agonists continues to cause significant morbidity and mortality in asthmatic patients. We questioned whether chloride channels/transporters are novel targets for the relaxation of airway smooth muscle (ASM). We have screened a library of compounds, derivatives of anthranilic and indanyloxyacetic acid, that were originally developed to antagonize chloride channels in the kidney. We hypothesized that members of this library would be novel calcium-activated chloride channel blockers for the airway. The initial screen of this compound library identified 4 of 20 compounds that relaxed a tetraethylammonium chloride-induced contraction in guinea pig tracheal rings. The two most effective compounds, compounds 1 and 13, were further studied for their potential to either prevent the initiation of or relax the maintenance phase of an acetylcholine (ACh)-induced contraction or to potentiate β-agonist-mediated relaxation. Both relaxed an established ACh-induced contraction in human and guinea pig ex vivo ASM. In contrast, the prevention of an ACh-induced contraction required copretreatment with the sodium-potassium-chloride cotransporter blocker bumetanide. The combination of compound 13 and bumetanide also potentiated relaxation by the β-agonist isoproterenol in guinea pig tracheal rings. Compounds 1 and 13 hyperpolarized the plasma cell membrane of human ASM cells and blocked spontaneous transient inward currents, a measure of chloride currents in these cells. These functional and electrophysiological data suggest that modulating ASM chloride flux is a novel therapeutic target in asthma and other bronchoconstrictive diseases. PMID:24879056

  17. Electron-impact vibrational relaxation in high-temperature nitrogen

    NASA Technical Reports Server (NTRS)

    Lee, Jong-Hun

    1992-01-01

    Vibrational relaxation process of N2 molecules by electron-impact is examined for the future planetary entry environments. Multiple-quantum transitions from excited states to higher/lower states are considered for the electronic ground state of the nitrogen molecule N2 (X 1Sigma-g(+)). Vibrational excitation and deexcitation rate coefficients obtained by computational quantum chemistry are incorporated into the 'diffusion model' to evaluate the time variations of vibrational number densities of each energy state and total vibrational energy. Results show a non-Boltzmann distribution of number densities at the earlier stage of relaxation, which in turn suppresses the equilibrium process but affects little the time variation of total vibrational energy. An approximate rate equation and a corresponding relaxation time from the excited states, compatible with the system of flow conservation equations, are derived. The relaxation time from the excited states indicates the weak dependency of the initial vibrational temperature. The empirical curve-fit formula for the improved e-V relaxation time is obtained.

  18. Deuteron spin-lattice relaxation in the presence of an activation energy distribution: application to methanols in zeolite NaX.

    PubMed

    Stoch, G; Ylinen, E E; Birczynski, A; Lalowicz, Z T; Góra-Marek, K; Punkkinen, M

    2013-02-01

    A new method is introduced for analyzing deuteron spin-lattice relaxation in molecular systems with a broad distribution of activation energies and correlation times. In such samples the magnetization recovery is strongly non-exponential but can be fitted quite accurately by three exponentials. The considered system may consist of molecular groups with different mobility. For each group a Gaussian distribution of the activation energy is introduced. By assuming for every subsystem three parameters: the mean activation energy E(0), the distribution width σ and the pre-exponential factor τ(0) for the Arrhenius equation defining the correlation time, the relaxation rate is calculated for every part of the distribution. Experiment-based limiting values allow the grouping of the rates into three classes. For each class the relaxation rate and weight is calculated and compared with experiment. The parameters E(0), σ and τ(0) are determined iteratively by repeating the whole cycle many times. The temperature dependence of the deuteron relaxation was observed in three samples containing CD(3)OH (200% and 100% loading) and CD(3)OD (200%) in NaX zeolite and analyzed by the described method between 20K and 170K. The obtained parameters, equal for all the three samples, characterize the methyl and hydroxyl mobilities of the methanol molecules at two different locations. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Stability of (Fe-Tm-B) amorphous alloys: relaxation and crystallization phenomena

    NASA Astrophysics Data System (ADS)

    Zemčík, T.

    1994-12-01

    Fe-Tm-B base (TM=transition metal) amorphous alloys (metallic glasses) are thermodynamically metastable. This limits their use as otherwise favourable materials, e.g. magnetically soft, corrosion resistant and mechanically firm. By analogy of the mechanical strain-stress dependence, at a certain degree of thermal activation the amorphous structure reaches its limiting state where it changes its character and physical properties. Relaxation and early crystallization processes in amorphous alloys, starting already around 100°C, are reviewed involving subsequently stress relief, free volume shrinking, topological and chemical ordering, pre-crystallization phenomena up to partial (primary) crystallization. Two diametrically different examples are demonstrated from among the soft magnetic materials: relaxation and early crystallization processes in the Fe-Co-B metallic glasses and controlled crystallization of amorphous ribbons yielding rather modern nanocrystalline “Finemet” alloys where late relaxation and pre-crystallization phenomena overlap when forming extremely dispersive and fine-grained nanocrystals-in-amorphous-sauce structure. Mössbauer spectroscopy seems to be unique for magnetic and phase analysis of such complicated systems.

  20. After stress comes relax(ation)

    NASA Astrophysics Data System (ADS)

    Isa, Lucio

    2015-11-01

    Viscoelastic materials take a finite time to relax and dissipate stress and this time scale is directly connected to the microstructure of the material itself. In their paper, Gomez-Solano and Bechinger (2015 New J. Phys. 17 103032) perform ‘miniaturized’ mechanical tests on a range of viscoelastic materials by dragging a micron-sized bead across them using optical tweezers. Upon switching off all the external forces, they watch the bead recoil to its original position and by tracking its motion they pinpoint the relaxation time of the material. These experiments open up a new range of possibilities to characterize stress relaxation at the microscale just by watching it.

  1. Relaxation effect of abacavir on rat basilar arteries.

    PubMed

    Li, Rachel Wai Sum; Yang, Cui; Chan, Shun Wan; Hoi, Maggie Pui Man; Lee, Simon Ming Yuen; Kwan, Yiu Wa; Leung, George Pak Heng

    2015-01-01

    The use of abacavir has been linked with increased cardiovascular risk in patients with human immunodeficiency virus infection; however, the mechanism involved remains unclear. We hypothesize that abacavir may impair endothelial function. In addition, based on the structural similarity between abacavir and adenosine, we propose that abacavir may affect vascular contractility through endogenous adenosine release or adenosine receptors in blood vessels. The relaxation effect of abacavir on rat basilar arteries was studied using the myograph technique. Cyclic GMP and AMP levels were measured by immunoassay. The effects of abacavir on nucleoside transporters were studied using radiolabeled nucleoside uptake experiments. Ecto-5' nucleotidase activity was determined by measuring the generation of inorganic phosphate using adenosine monophosphate as the substrate. Abacavir induced the relaxation of rat basilar arteries in a concentration-dependent manner. This relaxation was abolished when endothelium was removed. In addition, the relaxation was diminished by the nitric oxide synthase inhibitor, L-NAME, the guanylyl cyclase inhibitor, ODQ, and the protein kinase G inhibitor, KT5820. Abacavir also increased the cGMP level in rat basilar arteries. Abacavir-induced relaxation was also abolished by adenosine A2 receptor blockers. However, abacavir had no effect on ecto-5' nucleotidase and nucleoside transporters. Short-term and long-term treatment of abacavir did not affect acetylcholine-induced relaxation in rat basilar arteries. Abacavir induces acute endothelium-dependent relaxation of rat basilar arteries, probably through the activation of adenosine A2 receptors in endothelial cells, which subsequently leads to the release of nitric oxide, resulting in activation of the cyclic guanosine monophosphate/protein kinase G-dependent pathway in vascular smooth muscle cells. It is speculated that abacavir-induced cardiovascular risk may not be related to endothelial dysfunction

  2. Magnetic Resonance T1 Relaxation Time of Venous Thrombus Is Determined by Iron Processing and Predicts Susceptibility to Lysis

    PubMed Central

    Modarai, Bijan; Blume, Ulrike; Humphries, Julia; Patel, Ashish S.; Phinikaridou, Alkystis; Evans, Colin E.; Mattock, Katherine; Grover, Steven P.; Ahmad, Anwar; Lyons, Oliver T.; Attia, Rizwan Q.; Renné, Thomas; Premaratne, Sobath; Wiethoff, Andrea J.; Botnar, René M.; Schaeffter, Tobias; Waltham, Matthew; Smith, Alberto

    2014-01-01

    Background The magnetic resonance longitudinal relaxation time (T1) changes with thrombus age in humans. In this study, we investigate the possible mechanisms that give rise to the T1 signal in venous thrombi and whether changes in T1 relaxation time are informative of the susceptibility to lysis. Methods and Results Venous thrombosis was induced in the vena cava of BALB/C mice, and temporal changes in T1 relaxation time correlated with thrombus composition. The mean T1 relaxation time of thrombus was shortest at 7days following thrombus induction and returned to that of blood as the thrombus resolved. T1 relaxation time was related to thrombus methemoglobin formation and further processing. Studies in inducible nitric oxide synthase (iNOS−/−)–deficient mice revealed that inducible nitric oxide synthase mediates oxidation of erythrocyte lysis–derived iron to paramagnetic Fe3+, which causes thrombus T1 relaxation time shortening. Studies using chemokine receptor-2–deficient mice (Ccr2−/−) revealed that the return of the T1 signal to that of blood is regulated by removal of Fe3+ by macrophages that accumulate in the thrombus during its resolution. Quantification of T1 relaxation time was a good predictor of successful thrombolysis with a cutoff point of <747 ms having a sensitivity and specificity to predict successful lysis of 83% and 94%, respectively. Conclusions The source of the T1 signal in the thrombus results from the oxidation of iron (released from the lysis of trapped erythrocytes in the thrombus) to its paramagnetic Fe3+ form. Quantification of T1 relaxation time appears to be a good predictor of the success of thrombolysis. PMID:23820077

  3. Mechanism of resveratrol-induced relaxation in the human gallbladder.

    PubMed

    Tsai, Ching-Chung; Lee, Ming-Che; Tey, Shu-Leei; Liu, Ching-Wen; Huang, Shih-Che

    2017-05-08

    Resveratrol is a polyphenolic compound extracted from plants and is also a constituent of red wine. Resveratrol produces relaxation of vascular smooth muscle and may prevent cardiovascular diseases. Although resveratrol has been reported to cause relaxation of the guinea pig gallbladder, limited data are available about the effect of resveratrol on the gallbladder smooth muscle in humans. The purpose of this study was to investigate the relaxation effects of resveratrol in human gallbladder muscle strips. We studied the relaxant effects of resveratrol in human gallbladder. In addition, we also investigated mechanism of resveratrol-induced relaxation in human gallbladder by tetraethylammonium (a non-selective potassium channels blocker), iberiotoxin (an inhibitor of large conductance calcium-activated potassium channel), glibenclamide (an ATP-sensitive potassium channel blocker), charybdotoxin (an inhibitor of large conductance calcium-activated potassium channels and slowly inactivating voltage-gated potassium channels), apamine (a selective inhibitor of the small conductance calcium-activated potassium channel), KT 5720 (a cAMP-dependent protein kinase A inhibitor), KT 5823 (a cGMP-dependent protein kinase G inhibitor), NG-Nitro-L-arginine (a competitive inhibitor of nitric oxide synthase), tetrodotoxin (a selective neuronal Na + channel blocker), and ω-conotoxin GVIA (a selective neuronal Ca 2+ channel blocker). The present study showed that resveratrol has relaxant effects in human gallbladder muscle strips. In addition, we found that resveratrol-induced relaxation in human gallbladder is associated with nitric oxide, ATP-sensitive potassium channel, and large conductance calcium-activated potassium channel pathways. This study provides the first evidence concerning the relaxant effects of resveratrol in human gallbladder muscle strips. Furthermore, these results demonstrate that resveratrol is a potential new drug or health supplement in the treatment of

  4. Dielectric relaxation of gamma irradiated muscovite mica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaur, Navjeet; Singh, Mohan, E-mail: mohansinghphysics@gmail.com; Singh, Lakhwant

    2015-03-15

    Highlights: • The present article reports the effect of gamma irradiation on the dielectric relaxation characteristics of muscovite mica. • Dielectric and electrical relaxations have been analyzed in the framework of dielectric permittivity, electric modulus and Cole–Cole formalisms. • The frequency dependent electrical conductivity has been rationalized using Johnsher’s universal power law. • The experimentally measured electric modulus and conductivity data have been fitted using Havriliak–Negami dielectric relaxation function. - Abstract: In the present research, the dielectric relaxation of gamma irradiated muscovite mica was studied in the frequency range of 0.1 Hz–10 MHz and temperature range of 653–853 K, usingmore » the dielectric permittivity, electric modulus and conductivity formalisms. The dielectric constants (ϵ′ and ϵ′′) are found to be high for gamma irradiated muscovite mica as compared to the pristine sample. The frequency dependence of the imaginary part of complex electric modulus (M′′) and dc conductivity data conforms Arrhenius law with single value of activation energy for pristine sample and two values of activation energy for gamma irradiated mica sample. The experimentally assessed electric modulus and conductivity information have been interpreted by the Havriliak–Negami dielectric relaxation explanation. Using the Cole–Cole framework, an analysis of real and imaginary characters of the electric modulus for pristine and gamma irradiated sample was executed which reflects the non-Debye relaxation mechanism.« less

  5. Relaxation techniques for stress

    MedlinePlus

    ... of your body. These sensors measure your skin temperature, brain waves, breathing, and muscle activity. You can ... more about any of these techniques through local classes, books, videos, or online. Alternative Names Relaxation response ...

  6. Cole-Cole broadening in dielectric relaxation and strange kinetics.

    PubMed

    Puzenko, Alexander; Ishai, Paul Ben; Feldman, Yuri

    2010-07-16

    We present a fresh appraisal of the Cole-Cole (CC) description of dielectric relaxation. While the approach is phenomenological, it demonstrates a fundamental connection between the parameters of the CC dispersion. Based on the fractal nature of the time set representing the interaction of the relaxing dipole with its encompassing matrix, and the Kirkwood-Froehlich correlation factor, a new 3D phase space linking together the kinetic and structural properties is proposed. The evolution of the relaxation process is represented in this phase space by a trajectory, which is determined by the variation of external macroscopic parameters. As an example, the validity of the approach is demonstrated on two porous silica glasses exhibiting a CC relaxation process.

  7. Will spin-relaxation times in molecular magnets permit quantum information processing?

    NASA Astrophysics Data System (ADS)

    Ardavan, Arzhang

    2007-03-01

    Certain computational tasks can be efficiently implemented using quantum logic, in which the information-carrying elements are permitted to exist in quantum superpositions. To achieve this in practice, a physical system that is suitable for embodying quantum bits (qubits) must be identified. Some proposed scenarios employ electron spins in the solid state, for example phosphorous donors in silicon, quantum dots, heterostructures and endohedral fullerenes, motivated by the long electron-spin relaxation times exhibited by these systems. An alternative electron-spin based proposal exploits the large number of quantum states and the non-degenerate transitions available in high spin molecular magnets. Although these advantages have stimulated vigorous research in molecular magnets, the key question of whether the intrinsic spin relaxation times are long enough has hitherto remained unaddressed. Using X-band pulsed electron spin resonance, we measure the intrinsic spin-lattice (T1) and phase coherence (T2) relaxation times in molecular nanomagnets for the first time. In Cr7M heterometallic wheels, with M = Ni and Mn, phase coherence relaxation is dominated by the coupling of the electron spin to protons within the molecule. In deuterated samples T2 reaches 3 μs at low temperatures, which is several orders of magnitude longer than the duration of spin manipulations, satisfying a prerequisite for the deployment of molecular nanomagnets in quantum information applications.

  8. Physiological relaxation induced by horticultural activity: transplanting work using flowering plants.

    PubMed

    Lee, Min-sun; Park, Bum-jin; Lee, Juyoung; Park, Kun-tae; Ku, Ja-hyeong; Lee, Jun-woo; Oh, Kyung-ok; Miyazaki, Yoshifumi

    2013-10-10

    Despite increasing attention and a growing volume of research data, little physiological evidence is available on the benefits of horticultural activity and the different effects on individuals. Therefore, the aim of the present study was to investigate the physiological effects of horticultural activity and to examine how differences in personality alter these effects. The effects of transplanting real flowers (horticultural activity) and handling artificial flowers (control activity) on human physiological activity were compared. On the first day, eight participants engaged in horticultural activity and another eight in the control activity. On the second day, participants switched roles. Participants' physiological conditions during each activity were assessed by measuring the heart rate and heart rate variability (HRV). Psychological responses, which were measured using a semantic differential rating scale, showed that the horticultural activity promoted comfortable, soothed, and natural feelings, compared to the control activity. Analysis of physiological responses using two-way repeated measures analysis of variance (ANOVA) revealed that sympathetic nervous activity significantly decreased in the late time period (11 to 15 minutes) of horticultural activity only in the type A group. This study supports the fact that the horticultural activity can enhance psychological and physiological relaxation effects, although these physiological effects can differ among individuals with different personalities.

  9. Physiological relaxation induced by horticultural activity: transplanting work using flowering plants

    PubMed Central

    2013-01-01

    Background Despite increasing attention and a growing volume of research data, little physiological evidence is available on the benefits of horticultural activity and the different effects on individuals. Therefore, the aim of the present study was to investigate the physiological effects of horticultural activity and to examine how differences in personality alter these effects. Results The effects of transplanting real flowers (horticultural activity) and handling artificial flowers (control activity) on human physiological activity were compared. On the first day, eight participants engaged in horticultural activity and another eight in the control activity. On the second day, participants switched roles. Participants’ physiological conditions during each activity were assessed by measuring the heart rate and heart rate variability (HRV). Psychological responses, which were measured using a semantic differential rating scale, showed that the horticultural activity promoted comfortable, soothed, and natural feelings, compared to the control activity. Analysis of physiological responses using two-way repeated measures analysis of variance (ANOVA) revealed that sympathetic nervous activity significantly decreased in the late time period (11 to 15 minutes) of horticultural activity only in the type A group. Conclusions This study supports the fact that the horticultural activity can enhance psychological and physiological relaxation effects, although these physiological effects can differ among individuals with different personalities. PMID:24112302

  10. Dynamics of human serum albumin studied by acoustic relaxation spectroscopy.

    PubMed

    Hushcha, T; Kaatze, U; Peytcheva, A

    Sonic absorption spectra of solutions of human serum albumin (SA) in water and in aqueous phosphate buffer systems have been measured between 0.2 and 2000 MHz at different temperatures (15-35 degrees C), pH values (1.8-12.3), and protein concentrations (1-40 g/L). Several spectra, indicating relaxation processes in the whole frequency range, have been found. The spectra at neutral pH could be fitted well with an analytical function consisting of the asymptotic high frequency absorption and two relaxation contributions, a Debye-type relaxation term with discrete relaxation time and a term with asymmetric continuous distribution of relaxation times. Both relaxation contributions were observed in water and in buffer solutions and increased with protein concentration. The contribution represented by a Debye-type term is practically independent of temperature and was attributed to cooperative conformational changes of the polypeptide chain featuring a relaxation time of about 400 ns. The distribution of the relaxation times corresponding to the second relaxation contribution was characterized by a short time cutoff, between about 0.02 and 0.4 ns depending on temperature, and a long time tail extending to microseconds. Such relaxation behavior was interpreted in terms of solute-solvent interactions reflecting various hydration layers of HSA molecules. At acid and alkaline pH, an additional Debye-type contribution with relaxation time in the range of 30-100 ns exists. It seems to be due to proton transfer reactions of protein side-chain groups. The kinetic and thermodynamic parameters of these processes have been estimated from these first measurements to indicate the potential of acoustic spectra for the investigation of the elementary kinetics of albumin processes. Copyright 2004 Wiley Periodicals, Inc. Biopolymers, 2004

  11. Suppression of Raman electron spin relaxation of radicals in crystals. Comparison of Cu2+ and free radical relaxation in triglycine sulfate and Tutton salt single crystals.

    PubMed

    Hoffmann, S K; Goslar, J; Lijewski, S

    2011-08-31

    Electron spin-lattice relaxation was measured by the electron spin echo method in a broad temperature range above 4.2 K for Cu(2+) ions and free radicals produced by ionizing radiation in triglycine sulfate (TGS) and Tutton salt (NH4)(2)Zn(SO4)2 ⋅ 6H2O crystals. Localization of the paramagnetic centres in the crystal unit cells was determined from continuous wave electron paramagnetic resonance spectra. Various spin relaxation processes and mechanisms are outlined. Cu(2+) ions relax fast via two-phonon Raman processes in both crystals involving the whole phonon spectrum of the host lattice. This relaxation is slightly slower for TGS where Cu(2+) ions are in the interstitial position. The ordinary Raman processes do not contribute to the radical relaxation which relaxes via the local phonon mode. The local mode lies within the acoustic phonon band for radicals in TGS but within the optical phonon range in (NH4)(2)Zn(SO4)2 ⋅ 6H2O. In the latter the cross-relaxation was considered. A lack of phonons around the radical molecules suggested a local crystal amorphisation produced by x- or γ-rays.

  12. Dielectric relaxation in AC powder electroluminescent devices

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Su, Haibin; Tan, Chuan Seng; Wong, Terence Kin Shun; Teo, Ronnie Jin Wah

    2017-01-01

    The dielectric properties of AC powder electroluminescent devices were measured and analyzed using complex impedance spectroscopy to determine the relaxation processes occurring within the devices. The relaxation processes identified were ascribed to the electrode polarization caused by ion accumulation at the electrode/resin interfaces, the Maxwell-Wagner-Sillars effects at the (ZnS or BaTiO3) particle/resin interfaces, and the dipolar reorientation of polymer chains in the resin matrix. Each relaxation process was represented by its corresponding equivalent circuit component. Space charge polarization at the electrodes were represented by a Warburg element, a resistor, and a constant phase element. The resin matrix, ZnS/resin and BaTiO3/resin interfaces could each be modeled by a resistor and a capacitor in parallel. The simulated equivalent circuits for three different printed structures showed good fitting with their experimental impedance results.

  13. Algorithmic developments of the kinetic activation-relaxation technique: Accessing long-time kinetics of larger and more complex systems

    NASA Astrophysics Data System (ADS)

    Trochet, Mickaël; Sauvé-Lacoursière, Alecsandre; Mousseau, Normand

    2017-10-01

    In spite of the considerable computer speed increase of the last decades, long-time atomic simulations remain a challenge and most molecular dynamical simulations are limited to 1 μ s at the very best in condensed matter and materials science. There is a need, therefore, for accelerated methods that can bridge the gap between the full dynamical description of molecular dynamics and experimentally relevant time scales. This is the goal of the kinetic Activation-Relaxation Technique (k-ART), an off-lattice kinetic Monte-Carlo method with on-the-fly catalog building capabilities based on the topological tool NAUTY and the open-ended search method Activation-Relaxation Technique (ART nouveau) that has been applied with success to the study of long-time kinetics of complex materials, including grain boundaries, alloys, and amorphous materials. We present a number of recent algorithmic additions, including the use of local force calculation, two-level parallelization, improved topological description, and biased sampling and show how they perform on two applications linked to defect diffusion and relaxation after ion bombardement in Si.

  14. Relaxation-Induced Anxiety: Paradoxical Anxiety Enhancement Due to Relaxation Training.

    ERIC Educational Resources Information Center

    Heide, Frederick J.; Borkovec, T. D.

    1983-01-01

    Documented relaxation-induced anxiety in 14 subjects suffering from tension who were given training in progressive relaxation and mantra meditation. Four of the subjects displayed clinical evidence of an anxiety reaction during a preliminary practice period. Progressive relaxation produced less evidence of relaxation-induced anxiety. (Author/JAC)

  15. Vibrational Relaxation and Dynamical Transitions in Atactic Polystyrene

    NASA Astrophysics Data System (ADS)

    Zhao, Hanqing; Park, Yung; Painter, Paul

    2009-03-01

    Infrared bands and Raman lines recorded in the frequency domain have a counterpart in the time domain in the form of time-correlation functions, which are sensitive to molecular dynamics on the picosecond time scale. This is explored by calculating time correlation functions and their variation with temperature for the conformationally insensitive modes observed near 1601 cm-1 and 1583 cm-1 in the infrared spectrum of atactic polystyrene. The correlation functions were modeled by assuming that there is a fast relaxation process characterized by a single relaxation time that is inhomogeneously broadened by a slower process, also characterized by a single relaxation time. The fundamental mode, near 1583 cm-1, is inhomogeneously broadened, but the relaxation time calculated for this mode is sensitive to temperature as a result of anharmonic coupling to a combination mode. A change in the modulation of the 1583 cm-1 band becomes apparent about 10--20 degrees below the thermally measured Tg. Relaxation times at first increase then decrease and becomes negligible at temperatures near 180 degrees. These results are consistent with theories of the glass transition.

  16. Resolving environmental microheterogeneity and dielectric relaxation in fluorescence kinetics of protein

    NASA Astrophysics Data System (ADS)

    Rolinski, Olaf J.; McLaughlin, Damien; Birch, David J. S.; Vyshemirsky, Vladislav

    2016-09-01

    The fluorescence intensity decay of protein is easily measurable and reports on the intrinsic fluorophore-local environment interactions on the sub-nm spatial and sub-ns temporal scales, which are consistent with protein activity in numerous biomedical and industrial processes. This makes time-resolved fluorescence a perfect tool for understanding, monitoring and controlling these processes at the molecular level, but the complexity of the decay, which has been traditionally fitted to multi-exponential functions, has hampered the development of this technique over the last few decades. Using the example of tryptophan in HSA we present the alternative to the conventional approach to modelling intrinsic florescence intensity decay in protein where the key factors determining fluorescence decay, i.e. the excited-state depopulation and the dielectric relaxation (Toptygin and Brand 2000 Chem. Phys. Lett. 322 496-502), are represented by the individual relaxation functions. This allows quantification of both effects separately by determining their parameters from the global analysis of a series of fluorescence intensity decays measured at different detection wavelengths. Moreover, certain pairs of the recovered parameters of tryptophan were found to be correlated, indicating the influence of the dielectric relaxation on the transient rate of the electronic transitions. In this context the potential for the dual excited state depopulation /dielectric relaxation fluorescence lifetime sensing is discussed.

  17. Dynamics of relaxation to a stationary state for interacting molecular motors

    NASA Astrophysics Data System (ADS)

    Gomes, Luiza V. F.; Kolomeisky, Anatoly B.

    2018-01-01

    Motor proteins are active enzymatic molecules that drive a variety of biological processes, including transfer of genetic information, cellular transport, cell motility and muscle contraction. It is known that these biological molecular motors usually perform their cellular tasks by acting collectively, and there are interactions between individual motors that specify the overall collective behavior. One of the fundamental issues related to the collective dynamics of motor proteins is the question if they function at stationary-state conditions. To investigate this problem, we analyze a relaxation to the stationary state for the system of interacting molecular motors. Our approach utilizes a recently developed theoretical framework, which views the collective dynamics of motor proteins as a totally asymmetric simple exclusion process of interacting particles, where interactions are taken into account via a thermodynamically consistent approach. The dynamics of relaxation to the stationary state is analyzed using a domain-wall method that relies on a mean-field description, which takes into account some correlations. It is found that the system quickly relaxes for repulsive interactions, while attractive interactions always slow down reaching the stationary state. It is also predicted that for some range of parameters the fastest relaxation might be achieved for a weak repulsive interaction. Our theoretical predictions are tested with Monte Carlo computer simulations. The implications of our findings for biological systems are briefly discussed.

  18. The effect of deep and slow breathing on pain perception, autonomic activity, and mood processing--an experimental study.

    PubMed

    Busch, Volker; Magerl, Walter; Kern, Uwe; Haas, Joachim; Hajak, Göran; Eichhammer, Peter

    2012-02-01

    Deep and slow breathing (DSB) techniques, as a component of various relaxation techniques, have been reported as complementary approaches in the treatment of chronic pain syndromes, but the relevance of relaxation for alleviating pain during a breathing intervention was not evaluated so far. In order to disentangle the effects of relaxation and respiration, we investigated two different DSB techniques at the same respiration rates and depths on pain perception, autonomic activity, and mood in 16 healthy subjects. In the attentive DSB intervention, subjects were asked to breathe guided by a respiratory feedback task requiring a high degree of concentration and constant attention. In the relaxing DSB intervention, the subjects relaxed during the breathing training. The skin conductance levels, indicating sympathetic tone, were measured during the breathing maneuvers. Thermal detection and pain thresholds for cold and hot stimuli and profile of mood states were examined before and after the breathing sessions. The mean detection and pain thresholds showed a significant increase resulting from the relaxing DSB, whereas no significant changes of these thresholds were found associated with the attentive DSB. The mean skin conductance levels indicating sympathetic activity decreased significantly during the relaxing DSB intervention but not during the attentive DSB. Both breathing interventions showed similar reductions in negative feelings (tension, anger, and depression). Our results suggest that the way of breathing decisively influences autonomic and pain processing, thereby identifying DSB in concert with relaxation as the essential feature in the modulation of sympathetic arousal and pain perception. Wiley Periodicals, Inc.

  19. Is Relaxation Training Effective in the Treatment of Clinical Depression?

    ERIC Educational Resources Information Center

    Beaty, Lee A.

    The process of relaxation is a complex triarchic phenomenon that incorporates behavioral, cognitive, and physiological components. Existing literature is surveyed in order to determine the efficacy of treating various forms of depression with cognitive-behavioral relaxation strategies. Relaxation training has been shown to be effective in treating…

  20. Developing a Learning Algorithm-Generated Empirical Relaxer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Wayne; Kallman, Josh; Toreja, Allen

    2016-03-30

    One of the main difficulties when running Arbitrary Lagrangian-Eulerian (ALE) simulations is determining how much to relax the mesh during the Eulerian step. This determination is currently made by the user on a simulation-by-simulation basis. We present a Learning Algorithm-Generated Empirical Relaxer (LAGER) which uses a regressive random forest algorithm to automate this decision process. We also demonstrate that LAGER successfully relaxes a variety of test problems, maintains simulation accuracy, and has the potential to significantly decrease both the person-hours and computational hours needed to run a successful ALE simulation.

  1. Relaxation Effect of Abacavir on Rat Basilar Arteries

    PubMed Central

    Li, Rachel Wai Sum; Yang, Cui; Chan, Shun Wan; Hoi, Maggie Pui Man; Lee, Simon Ming Yuen; Kwan, Yiu Wa; Leung, George Pak Heng

    2015-01-01

    Background The use of abacavir has been linked with increased cardiovascular risk in patients with human immunodeficiency virus infection; however, the mechanism involved remains unclear. We hypothesize that abacavir may impair endothelial function. In addition, based on the structural similarity between abacavir and adenosine, we propose that abacavir may affect vascular contractility through endogenous adenosine release or adenosine receptors in blood vessels. Methods The relaxation effect of abacavir on rat basilar arteries was studied using the myograph technique. Cyclic GMP and AMP levels were measured by immunoassay. The effects of abacavir on nucleoside transporters were studied using radiolabeled nucleoside uptake experiments. Ecto-5′ nucleotidase activity was determined by measuring the generation of inorganic phosphate using adenosine monophosphate as the substrate. Results Abacavir induced the relaxation of rat basilar arteries in a concentration-dependent manner. This relaxation was abolished when endothelium was removed. In addition, the relaxation was diminished by the nitric oxide synthase inhibitor, L-NAME, the guanylyl cyclase inhibitor, ODQ, and the protein kinase G inhibitor, KT5820. Abacavir also increased the cGMP level in rat basilar arteries. Abacavir-induced relaxation was also abolished by adenosine A2 receptor blockers. However, abacavir had no effect on ecto-5’ nucleotidase and nucleoside transporters. Short-term and long-term treatment of abacavir did not affect acetylcholine-induced relaxation in rat basilar arteries. Conclusion Abacavir induces acute endothelium-dependent relaxation of rat basilar arteries, probably through the activation of adenosine A2 receptors in endothelial cells, which subsequently leads to the release of nitric oxide, resulting in activation of the cyclic guanosine monophosphate/protein kinase G-dependent pathway in vascular smooth muscle cells. It is speculated that abacavir-induced cardiovascular risk may

  2. A simple measurement method of molecular relaxation in a gas by reconstructing acoustic velocity dispersion

    NASA Astrophysics Data System (ADS)

    Zhu, Ming; Liu, Tingting; Zhang, Xiangqun; Li, Caiyun

    2018-01-01

    Recently, a decomposition method of acoustic relaxation absorption spectra was used to capture the entire molecular multimode relaxation process of gas. In this method, the acoustic attenuation and phase velocity were measured jointly based on the relaxation absorption spectra. However, fast and accurate measurements of the acoustic attenuation remain challenging. In this paper, we present a method of capturing the molecular relaxation process by only measuring acoustic velocity, without the necessity of obtaining acoustic absorption. The method is based on the fact that the frequency-dependent velocity dispersion of a multi-relaxation process in a gas is the serial connection of the dispersions of interior single-relaxation processes. Thus, one can capture the relaxation times and relaxation strengths of N decomposed single-relaxation dispersions to reconstruct the entire multi-relaxation dispersion using the measurements of acoustic velocity at 2N  +  1 frequencies. The reconstructed dispersion spectra are in good agreement with experimental data for various gases and mixtures. The simulations also demonstrate the robustness of our reconstructive method.

  3. Modeling and simulation of the deposition/relaxation processes of polycrystalline diatomic structures of metallic nitride films

    NASA Astrophysics Data System (ADS)

    García, M. F.; Restrepo-Parra, E.; Riaño-Rojas, J. C.

    2015-05-01

    This work develops a model that mimics the growth of diatomic, polycrystalline thin films by artificially splitting the growth into deposition and relaxation processes including two stages: (1) a grain-based stochastic method (grains orientation randomly chosen) is considered and by means of the Kinetic Monte Carlo method employing a non-standard version, known as Constant Time Stepping, the deposition is simulated. The adsorption of adatoms is accepted or rejected depending on the neighborhood conditions; furthermore, the desorption process is not included in the simulation and (2) the Monte Carlo method combined with the metropolis algorithm is used to simulate the diffusion. The model was developed by accounting for parameters that determine the morphology of the film, such as the growth temperature, the interacting atomic species, the binding energy and the material crystal structure. The modeled samples exhibited an FCC structure with grain formation with orientations in the family planes of < 111 >, < 200 > and < 220 >. The grain size and film roughness were analyzed. By construction, the grain size decreased, and the roughness increased, as the growth temperature increased. Although, during the growth process of real materials, the deposition and relaxation occurs simultaneously, this method may perhaps be valid to build realistic polycrystalline samples.

  4. Biexciton relaxation associated with dissociation into a surface polariton pair in semiconductor films

    NASA Astrophysics Data System (ADS)

    Mitsumori, Yasuyoshi; Matsuura, Shimpei; Uchiyama, Shoichi; Saito, Kentarao; Edamatsu, Keiichi; Nakayama, Masaaki; Ajiki, Hiroshi

    2018-04-01

    We study the biexciton relaxation process in CuCl films ranging from 6 to 200 nm. The relaxation time is measured as the dephasing time and the lifetime. We observe a unique thickness dependence of the biexciton relaxation time and also obtain an ultrafast relaxation time with a timescale as short as 100 fs, while the exciton lifetime monotonically decreases with increasing thickness. By analyzing the exciton-photon coupling energy for a surface polariton, we theoretically calculate the biexciton relaxation time as a function of the thickness. The calculated dependence qualitatively reproduces the observed relaxation time, indicating that the biexciton dissociation into a surface polariton pair is one of the major biexciton relaxation processes.

  5. Role of Relaxation on the Giant Permittivity and Electrical Properties of CaCu3Ti4O12 Ceramics

    NASA Astrophysics Data System (ADS)

    Zhao, Xuetong; Ren, Lulu; Liao, Ruijin; Li, Jianying; Yang, Lijun; Wang, Feipeng

    2016-06-01

    CaCu3Ti4O12 (CCTO) ceramics were synthesized under various sintering conditions to investigate the role of relaxation on permittivity and electrical properties. Two relaxation processes that respectively related to grain and to domain boundary at a temperature as low as 223 K were fitted according to the Cole-Cole theory. The results indicate that both relaxations largely account for the giant permittivity of CCTO ceramics. Moreover, the relaxation behaviors of grain and of the grain boundary can be processed via impedance plots that vary from 113 K to 473 K. It is shown that longer sintering duration leads to lower resistance of grain and of grain boundary: e.g., from 3200 Ω to 810 Ω and 1.76 MΩ to 0.48 MΩ, respectively. The activation energy related to grain-boundary relaxation drops from 1.14 eV to 0.80 eV, while the value of grain stays unchanged at about 0.11 eV. The Schottky barrier of the CCTO sample decreases from 0.65 eV to 0.57 eV. It is also proposed that the nonlinearity of current-voltage property for CCTO ceramics may be strongly related to the relaxation processes of grain boundaries.

  6. Small polaronic hole hopping mechanism and Maxwell-Wagner relaxation in NdFeO3

    NASA Astrophysics Data System (ADS)

    Ahmad, I.; Akhtar, M. J.; Younas, M.; Siddique, M.; Hasan, M. M.

    2012-10-01

    In the modern micro-electronics, transition metal oxides due to their colossal values of dielectric permittivity possess huge potential for the development of capacitive energy storage devices. In the present work, the dielectric permittivity and the effects of temperature and frequency on the electrical transport properties of polycrystalline NdFeO3, prepared by solid state reaction method, are discussed. Room temperature Mossbauer spectrum confirms the phase purity, octahedral environment for Fe ion, and high spin state of Fe3+ ion. From the impedance spectroscopic measurements, three relaxation processes are observed, which are related to grains, grain boundaries (gbs), and electrode-semiconductor contact in the measured temperature and frequency ranges. Decrease in resistances and relaxation times of the grains and grain boundaries with temperature confirms the involvement of thermally activated conduction mechanisms. Same type of charge carriers (i.e., small polaron hole hopping) have been found responsible for conduction and relaxation processes through the grain and grain boundaries. The huge value of the dielectric constant (˜8 × 103) at high temperature and low frequency is correlated to the Maxwell-Wagner relaxation due to electrode-sample contact.

  7. Relaxation - Induced by Vibroacoustic Stimulation via a Body Monochord and via Relaxation Music - Is Associated with a Decrease in Tonic Electrodermal Activity and an Increase of the Salivary Cortisol Level in Patients with Psychosomatic Disorders.

    PubMed

    Sandler, Hubertus; Fendel, Uta; Buße, Petra; Rose, Matthias; Bösel, Rainer; Klapp, Burghard F

    2017-01-01

    Vibroacoustic stimulation by a Body Monochord can induce relaxation states of various emotional valence. The skin conductance level (SCL) of the tonic electrodermal activity is an indicator of sympathetic arousal of the autonomic nervous system and thus an indicator of the relaxation response. Salivary cortisol is considered to be a stress indicator of the HPA-axis. The effects of the treatment with a Body Monochord and listening to relaxation music (randomized chronological presentation) on SCL and salivary cortisol in relation to the emotional valence of the experience were examined in patients with psychosomatic disorders (N = 42). Salivary cortisol samples were collected immediately before and after the expositions. Subjective experience was measured via self-rating scales. Overall, both the exposure to the Body Monochord as well as the exposure to the relaxation music induced an improvement of patients' mood and caused a highly significant reduction of SCL. A more emotionally positive experience of relaxation correlated with a slightly stronger reduction of the SCL. Both treatment conditions caused a slight increase in salivary cortisol, which was significant after exposure to the first treatment. The increase of salivary cortisol during a relaxation state is contrary to previous findings. It is possible that the relaxation state was experienced as an emotional challenge, due to inner images and uncommon sensations that might have occurred.

  8. Relaxation process of the discharge channel near the anode in long air gaps under positive impulse voltages

    NASA Astrophysics Data System (ADS)

    Zhao, Xiangen; He, Junjia; Luo, Bing; Jia, Lei; Yang, Yongchao; Xiao, Pei

    2017-12-01

    The relaxation process of the discharge channel near the anode in a long air gap was observed using a Schlieren system with a temporal resolution of 5 µs and a spatial resolution of 70 µm. The dynamic characteristics of the decay process in the vicinity of the anode are obtained. The discharge channel evolves just as a growing mushroom in nature during the relaxation phase. Two physical quantities, angle θ and velocity v, are defined to describe the process in this paper. The average value of the angle and velocity under lightning impulses are 71.7° and 3.3 m s-1 respectively, while 7.7 m s-1 under switching impulses. A simplified model was established to simulate the formation of mushroom-shaped channel. The simulation and experimental results show that the formation and development of the mushroom-shaped channel are due to two factors. One is the convection of the high temperature and high pressure air near the anode produced by the first corona discharge; the other is the ionic migration. These two factors result in the phenomena that the cooling process in the vicinity of the anode is much more efficient than further into the gap, whereas the thermal conductivity of the anode may have little contribution to that.

  9. Kinetic Activation-Relaxation Technique and Self-Evolving Atomistic Kinetic Monte Carlo: Comparison of on-the-fly kinetic Monte Carlo algorithms

    DOE PAGES

    Beland, Laurent Karim; Osetskiy, Yury N.; Stoller, Roger E.; ...

    2015-02-07

    Here, we present a comparison of the Kinetic Activation–Relaxation Technique (k-ART) and the Self-Evolving Atomistic Kinetic Monte Carlo (SEAKMC), two off-lattice, on-the-fly Kinetic Monte Carlo (KMC) techniques that were recently used to solve several materials science problems. We show that if the initial displacements are localized the dimer method and the Activation–Relaxation Technique nouveau provide similar performance. We also show that k-ART and SEAKMC, although based on different approximations, are in agreement with each other, as demonstrated by the examples of 50 vacancies in a 1950-atom Fe box and of interstitial loops in 16,000-atom boxes. Generally speaking, k-ART’s treatment ofmore » geometry and flickers is more flexible, e.g. it can handle amorphous systems, and rigorous than SEAKMC’s, while the later’s concept of active volumes permits a significant speedup of simulations for the systems under consideration and therefore allows investigations of processes requiring large systems that are not accessible if not localizing calculations.« less

  10. Magnetic helicity balance at Taylor relaxed states sustained by AC helicity injection

    NASA Astrophysics Data System (ADS)

    Hirota, Makoto; Morrison, Philip J.; Horton, Wendell; Hattori, Yuji

    2017-10-01

    Magnitudes of Taylor relaxed states that are sustained by AC magnetic helicity injection (also known as oscillating field current drive, OFCD) are investigated numerically in a cylindrical geometry. Compared with the amplitude of the oscillating magnetic field at the skin layer (which is normalized to 1), the strength of the axial guide field Bz 0 is shown to be an important parameter. The relaxation process seems to be active only when Bz 0 < 1 . Moreover, in the case of weak guide field Bz 0 < 0.2 , a helically-symmetric relaxed state is self-generated instead of the axisymmetric reversed-field pinch. As a theoretical model, the helicity balance is considered in a similar way to R. G. O'Neill et al., where the helicity injection rate is directly equated with the dissipation rate at the Taylor states. Then, the bifurcation to the helical Taylor state is predicted theoretically and the estimated magnitudes of the relaxed states reasonably agree with numerical results as far as Bz 0 < 1 . This work was supported by JSPS KAKENHI Grant Number 16K05627.

  11. Change in dielectric relaxation with the presence of water in highly filled composites

    NASA Astrophysics Data System (ADS)

    Tuncer, Enis

    It is important to determine the dielectric characteristics of semiconductor encapsulation materials based on epoxy resins. We employed the dielectric spectroscopy technique to investigate the dielectric relaxation in the presence of water and how it changes the relaxation. It was observed that the dielectric relaxation of the material was significantly influenced by absorbed water, the local segmental motion (also known as Johari-Goldstein (β) relaxation) was influenced most by the presence of the water, it was modified by the wet sample compared to dry one, and required high activation energy. The relaxation related to the glass transition was contributed by the cooperative motion (the α-relaxation) of the epoxy resin system. The α-relaxation was shifted to a low temperature in the wet sample compared to dry one. The relaxation was modeled with a clear Vogel-Fulcher-Tammann-Hesse (VFTH) behavior; the Vogel temperature of the wet sample was 8K lower than the dry sample. The presence of water acts as a plasticizer for the molecular relaxation, and speed-up the cooperative process. The measured data were also used to estimate the electrical properties of the resin system by employing an effective-medium model together with a porous media continuum model by taking into account the physical properties of the system. It is already known that the influence of water in semiconductor packaging is important in sensitive applications. The presented measurements and the analysis method would be appreciated within the semiconductor packaging community to improve material selection and performance evaluation efforts.

  12. Breathing and Relaxation

    MedlinePlus

    ... Programs Health Information Doctors & Departments Clinical Research & Science Education & Training Home Health Insights Stress & Relaxation Breathing and Relaxation Breathing and Relaxation Make ...

  13. Glass transition and relaxation dynamics of propylene glycol-water solutions confined in clay

    NASA Astrophysics Data System (ADS)

    Elamin, Khalid; Björklund, Jimmy; Nyhlén, Fredrik; Yttergren, Madeleine; Mârtensson, Lena; Swenson, Jan

    2014-07-01

    The molecular dynamics of aqueous solutions of propylene glycol (PG) and propylene glycol methylether (PGME) confined in a two-dimensional layer-structured Na-vermiculite clay has been studied by broadband dielectric spectroscopy and differential scanning calorimetry. As typical for liquids in confined geometries the intensity of the cooperative α-relaxation becomes considerably more suppressed than the more local β-like relaxation processes. In fact, at high water contents the calorimetric glass transition and related structural α-relaxation cannot even be observed, due to the confinement. Thus, the intensity of the viscosity related α-relaxation is dramatically reduced, but its time scale as well as the related glass transition temperature Tg are for both systems only weakly influenced by the confinement. In the case of the PGME-water solutions it is an important finding since in the corresponding bulk system a pronounced non-monotonic concentration dependence of the glass transition related dynamics has been observed due to the growth of hydrogen bonded relaxing entities of water bridging between PGME molecules [J. Sjöström, J. Mattsson, R. Bergman, and J. Swenson, Phys. Chem. B 115, 10013 (2011)]. The present results suggest that the same type of structural entities are formed in the quasi-two-dimensional space between the clay platelets. It is also observed that the main water relaxation cannot be distinguished from the β-relaxation of PG or PGME in the concentration range up to intermediate water contents. This suggests that these two processes are coupled and that the water molecules affect the time scale of the β-relaxation. However, this is most likely true also for the corresponding bulk solutions, which exhibit similar time scales of this combined relaxation process below Tg. Finally, it is found that at higher water contents the water relaxation does not merge with, or follow, the α-relaxation above Tg, but instead crosses the α-relaxation

  14. Glass transition and relaxation dynamics of propylene glycol-water solutions confined in clay.

    PubMed

    Elamin, Khalid; Björklund, Jimmy; Nyhlén, Fredrik; Yttergren, Madeleine; Mårtensson, Lena; Swenson, Jan

    2014-07-21

    The molecular dynamics of aqueous solutions of propylene glycol (PG) and propylene glycol methylether (PGME) confined in a two-dimensional layer-structured Na-vermiculite clay has been studied by broadband dielectric spectroscopy and differential scanning calorimetry. As typical for liquids in confined geometries the intensity of the cooperative α-relaxation becomes considerably more suppressed than the more local β-like relaxation processes. In fact, at high water contents the calorimetric glass transition and related structural α-relaxation cannot even be observed, due to the confinement. Thus, the intensity of the viscosity related α-relaxation is dramatically reduced, but its time scale as well as the related glass transition temperature Tg are for both systems only weakly influenced by the confinement. In the case of the PGME-water solutions it is an important finding since in the corresponding bulk system a pronounced non-monotonic concentration dependence of the glass transition related dynamics has been observed due to the growth of hydrogen bonded relaxing entities of water bridging between PGME molecules [J. Sjöström, J. Mattsson, R. Bergman, and J. Swenson, Phys. Chem. B 115, 10013 (2011)]. The present results suggest that the same type of structural entities are formed in the quasi-two-dimensional space between the clay platelets. It is also observed that the main water relaxation cannot be distinguished from the β-relaxation of PG or PGME in the concentration range up to intermediate water contents. This suggests that these two processes are coupled and that the water molecules affect the time scale of the β-relaxation. However, this is most likely true also for the corresponding bulk solutions, which exhibit similar time scales of this combined relaxation process below Tg. Finally, it is found that at higher water contents the water relaxation does not merge with, or follow, the α-relaxation above Tg, but instead crosses the α-relaxation

  15. Relaxation-phenomena in LiAl/FeS-cells

    NASA Astrophysics Data System (ADS)

    Borger, W.; Kappus, W.; Panesar, H. S.

    A theoretical model of the capacity of strongly relaxing electrochemical systems is applied to the LiAl/FeS system. Relaxation phenomena in LiAl and FeS electrodes can be described by this model. Experimental relaxation data indicate that lithium transport through the alpha-LiAl layer to the particle surface is the capacity limiting process at high discharge current density in the LiAl electrode in LiCl-KCl and LiF-LiCl-LiBr mixtures. Strong relaxation is observed in the FeS electrode with LiCl-KCl electrolyte caused by lithium concentration gradients and precipitation of KCl in the pores.

  16. Multiple relaxations of the cluster surface diffusion in a homoepitaxial SrTiO3 layer

    NASA Astrophysics Data System (ADS)

    Woo, Chang-Su; Chu, Kanghyun; Song, Jong-Hyun; Yang, Chan-Ho

    2018-03-01

    We examine the surface diffusion process of adatomic clusters on a (001)-oriented SrTiO3 single crystal using reflection high energy electron diffraction (RHEED). We find that the recovery curve of the RHEED intensity acquired after a homoepitaxial half-layer growth can be accurately fit into a double exponential function, indicating the existence of two dominant relaxation mechanisms. The characteristic relaxation times at selected growth temperatures are investigated to determine the diffusion activation barriers of 0.67 eV and 0.91 eV, respectively. The Monte Carlo simulation of the cluster hopping model suggests that the decrease in the number of dimeric and trimeric clusters during surface diffusion is the origin of the observed relaxation phenomena.

  17. Milrinone Relaxes Pulmonary Veins in Guinea Pigs and Humans

    PubMed Central

    Rieg, Annette D.; Suleiman, Said; Perez-Bouza, Alberto; Braunschweig, Till; Spillner, Jan W.; Schröder, Thomas; Verjans, Eva; Schälte, Gereon; Rossaint, Rolf; Uhlig, Stefan; Martin, Christian

    2014-01-01

    Introduction The phosphodiesterase-III inhibitor milrinone improves ventricular contractility, relaxes pulmonary arteries and reduces right ventricular afterload. Thus, it is used to treat heart failure and pulmonary hypertension (PH). However, its action on pulmonary veins (PVs) is not defined, although particularly PH due to left heart disease primarily affects the pulmonary venous bed. We examined milrinone-induced relaxation in PVs from guinea pigs (GPs) and humans. Material and Methods Precision-cut lung slices (PCLS) were prepared from GPs or from patients undergoing lobectomy. Milrinone-induced relaxation was studied by videomicroscopy in naïve PVs and in PVs pre-constricted with the ETA-receptor agonist BP0104. Baseline luminal area was defined as 100%. Intracellular cAMP was measured by ELISA and milrinone-induced changes of segmental vascular resistances were studied in the GP isolated perfused lung (IPL). Results In the IPL (GP), milrinone (10 µM) lowered the postcapillary resistance of pre-constricted vessels. In PCLS (GP), milrinone relaxed naïve and pre-constricted PVs (120%) and this relaxation was attenuated by inhibition of protein kinase G (KT 5823), adenyl cyclase (SQ 22536) and protein kinase A (KT 5720), but not by inhibition of NO-synthesis (L-NAME). In addition, milrinone-induced relaxation was dependent on the activation of KATP-, BKCa 2+- and Kv-channels. Human PVs also relaxed to milrinone (121%), however only if pre-constricted. Discussion Milrinone relaxes PVs from GPs and humans. In GPs, milrinone-induced relaxation is based on KATP-, BKCa 2+- and Kv-channel-activation and on cAMP/PKA/PKG. The relaxant properties of milrinone on PVs lead to reduced postcapillary resistance and hydrostatic pressures. Hence they alleviate pulmonary edema and suggest beneficial effects of milrinone in PH due to left heart disease. PMID:24498166

  18. Milrinone relaxes pulmonary veins in guinea pigs and humans.

    PubMed

    Rieg, Annette D; Suleiman, Said; Perez-Bouza, Alberto; Braunschweig, Till; Spillner, Jan W; Schröder, Thomas; Verjans, Eva; Schälte, Gereon; Rossaint, Rolf; Uhlig, Stefan; Martin, Christian

    2014-01-01

    The phosphodiesterase-III inhibitor milrinone improves ventricular contractility, relaxes pulmonary arteries and reduces right ventricular afterload. Thus, it is used to treat heart failure and pulmonary hypertension (PH). However, its action on pulmonary veins (PVs) is not defined, although particularly PH due to left heart disease primarily affects the pulmonary venous bed. We examined milrinone-induced relaxation in PVs from guinea pigs (GPs) and humans. Precision-cut lung slices (PCLS) were prepared from GPs or from patients undergoing lobectomy. Milrinone-induced relaxation was studied by videomicroscopy in naïve PVs and in PVs pre-constricted with the ETA-receptor agonist BP0104. Baseline luminal area was defined as 100%. Intracellular cAMP was measured by ELISA and milrinone-induced changes of segmental vascular resistances were studied in the GP isolated perfused lung (IPL). In the IPL (GP), milrinone (10 µM) lowered the postcapillary resistance of pre-constricted vessels. In PCLS (GP), milrinone relaxed naïve and pre-constricted PVs (120%) and this relaxation was attenuated by inhibition of protein kinase G (KT 5823), adenyl cyclase (SQ 22536) and protein kinase A (KT 5720), but not by inhibition of NO-synthesis (L-NAME). In addition, milrinone-induced relaxation was dependent on the activation of K ATP-, BK Ca (2+)- and Kv-channels. Human PVs also relaxed to milrinone (121%), however only if pre-constricted. Milrinone relaxes PVs from GPs and humans. In GPs, milrinone-induced relaxation is based on K ATP-, BK Ca (2+)- and Kv-channel-activation and on cAMP/PKA/PKG. The relaxant properties of milrinone on PVs lead to reduced postcapillary resistance and hydrostatic pressures. Hence they alleviate pulmonary edema and suggest beneficial effects of milrinone in PH due to left heart disease.

  19. Electron spin relaxation in two polymorphic structures of GaN

    NASA Astrophysics Data System (ADS)

    Kang, Nam Lyong

    2015-03-01

    The relaxation process of electron spin in systems of electrons interacting with piezoelectric deformation phonons that are mediated through spin-orbit interactions was interpreted from a microscopic point of view using the formula for the electron spin relaxation times derived by a projection-reduction method. The electron spin relaxation times in two polymorphic structures of GaN were calculated. The piezoelectric material constant for the wurtzite structure obtained by a comparison with a previously reported experimental result was {{P}pe}=1.5 × {{10}29} eV {{m}-1}. The temperature and magnetic field dependence of the relaxation times for both wurtzite and zinc-blende structures were similar, but the relaxation times in zinc-blende GaN were smaller and decreased more rapidly with increasing temperature and magnetic field than that in wurtzite GaN. This study also showed that the electron spin relaxation for wurtzite GaN at low density could be explained by the Elliot-Yafet process but not for zinc-blende GaN in the metallic regime.

  20. Topology Synthesis of Structures Using Parameter Relaxation and Geometric Refinement

    NASA Technical Reports Server (NTRS)

    Hull, P. V.; Tinker, M. L.

    2007-01-01

    Typically, structural topology optimization problems undergo relaxation of certain design parameters to allow the existence of intermediate variable optimum topologies. Relaxation permits the use of a variety of gradient-based search techniques and has been shown to guarantee the existence of optimal solutions and eliminate mesh dependencies. This Technical Publication (TP) will demonstrate the application of relaxation to a control point discretization of the design workspace for the structural topology optimization process. The control point parameterization with subdivision has been offered as an alternative to the traditional method of discretized finite element design domain. The principle of relaxation demonstrates the increased utility of the control point parameterization. One of the significant results of the relaxation process offered in this TP is that direct manufacturability of the optimized design will be maintained without the need for designer intervention or translation. In addition, it will be shown that relaxation of certain parameters may extend the range of problems that can be addressed; e.g., in permitting limited out-of-plane motion to be included in a path generation problem.

  1. Transformation fatigue and stress relaxation of shape memory alloy wires

    NASA Astrophysics Data System (ADS)

    Pappas, P.; Bollas, D.; Parthenios, J.; Dracopoulos, V.; Galiotis, C.

    2007-12-01

    The present work deals with the stress generation capability of nickel-titanium shape memory alloys (SMAs) under constrained conditions for two well-defined loading modes: recurrent crystalline transformation (transformation fatigue) and a one-step continuous activation (generated stress relaxation). The data acquired will be very useful during the design process of an SMA Ni-Ti element as a functional part of an assembly. Differential scanning calorimetry (DSC) was employed in order to investigate the transformation characteristics of the alloy before and after the tests. Transformation fatigue tests revealed that the parameter that affects more the rate of the functional degradation is the number of crystalline transitions the wire undergoes. Thus, the service life limit of this material as a stress generator can be reduced to a few thousand working cycles. For stress relaxation, the main factor that affects the ability for stress generation is the working temperature: the higher the temperature above the austenite finish (TAf) limit the higher the relaxation effect. Thermomechanical treatment of the alloy during the tests reveals the 'hidden' transformation from the cubic structure (B2) of austenite to the rhombohedral structure of the R-phase. It is believed that the gradual loss of the stress generation capability of the material under constrained conditions must be associated to a gradual slipping relaxation mechanism. Scanning electron microscopy (SEM) observations on as-received, re-trained, fatigued and stress-relaxed specimens in the martensitic state provide further support for this hypothesis.

  2. Multiscale Relaxation Dynamics in Ultrathin Metallic Glass-Forming Films

    NASA Astrophysics Data System (ADS)

    Bi, Q. L.; Lü, Y. J.; Wang, W. H.

    2018-04-01

    The density layering phenomenon originating from a free surface gives rise to the layerlike dynamics and stress heterogeneity in ultrathin Cu-Zr glassy films, which facilitates the occurrence of multistep relaxations in the timescale of computer simulations. Taking advantage of this condition, we trace the relaxation decoupling and evolution with temperature simply via the intermediate scattering function. We show that the β relaxation hierarchically follows fast and slow modes in films, and there is a β -relaxation transition as the film is cooled close to the glass transition. We provide the direct observation of particle motions responsible for the β relaxation and reveal the dominant mechanism varying from the thermal activated to the cooperative jumps across the transition.

  3. Convex relaxations for gas expansion planning

    DOE PAGES

    Borraz-Sanchez, Conrado; Bent, Russell Whitford; Backhaus, Scott N.; ...

    2016-01-01

    Expansion of natural gas networks is a critical process involving substantial capital expenditures with complex decision-support requirements. Here, given the non-convex nature of gas transmission constraints, global optimality and infeasibility guarantees can only be offered by global optimisation approaches. Unfortunately, state-of-the-art global optimisation solvers are unable to scale up to real-world size instances. In this study, we present a convex mixed-integer second-order cone relaxation for the gas expansion planning problem under steady-state conditions. The underlying model offers tight lower bounds with high computational efficiency. In addition, the optimal solution of the relaxation can often be used to derive high-quality solutionsmore » to the original problem, leading to provably tight optimality gaps and, in some cases, global optimal solutions. The convex relaxation is based on a few key ideas, including the introduction of flux direction variables, exact McCormick relaxations, on/off constraints, and integer cuts. Numerical experiments are conducted on the traditional Belgian gas network, as well as other real larger networks. The results demonstrate both the accuracy and computational speed of the relaxation and its ability to produce high-quality solution« less

  4. Stress relaxation at a gelatin hydrogel-glass interface in direct shear sliding

    NASA Astrophysics Data System (ADS)

    Gupta, Vinit; Singh, Arun K.

    2018-01-01

    In this paper, we study experimentally the stress relaxation behavior of soft solids such as gelatin hydrogels on a smooth glass surface in direct shear sliding. It is observed experimentally that irrespective of pulling velocity, the sliding block relaxes to the same level of nonzero residual stress. However, residual stress increases with increasing gelatin concentration in the hydrogels. We have also validated a friction model for strong bond formation during steady relaxation in light of the experimental observations. Our theoretical analysis establishes that population of dangling chains at the sliding interface significantly affects the relaxation process. As a result, residual stress increases with increasing gelatin concentration or decreasing mesh size of the three-dimensional structures in the hydrogels. It is also found that the transition time, at which a weak bond converts to strong bond, increases with increasing mesh size of the hydrogels. Moreover, relaxation time constant of a strong bond decreases with increasing mesh size. However, activation length of a strong bond increases with mesh size. Finally, this study signifies the role of residual strength in frictional shear sliding and it is believed that these results should be useful to understand the role of residual stress in stick-slip instability.

  5. Thermal relaxation behavior of residual stress in laser hardened 17-4PH steel after shot peening treatment

    NASA Astrophysics Data System (ADS)

    Wang, Zhou; Chen, Yanhua; Jiang, Chuanhai

    2011-09-01

    In order to investigate the residual stress relaxations of shot peened layer, isothermal annealing treatments were carried out on tempered and laser hardened 17-4PH steel after shot peening with different temperatures from 300 °C to 600 °C. The results showed that the residual stresses were relaxed in the whole deformation layer especially under higher temperature. The maximum rates of stress relaxation took place at the initial stage of annealing process in all conditions. The relaxation process during isothermal annealing could be described by Zener-Wert-Avrami function. The thermal stability of residual stress in tempered 17-4PH was higher than that in laser hardened 17-4PH as well as that in α-iron, which was due to the pinning effects of ɛ-Cu precipitates on the dislocation movement. As massive ɛ-Cu precipitates formed in the temperature about 480 °C, the activation enthalpies for stress relaxation in laser hardened 17-4PH were the same as that in tempered 17-4PH in the conditions of isothermal annealing temperatures of 500 °C and 600 °C.

  6. Relaxation phenomena in AOT-water-decane critical and dense microemulsions

    NASA Astrophysics Data System (ADS)

    Letamendia, L.; Pru-Lestret, E.; Panizza, P.; Rouch, J.; Sciortino, F.; Tartaglia, P.; Hashimoto, C.; Ushiki, H.; Risso, D.

    2001-11-01

    We report on extensive measurements of the low and high frequencies sound velocity and sound absorption in AOT-water-decane microemulsions deduced from ultrasonic and, for the first time as far as the absorption is concerned, from Brillouin scattering experiments. New experimental results on dielectric relaxation are also reported. Our results, which include data taken for critical as well as dense microemulsions, show new interesting relaxation phenomena. The relaxation frequencies deduced from very high frequency acoustical measurements are in good agreement with new high frequency dielectric relaxation measurements. We show that along the critical isochore, sound dispersion, relaxation frequency, and static dielectric permittivity can be accurately fitted to power laws. The absolute values of the new exponents we derived from experimental data are nearly equal, and they are very close to β=0.33 characterising the shape of the coexistence curve. The exponent characterising the infinite frequency permittivity is very close to 0.04 relevant to the diverging shear viscosity. For dense microemulsions, two well defined relaxation domains have been identified and the temperature variations of the sound absorption and the zero frequency dielectric permittivity bear striking similarities. We also show that the relaxation frequency of the slow relaxation process is almost independent of temperature and volume fraction and so cannot be attributed to percolation phenomena, whereas it can more likely be attributed to an intrinsic relaxation process probably connected to membrane fluctuations.

  7. Dynamics of Relaxation Processes of Spontaneous Otoacoustic Emissions

    NASA Astrophysics Data System (ADS)

    Murphy, William James

    The dynamical response of spontaneous otoacoustic emissions (SOAEs) to suppression by ipsilateral pulsed external tones of different frequencies and levels is investigated in nine female subjects under normal conditions and in four female subjects during periods when aspirin is being administered. A simple Van der Pol limit-cycle oscillator driven by an external tone is used as an interpretive model. Typical results for both the onset of, and recovery from suppression yield 1/r_1 (where -r_1 is the negative linear component of the damping function) in the range of 2-25 msec. In accordance with the predictions of the model: (a) the relaxation time for the onset of suppression increases with the amount of suppression induced by the external tone, (b) the values of r _1 and the amplitudes of the unsuppressed emissions exhibit an inverse correlation, (c) the values inferred for r_1 are not significantly dependent on the frequency of the pulsed suppressor tone and (d) the inferred r_1 values are not significantly dependent upon the amount of suppression. In investigations involving subjects under aspirin administration, the changes in the relaxation time constants indicate that the main effect of aspirin administration is to reduce the negative damping parameter r_1. The salicylate is apparently not metabolized in some subjects whose emissions are negligibly affected by aspirin administration. A modification of the single-oscillator model is used to describe pulsed suppression data obtained from a primary SOAE (2545 Hz) which is suppressed by a neighboring secondary emission (2895 Hz). The response of the SOAE amplitude during pulsed suppression is modeled by a pair of Van der Pol limit-cycle oscillators with the primary oscillator linearly coupled to the displacement of the secondary higher-frequency one. The relaxation time constants for the onset of, and recovery from, suppression are 4.5 and 4.8 msec, respectively, for the primary SOAE and 7.5 and 10.5 msec for the

  8. Temperature and voltage stress dependent dielectric relaxation process of the doped Ba0.67Sr0.33TiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Yan, Shiguang; Mao, Chaoliang; Wang, Genshui; Yao, Chunhua; Cao, Fei; Dong, Xianlin

    2013-09-01

    The current decay characteristic in the time domain is studied in Y3+ and Mn2+ modified Ba0.67Sr0.33TiO3 ceramics under different temperatures (25 °C-213 °C) and voltage stresses (0 V-800 V). The decay of the current is correlated with the overlapping of the relaxation process and leakage current. With respect to the inherent remarkable dielectric nonlinearity, a simple method through curve fitting is derived to differentiate these two currents. Two mechanisms of the relaxation process are proposed: a distribution of the potential barriers mode around room temperature and an electron injection mode at the elevated temperature of 110 °C.

  9. Activating and relaxing music entrains the speed of beat synchronized walking.

    PubMed

    Leman, Marc; Moelants, Dirk; Varewyck, Matthias; Styns, Frederik; van Noorden, Leon; Martens, Jean-Pierre

    2013-01-01

    Inspired by a theory of embodied music cognition, we investigate whether music can entrain the speed of beat synchronized walking. If human walking is in synchrony with the beat and all musical stimuli have the same duration and the same tempo, then differences in walking speed can only be the result of music-induced differences in stride length, thus reflecting the vigor or physical strength of the movement. Participants walked in an open field in synchrony with the beat of 52 different musical stimuli all having a tempo of 130 beats per minute and a meter of 4 beats. The walking speed was measured as the walked distance during a time interval of 30 seconds. The results reveal that some music is 'activating' in the sense that it increases the speed, and some music is 'relaxing' in the sense that it decreases the speed, compared to the spontaneous walked speed in response to metronome stimuli. Participants are consistent in their observation of qualitative differences between the relaxing and activating musical stimuli. Using regression analysis, it was possible to set up a predictive model using only four sonic features that explain 60% of the variance. The sonic features capture variation in loudness and pitch patterns at periods of three, four and six beats, suggesting that expressive patterns in music are responsible for the effect. The mechanism may be attributed to an attentional shift, a subliminal audio-motor entrainment mechanism, or an arousal effect, but further study is needed to figure this out. Overall, the study supports the hypothesis that recurrent patterns of fluctuation affecting the binary meter strength of the music may entrain the vigor of the movement. The study opens up new perspectives for understanding the relationship between entrainment and expressiveness, with the possibility to develop applications that can be used in domains such as sports and physical rehabilitation.

  10. Relaxation Time Distribution (RTD) of Spectral Induced Polarization (SIP) data from environmental studies

    NASA Astrophysics Data System (ADS)

    Ntarlagiannis, D.; Ustra, A.; Slater, L. D.; Zhang, C.; Mendonça, C. A.

    2015-12-01

    In this work we present an alternative formulation of the Debye Decomposition (DD) of complex conductivity spectra, with a new set of parameters that are directly related to the continuous Debye relaxation model. The procedure determines the relaxation time distribution (RTD) and two frequency-independent parameters that modulate the induced polarization spectra. The distribution of relaxation times quantifies the contribution of each distinct relaxation process, which can in turn be associated with specific polarization processes and characterized in terms of electrochemical and interfacial parameters as derived from mechanistic models. Synthetic tests show that the procedure can successfully fit spectral induced polarization (SIP) data and accurately recover the RTD. The procedure was applied to different data sets, focusing on environmental applications. We focus on data of sand-clay mixtures artificially contaminated with toluene, and crude oil-contaminated sands experiencing biodegradation. The results identify characteristic relaxation times that can be associated with distinct polarization processes resulting from either the contaminant itself or transformations associated with biodegradation. The inversion results provide information regarding the relative strength and dominant relaxation time of these polarization processes.

  11. Determinants of relaxation rate in rabbit skinned skeletal muscle fibres

    PubMed Central

    Luo, Ye; Davis, Jonathan P; Smillie, Lawrence B; Rall, Jack A

    2002-01-01

    The influence of Ca2+-activated force, the rate of dissociation of Ca2+ from troponin C (TnC) and decreased crossbridge detachment rate on the time course of relaxation induced by flash photolysis of diazo-2 in rabbit skinned psoas fibres was investigated at 15 °C. The rate of relaxation increased as the diazo-2 chelating capacity (i.e. free [diazo-2]/free [Ca2+]) increased. At a constant diazo-2 chelating capacity, the rate of relaxation was independent of the pre-photolysis Ca2+-activated force in the range 0.3-0.8 of maximum isometric force. A TnC mutant that exhibited increased Ca2+ sensitivity caused by a decreased Ca2+ dissociation rate in solution (M82Q TnC) also increased the Ca2+ sensitivity of steady-state force and decreased the rate of relaxation in fibres by approximately twofold. In contrast, a TnC mutant with decreased Ca2+ sensitivity caused by an increased Ca2+ dissociation rate in solution (NHdel TnC) decreased the Ca2+ sensitivity of steady-state force but did not accelerate relaxation. Decreasing the rate of crossbridge kinetics by reducing intracellular inorganic phosphate concentration ([Pi]) slowed relaxation by approximately twofold and led to two phases of relaxation, a slow linear phase followed by a fast exponential phase. In fibres, M82Q TnC further slowed relaxation in low [Pi] conditions by approximately twofold, whereas NHdel TnC had no significant effect on relaxation. These results are consistent with the interpretation that the Ca2+-dissociation rate and crossbridge detachment rate are similar in fast-twitch skeletal muscle, such that decreasing either rate slows relaxation, but accelerating Ca2+ dissociation has little effect on relaxation. PMID:12482894

  12. [Specifics of bio-controlled training in directed relaxation].

    PubMed

    Baranov, V M; Sentiabrev, N N; Solopov, I N

    2005-01-01

    Studies of personal and general patterns of acquisition of skills in biocontrolled relaxation based on biological feedback (EMG) permitted classification of human subjects by the ability to relax voluntarily muscles. In the process of skill acquisition changes were minimal at the beginning, grew progressively further on and stabilized on completion of the course of training.

  13. Stochastic tools hidden behind the empirical dielectric relaxation laws

    NASA Astrophysics Data System (ADS)

    Stanislavsky, Aleksander; Weron, Karina

    2017-03-01

    The paper is devoted to recent advances in stochastic modeling of anomalous kinetic processes observed in dielectric materials which are prominent examples of disordered (complex) systems. Theoretical studies of dynamical properties of ‘structures with variations’ (Goldenfield and Kadanoff 1999 Science 284 87-9) require application of such mathematical tools—by means of which their random nature can be analyzed and, independently of the details distinguishing various systems (dipolar materials, glasses, semiconductors, liquid crystals, polymers, etc), the empirical universal kinetic patterns can be derived. We begin with a brief survey of the historical background of the dielectric relaxation study. After a short outline of the theoretical ideas providing the random tools applicable to modeling of relaxation phenomena, we present probabilistic implications for the study of the relaxation-rate distribution models. In the framework of the probability distribution of relaxation rates we consider description of complex systems, in which relaxing entities form random clusters interacting with each other and single entities. Then we focus on stochastic mechanisms of the relaxation phenomenon. We discuss the diffusion approach and its usefulness for understanding of anomalous dynamics of relaxing systems. We also discuss extensions of the diffusive approach to systems under tempered random processes. Useful relationships among different stochastic approaches to the anomalous dynamics of complex systems allow us to get a fresh look at this subject. The paper closes with a final discussion on achievements of stochastic tools describing the anomalous time evolution of complex systems.

  14. Comparison of the Hamstring Muscle Activity and Flexion-Relaxation Ratio between Asymptomatic Persons and Computer Work-related Low Back Pain Sufferers.

    PubMed

    Kim, Min-Hee; Yoo, Won-Gyu

    2013-05-01

    [Purpose] The purpose of this study was to compare the hamstring muscle (HAM) activities and flexion-relaxation ratios of an asymptomatic group and a computer work-related low back pain (LBP) group. [Subjects] For this study, we recruited 10 asymptomatic computer workers and 10 computer workers with work-related LBP. [Methods] We measured the RMS activity of each phase (flexion, full-flexion, and re-extension phase) of trunk flexion and calculated the flexion-relaxation (FR) ratio of the muscle activities of the flexion and full-flexion phases. [Results] In the computer work-related LBP group, the HAM muscle activity increased during the full-flexion phase compared to the asymptomatic group, and the FR ration was also significantly higher. [Conclusion] We thought that prolonged sitting of computer workers might cause the change in their HAM muscle activity pattern.

  15. Differentiable McCormick relaxations

    DOE PAGES

    Khan, Kamil A.; Watson, Harry A. J.; Barton, Paul I.

    2016-05-27

    McCormick's classical relaxation technique constructs closed-form convex and concave relaxations of compositions of simple intrinsic functions. These relaxations have several properties which make them useful for lower bounding problems in global optimization: they can be evaluated automatically, accurately, and computationally inexpensively, and they converge rapidly to the relaxed function as the underlying domain is reduced in size. They may also be adapted to yield relaxations of certain implicit functions and differential equation solutions. However, McCormick's relaxations may be nonsmooth, and this nonsmoothness can create theoretical and computational obstacles when relaxations are to be deployed. This article presents a continuously differentiablemore » variant of McCormick's original relaxations in the multivariate McCormick framework of Tsoukalas and Mitsos. Gradients of the new differentiable relaxations may be computed efficiently using the standard forward or reverse modes of automatic differentiation. Furthermore, extensions to differentiable relaxations of implicit functions and solutions of parametric ordinary differential equations are discussed. A C++ implementation based on the library MC++ is described and applied to a case study in nonsmooth nonconvex optimization.« less

  16. Effects of 7-ketocholesterol on the activity of endothelial poly(ADP-ribose) polymerase and on endothelium-dependent relaxant function.

    PubMed

    Kiss, Levente; Chen, Min; Gero, Domokos; Módis, Katalin; Lacza, Zsombor; Szabó, Csaba

    2006-12-01

    Oxidative and nitrosative stress play an important role in the development of endothelial vascular dysfunction during early atherosclerosis. Oxidative stress activates the nuclear enzyme poly(ADP-ribose) polymerase (PARP) in endothelial cells. In patients with atherosclerosis the level of oxidized LDL in the plasma is elevated. In oxidized LDL various oxysterols have been identified, such as 7-ketocholesterol (7K). 7K has been shown to induce PARP activation in microglial cells. The aim of the current study was to clarify the effects of 7K on the activity of endothelial PARP and on the endothelium-dependent relaxant function of blood vessels. We treated human umbilical vein endothelial (HUVEC) cells with 2-16 microg/ml 7K as well as vascular rings harvested from BALB/c mouse thoracic aorta with 90 microg/ml 7K for 2 h. A group of mice was treated with 7K subcutaneously for 1 week (10 mg/kg/day). We also conducted in vitro and in vivo experiments using pretreatment with buthionine sulphoximine (BSO), a glutathione-lowering agent. The activity of PARP was calculated by measurement of tritiated NAD incorporation. The activity of PARP increased significantly in 7K-treated HUVEC cells. After BSO pretreatment, this increase was higher. Isolated vascular rings demonstrated no change in endothelium-dependent relaxant function after 2 h of incubation with 7K, even after BSO pretreatment. In vivo treatment with 7K for 1 week had no effect on the relaxant function. Our experimental results suggest that although 7-ketocholesterol can activate PARP enzyme in endothelial cells, it is not sufficient on its own to cause impairment in the endothelium-dependent vascular reactivity.

  17. P2Y receptor-mediated transient relaxation of rat longitudinal ileum preparations involves phospholipase C activation, intracellular Ca(2+) release and SK channel activation.

    PubMed

    Mader, Felix; Krause, Ludwig; Tokay, Tursonjan; Hakenberg, Oliver W; Köhling, Rüdiger; Kirschstein, Timo

    2016-05-01

    Purinergic signaling plays a major role in the enteric nervous system, where it governs gut motility through a number of P2X and P2Y receptors. The aim of this study was to investigate the P2Y receptor-mediated motility in rat longitudinal ileum preparations. Ileum smooth muscle strips were prepared from rats, and fixed in an organ bath. Isometric contraction and relaxation responses of the muscle strips were measured with force transducers. Drugs were applied by adding of stock solutions to the organ bath to yield the individual final concentrations. Application of the non-hydrolyzable P2 receptor agonists α,β-Me-ATP or 2-Me-S-ADP (10, 100 μmol/L) dose-dependently elicited a transient relaxation response followed by a sustained contraction. The relaxation response was largely blocked by SK channel blockers apamin (500 nmol/L) and UCL1684 (10 μmol/L), PLC inhibitor U73122 (100 μmol/L), IP3 receptor blocker 2-APB (100 μmol/L) or sarcoendoplasmic Ca(2+) ATPase inhibitor thapsigargin (1 μmol/L), but not affected by atropine, NO synthase blocker L-NAME or tetrodotoxin. Furthermore, α,β-Me-ATP-induced relaxation was suppressed by P2Y1 receptor antagonist MRS2179 (50 μmol/L) or P2Y13 receptor antagonist MRS2211 (100 μmol/L), and was abolished by co-application of the two antagonists, whereas 2-Me-S-ADP-induced relaxation was abolished by P2Y6 receptor antagonist MRS2578 (50 μmol/L). In addition, P2Y1 receptor antagonist MRS2500 (1 μmol/L) not only abolished α,β-Me-ATP-induced relaxation, but also suppressed 2-Me-S-ADP-induced relaxation. P2Y receptor agonist-induced transient relaxation of rat ileum smooth muscle strips is mediated predominantly by P2Y1 receptor, but also by P2Y6 and P2Y13 receptors, and involves PLC, IP3, Ca(2+) release and SK channel activation, but is independent of acetylcholine and NO release.

  18. Guinea-pig interpubic joint (symphysis pubica) relaxation at parturition: Underlying cellular processes that resemble an inflammatory response

    PubMed Central

    Rodríguez, Horacio A; Ortega, Hugo H; Ramos, Jorge G; Muñoz-de-Toro, Mónica; Luque, Enrique H

    2003-01-01

    Background At term, cervical ripening in coordination with uterine contractions becomes a prerequisite for a normal vaginal delivery. Currently, cervical ripening is considered to occur independently from uterine contractions. Many evidences suggest that cervical ripening resembles an inflammatory process. Comparatively little attention has been paid to the increased flexibility of the pelvic symphysis that occurs in many species to enable safe delivery. The aim of this study was to investigate whether the guinea-pig interpubic joint relaxation process observed during late pregnancy and parturition resembles an inflammatory process. Methods Samples of pubic symphysis were taken from pregnant guinea-pigs sacrificed along gestation, parturition and postpartum. Serial sections of paraffin-embedded tissues were used to measure the interpubic distance on digitalized images, stained with Giemsa to quantify leukocyte infiltration and to describe the vascular area changes, or studied by the picrosirius-polarization method to evaluate collagen remodeling. P4 and E2 serum levels were measured by a sequential immunometric assay. Results Data showed that the pubic relaxation is associated with an increase in collagen remodeling. In addition, a positive correlation between E2 serum levels and the increase in the interpubic distance was found. On the other hand, a leukocyte infiltration in the interpubic tissue around parturition was described, with the presence of almost all inflammatory cells types. At the same time, histological images show an increase in vascular area (angiogenesis). Eosinophils reached their highest level immediately before parturition; whereas for the neutrophilic and mononuclear infiltration higher values were recorded one day after parturition. Correlation analysis showed that eosinophils and mononuclear cells were positively correlated with E2 levels, but only eosinophilic infiltration was associated with collagen remodeling. Additionally, we observed

  19. The mechanical spectra of β-relaxation and spontaneous densification effects in an amorphous polymer

    NASA Astrophysics Data System (ADS)

    Muzeau, Elisabeth; Johari, G. P.

    1990-12-01

    The dynamic mechanical spectra of shear modulus of poly(methyl methacrylate) have been measured at several temperatures over the frequency range 10 -4-1 Hz in order to study localized diffusion of chain segments which appears as β-relaxation. The shape of the spectra of both the real and imaginary components has been analyzed. It is described by a stretched exponential decay function with exponent of 0.18 and it shows nearly 50% change in the modulus over this frequency range. This exponent and the rate of relaxation are remarkably similar to those observed by dielectric methods. A procedure for obtaining the exponent of the decay function and the relaxation strength of the β-process has been outlined. The strength of the β-relaxation, or equivalently the number of molecular segments undergoing a thermally activated localized diffusion, decreases on structural relaxation during the isothermal ageing, and the magnitude of the modulus increases. Qualitatively speaking, these effects seem comparable to the effects of an increase in density that normally occurs with decrease in temperature or increase in pressure, and demonstrate that isothermal ageing causes collapse of "soft sites" in a rigid amorphous matrix.

  20. Relaxation of ferromagnetic nanoparticles in macrophages: In vitro and in vivo studies

    NASA Astrophysics Data System (ADS)

    Möller, Winfried; Takenaka, Shinji; Buske, Norbert; Felten, Kathrin; Heyder, Joachim

    2005-05-01

    The relaxation characteristics of magnetic nanoparticles (CoFe 2O 4) were investigated in J774A.1 macrophages and after voluntary inhalation. In dry form 25% of the particles showed Néel relaxation. Relaxation in macrophages occurred within minutes and could be inhibited by fixation, showing Brownian relaxation and intracellular transport processes. Relaxation in the lung happened similarly, but was dependent on the time after deposition. The particles were cleared from the lung within 2 weeks.

  1. Rational extended thermodynamics of a rarefied polyatomic gas with molecular relaxation processes

    NASA Astrophysics Data System (ADS)

    Arima, Takashi; Ruggeri, Tommaso; Sugiyama, Masaru

    2017-10-01

    We present a more refined version of rational extended thermodynamics of rarefied polyatomic gases in which molecular rotational and vibrational relaxation processes are treated individually. In this case, we need a triple hierarchy of the moment system and the system of balance equations is closed via the maximum entropy principle. Three different types of the production terms in the system, which are suggested by a generalized BGK-type collision term in the Boltzmann equation, are adopted. In particular, the rational extended thermodynamic theory with seven independent fields (ET7) is analyzed in detail. Finally, the dispersion relation of ultrasonic wave derived from the ET7 theory is confirmed by the experimental data for CO2, Cl2, and Br2 gases.

  2. Activation of muscarinic receptors by a hydroalcoholic extract of Dicksonia sellowiana Presl. HooK (Dicksoniaceae) induces vascular relaxation and hypotension in rats.

    PubMed

    Rattmann, Yanna D; Crestani, Sandra; Lapa, Fernanda R; Miguel, Obdúlio G; Marques, Maria C A; da Silva-Santos, J Eduardo; Santos, Adair R S

    2009-01-01

    Dicksonia sellowiana (Presl.) Hook is a native plant from the Central and South Americas that contain high levels of polyphenols, antioxidant compounds involved in protection against inflammation, cancer and cardiovascular risk. A phytomedicinal preparation obtained from aerial parts of D. sellowiana is currently under clinical evaluation in Brazil against asthma, and has been associated with several other beneficial effects. This study demonstrates that a hydroalcoholic extract obtained from D. sellowiana leaves (HEDS) fully relax, in a concentration-dependent manner, rat aortic rings precontracted with phenylephrine. Moreover, administration of HEDS (10, 20 and 40 mg/kg, i.v.) in anaesthetized rats resulted in a strong but reversible hypotension. Aortic relaxation induced by HEDS was abolished by endothelium removal, by incubation of the nitric oxide synthase inhibitor L-NAME, or the soluble guanylate cyclase inhibitor ODQ. In addition, this effect was partially inhibited by indomethacin (a cyclooxygenase inhibitor) and KT 5730 (a PKA inhibitor). The potassium channels blockade by either tetraethylammonium or charybdotoxin also resulted in a potent inhibition of HEDS-induced aortic relaxation, whereas apamine only slightly reduced it. In addition HEDS-induced relaxation was unchanged by 4-amynopiridine and glibenclamide. The selective muscarinic receptor antagonist atropine counteracted both aortic relaxation and blood pressure reduction generated by HEDS. Experiments using HPLC revealed the presence of high amounts of phenolic compounds in this extract. Taken together, our results reveal that the D. sellowiana possess substances with both in vivo and in vitro activities and that the vascular effect of HEDS involves activation of muscarinic receptors, stimulation of the nitric oxide pathway and opening of calcium-activated potassium channels.

  3. Slowing hot-carrier relaxation in graphene using a magnetic field

    NASA Astrophysics Data System (ADS)

    Plochocka, P.; Kossacki, P.; Golnik, A.; Kazimierczuk, T.; Berger, C.; de Heer, W. A.; Potemski, M.

    2009-12-01

    A degenerate pump-probe technique is used to investigate the nonequilibrium carrier dynamics in multilayer graphene. Two distinctly different dynamics of the carrier relaxation are observed. A fast relaxation (˜50fs) of the carriers after the initial effect of phase-space filling followed by a slower relaxation (˜4ps) due to thermalization. Both relaxation processes are less efficient when a magnetic field is applied at low temperatures which is attributed to the suppression of the electron-electron Auger scattering due to the nonequidistant Landau-level spacing of the Dirac fermions in graphene.

  4. Fast relaxations in foam

    NASA Astrophysics Data System (ADS)

    Krishan, Kapilanjan; Helal, Ahmed; Höhler, Reinhard; Cohen-Addad, Sylvie

    2010-07-01

    Aqueous foams present an anomalous macroscopic viscoelastic response at high frequency, previously shown to arise from collective relaxations in the disordered bubble packing. We demonstrate experimentally how these mesoscopic dynamics are in turn tuned by physico-chemical processes on the scale of the gas-liquid interfaces. Two specific local dissipation processes are identified, and we show how the rigidity of the interfaces selects the dominant one, depending on the choice of the surfactant.

  5. Endothelium-dependent relaxation induced by cathepsin G in porcine pulmonary arteries

    PubMed Central

    Glusa, Erika; Adam, Christine

    2001-01-01

    Serine proteinases elicit profound cellular effects in various tissues mediated by activation of proteinase-activated receptors (PAR). In the present study, we investigated the vascular effects of cathepsin G, a serine proteinase that is present in the azurophil granules of leukocytes and is known to activate several cells that express PARs. In prostaglandin F2α (3 μM)-precontracted rings from porcine pulmonary arteries with intact endothelium, cathepsin G caused concentration-dependent relaxant responses (pEC50=9.64±0.12). The endothelium-dependent relaxant effect of cathepsin G could also be demonstrated in porcine coronary arteries (pEC50=9.23±0.07). In pulmonary arteries the cathepsin G-induced relaxation was inhibited after blockade of nitric oxide synthesis by L-NAME (200 μM) and was absent in endothelium-denuded vessels. Bradykinin- and cathepsin G-induced relaxant effects were associated with a 5.7 fold and 2.4 fold increase in the concentration of cyclic GMP, respectively. Compared with thrombin and trypsin, which also produced an endothelium-dependent relaxation in pulmonary arteries, cathepsin G was 2.5 and four times more potent, respectively. Cathepsin G caused only small homologous desensitization. In cathepsin G-challenged vessels, thrombin was still able to elicit a relaxant effect. The effects of cathepsin G were blocked by soybean trypsin inhibitor (IC50=0.043 μg ml−1), suggesting that proteolytic activity is essential for induction of relaxation. Recombinant acetyl-eglin C proved to be a potent inhibitor (IC50=0.14 μg ml−1) of the cathepsin G effect, whereas neither indomethacin (3 μM) nor the thrombin inhibitor hirudin (5 ATU ml−1) elicited any inhibitory activity. Due to their polyanionic structure defibrotide (IC50=0.11 μg ml−1), heparin (IC50=0.48 μg ml−1) and suramin (IC50=1.85 μg ml−1) diminished significantly the relaxation in response to the basic protein cathepsin G. In conclusion, like

  6. Evidence for independent motional processes on the two interstitial sublattices of a layer-structured metal hydride: Hydrogen spin-lattice relaxation and motional narrowing in zirconium monohalide hemihydrides, ZrXH0.5

    NASA Astrophysics Data System (ADS)

    Hwang, T. Y.; Schoenberger, R. J.; Torgeson, D. R.; Barnes, R. G.

    1983-01-01

    We report the results of a proton-magnetic-resonance investigation of hydrogen location and motion in the hemihydrides ZrXH0.5 of the metallic layer-structured monohalides ZrX of zirconium (X=Br,Cl). Wide-line and pulsed NMR methods were employed to measure the temperature dependence of the linewidth and second moment and of the spin-lattice relaxation time in the laboratory and rotating frames. The results indicate that hydrogen forms an ordered structure on the tetrahedral (T) interstitial sublattice within the Zr metal bilayers, with some (small) random occupancy of octahedral (O) sites. Two stages of motional narrowing observed in the wide-line measurements and double minima found in the relaxation times are consistent with the occurrence of essentially independent hydrogen motional processes on the T and O interstitial sublattices. Hydrogen site occupancy probabilities, jump frequencies, activation energies for hydrogen diffusion, and conduction-electron contributions to the proton spin-lattice relaxation rate are deduced from the measurements.

  7. Spin relaxation 1/f noise in graphene

    NASA Astrophysics Data System (ADS)

    Omar, S.; Guimarães, M. H. D.; Kaverzin, A.; van Wees, B. J.; Vera-Marun, I. J.

    2017-02-01

    We report the first measurement of 1/f type noise associated with electronic spin transport, using single layer graphene as a prototypical material with a large and tunable Hooge parameter. We identify the presence of two contributions to the measured spin-dependent noise: contact polarization noise from the ferromagnetic electrodes, which can be filtered out using the cross-correlation method, and the noise originated from the spin relaxation processes. The noise magnitude for spin and charge transport differs by three orders of magnitude, implying different scattering mechanisms for the 1/f fluctuations in the charge and spin transport processes. A modulation of the spin-dependent noise magnitude by changing the spin relaxation length and time indicates that the spin-flip processes dominate the spin-dependent noise.

  8. Slow relaxation of cascade-induced defects in Fe

    DOE PAGES

    Béland, Laurent Karim; Osetsky, Yuri N.; Stoller, Roger E.; ...

    2015-02-17

    On-the-fly kinetic Monte Carlo (KMC) simulations are performed to investigate slow relaxation of non-equilibrium systems. Point defects induced by 25 keV cascades in α -Fe are shown to lead to a characteristic time-evolution, described by the replenish and relax mechanism. Then, we produce an atomistically-based assessment of models proposed to explain the slow structural relaxation by focusing on the aggregation of 50 vacancies and 25 self-interstital atoms (SIA) in 10-lattice-parameter α-Fe boxes, two processes that are closely related to cascade annealing and exhibit similar time signature. Four atomistic effects explain the timescales involved in the evolution: defect concentration heterogeneities, concentration-enhancedmore » mobility, cluster-size dependent bond energies and defect-induced pressure. In conclusion, these findings suggest that the two main classes of models to explain slow structural relaxation, the Eyring model and the Gibbs model, both play a role to limit the rate of relaxation of these simple point-defect systems.« less

  9. The development of the Be Active & Relax “Vitality in Practice” (VIP) project and design of an RCT to reduce the need for recovery in office employees

    PubMed Central

    2012-01-01

    Background There is strong evidence to suggest that multiple work-related health problems are preceded by a higher need for recovery. Physical activity and relaxation are helpful in decreasing the need for recovery. This article aims to describe (1) the development and (2) the design of the evaluation of a daily physical activity and relaxation intervention to reduce the need for recovery in office employees. Methods/Design The study population will consist of employees of a Dutch financial service provider. The intervention was systematically developed, based on parts of the Intervention Mapping (IM) protocol. Assessment of employees needs was done by combining results of face-to-face interviews, a questionnaire and focus group interviews. A set of theoretical methods and practical strategies were selected which resulted in an intervention program consisting of Group Motivational Interviewing (GMI) supported by a social media platform, and environmental modifications. The Be Active & Relax program will be evaluated in a modified 2 X 2 factorial design. The environmental modifications will be pre-stratified and GMI will be randomised on department level. The program will be evaluated, using 4 arms: (1) GMI and environmental modifications; (2) environmental modifications; (3) GMI; (4) no intervention (control group). Questionnaire data on the primary outcome (need for recovery) and secondary outcomes (daily physical activity, sedentary behaviour, relaxation/detachment, work- and health-related factors) will be gathered at baseline (T0), at 6 months (T1), and at 12 months (T2) follow-up. In addition, an economic and a process evaluation will be performed. Discussion Reducing the need for recovery is hypothesized to be beneficial for employees, employers and society. It is assumed that there will be a reduction in need for recovery after 6 months and 12 months in the intervention group, compared to the control group. Results are expected in 2013. Trial

  10. Dynamics in supercooled polyalcohols: Primary and secondary relaxation

    NASA Astrophysics Data System (ADS)

    Döß, A.; Paluch, M.; Sillescu, H.; Hinze, G.

    2002-10-01

    We have studied details of the molecular dynamics in a series of pure polyalcohols by means of dielectric spectroscopy and 2H nuclear magnetic resonance (NMR). From glycerol to threitol, xylitol and sorbitol a systematic change in the dynamics of the primary and secondary relaxation is found. With increasing molecular weight and fragility an increase in the width of the α-peak is observed. Details of the molecular reorientation process responsible for the α-relaxation were exploited by two-dimensional NMR experiments. It is found that in the same sequence of polyalcohols the appearance of the secondary relaxation changes gradually from a wing type scenario to a pronounced β-peak. From NMR experiments using selectively deuterated samples the molecular origin of the secondary relaxation could be elucidated in more detail.

  11. On relaxation nature of glass transition in amorphous materials

    NASA Astrophysics Data System (ADS)

    Sanditov, Damba S.; Ojovan, Michael I.

    2017-10-01

    A short review on relaxation theories of glass transition is presented. The main attention is paid to modern aspects of the glass transition equation qτg = C, suggested by Bartenev in 1951 (q - cooling rate of the melt, τg - structural relaxation time at the glass transition temperature Tg). This equation represents a criterion of structural relaxation at transition from liquid to glass at T = Tg (analogous to the condition of mechanical relaxation ωτ = 1, where the maximum of mechanical loss is observed). The empirical parameter С = δTg has the meaning of temperature range δTg that characterizes the liquid-glass transition. Different approaches of δTg calculation are reviewed. In the framework of the model of delocalized atoms a modified kinetic criterion of glass transition is proposed (q/Tg)τg = Cg, where Cg ≅ 7·10-3 is a practically universal dimensionless constant. It depends on fraction of fluctuation volume fg, which is frozen at the glass transition temperature Cg = fg/ln(1/fg). The value of fg is approximately constant fg ≅ 0.025. At Tg the process of atom delocalization, i.e. its displacement from the equilibrium position, is frozen. In silicate glasses atom delocalization is reduced to critical displacement of bridge oxygen atom in Si-O-Si bridge necessary to switch a valence bond according to Muller and Nemilov. An equation is derived for the temperature dependence of viscosity of glass-forming liquids in the wide temperature range, including the liquid-glass transition and the region of higher temperatures. Notion of (bridge) atom delocalization is developed, which is related to necessity of local low activation deformation of structural network for realization of elementary act of viscous flow - activated switch of a valence (bridge) bond. Without atom delocalization (;trigger mechanism;) a switch of the valence bond is impossible and, consequently, the viscous flow. Thus the freezing of atom delocalization process at low temperatures

  12. Time Out from Tension: Teaching Young Children How To Relax. Teaching Strategies.

    ERIC Educational Resources Information Center

    Scully, Patricia

    2003-01-01

    Discusses how using relaxation and stress reduction activities with individual preschool and elementary school-age children during difficult periods can help them regain control, and how integrating relaxation techniques into everyday activities helps to establish positive behavior patterns to support healthy living. Presents breathing activities…

  13. Biosignal-based relaxation evaluation of head-care robot.

    PubMed

    Ando, Takeshi; Takeda, Maki; Maruyama, Tomomi; Susuki, Yuto; Hirose, Toshinori; Fujioka, Soichiro; Mizuno, Osamu; Yamada, Kenji; Ohno, Yuko; Yukio, Honda

    2013-01-01

    Such popular head care procedures as shampooing and scalp massages provide physical and mental relaxation. However, they place a big burden such as chapped hands on beauticians and other practitioners. Based on our robot hand technology, we have been developing a head care robot. In this paper, we quantitatively evaluated its relaxation effect using the following biosignals: accelerated plethymography (SDNN, HF/TP, LF/HF), heart rate (HR), blood pressure, salivary amylase (sAA) and peripheral skin temperature (PST). We compared the relaxation of our developed head care robot with the head care provided by nurses. In our experimental result with 54 subjects, the activity of the autonomic nerve system changed before and after head care procedures performed by both a human nurse and our proposed robot. Especially, in the proposed robot, we confirmed significant differences with the procedure performed by our proposed head care robot in five indexes: HF/TP, LF/HF, HR, sAA, and PST. The activity of the sympathetic nerve system decreased, because the values of its indexes significantly decreased: LF/HF, HR, and sAA. On the other hand, the activity of the parasympathetic nerve system increased, because of the increase of its indexes value: HF/TP and PST. Our developed head care robot provided satisfactory relaxation in just five minutes of use.

  14. CHD3 and CHD4 recruitment and chromatin remodeling activity at DNA breaks is promoted by early poly(ADP-ribose)-dependent chromatin relaxation.

    PubMed

    Smith, Rebecca; Sellou, Hafida; Chapuis, Catherine; Huet, Sébastien; Timinszky, Gyula

    2018-05-04

    One of the first events to occur upon DNA damage is the local opening of the compact chromatin architecture, facilitating access of repair proteins to DNA lesions. This early relaxation is triggered by poly(ADP-ribosyl)ation by PARP1 in addition to ATP-dependent chromatin remodeling. CHD4 recruits to DNA breaks in a PAR-dependent manner, although it lacks any recognizable PAR-binding domain, and has the ability to relax chromatin structure. However, its role in chromatin relaxation at the site of DNA damage has not been explored. Using a live cell fluorescence three-hybrid assay, we demonstrate that the recruitment of CHD4 to DNA damage, while being poly(ADP-ribosyl)ation-dependent, is not through binding poly(ADP-ribose). Additionally, we show that CHD3 is recruited to DNA breaks in the same manner as CHD4 and that both CHD3 and CHD4 play active roles in chromatin remodeling at DNA breaks. Together, our findings reveal a two-step mechanism for DNA damage induced chromatin relaxation in which PARP1 and the PAR-binding remodeler activities of Alc1/CHD1L induce an initial chromatin relaxation phase that promotes the subsequent recruitment of CHD3 and CHD4 via binding to DNA for further chromatin remodeling at DNA breaks.

  15. Effects of progressive relaxation and classical music on measurements of attention, relaxation, and stress responses.

    PubMed

    Scheufele, P M

    2000-04-01

    The present experiment examined relaxation using different experimental conditions to test whether the effects of individual elements of relaxation could be measured, whether specific effects were revealed, or whether relaxation resulted from a generalized "relaxation response." Sixty-seven normal, male volunteers were exposed to a stress manipulation and then to one of two relaxation (Progressive Relaxation, Music) or control (Attention Control, Silence) conditions. Measurements of attention, relaxation, and stress responses were obtained during each phase of the experiment. All four groups exhibited similar performance on behavioral measures of attention that suggested a reduction in physiological arousal following their relaxation or control condition, as well as a decreased heart rate. Progressive Relaxation, however, resulted in the greatest effects on behavioral and self-report measures of relaxation, suggesting that cognitive cues provided by stress management techniques contribute to relaxation.

  16. Molecular dynamics and vibrational relaxations in liquid nitromethane.

    NASA Astrophysics Data System (ADS)

    Grazia Giorgini, Maria; Mariani, Leonardo; Morresi, Assunta; Paliani, Giulio; Cataliotti, Rosario Sergio

    The vibrational relaxation processes of totally symmetric v1 (CH stretching and v5 (NO2 bending) motions of liquid nitromethane have been studied as a function of temperature and concentration in CD3NO2 and CCl4 solutions. The experimental vibrational correlation functions of these two modes have shown that relaxation is collision assisted and suitable for modelling with the stochastic Kubo-Rothschild theory.

  17. Mechanism of resveratrol-induced relaxation of the guinea pig fundus.

    PubMed

    Tsai, Ching-Chung; Tey, Shu-Leei; Lee, Ming-Che; Liu, Ching-Wen; Su, Yu-Tsun; Huang, Shih-Che

    2018-04-01

    Resveratrol is a polyphenolic compound that can be isolated from plants and also is a constituent of red wine. Resveratrol induces relaxation of vascular smooth muscle and may prevent cardiovascular diseases. Impaired gastric accommodation plays an important role in functional dyspepsia and fundic relaxation and is a therapeutic target of functional dyspepsia. Although drugs for fundic relaxation have been developed, these types of drugs are still rare. The purpose of this study was to investigate the relaxant effects of resveratrol in the guinea pig fundus. We studied the relaxant effects of resveratrol in the guinea pig fundus. In addition, we investigated the mechanism of resveratrol-induced relaxation on the guinea pig fundus by using tetraethylammonium (a non-selective potassium channel blocker), apamine (a selective inhibitor of the small conductance calcium-activated potassium channel), iberiotoxin (an inhibitor of large conductance calcium-activated potassium channels), glibenclamide (an ATP-sensitive potassium channel blocker), KT 5720 (a cAMP-dependent protein kinase A inhibitor), KT 5823 (a cGMP-dependent protein kinase G inhibitor), NG-nitro-L-arginine (a competitive inhibitor of nitric oxide synthase), tetrodotoxin (a selective neuronal Na + channel blocker), ω-conotoxin GVIA (a selective neuronal Ca 2+ channel blocker) and G-15 (a G-protein coupled estrogen receptor antagonist). The results of this study showed that resveratrol has potent and dose-dependent relaxant effects on the guinea pig fundic muscle. In addition, the results showed that resveratrol-induced relaxation of the guinea pig fundus occurs through nitric oxide and ATP-sensitive potassium channels. This study provides the first evidence concerning the relaxant effects of resveratrol in the guinea pig fundic muscle strips. Furthermore, resveratrol may be a potential drug to relieve gastrointestinal dyspepsia. Copyright © 2018 Elsevier GmbH. All rights reserved.

  18. Control relaxation via dephasing: A quantum-state-diffusion study

    NASA Astrophysics Data System (ADS)

    Jing, Jun; Yu, Ting; Lam, Chi-Hang; You, J. Q.; Wu, Lian-Ao

    2018-01-01

    Dynamical decoupling as a quantum control strategy aims at suppressing quantum decoherence adopting the popular philosophy that the disorder in the unitary evolution of the open quantum system caused by environmental noises should be neutralized by a sequence of ordered or well-designed external operations acting on the system. This work studies the solution of quantum-state-diffusion equations by mixing two channels of environmental noises, i.e., relaxation (dissipation) and dephasing. It is interesting to find in two-level and three-level atomic systems that a non-Markovian relaxation or dissipation process can be suppressed by a Markovian dephasing noise. The discovery results in an anomalous control strategy by coordinating relaxation and dephasing processes. Our approach opens an avenue of noise control strategy with no artificial manipulation over the open quantum systems.

  19. Vibrational relaxation of hot carriers in C60 molecule

    NASA Astrophysics Data System (ADS)

    Madjet, Mohamed; Chakraborty, Himadri

    2017-04-01

    Electron-phonon coupling in molecular systems is at the heart of several important physical phenomena, including the mobility of carriers in organic electronic devices. Following the optical absorption, the vibrational relaxation of excited (hot) electrons and holes to the fullerene band-edges driven by electron-phonon coupling, known as the hot carrier thermalization process, is of particular fundamental interest. Using the non-adiabatic molecular dynamical methodology (PYXAID + Quantum Espresso) based on density functional approach, we have performed a simulation of vibrionic relaxations of hot carriers in C60. Time-dependent population decays and transfers in the femtosecond scale from various excited states to the states at the band-edge are calculated to study the details of this relaxation process. This work was supported by the U.S. National Science Foundation.

  20. Ultrafast energy relaxation in single light-harvesting complexes.

    PubMed

    Malý, Pavel; Gruber, J Michael; Cogdell, Richard J; Mančal, Tomáš; van Grondelle, Rienk

    2016-03-15

    Energy relaxation in light-harvesting complexes has been extensively studied by various ultrafast spectroscopic techniques, the fastest processes being in the sub-100-fs range. At the same time, much slower dynamics have been observed in individual complexes by single-molecule fluorescence spectroscopy (SMS). In this work, we use a pump-probe-type SMS technique to observe the ultrafast energy relaxation in single light-harvesting complexes LH2 of purple bacteria. After excitation at 800 nm, the measured relaxation time distribution of multiple complexes has a peak at 95 fs and is asymmetric, with a tail at slower relaxation times. When tuning the excitation wavelength, the distribution changes in both its shape and position. The observed behavior agrees with what is to be expected from the LH2 excited states structure. As we show by a Redfield theory calculation of the relaxation times, the distribution shape corresponds to the expected effect of Gaussian disorder of the pigment transition energies. By repeatedly measuring few individual complexes for minutes, we find that complexes sample the relaxation time distribution on a timescale of seconds. Furthermore, by comparing the distribution from a single long-lived complex with the whole ensemble, we demonstrate that, regarding the relaxation times, the ensemble can be considered ergodic. Our findings thus agree with the commonly used notion of an ensemble of identical LH2 complexes experiencing slow random fluctuations.

  1. Rotation and scale change invariant point pattern relaxation matching by the Hopfield neural network

    NASA Astrophysics Data System (ADS)

    Sang, Nong; Zhang, Tianxu

    1997-12-01

    Relaxation matching is one of the most relevant methods for image matching. The original relaxation matching technique using point patterns is sensitive to rotations and scale changes. We improve the original point pattern relaxation matching technique to be invariant to rotations and scale changes. A method that makes the Hopfield neural network perform this matching process is discussed. An advantage of this is that the relaxation matching process can be performed in real time with the neural network's massively parallel capability to process information. Experimental results with large simulated images demonstrate the effectiveness and feasibility of the method to perform point patten relaxation matching invariant to rotations and scale changes and the method to perform this matching by the Hopfield neural network. In addition, we show that the method presented can be tolerant to small random error.

  2. Relaxation versus adiabatic quantum steady-state preparation

    NASA Astrophysics Data System (ADS)

    Venuti, Lorenzo Campos; Albash, Tameem; Marvian, Milad; Lidar, Daniel; Zanardi, Paolo

    2017-04-01

    Adiabatic preparation of the ground states of many-body Hamiltonians in the closed-system limit is at the heart of adiabatic quantum computation, but in reality systems are always open. This motivates a natural comparison between, on the one hand, adiabatic preparation of steady states of Lindbladian generators and, on the other hand, relaxation towards the same steady states subject to the final Lindbladian of the adiabatic process. In this work we thus adopt the perspective that the goal is the most efficient possible preparation of such steady states, rather than ground states. Using known rigorous bounds for the open-system adiabatic theorem and for mixing times, we are then led to a disturbing conclusion that at first appears to doom efforts to build physical quantum annealers: relaxation seems to always converge faster than adiabatic preparation. However, by carefully estimating the adiabatic preparation time for Lindbladians describing thermalization in the low-temperature limit, we show that there is, after all, room for an adiabatic speedup over relaxation. To test the analytically derived bounds for the adiabatic preparation time and the relaxation time, we numerically study three models: a dissipative quasifree fermionic chain, a single qubit coupled to a thermal bath, and the "spike" problem of n qubits coupled to a thermal bath. Via these models we find that the answer to the "which wins" question depends for each model on the temperature and the system-bath coupling strength. In the case of the "spike" problem we find that relaxation during the adiabatic evolution plays an important role in ensuring a speedup over the final-time relaxation procedure. Thus, relaxation-assisted adiabatic preparation can be more efficient than both pure adiabatic evolution and pure relaxation.

  3. Effect of pressure on β relaxation in La60Ni15Al25 metallic glass

    NASA Astrophysics Data System (ADS)

    Xu, H. Y.; Sheng, H. W.; Li, M. Z.

    2018-03-01

    The effect of pressure on β relaxation in La60Ni15Al25 metallic glass (MG) was investigated by activation-relaxation technique in combination with molecular dynamics simulation. It is found that the β relaxation behavior and the potential energy landscape are significantly modulated by pressure. With increasing pressure, the atomic motion in β relaxation in La60Ni15Al25 MG changes from hopping-dominated to the string-like-dominated motion with increased activation energy. Moreover, while the hopping motion is gradually suppressed as pressure is increased, the cooperative rearrangements with more atoms involved but very low activation energies are significantly enhanced by pressure. It is further found that the "subbasins" in the potential energy landscape in La60Ni15Al25 MG become deeper and steeper with increasing pressure, leading to the increase of activation energy. Meanwhile, some neighboring "subbasins" merge under pressure accompanied by the disappearance of energy barriers in-between, leading to events with very low activation energies in the β relaxation. The atomic structure analysis reveals that the transformation of atomic motions in β relaxation in La60Ni15Al25 MG under pressure is strongly correlated with the decrease of pentagon-rich atomic clusters and the increase of clusters with fewer pentagons. These findings provide a new understanding of the β relaxation mechanism and some clues for tuning β relaxation in MGs.

  4. Relation between Direct Observation of Relaxation and Self-Reported Mindfulness and Relaxation States

    ERIC Educational Resources Information Center

    Hites, Lacey S.; Lundervold, Duane A.

    2013-01-01

    Forty-four individuals, 18-47 (MN 21.8, SD 5.63) years of age, took part in a study examining the magnitude and direction of the relationship between self-report and direct observation measures of relaxation and mindfulness. The Behavioral Relaxation Scale (BRS), a valid direct observation measure of relaxation, was used to assess relaxed behavior…

  5. Nuclear magnetic relaxation induced by exchange-mediated orientational randomization: longitudinal relaxation dispersion for a dipole-coupled spin-1/2 pair.

    PubMed

    Chang, Zhiwei; Halle, Bertil

    2013-10-14

    In complex biological or colloidal samples, magnetic relaxation dispersion (MRD) experiments using the field-cycling technique can characterize molecular motions on time scales ranging from nanoseconds to microseconds, provided that a rigorous theory of nuclear spin relaxation is available. In gels, cross-linked proteins, and biological tissues, where an immobilized macromolecular component coexists with a mobile solvent phase, nuclear spins residing in solvent (or cosolvent) species relax predominantly via exchange-mediated orientational randomization (EMOR) of anisotropic nuclear (electric quadrupole or magnetic dipole) couplings. The physical or chemical exchange processes that dominate the MRD typically occur on a time scale of microseconds or longer, where the conventional perturbation theory of spin relaxation breaks down. There is thus a need for a more general relaxation theory. Such a theory, based on the stochastic Liouville equation (SLE) for the EMOR mechanism, is available for a single quadrupolar spin I = 1. Here, we present the corresponding theory for a dipole-coupled spin-1/2 pair. To our knowledge, this is the first treatment of dipolar MRD outside the motional-narrowing regime. Based on an analytical solution of the spatial part of the SLE, we show how the integral longitudinal relaxation rate can be computed efficiently. Both like and unlike spins, with selective or non-selective excitation, are treated. For the experimentally important dilute regime, where only a small fraction of the spin pairs are immobilized, we obtain simple analytical expressions for the auto-relaxation and cross-relaxation rates which generalize the well-known Solomon equations. These generalized results will be useful in biophysical studies, e.g., of intermittent protein dynamics. In addition, they represent a first step towards a rigorous theory of water (1)H relaxation in biological tissues, which is a prerequisite for unravelling the molecular basis of soft

  6. Self-Active Relaxation Therapy (SART) and Self-Regulation: A Comprehensive Review and Comparison of the Japanese Body Movement Approach

    PubMed Central

    Kabir, Russell S.; Haramaki, Yutaka; Ki, Hyeyoung; Ohno, Hiroyuki

    2018-01-01

    Relaxation programs are known for their versatility, cost-effectiveness, and ability to help people obtain skills to regulate their mental states and promote and maintain health. Self-Active Relaxation Therapy (SART) is a body-oriented approach to psychological rehabilitation that grew out of the suite of movement tasks developed in the Japanese psychotherapy known as Dohsa-hou, or the body movement method. The program for SART is designed to stretch, twist, and release areas of the upper, lower, and whole body through a set of movements which are guided by the practitioner and performed “self-actively” by the client to empower them to learn to recognize points of tension in the body and act on their own to achieve a relaxed state. Numerous studies have showed that SART is associated with reduced negative mood states and enhanced body awareness. A short version of SART has been investigated as a psychological support salon activity for the elderly, mothers raising children, special needs students, and children adapting to school. The full program has also been applied in clinical settings to address or supplement treatments for psychological and developmental conditions, and longitudinally employed in community contexts to assist residents facing long-term disaster recovery circumstances in Japan. This paper reviews the research and applications of SART as a bodymind approach by critically examining evidence and research gaps for future studies, comparing it with techniques established in the literature, and positing a self-regulatory framework for SART as a tool to become aware of bodily states, regulate mood, and manage stress through the deliberate practice of relaxation. PMID:29472851

  7. Ultrafast Physics Behind the Nonradiative Relaxation Process of Chromium Ions in Forsterite Crystals.

    NASA Astrophysics Data System (ADS)

    Demos, Stavros Gregorios

    The nonradiative relaxation following photoexcitation has been studied in Cr^{4+} -doped forsterite (Mg_2SiO _4) using picosecond laser excitation and ultrasensitive photon counting detection. The experimental techniques utilized were time resolved antiStokes Raman scattering and up-converted hot and ordinary luminescence. The up-converted hot luminescence technique allowed the investigation of the upper state nonradiative relaxation of the excited state manifold of Cr^{4+ }-doped forsterite. The excitation involves the absorption of two photons per photoexcited ion in a two-step absorption. Discrete peaks are observed in the hot up-converted luminescence spectrum and are attributed to the population of nonequilibrium vibronic levels during the deexcitation of the ions by phonon emission. This work reveals that the phonon modes participating in the initial steps of the nonradiative relaxation of the photoexcited ions have energies 218 +/- 20, 325 +/- 20, 365 +/- 20 and 513 +/- 12 cm^ {-1}. The shape of the luminescence spectral envelope suggests two electronic bottlenecks at ~2.1 and ~2.45 eV associated with slower rates of vibrational relaxation at different parts of the excited state manifold. Time resolved measurements indicated that the average time for phonon emission is of the order of hundreds of fs. Information on the nonequilibrium phonon dynamics of the 225, 335 and 370 cm^{-1} modes of forsterite has been obtained using time resolved Raman scattering. Laser pulses of 450 fs in duration and 590 nm in wavelength were used to excite the Cr ions 2.1 eV above the ground state. The probe pulses (obtained from the same laser) are monitoring the nonequilibrium phonon population through the intensity of the antiStokes Raman lines at various pump-probe delay times. Experiments were performed at room and liquid nitrogen temperatures. The observed nonequilibrium phonon populations are associated with the overall complex nonradiative decay following the excitation of

  8. Ring flips revisited: (13)C relaxation dispersion measurements of aromatic side chain dynamics and activation barriers in basic pancreatic trypsin inhibitor.

    PubMed

    Weininger, Ulrich; Modig, Kristofer; Akke, Mikael

    2014-07-22

    Intramolecular motions of proteins are critical for biological function. Transient structural fluctuations underlie a wide range of processes, including enzyme catalysis, ligand binding to buried sites, and generic protein motions, such as 180° rotation of aromatic side chains in the protein interior, but remain poorly understood. Understanding the dynamics and molecular nature of concerted motions requires characterization of their rates and energy barriers. Here we use recently developed (13)C transverse relaxation dispersion methods to improve our current understanding of aromatic ring flips in basic pancreatic trypsin inhibitor (BPTI). We validate these methods by benchmarking ring-flip rates against the three previously characterized cases in BPTI, namely, Y23, Y35, and F45. Further, we measure conformational exchange for one additional aromatic ring, F22, which can be interpreted in terms of a flip rate of 666 s(-1) at 5 °C. Upon inclusion of our previously reported result that Y21 also flips slowly [Weininger, U., et al. (2013) J. Phys. Chem. B 117, 9241-9247], the (13)C relaxation dispersion experiments thus reveal relatively slow ring-flip rates for five of eight aromatic residues in BPTI. These results are in contrast with previous reports, which have estimated that all rings, except Y23, Y35, and F45, flip with a high rate at ambient temperature. The (13)C relaxation dispersion data result in an updated rank order of ring-flip rates in BPTI, which agrees considerably better with that estimated from a recent 1 ms molecular dynamics trajectory than do previously published NMR data. However, significant quantitative differences remain between experiment and simulation, in that the latter yields flip rates that are in many cases too fast by 1-2 orders of magnitude. By measuring flip rates across a temperature range of 5-65 °C, we determined the activation barriers of ring flips for Y23, Y35, and F45. Y23 and F45 have identical activation parameters

  9. Visualization of microbiological processes underlying stress relaxation in Pseudomonas aeruginosa biofilms.

    PubMed

    Peterson, Brandon W; Busscher, Henk J; Sharma, Prashant K; van der Mei, Henny C

    2014-06-01

    Bacterial biofilms relieve themselves from external stresses through internal rearrangement, as mathematically modeled in many studies, but never microscopically visualized for their underlying microbiological processes. The aim of this study was to visualize rearrangement processes occurring in mechanically deformed biofilms using confocal-laser-scanning-microscopy after SYTO9 (green-fluorescent) and calcofluor-white (blue-fluorescent) staining to visualize bacteria and extracellular-polymeric matrix substances, respectively. We apply 20% uniaxial deformation to Pseudomonas aeruginosa biofilms and fix deformed biofilms prior to staining, after allowing different time-periods for relaxation. Two isogenic P. aeruginosa strains with different abilities to produce extracellular polymeric substances (EPS) were used. By confocal-laser-scanning-microscopy all biofilms showed intensity distributions for fluorescence from which rearrangement of EPS and bacteria in deformed biofilms were derived. For the P. aeruginosa strain producing EPS, bacteria could not find new, stable positions within 100 s after deformation, while EPS moved toward deeper layers within 20 s. Bacterial rearrangement was not seen in P. aeruginosa biofilms deficient in production of EPS. Thus, EPS is required to stimulate bacterial rearrangement in mechanically deformed biofilms within the time-scale of our experiments, and the mere presence of water is insufficient to induce bacterial movement, likely due to its looser association with the bacteria.

  10. Rounded stretched exponential for time relaxation functions.

    PubMed

    Powles, J G; Heyes, D M; Rickayzen, G; Evans, W A B

    2009-12-07

    A rounded stretched exponential function is introduced, C(t)=exp{(tau(0)/tau(E))(beta)[1-(1+(t/tau(0))(2))(beta/2)]}, where t is time, and tau(0) and tau(E) are two relaxation times. This expression can be used to represent the relaxation function of many real dynamical processes, as at long times, t>tau(0), the function converges to a stretched exponential with normalizing relaxation time, tau(E), yet its expansion is even or symmetric in time, which is a statistical mechanical requirement. This expression fits well the shear stress relaxation function for model soft soft-sphere fluids near coexistence, with tau(E)relaxation (both the modulus and viscosity forms). It is shown that both the dielectric spectra and dynamic shear modulus imaginary parts approach the real axis with a slope equal to 0 at high frequency, whereas the dynamic viscosity has an infinite slope in the same limit. This indicates that inertial effects at high frequency are best discerned in the modulus rather than the viscosity Cole-Cole plot. As a consequence of the even expansion in time of the shear stress relaxation function, the value of the storage modulus derived from it at very high frequency exceeds that in the infinite frequency limit (i.e., G(infinity)).

  11. Spin-lattice relaxation of individual solid-state spins

    NASA Astrophysics Data System (ADS)

    Norambuena, A.; Muñoz, E.; Dinani, H. T.; Jarmola, A.; Maletinsky, P.; Budker, D.; Maze, J. R.

    2018-03-01

    Understanding the effect of vibrations on the relaxation process of individual spins is crucial for implementing nanosystems for quantum information and quantum metrology applications. In this work, we present a theoretical microscopic model to describe the spin-lattice relaxation of individual electronic spins associated to negatively charged nitrogen-vacancy centers in diamond, although our results can be extended to other spin-boson systems. Starting from a general spin-lattice interaction Hamiltonian, we provide a detailed description and solution of the quantum master equation of an electronic spin-one system coupled to a phononic bath in thermal equilibrium. Special attention is given to the dynamics of one-phonon processes below 1 K where our results agree with recent experimental findings and analytically describe the temperature and magnetic-field scaling. At higher temperatures, linear and second-order terms in the interaction Hamiltonian are considered and the temperature scaling is discussed for acoustic and quasilocalized phonons when appropriate. Our results, in addition to confirming a T5 temperature dependence of the longitudinal relaxation rate at higher temperatures, in agreement with experimental observations, provide a theoretical background for modeling the spin-lattice relaxation at a wide range of temperatures where different temperature scalings might be expected.

  12. Stress Relaxation in Epoxy Thermosets via a Ferrocene-Based Amine Curing Agent

    DOE PAGES

    Jones, Brad H.; Wheeler, David R.; Black, Hayden T.; ...

    2017-06-29

    Physical stress relaxation in rubbery, thermoset polymers is limited by cross-links, which impede segmental motion and restrict relaxation to network defects, such as chain ends. In parallel, the cure shrinkage associated with thermoset polymerizations leads to the development of internal residual stress that cannot be effectively relaxed. Recent strategies have reduced or eliminated such cure stress in thermoset polymers largely by exploiting chemical relaxation processes, wherein temporary cross-links or otherwise transient bonds are incorporated into the polymer network. In this paper, we explore an alternative approach, wherein physical relaxation is enhanced by the incorporation of organometallic sandwich moieties into themore » backbone of the polymer network. A standard epoxy resin is cured with a diamine derivative of ferrocene and compared to conventional diamine curing agents. The ferrocene-based thermoset is clearly distinguished from the conventional materials by reduced cure stress with increasing cure temperature as well as unique stress relaxation behavior above its glass transition in the fully cured state. The relaxation experiments exhibit features characteristic of a physical relaxation process. Furthermore, the cure stress is observed to vanish precipitously upon deliberate introduction of network defects through an increasing imbalance of epoxy and amine functional groups. Finally, we postulate that these beneficial properties arise from fluxional motion of the cyclopentadienyl ligands on the polymer backbone.« less

  13. Stress Relaxation in Epoxy Thermosets via a Ferrocene-Based Amine Curing Agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Brad H.; Wheeler, David R.; Black, Hayden T.

    Physical stress relaxation in rubbery, thermoset polymers is limited by cross-links, which impede segmental motion and restrict relaxation to network defects, such as chain ends. In parallel, the cure shrinkage associated with thermoset polymerizations leads to the development of internal residual stress that cannot be effectively relaxed. Recent strategies have reduced or eliminated such cure stress in thermoset polymers largely by exploiting chemical relaxation processes, wherein temporary cross-links or otherwise transient bonds are incorporated into the polymer network. In this paper, we explore an alternative approach, wherein physical relaxation is enhanced by the incorporation of organometallic sandwich moieties into themore » backbone of the polymer network. A standard epoxy resin is cured with a diamine derivative of ferrocene and compared to conventional diamine curing agents. The ferrocene-based thermoset is clearly distinguished from the conventional materials by reduced cure stress with increasing cure temperature as well as unique stress relaxation behavior above its glass transition in the fully cured state. The relaxation experiments exhibit features characteristic of a physical relaxation process. Furthermore, the cure stress is observed to vanish precipitously upon deliberate introduction of network defects through an increasing imbalance of epoxy and amine functional groups. Finally, we postulate that these beneficial properties arise from fluxional motion of the cyclopentadienyl ligands on the polymer backbone.« less

  14. Thermally induced magnetic relaxation in square artificial spin ice.

    PubMed

    Andersson, M S; Pappas, S D; Stopfel, H; Östman, E; Stein, A; Nordblad, P; Mathieu, R; Hjörvarsson, B; Kapaklis, V

    2016-11-24

    The properties of natural and artificial assemblies of interacting elements, ranging from Quarks to Galaxies, are at the heart of Physics. The collective response and dynamics of such assemblies are dictated by the intrinsic dynamical properties of the building blocks, the nature of their interactions and topological constraints. Here we report on the relaxation dynamics of the magnetization of artificial assemblies of mesoscopic spins. In our model nano-magnetic system - square artificial spin ice - we are able to control the geometrical arrangement and interaction strength between the magnetically interacting building blocks by means of nano-lithography. Using time resolved magnetometry we show that the relaxation process can be described using the Kohlrausch law and that the extracted temperature dependent relaxation times of the assemblies follow the Vogel-Fulcher law. The results provide insight into the relaxation dynamics of mesoscopic nano-magnetic model systems, with adjustable energy and time scales, and demonstrates that these can serve as an ideal playground for the studies of collective dynamics and relaxations.

  15. Thermally induced magnetic relaxation in square artificial spin ice

    NASA Astrophysics Data System (ADS)

    Andersson, M. S.; Pappas, S. D.; Stopfel, H.; Östman, E.; Stein, A.; Nordblad, P.; Mathieu, R.; Hjörvarsson, B.; Kapaklis, V.

    2016-11-01

    The properties of natural and artificial assemblies of interacting elements, ranging from Quarks to Galaxies, are at the heart of Physics. The collective response and dynamics of such assemblies are dictated by the intrinsic dynamical properties of the building blocks, the nature of their interactions and topological constraints. Here we report on the relaxation dynamics of the magnetization of artificial assemblies of mesoscopic spins. In our model nano-magnetic system - square artificial spin ice - we are able to control the geometrical arrangement and interaction strength between the magnetically interacting building blocks by means of nano-lithography. Using time resolved magnetometry we show that the relaxation process can be described using the Kohlrausch law and that the extracted temperature dependent relaxation times of the assemblies follow the Vogel-Fulcher law. The results provide insight into the relaxation dynamics of mesoscopic nano-magnetic model systems, with adjustable energy and time scales, and demonstrates that these can serve as an ideal playground for the studies of collective dynamics and relaxations.

  16. Processes of Molecular Relaxation in Binary Crystalline Systems KNO3-KClO4, KNO3-KNO2, and K2CO3-K2SO4

    NASA Astrophysics Data System (ADS)

    Aliev, A. R.; Akhmedov, I. R.; Kakagasanov, M. G.; Aliev, Z. A.; Gafurov, M. M.; Rabadanov, K. Sh.; Amirov, A. M.

    2018-03-01

    The processes of molecular relaxation in binary crystalline systems KNO3-KClO4, KNO3-KNO2, and K2CO3-K2SO4 are studied via differential thermal analysis and Raman spectroscopy. It is found that the relaxation time of the vibrations ν1( A) of anions NO- 3 and CO2- 3 in systems KNO3-KClO4, KNO3-KNO2, and K2CO3-K2SO4 is less than that in KNO3 and K2CO3, respectively. It is shown that the increased rate of relaxation is explained by an additional relaxation mechanism presented in the system. This mechanism is associated with the excitation of vibrations of anions ClO- 4, NO- 2, and SO2- 4 and the lattice phonons that emerge. It is found that this relaxation mechanism requires correspondence of the frequency difference of these vibrations to the region of sufficiently high density of states of the phonon spectrum.

  17. Common and Dissociable Neural Activity After Mindfulness-Based Stress Reduction and Relaxation Response Programs.

    PubMed

    Sevinc, Gunes; Hölzel, Britta K; Hashmi, Javeria; Greenberg, Jonathan; McCallister, Adrienne; Treadway, Michael; Schneider, Marissa L; Dusek, Jeffery A; Carmody, James; Lazar, Sara W

    2018-06-01

    We investigated common and dissociable neural and psychological correlates of two widely used meditation-based stress reduction programs. Participants were randomized to the Relaxation Response (RR; n = 18; 56% female) or the Mindfulness-Based Stress Reduction (MBSR; n = 16; 56% female) programs. Both programs use a "bodyscan" meditation; however, the RR program explicitly emphasizes physical relaxation during this practice, whereas the MBSR program emphasizes mindful awareness with no explicit relaxation instructions. After the programs, neural activity during the respective meditation was investigated using functional magnetic resonance imaging. Both programs were associated with reduced stress (for RR, from 14.1 ± 6.6 to 11.3 ± 5.5 [Cohen's d = 0.50; for MBSR, from 17.7 ± 5.7 to 11.9 ± 5.0 [Cohen's d = 1.02]). Conjunction analyses revealed functional coupling between ventromedial prefrontal regions and supplementary motor areas (p < .001). The disjunction analysis indicated that the RR bodyscan was associated with stronger functional connectivity of the right inferior frontal gyrus-an important hub of intentional inhibition and control-with supplementary motor areas (p < .001, family-wise error [FWE] rate corrected). The MBSR program was uniquely associated with improvements in self-compassion and rumination, and the within-group analysis of MBSR bodyscan revealed significant functional connectivity of the right anterior insula-an important hub of sensory awareness and salience-with pregenual anterior cingulate during bodyscan meditation compared with rest (p = .03, FWE corrected). The bodyscan exercises in each program were associated with both overlapping and differential functional coupling patterns, which were consistent with each program's theoretical foundation. These results may have implications for the differential effects of these programs for the treatment of diverse conditions.

  18. Pressure relaxation and diffusion of vacancies in rapidly grown helium crystals

    NASA Astrophysics Data System (ADS)

    Birchenko, A. P.; Mikhin, N. P.; Rudavskii, E. Ya.; Smirnov, S. N.; Fysun, Ya. Yu.

    2018-04-01

    An experimental study of the features of pressure relaxation in rapidly grown crystals of a diluted solid solution 3He-4He, at temperatures above 1.3 K, was performed. A cylindrical cell with capacitive pressure sensors at the ends was used for measurements. It was found that, when the helium crystals were grown at cooling rates ≳4 mK/s, the difference in pressure ΔP registered by the sensors at 1.3 K reached 2.4 bars. The ΔP value decreased with subsequent stepwise increase in temperature, but reached zero only after thorough annealing at the premelting temperatures. The kinetics of pressure changes at the sample ends at different temperatures was recorded. The results obtained were interpreted within the framework of the structural relaxation model based on the monovacancy diffusion mechanism. The proposed model made it possible to explain the dependence of ΔP on the time and temperature recorded in the experiment, as well as to determine the activation energy of the structural relaxation process and the diffusion coefficient of vacancies. The details of the vacancy model are described in the Appendix.

  19. Relaxation processes and conduction mechanism in bismuth ferrite lead titanate composites

    NASA Astrophysics Data System (ADS)

    Sahu, Truptimayee; Behera, Banarji

    2018-02-01

    In this study, samarium (Sm)-doped multiferroic composites of 0.8BiSmxFe1-xO3-0.2PbTiO3 where x = 0.05, 0.10, 0.15, and 0.20 were prepared via the conventional solid state reaction route. The electrical properties of these composites were analyzed using an impedance analyzer over a wide range of temperatures and frequencies (102-106 Hz). The impedance and modulus analyses confirmed the presence of both bulk and grain boundary effects in the materials. The temperature dependence of impedance and modulus spectrum indicated the negative temperature coefficient of resistance behavior. The dielectric relaxation exhibited non-Debye type behavior and it was temperature dependent. The relaxation time (τ) and DC conductivity followed an Arrhenius type behavior. The frequency-dependent AC conductivity obeyed Jonscher's power law. The correlated barrier hopping model was appropriate to understand the conduction mechanism in the composites considered.

  20. Relaxation times measurement in single and multiply excited xenon clusters

    NASA Astrophysics Data System (ADS)

    Serdobintsev, P. Yu.; Melnikov, A. S.; Pastor, A. A.; Timofeev, N. A.; Khodorkovskiy, M. A.

    2018-05-01

    Direct measurement of the rates of nonradiative relaxation processes in electronically excited xenon clusters was carried out. The clusters were created in a pulsed supersonic beam and two-photon excited by femtosecond laser pulses with a wavelength of 263 nm. The measurements were performed using the pump-probe method and electron spectroscopy. It is shown that relaxation of light clusters XeN (N < 15) predominantly occurs by desorption of excited xenon atoms with a characteristic time constant of 3 ps. Heavier electronically excited clusters (N > 10) vibrationally relax to the lowest electronically excited state at a rate of about 0.075 eV/ps. Multiply excited clusters are deactivated via energy exchange between excited centers with the ionization of one of them. The production of electrons in this process occurs with a delay of ˜4 ps from the pump pulse, and the process is completed in 10 ps.

  1. Ultrafast energy relaxation in single light-harvesting complexes

    DOE PAGES

    Maly, Pavel; Gruber, J. Michael; Cogdell, Richard J.; ...

    2016-02-22

    Energy relaxation in light-harvesting complexes has been extensively studied by various ultrafast spectroscopic techniques, the fastest processes being in the sub–100-fs range. At the same time, much slower dynamics have been observed in individual complexes by single-molecule fluorescence spectroscopy (SMS). In this work, we use a pump–probe-type SMS technique to observe the ultrafast energy relaxation in single light-harvesting complexes LH2 of purple bacteria. After excitation at 800 nm, the measured relaxation time distribution of multiple complexes has a peak at 95 fs and is asymmetric, with a tail at slower relaxation times. When tuning the excitation wavelength, the distribution changesmore » in both its shape and position. The observed behavior agrees with what is to be expected from the LH2 excited states structure. As we show by a Redfield theory calculation of the relaxation times, the distribution shape corresponds to the expected effect of Gaussian disorder of the pigment transition energies. By repeatedly measuring few individual complexes for minutes, we find that complexes sample the relaxation time distribution on a timescale of seconds. Furthermore, by comparing the distribution from a single long-lived complex with the whole ensemble, we demonstrate that, regarding the relaxation times, the ensemble can be considered ergodic. Lastly, our findings thus agree with the commonly used notion of an ensemble of identical LH2 complexes experiencing slow random fluctuations.« less

  2. Ultrafast energy relaxation in single light-harvesting complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maly, Pavel; Gruber, J. Michael; Cogdell, Richard J.

    Energy relaxation in light-harvesting complexes has been extensively studied by various ultrafast spectroscopic techniques, the fastest processes being in the sub–100-fs range. At the same time, much slower dynamics have been observed in individual complexes by single-molecule fluorescence spectroscopy (SMS). In this work, we use a pump–probe-type SMS technique to observe the ultrafast energy relaxation in single light-harvesting complexes LH2 of purple bacteria. After excitation at 800 nm, the measured relaxation time distribution of multiple complexes has a peak at 95 fs and is asymmetric, with a tail at slower relaxation times. When tuning the excitation wavelength, the distribution changesmore » in both its shape and position. The observed behavior agrees with what is to be expected from the LH2 excited states structure. As we show by a Redfield theory calculation of the relaxation times, the distribution shape corresponds to the expected effect of Gaussian disorder of the pigment transition energies. By repeatedly measuring few individual complexes for minutes, we find that complexes sample the relaxation time distribution on a timescale of seconds. Furthermore, by comparing the distribution from a single long-lived complex with the whole ensemble, we demonstrate that, regarding the relaxation times, the ensemble can be considered ergodic. Lastly, our findings thus agree with the commonly used notion of an ensemble of identical LH2 complexes experiencing slow random fluctuations.« less

  3. β-adrenergic Receptor Blocker ICI 118,551 Selectively Increases Intermediate-Conductance Calcium-Activated Potassium Channel (IKCa )-Mediated Relaxations in Rat Main Mesenteric Artery.

    PubMed

    Ozkan, Melike Hacer; Uma, Serdar

    2018-06-01

    Endothelial IK C a and/or SK C a channels play an important role in the control of vascular tone by participating in endothelium-dependent relaxation. Whether β-AR antagonists, mainly used in hypertension, affect endothelial K C a channel function is unknown. In this study, we examined the effect of the β2-AR antagonist and inverse agonist ICI 118,551 on the IK C a /SK C a channel activity by assessing functional relaxation responses to several agonists that stimulate these channels. Mesenteric arterial rings isolated from male Sprague Dawley mounted to organ baths. Acetylcholine elicited IK C a - and SK C a -mediated relaxations that were abolished by TRAM-34 and apamin, respectively. ICI 118,551, which did not dilate the arteries per se, increased the IK C a -mediated relaxations, whereas SK C a -mediated relaxations remained unaltered. Same potentiating effect was also detected on the IK C a -mediated relaxations to carbachol and A23187, but not to NS309. Neither acetylcholine-induced nitric oxide-mediated relaxations nor SNP relaxations changed with ICI 118,551. The PKA inhibitor KT-5720, the selective β2-AR agonist salbutamol, the selective β2-AR antagonist butoxamine, the non-selective β-AR antagonist propranolol, and the inverse agonists carvedilol or nadolol failed to affect the IK C a -mediated relaxations. ICI 118,551-induced increase was not reversed by salbutamol or propranolol as well. Besides, low potassium-induced relaxations in endothelium-removed arteries remained the same in the presence of ICI 118,551. These data demonstrate a previously unrecognized action of ICI 118,551, the ability to potentiate endothelial IK C a channel-mediated vasodilation, through a mechanism independent of β2-AR antagonistic or inverse agonistic action. Instead, the enhancement of acetylcholine relaxation seems likely to occur by a mechanism secondary to endothelial calcium increase. © 2017 Nordic Association for the Publication of BCPT (former Nordic

  4. Deconvolution of the relaxations associated with local and segmental motions in poly(methacrylate)s containing dichlorinated benzyl moieties in the ester residue.

    PubMed

    Dominguez-Espinosa, Gustavo; Díaz-Calleja, Ricardo; Riande, Evaristo; Gargallo, Ligia; Radic, Deodato

    2005-09-15

    The relaxation behavior of poly(2,3-dichlorobenzyl methacrylate) is studied by broadband dielectric spectroscopy in the frequency range of 10(-1)-10(9) Hz and temperature interval of 303-423 K. The isotherms representing the dielectric loss of the glassy polymer in the frequency domain present a single absorption, called beta process. At temperatures close to Tg, the dynamical alpha relaxation already overlaps with the beta process, the degree of overlapping increasing with temperature. The deconvolution of the alpha and beta relaxations is facilitated using the retardation spectra calculated from the isotherms utilizing linear programming regularization parameter techniques. The temperature dependence of the beta relaxation presents a crossover associated with a change in activation energy of the local processes. The distance between the alpha and beta peaks, expressed as log(fmax;beta/fmax;alpha) where fmax is the frequency at the peak maximum, follows Arrhenius behavior in the temperature range of 310-384 K. Above 384 K, the distance between the peaks remains nearly constant and, as a result, the a onset temperature exhibited for many polymers is not reached in this system. The fraction of relaxation carried out through the alpha process, without beta assistance, is larger than 60% in the temperature range of 310-384 K where the so-called Williams ansatz holds.

  5. Controlling spin relaxation with a cavity

    DOE PAGES

    Bienfait, A.; Pla, J. J.; Kubo, Y.; ...

    2016-02-15

    Spontaneous emission of radiation is one of the fundamental mechanisms by which an excited quantum system returns to equilibrium. For spins, however, spontaneous emission is generally negligible compared to other non-radiative relaxation processes because of the weak coupling between the magnetic dipole and the electromagnetic field. In 1946, Purcell realized that the rate of spontaneous emission can be greatly enhanced by placing the quantum system in a resonant cavity. This effect has since been used extensively to control the lifetime of atoms and semiconducting heterostructures coupled to microwave or optical cavities, and is essential for the realization of high-efficiency single-photonmore » sources. In this paper, we report the application of this idea to spins in solids. By coupling donor spins in silicon to a superconducting microwave cavity with a high quality factor and a small mode volume, we reach the regime in which spontaneous emission constitutes the dominant mechanism of spin relaxation. The relaxation rate is increased by three orders of magnitude as the spins are tuned to the cavity resonance, demonstrating that energy relaxation can be controlled on demand. Our results provide a general way to initialize spin systems into their ground state and therefore have applications in magnetic resonance and quantum information processing. Finally, they also demonstrate that the coupling between the magnetic dipole of a spin and the electromagnetic field can be enhanced up to the point at which quantum fluctuations have a marked effect on the spin dynamics; as such, they represent an important step towards the coherent magnetic coupling of individual spins to microwave photons.« less

  6. Grape juice causes endothelium-dependent relaxation via a redox-sensitive Src- and Akt-dependent activation of eNOS.

    PubMed

    Anselm, Eric; Chataigneau, Marta; Ndiaye, Mamadou; Chataigneau, Thierry; Schini-Kerth, Valérie B

    2007-01-15

    An enhanced endothelial formation of nitric oxide (NO) and endothelium-derived hyperpolarizing factor (EDHF), is thought to contribute to the protective effect of moderate consumption of red wine on coronary diseases. The present study has characterized endothelium-dependent relaxations to Concord grape juice (CGJ), a non-alcoholic rich source of grape-derived polyphenols, in the coronary artery. Porcine coronary artery rings were suspended in organ chambers for the measurement of changes in isometric tension in the presence of indomethacin. NO formation was assessed by electron spin resonance spectroscopy, and the phosphorylation of Src, Akt and endothelial NO synthase (eNOS) by Western blot analysis in cultured endothelial cells. Endothelium-dependent relaxations to CGJ were slightly but significantly reduced by L-NA, not affected by charybdotoxin (CTX) plus apamin (APA, two inhibitors of EDHF-mediated responses) whereas the combination of L-NA, CTX plus APA reduced maximal relaxation to about 50%. In the presence of CTX plus APA, relaxations to CGJ were markedly reduced by the membrane permeant mimetic of superoxide dismutase (SOD), MnTMPyP, the membrane permeant analogue of catalase polyethyleneglycol-catalase (PEG-catalase), PP2, an inhibitor of Src kinase, and by wortmannin, an inhibitor of the PI3-kinase. CGJ stimulated the formation of reactive oxygen species and the N(omega)-nitro-L-arginine-, PP2- and wortmannin-sensitive formation of NO in endothelial cells. The formation of NO was associated with a redox-sensitive and time-dependent phosphorylation of Src, Akt and eNOS. CGJ induces endothelium-dependent relaxations of coronary arteries, which involve a NO-mediated component and also, to a minor extent, an EDHF-mediated component. In addition, CGJ-induced NO formation is due to the redox-sensitive activation of Src kinase with the subsequent PI3-kinase/Akt-dependent phosphorylation of eNOS.

  7. Characterization of structural relaxation in inorganic glasses using length dilatometry

    NASA Astrophysics Data System (ADS)

    Koontz, Erick

    The processes that govern how a glass relaxes towards its thermodynamic quasi-equilibrium state are major factors in understanding glass behavior near the glass transition region, as characterized by the glass transition temperature (Tg). Intrinsic glass properties such as specific volume, enthalpy, entropy, density, etc. are used to map the behavior of the glass network below in and near the transition region. The question of whether a true thermodynamic second order phase transition takes place in the glass transition region is another pending question. Linking viscosity behavior to entropy, or viewing the glass configuration as an energy landscape are just a couple of the most prevalent methods used for attempting to understand the glass transition. The structural relaxation behavior of inorganic glasses is important for more than scientific reasons, many commercial glass processing operations including glass melting and certain forms of optical fabrication include significant time spent in the glass transition region. For this reason knowledge of structural relaxation processes can, at a minimum, provide information for annealing duration of melt-quenched glasses. The development of a predictive model for annealing time prescription has the potential to save glass manufacturers significant time and money as well as increasing volume throughput. In optical hot forming processes such as precision glass molding, molded optical components can significantly change in shape upon cooling through the glass transition. This change in shape is not scientifically predictable as of yet though manufacturers typically use empirical rules developed in house. The classification of glass behavior in the glass transition region would allow molds to be accurately designed and save money for the producers. The work discussed in this dissertation is comprised of the development of a dilatometric measurement and characterization method of structural relaxation. The measurement and

  8. Equivalent Relaxations of Optimal Power Flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bose, S; Low, SH; Teeraratkul, T

    2015-03-01

    Several convex relaxations of the optimal power flow (OPF) problem have recently been developed using both bus injection models and branch flow models. In this paper, we prove relations among three convex relaxations: a semidefinite relaxation that computes a full matrix, a chordal relaxation based on a chordal extension of the network graph, and a second-order cone relaxation that computes the smallest partial matrix. We prove a bijection between the feasible sets of the OPF in the bus injection model and the branch flow model, establishing the equivalence of these two models and their second-order cone relaxations. Our results implymore » that, for radial networks, all these relaxations are equivalent and one should always solve the second-order cone relaxation. For mesh networks, the semidefinite relaxation and the chordal relaxation are equally tight and both are strictly tighter than the second-order cone relaxation. Therefore, for mesh networks, one should either solve the chordal relaxation or the SOCP relaxation, trading off tightness and the required computational effort. Simulations are used to illustrate these results.« less

  9. Study of dielectric relaxation and AC conductivity of InP:S single crystal

    NASA Astrophysics Data System (ADS)

    El-Nahass, M. M.; Ali, H. A. M.; El-Shazly, E. A.

    2012-07-01

    The dielectric relaxation and AC conductivity of InP:S single crystal were studied in the frequency range from 100 to 5.25 × 105 Hz and in the temperature range from 296 to 455 K. The dependence of the dielectric constant (ɛ1) and the dielectric loss (ɛ2) on both frequency and temperature was investigated. Since no peak was observed on the dielectric loss, we used a method based on the electric modulus to evaluate the activation energy of the dielectric relaxation. Scaling of the electric modulus spectra showed that the charge transport dynamics is independent of temperature. The AC conductivity (σAC) was found to obey the power law: Aωs. Analysis of the AC conductivity data and the frequency exponent showed that the correlated barrier hopping (CBH) model is the dominant mechanism for the AC conduction. The variation of AC conductivity with temperature at different frequencies showed that σAC is a thermally activated process.

  10. Activation of G protein-coupled bile acid receptor, TGR5, induces smooth muscle relaxation via both Epac- and PKA-mediated inhibition of RhoA/Rho kinase pathway.

    PubMed

    Rajagopal, Senthilkumar; Kumar, Divya P; Mahavadi, Sunila; Bhattacharya, Sayak; Zhou, Ruizhe; Corvera, Carlos U; Bunnett, Nigel W; Grider, John R; Murthy, Karnam S

    2013-03-01

    The present study characterized the TGR5 expression and the signaling pathways coupled to this receptor that mediates the relaxation of gastric smooth muscle. TGR5 was detected in gastric muscle cells by RT-PCR and Western blotting. Treatment of cells with the TGR5-selective ligand oleanolic acid (OA) activated Gαs, but not Gαq, Gαi1, Gαi2, or Gαi3, and increased cAMP levels. OA did not elicit contraction, but caused relaxation of carbachol-induced contraction of gastric muscle cells from wild-type mice, but not tgr5(-/-) mice. OA, but not a selective exchange protein activated by cAMP (Epac) ligand (8-pCPT-2'-O-Me-cAMP), caused phosphorylation of RhoA and the phosphorylation was blocked by the PKA inhibitor, myristoylated PKI, and by the expression of phosphorylation-deficient mutant RhoA (S188A). Both OA and Epac ligand stimulated Ras-related protein 1 (Rap1) and inhibited carbachol (CCh)-induced Rho kinase activity. Expression of RhoA (S188A) or PKI partly reversed the inhibition of Rho kinase activity by OA but had no effect on inhibition by Epac ligand. However, suppression of Rap1 with siRNA blocked the inhibition of Rho kinase by Epac ligand, and partly reversed the inhibition by OA; the residual inhibition was blocked by PKI. Muscle relaxation in response to OA, but not Epac ligand, was partly reversed by PKI. We conclude that activation of TGR5 causes relaxation of gastric smooth muscle and the relaxation is mediated through inhibition of RhoA/Rho kinase pathway via both cAMP/Epac-dependent stimulation of Rap1 and cAMP/PKA-dependent phosphorylation of RhoA at Ser(188). TGR5 receptor activation on smooth muscle reveals a novel mechanism for the regulation of gut motility by bile acids.

  11. Correlation between physical properties and ultrasonic relaxation parameters in transition metal tellurite glasses

    NASA Astrophysics Data System (ADS)

    Abd El-Moneim, A.

    2003-07-01

    The correlation between activation energy of ultrasonic relaxation process through the temperature range from 140 to 300 K and some physical properties has been investigated in pure TeO 2 and transition metal TeO 2-V 2O 5 and TeO 2-MoO 3 glasses according to Bridge and Patel's theory. The oxygen density (loss centers), number of two-well systems, hopping distance and mechanical relaxation time have been calculated in these glasses from the data of density, bulk modulus and stretching force constant of the glass. It has been found that the acoustic activation energy increased linearly with both the oxygen density and the number of two-well systems. The correlation between the acoustic activation energy and bulk modulus was achieved through the stretching force constant of the network and other structural parameters. Moreover, the experimental values of activation energy (V) agree well with those calculated from an empirical equation presented in this study in the form V=2.9×10 -7 F( F/ K) 3.37, where F is the stretching force constant of the glass and K is the experimental bulk modulus.

  12. Arresting relaxation in Pickering Emulsions

    NASA Astrophysics Data System (ADS)

    Atherton, Tim; Burke, Chris

    2015-03-01

    Pickering emulsions consist of droplets of one fluid dispersed in a host fluid and stabilized by colloidal particles absorbed at the fluid-fluid interface. Everyday materials such as crude oil and food products like salad dressing are examples of these materials. Particles can stabilize non spherical droplet shapes in these emulsions through the following sequence: first, an isolated droplet is deformed, e.g. by an electric field, increasing the surface area above the equilibrium value; additional particles are then adsorbed to the interface reducing the surface tension. The droplet is then allowed to relax toward a sphere. If more particles were adsorbed than can be accommodated by the surface area of the spherical ground state, relaxation of the droplet is arrested at some non-spherical shape. Because the energetic cost of removing adsorbed colloids exceeds the interfacial driving force, these configurations can remain stable over long timescales. In this presentation, we present a computational study of the ordering present in anisotropic droplets produced through the mechanism of arrested relaxation and discuss the interplay between the geometry of the droplet, the dynamical process that produced it, and the structure of the defects observed.

  13. relaxGUI: a new software for fast and simple NMR relaxation data analysis and calculation of ps-ns and μs motion of proteins.

    PubMed

    Bieri, Michael; d'Auvergne, Edward J; Gooley, Paul R

    2011-06-01

    Investigation of protein dynamics on the ps-ns and μs-ms timeframes provides detailed insight into the mechanisms of enzymes and the binding properties of proteins. Nuclear magnetic resonance (NMR) is an excellent tool for studying protein dynamics at atomic resolution. Analysis of relaxation data using model-free analysis can be a tedious and time consuming process, which requires good knowledge of scripting procedures. The software relaxGUI was developed for fast and simple model-free analysis and is fully integrated into the software package relax. It is written in Python and uses wxPython to build the graphical user interface (GUI) for maximum performance and multi-platform use. This software allows the analysis of NMR relaxation data with ease and the generation of publication quality graphs as well as color coded images of molecular structures. The interface is designed for simple data analysis and management. The software was tested and validated against the command line version of relax.

  14. Find the Calm, Avoid the Storm: Relaxation Techniques.

    ERIC Educational Resources Information Center

    Texas Child Care, 1995

    1995-01-01

    Provides classroom techniques to help children develop the skill to pull back from turmoil or stress, evaluate their emotional states, redirect their energy, and find peace in their minds. Activities described include relaxation and breathing games, as well as calming physical activities. (HTH)

  15. Sleep, Stress & Relaxation: Rejuvenate Body & Mind

    Cancer.gov

    Sleep, Stress & Relaxation: Rejuvenate Body & Mind; Relieve Stress; best ways to relieve stress; best way to relieve stress; different ways to relieve stress; does smoking relieve stress; does tobacco relieve stress; how can I relieve stress; how can you relieve stress; how do I relieve stress; reduce stress; does smoking reduce stress; how can I reduce stress; how to reduce stress; reduce stress; reduce stress levels; reducing stress; smoking reduce stress; smoking reduces stress; stress reducing techniques; techniques to reduce stress; stress relief; best stress relief; natural stress relief; need stress relief; relief for stress; relief from stress; relief of stress; smoking and stress relief; smoking for stress relief; smoking stress relief; deal with stress; dealing with stress; dealing with anger; dealing with stress; different ways of dealing with stress; help dealing with stress; how to deal with anger; how to deal with stress; how to deal with stress when quitting smoking; stress management; free stress management; how can you manage stress; how do you manage stress; how to manage stress; manage stress; management of stress; management stress; managing stress; strategies for managing stress; coping with stress; cope with stress; copeing with stress; coping and stress; coping skills for stress; coping strategies for stress; coping strategies with stress; coping strategy for stress; coping with stress; coping with stress and anxiety; emotional health; emotional health; emotional health article; emotional health articles; deep relaxation; deep breathing relaxation techniques; deep muscle relaxation; deep relaxation; deep relaxation meditation; deep relaxation technique; deep relaxation techniques; meditation exercises; mindful exercises; mindful meditation exercises; online relaxation exercises; relaxation breathing exercises; relaxation exercise; relaxation exercises; stress relaxation; methods of relaxation for stress; relax stress; relax techniques stress

  16. Reduced-Density-Matrix Description of Decoherence and Relaxation Processes for Electron-Spin Systems

    NASA Astrophysics Data System (ADS)

    Jacobs, Verne

    2017-04-01

    Electron-spin systems are investigated using a reduced-density-matrix description. Applications of interest include trapped atomic systems in optical lattices, semiconductor quantum dots, and vacancy defect centers in solids. Complimentary time-domain (equation-of-motion) and frequency-domain (resolvent-operator) formulations are self-consistently developed. The general non-perturbative and non-Markovian formulations provide a fundamental framework for systematic evaluations of corrections to the standard Born (lowest-order-perturbation) and Markov (short-memory-time) approximations. Particular attention is given to decoherence and relaxation processes, as well as spectral-line broadening phenomena, that are induced by interactions with photons, phonons, nuclear spins, and external electric and magnetic fields. These processes are treated either as coherent interactions or as environmental interactions. The environmental interactions are incorporated by means of the general expressions derived for the time-domain and frequency-domain Liouville-space self-energy operators, for which the tetradic-matrix elements are explicitly evaluated in the diagonal-resolvent, lowest-order, and Markov (short-memory time) approximations. Work supported by the Office of Naval Research through the Basic Research Program at The Naval Research Laboratory.

  17. Thermally induced magnetic relaxation in square artificial spin ice

    DOE PAGES

    Andersson, M. S.; Pappas, S. D.; Stopfel, H.; ...

    2016-11-24

    The properties of natural and artificial assemblies of interacting elements, ranging from Quarks to Galaxies, are at the heart of Physics. The collective response and dynamics of such assemblies are dictated by the intrinsic dynamical properties of the building blocks, the nature of their interactions and topological constraints. Here in this paper, we report on the relaxation dynamics of the magnetization of artificial assemblies of mesoscopic spins. In our model nano-magnetic system $-$ square artificial spin ice $-$ we are able to control the geometrical arrangement and interaction strength between the magnetically interacting building blocks by means of nano-lithography. Usingmore » time resolved magnetometry we show that the relaxation process can be described using the Kohlrausch law and that the extracted temperature dependent relaxation times of the assemblies follow the Vogel-Fulcher law. The results provide insight into the relaxation dynamics of mesoscopic nano-magnetic model systems, with adjustable energy and time scales, and demonstrates that these can serve as an ideal playground for the studies of collective dynamics and relaxations.« less

  18. Thermally induced magnetic relaxation in square artificial spin ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersson, M. S.; Pappas, S. D.; Stopfel, H.

    The properties of natural and artificial assemblies of interacting elements, ranging from Quarks to Galaxies, are at the heart of Physics. The collective response and dynamics of such assemblies are dictated by the intrinsic dynamical properties of the building blocks, the nature of their interactions and topological constraints. Here in this paper, we report on the relaxation dynamics of the magnetization of artificial assemblies of mesoscopic spins. In our model nano-magnetic system $-$ square artificial spin ice $-$ we are able to control the geometrical arrangement and interaction strength between the magnetically interacting building blocks by means of nano-lithography. Usingmore » time resolved magnetometry we show that the relaxation process can be described using the Kohlrausch law and that the extracted temperature dependent relaxation times of the assemblies follow the Vogel-Fulcher law. The results provide insight into the relaxation dynamics of mesoscopic nano-magnetic model systems, with adjustable energy and time scales, and demonstrates that these can serve as an ideal playground for the studies of collective dynamics and relaxations.« less

  19. Zinc chloride modified electronic transport and relaxation studies in barium-tellurite glasses

    NASA Astrophysics Data System (ADS)

    Dhankhar, Sunil; Kundu, R. S.; Rani, Sunita; Sharma, Preeti; Murugavel, S.; Punia, Rajesh; Kishore, N.

    2017-09-01

    The ac conductivity of halide based tellurium glasses having composition 70 TeO2-(30-x) BaO-x ZnCl2; x = 5, 10, 15, 20 and 25 has been investigated in the frequency range 10-1 Hz to 105Hz and in the temperature range 453 K to 553 K. The frequency and temperature dependent ac conductivity show mixed behaviour with increase in halide content and found to obey Jonscher's universal power law. The values of dc conductivity, crossover frequency and frequency exponent have been estimated from the fitting of experimental data of ac conductivity with Jonscher's universal power law. For determining the conduction mechanism in studied glass system, frequency exponent has been analyzed by various theoretical models. In presently studied glasses, the ac conduction takes place via overlapping large polaron tunneling (OLPT). The values of activation energy for dc conduction (W) and the one associated with relaxation process ( E R) are found to increase with increase in x up to glass sample with x = 15 and thereafter it decrease with increase in zinc chloride content. DC conduction takes place via variable range hopping (VRH) as proposed by Mott with some modification suggested by Punia et al. The value of real part of modulus ( M') is observed to decrease with increase in temperature. The value of stretched exponent (β) obtained from fitting of M'' reveals the presence of non-Debye type of relaxation in presently studied glass samples. Scaling spectra of ac conductivity and values of electric modulus ( M' and M'') collapse into a single master curve for all the compositions and temperatures. The values of relaxation energy ( E R) for all the studied glass compositions are almost equal to W, suggesting that polarons have to overcome same barrier while relaxing and conducting. The conduction and relaxation processes in the studied glass samples are composition and temperature independent. [Figure not available: see fulltext.

  20. Heteronuclear Adiabatic Relaxation Dispersion (HARD) for quantitative analysis of conformational dynamics in proteins.

    PubMed

    Traaseth, Nathaniel J; Chao, Fa-An; Masterson, Larry R; Mangia, Silvia; Garwood, Michael; Michaeli, Shalom; Seelig, Burckhard; Veglia, Gianluigi

    2012-06-01

    NMR relaxation methods probe biomolecular motions over a wide range of timescales. In particular, the rotating frame spin-lock R(1ρ) and Carr-Purcell-Meiboom-Gill (CPMG) R(2) experiments are commonly used to characterize μs to ms dynamics, which play a critical role in enzyme folding and catalysis. In an effort to complement these approaches, we introduced the Heteronuclear Adiabatic Relaxation Dispersion (HARD) method, where dispersion in rotating frame relaxation rate constants (longitudinal R(1ρ) and transverse R(2ρ)) is created by modulating the shape and duration of adiabatic full passage (AFP) pulses. Previously, we showed the ability of the HARD method to detect chemical exchange dynamics in the fast exchange regime (k(ex)∼10(4)-10(5) s(-1)). In this article, we show the sensitivity of the HARD method to slower exchange processes by measuring R(1ρ) and R(2ρ) relaxation rates for two soluble proteins (ubiquitin and 10C RNA ligase). One advantage of the HARD method is its nominal dependence on the applied radio frequency field, which can be leveraged to modulate the dispersion in the relaxation rate constants. In addition, we also include product operator simulations to define the dynamic range of adiabatic R(1ρ) and R(2ρ) that is valid under all exchange regimes. We conclude from both experimental observations and simulations that this method is complementary to CPMG-based and rotating frame spin-lock R(1ρ) experiments to probe conformational exchange dynamics for biomolecules. Finally, this approach is germane to several NMR-active nuclei, where relaxation rates are frequency-offset independent. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Dynamic relaxation of a levitated nanoparticle from a non-equilibrium steady state.

    PubMed

    Gieseler, Jan; Quidant, Romain; Dellago, Christoph; Novotny, Lukas

    2014-05-01

    Fluctuation theorems are a generalization of thermodynamics on small scales and provide the tools to characterize the fluctuations of thermodynamic quantities in non-equilibrium nanoscale systems. They are particularly important for understanding irreversibility and the second law in fundamental chemical and biological processes that are actively driven, thus operating far from thermal equilibrium. Here, we apply the framework of fluctuation theorems to investigate the important case of a system relaxing from a non-equilibrium state towards equilibrium. Using a vacuum-trapped nanoparticle, we demonstrate experimentally the validity of a fluctuation theorem for the relative entropy change occurring during relaxation from a non-equilibrium steady state. The platform established here allows non-equilibrium fluctuation theorems to be studied experimentally for arbitrary steady states and can be extended to investigate quantum fluctuation theorems as well as systems that do not obey detailed balance.

  2. Intrinsic and extrinsic relaxation of CaCu{sub 3}Ti{sub 4}O{sub 12} ceramics: Effect of sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J. Y.; Zhao, X. T.; Li, S. T.

    2010-11-15

    The effect of sintering process on the electrical properties of CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) ceramic dielectrics were investigated in this paper. It was found that grain size is affected by sintering and the nonlinear current-voltage (I-V) property will decrease with the increased sintering time. Also, the frequency and temperature dependences of dielectric permittivity and loss in the ranges of 10{sup -1}-10{sup 7} Hz and 130-270 K were studied. Two relaxation processes with activation energy of 0.51 eV and 0.10 eV, respectively, were found in the frequency dependence of tan {delta} and Cole-Cole planes, which can be interpreted in termsmore » of insulating grain boundaries and semiconducting grains. It was suggested that grain boundary Maxwell-Wagner relaxation and ionization of oxygen vacancy V{sub O}{sup ++}, proposed as extrinsic and intrinsic relaxations, are responsible for the dielectric behaviors of CCTO ceramics.« less

  3. MHD simulation of relaxation transition to a flipped relaxed state in spherical torus

    NASA Astrophysics Data System (ADS)

    Kanki, Takashi; Nagata, Masayoshi; Kagei, Yasuhiro

    2008-11-01

    Recently, it has been demonstrated in the HIST device that in spite of the violation of the Kruskal-Shafranov stability condition, a normal spherical torus (ST) plasma has relaxed to a flipped ST state through a transient reversed-field pinch-like state when the vacuum toroidal field is decreased and its direction is reversed [1]. It has been also observed during this relaxation transition process that not only the toroidal field but also the poloidal field reverses polarity spontaneously and that the ion flow velocity is strongly fluctuated and abruptly increased up to > 50 km/s. The purpose of the present study is to investigate the plasma flows and the relevant MHD relaxation phenomena to elucidate this transition mechanism by using three-dimensional MHD simulations [2]. It is found from the numerical results that the magnetic reconnection between the open and closed field lines occurs due to the non-linear growth of the n=1 kink instability of the central open flux, generating the toroidal flow ˜ 60 km/s in the direction of the toroidal current. The n=1 kink instability and the plasma flows driven by the magnetic reconnection are consider to be responsible for the self-reversal of the magnetic fields. [1] M. Nagata el al., Phys. Rev. Lett. 90, 225001 (2003). [2] Y. Kagei el al., Plasma. Phys. Control. Fusion 45, L17 (2003).

  4. Lipid Emulsion Attenuates Acetylcholine-Induced Relaxation in Isolated Rat Aorta

    PubMed Central

    Ok, Seong-Ho; Lee, Soo Hee; Yu, Jongsun; Park, Jungchul; Shin, Il-Woo; Lee, Youngju; Cho, Hyunhoo; Choi, Mun-Jeoung; Baik, Jiseok; Hong, Jeong-Min; Han, Jeong Yeol; Lee, Heon Keun; Chung, Young-Kyun; Sohn, Ju-Tae

    2015-01-01

    We investigated the effect of Lipofundin MCT/LCT and Intralipid on acetylcholine-induced nitric oxide- (NO-) mediated relaxation in rat aorta to determine which lipid emulsion (LE) is more potent in terms of inhibition of NO-induced relaxation. Dose-response curves of responses induced by acetylcholine, the calcium ionophore A23187, and sodium nitroprusside were generated using isolated rat aorta with or without LE. The effect of Lipofundin MCT/LCT on acetylcholine-induced endothelial nitric oxide synthase (eNOS) phosphorylation in human umbilical vein endothelial cells (HUVECs) was investigated using western blotting. Lipofundin MCT/LCT (0.1 and 0.2%) attenuated acetylcholine-induced relaxation in endothelium-intact aorta with or without tiron, whereas 0.2% Intralipid only inhibited relaxation. Lipofundin MCT/LCT inhibited relaxation induced by the calcium ionophore A23187 and sodium nitroprusside in endothelium-intact aorta, but Lipofundin MCT/LCT had no effect on sodium nitroprusside-induced relaxation in the endothelium-denuded aorta. Combined pretreatment with l-arginine plus Lipofundin MCT/LCT increased acetylcholine-induced maximal relaxation in endothelium-intact aorta compared with Lipofundin MCT/LCT alone. l-Arginine attenuated Lipofundin MCT/LCT-mediated inhibition of acetylcholine-induced eNOS phosphorylation in HUVECs. Taken together, Lipofundin MCT/LCT attenuated acetylcholine-induced NO-mediated relaxation via an inhibitory effect on the endothelium including eNOS, which is proximal to activation of guanylyl cyclase. PMID:26273653

  5. Lipid Emulsion Attenuates Acetylcholine-Induced Relaxation in Isolated Rat Aorta.

    PubMed

    Ok, Seong-Ho; Lee, Soo Hee; Yu, Jongsun; Park, Jungchul; Shin, Il-Woo; Lee, Youngju; Cho, Hyunhoo; Choi, Mun-Jeoung; Baik, Jiseok; Hong, Jeong-Min; Han, Jeong Yeol; Lee, Heon Keun; Chung, Young-Kyun; Sohn, Ju-Tae

    2015-01-01

    We investigated the effect of Lipofundin MCT/LCT and Intralipid on acetylcholine-induced nitric oxide- (NO-) mediated relaxation in rat aorta to determine which lipid emulsion (LE) is more potent in terms of inhibition of NO-induced relaxation. Dose-response curves of responses induced by acetylcholine, the calcium ionophore A23187, and sodium nitroprusside were generated using isolated rat aorta with or without LE. The effect of Lipofundin MCT/LCT on acetylcholine-induced endothelial nitric oxide synthase (eNOS) phosphorylation in human umbilical vein endothelial cells (HUVECs) was investigated using western blotting. Lipofundin MCT/LCT (0.1 and 0.2%) attenuated acetylcholine-induced relaxation in endothelium-intact aorta with or without tiron, whereas 0.2% Intralipid only inhibited relaxation. Lipofundin MCT/LCT inhibited relaxation induced by the calcium ionophore A23187 and sodium nitroprusside in endothelium-intact aorta, but Lipofundin MCT/LCT had no effect on sodium nitroprusside-induced relaxation in the endothelium-denuded aorta. Combined pretreatment with l-arginine plus Lipofundin MCT/LCT increased acetylcholine-induced maximal relaxation in endothelium-intact aorta compared with Lipofundin MCT/LCT alone. L-Arginine attenuated Lipofundin MCT/LCT-mediated inhibition of acetylcholine-induced eNOS phosphorylation in HUVECs. Taken together, Lipofundin MCT/LCT attenuated acetylcholine-induced NO-mediated relaxation via an inhibitory effect on the endothelium including eNOS, which is proximal to activation of guanylyl cyclase.

  6. Introductory Chemistry: A Molar Relaxivity Experiment in the High School Classroom.

    PubMed

    Dawsey, Anna C; Hathaway, Kathryn L; Kim, Susie; Williams, Travis J

    2013-07-09

    Dotarem and Magnevist, two clinically available magnetic resonance imaging (MRI) contrast agents, were assessed in a high school science classroom with respect to which is the better contrast agent. Magnevist, the more efficacious contrast agent, has negative side effects because its gadolinium center can escape from its ligand. However, Dotarem, though a less efficacious contrast agent, is a safer drug choice. After the experiment, students are confronted with the FDA warning on Magnevist, which enabled a discussion of drug efficacy versus safety. We describe a laboratory experiment in which NMR spin lattice relaxation rate measurements are used to quantify the relaxivities of the active ingredients of Dotarem and Magnevist. The spin lattice relaxation rate gives the average amount of time it takes the excited nucleus to relax back to the original state. Students learn by constructing molar relaxivity curves based on inversion recovery data sets that Magnevist is more relaxive than Dotarem. This experiment is suitable for any analytical chemistry laboratory with access to NMR.

  7. Experimental studies of Debye-like process and structural relaxation in mixtures of 2-ethyl-1-hexanol and 2-ethyl-1-hexyl bromide

    NASA Astrophysics Data System (ADS)

    Preuß, M.; Gainaru, C.; Hecksher, T.; Bauer, S.; Dyre, J. C.; Richert, R.; Böhmer, R.

    2012-10-01

    Binary solutions of 2-ethyl-1-hexanol (2E1H) with 2-ethyl-1-hexyl bromide (2E1Br) are investigated by means of dielectric, shear mechanical, near-infrared, and solvation spectroscopy as well as dielectrically monitored physical aging. For moderately diluted 2E1H the slow Debye-like process, which dominates the dielectric spectra of the neat monohydroxy alcohol, separates significantly from the α-relaxation. For example, the separation in equimolar mixtures amounts to four decades in frequency. This situation of highly resolved processes allows one to demonstrate unambiguously that physical aging is governed by the α-process, but even under these ideal conditions the Debye process remains undetectable in shear mechanical experiments. Furthermore, the solvation experiments show that under constant charge conditions the microscopic polarization fluctuations take place on the time scale of the structural process. The hydrogen-bond populations monitored via near-infrared spectroscopy indicate the presence of a critical alcohol concentration, xc ≈ 0.5-0.6, thereby confirming the dielectric data. In the pure bromide a slow dielectric process of reduced intensity is present in addition to the main relaxation. This is taken as a sign of intermolecular cooperativity probably mediated via halogen bonds.

  8. Power-law relaxation in human violent conflicts

    NASA Astrophysics Data System (ADS)

    Picoli, Sergio; Antonio, Fernando J.; Itami, Andreia S.; Mendes, Renio S.

    2017-08-01

    We study relaxation patterns of violent conflicts after bursts of activity. Data were obtained from available catalogs on the conflicts in Iraq, Afghanistan and Northern Ireland. We find several examples in each catalog for which the observed relaxation curves can be well described by an asymptotic power-law decay (the analog of the Omori's law in geophysics). The power-law exponents are robust, nearly independent of the conflict. We also discuss the exogenous or endogenous nature of the shocks. Our results suggest that violent conflicts share with earthquakes and other natural and social phenomena a common feature in the dynamics of aftershocks.

  9. The effects of progressive muscle relaxation and autogenic relaxation on young soccer players' mood states.

    PubMed

    Hashim, Hairul Anuar; Hanafi Ahmad Yusof, Hazwani

    2011-06-01

    This study was designed to compare the effects of two different relaxation techniques, namely progressive muscle relaxation (PMR) and autogenic relaxation (AGR) on moods of young soccer players. sixteen adolescent athletes (mean age: 14.1 ± 1.3) received either PMR or AGR training. Using Profile of Mood States- Adolescents, their mood states were measured one week before relaxation training, before the first relaxation session, and after the twelfth relaxation session. Mixed ANOVA revealed no significant interaction effects and no significant main effects in any of the subscales. However, significant main effects for testing sessions were found for confusion, depression, fatigue, and tension subscales. Post hoc tests revealed post-intervention reductions in the confusion, depression, fatigue, and tension subscale scores. These two relaxation techniques induce equivalent mood responses and may be used to regulate young soccer players' mood states.

  10. Activation of G protein-coupled estrogen receptor 1 induces coronary artery relaxation via Epac/Rap1-mediated inhibition of RhoA/Rho kinase pathway in parallel with PKA.

    PubMed

    Yu, Xuan; Zhang, Qiao; Zhao, Yan; Schwarz, Benjamin J; Stallone, John N; Heaps, Cristine L; Han, Guichun

    2017-01-01

    Previously, we reported that cAMP/PKA signaling is involved in GPER-mediated coronary relaxation by activating MLCP via inhibition of RhoA pathway. In the current study, we tested the hypothesis that activation of GPER induces coronary artery relaxation via inhibition of RhoA/Rho kinase pathway by cAMP downstream targets, exchange proteins directly activated by cAMP (Epac) as well as PKA. Our results show that Epac inhibitors, brefeldin A (BFA, 50 μM), or ESI-09 (20 μM), or CE3F4 (100 μM), all partially inhibited porcine coronary artery relaxation response to the selective GPER agonist, G-1 (0.3-3 μM); while concurrent administration of BFA and PKI (5 μM), a PKA inhibitor, almost completely blocked the relaxation effect of G-1. The Epac specific agonist, 8-CPT-2Me-cAMP (007, 1-100 μM), induced a concentration-dependent relaxation response. Furthermore, the activity of Ras-related protein 1 (Rap1) was up regulated by G-1 (1 μM) treatment of porcine coronary artery smooth muscle cells (CASMCs). Phosphorylation of vasodilator-stimulated phosphoprotein (p-VASP) was elevated by G-1 (1 μM) treatment, but not by 007 (50 μM); and the effect of G-1 on p-VASP was blocked by PKI, but not by ESI-09, an Epac antagonist. RhoA activity was similarly down regulated by G-1 and 007, whereas ESI-09 restored most of the reduced RhoA activity by G-1 treatment. Furthermore, G-1 decreased PGF2α-induced p-MYPT1, which was partially reversed with either ESI-09 or PKI; whereas, concurrent administration of ESI-09 and PKI totally prevented the inhibitory effect of G-1. The inhibitory effects of G-1 on p- MLC levels in CASMCs were mostly restored by either ESI-09 or PKI. These results demonstrate that activation of GPER induces coronary artery relaxation via concurrent inhibition of RhoA/Rho kinase by Epac/Rap1 and PKA. GPER could be a potential drug target for preventing and treating cardiovascular diseases.

  11. Surface hopping investigation of the relaxation dynamics in radical cations

    DOE PAGES

    Assmann, Mariana; Weinacht, Thomas; Matsika, Spiridoula

    2016-01-19

    Ionization processes can lead to the formation of radical cations with population in several ionic states. In this study, we examine the dynamics of three radical cations starting from an excited ionic state using trajectory surface hopping dynamics in combination with multiconfigurational electronic structure methods. The efficiency of relaxation to the ground state is examined in an effort to understand better whether fragmentation of cations is likely to occur directly on excited states or after relaxation to the ground state. The results on cyclohexadiene, hexatriene, and uracil indicate that relaxation to the ground ionic state is very fast in thesemore » systems, while fragmentation before relaxation is rare. Ultrafast relaxation is facilitated by the close proximity of electronic states and the presence of two- and three-state conical intersections. Furthermore, examining the properties of the systems in the Franck-Condon region can give some insight into the subsequent dynamics.« less

  12. Dynamical relaxation in 2HDM models

    NASA Astrophysics Data System (ADS)

    Lalak, Zygmunt; Markiewicz, Adam

    2018-03-01

    Dynamical relaxation provides an interesting solution to the hierarchy problem in face of the missing signatures of any new physics in recent experiments. Through a dynamical process taking place in the inflationary phase of the Universe it manages to achieve a small electroweak scale without introducing new states observable in current experiments. Appropriate approximation makes it possible to derive an explicit formula for the final vevs in the double-scanning scenario extended to a model with two Higgs doublets (2HDM). Analysis of the relaxation in the 2HDM confirms that in a general case it is impossible to keep vevs of both scalars small, unless fine-tuning is present or additional symmetries are cast upon the Lagrangian. Within the slightly constrained variant of the 2HDM, where odd powers of the fields’ expectation values are not present (which can be easily enforced by requiring that the doublets have different gauge transformations or by imposing a global symmetry) it is shown that the difference between the vevs of two scalars tends to be proportional to the cutoff. The analysis of the relaxation in 2HDM indicates that in a general case the relaxation would be stopped by the first doublet that gains a vev, with the other one remaining vevless with a mass of the order of the cutoff. This happens to conform with the inert doublet model.

  13. Dielectric relaxation dynamics and AC conductivity scaling of metal-organic framework (MOF-5) based polymer electrolyte nanocomposites incorporated with ionic liquid

    NASA Astrophysics Data System (ADS)

    Dutta, Rituraj; Kumar, A.

    2017-10-01

    Dielectric relaxation dynamics and AC conductivity scaling of a metal-organic framework (MOF-5) based poly (vinylidene fluoride-co-hexafluoropropylene) (PVdf-HFP) incorporated with 1-Butyl-3-methylimidazolium hexafluorophosphate have been studied over a frequency range of 40 Hz-5 MHz and in the temperature range of 300 K-380 K. High values of dielectric permittivity (~{{\\varepsilon }\\prime} ) having strong dispersion are obtained at low frequency because of interfacial polarization. The real part of the dielectric modulus spectra (M‧) shows no prominent peak, whereas the imaginary part (M″) shows certain peaks, with a reduction in relaxation time (τ) that can be attributed to a non-Debye relaxation mechanism. The spectra also depict both concentration- and temperature-independent scaling behavior. The power law dependent variation of AC conductivity follows the jump relaxation model and reveals activated ion hopping over diffusion barriers. The value of the frequency exponent is observed to decrease with increasing concentration of ionic liquid, indicating the forward hopping of ions in the relaxation process. The AC conductivity scaling curves at different temperatures also depict the temperature-independent relaxation dynamics.

  14. Probing microsecond time scale dynamics in proteins by methyl (1)H Carr-Purcell-Meiboom-Gill relaxation dispersion NMR measurements. Application to activation of the signaling protein NtrC(r).

    PubMed

    Otten, Renee; Villali, Janice; Kern, Dorothee; Mulder, Frans A A

    2010-12-01

    To study microsecond processes by relaxation dispersion NMR spectroscopy, low power deposition and short pulses are crucial and encourage the development of experiments that employ (1)H Carr-Purcell-Meiboom-Gill (CPMG) pulse trains. Herein, a method is described for the comprehensive study of microsecond to millisecond time scale dynamics of methyl groups in proteins, exploiting their high abundance and favorable relaxation properties. In our approach, protein samples are produced using [(1)H, (13)C]-d-glucose in ∼100% D(2)O, which yields CHD(2) methyl groups for alanine, valine, threonine, isoleucine, leucine, and methionine residues with high abundance, in an otherwise largely deuterated background. Methyl groups in such samples can be sequence-specifically assigned to near completion, using (13)C TOCSY NMR spectroscopy, as was recently demonstrated (Otten, R.; et al. J. Am. Chem. Soc. 2010, 132, 2952-2960). In this Article, NMR pulse schemes are presented to measure (1)H CPMG relaxation dispersion profiles for CHD(2) methyl groups, in a vein similar to that of backbone relaxation experiments. Because of the high deuteration level of methyl-bearing side chains, artifacts arising from proton scalar coupling during the CPMG pulse train are negligible, with the exception of Ile-δ1 and Thr-γ2 methyl groups, and a pulse scheme is described to remove the artifacts for those residues. Strong (13)C scalar coupling effects, observed for several leucine residues, are removed by alternative biochemical and NMR approaches. The methodology is applied to the transcriptional activator NtrC(r), for which an inactive/active state transition was previously measured and the motions in the microsecond time range were estimated through a combination of backbone (15)N CPMG dispersion NMR spectroscopy and a collection of experiments to determine the exchange-free component to the transverse relaxation rate. Exchange contributions to the (1)H line width were detected for 21 methyl

  15. Nondirective meditation activates default mode network and areas associated with memory retrieval and emotional processing.

    PubMed

    Xu, Jian; Vik, Alexandra; Groote, Inge R; Lagopoulos, Jim; Holen, Are; Ellingsen, Oyvind; Håberg, Asta K; Davanger, Svend

    2014-01-01

    Nondirective meditation techniques are practiced with a relaxed focus of attention that permits spontaneously occurring thoughts, images, sensations, memories, and emotions to emerge and pass freely, without any expectation that mind wandering should abate. These techniques are thought to facilitate mental processing of emotional experiences, thereby contributing to wellness and stress management. The present study assessed brain activity by functional magnetic resonance imaging (fMRI) in 14 experienced practitioners of Acem meditation in two experimental conditions. In the first, nondirective meditation was compared to rest. Significantly increased activity was detected in areas associated with attention, mind wandering, retrieval of episodic memories, and emotional processing. In the second condition, participants carried out concentrative practicing of the same meditation technique, actively trying to avoid mind wandering. The contrast nondirective meditation > concentrative practicing was characterized by higher activity in the right medial temporal lobe (parahippocampal gyrus and amygdala). In conclusion, the present results support the notion that nondirective meditation, which permits mind wandering, involves more extensive activation of brain areas associated with episodic memories and emotional processing, than during concentrative practicing or regular rest.

  16. Nondirective meditation activates default mode network and areas associated with memory retrieval and emotional processing

    PubMed Central

    Xu, Jian; Vik, Alexandra; Groote, Inge R.; Lagopoulos, Jim; Holen, Are; Ellingsen, Øyvind; Håberg, Asta K.; Davanger, Svend

    2014-01-01

    Nondirective meditation techniques are practiced with a relaxed focus of attention that permits spontaneously occurring thoughts, images, sensations, memories, and emotions to emerge and pass freely, without any expectation that mind wandering should abate. These techniques are thought to facilitate mental processing of emotional experiences, thereby contributing to wellness and stress management. The present study assessed brain activity by functional magnetic resonance imaging (fMRI) in 14 experienced practitioners of Acem meditation in two experimental conditions. In the first, nondirective meditation was compared to rest. Significantly increased activity was detected in areas associated with attention, mind wandering, retrieval of episodic memories, and emotional processing. In the second condition, participants carried out concentrative practicing of the same meditation technique, actively trying to avoid mind wandering. The contrast nondirective meditation > concentrative practicing was characterized by higher activity in the right medial temporal lobe (parahippocampal gyrus and amygdala). In conclusion, the present results support the notion that nondirective meditation, which permits mind wandering, involves more extensive activation of brain areas associated with episodic memories and emotional processing, than during concentrative practicing or regular rest. PMID:24616684

  17. The Spin Relaxation of 8Li+ in Gold at Low Magnetic Field

    NASA Astrophysics Data System (ADS)

    MacFarlane, W. A.; Chow, K. H.; Hossain, M. D.; Karner, V. L.; Kiefl, R. F.; McFadden, R. M. L.; Morris, G. D.; Saadaoui, H.; Salman, Z.

    Here we report the temperature and applied magnetic field dependence of the spin lattice relaxation of implanted into Au foil in the range 4 to 290 K and 3 to 150 G. Below about 50 G, relaxation due to the dynamic host lattice nuclear spins is important, becoming dominant below 20 G. At 150 G, this process is quenched, and the relaxation is Korringa-like. We report the first measurement of its temperature dependence which shows the characteristic features of the site change around 190 K. At lower field the relaxation is two component above 100 K and exhibits a strong peak at the site change, which we attribute to quadrupolar relaxation of the adjacent Au spins. We discuss the ingredients required for a quantitative theory of the low field relaxation.

  18. Homonuclear Hartmann-Hahn transfer with reduced relaxation losses by use of the MOCCA-XY16 multiple pulse sequence

    NASA Astrophysics Data System (ADS)

    Furrer, Julien; Kramer, Frank; Marino, John P.; Glaser, Steffen J.; Luy, Burkhard

    2004-01-01

    Homonuclear Hartmann-Hahn transfer is one of the most important building blocks in modern high-resolution NMR. It constitutes a very efficient transfer element for the assignment of proteins, nucleic acids, and oligosaccharides. Nevertheless, in macromolecules exceeding ˜10 kDa TOCSY-experiments can show decreasing sensitivity due to fast transverse relaxation processes that are active during the mixing periods. In this article we propose the MOCCA-XY16 multiple pulse sequence, originally developed for efficient TOCSY transfer through residual dipolar couplings, as a homonuclear Hartmann-Hahn sequence with improved relaxation properties. A theoretical analysis of the coherence transfer via scalar couplings and its relaxation behavior as well as experimental transfer curves for MOCCA-XY16 relative to the well-characterized DIPSI-2 multiple pulse sequence are given.

  19. Homonuclear Hartmann-Hahn transfer with reduced relaxation losses by use of the MOCCA-XY16 multiple pulse sequence.

    PubMed

    Furrer, Julien; Kramer, Frank; Marino, John P; Glaser, Steffen J; Luy, Burkhard

    2004-01-01

    Homonuclear Hartmann-Hahn transfer is one of the most important building blocks in modern high-resolution NMR. It constitutes a very efficient transfer element for the assignment of proteins, nucleic acids, and oligosaccharides. Nevertheless, in macromolecules exceeding approximately 10 kDa TOCSY-experiments can show decreasing sensitivity due to fast transverse relaxation processes that are active during the mixing periods. In this article we propose the MOCCA-XY16 multiple pulse sequence, originally developed for efficient TOCSY transfer through residual dipolar couplings, as a homonuclear Hartmann-Hahn sequence with improved relaxation properties. A theoretical analysis of the coherence transfer via scalar couplings and its relaxation behavior as well as experimental transfer curves for MOCCA-XY16 relative to the well-characterized DIPSI-2 multiple pulse sequence are given.

  20. The Effects of Progressive Muscle Relaxation and Autogenic Relaxation on Young Soccer Players’ Mood States

    PubMed Central

    Hashim, Hairul Anuar; Hanafi@Ahmad Yusof, Hazwani

    2011-01-01

    Purpose This study was designed to compare the effects of two different relaxation techniques, namely progressive muscle relaxation (PMR) and autogenic relaxation (AGR) on moods of young soccer players. Methods Sixteen adolescent athletes (mean age: 14.1 ± 1.3) received either PMR or AGR training. Using Profile of Mood States- Adolescents, their mood states were measured one week before relaxation training, before the first relaxation session, and after the twelfth relaxation session. Results Mixed ANOVA revealed no significant interaction effects and no significant main effects in any of the subscales. However, significant main effects for testing sessions were found for confusion, depression, fatigue, and tension subscales. Post hoc tests revealed post-intervention reductions in the confusion, depression, fatigue, and tension subscale scores. Conclusion These two relaxation techniques induce equivalent mood responses and may be used to regulate young soccer players’ mood states. PMID:22375225

  1. Unravelling the mechanisms of vibrational relaxation in solution.

    PubMed

    Grubb, Michael P; Coulter, Philip M; Marroux, Hugo J B; Orr-Ewing, Andrew J; Ashfold, Michael N R

    2017-04-01

    We present a systematic study of the mode-specific vibrational relaxation of NO 2 in six weakly-interacting solvents (perfluorohexane, perfluoromethylcyclohexane, perfluorodecalin, carbon tetrachloride, chloroform, and d-chloroform), chosen to elucidate the dominant energy transfer mechanisms in the solution phase. Broadband transient vibrational absorption spectroscopy has allowed us to extract quantum state-resolved relaxation dynamics of the two distinct NO 2 fragments produced from the 340 nm photolysis of N 2 O 4 → NO 2 (X) + NO 2 (A) and their separate paths to thermal equilibrium. Distinct relaxation pathways are observed for the NO 2 bending and stretching modes, even at energies as high as 7000 cm -1 above the potential minimum. Vibrational energy transfer is governed by different interaction mechanisms in the various solvent environments, and proceeds with timescales ranging from 20-1100 ps. NO 2 relaxation rates in the perfluorocarbon solvents are identical despite differences in acceptor mode state densities, infrared absorption cross sections, and local solvent structure. Vibrational energy is shown to be transferred to non-vibrational solvent degrees of freedom (V-T) through impulsive collisions with the perfluorocarbon molecules. Conversely, NO 2 relaxation in chlorinated solvents is reliant on vibrational resonances (V-V) while V-T energy transfer is inefficient and thermal excitation of the surrounding solvent molecules inhibits faster vibrational relaxation through direct complexation. Intramolecular vibrational redistribution allows the symmetric stretch of NO 2 to act as a gateway for antisymmetric stretch energy to exit the molecule. This study establishes an unprecedented level of detail for the cooling dynamics of a solvated small molecule, and provides a benchmark system for future theoretical studies of vibrational relaxation processes in solution.

  2. A quantum mechanical alternative to the Arrhenius equation in the interpretation of proton spin-lattice relaxation data for the methyl groups in solids.

    PubMed

    Bernatowicz, Piotr; Shkurenko, Aleksander; Osior, Agnieszka; Kamieński, Bohdan; Szymański, Sławomir

    2015-11-21

    The theory of nuclear spin-lattice relaxation in methyl groups in solids has been a recurring problem in nuclear magnetic resonance (NMR) spectroscopy. The current view is that, except for extreme cases of low torsional barriers where special quantum effects are at stake, the relaxation behaviour of the nuclear spins in methyl groups is controlled by thermally activated classical jumps of the methyl group between its three orientations. The temperature effects on the relaxation rates can be modelled by Arrhenius behaviour of the correlation time of the jump process. The entire variety of relaxation effects in protonated methyl groups have recently been given a consistent quantum mechanical explanation not invoking the jump model regardless of the temperature range. It exploits the damped quantum rotation (DQR) theory originally developed to describe NMR line shape effects for hindered methyl groups. In the DQR model, the incoherent dynamics of the methyl group include two quantum rate (i.e., coherence-damping) processes. For proton relaxation only one of these processes is relevant. In this paper, temperature-dependent proton spin-lattice relaxation data for the methyl groups in polycrystalline methyltriphenyl silane and methyltriphenyl germanium, both deuterated in aromatic positions, are reported and interpreted in terms of the DQR model. A comparison with the conventional approach exploiting the phenomenological Arrhenius equation is made. The present observations provide further indications that incoherent motions of molecular moieties in the condensed phase can retain quantum character over much broader temperature range than is commonly thought.

  3. Molecular Relaxations in Supercooled Liquid and Glassy States of Amorphous Quinidine: Dielectric Spectroscopy and Density Functional Theory Approaches.

    PubMed

    Schammé, Benjamin; Mignot, Mélanie; Couvrat, Nicolas; Tognetti, Vincent; Joubert, Laurent; Dupray, Valérie; Delbreilh, Laurent; Dargent, Eric; Coquerel, Gérard

    2016-08-04

    In this article, we conduct a comprehensive molecular relaxation study of amorphous Quinidine above and below the glass-transition temperature (Tg) through broadband dielectric relaxation spectroscopy (BDS) experiments and theoretical density functional theory (DFT) calculations, as one major issue with the amorphous state of pharmaceuticals is life expectancy. These techniques enabled us to determine what kind of molecular motions are responsible, or not, for the devitrification of Quinidine. Parameters describing the complex molecular dynamics of amorphous Quinidine, such as Tg, the width of the α relaxation (βKWW), the temperature dependence of α-relaxation times (τα), the fragility index (m), and the apparent activation energy of secondary γ relaxation (Ea-γ), were characterized. Above Tg (> 60 °C), a medium degree of nonexponentiality (βKWW = 0.5) was evidenced. An intermediate value of the fragility index (m = 86) enabled us to consider Quinidine as a glass former of medium fragility. Below Tg (< 60 °C), one well-defined secondary γ relaxation, with an apparent activation energy of Ea-γ = 53.8 kJ/mol, was reported. From theoretical DFT calculations, we identified the most reactive part of Quinidine moieties through exploration of the potential energy surface. We evidenced that the clearly visible γ process has an intramolecular origin coming from the rotation of the CH(OH)C9H14N end group. An excess wing observed in amorphous Quinidine was found to be an unresolved Johari-Goldstein relaxation. These studies were supplemented by sub-Tg experimental evaluations of the life expectancy of amorphous Quinidine by X-ray powder diffraction and differential scanning calorimetry. We show that the difference between Tg and the onset temperature for crystallization, Tc, which is 30 K, is sufficiently large to avoid recrystallization of amorphous Quinidine during 16 months of storage under ambient conditions.

  4. Beta2-adrenoceptor-mediated tracheal relaxation induced by higenamine from Nandina domestica Thunberg.

    PubMed

    Tsukiyama, Muneo; Ueki, Takuro; Yasuda, Yoichi; Kikuchi, Hiroko; Akaishi, Tatsuhiro; Okumura, Hidenobu; Abe, Kazuho

    2009-10-01

    The fruit of Nandina domestica Thunberg (ND, Berberidaceae) has been used to improve cough and breathing difficulties in Japan for many years, but very little is known about the constituent of ND responsible for this effect. We have recently reported that the crude extract from ND (NDE) inhibits histamine- and serotonin-induced contraction of isolated guinea pig trachea, and the inhibitory activity was not explained by nantenine, a well-known alkaloid isolated from ND. To explore other constituent(s) of NDE with tracheal smooth muscle relaxant activity, we fractionated NDE and assessed the pharmacological effects of the fractions using isolated guinea pig tracheal ring preparations. NDE was introduced into a polyaromatic absorbent resin column and stepwise eluted to yield five fractions, among which only the 40 % methanol fraction was active in relaxing tracheal smooth muscle precontracted with histamine. Further separation of the 40 % methanol fraction with high-performance liquid chromatography yielded multiple subfractions, one of which was remarkably active in relaxing histamine-precontracted trachea. Chemical analysis with a time-of-flight mass spectrometer and nuclear magnetic resonance spectrometer identified the constituent of the most active subfraction as higenamine, a benzyltetrahydroisoquinoline alkaloid. The potency and efficacy of the active constituent from NDE in relaxing trachea were almost equivalent to synthetic higenamine. In addition, the effect of the active constituent from NDE was competitively inhibited by the selective beta (2)-adrenoceptor antagonist ICI 118,551. These results indicate that the major constituent responsible for the effect of NDE is higenamine, which probably causes the tracheal relaxation through stimulation of beta (2) adrenoceptors. Georg Thieme Verlag KG Stuttgart-New York.

  5. Epoxy-based hydrogels investigated by high-frequency dielectric relaxation spectroscopy.

    PubMed

    Krakovský, Ivan; Shikata, Toshiyuki; Hasegawa, Ryuta

    2013-11-14

    Using high-frequency dielectric relaxation spectroscopy, nanophase-separated structures of epoxy-based hydrogels were investigated as a function of water content at 25 °C. The dielectric spectra resulting from the hydrogels were reasonably decomposed into two Debye-type and two Cole-Cole-type relaxation modes. The fastest Debye-type mode, found at 8.3 ps, was attributed to the rotational relaxation process of free water molecules in the bulk state. The other Debye-type mode, at ca. 20-34 ps, originates from the exchange process of water molecules that are hydrogen-bonded to the hydrophilic epoxy network portions for free bulk ones. The first Cole-Cole-type mode observed, at ca. 20-370 ps, was assigned to the complicated dynamics for electric dipole moments of the hydrophilic groups in the epoxy networks (mainly monomeric oxyethylene units). The slowest major Cole-Cole-type mode, at 5-29 ns, was attributed to the Maxwell-Wagner-Sillars polarization process and confirmed the presence of the nanophase-separated structures as revealed by the previous small-angle neutron scattering experiments.

  6. Different Head Environments in Tarantula Thick Filaments Support a Cooperative Activation Process

    PubMed Central

    Sulbarán, Guidenn; Biasutto, Antonio; Alamo, Lorenzo; Riggs, Claire; Pinto, Antonio; Méndez, Franklin; Craig, Roger; Padrón, Raúl

    2013-01-01

    Myosin filaments from many muscles are activated by phosphorylation of their regulatory light chains (RLCs). Structural analysis of relaxed tarantula thick filaments shows that the RLCs of the interacting free and blocked myosin heads are in different environments. This and other data suggested a phosphorylation mechanism in which Ser-35 of the free head is exposed and constitutively phosphorylated by protein kinase C, whereas the blocked head is hidden and unphosphorylated; on activation, myosin light chain kinase phosphorylates the monophosphorylated free head followed by the unphosphorylated blocked head, both at Ser-45. Our goal was to test this model of phosphorylation. Mass spectrometry of quickly frozen, intact muscles showed that only Ser-35 was phosphorylated in the relaxed state. The location of this constitutively phosphorylated Ser-35 was analyzed by immunofluorescence, using antibodies specific for unphosphorylated or phosphorylated Ser-35. In the relaxed state, myofibrils were labeled by anti-pSer-35 but not by anti-Ser-35, whereas in rigor, labeling was similar with both. This suggests that only pSer-35 is exposed in the relaxed state, while in rigor, Ser-35 is also exposed. In the interacting-head motif of relaxed filaments, only the free head RLCs are exposed, suggesting that the constitutive pSer-35 is on the free heads, consistent with the proposed mechanism. PMID:24209856

  7. Anomalous C-V response correlated to relaxation processes in TiO{sub 2} thin film based-metal-insulator-metal capacitor: Effect of titanium and oxygen defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahouli, A., E-mail: kahouli.kader@yahoo.fr; University Grenoble Alpes, G2Elab, F-38000 Grenoble; Marichy, C.

    2015-04-21

    Capacitance-voltage (C–V) and capacitance-frequency (C–f) measurements are performed on atomic layer deposited TiO{sub 2} thin films with top and bottom Au and Pt electrodes, respectively, over a large temperature and frequency range. A sharp capacitance peak/discontinuity (C–V anomalous) is observed in the C–V characteristics at various temperatures and voltages. It is demonstrated that this phenomenon is directly associated with oxygen vacancies. The C–V peak irreversibility and dissymmetry at the reversal dc voltage are attributed to difference between the Schottky contacts at the metal/TiO{sub 2} interfaces. Dielectric analyses reveal two relaxation processes with degeneration of the activation energy. The low trapmore » level of 0.60–0.65 eV is associated with the first ionized oxygen vacancy at low temperature, while the deep trap level of 1.05 eV is associated to the second ionized oxygen vacancy at high temperature. The DC conductivity of the films exhibits a transition temperature at 200 °C, suggesting a transition from a conduction regime governed by ionized oxygen vacancies to one governed by interstitial Ti{sup 3+} ions. Both the C–V anomalous and relaxation processes in TiO{sub 2} arise from oxygen vacancies, while the conduction mechanism at high temperature is governed by interstitial titanium ions.« less

  8. Does the Arrhenius Temperature Dependence of the Johari-Goldstein Relaxation Persist above Tg?

    NASA Astrophysics Data System (ADS)

    Paluch, M.; Roland, C. M.; Pawlus, S.; Zioło, J.; Ngai, K. L.

    2003-09-01

    Dielectric spectra of the polyalcohols sorbitol and xylitol were measured under isobaric pressures up to 1.8GPa. At elevated pressure, the separation between the α and β relaxation peaks is larger than at ambient pressure, enabling the β relaxation times to be unambiguously determined. Taking advantage of this, we show that the Arrhenius temperature dependence of the β relaxation time does not persist for temperatures above Tg. This result, consistent with inferences drawn from dielectric relaxation measurements at ambient pressure, is obtained directly, without the usual problematic deconvolution the β and α processes.

  9. Activation of G protein-coupled bile acid receptor, TGR5, induces smooth muscle relaxation via both Epac- and PKA-mediated inhibition of RhoA/Rho kinase pathway

    PubMed Central

    Rajagopal, Senthilkumar; Kumar, Divya P.; Mahavadi, Sunila; Bhattacharya, Sayak; Zhou, Ruizhe; Corvera, Carlos U.; Bunnett, Nigel W.; Grider, John R.

    2013-01-01

    The present study characterized the TGR5 expression and the signaling pathways coupled to this receptor that mediates the relaxation of gastric smooth muscle. TGR5 was detected in gastric muscle cells by RT-PCR and Western blotting. Treatment of cells with the TGR5-selective ligand oleanolic acid (OA) activated Gαs, but not Gαq, Gαi1, Gαi2, or Gαi3, and increased cAMP levels. OA did not elicit contraction, but caused relaxation of carbachol-induced contraction of gastric muscle cells from wild-type mice, but not tgr5−/− mice. OA, but not a selective exchange protein activated by cAMP (Epac) ligand (8-pCPT-2′-O-Me-cAMP), caused phosphorylation of RhoA and the phosphorylation was blocked by the PKA inhibitor, myristoylated PKI, and by the expression of phosphorylation-deficient mutant RhoA (S188A). Both OA and Epac ligand stimulated Ras-related protein 1 (Rap1) and inhibited carbachol (CCh)-induced Rho kinase activity. Expression of RhoA (S188A) or PKI partly reversed the inhibition of Rho kinase activity by OA but had no effect on inhibition by Epac ligand. However, suppression of Rap1 with siRNA blocked the inhibition of Rho kinase by Epac ligand, and partly reversed the inhibition by OA; the residual inhibition was blocked by PKI. Muscle relaxation in response to OA, but not Epac ligand, was partly reversed by PKI. We conclude that activation of TGR5 causes relaxation of gastric smooth muscle and the relaxation is mediated through inhibition of RhoA/Rho kinase pathway via both cAMP/Epac-dependent stimulation of Rap1 and cAMP/PKA-dependent phosphorylation of RhoA at Ser188. TGR5 receptor activation on smooth muscle reveals a novel mechanism for the regulation of gut motility by bile acids. PMID:23275618

  10. The activation of G protein-coupled estrogen receptor induces relaxation via cAMP as well as potentiates contraction via EGFR transactivation in porcine coronary arteries

    PubMed Central

    Yu, Xuan; Stallone, John N.; Heaps, Cristine L.

    2018-01-01

    Estrogen exerts protective effects against cardiovascular diseases in premenopausal women, but is associated with an increased risk of both coronary heart disease and stroke in older postmenopausal women. Studies have shown that activation of the G-protein-coupled estrogen receptor 1 (GPER) can cause either relaxation or contraction of arteries. It is highly likely that these dual actions of GPER may contribute to the seemingly paradoxical effects of estrogen in regulating coronary artery function. The objective of this study was to test the hypothesis that activation of GPER enhances agonist-stimulated porcine coronary artery contraction via epidermal growth factor receptor (EGFR) transactivation and its downstream extracellular signal-regulated kinases (ERK1/2) pathway. Isometric tension studies and western blot were performed to determine the effect of GPER activation on coronary artery contraction. Our findings demonstrated that G-1 caused concentration-dependent relaxation of ET-1-induced contraction, while pretreatment of arterial rings with G-1 significantly enhanced ET-1-induced contraction. GPER antagonist, G-36, significantly inhibited both the G-1-induced relaxation effect and G-1-enhanced ET-1 contraction. Gallein, a Gβγ inhibitor, significantly increased G-1-induced relaxation, yet inhibited G-1-enhanced ET-1-mediated contraction. Similarly, inhibition of EGFR with AG1478 or inhibition of Src with phosphatase 2 further increased G-1-induced relaxation responses in coronary arteries, but decreased G-1-enhanced ET-1-induced contraction. Western blot experiments in porcine coronary artery smooth muscle cells (PCASMC) showed that G-1 increased tyrosine phosphorylation of EGFR, which was inhibited by AG-1478. Furthermore, enzyme-linked immunosorbent assays showed that the level of heparin-binding EGF (HB-EGF) released by ET-1 treatment increased two-fold; whereas pre-incubation with G-1 further increased ET-1-induced HB-EGF release to four-fold over

  11. The activation of G protein-coupled estrogen receptor induces relaxation via cAMP as well as potentiates contraction via EGFR transactivation in porcine coronary arteries.

    PubMed

    Yu, Xuan; Stallone, John N; Heaps, Cristine L; Han, Guichun

    2018-01-01

    Estrogen exerts protective effects against cardiovascular diseases in premenopausal women, but is associated with an increased risk of both coronary heart disease and stroke in older postmenopausal women. Studies have shown that activation of the G-protein-coupled estrogen receptor 1 (GPER) can cause either relaxation or contraction of arteries. It is highly likely that these dual actions of GPER may contribute to the seemingly paradoxical effects of estrogen in regulating coronary artery function. The objective of this study was to test the hypothesis that activation of GPER enhances agonist-stimulated porcine coronary artery contraction via epidermal growth factor receptor (EGFR) transactivation and its downstream extracellular signal-regulated kinases (ERK1/2) pathway. Isometric tension studies and western blot were performed to determine the effect of GPER activation on coronary artery contraction. Our findings demonstrated that G-1 caused concentration-dependent relaxation of ET-1-induced contraction, while pretreatment of arterial rings with G-1 significantly enhanced ET-1-induced contraction. GPER antagonist, G-36, significantly inhibited both the G-1-induced relaxation effect and G-1-enhanced ET-1 contraction. Gallein, a Gβγ inhibitor, significantly increased G-1-induced relaxation, yet inhibited G-1-enhanced ET-1-mediated contraction. Similarly, inhibition of EGFR with AG1478 or inhibition of Src with phosphatase 2 further increased G-1-induced relaxation responses in coronary arteries, but decreased G-1-enhanced ET-1-induced contraction. Western blot experiments in porcine coronary artery smooth muscle cells (PCASMC) showed that G-1 increased tyrosine phosphorylation of EGFR, which was inhibited by AG-1478. Furthermore, enzyme-linked immunosorbent assays showed that the level of heparin-binding EGF (HB-EGF) released by ET-1 treatment increased two-fold; whereas pre-incubation with G-1 further increased ET-1-induced HB-EGF release to four-fold over

  12. Calorimetric and relaxation properties of xylitol-water mixtures

    NASA Astrophysics Data System (ADS)

    Elamin, Khalid; Sjöström, Johan; Jansson, Helén; Swenson, Jan

    2012-03-01

    considerably stronger water (w) relaxation at about the same frequency. However, the similarities in time scale and activation energy between the w-relaxation and the β-relaxation of xylitol at water contents below 13 wt. % suggest that the w-relaxation is governed, in some way, by the β-relaxation of xylitol, since clusters of water molecules are rare at these water concentrations. At higher water concentrations the intensity and relaxation rate of the w-relaxation increase rapidly with increasing water content (up to the concentration where ice starts to form), most likely due to a rapid increase of small water clusters where an increasing number of water molecules interacting with other water molecules.

  13. Relaxation/Covert Rehearsal for Problematic Children.

    ERIC Educational Resources Information Center

    Fling, Sheila; McKenzie, Patricia

    A study was conducted to determine whether group relaxation training combined with guided fantasy as a method of covert cognitive rehearsal would be more effective than story-listening or no special treatment in enabling "problematic" children to decrease muscle tension, activity level, and behavior problems and to increase academic performance…

  14. Bradykinin-induced relaxation of coronary microarteries: S-nitrosothiols as EDHF?

    PubMed Central

    Batenburg, Wendy W; Popp, Rüdiger; Fleming, Ingrid; Vries, René de; Garrelds, Ingrid M; Saxena, Pramod R; Danser, A H Jan

    2004-01-01

    To investigate whether S-nitrosothiols, in addition to NO, mediate bradykinin-induced vasorelaxation, porcine coronary microarteries (PCMAs) were mounted in myographs. Following preconstriction, concentration–response curves (CRCs) were constructed to bradykinin, the NO donors S-nitroso-N-penicillamine (SNAP) and diethylamine NONOate (DEA-NONOate) and the S-nitrosothiols L-S-nitrosocysteine (L-SNC) and D-SNC. All agonists relaxed PCMAs. L-SNC was ≈5-fold more potent than D-SNC. The guanylyl cyclase inhibitor ODQ and the NO scavenger hydroxocobalamin induced a larger shift of the bradykinin CRC than the NO synthase inhibitor L-NAME, although all three inhibitors equally suppressed bradykinin-induced cGMP responses. Complete blockade of bradykinin-induced relaxation was obtained with L-NAME in the presence of the large- and intermediate-conductance Ca2+-activated K+-channel (BKCa, IKCa) blocker charybdotoxin and the small-conductance Ca2+-activated K+-channel (SKCa) channel blocker apamin, but not in the presence of L-NAME, apamin and the BKCa channel blocker iberiotoxin. Inhibitors of cytochrome P450 epoxygenase, cyclooxygenase, voltage-dependent K+ channels and ATP-sensitive K+ channels did not affect bradykinin-induced relaxation. SNAP-, DEA-NONOate- and D-SNC-induced relaxations were mediated entirely by the NO-guanylyl cyclase pathway. L-SNC-induced relaxations were partially blocked by charybdotoxin+apamin, but not by iberiotoxin+apamin, and this blockade was abolished following endothelium removal. ODQ, but not hydroxocobalamin, prevented L-SNC-induced increases in cGMP, and both drugs shifted the L-SNC CRC 5–10-fold to the right. L-SNC hyperpolarized intact and endothelium-denuded coronary arteries. Our results support the concept that bradykinin-induced relaxation is mediated via de novo synthesized NO and a non-NO, endothelium-derived hyperpolarizing factor (EDHF). S-nitrosothiols, via stereoselective activation of endothelial IKCa and SKCa channels

  15. [Indications for relaxation in geriatrics].

    PubMed

    Richard, J; Picot, A; de Bus, P; Andreoli, A; Dalakaki, X

    1975-11-01

    On a three years base experience in the geriatiic department of Geneva's University Psychiatric Clinic the paper studies the problem of selecting aged patients to be treated by relaxation according to the method of J. De Ajuriaguerra et M. Cahen. Observations are presented in an attempt to define three main points: a) the role played by relaxation when there is an objective [corrected] impairment of the body's integrity; b) relaxation effect on aged persons neurotic states evolution; c) the reality of considering dementia as a counter-indication of relaxation therapy. These remarks complete those presented previously about the training of therapists in relaxation, the type of control to be organized for them and their patients, the technical management of the cure, the place of relaxation in the post graduate psychiatric training, the effects of the therapy on the patients human environnement behavior in and out of the hospital, the way body is perceived through relaxation by the aged patients and it's consequences on the adjustment of an aging person.

  16. Mechano-Electrochemical Interaction Gives Rise to Strain Relaxation in Sn Electrodes

    DOE PAGES

    Barai, Pallab; Huang, Bo; Dillon, Shen J.; ...

    2016-01-01

    Tin (Sn) anode active particles were electrochemically lithiated during simultaneous imaging in a scanning electron microscope. Relationships among the reaction mechanism, active particle local strain rate, particle size, and microcrack formation are elucidated to demonstrate the importance of strain relaxation due to mechano-electrochemical interaction in Sn-based electrodes under electrochemical cycling. At low rates of operation, due to significant creep relaxation, large Sn active particles, of size 1 μm, exhibit no significant surface crack formation. Microcrack formation within Sn active particles occurs due to two different mechanisms: (i)large concentration gradient induced stress at the two-phase interface, and (ii) high volume expansionmore » induced stress at the surface of the active particles. From the present study, it can be concluded that majority of the microcracks evolve at or near the particle surface due to high volume expansion induced tension. Concentration gradient induced damage prevails near the center of the active particle, though significantly smaller in magnitude. Comparison with experimental results indicates that at operating conditions of C/2, even 500 nm sized Sn active particles remain free from surface crack formation, which emphasizes the importance of creep relaxation. A phase map has been developed to demonstrate the preferred mechano-electrochemical window of operation of Sn-based electrodes.« less

  17. Surface properties and exponential stress relaxations of mammalian meibum films.

    PubMed

    Eftimov, Petar; Yokoi, Norihiko; Tonchev, Vesselin; Nencheva, Yana; Georgiev, Georgi As

    2017-03-01

    The surface properties of meibomian secretion (MGS), the major constituent of the tear film (TF) lipid layer, are of key importance for TF stability. The interfacial properties of canine, cMGS, and feline, fMGS, meibum films were studied using a Langmuir surface balance. These species were selected because they have blinking frequency and TF stability similar to those of humans. The sample's performance during dynamic area changes was evaluated by surface pressure (π)-area (A) isocycles and the layer structure was monitored with Brewster angle microscopy. The films' dilatational rheology was probed via the stress-relaxation technique. The animal MGS showed similar behavior both between each other and with human MGS (studied previously). They form reversible, non-collapsible, multilayer thick films. The relaxations of canine, feline, and human MGS films were well described by double exponential decay reflecting the presence of two processes: (1) fast elastic process, with characteristic time τ < 10 s and (2) slow viscous process, with τ > 100 s-emphasizing the meibum layers viscoelasticity. The temperature decrease from 35 to 25 °C resulted in decreased thickness and lateral expansion of all MGS layers accompanied with increase of the π/A hysteresis and of the elastic process contribution to π relaxation transients. Thus, MGS films of mammals with similar blinking frequency and TF stability have similar surface properties and stress relaxations unaltered by the interspecies MGS compositional variations. Such knowledge may impact the selection of animal mimics of human MGS and on a better understanding of lipid classes' impact on meibum functionality.

  18. Direct Simulation of Magnetic Resonance Relaxation Rates and Line Shapes from Molecular Trajectories

    PubMed Central

    Rangel, David P.; Baveye, Philippe C.; Robinson, Bruce H.

    2012-01-01

    We simulate spin relaxation processes, which may be measured by either continuous wave or pulsed magnetic resonance techniques, using trajectory-based simulation methodologies. The spin–lattice relaxation rates are extracted numerically from the relaxation simulations. The rates obtained from the numerical fitting of the relaxation curves are compared to those obtained by direct simulation from the relaxation Bloch–Wangsness–Abragam– Redfield theory (BWART). We have restricted our study to anisotropic rigid-body rotational processes, and to the chemical shift anisotropy (CSA) and a single spin–spin dipolar (END) coupling mechanisms. Examples using electron paramagnetic resonance (EPR) nitroxide and nuclear magnetic resonance (NMR) deuterium quadrupolar systems are provided. The objective is to compare those rates obtained by numerical simulations with the rates obtained by BWART. There is excellent agreement between the simulated and BWART rates for a Hamiltonian describing a single spin (an electron) interacting with the bath through the chemical shift anisotropy (CSA) mechanism undergoing anisotropic rotational diffusion. In contrast, when the Hamiltonian contains both the chemical shift anisotropy (CSA) and the spin–spin dipolar (END) mechanisms, the decay rate of a single exponential fit of the simulated spin–lattice relaxation rate is up to a factor of 0.2 smaller than that predicted by BWART. When the relaxation curves are fit to a double exponential, the slow and fast rates extracted from the decay curves bound the BWART prediction. An extended BWART theory, in the literature, includes the need for multiple relaxation rates and indicates that the multiexponential decay is due to the combined effects of direct and cross-relaxation mechanisms. PMID:22540276

  19. Ca2+ -activated K+ channel (KCa) stimulation improves relaxant capacity of PDE5 inhibitors in human penile arteries and recovers the reduced efficacy of PDE5 inhibition in diabetic erectile dysfunction.

    PubMed

    González-Corrochano, R; La Fuente, Jm; Cuevas, P; Fernández, A; Chen, Mx; Sáenz de Tejada, I; Angulo, J

    2013-05-01

    We have evaluated the influence of calcium-activated potassium channels (KCa ) activation on cGMP-mediated relaxation in human penile tissues from non-diabetic and diabetic patients, and on the effects of PDE5 inhibitors on erectile responses in control and diabetic rats. Cavernosal tissues were collected from organ donors and from patients with erectile dysfunction (ED). Relaxations of corpus cavernosum strips (HCC) and penile resistance arteries (HPRA) obtained from these specimens were evaluated. Intracavernosal pressure (ICP) increases to cavernosal nerve electrical stimulation were determined in anaesthetized diabetic and non-diabetic rats. Concentration-dependent vasodilation to the PDE5 inhibitor, sildenafil, in HPRA was sensitive to endothelium removal, NO/cGMP pathway inhibition and KCa blockade. Accordingly, activation of KCa with NS-8 (10 μM) significantly potentiated sildenafil-induced relaxations in HPRA (EC50 0.49 ± 0.22 vs. 5.21 ± 0.63 μM). In HCC, sildenafil-induced relaxation was unaffected by KCa blockade or activation. Potentiating effects in HPRA were reproduced with an alternative PDE5 inhibitor (tadalafil) and KCa activator (NS1619) and prevented by removing the endothelium. Large-conductance KCa (BK) and intermediate-conductance KCa (IK) contribute to NS-8-induced effects and were immunodetected in human and rat penile arteries. NS-8 potentiated sildenafil-induced enhancement of erectile responses in rats. Activation of KCa recovered the impaired relaxation to sildenafil in diabetic HPRA while sildenafil completely reversed diabetes-induced ED in rats only when combined with KCa activation. Activation of KCa improves vasodilatory capacity of PDE5 inhibitors in diabetic and non-diabetic HPRA, resulting in the recovery of erectile function in diabetic rats. These results suggest a therapeutic potential for KCa activation in diabetic ED. © 2013 The Authors. British Journal of Pharmacology © 2013 The British Pharmacological Society.

  20. Conductivity-Relaxation Relations in Nanocomposite Polymer Electrolytes Containing Ionic Liquid.

    PubMed

    Shojaatalhosseini, Mansoureh; Elamin, Khalid; Swenson, Jan

    2017-10-19

    In this study, we have used nanocomposite polymer electrolytes, consisting of poly(ethylene oxide) (PEO), δ-Al 2 O 3 nanoparticles, and lithium bis(trifluoromethanesolfonyl)imide (LiTFSI) salt (with 4 wt % δ-Al 2 O 3 and PEO:Li ratios of 16:1 and 8:1), and added different amounts of the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesolfonyl)imide (BMITFSI). The aim was to elucidate whether the ionic liquid is able to dissociate the Li-ions from the ether oxygens and thereby decouple the ionic conductivity from the segmental polymer dynamics. The results from DSC and dielectric spectroscopy show that the ionic liquid speeds up both the segmental polymer dynamics and the motion of the Li + ions. However, a close comparison between the structural (α) relaxation process, given by the segmental polymer dynamics, and the ionic conductivity shows that the motion of the Li + ions decouples from the segmental polymer dynamics at higher concentrations of the ionic liquid (≥20 wt %) and instead becomes more related to the viscosity of the ionic liquid. This decoupling increases with decreasing temperature. In addition to the structural α-relaxation, two more local relaxation processes, denoted β and γ, are observed. The β-relaxation becomes slightly faster at the highest concentration of the ionic liquid (at least for the lower salt concentration), whereas the γ-relaxation is unaffected by the ionic liquid, over the whole concentration range 0-40 wt %.

  1. Electron spin relaxation in carbon nanotubes: Dyakonov-Perel mechanism

    NASA Astrophysics Data System (ADS)

    Semenov, Yuriy; Zavada, John; Kim, Ki Wook

    2010-03-01

    The long standing problem of unaccountable short spin relaxation in carbon nanotubes (CNT) meets a disclosure in terms of curvature-mediated spin-orbital interaction that leads to spin fluctuating precession analogous to Dyakonov-Perel mechanism. Strong anisotropy imposed by arbitrary directed magnetic field has been taken into account in terms of extended Bloch equations. Especially, stationary spin current through CNT can be controlled by spin-flip processes with relaxation time as less as 150 ps, the rate of transversal polarization (i.e. decoherence) runs up to 1/(70 ps) at room temperature while spin interference of the electrons related to different valleys can be responsible for shorter spin dephasing. Dependencies of spin-relaxation parameters on magnetic field strength and orientation, CNT curvature and chirality have been analyzed.

  2. Investigation of gender- and age-related preferences of men and women regarding lighting conditions for activation and relaxation

    NASA Astrophysics Data System (ADS)

    Schweitzer, S.; Schinagl, C.; Djuras, G.; Frühwirth, M.; Hoschopf, H.; Wagner, F.; Schulz, B.; Nemitz, W.; Grote, V.; Reidl, S.; Pritz, P.; Moser, M.; Wenzl, F. P.

    2016-09-01

    In recent years, LED lighting became an indispensable alternative to conventional lighting systems. Sophisticated solutions offer not only comfortable white light with a good color rendering. They also provide the possibility of changing illuminance and color temperature. Some systems even simulate daylight over the entire day, some including natural variations as due to clouds. Such systems are supposed to support the chronobiological needs of human and to have a positive effect on well-being, performance, sleep-quality and health. Lighting can also be used to support specific aims in a situation, like to improve productivity in activation or to support recreation in relaxation. Research regarding suitable light-settings for such situations and superordinate questions like their influence on well-being and health is still incomplete. We investigated the subjective preferences of men and women regarding light-settings for activation and relaxation. We supplied two rooms and four cubes with light sources that provide the possibility of tuning illuminance, color temperature and deviation from Plackian locus. More than 80 individuals - belonging to four groups differing in gender and age - were asked to imagine activating and recovering situations for which they should adjust suitable and pleasant lighting by tuning the above mentioned light properties. It was shown that there are clear differences in the lighting conditions preferred for these two situations. Also some combined gender- and age-specific differences became apparent.

  3. Knee Cartilage Thickness, T1ρ and T2 Relaxation Time Are Related to Articular Cartilage Loading in Healthy Adults

    PubMed Central

    Van Rossom, Sam; Smith, Colin Robert; Zevenbergen, Lianne; Thelen, Darryl Gerard; Vanwanseele, Benedicte; Van Assche, Dieter; Jonkers, Ilse

    2017-01-01

    Cartilage is responsive to the loading imposed during cyclic routine activities. However, the local relation between cartilage in terms of thickness distribution and biochemical composition and the local contact pressure during walking has not been established. The objective of this study was to evaluate the relation between cartilage thickness, proteoglycan and collagen concentration in the knee joint and knee loading in terms of contact forces and pressure during walking. 3D gait analysis and MRI (3D-FSE, T1ρ relaxation time and T2 relaxation time sequence) of fifteen healthy subjects were acquired. Experimental gait data was processed using musculoskeletal modeling to calculate the contact forces, impulses and pressure distribution in the tibiofemoral joint. Correlates to local cartilage thickness and mean T1ρ and T2 relaxation times of the weight-bearing area of the femoral condyles were examined. Local thickness was significantly correlated with local pressure: medial thickness was correlated with medial condyle contact pressure and contact force, and lateral condyle thickness was correlated with lateral condyle contact pressure and contact force during stance. Furthermore, average T1ρ and T2 relaxation time correlated significantly with the peak contact forces and impulses. Increased T1ρ relaxation time correlated with increased shear loading, decreased T1ρ and T2 relaxation time correlated with increased compressive forces and pressures. Thicker cartilage was correlated with higher condylar loading during walking, suggesting that cartilage thickness is increased in those areas experiencing higher loading during a cyclic activity such as gait. Furthermore, the proteoglycan and collagen concentration and orientation derived from T1ρ and T2 relaxation measures were related to loading. PMID:28076431

  4. Alternating current transport and dielectric relaxation of nanocrystalline graphene oxide

    NASA Astrophysics Data System (ADS)

    Zedan, I. T.; El-Menyawy, E. M.

    2018-07-01

    Graphene oxide (GO) has been synthesized from natural graphite using modified Hummer's method and is subjected to sonication for 1 h. X-ray diffraction (XRD) showed that the prepared GO has nanocrystalline structure with particle size of about 5 nm and high-resolution transmission electron microscope showed that it had a layered structure. The nanocrystalline GO powder was pressed as a disk and the alternating current (AC) electrical conductivity, σAC, and dielectric properties have been investigated in the frequency range 50Hz-5 MHz and temperature range 298-523K using parallel plate spectroscopic technique. Analysis of σ AC as a function of frequency shows that the relation follows Jonscher's universal law with frequency exponent decreases with increasing temperature in which the correlated barrier hopping model is applicable to describe the behavior. The dielectric constant and dielectric loss are studied as functions of frequency and temperature. The dielectric modulus formalism is used for describing the relaxation process in which the relaxation time and its activation energy were evaluated.

  5. Anomalous relaxation in fractal structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujiwara, S.; Yonezawa, F.

    1995-03-01

    For the purpose of studying some interesting properties of anomalous relaxation in fractal structures, we carry out Monte Carlo simulations of random walks on two-dimensional fractal structures (Sierpinski carpets with different cutouts and site-percolation clusters in a square lattice at the critical concentration). We find that the relaxation is of the Cole-Cole type [J. Chem. Phys. 9, 341 (1941)], which is one of the empirical laws of anomalous relaxation. Scaling properties are found in the relaxation function as well as in the particle density. We also find that, in strucures with almost the same fractal dimension, relaxation in structures withmore » dead ends is slower than that in structures without them. This paper ascertains that the essential aspects of the anomalous relaxation due to many-body effects can be explained in the framework of the one-body model.« less

  6. Elevated intrabolus pressure identifies obstructive processes when integrated relaxation pressure is normal on esophageal high-resolution manometry.

    PubMed

    Quader, Farhan; Reddy, Chanakyaram; Patel, Amit; Gyawali, C Prakash

    2017-07-01

    Elevated integrated relaxation pressure (IRP) on esophageal high-resolution manometry (HRM) identifies obstructive processes at the esophagogastric junction (EGJ). Our aim was to determine whether intrabolus pressure (IBP) can identify structural EGJ processes when IRP is normal. In this observational cohort study, adult patients with dysphagia and undergoing HRM were evaluated for endoscopic evidence of structural EGJ processes (strictures, rings, hiatus hernia) in the setting of normal IRP. HRM metrics [IRP, distal contractile integral (DCI), distal latency (DL), IBP, and EGJ contractile integral (EGJ-CI)] were compared among 74 patients with structural EGJ findings (62.8 ± 1.6 yr, 67.6% women), 27 patients with normal EGD (52.9 ± 3.2 yr, 70.3% women), and 21 healthy controls (27.6 ± 0.6 yr, 52.4% women). Findings were validated in 85 consecutive symptomatic patients to address clinical utility. In the primary cohort, mean IBP (18.4 ± 0.9 mmHg) was higher with structural EGJ findings compared with dysphagia with normal EGD (13.5 ± 1.1 mmHg, P = 0.002) and healthy controls (10.9 ± 0.9 mmHg, P < 0.001). However, mean IRP, DCI, DL, and EGJ-CI were similar across groups ( P > 0.05 for each comparison). During multiple rapid swallows, IBP remained higher in the structural findings group compared with controls ( P = 0.02). Similar analysis of the prospective validation cohort confirmed IBP elevation in structural EGJ processes, but correlation with dysphagia could not be demonstrated. We conclude that elevated IBP predicts the presence of structural EGJ processes even when IRP is normal, but correlation with dysphagia is suboptimal. NEW & NOTEWORTHY Integrated relaxation pressure (IRP) above the upper limit of normal defines esophageal outflow obstruction using high-resolution manometry. In patients with normal IRP, elevated intrabolus pressure (IBP) can be a surrogate marker for a structural restrictive or obstructive process at the

  7. TEACHING NEUROMUSCULAR RELAXATION.

    ERIC Educational Resources Information Center

    NORRIS, JEANNE E.; STEINHAUS, ARTHUR H.

    THIS STUDY ATTEMPTED TO FIND OUT WHETHER (1) THE METHODS FOR ATTAINING NEUROMUSCULAR RELAXATION THAT HAVE PROVED FRUITFUL IN THE ONE-TO-ONE RELATIONSHIP OF THE CLINIC CAN BE SUCCESSFULLY ADAPTED TO THE TEACHER-CLASS RELATIONSHIP OF THE CLASSROOM AND GYMNASIUM, AND (2) NEUROMUSCULAR RELAXATION CAN BE TAUGHT SUCCESSFULLY BY AN APPROPRIATELY TRAINED…

  8. Theoretical study on the sound absorption of electrolytic solutions. II. Assignments of relaxations.

    PubMed

    Yamaguchi, T; Matsuoka, T; Koda, S

    2007-08-14

    The theory on the ultrasonic absorption spectrum of electrolytic solutions recently proposed by us is applied to the model system that resembles to the aqueous solution of MgSO4. The charges on ions are reduced to +/-1.5e in order to obtain the equilibrium structure by the integral equation theory. The theory reproduces the existence of two relaxations around 100 kHz and 1 GHz. The physical origin of the relaxation is analyzed based on the theoretical expression. The slower relaxation is shown to originate in the formation of contact ion pair, in harmony with the conventional assignment. The amplitude of this relaxation agrees with the experimental one fairly well. The absorption cross section is a weakly increasing function of the concentration of the salt in theory, whereas it depends little on the concentration in experiment, which is ascribed to the weaker association of the pair in the theory. The deviation from the Debye relaxation is found for the faster process, and the concentration dependence is small. The analysis shows that this relaxation stems from the coupling between the pressure and the long-range concentration fluctuation, and the concentration independence and the non-Debye relaxation are explained based on the theoretical analysis. In particular, the theory demonstrates that this process has the t(-3/2) tail in the time domain, which is confirmed by numerical calculation. The deviation of the theoretical relaxation amplitude from the experimental one is elucidated in terms of the theoretical expression of the coefficient.

  9. Chloride channels mediate sodium sulphide-induced relaxation in rat uteri

    PubMed Central

    Mijušković, Ana; Kokić, Aleksandra Nikolić; Dušić, Zorana Oreščanin; Slavić, Marija; Spasić, Mihajlo B; Blagojević, Duško

    2015-01-01

    Background and Purpose Hydrogen sulphide reduces uterine contractility and is of potential interest as a treatment for uterine disorders. The aim of this study was to explore the mechanism of sodium sulphide (Na2S)-induced relaxation of rat uterus, investigate the importance of redox effects and ion channel-mediated mechanisms, and any interactions between these two mechanisms. Experimental Approach Organ bath studies were employed to assess the pharmacological effects of Na2S in uterine strips by exposing them to Na2S with or without Cl− channel blockers (DIDS, NFA, IAA-94, T16Ainh-A01, TA), raised KCl (15 and 75 mM), K+ channel inhibitors (glibenclamide, TEA, 4-AP), L-type Ca2+ channel activator (S-Bay K 8644), propranolol and methylene blue. The activities of antioxidant enzymes were measured in homogenates of treated uteri. The expression of bestrophin channel 1 (BEST-1) was determined by Western blotting and RT-PCR. Key Results Na2S caused concentration-dependent reversible relaxation of spontaneously active and calcium-treated uteri, affecting both amplitude and frequency of contractions. Uteri exposed to 75 mM KCl were less sensitive to Na2S compared with uteri in 15 mM KCl. Na2S-induced relaxations were abolished by DIDS, but unaffected by other modulators or by the absence of extracellular HCO3−, suggesting the involvement of chloride ion channels. Na2S in combination with different modulators provoked specific changes in the anti-oxidant profiles of uteri. The expression of BEST-1, both mRNA and protein, was demonstrated in rat uteri. Conclusions and Implications The relaxant effects of Na2S in rat uteri are mediated mainly via a DIDS-sensitive Cl−-pathway. Components of the relaxation are redox- and Ca2+-dependent. PMID:25857480

  10. Chloride channels mediate sodium sulphide-induced relaxation in rat uteri.

    PubMed

    Mijušković, Ana; Kokić, Aleksandra Nikolić; Dušić, Zorana Oreščanin; Slavić, Marija; Spasić, Mihajlo B; Blagojević, Duško

    2015-07-01

    Hydrogen sulphide reduces uterine contractility and is of potential interest as a treatment for uterine disorders. The aim of this study was to explore the mechanism of sodium sulphide (Na2 S)-induced relaxation of rat uterus, investigate the importance of redox effects and ion channel-mediated mechanisms, and any interactions between these two mechanisms. Organ bath studies were employed to assess the pharmacological effects of Na2 S in uterine strips by exposing them to Na2 S with or without Cl(-) channel blockers (DIDS, NFA, IAA-94, T16Ainh-A01, TA), raised KCl (15 and 75 mM), K(+) channel inhibitors (glibenclamide, TEA, 4-AP), L-type Ca(2+) channel activator (S-Bay K 8644), propranolol and methylene blue. The activities of antioxidant enzymes were measured in homogenates of treated uteri. The expression of bestrophin channel 1 (BEST-1) was determined by Western blotting and RT-PCR. Na2 S caused concentration-dependent reversible relaxation of spontaneously active and calcium-treated uteri, affecting both amplitude and frequency of contractions. Uteri exposed to 75 mM KCl were less sensitive to Na2 S compared with uteri in 15 mM KCl. Na2 S-induced relaxations were abolished by DIDS, but unaffected by other modulators or by the absence of extracellular HCO3 (-) , suggesting the involvement of chloride ion channels. Na2 S in combination with different modulators provoked specific changes in the anti-oxidant profiles of uteri. The expression of BEST-1, both mRNA and protein, was demonstrated in rat uteri. The relaxant effects of Na2 S in rat uteri are mediated mainly via a DIDS-sensitive Cl(-) -pathway. Components of the relaxation are redox- and Ca(2+) -dependent. © 2015 The British Pharmacological Society.

  11. Interfacial elastic relaxation during the ejection of bi-layered tablets.

    PubMed

    Anuar, M S; Briscoe, B J

    2010-03-15

    The predilection of a bi-layered tablet to fail in the interface region after its initial formation in the compaction process reduces its practicality as a choice for controlled release solid drug delivery system. Hence, a fundamental appreciation of the governing mechanism that causes the weakening of the interfacial bonds within the bi-layered tablet is crucial in order to improve the overall bi-layered tablet mechanical integrity. This work has shown that the occurrence of the elastic relaxation in the interface region during the ejection stage of the compaction process decreases with the increase in the bi-layered tablet interface strength. This is believed to be due to the increase in the plastic bonding in the interface region. The tablet diametrical elastic relaxation affects the tablet height elastic relaxation, where the impediment of the tablet height expansion is observed when the interface region experiences a diametrical expansion. 2009 Elsevier B.V. All rights reserved.

  12. A Comparison of Relaxation Strategies.

    ERIC Educational Resources Information Center

    Matthews, Doris B.

    Some researchers argue that all relaxation techniques produce a single relaxation response while others support a specific-effects hypothesis which suggests that progressive relaxation affects the musculoskeletal system and that guided imagery affects cognitive changes. Autogenics is considered a technique which is both somatic and cognitive. This…

  13. Relaxation of Vibrationally Excited States in Solid Binary Carbonate-Sulfate Systems

    NASA Astrophysics Data System (ADS)

    Aliev, A. R.; Akhmedov, I. R.; Kakagasanov, M. G.; Aliev, Z. A.; Gafurov, M. M.; Rabadanov, K. Sh.; Amirov, A. M.

    2018-02-01

    The processes of molecular relaxation in solid binary carbonate-sulfate systems, such as Li2CO3-Li2SO4, Na2CO3-Na2SO4, K2CO3-K2SO4, have been studied by Raman spectroscopy. It has been revealed that the relaxation time of CO 3 2- anion vibration ν1(A) in a binary system is higher than in an individual carbonate. It is shown that an increase in the relaxation rate may be explained by the existence of an additional mechanism of the relaxation of vibrationally excited states of a carbonate anion. This mechanism is associated with the excitation of the vibration of another anion (SO 4 2- ) and the "birth" of a lattice phonon. It has been established that the condition for the implementation of such a relaxation mechanism is that the difference between the frequencies of these vibrations must correspond to the region of a rather high density of phonon spectrum states.

  14. Relaxation model of radiation-induced conductivity in polymers

    NASA Astrophysics Data System (ADS)

    Zhutayeva, Yu. R.; Khatipov, S. A.

    1999-05-01

    The paper suggests a relaxation model of radiation-induced conductivity (RIC) in polymers. According to the model, the transfer of charges generated in the polymer volume by ionizing radiation takes place with the participation of molecular relaxation processes. The mechanism of electron transport consists in the transfer of the charge directly between traps when they draw close to one another due to the rotation of macromolecule segments. The numerical solutions of the corresponding kinetic equations for different distribution functions Q( τ) of the times of molecular relaxation and for different functions of the probability P( τ, τ') of charge transfer in the `overlapping' regions of the diffusion spheres of the segments are analyzed. The relaxation model provides an explanation of the non-Arrhenius behavior of the RIC temperature dependence, the power dependence of RIC on the dose rate with a power index in the interval 0.5-1.0, the appearance of maxima in the curves of the RIC temporal dependence and their irreversible character in the region of large dose rates (more than 1 Gy/s). The model can be used for interpreting polymer RIC in conditions of kinetic mobility of macromolecules.

  15. Combining walking and relaxation for stress reduction-A randomized cross-over trial in healthy adults.

    PubMed

    Matzer, Franziska; Nagele, Eva; Lerch, Nikolaus; Vajda, Christian; Fazekas, Christian

    2018-04-01

    Both physical activity and relaxation have stress-relieving potential. This study investigates their combined impact on the relaxation response while considering participants' initial stress level. In a randomized cross-over trial, 81 healthy adults completed 4 types of short-term interventions for stress reduction, each lasting for 1 hr: (1) physical activity (walking) combined with resting, (2) walking combined with balneotherapy, (3) combined resting and balneotherapy, and (4) resting only. Saliva cortisol, blood pressure, state of mood, and relaxation were measured preintervention and postintervention. Stress levels were determined by validated questionnaires. All interventions were associated with relaxation responses in the variables saliva cortisol, blood pressure, state of mood, and subjective relaxation. No significant differences were found regarding the reduction of salivary cortisol (F = 1.30; p = .281). The systolic blood pressure was reduced best when walking was combined with balneotherapy or resting (F = 7.34; p < .001). Participants with high stress levels (n = 25) felt more alert after interventions including balneotherapy, whereas they reported an increase of tiredness when walking was combined with resting (F = 3.20; p = .044). Results suggest that combining physical activity and relaxation (resting or balneotherapy) is an advantageous short-term strategy for stress reduction as systolic blood pressure is reduced best while similar levels of relaxation can be obtained. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Spectral hole lifetimes and spin population relaxation dynamics in neodymium-doped yttrium orthosilicate

    NASA Astrophysics Data System (ADS)

    Cruzeiro, E. Zambrini; Tiranov, A.; Usmani, I.; Laplane, C.; Lavoie, J.; Ferrier, A.; Goldner, P.; Gisin, N.; Afzelius, M.

    2017-05-01

    We present a detailed study of the lifetime of optical spectral holes due to population storage in Zeeman sublevels of Nd3 +:Y2SiO5 . The lifetime is measured as a function of magnetic field strength and orientation, temperature, and Nd3 + doping concentration. At the lowest temperature of 3 K we find a general trend where the lifetime is short at low field strengths, then increases to a maximum lifetime at a few hundred mT, and then finally decays rapidly for high field strengths. This behavior can be modeled with a relaxation rate dominated by Nd3 +-Nd3 + cross relaxation at low fields and spin lattice relaxation at high magnetic fields. The maximum lifetime depends strongly on both the field strength and orientation, due to the competition between these processes and their different angular dependencies. The cross relaxation limits the maximum lifetime for concentrations as low as 30 ppm of Nd3 + ions. By decreasing the concentration to less than 1 ppm we could completely eliminate the cross relaxation, reaching a lifetime of 3.8 s at 3 K. At higher temperatures the spectral hole lifetime is limited by the magnetic-field-independent Raman and Orbach processes. In addition we show that the cross relaxation rate can be strongly reduced by creating spectrally large holes of the order of the optical inhomogeneous broadening. Our results are important for the development and design of new rare-earth-ion doped crystals for quantum information processing and narrow-band spectral filtering for biological tissue imaging.

  17. Nonequilibrium thermodynamics and information theory: basic concepts and relaxing dynamics

    NASA Astrophysics Data System (ADS)

    Altaner, Bernhard

    2017-11-01

    Thermodynamics is based on the notions of energy and entropy. While energy is the elementary quantity governing physical dynamics, entropy is the fundamental concept in information theory. In this work, starting from first principles, we give a detailed didactic account on the relations between energy and entropy and thus physics and information theory. We show that thermodynamic process inequalities, like the second law, are equivalent to the requirement that an effective description for physical dynamics is strongly relaxing. From the perspective of information theory, strongly relaxing dynamics govern the irreversible convergence of a statistical ensemble towards the maximally non-commital probability distribution that is compatible with thermodynamic equilibrium parameters. In particular, Markov processes that converge to a thermodynamic equilibrium state are strongly relaxing. Our framework generalizes previous results to arbitrary open and driven systems, yielding novel thermodynamic bounds for idealized and real processes. , which features invited work from the best early-career researchers working within the scope of J. Phys. A. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Bernhard Altaner was selected by the Editorial Board of J. Phys. A as an Emerging Talent.

  18. Viscous relaxation of the Moho under large lunar basins

    NASA Technical Reports Server (NTRS)

    Brown, C. David; Grimm, Robert E.

    1993-01-01

    Viscously relaxed topography on the Moon is evidence of a period in lunar history of higher internal temperatures and greater surface activity. Previous work has demonstrated the viscous relaxation of the Tranquilitatis basin surface. Profiles of the lunar Moho under nine basins were constructed from an inversion of lunar gravity data. These profiles show a pattern of increasingly subdued relief with age, for which two explanations have been proposed. First, ancient basins may have initially had extreme Moho relief like that of younger basins like Orientale, but, due to higher internal temperatures in early lunar history, this relief viscously relaxed to that observed today. Second, ductile flow in the crust immediately after basin formation resulted in an initially shallow basin and subdued mantle uplift. The intent is to test the first hypothesis.

  19. Spectroscopic Studies of the Super Relaxed State of Skeletal Muscle

    PubMed Central

    Naber, Nariman; Pate, Edward; Canton, Marcella; Reggiani, Carlo; Cooke, Roger

    2016-01-01

    In the super-relaxed state of myosin, ATPase activity is strongly inhibited by binding of the myosin heads to the core of the thick filament in a structure known as the interacting-heads motif. In the disordered relaxed state myosin heads are not bound to the core of the thick filament and have an ATPase rate that is 10 fold greater. In the interacting-heads motif the two regulatory light chains appear to bind to each other. We have made single cysteine mutants of the regulatory light chain, placed both paramagnetic and fluorescent probes on them, and exchanged them into skinned skeletal muscle fibers. Many of the labeled light chains tended to disrupt the stability of the super-relaxed state, and showed spectral changes in the transition from the disordered relaxed state to the super-relaxed state. These data support the putative interface between the two regulatory light chains identified by cryo electron microscopy and show that both the divalent cation bound to the regulatory light chain and the N-terminus of the regulatory light chain play a role in the stability of the super-relaxed state. One probe showed a shift to shorter wavelengths in the super-relaxed state such that a ratio of intensities at 440nm to that at 520nm provided a measure of the population of the super-relaxed state amenable for high throughput screens for finding potential pharmaceuticals. The results provide a proof of concept that small molecules that bind to this region can destabilize the super-relaxed state and provide a method to search for small molecules that do so leading to a potentially effective treatment for Type 2 diabetes and obesity. PMID:27479128

  20. Chloride channel function is linked to epithelium-dependent airway relaxation.

    PubMed

    Fortner, C N; Lorenz, J N; Paul, R J

    2001-02-01

    We previously reported that substance P (SP) and ATP evoke transient, epithelium-dependent relaxation of mouse tracheal smooth muscle. Since both SP and ATP are known to evoke transepithelial Cl- secretion across epithelial monolayers, we tested the hypothesis that epithelium-dependent relaxation of mouse trachea depends on Cl- channel function. In perfused mouse tracheas, the responses to SP and ATP were both inhibited by the Cl- channel inhibitors diphenylamine-2-carboxylate and 5-nitro-2-(3-phenylpropylamino)benzoate. Relaxation to ATP or SP was unaffected by 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS), and relaxation to SP was unaffected by either DIDS or DNDS. Replacing Cl- in the buffer solutions with the impermeable anion gluconate on both sides of the trachea inhibited relaxation to SP or ATP. In contrast, increasing the gradient for Cl- secretion using Cl- free medium only in the tracheal lumen enhanced the relaxation to SP or ATP. We conclude that Cl- channel function is linked to receptor-mediated, epithelium-dependent relaxation. The finding that relaxation to SP was not blocked by DIDS suggested the involvement of a DIDS-insensitive Cl- channel, potentially the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel. To test this hypothesis, we evaluated tracheas from CFTR-deficient mice and found that the peak relaxation to SP or ATP was not significantly different from those responses in wild-type littermates. This suggests that a DIDS-insensitive Cl- channel other than CFTR is active in the SP response. This work introduces a possible role for Cl- pathways in the modulation of airway smooth muscle function and may have implications for fundamental studies of airway function as well as therapeutic approaches to pulmonary disease.

  1. Dielectric relaxation in undiluted poly (4-chlorostyrene). II. Characteristics of the high frequency tail

    NASA Astrophysics Data System (ADS)

    Yoshihara, M.; Work, R. N.

    1981-05-01

    The shape of the principal dielectric relaxation process that occurs just above the glass transition temperature Tg in well annealed, atactic, undiluted poly (4-chlorostyrene) exhibits a small tail at the high frequency end of the spectrum of relaxation times. This high frequency tail (HFT) has been characterized at temperatures varying from 351 to 413 K by using the Havriliak-Negami equation. The glass transition temperature Tg of P4CS is about 400 K. It is suggested that the HFT is distinct from the β relaxation process which occurs in polystyrene at temperatures just below Tg; and that the HFT is experimental evidence of the existence of localized, fast conformational changes. This fast process is presumed to be slowed and broadened by interactions with the surroundings.

  2. Tuning energy relaxation along quantum Hall channels.

    PubMed

    Altimiras, C; le Sueur, H; Gennser, U; Cavanna, A; Mailly, D; Pierre, F

    2010-11-26

    The chiral edge channels in the quantum Hall regime are considered ideal ballistic quantum channels, and have quantum information processing potentialities. Here, we demonstrate experimentally, at a filling factor of ν(L)=2, the efficient tuning of the energy relaxation that limits quantum coherence and permits the return toward equilibrium. Energy relaxation along an edge channel is controllably enhanced by increasing its transmission toward a floating Ohmic contact, in quantitative agreement with predictions. Moreover, by forming a closed inner edge channel loop, we freeze energy exchanges in the outer channel. This result also elucidates the inelastic mechanisms at work at ν(L)=2, informing us, in particular, that those within the outer edge channel are negligible.

  3. Percolation, sliding, localization and relaxation in topologically closed circuits

    NASA Astrophysics Data System (ADS)

    Hurowitz, Daniel; Cohen, Doron

    2016-03-01

    Considering a random walk in a random environment in a topologically closed circuit, we explore the implications of the percolation and sliding transitions for its relaxation modes. A complementary question regarding the “delocalization” of eigenstates of non-hermitian Hamiltonians has been addressed by Hatano, Nelson, and followers. But we show that for a conservative stochastic process the implied spectral properties are dramatically different. In particular we determine the threshold for under-damped relaxation, and observe “complexity saturation” as the bias is increased.

  4. Investigation of electronically excited indole relaxation dynamics via photoionization and fragmentation pump-probe spectroscopy.

    PubMed

    Godfrey, T J; Yu, Hui; Ullrich, Susanne

    2014-07-28

    The studies herein investigate the involvement of the low-lying (1)La and (1)Lb states with (1)ππ(*) character and the (1)πσ(*) state in the deactivation process of indole following photoexcitation at 201 nm. Three gas-phase, pump-probe spectroscopic techniques are employed: (1) Time-resolved photoelectron spectroscopy (TR-PES), (2) hydrogen atom (H-atom) time-resolved kinetic energy release (TR-KER), and (3) time-resolved ion yield (TR-IY). Each technique provides complementary information specific to the photophysical processes in the indole molecule. In conjunction, a thorough examination of the electronically excited states in the relaxation process, with particular focus on the involvement of the (1)πσ(*) state, is afforded. Through an extensive analysis of the TR-PES data presented here, it is deduced that the initial excitation of the (1)Bb state decays to the (1)La state on a timescale beyond the resolution of the current experimental setup. Relaxation proceeds on the (1)La state with an ultrafast decay constant (<100 femtoseconds (fs)) to the lower-lying (1)Lb state, which is found to possess a relatively long lifetime of 23 ± 5 picoseconds (ps) before regressing to the ground state. These studies also manifest an additional component with a relaxation time of 405 ± 76 fs, which is correlated with activity along the (1)πσ(*) state. TR-KER and TR-IY experiments, both specifically probing (1)πσ(*) dynamics, exhibit similar decay constants, further validating these observations.

  5. Measurement of the Water Relaxation Time of ɛ-Polylysine Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Shirakashi, Ryo; Amano, Yuki; Yamada, Jun

    2017-05-01

    ɛ-Polylysine is an effective food preservative. In this paper, the β-relaxation time of ɛ-polylysine aqueous solutions, which represents the rotational speed of a single water molecule, was measured by broadband dielectric spectroscopy at various temperatures and concentrations. The broadband dielectric spectrum of each sample containing water ranging from 35 wt% to 75 wt% at temperatures ranging from 0°C to 25°C was measured using a co-axial semirigid cable probe. The measured dielectric spectra of the samples were composed of several Debye relaxation peaks, including a shortest single molecular rotational relaxation time of water, the β-relaxation time, longer than that of pure water. This result represents that ɛ-polylysine suppresses the molecular kinetics of water. It is also found that the β-relaxation time of an ɛ-polylysine solution that contained more than 35 wt% water showed a typical Arrhenius plot in the temperature range from 0°C to 25°C. The activation energy of each sample depends on the water content ratio of the sample. As indicated by its long β-relaxation time, ɛ-polylysine is expected to possess high abilities of suppressing freezing and ice coarsening.

  6. Biphasic Activation of Ribulose Bisphosphate Carboxylase in Spinach Leaves as Determined from Nonsteady-State CO2 Exchange 1

    PubMed Central

    Woodrow, Ian E.; Mott, Keith A.

    1992-01-01

    The activation kinetics of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) following an increase in photon flux density (PFD) were studied by analyzing CO2 assimilation time courses in spinach leaves (Spinacia oleracea). When leaves were exposed to 45 minutes of darkness before illumination at 690 micromoles per square meter per second, Rubisco activation followed apparent first-order kinetics with a relaxation time of about 3.8 minutes. But when leaves were illuminated for 45 minutes at 160 micromoles per square meter per second prior to illumination at 690 micromoles per square meter per second the relaxation time for Rubisco activation was only 2.1 minutes. The kinetics of this change in relaxation times were investigated by exposing dark-adapted leaves to 160 micromoles per square meter per second for different periods before increasing the PFD to 690 micromoles per square meter per second. It was found that the apparent relaxation time for Rubisco activation changed from 3.8 to 2.1 minutes slowly, requiring at least 8 minutes for completion. This result indicates that at least two sequential, slow processes are involved in light-mediated activation of Rubisco in spinach leaves and that the relaxation times characterizing these two processes are about 4 and 2 minutes, respectively. The kinetics of the first process in the reverse direction and the dependence of the relaxation time for the second process on the magnitude of the increase in PFD were also determined. Evidence that the first slow process is activation of the enzyme Rubisco activase and that the second slow process is the catalytic activation of Rubisco by activase is discussed. PMID:16668865

  7. Formononetin, an isoflavone, relaxes rat isolated aorta through endothelium-dependent and endothelium-independent pathways.

    PubMed

    Wu, Jian-Hong; Li, Qing; Wu, Min-Yi; Guo, De-Jian; Chen, Huan-Le; Chen, Shi-Lin; Seto, Sai-Wang; Au, Alice L S; Poon, Christina C W; Leung, George P H; Lee, Simon M Y; Kwan, Yiu-Wa; Chan, Shun-Wan

    2010-07-01

    We evaluated the vasorelaxation effects of formononetin, an isoflavone/phytoestrogen found abundantly in Astragalus mongholicus Bunge, on rat isolated aorta and the underlying mechanisms involved. Cumulative administration of formononetin, genistein, daidzein and biochanin A relaxed phenylephrine-preconstricted aorta. Formononetin and biochanin A caused a similar magnitude of relaxation whereas daidzein was least potent. Mechanical removal of endothelium, L-NAME (100 microM) and methylene blue (10 microM) suppressed formononetin-induced relaxation. Formononetin increased endothelial nitric oxide (NO) synthase (eNOS), but not inducible NO synthase, activity with an up-regulation of eNOS mRNA and p-eNOS(Ser1177) protein expression. In endothelium-denuded preparations, formononetin-induced vasorelaxation was significantly reduced by glibenclamide (3 microM) and iberiotoxin (100 nM), and a combination of glibenclamide (3 microM) plus iberiotoxin (100 nM) abolished the relaxation. In contrast, formononetin-elicited endothelium-independent relaxation was not altered by ICI 182,780 (10 microM, an estrogen receptor (ER alpha/ER beta) antagonist) or mifepristone (10 microM, a progesterone receptor antagonist). In single aortic smooth muscle cells, formononetin caused opening of iberiotoxin-sensitive Ca(2+)-activated K(+) (BK(Ca)) channels and glibenclamide-sensitive adenosine triphosphate (ATP)-dependent K(+) (K(ATP)) channels. Thus, our results suggest that formononetin caused vascular relaxation via endothelium/NO-dependent mechanism and endothelium-independent mechanism which involves the activation of BK(Ca) and K(ATP) channels. (c) 2010 Elsevier Inc. All rights reserved.

  8. Relaxation spectra and dipolar correlations for flexible polymers with bulky side groups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz-Calleja, R.; Riande, E.; Roman, J.S.

    1992-08-06

    This paper discusses how relaxation spectra and dipolar correlations for flexible polymers with bulky side groups (PBPA chains) suggest that intermolecular correlations are not very important in this polymer and that {alpha}, {beta}, and {gamma} absorptions exist. TSDC techniques reveal that the {gamma} peak has a smaller activation energy than the {beta}, and the coupling scheme is used to interpret the complex dielectric and mechanical {alpha} relaxations. The anomalous temperature dependence of the glass-rubber relaxation is discussed in terms of the bulkiness of the side group. 23 refs., 8 figs., 3 tabs.

  9. Nuclear magnetic resonance analysis and activation energy spectrum of the irreversible structural relaxation of amorphous zirconium tungstate

    NASA Astrophysics Data System (ADS)

    Miotto, F.; Rech, G. L.; Turatti, A. M.; Catafesta, J.; Zorzi, J. E.; Pereira, A. S.; Perottoni, C. A.

    2018-03-01

    Zirconium tungstate undergoes a sequence of phase transitions from cubic (α -ZrW2O8 ) to orthorhombic (γ -ZrW2O8 ) to amorphous (a -ZrW2O8 ) upon increasing pressure at room temperature. The amorphous phase is known to undergo anomalous endothermic recrystallization into a high-temperature β -ZrW2O8 phase above 600∘C at ambient pressure (and back to α -ZrW2O8 when brought to room temperature). The endothermic recrystallization of a -ZrW2O8 is preceded by an irreversible exothermic structural relaxation. New W-O bonds are formed upon amorphization, continuing a tendency of increasing W coordination number in going from α to γ -ZrW2O8 . In fact, contrarily to α -ZrW2O8 , in which one-quarter of the oxygen atoms are bonded only to one W (terminal oxygens), previous works found no evidence of single-bonded oxygen atoms in a -ZrW2O8 . It thus could be argued that the irreversible character of the structural relaxation of a -ZrW2O8 is due to W-O bond breaking upon annealing of the amorphous phase. To test this hypothesis, x-ray diffraction, 17O magic-angle spinning NMR, Raman, and far-infrared analyses were performed on samples of amorphous zirconium tungstate previously annealed to increasingly higher temperatures, looking for any evidence of features that could be assigned to the presence of terminal oxygen atoms. No evidence of single-bonded oxygen was found before the onset of recrystallization. Furthermore, the kinetics of the structural relaxation of a -ZrW2O8 is consistent with a continuous spectrum of activation energy, spanning all the range from 1 to 2.5 eV . These findings suggest that the structural relaxation of amorphous zirconium tungstate, however irreversible, is not accompanied by W-O bond breaking, but most probably characterized by a succession of (mostly) irreversible local atomic rearrangements.

  10. Comment on "Study of dielectric relaxations of anhydrous trehalose and maltose glasses" [J. Chem. Phys. 134, 014508 (2011)].

    PubMed

    Kaminski, K; Wlodarczyk, P; Paluch, M

    2011-10-28

    Very recently Kwon et al. [H.-J. Kwon, J.-A. Seo, H. K. Kim, and Y. H. Hwang, J. Chem. Phys. 134, 014508 (2011)] published an article on the study of dielectric relaxation in trehalose and maltose glasses. They carried out broadband dielectric measurements at very wide range of temperatures covering supercooled liquid as well as glassy state of both saccharides. It is worth to mention that authors have also applied a new method for obtaining anhydrous glasses of trehalose and maltose that enables avoiding their caramelization. Four relaxation processes were identified in dielectric spectra of both saccharides. The slower one was identified as structural relaxation process the next one, not observed by the others, was assigned as Johari-Goldstein (JG) β-relaxation, while the last two secondary modes were of the same nature as found by Kaminski et al. [K. Kaminski, E. Kaminska, P. Wlodarczyk, S. Pawlus, D. Kimla, A. Kasprzycka, M. Paluch, J. Ziolo, W. Szeja, and K. L. Ngai, J. Phys. Chem. B 112, 12816 (2008)]. In this comment we show that the authors mistakenly assigned the slowest relaxation process as structural mode of disaccharides. We have proven that this relaxation process is an effect of formation of thin layer of air or water between plate of capacitor and sample. The same effect can be observed if plates of capacitor are oxidized. Thus, we concluded that their slowest mode is connected to the dc conduction process while their β JG process is primary relaxation of trehalose and maltose.

  11. Modeling and prediction of relaxation of polar order in high-activity nonlinear optical polymers

    NASA Astrophysics Data System (ADS)

    Guenthner, Andrew J.; Lindsay, Geoffrey A.; Wright, Michael E.; Fallis, Stephen; Ashley, Paul R.; Sanghadasa, Mohan

    2007-09-01

    Mach-Zehnder optical modulators were fabricated using the CLD and FTC chromophores in polymer-on-silicon optical waveguides. Up to 17 months of oven-ageing stability are reported for the poled polymer films. Modulators containing an FTC-polyimide had the best over all aging performance. To model and extrapolate the ageing data, a relaxation correlation function attributed to A. K. Jonscher was compared to the well-established stretched exponential correlation function. Both models gave a good fit to the data. The Jonscher model predicted a slower relaxation rate in the out years. Analysis showed that collecting data for a longer period relative to the relaxation time was more important for generating useful predictions than the precision with which individual model parameters could be estimated. Thus from a practical standpoint, time-temperature superposition must be assumed in order to generate meaningful predictions. For this purpose, Arrhenius-type expressions were found to relate the model time constants to the ageing temperatures.

  12. Magnetocaloric effect and slow magnetic relaxation in CsGd(MoO4)2 induced by crystal-field anisotropy

    NASA Astrophysics Data System (ADS)

    Tkáč, V.; Tarasenko, R.; Orendáčová, A.; Orendáč, M.; Sechovský, V.; Feher, A.

    2018-05-01

    The experimental and theoretical study of magnetocaloric effect and magnetic relaxation of the powder sample of CsGd(MoO4)2 were performed. The large conventional magnetocaloric effect was found around 2 K with - ΔSmax ≈ 26.5 J/(kg K) for B = 7 T. AC susceptibility measurement revealed multiple-time scale magnetic relaxation effects on different time scales. Slowest relaxation effect was attributed to the direct process with a bottleneck effect and two faster relaxation processes are effectively temperature independent, probably as a result of averaging in the powder sample.

  13. Applying the relaxation model of interfacial heat transfer to calculate the liquid outflow with supercritical initial parameters

    NASA Astrophysics Data System (ADS)

    Alekseev, M. V.; Vozhakov, I. S.; Lezhnin, S. I.; Pribaturin, N. A.

    2017-09-01

    A comparative numerical simulation of the supercritical fluid outflow on the thermodynamic equilibrium and non-equilibrium relaxation models of phase transition for different times of relaxation has been performed. The model for the fixed relaxation time based on the experimentally determined radius of liquid droplets was compared with the model of dynamically changing relaxation time, calculated by the formula (7) and depending on local parameters. It is shown that the relaxation time varies significantly depending on the thermodynamic conditions of the two-phase medium in the course of outflowing. The application of the proposed model with dynamic relaxation time leads to qualitatively correct results. The model can be used for both vaporization and condensation processes. It is shown that the model can be improved on the basis of processing experimental data on the distribution of the droplet sizes formed during the breaking up of the liquid jet.

  14. Mindfulness meditation and relaxation training increases time sensitivity.

    PubMed

    Droit-Volet, S; Fanget, M; Dambrun, M

    2015-01-01

    Two experiments examined the effect of mindfulness meditation and relaxation on time perception using a temporal bisection task. In Experiment 1, the participants performed a temporal task before and after exercises of mindfulness meditation or relaxation. In Experiment 2, the procedure was similar than that used in Experiment 1, except that the participants were trained to mediate or relax every day over a period of several weeks. The results showed that mindfulness meditation exercises increased sensitivity to time and lengthened perceived time. However, this temporal improvement with meditation exercises was primarily observed in the experienced meditators. Our results also showed the experienced meditators were less anxious than the novice participants, and that the sensitivity to time increased when the level of anxiety decreased. Our results were explained by the practice of mindfulness technique that had developed individuals' abilities in devoting more attention resources to temporal information processing. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Substituent effects on the relaxation dynamics of furan, furfural and β-furfural: a combined theoretical and experimental approach.

    PubMed

    Oesterling, Sven; Schalk, Oliver; Geng, Ting; Thomas, Richard D; Hansson, Tony; de Vivie-Riedle, Regina

    2017-01-18

    For the series furan, furfural and β-furfural we investigated the effect of substituents and their positioning on the photoinduced relaxation dynamics in a combined theoretical and experimental approach. Using time resolved photoelectron spectroscopy with a high intensity probe pulse, we can, for the first time, follow the whole deactivation process of furan through a two photon probe signal. Using the extended 2-electron 2-orbital model [Nenov et al., J. Chem. Phys., 2011, 135, 034304] we explain the formation of one central conical intersection and predict the influence of the aldehyde group of the derivatives on its geometry. This, as well as the relaxation mechanisms from photoexcitation to the final outcome was investigated using a variety of theoretical methods. Complete active space self consistent field was used for on-the-fly calculations while complete active space perturbation theory and coupled cluster theory were used to accurately describe critical configurations. Experiment and theory show the relaxation dynamics of furfural and β-furfural to be slowed down, and together they disclose an additional deactivation pathway, which is attributed to the n O lonepair state introduced with the aldehyde group.

  16. The role of non-equilibrium fluxes in the relaxation processes of the linear chemical master equation

    NASA Astrophysics Data System (ADS)

    de Oliveira, Luciana Renata; Bazzani, Armando; Giampieri, Enrico; Castellani, Gastone C.

    2014-08-01

    We propose a non-equilibrium thermodynamical description in terms of the Chemical Master Equation (CME) to characterize the dynamics of a chemical cycle chain reaction among m different species. These systems can be closed or open for energy and molecules exchange with the environment, which determines how they relax to the stationary state. Closed systems reach an equilibrium state (characterized by the detailed balance condition (D.B.)), while open systems will reach a non-equilibrium steady state (NESS). The principal difference between D.B. and NESS is due to the presence of chemical fluxes. In the D.B. condition the fluxes are absent while for the NESS case, the chemical fluxes are necessary for the state maintaining. All the biological systems are characterized by their "far from equilibrium behavior," hence the NESS is a good candidate for a realistic description of the dynamical and thermodynamical properties of living organisms. In this work we consider a CME written in terms of a discrete Kolmogorov forward equation, which lead us to write explicitly the non-equilibrium chemical fluxes. For systems in NESS, we show that there is a non-conservative "external vector field" whose is linearly proportional to the chemical fluxes. We also demonstrate that the modulation of these external fields does not change their stationary distributions, which ensure us to study the same system and outline the differences in the system's behavior when it switches from the D.B. regime to NESS. We were interested to see how the non-equilibrium fluxes influence the relaxation process during the reaching of the stationary distribution. By performing analytical and numerical analysis, our central result is that the presence of the non-equilibrium chemical fluxes reduces the characteristic relaxation time with respect to the D.B. condition. Within a biochemical and biological perspective, this result can be related to the "plasticity property" of biological systems and to their

  17. The role of non-equilibrium fluxes in the relaxation processes of the linear chemical master equation.

    PubMed

    de Oliveira, Luciana Renata; Bazzani, Armando; Giampieri, Enrico; Castellani, Gastone C

    2014-08-14

    We propose a non-equilibrium thermodynamical description in terms of the Chemical Master Equation (CME) to characterize the dynamics of a chemical cycle chain reaction among m different species. These systems can be closed or open for energy and molecules exchange with the environment, which determines how they relax to the stationary state. Closed systems reach an equilibrium state (characterized by the detailed balance condition (D.B.)), while open systems will reach a non-equilibrium steady state (NESS). The principal difference between D.B. and NESS is due to the presence of chemical fluxes. In the D.B. condition the fluxes are absent while for the NESS case, the chemical fluxes are necessary for the state maintaining. All the biological systems are characterized by their "far from equilibrium behavior," hence the NESS is a good candidate for a realistic description of the dynamical and thermodynamical properties of living organisms. In this work we consider a CME written in terms of a discrete Kolmogorov forward equation, which lead us to write explicitly the non-equilibrium chemical fluxes. For systems in NESS, we show that there is a non-conservative "external vector field" whose is linearly proportional to the chemical fluxes. We also demonstrate that the modulation of these external fields does not change their stationary distributions, which ensure us to study the same system and outline the differences in the system's behavior when it switches from the D.B. regime to NESS. We were interested to see how the non-equilibrium fluxes influence the relaxation process during the reaching of the stationary distribution. By performing analytical and numerical analysis, our central result is that the presence of the non-equilibrium chemical fluxes reduces the characteristic relaxation time with respect to the D.B. condition. Within a biochemical and biological perspective, this result can be related to the "plasticity property" of biological systems and to their

  18. Relaxation dynamics of nanosecond laser superheated material in dielectrics

    DOE PAGES

    Demos, Stavros G.; Negres, Raluca A.; Raman, Rajesh N.; ...

    2015-08-20

    Intense laser pulses can cause superheating of the near-surface volume of materials. This mechanism is widely used in applications such as laser micromachining, laser ablation, or laser assisted thin film deposition. The relaxation of the near solid density superheated material is not well understood, however. In this work, we investigate the relaxation dynamics of the superheated material formed in several dielectrics with widely differing physical properties. The results suggest that the relaxation process involves a number of distinct phases, which include the delayed explosive ejection of microscale particles starting after the pressure of the superheated material is reduced to aboutmore » 4 GPa and for a time duration on the order of 1 μs. The appearance of a subset of collected ejected particles in fused silica is similar to that of micro-tektites and provides information about the state of the superheated material at the time of ejection. Lastly, these results advance our understanding of a key aspect of the laser–material interaction pathway and can lead to optimization of associated applications ranging from material processing to laser surgery.« less

  19. The Effect of Relaxation Interventions on Cortisol Levels in HIV-Sero-Positive Women

    PubMed Central

    Jones, Deborah; Owens, Mary; Kumar, Mahendra; Cook, Ryan; Weiss, Stephen M.

    2016-01-01

    Purpose Activation of the hypothalamic–pituitary–adrenal axis, assessed in terms of cortisol levels, may enhance the ability of HIV to infect lymphocytes and downregulate the immune system, accelerating disease progression. This study sought to determine the effects of relaxation techniques on cortisol levels in HIV-sero-positive women. Methods Women (n = 150) were randomized to a group cognitive–behavioral stress management (CBSM) condition or an individual information condition and underwent 3 types of relaxation training (progressive muscle relaxation, imagery, and autogenic training). Cortisol levels were obtained pre- and postrelaxation. Results Guided imagery was effective in reducing cortisol in the group condition (t = 3.90, P < .001), and muscle relaxation reduced cortisol in the individual condition (t = 3.11, P = .012). Among participants in the group condition attending all sessions, the magnitude of pre- to postsession reduction became greater over time. Conclusions Results suggest that specific relaxation techniques may be partially responsible for cortisol decreases associated with relaxation and CBSM. PMID:23715264

  20. Effect of Temper Condition on Stress Relaxation Behavior of an Aluminum Copper Lithium Alloy

    NASA Astrophysics Data System (ADS)

    Mishra, Sumeet; Beura, Vikrant Kumar; Singh, Amit; Yadava, Manasij; Nayan, Niraj

    2018-07-01

    Deformation behavior of an Al-Cu-Li alloy in different temper conditions (solutionized and T8) is investigated using stress relaxation tests. Fundamental parameters such as the apparent and physical activation volume, strain rate sensitivity, effective stress, and exhaustion rate of mobile dislocation density are determined from single and multiple relaxation tests. It was found that dislocation-dislocation interaction controls the kinetics of plastic deformation in the solutionized sample, whereas dislocation-precipitate interaction is the overriding factor in the presence of T1 precipitates. The apparent activation volume was found to be significantly lower in the presence of T1 precipitates compared with solutionized samples. Strain rate sensitivity and effective stress were found to be higher in the presence of T1 precipitates. In addition, multiple relaxation tests showed that irrespective of microstructural features (solutes, semi-coherent precipitates), the mobile dislocation density reduces during the relaxation period. Further evidence regarding reduction in mobile dislocation density is obtained from uniaxial tensile tests carried out after stress relaxation tests, where both solutionized and T8 samples show an increase in strength. Additional discussion on relaxation strain is included to provide a complete overview regarding the time-dependent deformation behavior of the Al-Cu-Li alloy in different temper conditions.

  1. Effect of Temper Condition on Stress Relaxation Behavior of an Aluminum Copper Lithium Alloy

    NASA Astrophysics Data System (ADS)

    Mishra, Sumeet; Beura, Vikrant Kumar; Singh, Amit; Yadava, Manasij; Nayan, Niraj

    2018-04-01

    Deformation behavior of an Al-Cu-Li alloy in different temper conditions (solutionized and T8) is investigated using stress relaxation tests. Fundamental parameters such as the apparent and physical activation volume, strain rate sensitivity, effective stress, and exhaustion rate of mobile dislocation density are determined from single and multiple relaxation tests. It was found that dislocation-dislocation interaction controls the kinetics of plastic deformation in the solutionized sample, whereas dislocation-precipitate interaction is the overriding factor in the presence of T1 precipitates. The apparent activation volume was found to be significantly lower in the presence of T1 precipitates compared with solutionized samples. Strain rate sensitivity and effective stress were found to be higher in the presence of T1 precipitates. In addition, multiple relaxation tests showed that irrespective of microstructural features (solutes, semi-coherent precipitates), the mobile dislocation density reduces during the relaxation period. Further evidence regarding reduction in mobile dislocation density is obtained from uniaxial tensile tests carried out after stress relaxation tests, where both solutionized and T8 samples show an increase in strength. Additional discussion on relaxation strain is included to provide a complete overview regarding the time-dependent deformation behavior of the Al-Cu-Li alloy in different temper conditions.

  2. Quantifying the Energy Landscape Statistics in Proteins - a Relaxation Mode Analysis

    NASA Astrophysics Data System (ADS)

    Cai, Zhikun; Zhang, Yang

    Energy landscape, the hypersurface in the configurational space, has been a useful concept in describing complex processes that occur over a very long time scale, such as the multistep slow relaxations of supercooled liquids and folding of polypeptide chains into structured proteins. Despite extensive simulation studies, its experimental characterization still remains a challenge. To address this challenge, we developed a relaxation mode analysis (RMA) for liquids under a framework analogous to the normal mode analysis for solids. Using RMA, important statistics of the activation barriers of the energy landscape becomes accessible from experimentally measurable two-point correlation functions, e.g. using quasi-elastic and inelastic scattering experiments. We observed a prominent coarsening effect of the energy landscape. The results were further confirmed by direct sampling of the energy landscape using a metadynamics-like adaptive autonomous basin climbing computation. We first demonstrate RMA in a supercooled liquid when dynamical cooperativity emerges in the landscape-influenced regime. Then we show this framework reveals encouraging energy landscape statistics when applied to proteins.

  3. Relaxation time estimation in surface NMR

    DOEpatents

    Grunewald, Elliot D.; Walsh, David O.

    2017-03-21

    NMR relaxation time estimation methods and corresponding apparatus generate two or more alternating current transmit pulses with arbitrary amplitudes, time delays, and relative phases; apply a surface NMR acquisition scheme in which initial preparatory pulses, the properties of which may be fixed across a set of multiple acquisition sequence, are transmitted at the start of each acquisition sequence and are followed by one or more depth sensitive pulses, the pulse moments of which are varied across the set of multiple acquisition sequences; and apply processing techniques in which recorded NMR response data are used to estimate NMR properties and the relaxation times T.sub.1 and T.sub.2* as a function of position as well as one-dimensional and two-dimension distributions of T.sub.1 versus T.sub.2* as a function of subsurface position.

  4. High pressure studies on structural and secondary relaxation dynamics in silyl derivative of D-glucose

    NASA Astrophysics Data System (ADS)

    Minecka, Aldona; Kamińska, Ewa; Tarnacka, Magdalena; Dzienia, Andrzej; Madejczyk, Olga; Waliłko, Patrycja; Kasprzycka, Anna; Kamiński, Kamil; Paluch, Marian

    2017-08-01

    In this paper, broadband dielectric spectroscopy was applied to investigate molecular dynamics of 1,2,3,4,6-penta-O-(trimethylsilyl)-D-glucopyranose (S-GLU) at ambient and elevated pressures. Our studies showed that apart from the structural relaxation, one well resolved asymmetric secondary process (initially labeled as β) is observed in the spectra measured at p = 0.1 MPa. Analysis with the use of the coupling model and criterion proposed by Ngai and Capaccioli indicated that the β-process in S-GLU is probably a Johari-Goldstein relaxation of intermolecular origin. Further high pressure experiments demonstrated that there are in fact two secondary processes contributing to the β-relaxation. Therefore, one can postulate that the coupling model is a necessary, but not sufficient criterion to identify the true nature of the given secondary relaxation process. The role of pressure experiments in better understanding of the molecular origin of local mobility seems to be much more important. Interestingly, our research also revealed that the structural relaxation in S-GLU is very sensitive to compression. It was reflected in an extremely high pressure coefficient of the glass transition temperature (dTg/dp = 412 K/GPa). According to the literature data, such a high value of dTg/dp has not been obtained so far for any H-bonded, van der Waals, or polymeric glass-formers.

  5. Effective temperature in relaxation of Coulomb glasses.

    PubMed

    Somoza, A M; Ortuño, M; Caravaca, M; Pollak, M

    2008-08-01

    We study relaxation in two-dimensional Coulomb glasses up to macroscopic times. We use a kinetic Monte Carlo algorithm especially designed to escape efficiently from deep valleys around metastable states. We find that, during the relaxation process, the site occupancy follows a Fermi-Dirac distribution with an effective temperature much higher than the real temperature T. Long electron-hole excitations are characterized by T(eff), while short ones are thermalized at T. We argue that the density of states at the Fermi level is proportional to T(eff) and is a good thermometer to measure it. T(eff) decreases extremely slowly, roughly as the inverse of the logarithm of time, and it should affect hopping conductance in many experimental circumstances.

  6. Curved-line search algorithm for ab initio atomic structure relaxation

    NASA Astrophysics Data System (ADS)

    Chen, Zhanghui; Li, Jingbo; Li, Shushen; Wang, Lin-Wang

    2017-09-01

    Ab initio atomic relaxations often take large numbers of steps and long times to converge, especially when the initial atomic configurations are far from the local minimum or there are curved and narrow valleys in the multidimensional potentials. An atomic relaxation method based on on-the-flight force learning and a corresponding curved-line search algorithm is presented to accelerate this process. Results demonstrate the superior performance of this method for metal and magnetic clusters when compared with the conventional conjugate-gradient method.

  7. Exciton Relaxation and Electron Transfer Dynamics of Semiconductor Quantum Dots

    NASA Astrophysics Data System (ADS)

    Liu, Cunming

    Quantum dots (QDs), also referred to as colloidal semiconductor nanocrystals, exhibit unique electronic and optical properties arising from their three-dimensional confinement and strongly enhanced coulomb interactions. Developing a detailed understanding of the exciton relaxation dynamics within QDs is important not only for sake of exploring the fundamental physics of quantum confinement processes, but also for their applications. Ultrafast transient absorption (TA) spectroscopy, as a powerful tool to explore the relaxation dynamics of excitons, was employed to characterize the hot single/multiexciton relaxation dynamics at the first four exciton states of CdSe/CdZnS QDs. We observed for the first time that the hot hole can relax through two possible pathways: Intraband multiple phonon coupling and intrinsic defect trapping, with a lifetime of ˜7 ps. Additionally, an ultra-short component of ˜ 8 ps, directly associated with the Auger recombination of highly energetic exciton states, was discovered. After exploring the exciton relaxation inside QDs, ultrafast TA spectroscopy was further applied to study the electron transferring outside from QDs. By using a brand-new photocatalytic system consisting of CdSe QDs and Ni-dihydrolipoic acid (Ni-DHLA) catalyst, which has represented a robust photocatalysis of H2 from water, the photoinduced electron transfer (ET) dynamics between QD and the catalyst, one of most important steps during H2 generation, was studied. We found smaller bare CdSe QDs exhibit a better ET performance and CdS shelling on the bare QDs leads to worsen the ET. The calculations of effective mass approximation (EMA) and Marcus theory show the ET process is mainly dominated by driving force, electronic coupling strength and reorganization energy between QD and the catalyst.

  8. Experimental investigation of plasma relaxation using a compact coaxial magnetized plasma gun in a background plasma

    NASA Astrophysics Data System (ADS)

    Zhang, Yue; Lynn, Alan; Gilmore, Mark; Hsu, Scott; University of New Mexico Collaboration; Los Alamos National Laboratory Collaboration

    2013-10-01

    A compact coaxial plasma gun is employed for experimental studies of plasma relaxation in a low density background plasma. Experiments are being conducted in the linear HelCat device at UNM. These studies will advance the knowledge of basic plasma physics in the areas of magnetic relaxation and space and astrophysical plasmas, including the evolution of active galactic jets/radio lobes within the intergalactic medium. The gun is powered by a 120pF ignitron-switched capacitor bank which is operated in a range of 5-10 kV and ~100 kA. Multiple diagnostics are employed to investigate plasma relaxation process. Magnetized Argon plasma bubbles with velocities ~1.2Cs and densities ~1020 m-3 have been achieved. Different distinct regimes of operation with qualitatively different dynamics are identified by fast CCD camera images, with the parameter determining the operation regime. Additionally, a B-dot probe array is employed to measure the spatial toroidal and poloidal magnetic flux evolution to identify detached plasma bubble configurations. Experimental data and analysis will be presented.

  9. The effect of body-mind relaxation meditation induction on major depressive disorder: A resting-state fMRI study.

    PubMed

    Chen, Fangfang; Lv, Xueyu; Fang, Jiliang; Yu, Shan; Sui, Jing; Fan, Lingzhong; Li, Tao; Hong, Yang; Wang, XiaoLing; Wang, Weidong; Jiang, Tianzi

    2015-09-01

    Meditation has been increasingly evaluated as an important complementary therapeutic tool for the treatment of depression. The present study employed resting-state functional magnetic resonance imaging (rs-fMRI) to examine the effect of body-mind relaxation meditation induction (BMRMI) on the brain activity of depressed patients and to investigate possible mechanisms of action for this complex intervention. 21 major depressive disorder patients (MDDs) and 24 age and gender-matched healthy controls (HCs) received rs-fMRI scans at baseline and after listening to a selection of audio designed to induce body-mind relaxation meditation. The rs-fMRI data were analyzed using Matlab toolbox to obtain the amplitude of low-frequency fluctuations (ALFF) of the BOLD signal for the whole brain. A mixed-design repeated measures analysis of variance (ANOVA) was performed on the whole brain to find which brain regions were affected by the BMRMI. An additional functional connectivity analysis was used to identify any atypical connection patterns after the BMRMI. After the BMRMI experience, both the MDDs and HCs showed decreased ALFF values in the bilateral frontal pole (BA10). Additionally, increased functional connectivity from the right dorsal medial prefrontal cortex (dmPFC) to the left dorsal lateral prefrontal cortex (dlPFC) and the left lateral orbitofrontal cortex (OFC) was identified only in the MDDs after the BMRMI. In order to exclude the impact of other events on the participants׳ brain activity, the Hamilton Rating Scales for Depression (HDRS) was not measured after the body-mind relaxation induction. Our findings support the hypothesis that body-mind relaxation meditation induction may regulate the activities of the prefrontal cortex and thus may have the potential to help patients construct reappraisal strategies that can modulate the brain activity in multiple emotion-processing systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Resveratrol Protects and Restores Endothelium-Dependent Relaxation in Hypercholesterolemic Rabbit Corpus Cavernosum.

    PubMed

    Murat, Nergiz; Korhan, Peyda; Kizer, Onur; Evcim, Sinem; Kefi, Aykut; Demir, Ömer; Gidener, Sedef; Atabey, Neşe; Esen, Ahmet Adil

    2016-01-01

    Oxidative stress dependent-decrease in nitric oxide (NO) bioavailability plays an integral role in hypercholesterolemia-induced erectile dysfunction (ED). Resveratrol has been demonstrated to exert beneficial effects against oxidative stress and improve NO bioavailability. The protective and restorative potentials of resveratrol on endothelium-dependent relaxations were evaluated in hypercholesterolemic rabbit corpus cavernosum (CC). Hypercholesterolemia was induced by administering 2% cholesterol diet (CD) (w/w) to the rabbits for 6 weeks. Two different protocols were applied to test the effects of resveratrol on hypercholesterolemia-induced ED. In Protocol-1 (P1), resveratrol was administrated to the rabbits simultaneously with CD in order to evaluate the protective effect, and for Protocol-2 (P2), resveratrol was administrated for 6 weeks after termination of CD in order to evaluate the restorative effect. Endothelium-dependent relaxations of CC were evaluated by using organ bath studies. In order to elucidate the possible molecular mechanisms, we measured endothelial NO synthase (eNOS) and phosphovasodilator-stimulated phosphoprotein (VASP) expressions and activations, NADPH oxidase, superoxide dismutase (SOD), and catalase (CAT) and glutathione peroxidase (GPx) activity in cavernosal tissues obtained at the end of the study. Resveratrol showed an improvement in the endothelium-dependent relaxation responses in vitro. We demonstrated significantly increased activatory-phosphorylation (p[S1177]-eNOS) and activated phosphovasodilator-stimulated phosphoprotein (phospho-VASP) levels, but reduced phosphorylation (p[T495]-eNOS) of eNOS and NADPH oxidase activity in the resveratrol-administered HC animals compared with hypercholesterolemic control rabbits in the P1. In the P2, resveratrol exhibited an improvement in endothelium-dependent relaxation responses and more pronounced effects on eNOS activation. Resveratrol administration, either simultaneously with HC diet

  11. [Relaxation treatments and biofeedback for anxiety and somatic stress-related disorders].

    PubMed

    Biondi, Massimo; Valentini, Martina

    2014-01-01

    Relaxation techniques (TR) and biofeedback (BFB) are widely used in psychiatric and psychological practice for the treatment for anxiety and stress-related disorders. An examination of studies focusing on the correlates of psychophysiology of relaxation and biofeedback has been done, in addiction to controlled therapeutic studies that describes clinical aspects, efficacy and limits. There are different TR and BFB procedures, but they have the same goal and same physiological modifications, resulting in stress and anxiety reduction. There is a proven action to musculoskeletal, neuroendocrine and autonomic nervous system, showing similar results. Very few data on immune changes are available. Meta-Analysis show superior efficacy to no treatment or placebo in anxiety disorders, tension headache, bruxism, temporomandibular pain syndrome, rehabilitation and prevention of ischemic heart disease. Moderate efficacy is shown for chronic low back pain, cancer-related pain, rheumatoid arthritis and gastrointestinal disorders; data for essential hypertension are controversial. Variability of techniques, procedures, sampling problems, non-systematic make definitive conclusions difficult. TR and BFB are often used in combination with cognitive-behavioral and educational techniques. The association of the active relaxation technique facilitates generalization and self-control during stress situation and outside the training session. TR and BFB are effective for anxiety and somatic stress-related disorders, associated with coping and quality of life improvement and affordable costs; they are minimally invasive but needing an active participation in the treatment process. Some limits are responders' prediction, continuity of practice and limited effectiveness for depression disorders. Finally, it is shown that they are real psychosomatic therapies that are able to produce somatic peripheral changes (neuroendocrine, neurovegetative and muscular systems) generated by the mind and

  12. Effects of a progressive muscle relaxation intervention on dementia symptoms, activities of daily living, and immune function in group home residents with dementia in Japan

    PubMed Central

    Momose, Yumiko

    2016-01-01

    Aim To evaluate the effects of progressive muscle relaxation on the behavioral and psychological symptoms of dementia, activities of daily living, and immune function of elderly patients with dementia in group homes. Methods The participants were ranked by their group home unit. Odd ranks were assigned to the intervention group and even ranks to the control group. The intervention group participated in progressive muscle relaxation for 15 min each day for 90 days in the group environment; the control group members continued with their normal routine. All the participants’ secretory immunoglobulin A was measured and they were assessed with the Neuropsychiatric Inventory‐Nursing Home version, Nishimura Mental State Scale for the Elderly, and Nishimura Activities of Daily Living Scale. Results The intervention group comprised 18 participants from six units and the control group comprised 19 participants from five units. After the intervention, the Neuropsychiatric Inventory scores were significantly better in the intervention group, particularly for Agitation and Anxiety. The intervention group also showed significantly lower Apathy and Irritability scores and significant improvement in the Interest, Volition, and Social relationships scores on the Mental State Scale, with improvement in the activities of daily living total. However, there was no difference in the secretory immunoglobulin A level between the groups. Conclusion The results suggest that progressive muscle relaxation improves the behavioral and psychological symptoms of dementia and activities of daily living in group home residents with dementia, but does not affect their immune function. PMID:27696678

  13. Investigations of effect of phase change mass transfer rate on cavitation process with homogeneous relaxation model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Zhixia; Zhang, Liang; Saha, Kaushik

    The super high fuel injection pressure and micro size of nozzle orifice has been an important development trend for the fuel injection system. Accordingly, cavitation transient process, fuel compressibility, amount of noncondensable gas in the fuel and cavitation erosion have attracted more attention. Based on the fact of cavitation in itself is a kind of thermodynamic phase change process, this paper takes the perspective of the cavitation phase change mass transfer process to analyze above mentioned phenomenon. The two-phase cavitating turbulent flow simulations with VOF approach coupled with HRM cavitation model and U-RANS of standard k-ε turbulence model were performedmore » for investigations of cavitation phase change mass transfer process. It is concluded the mass transfer time scale coefficient in the Homogenous Relaxation Model (HRM) representing mass transfer rate should tend to be as small as possible in a condition that ensured the solver stable. At very fast mass transfer rate, the phase change occurs at very thin interface between liquid and vapor phase and condensation occurs more focused and then will contribute predictably to a more serious cavitation erosion. Both the initial non-condensable gas in fuel and the fuel compressibility can accelerate the cavitation mass transfer process.« less

  14. Slow magnetic relaxation in a dimeric Mn2Ca2 complex enabled by the large Mn(iii) rhombicity.

    PubMed

    Arauzo, Ana; Bartolomé, Elena; Benniston, Andrew C; Melnic, Silvia; Shova, Sergiu; Luzón, Javier; Alonso, Pablo J; Barra, Anne-Laure; Bartolomé, Juan

    2017-01-17

    In this paper we present the characterization of a complex with the formula [Mn 2 Ca 2 (hmp) 6 (H 2 O) 4 (CH 3 CN) 2 ](ClO 4 ) 4 (1), where hmp-H = 2-(hydroxymethyl)pyridine. Compound 1 crystallizes in the monoclinic space group C2/c with the cation lying on an inversion centre. Static magnetic susceptibility, magnetization and heat capacity measurements reflect a unique Mn(iii) valence state, and single-ion ligand field parameters with remarkable large rhombic distortion (D/k B = -6.4 K, E/k B = -2.1 K), in good agreement with the high-field electron paramagnetic resonance experiments. At low temperature Mn 2 Ca 2 cluster behaves as a system of ferromagnetically coupled (J/k B = 1.1 K) Mn dimers with a S T = 4 and m T = ±4 ground state doublet. Frequency dependent ac susceptibility measurements reveal the slow magnetic relaxation characteristic of a single molecule magnet (SMM) below T = 4 K. At zero magnetic field, an Orbach-type spin relaxation process (τ ∼ 10 -5 s) with an activation energy E a = 5.6 K is observed, enabled by the large E/D rhombicity of the Mn(iii) ions. Upon the application of a magnetic field, a second, very slow process (τ ∼ 0.2 s) is observed, attributed to a direct relaxation mechanism with enhanced relaxation time owing to the phonon bottleneck effect.

  15. Shaolin Dan Tian Breathing Fosters Relaxed and Attentive Mind: A Randomized Controlled Neuro-Electrophysiological Study

    PubMed Central

    Chan, Agnes S.; Cheung, Mei-Chun; Sze, Sophia L.; Leung, Winnie Wing-Man; Shi, Dejian

    2011-01-01

    Neuro-electrophysiological studies on meditative breathing revealed its association with either a relaxed or an attentive state. The present study aimed to investigate whether the Shaolin Dan Tian Breathing (DTB) technique, which consists of the Passive and Active subtypes and can be considered as a relaxation exercise and Qigong, would induce both relaxed and attentive states. Twenty-two adults and 22 age-, gender- and education-matched controls received training on the Shaolin DTB (experimental group) and the progressive muscle relaxation respectively for one month. Eyes-closed resting EEG data before and immediately after each type of breathing were obtained individually at baseline and after one-month training. At baseline, the EEG changes after the Shaolin DTB between both groups were comparable. After one-month training, participants in the experimental, but not the control, group showed enhanced temporal alpha asymmetry (an index of relaxation and positive mood) after performing the Passive DTB for five minutes, and enhanced intra- and inter-hemispheric theta coherence (an index of attention and alertness) after performing the Active DTB. The present findings suggested a positive effect of the Shaolin DTB technique on enhancing human neural activity and connectivity, which may possibly enhance mood state and cognitive functions. PMID:20976126

  16. Idiosyncratic reality claims, relaxation dispositions, and ABC relaxation theory: happiness, literal christianity, miraculous powers, metaphysics, and the paranormal.

    PubMed

    Smith, Jonathan C; Karmin, Aaron D

    2002-12-01

    This study examined idiosyncratic reality claims, that is, irrational or paranormal beliefs often claimed to enhance relaxation and happiness and reduce stress. The Smith Idiosyncratic Reality Claims Inventory and the Smith Relaxation Dispositions Inventory (which measures relaxation and stress dispositions, or enduring states of mind frequently associated with relaxation or stress) were given to 310 junior college student volunteers. Principal components factor analysis with varimax rotation identified five idiosyncratic reality claim factors: belief in Literal Christianity; Magic; Space Aliens: After Death experiences; and Miraculous Powers of Meditation, Prayer, and Belief. No factor correlated with increased relaxation dispositions Peace, Energy, or Joy, or reduced dispositional somatic stress, worry, or negative emotion on the Smith Relaxation Dispositions Inventory. It was concluded that idiosyncratic reality claims may not be associated with reported relaxation, happiness, or stress. In contrast, previous research strongly supported self-affirming beliefs with few paranormal assumptions display such an association.

  17. Relationship between relaxation by guided imagery and performance of working memory.

    PubMed

    Hudetz, J A; Hudetz, A G; Klayman, J

    2000-02-01

    This study tested the hypothesis that relaxation by guided imagery improves working-memory performance of healthy participants. 30 volunteers (both sexes, ages 17-56 years) were randomly assigned to one of three groups and administered the WAIS-III Letter-Number Sequencing Test before and after 10-min. treatment with guided imagery or popular music. The control group received no treatment. Groups' test scores were not different before treatment. The mean increased after relaxation by guided imagery but not after music or no treatment. This result supports the hypothesis that working-memory scores on the test are enhanced by guided imagery and implies that human information processing may be enhanced by prior relaxation.

  18. Relaxation of selection, niche construction, and the Baldwin effect in language evolution.

    PubMed

    Yamauchi, Hajime; Hashimoto, Takashi

    2010-01-01

    Deacon has suggested that one of the key factors of language evolution is not characterized by an increase in genetic contribution, often known as the Baldwin effect, but rather by a decrease. This process effectively increases linguistic learning capability by organizing a novel synergy of multiple lower-order functions previously irrelevant to the process of language acquisition. Deacon posits that this transition is not caused by natural selection. Rather, it is due to the relaxation of natural selection. While there are some cases in which relaxation caused by some external factors indeed induces the transition, we do not know what kind of relaxation has worked in language evolution. In this article, a genetic-algorithm-based computer simulation is used to investigate how the niche-constructing aspect of linguistic behavior may trigger the degradation of genetic predisposition related to language learning. The results show that agents initially increase their genetic predisposition for language learning—the Baldwin effect. They create a highly uniform sociolinguistic environment—a linguistic niche construction. This means that later generations constantly receive very similar inputs from adult agents, and subsequently the selective pressure to retain the genetic predisposition is relaxed.

  19. Spectral analysis of the central nervous system effects of the relaxation response elicited by autogenic training.

    PubMed

    Jacobs, G D; Lubar, J F

    1989-01-01

    This study examined the effects of the relaxation response, elicited by autogenic training, on central nervous system (CNS) activity. We used computerized spectral analysis of EEG activity as a dependent measure. After baseline EEG data were obtained for all subjects, the experimental group practiced standard autogenic exercises for 15 experimental sessions with home practice. The control subjects received the same number of sessions under identical conditions, except that they listened to a pleasant radio show without home practice. Subjects were then posttested to assess the acute and chronic effects of autogenic training and the relaxation response on CNS activity. The results indicated significant acute effects differences between groups; the experimental group showed greater increases in theta and greater decreases in alpha percent total power. The results suggest that the relaxation response elicited by autogenic training produces significant acute changes in EEG activity and a characteristic spectral pattern; the results also suggest that focusing attention on a repetitive, internal stimulus is a key element in Benson's relaxation response model.

  20. Cellular Particle Dynamics simulation of biomechanical relaxation processes of multi-cellular systems

    NASA Astrophysics Data System (ADS)

    McCune, Matthew; Kosztin, Ioan

    2013-03-01

    Cellular Particle Dynamics (CPD) is a theoretical-computational-experimental framework for describing and predicting the time evolution of biomechanical relaxation processes of multi-cellular systems, such as fusion, sorting and compression. In CPD, cells are modeled as an ensemble of cellular particles (CPs) that interact via short range contact interactions, characterized by an attractive (adhesive interaction) and a repulsive (excluded volume interaction) component. The time evolution of the spatial conformation of the multicellular system is determined by following the trajectories of all CPs through numerical integration of their equations of motion. Here we present CPD simulation results for the fusion of both spherical and cylindrical multi-cellular aggregates. First, we calibrate the relevant CPD model parameters for a given cell type by comparing the CPD simulation results for the fusion of two spherical aggregates to the corresponding experimental results. Next, CPD simulations are used to predict the time evolution of the fusion of cylindrical aggregates. The latter is relevant for the formation of tubular multi-cellular structures (i.e., primitive blood vessels) created by the novel bioprinting technology. Work supported by NSF [PHY-0957914]. Computer time provided by the University of Missouri Bioinformatics Consortium.

  1. Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yuan, E-mail: yuan.xu@ki.se; Cardell, Lars-Olaf

    Introduction: Cigarette smoke induces local inflammation and airway hyperreactivity. In asthmatics, it worsens the symptoms and increases the risk for exacerbation. The present study investigates the effects of nicotine on airway relaxations in isolated murine tracheal segments. Methods: Segments were cultured for 24 h in the presence of vehicle, nicotine (10 μM) and/or dexamethasone (1 μM). Airway relaxations were assessed in myographs after pre-contraction with carbachol (1 μM). Kinin receptors, cyclooxygenase (COX) and inflammatory mediator expressions were assessed by real-time PCR and confocal-microscopy-based immunohistochemistry. Results: The organ culture procedure markedly increased bradykinin- (selective B{sub 2} receptor agonist) and des-Arg{sup 9}-bradykinin-more » (selective B{sub 1} receptor agonist) induced relaxations, and slightly increased relaxation induced by isoprenaline, but not that induced by PGE{sub 2}. The kinin receptor mediated relaxations were epithelium-, COX-2- and EP2-receptor-dependent and accompanied by drastically enhanced mRNA levels of kinin receptors, as well as inflammatory mediators MCP-1 and iNOS. Increase in COX-2 and mPGES-1 was verified both at mRNA and protein levels. Nicotine selectively suppressed the organ-culture-enhanced relaxations induced by des-Arg{sup 9}-bradykinin and bradykinin, at the same time reducing mPGES-1 mRNA and protein expressions. α7-nicotinic acetylcholine receptor inhibitors α-bungarotoxin and MG624 both blocked the nicotine effects on kinin B{sub 2} receptors, but not those on B{sub 1}. Dexamethasone completely abolished kinin-induced relaxations. Conclusion: It is tempting to conclude that a local inflammatory process per se could have a bronchoprotective component by increasing COX-2 mediated airway relaxations and that nicotine could impede this safety mechanism. Dexamethasone further reduced airway inflammation together with relaxations. This might contribute to the steroid resistance

  2. Physiological Modalities for Relaxation Skill Transfer in Biofeedback Games.

    PubMed

    Parnandi, Avinash; Gutierrez-Osuna, Ricardo

    2017-03-01

    We present an adaptive biofeedback game for teaching self-regulation of stress. Our approach consists of monitoring the user's physiology during gameplay and adapting the game using a positive feedback loop that rewards relaxing behaviors and penalizes states of high arousal. We evaluate the approach using a casual game under three biofeedback modalities: electrodermal activity, heart rate variability, and breathing rate. The three biosignals can be measured noninvasively with wearable sensors, and represent different degrees of voluntary control and selectivity toward arousal. We conducted an experiment trial with 25 participants to compare the three modalities against a standard treatment (deep breathing) and a control condition (the game without biofeedback). Our results indicate that breathing-based game biofeedback is more effective in inducing relaxation during treatment than the other four groups. Participants in this group also showed greater retention of the relaxation skills (without biofeedback) during a subsequent stressor.

  3. Electron spin relaxation governed by Raman processes both for Cu2+ ions and carbonate radicals in KHCO3 crystals: EPR and electron spin echo studies

    NASA Astrophysics Data System (ADS)

    Hoffmann, Stanislaw K.; Goslar, Janina; Lijewski, Stefan

    2012-08-01

    EPR studies of Cu2+ and two free radicals formed by γ-radiation were performed for KHCO3 single crystal at room temperature. From the rotational EPR results we concluded that Cu2+ is chelated by two carbonate molecules in a square planar configuration with spin-Hamiltonian parameters g|| = 2.2349 and A|| = 18.2 mT. Free radicals were identified as neutral HOCOrad with unpaired electron localized on the carbon atom and a radical anion CO3·- with unpaired electron localized on two oxygen atoms. The hyperfine splitting of the EPR lines by an interaction with a single hydrogen atom of HOCOrad was observed with isotropic coupling constants ao = 0.31 mT. Two differently oriented radical sites were identified in the crystal unit cell. Electron spin-lattice relaxation measured by electron spin echo methods shows that both Cu2+ and free radicals relax via two-phonon Raman processes with almost the same relaxation rate. The temperature dependence of the relaxation rate 1/T1 is well described with the effective Debye temperature ΘD = 175 K obtained from a fit to the Debye-type phonon spectrum. We calculated a more realistic Debye temperature value from available elastic constant values of the crystal as ΘD = 246 K. This ΘD-value and the Debye phonon spectrum approximation give a much worse fit to the experimental results. Possible contributions from a local mode or an optical mode are considered and it is suggested that the real phonon spectrum should be used for the relaxation data interpretation. It is unusual that free radicals in KHCO3 relax similarly to the well localized Cu2+ ions, which suggests a small destruction of the host crystal lattice by the ionizing irradiation allowing well coupling between radical and lattice dynamics.

  4. Relaxation channels of multi-photon excited xenon clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serdobintsev, P. Yu.; Melnikov, A. S.; Department of Physics, St. Petersburg State University, Saint Petersburg 198904

    2015-09-21

    The relaxation processes of the xenon clusters subjected to multi-photon excitation by laser radiation with quantum energies significantly lower than the thresholds of excitation of atoms and ionization of clusters were studied. Results obtained by means of the photoelectron spectroscopy method showed that desorption processes of excited atoms play a significant role in the decay of two-photon excited xenon clusters. A number of excited states of xenon atoms formed during this process were discovered and identified.

  5. Measurement of short transverse relaxation times by pseudo-echo nutation experiments

    NASA Astrophysics Data System (ADS)

    Ferrari, Maude; Moyne, Christian; Canet, Daniel

    2018-07-01

    Very short NMR transverse relaxation times may be difficult to measure by conventional methods. Nutation experiments constitute an alternative approach. Nutation is, in the rotating frame, the equivalent of precession in the laboratory frame. It consists in monitoring the rotation of magnetization around the radio-frequency (rf) field when on-resonance conditions are fulfilled. Depending on the amplitude of the rf field, nutation may be sensitive to the two relaxation rates R1 and R2. A full theoretical development has been worked out for demonstrating how these two relaxation rates could be deduced from a simple nutation experiment, noticing however that inhomogeneity of the rf field may lead to erroneous results. This has led us to devise new experiments which are the equivalent of echo techniques in the rotating frame (pseudo spin-echo nutation experiment and pseudo gradient-echo experiment). Full equations of motion have been derived. Although complicated, they indicate that the sum of the two relaxation rates can be obtained very accurately and not altered by rf field inhomogeneity. This implies however an appropriate data processing accounting for the oscillations which are superposed to the echo decays and, anyway, theoretically predicted. A series of experiments has been carried out for different values of the rf field amplitude on samples of water doped with a paramagnetic compound at different concentrations. Pragmatically, as R1 can be easily measured by conventional methods, its value is entered in the data processing algorithm which then returns exclusively the value of the transverse relaxation time. Very consistent results are obtained that way.

  6. Dynamic Relaxational Behaviour of Hyperbranched Polyether Polyols

    NASA Astrophysics Data System (ADS)

    Navarro-Gorris, A.; Garcia-Bernabé, A.; Stiriba, S.-E.

    2008-08-01

    Hyperbranched polymers are highly cascade branched polymers easily accessible via one-pot procedure from ABm type monomers. A key property of hyperbranched polymers is their molecular architecture, which allows core-shell morphology to be manipulated for further specific applications in material and medical sciences. Since the discovery of hyperbranched polymer materials, an increasing number of reports have been published describing synthetic procedures and technological applications of such materials, but their physical properties have remained less studied until the last decade. In the present work, different esterified hyperbranched polyglycerols have been prepared starting from polyglycerol precursors in presence of acetic acid, thus generating functionalization degree with range from 0 to 94%. Thermal analysis of the obtained samples has been studied by Differential Scanning Calorimetry (DSC). Dielectric Spectroscopy measurements have been analyzed by combining loss spectra deconvolution with the modulus formalism. In this regard, all acetylated polyglycerols exhibited a main relaxation related to the glass transition (α process) and two sub-glassy relaxations (β and γ processes) which vanish at high functionalization degrees.

  7. Mechanisms of relaxation and spin decoherence in nanomagnets

    NASA Astrophysics Data System (ADS)

    van Tol, Johan

    Relaxation in spin systems is of great interest with respect to various possible applications like quantum information processing and storage, spintronics, and dynamic nuclear polarization (DNP). The implementation of high frequencies and fields is crucial in the study of systems with large zero-field splitting or large interactions, as for example molecular magnets and low dimensional magnetic materials. Here we will focus on the implementation of pulsed Electron Paramagnetic Resonance (ERP) at multiple frequencies of 10, 95, 120, 240, and 336 GHz, and the relaxation and decoherence processes as a function of magnetic field and temperature. Firstly, at higher frequencies the direct single-phonon spin-lattice relaxation (SLR) is considerably enhanced, and will more often than not be the dominant relaxation mechanism at low temperatures, and can be much faster than at lower fields and frequencies. In principle the measurement of the SLR rates as a function of the frequency provides a means to map the phonon density of states. Secondly, the high electron spin polarization at high fields has a strong influence on the spin fluctuations in relatively concentrated spin systems, and the contribution of the electron-electron dipolar interactions to the coherence rate can be partially quenched at low temperatures. This not only allows the study of relatively concentrated spin systems by pulsed EPR (as for example magnetic nanoparticles and molecular magnets), it enables the separation of the contribution of the fluctuations of the electron spin system from other decoherence mechanisms. Besides choice of temperature and field, several strategies in sample design, pulse sequences, or clock transitions can be employed to extend the coherence time in nanomagnets. A review will be given of the decoherence mechanisms with an attempt at a quantitative comparison of experimental rates with theory.

  8. Rindler fluid with weak momentum relaxation

    NASA Astrophysics Data System (ADS)

    Khimphun, Sunly; Lee, Bum-Hoon; Park, Chanyong; Zhang, Yun-Long

    2018-01-01

    We realize the weak momentum relaxation in Rindler fluid, which lives on the time-like cutoff surface in an accelerating frame of flat spacetime. The translational invariance is broken by massless scalar fields with weak strength. Both of the Ward identity and the momentum relaxation rate of Rindler fluid are obtained, with higher order correction in terms of the strength of momentum relaxation. The Rindler fluid with momentum relaxation could also be approached through the near horizon limit of cutoff AdS fluid with momentum relaxation, which lives on a finite time-like cutoff surface in Anti-de Sitter(AdS) spacetime, and further could be connected with the holographic conformal fluid living on AdS boundary at infinity. Thus, in the holographic Wilson renormalization group flow of the fluid/gravity correspondence with momentum relaxation, the Rindler fluid can be considered as the Infrared Radiation(IR) fixed point, and the holographic conformal fluid plays the role of the ultraviolet(UV) fixed point.

  9. Structural and rheological relaxation upon flow cessation in colloidal dispersions: Transient, nonlinear microrheology

    NASA Astrophysics Data System (ADS)

    Mohanty, Ritesh P.; Zia, Roseanna N.

    2017-11-01

    We theoretically study the impact of particle roughness, Brownian motion, and hydrodynamic interactions on the relaxation of colloidal dispersions by examining the structural and rheological relaxation after microrheological flow cessation. In particular, we focus on the disparity in timescales over which hydrodynamic and entropic forces act and influence colloidal relaxation. To do this, we employ the active microrheology framework, in which a colloidal probe, driven by an arbitrarily strong external force, interacts with many surrounding particle configurations before reaching steady-state motion. We utilize the steady-state structure around the probe as the initial condition in a Smoluchowski equation that we solve to obtain the structural evolution upon flow cessation. We systematically tune the strength of hydrodynamic and entropic forces, and study their influence on structural and rheological relaxation. Upon cessation, the non-Newtonian behavior arising directly from hydrodynamic forces dissipates instantaneously, while the entropic contributions decay over longer times. We find that increasing pre-cessation external flow strength enhances the relaxation rate, while hydrodynamic interactions slow down the relaxation.

  10. Effect of fluctuations on the NMR relaxation beyond the Abrikosov vortex state

    DOE PAGES

    Glatz, A.; Galda, A.; Varlamov, A. A.

    2015-08-25

    Here, the effect of fluctuations on the nuclear magnetic resonance (NMR) relaxation rate W = T –1 1 is studied in a complete phase diagram of a two-dimensional superconductor above the upper critical field line H c2(T). In the region of relatively high temperatures and low magnetic fields, the relaxation rate W is determined by two competing effects. The first one is its decrease in the result of suppression of the quasiparticle density of states (DOS) due to formation of fluctuation Cooper pairs (FCPs). The second one is a specific, purely quantum relaxation process of the Maki-Thompson (MT) type, whichmore » for low field leads to an increase of the relaxation rate. The latter describes particular fluctuation processes involving self-pairing of a single electron on self-intersecting trajectories of a size up to phase-breaking length ℓ Φ which becomes possible due to an electron spin-flip scattering event at a nucleus. As a result, different scenarios with either growth or decrease of the NMR relaxation rate are possible upon approaching the normal-metal–type-II superconductor transition. The character of fluctuations changes along the line H c2(T) from the thermal long-wavelength type in weak magnetic fields to the clusters of rotating FCPs in fields comparable to Hc2(0). We find that below the well-defined temperature T* 0 ≈ 0.6T c0, the MT process becomes ineffective even in the absence of intrinsic pair breaking. The small scale of the FCP rotations ξ xy in such high fields impedes formation of long (≲ℓ Φ) self-intersecting trajectories, causing the corresponding relaxation mechanism to lose its efficiency. This reduces the effect of superconducting fluctuations in the domain of high fields and low temperatures to just the suppression of quasiparticle DOS, analogous to the Abrikosov vortex phase below the H c2(T) line.« less

  11. The Effects of Suggestibility on Relaxation.

    ERIC Educational Resources Information Center

    Rickard, Henry C.; And Others

    1985-01-01

    Selected undergraduates (N=32) on the basis of Creative Imagination Scale scores and randomly assigned high and low suggestibility subjects to progressive relaxation (PR) and suggestions of relaxation (SR) training modes. Results revealed a significant pre-post relaxation effect, and main efffects for both suggestibility and training mode. (NRB)

  12. Time and Temperature Dependence of Viscoelastic Stress Relaxation in Gold and Gold Alloy Thin Films

    NASA Astrophysics Data System (ADS)

    Mongkolsuttirat, Kittisun

    Radio frequency (RF) switches based on capacitive MicroElectroMechanical System (MEMS) devices have been proposed as replacements for traditional solid-state field effect transistor (FET) devices. However, one of the limitations of the existing capacitive switch designs is long-term reliability. Failure is generally attributed to electrical charging in the capacitor's dielectric layer that creates an attractive electrostatic force between a moving upper capacitor plate (a metal membrane) and the dielectric. This acts as an attractive stiction force between them that may cause the switch to stay permanently in the closed state. The force that is responsible for opening the switch is the elastic restoring force due to stress in the film membrane. If the restoring force decreases over time due to stress relaxation, the tendency for stiction failure behavior will increase. Au films have been shown to exhibit stress relaxation even at room temperature. The stress relaxation observed is a type of viscoelastic behavior that is more significant in thin metal films than in bulk materials. Metal films with a high relaxation resistance would have a lower probability of device failure due to stress relaxation. It has been shown that solid solution and oxide dispersion can strengthen a material without unacceptable decreases in electrical conductivity. In this study, the viscoelastic behavior of Au, AuV solid solution and AuV2O5 dispersion created by DC magnetron sputtering are investigated using the gas pressure bulge testing technique in the temperature range from 20 to 80°C. The effectiveness of the two strengthening approaches is compared with the pure Au in terms of relaxation modulus and 3 hour modulus decay. The time dependent relaxation curves can be fitted very well with a four-term Prony series model. From the temperature dependence of the terms of the series, activation energies have been deduced to identify the possible dominant relaxation mechanism. The measured

  13. Detection of weak signals through nonlinear relaxation times for a Brownian particle in an electromagnetic field.

    PubMed

    Jiménez-Aquino, J I; Romero-Bastida, M

    2011-07-01

    The detection of weak signals through nonlinear relaxation times for a Brownian particle in an electromagnetic field is studied in the dynamical relaxation of the unstable state, characterized by a two-dimensional bistable potential. The detection process depends on a dimensionless quantity referred to as the receiver output, calculated as a function of the nonlinear relaxation time and being a characteristic time scale of our system. The latter characterizes the complete dynamical relaxation of the Brownian particle as it relaxes from the initial unstable state of the bistable potential to its corresponding steady state. The one-dimensional problem is also studied to complement the description.

  14. More is less: Learning but not relaxing buffers deviance under job stressors.

    PubMed

    Zhang, Chen; Mayer, David M; Hwang, Eunbit

    2018-02-01

    Workplace deviance harms the well-being of an organization and its members. Unfortunately, theory and prior research suggest that deviance is associated with job stressors, which are endemic to work organizations and often cannot be easily eliminated. To address this conundrum, we explore actions individuals can take at work that serve as buffering conditions for the positive relationship between job stressors and deviant behavior. Drawing upon conservation of resources theory, we examine a resource-building activity (i.e., learning something new at work) and a demand-shielding activity (i.e., taking time for relaxation at work) as potential boundary conditions. In 2 studies with employee samples using complementary designs, we find support for the buffering role of learning but not for relaxation. When employees learn new things at work, the relationship between hindrance stressors and deviance is weaker; as is the indirect relationship mediated by negative emotions. Taking time for relaxation at work did not show a moderating role in either study. Therefore, although relaxation is a response that individuals might be inclined to turn to for counteracting work stress, our findings suggest that, when it comes to addressing negative emotions and deviance in stressful work environments, building positive resources by learning something new at work could be more useful. In that way, doing more (i.e., learning, and not relaxing) is associated with less (deviance) in the face of job stressors. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  15. Reducing Anxiety and Improving Academic Performance Through a Biofeedback Relaxation Training Program.

    PubMed

    Aritzeta, Aitor; Soroa, Goretti; Balluerka, Nekane; Muela, Alexander; Gorostiaga, Arantxa; Aliri, Jone

    2017-09-01

    The aim of this study was to analyze the influence of a biofeedback relaxation training program on anxiety and academic performance. The program consisted of five biofeedback sessions coupled with three training activities focused on deep breathing, guided imagery, and muscle relaxation. The participants were second-year psychology undergraduates from the University of the Basque Country (UPV/EHU, northern Spain). The experimental group comprised 152 students (M age  = 19.6, SD = 0.74; 74% women) and the control group 81 students (M age   = 19.4, SD = 0.92; 71% women). Results showed that after participating in the program, students in the experimental group had lower levels of anxiety and increased academic performance. Furthermore, they scored lower on anxiety and higher on academic performance in comparison with the control subjects. This suggests that the inclusion of biofeedback training programs in educational contexts could be a way of reducing anxiety and improving academic performance. It may also deepen our understanding of the dynamic interplay between psychophysiological, cognitive, and emotional processes.

  16. From Strong to Fragile Glass Formers: Secondary Relaxation in Polyalcohols

    NASA Astrophysics Data System (ADS)

    Döß, A.; Paluch, M.; Sillescu, H.; Hinze, G.

    2002-03-01

    We have studied details of the molecular origin of slow secondary relaxation near Tg in a series of neat polyalcohols by means of dielectric spectroscopy and 2H NMR. From glycerol to threitol, xylitol, and sorbitol the appearance of the secondary relaxation changes gradually from a wing-type scenario to a pronounced β peak. It is found that in sorbitol the dynamics of the whole molecule contributes equally to the β process, while in glycerol the hydrogen bond forming OH groups remain rather rigid compared to the hydrogens bonded to the carbon skeleton.

  17. Contribution of β-adrenoceptor subtypes to relaxation of colon and oesophagus and pacemaker activity of ureter in wildtype and β3-adrenoceptor knockout mice

    PubMed Central

    Oostendorp, Jaap; Preitner, Frédéric; Moffatt, James; Jimenez, Maria; Giacobino, Jean Paul; Molenaar, Peter; Kaumann, Alberto Julio

    2000-01-01

    The smooth muscle relaxant responses to the mixed β3-, putative β4-adrenoceptor agonist, (−)-CGP 12177 in rat colon are partially resistant to blockade by the β3-adrenoceptor antagonist SR59230A suggesting involvement of β3- and putative β4-adrenoceptors. We now investigated the function of the putative β4-adrenoceptor and other β-adrenoceptor subtypes in the colon, oesophagus and ureter of wildtype (WT) and β3-adrenoceptor knockout (β3KO) mice.(−)-Noradrenaline and (−)-adrenaline relaxed KCl (30 mM)-precontracted colon mostly through β1-and β3-adrenoceptors to a similar extent and to a minor extent through β2-adrenoceptors. In colon from β3KO mice, (−)-noradrenaline was as potent as in WT mice but the effects were mediated entirely through β1-adrenoceptors. (−)-CGP 12177 relaxed colon from β3KO mice with 2 fold greater potency than in WT mice. The maintenance of potency for (−)-noradrenaline and increase for (−)-CGP 12177 indicate compensatory increases in β1- and putative β4-adrenoceptor function in β3KO mice.In oesophagi precontracted with 1 μM carbachol, (−)-noradrenaline caused relaxation mainly through β1-and β3-adrenoceptors. (−)-CGP 12177 (2 μM) relaxed oesophagi from WT by 61.4±5.1% and β3KO by 67.3±10.1% of the (−)-isoprenaline-evoked relaxation, consistent with mediation through putative β4-adrenoceptors.In ureter, (−)-CGP 12177 (2 μM) reduced pacemaker activity by 31.1±2.3% in WT and 31.3±7.5% in β3KO, consistent with mediation through putative β4-adrenoceptors.Relaxation of mouse colon and oesophagus by catecholamines are mediated through β1- and β3-adrenoceptors in WT. The putative β4-adrenoceptor, which presumably is an atypical state of the β1-adrenoceptor, mediates the effects of (−)-CGP 12177 in colon, oesophagus and ureter. PMID:10864880

  18. Electrode Reactions in Slowly Relaxing Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matyushov, Dmitry V.; Newton, Marshall D.

    Here, standard models of reaction kinetics in condensed materials rely on the Boltzmann-Gibbs distribution for the population of reactants at the top of the free energy barrier separating them from the products. While energy dissipation and quantum effects at the barrier top can potentially affect the transmission coefficient entering the rate preexponential factor, much stronger dynamical effects on the reaction barrier are caused by the breakdown of ergodicity for populating the reaction barrier (violation of the Boltzmann-Gibbs statistics). When the spectrum of medium modes coupled to the reaction coordinate includes fluctuations slower than the reaction rate, such nuclear motions dynamicallymore » freeze on the reaction time-scale and do not contribute to the activation barrier. In this paper, we consider the consequences of this scenario for electrode reactions in slowly relaxing media. Changing electrode overpotential speeds electrode electron transfer up, potentially cutting through the spectrum of nuclear modes coupled to the reaction coordinate. The reorganization energy of electrochemical electron transfer becomes a function of the electrode overpotential, switching between the thermodynamic value at low rates to the nonergodic limit at higher rates. The sharpness of this transition depends of the relaxation spectrum of the medium. The reorganization energy experiences a sudden drop with increasing overpotential for a medium with a Debye relaxation, but becomes a much shallower function of the overpotential for media with stretched exponential dynamics. The latter scenario characterizes electron transfer in ionic liquids. The analysis of electrode reactions in room-temperature ionic liquids shows that the magnitude of the free energy of nuclear solvation is significantly below its thermodynamic limit. Finally, this result applies to reaction times faster than microseconds and is currently limited by the available dielectric relaxation data.« less

  19. Electrode Reactions in Slowly Relaxing Media

    DOE PAGES

    Matyushov, Dmitry V.; Newton, Marshall D.

    2017-11-17

    Here, standard models of reaction kinetics in condensed materials rely on the Boltzmann-Gibbs distribution for the population of reactants at the top of the free energy barrier separating them from the products. While energy dissipation and quantum effects at the barrier top can potentially affect the transmission coefficient entering the rate preexponential factor, much stronger dynamical effects on the reaction barrier are caused by the breakdown of ergodicity for populating the reaction barrier (violation of the Boltzmann-Gibbs statistics). When the spectrum of medium modes coupled to the reaction coordinate includes fluctuations slower than the reaction rate, such nuclear motions dynamicallymore » freeze on the reaction time-scale and do not contribute to the activation barrier. In this paper, we consider the consequences of this scenario for electrode reactions in slowly relaxing media. Changing electrode overpotential speeds electrode electron transfer up, potentially cutting through the spectrum of nuclear modes coupled to the reaction coordinate. The reorganization energy of electrochemical electron transfer becomes a function of the electrode overpotential, switching between the thermodynamic value at low rates to the nonergodic limit at higher rates. The sharpness of this transition depends of the relaxation spectrum of the medium. The reorganization energy experiences a sudden drop with increasing overpotential for a medium with a Debye relaxation, but becomes a much shallower function of the overpotential for media with stretched exponential dynamics. The latter scenario characterizes electron transfer in ionic liquids. The analysis of electrode reactions in room-temperature ionic liquids shows that the magnitude of the free energy of nuclear solvation is significantly below its thermodynamic limit. Finally, this result applies to reaction times faster than microseconds and is currently limited by the available dielectric relaxation data.« less

  20. 40 CFR 57.205 - Submission of supplementary information upon relaxation of an SO2 SIP emission limitation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... upon relaxation of an SO2 SIP emission limitation. 57.205 Section 57.205 Protection of Environment... Application and the NSO Process § 57.205 Submission of supplementary information upon relaxation of an SO2 SIP emission limitation. (a) In the event an SO2 SIP limit is relaxed subsequent to EPA approval or issuance of...

  1. Transcendental Meditation and Progressive Relaxation: Their Physiological Effects.

    ERIC Educational Resources Information Center

    Throll, D. A.

    1982-01-01

    Measured oxygen consumption, subjects' respiration rate, heart rate, and blood pressure before and after learned Transcendental Meditation (TM) or Jacobson's Progressive Relaxation. Found TM group displayed more significant decreases during meditation and activity, explained primarily in terms of greater amount of time the TM group spent on their…

  2. The Relaxation of Vicinal (001) with ZigZag [110] Steps

    NASA Astrophysics Data System (ADS)

    Hawkins, Micah; Hamouda, Ajmi Bh; González-Cabrera, Diego Luis; Einstein, Theodore L.

    2012-02-01

    This talk presents a kinetic Monte Carlo study of the relaxation dynamics of [110] steps on a vicinal (001) simple cubic surface. This system is interesting because [110] steps have different elementary excitation energetics and favor step diffusion more than close-packed [100] steps. In this talk we show how this leads to relaxation dynamics showing greater fluctuations on a shorter time scale for [110] steps as well as 2-bond breaking processes being rate determining in contrast to 3-bond breaking processes for [100] steps. The existence of a steady state is shown via the convergence of terrace width distributions at times much longer than the relaxation time. In this time regime excellent fits to the modified generalized Wigner distribution (as well as to the Berry-Robnik model when steps can overlap) were obtained. Also, step-position correlation function data show diffusion-limited increase for small distances along the step as well as greater average step displacement for zigzag steps compared to straight steps for somewhat longer distances along the step. Work supported by NSF-MRSEC Grant DMR 05-20471 as well as a DOE-CMCSN Grant.

  3. Relaxation mode analysis and Markov state relaxation mode analysis for chignolin in aqueous solution near a transition temperature

    NASA Astrophysics Data System (ADS)

    Mitsutake, Ayori; Takano, Hiroshi

    2015-09-01

    It is important to extract reaction coordinates or order parameters from protein simulations in order to investigate the local minimum-energy states and the transitions between them. The most popular method to obtain such data is principal component analysis, which extracts modes of large conformational fluctuations around an average structure. We recently applied relaxation mode analysis for protein systems, which approximately estimates the slow relaxation modes and times from a simulation and enables investigations of the dynamic properties underlying the structural fluctuations of proteins. In this study, we apply this relaxation mode analysis to extract reaction coordinates for a system in which there are large conformational changes such as those commonly observed in protein folding/unfolding. We performed a 750-ns simulation of chignolin protein near its folding transition temperature and observed many transitions between the most stable, misfolded, intermediate, and unfolded states. We then applied principal component analysis and relaxation mode analysis to the system. In the relaxation mode analysis, we could automatically extract good reaction coordinates. The free-energy surfaces provide a clearer understanding of the transitions not only between local minimum-energy states but also between the folded and unfolded states, even though the simulation involved large conformational changes. Moreover, we propose a new analysis method called Markov state relaxation mode analysis. We applied the new method to states with slow relaxation, which are defined by the free-energy surface obtained in the relaxation mode analysis. Finally, the relaxation times of the states obtained with a simple Markov state model and the proposed Markov state relaxation mode analysis are compared and discussed.

  4. The development of ultrashort acting neuromuscular relaxant tropane derivatives.

    PubMed

    Gyermek, Laszlo; Lee, Chingmuh

    2009-03-01

    There is a need for neuromuscular relaxant (NMR) agents that are of the "nondepolarizing type" and produce rapidly developing and short-lasting skeletal muscle relaxation in anesthesiology. Many efforts have been directed to produce such agents. Our research focused on the design, synthesis, and evaluation of numerous "bisquaternary" derivatives of the cyclic aminoalkanes: tropane and granatane. Through systematic "steric structure-activity relationship" studies, we arrived at some new bisquaternary tropine and granatanol diesters, which in laboratory studies appeared to be the fastest and shortest acting NMRs recognized so far. Their ultrashort duration action-mechanism was, however, linked to the formation of nephrotoxic metabolites, precluding further development. Even so, we believe that the scientific information gained from more than a thousand such agents, will be useful toward developing the "ideal," ultrashort-acting NMR that could be clinically successful without the use of "reversing" agents, at least until "new biotechnology" may solve all problematic aspects of "transient" muscle relaxation.

  5. Correlating the stretched-exponential and super-Arrhenius behaviors in the structural relaxation of glass-forming liquids.

    PubMed

    Wang, Lianwen; Li, Jiangong; Fecht, Hans-Jörg

    2011-04-20

    Following the report of a single-exponential activation behavior behind the super-Arrhenius structural relaxation of glass-forming liquids in our preceding paper, we find that the non-exponentiality in the structural relaxation of glass-forming liquids is straightforwardly determined by the relaxation time, and could be calculated from the measured relaxation data. Comparisons between the calculated and measured non-exponentialities for typical glass-forming liquids, from fragile to intermediate, convincingly support the present analysis. Hence the origin of the non-exponentiality and its correlation with liquid fragility become clearer.

  6. Relaxation and decoherence of qubits encoded in collective states of engineered magnetic structures

    NASA Astrophysics Data System (ADS)

    Shakirov, Alexey M.; Rubtsov, Alexey N.; Lichtenstein, Alexander I.; Ribeiro, Pedro

    2017-09-01

    The quantum nature of a microscopic system can only be revealed when it is sufficiently decoupled from surroundings. Interactions with the environment induce relaxation and decoherence that turn the quantum state into a classical mixture. Here, we study the timescales of these processes for a qubit encoded in the collective state of a set of magnetic atoms deposited on a metallic surface. For that, we provide a generalization of the commonly used definitions of T1 and T2 characterizing relaxation and decoherence rates. We calculate these quantities for several atomic structures, including a collective spin, a setup implementing a decoherence-free subspace, and two examples of spin chains. Our work contributes to the comprehensive understanding of the relaxation and decoherence processes and shows the advantages of the implementation of a decoherence free subspace in these setups.

  7. Stability investigations of relaxing molecular gas flows. Results and perspectives

    NASA Astrophysics Data System (ADS)

    Grigor'ev, Yurii N.; Ershov, Igor V.

    2017-10-01

    This article presents results of systematic investigations of a dissipative effect which manifests itself as the growth of hydrodynamic stability and suppression of turbulence in relaxing molecular gas flows. The effect can be a new way for control stability and laminar turbulent transition in aerodynamic flows. The consideration of suppression of inviscid acoustic waves in 2D shear flows is presented. Nonlinear evolution of large-scale vortices and Kelvin — Helmholtz waves in relaxing shear flows are studied. Critical Reynolds numbers in supersonic Couette flows are calculated analytically and numerically within the framework of both classical linear and nonlinear energy hydrodynamic stability theories. The calculations clearly show that the relaxation process can appreciably delay the laminar-turbulent transition. The aim of this article is to show the new dissipative effect, which can be used for flow control and laminarization.

  8. Relaxation of bending stresses and the reversibility of residual stresses in amorphous soft magnetic alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kekalo, I. B.; Mogil’nikov, P. S., E-mail: pavel-mog@mail.ru

    2015-06-15

    The reversibility of residual bending stresses is revealed in ribbon samples of cobalt- and iron-based amorphous alloys Co{sub 69}Fe{sub 3.7}Cr{sub 3.8}Si{sub 12.5}B{sub 11} and Fe{sub 57}Co{sub 31}Si{sub 2.9}B{sub 9.1}: the ribbons that are free of applied stresses and bent under the action of residual stresses become completely or incompletely straight upon annealing at the initial temperatures. The influence of annealing on the relaxation of bending stresses is studied. Preliminary annealing is found to sharply decrease the relaxation rate of bending stresses, and the initial stage of fast relaxation of these stresses is absent. Complete straightening of preliminarily annealed ribbons ismore » shown to occur at significantly higher temperatures than that of the initial ribbons. Incomplete straightening of the ribbons is explained by the fact that bending stresses relaxation at high annealing temperatures proceeds due to both reversible anelastic deformation and viscous flow, which is a fully irreversible process. Incomplete reversibility is also caused by irreversible processes, such as the release of excess free volume and clustering (detected by small-angle X-ray scattering). The revealed differences in the relaxation processes that occur in the cobalt- and iron-based amorphous alloys are discussed in terms of different atomic diffusion mobilities in these alloys.« less

  9. Theoretical Studies of Relaxation and Optical Properties of Polymers

    NASA Astrophysics Data System (ADS)

    Jin, Bih-Yaw

    1993-01-01

    This thesis is composed of two parts. In the part one, the empirical correlation between the logarithm of tunneling splittings and the temperature at which the spin-lattice relaxation time is minimum for methyl groups in different molecular crystals is explained successfully by taking multiphonon processes into account. We show that one phonon transitions dominate in the low barrier limit. However, in the intermediate barrier range and high barrier limit, it is necessary to include multiphonon processes. We also show that the empirical correlation depends only logarithmically on the details of the phonon bath. In the part two, we have investigated the optical and relaxation properties of conjugated polymers. The connection between the vibronic picture of Raman scattering and the third order perturbation approach in solid state physics is clarified in chapter 2. Starting from the Kramers -Heissenberg-Dirac formula for Raman scattering, we derive expressions for the Condon and Herzberg-Teller terms from a simple two-level system to a two-band system, i.e. polyacetylene, by using traditional vibronic picture. Both the Condon and Herzberg-Teller terms contribute to two-band processes, while three-band processes consist only of Herzberg-Teller terms in the solid state limit. Close to resonance the Condon term dominates and converges to the usual solid state result. In the off-resonance region the Herzberg -Teller term is comparable to Condon term for both small molecule and solid state system. In chapter 3, we will concentrate on the lattice relaxation of the lowest optically allowed 1B_ {u} state, especially, the effect of electron correlation on the excited state geometric relaxation for finite polyenes. We have examined the competition between electron-electron interaction and electron-phonon coupling on the formation of localized lattice distortion in the 1B_{u} state for finite polyene with chain length up to 30 double bonds. The chain length dependence of the

  10. Internal structural changes in keratin fibres resulting from combined hair waving and stress relaxation treatments: a Raman spectroscopic investigation.

    PubMed

    Kuzuhara, A

    2016-04-01

    The objective of our research was to investigate the influence of chemical treatments (reduction, stress relaxation and oxidation) on hair keratin fibres. The structure of cross-sections at various depths of virgin white human hair resulting from permanent waving treatments with stress relaxation process was directly analysed at a molecular level using Raman spectroscopy. In particular, the three disulphide (-SS-) conformations in human hair were compared by S-S band analysis. The gauche-gauche-gauche (GGG) and gauche-gauche-trans (GGT) contents of -SS- groups remarkably decreased, while the trans-gauche-trans (TGT) content was not changed by performing the reduction process with thioglycolic acid. In addition, the high-temperature stress relaxation process after reduction accelerated the disconnection of -SS- (GGG and GGT) groups in the human hair, while the low-temperature stress relaxation process after reduction accelerated the reconnection of -SS- (GGG and GGT) groups. Moreover, the S-O band intensity at 1042 cm(-1) , assigned to cysteic acid, existing in the cuticle region and the surface of the cortex region increased, while the GGG content significantly decreased by performing the oxidation process after the reduction and the high-temperature stress relaxation processes. The author concluded that the high-temperature relaxation process after reduction accelerated the disconnection of -SS- (GGG and GGT) groups, thereby leading to the remarkable local molecular disorganization (an increase in the cysteic acid content and a decrease in the GGG content) on the cuticle and cortex cells during the oxidation process. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  11. Relaxation in x-space magnetic particle imaging.

    PubMed

    Croft, Laura R; Goodwill, Patrick W; Conolly, Steven M

    2012-12-01

    Magnetic particle imaging (MPI) is a new imaging modality that noninvasively images the spatial distribution of superparamagnetic iron oxide nanoparticles (SPIOs). MPI has demonstrated high contrast and zero attenuation with depth, and MPI promises superior safety compared to current angiography methods, X-ray, computed tomography, and magnetic resonance imaging angiography. Nanoparticle relaxation can delay the SPIO magnetization, and in this work we investigate the open problem of the role relaxation plays in MPI scanning and its effect on the image. We begin by amending the x-space theory of MPI to include nanoparticle relaxation effects. We then validate the amended theory with experiments from a Berkeley x-space relaxometer and a Berkeley x-space projection MPI scanner. Our theory and experimental data indicate that relaxation reduces SNR and asymmetrically blurs the image in the scanning direction. While relaxation effects can have deleterious effects on the MPI scan, we show theoretically and experimentally that x-space reconstruction remains robust in the presence of relaxation. Furthermore, the role of relaxation in x-space theory provides guidance as we develop methods to minimize relaxation-induced blurring. This will be an important future area of research for the MPI community.

  12. Role of step stiffness and kinks in the relaxation of vicinal (001) with zigzag [110] steps

    NASA Astrophysics Data System (ADS)

    Mahjoub, B.; Hamouda, Ajmi BH.; Einstein, TL.

    2017-08-01

    We present a kinetic Monte Carlo study of the relaxation dynamics and steady state configurations of 〈110〉 steps on a vicinal (001) simple cubic surface. This system is interesting because 〈110〉 (fully kinked) steps have different elementary excitation energetics and favor step diffusion more than 〈100〉 (nominally straight) steps. In this study we show how this leads to different relaxation dynamics as well as to different steady state configurations, including that 2-bond breaking processes are rate determining for 〈110〉 steps in contrast to 3-bond breaking processes for 〈100〉-steps found in previous work [Surface Sci. 602, 3569 (2008)]. The analysis of the terrace-width distribution (TWD) shows a significant role of kink-generation-annihilation processes during the relaxation of steps: the kinetic of relaxation, toward the steady state, is much faster in the case of 〈110〉-zigzag steps, with a higher standard deviation of the TWD, in agreement with a decrease of step stiffness due to orientation. We conclude that smaller step stiffness leads inexorably to faster step dynamics towards the steady state. The step-edge anisotropy slows the relaxation of steps and increases the strength of step-step effective interactions.

  13. Hair Dye and Hair Relaxers

    MedlinePlus

    ... For Consumers Consumer Information by Audience For Women Hair Dye and Hair Relaxers Share Tweet Linkedin Pin it More sharing ... products. If you have a bad reaction to hair dyes and relaxers, you should: Stop using the ...

  14. Measurement of short transverse relaxation times by pseudo-echo nutation experiments.

    PubMed

    Ferrari, Maude; Moyne, Christian; Canet, Daniel

    2018-05-03

    Very short NMR transverse relaxation times may be difficult to measure by conventional methods. Nutation experiments constitute an alternative approach. Nutation is, in the rotating frame, the equivalent of precession in the laboratory frame. It consists in monitoring the rotation of magnetization around the radio-frequency (rf) field when on-resonance conditions are fulfilled. Depending on the amplitude of the rf field, nutation may be sensitive to the two relaxation rates R 1 and R 2 . A full theoretical development has been worked out for demonstrating how these two relaxation rates could be deduced from a simple nutation experiment, noticing however that inhomogeneity of the rf field may lead to erroneous results. This has led us to devise new experiments which are the equivalent of echo techniques in the rotating frame (pseudo spin-echo nutation experiment and pseudo gradient-echo experiment). Full equations of motion have been derived. Although complicated, they indicate that the sum of the two relaxation rates can be obtained very accurately and not altered by rf field inhomogeneity. This implies however an appropriate data processing accounting for the oscillations which are superposed to the echo decays and, anyway, theoretically predicted. A series of experiments has been carried out for different values of the rf field amplitude on samples of water doped with a paramagnetic compound at different concentrations. Pragmatically, as R 1 can be easily measured by conventional methods, its value is entered in the data processing algorithm which then returns exclusively the value of the transverse relaxation time. Very consistent results are obtained that way. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Size dependence of 13C nuclear spin-lattice relaxation in micro- and nanodiamonds

    NASA Astrophysics Data System (ADS)

    Panich, A. M.; Sergeev, N. A.; Shames, A. I.; Osipov, V. Yu; Boudou, J.-P.; Goren, S. D.

    2015-02-01

    Size dependence of physical properties of nanodiamond particles is of crucial importance for various applications in which defect density and location as well as relaxation processes play a significant role. In this work, the impact of defects induced by milling of micron-sized synthetic diamonds was studied by magnetic resonance techniques as a function of the particle size. EPR and 13C NMR studies of highly purified commercial synthetic micro- and nanodiamonds were done for various fractions separated by sizes. Noticeable acceleration of 13C nuclear spin-lattice relaxation with decreasing particle size was found. We showed that this effect is caused by the contribution to relaxation coming from the surface paramagnetic centers induced by sample milling. The developed theory of the spin-lattice relaxation for such a case shows good compliance with the experiment.

  16. The kinetic activation-relaxation technique: an off-lattice, self-learning kinetic Monte Carlo algorithm with on-the-fly event search

    NASA Astrophysics Data System (ADS)

    Mousseau, Nomand

    2012-02-01

    While kinetic Monte Carlo algorithm has been proposed almost 40 years ago, its application in materials science has been mostly limited to lattice-based motion due to the difficulties associated with identifying new events and building usable catalogs when atoms moved into off-lattice position. Here, I present the kinetic activation-relaxation technique (kinetic ART) is an off-lattice, self-learning kinetic Monte Carlo algorithm with on-the-fly event search [1]. It combines ART nouveau [2], a very efficient unbiased open-ended activated method for finding transition states, with a topological classification [3] that allows a discrete cataloguing of local environments in complex systems, including disordered materials. In kinetic ART, local topologies are first identified for all atoms in a system. ART nouveau event searches are then launched for new topologies, building an extensive catalog of barriers and events. Next, all low energy events are fully reconstructed and relaxed, allowing to take complete account of elastic effects in the system's kinetics. Using standard kinetic Monte Carlo, the clock is brought forward and an event is then selected and applied before a new search for topologies is launched. In addition to presenting the various elements of the algorithm, I will discuss three recent applications to ion-bombarded silicon, defect diffusion in Fe and structural relaxation in amorphous silicon.[4pt] This work was done in collaboration with Laurent Karim B'eland, Peter Brommer, Fedwa El-Mellouhi, Jean-Francois Joly and Laurent Lewis.[4pt] [1] F. El-Mellouhi, N. Mousseau and L.J. Lewis, Phys. Rev. B. 78, 153202 (2008); L.K. B'eland et al., Phys. Rev. E 84, 046704 (2011).[2] G.T. Barkema and N. Mousseau, Phys. Rev. Lett. 77, 4358 (1996); E. Machado-Charry et al., J. Chem Phys. 135, 034102, (2011).[3] B.D. McKay, Congressus Numerantium 30, 45 (1981).

  17. Comparison of Physiological and Psychological Relaxation Using Measurements of Heart Rate Variability, Prefrontal Cortex Activity, and Subjective Indexes after Completing Tasks with and without Foliage Plants.

    PubMed

    Park, Sin-Ae; Song, Chorong; Oh, Yun-Ah; Miyazaki, Yoshifumi; Son, Ki-Cheol

    2017-09-20

    The objective of this study was to compare physiological and psychological relaxation by assessing heart rate variability (HRV), prefrontal cortex activity, and subjective indexes while subjects performed a task with and without foliage plants. In a crossover experimental design, 24 university students performed a task transferring pots with and without a foliage plant for 3 min. HRV and oxyhemoglobin (oxy-Hb) concentration in the prefrontal cortex were continuously measured. Immediately thereafter, subjective evaluation of emotions was performed using a modified semantic differential (SD) method and a profile of mood state questionnaire (POMS). Results showed that the natural logarithmic (ln) ratio of low frequency/high frequency, as an estimate of sympathetic nerve activity, was significantly lower while performing the task with foliage plants for the average 3 min measurement interval. Oxy-Hb concentration in the left prefrontal cortex showed a tendency to decrease in the 2-3 min interval in the task with foliage plants compared to the task without plants. Moreover, significant psychological relaxation according to POMS score and SD was demonstrated when the task involved foliage plants. In conclusion, the task involving foliage plants led to more physiological and psychological relaxation compared with the task without foliage plants.

  18. Novel spin dynamics in ferrimagnetic molecular chains from 1H NMR and μSR spin-lattice relaxation measurements

    NASA Astrophysics Data System (ADS)

    Micotti, E.; Lascialfari, A.; Rigamonti, A.; Aldrovandi, S.; Caneschi, A.; Gatteschi, D.; Bogani, L.

    2004-05-01

    The spin dynamics in the helical chain Co(hfac) 2NITPhOMe has been investigated by 1H NMR and μSR relaxation. In the temperature range 15relaxation of the homogeneous magnetization. For T⩽15 K, NMR and μSR evidence a second spin relaxation mechanism, undetected by the magnetization measurements. From the analysis of these data, insights on this novel relaxation process are derived.

  19. Influence of Nanodisperse Metal Fillers on the Viscoelastic Properties and Processes of Mechanical Relaxation of Polymer Systems

    NASA Astrophysics Data System (ADS)

    Kolupav, B. B.; Kolupaev, B. S.; Levchuk, V. V.; Maksimtsev, Yu. R.; Sidletskii, V. A.

    2017-05-01

    The results of research into the viscoelastic properties and processes of mechanical relaxation of polyvinylchloride (PVC) containing Cu nanoparticles obtained by means of electroerosion crushing and electrohydraulic destruction of agglomerates of disperse Cu in the presence of an ultrasonic field are presented. It is shown that, in the case of longitudinal shear deformation at a frequency of 0.4 × 106 s-1 over a wide range of temperatures and content of ingredients, viscoelastic phenomena depending on structural changes in the PVC system occur. An analysis of quantitative results of the elastic and viscoelastic deformation of a body is carried out taking into account the energy and entropy components of interaction of the polymer and filler at their interface.

  20. Rotation relaxation splitting for optimizing parallel RF excitation pulses with T1 - and T2 -relaxations in MRI

    NASA Astrophysics Data System (ADS)

    Majewski, Kurt

    2018-03-01

    Exact solutions of the Bloch equations with T1 - and T2 -relaxation terms for piecewise constant magnetic fields are numerically challenging. We therefore investigate an approximation for the achieved magnetization in which rotations and relaxations are split into separate operations. We develop an estimate for its accuracy and explicit first and second order derivatives with respect to the complex excitation radio frequency voltages. In practice, the deviation between an exact solution of the Bloch equations and this rotation relaxation splitting approximation seems negligible. Its computation times are similar to exact solutions without relaxation terms. We apply the developed theory to numerically optimize radio frequency excitation waveforms with T1 - and T2 -relaxations in several examples.

  1. A proof-of-concept study on the combination of repetitive transcranial magnetic stimulation and relaxation techniques in chronic tinnitus.

    PubMed

    Kreuzer, Peter M; Poeppl, Timm B; Bulla, Jan; Schlee, Winfried; Lehner, Astrid; Langguth, Berthold; Schecklmann, Martin

    2016-10-01

    Interference of ongoing neuronal activity and brain stimulation motivated this study to combine repetitive transcranial magnetic stimulation (rTMS) and relaxation techniques in tinnitus patients. Forty-two patients were enrolled in this one-arm proof-of-concept study to receive ten sessions of rTMS applied to the left dorsolateral prefrontal cortex and temporo-parietal cortex. During stimulation, patients listened to five different kinds of relaxation audios. Variables of interest were tinnitus questionnaires, tinnitus numeric rating scales, depressivity, and quality of life. Results were compared to results of historical control groups having received the same rTMS protocol (active control) and sham treatment (placebo) without relaxation techniques. Thirty-eight patients completed the treatment, drop-out rates and adverse events were low. Responder rates (reduction in tinnitus questionnaire (TQ) score ≥5 points 10 weeks after treatment) were 44.7 % in the study, 27.8 % in the active control group, and 21.7 % in the placebo group, differing between groups on a near significant level. For the tinnitus handicap inventory (THI), the main effect of group was not significant. However, linear mixed model analyses showed that the relaxation/rTMS group differed significantly from the active control group showing steeper negative THI trend for the relaxation/rTMS group indicating better amelioration over the course of the trial. Deepness of relaxation during rTMS and selection of active relaxation vs. passive listening to music predicted larger TQ. All remaining secondary outcomes turned out non-significant. This combined treatment proved to be a safe, feasible and promising approach to enhance rTMS treatment effects in chronic tinnitus.

  2. Direct Comparison of Surface and Bulk Relaxation of PS - A Temperature Dependent Study

    NASA Astrophysics Data System (ADS)

    Wu, Wen-Li; Sambasivan, Sharadha; Wang, Chia-Ying; Genzer, Jan; Fischer, Daniel A.

    2005-03-01

    Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy was used to measure simultaneously the relaxation rates of polystyrene (PS) molecules at the free surface and in the bulk. The samples were uniaxially oriented at room temperature via a modified cold rolling process. The density of the oriented samples as determined by liquid immersion technique is identical to that of bulk PS. At temperatures below its bulk glass transition temperature the rate of surface and bulk chain relaxation was monitored by measuring the partial-electron yield (PEY) and the fluorescence NEXAFS yields (FS), respectively, both parallel and perpendicular to the stretching direction. The decay rate of the dichroic ratios from both PEY and FY at various temperatures was taken as a measure of the relaxation rate of surface and bulk molecules respectively. In addition, the decay rate of the optical birefringence was also measured to provide an independent measure of the bulk relaxation. Relaxation of PS chains was found to occur faster on the surface relative to the bulk. The magnitude of the surface glass transition temperature suppression over the bulk was estimated to be 18 C based on the measured temperature dependence of the relaxation rates.

  3. Study into the correlation of dominant pore throat size and SIP relaxation frequency

    NASA Astrophysics Data System (ADS)

    Kruschwitz, Sabine; Prinz, Carsten; Zimathies, Annett

    2016-12-01

    There is currently a debate within the SIP community about the characteristic textural length scale controlling relaxation time of consolidated porous media. One idea is that the relaxation time is dominated by the pore throat size distribution or more specifically the modal pore throat size as determined in mercury intrusion capillary pressure tests. Recently new studies on inverting pore size distributions from SIP data were published implying that the relaxation mechanisms and controlling length scale are well understood. In contrast new analytical model studies based on the Marshall-Madden membrane polarization theory suggested that two relaxation processes might compete: the one along the short narrow pore (the throat) with one across the wider pore in case the narrow pores become relatively long. This paper presents a first systematically focused study into the relationship of pore throat sizes and SIP relaxation times. The generality of predicted trends is investigated across a wide range of materials differing considerably in chemical composition, specific surface and pore space characteristics. Three different groups of relaxation behaviors can be clearly distinguished. The different behaviors are related to clay content and type, carbonate content, size of the grains and the wide pores in the samples.

  4. Solute induced relaxation in glassy polymers: Experimental measurements and nonequilibrium thermodynamic model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minelli, Matteo; Doghieri, Ferruccio

    2014-05-15

    Data for kinetics of mass uptake from vapor sorption experiments in thin glassy polymer samples are here interpreted in terms of relaxation times for volume dilation. To this result, both models from non-equilibrium thermodynamics and from mechanics of volume relaxation contribute. Different kind of sorption experiments have been considered in order to facilitate the direct comparison between kinetics of solute induced volume dilation and corresponding data from process driven by pressure or temperature jumps.

  5. Anomalous nuclear Overhauser effects in carbon-substituted aziridines: scalar cross-relaxation of the first kind.

    PubMed

    Kuprov, Ilya; Hodgson, David M; Kloesges, Johannes; Pearson, Christopher I; Odell, Barbara; Claridge, Timothy D W

    2015-03-16

    Anomalous NOESY cross-peaks that cannot be explained by dipolar cross-relaxation or chemical exchange are described for carbon-substituted aziridines. The origin of these is identified as scalar cross-relaxation of the first kind, as demonstrated by a complete theoretical description of this relaxation process and by computational simulation of the NOESY spectra. It is shown that this process relies on the stochastic modulation of J-coupling by conformational transitions, which in the case of aziridines arise from inversion at the nitrogen center. The observation of scalar cross-relaxation between protons does not appear to have been previously reported for NOESY spectra. Conventional analysis would have assigned the cross-peaks as being indicative of a chemical exchange process occurring between correlated spins, were it not for the fact that the pairs of nuclei displaying them cannot undergo such exchange. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  6. Scalar Resonant Relaxation of Stars around a Massive Black Hole

    NASA Astrophysics Data System (ADS)

    Bar-Or, Ben; Fouvry, Jean-Baptiste

    2018-06-01

    In nuclear star clusters, the potential is governed by the central massive black hole (MBH), so that stars move on nearly Keplerian orbits and the total potential is almost stationary in time. Yet, the deviations of the potential from the Keplerian one, due to the enclosed stellar mass and general relativity, will cause the stellar orbits to precess. Moreover, as a result of the finite number of stars, small deviations of the potential from spherical symmetry induce residual torques that can change the stars’ angular momentum faster than the standard two-body relaxation. The combination of these two effects drives a stochastic evolution of orbital angular momentum, a process named “resonant relaxation” (RR). Owing to recent developments in the description of the relaxation of self-gravitating systems, we can now fully describe scalar resonant relaxation (relaxation of the magnitude of the angular momentum) as a diffusion process. In this framework, the potential fluctuations due to the complex orbital motion of the stars are described by a random correlated noise with statistical properties that are fully characterized by the stars’ mean field motion. On long timescales, the cluster can be regarded as a diffusive system with diffusion coefficients that depend explicitly on the mean field stellar distribution through the properties of the noise. We show here, for the first time, how the diffusion coefficients of scalar RR, for a spherically symmetric system, can be fully calculated from first principles, without any free parameters. We also provide an open source code that evaluates these diffusion coefficients numerically.

  7. Crater relaxation on Titan aided by low thermal conductivity sand infill

    NASA Astrophysics Data System (ADS)

    Schurmeier, Lauren R.; Dombard, Andrew J.

    2018-05-01

    Titan's few impact craters are currently many hundreds of meters shallower than the depths expected. Assuming these craters initially had depths equal to that of similar-size fresh craters on Ganymede and Callisto (moons of similar size, composition, and target lithology), then some process has shallowed them over time. Since nearly all of Titan's recognized craters are located within the arid equatorial sand seas of organic-rich dunes, where rain is infrequent, and atmospheric sedimentation is expected to be low, it has been suggested that aeolian infill plays a major role in shallowing the craters. Topographic relaxation at Titan's current heat flow was previously assumed to be an unimportant process on Titan due to its low surface temperature (94 K). However, our estimate of the thermal conductivity of Titan's organic-rich sand is remarkably low (0.025 W m-1 K-1), and when in thick deposits, will result in a thermal blanketing effect that can aid relaxation. Here, we simulate the relaxation of Titan's craters Afekan, Soi, and Sinlap including thermal effects of various amounts of sand inside and around Titan's craters. We find that the combination of aeolian infill and subsequent relaxation can produce the current crater depths in a geologically reasonable period of time using Titan's current heat flow. Instead of needing to fill completely the missing volume with 100% sand, only ∼62%, ∼71%, and ∼97%, of the volume need be sand at the current basal heat flux for Afekan, Soi, and Sinlap, respectively. We conclude that both processes are likely at work shallowing these craters, and this finding contributes to why Titan overall lacks impact craters in the arid equatorial regions.

  8. Evolving fuzzy rules for relaxed-criteria negotiation.

    PubMed

    Sim, Kwang Mong

    2008-12-01

    In the literature on automated negotiation, very few negotiation agents are designed with the flexibility to slightly relax their negotiation criteria to reach a consensus more rapidly and with more certainty. Furthermore, these relaxed-criteria negotiation agents were not equipped with the ability to enhance their performance by learning and evolving their relaxed-criteria negotiation rules. The impetus of this work is designing market-driven negotiation agents (MDAs) that not only have the flexibility of relaxing bargaining criteria using fuzzy rules, but can also evolve their structures by learning new relaxed-criteria fuzzy rules to improve their negotiation outcomes as they participate in negotiations in more e-markets. To this end, an evolutionary algorithm for adapting and evolving relaxed-criteria fuzzy rules was developed. Implementing the idea in a testbed, two kinds of experiments for evaluating and comparing EvEMDAs (MDAs with relaxed-criteria rules that are evolved using the evolutionary algorithm) and EMDAs (MDAs with relaxed-criteria rules that are manually constructed) were carried out through stochastic simulations. Empirical results show that: 1) EvEMDAs generally outperformed EMDAs in different types of e-markets and 2) the negotiation outcomes of EvEMDAs generally improved as they negotiated in more e-markets.

  9. The in vivo relaxivity of MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Shuter, Borys

    1999-11-01

    Post-contrast clinical 1H Magnetic Resonance Images have to date been interpreted with little regard for possible variations in the in-vivo properties of injected magnetic pharmaceuticals (contrast agents), particularly in their relaxivity or ability to alter tissue relaxation rates, T2-1 and T 2-1, per unit concentration. The relaxivities of contrast agents have only rarely been measured in-vivo, measurements usually being performed on excised tissues and at magnetic field strengths lower than used in clinical practice. Some researchers have simply assumed that relaxivities determined in homogeneous tissue phantoms were applicable in-vivo. In this thesis, the relaxivities of two contrast agents, Gd-DTPA and Gd-EOB-DTPA, were measured in simple tissue phantoms and in the kidney and liver of intact, but sacrificed, Wistar rats using a clinical MR scanner with a magnetic field of 1.5 Tesla. T1 and T2 were determined from sets of images acquired using a standard clinical spin-echo pulse sequence. The contrast agent concentration in tissue was assessed by radioassay of 153Gd-DTPA or 153Gd-EOB-DTPA, mixed with the normal compound prior to injection. Relaxivity was taken as the slope of a linear regression fit of relaxation rate against Gd concentration. The relaxivities of Gd-EOB-DTPA were similarly determined in normal and biliary- obstructed guinea pigs. Relaxivities in tissue differed significantly from values obtained in simple phantoms. Kidney T1 relaxivity was reduced for both compounds in normal animals. Three days or more of biliary obstruction produced further reductions in kidney T1 relaxivity of Gd-EOB-DTPA, providing strong evidence that disease affects contrast agent relaxivity. Kidney T2 relaxivity was much greater than T1 relaxivity and was also depressed by biliary obstruction. Liver T1 and T 2 relaxivites were increased above phantom values, but were not affected by the biliary obstruction. Water compartmentalisation, macromolecular binding, proton

  10. A model for the scattering of high-frequency electromagnetic fields from dielectrics exhibiting thermally-activated electrical losses

    NASA Technical Reports Server (NTRS)

    Hann, Raiford E.

    1991-01-01

    An equivalent circuit model (ECM) approach is used to predict the scattering behavior of temperature-activated, electrically lossy dielectric layers. The total electrical response of the dielectric (relaxation + conductive) is given by the ECM and used in combination with transmission line theory to compute reflectance spectra for a Dallenbach layer configuration. The effects of thermally-activated relaxation processes on the scattering properties is discussed. Also, the effect of relaxation and conduction activation energy on the electrical properties of the dielectric is described.

  11. The relaxation induced by S-nitroso-glutathione and S-nitroso-N-acetylcysteine in rat aorta is not related to nitric oxide production.

    PubMed

    Ceron, P I; Cremonez, D C; Bendhack, L M; Tedesco, A C

    2001-08-01

    S-nitroso-glutathione (GSNO) and S-nitroso-N-acetylcysteine (NACysNO) are nitrosothiols that release nitric oxide (NO) and mimic the effects of endogenous NO. This study investigated the relaxation induced by GSNO and NACysNO in rat aorta and the relation between relaxation and NO formation. Both compounds at concentrations from 10(-9) M to 10(-4) M relaxed the rat aorta in a concentration-dependent manner. However, NO production depended on the concentration of nitrosothiols present and was detected only above 100 microM GSNO or NACysNO. To determine whether K+ channels are involved in the relaxation induced by nitrosothiols, the contractions were induced with KCl at concentrations of 30, 60, or 90 mM. The concentration-effect curves for the relaxation induced by nitrosothiols were shifted to the right for all the K+ concentrations compared with aortas precontracted with phenylephrine. These results indicate the participation of K+ channels in the relaxation induced by GSNO and NACysNO. A selective inhibitor of soluble guanylyl cyclase, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, significantly inhibited the relaxation induced by the nitrosothiols. The relaxation induced by GSNO and NACysNO was inhibited by the K+ channel blockers glibenclamide, selective K(ATP) channels, and apamin, selective for low-conductance Ca2+-activated K+ channels in rat aorta, but was not inhibited by charybdotoxin, a potent and selective Ca2+-activated K+ channel blocker, or by 4-aminopyridine, a voltage-gated K+ channel blocker. These results indicate that relaxation induced by GSNO and NACysNO is partially due to activation of K(ATP) channels and partially due to activation of low-conductance Ca2+-activated K+ channels. However, the ability of the nitrosothiol compounds to overcome the inhibitory effect of high extracellular K+ concentrations suggests another mechanism of relaxation contributing to the nitrosothiol response. The most intriguing finding is that relaxation is not

  12. Relaxation of the single-slip condition in strain-gradient plasticity

    PubMed Central

    Anguige, Keith; Dondl, Patrick W.

    2014-01-01

    We consider the variational formulation of both geometrically linear and geometrically nonlinear elasto-plasticity subject to a class of hard single-slip conditions. Such side conditions typically render the associated boundary-value problems non-convex. We show that, for a large class of non-smooth plastic distortions, a given single-slip condition (specification of Burgers vectors) can be relaxed by introducing a microstructure through a two-stage process of mollification and lamination. The relaxed model can be thought of as an aid to simulating macroscopic plastic behaviour without the need to resolve arbitrarily fine spatial scales. PMID:25197243

  13. Relaxation of the single-slip condition in strain-gradient plasticity.

    PubMed

    Anguige, Keith; Dondl, Patrick W

    2014-09-08

    We consider the variational formulation of both geometrically linear and geometrically nonlinear elasto-plasticity subject to a class of hard single-slip conditions. Such side conditions typically render the associated boundary-value problems non-convex. We show that, for a large class of non-smooth plastic distortions, a given single-slip condition (specification of Burgers vectors) can be relaxed by introducing a microstructure through a two-stage process of mollification and lamination. The relaxed model can be thought of as an aid to simulating macroscopic plastic behaviour without the need to resolve arbitrarily fine spatial scales.

  14. Thermodynamic scaling of α-relaxation time and viscosity stems from the Johari-Goldstein β-relaxation or the primitive relaxation of the coupling model.

    PubMed

    Ngai, K L; Habasaki, J; Prevosto, D; Capaccioli, S; Paluch, Marian

    2012-07-21

    By now it is well established that the structural α-relaxation time, τ(α), of non-associated small molecular and polymeric glass-formers obey thermodynamic scaling. In other words, τ(α) is a function Φ of the product variable, ρ(γ)/T, where ρ is the density and T the temperature. The constant γ as well as the function, τ(α) = Φ(ρ(γ)/T), is material dependent. Actually this dependence of τ(α) on ρ(γ)/T originates from the dependence on the same product variable of the Johari-Goldstein β-relaxation time, τ(β), or the primitive relaxation time, τ(0), of the coupling model. To support this assertion, we give evidences from various sources itemized as follows. (1) The invariance of the relation between τ(α) and τ(β) or τ(0) to widely different combinations of pressure and temperature. (2) Experimental dielectric and viscosity data of glass-forming van der Waals liquids and polymer. (3) Molecular dynamics simulations of binary Lennard-Jones (LJ) models, the Lewis-Wahnström model of ortho-terphenyl, 1,4 polybutadiene, a room temperature ionic liquid, 1-ethyl-3-methylimidazolium nitrate, and a molten salt 2Ca(NO(3))(2)·3KNO(3) (CKN). (4) Both diffusivity and structural relaxation time, as well as the breakdown of Stokes-Einstein relation in CKN obey thermodynamic scaling by ρ(γ)/T with the same γ. (5) In polymers, the chain normal mode relaxation time, τ(N), is another function of ρ(γ)/T with the same γ as segmental relaxation time τ(α). (6) While the data of τ(α) from simulations for the full LJ binary mixture obey very well the thermodynamic scaling, it is strongly violated when the LJ interaction potential is truncated beyond typical inter-particle distance, although in both cases the repulsive pair potentials coincide for some distances.

  15. 'Relaxers' damage hair: evidence from amino acid analysis.

    PubMed

    Khumalo, Nonhlanhla P; Stone, Janet; Gumedze, Freedom; McGrath, Emily; Ngwanya, Mzudumile R; de Berker, David

    2010-03-01

    'Relaxers' are used by more than two thirds of African females to straighten hair, with easy grooming and increased length often cited as reasons. A recent study reported relaxed hair lengths much shorter than expected, suggesting increased fragility; the potential for scalp inflammation and scarring alopecia remains unclear. To investigate the biochemical effects of 'relaxers' on hair. With informed consent, included participants represented 3 groups: natural hair, asymptomatic relaxed hair, and symptomatic (brittle) relaxed hair. Biochemical analysis was performed by using a Biochrom 30 amino acid analyzer. Differences in amino acid levels were assessed using either Wilcoxon rank sum test or matched-pairs signed-rank test. There was a decrease in cystine, citrulline, and arginine; however, an increase in glutamine was found in all relaxed compared to natural hair. Cystine levels (milligram per gram amino acid nitrogen) were similar in natural proximal and distal hair: 14 mg/g (range, 4-15 mg/g) versus 14 mg/g (range, 12-15 mg/g); P = .139. In asymptomatic relaxed hair, cystine levels were higher in less frequently relaxed samples proximal to scalp: 7.5 mg/g (5.6-12) versus 3.3 mg/g (1.3-9.2); P = .005. Cystine levels in distal asymptomatic relaxed and symptomatic relaxed hair were similar to each other and to those in the genetic hair fragility disease trichothiodystrophy. It was not possible to analyze lye and no-lye 'relaxers' separately. 'Relaxers' are associated with reduced cystine consistent with fragile damaged hair. A decrease in citrulline and glutamine has been associated with inflammation; prospective studies are needed to investigate whether or how 'relaxers' induce inflammation. Copyright 2009 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  16. Longitudinal Relaxation of Ferromagnetic Grains

    NASA Astrophysics Data System (ADS)

    Würger, Alois

    1998-07-01

    We study the activated longitudinal dynamics of a small single-domain magnet with uniaxial anisotropy, coupled to quantum noise. The smallest finite eigenvalue λ1 = γ0e-EB/kBT of the relaxation matrix is evaluated in a controlled approximation. For white noise we find γ0~T-1 at moderate temperatures and γ0 = const at very low T. Coupling to elastic waves leads to a prefactor that is linear in T or constant, depending on temperature. At very low T, the discreteness of the energy spectrum is crucial.

  17. Designing a Dy2 Single-Molecule Magnet with Two Well-Differentiated Relaxation Processes by Using a Nonsymmetric Bis-bidentate Bipyrimidine- N-Oxide Ligand: A Comparison with Mononuclear Counterparts.

    PubMed

    Díaz-Ortega, Ismael F; Herrera, Juan Manuel; Aravena, Daniel; Ruiz, Eliseo; Gupta, Tulika; Rajaraman, Gopalan; Nojiri, H; Colacio, Enrique

    2018-06-04

    Herein we report a dinuclear [(μ-mbpymNO){(tmh) 3 Dy} 2 ] (1) single-molecule magnet (SMM) showing two nonequivalent Dy III centers, which was rationally prepared from the reaction of Dy(tmh) 3 moieties (tmh = 2,2,6,6-tetramethyl-3,5-heptanedionate) and the asymmetric bis-bidentate bridging ligand 4-methylbipyrimidine (mbpymNO). Depending on whether the Dy III ions coordinate to the N^O or N^N bidentate donor sets, the Dy III sites present a NO 7 ( D 2 d geometry) or N 2 O 6 ( D 4 d ) coordination sphere. As a consequence, two different thermally activated magnetic relaxation processes are observed with anisotropy barriers of 47.8 and 54.7 K. Ab initio calculations confirm the existence of two different relaxation phenomena and allow one to assign the 47.8 and 54.7 K energy barriers to the Dy(N 2 O 6 ) and Dy(NO 7 ) sites, respectively. Two mononuclear complexes, [Dy(tta) 3 (mbpymNO)] (2) and [Dy(tmh) 3 (phenNO)] (3), have also been prepared for comparative purposes. In both cases, the Dy III center shows a NO 7 coordination sphere and SMM behavior is observed with U eff values of 71.5 K (2) and 120.7 K (3). In all three cases, ab initio calculations indicate that relaxation of the magnetization takes place mainly via the first excited-state Kramers doublet through Orbach, Raman, and thermally assisted quantum-tunnelling mechanisms. Pulse magnetization measurements reveal that the dinuclear and mononuclear complexes exhibit hysteresis loops with double- and single-step structures, respectively, thus supporting their SMM behavior.

  18. Can Black Hole Relax Unitarily?

    NASA Astrophysics Data System (ADS)

    Solodukhin, S. N.

    2005-03-01

    We review the way the BTZ black hole relaxes back to thermal equilibrium after a small perturbation and how it is seen in the boundary (finite volume) CFT. The unitarity requires the relaxation to be quasi-periodic. It is preserved in the CFT but is not obvious in the case of the semiclassical black hole the relaxation of which is driven by complex quasi-normal modes. We discuss two ways of modifying the semiclassical black hole geometry to maintain unitarity: the (fractal) brick wall and the worm-hole modification. In the latter case the entropy comes out correctly as well.

  19. Rapid wall relaxation in elongating tissues.

    PubMed

    Matyssek, R; Maruyama, S; Boyer, J S

    1988-04-01

    Reported differences in the relaxation of cell walls in enlarging stem tissues of soybean (Glycine max [L.] Merr.) and pea (Pisum sativum L.) cause measurements of the yield threshold turgor, an important growth parameter, to be in doubt. Using the pressure probe and guillotine psychrometer, we investigated wall relaxation in these species by excising the elongating tissue in air to remove the water supply. We found that the rapid kinetics usually exhibited by soybean could be delayed and made similar to the slow kinetics previously reported for pea if slowly growing or mature tissue was left attached to the rapidly growing tissue when relaxation was initiated. The greater the amount of attached tissue, the slower the relaxation, suggesting that slowly growing tissue acted as a water source. Consistent with this concept was a lower water potential in the rapidly elongating tissue than in the slowly growing tissue. Previous reports of wall relaxation in pea included slowly growing tissue. If this tissue was removed from pea, relaxation became as rapid as usually exhibited by soybean. It is concluded that the true relaxation of cell walls to the yield threshold requires only a few minutes and that the yield threshold should be constant during so short a time, thus reflecting the yield threshold in the intact plant before excision. Under these conditions, the yield threshold was close to the turgor in the intact plant regardless of the species. The presence of slowly growing or mature tissue delays wall relaxation and should be avoided during such measurements. However, this delay can be used to advantage when turgor of intact growing tissues is being measured using excised tissues because turgor does not change for a considerable time after excision.

  20. Endo- vs. exogenous shocks and relaxation rates in book and music “sales”

    NASA Astrophysics Data System (ADS)

    Lambiotte, R.; Ausloos, M.

    2006-04-01

    In this paper, we analyse the response of music and book sales to an external field and a buyer herding. We distinguish endogenous and exogenous shocks. We focus on some case studies, whose data have been collected from ranking on amazon.com. We show that an ensemble of equivalent systems quantitatively respond in a same way to a similar “external shock”, indicating roads to universality features. In contrast to Sornette et al. [Phys. Rev. Lett. 93 (2004) 228701] who seemed to find power-law behaviours, in particular at long times, a law interpreted in terms of an epidemic activity, we observe that the relaxation process can be as well seen as an exponential one that saturates toward an asymptotic state, itself different from the pre-shock state. By studying an ensemble of 111 shocks, on books or records, we show that exogenous and endogenous shocks are discriminated by their short-time behaviour: the relaxation time seems to be twice shorter in endogenous shocks than in exogenous ones. We interpret the finding through a simple thermodynamic model with a dissipative force.

  1. Picosecond Electronic Relaxations In Amorphous Semiconductors

    NASA Astrophysics Data System (ADS)

    Tauc, Jan

    1983-11-01

    Using the pump and probe technique the relaxation processes of photogenerated carriers in amorphous tetrahedral semiconductors and chalcogenide glasses in the time domain from 0.5 Ps to 1.4 ns have been studied. The results obtained on the following phenomena are reviewed: hot carrier thermalization in amorphous silicon; trapping of carriers in undoped a-Si:H; trapping of carriers in deep traps produced by doping; geminate recombination in As2S3-xSex glasses.

  2. Acute toxicity, brine shrimp cytotoxicity and relaxant activity of fruits of callistemon citrinus curtis.

    PubMed

    Ali, Niaz; Ahmed, Ghayour; Shah, Syed Wadood Ali; Shah, Ismail; Ghias, Mehreen; Khan, Imran

    2011-10-24

    Callistemon citrinus Curtis belongs to family Myrtaceae that has a great medicinal importance. In our previous work, fruits of Callistemon citrinus were reported to have relaxant (antispasmodic) activity. The current work describes the screening of fractions of the crude methanol extract for tracing spasmolytic constituents so that it shall help us for isolation of bioactive compounds. Acute toxicity and brine shrimp cytotoxicity of crude methanol extract are also performed to standardize it. The crude methanol extract was obtained by maceration with distilled water (500 ml) three times and fractionated successively with n-hexane, chloroform, ethyl acetate and n-butanol (300 ml of each solvent). Phytochemical analysis for crude methanol extract was performed. Acute toxicity studies were performed in mice. Brine shrimp cytotoxicity studies were performed to determine its cytotoxicity and standardize it. In other series of experiments, rabbits' jejunum preparations were used in screening for possible relaxant activities of various fractions. They were applied in concentrations of 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 5.0 and 10.0 mg/ml on spontaneous rabbits' jejunum preparations. In similar fashion, fractions were also tested on KCl (80 mM) -induced contractions. Calcium chloride curves were constructed in K-rich Tyrode's solution. The effects of various fractions were tested on calcium chloride curves at concentrations 1.0, 3.0, 5.0 and 10.0 mg/ml. Curves of verapamil used as reference drug at concentration 0.1 μM and 0.3 μM were also constructed. The curves were compared with their respective controls for possible right shift. Methanol extract tested strongly positive for saponins and tannins. However, it tested mild positive for presence of proteins, amino acids, carbohydrates and phenolic compounds. LD(50) value for crude methanol extract is 476.25 ± 10.3 (470-481, n = 4) mg/ml. Similarly, EC(50) value for brine shrimp cytotoxicity is 65.5 ± 7.28 (60.8- 69.4, n

  3. Upward magnetic relaxation in self organizing Fe nanoparticle system

    NASA Astrophysics Data System (ADS)

    Pal, Satyendra Prakash; Sharma, Gyaneshwar; Sen, P.

    2018-04-01

    Study of the thermoremanent magnetic relaxation behavior of Fe nanoparticles and its nanocomposite with activated carbon has been systematically performed. Magnetic relaxation data shows the spontaneous collective periodic oscillations of the spins superimposed on the magnetic decay curves. At sufficiently high temperature, due to thermal noise induced ordering of the magnetic moment an inflexion with an increase in the absolute value of the magnetization takes place. Due to insufficient interaction on account of dilution in the case of nanocomposite, the spin - spin interaction which was responsible for magnetic ordering in the case of bare Fe nanoparticles, collective oscillations of the system do not sustain upto longer times in the case of carbon diluted system.

  4. Spatially resolved nuclear spin relaxation, electron spin relaxation and light absorption in swift heavy ion irradiated LiF crystals.

    PubMed

    Stork, H; Dinse, K-P; Ditter, M; Fujara, F; Masierak, W; Neumann, R; Schuster, B; Schwartz, K; Trautmann, C

    2010-05-12

    Spatially resolved (19)F and (7)Li spin-lattice relaxation rates are measured for LiF single crystals after irradiation with two kinds of swift heavy ions ((12)C of 133 MeV and (208)Pb of 1.78 GeV incident energy). Like in earlier studies on (130)Xe and (238)U irradiated LiF crystals, we found a strong enhancement of the nuclear spin-lattice relaxation rate within the ion penetration depth and a slight--but still significant--enhancement beyond. By evaluating the nuclear relaxation rate enhancement within the ion range after irradiation with different projectiles, a universal relationship between the spin-lattice relaxation rate and the dose is deduced. The results of accompanying X-band electron paramagnetic resonance relaxation measurements and optical absorption spectroscopy are included in a physical interpretation of this relationship. Also the reason for the enhanced relaxation rate beyond the ion range is further discussed.

  5. (-)-Epicatechin-induced relaxation of isolated human saphenous vein: Roles of K+ and Ca2+ channels.

    PubMed

    Marinko, Marija; Jankovic, Goran; Nenezic, Dragoslav; Milojevic, Predrag; Stojanovic, Ivan; Kanjuh, Vladimir; Novakovic, Aleksandra

    2018-02-01

    In this study, we aimed to investigate relaxant effect of flavanol (-)-epicatechin on the isolated human saphenous vein (HSV), as a part of its cardioprotective action, and to define the mechanisms underlying this vasorelaxation. (-)-Epicatechin induced a concentration-dependent relaxation of HSV pre-contracted by phenylephrine. Among K + channel blockers, 4-aminopyridine, margatoxin, and iberiotoxin significantly inhibited relaxation of HSV, while glibenclamide considerably reduced effects of the high concentrations of (-)-epicatechin. Additionally, (-)-epicatechin relaxed contraction induced by 80 mM K + , whereas in the presence of nifedipine produced partial relaxation of HSV rings pre-contracted by phenylephrine. In Ca 2+ -free solution, (-)-epicatechin relaxed contraction induced by phenylephrine, but had no effect on contraction induced by caffeine. A sarcoplasmic reticulum Ca 2+ -ATPase inhibitor, thapsigargin, significantly reduced relaxation of HSV produced by (-)-epicatechin. These results demonstrate that (-)-epicatechin produces endothelium-independent relaxation of isolated HSV rings. Vasorelaxation to (-)-epicatechin probably involves activation of 4-aminopyridine- and margatoxin-sensitive K V channels, BK Ca channels, and at least partly, K ATP channels. In addition, not only the inhibition of extracellular Ca 2+ influx, but regulation of the intracellular Ca 2+ release, via inositol-trisphosphate receptors and reuptake into sarcoplasmic reticulum, via stimulation of Ca 2+ -ATPase, as well, most likely participate in (-)-epicatechin-induced relaxation of HSV. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Solvent-dependent activation of intermediate excited states in the energy relaxation pathways of spheroidene.

    PubMed

    Maiuri, Margherita; Polli, Dario; Brida, Daniele; Lüer, Larry; LaFountain, Amy M; Fuciman, Marcel; Cogdell, Richard J; Frank, Harry A; Cerullo, Giulio

    2012-05-14

    In carotenoids internal conversion between the allowed (S(2)) and forbidden (S(1)) excited states occurs on a sub-picosecond timescale; the involvement of an intermediate excited state(s) (S(x)) mediating the process is controversial. Here we use high time resolution (sub-20 fs) broadband (1.2-2.5 eV) pump-probe spectroscopy to study the solvent dependence of excited state dynamics of spheroidene, a naturally-occurring carotenoid with ten conjugated double bonds. In the high polarizability solvent, CS(2), we find no evidence of an intermediate state, and the traditional three-level (S(0), S(1), S(2)) model fully accounts for the S(2)→ S(1) process. On the other hand, in the low polarizability solvent, cyclohexane, we find that rapid (~30 fs) relaxation to an intermediate state, S(x), lying between S(1) and S(2) is required to account for the data. We interpret these results as due to a shift of the S(2) energy, which positions the state above or below the energy of S(x) in response to changes in solvent polarizability. This journal is © the Owner Societies 2012

  7. Suppressing relaxation in superconducting qubits by quasiparticle pumping.

    PubMed

    Gustavsson, Simon; Yan, Fei; Catelani, Gianluigi; Bylander, Jonas; Kamal, Archana; Birenbaum, Jeffrey; Hover, David; Rosenberg, Danna; Samach, Gabriel; Sears, Adam P; Weber, Steven J; Yoder, Jonilyn L; Clarke, John; Kerman, Andrew J; Yoshihara, Fumiki; Nakamura, Yasunobu; Orlando, Terry P; Oliver, William D

    2016-12-23

    Dynamical error suppression techniques are commonly used to improve coherence in quantum systems. They reduce dephasing errors by applying control pulses designed to reverse erroneous coherent evolution driven by environmental noise. However, such methods cannot correct for irreversible processes such as energy relaxation. We investigate a complementary, stochastic approach to reducing errors: Instead of deterministically reversing the unwanted qubit evolution, we use control pulses to shape the noise environment dynamically. In the context of superconducting qubits, we implement a pumping sequence to reduce the number of unpaired electrons (quasiparticles) in close proximity to the device. A 70% reduction in the quasiparticle density results in a threefold enhancement in qubit relaxation times and a comparable reduction in coherence variability. Copyright © 2016, American Association for the Advancement of Science.

  8. Powerful relaxation of phosphodiesterase type 4 inhibitor rolipram in the pig and human bladder neck.

    PubMed

    Ribeiro, Ana S F; Fernandes, Vítor S; Martínez-Sáenz, Ana; Martínez, Pilar; Barahona, María Victoria; Orensanz, Luis M; Blaha, Igor; Serrano-Margüello, Daniel; Bustamante, Salvador; Carballido, Joaquín; García-Sacristán, Albino; Prieto, Dolores; Hernández, Medardo

    2014-04-01

    Phosphodiesterase type 5 (PDE5) inhibitors act as effective drugs for the treatment of lower urinary tract symptom (LUTS). There is a poor information, however, about the role of the PDE4 inhibitors on the bladder outflow region contractility. To investigate PDE4 expression and the relaxation induced by the PDE4 inhibitor rolipram versus that induced by the PDE5 blockers sildenafil and vardenafil, in the pig and human bladder neck. Immunohistochemistry for PDE4 expression, myographs for isometric force recordings and fura-2 fluorescence for simultaneous measurements of intracellular Ca2+ concentration ([Ca2+]i ) and tension for rolipram in bladder neck samples were used. PDE4 expression and relaxations to PDE4 and PDE5 inhibitors and simultaneous measurements of [Ca2+]i and tension. PDE4 expression was observed widely distributed in the smooth muscle layer of the pig and human bladder neck. On urothelium-denuded phenylephrine (PhE)-precontracted strips of pig and human, rolipram, sildenafil and vardenafil produced concentration-dependent relaxations with the following order of potency: rolipram> > sildenafil>vardenafil. In pig, the adenylyl cyclase activator forskolin potentiated rolipram-elicited relaxation, whereas protein kinase A (PKA) blockade reduced such effect. On potassium-enriched physiological saline solution (KPSS)-precontracted strips, rolipram evoked a lower relaxation than that obtained on PhE-stimulated preparations. Inhibition of large (BKCa ) and intermediate (IKCa ) conductance Ca2+ -activated K+ channels, neuronal voltage-gated Ca2+ channels, nitric oxide (NO) and hydrogen sulfide (H2 S) synthases reduced rolipram responses. Rolipram inhibited the contractions induced by PhE without reducing the PhE-evoked [Ca2+]i increase. PDE4 is present in the pig and human bladder neck smooth muscle, where rolipram exerts a much more potent relaxation than that elicited by PDE5 inhibitors. In pig, rolipram-induced response is produced through the PKA

  9. Correlation Between Gastric Emptying and Gastric Adaptive Relaxation Influenced by Amino Acids

    PubMed Central

    Uchida, Masayuki; Kobayashi, Orie; Saito, Chizuru

    2017-01-01

    Background/Aims Amino acids have many physiological activities. We report the correlation between gastric emptying and gastric adaptive relaxation using tryptophan and amino acids with a straight alkyl chain, hydroxylated chain, and branched chain. Here we sought to further clarify the correlation between gastric emptying and gastric adaptive relaxation by using other amino acids. Methods In Sprague-Dawley rats, gastric emptying was evaluated by a breath test using [1-13C] acetic acid. The expired 13CO2 pattern, Tmax, Cmax, and AUC120min values were used as evaluation items. Gastric adaptive relaxation was evaluated in a barostat experiment. Individual amino acids (1 g/kg) were administered orally 30 minutes before each breath test or barostat test. Results L-phenylalanine and L-tyrosine did not influence gastric emptying. All other amino acids, ie, L-proline, L-histidine, L-cysteine, L-methionine, L-aspartic acid, L-glutamic acid, L-asparagine, L-arginine, L-glutamine, and L-lysine significantly delayed and inhibited gastric emptying. L-Cysteine and L-aspartic acid significantly enhanced and L-methionine and L-glutamine significantly inhibited gastric adaptive relaxation. L-Phenylalanine moved the balloon toward the antrum, suggesting strong contraction of the fundus. Tmax showed a significant positive correlation (r = 0.709), and Cmax and AUC120min each showed negative correlations (r = 0.613 and 0.667, respectively) with gastric adaptive relaxation. Conclusion From the above findings, it was found that a close correlation exists between gastric emptying and adaptive relaxation, suggesting that enhanced gastric adaptive relaxation inhibits gastric emptying. PMID:28335103

  10. Spin-lattice relaxation study of the methyl proton dynamics in solid 9,10-dimethyltriptycene (DMT).

    PubMed

    Piślewski, N; Tritt-Goc, J; Bielejewski, M; Rachocki, A; Ratajczyk, T; Szymański, S

    2009-06-01

    Proton spin-lattice relaxation studies are performed for powder samples of 9,10-dimethyltriptycene (DMT) and its isotopomer DMT-d(12) in which all the non-methyl protons in the molecule are replaced by deuterons. The relaxation data are interpreted in terms of the conventional relaxation theory based on the random jump model in which the Pauli correlations between the relevant spin and torsional states are discarded. The Arrhenius activation energies, obtained from the relaxation data, 25.3 and 24.8 kJ mol(-1) for DMT and DMT-d(12), respectively, are very high as for the methyl groups. The validity of the jump model in the present case is considered from the perspective of Haupt theory in which the Pauli principle is explicitly invoked. To this purpose, the dynamic quantities entering the Haupt model are reinterpreted in the spirit of the damped quantum rotation (DQR) approach introduced recently for the purpose of NMR lineshape studies of hindered molecular rotators. Theoretical modelling of the relevant methyl group dynamics, based on the DQR theory, was performed. From these calculations it is inferred that direct assessments of the torsional barrier heights, based on the Arrhenius activation energies extracted from relaxation data, should be treated with caution.

  11. Toward structural dynamics: protein motions viewed by chemical shift modulations and direct detection of C'N multiple-quantum relaxation.

    PubMed

    Mori, Mirko; Kateb, Fatiha; Bodenhausen, Geoffrey; Piccioli, Mario; Abergel, Daniel

    2010-03-17

    Multiple quantum relaxation in proteins reveals unexpected relationships between correlated or anti-correlated conformational backbone dynamics in alpha-helices or beta-sheets. The contributions of conformational exchange to the relaxation rates of C'N coherences (i.e., double- and zero-quantum coherences involving backbone carbonyl (13)C' and neighboring amide (15)N nuclei) depend on the kinetics of slow exchange processes, as well as on the populations of the conformations and chemical shift differences of (13)C' and (15)N nuclei. The relaxation rates of C'N coherences, which reflect concerted fluctuations due to slow chemical shift modulations (CSMs), were determined by direct (13)C detection in diamagnetic and paramagnetic proteins. In well-folded proteins such as lanthanide-substituted calbindin (CaLnCb), copper,zinc superoxide dismutase (Cu,Zn SOD), and matrix metalloproteinase (MMP12), slow conformational exchange occurs along the entire backbone. Our observations demonstrate that relaxation rates of C'N coherences arising from slow backbone dynamics have positive signs (characteristic of correlated fluctuations) in beta-sheets and negative signs (characteristic of anti-correlated fluctuations) in alpha-helices. This extends the prospects of structure-dynamics relationships to slow time scales that are relevant for protein function and enzymatic activity.

  12. A wrinkling-based method for investigating glassy polymer film relaxation as a function of film thickness and temperature.

    PubMed

    Chung, Jun Young; Douglas, Jack F; Stafford, Christopher M

    2017-10-21

    We investigate the relaxation dynamics of thin polymer films at temperatures below the bulk glass transition T g by first compressing polystyrene films supported on a polydimethylsiloxane substrate to create wrinkling patterns and then observing the slow relaxation of the wrinkled films back to their final equilibrium flat state by small angle light scattering. As with recent relaxation measurements on thin glassy films reported by Fakhraai and co-workers, we find the relaxation time of our wrinkled films to be strongly dependent on film thickness below an onset thickness on the order of 100 nm. By varying the temperature between room temperature and T g (≈100 °C), we find that the relaxation time follows an Arrhenius-type temperature dependence to a good approximation at all film thicknesses investigated, where both the activation energy and the relaxation time pre-factor depend appreciably on film thickness. The wrinkling relaxation curves tend to cross at a common temperature somewhat below T g , indicating an entropy-enthalpy compensation relation between the activation free energy parameters. This compensation effect has also been observed recently in simulated supported polymer films in the high temperature Arrhenius relaxation regime rather than the glassy state. In addition, we find that the film stress relaxation function, as well as the height of the wrinkle ridges, follows a stretched exponential time dependence and the short-time effective Young's modulus derived from our modeling decreases sigmoidally with increasing temperature-both characteristic features of glassy materials. The relatively facile nature of the wrinkling-based measurements in comparison to other film relaxation measurements makes our method attractive for practical materials development, as well as fundamental studies of glass formation.

  13. A wrinkling-based method for investigating glassy polymer film relaxation as a function of film thickness and temperature

    NASA Astrophysics Data System (ADS)

    Chung, Jun Young; Douglas, Jack F.; Stafford, Christopher M.

    2017-10-01

    We investigate the relaxation dynamics of thin polymer films at temperatures below the bulk glass transition Tg by first compressing polystyrene films supported on a polydimethylsiloxane substrate to create wrinkling patterns and then observing the slow relaxation of the wrinkled films back to their final equilibrium flat state by small angle light scattering. As with recent relaxation measurements on thin glassy films reported by Fakhraai and co-workers, we find the relaxation time of our wrinkled films to be strongly dependent on film thickness below an onset thickness on the order of 100 nm. By varying the temperature between room temperature and Tg (≈100 °C), we find that the relaxation time follows an Arrhenius-type temperature dependence to a good approximation at all film thicknesses investigated, where both the activation energy and the relaxation time pre-factor depend appreciably on film thickness. The wrinkling relaxation curves tend to cross at a common temperature somewhat below Tg, indicating an entropy-enthalpy compensation relation between the activation free energy parameters. This compensation effect has also been observed recently in simulated supported polymer films in the high temperature Arrhenius relaxation regime rather than the glassy state. In addition, we find that the film stress relaxation function, as well as the height of the wrinkle ridges, follows a stretched exponential time dependence and the short-time effective Young's modulus derived from our modeling decreases sigmoidally with increasing temperature—both characteristic features of glassy materials. The relatively facile nature of the wrinkling-based measurements in comparison to other film relaxation measurements makes our method attractive for practical materials development, as well as fundamental studies of glass formation.

  14. Ultrafast exciton fine structure relaxation dynamics in lead chalcogenide nanocrystals.

    PubMed

    Johnson, Justin C; Gerth, Kathrine A; Song, Qing; Murphy, James E; Nozik, Arthur J; Scholes, Gregory D

    2008-05-01

    The rates of fine structure relaxation in PbS, PbSe, and PbTe nanocrystals were measured on a femtosecond time scale as a function of temperature with no applied magnetic field by cross-polarized transient grating spectroscopy (CPTG) and circularly polarized pump-probe spectroscopy. The relaxation rates among exciton fine structure states follow trends with nanocrystal composition and size that are consistent with the expected influence of material dependent spin-orbit coupling, confinement enhanced electron-hole exchange interaction, and splitting between L valleys that are degenerate in the bulk. The size dependence of the fine structure relaxation rate is considerably different from what is observed for small CdSe nanocrystals, which appears to result from the unique material properties of the highly confined lead chalcogenide quantum dots. Modeling and qualitative considerations lead to conclusions about the fine structure of the lowest exciton absorption band, which has a potentially significant bearing on photophysical processes that make these materials attractive for practical purposes.

  15. Wall relaxation and the driving forces for cell expansive growth

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1987-01-01

    When water uptake by growing cells is prevented, the turgor pressure and the tensile stress in the cell wall are reduced by continued wall loosening. This process, termed in vivo stress relaxation, provides a new way to study the dynamics of wall loosening and to measure the wall yield threshold and the physiological wall extensibility. Stress relaxation experiments indicate that wall stress supplies the mechanical driving force for wall yielding. Cell expansion also requires water absorption. The driving force for water uptake during growth is created by wall relaxation, which lowers the water potential of the expanding cells. New techniques for measuring this driving force show that it is smaller than believed previously; in elongating stems it is only 0.3 to 0.5 bar. This means that the hydraulic resistance of the water transport pathway is small and that rate of cell expansion is controlled primarily by wall loosening and yielding.

  16. Relaxation mechanisms in glassy dynamics: the Arrhenius and fragile regimes.

    PubMed

    Hentschel, H George E; Karmakar, Smarajit; Procaccia, Itamar; Zylberg, Jacques

    2012-06-01

    Generic glass formers exhibit at least two characteristic changes in their relaxation behavior, first to an Arrhenius-type relaxation at some characteristic temperature and then at a lower characteristic temperature to a super-Arrhenius (fragile) behavior. We address these transitions by studying the statistics of free energy barriers for different systems at different temperatures and space dimensions. We present a clear evidence for changes in the dynamical behavior at the transition to Arrhenius and then to a super-Arrhenius behavior. A simple model is presented, based on the idea of competition between single-particle and cooperative dynamics. We argue that Arrhenius behavior can take place as long as there is enough free volume for the completion of a simple T1 relaxation process. Once free volume is absent one needs a cooperative mechanism to "collect" enough free volume. We show that this model captures all the qualitative behavior observed in simulations throughout the considered temperature range.

  17. Comparison of Physiological and Psychological Relaxation Using Measurements of Heart Rate Variability, Prefrontal Cortex Activity, and Subjective Indexes after Completing Tasks with and without Foliage Plants

    PubMed Central

    Park, Sin-Ae

    2017-01-01

    The objective of this study was to compare physiological and psychological relaxation by assessing heart rate variability (HRV), prefrontal cortex activity, and subjective indexes while subjects performed a task with and without foliage plants. In a crossover experimental design, 24 university students performed a task transferring pots with and without a foliage plant for 3 min. HRV and oxyhemoglobin (oxy-Hb) concentration in the prefrontal cortex were continuously measured. Immediately thereafter, subjective evaluation of emotions was performed using a modified semantic differential (SD) method and a profile of mood state questionnaire (POMS). Results showed that the natural logarithmic (ln) ratio of low frequency/high frequency, as an estimate of sympathetic nerve activity, was significantly lower while performing the task with foliage plants for the average 3 min measurement interval. Oxy-Hb concentration in the left prefrontal cortex showed a tendency to decrease in the 2–3 min interval in the task with foliage plants compared to the task without plants. Moreover, significant psychological relaxation according to POMS score and SD was demonstrated when the task involved foliage plants. In conclusion, the task involving foliage plants led to more physiological and psychological relaxation compared with the task without foliage plants. PMID:28930169

  18. Quasiparticle relaxation in superconducting nanostructures

    NASA Astrophysics Data System (ADS)

    Savich, Yahor; Glazman, Leonid; Kamenev, Alex

    2017-09-01

    We examine energy relaxation of nonequilibrium quasiparticles in "dirty" superconductors with the electron mean free path much shorter than the superconducting coherence length. Relaxation of low-energy nonequilibrium quasiparticles is dominated by phonon emission. We derive the corresponding collision integral and find the quasiparticle relaxation rate. The latter is sensitive to the breaking of time reversal symmetry (TRS) by a magnetic field (or magnetic impurities). As a concrete application of the developed theory, we address quasiparticle trapping by a vortex and a current-biased constriction. We show that trapping of hot quasiparticles may predominantly occur at distances from the vortex core, or the constriction, significantly exceeding the superconducting coherence length.

  19. An investigation of preload relaxation behaviour of three zinc- aluminum alloys

    NASA Astrophysics Data System (ADS)

    Mir, A. A.

    2016-08-01

    Zinc alloy castings are usually assembled together or mounted by screwed steel fasteners, and are tightened to a predetermined torque to develop the required tensile preload in the fastener. Due to relaxation processes in the castings, creep may cause a partial preload loss at an elevated temperature. The equipment used for load relaxation tests consists of a loadmonitoring device, an oil bath, and a data-acquisition system. A load cell monitoring device is used to monitor the load loss in an ISO-metric M6*1 steel screw set into sand castings made from alloys No. 3, No. 5 and No. 2 and tightened to produce an initial preload of 6 kN. The castings were held at constant temperature in the range 80 - 120°C in an oil bath. The oil bath maintains the desired test temperature throughout the experiment. All tests were conducted for periods of up to 160 h. For all alloys, the initial load loss was high, decreasing gradually with time, but not ceasing. The load loss increased rapidly with test temperature, and almost all of the relaxation curves approximated to a logarithmic decay of load with time. Alloy No. 2 had the best resistance to load loss, with No. 5 next and No. 3 worst at all temperatures. The lower resistance to relaxation of alloy No. 3 was mainly due to the lower relaxation strength of copper-free primary dendrites, whereas in alloys No. 5 and No. 2, the higher copper contents contribute greatly to their relaxation strength in the form of second-phase particles.

  20. A dynamical study of Galactic globular clusters under different relaxation conditions

    NASA Astrophysics Data System (ADS)

    Zocchi, A.; Bertin, G.; Varri, A. L.

    2012-03-01

    Aims: We perform a systematic combined photometric and kinematic analysis of a sample of globular clusters under different relaxation conditions, based on their core relaxation time (as listed in available catalogs), by means of two well-known families of spherical stellar dynamical models. Systems characterized by shorter relaxation time scales are expected to be better described by isotropic King models, while less relaxed systems might be interpreted by means of non-truncated, radially-biased anisotropic f(ν) models, originally designed to represent stellar systems produced by a violent relaxation formation process and applied here for the first time to the study of globular clusters. Methods: The comparison between dynamical models and observations is performed by fitting simultaneously surface brightness and velocity dispersion profiles. For each globular cluster, the best-fit model in each family is identified, along with a full error analysis on the relevant parameters. Detailed structural properties and mass-to-light ratios are also explicitly derived. Results: We find that King models usually offer a good representation of the observed photometric profiles, but often lead to less satisfactory fits to the kinematic profiles, independently of the relaxation condition of the systems. For some less relaxed clusters, f(ν) models provide a good description of both observed profiles. Some derived structural characteristics, such as the total mass or the half-mass radius, turn out to be significantly model-dependent. The analysis confirms that, to answer some important dynamical questions that bear on the formation and evolution of globular clusters, it would be highly desirable to acquire larger numbers of accurate kinematic data-points, well distributed over the cluster field. Appendices are available in electronic form at http://www.aanda.org

  1. Characterization of strain relaxation behavior in Si1- x Ge x epitaxial layers by dry oxidation

    NASA Astrophysics Data System (ADS)

    Jang, Hyunchul; Kim, Byongju; Koo, Sangmo; Park, Seran; Ko, Dae-Hong

    2017-11-01

    We fabricated fully strained Si0.77Ge0.23 epitaxial layers on Si substrates and investigated their strain relaxation behaviors under dry oxidation and the effect of oxidation temperatures and times. After the oxidation process, a Ge-rich layer was formed between the oxide and the remaining Si0.77Ge0.23 layer. Using reciprocal space mapping measurements, we confirmed that the strain of the Si0.77Ge0.23 layers was efficiently relaxed after oxidation, with a maximum relaxation value of 70% after oxidation at 850 °C for 120 min. The surface of Si0.77Ge0.23 layer after strain relaxation by dry oxidation was smoother than a thick Si0.77Ge0.23 layer, which achieved a similar strain relaxation value by increasing the film thickness. Additionally, N2 annealing was performed in order to compare its effect on the relaxation compared to dry oxidation and to identify relaxation mechanisms, other than the thermally driven ones, occurring during dry oxidation.

  2. [Autocontrol of muscle relaxation with vecuronium].

    PubMed

    Sibilla, C; Zatelli, R; Marchi, M; Zago, M

    1990-01-01

    The optimal conditions for maintaining desired levels of muscle relaxation with vecuronium are obtained by means of the continuous infusion (I.V.) technique. A frequent correction of the infusion flow is required, since it is impossible to predict the exact amount for the muscle relaxant in single case. In order to overcome such limits the authors propose a very feasible infusion system for the self-control of muscle relaxation; furthermore they positively consider its possible daily clinical application.

  3. Prostatic relaxation induced by agmatine is decreased in spontaneously hypertensive rats.

    PubMed

    Lee, Liang-Ming; Tsai, Tsung-Chin; Chung, Hsien-Hui; Tong, Yat-Ching; Cheng, Juei-Tang

    2012-09-01

    What's known on the subject? and What does the study add? Neurotransmitters are known to control prostate contractility. Agmatine is one of them and induces relaxation through imidazoline receptors. The paper shows that the action of agmatine is reduced in hypertensive rats, and that this change is related to the decrease of ATP-sensitive potassium channels in the prostate. The findings can increase our understanding of the possible underlying mechanism for the development of clinical benign prostatic hyperplasia. To compare agmatine-induced prostatic relaxation in hypertensive and control rats. To investigate the responsible mechanism(s) and the role of the ATP-sensitive potassium channel. Prostate strips were isolated from male spontaneously hypertensive (SH) rats and normal Wistar-Kyoto (WKY) rats for measurement of isometric tension. The strips were precontracted with 1 µmol/L phenylephrine or 50 mmol/L KCl. Dose-dependent relaxation of the prostatic strips was studied by cumulative administration of agmatine, 1 to 100 µmol/L, into the organ bath. Effects of specific antagonists on agmatine-induced relaxation were studied. Western blotting analysis was used to measure the gene expression of the ATP-sensitive potassium channel in the rat prostate. Prostatic relaxation induced by agmatine was markedly reduced in SH rats compared with WKY rats. The relaxation caused by agmatine was abolished by BU224, a selective imidazoline I(2)-receptor antagonist, but was not modified by efaroxan at a dose sufficient to block imidazoline I(1)-receptors. The relaxation induced by diazoxide at a concentration sufficient to activate ATP-sensitive potassium channels was markedly reduced in the SH rat prostate. Expressions of ATP-sensitive potassium channel sulphonylurea receptor and inwardly rectifying potassium channel (Kir) 6.2 subunits were both decreased in the prostate of SH rats. The decrease of agmatine-induced prostatic relaxation in SH rats is related to the change in

  4. Polymer relaxation and stretching dynamics in semi-dilute DNA solutions: a single molecule study

    NASA Astrophysics Data System (ADS)

    Hsiao, Kai-Wen; Brockman, Christopher; Schroeder, Charles

    2015-03-01

    In this work, we study polymer relaxation and stretching dynamics in semi-dilute DNA solutions using single molecule techniques. Using this approach, we uncover a unique scaling relation for longest polymer relaxation time that falls in the crossover regime described by semi-flexible polymer solutions, which is distinct from truly flexible polymer chains. In addition, we performed a series of step-strain experiments on single polymers in semi-dilute solutions in planar extensional flow using an automated microfluidic trap. In this way, we are able to precisely control the flow strength and the amount of strain applied to single polymer chains, thereby enabling direct observation of the full stretching and relaxation process in semi-dilute solutions during transient start-up and flow cessation. Interestingly, we observe polymer individualism in the conformation of single chains in semi-dilute solutions, which to our knowledge has not yet been observed. In addition, we observe the relaxation data can be explained by a multi-exponential decay process after flow cessation in semi-dilute solutions. Overall, our work reports key advance in non-dilute polymer systems from a molecular perspective via direct observation of dynamics in strong flows. DOW fellowship.

  5. Relaxation training after stroke: potential to reduce anxiety.

    PubMed

    Kneebone, Ian; Walker-Samuel, Natalie; Swanston, Jennifer; Otto, Elisabeth

    2014-01-01

    To consider the feasibility of setting up a relaxation group to treat symptoms of post stroke anxiety in an in-patient post-acute setting; and to explore the effectiveness of relaxation training in reducing self-reported tension. A relaxation group protocol was developed in consultation with a multidisciplinary team and a user group. Over a period of 24 months, 55 stroke patients attended group autogenic relaxation training on a rehabilitation ward. Attendance ranged between one and eleven sessions. Self-reported tension was assessed pre and post relaxation training using the Tension Rating Circles (TRCs). The TRCs identified a significant reduction in self-reported tension from pre to post training, irrespective of the number of sessions attended; z = -3.656, p < 0.001, r = -0.67, for those who attended multiple sessions, z = -2.758, p < 0.01, r = -0.6 for those who attended a single session. The routine use of relaxation techniques in treating anxiety in patients undergoing post-stroke rehabilitation shows potential. Self-reported tension decreased after attendance at relaxation training. The TRCs proved acceptable to group members, but should be validated against standard anxiety measures. Further exploration of the application of relaxation techniques in clinical practice is desirable. Implications for Rehabilitation Anxiety is prevalent after stroke and likely affects rehabilitation outcomes. Relaxation training is a well proven treatment for anxiety in the non-stroke population. A significant within session reduction in tension, a hallmark symptom of anxiety, was evidenced via group relaxation training delivered in a post-acute, in-patient stroke unit setting. Relaxation training a shows promise as a treatment for anxiety after stroke.

  6. Evidence of direct smooth muscle relaxant effects of the fibrate gemfibrozil.

    PubMed

    Phelps, Laura E; Peuler, Jacob D

    2010-01-01

    Fibrates are commonly employed to treat abnormal lipid metabolism via their unique ability to stimulate peroxisome proliferator-activated receptor alpha (PPARalpha). Interestingly, they also decrease systemic arterial pressure, despite recent evidence that PPAR alpha may contribute to expression of renin and related hypertension. Yet, mechanisms responsible for their potential antihypertensive activity remain unresolved. Rapid decreases in arterial pressure following bolus intravenous injections of bezafibrate strongly suggest they may relax arterial smooth muscle directly. But since bezafibrate is highly susceptible to photodegradation in aqueous media, it has never been critically tested for this possibility in vitro with isolated arterial smooth muscle preparations. Accordingly, we tested gemfibrozil which is resistant to photodegradation. We examined it over a therapeutically-relevant range (50-400 microM) for both acute and delayed relaxant effects on contractions of the isolated rat tail artery; contractions induced by either depolarizing its smooth muscle cell membranes with high potassium or stimulating its membrane-bound receptors with norepinephrine and arginine-vasopressin. We also examined these same gemfibrozil levels for effects on spontaneously-occurring phasic rhythmic contractile activity, typically not seen in arteries under in vitro conditions but commonly exhibited by smooth muscle of uterus, duodenum and bladder. We found that gemfibrozil significantly relaxed all induced forms of contraction in the rat tail artery, acutely at the higher test levels and after a delay of a few hours at the lower test levels. The highest test level of gemfibrozil (400 microM) also completely abolished spontaneously-occurring contractile activity of the isolated uterus and duodenum and markedly suppressed it in the bladder. This is the first evidence that a fibrate drug can directly relax smooth muscle contractions, either induced by various contractile agents or

  7. Relaxation Revisited: A Fresh Look at Multigrid for Steady Flows

    NASA Technical Reports Server (NTRS)

    Roberts, Thomas W.; Swanson, R. C.; Sidilkover, David

    1997-01-01

    The year 1971 saw the publication of one of the landmark papers in computational aerodynamics, that of Murman and Cole. As with many seminal works, its significance lies not so much in the specific problem that it addressed| small disturbance, plane transonic flow - but in the identification of a general approach to the solution of a technically important and theoretically difficult problem. The key features of Murman and Cole's work were the use of type- dependent differencing to correctly account for the proper domain of dependence of a mixed elliptic/hyperbolic equation, and the introduction of line relaxation to solve the steady flow equation. All subsequent work in transonic potential flows was based on these concepts. Jameson extended Murman and Cole's ideas to the full potential equation with two important contributions. First, he introduced the rotated difference stencil, which generalized the Murman and Cole type-dependent difference operator to general coordinates. Second, he used the interpretation, introduced by Garabedian, of relaxation as an iteration in artificial time to construct stable relaxation schemes, generalizing the original line relaxation method of Reference. The decade of the 1970s saw an explosion of activity in the solution of transonic potential flows, which has been summarized in the review article of Caughey.

  8. Observation of partial relaxation mechanisms via anisotropic strain relief on epitaxial islands using semiconductor nanomembranes

    NASA Astrophysics Data System (ADS)

    Rosa, Barbara L. T.; Marçal, Lucas A. B.; Ribeiro Andrade, Rodrigo; Dornellas Pinto, Luciana; Rodrigues, Wagner N.; Lustoza Souza, Patrícia; Pamplona Pires, Mauricio; Wagner Nunes, Ricardo; Malachias, Angelo

    2017-07-01

    In this work we attempt to directly observe anisotropic partial relaxation of epitaxial InAs islands using transmission electron microscopy (TEM) and synchrotron x-ray diffraction on a 15 nm thick InAs:GaAs nanomembrane. We show that under such conditions TEM provides improved real-space statistics, allowing the observation of partial relaxation processes that were not previously detected by other techniques or by usual TEM cross section images. Besides the fully coherent and fully relaxed islands that are known to exist above previously established critical thickness, we prove the existence of partially relaxed islands, where incomplete 60° half-loop misfit dislocations lead to a lattice relaxation along one of the <110> directions, keeping a strained lattice in the perpendicular direction. Although individual defects cannot be directly observed, their implications to the resulting island registry are identified and discussed within the frame of half-loops propagations.

  9. Observation of partial relaxation mechanisms via anisotropic strain relief on epitaxial islands using semiconductor nanomembranes.

    PubMed

    Rosa, Barbara L T; Marçal, Lucas A B; Andrade, Rodrigo Ribeiro; Pinto, Luciana Dornellas; Rodrigues, Wagner N; Souza, Patrícia Lustoza; Pires, Mauricio Pamplona; Nunes, Ricardo Wagner; Malachias, Angelo

    2017-07-28

    In this work we attempt to directly observe anisotropic partial relaxation of epitaxial InAs islands using transmission electron microscopy (TEM) and synchrotron x-ray diffraction on a 15 nm thick InAs:GaAs nanomembrane. We show that under such conditions TEM provides improved real-space statistics, allowing the observation of partial relaxation processes that were not previously detected by other techniques or by usual TEM cross section images. Besides the fully coherent and fully relaxed islands that are known to exist above previously established critical thickness, we prove the existence of partially relaxed islands, where incomplete 60° half-loop misfit dislocations lead to a lattice relaxation along one of the 〈110〉 directions, keeping a strained lattice in the perpendicular direction. Although individual defects cannot be directly observed, their implications to the resulting island registry are identified and discussed within the frame of half-loops propagations.

  10. Magnetic Resonance Fingerprinting with short relaxation intervals.

    PubMed

    Amthor, Thomas; Doneva, Mariya; Koken, Peter; Sommer, Karsten; Meineke, Jakob; Börnert, Peter

    2017-09-01

    The aim of this study was to investigate a technique for improving the performance of Magnetic Resonance Fingerprinting (MRF) in repetitive sampling schemes, in particular for 3D MRF acquisition, by shortening relaxation intervals between MRF pulse train repetitions. A calculation method for MRF dictionaries adapted to short relaxation intervals and non-relaxed initial spin states is presented, based on the concept of stationary fingerprints. The method is applicable to many different k-space sampling schemes in 2D and 3D. For accuracy analysis, T 1 and T 2 values of a phantom are determined by single-slice Cartesian MRF for different relaxation intervals and are compared with quantitative reference measurements. The relevance of slice profile effects is also investigated in this case. To further illustrate the capabilities of the method, an application to in-vivo spiral 3D MRF measurements is demonstrated. The proposed computation method enables accurate parameter estimation even for the shortest relaxation intervals, as investigated for different sampling patterns in 2D and 3D. In 2D Cartesian measurements, we achieved a scan acceleration of more than a factor of two, while maintaining acceptable accuracy: The largest T 1 values of a sample set deviated from their reference values by 0.3% (longest relaxation interval) and 2.4% (shortest relaxation interval). The largest T 2 values showed systematic deviations of up to 10% for all relaxation intervals, which is discussed. The influence of slice profile effects for multislice acquisition is shown to become increasingly relevant for short relaxation intervals. In 3D spiral measurements, a scan time reduction of 36% was achieved, maintaining the quality of in-vivo T1 and T2 maps. Reducing the relaxation interval between MRF sequence repetitions using stationary fingerprint dictionaries is a feasible method to improve the scan efficiency of MRF sequences. The method enables fast implementations of 3D spatially

  11. Acoustic and relaxation behaviors of polydimethylsiloxane studied by using brillouin and dielectric spectroscopies

    NASA Astrophysics Data System (ADS)

    Lee, Byoung Wan; Ko, Jae-Hyeon; Park, Jaehoon; Shin, Dong-Myeong; Hwang, Yoon-Hwae

    2016-04-01

    The temperature dependences of the acoustic properties and the dielectric relaxation times of polydimethylsiloxane were investigated by using high-resolution Brillouin and broadband dielectric spectroscopies. The longitudinal sound velocity showed a large increase upon approaching the glass transition temperature while the acoustic absorption coefficient exhibited a maximum at ~263 K. Comparison of these results with previous ultrasonic data revealed a substantial frequency dispersion of the acoustic properties of this silicone-based elastomer. The relaxation times derived from the acoustic absorption peaks were consistent with the temperature dependence of the dielectric relaxation time of the structural a process, indicating a strong coupling between the acoustic waves and the segmental motions of the main chains.

  12. Modelling of loading, stress relaxation and stress recovery in a shape memory polymer.

    PubMed

    Sweeney, J; Bonner, M; Ward, I M

    2014-09-01

    A multi-element constitutive model for a lactide-based shape memory polymer has been developed that represents loading to large tensile deformations, stress relaxation and stress recovery at 60, 65 and 70°C. The model consists of parallel Maxwell arms each comprising neo-Hookean and Eyring elements. Guiu-Pratt analysis of the stress relaxation curves yields Eyring parameters. When these parameters are used to define the Eyring process in a single Maxwell arm, the resulting model yields at too low a stress, but gives good predictions for longer times. Stress dip tests show a very stiff response on unloading by a small strain decrement. This would create an unrealistically high stress on loading to large strain if it were modelled by an elastic element. Instead it is modelled by an Eyring process operating via a flow rule that introduces strain hardening after yield. When this process is incorporated into a second parallel Maxwell arm, there results a model that fully represents both stress relaxation and stress dip tests at 60°C. At higher temperatures a third arm is required for valid predictions. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  13. Development of a video-delivered relaxation treatment of late-life anxiety for veterans.

    PubMed

    Gould, Christine E; Zapata, Aimee Marie L; Bruce, Janine; Bereknyei Merrell, Sylvia; Wetherell, Julie Loebach; O'Hara, Ruth; Kuhn, Eric; Goldstein, Mary K; Beaudreau, Sherry A

    2017-10-01

    Behavioral treatments reduce anxiety, yet many older adults may not have access to these efficacious treatments. To address this need, we developed and evaluated the feasibility and acceptability of a video-delivered anxiety treatment for older Veterans. This treatment program, BREATHE (Breathing, Relaxation, and Education for Anxiety Treatment in the Home Environment), combines psychoeducation, diaphragmatic breathing, and progressive muscle relaxation training with engagement in activities. A mixed methods concurrent study design was used to examine the clarity of the treatment videos. We conducted semi-structured interviews with 20 Veterans (M age = 69.5, SD = 7.3 years; 55% White, Non-Hispanic) and collected ratings of video clarity. Quantitative ratings revealed that 100% of participants generally or definitely could follow breathing and relaxation video instructions. Qualitative findings, however, demonstrated more variability in the extent to which each video segment was clear. Participants identified both immediate benefits and motivation challenges associated with a video-delivered treatment. Participants suggested that some patients may need encouragement, whereas others need face-to-face therapy. Quantitative ratings of video clarity and qualitative findings highlight the feasibility of a video-delivered treatment for older Veterans with anxiety. Our findings demonstrate the importance of ensuring patients can follow instructions provided in self-directed treatments and the role that an iterative testing process has in addressing these issues. Next steps include testing the treatment videos with older Veterans with anxiety disorders.

  14. Angular momentum of phonons and its application to single-spin relaxation

    NASA Astrophysics Data System (ADS)

    Nakane, Jotaro J.; Kohno, Hiroshi

    2018-05-01

    We reexamine the relaxation process of a single spin embedded in an elastic medium, a problem studied recently by Garanin and Chudnovsky (GC) [Phys. Rev. B 92, 024421 (2015), 10.1103/PhysRevB.92.024421] from the viewpoint of angular-momentum transfer. Using Noether's theorem, we identify two distinct angular momenta of the medium, one Newtonian discussed by GC and the other field-theoretical, both of which consist of an orbital part and a spin part. For both angular momenta, we found that the orbital part is as essential as the spin part in the relaxation process. In particular, the angular-momentum transfer from the (real) spin to the Newtonian orbital part may be considered as an incipient rotation that leads to the Einstein-de Haas effect.

  15. Hypnotic Relaxation Therapy and Sexual Function in PostmenopausalWomen: Results of a Randomized Clinical Trial.

    PubMed

    Johnson, Aimee K; Johnson, Alisa J; Barton, Debra; Elkins, Gary

    2016-01-01

    Sexual dysfunction is a common problem for postmenopausal women. This study, as part of a larger randomized controlled trial, examined the effect of hypnotic relaxation therapy on sexual dysfunction, a secondary study outcome, in postmenopausal women. Sexual function was assessed using the Sexual Activity Questionnaire (SAQ). Significant improvement in sexual pleasure and discomfort were reported following 5 weekly sessions of hypnotic relaxation therapy, compared with those receiving an attention control. Total SAQ scores showed significant improvement in the hypnotic relaxation therapy treatment group while holding baseline SAQ scores constant. Improvements showed a slight increase at the Week 12 follow-up. The results of this analysis provide initial support for the use of hypnotic relaxation therapy to improve sexual function in postmenopausal women.

  16. Quercetin acutely relaxes airway smooth muscle and potentiates β-agonist-induced relaxation via dual phosphodiesterase inhibition of PLCβ and PDE4

    PubMed Central

    Emala, Charles W.

    2013-01-01

    Asthma is a disease of the airways with symptoms including exaggerated airway narrowing and airway inflammation. Early asthma therapies used methylxanthines to relieve symptoms, in part, by inhibiting cyclic nucleotide phosphodiesterases (PDEs), the enzyme responsible for degrading cAMP. The classification of tissue-specific PDE subtypes and the clinical introduction of PDE-selective inhibitors for chronic obstructive pulmonary disease (i.e., roflumilast) have reopened the possibility of using PDE inhibition in the treatment of asthma. Quercetin is a naturally derived PDE4-selective inhibitor found in fruits, vegetables, and tea. We hypothesized that quercetin relaxes airway smooth muscle via cAMP-mediated pathways and augments β-agonist relaxation. Tracheal rings from male A/J mice were mounted in myographs and contracted with acetylcholine (ACh). Addition of quercetin (100 nM-1 mM) acutely and concentration-dependently relaxed airway rings precontracted with ACh. In separate studies, pretreatment with quercetin (100 μM) prevented force generation upon exposure to ACh. In additional studies, quercetin (50 μM) significantly potentiated isoproterenol-induced relaxations. In in vitro assays, quercetin directly attenuated phospholipase C activity, decreased inositol phosphate synthesis, and decreased intracellular calcium responses to Gq-coupled agonists (histamine or bradykinin). Finally, nebulization of quercetin (100 μM) in an in vivo model of airway responsiveness significantly attenuated methacholine-induced increases in airway resistance. These novel data show that the natural PDE4-selective inhibitor quercetin may provide therapeutic relief of asthma symptoms and decrease reliance on short-acting β-agonists. PMID:23873842

  17. Thermal diffusivity and nuclear spin relaxation: a continuous wave free precession NMR study.

    PubMed

    Venâncio, Tiago; Engelsberg, Mario; Azeredo, Rodrigo B V; Colnago, Luiz A

    2006-07-01

    Continuous wave free precession (CWFP) nuclear magnetic resonance is capable of yielding quantitative and easily obtainable information concerning the kinetics of processes that change the relaxation rates of the nuclear spins through the action of some external agent. In the present application, heat flow from a natural rubber sample to a liquid nitrogen thermal bath caused a large temperature gradient leading to a non-equilibrium temperature distribution. The ensuing local changes in the relaxation rates could be monitored by the decay of the CWFP signals and, from the decays, it was possible to ascertain the prevalence of a diffusive process and to obtain an average value for the thermal diffusivity.

  18. Application of the compensated arrhenius formalism to dielectric relaxation.

    PubMed

    Petrowsky, Matt; Frech, Roger

    2009-12-17

    The temperature dependence of the dielectric rate constant, defined as the reciprocal of the dielectric relaxation time, is examined for several groups of organic solvents. Early studies of linear alcohols using a simple Arrhenius equation found that the activation energy was dependent on the chain length of the alcohol. This paper re-examines the earlier data using a compensated Arrhenius formalism that assumes the presence of a temperature-dependent static dielectric constant in the exponential prefactor. Scaling temperature-dependent rate constants to isothermal rate constants so that the dielectric constant dependence is removed results in calculated energies of activation E(a) in which there is a small increase with chain length. These energies of activation are very similar to those calculated from ionic conductivity data using compensated Arrhenius formalism. This treatment is then extended to dielectic relaxation data for n-alkyl bromides, n-nitriles, and n-acetates. The exponential prefactor is determined by dividing the temperature-dependent rate constants by the Boltzmann term exp(-E(a)/RT). Plotting the prefactors versus the static dielectric constant places the data on a single master curve for each group of solvents.

  19. Relaxation and Distraction in Experimental Desensitization.

    ERIC Educational Resources Information Center

    Weir, R. O.; Marshall, W. L.

    1980-01-01

    Compared experimental desensitization with a procedure that replaced relaxation with a distraction task and with an approach that combined both relaxation and distraction. Desensitization generally was more effective than the other two procedures. (Author)

  20. Distributed Relaxation for Conservative Discretizations

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.

    2001-01-01

    A multigrid method is defined as having textbook multigrid efficiency (TME) if the solutions to the governing system of equations are attained in a computational work that is a small (less than 10) multiple of the operation count in one target-grid residual evaluation. The way to achieve this efficiency is the distributed relaxation approach. TME solvers employing distributed relaxation have already been demonstrated for nonconservative formulations of high-Reynolds-number viscous incompressible and subsonic compressible flow regimes. The purpose of this paper is to provide foundations for applications of distributed relaxation to conservative discretizations. A direct correspondence between the primitive variable interpolations for calculating fluxes in conservative finite-volume discretizations and stencils of the discretized derivatives in the nonconservative formulation has been established. Based on this correspondence, one can arrive at a conservative discretization which is very efficiently solved with a nonconservative relaxation scheme and this is demonstrated for conservative discretization of the quasi one-dimensional Euler equations. Formulations for both staggered and collocated grid arrangements are considered and extensions of the general procedure to multiple dimensions are discussed.

  1. Effect of pressure on the α relaxation in glycerol and xylitol

    NASA Astrophysics Data System (ADS)

    Paluch, M.; Casalini, R.; Hensel-Bielowka, S.; Roland, C. M.

    2002-06-01

    The effect of pressure on the dielectric relaxation of two polyhydroxy alcohols is examined by analysis of existing data on glycerol, together with new measurements on xylitol. The fragility, or Tg-normalized temperature dependence, changes with pressure for low pressures, but becomes invariant above 1 GPa. When compared at temperatures for which the α-relaxation times are equal, there is no effect of pressure (<1 GPa) on the shape of the α dispersion at higher temperatures. However, nearer Tg, pressure broadens the α peak, consistent with the expected correlation of fragility with the breadth of the relaxation function. We also observe that the α-relaxation peaks for both glycerol and xylitol show an excess intensity at higher frequencies. For xylitol, unlike for glycerol, at lower temperatures this wing disjoins to form a separate peak. For both glass formers, elevated pressure causes the excess wing to become more separated from the peak maximum; that is, the properties of the primary and excess intensities are not correlated. This implies that the excess wing in glycerol is also a distinct secondary process, although it cannot be resolved from the primary peak.

  2. Charge relaxation and dynamics in organic semiconductors

    NASA Astrophysics Data System (ADS)

    Kwok, H. L.

    2006-08-01

    Charge relaxation in dispersive materials is often described in terms of the stretched exponential function (Kohlrausch law). The process can be explained using a "hopping" model which in principle, also applies to charge transport such as current conduction. This work analyzed reported transient photoconductivity data on functionalized pentacene single crystals using a geometric hopping model developed by B. Sturman et al and extracted values (or range of values) on the materials parameters relevant to charge relaxation as well as charge transport. Using the correlated disorder model (CDM), we estimated values of the carrier mobility for the pentacene samples. From these results, we observed the following: i) the transport site density appeared to be of the same order of magnitude as the carrier density; ii) it was possible to extract lower bound values on the materials parameters linked to the transport process; and iii) by matching the simulated charge decay to the transient photoconductivity data, we were able to refine estimates on the materials parameters. The data also allowed us to simulate the stretched exponential decay. Our observations suggested that the stretching index and the carrier mobility were related. Physically, such interdependence would allow one to demarcate between localized molecular interactions and distant coulomb interactions.

  3. Dynamical analysis of relaxation luminescence in ZnS:Er3+ thin film devices

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Jiang; Wu, Chen-Xu; Chen, Mou-Zhi; Huang, Mei-Chun

    2003-06-01

    The relaxation luminescence of ZnS:Er3+ thin film devices fabricated by thermal evaporation with two boats is studied. The dynamical processes of the luminescence of Er3+ in ZnS are described in terms of a resonant energy transfer model, assuming that the probability of collision excitation of injected electrons with luminescence centers is expressed as a Gaussian function. It is found that the frequency distribution depends on the Lorentzian function by considering the emission from excited states as a damped oscillator. Taking into consideration the energy storing effect of traps, an expression is obtained to describe a profile that contains multiple relaxation luminescence peaks using the convolution theorem. Fitting of experimental results shows that the relaxation characteristics of the electroluminescence are related to the carriers captured by bulk traps as well as by interface states. The numerical calculation carried out agrees well with the dynamical characteristics of relaxation luminescence obtained by experiments.

  4. Stretched exponential relaxation in molecular and electronic glasses

    NASA Astrophysics Data System (ADS)

    Phillips, J. C.

    1996-09-01

    Stretched exponential relaxation, 0034-4885/59/9/003/img1, fits many relaxation processes in disordered and quenched electronic and molecular systems, but it is widely believed that this function has no microscopic basis, especially in the case of molecular relaxation. For electronic relaxation the appearance of the stretched exponential is often described in the context of dispersive transport, where 0034-4885/59/9/003/img2 is treated as an adjustable parameter, but in almost all cases it is generally assumed that no microscopic meaning can be assigned to 0034-4885/59/9/003/img3 even at 0034-4885/59/9/003/img4, a glass transition temperature. We show that for molecular relaxation 0034-4885/59/9/003/img5 can be understood, providing that one separates extrinsic and intrinsic effects, and that the intrinsic effects are dominated by two magic numbers, 0034-4885/59/9/003/img6 for short-range forces, and 0034-4885/59/9/003/img7 for long-range Coulomb forces, as originally observed by Kohlrausch for the decay of residual charge on a Leyden jar. Our mathematical model treats relaxation kinetics using the Lifshitz - Kac - Luttinger diffusion to traps depletion model in a configuration space of effective dimensionality, the latter being determined using axiomatic set theory and Phillips - Thorpe constraint theory. The experiments discussed include ns neutron scattering experiments, particularly those based on neutron spin echoes which measure S( Q,t) directly, and the traditional linear response measurements which span the range from 0034-4885/59/9/003/img8 to s, as collected and analysed phenomenologically by Angell, Ngai, Böhmer and others. The electronic materials discussed include a-Si:H, granular 0034-4885/59/9/003/img9, semiconductor nanocrystallites, charge density waves in 0034-4885/59/9/003/img10, spin glasses, and vortex glasses in high-temperature semiconductors. The molecular materials discussed include polymers, network glasses, electrolytes and alcohols, Van

  5. Arousal vs. Relaxation: A Comparison of the Neurophysiological and Cognitive Correlates of Vajrayana and Theravada Meditative Practices

    PubMed Central

    Amihai, Ido; Kozhevnikov, Maria

    2014-01-01

    Based on evidence of parasympathetic activation, early studies defined meditation as a relaxation response. Later research attempted to categorize meditation as either involving focused or distributed attentional systems. Neither of these hypotheses received strong empirical support, and most of the studies investigated Theravada style meditative practices. In this study, we compared neurophysiological (EEG, EKG) and cognitive correlates of meditative practices that are thought to utilize either focused or distributed attention, from both Theravada and Vajrayana traditions. The results of Study 1 show that both focused (Shamatha) and distributed (Vipassana) attention meditations of the Theravada tradition produced enhanced parasympathetic activation indicative of a relaxation response. In contrast, both focused (Deity) and distributed (Rig-pa) meditations of the Vajrayana tradition produced sympathetic activation, indicative of arousal. Additionally, the results of Study 2 demonstrated an immediate dramatic increase in performance on cognitive tasks following only Vajrayana styles of meditation, indicating enhanced phasic alertness due to arousal. Furthermore, our EEG results showed qualitatively different patterns of activation between Theravada and Vajrayana meditations, albeit highly similar activity between meditations within the same tradition. In conclusion, consistent with Tibetan scriptures that described Shamatha and Vipassana techniques as those that calm and relax the mind, and Vajrayana techniques as those that require ‘an awake quality’ of the mind, we show that Theravada and Vajrayana meditations are based on different neurophysiological mechanisms, which give rise to either a relaxation or arousal response. Hence, it may be more appropriate to categorize meditations in terms of relaxation vs. arousal, whereas classification methods that rely on the focused vs. distributed attention dichotomy may need to be reexamined. PMID:25051268

  6. Theory of activated glassy relaxation, mobility gradients, surface diffusion, and vitrification in free standing thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirigian, Stephen, E-mail: kschweiz@illinois.edu, E-mail: smirigian@gmail.com; Schweizer, Kenneth S., E-mail: kschweiz@illinois.edu, E-mail: smirigian@gmail.com

    2015-12-28

    We have constructed a quantitative, force level, statistical mechanical theory for how confinement in free standing thin films introduces a spatial mobility gradient of the alpha relaxation time as a function of temperature, film thickness, and location in the film. The crucial idea is that relaxation speeds up due to the reduction of both near-surface barriers associated with the loss of neighbors in the local cage and the spatial cutoff and dynamical softening near the vapor interface of the spatially longer range collective elasticity cost for large amplitude hopping. These two effects are fundamentally coupled. Quantitative predictions are made formore » how an apparent glass temperature depends on the film thickness and experimental probe technique, the emergence of a two-step decay and mobile layers in time domain measurements, signatures of confinement in frequency-domain dielectric loss experiments, the dependence of film-averaged relaxation times and dynamic fragility on temperature and film thickness, surface diffusion, and the relationship between kinetic experiments and pseudo-thermodynamic measurements such as ellipsometry.« less

  7. Theory of activated glassy relaxation, mobility gradients, surface diffusion, and vitrification in free standing thin films.

    PubMed

    Mirigian, Stephen; Schweizer, Kenneth S

    2015-12-28

    We have constructed a quantitative, force level, statistical mechanical theory for how confinement in free standing thin films introduces a spatial mobility gradient of the alpha relaxation time as a function of temperature, film thickness, and location in the film. The crucial idea is that relaxation speeds up due to the reduction of both near-surface barriers associated with the loss of neighbors in the local cage and the spatial cutoff and dynamical softening near the vapor interface of the spatially longer range collective elasticity cost for large amplitude hopping. These two effects are fundamentally coupled. Quantitative predictions are made for how an apparent glass temperature depends on the film thickness and experimental probe technique, the emergence of a two-step decay and mobile layers in time domain measurements, signatures of confinement in frequency-domain dielectric loss experiments, the dependence of film-averaged relaxation times and dynamic fragility on temperature and film thickness, surface diffusion, and the relationship between kinetic experiments and pseudo-thermodynamic measurements such as ellipsometry.

  8. Effect of L-arginine on the relaxation caused by sodium nitroprusside on isolated rat renal artery.

    PubMed

    Orescanin, Z; Milovanović, S R

    2006-12-01

    In the present study we investigated the mechanism of nitric oxide induced relaxation of renal arteries, with or without endothelium, taken from normotensive and spontaneously hypertensive (SH) rats. With this purpose in mind, the effects of the nitric oxide donor, sodium nitroprusside (SNP), with and without L-arg in the medium, on isolated rat renal artery relaxation were studied. Relaxing effect of SNP was higher in normotensive (10(-5) M of SNP caused 220% of relaxation in the cases with endothelium and 240% without endothelium), in comparison with SH rats (100% of relaxation with endothelium and 150% without). L-arg antagonized the relaxing effect of SNP in the examined renal arteries, more in normotensive (100-160% with endothelium and 110-195% without) than in hypertensive ones (0-10% with endothelium and 35-75% without) at SNP concentrations 10(-7) - 10(-5) M, respectively (*P < 0.05; **P < 0.001). L-arg did not significantly change relaxing effect of SNP in the isolated renal arteries with endothelium taken from SH rats, which show that L-arg, by modifying the chemical versatility of NO into redox active forms -nitrosonium (NO+) and -nitroxyl (NO-), produces different relaxing effects in normotensive and hypertensive isolated arteries of rats, with or without endothelium, potentiating the role of nitroxyl induced relaxation in SH rats.

  9. Quantitative evaluation of muscle relaxation induced by Kundalini yoga with the help of EMG integrator.

    PubMed

    Narayan, R; Kamat, A; Khanolkar, M; Kamat, S; Desai, S R; Dhume, R A

    1990-10-01

    The present work is aimed to quantify the degree of relaxation of muscle under the effects of Kundalini Yoga with the help of EMG integrator. The data collected from 8 individuals (4 males 4 females) on the degree of muscle relaxation at the end of meditation revealed a significantly decreased muscle activity amounting to 58% of the basal level in both the sexes.

  10. Nuclear magnetic relaxation induced by exchange-mediated orientational randomization: longitudinal relaxation dispersion for spin I = 1.

    PubMed

    Nilsson, Tomas; Halle, Bertil

    2012-08-07

    The frequency dependence of the longitudinal relaxation rate, known as the magnetic relaxation dispersion (MRD), can provide a frequency-resolved characterization of molecular motions in complex biological and colloidal systems on time scales ranging from 1 ns to 100 μs. The conformational dynamics of immobilized proteins and other biopolymers can thus be probed in vitro or in vivo by exploiting internal water molecules or labile hydrogens that exchange with a dominant bulk water pool. Numerous water (1)H and (2)H MRD studies of such systems have been reported, but the widely different theoretical models currently used to analyze the MRD data have resulted in divergent views of the underlying molecular motions. We have argued that the essential mechanism responsible for the main dispersion is the exchange-mediated orientational randomization (EMOR) of anisotropic nuclear (electric quadrupole or magnetic dipole) couplings when internal water molecules or labile hydrogens escape from orientationally confining macromolecular sites. In the EMOR model, the exchange process is thus not just a means of mixing spin populations but it is also the direct cause of spin relaxation. Although the EMOR theory has been used in several studies to analyze water (2)H MRD data from immobilized biopolymers, the fully developed theory has not been described. Here, we present a comprehensive account of a generalized version of the EMOR theory for spin I = 1 nuclides like (2)H. As compared to a previously described version of the EMOR theory, the present version incorporates three generalizations that are all essential in applications to experimental data: (i) a biaxial (residual) electric field gradient tensor, (ii) direct and indirect effects of internal motions, and (iii) multiple sites with different exchange rates. In addition, we describe and assess different approximations to the exact EMOR theory that are useful in various regimes. In particular, we consider the experimentally

  11. Dielectric relaxation and localized electron hopping in colossal dielectric (Nb,In)-doped TiO2 rutile nanoceramics.

    PubMed

    Tsuji, Kosuke; Han, HyukSu; Guillemet-Fritsch, Sophie; Randall, Clive A

    2017-03-28

    Dielectric spectroscopy was performed on a Nb and In co-doped rutile TiO 2 nano-crystalline ceramic (n-NITO) synthesized by a low-temperature spark plasma sintering (SPS) technique. The dielectric properties of the n-NITO were not largely affected by the metal electrode contacts. Huge dielectric relaxation was observed at a very low temperature below 35 K. Both the activation energy and relaxation time suggested that the electronic hopping motion is the underlying mechanism responsible for the colossal dielectric permittivity (CP) and its relaxation, instead of the internal barrier layer effect or a dipolar relaxation. With Havriliak-Negami (H-N) fitting, a relaxation time with a large distribution of dielectric relaxations was revealed. The broad distributed relaxation phenomena indicated that Nb and In were involved, controlling the dielectric relaxation by modifying the polarization mechanism and localized states. The associated distribution function is calculated and presented. The frequency-dependent a.c. conductance is successfully explained by a hopping conduction model of the localized electrons with the distribution function. It is demonstrated that the dielectric relaxation is strongly correlated with the hopping electrons in the localized states. The CP in SPS n-NITO is then ascribed to a hopping polarization.

  12. Photoacoustic Determination of Non-radiative Relaxation Time of Absorbing Centers in Maize Seeds

    NASA Astrophysics Data System (ADS)

    Domínguez-Pacheco, A.; Hernández-Aguilar, C.; Cruz-Orea, A.

    2017-07-01

    Using non-destructive photothermal techniques, it is possible to characterize non-homogenous materials to obtain its optical and thermal properties through photoacoustic spectroscopy (PAS). In photoacoustic (PA) phenomena, there are transient states of thermal excitation, when samples absorb the incident light; these states manifest an excitation process that generates the PA signal, being in direct relation with the non-radiative relaxation times with the sample absorbent centers. The objective of this study was to determine the non-radiative relaxation times associated with different absorbent centers of corn seeds ( Zea mays L.), by using PAS. A frequency scan was done at different wavelengths (350 nm, 470 nm and 650 nm) in order to obtain the non-radiative relaxation times with different types of maize seeds.

  13. Molecular relaxation processes of 2-bromopropane in solutions from IR ν(C-Br) band shape analysis

    NASA Astrophysics Data System (ADS)

    Bratu, I.; Grecu, R.; Constantinescu, R.; Iliescu, T.

    1998-03-01

    The infrared (C-Br) stretching band profile of 2-bromopropane in pure liquid and in solution was studied. The frequency shifts, described by the Buckingham equation, account for the influence of the polarity and polarizability of the solvents. To evaluate the importance of the last term in the Buckingham equation, which describes the mutual influence of these two effects, a linear multidimensional regression analysis was done. The correlation factor increased when the cross term was considered. The concentration dependence of the FWHH (full width at half height) can be related to the vibrational relaxation processes, among them vibrational dephasing being the most important. More information about mechanisms responsible for the vibrational bandshape can be obtained from the correlation function Φ( t). As a result of modelling the experimental CF with Kubo-Rothschild's model, the modulation of the vibrational frequencies is found to be of intermediate type.

  14. Lavender fragrance cleansing gel effects on relaxation.

    PubMed

    Field, Tiffany; Diego, Miguel; Hernandez-Reif, Maria; Cisneros, Wendy; Feijo, Larissa; Vera, Yanexy; Gil, Karla; Grina, Diana; Claire He, Qing

    2005-02-01

    Alertness, mood, and math computations were assessed in 11 healthy adults who sniffed a cosmetic cleansing gel with lavender floral blend aroma, developed to be relaxing using Mood Mapping. EEG patterns and heart rate were also recorded before, during, and after the aroma session. The lavender fragrance blend had a significant transient effect of improving mood, making people feel more relaxed, and performing the math computation faster. The self-report and physiological data are consistent with relaxation profiles during other sensory stimuli such as massage and music, as reported in the literature. The data suggest that a specific cosmetic fragrance can have a significant role in enhancing relaxation.

  15. A Static Picture of the Relaxation and Intersystem Crossing Mechanisms of Photoexcited 2-Thiouracil

    PubMed Central

    2015-01-01

    Accurate excited-state quantum chemical calculations on 2-thiouracil, employing large active spaces and up to quadruple-ζ quality basis sets in multistate complete active space perturbation theory calculations, are reported. The results suggest that the main relaxation path for 2-thiouracil after photoexcitation should be S2 → S1 → T2 → T1, and that this relaxation occurs on a subpicosecond time scale. There are two deactivation pathways from the initially excited bright S2 state to S1, one of which is nearly barrierless and should promote ultrafast internal conversion. After relaxation to the S1 minimum, small singlet–triplet energy gaps and spin–orbit couplings of about 130 cm–1 are expected to facilitate intersystem crossing to T2, from where very fast internal conversion to T1 occurs. An important finding is that 2-thiouracil shows strong pyramidalization at the carbon atom of the thiocarbonyl group in several excited states. PMID:26284285

  16. Two-photon photoemission study of competing Auger and surface-mediated relaxation of hot electrons in CdSe quantum dot solids.

    PubMed

    Sippel, Philipp; Albrecht, Wiebke; Mitoraj, Dariusz; Eichberger, Rainer; Hannappel, Thomas; Vanmaekelbergh, Daniel

    2013-04-10

    Solids composed of colloidal quantum dots hold promise for third generation highly efficient thin-film photovoltaic cells. The presence of well-separated conduction electron states opens the possibility for an energy-selective collection of hot and equilibrated carriers, pushing the efficiency above the one-band gap limit. However, in order to reach this goal the decay of hot carriers within a band must be better understood and prevented, eventually. Here, we present a two-photon photoemission study of the 1Pe→1Se intraband relaxation dynamics in a CdSe quantum dot solid that mimics the active layer in a photovoltaic cell. We observe fast hot electron relaxation from the 1Pe to the 1Se state on a femtosecond-scale by Auger-type energy donation to the hole. However, if the oleic acid capping is exchanged for hexanedithiol capping, fast deep hole trapping competes efficiently with this relaxation pathway, blocking the Auger-type electron-hole energy exchange. A slower decay becomes then visible; we provide evidence that this is a multistep process involving the surface.

  17. In vitro relaxant and spasmolytic effects of essential oil of Pistacia integerrima Stewart ex Brandis Galls.

    PubMed

    Shirole, R L; Shirole, N L; Saraf, M N

    2015-06-20

    Pistacia integerrima J.L. Stewart ex Brandis (Family: Anacardiaceae) galls are used in Indian ethnomedicine for its anti-asthmatic, sedative and spasmolytic properties, however, there are no scientific studies demonstrating its spasmolytic activity. The present investigation deals with the evaluation of relaxant and spasmolytic activities of the essential oil isolated from the galls of Pistacia integerrima J.L. Stewart ex Brandis (EOPI). In vitro pharmacological assays were carried out on rabbit jejunum spontaneous contractions, guinea pig ileum. The present investigation studied the relaxation of basal tone of isolated guinea pig ileum by possible involvement of NO, prostaglandins, membrane Na(+) channels, potassium channel, enteric nervous system, adrenoceptors, Ca(2+) channels. Additional studies were conducted for comparison of the relaxant effects of EOPI on CaCl2 induced contraction in calcium free tyrode solution, effect on nifedipine insensitive component of ACh-induced contraction and on the contractile machinery to intracellular [Ca(2+)] on isolated guinea pig ileum. EOPI at non-relaxing dose potentiated the isoprenaline induced relaxation of rabbit jejunum. EOPI (50 µg/mL) exhibited 28% relaxation of basal tone of 60 mM K(+) induced contraction which is unaltered by preincubation with 0.5 mM hexamethonium, 0.5 µM Tetrodotoxin, 1 µM indomethacin, and 100 µM L-NG-Nitroarginine Methyl Ester (L-NAME). EOPI inhibited Ca(2+) induced contraction of isolated guinea pig ileum in Ca(2+) free medium. EOPI (10 µg/ml) potentiated the reversal of a KCl-induced tonic contraction has been observed in Ca(2+) free medium. The present investigation reinforces the use of Pistacia integerrima Stewart ex Brandis as antispasmodic in folk medicine. Moreover, it is demonstrated the involvement of β- adrenoceptors and calcium channels in this activity, but not the participation of nicotinic receptors, Na(+) channels, prostaglandins or nitric oxide. Copyright © 2015

  18. The Spin-Lattice Relaxation of Hyperpolarized 89Y Complexes

    NASA Astrophysics Data System (ADS)

    Jindal, Ashish; Lumata, Lloyd; Xing, Yixun; Merritt, Matthew; Zhao, Piyu; Malloy, Craig; Sherry, Dean; Kovacs, Zoltan

    2011-03-01

    The low sensitivity of NMR can be overcome by dynamic nuclear polarization (DNP). However, a limitation to the use of hyperpolarized materials is the signal decay due to T1 relaxation. Among NMR-active nuclei, 89 Y is potentially valuable in medical imaging because in chelated form, pH-sensitive agents can be developed. 89 Y also offers many attractive features -- 100 % abundance, a 1/2 spin, and a long T1 , up to 10 min. Yet, developing new 89 Y complexes with even longer T1 values is desirable. Designing such complexes relies upon understanding the mechanism(s) responsible for T1 relaxation. We report an approach to hyperpolarized T1 measurements that enabled an analysis of relaxation mechanisms by selective deuteration of the ligand backbone, the solvent or both. Hyperpolarized 89 Y -- DTPA, DOTA, EDTA, and deuterated EDTA complexes were studied. Results suggest that substitution of low-gamma nuclei on the ligand backbone as opposed to that of the solvent most effectively increase the 89 Y T1 . These results are encouraging for in vivo applications as the presence of bound water may not dramatically affect the T1 .

  19. Relaxation mechanisms, structure and properties of semi-coherent interfaces

    DOE PAGES

    Shao, Shuai; Wang, Jian

    2015-10-15

    In this work, using the Cu–Ni (111) semi-coherent interface as a model system, we combine atomistic simulations and defect theory to reveal the relaxation mechanisms, structure, and properties of semi-coherent interfaces. By calculating the generalized stacking fault energy (GSFE) profile of the interface, two stable structures and a high-energy structure are located. During the relaxation, the regions that possess the stable structures expand and develop into coherent regions; the regions with high-energy structure shrink into the intersection of misfit dislocations (nodes). This process reduces the interface excess potential energy but increases the core energy of the misfit dislocations and nodes.more » The core width is dependent on the GSFE of the interface. The high-energy structure relaxes by relative rotation and dilatation between the crystals. The relative rotation is responsible for the spiral pattern at nodes. The relative dilatation is responsible for the creation of free volume at nodes, which facilitates the nodes’ structural transformation. Several node structures have been observed and analyzed. In conclusion, the various structures have significant impact on the plastic deformation in terms of lattice dislocation nucleation, as well as the point defect formation energies.« less

  20. Dielectric relaxation of near-percolated carbon nanofiber polypropylene composites

    NASA Astrophysics Data System (ADS)

    Paleo, A. J.; Zille, A.; Van Hattum, F. W.; Ares-Pernas, A.; Agostinho Moreira, J.

    2017-07-01

    In this work, the morphological, structural and dielectric analysis of near-percolated polypropylene (PP) composites containing carbon nanofibers (CNF) processing by melt-mixing are investigated. Whereas the morphological analysis shows that CNF exhibit some tendency to agglomerate within the PP matrix, the structural analysis showed first a general decrease in the intensity of the IR bands as a consequence of the interaction between carbon nanofibers and PP matrix and second an increase of the crystallinity degree of the PP/CNF composites when compared to the pure PP. The dielectric analysis demonstrates enhanced dielectric constants (from 2.97 for neat polymer to 9.7 for 1.9 vol% loaded composites at 200 Hz) and low dielectric losses. Furthermore, the dielectric relaxation for composites with concentrations in the vicinity of percolation is evidenced and well described by the generalized polydispersive Cole-Cole model from which the values of static dielectric constant (εs) , high frequency dielectric constant (ε∞) , distribution of relaxation time (α) and mean relaxation time (τo), are determined, suggesting that this latter analysis constitutes a strong tool for understanding the relationships between microstructure and dielectric properties in this type of polymer composites.

  1. Flux-split algorithms for flows with non-equilibrium chemistry and vibrational relaxation

    NASA Technical Reports Server (NTRS)

    Grossman, B.; Cinnella, P.

    1990-01-01

    The present consideration of numerical computation methods for gas flows with nonequilibrium chemistry thermodynamics gives attention to an equilibrium model, a general nonequilibrium model, and a simplified model based on vibrational relaxation. Flux-splitting procedures are developed for the fully-coupled inviscid equations encompassing fluid dynamics and both chemical and internal energy-relaxation processes. A fully coupled and implicit large-block structure is presented which embodies novel forms of flux-vector split and flux-difference split algorithms valid for nonequilibrium flow; illustrative high-temperature shock tube and nozzle flow examples are given.

  2. Effect of muscle relaxation in the foot on simultaneous muscle contraction in the contralateral hand.

    PubMed

    Kato, Kouki; Kanosue, Kazuyuki

    2016-10-28

    We investigated the effects of foot muscle relaxation and contraction on muscle activities in the hand on both ipsilateral and contralateral sides. The subjects sat in an armchair with hands in the pronated position. They were able to freely move their right/left hand and foot. They performed three tasks for both ipsilateral (right hand and right foot) and contralateral limb coordination (left hand and right foot for a total of six tasks). These tasks involved: (1) wrist extension from a flexed (resting) position, (2) wrist extension with simultaneous ankle dorsiflexion from a plantarflexed (resting) position, and (3) wrist extension with simultaneous ankle relaxation from a dorsiflexed position. The subjects performed each task as fast as possible after hearing the start signal. Reaction time for the wrist extensor contraction (i.e. the degree to which it preceded the motor reaction time), as observed in electromyography (EMG), became longer when it was concurrently done with relaxation of the ankle dorsiflexor. Also, the magnitude of EMG activity became smaller, as compared with activity when wrist extensor contraction was done alone or with contraction of the ankle dorsiflexor. These effects were observed not only for the ipsilateral hand, but also for the contralateral hand. Our findings suggest that muscle relaxation in one limb interferes with muscle contraction in both the ipsilateral and contralateral limbs. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Aronia melanocarpa juice, a rich source of polyphenols, induces endothelium-dependent relaxations in porcine coronary arteries via the redox-sensitive activation of endothelial nitric oxide synthase.

    PubMed

    Kim, Jong Hun; Auger, Cyril; Kurita, Ikuko; Anselm, Eric; Rivoarilala, Lalainasoa Odile; Lee, Hyong Joo; Lee, Ki Won; Schini-Kerth, Valérie B

    2013-11-30

    This study examined the ability of Aronia melanocarpa (chokeberry) juice, a rich source of polyphenols, to cause NO-mediated endothelium-dependent relaxations of isolated coronary arteries and, if so, to determine the underlying mechanism and the active polyphenols. A. melanocarpa juice caused potent endothelium-dependent relaxations in porcine coronary artery rings. Relaxations to A. melanocarpa juice were minimally affected by inhibition of the formation of vasoactive prostanoids and endothelium-derived hyperpolarizing factor-mediated responses, and markedly reduced by N(ω)-nitro-l-arginine (endothelial NO synthase (eNOS) inhibitor), membrane permeant analogs of superoxide dismutase and catalase, PP2 (Src kinase inhibitor), and wortmannin (PI3-kinase inhibitor). In cultured endothelial cells, A. melanocarpa juice increased the formation of NO as assessed by electron paramagnetic resonance spectroscopy using the spin trap iron(II)diethyldithiocarbamate, and reactive oxygen species using dihydroethidium. These responses were associated with the redox-sensitive phosphorylation of Src, Akt and eNOS. A. melanocarpa juice-derived fractions containing conjugated cyanidins and chlorogenic acids induced the phosphorylation of Akt and eNOS. The present findings indicate that A. melanocarpa juice is a potent stimulator of the endothelial formation of NO in coronary arteries; this effect involves the phosphorylation of eNOS via the redox-sensitive activation of the Src/PI3-kinase/Akt pathway mostly by conjugated cyanidins and chlorogenic acids. Copyright © 2013. Published by Elsevier Inc.

  4. Application of the compensated Arrhenius formalism to self-diffusion: implications for ionic conductivity and dielectric relaxation.

    PubMed

    Petrowsky, Matt; Frech, Roger

    2010-07-08

    Self-diffusion coefficients are measured from -5 to 80 degrees C in a series of linear alcohols using pulsed field gradient NMR. The temperature dependence of these data is studied using a compensated Arrhenius formalism that assumes an Arrhenius-like expression for the diffusion coefficient; however, this expression includes a dielectric constant dependence in the exponential prefactor. Scaling temperature-dependent diffusion coefficients to isothermal diffusion coefficients so that the exponential prefactors cancel results in calculated energies of activation E(a). The exponential prefactor is determined by dividing the temperature-dependent diffusion coefficients by the Boltzmann term exp(-E(a)/RT). Plotting the prefactors versus the dielectric constant places the data on a single master curve. This procedure is identical to that previously used to study the temperature dependence of ionic conductivities and dielectric relaxation rate constants. The energies of activation determined from self-diffusion coefficients in the series of alcohols are strikingly similar to those calculated for the same series of alcohols from both dielectric relaxation rate constants and ionic conductivities of dilute electrolytes. The experimental results are described in terms of an activated transport mechanism that is mediated by relaxation of the solution molecules. This microscopic picture of transport is postulated to be common to diffusion, dielectric relaxation, and ionic transport.

  5. Magnetic relaxation pathways in lanthanide single-molecule magnets.

    PubMed

    Blagg, Robin J; Ungur, Liviu; Tuna, Floriana; Speak, James; Comar, Priyanka; Collison, David; Wernsdorfer, Wolfgang; McInnes, Eric J L; Chibotaru, Liviu F; Winpenny, Richard E P

    2013-08-01

    Single-molecule magnets are compounds that exhibit magnetic bistability caused by an energy barrier for the reversal of magnetization (relaxation). Lanthanide compounds are proving promising as single-molecule magnets: recent studies show that terbium phthalocyanine complexes possess large energy barriers, and dysprosium and terbium complexes bridged by an N2(3-) radical ligand exhibit magnetic hysteresis up to 13 K. Magnetic relaxation is typically controlled by single-ion factors rather than magnetic exchange (whether one or more 4f ions are present) and proceeds through thermal relaxation of the lowest excited states. Here we report polylanthanide alkoxide cage complexes, and their doped diamagnetic yttrium analogues, in which competing relaxation pathways are observed and relaxation through the first excited state can be quenched. This leads to energy barriers for relaxation of magnetization that exceed 800 K. We investigated the factors at the lanthanide sites that govern this behaviour.

  6. Anomalous NMR Relaxation in Cartilage Matrix Components and Native Cartilage: Fractional-Order Models

    PubMed Central

    Magin, Richard L.; Li, Weiguo; Velasco, M. Pilar; Trujillo, Juan; Reiter, David A.; Morgenstern, Ashley; Spencer, Richard G.

    2011-01-01

    We present a fractional-order extension of the Bloch equations to describe anomalous NMR relaxation phenomena (T1 and T2). The model has solutions in the form of Mittag-Leffler and stretched exponential functions that generalize conventional exponential relaxation. Such functions have been shown by others to be useful for describing dielectric and viscoelastic relaxation in complex, heterogeneous materials. Here, we apply these fractional-order T1 and T2 relaxation models to experiments performed at 9.4 and 11.7 Tesla on type I collagen gels, chondroitin sulfate mixtures, and to bovine nasal cartilage (BNC), a largely isotropic and homogeneous form of cartilage. The results show that the fractional-order analysis captures important features of NMR relaxation that are typically described by multi-exponential decay models. We find that the T2 relaxation of BNC can be described in a unique way by a single fractional-order parameter (α), in contrast to the lack of uniqueness of multi-exponential fits in the realistic setting of a finite signal-to-noise ratio. No anomalous behavior of T1 was observed in BNC. In the single-component gels, for T2 measurements, increasing the concentration of the largest components of cartilage matrix, collagen and chondroitin sulfate, results in a decrease in α, reflecting a more restricted aqueous environment. The quality of the curve fits obtained using Mittag-Leffler and stretched exponential functions are in some cases superior to those obtained using mono- and bi-exponential models. In both gels and BNC, α appears to account for microstructural complexity in the setting of an altered distribution of relaxation times. This work suggests the utility of fractional-order models to describe T2 NMR relaxation processes in biological tissues. PMID:21498095

  7. Anomalous NMR relaxation in cartilage matrix components and native cartilage: Fractional-order models

    NASA Astrophysics Data System (ADS)

    Magin, Richard L.; Li, Weiguo; Pilar Velasco, M.; Trujillo, Juan; Reiter, David A.; Morgenstern, Ashley; Spencer, Richard G.

    2011-06-01

    We present a fractional-order extension of the Bloch equations to describe anomalous NMR relaxation phenomena ( T1 and T2). The model has solutions in the form of Mittag-Leffler and stretched exponential functions that generalize conventional exponential relaxation. Such functions have been shown by others to be useful for describing dielectric and viscoelastic relaxation in complex, heterogeneous materials. Here, we apply these fractional-order T1 and T2 relaxation models to experiments performed at 9.4 and 11.7 Tesla on type I collagen gels, chondroitin sulfate mixtures, and to bovine nasal cartilage (BNC), a largely isotropic and homogeneous form of cartilage. The results show that the fractional-order analysis captures important features of NMR relaxation that are typically described by multi-exponential decay models. We find that the T2 relaxation of BNC can be described in a unique way by a single fractional-order parameter ( α), in contrast to the lack of uniqueness of multi-exponential fits in the realistic setting of a finite signal-to-noise ratio. No anomalous behavior of T1 was observed in BNC. In the single-component gels, for T2 measurements, increasing the concentration of the largest components of cartilage matrix, collagen and chondroitin sulfate, results in a decrease in α, reflecting a more restricted aqueous environment. The quality of the curve fits obtained using Mittag-Leffler and stretched exponential functions are in some cases superior to those obtained using mono- and bi-exponential models. In both gels and BNC, α appears to account for micro-structural complexity in the setting of an altered distribution of relaxation times. This work suggests the utility of fractional-order models to describe T2 NMR relaxation processes in biological tissues.

  8. Effectiveness of a Worksite Social & Physical Environment Intervention on Need for Recovery, Physical Activity and Relaxation; Results of a Randomized Controlled Trial

    PubMed Central

    Coffeng, Jennifer K.; Boot, Cécile R. L.; Duijts, Saskia F. A.; Twisk, Jos W. R.; van Mechelen, Willem; Hendriksen, Ingrid J. M.

    2014-01-01

    Objective To investigate the effectiveness of a worksite social and physical environment intervention on need for recovery (i.e., early symptoms of work-related mental and physical fatigue), physical activity and relaxation. Also, the effectiveness of the separate interventions was investigated. Methods In this 2×2 factorial design study, 412 office employees from a financial service provider participated. Participants were allocated to the combined social and physical intervention, to the social intervention only, to the physical intervention only or to the control group. The primary outcome measure was need for recovery. Secondary outcomes were work-related stress (i.e., exhaustion, detachment and relaxation), small breaks, physical activity (i.e., stair climbing, active commuting, sport activities, light/moderate/vigorous physical activity) and sedentary behavior. Outcomes were measured by questionnaires at baseline, 6 and 12 months follow-up. Multilevel analyses were performed to investigate the effects of the three interventions. Results In all intervention groups, a non-significant reduction was found in need for recovery. In the combined intervention (n = 92), exhaustion and vigorous physical activities decreased significantly, and small breaks at work and active commuting increased significantly compared to the control group. The social intervention (n = 118) showed a significant reduction in exhaustion, sedentary behavior at work and a significant increase in small breaks at work and leisure activities. In the physical intervention (n = 96), stair climbing at work and active commuting significantly increased, and sedentary behavior at work decreased significantly compared to the control group. Conclusion None of the interventions was effective in improving the need for recovery. It is recommended to implement the social and physical intervention among a population with higher baseline values of need for recovery. Furthermore, the intervention

  9. Effectiveness of a worksite social & physical environment intervention on need for recovery, physical activity and relaxation; results of a randomized controlled trial.

    PubMed

    Coffeng, Jennifer K; Boot, Cécile R L; Duijts, Saskia F A; Twisk, Jos W R; van Mechelen, Willem; Hendriksen, Ingrid J M

    2014-01-01

    To investigate the effectiveness of a worksite social and physical environment intervention on need for recovery (i.e., early symptoms of work-related mental and physical fatigue), physical activity and relaxation. Also, the effectiveness of the separate interventions was investigated. In this 2 × 2 factorial design study, 412 office employees from a financial service provider participated. Participants were allocated to the combined social and physical intervention, to the social intervention only, to the physical intervention only or to the control group. The primary outcome measure was need for recovery. Secondary outcomes were work-related stress (i.e., exhaustion, detachment and relaxation), small breaks, physical activity (i.e., stair climbing, active commuting, sport activities, light/moderate/vigorous physical activity) and sedentary behavior. Outcomes were measured by questionnaires at baseline, 6 and 12 months follow-up. Multilevel analyses were performed to investigate the effects of the three interventions. In all intervention groups, a non-significant reduction was found in need for recovery. In the combined intervention (n = 92), exhaustion and vigorous physical activities decreased significantly, and small breaks at work and active commuting increased significantly compared to the control group. The social intervention (n = 118) showed a significant reduction in exhaustion, sedentary behavior at work and a significant increase in small breaks at work and leisure activities. In the physical intervention (n = 96), stair climbing at work and active commuting significantly increased, and sedentary behavior at work decreased significantly compared to the control group. None of the interventions was effective in improving the need for recovery. It is recommended to implement the social and physical intervention among a population with higher baseline values of need for recovery. Furthermore, the intervention itself could be improved by increasing the

  10. Bethe lattice approach and relaxation dynamics study of spin-crossover materials

    NASA Astrophysics Data System (ADS)

    Oke, Toussaint Djidjoho; Hontinfinde, Félix; Boukheddaden, Kamel

    2015-07-01

    Dynamical properties of Prussian blue analogs and spin-crossover materials are investigated in the framework of a Blume-Emery-Griffiths (BEG) spin-1 model, where states ±1 and 0 represent the high-spin (HS) state and the low-spin state, respectively. The quadrupolar interaction depends on the temperature in the form . Magnetic interactions are controlled by a factor such that for (), magnetic ordering is not expected. The model is exactly solved using the Bethe lattice approach for the equilibrium properties. The results are closer to those calculated by numerical simulations with suitable Arrhenius-type transition rates. The study of relaxation processes of non-equilibrium HS states revealed one-step nonlinear sigmoidal relaxation curves of the HS fraction at low temperatures. We found that increasing the magnetic interactions leads to the appearance of a plateau in the thermal hysteresis as well as in the relaxation curves of the HS fraction at low temperature.

  11. Deformation and relaxation of an incompressible viscoelastic body with surface viscoelasticity

    NASA Astrophysics Data System (ADS)

    Liu, Liping; Yu, Miao; Lin, Hao; Foty, Ramsey

    2017-01-01

    Measuring mechanical properties of cells or cell aggregates has proven to be an involved process due to their geometrical and structural complexity. Past measurements are based on material models that completely neglect the elasticity of either the surface membrane or the interior bulk. In this work, we consider general material models to account for both surface and bulk viscoelasticity. The boundary value problems are formulated for deformations and relaxations of a closed viscoelastic surface coupled with viscoelastic media inside and outside of the surface. The linearized surface elasticity models are derived for the constant surface tension model and the Helfrich-Canham bending model for coupling with the bulk viscoelasticity. For quasi-spherical surfaces, explicit solutions are obtained for the deformation, stress-strain and relaxation behaviors under a variety of loading conditions. These solutions can be applied to extract the intrinsic surface and bulk viscoelastic properties of biological cells or cell aggregates in the indentation, electro-deformation and relaxation experiments.

  12. Higher triplet state of fullerene C{sub 70} revealed by electron spin relaxation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uvarov, Mikhail N., E-mail: uvarov@kinetics.nsc.ru; Behrends, Jan; Kulik, Leonid V.

    2015-12-28

    Spin-lattice relaxation times T{sub 1} of photoexcited triplets {sup 3}C{sub 70} in glassy decalin were obtained from electron spin echo inversion recovery dependences. In the range 30–100 K, the temperature dependence of T{sub 1} was fitted by the Arrhenius law with an activation energy of 172 cm{sup −1}. This indicates that the dominant relaxation process of {sup 3}C{sub 70} is described by an Orbach-Aminov mechanism involving the higher triplet state t{sub 2} which lies 172 cm{sup −1} above the lowest triplet state t{sub 1}. Chemical modification of C{sub 70} fullerene not only decreases the intrinsic triplet lifetime by about tenmore » times but also increases T{sub 1} by several orders of magnitude. The reason for this is the presence of a low-lying excited triplet state in {sup 3}C{sub 70} and its absence in triplet C{sub 70} derivatives. The presence of the higher triplet state in C{sub 70} is in good agreement with the previous results from phosphorescence spectroscopy.« less

  13. Rapid Wall Relaxation in Elongating Tissues 1

    PubMed Central

    Matyssek, Rainer; Maruyama, Sachio; Boyer, John S.

    1988-01-01

    Reported differences in the relaxation of cell walls in enlarging stem tissues of soybean (Glycine max [L.] Merr.) and pea (Pisum sativum L.) cause measurements of the yield threshold turgor, an important growth parameter, to be in doubt. Using the pressure probe and guillotine psychrometer, we investigated wall relaxation in these species by excising the elongating tissue in air to remove the water supply. We found that the rapid kinetics usually exhibited by soybean could be delayed and made similar to the slow kinetics previously reported for pea if slowly growing or mature tissue was left attached to the rapidly growing tissue when relaxation was initiated. The greater the amount of attached tissue, the slower the relaxation, suggesting that slowly growing tissue acted as a water source. Consistent with this concept was a lower water potential in the rapidly elongating tissue than in the slowly growing tissue. Previous reports of wall relaxation in pea included slowly growing tissue. If this tissue was removed from pea, relaxation became as rapid as usually exhibited by soybean. It is concluded that the true relaxation of cell walls to the yield threshold requires only a few minutes and that the yield threshold should be constant during so short a time, thus reflecting the yield threshold in the intact plant before excision. Under these conditions, the yield threshold was close to the turgor in the intact plant regardless of the species. The presence of slowly growing or mature tissue delays wall relaxation and should be avoided during such measurements. However, this delay can be used to advantage when turgor of intact growing tissues is being measured using excised tissues because turgor does not change for a considerable time after excision. PMID:16666048

  14. Dynamics of merging: post-merger mixing and relaxation of an Illustris galaxy

    NASA Astrophysics Data System (ADS)

    Young, Anthony M.; Williams, Liliya L. R.; Hjorth, Jens

    2018-02-01

    During the merger of two galaxies, the resulting system undergoes violent relaxation and seeks stable equilibrium. However, the details of this evolution are not fully understood. Using Illustris simulation, we probe two physically related processes, mixing and relaxation. Though the two are driven by the same dynamics—global time-varying potential for the energy, and torques caused by asymmetries for angular momentum—we measure them differently. We define mixing as the redistribution of energy and angular momentum between particles of the two merging galaxies. We assess the degree of mixing as the difference between the shapes of their energy distributions, N(E)s, and their angular momentum distributions, N(L2)s. We find that the difference is decreasing with time, indicating mixing. To measure relaxation, we compare N(E) of the newly merged system to N(E) of a theoretical prediction for relaxed collisionless systems, DARKexp, and witness the system becoming more relaxed, in the sense that N(E) approaches DARKexp N(E). Because the dynamics driving mixing and relaxation are the same, the timescale is similar for both. We measure two sequential timescales: a rapid, 1 Gyr phase after the initial merger, during which the difference in N(E) of the two merging halos decreases by ~ 80%, followed by a slow phase, when the difference decreases by ~ 50% over ~ 8.5 Gyrs. This is a direct measurement of the relaxation timescale. Our work also draws attention to the fact that when a galaxy has reached Jeans equilibrium it may not yet have reached a fully relaxed state given by DARKexp, in that it retains information about its past history. This manifests itself most strongly in stars being centrally concentrated. We argue that it is particularly difficult for stars, and other tightly bound particles, to mix because they have less time to be influenced by the fluctuating potential, even across multiple merger events.

  15. Relaxation by urocortin of rat renal arteries: effects of diabetes in males and females.

    PubMed

    Sanz, Elena; Fernández, Nuria; Monge, Luis; Climent, Belén; Diéguez, Godofredo; García-Villalón, Angel Luis

    2003-06-01

    Urocortin is a peptide structurally related to corticotropin releasing factor (CRF), and the present study was performed to examine the effects of diabetes mellitus on the relaxation by urocortin of renal arteries from males and females. The response to urocortin was studied in isolated segments, 2 mm long, from renal arteries, from male and female, control (normoglycemic) and streptozotocin-induced diabetic rats. In the renal arterial segments precontracted with endothelin-1, urocortin produced concentration-dependent relaxation, that was not different between males and females. Diabetes reduced the relaxation in renal arteries from females but not in those from males. The potassium channel blocker charybdotoxin (10(-7) M) reduced the relaxation to urocortin of renal arteries from normoglycemic males and females. The cyclooxygenase inhibitor meclofenamate did not modify the relaxation to urocortin in renal arteries from normoglycemic males or females. The inhibitor of nitric oxide synthesis N(W)-nitro-L-arginine methyl ester (L-NAME, 10(-4) M) reduced the relaxation to urocortin in renal arteries from normoglycemic females, but not in renal arteries from normoglycemic males. Neither charybdotoxin, L-NAME or meclofenamate modified the relaxation to urocortin of renal arteries from diabetic females. These results suggest that urocortin produces a marked vasodilation of renal arteries, which may be mediated by nitric oxide in females and by activation of potassium channels in both genders, and is reduced by diabetes in renal arteries from females.

  16. Multi-region relaxed Hall magnetohydrodynamics with flow

    DOE PAGES

    Lingam, Manasvi; Abdelhamid, Hamdi M.; Hudson, Stuart R.

    2016-08-03

    The recent formulations of multi-region relaxed magnetohydrodynamics (MRxMHD) have generalized the famous Woltjer-Taylor states by incorporating a collection of “ideal barriers” that prevent global relaxation and flow. In this paper, we generalize MRxMHD with flow to include Hall effects, and thereby obtain the partially relaxed counterparts of the famous double Beltrami states as a special subset. The physical and mathematical consequences arising from the introduction of the Hall term are also presented. We demonstrate that our results (in the ideal MHD limit) constitute an important subset of ideal MHD equilibria, and we compare our approach against other variational principles proposedmore » for deriving the partially relaxed states.« less

  17. Nonlinear relaxation algorithms for circuit simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saleh, R.A.

    Circuit simulation is an important Computer-Aided Design (CAD) tool in the design of Integrated Circuits (IC). However, the standard techniques used in programs such as SPICE result in very long computer-run times when applied to large problems. In order to reduce the overall run time, a number of new approaches to circuit simulation were developed and are described. These methods are based on nonlinear relaxation techniques and exploit the relative inactivity of large circuits. Simple waveform-processing techniques are described to determine the maximum possible speed improvement that can be obtained by exploiting this property of large circuits. Three simulation algorithmsmore » are described, two of which are based on the Iterated Timing Analysis (ITA) method and a third based on the Waveform-Relaxation Newton (WRN) method. New programs that incorporate these techniques were developed and used to simulate a variety of industrial circuits. The results from these simulations are provided. The techniques are shown to be much faster than the standard approach. In addition, a number of parallel aspects of these algorithms are described, and a general space-time model of parallel-task scheduling is developed.« less

  18. Bimodal dielectric relaxation of electrolyte solutions in weakly polar solvents.

    PubMed

    Yamaguchi, Tsuyoshi; Koda, Shinobu

    2014-12-28

    The dielectric relaxation spectra of dilute electrolyte solutions in solvents of small dielectric constants are investigated both theoretically and experimentally. The theoretical calculation in our previous work [T. Yamaguchi, T. Matsuoka, and S. Koda, J. Chem. Phys. 135, 164511 (2011)] is reanalyzed, and it is shown that the dielectric relaxation spectra are composed of three components, namely, the relaxation of ionic atmosphere, the reorientational relaxation of ion pairs, and the collision between ions. The relaxation frequency of the slowest one increases with increasing the concentration, and the slower two relaxations, those of ionic atmosphere and ion pairs, merge into one at the concentration where the Debye length is comparable to the size of ions. Experimentally, the dielectric relaxation spectra of some electrolytes in two solvents, tetrahydrofuran and tetraglyme, are determined at frequencies from 300 kHz to 200 MHz, and the presence of the slower two relaxations was confirmed. The concentration dependence of the relaxation frequency is also in harmony with the theoretical calculation. The relationship between the dielectric relaxation spectra and the concentration dependence of the ionic conductivity is discussed.

  19. Bimodal dielectric relaxation of electrolyte solutions in weakly polar solvents

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Tsuyoshi; Koda, Shinobu

    2014-12-01

    The dielectric relaxation spectra of dilute electrolyte solutions in solvents of small dielectric constants are investigated both theoretically and experimentally. The theoretical calculation in our previous work [T. Yamaguchi, T. Matsuoka, and S. Koda, J. Chem. Phys. 135, 164511 (2011)] is reanalyzed, and it is shown that the dielectric relaxation spectra are composed of three components, namely, the relaxation of ionic atmosphere, the reorientational relaxation of ion pairs, and the collision between ions. The relaxation frequency of the slowest one increases with increasing the concentration, and the slower two relaxations, those of ionic atmosphere and ion pairs, merge into one at the concentration where the Debye length is comparable to the size of ions. Experimentally, the dielectric relaxation spectra of some electrolytes in two solvents, tetrahydrofuran and tetraglyme, are determined at frequencies from 300 kHz to 200 MHz, and the presence of the slower two relaxations was confirmed. The concentration dependence of the relaxation frequency is also in harmony with the theoretical calculation. The relationship between the dielectric relaxation spectra and the concentration dependence of the ionic conductivity is discussed.

  20. Isothermal enthalpy relaxation of glassy 1,2,6-hexanetriol

    NASA Astrophysics Data System (ADS)

    Fransson, Å.; Bäckström, G.

    The isothermal enthalpy relaxation of glassy 1,2,6-hexanetriol has been measured at six temperatures. The relaxation time and the distribution parameters extracted from fits of the Williams-Watts relaxation function are compared with parameters obtained by other techniques and on other substances. A detailed comparison of the Williams-Watts and the Davidson-Cole relaxation functions is presented.

  1. The Efficacy of Relaxation Training in Treating Anxiety

    ERIC Educational Resources Information Center

    Francesco, Pagnini; Mauro, Manzoni Gian; Gianluca, Castelnuovo; Enrico, Molinari

    2009-01-01

    This paper provides a review of scientific literature about relaxation training and its effects on anxiety. Research investigating progressive relaxation, meditation, applied relaxation and autogenic training were considered. All these methods proved to be effective in reducing anxiety in all kind of samples, affected or not by physical or…

  2. Structural relaxation in the hydrogen-bonding liquids N-methylacetamide and water studied by optical Kerr effect spectroscopy.

    PubMed

    Turton, David A; Wynne, Klaas

    2008-04-21

    Structural relaxation in the peptide model N-methylacetamide (NMA) is studied experimentally by ultrafast optical Kerr effect spectroscopy over the normal-liquid temperature range and compared to the relaxation measured in water at room temperature. It is seen that in both hydrogen-bonding liquids, beta relaxation is present, and in each case, it is found that this can be described by the Cole-Cole function. For NMA in this temperature range, the alpha and beta relaxations are each found to have an Arrhenius temperature dependence with indistinguishable activation energies. It is known that the variations on the Debye function, including the Cole-Cole function, are unphysical, and we introduce two general modifications: One allows for the initial rise of the function, determined by the librational frequencies, and the second allows the function to be terminated in the alpha relaxation.

  3. [Effects of Monochord Music on Heart Rate Variability and Self-Reports of Relaxation in Healthy Adults].

    PubMed

    Gäbel, Christine; Garrido, Natalia; Koenig, Julian; Hillecke, Thomas Karl; Warth, Marco

    Music-based interventions are considered an effective and low-cost treatment option for stress-related symptoms. The present study aimed to examine the trajectories of the psychophysiological response in apparently healthy participants during a music-based relaxation intervention compared to a verbal relaxation exercise. 70 participants were assigned to either receptive live music (experimental group) or a prerecorded verbal relaxation exercise (control group). Self-ratings of relaxation were assessed before and after each intervention on visual analogue scales and the Relaxation Inventory (RI). The heart rate variability (HRV) was continuously recorded throughout the sessions. Statistical analysis focused on HRV parameters indicative of parasympathetic cardiovascular outflow. We found significant quadratic main effects for time on the mean R-R interval (heart rate), the high-frequency power of HRV (indicative of parasympathetic activity), and the self-ratings of relaxation in both groups. A significant group × time interaction was observed for the cognitive tension subscale of the RI. Participants in both groups showed psychophysiological changes indicative of greater relaxation over the course of the interventions. However, differences between groups were only marginal. Music might be effective in relieving stress and promoting relaxation by altering the autonomic nervous system function. Future studies need to explore the long-term outcomes of such interventions. © 2017 S. Karger GmbH, Freiburg.

  4. Vascular activation of K+ channels and Na+-K+ ATPase activity of estrogen-deficient female rats.

    PubMed

    Ribeiro Junior, Rogério Faustino; Fiorim, Jonaina; Marques, Vinicius Bermond; de Sousa Ronconi, Karoline; Botelho, Tatiani; Grando, Marcella D; Bendhack, Lusiane M; Vassallo, Dalton Valentim; Stefanon, Ivanita

    2017-12-01

    The goal of the present study was to evaluate vascular potassium channels and Na + -K + -ATPase activity in estrogen deficient female rats. Female rats that underwent ovariectomy were assigned to receive daily treatment with placebo (OVX) or estrogen replacement (OVX+E2, 1mg/kg, once a week, i.m.). Aortic rings were used to examine the involvement of K + channels and Na + -K + -ATPase in vascular reactivity. Acetylcholine (ACh)-induced relaxation was analyzed in the presence of L-NAME (100μM) and K + channels blockers: tetraethylammonium (TEA, 5mM), 4-aminopyridine (4-AP, 5mM), iberiotoxin (IbTX, 30nM), apamin (0.5mM), charybdotoxin (ChTX, 0.1mM) and iberiotoxin plus apamin. When aortic rings were pre-contracted with KCl (60mM) or pre-incubated with TEA (5mM), 4-aminopyridine (4-AP, 5mM) and iberiotoxin (IbTX, 30nM) plus apamin (0.5μM), the ACh-induced relaxation was less effective in the ovariectomized group. Additionally, 4-AP and IbTX decreased the relaxation by sodium nitroprusside in all groups but this reduction was greater in the ovariectomized group. Estrogen deficiency also increased aortic functional Na + -K + ATPase activity evaluated by K + -induced relaxation. L-NAME or endothelium removal were not able to block the increase in aortic functional Na + -K + ATPase activity, however, TEA (5mM) restored this increase to the control level. We also found that estrogen deficiency increased superoxide anion production and reduced nitric oxide release in aortic ring from ovariectomized animals. In summary, our results emphasize that the process underlying ACh-induced relaxation is preserved in ovariectomized animals due to the activation of K + channels and increased Na + -K + ATPase activity. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Stress relaxation study of fillers for directly compressed tablets

    PubMed Central

    Rehula, M.; Adamek, R.; Spacek, V.

    2012-01-01

    It is possible to assess viscoelastic properties of materials by means of the stress relaxation test. This method records the decrease in pressing power in a tablet at its constant height. The cited method was used to evaluate the time-dependent deformation for six various materials: microcrystalline cellulose, cellulose powder, hydroxypropyl methylcellulose, mannitol, lactose monohydrate, and hydrogen phosphate monohydrate. The decrease in pressing powering of a tablet during a 180 s period was described mathematically by the parameters of three exponential equations, where the whole course of the stress relaxation is divided into three individual processes (instant elastic deformation, retarded elastic deformation and permanent plastic deformation). Three values of the moduli of plasticity and elasticity were calculated for each compound. The values of elastic parameters ATi have a strong relationship with bulk density. The plastic parameters PTi represent particle tendency to form bonds. The values of plasticity in the third process PT3 ranged from 400 to 600 MPas. Mannitol had higher plasticity and lactose monohydrate on the contrary reduced plasticity. A linear relation exists between AT3 and PT3 for the third process. No similar interpretation of moduli calculated on the basis of three exponential equations has been realized yet. PMID:24850972

  6. Effects of pulmonary inhalation on hyperpolarized krypton-83 magnetic resonance T1 relaxation

    NASA Astrophysics Data System (ADS)

    Stupic, K. F.; Elkins, N. D.; Pavlovskaya, G. E.; Repine, J. E.; Meersmann, T.

    2011-07-01

    The 83Kr magnetic resonance (MR) relaxation time T1 of krypton gas in contact with model surfaces was previously found to be highly sensitive to surface composition, surface-to-volume ratio, and surface temperature. The work presented here explored aspects of pulmonary 83Kr T1 relaxation measurements in excised lungs from healthy rats using hyperpolarized (hp) 83Kr with approximately 4.4% spin polarization. MR spectroscopy without spatial resolution was applied to the ex vivo lungs that actively inhale hp 83Kr through a custom designed ventilation system. Various inhalation schemes were devised to study the influence of anatomical dead space upon the measured 83Kr T1 relaxation times. The longitudinal 83Kr relaxation times in the distal airways and the respiratory zones were independent of the lung inhalation volume, with T1 = 1.3 s and T1 = 1.0 s, depending only on the applied inhalation scheme. The obtained data were highly reproducible between different specimens. Further, the 83Kr T1 relaxation times in excised lungs were unaffected by the presence of up to 40% oxygen in the hp gas mixture. The results support the possible importance of 83Kr as a biomarker for evaluating lung function.

  7. Molecular relaxation behavior and isothermal crystallization above glass transition temperature of amorphous hesperetin.

    PubMed

    Shete, Ganesh; Khomane, Kailas S; Bansal, Arvind Kumar

    2014-01-01

    The purpose of this paper was to investigate the relaxation behavior of amorphous hesperetin (HRN), using dielectric spectroscopy, and assessment of its crystallization kinetics above glass transition temperature (Tg ). Amorphous HRN exhibited both local (β-) and global (α-) relaxations. β-Relaxation was observed below Tg , whereas α-relaxation prominently emerged above Tg . β-Relaxation was found to be of Johari-Goldstein type and was correlated with α-process by coupling model. Secondly, isothermal crystallization experiments were performed at 363 K (Tg + 16.5 K), 373 K (Tg + 26.5 K), and 383 K (Tg + 36.5 K). The kinetics of crystallization, obtained from the normalized dielectric strength, was modeled using the Avrami model. Havriliak-Negami (HN) shape parameters, αHN and αHN .βHN , were analyzed during the course of crystallization to understand the dynamics of amorphous phase during the emergence of crystallites. HN shape parameters indicated that long range (α-like) were motions affected to a greater extent than short range (β-like) motions during isothermal crystallization studies at all temperature conditions. The variable behavior of α-like motions at different isothermal crystallization temperatures was attributed to evolving crystallites with time and increase in electrical conductivity with temperature. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  8. 40 CFR 57.205 - Submission of supplementary information upon relaxation of an SO2 SIP emission limitation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Submission of supplementary information upon relaxation of an SO2 SIP emission limitation. 57.205 Section 57.205 Protection of Environment... Application and the NSO Process § 57.205 Submission of supplementary information upon relaxation of an SO2 SIP...

  9. Comparison of the relaxation effect in vitro of nitroglycerin vs. fenoterol on human myometrial strips.

    PubMed

    David, M; Hamann, C; Chen, F C; Bruch, L; Lichtenegger, W

    2000-01-01

    Substance dose-related comparison of relaxation effect of nitroglycerin (GTN) and the beta 2-mimetic substance fenoterol in human myometrial tissue. Test criterion is the isometric force development of isolated human myometrial strips. These muscle strips were removed from the lower uterine segment at cesarean section. Fenoterol in concentrations of 3 x 10(-8)-10(-5) mol/l or GTN in concentrations of 1.7 x 10(-8)-5.8 x 10(-4) mol/l were applied to the 2 x 2 x 10-mm strips, which were fixed and maintained in tissue baths. The curves were plotted on line. The integral or the "area under the curve" (AUC) served as the parameter for muscle strip activity. A total of 100 strips from 20 patients were used. GTN demonstrated a significant relaxation effect in the in vitro model on human myometrial strips from pregnant women already treated with oxytocin. The effect was able to be enhanced to a point where oxytocin-induced contractions were completely absent. A relatively clear connection was demonstrated between dose and effect whereby increased muscle relaxation resulted at increased concentrations. Compared to GTN application, muscle strip relaxation was less pronounced under fenoterol; a complete inhibition of myometrial activity was not achieved under fenoterol. With respect to relaxation of the myometrial tissue samples the NO donor GTN is at least as potent as the standard tocolytic agent fenoterol in the in vitro model.

  10. Calcium dobesilate potentiates endothelium-derived hyperpolarizing factor-mediated relaxation of human penile resistance arteries

    PubMed Central

    Angulo, Javier; Cuevas, Pedro; Fernández, Argentina; Gabancho, Sonia; Videla, Sebastián; Tejada, Iñigo Sáenz de

    2003-01-01

    We have evaluated the participation of endothelium-derived hyperpolarizing factor (EDHF) in the endothelium-dependent relaxation of isolated human penile resistance arteries (HPRA) and human corpus cavernosum (HCC) strips. In addition, the effect of the angioprotective agent, calcium dobesilate (DOBE), on the endothelium-dependent relaxation of these tissues was investigated. Combined inhibition of nitric oxide synthase (NOS) and cyclooxygenase (COX) nearly abolished the endothelium-dependent relaxation to acetylcholine (ACh) in HCC, while 60% relaxation of HPRA was observed under these conditions. Endothelium-dependent relaxation of HPRA resistant to NOS and COX inhibition was prevented by raising the extracellular concentration of K+ (35 mM) or by blocking Ca2+-activated K+ channels, with apamin (APA; 100 nM) and charybdotoxin (CTX; 100 nM), suggesting the involvement of EDHF in these responses. Endothelium-dependent relaxation to ACh was markedly enhanced by DOBE (10 μM) in HPRA but not in HCC. The potentiating effects of DOBE on ACh-induced responses in HPRA, remained after NOS and COX inhibition, were reduced by inhibition of cytochrome P450 oxygenase with miconazole (0.3 mM) and were abolished by high K+ or a combination of APA and CTX. In vivo, DOBE (10 mg kg−1 i.v.) significantly potentiated the erectile responses to cavernosal nerve stimulation in male rats. EDHF plays an important role in the endothelium-dependent relaxation of HPRA but not in HCC. DOBE significantly improves endothelium-dependent relaxation of HPRA mediated by EDHF and potentiates erectile responses in vivo. Thus, EDHF becomes a new therapeutic target for the treatment of erectile dysfunction (ED) and DOBE could be considered a candidate for oral therapy for ED. PMID:12813009

  11. Prony series spectra of structural relaxation in N-BK7 for finite element modeling.

    PubMed

    Koontz, Erick; Blouin, Vincent; Wachtel, Peter; Musgraves, J David; Richardson, Kathleen

    2012-12-20

    Structural relaxation behavior of N-BK7 glass was characterized at temperatures 20 °C above and below T(12) for this glass, using a thermo mechanical analyzer (TMA). T(12) is a characteristic temperature corresponding to a viscosity of 10(12) Pa·s. The glass was subject to quick temperature down-jumps preceded and followed by long isothermal holds. The exponential-like decay of the sample height was recorded and fitted using a unique Prony series method. The result of his method was a plot of the fit parameters revealing the presence of four distinct peaks or distributions of relaxation times. The number of relaxation times decreased as final test temperature was increased. The relaxation times did not shift significantly with changing temperature; however, the Prony weight terms varied essentially linearly with temperature. It was also found that the structural relaxation behavior of the glass trended toward single exponential behavior at temperatures above the testing range. The result of the analysis was a temperature-dependent Prony series model that can be used in finite element modeling of glass behavior in processes such as precision glass molding (PGM).

  12. Relaxation dynamics of a multihierarchical polymer network

    NASA Astrophysics Data System (ADS)

    Jurjiu, Aurel; Biter, Teodor Lucian; Turcu, Flaviu

    2017-01-01

    In this work, we study the relaxation dynamics of a multihierarchical polymer network built by replicating the Vicsek fractal in dendrimer shape. The relaxation dynamics is investigated in the framework of the generalized Gaussian structure model by employing both Rouse and Zimm approaches. In the Rouse-type approach, we show the iterative procedure whereby the whole eigenvalue spectrum of the connectivity matrix of the multihierarchical structure can be obtained. Remarkably, the general picture that emerges from both approaches, even though we have a mixed growth algorithm, is that the obtained multihierarchical structure preserves the individual relaxation behaviors of its components. The theoretical findings with respect to the splitting of the intermediate domain of the relaxation quantities are well supported by experimental results.

  13. Time-dependent alteration in cromakalim-induced relaxation of corpus cavernosum from streptozocin-induced diabetic rats.

    PubMed

    Ghasemi, Mehdi; Sadeghipour, Hamed; Asadi, Shahrzad; Dehpour, Ahmad Reza

    2007-09-01

    The purpose of the present study was to investigate the relaxant responses to the ATP-sensitive potassium (K(ATP)) channel opener cromakalim in corpus cavernosum strips from 1-, 2-, 4-, 6-, and 8-week streptozocin-induced diabetic rats. Cromakalim (1 nM-0.1 mM) produced concentration-dependent relaxation in phenylephrine (7.5 microM)-precontracted isolated rat corporal strips. Compared with age-matched control animals, a significant enhancement in cromakalim-induced relaxation of corpus cavernosum was observed in 2-week diabetic animals, whereas the relaxant responses to cromakalim were decreased in 6-and 8-week diabetic animals. However, the cromakalim-induced relaxation was not altered in either 1-week or 4-week rat corporal strips in comparison with corresponding age-matched non-diabetic groups. Preincubation with the K(ATP) channel blocker glibenclamide (10 microM) significantly inhibited the cromakalim-induced relaxation in both non-diabetic and diabetic rat corpus cavernosum, but neither the voltage-dependent K(+) channel (K(V)) antagonist 4-aminopyridine (1 mM) nor the calcium-activated K(+) channel (K(Ca)) antagonist charybdotoxin (0.1 microM) had significant effect on cromakalim-induced relaxation in both control and diabetic rat corporal strips. Relaxation responses to the nitric oxide donor sodium nitroprusside (1 nM-0.1 mM) in diabetic rat corpus cavernosum were similar to that of age-matched controls. These data demonstrated that the relaxant responses to cromakalim were altered in diabetic cavernosal strips in a time dependent manner, suggesting that the period of diabetes mellitus may play a key role in the K(ATP) channels function in rat corpus cavernosum.

  14. Effects of water on the primary and secondary relaxation of xylitol and sorbitol: Implication on the origin of the Johari-Goldstein relaxation

    NASA Astrophysics Data System (ADS)

    Psurek, T.; Maslanka, S.; Paluch, M.; Nozaki, R.; Ngai, K. L.

    2004-07-01

    Dielectric spectroscopy was employed to study the effects of water on the primary α -relaxation and the secondary β -relaxation of xylitol. The measurements were made on anhydrous xylitol and mixtures of xylitol with water with three different water concentrations over a temperature range from 173K to 293K . The α -relaxation speeds up with increasing concentration of water in xylitol, whereas the rate of the β -relaxation is essentially unchanged. Some systematic differences in the behavior of α -relaxation for anhydrous xylitol and the mixtures were observed. Our findings confirm all the observations of Nozaki [R. Nozaki, H. Zenitani, A. Minoguchi, and K. Kitai, J. Non-Cryst. Solids 307, 349 (2002)] in sorbitol/water mixtures. Effects of water on both the α - and β -relaxation dynamics in xylitol and sorbitol are explained by using the coupling model.

  15. 46 CFR 46.10-1 - Relaxation from regulations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Relaxation from regulations. 46.10-1 Section 46.10-1... PASSENGER VESSELS Administration § 46.10-1 Relaxation from regulations. (a) New passenger vessels making... engaged in foreign voyages by sea may be permitted relaxation from the requirements of this part if, in...

  16. 46 CFR 46.10-1 - Relaxation from regulations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Relaxation from regulations. 46.10-1 Section 46.10-1... PASSENGER VESSELS Administration § 46.10-1 Relaxation from regulations. (a) New passenger vessels making... engaged in foreign voyages by sea may be permitted relaxation from the requirements of this part if, in...

  17. Steepest-entropy-ascent quantum thermodynamic modeling of the relaxation process of isolated chemically reactive systems using density of states and the concept of hypoequilibrium state

    NASA Astrophysics Data System (ADS)

    Li, Guanchen; von Spakovsky, Michael R.

    2016-01-01

    This paper presents a study of the nonequilibrium relaxation process of chemically reactive systems using steepest-entropy-ascent quantum thermodynamics (SEAQT). The trajectory of the chemical reaction, i.e., the accessible intermediate states, is predicted and discussed. The prediction is made using a thermodynamic-ensemble approach, which does not require detailed information about the particle mechanics involved (e.g., the collision of particles). Instead, modeling the kinetics and dynamics of the relaxation process is based on the principle of steepest-entropy ascent (SEA) or maximum-entropy production, which suggests a constrained gradient dynamics in state space. The SEAQT framework is based on general definitions for energy and entropy and at least theoretically enables the prediction of the nonequilibrium relaxation of system state at all temporal and spatial scales. However, to make this not just theoretically but computationally possible, the concept of density of states is introduced to simplify the application of the relaxation model, which in effect extends the application of the SEAQT framework even to infinite energy eigenlevel systems. The energy eigenstructure of the reactive system considered here consists of an extremely large number of such levels (on the order of 10130) and yields to the quasicontinuous assumption. The principle of SEA results in a unique trajectory of system thermodynamic state evolution in Hilbert space in the nonequilibrium realm, even far from equilibrium. To describe this trajectory, the concepts of subsystem hypoequilibrium state and temperature are introduced and used to characterize each system-level, nonequilibrium state. This definition of temperature is fundamental rather than phenomenological and is a generalization of the temperature defined at stable equilibrium. In addition, to deal with the large number of energy eigenlevels, the equation of motion is formulated on the basis of the density of states and a set of

  18. Collective relaxation dynamics of small-world networks

    NASA Astrophysics Data System (ADS)

    Grabow, Carsten; Grosskinsky, Stefan; Kurths, Jürgen; Timme, Marc

    2015-05-01

    Complex networks exhibit a wide range of collective dynamic phenomena, including synchronization, diffusion, relaxation, and coordination processes. Their asymptotic dynamics is generically characterized by the local Jacobian, graph Laplacian, or a similar linear operator. The structure of networks with regular, small-world, and random connectivities are reasonably well understood, but their collective dynamical properties remain largely unknown. Here we present a two-stage mean-field theory to derive analytic expressions for network spectra. A single formula covers the spectrum from regular via small-world to strongly randomized topologies in Watts-Strogatz networks, explaining the simultaneous dependencies on network size N , average degree k , and topological randomness q . We present simplified analytic predictions for the second-largest and smallest eigenvalue, and numerical checks confirm our theoretical predictions for zero, small, and moderate topological randomness q , including the entire small-world regime. For large q of the order of one, we apply standard random matrix theory, thereby overarching the full range from regular to randomized network topologies. These results may contribute to our analytic and mechanistic understanding of collective relaxation phenomena of network dynamical systems.

  19. Collective relaxation dynamics of small-world networks.

    PubMed

    Grabow, Carsten; Grosskinsky, Stefan; Kurths, Jürgen; Timme, Marc

    2015-05-01

    Complex networks exhibit a wide range of collective dynamic phenomena, including synchronization, diffusion, relaxation, and coordination processes. Their asymptotic dynamics is generically characterized by the local Jacobian, graph Laplacian, or a similar linear operator. The structure of networks with regular, small-world, and random connectivities are reasonably well understood, but their collective dynamical properties remain largely unknown. Here we present a two-stage mean-field theory to derive analytic expressions for network spectra. A single formula covers the spectrum from regular via small-world to strongly randomized topologies in Watts-Strogatz networks, explaining the simultaneous dependencies on network size N, average degree k, and topological randomness q. We present simplified analytic predictions for the second-largest and smallest eigenvalue, and numerical checks confirm our theoretical predictions for zero, small, and moderate topological randomness q, including the entire small-world regime. For large q of the order of one, we apply standard random matrix theory, thereby overarching the full range from regular to randomized network topologies. These results may contribute to our analytic and mechanistic understanding of collective relaxation phenomena of network dynamical systems.

  20. Lattice-level observation of the elastic-to-plastic relaxation process with subnanosecond resolution in shock-compressed Ta using time-resolved in situ Laue diffraction

    DOE PAGES

    Wehrenberg, C. E.; Comley, A. J.; Barton, N. R.; ...

    2015-09-29

    We report direct lattice level measurements of plastic relaxation kinetics through time-resolved, in-situ Laue diffraction of shock-compressed single-crystal [001] Ta at pressures of 27-210 GPa. For a 50 GPa shock, a range of shear strains is observed extending up to the uniaxial limit for early data points (<0.6 ns) and the average shear strain relaxes to a near steady state over ~1 ns. For 80 and 125 GPa shocks, the measured shear strains are fully relaxed already at 200 ps, consistent with rapid relaxation associated with the predicted threshold for homogeneous nucleation of dislocations occurring at shock pressure ~65 GPa.more » The relaxation rate and shear stresses are used to estimate the dislocation density and these quantities are compared to the Livermore Multiscale Strength model as well as various molecular dynamics simulations.« less

  1. Magnetic resonance imaging relaxation time in Alzheimer's disease.

    PubMed

    Tang, Xiang; Cai, Feng; Ding, Dong-Xue; Zhang, Lu-Lu; Cai, Xiu-Ying; Fang, Qi

    2018-05-05

    The magnetic resonance imaging (MRI) relaxation time constants, T1 and T2, are sensitive to changes in brain tissue microstructure integrity. Quantitative T1 and T2 relaxation times have been proposed to serve as non-invasive biomarkers of Alzheimer's disease (AD), in which alterations are believed to not only reflect AD-related neuropathology but also cognitive impairment. In this review, we summarize the applications and key findings of MRI techniques in the context of both AD subjects and AD transgenic mouse models. Furthermore, the possible mechanisms of relaxation time alterations in AD will be discussed. Future studies could focus on relaxation time alterations in the early stage of AD, and longitudinal studies are needed to further explore relaxation time alterations during disease progression. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Interface roughness mediated phonon relaxation rates in Si quantum dots.

    NASA Astrophysics Data System (ADS)

    Ferdous, Rifat; Hsueh, Yuling; Klimeck, Gerhard; Rahman, Rajib

    2015-03-01

    Si QDs are promising candidates for solid-state quantum computing due to long spin coherence times. However, the valley degeneracy in Si adds an additional degree of freedom to the electronic structure. Although the valley and orbital indices can be uniquely identified in an ideal Si QD, interface roughness mixes valley and orbital states in realistic dots. Such valley-orbit coupling can strongly influence T1 times in Si QDs. Recent experimental measurements of various relaxation rates differ from previous predictions of phonon relaxation in ideal Si QDs. To understand how roughness affects different relaxation rates, for example spin relaxation due to spin-valley coupling, which is a byproduct of spin-orbit and valley-orbit coupling, we need to understand the effect of valley-orbit coupling on valley relaxation first. Using a full-band atomistic tight-binding description for both the system's electron and electron-phonon hamiltonian, we analyze the effect of atomic-scale interface disorder on phonon induced valley relaxation and spin relaxation in a Si QD. We find that, the valley splitting dependence of valley relaxation rate governs the magnetic field dependence of spin relaxation rate. Our results help understand experimentally measured relaxation times.

  3. Extracting protein dynamics information from overlapped NMR signals using relaxation dispersion difference NMR spectroscopy.

    PubMed

    Konuma, Tsuyoshi; Harada, Erisa; Sugase, Kenji

    2015-12-01

    Protein dynamics plays important roles in many biological events, such as ligand binding and enzyme reactions. NMR is mostly used for investigating such protein dynamics in a site-specific manner. Recently, NMR has been actively applied to large proteins and intrinsically disordered proteins, which are attractive research targets. However, signal overlap, which is often observed for such proteins, hampers accurate analysis of NMR data. In this study, we have developed a new methodology called relaxation dispersion difference that can extract conformational exchange parameters from overlapped NMR signals measured using relaxation dispersion spectroscopy. In relaxation dispersion measurements, the signal intensities of fluctuating residues vary according to the Carr-Purcell-Meiboon-Gill pulsing interval, whereas those of non-fluctuating residues are constant. Therefore, subtraction of each relaxation dispersion spectrum from that with the highest signal intensities, measured at the shortest pulsing interval, leaves only the signals of the fluctuating residues. This is the principle of the relaxation dispersion difference method. This new method enabled us to extract exchange parameters from overlapped signals of heme oxygenase-1, which is a relatively large protein. The results indicate that the structural flexibility of a kink in the heme-binding site is important for efficient heme binding. Relaxation dispersion difference requires neither selectively labeled samples nor modification of pulse programs; thus it will have wide applications in protein dynamics analysis.

  4. A numerical study of the South China Sea Warm Current during winter monsoon relaxation

    NASA Astrophysics Data System (ADS)

    Zhang, Cong; Ding, Yang; Bao, Xianwen; Bi, Congcong; Li, Ruixiang; Zhang, Cunjie; Shen, Biao; Wan, Kai

    2018-03-01

    Using a Finite-Volume Community Ocean Model, we investigated the dynamic mechanism of the South China Sea Warm Current (SCSWC) in the northern South China Sea (NSCS) during winter monsoon relaxation. The model reproduces the mean surface circulation of the NSCS during winter, while model-simulated subtidal currents generally capture its current pattern. The model shows that the current over the continental shelf is generally southwestward, under a strong winter monsoon condition, but a northeastward counter-wind current usually develops between 50-and 100-m isobaths, when the monsoon relaxes. Model experiments, focusing on the wind relaxation process, show that sea level is elevated in the northwestern South China Sea (SCS), related to the persistent northeasterly monsoon. Following wind relaxation, a high sea level band builds up along the mid-shelf, and a northeastward current develops, having an obvious vertical barotropic structure. Momentum balance analysis indicates that an along-shelf pressure gradient provides the initial driving force for the SCSWC during the first few days following wind relaxation. The SCSWC subsequently reaches a steady quasi-geostrophic balance in the cross-shelf direction, mainly linked to sea level adjustment over the shelf. Lagrangian particle tracking experiments show that both the southwestward coastal current and slope current contribute to the northeastward movement of the SCSWC during winter monsoon relaxation.

  5. Monitoring the dynamics of miscible P3HT:PCBM blends: A quasi elastic neutron scattering study of organic photovoltaic active layers

    DOE PAGES

    Etampawala, Thusitha; Ratnaweera, Dilru; Morgan, Brian; ...

    2015-02-02

    Our work reports on the detailed molecular dynamic behavior of miscible blends of Poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and their pure counterparts by quasi-elastic neutron scattering measurements (QENS). The study provides the measure of relaxation processes on pico-to-nanosecond time scales. A single relaxation process was observed in pure P3HT and PCBM while two relaxation processes, one fast and one slow, were observed in the blends. The fast process was attributed to the dynamics of P3HT while the slow process was correlated to the dynamics of PCBM. The results show that the relaxation process is a balance betweenmore » two opposing effects: increased mobility due to thermal activation of P3HT molecules and decrease mobility due to the presence of PCBM which is correlated to the percent crystallinity of P3HT and local packing density of PCBM in the amorphous phase. The threshold for the domination of the thermally activated relaxation is between 5 and 9 vol.% of PCBM loading. Two distinct spatial dependences of the relaxation processes, in which the crossover length scale depends neither on temperature nor composition, were observed for all the samples. They were attributed to the collective motions of the hexyl side chains and the rotational motions of the C-C single bonds of the side chains. Finally, these results provide an understanding of the effects of PCBM loading and temperature on the dynamics of the polymer-fullerene blends which provides a tool to optimize the efficiency of charge carrier and exciton transport within the organic photovoltaic (OPV) active layer to improve the high performance of organic solar cells.« less

  6. Extended MHD Modeling of Tearing-Driven Magnetic Relaxation

    NASA Astrophysics Data System (ADS)

    Sauppe, Joshua

    2016-10-01

    Driven plasma pinch configurations are characterized by the gradual accumulation and episodic release of free energy in discrete relaxation events. The hallmark of this relaxation in a reversed-field pinch (RFP) plasma is flattening of the parallel current density profile effected by a fluctuation-induced dynamo emf in Ohm's law. Nonlinear two-fluid modeling of macroscopic RFP dynamics has shown appreciable coupling of magnetic relaxation and the evolution of plasma flow. Accurate modeling of RFP dynamics requires the Hall effect in Ohm's law as well as first order ion finite Larmor radius (FLR) effects, represented by the Braginskii ion gyroviscous stress tensor. New results find that the Hall dynamo effect from < J × B > / ne can counter the MHD effect from - < V × B > in some of the relaxation events. The MHD effect dominates these events and relaxes the current profile toward the Taylor state, but the opposition of the two dynamos generates plasma flow in the direction of equilibrium current density, consistent with experimental measurements. Detailed experimental measurements of the MHD and Hall emf terms are compared to these extended MHD predictions. Tracking the evolution of magnetic energy, helicity, and hybrid helicity during relaxation identifies the most important contributions in single-fluid and two-fluid models. Magnetic helicity is well conserved relative to the magnetic energy during relaxation. The hybrid helicity is dominated by magnetic helicity in realistic low-beta pinch conditions and is also well conserved. Differences of less than 1 % between magnetic helicity and hybrid helicity are observed with two-fluid modeling and result from cross helicity evolution through ion FLR effects, which have not been included in contemporary relaxation theories. The kinetic energy driven by relaxation in the computations is dominated by velocity components perpendicular to the magnetic field, an effect that had not been predicted. Work performed at

  7. Relaxation processes of the liquid crystal ME6N in the isotropic phase studied by Raman scattering experiments

    NASA Astrophysics Data System (ADS)

    Giorgini, Maria Grazia; Arcioni, Alberto; Polizzi, Ciro; Musso, Maurizio; Ottaviani, Paolo

    2004-03-01

    We have investigated the Raman profiles of the ν(C≡N) and ν(C=O) vibrational modes of the nematic liquid crystal ME6N (4-cyanophenyl-4'-hexylbenzoate) in the isotropic phase at different temperatures and used them as probes of the dynamics and structural organization of this liquid. The vibrational time correlation functions of the ν(C≡N) mode, rather adequately interpreted within the assumption of exponential modulation function (the Kubo-Rothschild theory), indicate that the system experiences an intermediate dynamical regime that gets only slightly faster with increasing temperature. However, this theory fails in predicting the non-exponential behavior that the time correlation functions manifest in the long time range (t>3 ps). For this reason we have additionally approached the interpretation of vibrational correlation functions in terms of the theory formulated by Rothschild and co-workers for locally structured liquids. The application of this theory reveals that the molecular dynamics in this liquid crystal in the isotropic phase is that deriving from a distribution of differently sized clusters, which narrows as the temperature increases. Even at the highest temperature reached in this study (87 °C above the nematic-isotropic transition), the liquid has not yet achieved the structure of the simple liquid and the dynamics has not reached the limit of the single channel process. The vibrational and orientational relaxations occur in very different time scales. The temperature independence of the orientational dynamics in the whole range from 55 °C to 135 °C has been referred to the nonhydrodynamic behavior of the system, arising when local pseudonematic structures persist for times longer than the orientational relaxation. The occurrence of the process of resonant vibrational energy transfer between the C=O groups of adjacent molecules has been revealed in the isotropic phase by a slightly positive Raman noncoincidence effect in the band associated

  8. Local spin dynamics at low temperature in the slowly relaxing molecular chain [Dy(hfac)3{NIT(C6H4OPh)}]: A μ+ spin relaxation study

    NASA Astrophysics Data System (ADS)

    Arosio, Paolo; Corti, Maurizio; Mariani, Manuel; Orsini, Francesco; Bogani, Lapo; Caneschi, Andrea; Lago, Jorge; Lascialfari, Alessandro

    2015-05-01

    The spin dynamics of the molecular magnetic chain [Dy(hfac)3{NIT(C6H4OPh)}] were investigated by means of the Muon Spin Relaxation (μ+SR) technique. This system consists of a magnetic lattice of alternating Dy(III) ions and radical spins, and exhibits single-chain-magnet behavior. The magnetic properties of [Dy(hfac)3{NIT(C6H4OPh)}] have been studied by measuring the magnetization vs. temperature at different applied magnetic fields (H = 5, 3500, and 16500 Oe) and by performing μ+SR experiments vs. temperature in zero field and in a longitudinal applied magnetic field H = 3500 Oe. The muon asymmetry P(t) was fitted by the sum of three components, two stretched-exponential decays with fast and intermediate relaxation times, and a third slow exponential decay. The temperature dependence of the spin dynamics has been determined by analyzing the muon longitudinal relaxation rate λinterm(T), associated with the intermediate relaxing component. The experimental λinterm(T) data were fitted with a corrected phenomenological Bloembergen-Purcell-Pound law by using a distribution of thermally activated correlation times, which average to τ = τ0 exp(Δ/kBT), corresponding to a distribution of energy barriers Δ. The correlation times can be associated with the spin freezing that occurs when the system condenses in the ground state.

  9. Structure of myosin filaments from relaxed Lethocerus flight muscle by cryo-EM at 6 Å resolution

    PubMed Central

    Hu, Zhongjun; Taylor, Dianne W.; Reedy, Michael K.; Edwards, Robert J.; Taylor, Kenneth A.

    2016-01-01

    We describe a cryo–electron microscopy three-dimensional image reconstruction of relaxed myosin II–containing thick filaments from the flight muscle of the giant water bug Lethocerus indicus. The relaxed thick filament structure is a key element of muscle physiology because it facilitates the reextension process following contraction. Conversely, the myosin heads must disrupt their relaxed arrangement to drive contraction. Previous models predicted that Lethocerus myosin was unique in having an intermolecular head-head interaction, as opposed to the intramolecular head-head interaction observed in all other species. In contrast to the predicted model, we find an intramolecular head-head interaction, which is similar to that of other thick filaments but oriented in a distinctly different way. The arrangement of myosin’s long α-helical coiled-coil rod domain has been hypothesized as either curved layers or helical subfilaments. Our reconstruction is the first report having sufficient resolution to track the rod α helices in their native environment at resolutions ~5.5 Å, and it shows that the layer arrangement is correct for Lethocerus. Threading separate paths through the forest of myosin coiled coils are four nonmyosin peptides. We suggest that the unusual position of the heads and the rod arrangement separated by nonmyosin peptides are adaptations for mechanical signal transduction whereby applied tension disrupts the myosin heads as a component of stretch activation. PMID:27704041

  10. The Role of Regular Home Practice in the Relaxation Treatment of Tension Headache.

    ERIC Educational Resources Information Center

    Blanchard, Edward B.; And Others

    1991-01-01

    Gave 27 tension headache sufferers progressive muscle relaxation (PMR) training, with 14 of those subjects also receiving home practice and application instructions. Compared to third group of sufferers (n=6) who merely monitored headache activity, both treated groups showed significant reduction in headache activity. Treatment groups did not…

  11. Revealing spatially heterogeneous relaxation in a model nanocomposite.

    PubMed

    Cheng, Shiwang; Mirigian, Stephen; Carrillo, Jan-Michael Y; Bocharova, Vera; Sumpter, Bobby G; Schweizer, Kenneth S; Sokolov, Alexei P

    2015-11-21

    The detailed nature of spatially heterogeneous dynamics of glycerol-silica nanocomposites is unraveled by combining dielectric spectroscopy with atomistic simulation and statistical mechanical theory. Analysis of the spatial mobility gradient shows no "glassy" layer, but the α-relaxation time near the nanoparticle grows with cooling faster than the α-relaxation time in the bulk and is ∼20 times longer at low temperatures. The interfacial layer thickness increases from ∼1.8 nm at higher temperatures to ∼3.5 nm upon cooling to near bulk Tg. A real space microscopic description of the mobility gradient is constructed by synergistically combining high temperature atomistic simulation with theory. Our analysis suggests that the interfacial slowing down arises mainly due to an increase of the local cage scale barrier for activated hopping induced by enhanced packing and densification near the nanoparticle surface. The theory is employed to predict how local surface densification can be manipulated to control layer dynamics and shear rigidity over a wide temperature range.

  12. Crater Relaxation and Stereo Imaging of the Icy Satellites of Jupiter and Saturn

    NASA Astrophysics Data System (ADS)

    Phillips, C. B.; Beyer, R. A.; Nimmo, F.; Roberts, J. H.; Robuchon, G.

    2010-12-01

    Crater relaxation has been used as a probe of subsurface temperature structure for over thirty years, both on terrestrial bodies and icy satellites. We are developing and testing two independent methods for processing stereo pairs to produce digital elevation models, to address how crater relaxation depends on crater diameter, geographic location, and stratigraphic position on the icy satellites of Jupiter and Saturn. Our topographic profiles will then serve as input into two numerical models, one viscous and one viscoelastic, to allow us to probe the subsurface thermal profiles and relaxation histories of these satellites. We are constructing stereo topography from Galileo and Cassini image pairs using the NASA Ames Stereo Pipeline (Moratto et al. 2010), an automated stereogrammetry tool designed for processing planetary imagery captured from orbiting and landed robotic explorers on other planets. We will also be using the commercial program SOCET SET from BAE Systems (Miller and Walker 1993; 1995). Qualitatively, it is clear that there are large spatial variations in the degree of crater relaxation among Jupiter’s and Saturn’s satellites. However, our use of stereo topography will allow quantitative measures of crater relaxation (e.g. depth:diameter ratio or equivalent) to be derived. Such measures are essential to derive quantitative estimates of the heat fluxes responsible for this relaxation. Estimating how surface heat flux has varied with time provides critical constraints on satellite thermal (and orbital) evolution. Craters undergo viscous relaxation over time at a rate that depends on the temperature gradient and crater scale. We are investigating how the near-surface satellite heat flux varied in time and space, based on our crater relaxation observations. Once we have crater profiles from our DEMs, we use them as input to two theoretical approaches: a relatively simple (viscous) numerical model in which time-varying heat fluxes can be included, and

  13. Anomalously slow relaxation of the system of liquid clusters in a disordered nanoporous medium according to the self-organized criticality scenario

    NASA Astrophysics Data System (ADS)

    Borman, V. D.; Tronin, V. N.; Byrkin, V. A.

    2016-04-01

    We propose a physical model of a relaxation of states of clusters of nonwetting liquid confined in a random nanoporous medium. The relaxation is occurred by the self-organized criticality (SOC) scenario. Process is characterized by waiting for fluctuation necessary for overcoming of a local energy barrier with the subsequent avalanche hydrodynamic extrusion of the liquid by surface forces of the nonwetting frame. The dependence of the interaction between local configurations on the number of filled pores belonging to the infinite percolation cluster of filled pores serves as an internal feedback initiating the SOC process. The calculations give a power-law time dependence of the relative volume θ of the confined liquid θ ∼t-ν (ν ∼ 0.2) as in the picture of relaxation in the mean field approximation. The model of the relaxation of the porous medium with the nonwetting liquid demonstrates possible mechanisms and scenarios of SOC for relaxation of other disordered systems.

  14. Emergence of localized patterns in globally coupled networks of relaxation oscillators with heterogeneous connectivity

    NASA Astrophysics Data System (ADS)

    Leiser, Randolph J.; Rotstein, Horacio G.

    2017-08-01

    Oscillations in far-from-equilibrium systems (e.g., chemical, biochemical, biological) are generated by the nonlinear interplay of positive and negative feedback effects operating at different time scales. Relaxation oscillations emerge when the time scales between the activators and the inhibitors are well separated. In addition to the large-amplitude oscillations (LAOs) or relaxation type, these systems exhibit small-amplitude oscillations (SAOs) as well as abrupt transitions between them (canard phenomenon). Localized cluster patterns in networks of relaxation oscillators consist of one cluster oscillating in the LAO regime or exhibiting mixed-mode oscillations (LAOs interspersed with SAOs), while the other oscillates in the SAO regime. Because the individual oscillators are monostable, localized patterns are a network phenomenon that involves the interplay of the connectivity and the intrinsic dynamic properties of the individual nodes. Motivated by experimental and theoretical results on the Belousov-Zhabotinsky reaction, we investigate the mechanisms underlying the generation of localized patterns in globally coupled networks of piecewise-linear relaxation oscillators where the global feedback term affects the rate of change of the activator (fast variable) and depends on the weighted sum of the inhibitor (slow variable) at any given time. We also investigate whether these patterns are affected by the presence of a diffusive type of coupling whose synchronizing effects compete with the symmetry-breaking global feedback effects.

  15. DOTAP cationic liposomes prefer relaxed over supercoiled plasmids.

    PubMed

    Even-Chen, S; Barenholz, Y

    2000-12-20

    Cationic liposomes and DNA interact electrostatically to form complexes called lipoplexes. The amounts of unbound (free) DNA in a mixture of cationic liposomes and DNA at different cationic lipid:DNA molar ratios can be used to describe DNA binding isotherms; these provide a measure of the binding efficiency of DNA to different cationic lipid formulations at various medium conditions. In order to quantify the ratio between the various forms of naked DNA and supercoiled, relaxed and single-stranded DNA, and the ratio between cationic lipid bound and unbound DNA of various forms we developed a simple, sensitive quantitative assay using agarose gel electrophoresis, followed by staining with the fluorescent cyanine DNA dyes SYBR Green I or SYBR Gold. This assay was compared with that based on the use of ethidium bromide (the most commonly used nucleic acid stain). Unlike ethidium bromide, SYBR Green I DNA sensitivity and concentration-dependent fluorescence intensity were identical for supercoiled and nicked-relaxed forms. DNA detection by SYBR Green I in solution is approximately 40-fold more sensitive than by ethidium bromide for double-stranded DNA and approximately 10-fold for single-stranded DNA, and in agarose gel it is 16-fold more sensitive for double-stranded DNA compared with ethidium bromide. SYBR Gold performs similarly to SYBR Green I. This study shows that: (a) there is no significant difference in DNA binding isotherms to the monocationic DOTAP (DOTAP/DOPE) liposomes and to the polycationic DOSPA (DOSPA/DOPE) liposomes, even when four DOSPA positive charges are involved in the electrostatic interaction with DNA; (b) the helper lipids affect DNA binding, as DOTAP/DOPE liposomes bind more DNA than DOTAP/cholesterol; (c) in the process of lipoplex formation, when the DNA is a mixture of two forms, supercoiled and nicked-relaxed (open circular), there is a preference for the binding to the cationic liposomes of plasmid DNA in the nicked-relaxed over the

  16. The stress relaxation of cement clinkers under high temperature

    NASA Astrophysics Data System (ADS)

    Wang, Xiufang; Bao, Yiwang; Liu, Xiaogen; Qiu, Yan

    2015-12-01

    The energy consumption of crushing is directly affected by the mechanical properties of cement materials. This research provides a theoretical proof for the mechanism of the stress relaxation of cement clinkers under high temperature. Compression stress relaxation under various high temperatures is discussed using a specially developed load cell, which can measure stress and displacement under high temperatures inside an autoclave. The cell shows that stress relaxation dramatically increases and that the remaining stress rapidly decreases with an increase in temperature. Mechanical experiments are conducted under various temperatures during the cooling process to study the changes in the grinding resistance of the cement clinker with temperature. The effects of high temperature on the load-displacement curve, compressive strength, and elastic modulus of cement clinkers are systematically studied. Results show that the hardening phenomenon of the clinker becomes apparent with a decrease in temperature and that post-peak behaviors manifest characteristics of the transformation from plasticity to brittleness. The elastic modulus and compressive strength of cement clinkers increase with a decrease in temperature. The elastic modulus increases greatly when the temperature is lower than 1000 °C. The compressive strength of clinkers increases by 73.4% when the temperature drops from 1100 to 800 °C.

  17. Bayesian Modeling of NMR Data: Quantifying Longitudinal Relaxation in Vivo, and in Vitro with a Tissue-Water-Relaxation Mimic (Crosslinked Bovine Serum Albumin).

    PubMed

    Meinerz, Kelsey; Beeman, Scott C; Duan, Chong; Bretthorst, G Larry; Garbow, Joel R; Ackerman, Joseph J H

    2018-01-01

    Recently, a number of MRI protocols have been reported that seek to exploit the effect of dissolved oxygen (O 2 , paramagnetic) on the longitudinal 1 H relaxation of tissue water, thus providing image contrast related to tissue oxygen content. However, tissue water relaxation is dependent on a number of mechanisms, and this raises the issue of how best to model the relaxation data. This problem, the model selection problem, occurs in many branches of science and is optimally addressed by Bayesian probability theory. High signal-to-noise, densely sampled, longitudinal 1 H relaxation data were acquired from rat brain in vivo and from a cross-linked bovine serum albumin (xBSA) phantom, a sample that recapitulates the relaxation characteristics of tissue water in vivo . Bayesian-based model selection was applied to a cohort of five competing relaxation models: (i) monoexponential, (ii) stretched-exponential, (iii) biexponential, (iv) Gaussian (normal) R 1 -distribution, and (v) gamma R 1 -distribution. Bayesian joint analysis of multiple replicate datasets revealed that water relaxation of both the xBSA phantom and in vivo rat brain was best described by a biexponential model, while xBSA relaxation datasets truncated to remove evidence of the fast relaxation component were best modeled as a stretched exponential. In all cases, estimated model parameters were compared to the commonly used monoexponential model. Reducing the sampling density of the relaxation data and adding Gaussian-distributed noise served to simulate cases in which the data are acquisition-time or signal-to-noise restricted, respectively. As expected, reducing either the number of data points or the signal-to-noise increases the uncertainty in estimated parameters and, ultimately, reduces support for more complex relaxation models.

  18. 129 Xe NMR Relaxation-Based Macromolecular Sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomes, Muller D.; Dao, Phuong; Jeong, Keunhong

    2016-07-29

    A 129Xe NMR relaxation-based sensing approach is reported on that exploits changes in the bulk xenon relaxation rate induced by slowed tumbling of a cryptophane-based sensor upon target binding. The amplification afforded by detection of the bulk dissolved xenon allows sensitive detection of targets. The sensor comprises a xenon-binding cryptophane cage, a target interaction element, and a metal chelating agent. Xenon associated with the target-bound cryptophane cage is rapidly relaxed and then detected after exchange with the bulk. Here we show that large macromolecular targets increase the rotational correlation time of xenon, increasing its relaxation rate. Upon binding of amore » biotin-containing sensor to avidin at 1.5 μM concentration, the free xenon T 2 is reduced by a factor of 4.« less

  19. Picosecond absorption relaxation measured with nanosecond laser photoacoustics.

    PubMed

    Danielli, Amos; Favazza, Christopher P; Maslov, Konstantin; Wang, Lihong V

    2010-10-18

    Picosecond absorption relaxation-central to many disciplines-is typically measured by ultrafast (femtosecond or picosecond) pump-probe techniques, which however are restricted to optically thin and weakly scattering materials or require artificial sample preparation. Here, we developed a reflection-mode relaxation photoacoustic microscope based on a nanosecond laser and measured picosecond absorption relaxation times. The relaxation times of oxygenated and deoxygenated hemoglobin molecules, both possessing extremely low fluorescence quantum yields, were measured at 576 nm. The added advantages in dispersion susceptibility, laser-wavelength availability, reflection sensing, and expense foster the study of natural-including strongly scattering and nonfluorescent-materials.

  20. Increased cavernosal relaxation by Phoneutria nigriventer toxin, PnTx2-6, via activation at NO/cGMP signaling.

    PubMed

    Nunes, K P; Wynne, B M; Cordeiro, M N; Borges, M H; Richardson, M; Leite, R; DeLima, M E; Webb, R C

    2012-01-01

    Erectile dysfunction (ED) mechanisms in diabetic patients are multifactorial and often lead to resistance to current therapy. Animal toxins have been used as pharmacological tools to study penile erection. Human accidents involving the venom of Phoneutria nigriventer spider are characterized by priapism. We hypothesize that PnTx2-6 potentiates cavernosal relaxation in diabetic mice by increasing cyclic guanosine monophosphate (cGMP). This effect is neuronal nitric oxide synthase (nNOS) dependent. Cavernosal strips were contracted with phenylephrine (10(-5) M) and relaxed by electrical field stimulation (20 V, 1-32 Hz) in the presence or absence of PnTx2-6 (10(-8) M). Cavernosal strips from nNOS- and endothelial nitric oxide synthase (eNOS)-knockout (KO) mice, besides nNOS inhibitor (10(-5) M), were used to evaluate the role of this enzyme in the potentiation effect evoked by PnTx2-6. Tissue cGMP levels were determined after stimulation with PnTx2-6 in presence or absence of N-nitro-L-arginine methyl ester (L-NAME) (10(-4) M) and ω-conotoxin GVIA (10(-6) M), an N-type calcium channel inhibitor. Results showed that PnTx2-6 enhanced cavernosal relaxation in diabetic mice (65%) and eNOS KO mice, but not in nNOS KO mice. The toxin effect in the cavernosal relaxation was abolished by nNOS inhibitor. cGMP levels are increased by PnTx2-6, however, L-NAME abolished this enhancement as well as ω-conotoxin GVIA. We conclude that PnTx2-6 facilitates penile relaxation in diabetic mice through a mechanism dependent on nNOS, probably via increasing nitric oxide/cGMP production.