Sample records for activated temperature dependence

  1. Stress versus temperature dependent activation energies in creep

    NASA Technical Reports Server (NTRS)

    Freed, A. D.; Raj, S. V.; Walker, K. P.

    1990-01-01

    The activation energy for creep at low stresses and elevated temperatures is lattice diffusion, where the rate controlling mechanism for deformation is dislocation climb. At higher stresses and intermediate temperatures, the rate controlling mechanism changes from that of dislocation climb to one of obstacle-controlled dislocation glide. Along with this change, there occurs a change in the activation energy. It is shown that a temperature-dependent Gibbs free energy does a good job of correlating steady-state creep data, while a stress-dependent Gibbs free energy does a less desirable job of correlating the same data. Applications are made to copper and a LiF-22 mol. percent CaF2 hypereutectic salt.

  2. Stress versus temperature dependence of activation energies for creep

    NASA Technical Reports Server (NTRS)

    Freed, A. D.; Raj, S. V.; Walker, K. P.

    1992-01-01

    The activation energy for creep at low stresses and elevated temperatures is associated with lattice diffusion, where the rate controlling mechanism for deformation is dislocation climb. At higher stresses and intermediate temperatures, the rate controlling mechanism changes from dislocation climb to obstacle-controlled dislocation glide. Along with this change in deformation mechanism occurs a change in the activation energy. When the rate controlling mechanism for deformation is obstacle-controlled dislocation glide, it is shown that a temperature-dependent Gibbs free energy does better than a stress-dependent Gibbs free energy in correlating steady-state creep data for both copper and LiF-22mol percent CaF2 hypereutectic salt.

  3. Effects of activation energy and activation volume on the temperature-dependent viscosity of water.

    PubMed

    Kwang-Hua, Chu Rainer

    2016-08-01

    Water transport in a leaf is vulnerable to viscosity-induced changes. Recent research has suggested that these changes may be partially due to variation at the molecular scale, e.g., regulations via aquaporins, that induce reductions in leaf hydraulic conductance. What are the quantitative as well as qualitative changes in temperature-dependent viscosity due to the role of aquaporins in tuning activation energy and activation volume? Using the transition-state approach as well as the boundary perturbation method, we investigate temperature-dependent viscosity tuned by activation energy and activation volume. To validate our approach, we compare our numerical results with previous temperature-dependent viscosity measurements. The rather good fit between our calculations and measurements confirms our present approach. We have obtained critical parameters for the temperature-dependent (shear) viscosity of water that might be relevant to the increasing and reducing of leaf hydraulic conductance. These parameters are sensitive to temperature, activation energy, and activation volume. Once the activation energy increases, the (shear) viscosity of water increases. Our results also show that as the activation volume increases (say, 10^{-23}m^{3}), the (shear) viscosity of water decreases significantly and the latter induces the enhancing of leaf hydraulic conductance. Within the room-temperature regime, a small increase in the activation energy will increase the water viscosity or reduce the leaf hydraulic conductance. Our approach and results can be applied to diverse plant or leaf attributes.

  4. Arrhenius temperature dependence of in vitro tissue plasminogen activator thrombolysis.

    PubMed

    Shaw, George J; Dhamija, Ashima; Bavani, Nazli; Wagner, Kenneth R; Holland, Christy K

    2007-06-07

    Stroke is a devastating disease and a leading cause of death and disability. Currently, the only FDA approved therapy for acute ischemic stroke is the intravenous administration of the thrombolytic medication, recombinant tissue plasminogen activator (tPA). However, this treatment has many contraindications and can have dangerous side effects such as intra-cerebral hemorrhage. These treatment limitations have led to much interest in potential adjunctive therapies, such as therapeutic hypothermia (T temperature on the thrombolytic efficacy of tPA. In this work, we measure the temperature dependence of the fractional clot mass loss Deltam(T) resulting from tPA exposure in an in vitro human clot model. We find that the temperature dependence is well described by an Arrhenius temperature dependence with an effective activation energy E(eff) of 42.0 +/- 0.9 kJ mole(-1). E(eff) approximates the activation energy of the plasminogen-to-plasmin reaction of 48.9 kJ mole(-1). A model to explain this temperature dependence is proposed. These results will be useful in predicting the effects of temperature in future lytic therapies.

  5. Arrhenius temperature dependence of in vitro tissue plasminogen activator thrombolysis

    NASA Astrophysics Data System (ADS)

    Shaw, George J.; Dhamija, Ashima; Bavani, Nazli; Wagner, Kenneth R.; Holland, Christy K.

    2007-06-01

    Stroke is a devastating disease and a leading cause of death and disability. Currently, the only FDA approved therapy for acute ischemic stroke is the intravenous administration of the thrombolytic medication, recombinant tissue plasminogen activator (tPA). However, this treatment has many contraindications and can have dangerous side effects such as intra-cerebral hemorrhage. These treatment limitations have led to much interest in potential adjunctive therapies, such as therapeutic hypothermia (T <= 35 °C) and ultrasound enhanced thrombolysis. Such interest may lead to combining these therapies with tPA to treat stroke, however little is known about the effects of temperature on the thrombolytic efficacy of tPA. In this work, we measure the temperature dependence of the fractional clot mass loss Δm(T) resulting from tPA exposure in an in vitro human clot model. We find that the temperature dependence is well described by an Arrhenius temperature dependence with an effective activation energy Eeff of 42.0 ± 0.9 kJ mole-1. Eeff approximates the activation energy of the plasminogen-to-plasmin reaction of 48.9 kJ mole-1. A model to explain this temperature dependence is proposed. These results will be useful in predicting the effects of temperature in future lytic therapies.

  6. Measuring temperature-dependent activation energy in thermally activated processes: a 2D Arrhenius plot method.

    PubMed

    Li, Jian V; Johnston, Steven W; Yan, Yanfa; Levi, Dean H

    2010-03-01

    Thermally activated processes are characterized by two key quantities, activation energy (E(a)) and pre-exponential factor (nu(0)), which may be temperature dependent. The accurate measurement of E(a), nu(0), and their temperature dependence is critical for understanding the thermal activation mechanisms of non-Arrhenius processes. However, the classic 1D Arrhenius plot-based methods cannot unambiguously measure E(a), nu(0), and their temperature dependence due to the mathematical impossibility of resolving two unknown 1D arrays from one 1D experimental data array. Here, we propose a 2D Arrhenius plot method to solve this fundamental problem. Our approach measures E(a) at any temperature from matching the first and second moments of the data calculated with respect to temperature and rate in the 2D temperature-rate plane, and therefore is able to unambiguously solve E(a), nu(0), and their temperature dependence. The case study of deep level emission in a Cu(In,Ga)Se(2) solar cell using the 2D Arrhenius plot method reveals clear temperature dependent behavior of E(a) and nu(0), which has not been observable by its 1D predecessors.

  7. Temperature-Robust Neural Function from Activity-Dependent Ion Channel Regulation.

    PubMed

    O'Leary, Timothy; Marder, Eve

    2016-11-07

    Many species of cold-blooded animals experience substantial and rapid fluctuations in body temperature. Because biological processes are differentially temperature dependent, it is difficult to understand how physiological processes in such animals can be temperature robust [1-8]. Experiments have shown that core neural circuits, such as the pyloric circuit of the crab stomatogastric ganglion (STG), exhibit robust neural activity in spite of large (20°C) temperature fluctuations [3, 5, 7, 8]. This robustness is surprising because (1) each neuron has many different kinds of ion channels with different temperature dependencies (Q 10 s) that interact in a highly nonlinear way to produce firing patterns and (2) across animals there is substantial variability in conductance densities that nonetheless produce almost identical firing properties. The high variability in conductance densities in these neurons [9, 10] appears to contradict the possibility that robustness is achieved through precise tuning of key temperature-dependent processes. In this paper, we develop a theoretical explanation for how temperature robustness can emerge from a simple regulatory control mechanism that is compatible with highly variable conductance densities [11-13]. The resulting model suggests a general mechanism for how nervous systems and excitable tissues can exploit degenerate relationships among temperature-sensitive processes to achieve robust function. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Glutamine Hydrolysis by Imidazole Glycerol Phosphate Synthase Displays Temperature Dependent Allosteric Activation

    PubMed Central

    Lisi, George P.; Currier, Allen A.; Loria, J. Patrick

    2018-01-01

    The enzyme imidazole glycerol phosphate synthase (IGPS) is a model for studies of long-range allosteric regulation in enzymes. Binding of the allosteric effector ligand N'-[5'-phosphoribulosyl)formimino]-5-aminoimidazole-4-carboxamide-ribonucleotide (PRFAR) stimulates millisecond (ms) timescale motions in IGPS that enhance its catalytic function. We studied the effect of temperature on these critical conformational motions and the catalytic mechanism of IGPS from the hyperthermophile Thermatoga maritima in an effort to understand temperature-dependent allostery. Enzyme kinetic and NMR dynamics measurements show that apo and PRFAR-activated IGPS respond differently to changes in temperature. Multiple-quantum Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion experiments performed at 303, 323, and 343 K (30, 50, and 70°C) reveal that millisecond flexibility is enhanced to a higher degree in apo IGPS than in the PRFAR-bound enzyme as the sample temperature is raised. We find that the flexibility of the apo enzyme is nearly identical to that of its PRFAR activated state at 343 K, whereas conformational motions are considerably different between these two forms of the enzyme at room temperature. Arrhenius analyses of these flexible sites show a varied range of activation energies that loosely correlate to allosteric communities identified by computational methods and reflect local changes in dynamics that may facilitate conformational sampling of the active conformation. In addition, kinetic assays indicate that allosteric activation by PRFAR decreases to 65-fold at 343 K, compared to 4,200-fold at 303 K, which mirrors the decreased effect of PRFAR on ms motions relative to the unactivated enzyme. These studies indicate that at the growth temperature of T. maritima, PFRAR is a weaker allosteric activator than it is at room temperature and illustrate that the allosteric mechanism of IGPS is temperature dependent. PMID:29468164

  9. The temperature dependence of the BK channel activity - kinetics, thermodynamics, and long-range correlations.

    PubMed

    Wawrzkiewicz-Jałowiecka, Agata; Dworakowska, Beata; Grzywna, Zbigniew J

    2017-10-01

    Large-conductance, voltage dependent, Ca 2+ -activated potassium channels (BK) are transmembrane proteins that regulate many biological processes by controlling potassium flow across cell membranes. Here, we investigate to what extent temperature (in the range of 17-37°C with ΔT=5°C step) is a regulating parameter of kinetic properties of the channel gating and memory effect in the series of dwell-time series of subsequent channel's states, at membrane depolarization and hyperpolarization. The obtained results indicate that temperature affects strongly the BK channels' gating, but, counterintuitively, it exerts no effect on the long-range correlations, as measured by the Hurst coefficient. Quantitative differences between dependencies of appropriate channel's characteristics on temperature are evident for different regimes of voltage. Examining the characteristics of BK channel activity as a function of temperature allows to estimate the net activation energy (E act ) and changes of thermodynamic parameters (ΔH, ΔS, ΔG) by channel opening. Larger E act corresponds to the channel activity at membrane hyperpolarization. The analysis of entropy and enthalpy changes of closed to open channel's transition suggest the entropy-driven nature of the increase of open state probability during voltage activation and supports the hypothesis about the voltage-dependent geometry of the channel vestibule. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Improved AIOMFAC model parameterisation of the temperature dependence of activity coefficients for aqueous organic mixtures

    NASA Astrophysics Data System (ADS)

    Ganbavale, G.; Zuend, A.; Marcolli, C.; Peter, T.

    2015-01-01

    This study presents a new, improved parameterisation of the temperature dependence of activity coefficients in the AIOMFAC (Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients) model applicable for aqueous as well as water-free organic solutions. For electrolyte-free organic and organic-water mixtures the AIOMFAC model uses a group-contribution approach based on UNIFAC (UNIversal quasi-chemical Functional-group Activity Coefficients). This group-contribution approach explicitly accounts for interactions among organic functional groups and between organic functional groups and water. The previous AIOMFAC version uses a simple parameterisation of the temperature dependence of activity coefficients, aimed to be applicable in the temperature range from ~ 275 to ~ 400 K. With the goal to improve the description of a wide variety of organic compounds found in atmospheric aerosols, we extend the AIOMFAC parameterisation for the functional groups carboxyl, hydroxyl, ketone, aldehyde, ether, ester, alkyl, aromatic carbon-alcohol, and aromatic hydrocarbon to atmospherically relevant low temperatures. To this end we introduce a new parameterisation for the temperature dependence. The improved temperature dependence parameterisation is derived from classical thermodynamic theory by describing effects from changes in molar enthalpy and heat capacity of a multi-component system. Thermodynamic equilibrium data of aqueous organic and water-free organic mixtures from the literature are carefully assessed and complemented with new measurements to establish a comprehensive database, covering a wide temperature range (~ 190 to ~ 440 K) for many of the functional group combinations considered. Different experimental data types and their processing for the estimation of AIOMFAC model parameters are discussed. The new AIOMFAC parameterisation for the temperature dependence of activity coefficients from low to high temperatures shows an overall improvement of 28% in

  11. Cardiac activation heat remains inversely dependent on temperature over the range 27-37°C.

    PubMed

    Johnston, Callum M; Han, June-Chiew; Loiselle, Denis S; Nielsen, Poul M F; Taberner, Andrew J

    2016-06-01

    The relation between heat output and stress production (force per cross-sectional area) of isolated cardiac tissue is a key metric that provides insight into muscle energetic performance. The heat intercept of the relation, termed "activation heat," reflects the metabolic cost of restoring transmembrane gradients of Na(+) and K(+) following electrical excitation, and myoplasmic Ca(2+) concentration following its release from the sarcoplasmic reticulum. At subphysiological temperatures, activation heat is inversely dependent on temperature. Thus one may presume that activation heat would decrease even further at body temperature. However, this assumption is prima facie inconsistent with a study, using intact hearts, which revealed no apparent change in the combination of activation and basal metabolism between 27 and 37°C. It is thus desired to directly determine the change in activation heat between 27 and 37°C. In this study, we use our recently constructed high-thermal resolution muscle calorimeter to determine the first heat-stress relation of isolated cardiac muscle at 37°C. We compare the relation at 37°C to that at 27°C to examine whether the inverse temperature dependence of activation heat, observed under hypothermic conditions, prevails at body temperature. Our results show that activation heat was reduced (from 3.5 ± 0.3 to 2.3 ± 0.3 kJ/m(3)) at the higher temperature. This leads us to conclude that activation metabolism continues to decline as temperature is increased from hypothermia to normothermia and allows us to comment on results obtained from the intact heart by previous investigators. Copyright © 2016 the American Physiological Society.

  12. Active region dimensionality and quantum efficiencies of InGaN LEDs from temperature dependent photoluminescence transients

    NASA Astrophysics Data System (ADS)

    Can, Nuri; Okur, Serdal; Monavarian, Morteza; Zhang, Fan; Avrutin, Vitaliy; Morkoç, Hadis; Teke, Ali; Özgür, Ümit

    2015-03-01

    Temperature dependent recombination dynamics in c-plane InGaN light emitting diodes (LEDs) with different well thicknesses, 1.5, 2, and 3 nm, were investigated to determine the active region dimensionality and its effect on the internal quantum efficiencies. It was confirmed for all LEDs that the photoluminescence (PL) transients are governed by radiative recombination at low temperatures while nonradiative recombination dominates at room temperature. At photoexcited carrier densities of 3 - 4.5 x 1016 cm-3 , the room-temperature Shockley-Read-Hall (A) and the bimolecular (B) recombination coefficients (A, B) were deduced to be (9.2x107 s-1, 8.8x10-10 cm3s-1), (8.5x107 s-1, 6.6x10-10 cm3s-1), and (6.5x107 s-1, 1.4x10-10 cm3s-1) for the six period 1.5, 2, and 3 nm well-width LEDs, respectively. From the temperature dependence of the radiative lifetimes, τrad α Tn/2, the dimensionality n of the active region was found to decrease consistently with decreasing well width. The 3 nm wide wells exhibited ~T1.5 dependence, suggesting a three-dimensional nature, whereas the 1.5 nm wells were confirmed to be two-dimensional (~T1) and the 2 nm wells close to being two-dimensional. We demonstrate that a combination of temperature dependent PL and time-resolved PL techniques can be used to evaluate the dimensionality as well as the quantum efficiencies of the LED active regions for a better understanding of the relationship between active-region design and the efficiency limiting processes in InGaN LEDs.

  13. Structural Mechanism for the Temperature-Dependent Activation of the Hyperthermophilic Pf2001 Esterase.

    PubMed

    Varejão, Nathalia; De-Andrade, Rafael A; Almeida, Rodrigo V; Anobom, Cristiane D; Foguel, Debora; Reverter, David

    2018-02-06

    Lipases and esterases constitute a group of enzymes that catalyze the hydrolysis or synthesis of ester bonds. A major biotechnological interest corresponds to thermophilic esterases, due to their intrinsic stability at high temperatures. The Pf2001 esterase from Pyrococcus furiosus reaches its optimal activity between 70°C and 80°C. The crystal structure of the Pf2001 esterase shows two different conformations: monomer and dimer. The structures reveal important rearrangements in the "cap" subdomain between monomer and dimer, by the formation of an extensive intertwined helical interface. Moreover, the dimer interface is essential for the formation of the hydrophobic channel for substrate selectivity, as confirmed by mutagenesis and kinetic analysis. We also provide evidence for dimer formation at high temperatures, a process that correlates with its enzymatic activation. Thus, we propose a temperature-dependent activation mechanism of the Pf2001 esterase via dimerization that is necessary for the substrate channel formation in the active-site cleft. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Temperature dependence of ion transport: the compensated Arrhenius equation.

    PubMed

    Petrowsky, Matt; Frech, Roger

    2009-04-30

    The temperature-dependent conductivity originating in a thermally activated process is often described by a simple Arrhenius expression. However, this expression provides a poor description of the data for organic liquid electrolytes and amorphous polymer electrolytes. Here, we write the temperature dependence of the conductivity as an Arrhenius expression and show that the experimentally observed non-Arrhenius behavior is due to the temperature dependence of the dielectric constant contained in the exponential prefactor. Scaling the experimentally measured conductivities to conductivities at a chosen reference temperature leads to a "compensated" Arrhenius equation that provides an excellent description of temperature-dependent conductivities. A plot of the prefactors as a function of the solvent dielectric constant results in a single master curve for each family of solvents. These data suggest that ion transport in these and related systems is governed by a single activated process differing only in the activation energy for each family of solvents. Connection is made to the shift factor used to describe electrical and mechanical relaxation in a wide range of phenomena, suggesting that this scaling procedure might have broad applications.

  15. Temperature dependence of internal friction in enzyme reactions.

    PubMed

    Rauscher, Anna Á; Simon, Zoltán; Szöllosi, Gergely J; Gráf, László; Derényi, Imre; Malnasi-Csizmadia, Andras

    2011-08-01

    Our aim was to elucidate the physical background of internal friction of enzyme reactions by investigating the temperature dependence of internal viscosity. By rapid transient kinetic methods, we directly measured the rate constant of trypsin 4 activation, which is an interdomain conformational rearrangement, as a function of temperature and solvent viscosity. We found that the apparent internal viscosity shows an Arrhenius-like temperature dependence, which can be characterized by the activation energy of internal friction. Glycine and alanine mutations were introduced at a single position of the hinge of the interdomain region to evaluate how the flexibility of the hinge affects internal friction. We found that the apparent activation energies of the conformational change and the internal friction are interconvertible parameters depending on the protein flexibility. The more flexible a protein was, the greater proportion of the total activation energy of the reaction was observed as the apparent activation energy of internal friction. Based on the coupling of the internal and external movements of the protein during its conformational change, we constructed a model that quantitatively relates activation energy, internal friction, and protein flexibility.

  16. Compensation of Verdet Constant Temperature Dependence by Crystal Core Temperature Measurement

    PubMed Central

    Petricevic, Slobodan J.; Mihailovic, Pedja M.

    2016-01-01

    Compensation of the temperature dependence of the Verdet constant in a polarimetric extrinsic Faraday sensor is of major importance for applying the magneto-optical effect to AC current measurements and magnetic field sensing. This paper presents a method for compensating the temperature effect on the Faraday rotation in a Bi12GeO20 crystal by sensing its optical activity effect on the polarization of a light beam. The method measures the temperature of the same volume of crystal that effects the beam polarization in a magnetic field or current sensing process. This eliminates the effect of temperature difference found in other indirect temperature compensation methods, thus allowing more accurate temperature compensation for the temperature dependence of the Verdet constant. The method does not require additional changes to an existing Δ/Σ configuration and is thus applicable for improving the performance of existing sensing devices. PMID:27706043

  17. Activation like behaviour on the temperature dependence of the carrier density in In2O3-ZnO films

    NASA Astrophysics Data System (ADS)

    K, Makise; B, Shinozaki; T, Asano; K, Yano; H, Nakamura

    2012-12-01

    We study the effect of annealing in high vacuum on the transport properties for In2O3-ZnO films. We prepared indium zinc oxide films by the DC-magnetron sputtering method using an In2O3-ZnO target (89.3 wt % In2O3 and 10.7 wt % ZnO). The annealing temperature is from 373 to 773K. From the XRD analysis, we find that all as deposited films are amorphous. In addition we find that amorphous films are crystallized by annealing at a temperature above 773 K over 2 hours. The temperature dependence of resistivity ρ of all amorphous films shows metallic behaviour. On the other hand, ρ(T) of poly In2O3-ZnO films shows semi-conducting behaviour. We carry out a detailed analysis of the temperature dependence of Hall mobility. The activation energy Ed has been obtained from the slope of the carrier concentration Ne vs. the inverse temperature plot at high temperatures. We found that the Ed takes values between 0.43 and 0.19 meV. Meanwhile, temperature dependence of Ne for poly-In2O3-ZnO films did not show activation-like behaviour. This behaviour is thought to be causally related to impurity conduction band.

  18. Temperature dependence of tris(2,2'-bipyridine) ruthenium (II) device characteristics

    NASA Astrophysics Data System (ADS)

    Slinker, Jason D.; Malliaras, George G.; Flores-Torres, Samuel; Abruña, Héctor D.; Chunwachirasiri, Withoon; Winokur, Michael J.

    2004-04-01

    We have investigated the temperature dependence of the current, radiance, and efficiency from electroluminescent devices based on [Ru(bpy)3]2+(PF6-)2, where bpy is 2,2'-bipyridine. We find that the current increases monotonically with temperature from 200 to 380 K, while the radiance reaches a maximum near room temperature. For temperatures greater than room temperature, an irreversible, current-induced degradation occurs with thermal cycling that diminishes both the radiance and the photoluminescence (PL) quantum yield, but does not affect the current. The temperature dependence of the external quantum efficiency is fully accounted for by the dependence of the PL quantum yield as measured from the emissive area of the device. This implies that the contacts remain ohmic throughout the temperature range investigated. The quenching of the PL with temperature was attributed to thermal activation to a nonradiative d-d transition. The temperature dependence of the current shows a complex behavior in which transport appears to be thermally activated, with distinct low-temperature and high-temperature regimes.

  19. Recombination activity of light-activated copper defects in p-type silicon studied by injection- and temperature-dependent lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Inglese, Alessandro; Lindroos, Jeanette; Vahlman, Henri; Savin, Hele

    2016-09-01

    The presence of copper contamination is known to cause strong light-induced degradation (Cu-LID) in silicon. In this paper, we parametrize the recombination activity of light-activated copper defects in terms of Shockley—Read—Hall recombination statistics through injection- and temperature dependent lifetime spectroscopy (TDLS) performed on deliberately contaminated float zone silicon wafers. We obtain an accurate fit of the experimental data via two non-interacting energy levels, i.e., a deep recombination center featuring an energy level at Ec-Et=0.48 -0.62 eV with a moderate donor-like capture asymmetry ( k =1.7 -2.6 ) and an additional shallow energy state located at Ec-Et=0.1 -0.2 eV , which mostly affects the carrier lifetime only at high-injection conditions. Besides confirming these defect parameters, TDLS measurements also indicate a power-law temperature dependence of the capture cross sections associated with the deep energy state. Eventually, we compare these results with the available literature data, and we find that the formation of copper precipitates is the probable root cause behind Cu-LID.

  20. Insight into Temperature Dependence of GTPase Activity in Human Guanylate Binding Protein-1

    PubMed Central

    Rahman, Safikur; Deep, Shashank; Sau, Apurba Kumar

    2012-01-01

    Interferon-γ induced human guanylate binding protein-1(hGBP1) belongs to a family of dynamin related large GTPases. Unlike all other GTPases, hGBP1 hydrolyzes GTP to a mixture of GDP and GMP with GMP being the major product at 37°C but GDP became significant when the hydrolysis reaction was carried out at 15°C. The hydrolysis reaction in hGBP1 is believed to involve with a number of catalytic steps. To investigate the effect of temperature in the product formation and on the different catalytic complexes of hGBP1, we carried out temperature dependent GTPase assays, mutational analysis, chemical and thermal denaturation studies. The Arrhenius plot for both GDP and GMP interestingly showed nonlinear behaviour, suggesting that the product formation from the GTP-bound enzyme complex is associated with at least more than one step. The negative activation energy for GDP formation and GTPase assay with external GDP together indicate that GDP formation occurs through the reversible dissociation of GDP-bound enzyme dimer to monomer, which further reversibly dissociates to give the product. Denaturation studies of different catalytic complexes show that unlike other complexes the free energy of GDP-bound hGBP1 decreases significantly at lower temperature. GDP formation is found to be dependent on the free energy of the GDP-bound enzyme complex. The decrease in the free energy of this complex at low temperature compared to at high is the reason for higher GDP formation at low temperature. Thermal denaturation studies also suggest that the difference in the free energy of the GTP-bound enzyme dimer compared to its monomer plays a crucial role in the product formation; higher stability favours GMP but lower favours GDP. Thus, this study provides the first thermodynamic insight into the effect of temperature in the product formation of hGBP1. PMID:22859948

  1. Substrate-dependent temperature sensitivity of soil organic matter decomposition

    NASA Astrophysics Data System (ADS)

    Myachina, Olga; Blagodatskaya, Evgenia

    2015-04-01

    Activity of extracellular enzymes responsible for decomposition of organics is substrate dependent. Quantity of the substrate is the main limiting factor for enzymatic or microbial heterotrophic activity in soils. Different mechanisms of enzymes response to temperature suggested for low and high substrate availability were never proved for real soil conditions. We compared the temperature responses of enzymes-catalyzed reactions in soils. Basing on Michaelis-Menten kinetics we determined the enzymes affinity to substrate (Km) and mineralization potential of heterotrophic microorganisms (Vmax) 1) for three hydrolytic enzymes: β-1,4-glucosidase, N-acetyl- β -D-glucosaminidase and phosphatase by the application of fluorogenically labeled substrates and 2) for mineralization of 14C-labeled glucose by substrate-dependent respiratory response. Here we show that the amount of available substrate is responsible for temperature sensitivity of hydrolysis of polymers in soil, whereas monomers oxidation to CO2 does not depend on substrate amount and is mainly temperature governed. We also found that substrate affinity of enzymes (which is usually decreases with the temperature) differently responded to warming for the process of depolymerisation versus monomers oxidation. We suggest the mechanism to temperature acclimation based on different temperature sensitivity of enzymes kinetics for hydrolysis of polymers and for monomers oxidation.

  2. Origins of the temperature dependence of hammerhead ribozyme catalysis.

    PubMed Central

    Peracchi, A

    1999-01-01

    The difficulties in interpreting the temperature dependence of protein enzyme reactions are well recognized. Here, the hammerhead ribozyme cleavage was investigated under single-turnover conditions between 0 and 60 degrees C as a model for RNA-catalyzed reactions. Under the adopted conditions, the chemical step appears to be rate-limiting. However, the observed rate of cleavage is affected by pre-catalytic equilibria involving deprotonation of an essential group and binding of at least one low-affinity Mg2+ion. Thus, the apparent entropy and enthalpy of activation include contributions from the temperature dependence of these equilibria, precluding a simple physical interpretation of the observed activation parameters. Similar pre-catalytic equilibria likely contribute to the observed activation parameters for ribozyme reactions in general. The Arrhenius plot for the hammerhead reaction is substantially curved over the temperature range considered, which suggests the occurrence of a conformational change of the ribozyme ground state around physiological temperatures. PMID:10390528

  3. Temperature dependence of optically induced cell deformations

    NASA Astrophysics Data System (ADS)

    Fritsch, Anatol; Kiessling, Tobias R.; Stange, Roland; Kaes, Josef A.

    2012-02-01

    The mechanical properties of any material change with temperature, hence this must be true for cellular material. In biology many functions are known to undergo modulations with temperature, like myosin motor activity, mechanical properties of actin filament solutions, CO2 uptake of cultured cells or sex determination of several species. As mechanical properties of living cells are considered to play an important role in many cell functions it is surprising that only little is known on how the rheology of single cells is affected by temperature. We report the systematic temperature dependence of single cell deformations in Optical Stretcher (OS) measurements. The temperature is changed on a scale of about 20 minutes up to hours and compared to defined temperature shocks in the range of milliseconds. Thereby, a strong temperature dependence of the mechanics of single suspended cells is revealed. We conclude that the observable differences arise rather from viscosity changes of the cytosol than from structural changes of the cytoskeleton. These findings have implications for the interpretation of many rheological measurements, especially for laser based approaches in biological studies.

  4. On the origin of temperature dependence of the emission maxima of Eu2+and Ce3+- activated phosphors

    NASA Astrophysics Data System (ADS)

    Yan, Shirun

    2018-05-01

    In this paper, temperature dependence of the emission maxima of Eu2+ and Ce3+-activated phosphors and various explanations for the thermal red-shift or blue-shift proposed by different authors are reviewed. Depending on the host lattice, doping concentration of Eu2+ or Ce3+, or the temperature range at which the PL spectrum was monitored, both the way and magnitude of emission spectrum shifting were quite different. Various explanations for the thermal shifts of the emission maxima were proposed. Nonetheless, a close inspection of a collection of the data indicates that some popular explanations seemingly plausible for the thermal red/blue-shifts of the emission maxima of Eu2+ and Ce3+-activated phosphors are highly questionable, because they either misused the Varshni equation or discussed the energy of the 5d-4f transitions of Eu2+ and Ce3+ in isolation without considering simultaneous change of the host lattice. An explanation of lattice dynamic induced thermal shifts of the emission maxima of Eu2+ and Ce3+-activated phosphors is proposed in this paper. By considering the dominant contribution to the energy of the 5d-4f transitions either from a lattice dilatation or from the interactions between the 5d electrons and phonons, the complex temperature dependences of the emission maxima of various Eu2+ and Ce3+-activated phosphors experimentally observed in literature could be explained reasonably.

  5. Temperature dependent charge transport in poly(3-hexylthiophene) diodes

    NASA Astrophysics Data System (ADS)

    Rahaman, Abdulla Bin; Sarkar, Atri; Banerjee, Debamalya

    2018-04-01

    In this work, we present charge transport properties of poly(3-hexylthiophene) (P3HT) diodes under dark conditions. Temperature dependent current-voltage (J-V) characteristics shows that charge transport represents a transition from ohomic to trap limited current. The forward current density obeys a power law J˜Vm, m>2 represents the space charge limited current region in presence of traps within the band gap. Frequency dependent conductivity has been studied in a temperature range 150K-473K. The dc conductivity values show Arrhenius like behavior and it gives conductivity activation energy 223 meV. Temperature dependent conductivity indicates a thermodynamic transition of our system.

  6. In vitro selection of high temperature Zn(2+)-dependent DNAzymes.

    PubMed

    Nelson, Kevin E; Bruesehoff, Peter J; Lu, Yi

    2005-08-01

    In vitro selection of Zn(2+)-dependent RNA-cleaving DNAzymes with activity at 90 degrees C has yielded a diverse spool of selected sequences. The RNA cleavage efficiency was found in all cases to be specific for Zn(2+) over Pb(2+), Ca(2+), Cd(2+), Co(2+), Hg(2+), and Mg(2+). The Zn(2+)-dependent activity assay of the most active sequence showed that the DNAzyme possesses an apparent Zn(2+)-binding dissociation constant of 234 muM and that its activity increases with increasing temperatures from 50-90 degrees C. A fit of the Arrhenius plot data gave E(a) = 15.3 kcal mol(-1). Surprisingly, the selected Zn(2+)-dependent DNAzymes showed only a modest (approximately 3-fold) activity enhancement over the background rate of cleavage of random sequences containing a single embedded ribonucleotide within an otherwise DNA oligonucleotide. The result is attributable to the ability of DNA to sustain cleavage activity at high temperature with minimal secondary structure when Zn(2+) is present. Since this effect is highly specific for Zn(2+), this metal ion may play a special role in molecular evolution of nucleic acids at high temperature.

  7. Patterns of sarcomere activation, temperature dependence, and effect of ryanodine in chemically skinned cardiac fibers

    PubMed Central

    1986-01-01

    Functionally skinned and electrochemically shunted myocytes were prepared by perfusing rat hearts with collagenase in order to obtain a technically improved measurement of sarcomere dynamics and to evaluate the role of sarcoplasmic reticulum in situ with respect to contractile activation. In the presence of micromolar calcium, the myocytes exhibited phasic and propagated contraction waves beginning at one end and proceeding along the myocyte. Beating rates, the propagation velocity of the activation wave, and single sarcomere shortening and relaxation velocities were obtained by manual or automated analysis of 16-mm film recorded at 170 frames/s from a camera attached to a microscope that was equipped with a temperature-controlled stage. In parallel experiments, calcium accumulation by the sarcoplasmic reticulum of the myocytes in situ was measured by direct isotopic tracer methods. The frequency (10-38 min-1) of spontaneous contractions, the velocity (1.9-7.4 microns . s-1) of sarcomere shortening, and the velocity (1.7-6.8 microns . s-1) of sarcomere relaxation displayed identical temperature dependences (Q10 = 2.2), which are similar to that of the calcium pump of sarcoplasmic reticulum and are consistent with a rate limit imposed by enzyme-catalyzed mechanisms on all these parameters. On the other hand, the velocity (77- 159 microns . s-1) of sequential sarcomere activation displayed a lower temperature dependence (Q10 = 1.5), which is consistent with a diffusion-limited and self-propagating release of calcium from one sarcomere to the other. The phasic contractile activity of the dissociated myocytes was inhibited by 10(-8)-10(6) M ryanodine (and not by myolemmal calcium blockers) under conditions in which calcium accumulation by sarcoplasmic reticulum in situ was demonstrated to proceed optimally. The effect of ryanodine is attributed to an interaction of this drug with sarcotubular structures, producing inhibition of calcium release from the sarcoplasmic

  8. Single-residue molecular switch for high-temperature dependence of vanilloid receptor TRPV3

    PubMed Central

    Liu, Beiying; Qin, Feng

    2017-01-01

    Thermal transient receptor potential (TRP) channels, a group of ion channels from the transient receptor potential family, play important functions in pain and thermal sensation. These channels are directly activated by temperature and possess strong temperature dependence. Furthermore, their temperature sensitivity can be highly dynamic and use-dependent. For example, the vanilloid receptor transient receptor potential 3 (TRPV3), which has been implicated as a warmth detector, becomes responsive to warm temperatures only after intensive stimulation. Upon initial activation, the channel exhibits a high-temperature threshold in the noxious temperature range above 50 °C. This use dependence of heat sensitivity thus provides a mechanism for sensitization of thermal channels. However, how the channels acquire the use dependence remains unknown. Here, by comparative studies of chimeric channels between use-dependent and use-independent homologs, we have determined the molecular basis that underlies the use dependence of temperature sensitivity of TRPV3. Remarkably, the restoration of a single residue that is apparently missing in the use-dependent homologs could largely eliminate the use dependence of heat sensitivity of TRPV3. The location of the region suggests a mechanism of temperature-dependent gating of thermal TRP channels involving an intracellular region assembled around the TRP domain. PMID:28154143

  9. The effect of concentration- and temperature-dependent dielectric constant on the activity coefficient of NaCl electrolyte solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valiskó, Mónika; Boda, Dezső, E-mail: boda@almos.vein.hu

    2014-06-21

    Our implicit-solvent model for the estimation of the excess chemical potential (or, equivalently, the activity coefficient) of electrolytes is based on using a dielectric constant that depends on the thermodynamic state, namely, the temperature and concentration of the electrolyte, ε(c, T). As a consequence, the excess chemical potential is split into two terms corresponding to ion-ion (II) and ion-water (IW) interactions. The II term is obtained from computer simulation using the Primitive Model of electrolytes, while the IW term is estimated from the Born treatment. In our previous work [J. Vincze, M. Valiskó, and D. Boda, “The nonmonotonic concentration dependencemore » of the mean activity coefficient of electrolytes is a result of a balance between solvation and ion-ion correlations,” J. Chem. Phys. 133, 154507 (2010)], we showed that the nonmonotonic concentration dependence of the activity coefficient can be reproduced qualitatively with this II+IW model without using any adjustable parameter. The Pauling radii were used in the calculation of the II term, while experimental solvation free energies were used in the calculation of the IW term. In this work, we analyze the effect of the parameters (dielectric constant, ionic radii, solvation free energy) on the concentration and temperature dependence of the mean activity coefficient of NaCl. We conclude that the II+IW model can explain the experimental behavior using a concentration-dependent dielectric constant and that we do not need the artificial concept of “solvated ionic radius” assumed by earlier studies.« less

  10. From blood oxygenation level dependent (BOLD) signals to brain temperature maps.

    PubMed

    Sotero, Roberto C; Iturria-Medina, Yasser

    2011-11-01

    A theoretical framework is presented for converting Blood Oxygenation Level Dependent (BOLD) images to brain temperature maps, based on the idea that disproportional local changes in cerebral blood flow (CBF) as compared with cerebral metabolic rate of oxygen consumption (CMRO₂) during functional brain activity, lead to both brain temperature changes and the BOLD effect. Using an oxygen limitation model and a BOLD signal model, we obtain a transcendental equation relating CBF and CMRO₂ changes with the corresponding BOLD signal, which is solved in terms of the Lambert W function. Inserting this result in the dynamic bioheat equation describing the rate of temperature changes in the brain, we obtain a nonautonomous ordinary differential equation that depends on the BOLD response, which is solved numerically for each brain voxel. Temperature maps obtained from a real BOLD dataset registered in an attention to visual motion experiment were calculated, obtaining temperature variations in the range: (-0.15, 0.1) which is consistent with experimental results. The statistical analysis revealed that significant temperature activations have a similar distribution pattern than BOLD activations. An interesting difference was the activation of the precuneus in temperature maps, a region involved in visuospatial processing, an effect that was not observed on BOLD maps. Furthermore, temperature maps were more localized to gray matter regions than the original BOLD maps, showing less activated voxels in white matter and cerebrospinal fluid.

  11. Temperature-dependent changes in the host-seeking behaviors of parasitic nematodes.

    PubMed

    Lee, Joon Ha; Dillman, Adler R; Hallem, Elissa A

    2016-05-06

    Entomopathogenic nematodes (EPNs) are lethal parasites of insects that are of interest as biocontrol agents for insect pests and disease vectors. Although EPNs have been successfully commercialized for pest control, their efficacy in the field is often inconsistent for reasons that remain elusive. EPN infective juveniles (IJs) actively search for hosts to infect using a diverse array of host-emitted odorants. Here we investigate whether their host-seeking behavior is subject to context-dependent modulation. We find that EPN IJs exhibit extreme plasticity of olfactory behavior as a function of cultivation temperature. Many odorants that are attractive for IJs grown at lower temperatures are repulsive for IJs grown at higher temperatures and vice versa. Temperature-induced changes in olfactory preferences occur gradually over the course of days to weeks and are reversible. Similar changes in olfactory behavior occur in some EPNs as a function of IJ age. EPNs also show temperature-dependent changes in their host-seeking strategy: IJs cultured at lower temperatures appear to more actively cruise for hosts than IJs cultured at higher temperatures. Furthermore, we find that the skin-penetrating rat parasite Strongyloides ratti also shows temperature-dependent changes in olfactory behavior, demonstrating that such changes occur in mammalian-parasitic nematodes. IJs are developmentally arrested and long-lived, often surviving in the environment through multiple seasonal temperature changes. Temperature-dependent modulation of behavior may enable IJs to optimize host seeking in response to changing environmental conditions, and may play a previously unrecognized role in shaping the interactions of both beneficial and harmful parasitic nematodes with their hosts.

  12. Investigation of temperature dependence of development and aging

    NASA Technical Reports Server (NTRS)

    Sacher, G. A.

    1969-01-01

    Temperature dependence of maturation and metabolic rates in insects, and the failure of vital processes during development were investigated. The paper presented advances the general hypothesis that aging in biological systems is a consequence of the production of entropy concomitant with metabolic activity.

  13. Temperature-Dependent Dielectric Properties of Al/Epoxy Nanocomposites

    NASA Astrophysics Data System (ADS)

    Wang, Zijun; Zhou, Wenying; Sui, Xuezhen; Dong, Lina; Cai, Huiwu; Zuo, Jing; Chen, Qingguo

    2016-06-01

    Broadband dielectric spectroscopy was carried out to study the transition in electrical properties of Al/epoxy nanocomposites over the frequency range of 1-107 Hz and the temperature range of -20°C to 200°C. The dielectric permittivity, dissipation factor, and electrical conductivity of the nanocomposites increased with temperature and showed an abrupt increase around the glass transition temperature ( T g). The results clearly reveal an interesting transition of the electrical properties with increasing temperature: insulator below 70°C, conductor at about 70°C. The behavior of the transition in electrical properties of the nanocomposites was explored at different temperatures. The presence of relaxation peaks in the loss tangent and electric modulus spectra of the nanocomposites confirms that the chain segmental dynamics of the polymer is accompanied by the absorption of energy given to the system. It is suggested that the temperature-dependent transition of the electric properties in the nanocomposite is closely associated with the α-relaxation. The large increase in the dissipation factor and electric conductivity depends on the direct current conduction of thermally activated charge carriers resulting from the epoxy matrix above T g.

  14. Shape-Dependent Activity of Ceria for Hydrogen Electro-Oxidation in Reduced-Temperature Solid Oxide Fuel Cells.

    PubMed

    Tong, Xiaofeng; Luo, Ting; Meng, Xie; Wu, Hao; Li, Junliang; Liu, Xuejiao; Ji, Xiaona; Wang, Jianqiang; Chen, Chusheng; Zhan, Zhongliang

    2015-11-04

    Single crystalline ceria nanooctahedra, nanocubes, and nanorods are hydrothermally synthesized, colloidally impregnated into the porous La0.9Sr0.1Ga0.8Mg0.2O3-δ (LSGM) scaffolds, and electrochemically evaluated as the anode catalysts for reduced temperature solid oxide fuel cells (SOFCs). Well-defined surface terminations are confirmed by the high-resolution transmission electron microscopy--(111) for nanooctahedra, (100) for nanocubes, and both (110) and (100) for nanorods. Temperature-programmed reduction in H2 shows the highest reducibility for nanorods, followed sequentially by nanocubes and nanooctahedra. Measurements of the anode polarization resistances and the fuel cell power densities reveal different orders of activity of ceria nanocrystals at high and low temperatures for hydrogen electro-oxidation, i.e., nanorods > nanocubes > nanooctahedra at T ≤ 450 °C and nanooctahedra > nanorods > nanocubes at T ≥ 500 °C. Such shape-dependent activities of these ceria nanocrystals have been correlated to their difference in the local structure distortions and thus in the reducibility. These findings will open up a new strategy for design of advanced catalysts for reduced-temperature SOFCs by elaborately engineering the shape of nanocrystals and thus selectively exposing the crystal facets. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Temperature dependence of direct current conductivity in Ag-ED20 nanocomposite films

    NASA Astrophysics Data System (ADS)

    Novikov, G. F.; Rabenok, E. V.; Bogdanova, L. M.; Irzhak, V. I.

    2017-10-01

    The effect of silver nanoparticles (NPs) in the concentration range of ≤0.8 wt % have on direct current conductivity σdc of Ag-ED20 nanocomposite is studied by method of broadband dielectric spectroscopy (10-2-105 Hz) method of broadband dielectric spectroscopy. It is found that temperature dependence σdc consists of two sections: above the glass transition temperature ( T g), the dependence corresponds to the empirical Vogel-Fulcher-Tammann law (Vogel temperature T 0 does not depend on the NP concentration); below T g, the dependence is Arrhenius with activation energy E a ≈ 1.2 eV. In the region where T > T g, the σdc value grows along with NP concentration. It is concluded that the observed broken form of the temperature dependence is apparently due to a change in the conduction mechanism after the freezing of ion mobility at temperatures below T g.

  16. Temperature dependence of plastic scintillators

    NASA Astrophysics Data System (ADS)

    Peralta, L.

    2018-03-01

    Plastic scintillator detectors have been studied as dosimeters, since they provide a cost-effective alternative to conventional ionization chambers. Several articles have reported undesired response dependencies on beam energy and temperature, which provides the motivation to determine appropriate correction factors. In this work, we studied the light yield temperature dependency of four plastic scintillators, BCF-10, BCF-60, BC-404, RP-200A and two clear fibers, BCF-98 and SK-80. Measurements were made using a 50 kVp X-ray beam to produce the scintillation and/or radioluminescence signal. The 0 to 40 °C temperature range was scanned for each scintillator, and temperature coefficients were obtained.

  17. Temperature-Dependent Energy Gap Shift and Thermally Activated Transition in Multilayer CdTe/ZnTe Quantum Dots.

    PubMed

    Man, Minh Tan; Lee, Hong Seok

    2015-10-01

    We investigated the influence of growth conditions on carrier dynamics in multilayer CdTe/ZnTe quantum dots (QDs) by monitoring the temperature dependence of the photoluminescence emission energy. The results were analyzed using the empirical Varshni and O'Donnell relations for temperature variation of the energy gap shift. Best fit values showed that the thermally activated transition between two different states occurs due to band low-temperature quenching with values separated by 5.0-6.5 meV. The addition of stack periods in multilayer CdTe/ZnTe QDs plays an important role in the energy gap shift, where the exciton binding energy is enhanced, and, conversely, the exciton-phonon coupling strength is suppressed with an average energy of 19.3-19.8 meV.

  18. Temperature dependence of frequency response characteristics in organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Lu, Xubing; Minari, Takeo; Liu, Chuan; Kumatani, Akichika; Liu, J.-M.; Tsukagoshi, Kazuhito

    2012-04-01

    The frequency response characteristics of semiconductor devices play an essential role in the high-speed operation of electronic devices. We investigated the temperature dependence of dynamic characteristics in pentacene-based organic field-effect transistors and metal-insulator-semiconductor capacitors. As the temperature decreased, the capacitance-voltage characteristics showed large frequency dispersion and a negative shift in the flat-band voltage at high frequencies. The cutoff frequency shows Arrhenius-type temperature dependence with different activation energy values for various gate voltages. These phenomena demonstrate the effects of charge trapping on the frequency response characteristics, since decreased mobility prevents a fast charge response for alternating current signals at low temperatures.

  19. Glass transition in thaumatin crystals revealed through temperature-dependent radiation-sensitivity measurements.

    PubMed

    Warkentin, Matthew; Thorne, Robert E

    2010-10-01

    The temperature-dependence of radiation damage to thaumatin crystals between T = 300 and 100 K is reported. The amount of damage for a given dose decreases sharply as the temperature decreases from 300 to 220 K and then decreases more gradually on further cooling below the protein-solvent glass transition. Two regimes of temperature-activated behavior were observed. At temperatures above ∼200 K the activation energy of 18.0 kJ mol(-1) indicates that radiation damage is dominated by diffusive motions in the protein and solvent. At temperatures below ∼200 K the activation energy is only 1.00 kJ mol(-1), which is of the order of the thermal energy. Similar activation energies describe the temperature-dependence of radiation damage to a variety of solvent-free small-molecule organic crystals over the temperature range T = 300-80 K. It is suggested that radiation damage in this regime is vibrationally assisted and that the freezing-out of amino-acid scale vibrations contributes to the very weak temperature-dependence of radiation damage below ∼80 K. Analysis using the radiation-damage model of Blake and Phillips [Blake & Phillips (1962), Biological Effects of Ionizing Radiation at the Molecular Level, pp. 183-191] indicates that large-scale conformational and molecular motions are frozen out below T = 200 K but become increasingly prevalent and make an increasing contribution to damage at higher temperatures. Possible alternative mechanisms for radiation damage involving the formation of hydrogen-gas bubbles are discussed and discounted. These results have implications for mechanistic studies of proteins and for studies of the protein glass transition. They also suggest that data collection at T ≃ 220 K may provide a viable alternative for structure determination when cooling-induced disorder at T = 100 is excessive.

  20. Unraveling the Transcriptional Basis of Temperature-Dependent Pinoxaden Resistance in Brachypodium hybridum

    PubMed Central

    Matzrafi, Maor; Shaar-Moshe, Lidor; Rubin, Baruch; Peleg, Zvi

    2017-01-01

    Climate change endangers food security and our ability to feed the ever-increasing human population. Weeds are the most important biotic stress, reducing crop-plant productivity worldwide. Chemical control, the main approach for weed management, can be strongly affected by temperature. Previously, we have shown that temperature-dependent non-target site (NTS) resistance of Brachypodium hybridum is due to enhanced detoxification of acetyl-CoA carboxylase inhibitors. Here, we explored the transcriptional basis of this phenomenon. Plants were characterized for the transcriptional response to herbicide application, high-temperature and their combination, in an attempt to uncover the genetic basis of temperature-dependent pinoxaden resistance. Even though most of the variance among treatments was due to pinoxaden application (61%), plants were able to survive pinoxaden application only when grown under high-temperatures. Biological pathways and expression patterns of members of specific gene families, previously shown to be involved in NTS metabolic resistance to different herbicides, were examined. Cytochrome P450, glucosyl transferase and glutathione-S-transferase genes were found to be up-regulated in response to pinoxaden application under both control and high-temperature conditions. However, biological pathways related to oxidation and glucose conjugation were found to be significantly enriched only under the combination of pinoxaden application and high-temperature. Analysis of reactive oxygen species (ROS) was conducted at several time points after treatment using a probe detecting H2O2/peroxides. Comparison of ROS accumulation among treatments revealed a significant reduction in ROS quantities 24 h after pinoxaden application only under high-temperature conditions. These results may indicate significant activity of enzymatic ROS scavengers that can be correlated with the activation of herbicide-resistance mechanisms. This study shows that up-regulation of genes

  1. Temperature dependency in motor skill learning.

    PubMed

    Immink, Maarten A; Wright, David L; Barnes, William S

    2012-01-01

    The present study investigated the role of temperature as a contextual condition for motor skill learning. Precision grip task training occurred while forearm cutaneous temperature was either heated (40-45 °C) or cooled (10-15 °C). At test, temperature was either reinstated or changed. Performance was comparable between training conditions while at test, temperature changes decreased accuracy, especially after hot training conditions. After cold training, temperature change deficits were only evident when concurrent force feedback was presented. These findings are the first evidence of localized temperature dependency in motor skill learning in humans. Results are not entirely accounted for by a context-dependent memory explanation and appear to represent an interaction of neuromuscular and sensory processes with the temperature present during training and test.

  2. Temperature dependence of regioselectivity in nucleophilic photosubstitution of 4-nitroanisole. The activation energy criterion for regioselectivity.

    PubMed

    Wubbels, Gene G; Danial, Hanan; Policarpio, Danielle

    2010-11-19

    Photosubstitution of the nitro group vs the methoxy group of triplet 4-nitroanisole by hydroxide ion in water leads to product yields of about 80% 4-methoxyphenol and 20% 4-nitrophenol. The ratio depends slightly on temperature from 3 to 73 °C. The slight temperature variation in the yield ratio is reproduced almost perfectly with a simple Arrhenius model for a mechanism involving bonding of hydroxide ion with the triplet state of 4-nitroanisole. The competing transition states have activation energies of 2.2 and 2.6 kcal/mol, respectively. Correct prediction of regioselectivity can be done for this case by quantum chemical calculation of the competing triplet transition-state energies, or those of the corresponding triplet σ-complexes. Other models for aromatic photosubstitution regioselectivity in mechanisms of the S(N)2Ar* type, such as those based on calculated electron densities, HOMO/LUMO coefficients, or energy gap sizes, are discussed and shown to be inferior to the relative activation energies model. The photoreaction in alcohol solvents, claimed by others to generate the same products as in water and to have an exceedingly large variation of the product ratio with temperature, may reflect chemical changes other than those reported.

  3. Effects of a temperature-dependent rheology on large scale continental extension

    NASA Technical Reports Server (NTRS)

    Sonder, Leslie J.; England, Philip C.

    1988-01-01

    The effects of a temperature-dependent rheology on large-scale continental extension are investigated using a thin viscous sheet model. A vertically-averaged rheology is used that is consistent with laboratory experiments on power-law creep of olivine and that depends exponentially on temperature. Results of the calculations depend principally on two parameters: the Peclet number, which describes the relative rates of advection and diffusion of heat, and a dimensionless activation energy, which controls the temperature dependence of the rheology. At short times following the beginning of extension, deformation occurs with negligible change in temperature, so that only small changes in lithospheric strength occur due to attenuation of the lithosphere. However, after a certain critical time interval, thermal diffusion lowers temperatures in the lithosphere, strongly increasing lithospheric strength and slowing the rate of extension. This critical time depends principally on the Peclet number and is short compared with the thermal time constant of the lithosphere. The strength changes cause the locus of high extensional strain rates to shift with time from regions of high strain to regions of low strain. Results of the calculations are compared with observations from the Aegean, where maximum extensional strains are found in the south, near Crete, but maximum present-day strain rates are largest about 300 km further north.

  4. Excited state intramolecular charge transfer reaction in nonaqueous electrolyte solutions: Temperature dependence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pradhan, Tuhin; Gazi, Harun Al Rasid; Biswas, Ranjit

    2009-08-07

    Temperature dependence of the excited state intramolecular charge transfer reaction of 4-(1-azetidinyl)benzonitrile (P4C) in ethyl acetate (EA), acetonitrile (ACN), and ethanol at several concentrations of lithium perchlorate (LiClO{sub 4}) has been investigated by using the steady state and time resolved fluorescence spectroscopic techniques. The temperature range considered is 267-343 K. The temperature dependent spectral peak shifts and reaction driving force (-{Delta}G{sub r}) in electrolyte solutions of these solvents can be explained qualitatively in terms of interaction between the reactant molecule and ion-atmosphere. Time resolved studies indicate that the decay kinetics of P4C is biexponential, regardless of solvents, LiClO{sub 4} concentrations,more » and temperatures considered. Except at higher electrolyte concentrations in EA, reaction rates in solutions follow the Arrhenius-type temperature dependence where the estimated activation energy exhibits substantial electrolyte concentration dependence. The average of the experimentally measured activation energies in these three neat solvents is found to be in very good agreement with the predicted value based on data in room temperature solvents. While the rate constant in EA shows a electrolyte concentration induced parabolic dependence on reaction driving force (-{Delta}G{sub r}), the former in ethanol and ACN increases only linearly with the increase in driving force (-{Delta}G{sub r}). The data presented here also indicate that the step-wise increase in solvent reorganization energy via sequential addition of electrolyte induces the ICT reaction in weakly polar solvents to crossover from the Marcus inverted region to the normal region.« less

  5. Time- and temperature-dependent changes in cytochrome c oxidase activity and cyanide concentration in excised mice organs and mice cadavers.

    PubMed

    Singh, Poonam; Rao, Pooja; Yadav, Shiv K; Gujar, Niranjan L; Satpute, Ravindra M; Bhattacharya, Rahul

    2015-01-01

    Postmortem stability of cyanide biomarkers is often disputed. We assessed the time and temperature-dependent changes in cytochrome c oxidase (CCO) activity and cyanide concentration in various organs of mice succumbing to cyanide. Immediately after death, excised mice organs and mice cadavers were stored at room temperature (35°C ± 5°C) or in frozen storage (-20°C ± 2°C). At various times after death, CCO activity and cyanide concentrations were measured in excised mice organs or organs removed from mice cadavers. The study revealed that (i) measuring both the biomarkers in mice cadavers was more reliable compared to excised mice organs, (ii) measuring temporal CCO activity and cyanide concentration in vital organs from mice cadavers (room temperature) was reliable up to 24 h, and (iii) CCO activity in the brain and lungs and cyanide concentration in organs from mice cadavers (frozen) were measurable beyond 21 days. This study will be helpful in postmortem determination of cyanide poisoning. © 2014 American Academy of Forensic Sciences.

  6. Nutrient limitation suppresses the temperature dependence of phytoplankton metabolic rates.

    PubMed

    Marañón, Emilio; Lorenzo, María P; Cermeño, Pedro; Mouriño-Carballido, Beatriz

    2018-04-25

    Climate warming has the potential to alter ecosystem function through temperature-dependent changes in individual metabolic rates. The temperature sensitivity of phytoplankton metabolism is especially relevant, since these microorganisms sustain marine food webs and are major drivers of biogeochemical cycling. Phytoplankton metabolic rates increase with temperature when nutrients are abundant, but it is unknown if the same pattern applies under nutrient-limited growth conditions, which prevail over most of the ocean. Here we use continuous cultures of three cosmopolitan and biogeochemically relevant species (Synechococcus sp., Skeletonema costatum and Emiliania huxleyi) to determine the temperature dependence (activation energy, E a ) of metabolism under different degrees of nitrogen (N) limitation. We show that both CO 2 fixation and respiration rates increase with N supply but are largely insensitive to temperature. E a of photosynthesis (0.11 ± 0.06 eV, mean ± SE) and respiration (0.04 ± 0.17 eV) under N-limited growth is significantly smaller than E a of growth rate under nutrient-replete conditions (0.77 ± 0.06 eV). The reduced temperature dependence of metabolic rates under nutrient limitation can be explained in terms of enzyme kinetics, because both maximum reaction rates and half-saturation constants increase with temperature. Our results suggest that the direct, stimulating effect of rising temperatures upon phytoplankton metabolic rates will be circumscribed to ecosystems with high-nutrient availability.

  7. Temperature Dependence of Magnetically Active Charge Excitations in Magnetite across the Verwey Transition

    NASA Astrophysics Data System (ADS)

    Taguchi, M.; Chainani, A.; Ueda, S.; Matsunami, M.; Ishida, Y.; Eguchi, R.; Tsuda, S.; Takata, Y.; Yabashi, M.; Tamasaku, K.; Nishino, Y.; Ishikawa, T.; Daimon, H.; Todo, S.; Tanaka, H.; Oura, M.; Senba, Y.; Ohashi, H.; Shin, S.

    2015-12-01

    We study the electronic structure of bulk single crystals and epitaxial films of Fe3 O4 . Fe 2 p core level spectra show clear differences between hard x-ray (HAX) and soft x-ray photoemission spectroscopy (PES). The bulk-sensitive spectra exhibit temperature (T ) dependence across the Verwey transition, which is missing in the surface-sensitive spectra. By using an extended impurity Anderson full-multiplet model—and in contrast to an earlier peak assignment—we show that the two distinct Fe species (A and B site) and the charge modulation at the B site are responsible for the newly found double peaks in the main peak above TV and its T -dependent evolution. The Fe 2 p HAXPES spectra show a clear magnetic circular dichroism (MCD) in the metallic phase of magnetized 100-nm-thick films. The model calculations also reproduce the MCD and identify the contributions from magnetically distinct A and B sites. Valence band HAXPES shows a finite density of states at EF for the polaronic half metal with a remnant order above TV and a clear gap formation below TV. The results indicate that the Verwey transition is driven by changes in the strongly correlated and magnetically active B -site electronic states, consistent with resistivity and optical spectra.

  8. Temperature dependence of LRE-HRE-TM thin films

    NASA Astrophysics Data System (ADS)

    Li, Zuoyi; Cheng, Xiaomin; Lin, Gengqi; Li, Zhen; Huang, Zhixin; Jin, Fang; Wang, Xianran; Yang, Xiaofei

    2003-04-01

    Temperature dependence of the properties of RE-TM thin films is very important for MO recording. In this paper, we studied the temperature dependence of the magnetic and magneto-optical properties of the amorphous LRE-HRE-TM single layer thin films and LRE-HRE-TM/HRE-TM couple-bilayered thin films. For LRE-HRE-TM single layer thin films, the temperature dependence of the magnetization was investigated by using the mean field theory. The experimental and theoretical results matched very well. With the LRE substitution in HRE-TM thin film, the compensation temperature Tcomp decreased and the curie temperature Tc remained unchanged. Kerr rotation angle became larger and the saturation magnetization Ms at room temperature increased. For LRE-HRE-TM/HRE-TM couple-bilayered thin films, comparisons of the temperature dependences of the coercivities and Kerr rotation angles were made between isolated sublayers and couple-bilayered thin film.

  9. Temperature dependence of 63Ni-Si betavoltaic microbattery.

    PubMed

    Yunpeng, Liu; Xiao, Guo; Zhangang, Jin; Xiaobin, Tang

    2018-05-01

    This paper theoretically presented the temperature effects on the 63 Ni-Si betavoltaic microbattery irradiated by a source with different thicknesses and activity densities at a temperature range 170-340K. Temperature dependences of the monolayer and interbedded 63 Ni-Si betavoltaics at 213.15-333.15K were tested with respect to calculations. Results showed that the higher the thickness, activity density, and average energy of the source, the lower is the betavoltaic performance responds to temperature. With the increase in temperature, the V oc and P max of the upper, lower, and interbedded betavoltaics decreased linearly at low temperatures and decreased exponentially at high temperatures in the experiment. As predicted, the measured V oc and P max sensitivities of the lower betavoltaic with 4.90mCi/cm 2 63 Ni, -2.230mV/K and -1.132%, respectively, were lower than those with 1.96mCi/cm 2 63 Ni, -2.490mV/K and -1.348%, respectively. Compared with the calculated results, the prepared betavoltaics had lower V oc sensitivity and higher P max sensitivity. In addition, the measured V oc sensitivity of the interbedded betavoltaic in series is equal to the sum of those of the upper and lower ones as predicted. Moreover, the measured P max sensitivity of the interbedded betavoltaic is equal to the average of those of the two monolayers. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Temperature Dependence of Factors Controlling Isoprene Emissions

    NASA Technical Reports Server (NTRS)

    Duncan, Bryan N.; Yoshida, Yasuko; Damon, Megan R.; Douglass, Anne R.; Witte, Jacquelyn C.

    2009-01-01

    We investigated the relationship of variability in the formaldehyde (HCHO) columns measured by the Aura Ozone Monitoring Instrument (OMI) to isoprene emissions in the southeastern United States for 2005-2007. The data show that the inferred, regional-average isoprene emissions varied by about 22% during summer and are well correlated with temperature, which is known to influence emissions. Part of the correlation with temperature is likely associated with other causal factors that are temperature-dependent. We show that the variations in HCHO are convolved with the temperature dependence of surface ozone, which influences isoprene emissions, and the dependence of the HCHO column to mixed layer height as OMI's sensitivity to HCHO increases with altitude. Furthermore, we show that while there is an association of drought with the variation in HCHO, drought in the southeastern U.S. is convolved with temperature.

  11. A new temperature- and humidity-dependent surface site density approach for deposition ice nucleation

    NASA Astrophysics Data System (ADS)

    Steinke, I.; Hoose, C.; Möhler, O.; Connolly, P.; Leisner, T.

    2015-04-01

    Deposition nucleation experiments with Arizona Test Dust (ATD) as a surrogate for mineral dusts were conducted at the AIDA cloud chamber at temperatures between 220 and 250 K. The influence of the aerosol size distribution and the cooling rate on the ice nucleation efficiencies was investigated. Ice nucleation active surface site (INAS) densities were calculated to quantify the ice nucleation efficiency as a function of temperature, humidity and the aerosol surface area concentration. Additionally, a contact angle parameterization according to classical nucleation theory was fitted to the experimental data in order to relate the ice nucleation efficiencies to contact angle distributions. From this study it can be concluded that the INAS density formulation is a very useful tool to describe the temperature- and humidity-dependent ice nucleation efficiency of ATD particles. Deposition nucleation on ATD particles can be described by a temperature- and relative-humidity-dependent INAS density function ns(T, Sice) with ns(xtherm) = 1.88 ×105 · exp(0.2659 · xtherm) [m-2] , (1) where the temperature- and saturation-dependent function xtherm is defined as xtherm = -(T-273.2)+(Sice-1) ×100, (2) with the saturation ratio with respect to ice Sice >1 and within a temperature range between 226 and 250 K. For lower temperatures, xtherm deviates from a linear behavior with temperature and relative humidity over ice. Also, two different approaches for describing the time dependence of deposition nucleation initiated by ATD particles are proposed. Box model estimates suggest that the time-dependent contribution is only relevant for small cooling rates and low number fractions of ice-active particles.

  12. Erroneous Arrhenius: Modified Arrhenius model best explains the temperature dependence of ectotherm fitness

    PubMed Central

    Knies, Jennifer L.; Kingsolver, Joel G.

    2013-01-01

    The initial rise of fitness that occurs with increasing temperature is attributed to Arrhenius kinetics, in which rates of reaction increase exponentially with increasing temperature. Models based on Arrhenius typically assume single rate-limiting reaction(s) over some physiological temperature range for which all the rate-limiting enzymes are in 100% active conformation. We test this assumption using datasets for microbes that have measurements of fitness (intrinsic rate of population growth) at many temperatures and over a broad temperature range, and for diverse ectotherms that have measurements at fewer temperatures. When measurements are available at many temperatures, strictly Arrhenius kinetics is rejected over the physiological temperature range. However, over a narrower temperature range, we cannot reject strictly Arrhenius kinetics. The temperature range also affects estimates of the temperature dependence of fitness. These results indicate that Arrhenius kinetics only apply over a narrow range of temperatures for ectotherms, complicating attempts to identify general patterns of temperature dependence. PMID:20528477

  13. Erroneous Arrhenius: modified arrhenius model best explains the temperature dependence of ectotherm fitness.

    PubMed

    Knies, Jennifer L; Kingsolver, Joel G

    2010-08-01

    The initial rise of fitness that occurs with increasing temperature is attributed to Arrhenius kinetics, in which rates of reaction increase exponentially with increasing temperature. Models based on Arrhenius typically assume single rate-limiting reactions over some physiological temperature range for which all the rate-limiting enzymes are in 100% active conformation. We test this assumption using data sets for microbes that have measurements of fitness (intrinsic rate of population growth) at many temperatures and over a broad temperature range and for diverse ectotherms that have measurements at fewer temperatures. When measurements are available at many temperatures, strictly Arrhenius kinetics are rejected over the physiological temperature range. However, over a narrower temperature range, we cannot reject strictly Arrhenius kinetics. The temperature range also affects estimates of the temperature dependence of fitness. These results indicate that Arrhenius kinetics only apply over a narrow range of temperatures for ectotherms, complicating attempts to identify general patterns of temperature dependence.

  14. Temperature Dependence Of Elastic Constants Of Polymers

    NASA Technical Reports Server (NTRS)

    Simha, Robert; Papazoglou, Elisabeth

    1989-01-01

    Two papers extend theory of elastic constants of disordered solids to finite temperatures below glass-transition temperatures. First paper, entitled "Elastic Constants of Disordered Solids II: Temperature Dependence," applies to cryogenic temperatures. Second paper, entitled "Theory of Thermoelastic Properties for Polymer Glasses," develops unified treatment for static compressional and elongational properties at temperatures up to glass-transition temperatures.

  15. Mechanistic basis of temperature-dependent dwell fatigue in titanium alloys

    NASA Astrophysics Data System (ADS)

    Zheng, Zebang; Balint, Daniel S.; Dunne, Fionn P. E.

    2017-10-01

    The temperature-dependent dwell sensitivity of Ti-6242 and Ti-6246 alloys has been assessed over a temperature range from - 50∘ C to 390 °C using discrete dislocation plasticity which incorporates both thermal activation of dislocation escape from obstacles and slip transfer across grain boundaries. The worst-case load shedding in Ti-6242 alloy is found to be at or close to 120 °C under dwell fatigue loading, which diminishes and vanishes at temperatures lower than - 50∘ C or higher than 230 °C. Load shedding behaviour is predicted to occur in alloy Ti-6246 also but over a range of higher temperatures which are outside those relevant to in-service conditions. The key controlling dislocation mechanism with respect to load shedding in titanium alloys, and its temperature sensitivity, is shown to be the time constant associated with the thermal activation of dislocation escape from obstacles, with respect to the stress dwell time. The mechanistic basis of load shedding and dwell sensitivity in dwell fatigue loading is presented and discussed in the context of experimental observations.

  16. The Effect of Temperature Dependent Material Nonlinearities on the Response of Piezoelectric Composite Plates

    NASA Technical Reports Server (NTRS)

    Lee, Ho-Jun; Saravanos, Dimitris A.

    1997-01-01

    Previously developed analytical formulations for piezoelectric composite plates are extended to account for the nonlinear effects of temperature on material properties. The temperature dependence of the composite and piezoelectric properties are represented at the material level through the thermopiezoelectric constitutive equations. In addition to capturing thermal effects from temperature dependent material properties, this formulation also accounts for thermal effects arising from: (1) coefficient of thermal expansion mismatch between the various composite and piezoelectric plies and (2) pyroelectric effects on the piezoelectric material. The constitutive equations are incorporated into a layerwise laminate theory to provide a unified representation of the coupled mechanical, electrical, and thermal behavior of smart structures. Corresponding finite element equations are derived and implemented for a bilinear plate element with the inherent capability to model both the active and sensory response of piezoelectric composite laminates. Numerical studies are conducted on a simply supported composite plate with attached piezoceramic patches under thermal gradients to investigate the nonlinear effects of material property temperature dependence on the displacements, sensory voltages, active voltages required to minimize thermal deflections, and the resultant stress states.

  17. Temperature Dependence of Parametric Phenomenon in Airborne Ultrasound for Temperature Measurement

    NASA Astrophysics Data System (ADS)

    Kon, Akihiko; Wakatsuki, Naoto; Mizutani, Koichi

    2008-08-01

    The temperature dependence of parametric phenomenon in air was experimentally studied. It was confirmed from experimental data that the amplitude of upper sideband sound with a frequency of 36.175 kHz, which is caused by parametric phenomenon between high-power ultrasound with a frequency of 20.175 kHz and another normal sound with a frequency of 16.0 kHz, is proportional to -0.88×10-4×(T+273.15). This temperature dependence of the amplitude of upper sideband sound caused by the parametric phenomenon suggests a simple and effective method of temperature measurement.

  18. Temperature dependence of alkali-antimonide photocathodes: Evaluation at cryogenic temperatures

    DOE PAGES

    Mamun, M. A.; Hernandez-Flores, M. R.; Morales, E.; ...

    2017-10-24

    Cs xK ySb photocathodes were manufactured on a niobium substrate and evaluated over a range of temperatures from 300 to 77 K. Vacuum conditions were identified that minimize surface contamination due to gas adsorption when samples were cooled below room temperature. Here, measurements of photocathode spectral response provided a means to evaluate the photocathode bandgap dependence on temperature and to predict photocathode quantum efficiency at 4 K, a typical temperature at which superconducting radio frequency photoguns operate.

  19. Temperature dependence of conductivity measurement for conducting polymer

    NASA Astrophysics Data System (ADS)

    Gutierrez, Leandro; Duran, Jesus; Isah, Anne; Albers, Patrick; McDougall, Michael; Wang, Weining

    2014-03-01

    Conducting polymer-based solar cells are the newest generation solar cells. While research on this area has been progressing, the efficiency is still low because certain important parameters of the solar cell are still not well understood. It is of interest to study the temperature dependence of the solar cell parameters, such as conductivity of the polymer, open circuit voltage, and reverse saturation current to gain a better understanding on the solar cells. In this work, we report our temperature dependence of conductivity measurement using our in-house temperature-varying apparatus. In this project, we designed and built a temperature varying apparatus using a thermoelectric cooler module which gives enough temperature range as we need and costs much less than a cryostat. The set-up of the apparatus will be discussed. Temperature dependence of conductivity measurements for PEDOT:PSS films with different room-temperature conductivity will be compared and discussed. NJSGC-NASA Fellowship grant

  20. A new temperature and humidity dependent surface site density approach for deposition ice nucleation

    NASA Astrophysics Data System (ADS)

    Steinke, I.; Hoose, C.; Möhler, O.; Connolly, P.; Leisner, T.

    2014-07-01

    Deposition nucleation experiments with Arizona Test Dust (ATD) as a surrogate for mineral dusts were conducted at the AIDA cloud chamber at temperatures between 220 and 250 K. The influence of the aerosol size distribution and the cooling rate on the ice nucleation efficiencies was investigated. Ice nucleation active surface site (INAS) densities were calculated to quantify the ice nucleation efficiency as a function of temperature, humidity and the aerosol surface area concentration. Additionally, a contact angle parameterization according to classical nucleation theory was fitted to the experimental data in order to relate the ice nucleation efficiencies to contact angle distributions. From this study it can be concluded that the INAS density formulation is a very useful tool to decribe the temperature and humidity dependent ice nucleation efficiency of ATD particles. Deposition nucleation on ATD particles can be described by a temperature and relative humidity dependent INAS density function ns(T, Sice) with ns(xtherm) = 1.88 × 105 \\centerdot exp(0.2659 \\centerdot xtherm) [m-2] (1) where the thermodynamic variable xtherm is defined as xtherm = -(T - 273.2) + (Sice-1) × 100 (2) with Sice>1 and within a temperature range between 226 and 250 K. For lower temperatures, xtherm deviates from a linear behavior with temperature and relative humidity over ice. Two different approaches for describing the time dependence of deposition nucleation initiated by ATD particles are proposed. Box model estimates suggest that the time dependent contribution is only relevant for small cooling rates and low number fractions of ice-active particles.

  1. Model evaluation of temperature dependency for carbon and nitrogen removal in a full-scale activated sludge plant treating leather-tanning wastewater.

    PubMed

    Görgün, Erdem; Insel, Güçlü; Artan, Nazik; Orhon, Derin

    2007-05-01

    Organic carbon and nitrogen removal performance of a full-scale activated sludge plant treating pre-settled leather tanning wastewater was evaluated under dynamic process temperatures. Emphasis was placed upon observed nitrogen removal depicting a highly variable magnitude with changing process temperatures. As the plant was not specifically designed for this purpose, observed nitrogen removal could be largely attributed to simultaneous nitrification and denitrification presumably occurring at increased process temperatures (T>25 degrees C) and resulting low dissolved oxygen levels (DO<0.5 mgO2/L). Model evaluation using long-term data revealed that the yearly performance of activated sludge reactor could be successfully calibrated by means of temperature dependent parameters associated with nitrification, hydrolysis, ammonification and endogenous decay parameters. In this context, the Arrhenius coefficients of (i) for the maximum autotrophic growth rate, [image omitted]A, (ii) maximum hydrolysis rate, khs and (iii) endogenous heterotrophic decay rate, bH were found to be 1.045, 1.070 and 1.035, respectively. The ammonification rate (ka) defining the degradation of soluble organic nitrogen could not be characterized however via an Arrhenius-type equation.

  2. Inferring the temperature dependence of population parameters: the effects of experimental design and inference algorithm

    PubMed Central

    Palamara, Gian Marco; Childs, Dylan Z; Clements, Christopher F; Petchey, Owen L; Plebani, Marco; Smith, Matthew J

    2014-01-01

    Understanding and quantifying the temperature dependence of population parameters, such as intrinsic growth rate and carrying capacity, is critical for predicting the ecological responses to environmental change. Many studies provide empirical estimates of such temperature dependencies, but a thorough investigation of the methods used to infer them has not been performed yet. We created artificial population time series using a stochastic logistic model parameterized with the Arrhenius equation, so that activation energy drives the temperature dependence of population parameters. We simulated different experimental designs and used different inference methods, varying the likelihood functions and other aspects of the parameter estimation methods. Finally, we applied the best performing inference methods to real data for the species Paramecium caudatum. The relative error of the estimates of activation energy varied between 5% and 30%. The fraction of habitat sampled played the most important role in determining the relative error; sampling at least 1% of the habitat kept it below 50%. We found that methods that simultaneously use all time series data (direct methods) and methods that estimate population parameters separately for each temperature (indirect methods) are complementary. Indirect methods provide a clearer insight into the shape of the functional form describing the temperature dependence of population parameters; direct methods enable a more accurate estimation of the parameters of such functional forms. Using both methods, we found that growth rate and carrying capacity of Paramecium caudatum scale with temperature according to different activation energies. Our study shows how careful choice of experimental design and inference methods can increase the accuracy of the inferred relationships between temperature and population parameters. The comparison of estimation methods provided here can increase the accuracy of model predictions, with important

  3. Selecting Temperature for Protein Crystallization Screens Using the Temperature Dependence of the Second Virial Coefficient

    PubMed Central

    Liu, Jun; Yin, Da-Chuan; Guo, Yun-Zhu; Wang, Xi-Kai; Xie, Si-Xiao; Lu, Qin-Qin; Liu, Yong-Ming

    2011-01-01

    Protein crystals usually grow at a preferable temperature which is however not known for a new protein. This paper reports a new approach for determination of favorable crystallization temperature, which can be adopted to facilitate the crystallization screening process. By taking advantage of the correlation between the temperature dependence of the second virial coefficient (B 22) and the solubility of protein, we measured the temperature dependence of B 22 to predict the temperature dependence of the solubility. Using information about solubility versus temperature, a preferred crystallization temperature can be proposed. If B 22 is a positive function of the temperature, a lower crystallization temperature is recommended; if B 22 shows opposite behavior with respect to the temperature, a higher crystallization temperature is preferred. Otherwise, any temperature in the tested range can be used. PMID:21479212

  4. Infralimbic cortex controls core body temperature in a histamine dependent manner.

    PubMed

    Riveros, M E; Perdomo, G; Torrealba, F

    2014-04-10

    An increase in body temperature accelerates biochemical reactions and behavioral and physiological responses. A mechanism to actively increase body temperature would be beneficial during motivated behaviors. The prefrontal cortex is implicated in organizing motivated behavior; the infralimbic cortex, a subregion of the medial prefrontal cortex, has the necessary connectivity to serve the role of initiating such thermogenic mechanism at the beginning of the appetitive phase of motivated behavior; further, this cortex is active during motivated behavior and its disinhibition produces a marked behavioral and vegetative arousal increase, together with increases in histamine levels. We wanted to explore if this arousal was related to histaminergic activation after pharmacological infralimbic disinhibition and during the appetitive phase of motivated behavior. We measured core temperature and motor activity in response to picrotoxin injection in the infralimbic cortex, as well as during food-related appetitive behavior, evoked by enticing hungry rats with food. Pretreatment with the H1 receptor antagonist pyrilamine decreased thermal response to picrotoxin and enticement and completely blunted motor response to enticement. Motor and temperature responses to enticement were also completely abolished by infralimbic cortex inhibition with muscimol. To assess if this histamine dependent temperature increase was produced by an active sympathetic mediated thermogenic mechanism or was just a consequence of increased locomotor activity, we injected propranolol (i.p.), a β adrenergic receptor blocker, before picrotoxin injection into the infralimbic cortex. Propranolol reduced the temperature increase without affecting locomotor activity. Altogether, these results suggest that infralimbic activation is necessary for appetitive behavior by inducing a motor and a vegetative arousal increase mediated by central histamine. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Temperature dependence of autoxidation of perilla oil and tocopherol degradation.

    PubMed

    Wang, Seonyeong; Hwang, Hyunsuk; Yoon, Sukhoo; Choe, Eunok

    2010-08-01

    Temperature dependence of the autoxidation of perilla oil and tocopherol degradation was studied with corn oil as a reference. The oils were oxidized in the dark at 20, 40, 60, and 80 degrees C. Oil oxidation was determined by peroxide and conjugated dienoic acid values. Tocopherols in the oils were quantified by HPLC. The oxidation of both oils increased with oxidation time and temperature. Induction periods for oil autoxidation decreased with temperature, and were longer in corn oil than in perilla oil, indicating higher sensitivity of perilla oil to oxidation. However, time lag for tocopherol degradation was longer in perilla oil, indicating higher stability of tocopherols in perilla oil than in corn oil. Activation energies for oil autoxidation and tocopherol degradation were higher in perilla oil (23.9 to 24.2, 9.8 kcal/mol, respectively) than in corn oil (12.5 to 15.8, 8.8 kcal/mol, respectively) indicating higher temperature-dependence in perilla oil. Higher stability of tocopherols in perilla oil was highly related with polyphenols. The study suggests that more careful temperature control is required to decrease the autoxidation of perilla oil than that of corn oil, and polyphenols contributed to the oxidative stability of perilla oil by protecting tocopherols from degradation, especially at the early stage of oil autoxidation.

  6. Intensity and temperature-dependent photoluminescence of tris (8-hydroxyquinoline) aluminum films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ajward, A. M.; Wang, X.; Wagner, H. P.

    2013-12-04

    We investigate the recombination of excitons in tris (8-hydroxyquinoline) aluminum films by intensity and temperature dependent time-resolved photoluminescence (PL). At low temperature (15 K) and elevated excitation intensity the radiative emission is quenched by singlet-singlet annihilation processes. With rising temperature the PL quenching is strongly reduced resulting in a PL efficiency maximum at ∼170 K. The reduced exciton annihilation is attributed to thermally activated occupation of non-quenchable trapped exciton states. Above 170 K the PL efficiency decreases due to thermal de-trapping of radiative states and subsequent migration to non-radiative centers.

  7. Temperature dependence of field-responsive mechanisms in lead zirconate titanate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Ching-Chang; Fancher, Chris M.; Isaac, Catherine

    2017-05-17

    An electric field loading stage was designed for use in a laboratory diffractometer that enables in situ investigations of the temperature dependence in the field response mechanisms of ferroelectric materials. The stage was demonstrated in this paper by measuring PbZr 1-xTi xO 3 (PZT) based materials—a commercially available PZT and a 1% Nb-doped PbZr 0.56Ti 0.44O 3 (PZT 56/44)—over a temperature range of 25°C to 250°C. The degree of non-180° domain alignment (η 002) of the PZT as a function of temperature was quantified. η 002 of the commercially available PZT increases exponentially with temperature, and was analyzed as amore » thermally activated process as described by the Arrhenius law. The activation energy for thermally activated domain wall depinning process in PZT was found to be 0.47 eV. Additionally, a field-induced rhombohedral to tetragonal phase transition was observed 5°C below the rhombohedral-tetragonal transition in PZT 56/44 ceramic. The field-induced tetragonal phase fraction was increased 41.8% after electrical cycling. Finally, a large amount of domain switching (η 002=0.45 at 1.75 kV/mm) was observed in the induced tetragonal phase.« less

  8. Temperature Dependence of Field-Effect Mobility in Organic Thin-Film Transistors: Similarity to Inorganic Transistors.

    PubMed

    Okada, Jun; Nagase, Takashi; Kobayashi, Takashi; Naito, Hiroyoshi

    2016-04-01

    Carrier transport in solution-processed organic thin-film transistors (OTFTs) based on dioctylbenzothienobenzothiophene (C8-BTBT) has been investigated in a wide temperature range from 296 to 10 K. The field-effect mobility shows thermally activated behavior whose activation energy becomes smaller with decreasing temperature. The temperature dependence of field-effect mobility found in C8-BTBT is similar to that of others materials: organic semiconducting polymers, amorphous oxide semiconductors and hydrogenated amorphous silicon. These results indicate that hopping transport between isoenergetic localized states becomes dominated in a low temperature regime in these materials.

  9. Stress and temperature dependence of screw dislocation mobility in {alpha}-Fe by molecular dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, M. R.; Queyreau, S.; Marian, J.

    2011-11-01

    The low-temperature plastic yield of {alpha}-Fe single crystals is known to display a strong temperature dependence and to be controlled by the thermally activated motion of screw dislocations. In this paper, we present molecular dynamics simulations of (1/2)<111>{l_brace}112{r_brace} screw dislocation motion as a function of temperature and stress in order to extract mobility relations that describe the general dynamic behavior of screw dislocations in pure {alpha}-Fe. We find two dynamic regimes in the stress-velocity space governed by different mechanisms of motion. Consistent with experimental evidence, at low stresses and temperatures, the dislocations move by thermally activated nucleation and propagation ofmore » kink pairs. Then, at a critical stress, a temperature-dependent transition to a viscous linear regime is observed. Critical output from the simulations, such as threshold stresses and the stress dependence of the kink activation energy, are compared to experimental data and other atomistic works with generally very good agreement. Contrary to some experimental interpretations, we find that glide on {l_brace}112{r_brace} planes is only apparent, as slip always occurs by elementary kink-pair nucleation/propagation events on {l_brace}110{r_brace} planes. Additionally, a dislocation core transformation from compact to dissociated has been identified above room temperature, although its impact on the general mobility is seen to be limited. This and other observations expose the limitations of inferring or presuming dynamic behavior on the basis of only static calculations. We discuss the relevance and applicability of our results and provide a closed-form functional mobility law suitable for mesoscale computational techniques.« less

  10. Reconciling the temperature dependence of respiration across timescales and ecosystem types.

    PubMed

    Yvon-Durocher, Gabriel; Caffrey, Jane M; Cescatti, Alessandro; Dossena, Matteo; del Giorgio, Paul; Gasol, Josep M; Montoya, José M; Pumpanen, Jukka; Staehr, Peter A; Trimmer, Mark; Woodward, Guy; Allen, Andrew P

    2012-07-26

    Ecosystem respiration is the biotic conversion of organic carbon to carbon dioxide by all of the organisms in an ecosystem, including both consumers and primary producers. Respiration exhibits an exponential temperature dependence at the subcellular and individual levels, but at the ecosystem level respiration can be modified by many variables including community abundance and biomass, which vary substantially among ecosystems. Despite its importance for predicting the responses of the biosphere to climate change, it is as yet unknown whether the temperature dependence of ecosystem respiration varies systematically between aquatic and terrestrial environments. Here we use the largest database of respiratory measurements yet compiled to show that the sensitivity of ecosystem respiration to seasonal changes in temperature is remarkably similar for diverse environments encompassing lakes, rivers, estuaries, the open ocean and forested and non-forested terrestrial ecosystems, with an average activation energy similar to that of the respiratory complex (approximately 0.65 electronvolts (eV)). By contrast, annual ecosystem respiration shows a substantially greater temperature dependence across aquatic (approximately 0.65 eV) versus terrestrial ecosystems (approximately 0.32 eV) that span broad geographic gradients in temperature. Using a model derived from metabolic theory, these findings can be reconciled by similarities in the biochemical kinetics of metabolism at the subcellular level, and fundamental differences in the importance of other variables besides temperature—such as primary productivity and allochthonous carbon inputs—on the structure of aquatic and terrestrial biota at the community level.

  11. Active Temperature Compensation Using a High-Temperature, Fiber Optic, Hybrid Pressure and Temperature Sensor

    NASA Astrophysics Data System (ADS)

    Fielder, Robert S.; Palmer, Matthew E.; Davis, Matthew A.; Engelbrecht, Gordon P.

    2006-01-01

    Luna Innovations has developed a novel, fiber optic, hybrid pressure-temperature sensor system for extremely high-temperature environments that is capable of reliable operation up to 1050 °C. This system is based on the extremely high-temperature fiber optic sensors already demonstrated during previous work. The novelty of the sensors presented here lies in the fact that pressure and temperature are measured simultaneously with a single fiber and a single transducer. This hybrid approach will enable highly accurate active temperature compensation and sensor self-diagnostics not possible with other platforms. Hybrid pressure and temperature sensors were calibrated by varying both pressure and temperature. Implementing active temperature compensation resulted in a ten-fold reduction in the temperature-dependence of the pressure measurement. Sensors were tested for operability in a relatively high neutron dose environment up to 6.9×1017 n/cm2. In addition to harsh environment survivability, fiber optic sensors offer a number of intrinsic advantages for space nuclear power applications including extremely low mass, immunity to electromagnetic interference, self diagnostics / prognostics, and smart sensor capability. Deploying fiber optic sensors on future space exploration missions would provide a substantial improvement in spacecraft instrumentation. Additional development is needed, however, before these advantages can be realized. This paper will highlight recent demonstrations of fiber optic sensors in environments relevant to space nuclear applications. Successes and lessons learned will be highlighted. Additionally, development needs will be covered which will suggest a framework for a coherent plan to continue work in this area.

  12. On the temperature dependence of flammability limits of gases.

    PubMed

    Kondo, Shigeo; Takizawa, Kenji; Takahashi, Akifumi; Tokuhashi, Kazuaki

    2011-03-15

    Flammability limits of several combustible gases were measured at temperatures from 5 to 100 °C in a 12-l spherical flask basically following ASHRAE method. The measurements were done for methane, propane, isobutane, ethylene, propylene, dimethyl ether, methyl formate, 1,1-difluoroethane, ammonia, and carbon monoxide. As the temperature rises, the lower flammability limits are gradually shifted down and the upper limits are shifted up. Both the limits shift almost linearly to temperature within the range examined. The linear temperature dependence of the lower flammability limits is explained well using a limiting flame temperature concept at the lower concentration limit (LFL)--'White's rule'. The geometric mean of the flammability limits has been found to be relatively constant for many compounds over the temperature range studied (5-100 °C). Based on this fact, the temperature dependence of the upper flammability limit (UFL) can be predicted reasonably using the temperature coefficient calculated for the LFL. However, some compounds such as ethylene and dimethyl ether, in particular, have a more complex temperature dependence. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Temperature dependence of standard model CP violation.

    PubMed

    Brauner, Tomáš; Taanila, Olli; Tranberg, Anders; Vuorinen, Aleksi

    2012-01-27

    We analyze the temperature dependence of CP violation effects in the standard model by determining the effective action of its bosonic fields, obtained after integrating out the fermions from the theory and performing a covariant gradient expansion. We find nonvanishing CP violating terms starting at the sixth order of the expansion, albeit only in the C-odd-P-even sector, with coefficients that depend on quark masses, Cabibbo-Kobayashi-Maskawa matrix elements, temperature and the magnitude of the Higgs field. The CP violating effects are observed to decrease rapidly with temperature, which has important implications for the generation of a matter-antimatter asymmetry in the early Universe. Our results suggest that the cold electroweak baryogenesis scenario may be viable within the standard model, provided the electroweak transition temperature is at most of order 1 GeV.

  14. Reversible conformational transition gives rise to 'zig-zag' temperature dependence of the rate constant of irreversible thermoinactivation of enzymes.

    PubMed

    Levitsky VYu; Melik-Nubarov, N S; Siksnis, V A; Grinberg VYa; Burova, T V; Levashov, A V; Mozhaev, V V

    1994-01-15

    We have obtained unusual 'zig-zag' temperature dependencies of the rate constant of irreversible thermoinactivation (k(in)) of enzymes (alpha-chymotrypsin, covalently modified alpha-chymotrypsin, and ribonuclease) in a plot of log k(in) versus reciprocal temperature (Arrhenius plot). These dependencies are characterized by the presence of both ascending and descending linear portions which have positive and negative values of the effective activation energy (Ea), respectively. A kinetic scheme has been suggested that fits best for a description of these zig-zag dependencies. A key element of this scheme is the temperature-dependent reversible conformational transition of enzyme from the 'low-temperature' native state to a 'high-temperature' denatured form; the latter form is significantly more stable against irreversible thermoinactivation than the native enzyme. A possible explanation for a difference in thermal stabilities is that low-temperature and high-temperature forms are inactivated according to different mechanisms. Existence of the suggested conformational transition was proved by the methods of fluorescence spectroscopy and differential scanning calorimetry. The values of delta H and delta S for this transition, determined from calorimetric experiments, are highly positive; this fact underlies a conclusion that this heat-induced transition is caused by an unfolding of the protein molecule. Surprisingly, in the unfolded high-temperature conformation, alpha-chymotrypsin has a pronounced proteolytic activity, although this activity is much smaller than that of the native enzyme.

  15. Stay tuned: active amplification tunes tree cricket ears to track temperature-dependent song frequency.

    PubMed

    Mhatre, Natasha; Pollack, Gerald; Mason, Andrew

    2016-04-01

    Tree cricket males produce tonal songs, used for mate attraction and male-male interactions. Active mechanics tunes hearing to conspecific song frequency. However, tree cricket song frequency increases with temperature, presenting a problem for tuned listeners. We show that the actively amplified frequency increases with temperature, thus shifting mechanical and neuronal auditory tuning to maintain a match with conspecific song frequency. Active auditory processes are known from several taxa, but their adaptive function has rarely been demonstrated. We show that tree crickets harness active processes to ensure that auditory tuning remains matched to conspecific song frequency, despite changing environmental conditions and signal characteristics. Adaptive tuning allows tree crickets to selectively detect potential mates or rivals over large distances and is likely to bestow a strong selective advantage by reducing mate-finding effort and facilitating intermale interactions. © 2016 The Author(s).

  16. Temperature Dependence of Wavelength Selectable Zero-Phonon Emission from Single Defects in Hexagonal Boron Nitride.

    PubMed

    Jungwirth, Nicholas R; Calderon, Brian; Ji, Yanxin; Spencer, Michael G; Flatté, Michael E; Fuchs, Gregory D

    2016-10-12

    We investigate the distribution and temperature-dependent optical properties of sharp, zero-phonon emission from defect-based single photon sources in multilayer hexagonal boron nitride (h-BN) flakes. We observe sharp emission lines from optically active defects distributed across an energy range that exceeds 500 meV. Spectrally resolved photon-correlation measurements verify single photon emission, even when multiple emission lines are simultaneously excited within the same h-BN flake. We also present a detailed study of the temperature-dependent line width, spectral energy shift, and intensity for two different zero-phonon lines centered at 575 and 682 nm, which reveals a nearly identical temperature dependence despite a large difference in transition energy. Our temperature-dependent results are well described by a lattice vibration model that considers piezoelectric coupling to in-plane phonons. Finally, polarization spectroscopy measurements suggest that whereas the 575 nm emission line is directly excited by 532 nm excitation, the 682 nm line is excited indirectly.

  17. Temperature dependent GaAs MMIC radiation effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, W.T.; Roussos, J.A.; Gerdes, J.

    1993-12-01

    The temperature dependence of pulsed neutron and flash x-ray radiation effects was studied in GaAs MMICs. Above room temperature the long term current transients are dominated by electron trapping in previously existing defects. At low temperature in the range 126 to 259 K neutron induced lattice damage appears to play an increasingly important role in producing long term current transients.

  18. Change in heat capacity for enzyme catalysis determines temperature dependence of enzyme catalyzed rates.

    PubMed

    Hobbs, Joanne K; Jiao, Wanting; Easter, Ashley D; Parker, Emily J; Schipper, Louis A; Arcus, Vickery L

    2013-11-15

    The increase in enzymatic rates with temperature up to an optimum temperature (Topt) is widely attributed to classical Arrhenius behavior, with the decrease in enzymatic rates above Topt ascribed to protein denaturation and/or aggregation. This account persists despite many investigators noting that denaturation is insufficient to explain the decline in enzymatic rates above Topt. Here we show that it is the change in heat capacity associated with enzyme catalysis (ΔC(‡)p) and its effect on the temperature dependence of ΔG(‡) that determines the temperature dependence of enzyme activity. Through mutagenesis, we demonstrate that the Topt of an enzyme is correlated with ΔC(‡)p and that changes to ΔC(‡)p are sufficient to change Topt without affecting the catalytic rate. Furthermore, using X-ray crystallography and molecular dynamics simulations we reveal the molecular details underpinning these changes in ΔC(‡)p. The influence of ΔC(‡)p on enzymatic rates has implications for the temperature dependence of biological rates from enzymes to ecosystems.

  19. Temperature dependence of acoustic impedance for specific fluorocarbon liquids

    NASA Astrophysics Data System (ADS)

    Marsh, Jon N.; Hall, Christopher S.; Wickline, Samuel A.; Lanza, Gregory M.

    2002-12-01

    Recent studies by our group have demonstrated the efficacy of perfluorocarbon liquid nanoparticles for enhancing the reflectivity of tissuelike surfaces to which they are bound. The magnitude of this enhancement depends in large part on the difference in impedances of the perfluorocarbon, the bound substrate, and the propagating medium. The impedance varies directly with temperature because both the speed of sound and the mass density of perfluorocarbon liquids are highly temperature dependent. However, there are relatively little data in the literature pertaining to the temperature dependence of the acoustic impedance of these compounds. In this study, the speed of sound and density of seven different fluorocarbon liquids were measured at specific temperatures between 20 °C and 45 °C. All of the samples demonstrated negative, linear dependencies on temperature for both speed of sound and density and, consequently, for the acoustic impedance. The slope of sound speed was greatest for perfluorohexane (-278+/-1.5 cm/s-°C) and lowest for perfluorodichlorooctane (-222+/-0.9 cm/s-°C). Of the compounds measured, perfluorohexane exhibited the lowest acoustic impedance at all temperatures, and perfluorodecalin the highest at all temperatures. Computations from a simple transmission-line model used to predict reflectivity enhancement from surface-bound nanoparticles are discussed in light of these results.

  20. Investigation of temperature-dependent photoluminescence in multi-quantum wells.

    PubMed

    Fang, Yutao; Wang, Lu; Sun, Qingling; Lu, Taiping; Deng, Zhen; Ma, Ziguang; Jiang, Yang; Jia, Haiqiang; Wang, Wenxin; Zhou, Junming; Chen, Hong

    2015-07-31

    Photoluminescence (PL) is a nondestructive and powerful method to investigate carrier recombination and transport characteristics in semiconductor materials. In this study, the temperature dependences of photoluminescence of GaAs-AlxGa1-xAs multi-quantum wells samples with and without p-n junction were measured under both resonant and non-resonant excitation modes. An obvious increase of photoluminescence(PL) intensity as the rising of temperature in low temperature range (T < 50 K), is observed only for GaAs-AlxGa1-xAs quantum wells sample with p-n junction under non-resonant excitation. The origin of the anomalous increase of integrated PL intensity proved to be associated with the enhancement of carrier drifting because of the increase of carrier mobility in the temperature range from 15 K to 100 K. For non-resonant excitation, carriers supplied from the barriers will influence the temperature dependence of integrated PL intensity of quantum wells, which makes the traditional methods to acquire photoluminescence characters from the temperature dependence of integrated PL intensity unavailable. For resonant excitation, carriers are generated only in the wells and the temperature dependence of integrated PL intensity is very suitable to analysis the photoluminescence characters of quantum wells.

  1. Temperature dependence in magnetic particle imaging

    NASA Astrophysics Data System (ADS)

    Wells, James; Paysen, Hendrik; Kosch, Olaf; Trahms, Lutz; Wiekhorst, Frank

    2018-05-01

    Experimental results are presented demonstrating how temperature can influence the dynamics of magnetic nanoparticles (MNPs) in liquid suspension, when exposed to alternating magnetic fields in the kilohertz frequency range. The measurements used to probe the nanoparticle systems are directly linked to both the emerging biomedical technique of magnetic particle imaging (MPI), and to the recently proposed concept of remote nanoscale thermometry using MNPs under AC field excitation. Here, we report measurements on three common types of MNPs, two of which are currently leading candidates for use as tracers in MPI. Using highly-sensitive magnetic particle spectroscopy (MPS), we demonstrate significant and divergent thermal dependences in several key measures used in the evaluation of MNP dynamics for use in MPI and other applications. The temperature range studied was between 296 and 318 Kelvin, making our findings of particular importance for MPI and other biomedical technologies. Furthermore, we report the detection of the same temperature dependences in measurements conducted using the detection coils within an operational preclinical MPI scanner. This clearly shows the importance of considering temperature during MPI development, and the potential for temperature-resolved MPI using this system. We propose possible physical explanations for the differences in the behaviors observed between the different particle types, and discuss our results in terms of the opportunities and concerns they raise for MPI and other MNP based technologies.

  2. Temperature dependence of the HNO3 UV absorption cross sections

    NASA Technical Reports Server (NTRS)

    Burkholder, James B.; Talukdar, Ranajit K.; Ravishankara, A. R.; Solomon, Susan

    1993-01-01

    The temperature dependence of the HNO3 absorption cross sections between 240 and 360 K over the wavelength range 195 to 350 nm has been measured using a diode array spectrometer. Absorption cross sections were determined using both (1) absolute pressure measurements at 298 K and (2) a dual absorption cell arrangement in which the absorption spectrum at various temperatures is measured relative to the room temperature absorption spectrum. The HNO3 absorption spectrum showed a temperature dependence which is weak at short wavelengths but stronger at longer wavelengths which are important for photolysis in the lower stratosphere. The 298 K absorption cross sections were found to be larger than the values currently recommended for atmospheric modeling (DeMore et al., 1992). Our absorption cross section data are critically compared with the previous measurements of both room temperature and temperature-dependent absorption cross sections. Temperature-dependent absorption cross sections of HNO3 are recommended for use in atmospheric modeling. These temperature dependent HNO3 absorption cross sections were used in a two-dimensional dynamical-photochemical model to demonstrate the effects of the revised absorption cross sections on loss rate of HNO3 and the abundance of NO2 in the stratosphere.

  3. Escherichia coli survival in waters: Temperature dependence

    EPA Science Inventory

    Knowing the survival rates of water-borne Escherichia coli is important in evaluating microbial contamination and making appropriate management decisions. E. coli survival rates are dependent on temperature, a dependency that is routinely expressed using an analogue of the Q10 mo...

  4. Temperature-Dependent Kinetic Model for Nitrogen-Limited Wine Fermentations▿

    PubMed Central

    Coleman, Matthew C.; Fish, Russell; Block, David E.

    2007-01-01

    A physical and mathematical model for wine fermentation kinetics was adapted to include the influence of temperature, perhaps the most critical factor influencing fermentation kinetics. The model was based on flask-scale white wine fermentations at different temperatures (11 to 35°C) and different initial concentrations of sugar (265 to 300 g/liter) and nitrogen (70 to 350 mg N/liter). The results show that fermentation temperature and inadequate levels of nitrogen will cause stuck or sluggish fermentations. Model parameters representing cell growth rate, sugar utilization rate, and the inactivation rate of cells in the presence of ethanol are highly temperature dependent. All other variables (yield coefficient of cell mass to utilized nitrogen, yield coefficient of ethanol to utilized sugar, Monod constant for nitrogen-limited growth, and Michaelis-Menten-type constant for sugar transport) were determined to vary insignificantly with temperature. The resulting mathematical model accurately predicts the observed wine fermentation kinetics with respect to different temperatures and different initial conditions, including data from fermentations not used for model development. This is the first wine fermentation model that accurately predicts a transition from sluggish to normal to stuck fermentations as temperature increases from 11 to 35°C. Furthermore, this comprehensive model provides insight into combined effects of time, temperature, and ethanol concentration on yeast (Saccharomyces cerevisiae) activity and physiology. PMID:17616615

  5. Temperature dependence of the elastocaloric effect in natural rubber

    NASA Astrophysics Data System (ADS)

    Xie, Zhongjian; Sebald, Gael; Guyomar, Daniel

    2017-07-01

    The temperature dependence of the elastocaloric (eC) effect in natural rubber (NR) has been studied. This material exhibits a large eC effect over a broad temperature range from 0 °C to 49 °C. The maximum adiabatic temperature change (ΔT) occurred at 10 °C and the behavior could be predicted by the temperature dependence of the strain-induced crystallization (SIC) and the temperature-induced crystallization (TIC). The eC performance of NR was then compared with that of shape memory alloys (SMAs). This study contributes to the SIC research of NR and also broadens the application of elastomers.

  6. Temperature and size-dependent Hamaker constants for metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Jiang, K.; Pinchuk, P.

    2016-08-01

    Theoretical values of the Hamaker constant have been calculated for metal nanoparticles using Lifshitz theory. The theory describes the Hamaker constant in terms of the permittivity of the interacting bodies. Metal nanoparticles exhibit an internal size effect that alters the dielectric permittivity of the particle when its size falls below the mean free path of the conducting electrons. This size dependence of the permittivity leads to size-dependence of the Hamaker constant for metal nanoparticles. Additionally, the electron damping and the plasma frequency used to model the permittivity of the particle exhibit temperature-dependence, which lead to temperature dependence of the Hamaker constant. In this work, both the size and temperature dependence for gold, silver, copper, and aluminum nanoparticles is demonstrated. The results of this study might be of interest for studying the colloidal stability of nanoparticles in solution.

  7. Temperature and size-dependent Hamaker constants for metal nanoparticles.

    PubMed

    Jiang, K; Pinchuk, P

    2016-08-26

    Theoretical values of the Hamaker constant have been calculated for metal nanoparticles using Lifshitz theory. The theory describes the Hamaker constant in terms of the permittivity of the interacting bodies. Metal nanoparticles exhibit an internal size effect that alters the dielectric permittivity of the particle when its size falls below the mean free path of the conducting electrons. This size dependence of the permittivity leads to size-dependence of the Hamaker constant for metal nanoparticles. Additionally, the electron damping and the plasma frequency used to model the permittivity of the particle exhibit temperature-dependence, which lead to temperature dependence of the Hamaker constant. In this work, both the size and temperature dependence for gold, silver, copper, and aluminum nanoparticles is demonstrated. The results of this study might be of interest for studying the colloidal stability of nanoparticles in solution.

  8. E. coli survival in waters: temperature dependence

    USDA-ARS?s Scientific Manuscript database

    Knowing the survival rates of water-borne Escherichia coli is important for evaluating microbial contamination and in making appropriate management decisions. E. coli survival rates are dependent on temperature; this dependency is routinely expressed using an analog of the Q10 model. This suggestion...

  9. Understanding Biological Rates and their Temperature Dependence, from Enzymes to Ecosystems

    NASA Astrophysics Data System (ADS)

    Prentice, E.; Arcus, V. L.

    2017-12-01

    Temperature responses over various scales in biological systems follow a similar pattern; negative curvature results in an optimum temperature (Topt) for activity/growth/turnover, with decreases in rates on either side of Topt. Previously this downturn in rates at high temperatures has been attributed to enzyme denaturation, where a failing of the basic driving units of metabolism was used to describe curvature at the enzyme and organism level. However, recent developments in our understanding of the factors governing enzyme rates at different temperatures have guided a new understanding of the responses of biological systems. Enzymes catalyse reactions by driving the substrate through a high energy species, which is tightly bound to the enzyme. Macromolecular rate theory (MMRT) has recently been developed to account for the changes in the system brought about by this tight binding, specifically the change in the physical parameter heat capacity (ΔCǂp), and the effect this has on the temperature dependence of enzyme reactions. A negative ΔCǂp imparts the signature negative curvature to rates in the absence of denaturation, and finds that Topt, ΔCǂp and curvature are all correlated, placing constraints on biological systems. The simplest of cells comprise thousands of enzymatically catalysed reactions, functioning in series and in parallel in metabolic pathways to determine the overall growth rate of an organism. Intuitively, the temperature effects of enzymes play a role in determining the overall temperature dependence of an organism, in tandem with cellular level regulatory responses. However, the effect of individual Topt values and curvature on overall pathway behaviour is less apparent. Here, this is investigated in the context of MMRT through the in vitro characterisation of a six-step metabolic pathway to understand the steps in isolation and functioning in series. Pathway behaviour is found to be approximately an average of the properties of the

  10. Temperature dependence of photoluminescence peaks of porous silicon structures

    NASA Astrophysics Data System (ADS)

    Brunner, Róbert; Pinčík, Emil; Kučera, Michal; Greguš, Ján; Vojtek, Pavel; Zábudlá, Zuzana

    2017-12-01

    Evaluation of photoluminescence spectra of porous silicon (PS) samples prepared by electrochemical etching is presented. The samples were measured at temperatures 30, 70 and 150 K. Peak parameters (energy, intensity and width) were calculated. The PL spectrum was approximated by a set of Gaussian peaks. Their parameters were fixed using fitting a procedure in which the optimal number of peeks included into the model was estimated using the residuum of the approximation. The weak thermal dependence of the spectra indicates the strong influence of active defects.

  11. Controlling temperature dependence of silicon waveguide using slot structure.

    PubMed

    Lee, Jong-Moo; Kim, Duk-Jun; Kim, Gwan-Ha; Kwon, O-Kyun; Kim, Kap-Joong; Kim, Gyungock

    2008-02-04

    We show that the temperature dependence of a silicon waveguide can be controlled well by using a slot waveguide structure filled with a polymer material. Without a slot, the amount of temperature-dependent wavelength shift for TE mode of a silicon waveguide ring resonator is very slightly reduced from 77 pm/ degrees C to 66 pm/ degrees C by using a polymer (WIR30-490) upper cladding instead of air upper cladding. With a slot filled with the same polymer, however, the reduction of the temperature dependence is improved by a pronounced amount and can be controlled down to -2 pm/ degrees C by adjusting several variables of the slot structure, such as the width of the slot between the pair of silicon wires, the width of the silicon wire pair, and the height of the silicon slab in our experiment. This measurement proves that a reduction in temperature dependence can be improved about 8 times more by using the slot structure.

  12. Temperature-dependent μ-Raman investigation of struvite crystals.

    PubMed

    Prywer, Jolanta; Kasprowicz, D; Runka, T

    2016-04-05

    The effect of temperature on the vibrational properties of struvite crystals grown from silica gels was systematically studied by μ-Raman spectroscopy. The time-dependent Raman spectra recorded in the process of long time annealing of struvite crystal at 353 K do not indicate structural changes in the struvite crystal with the time of annealing. The temperature-dependent Raman spectra recorded in the range 298-423 K reveal a phase transition in struvite at about 368 K. Above this characteristic temperature, some of bands assigned to vibrations of the PO4 and NH4 tetrahedra and water molecules observed in the Raman spectra in low temperatures (orthorhombic phase) change their spectral parameters or disappear, which indicates a transition to a higher symmetry structure of struvite in the range of high temperatures. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Ubiquitous and temperature-dependent neural plasticity in hibernators.

    PubMed

    von der Ohe, Christina G; Darian-Smith, Corinna; Garner, Craig C; Heller, H Craig

    2006-10-11

    Hibernating mammals are remarkable for surviving near-freezing brain temperatures and near cessation of neural activity for a week or more at a time. This extreme physiological state is associated with dendritic and synaptic changes in hippocampal neurons. Here, we investigate whether these changes are a ubiquitous phenomenon throughout the brain that is driven by temperature. We iontophoretically injected Lucifer yellow into several types of neurons in fixed slices from hibernating ground squirrels. We analyzed neuronal microstructure from animals at several stages of torpor at two different ambient temperatures, and during the summer. We show that neuronal cell bodies, dendrites, and spines from several cell types in hibernating ground squirrels retract on entry into torpor, change little over the course of several days, and then regrow during the 2 h return to euthermia. Similar structural changes take place in neurons from the hippocampus, cortex, and thalamus, suggesting a global phenomenon. Investigation of neural microstructure from groups of animals hibernating at different ambient temperatures revealed that there is a linear relationship between neural retraction and minimum body temperature. Despite significant temperature-dependent differences in extent of retraction during torpor, recovery reaches the same final values of cell body area, dendritic arbor complexity, and spine density. This study demonstrates large-scale and seemingly ubiquitous neural plasticity in the ground squirrel brain during torpor. It also defines a temperature-driven model of dramatic neural plasticity, which provides a unique opportunity to explore mechanisms of large-scale regrowth in adult mammals, and the effects of remodeling on learning and memory.

  14. Determining Role of the Chain Mechanism in the Temperature Dependence of the Gas-Phase Rate of Combustion Reactions

    NASA Astrophysics Data System (ADS)

    Azatyan, V. V.; Bolod'yan, I. A.; Kopylov, N. P.; Kopylov, S. N.; Prokopenko, V. M.; Shebeko, Yu. N.

    2018-05-01

    It is shown that the strong dependence of the rate of gas-phase combustion reactions on temperature is determined by the high values of the reaction rate constants of free atoms and radicals. It is established that with a branched chain mechanism, a special role in the reaction rate temperature dependence is played by positive feedback between the concentrations of active intermediate species and the rate of their change. The role of the chemical mechanism in the temperature dependence of the process rate with and without inhibitors is considered.

  15. Temperature-Dependent Electrical and Micromechanical Properties of Lanthanum Titanate with Additions of Yttria

    NASA Technical Reports Server (NTRS)

    Goldsby, Jon C.

    2010-01-01

    Temperature-dependent elastic properties were determined by establishing continuous flexural vibrations in the material at its lowest resonance frequency of 31tHz. The imaginary part of the complex impedance plotted as a function of frequency and temperature reveals a thermally activated peak, which decreases in magnitude as the temperature increases. Additions of yttria do not degrade the electromechanical in particularly the elastic and anelastic properties of lanthanum titanate. Y2O3/La2Ti2O7 exhibits extremely low internal friction and hence may be more mechanical fatigue-resistant at low strains.

  16. Exploration of the mechanisms of temperature-dependent grain boundary mobility: Search for the common origin of ultrafast grain boundary motion

    DOE PAGES

    O’Brien, C. J.; Foiles, S. M.

    2016-04-19

    The temperature dependence of grain boundary mobility is complex, varied, and rarely fits ideal Arrhenius behavior. This work presents a series of case studies of planar grain boundaries in a model FCC system that were previously demonstrated to exhibit a variety of temperature-dependent mobility behaviors. It is demonstrated that characterization of the mobility versus temperature plots is not sufficient to predict the atomic motion mechanism of the grain boundaries. Herein, the temperature-dependent motion and atomistic motion mechanisms of planar grain boundaries are driven by a synthetic, orientation-dependent, driving force. The systems studied include CSL boundaries with Σ values of 5,more » 7, and 15, including both symmetric and asymmetric boundaries. These boundaries represent a range of temperature-dependent trends including thermally activated, antithermal, and roughening behaviors. Examining the atomic-level motion mechanisms of the thermally activated boundaries reveals that each involves a complex shuffle, and at least one atom that changes the plane it resides on. The motion mechanism of the antithermal boundary is qualitatively different and involves an in-plane coordinated shuffle that rotates atoms about a fixed atom lying on a point in the coincident site lattice. Furthermore, this provides a mechanistic reason for the observed high mobility, even at low temperatures, which is due to the low activation energy needed for such motion. However, it will be demonstrated that this mechanism is not universal, or even common, to other boundaries exhibiting non-thermally activated motion. This work concludes that no single atomic motion mechanism is sufficient to explain the existence of non-thermally activated boundary motion.« less

  17. A Rigidifying Salt-Bridge Favors the Activity of Thermophilic Enzyme at High Temperatures at the Expense of Low-Temperature Activity

    PubMed Central

    Lam, Sonia Y.; Yeung, Rachel C. Y.; Yu, Tsz-Ha; Sze, Kong-Hung; Wong, Kam-Bo

    2011-01-01

    Background Thermophilic enzymes are often less active than their mesophilic homologues at low temperatures. One hypothesis to explain this observation is that the extra stabilizing interactions increase the rigidity of thermophilic enzymes and hence reduce their activity. Here we employed a thermophilic acylphosphatase from Pyrococcus horikoshii and its homologous mesophilic acylphosphatase from human as a model to study how local rigidity of an active-site residue affects the enzymatic activity. Methods and Findings Acylphosphatases have a unique structural feature that its conserved active-site arginine residue forms a salt-bridge with the C-terminal carboxyl group only in thermophilic acylphosphatases, but not in mesophilic acylphosphatases. We perturbed the local rigidity of this active-site residue by removing the salt-bridge in the thermophilic acylphosphatase and by introducing the salt-bridge in the mesophilic homologue. The mutagenesis design was confirmed by x-ray crystallography. Removing the salt-bridge in the thermophilic enzyme lowered the activation energy that decreased the activation enthalpy and entropy. Conversely, the introduction of the salt-bridge to the mesophilic homologue increased the activation energy and resulted in increases in both activation enthalpy and entropy. Revealed by molecular dynamics simulations, the unrestrained arginine residue can populate more rotamer conformations, and the loss of this conformational freedom upon the formation of transition state justified the observed reduction in activation entropy. Conclusions Our results support the conclusion that restricting the active-site flexibility entropically favors the enzymatic activity at high temperatures. However, the accompanying enthalpy-entropy compensation leads to a stronger temperature-dependency of the enzymatic activity, which explains the less active nature of the thermophilic enzymes at low temperatures. PMID:21423654

  18. A rigidifying salt-bridge favors the activity of thermophilic enzyme at high temperatures at the expense of low-temperature activity.

    PubMed

    Lam, Sonia Y; Yeung, Rachel C Y; Yu, Tsz-Ha; Sze, Kong-Hung; Wong, Kam-Bo

    2011-03-01

    Thermophilic enzymes are often less active than their mesophilic homologues at low temperatures. One hypothesis to explain this observation is that the extra stabilizing interactions increase the rigidity of thermophilic enzymes and hence reduce their activity. Here we employed a thermophilic acylphosphatase from Pyrococcus horikoshii and its homologous mesophilic acylphosphatase from human as a model to study how local rigidity of an active-site residue affects the enzymatic activity. Acylphosphatases have a unique structural feature that its conserved active-site arginine residue forms a salt-bridge with the C-terminal carboxyl group only in thermophilic acylphosphatases, but not in mesophilic acylphosphatases. We perturbed the local rigidity of this active-site residue by removing the salt-bridge in the thermophilic acylphosphatase and by introducing the salt-bridge in the mesophilic homologue. The mutagenesis design was confirmed by x-ray crystallography. Removing the salt-bridge in the thermophilic enzyme lowered the activation energy that decreased the activation enthalpy and entropy. Conversely, the introduction of the salt-bridge to the mesophilic homologue increased the activation energy and resulted in increases in both activation enthalpy and entropy. Revealed by molecular dynamics simulations, the unrestrained arginine residue can populate more rotamer conformations, and the loss of this conformational freedom upon the formation of transition state justified the observed reduction in activation entropy. Our results support the conclusion that restricting the active-site flexibility entropically favors the enzymatic activity at high temperatures. However, the accompanying enthalpy-entropy compensation leads to a stronger temperature-dependency of the enzymatic activity, which explains the less active nature of the thermophilic enzymes at low temperatures.

  19. Temperature effects on quasi-isolated conjugated polymers as revealed by temperature-dependent optical spectra of 16-mer oligothiophene diluted in a sold matrix.

    PubMed

    Kanemoto, Katsuichi; Akai, Ichiro; Sugisaki, Mitsuru; Hashimoto, Hideki; Karasawa, Tsutomu; Negishi, Nobukazu; Aso, Yoshio

    2009-06-21

    Temperature dependences (4-300 K) of photoluminescence (PL) and absorption spectra of 16-mer oligothiophene (16 T) extremely diluted in polypropylene (PP) have been investigated in order to clarify temperature effects on quasi-isolated conjugated polymers. The PL and absorption spectra are found to blueshift with increasing temperature. The reason for the blueshift is discussed by comparing models based on the refractive index of the solvent (PP) and on the thermal conformational change of 16 T. The blueshift is concluded to result from the thermal conformational change. Time-resolved PL spectra show a redshift of PL band following photoexcitation (spectral migration). The amount of the migration is shown to increase with increasing temperature. The increased migration is concluded to be due to the thermal conformational change. The temperature dependence of the effective conjugation length (ECL) of 16 T is calculated for the absorption and PL transitions. The calculation suggests that ECL is reduced at room temperature to two-thirds of the intrinsic chain length. The activation energy of the conformational change is estimated to be 22.4 meV from the temperature dependence of ECL. We demonstrate that the steady-state PL spectra are well reproduced by simple Franck-Condon analyses using a single Huang-Ryes factor over a wide temperature range. The analyses reveal features of temperature dependence in important spectral parameters such as the Stokes shift, linewidth, and Huang-Ryes factor.

  20. Temperature-dependent photoluminescence in meso-porous MCM nanotubes

    NASA Astrophysics Data System (ADS)

    Lee, Y. C.; Liu, Y. L.; Lee, W. Z.; Wang, C. K.; Shen, J. L.; Cheng, P. W.; Cheng, C. F.; Lin, T. Y.

    2004-11-01

    Temperature-dependent photoluminescence (PL) was exploited to investigate the mechanism of luminescence of MCM (Mobil Composition of Matter)-41 and MCM-48 nanotubes. The PL intensity has a maximum around 40 K. Localization of the carriers involved in the radiative recombination was deduced from the PL decay profiles at various energies. A model based on competition between radiative recombination of localized carriers and nonradiative recombination is suggested to explain the temperature-dependence of PL intensity.

  1. Temperature and pressure dependences of kimberlite melts viscosity (experimental-theoretical study)

    NASA Astrophysics Data System (ADS)

    Persikov, Eduard; Bykhtiyarov, Pavel; Cokol, Alexsander

    2016-04-01

    Experimental data on temperature and pressure dependences of viscosity of model kimberlite melts (silicate 82 + carbonate 18, wt. %, 100NBO/T = 313) have been obtained for the first time at 100 MPa of CO2 pressure and at the lithostatic pressures up to 7.5 GPa in the temperature range 1350 oC - 1950 oC using radiation high gas pressure apparatus and press free split-sphere multi - anvil apparatus (BARS). Experimental data obtained on temperature and pressure dependences of viscosity of model kimberlite melts at moderate and high pressures is compared with predicted data on these dependences of viscosity of basaltic melts (100NBO/T = 58) in the same T, P - range. Dependences of the viscosity of model kimberlite and basaltic melts on temperature are consistent to the exponential Arrenian equation in the T, P - range of experimental study. The correct values of activation energies of viscous flow of kimberlite melts have been obtained for the first time. The activation energies of viscous flow of model kimberlite melts exponentially increase with increasing pressure and are equal: E = 130 ± 1.3 kJ/mole at moderate pressure (P = 100 MPa) and E = 160 ± 1.6 kJ/mole at high pressure (P = 5.5 GPa). It has been established too that the viscosity of model kimberlite melts exponentially increases on about half order of magnitude with increasing pressures from 100 MPa to 7.5 GPa at the isothermal condition (1800 oC). It has been established that viscosity of model kimberlite melts at the moderate pressure (100 MPa) is lover on about one order of magnitude to compare with the viscosity of basaltic melts, but at high pressure range (5.5 - 7.5 GPa), on the contrary, is higher on about half order of magnitude at the same values of the temperatures. Here we use both a new experimental data on viscosity of kimberlite melts and our structural chemical model for calculation and prediction the viscosity of magmatic melts [1] to determine the fundamental features of viscosity of

  2. On the Temperature Dependence of Enzyme-Catalyzed Rates.

    PubMed

    Arcus, Vickery L; Prentice, Erica J; Hobbs, Joanne K; Mulholland, Adrian J; Van der Kamp, Marc W; Pudney, Christopher R; Parker, Emily J; Schipper, Louis A

    2016-03-29

    One of the critical variables that determine the rate of any reaction is temperature. For biological systems, the effects of temperature are convoluted with myriad (and often opposing) contributions from enzyme catalysis, protein stability, and temperature-dependent regulation, for example. We have coined the phrase "macromolecular rate theory (MMRT)" to describe the temperature dependence of enzyme-catalyzed rates independent of stability or regulatory processes. Central to MMRT is the observation that enzyme-catalyzed reactions occur with significant values of ΔCp(‡) that are in general negative. That is, the heat capacity (Cp) for the enzyme-substrate complex is generally larger than the Cp for the enzyme-transition state complex. Consistent with a classical description of enzyme catalysis, a negative value for ΔCp(‡) is the result of the enzyme binding relatively weakly to the substrate and very tightly to the transition state. This observation of negative ΔCp(‡) has important implications for the temperature dependence of enzyme-catalyzed rates. Here, we lay out the fundamentals of MMRT. We present a number of hypotheses that arise directly from MMRT including a theoretical justification for the large size of enzymes and the basis for their optimum temperatures. We rationalize the behavior of psychrophilic enzymes and describe a "psychrophilic trap" which places limits on the evolution of enzymes in low temperature environments. One of the defining characteristics of biology is catalysis of chemical reactions by enzymes, and enzymes drive much of metabolism. Therefore, we also expect to see characteristics of MMRT at the level of cells, whole organisms, and even ecosystems.

  3. Oviposition activity of Drosophila suzukii as mediated by ambient and fruit temperature

    PubMed Central

    2017-01-01

    The invasive pest Drosophila suzukii was introduced to southern Europe in 2008 and spread throughout Central Europe in the following years. Precise reliable data on the temperature-dependent behavior of D. suzukii are scarce but will help forecasting and cultivation techniques. Depending on physico-chemical properties, surface temperature of objects may differ from ambient temperatures, determining physical activity, and affect oviposition on or into substrate, determining preimaginal development later. Therefore, the preferred ambient temperatures of D. suzukii and fruit temperature for oviposition were examined on a linear temperature gradient device. Thirty adults (15 ♀; 15 ♂) were adapted to different temperatures (10, 20, 30°C) for six days and then exposed to different temperature gradients (10–25, 20–35, 25–40°C). D. suzukii adapted to 10°C remained in cooler regions and suffered from a significantly higher mortality at the 25–40°C gradient. Animals adapted to warmer temperatures had a wider temperature preference on the gradient device. Acclimation to lower temperatures and the resulting lower temperature preferences may allow the flies to disperse better in spring to search for oviposition sites. The oviposition activity decreased continuously at a fruit temperature above 28°C and below 15°C, with highest oviposition activity in fruits with temperatures between 19.7°C and 24.8°C. The preferred fruit temperature is in accordance with the temperature optimum of reproduction biology and preimaginal development of D. suzukii reported in the literature. PMID:29121635

  4. Temperature dependence of sapphire fiber Raman scattering

    DOE PAGES

    Liu, Bo; Yu, Zhihao; Tian, Zhipeng; ...

    2015-04-27

    Anti-Stokes Raman scattering in sapphire fiber has been observed for the first time. Temperature dependence of Raman peaks’ intensity, frequency shift, and linewidth were also measured. Three anti-Stokes Raman peaks were observed at temperatures higher than 300°C in a 0.72-m-long sapphire fiber excited by a second-harmonic Nd YAG laser. The intensity of anti-Stokes peaks are comparable to that of Stokes peaks when the temperature increases to 1033°C. We foresee the combination of sapphire fiber Stokes and anti-Stokes measurement in use as a mechanism for ultrahigh temperature sensing.

  5. Mechanism of H₂ histamine receptor dependent modulation of body temperature and neuronal activity in the medial preoptic nucleus.

    PubMed

    Tabarean, Iustin V; Sanchez-Alavez, Manuel; Sethi, Jasmine

    2012-08-01

    Histamine is involved in the central control of arousal, circadian rhythms and metabolism. The preoptic area, a region that contains thermoregulatory neurons is the main locus of histamine modulation of body temperature. Here we report that in mice, histamine activates H(2) subtype receptors in the medial preoptic nucleus (MPON) and induces hyperthermia. We also found that a population of glutamatergic MPON neurons express H(2) receptors and are excited by histamine or H(2) specific agonists. The agonists decreased the input resistance of the neuron and increased the depolarizing "sag" observed during hyperpolarizing current injections. Furthermore, at -60 mV holding potential, activation of H(2) receptors induced an inward current that was blocked by ZD7288, a specific blocker of the hyperpolarization activated cationic current (I(h)). Indeed, activation of H(2) receptors resulted in increased I(h) amplitude in response to hyperpolarizing voltage steps and a depolarizing shift in its voltage-dependent activation. The neurons excited by H(2) specific agonism expressed the HCN1 and HCN2 channel subunits. Our data indicate that at the level of the MPON histamine influences thermoregulation by increasing the firing rate of glutamatergic neurons that express H(2) receptors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Temperature-dependent internal photoemission probe for band parameters

    NASA Astrophysics Data System (ADS)

    Lao, Yan-Feng; Perera, A. G. Unil

    2012-11-01

    The temperature-dependent characteristic of band offsets at the heterojunction interface was studied by an internal photoemission (IPE) method. In contrast to the traditional Fowler method independent of the temperature (T), this method takes into account carrier thermalization and carrier/dopant-induced band-renormalization and band-tailing effects, and thus measures the band-offset parameter at different temperatures. Despite intensive studies in the past few decades, the T dependence of this key band parameter is still not well understood. Re-examining a p-type doped GaAs emitter/undoped AlxGa1-xAs barrier heterojunction system disclosed its previously ignored T dependency in the valence-band offset, with a variation up to ˜-10-4 eV/K in order to accommodate the difference in the T-dependent band gaps between GaAs and AlGaAs. Through determining the Fermi energy level (Ef), IPE is able to distinguish the impurity (IB) and valence bands (VB) of extrinsic semiconductors. One important example is to determine Ef of dilute magnetic semiconductors such as GaMnAs, and to understand whether it is in the IB or VB.

  7. Quasipermanent magnets of high temperature superconductor - Temperature dependence

    NASA Technical Reports Server (NTRS)

    Chen, In-Gann; Liu, Jianxiong; Ren, Yanru; Weinstein, Roy; Kozlowski, Gregory; Oberly, Charles E.

    1993-01-01

    We report on persistent field in quasi-permanent magnets of high temperature superconductors. Magnets composed of irradiated Y(1+)Ba2Cu3O7 trapped field Bt = 1.52 T at 77 K and 1.9 T at lower temperature. However, the activation magnet limited Bt at lower temperature. We present data on Jc(H,T) for unirradiated materials, and calculate Bt at various T. Based upon data at 65 K, we calculate Bt in unirradiated single grains at 20 K and find that 5.2 T will be trapped for grain diameter d about 1.2 cm, and 7.9 T for d = 2.3 cm. Irradiated grains will trap four times these values.

  8. Patterns of activity and body temperature of Aldabra giant tortoises in relation to environmental temperature.

    PubMed

    Falcón, Wilfredo; Baxter, Rich P; Furrer, Samuel; Bauert, Martin; Hatt, Jean-Michel; Schaepman-Strub, Gabriela; Ozgul, Arpat; Bunbury, Nancy; Clauss, Marcus; Hansen, Dennis M

    2018-02-01

    We studied the temperature relations of wild and zoo Aldabra giant tortoises ( Aldabrachelys gigantea ) focusing on (1) the relationship between environmental temperature and tortoise activity patterns ( n  = 8 wild individuals) and (2) on tortoise body temperature fluctuations, including how their core and external body temperatures vary in relation to different environmental temperature ranges (seasons; n  = 4 wild and n  = 5 zoo individuals). In addition, we surveyed the literature to review the effect of body mass on core body temperature range in relation to environmental temperature in the Testudinidae. Diurnal activity of tortoises was bimodally distributed and influenced by environmental temperature and season. The mean air temperature at which activity is maximized was 27.9°C, with a range of 25.8-31.7°C. Furthermore, air temperature explained changes in the core body temperature better than did mass, and only during the coldest trial, did tortoises with higher mass show more stable temperatures. Our results, together with the overall Testudinidae overview, suggest that, once variation in environmental temperature has been taken into account, there is little effect of mass on the temperature stability of tortoises. Moreover, the presence of thermal inertia in an individual tortoise depends on the environmental temperatures, and we found no evidence for inertial homeothermy. Finally, patterns of core and external body temperatures in comparison with environmental temperatures suggest that Aldabra giant tortoises act as mixed conformer-regulators. Our study provides a baseline to manage the thermal environment of wild and rewilded populations of an important island ecosystem engineer species in an era of climate change.

  9. Thermally activated TRP channels: molecular sensors for temperature detection.

    PubMed

    Castillo, Karen; Diaz-Franulic, Ignacio; Canan, Jonathan; Gonzalez-Nilo, Fernando; Latorre, Ramon

    2018-01-24

    Temperature sensing is one of the oldest capabilities of living organisms, and is essential for sustaining life, because failure to avoid extreme noxious temperatures can result in tissue damage or death. A subset of members of the transient receptor potential (TRP) ion channel family is finely tuned to detect temperatures ranging from extreme cold to noxious heat, giving rise to thermoTRP channels. Structural and functional experiments have shown that thermoTRP channels are allosteric proteins, containing different domains that sense changes in temperature, among other stimuli, triggering pore opening. Although temperature-dependence is well characterized in thermoTRP channels, the molecular nature of temperature-sensing elements remains unknown. Importantly, thermoTRP channels are involved in pain sensation, related to pathological conditions. Here, we provide an overview of thermoTRP channel activation. We also discuss the structural and functional evidence supporting the existence of an intrinsic temperature sensor in this class of channels, and we explore the basic thermodynamic principles for channel activation. Finally, we give a view of their role in painful pathophysiological conditions.

  10. Investigations of Low Temperature Time Dependent Cracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van der Sluys, W A; Robitz, E S; Young, B A

    2002-09-30

    The objective of this project was to investigate metallurgical and mechanical phenomena associated with time dependent cracking of cold bent carbon steel piping at temperatures between 327 C and 360 C. Boiler piping failures have demonstrated that understanding the fundamental metallurgical and mechanical parameters controlling these failures is insufficient to eliminate it from the field. The results of the project consisted of the development of a testing methodology to reproduce low temperature time dependent cracking in laboratory specimens. This methodology was used to evaluate the cracking resistance of candidate heats in order to identify the factors that enhance cracking sensitivity.more » The resultant data was integrated into current available life prediction tools.« less

  11. Modeling temperature dependent singlet exciton dynamics in multilayered organic nanofibers

    NASA Astrophysics Data System (ADS)

    de Sousa, Leonardo Evaristo; de Oliveira Neto, Pedro Henrique; Kjelstrup-Hansen, Jakob; da Silva Filho, Demétrio Antônio

    2018-05-01

    Organic nanofibers have shown potential for application in optoelectronic devices because of the tunability of their optical properties. These properties are influenced by the electronic structure of the molecules that compose the nanofibers and also by the behavior of the excitons generated in the material. Exciton diffusion by means of Förster resonance energy transfer is responsible, for instance, for the change with temperature of colors in the light emitted by systems composed of different types of nanofibers. To study in detail this mechanism, we model temperature dependent singlet exciton dynamics in multilayered organic nanofibers. By simulating absorption and emission spectra, the possible Förster transitions are identified. Then, a kinetic Monte Carlo model is employed in combination with a genetic algorithm to theoretically reproduce time-resolved photoluminescence measurements for several temperatures. This procedure allows for the obtainment of different information regarding exciton diffusion in such a system, including temperature effects on the Förster transfer efficiency and the activation energy of the Förster mechanism. The method is general and may be employed for different systems where exciton diffusion plays a role.

  12. Emission mechanisms in stabilized iron-passivated porous silicon: Temperature and laser power dependences

    NASA Astrophysics Data System (ADS)

    Rahmani, M.; Moadhen, A.; Mabrouk Kamkoum, A.; Zaïbi, M.-A.; Chtourou, R.; Haji, L.; Oueslati, M.

    2012-02-01

    Photoluminescence (PL) measurements of porous silicon (PS) and iron-porous silicon nanocomposites (PS/Fe) with stable optical properties versus temperature and laser power density have been investigated. The presence of iron in PS matrix is confirmed by Raman spectroscopy. The PL intensity of PS and PS/Fe increases at low temperature, the evolution of integrated PL intensity follows the modified Arrhenius model. The incorporation of iron in PS matrix reduces the activation energy traducing the existence of shallow levels related to iron atoms. Also, the temperature dependence of the porous silicon PL peak position follows a linear evolution at high temperature and a quadratic one at low temperature. Such evolution is due to the thermal carriers' redistribution and an energy transfer. Similarly, we have compared the laser power dependence of the PL in PS and PS/Fe layers. The results prove that the recombination process in PS is realised through the lower energy traps localised in the electronic gap. However, the observed emission in PS/Fe is essentially due to direct transitions. So, we can conclude that the presence of iron in PS matrix induces a strong modification of the PL mechanisms.

  13. Temperature-dependent surface density of alkylthiol monolayers on gold nanocrystals

    NASA Astrophysics Data System (ADS)

    Liu, Xuepeng; Lu, Pin; Zhai, Hua; Wu, Yucheng

    2018-03-01

    Atomistic molecular dynamics (MD) simulations are performed to study the surface density of passivating monolayers of alkylthiol chains on gold nanocrystals at temperatures ranging from 1 to 800 K. The results show that the surface density of alkylthiol monolayer reaches a maximum value at near room temperature (200-300 K), while significantly decreases with increasing temperature in the higher temperature region (> 300 {{K}}), and slightly decreases with decreasing temperature at low temperature (< 200 {{K}}). We find that the temperature dependence of surface ligand density in the higher temperature region is attributed to the substantial ligand desorption induced by the thermal fluctuation, while that at low temperature results from the reduction in entropy caused by the change in the ordering of passivating monolayer. These results are expected helpful to understand the temperature-dependent surface coverage of gold nanocrystals.

  14. Geomagnetic activity signature in seasonal variations of mesopause temperature over Yakutia

    NASA Astrophysics Data System (ADS)

    Gavrilyeva, G. A.; Ammosov, P. P.; Ammosova, A. M.; Koltovskoi, I. I.; Sivtseva, V. I.

    2017-11-01

    Research of the seasonal change of mesopause temperature at height of nightglow of hydroxyl excited molecules and its correlation with geomagnetic activity during the 23 solar cycle is presented. An infrared digital spectrograph installed at the Maimaga station (63°N, 129.5°E) measured P-branches of the OH(6-2) band. The rotational temperature of OH emission (TOH) is assumed to be equal to the neutral atmosphere temperature at the altitude of 87 km. The database of TOH comprises 2864 nightly average temperatures obtained from August 1999 to May 2015 is considered. The observation starts at the beginning of August and ends in the middle of May. It was revealed that the maximum flux of radio emission from the Sun with a wavelength of 10.7 cm is 2 years ahead of the maximum of seasonally averaged temperature. Temperature is correlated with a change of Ap-index which is a measure of geomagnetic activity. Nightly mean TOH were grouped in accordance with the geomagnetic activity level: the temperatures measured during years with a high activity (Ap> 8), and low activity (Ap <= 8). It was found that the mesopause temperature from October to February is higher by a factor of about ·10 K than during years with low activity (Ap <= 8). There is no dependence of the TOH on the level of geomagnetic activity in autumn and spring.

  15. Temperature dependence of electrical characteristics of Pt/GaN Schottky diode fabricated by UHV e-beam evaporation.

    PubMed

    Kumar, Ashish; Arafin, Shamsul; Amann, Markus Christian; Singh, Rajendra

    2013-11-15

    Temperature-dependent electrical characterization of Pt/n-GaN Schottky barrier diodes prepared by ultra high vacuum evaporation has been done. Analysis has been made to determine the origin of the anomalous temperature dependence of the Schottky barrier height, the ideality factor, and the Richardson constant calculated from the I-V-T characteristics. Variable-temperature Hall effect measurements have been carried out to understand charge transport at low temperature. The modified activation energy plot from the barrier inhomogeneity model has given the value of 32.2 A/(cm2 K2) for the Richardson constant A** in the temperature range 200 to 380 K which is close to the known value of 26.4A/(cm2 K2) for n-type GaN.

  16. The temperature dependent amide I band of crystalline acetanilide

    NASA Astrophysics Data System (ADS)

    Cruzeiro, Leonor; Freedman, Holly

    2013-10-01

    The temperature dependent anomalous peak in the amide I band of crystalline acetanilide is thought to be due to self-trapped states. On the contrary, according to the present model, the anomalous peak comes from the fraction of ACN molecules strongly hydrogen-bonded to a neighboring ACN molecule, and its intensity decreases because, on average, this fraction decreases as temperature increases. This model provides, for the first time, an integrated and theoretically consistent view of the temperature dependence of the full amide I band and a qualitative explanation of some of the features of nonlinear pump-probe experiments.

  17. Temperature-dependent Study of Isobutanol Decomposition

    DTIC Science & Technology

    2012-11-01

    dimensional Al2O3 alumina CO2 carbon dioxide FTIR Fourier transform infrared Pd palladium Rh rhodium TPD temperature-programmed desorption TPO...that increasing temperature promotes aldehyde formation on the surface of each catalyst. In addition, it is shown that palladium (Pd) activates the...formation of aldehydes and CO2 at a lower temperature than a rhodium (Rh) catalyst. 15. SUBJECT TERMS Isobutanol, FTIR, spectroscopy 16. SECURITY

  18. Temperature dependence of rat liver mitochondrial respiration with uncoupling of oxidative phosphorylation by fatty acids. Influence of inorganic phosphate.

    PubMed

    Samartsev, V N; Chezganova, S A; Polishchuk, L S; Paydyganov, A P; Vidyakina, O V; Zeldi, I P

    2003-06-01

    The respiration rate of liver mitochondria in the course of succinate oxidation depends on temperature in the presence of palmitate more strongly than in its absence (in state 4). In the Arrhenius plot, the temperature dependence of the palmitate-induced stimulation of respiration has a bend at 22 degrees C which is characterized by transition of the activation energy from 120 to 60 kJ/mol. However, a similar dependence of respiration in state 4 is linear over the whole temperature range and corresponds to the activation energy of 17 kJ/mol. Phosphate partially inhibits the uncoupling effect of palmitate. This effect of phosphate is increased on decrease in temperature. In the presence of phosphate the temperature dependence in the Arrhenius plot also has a bend at 22 degrees C, and the activation energy increases from 128 to 208 kJ/mol in the range from 13 to 22 degrees C and from 56 to 67 kJ/mol in the range from 22 to 37 degrees C. Mersalyl (10 nmol/mg protein), an inhibitor of the phosphate carrier, similarly to phosphate, suppresses the uncoupling effect of laurate, and the effects of mersalyl and phosphate are not additive. The recoupling effects of phosphate and mersalyl seem to show involvement of the phosphate carrier in the uncoupling effect of fatty acids in liver mitochondria. Possible mechanisms of involvement of the phosphate carrier in the uncoupling effect of fatty acids are discussed.

  19. Temperature-dependent absorption cross sections for hydrogen peroxide vapor

    NASA Technical Reports Server (NTRS)

    Nicovich, J. M.; Wine, P. H.

    1988-01-01

    Relative absorption cross sections for hydrogen peroxide vapor were measured over the temperature ranges 285-381 K for lambda = 230 nm-295 nm and 300-381 K for lambda = 193 nm-350 nm. The well established 298 K cross sections at 202.6 and 228.8 nm were used as an absolute calibration. A significant temperature dependence was observed at the important tropospheric photolysis wavelengths lambda over 300 nm. Measured cross sections were extrapolated to lower temperatures, using a simple model which attributes the observed temperature dependence to enhanced absorption by molecules possessing one quantum of O-O stretch vibrational excitation. Upper tropospheric photodissociation rates calculated using the extrapolated cross sections are about 25 percent lower than those calculated using currently recommended 298 K cross sections.

  20. Oxygen consumption and body temperature of active and resting honeybees.

    PubMed

    Stabentheiner, Auton; Vollmann, Jutta; Kovac, Helmut; Crailsheim, Karl

    2003-09-01

    We measured the energy turnover (oxygen consumption) of honeybees (Apis mellifera carnica), which were free to move within Warburg vessels. Oxygen consumption of active bees varied widely depending on ambient temperature and level of activity, but did not differ between foragers (>18 d) and middle-aged hive bees (7-10 d). In highly active bees, which were in an endothermic state ready for flight, it decreased almost linearly, from a maximum of 131.4 microl O(2) min(-1) at 15 degrees C ambient temperature to 81.1 microl min(-1) at 25 degrees C, and reached a minimum of 29.9 microl min(-1) at 40 degrees C. In bees with low activity, it decreased from 89.3 microl O(2) min(-1) at 15 degrees C to 47.9 microl min(-1) at 25 degrees C and 14.7 microl min(-1) at 40 degrees C. Thermographic measurements of body temperature showed that with increasing activity, the bees invested more energy to regulate the thorax temperature at increasingly higher levels (38.8-41.2 degrees C in highly active bees) and were more accurate. Resting metabolism was determined in young bees of 1-7 h age, which are not yet capable of endothermic heat production with their flight muscles. Their energy turnover increased from 0.21 microl O(2) min(-1) at 10 degrees C to 0.38 microl min(-1) at 15 degrees C, 1.12 microl min(-1) at 25 degrees C, and 3.03 microl min(-1) at 40 degrees C. At 15, 25 and 40 degrees C, this was 343, 73 and 10 times below the values of the highly active bees, respectively. The Q(10) value of the resting bees, however, was not constant but varied in a U-shaped manner with ambient temperature. It decreased from 4.24 in the temperature range 11-21 degrees C to 1.35 in the range 21-31 degrees C, and increased again to 2.49 in the range 30-40 degrees C. We conclude that attempts to describe the temperature dependence of the resting metabolism of honeybees by Q(10) values can lead to considerable errors if the measurements are performed at only two temperatures. An acceptable

  1. The temperature dependence of ponded infiltration under isothermal conditions

    USGS Publications Warehouse

    Constantz, J.; Murphy, F.

    1991-01-01

    A simple temperature-sensitive modification to the Green and Ampt infiltration equation is described; this assumes that the temperature dependence of the hydraulic conductivity is reciprocally equal to the temperature dependence of the viscosity of liquid water, and that both the transmission zone saturation and the wetting front matric potential gradient are independent of temperature. This modified Green and Ampt equation is compared with ponded, isothermal infiltration experiments run on repacked columns of Olympic Sand and Aiken Loam at 5, 25, and 60??C. Experimental results showed increases in infiltration rates of at least 300% between 5 and 60??C for both soil materials, with subsequent increases in cumulative infiltration of even greater magnitudes for the loam. There is good agreement between measured and predicted initial infiltration rates at 25??C for both soil materials, yet at 60??C, the predicted results overestimate initial infiltration rates for the sand and underestimate initial rates for the loam. Measurements of the wetting depth vs. cumulative infiltration indicate that the transmission zone saturation increased with increasing temperature for both soil materials. In spite of this increased saturation with temperature, the final infiltration rates at both 25 and 60??C were predicted accurately using the modified Green and Ampt equation. This suggests that increased saturation occurred primarily in dead-end pore spaces, so that transmission zone hydraulic conductivities were unaffected by these temperature-induced changes in saturation. In conclusion, except for initial infiltration rates at 60??C, the measured influence of temperature on infiltration rates was fully accounted for by the temperature dependence of the viscosity of liquid water. ?? 1991.

  2. relA-dependent RNA polymerase activity in Escherichia coli.

    PubMed Central

    Ryals, J; Bremer, H

    1982-01-01

    Parameters relating to RNA synthesis were measured after a temperature shift from 30 to 42 degrees C, in a relA+ and relA- isogenic pair of Escherichia coli strains containing a temperature-sensitive valyl tRNA synthetase. The following results were obtained: (i) the rRNA chain growth rate increased 2-fold in both strains; (ii) newly synthesized rRNA became unstable in both strains; (iii) the stable RNA gene activity (rRNA and tRNA, measured as stable RNA synthesis rate relative to the total instantaneous rate of RNA synthesis) decreased 1.7-fold in the relA+ strain and increased 1.9-fold in the relA mutant; and (iv) the RNA polymerase activity (measured by the percentage of total RNA polymerase enzyme active in transcription an any instant) decreased from 20 to 3.6% in the relA+ strain and remained unchanged (or increased at most to 22%) in the relA mutant. It is suggested that both rRNA gene activity and the RNA polymerase activity depend on the intracellular concentration of guanosine tetraphosphate, whereas the altered chain elongation rate and stability of rRNA are temperature or amino acid starvation effects, respectively, without involvement of relA function. PMID:6174501

  3. Temperature Dependent Electron Transport Properties of Gold Nanoparticles and Composites: Scanning Tunneling Spectroscopy Investigations.

    PubMed

    Patil, Sumati; Datar, Suwarna; Dharmadhikari, C V

    2018-03-01

    Scanning tunneling spectroscopy (STS) is used for investigating variations in electronic properties of gold nanoparticles (AuNPs) and its composite with urethane-methacrylate comb polymer (UMCP) as function of temperature. Films are prepared by drop casting AuNPs and UMCP in desired manner on silicon substrates. Samples are further analyzed for morphology under scanning electron microscopy (SEM) and atomic force microscopy (AFM). STS measurements performed in temperature range of 33 °C to 142 °C show systematic variation in current versus voltage (I-V) curves, exhibiting semiconducting to metallic transition/Schottky behavior for different samples, depending upon preparation method and as function of temperature. During current versus time (I-t) measurement for AuNPs, random telegraphic noise is observed at room temperature. Random switching of tunneling current between two discrete levels is observed for this sample. Power spectra derived from I-t show 1/f2 dependence. Statistical analysis of fluctuations shows exponential behavior with time width τ ≈ 7 ms. Local density of states (LDOS) plots derived from I-V curves of each sample show systematic shift in valance/conduction band edge towards/away from Fermi level, with respect to increase in temperature. Schottky emission is best fitted electron emission mechanism for all samples over certain range of bias voltage. Schottky plots are used to calculate barrier heights and temperature dependent measurements helped in measuring activation energies for electron transport in all samples.

  4. Fracture strength of the particulate-reinforced ultra-high temperature ceramics based on a temperature dependent fracture toughness model

    NASA Astrophysics Data System (ADS)

    Wang, Ruzhuan; Li, Weiguo; Ji, Baohua; Fang, Daining

    2017-10-01

    The particulate-reinforced ultra-high temperature ceramics (pUHTCs) have been particularly developed for fabricating the leading edge and nose cap of hypersonic vehicles. They have drawn intensive attention of scientific community for their superior fracture strength at high temperatures. However, there is no proper model for predicting the fracture strength of the ceramic composites and its dependency on temperature. In order to account for the effect of temperature on the fracture strength, we proposed a concept called energy storage capacity, by which we derived a new model for depicting the temperature dependent fracture toughness of the composites. This model gives a quantitative relationship between the fracture toughness and temperature. Based on this temperature dependent fracture toughness model and Griffith criterion, we developed a new fracture strength model for predicting the temperature dependent fracture strength of pUHTCs at different temperatures. The model takes into account the effects of temperature, flaw size and residual stress without any fitting parameters. The predictions of the fracture strength of pUHTCs in argon or air agreed well with the experimental measurements. Additionally, our model offers a mechanism of monitoring the strength of materials at different temperatures by testing the change of flaw size. This study provides a quantitative tool for design, evaluation and monitoring of the fracture properties of pUHTCs at high temperatures.

  5. Temperature dependence of the Raman spectrum of UO2

    NASA Astrophysics Data System (ADS)

    Elorrieta, J. M.; Bonales, L. J.; Baonza, V. G.; Cobos, J.

    2018-05-01

    The position of the main spectral features (located at ∼445, ∼575, ∼625, ∼925 and ∼1145 cm-1) in the Raman spectrum of UO2 has been examined from room temperature up to 600 °C. The wavenumber shifts measured for the observed bands have allowed us to obtain the temperature dependence (dω/dT) of the different vibrational modes. Our measurements corroborate the assignment of the band observed at ∼1145 cm-1 to the 2LO overtone. In addition, the temperature dependence of the bandwidths of the T2g and 2LO modes has been analysed.

  6. Temperature dependence of the ClONO2 UV absorption spectrum

    NASA Technical Reports Server (NTRS)

    Burkholder, James B.; Talukdar, Ranajit K.; Ravishankara, A. R.

    1994-01-01

    The temperature dependence of the ClONO2 absorption spectrum has been measured between 220 and 298 K and between 195 and 430 nm using a diode array spectrometer. The absorption cross sections were determined using both: (1) absolute pressure measurements at 296 K and (2) measurements at various temperatures relative to 296 K using a dual absorption cell arrangement. The temperature dependence of the ClONO2 absorption spectrum shows very broad structure. The amplitude of the temperature dependence relative to that at 296 K is weak at short wavelengths, less than 2% at 215 nm and 220 K, but significant at the wavelengths important in the stratosphere, about 30% at 325 nm and 220 K. Our ClONO2 absorption cross section data are in good general agreement with the previous measurements of Molina and Molina (1979).

  7. Temperature dependence of the electrode kinetics of oxygen reduction at the platinum/Nafion interface - A microelectrode investigation

    NASA Technical Reports Server (NTRS)

    Parthasarathy, Arvind; Srinivasan, Supramanian; Appleby, A. J.; Martin, Charles R.

    1992-01-01

    Results of a study of the temperature dependence of the oxygen reduction kinetics at the Pt/Nafion interface are presented. This study was carried out in the temperature range of 30-80 C and at 5 atm of oxygen pressure. The results showed a linear increase of the Tafel slope with temperature in the low current density region, but the Tafel slope was found to be independent of temperature in the high current density region. The values of the activation energy for oxygen reduction at the platinum/Nafion interface are nearly the same as those obtained at the platinum/trifluoromethane sulfonic acid interface but less than values obtained at the Pt/H3PO4 and Pt/HClO4 interfaces. The diffusion coefficient of oxygen in Nafion increases with temperature while its solubility decreases with temperature. These temperatures also depend on the water content of the membrane.

  8. Mechanism of H2 histamine receptor dependent modulation of body temperature and neuronal activity in the medial preoptic nucleus

    PubMed Central

    Tabarean, Iustin V.; Sanchez-Alavez, Manuel; Sethi, Jasmine

    2012-01-01

    Histamine is involved in the central control of arousal, circadian rhythms and metabolism. The preoptic area, a region that contains thermoregulatory neurons is the main locus of histamine modulation of body temperature. Here we report that in mice histamine activates H2 subtype receptors in the medial preoptic nucleus (MPON) and induces hyperthermia. We also found that a population of glutamatergic MPON neurons express H2 receptors and are excited by histamine or H2 specific agonists. The agonists decreased the input resistance of the neuron and increased the depolarizing “sag” observed during hyperpolarizing current injections. Furthermore, at −60 mV holding potential activation of H2 receptors induced an inward current that was blocked by ZD7288, a specific blocker of the hyperpolarization activated cationic current (Ih). Indeed, activation of H2 receptors resulted in increased Ih amplitude in response to hyperpolarizing voltage steps and a depolarizing shift in its voltage-dependent activation. The neurons excited by H2 specific agonism expressed the HCN1 and HCN2 channel subunits. Our data indicate that at the level of the MPON histamine influences thermoregulation by increasing the firing rate of glutamatergic neurons that express H2 receptors. PMID:22366077

  9. Temperature Dependence of Viscosities of Common Carrier Gases

    ERIC Educational Resources Information Center

    Sommers, Trent S.; Nahir, Tal M.

    2005-01-01

    Theoretical and experimental evidence for the dependence of viscosities of the real gases on temperature is described, suggesting that this dependence is greater than that predicted by the kinetic theory of gases. The experimental results were obtained using common modern instrumentation and could be reproduced by students in analytical or…

  10. Temperature-dependent liquid metal flowrate control device

    DOEpatents

    Carlson, Roger D.

    1978-01-01

    A temperature-dependent liquid metal flowrate control device includes a magnet and a ferromagnetic member defining therebetween a flow path for liquid metal, the ferromagnetic member being formed of a material having a curie temperature at which a change in the flow rate of the liquid metal is desired. According to the preferred embodiment the magnet is a cylindrical rod magnet axially disposed within a cylindrical member formed of a curie material and having iron pole pieces at the ends. A cylindrical iron shunt and a thin wall stainless steel barrier are disposed in the annulus between magnet and curie material. Below the curie temperature flow between steel barrier and curie material is impeded and above the curie temperature flow impedance is reduced.

  11. Multiaxial Temperature- and Time-Dependent Failure Model

    NASA Technical Reports Server (NTRS)

    Richardson, David; McLennan, Michael; Anderson, Gregory; Macon, David; Batista-Rodriquez, Alicia

    2003-01-01

    A temperature- and time-dependent mathematical model predicts the conditions for failure of a material subjected to multiaxial stress. The model was initially applied to a filled epoxy below its glass-transition temperature, and is expected to be applicable to other materials, at least below their glass-transition temperatures. The model is justified simply by the fact that it closely approximates the experimentally observed failure behavior of this material: The multiaxiality of the model has been confirmed (see figure) and the model has been shown to be applicable at temperatures from -20 to 115 F (-29 to 46 C) and to predict tensile failures of constant-load and constant-load-rate specimens with failure times ranging from minutes to months..

  12. ABA-dependent inhibition of the ubiquitin proteasome system during germination at high temperature in Arabidopsis.

    PubMed

    Chiu, Rex Shun; Pan, Shiyue; Zhao, Rongmin; Gazzarrini, Sonia

    2016-12-01

    During germination, endogenous and environmental factors trigger changes in the transcriptome, translatome and proteome to break dormancy. In Arabidopsis thaliana, the ubiquitin proteasome system (UPS) degrades proteins that promote dormancy to allow germination. While research on the UPS has focused on the identification of proteasomal substrates, little information is known about the regulation of its activity. Here we characterized the activity of the UPS during dormancy release and maintenance by monitoring protein ubiquitination and degradation of two proteasomal substrates: Suc-LLVY-AMC, a well characterized synthetic substrate, and FUSCA3 (FUS3), a dormancy-promoting transcription factor degraded by the 26S proteasome. Our data indicate that proteasome activity and protein ubiquitination increase during imbibition at optimal temperature (21°C), and are required for seed germination. However, abscisic acid (ABA) and supraoptimal temperature (32°C) inhibit germination by dampening both protein ubiquitination and proteasome activity. Inhibition of UPS function by high temperature is reduced by the ABA biosynthesis inhibitor, fluridone, and in ABA biosynthetic mutants, suggesting that it is ABA dependent. Accordingly, inhibition of FUS3 degradation at 32°C is also dependent on ABA. Native gels show that inhibition of proteasome activity is caused by interference with the 26S/30S ratio as well as free 19S and 20S levels, impacting the proteasome degradation cycle. Transfer experiments show that ABA-mediated inhibition of proteasome activity at 21°C is restricted to the first 2 days of germination, a time window corresponding to seed sensitivity to environmental and ABA-mediated growth inhibition. Our data show that ABA and high temperature inhibit germination under unfavourable growth conditions by repressing the UPS. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  13. The Influence of Wavelength-Dependent Absorption and Temperature Gradients on Temperature Determination in Laser-Heated Diamond-Anvil Cells

    NASA Astrophysics Data System (ADS)

    Deng, J.; Lee, K. K. M.; Du, Z.; Benedetti, L. R.

    2016-12-01

    In situ temperature measurements in the laser-heated diamond-anvil cell (LHDAC) are among the most fundamental experiments undertaken in high-pressure science. Despite its importance, few efforts have been made to examine the alteration of thermal radiation spectra of hot samples by wavelength-dependent absorption of the sample itself together with temperature gradients within samples while laser heating and their influence on temperature measurement. For example, iron-bearing minerals show strong wavelength dependent absorption in the wavelength range used to determine temperature, which, together with temperature gradients can account for largely aliased apparent temperatures (e.g., 1200 K deviation for a 4000 K melting temperature) in some experiments obtained by fitting of detected thermal radiation intensities. As such, conclusions of melting temperatures, phase diagrams and partitioning behavior, may be grossly incorrect for these materials. In general, wavelength-dependent absorption and temperature gradients of samples are two key factors to consider in order to rigorously constrain temperatures, which have been largely ignored in previous LHDAC studies. A reevaluation of temperatures measured in recent high-profile papers will be reviewed.

  14. Temperature dependence of piezoelectric properties for textured SBN ceramics.

    PubMed

    Kimura, Masahiko; Ogawa, Hirozumi; Kuroda, Daisuke; Sawada, Takuya; Higuchi, Yukio; Takagi, Hiroshi; Sakabe, Yukio

    2007-12-01

    Temperature dependences of piezoelectric properties were studied for h001i textured ceramics of bismuth layer-structured ferroelectrics, SrBi(2)Nb(2)O(9) (SBN). The textured ceramics with varied orientation degrees were fabricated by templated, grain-growth method, and the temperature dependences of resonance frequency were estimated. Excellent temperature stability of resonance frequency was obtained for the 76% textured ceramics. The resonance frequency of the 76% textured specimens varied almost linearly over a wide temperature range. Therefore, the variation was slight, even in a high temperature region above 150 degrees C. Temperature stability of a quartz crystal oscillator is generally higher than that of a ceramic resonator around room temperature. The variation of resonance frequency for the 76% textured SrBi(2)Nb(2)O(9) was larger than that of oscillation frequency for a typical quartz oscillator below 150 degrees C also in this study. However, the variation of the textured SrBi(2)Nb(2)O(9) was smaller than that of the quartz oscillator over a wide temperature range from -50 to 250 degrees C. Therefore, textured SrBi(2)Nb(2)O(9) ceramics is a major candidate material for the resonators used within a wide temperature range.

  15. Describing Temperature-Dependent Self-Diffusion Coefficients and Fluidity of 1- and 3-Alcohols with the Compensated Arrhenius Formalism.

    PubMed

    Fleshman, Allison M; Forsythe, Grant E; Petrowsky, Matt; Frech, Roger

    2016-09-22

    The location of the hydroxyl group in monohydroxy alcohols greatly affects the temperature dependence of the liquid structure due to hydrogen bonding. Temperature-dependent self-diffusion coefficients, fluidity (the inverse of viscosity), dielectric constant, and density have been measured for several 1-alcohols and 3-alcohols with varying alkyl chain lengths. The data are modeled using the compensated Arrhenius formalism (CAF). The CAF follows a modified transition state theory using an Arrhenius-like expression to describe the transport property, which consists of a Boltzmann factor containing an energy of activation, Ea, and an exponential prefactor containing the temperature-dependent solution dielectric constant, εs(T). Both 1- and 3-alcohols show the Ea of diffusion coefficients (approximately 43 kJ mol(-1)) is higher than the Ea of fluidity (approximately 35 kJ mol(-1)). The temperature dependence of the exponential prefactor in these associated liquids is explained using the dielectric constant and the Kirkwood-Frölich correlation factor, gk. It is argued that the dielectric constant must be used to account for the additional temperature dependence due to variations in the liquid structure (e.g., hydrogen bonding) for the CAF to accurately model the transport property.

  16. Thermal activation in Au-based bulk metallic glass characterized by high-temperature nanoindentation

    NASA Astrophysics Data System (ADS)

    Yang, Bing; Wadsworth, Jeffrey; Nieh, Tai-Gang

    2007-02-01

    High-temperature nanoindentation experiments have been conducted on a Au49Ag5.5Pd2.3Cu26.9Si16.3 bulk metallic glass from 30to140°C, utilizing loading rates ranging from 0.1to100mN/s. Generally, the hardness decreased with increasing temperature. An inhomogeneous-to-homogeneous flow transition was clearly observed when the test temperature approached the glass transition temperature. Analyses of the pop-in pattern and hardness variation showed that the inhomogeneous-to-homogeneous transition temperature was loading-rate dependent. Using a free-volume model, the authors deduced the size of the basic flow units and the activation energy for the homogeneous flow. In addition, the strain rate dependency of the transition temperature was predicted.

  17. Temperature dependence of O2 consumption; opposite effects of leptin and etomoxir on respiratory quotient in mice.

    PubMed

    Högberg, Helena; Engblom, Lars; Ekdahl, Asa; Lidell, Veronica; Walum, Erik; Alberts, Peteris

    2006-04-01

    The aims were to compare the temperature dependence of the metabolic rate in young ob/ob mice with that in mature ob/ob and db/db mice and to examine the effect on the metabolic substrate preference of leptin and etomoxir in ob/ob, C57BL/6J (wild-type), and db/db mice. In vivo oxygen consumption and carbon dioxide production were continuously measured by indirect calorimetry, and body temperature and total locomotor activity were measured by an implanted transponder. Leptin, etomoxir, or vehicle was administered intraperitoneally. The temperature dependence of the metabolic rate of mature ob/ob and db/db mice were similar to that in wild-type mice. In young 6-week-old ob/ob mice, the metabolic rate was almost doubled at 15 degrees C. Leptin (2 x 3 mg/kg) decreased the respiratory quotient (RQ) and carbon dioxide production but did not alter oxygen consumption, body temperature, or locomotor activity in ob/ob and C57BL/6J mice and had no effect in the db/db mice. Etomoxir (2 x 30 mg/kg) enhanced RQ and decreased oxygen consumption, carbon dioxide production, and body temperature in ob/ob, C57BL/6J, and db/db mice. Total locomotor activity was reduced in ob/ob and C57BL/6J mice. In young ob/ob mice, the temperature sensitivity was enhanced compared with mature mice. Leptin and etomoxir had opposite effects on metabolic substrate preference. Leptin and lowered environmental temperature increased the relative fat oxidation as indicated by decreased RQ, possibly through activation of the sympathetic nervous system.

  18. Investigation of second grade fluid through temperature dependent thermal conductivity and non-Fourier heat flux

    NASA Astrophysics Data System (ADS)

    Hayat, T.; Ahmad, Salman; Khan, M. Ijaz; Alsaedi, A.; Waqas, M.

    2018-06-01

    Here we investigated stagnation point flow of second grade fluid over a stretchable cylinder. Heat transfer is characterized by non-Fourier law of heat flux and thermal stratification. Temperature dependent thermal conductivity and activation energy are also accounted. Transformations procedure is applying to transform the governing PDE's into ODE's. Obtained system of ODE's are solved analytically by HAM. Influence of flow variables on velocity, temperature, concentration, skin friction and Sherwood number are analyzed. Obtained outcome shows that velocity enhanced through curvature parameter, viscoelastic parameter and velocities ratio variable. Temperature decays for larger Prandtl number, thermal stratification, thermal relaxation and curvature parameter. Sherwood number and concentration field show opposite behavior for higher estimation of activation energy, reaction rate, curvature parameter and Schmidt number.

  19. Temperature Dependence of Proton Electroreduction Kinetics at Gold(111) and (210) Surfaces

    DTIC Science & Technology

    1991-05-31

    Temperature Dependence of Proton Electroreduction Kinetics at Gold (111) and (210) Surfaces 12 PERSONAL AUTHOR(S) A. Hamelin, L. Stoicoviciu, S.-C...Technical Report No. 98 Temperature Dependence of Proton Electroreduction Kinetics at Gold (lll) and (210) Surfaces by A. Hamelin, L. Stoicoviciu, S...approved for public release and sale: its distribution is unlimited. Temperature Dependence of Proton Electroreduction Kinetics at Gold (Ill) and (210

  20. Cardiac sodium channel Markov model with temperature dependence and recovery from inactivation.

    PubMed Central

    Irvine, L A; Jafri, M S; Winslow, R L

    1999-01-01

    A Markov model of the cardiac sodium channel is presented. The model is similar to the CA1 hippocampal neuron sodium channel model developed by Kuo and Bean (1994. Neuron. 12:819-829) with the following modifications: 1) an additional open state is added; 2) open-inactivated transitions are made voltage-dependent; and 3) channel rate constants are exponential functions of enthalpy, entropy, and voltage and have explicit temperature dependence. Model parameters are determined using a simulated annealing algorithm to minimize the error between model responses and various experimental data sets. The model reproduces a wide range of experimental data including ionic currents, gating currents, tail currents, steady-state inactivation, recovery from inactivation, and open time distributions over a temperature range of 10 degrees C to 25 degrees C. The model also predicts measures of single channel activity such as first latency, probability of a null sweep, and probability of reopening. PMID:10096885

  1. Quantitative Analysis of Temperature Dependence of Raman shift of monolayer WS2

    NASA Astrophysics Data System (ADS)

    Huang, Xiaoting; Gao, Yang; Yang, Tianqi; Ren, Wencai; Cheng, Hui-Ming; Lai, Tianshu

    2016-08-01

    We report the temperature-dependent evolution of Raman spectra of monolayer WS2 directly CVD-grown on a gold foil and then transferred onto quartz substrates over a wide temperature range from 84 to 543 K. The nonlinear temperature dependence of Raman shifts for both and A1g modes has been observed. The first-order temperature coefficients of Raman shifts are obtained to be -0.0093 (cm-1/K) and -0.0122 (cm-1/K) for and A1g peaks, respectively. A physical model, including thermal expansion and three- and four-phonon anharmonic effects, is used quantitatively to analyze the observed nonlinear temperature dependence. Thermal expansion coefficient (TEC) of monolayer WS2 is extracted from the experimental data for the first time. It is found that thermal expansion coefficient of out-plane mode is larger than one of in-plane mode, and TECs of and A1g modes are temperature-dependent weakly and strongly, respectively. It is also found that the nonlinear temperature dependence of Raman shift of mode mainly originates from the anharmonic effect of three-phonon process, whereas one of A1g mode is mainly contributed by thermal expansion effect in high temperature region, revealing that thermal expansion effect cannot be ignored.

  2. Temperature-dependent endogenous oxygen concentration regulates microsomal oleate desaturase in developing sunflower seeds.

    PubMed

    Rolletschek, Hardy; Borisjuk, Ljudmilla; Sánchez-García, Alicia; Gotor, Cecilia; Romero, Luis C; Martínez-Rivas, José M; Mancha, Manuel

    2007-01-01

    Oleoyl-phosphatidylcholine desaturase (FAD2) is a key enzyme involved in fatty acid desaturation in oilseeds, which is affected by environmental temperature. The results of this study show that FAD2 is regulated in vivo via temperature-dependent endogenous oxygen concentrations in developing sunflower (Helianthus annuus L.) seeds. By combining in vivo oxygen profiling, in situ hybridization of FAD2 genes, an assay of energy status, fatty acid analysis, and an in vitro FAD2 enzyme activity assay, it is shown that: (i) the oil-storing embryo is characterized by a very low oxygen level that is developmentally regulated. Oxygen supply is mainly limited by the thin seed coat. (ii) Elevations of external oxygen supply raised the energy status of seed and produced a dramatic increase of the FAD2 enzyme activity as well as the linoleic acid content. (iii) A clear negative correlation exists between temperature and internal oxygen concentration. The changes occurred almost instantly and the effect was fully reversible. The results indicate that the internal oxygen level acts as a key regulator for the activity of the FAD2 enzyme. It is concluded that a major mechanism by which temperature modifies the unsaturation degree of the sunflower oil is through its effect on dissolved oxygen levels in the developing seed.

  3. Temperature dependence of lower critical field of YBCO superconductor

    NASA Astrophysics Data System (ADS)

    Rani, Poonam; Hafiz, A. K.; Awana, V. P. S.

    2018-05-01

    We report the detailed study of the temperature dependence of the lower critical field (Hc1) of the YBa2Cu3O7 superconductor by magnetization measurements. The curve shows the multiband gap behavior of the sample. It is found that the sample is not a single BCS type superconductor. Hc1 is measured as the point at which the curve deviates from a Meissner-like linear M(H) curve to a nonlinear path. The Hc1 for YBCO at different temperatures from 10K to 85K has been determined by magnetization measurements M(H) with applied field parallel to the c-axis. The sample phase purity has been confirmed by Rietveld fitted X-ray diffraction data. The amplitude (1-17Oe) dependent AC susceptibility confirms the granular nature of superconducting compound. Using Bean model we calculated the temperature dependency of inter-grain critical current density and Jc(0) is found as 699.14kAcm-2.

  4. An analysis of the temperature dependence of the gate current in complementary heterojunction field-effect transistors

    NASA Technical Reports Server (NTRS)

    Cunningham, Thomas J.; Fossum, Eric R.; Baier, Steven M.

    1992-01-01

    The temperature dependence of the gate current versus the gate voltage in complementary heterojunction field-effect transistors (CHFET's) is examined. An analysis indicates that the gate conduction is due to a combination of thermionic emission, thermionic-field emission, and conduction through a temperature-activated resistance. The thermionic-field emission is consistent with tunneling through the AlGaAs insulator. The activation energy of the resistance is consistent with the ionization energy associated with the DX center in the AlGaAs. Methods reducing the gate current are discussed.

  5. Use of fugacity model to analyze temperature-dependent removal of micro-contaminants in sewage treatment plants.

    PubMed

    Thompson, Kelly; Zhang, Jianying; Zhang, Chunlong

    2011-08-01

    Effluents from sewage treatment plants (STPs) are known to contain residual micro-contaminants including endocrine disrupting chemicals (EDCs) despite the utilization of various removal processes. Temperature alters the efficacy of removal processes; however, experimental measurements of EDC removal at various temperatures are limited. Extrapolation of EDC behavior over a wide temperature range is possible using available physicochemical property data followed by the correction of temperature dependency. A level II fugacity-based STP model was employed by inputting parameters obtained from the literature and estimated by the US EPA's Estimations Programs Interface (EPI) including EPI's BIOWIN for temperature-dependent biodegradation half-lives. EDC removals in a three-stage activated sludge system were modeled under various temperatures and hydraulic retention times (HRTs) for representative compounds of various properties. Sensitivity analysis indicates that temperature plays a significant role in the model outcomes. Increasing temperature considerably enhances the removal of β-estradiol, ethinyestradiol, bisphenol, phenol, and tetrachloroethylene, but not testosterone with the highest biodegradation rate. The shortcomings of BIOWIN were mitigated by the correction of highly temperature-dependent biodegradation rates using the Arrhenius equation. The model predicts well the effects of operating temperature and HRTs on the removal via volatilization, adsorption, and biodegradation. The model also reveals that an impractically long HRT is needed to achieve a high EDC removal. The STP model along with temperature corrections is able to provide some useful insight into the different patterns of STP performance, and useful operational considerations relevant to EDC removal at winter low temperatures. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Temperature-dependence of the QCD topological susceptibility

    NASA Astrophysics Data System (ADS)

    Kovacs, Tamas G.

    2018-03-01

    We recently obtained an estimate of the axion mass based on the hypothesis that axions make up most of the dark matter in the universe. A key ingredient for this calculation was the temperature-dependence of the topological susceptibility of full QCD. Here we summarize the calculation of the susceptibility in a range of temperatures from well below the finite temperature cross-over to around 2 GeV. The two main difficulties of the calculation are the unexpectedly slow convergence of the susceptibility to its continuum limit and the poor sampling of nonzero topological sectors at high temperature. We discuss how these problems can be solved by two new techniques, the first one with reweighting using the quark zero modes and the second one with the integration method.

  7. Global patterns in lake ecosystem responses to warming based on the temperature dependence of metabolism.

    PubMed

    Kraemer, Benjamin M; Chandra, Sudeep; Dell, Anthony I; Dix, Margaret; Kuusisto, Esko; Livingstone, David M; Schladow, S Geoffrey; Silow, Eugene; Sitoki, Lewis M; Tamatamah, Rashid; McIntyre, Peter B

    2017-05-01

    Climate warming is expected to have large effects on ecosystems in part due to the temperature dependence of metabolism. The responses of metabolic rates to climate warming may be greatest in the tropics and at low elevations because mean temperatures are warmer there and metabolic rates respond exponentially to temperature (with exponents >1). However, if warming rates are sufficiently fast in higher latitude/elevation lakes, metabolic rate responses to warming may still be greater there even though metabolic rates respond exponentially to temperature. Thus, a wide range of global patterns in the magnitude of metabolic rate responses to warming could emerge depending on global patterns of temperature and warming rates. Here we use the Boltzmann-Arrhenius equation, published estimates of activation energy, and time series of temperature from 271 lakes to estimate long-term (1970-2010) changes in 64 metabolic processes in lakes. The estimated responses of metabolic processes to warming were usually greatest in tropical/low-elevation lakes even though surface temperatures in higher latitude/elevation lakes are warming faster. However, when the thermal sensitivity of a metabolic process is especially weak, higher latitude/elevation lakes had larger responses to warming in parallel with warming rates. Our results show that the sensitivity of a given response to temperature (as described by its activation energy) provides a simple heuristic for predicting whether tropical/low-elevation lakes will have larger or smaller metabolic responses to warming than higher latitude/elevation lakes. Overall, we conclude that the direct metabolic consequences of lake warming are likely to be felt most strongly at low latitudes and low elevations where metabolism-linked ecosystem services may be most affected. © 2016 John Wiley & Sons Ltd.

  8. Temperature Dependence of Inorganic Nitrogen Uptake: Reduced Affinity for Nitrate at Suboptimal Temperatures in Both Algae and Bacteria

    PubMed Central

    Reay, David S.; Nedwell, David B.; Priddle, Julian; Ellis-Evans, J. Cynan

    1999-01-01

    Nitrate utilization and ammonium utilization were studied by using three algal isolates, six bacterial isolates, and a range of temperatures in chemostat and batch cultures. We quantified affinities for both substrates by determining specific affinities (specific affinity = maximum growth rate/half-saturation constant) based on estimates of kinetic parameters obtained from chemostat experiments. At suboptimal temperatures, the residual concentrations of nitrate in batch cultures and the steady-state concentrations of nitrate in chemostat cultures both increased. The specific affinity for nitrate was strongly dependent on temperature (Q10 ≈ 3, where Q10 is the proportional change with a 10°C temperature increase) and consistently decreased at temperatures below the optimum temperature. In contrast, the steady-state concentrations of ammonium remained relatively constant over the same temperature range, and the specific affinity for ammonium exhibited no clear temperature dependence. This is the first time that a consistent effect of low temperature on affinity for nitrate has been identified for psychrophilic, mesophilic, and thermophilic bacteria and algae. The different responses of nitrate uptake and ammonium uptake to temperature imply that there is increasing dependence on ammonium as an inorganic nitrogen source at low temperatures. PMID:10347046

  9. Model for temperature-dependent magnetization of nanocrystalline materials

    NASA Astrophysics Data System (ADS)

    Bian, Q.; Niewczas, M.

    2015-01-01

    A magnetization model of nanocrystalline materials incorporating intragrain anisotropies, intergrain interactions, and texture effects has been extended to include the thermal fluctuations. The method relies on the stochastic Landau-Lifshitz-Gilbert theory of magnetization dynamics and permits to study the magnetic properties of nanocrystalline materials at arbitrary temperature below the Currie temperature. The model has been used to determine the intergrain exchange constant and grain boundary anisotropy constant of nanocrystalline Ni at 100 K and 298 K. It is found that the thermal fluctuations suppress the strength of the intergrain exchange coupling and also reduce the grain boundary anisotropy. In comparison with its value at 2 K, the interparticle exchange constant decreases by 16% and 42% and the grain boundary anisotropy constant decreases by 28% and 40% at 100 K and 298 K, respectively. An application of the model to study the grain size-dependent magnetization indicates that when the thermal activation energy is comparable to the free energy of grains, the decrease in the grain size leads to the decrease in the magnetic permeability and saturation magnetization. The mechanism by which the grain size influences the magnetic properties of nc-Ni is discussed.

  10. The effect of CO2 activation temperature on the physical and electrochemical properties of activated carbon monolith from banana stem waste

    NASA Astrophysics Data System (ADS)

    Taer, E.; Susanti, Y.; Awitdrus, Sugianto, Taslim, R.; Setiadi, R. N.; Bahri, S.; Agustino, Dewi, P.; Kurniasih, B.

    2018-02-01

    The effect of CO2 activation on the synthesis of activated carbon monolith from banana stem waste has been studied. Physical characteristics such as density, degree of crystallinity, surface morphology and elemental content has been analyzed, supporting the finding of an excellent electrochemical properties for the supercapacitor. The synthesis of activated carbon electrode began with pre-carbonization process at temperature of 250°C for 2.5 h. Then the process was continued by chemical activation using KOH as activating agent with a concentration of 0.4 M. The pellets were formed with 8 ton hydrolic pressure. All the samples were carbonized at a temperature of 600°C, followed by physical activation using CO2 gas at a various temperatures ranging from 800°C, 850°C, 900°C and 950°C for 2 h. The carbon content was increased with increasing temperature and the optimum temperature was 900°C. The specific capacitance depends on the activation temperature with the highest specific capacitance of 104.2 F/g at the activation temperature of 900°C.

  11. Sex reversal triggers the rapid transition from genetic to temperature-dependent sex.

    PubMed

    Holleley, Clare E; O'Meally, Denis; Sarre, Stephen D; Marshall Graves, Jennifer A; Ezaz, Tariq; Matsubara, Kazumi; Azad, Bhumika; Zhang, Xiuwen; Georges, Arthur

    2015-07-02

    Sex determination in animals is amazingly plastic. Vertebrates display contrasting strategies ranging from complete genetic control of sex (genotypic sex determination) to environmentally determined sex (for example, temperature-dependent sex determination). Phylogenetic analyses suggest frequent evolutionary transitions between genotypic and temperature-dependent sex determination in environmentally sensitive lineages, including reptiles. These transitions are thought to involve a genotypic system becoming sensitive to temperature, with sex determined by gene-environment interactions. Most mechanistic models of transitions invoke a role for sex reversal. Sex reversal has not yet been demonstrated in nature for any amniote, although it occurs in fish and rarely in amphibians. Here we make the first report of reptile sex reversal in the wild, in the Australian bearded dragon (Pogona vitticeps), and use sex-reversed animals to experimentally induce a rapid transition from genotypic to temperature-dependent sex determination. Controlled mating of normal males to sex-reversed females produces viable and fertile offspring whose phenotypic sex is determined solely by temperature (temperature-dependent sex determination). The W sex chromosome is eliminated from this lineage in the first generation. The instantaneous creation of a lineage of ZZ temperature-sensitive animals reveals a novel, climate-induced pathway for the rapid transition between genetic and temperature-dependent sex determination, and adds to concern about adaptation to rapid global climate change.

  12. Temperature-Dependent Ellipsometry Measurements of Partial Coulomb Energy in Superconducting Cuprates

    DOE PAGES

    Levallois, J.; Tran, M. K.; Pouliot, D.; ...

    2016-08-24

    Here we performed an experimental study of the temperature and doping dependence of the energy-loss function of the bilayer and trilayer bismuth cuprates family. The primary aim is to obtain information on the energy stored in the Coulomb interaction between the conduction electrons, on the temperature dependence thereof, and on the change of Coulomb interaction when Cooper pairs are formed. We performed temperature-dependent ellipsometry measurements on several Bi 2Sr 2CaCu 2O 8₋x single crystals: underdoped with T c=60, 70, and 83 K; optimally doped with T c=91 K; overdoped with T c=84, 81, 70, and 58 K; as well asmore » optimally doped Bi 2Sr 2Ca 2Cu 3O 10+x with T c=110 K. Our first observation is that, as the temperature drops through T c, the loss function in the range up to 2 eV displays a change of temperature dependence as compared to the temperature dependence in the normal state. This effect at—or close to—T c depends strongly on doping, with a sign change for weak overdoping. The size of the observed change in Coulomb energy, using an extrapolation with reasonable assumptions about its q dependence, is about the same size as the condensation energy that has been measured in these compounds. Our results therefore lend support to the notion that the Coulomb energy is an important factor for stabilizing the superconducting phase. Lastly, because of the restriction to small momentum, our observations do not exclude a possible significant contribution to the condensation energy of the Coulomb energy associated with the region of q around (π,π).« less

  13. Simulation study of temperature-dependent diffusion behaviors of Ag/Ag(001) at low substrate temperature

    NASA Astrophysics Data System (ADS)

    Cai, Danyun; Mo, Yunjie; Feng, Xiaofang; He, Yingyou; Jiang, Shaoji

    2017-06-01

    In this study, a model based on the First Principles calculations and Kinetic Monte Carlo simulation were established to study the growth characteristic of Ag thin film at low substrate temperature. On the basis of the interaction between the adatom and nearest-neighbor atoms, some simplifications and assumptions were made to categorize the diffusion behaviors of Ag adatoms on Ag(001). Then the barriers of all possible diffusion behaviors were calculated using the Climbing Image Nudged Elastic Band method (CI-NEB). Based on the Arrhenius formula, the morphology variation, which is attributed to the surface diffusion behaviors during the growth, was simulated with a temperature-dependent KMC model. With this model, a non-monotonic relation between the surface roughness and the substrate temperature (decreasing from 300 K to 100 K) were discovered. The analysis of the temperature dependence on diffusion behaviors presents a theoretical explanation of diffusion mechanism for the non-monotonic variation of roughness at low substrate temperature.

  14. A Temperature-Dependent Battery Model for Wireless Sensor Networks.

    PubMed

    Rodrigues, Leonardo M; Montez, Carlos; Moraes, Ricardo; Portugal, Paulo; Vasques, Francisco

    2017-02-22

    Energy consumption is a major issue in Wireless Sensor Networks (WSNs), as nodes are powered by chemical batteries with an upper bounded lifetime. Estimating the lifetime of batteries is a difficult task, as it depends on several factors, such as operating temperatures and discharge rates. Analytical battery models can be used for estimating both the battery lifetime and the voltage behavior over time. Still, available models usually do not consider the impact of operating temperatures on the battery behavior. The target of this work is to extend the widely-used Kinetic Battery Model (KiBaM) to include the effect of temperature on the battery behavior. The proposed Temperature-Dependent KiBaM (T-KiBaM) is able to handle operating temperatures, providing better estimates for the battery lifetime and voltage behavior. The performed experimental validation shows that T-KiBaM achieves an average accuracy error smaller than 0.33%, when estimating the lifetime of Ni-MH batteries for different temperature conditions. In addition, T-KiBaM significantly improves the original KiBaM voltage model. The proposed model can be easily adapted to handle other battery technologies, enabling the consideration of different WSN deployments.

  15. Temperature-dependent dynamical transitions of different classes of amino acid residue in a globular protein.

    PubMed

    Miao, Yinglong; Yi, Zheng; Glass, Dennis C; Hong, Liang; Tyagi, Madhusudan; Baudry, Jerome; Jain, Nitin; Smith, Jeremy C

    2012-12-05

    The temperature dependences of the nanosecond dynamics of different chemical classes of amino acid residue have been analyzed by combining elastic incoherent neutron scattering experiments with molecular dynamics simulations on cytochrome P450cam. At T = 100-160 K, anharmonic motion in hydrophobic and aromatic residues is activated, whereas hydrophilic residue motions are suppressed because of hydrogen-bonding interactions. In contrast, at T = 180-220 K, water-activated jumps of hydrophilic side chains, which are strongly coupled to the relaxation rates of the hydrogen bonds they form with hydration water, become apparent. Thus, with increasing temperature, first the hydrophobic core awakens, followed by the hydrophilic surface.

  16. Temperature requirements for initiation of RNA-dependent RNA polymerization.

    PubMed

    Yang, Hongyan; Gottlieb, Paul; Wei, Hui; Bamford, Dennis H; Makeyev, Eugene V

    2003-09-30

    To continue the molecular characterization of RNA-dependent RNA polymerases of dsRNA bacteriophages (Cystoviridae), we purified and biochemically characterized the wild-type (wt) and a temperature-sensitive (ts) point mutant of the polymerase subunit (Pol) from bacteriophage phi12. Interestingly, initiation by both wt and the ts phi12 Pol was notably more sensitive to increased temperatures than the elongation step, the absolute value of the nonpermissive temperature being lower for the ts enzyme. Experiments with the Pol subunit of related cystovirus phi6 revealed a similar differential sensitivity of the initiation and elongation steps. This is consistent with the previous result showing that de novo initiation by RdRp from dengue virus is inhibited at elevated temperatures, whereas the elongation phase is relatively thermostable. Overall, these data suggest that de novo RNA-dependent RNA synthesis in many viral systems includes a specialized thermolabile state of the RdRp initiation complex.

  17. Temperature dependence of the plastic scintillator detector for DAMPE

    NASA Astrophysics Data System (ADS)

    Wang, Zhao-Min; Yu, Yu-Hong; Sun, Zhi-Yu; Yue, Ke; Yan, Duo; Zhang, Yong-Jie; Zhou, Yong; Fang, Fang; Huang, Wen-Xue; Chen, Jun-Ling

    2017-01-01

    The Plastic Scintillator Detector (PSD) is one of the main sub-detectors in the DArk Matter Particle Explorer (DAMPE) project. It will be operated over a large temperature range from -10 to 30 °C, so the temperature effect of the whole detection system should be studied in detail. The temperature dependence of the PSD system is mainly contributed by the three parts: the plastic scintillator bar, the photomultiplier tube (PMT), and the Front End Electronics (FEE). These three parts have been studied in detail and the contribution of each part has been obtained and discussed. The temperature coefficient of the PMT is -0.320(±0.033)%/°C, and the coefficient of the plastic scintillator bar is -0.036(±0.038)%/°C. This result means that after subtracting the FEE pedestal, the variation of the signal amplitude of the PMT-scintillator system due to temperature mainly comes from the PMT, and the plastic scintillator bar is not sensitive to temperature over the operating range. Since the temperature effect cannot be ignored, the temperature dependence of the whole PSD has been also studied and a correction has been made to minimize this effect. The correction result shows that the effect of temperature on the signal amplitude of the PSD system can be suppressed. Supported by Strategic Priority Research Program on Space Science of the Chinese Academy of Sciences (XDA04040202-3) and Youth Innovation Promotion Association, CAS

  18. Temperature-Dependent Friction and Wear Behavior of PTFE and MoS 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babuska, T. F.; Pitenis, A. A.; Jones, M. R.

    2016-06-16

    We present an investigation of the temperature-dependent friction behavior of PTFE, MoS 2, and PTFE-on- MoS 2. Friction behavior was measured while continuously varying contact temperature in the range -150 to 175°C while sliding in dry nitrogen, as well as for self-mated PTFE immersed in liquid nitrogen. These results contrast with previous reports of monotonic inverse temperature dependent friction behavior, as well as reported high-friction transitions and plateaus at temperatures below about -20°C that were not observed, providing new insights about the molecular mechanisms of macro-scale friction. The temperature-dependent friction behavior characteristic of self-mated PTFE was found also on themore » PTFE-on-MoS 2 sliding contact, suggesting that PTFE friction was defined by sub-surface deformation mechanisms and internal friction even when sliding against a lamellar lubricant with extremely low friction coefficient (μ ~ 0.02). The various relaxation temperatures of PTFE were found in the temperature-dependent friction behavior, showing excellent agreement with reported values acquired using torsional techniques measuring internal friction. Additionally, hysteresis in friction behavior suggests an increase in near-surface crystallinity at upon exceeding the high temperature relaxation, T α~ 116°C.« less

  19. Temperature dependence of elastic and strength properties of T300/5208 graphite-epoxy

    NASA Technical Reports Server (NTRS)

    Milkovich, S. M.; Herakovich, C. T.

    1984-01-01

    Experimental results are presented for the elastic and strength properties of T300/5208 graphite-epoxy at room temperature, 116K (-250 F), and 394K (+250 F). Results are presented for unidirectional 0, 90, and 45 degree laminates, and + or - 30, + or - 45, and + or - 60 degree angle-ply laminates. The stress-strain behavior of the 0 and 90 degree laminates is essentially linear for all three temperatures and that the stress-strain behavior of all other laminates is linear at 116K. A second-order curve provides the best fit for the temperature is linear at 116K. A second-order curve provides the best fit for the temperature dependence of the elastic modulus of all laminates and for the principal shear modulus. Poisson's ratio appears to vary linearly with temperature. all moduli decrease with increasing temperature except for E (sub 1) which exhibits a small increase. The strength temperature dependence is also quadratic for all laminates except the 0 degree - laminate which exhibits linear temperature dependence. In many cases the temperature dependence of properties is nearly linear.

  20. Time dependent temperature distribution in pulsed Ti:sapphire lasers

    NASA Technical Reports Server (NTRS)

    Buoncristiani, A. Martin; Byvik, Charles E.; Farrukh, Usamah O.

    1988-01-01

    An expression is derived for the time dependent temperature distribution in a finite solid state laser rod for an end-pumped beam of arbitrary shape. The specific case of end pumping by circular (constant) or Gaussian beam is described. The temperature profile for a single pump pulse and for repetitive pulse operation is discussed. The particular case of the temperature distribution in a pulsed titanium:sapphire rod is considered.

  1. Temperature-dependent regioselectivity of nucleophilic aromatic photosubstitution. Evidence that activation energy controls reactivity.

    PubMed

    Wubbels, Gene G; Tamura, Ryo; Gannon, Emmett J

    2013-05-17

    Irradiation (λ > 330 nm) of 2-chloro-4-nitroanisole (1) at 25 °C in aqueous NaOH forms three substitution photoproducts: 2-methoxy-5-nitrophenol (2), 2-chloro-4-nitrophenol (3), and 3-chloro-4-methoxyphenol (4), in chemical yields of 69.2%, 14.3%, and 16.5%. The activation energies for the elementary steps from the triplet state at 25 °C were determined to be 1.8, 2.4, and 2.7 kcal/mol, respectively. The chemical yields of each of the three products were determined for exhaustive irradiations at 0, 35, and 70 °C. The variation with temperature of the experimental yields is reproduced almost exactly by the yields calculated with the Arrhenius equation. This indicates that activation energy is the fundamental property related to regioselectivity in nucleophilic aromatic photosubstitution of the S(N)2 Ar* type. The many methods proposed for predicting regioselectivity in reactions of this type have had limited success and have not been related to activation energy.

  2. Picosecond-Resolved Fluorescent Probes at Functionally Distinct Tryptophans within a Thermophilic Alcohol Dehydrogenase: Relationship of Temperature-Dependent Changes in Fluorescence to Catalysis

    PubMed Central

    2015-01-01

    Two single-tryptophan variants were generated in a thermophilic alcohol dehydrogenase with the goal of correlating temperature-dependent changes in local fluorescence with the previously demonstrated catalytic break at ca. 30 °C (Kohen et al., Nature1999, 399, 496). One tryptophan variant, W87in, resides at the active site within van der Waals contact of bound alcohol substrate; the other variant, W167in, is a remote-site surface reporter located >25 Å from the active site. Picosecond-resolved fluorescence measurements were used to analyze fluorescence lifetimes, time-dependent Stokes shifts, and the extent of collisional quenching at Trp87 and Trp167 as a function of temperature. A subnanosecond fluorescence decay rate constant has been detected for W87in that is ascribed to the proximity of the active site Zn2+ and shows a break in behavior at 30 °C. For the remainder of the reported lifetime measurements, there is no detectable break between 10 and 50 °C, in contrast with previously reported hydrogen/deuterium exchange experiments that revealed a temperature-dependent break analogous to catalysis (Liang et al., Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 9556). We conclude that the motions that lead to the rigidification of ht-ADH below 30 °C are likely to be dominated by global processes slower than the picosecond to nanosecond motions measured herein. In the case of collisional quenching of fluorescence by acrylamide, W87in and W167in behave in a similar manner that resembles free tryptophan in water. Stokes shift measurements, by contrast, show distinctive behaviors in which the active-site tryptophan relaxation is highly temperature-dependent, whereas the solvent-exposed tryptophan’s dynamics are temperature-independent. These data are concluded to reflect a significantly constrained environment surrounding the active site Trp87 that both increases the magnitude of the Stokes shift and its temperature-dependence. The results are discussed in the context

  3. Temperature Dependence of Irradiation Damage to Polythene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TODD, G.; WILD, G. A.

    1963-07-13

    Comparison of measurements of radiation damage to polythene exposed to a 4.3-Mev linear accelerator and in a reactor led to the conclusion that radiation damage of polythene is temperature dependent. Applications of radiation in raising or lowering the elastic modulus of polythene are suggested. (C.H.)

  4. A Temperature-Dependent Battery Model for Wireless Sensor Networks

    PubMed Central

    Rodrigues, Leonardo M.; Montez, Carlos; Moraes, Ricardo; Portugal, Paulo; Vasques, Francisco

    2017-01-01

    Energy consumption is a major issue in Wireless Sensor Networks (WSNs), as nodes are powered by chemical batteries with an upper bounded lifetime. Estimating the lifetime of batteries is a difficult task, as it depends on several factors, such as operating temperatures and discharge rates. Analytical battery models can be used for estimating both the battery lifetime and the voltage behavior over time. Still, available models usually do not consider the impact of operating temperatures on the battery behavior. The target of this work is to extend the widely-used Kinetic Battery Model (KiBaM) to include the effect of temperature on the battery behavior. The proposed Temperature-Dependent KiBaM (T-KiBaM) is able to handle operating temperatures, providing better estimates for the battery lifetime and voltage behavior. The performed experimental validation shows that T-KiBaM achieves an average accuracy error smaller than 0.33%, when estimating the lifetime of Ni-MH batteries for different temperature conditions. In addition, T-KiBaM significantly improves the original KiBaM voltage model. The proposed model can be easily adapted to handle other battery technologies, enabling the consideration of different WSN deployments. PMID:28241444

  5. Temperature-Dependent Detectivity of Near-Infrared Organic Bulk Heterojunction Photodiodes.

    PubMed

    Wu, Zhenghui; Yao, Weichuan; London, Alexander E; Azoulay, Jason D; Ng, Tse Nga

    2017-01-18

    Bulk heterojunction photodiodes are fabricated using a new donor-acceptor polymer with a near-infrared absorption edge at 1.2 μm, achieving a detectivity up to 10 12 Jones at a wavelength of 1 μm and an excellent linear dynamic range of 86 dB. The photodiode detectivity is maximized by operating at zero bias to suppress dark current, while a thin 175 nm active layer is used to facilitate charge collection without reverse bias. Analysis of the temperature dependence of the dark current and spectral response demonstrates a 2.8-fold increase in detectivity as the temperature was lowered from 44 to -12 °C, a relatively small change when compared to that of inorganic-based devices. The near-infrared photodiode shows a switching speed reaching up to 120 μs without an external bias. An application using our NIR photodiode to detect arterial pulses of a fingertip is demonstrated.

  6. The Stress-Dependent Activation Parameters for Dislocation Nucleation in Molybdenum Nanoparticles.

    PubMed

    Chachamovitz, Doron; Mordehai, Dan

    2018-03-02

    Many specimens at the nanoscale are pristine of dislocations, line defects which are the main carriers of plasticity. As a result, they exhibit extremely high strengths which are dislocation-nucleation controlled. Since nucleation is a thermally activated process, it is essential to quantify the stress-dependent activation parameters for dislocation nucleation in order to study the strength of specimens at the nanoscale and its distribution. In this work, we calculate the strength of Mo nanoparticles in molecular dynamics simulations and we propose a method to extract the activation free-energy barrier for dislocation nucleation from the distribution of the results. We show that by deforming the nanoparticles at a constant strain rate, their strength distribution can be approximated by a normal distribution, from which the activation volumes at different stresses and temperatures are calculated directly. We found that the activation energy dependency on the stress near spontaneous nucleation conditions obeys a power-law with a critical exponent of approximately 3/2, which is in accordance with critical exponents found in other thermally activated processes but never for dislocation nucleation. Additionally, significant activation entropies were calculated. Finally, we generalize the approach to calculate the activation parameters for other driving-force dependent thermally activated processes.

  7. Mapping the temperature-dependent conformational landscapes of the dynamic enzymes cyclophilin A and urease

    NASA Astrophysics Data System (ADS)

    Thorne, Robert; Keedy, Daniel; Warkentin, Matthew; Fraser, James; Moreau, David; Atakisi, Hakan; Rau, Peter

    Proteins populate complex, temperature-dependent ensembles of conformations that enable their function. Yet in X-ray crystallographic studies, roughly 98% of structures have been determined at 100 K, and most refined to only a single conformation. A combination of experimental methods enabled by studies of ice formation and computational methods for mining low-density features in electron density maps have been applied to determine the evolution of the conformational landscapes of the enzymes cyclophilin A and urease between 300 K and 100 K. Minority conformations of most side chains depopulate on cooling from 300 to ~200 K, below which subsequent conformational evolution is quenched. The characteristic temperatures for this depopulation are highly heterogeneous throughout each enzyme. The temperature-dependent ensemble of the active site flap in urease has also been mapped. These all-atom, site-resolved measurements and analyses rule out one interpretation of the protein-solvent glass transition, and give an alternative interpretation of a dynamical transition identified in site-averaged experiments. They demonstrate a powerful approach to structural characterization of the dynamic underpinnings of protein function. Supported by NSF MCB-1330685.

  8. Temperature Dependence of Errors in Parameters Derived from Van't Hoff Studies.

    ERIC Educational Resources Information Center

    Dec, Steven F.; Gill, Stanley J.

    1985-01-01

    The method of Clarke and Glew is broadly applicable to studies of the temperature dependence of equilibrium constant measurements. The method is described and examples of its use in comparing calorimetric results and temperature dependent gas solubility studies are provided. (JN)

  9. Glutamatergic Preoptic Area Neurons That Express Leptin Receptors Drive Temperature-Dependent Body Weight Homeostasis.

    PubMed

    Yu, Sangho; Qualls-Creekmore, Emily; Rezai-Zadeh, Kavon; Jiang, Yanyan; Berthoud, Hans-Rudolf; Morrison, Christopher D; Derbenev, Andrei V; Zsombok, Andrea; Münzberg, Heike

    2016-05-04

    The preoptic area (POA) regulates body temperature, but is not considered a site for body weight control. A subpopulation of POA neurons express leptin receptors (LepRb(POA) neurons) and modulate reproductive function. However, LepRb(POA) neurons project to sympathetic premotor neurons that control brown adipose tissue (BAT) thermogenesis, suggesting an additional role in energy homeostasis and body weight regulation. We determined the role of LepRb(POA) neurons in energy homeostasis using cre-dependent viral vectors to selectively activate these neurons and analyzed functional outcomes in mice. We show that LepRb(POA) neurons mediate homeostatic adaptations to ambient temperature changes, and their pharmacogenetic activation drives robust suppression of energy expenditure and food intake, which lowers body temperature and body weight. Surprisingly, our data show that hypothermia-inducing LepRb(POA) neurons are glutamatergic, while GABAergic POA neurons, originally thought to mediate warm-induced inhibition of sympathetic premotor neurons, have no effect on energy expenditure. Our data suggest a new view into the neurochemical and functional properties of BAT-related POA circuits and highlight their additional role in modulating food intake and body weight. Brown adipose tissue (BAT)-induced thermogenesis is a promising therapeutic target to treat obesity and metabolic diseases. The preoptic area (POA) controls body temperature by modulating BAT activity, but its role in body weight homeostasis has not been addressed. LepRb(POA) neurons are BAT-related neurons and we show that they are sufficient to inhibit energy expenditure. We further show that LepRb(POA) neurons modulate food intake and body weight, which is mediated by temperature-dependent homeostatic responses. We further found that LepRb(POA) neurons are stimulatory glutamatergic neurons, contrary to prevalent models, providing a new view on thermoregulatory neural circuits. In summary, our study

  10. Glutamatergic Preoptic Area Neurons That Express Leptin Receptors Drive Temperature-Dependent Body Weight Homeostasis

    PubMed Central

    Qualls-Creekmore, Emily; Rezai-Zadeh, Kavon; Jiang, Yanyan; Berthoud, Hans-Rudolf; Morrison, Christopher D.; Derbenev, Andrei V.; Zsombok, Andrea

    2016-01-01

    The preoptic area (POA) regulates body temperature, but is not considered a site for body weight control. A subpopulation of POA neurons express leptin receptors (LepRbPOA neurons) and modulate reproductive function. However, LepRbPOA neurons project to sympathetic premotor neurons that control brown adipose tissue (BAT) thermogenesis, suggesting an additional role in energy homeostasis and body weight regulation. We determined the role of LepRbPOA neurons in energy homeostasis using cre-dependent viral vectors to selectively activate these neurons and analyzed functional outcomes in mice. We show that LepRbPOA neurons mediate homeostatic adaptations to ambient temperature changes, and their pharmacogenetic activation drives robust suppression of energy expenditure and food intake, which lowers body temperature and body weight. Surprisingly, our data show that hypothermia-inducing LepRbPOA neurons are glutamatergic, while GABAergic POA neurons, originally thought to mediate warm-induced inhibition of sympathetic premotor neurons, have no effect on energy expenditure. Our data suggest a new view into the neurochemical and functional properties of BAT-related POA circuits and highlight their additional role in modulating food intake and body weight. SIGNIFICANCE STATEMENT Brown adipose tissue (BAT)-induced thermogenesis is a promising therapeutic target to treat obesity and metabolic diseases. The preoptic area (POA) controls body temperature by modulating BAT activity, but its role in body weight homeostasis has not been addressed. LepRbPOA neurons are BAT-related neurons and we show that they are sufficient to inhibit energy expenditure. We further show that LepRbPOA neurons modulate food intake and body weight, which is mediated by temperature-dependent homeostatic responses. We further found that LepRbPOA neurons are stimulatory glutamatergic neurons, contrary to prevalent models, providing a new view on thermoregulatory neural circuits. In summary, our study

  11. Temperature dependence of the ClONO{sub 2} UV absorption spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkholder, J.B.; Talukdar, R.K.; Ravishankara, A.R.

    1994-04-01

    The temperature dependence of the ClONO{sub 2} absorption spectrum has been measured between 220 and 298 K and between 195 and 430 nm using a diode array spectrometer. The absorption cross sections were determined using both: (1) absolute pressure measurements at 296 K and (2) measurements at various temperatures relative to 296 K using a dual absorption cell arrangement. The temperature dependence of the ClONO{sub 2} absorption spectrum shows very broad structure. The amplitude of the temperature dependence relative to that at 296 K is weak at short wavelengths, < 2% at 215 nm and 220 K, but significant atmore » the wavelengths important in the stratosphere, {approximately} 30% at 325 nm and 220 K. The authors ClONO{sub 2} absorption cross section data are in good general agreement with the previous measurements of Molina and Molina.« less

  12. New correlation for the temperature-dependent viscosity for saturated liquids

    NASA Astrophysics Data System (ADS)

    Tian, Jianxiang; Zhang, Laibin

    2016-11-01

    Based on the recent progress on both the temperature dependence of surface tension [H. L. Yi, J. X. Tian, A. Mulero and I. Cachading, J. Therm. Anal. Calorim. 126 (2016) 1603, and the correlation between surface tension and viscosity of liquids [J. X. Tian and A. Mulero, Ind. Eng. Chem. Res. 53 (2014) 9499], we derived a new multiple parameter correlation to describe the temperature-dependent viscosity of liquids. This correlation is verified by comparing with data from NIST Webbook for 35 saturated liquids including refrigerants, hydrocarbons and others, in a wide temperature range from the triple point temperature to the one very near to the critical temperature. Results show that this correlation predicts the NIST data with high accuracy with absolute average deviation (AAD) less than 1% for 21 liquids and more than 3% for only four liquids, and is clearly better than the popularly used Vogel-Fulcher-Tamman (VFT) correlation.

  13. Guest concentration, bias current, and temperature-dependent sign inversion of magneto-electroluminescence in thermally activated delayed fluorescence devices

    NASA Astrophysics Data System (ADS)

    Deng, Junquan; Jia, Weiyao; Chen, Yingbing; Liu, Dongyu; Hu, Yeqian; Xiong, Zuhong

    2017-03-01

    Non-emissive triplet excited states in devices that undergo thermally activated delayed fluorescence (TADF) can be up-converted to singlet excited states via reverse intersystem crossing (RISC), which leads to an enhanced electroluminescence efficiency. Exciton-based fluorescence devices always exhibit a positive magneto-electroluminescence (MEL) because intersystem crossing (ISC) can be suppressed effectively by an external magnetic field. Conversely, TADF devices should exhibit a negative MEL because RISC is suppressed by the external magnetic field. Intriguingly, we observed a positive MEL in TADF devices. Moreover, the sign of the MEL was either positive or negative, and depended on experimental conditions, including doping concentration, current density and temperature. The MEL observed from our TADF devices demonstrated that ISC in the host material and RISC in the guest material coexisted. These competing processes were affected by the experimental conditions, which led to the sign change of the MEL. This work gives important insight into the energy transfer processes and the evolution of excited states in TADF devices.

  14. Genetic variation in the temperature dependence of liver microsomal CYP2E1 activity, within and between species of the viviparous fish Poeciliopsis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crivello, J.F.; Schultz, R.J.

    1995-01-01

    The temperature dependence of liver microsomal CYP2E1 (cytochrome P450 2E1) activity was examined in selected genotypes of the viviparous fish Poeciliopsis. Activity of this enzyme, as a function of incubation temperature, was determined by measuring 6-OH-chlorzoxazone formation from chlorzoxazone, a specific CYP2E1 substrate. Chlorzoxazone-6-hydroxylase activity was examined among five species of Poeciliopsis, as well as among nine genotypes within a species, P. monacha. Among Poeciliopsis genotypes, P. monacha contained the greatest activity, 9.5 [+-] 1.5 U with a temperature optimum (T[sub O]) of 25 C. The lowest activity was in P. occidentalis, 0.65 [+-] 0.11 U, with a T[sub O]more » of 27 t 28 C; P. prolifica, P. fasciata, P. lucida, and P. viriosa had intermediate levels of activities, 1.1 to 5.5 U, and T[sub O] from 25 to 31 C. To determine if metabolic differences exist within species, enzyme activity was examined from nine genotypes of P. monacha by comparing expression among P. monacha-lucida hybrids. These hybrids were given identical paternal genomes of lucida but retained the original maternal Monacha genomes sampled from wild gene pools. The greatest activity was found in genotype T70-3 P. Cw, 3.6 [+-] 0.1 U, at a T[sub O] of 29 C, and the lowest was in genotype SV73-7s, 0.40 [+-] 0.12 U, at a T[sub O] of 27 C. The other naturally occurring genotypes, M65-24, M65-26, SV73-7v, as well as the laboratory-produced synthetic hybrids, Syn4 and Syn5, had intermediate activities, 0.73 [+-] 0.38 to 2.1 [+-] 0.69 U, and T[sub O] of 25 to 27 C. No hybrid had activity levels as high as the maternal parent, P. monacha, and only one had a T[sub O] as low as either parent. Apparently the genes involved in xenobiotic activity vary widely among the closely related species of Poeciliopsis but also within species, suggesting that these phenotypes can be acted upon by natural selection.« less

  15. Molecular players involved in temperature-dependent sex determination and sex differentiation in Teleost fish

    PubMed Central

    2014-01-01

    The molecular mechanisms that underlie sex determination and differentiation are conserved and diversified. In fish species, temperature-dependent sex determination and differentiation seem to be ubiquitous and molecular players involved in these mechanisms may be conserved. Although how the ambient temperature transduces signals to the undifferentiated gonads remains to be elucidated, the genes downstream in the sex differentiation pathway are shared between sex-determining mechanisms. In this paper, we review recent advances on the molecular players that participate in the sex determination and differentiation in fish species, by putting emphasis on temperature-dependent sex determination and differentiation, which include temperature-dependent sex determination and genetic sex determination plus temperature effects. Application of temperature-dependent sex differentiation in farmed fish and the consequences of temperature-induced sex reversal are discussed. PMID:24735220

  16. Anomalous temperature dependence of the IR spectrum of polyalanine

    NASA Astrophysics Data System (ADS)

    Helenius, V.; Korppi-Tommola, J.; Kotila, S.; Nieminen, J.; Lohikoski, R.; Timonen, J.

    1997-12-01

    We have studied the temperature dependence of the infrared spectra of acetanilide (ACN), tryptophan-(alanine) 15, and tyrosine-(alanine) 15. No sidebands of the amide-I vibration were observed in the polypeptides, but two anomalous sidebands of the NH stretch with a similar temperature dependence as that of the anomalous amide-I vibrational mode at 1650 cm -1 of crystalline ACN were detected. Fermi resonance combined with the appearance of a red-shifted sideband of NH stretch through coupling to lattice modes seems to explain this band structure. Observations are indicative of excitons that may occur in polypeptides as well as in single crystals of ACN.

  17. Temperature dependence of spin-orbit torques in Cu-Au alloys

    NASA Astrophysics Data System (ADS)

    Wen, Yan; Wu, Jun; Li, Peng; Zhang, Qiang; Zhao, Yuelei; Manchon, Aurelien; Xiao, John Q.; Zhang, Xixiang

    2017-03-01

    We investigated current driven spin-orbit torques in C u40A u60/N i80F e20/Ti layered structures with in-plane magnetization. We have demonstrated a reliable and convenient method to separate dampinglike torque and fieldlike torque by using the second harmonic technique. It is found that the dampinglike torque and fieldlike torque depend on temperature very differently. Dampinglike torque increases with temperature, while fieldlike torque decreases with temperature, which are different from results obtained previously in other material systems. We observed a nearly linear dependence between the spin Hall angle and longitudinal resistivity, suggesting that skew scattering may be the dominant mechanism of spin-orbit torques.

  18. Temperature-dependent regulation of rDNA condensation in Saccharomyces cerevisiae.

    PubMed

    Shen, Donglai; Skibbens, Robert V

    2017-06-03

    Chromatin condensation during mitosis produces detangled and discrete DNA entities required for high fidelity sister chromatid segregation during mitosis and positions DNA away from the cleavage furrow during cytokinesis. Regional condensation during G1 also establishes a nuclear architecture through which gene transcription is regulated but remains plastic so that cells can respond to changes in nutrient levels, temperature and signaling molecules. To date, however, the potential impact of this plasticity on mitotic chromosome condensation remains unknown. Here, we report results obtained from a new condensation assay that wildtype budding yeast cells exhibit dramatic changes in rDNA conformation in response to temperature. rDNA hypercondenses in wildtype cells maintained at 37°C, compared with cells maintained at 23°C. This hypercondensation machinery can be activated during preanaphase but readily inactivated upon exposure to lower temperatures. Extended mitotic arrest at 23°C does not result in hypercondensation, negating a kinetic-based argument in which condensation that typically proceeds slowly is accelerated when cells are placed at 37°C. Neither elevated recombination nor reduced transcription appear to promote this hypercondensation. This heretofore undetected temperature-dependent hypercondensation pathway impacts current views of chromatin structure based on conditional mutant gene analyses and significantly extends our understanding of physiologic changes in chromatin architecture in response to hypothermia.

  19. Temperature-dependent regulation of rDNA condensation in Saccharomyces cerevisiae

    PubMed Central

    Shen, Donglai; Skibbens, Robert V.

    2017-01-01

    ABSTRACT Chromatin condensation during mitosis produces detangled and discrete DNA entities required for high fidelity sister chromatid segregation during mitosis and positions DNA away from the cleavage furrow during cytokinesis. Regional condensation during G1 also establishes a nuclear architecture through which gene transcription is regulated but remains plastic so that cells can respond to changes in nutrient levels, temperature and signaling molecules. To date, however, the potential impact of this plasticity on mitotic chromosome condensation remains unknown. Here, we report results obtained from a new condensation assay that wildtype budding yeast cells exhibit dramatic changes in rDNA conformation in response to temperature. rDNA hypercondenses in wildtype cells maintained at 37°C, compared with cells maintained at 23°C. This hypercondensation machinery can be activated during preanaphase but readily inactivated upon exposure to lower temperatures. Extended mitotic arrest at 23°C does not result in hypercondensation, negating a kinetic-based argument in which condensation that typically proceeds slowly is accelerated when cells are placed at 37°C. Neither elevated recombination nor reduced transcription appear to promote this hypercondensation. This heretofore undetected temperature-dependent hypercondensation pathway impacts current views of chromatin structure based on conditional mutant gene analyses and significantly extends our understanding of physiologic changes in chromatin architecture in response to hypothermia. PMID:28426272

  20. Temperature dependence of metal-enhanced fluorescence of photosystem I from Thermosynechococcus elongatus.

    PubMed

    Ashraf, Imran; Konrad, Alexander; Lokstein, Heiko; Skandary, Sepideh; Metzger, Michael; Djouda, Joseph M; Maurer, Thomas; Adam, Pierre M; Meixner, Alfred J; Brecht, Marc

    2017-03-23

    We report the temperature dependence of metal-enhanced fluorescence (MEF) of individual photosystem I (PSI) complexes from Thermosynechococcus elongatus (T. elongatus) coupled to gold nanoparticles (AuNPs). A strong temperature dependence of shape and intensity of the emission spectra is observed when PSI is coupled to AuNPs. For each temperature, the enhancement factor (EF) is calculated by comparing the intensity of individual AuNP-coupled PSI to the mean intensity of 'uncoupled' PSI. At cryogenic temperature (1.6 K) the average EF was 4.3-fold. Upon increasing the temperature to 250 K the EF increases to 84-fold. Single complexes show even higher EFs up to 441.0-fold. At increasing temperatures the different spectral pools of PSI from T. elongatus become distinguishable. These pools are affected differently by the plasmonic interactions and show different enhancements. The remarkable increase of the EFs is explained by a rate model including the temperature dependence of the fluorescence yield of PSI and the spectral overlap between absorption and emission spectra of AuNPs and PSI, respectively.

  1. Refractive indices of liquid crystal E7 depending on temperature and wavelengths

    NASA Astrophysics Data System (ADS)

    Ma, Mingjian; Li, Shuguang; Jing, Xili; Chen, Hailiang

    2017-11-01

    The dependence of refractive indices of liquid crystal (LC) on temperature is represented by the Haller approximation model, and its dependence on the wavelength is expressed by the extended Cauchy model. We derived the refractive indices expressions of nematic LC E7 depending on temperature and wavelength simultaneously by combining these two models. Based on the obtained expressions, one can acquire the refractive indices of E7 at arbitrary temperature and wavelengths. The birefringence, variation rate of refractive indices, macroscopic order parameter Q, and orientational order parameter ⟨P2⟩ of E7 were then discussed based on the expressions.

  2. Spectral and temperature-dependent infrared emissivity measurements of painted metals for improved temperature estimation during laser damage testing

    NASA Astrophysics Data System (ADS)

    Baumann, Sean M.; Keenan, Cameron; Marciniak, Michael A.; Perram, Glen P.

    2014-10-01

    A database of spectral and temperature-dependent emissivities was created for painted Al-alloy laser-damage-testing targets for the purpose of improving the uncertainty to which temperature on the front and back target surfaces may be estimated during laser-damage testing. Previous temperature estimates had been made by fitting an assumed gray-body radiance curve to the calibrated spectral radiance data collected from the back surface using a Telops Imaging Fourier Transform Spectrometer (IFTS). In this work, temperature-dependent spectral emissivity measurements of the samples were made from room temperature to 500 °C using a Surface Optics Corp. SOC-100 Hemispherical Directional Reflectometer (HDR) with Nicolet FTS. Of particular interest was a high-temperature matte-black enamel paint used to coat the rear surfaces of the Al-alloy samples. The paint had been assumed to have a spectrally flat and temperatureinvariant emissivity. However, the data collected using the HDR showed both spectral variation and temperature dependence. The uncertainty in back-surface temperature estimation during laser-damage testing made using the measured emissivities was improved from greater than +10 °C to less than +5 °C for IFTS pixels away from the laser burn-through hole, where temperatures never exceeded those used in the SOC-100 HDR measurements. At beam center, where temperatures exceeded those used in the SOC-100 HDR, uncertainty in temperature estimates grew beyond those made assuming gray-body emissivity. Accurate temperature estimations during laser-damage testing are useful in informing a predictive model for future high-energy-laser weapon applications.

  3. Upper Thermosphere Winds and Temperatures in the Geomagnetic Polar Cap: Solar Cycle, Geomagnetic Activity, and Interplanetary Magnetic Field Dependencies

    NASA Technical Reports Server (NTRS)

    Killeen, T. L.; Won, Y.-I.; Niciejewski, R. J.; Burns, A. G.

    1995-01-01

    Ground-based Fabry-Perot interferometers located at Thule, Greenland (76.5 deg. N, 69.0 deg. W, lambda = 86 deg.) and at Sondre Stromfjord, Greenland (67.0 deg. N, 50.9 deg. W, lambda = 74 deg.) have monitored the upper thermospheric (approx. 240-km altitude) neutral wind and temperature over the northern hemisphere geomagnetic polar cap since 1983 and 1985, respectively. The thermospheric observations are obtained by determining the Doppler characteristics of the (OI) 15,867-K (630.0-nm) emission of atomic oxygen. The instruments operate on a routine, automatic, (mostly) untended basis during the winter observing seasons, with data coverage limited only by cloud cover and (occasional) instrument failures. This unique database of geomagnetic polar cap measurements now extends over the complete range of solar activity. We present an analysis of the measurements made between 1985 (near solar minimum) and 1991 (near solar maximum), as part of a long-term study of geomagnetic polar cap thermospheric climatology. The measurements from a total of 902 nights of observations are compared with the predictions of two semiempirical models: the Vector Spherical Harmonic (VSH) model of Killeen et al. (1987) and the Horizontal Wind Model (HWM) of Hedin et al. (1991). The results are also analyzed using calculations of thermospheric momentum forcing terms from the Thermosphere-ionosphere General Circulation Model TGCM) of the National Center for Atmospheric Research (NCAR). The experimental results show that upper thermospheric winds in the geomagnetic polar cap have a fundamental diurnal character, with typical wind speeds of about 200 m/s at solar minimum, rising to up to about 800 m/s at solar maximum, depending on geomagnetic activity level. These winds generally blow in the antisunward direction, but are interrupted by episodes of modified wind velocity and altered direction often associated with changes in the orientation of the Interplanetary Magnetic Field (IMF). The

  4. Temperature dependency of the emission properties from positioned In(Ga)As/GaAs quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braun, T.; Schneider, C.; Maier, S.

    In this letter we study the influence of temperature and excitation power on the emission linewidth from site-controlled InGaAs/GaAs quantum dots grown on nanoholes defined by electron beam lithography and wet chemical etching. We identify thermal electron activation as well as direct exciton loss as the dominant intensity quenching channels. Additionally, we carefully analyze the effects of optical and acoustic phonons as well as close-by defects on the emission linewidth by means of temperature and power dependent micro-photoluminescence on single quantum dots with large pitches.

  5. Temperature dependence of intensities of the 8-12 micron bands of CFCl3

    NASA Technical Reports Server (NTRS)

    Nanes, R.; Silvaggio, P. M.; Boese, R. W.

    1980-01-01

    The absolute intensities of the 8-12 micron bands from Freon 11 (CFCl3) were measured at temperatures of 294 and 216 K. Intensities of the bands centered at 798, 847, 934, and 1082 per cm are all observed to depend on temperature. The temperature dependence for the 847 and 1082 per cm fundamental regions is attributed to underlying hot bands; for the nu2 + nu5 combination band (934 per cm), the observed temperature dependence is in close agreement with theoretical prediction. The implication of these results on atmospheric IR remote-sensing is briefly discussed.

  6. Complex temperature dependence of coupling and dissipation of cavity magnon polaritons from millikelvin to room temperature

    NASA Astrophysics Data System (ADS)

    Boventer, Isabella; Pfirrmann, Marco; Krause, Julius; Schön, Yannick; Kläui, Mathias; Weides, Martin

    2018-05-01

    Hybridized magnonic-photonic systems are key components for future information processing technologies such as storage, manipulation, or conversion of data both in the classical (mostly at room temperature) and quantum (cryogenic) regime. In this work, we investigate a yttrium-iron-garnet sphere coupled strongly to a microwave cavity over the full temperature range from 290 K to 30 mK . The cavity-magnon polaritons are studied from the classical to the quantum regimes where the thermal energy is less than one resonant microwave quanta, i.e., at temperatures below 1 K . We compare the temperature dependence of the coupling strength geff(T ) , describing the strength of coherent energy exchange between spin ensemble and cavity photon, to the temperature behavior of the saturation magnetization evolution Ms(T ) and find strong deviations at low temperatures. The temperature dependence of magnonic disspation is governed at intermediate temperatures by rare-earth impurity scattering leading to a strong peak at 40 K . The linewidth κm decreases to 1.2 MHz at 30 mK , making this system suitable as a building block for quantum electrodynamics experiments. We achieve an electromagnonic cooperativity in excess of 20 over the entire temperature range, with values beyond 100 in the millikelvin regime as well as at room temperature. With our measurements, spectroscopy on strongly coupled magnon-photon systems is demonstrated as versatile tool for spin material studies over large temperature ranges. Key parameters are provided in a single measurement, thus simplifying investigations significantly.

  7. Temperature-dependent modulation of regional lymphatic contraction frequency and flow.

    PubMed

    Solari, Eleonora; Marcozzi, Cristiana; Negrini, Daniela; Moriondo, Andrea

    2017-11-01

    Lymph drainage and propulsion are sustained by an extrinsic mechanism, based on mechanical forces acting from the surrounding tissues against the wall of lymphatic vessels, and by an intrinsic mechanism attributable to active spontaneous contractions of the lymphatic vessel muscle. Despite being heterogeneous, the mechanisms underlying the generation of spontaneous contractions share a common biochemical nature and are thus modulated by temperature. In this study, we challenged excised tissues from rat diaphragm and hindpaw, endowed with spontaneously contracting lymphatic vessels, to temperatures from 24°C (hindpaw) or 33°C (diaphragmatic vessels) to 40°C while measuring lymphatic contraction frequency ( f c ) and amplitude. Both vessel populations displayed a sigmoidal relationship between f c and temperature, each centered around the average temperature of surrounding tissue (36.7 diaphragmatic and 32.1 hindpaw lymphatics). Although the slope factor of the sigmoidal fit to the f c change of hindpaw vessels was 2.3°C·cycles -1 ·min -1 , a value within the normal range displayed by simple biochemical reactions, the slope factor of the diaphragmatic lymphatics was 0.62°C·cycles -1 ·min -1 , suggesting the added involvement of temperature-sensing mechanisms. Lymph flow calculated as a function of temperature confirmed the relationship observed on f c data alone and showed that none of the two lymphatic vessel populations would be able to adapt to the optimal working temperature of the other tissue district. This poses a novel question whether lymphatic vessels might not adapt their function to accommodate the change if exposed to a surrounding temperature, which is different from their normal condition. NEW & NOTEWORTHY This study demonstrates to what extent lymphatic vessel intrinsic contractility and lymph flow are modulated by temperature and that this modulation is dependent on the body district that the vessels belong to, suggesting a possible

  8. Methane fluxes show consistent temperature dependence across microbial to ecosystem scales.

    PubMed

    Yvon-Durocher, Gabriel; Allen, Andrew P; Bastviken, David; Conrad, Ralf; Gudasz, Cristian; St-Pierre, Annick; Thanh-Duc, Nguyen; del Giorgio, Paul A

    2014-03-27

    Methane (CH4) is an important greenhouse gas because it has 25 times the global warming potential of carbon dioxide (CO2) by mass over a century. Recent calculations suggest that atmospheric CH4 emissions have been responsible for approximately 20% of Earth's warming since pre-industrial times. Understanding how CH4 emissions from ecosystems will respond to expected increases in global temperature is therefore fundamental to predicting whether the carbon cycle will mitigate or accelerate climate change. Methanogenesis is the terminal step in the remineralization of organic matter and is carried out by strictly anaerobic Archaea. Like most other forms of metabolism, methanogenesis is temperature-dependent. However, it is not yet known how this physiological response combines with other biotic processes (for example, methanotrophy, substrate supply, microbial community composition) and abiotic processes (for example, water-table depth) to determine the temperature dependence of ecosystem-level CH4 emissions. It is also not known whether CH4 emissions at the ecosystem level have a fundamentally different temperature dependence than other key fluxes in the carbon cycle, such as photosynthesis and respiration. Here we use meta-analyses to show that seasonal variations in CH4 emissions from a wide range of ecosystems exhibit an average temperature dependence similar to that of CH4 production derived from pure cultures of methanogens and anaerobic microbial communities. This average temperature dependence (0.96 electron volts (eV)), which corresponds to a 57-fold increase between 0 and 30°C, is considerably higher than previously observed for respiration (approximately 0.65 eV) and photosynthesis (approximately 0.3 eV). As a result, we show that both the emission of CH4 and the ratio of CH4 to CO2 emissions increase markedly with seasonal increases in temperature. Our findings suggest that global warming may have a large impact on the relative contributions of CO2 and CH

  9. Arabidopsis HSP90 protein modulates RPP4-mediated temperature-dependent cell death and defense responses.

    PubMed

    Bao, Fei; Huang, Xiaozhen; Zhu, Chipan; Zhang, Xiaoyan; Li, Xin; Yang, Shuhua

    2014-06-01

    Plant defense responses are regulated by temperature. In Arabidopsis, the chilling-sensitive mutant chs2-1 (rpp4-1d) contains a gain-of-function mutation in the TIR-NB-LRR (Toll and interleukin 1 receptor-nucleotide binding-leucine-rich repeat) gene, RPP4 (RECOGNITION OF PERONOSPORA PARASITICA 4), which leads to constitutive activation of the defense response at low temperatures. Here, we identified and characterized two suppressors of rpp4-1d from a genetic screen, hsp90.2 and hsp90.3, which carry point mutations in the cytosolic heat shock proteins HSP90.2 and HSP90.3, respectively. The hsp90 mutants suppressed the chilling sensitivity of rpp4-1d, including seedling lethality, activation of the defense responses and cell death under chilling stress. The hsp90 mutants exhibited compromised RPM1 (RESISTANCE TO PSEUDOMONAS MACULICOLA 1)-, RPS4 (RESISTANCE TO P. SYRINGAE 4)- and RPP4-mediated pathogen resistance. The wild-type RPP4 and the mutated form rpp4 could interact with HSP90 to form a protein complex. Furthermore, RPP4 and rpp4 proteins accumulated in the cytoplasm and nucleus at normal temperatures, whereas the nuclear accumulation of the mutated rpp4 was decreased at low temperatures. Genetic analysis of the intragenic suppressors of rpp4-1d revealed the important functions of the NB-ARC and LRR domains of RPP4 in temperature-dependent defense signaling. In addition, the rpp4-1d-induced chilling sensitivity was largely independent of the WRKY70 or MOS (modifier of snc1) genes. [Correction added after online publication 11 March 2013: the expansions of TIR-NB-LRR and RPS4 were amended] This study reveals that Arabidopsis HSP90 regulates RPP4-mediated temperature-dependent cell death and defense responses. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  10. Temperature dependent empirical pseudopotential theory for self-assembled quantum dots.

    PubMed

    Wang, Jianping; Gong, Ming; Guo, Guang-Can; He, Lixin

    2012-11-28

    We develop a temperature dependent empirical pseudopotential theory to study the electronic and optical properties of self-assembled quantum dots (QDs) at finite temperature. The theory takes the effects of both lattice expansion and lattice vibration into account. We apply the theory to InAs/GaAs QDs. For the unstrained InAs/GaAs heterostructure, the conduction band offset increases whereas the valence band offset decreases with increasing temperature, and there is a type-I to type-II transition at approximately 135 K. Yet, for InAs/GaAs QDs, the holes are still localized in the QDs even at room temperature, because the large lattice mismatch between InAs and GaAs greatly enhances the valence band offset. The single-particle energy levels in the QDs show a strong temperature dependence due to the change of confinement potentials. Because of the changes of the band offsets, the electron wavefunctions confined in QDs increase by about 1-5%, whereas the hole wavefunctions decrease by about 30-40% when the temperature increases from 0 to 300 K. The calculated recombination energies of excitons, biexcitons and charged excitons show red shifts with increasing temperature which are in excellent agreement with available experimental data.

  11. Temperature-dependence of biomass accumulation rates during secondary succession.

    PubMed

    Anderson, Kristina J; Allen, Andrew P; Gillooly, James F; Brown, James H

    2006-06-01

    Rates of ecosystem recovery following disturbance affect many ecological processes, including carbon cycling in the biosphere. Here, we present a model that predicts the temperature dependence of the biomass accumulation rate following disturbances in forests. Model predictions are derived based on allometric and biochemical principles that govern plant energetics and are tested using a global database of 91 studies of secondary succession compiled from the literature. The rate of biomass accumulation during secondary succession increases with average growing season temperature as predicted based on the biochemical kinetics of photosynthesis in chloroplasts. In addition, the rate of biomass accumulation is greater in angiosperm-dominated communities than in gymnosperm-dominated ones and greater in plantations than in naturally regenerating stands. By linking the temperature-dependence of photosynthesis to the rate of whole-ecosystem biomass accumulation during secondary succession, our model and results provide one example of how emergent, ecosystem-level rate processes can be predicted based on the kinetics of individual metabolic rate.

  12. The mass and speed dependence of meteor air plasma temperatures

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Laux, Christophe O.; Wilson, Michael A.; Schaller, Emily L.

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  13. The mass and speed dependence of meteor air plasma temperatures.

    PubMed

    Jenniskens, Peter; Laux, Christophe O; Wilson, Michael A; Schaller, Emily L

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  14. A Simple Method to Calculate the Temperature Dependence of the Gibbs Energy and Chemical Equilibrium Constants

    ERIC Educational Resources Information Center

    Vargas, Francisco M.

    2014-01-01

    The temperature dependence of the Gibbs energy and important quantities such as Henry's law constants, activity coefficients, and chemical equilibrium constants is usually calculated by using the Gibbs-Helmholtz equation. Although, this is a well-known approach and traditionally covered as part of any physical chemistry course, the required…

  15. Temperature dependence of surface tension of molten iron under reducing gas atmosphere

    NASA Astrophysics Data System (ADS)

    Ozawa, S.; Takahashi, S.; Fukuyama, H.; Watanabe, M.

    2011-12-01

    Surface tension of molten iron was measured under Ar-He-5vol.%H2 gas by oscillating droplet method using electromagnetic levitation furnace in consideration of the temperature dependence of oxygen partial pressure, Po2, of the gas. For comparison, the measurement was carried under Ar-He atmosphere to fix the Po2 of the inlet gas at 10-2Pa. The surface tension was successfully measured over a wide temperature range of about 780K including undercooling condition. When Po2 is fixed at 10-2 Pa, the surface tension increased and then decreased with increasing temperature like a boomerang shape. When the measurement was carried out under the H2-containing gas atmosphere, the temperature dependence of the surface tension shows unique kink at around 1810K instead of liner relationship due to competition between the temperature dependence of the Po2 and that of the equilibrium constant of oxygen adsorption reaction. The relationship between the calculated lnKad with respect to inverse temperature using Szyszkowski model was different between the atmospheric gases.

  16. Gonadal morphogenesis and gene expression in reptiles with temperature-dependent sex determination.

    PubMed

    Merchant-Larios, H; Díaz-Hernández, V; Marmolejo-Valencia, A

    2010-01-01

    In reptiles with temperature-dependent sexual determination, the thermosensitive period (TSP) is the interval in which the sex is defined during gonadal morphogenesis. One-shift experiments in a group of eggs define the onset and the end of the TSP as all and none responses, respectively. Timing for sex-undetermined (UG) and -determined gonads (DG) differs at male- (MPT) or female-producing temperatures (FPT). During the TSP a decreasing number of embryos respond to temperature shifts indicating that in this period embryos with both UG and DG exist. Although most UG correspond to undifferentiated gonads, some embryos extend UG after the onset of histological differentiation. Thus, temperature affects gonadal cells during the process of morphogenesis, but timing of commitment depends on individual embryos. A correlation between gonadal morphogenesis, TSP, and gene expression suggests that determination of the molecular pathways modulated by temperature in epithelial cells (surface epithelium and medullary cords) holds the key for a unifying hypothesis on temperature-dependent sex determination. (c) 2010 S. Karger AG, Basel.

  17. Cyclophilin40 isomerase activity is regulated by a temperature-dependent allosteric interaction with Hsp90.

    PubMed

    Blackburn, Elizabeth A; Wear, Martin A; Landré, Vivian; Narayan, Vikram; Ning, Jia; Erman, Burak; Ball, Kathryn L; Walkinshaw, Malcolm D

    2015-09-01

    Cyclophilin 40 (Cyp40) comprises an N-terminal cyclophilin domain with peptidyl-prolyl isomerase (PPIase) activity and a C-terminal tetratricopeptide repeat (TPR) domain that binds to the C-terminal-EEVD sequence common to both heat shock protein 70 (Hsp70) and Hsp90. We show in the present study that binding of peptides containing the MEEVD motif reduces the PPIase activity by ∼30%. CD and fluorescence assays show that the TPR domain is less stable than the cyclophilin domain and is stabilized by peptide binding. Isothermal titration calorimetry (ITC) shows that the affinity for the-MEEVD peptide is temperature sensitive in the physiological temperature range. Results from these biophysical studies fit with the MD simulations of the apo and holo (peptide-bound) structures which show a significant reduction in root mean square (RMS) fluctuation in both TPR and cyclophilin domains when-MEEVD is bound. The MD simulations of the apo-protein also highlight strong anti-correlated motions between residues around the PPIase-active site and a band of residues running across four of the seven helices in the TPR domain. Peptide binding leads to a distortion in the shape of the active site and a significant reduction in these strongly anti-correlated motions, providing an explanation for the allosteric effect of ligand binding and loss of PPIase activity. Together the experimental and MD results suggest that on heat shock, dissociation of Cyp40 from complexes mediated by the TPR domain leads to an increased pool of free Cyp40 capable of acting as an isomerase/chaperone in conditions of cellular stress. © 2015 Authors.

  18. Cyclophilin40 isomerase activity is regulated by a temperature-dependent allosteric interaction with Hsp90

    PubMed Central

    Blackburn, Elizabeth A.; Wear, Martin A.; Landré, Vivian; Narayan, Vikram; Ning, Jia; Erman, Burak; Ball, Kathryn L.; Walkinshaw, Malcolm D.

    2015-01-01

    Cyclophilin 40 (Cyp40) comprises an N-terminal cyclophilin domain with peptidyl-prolyl isomerase (PPIase) activity and a C-terminal tetratricopeptide repeat (TPR) domain that binds to the C-terminal–EEVD sequence common to both heat shock protein 70 (Hsp70) and Hsp90. We show in the present study that binding of peptides containing the MEEVD motif reduces the PPIase activity by ∼30%. CD and fluorescence assays show that the TPR domain is less stable than the cyclophilin domain and is stabilized by peptide binding. Isothermal titration calorimetry (ITC) shows that the affinity for the–MEEVD peptide is temperature sensitive in the physiological temperature range. Results from these biophysical studies fit with the MD simulations of the apo and holo (peptide-bound) structures which show a significant reduction in root mean square (RMS) fluctuation in both TPR and cyclophilin domains when–MEEVD is bound. The MD simulations of the apo-protein also highlight strong anti-correlated motions between residues around the PPIase-active site and a band of residues running across four of the seven helices in the TPR domain. Peptide binding leads to a distortion in the shape of the active site and a significant reduction in these strongly anti-correlated motions, providing an explanation for the allosteric effect of ligand binding and loss of PPIase activity. Together the experimental and MD results suggest that on heat shock, dissociation of Cyp40 from complexes mediated by the TPR domain leads to an increased pool of free Cyp40 capable of acting as an isomerase/chaperone in conditions of cellular stress. PMID:26330616

  19. Temperature dependent electrical transport behavior of InN/GaN heterostructure based Schottky diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roul, Basanta; Kumar, Mahesh; Central Research Laboratory, Bharat Electronics, Bangalore 560013

    InN/GaN heterostructure based Schottky diodes were fabricated by plasma-assisted molecular beam epitaxy. The temperature dependent electrical transport properties were carried out for InN/GaN heterostructure. The barrier height and the ideality factor of the Schottky diodes were found to be temperature dependent. The temperature dependence of the barrier height indicates that the Schottky barrier height is inhomogeneous in nature at the heterostructure interface. The higher value of the ideality factor and its temperature dependence suggest that the current transport is primarily dominated by thermionic field emission (TFE) other than thermionic emission (TE). The room temperature barrier height obtained by using TEmore » and TFE models were 1.08 and 1.43 eV, respectively.« less

  20. l-Proline and RNA Duplex m-Value Temperature Dependence.

    PubMed

    Schwinefus, Jeffrey J; Baka, Nadia L; Modi, Kalpit; Billmeyer, Kaylyn N; Lu, Shutian; Haase, Lucas R; Menssen, Ryan J

    2017-08-03

    The temperature dependence of l-proline interactions with the RNA dodecamer duplex surface exposed after unfolding was quantified using thermal and isothermal titration denaturation monitored by uv-absorbance. The m-value quantifying proline interactions with the RNA duplex surface area exposed after unfolding was measured using RNA duplexes with GC content ranging between 17 and 83%. The m-values from thermal denaturation decreased with increasing GC content signifying increasingly favorable proline interactions with the exposed RNA surface area. However, m-values from isothermal titration denaturation at 25.0 °C were independent of GC content and less negative than those from thermal denaturation. The m-value from isothermal titration denaturation for a 50% GC RNA duplex decreased (became more negative) as the temperature increased and was in nearly exact agreement with the m-value from thermal denaturation. Since RNA duplex transition temperatures increased with GC content, the more favorable proline interactions with the high GC content duplex surface area observed from thermal denaturation resulted from the temperature dependence of proline interactions rather than the RNA surface chemical composition. The enthalpy contribution to the m-value was positive and small (indicating a slight increase in duplex unfolding enthalpy with proline) while the entropic contribution to the m-value was positive and increased with temperature. Our results will facilitate proline's use as a probe of solvent accessible surface area changes during biochemical reactions at different reaction temperatures.

  1. Divergent effects of postmortem ambient temperature on organophosphorus- and carbamate-inhibited brain cholinesterase activity in birds

    USGS Publications Warehouse

    Hill, E.F.

    1989-01-01

    Time- and temperature-dependent postmortem changes in inhibited brain cholinesterase (ChE) activity may confound diagnosis of field poisoning of wildlife by anticholinesterase pesticide. Carbamate-inhibited ChE activity may return to normal within 1 to 2 days of exposure of intact carcass to moderate ambient temperature (18-32C). Organophosphorus-inhibited ChE activity becomes more depressed over the same time. Uninhibited ChE activity was resilient to above freezing temperature to 32C for 1 day and 25C for 3 days. Carbamate- and organophosphorus-inhibited ChE can be separated by incubation of homogenate for 1 hour at physiological temperatures; carbamylated ChE can be readily reactivated while phosphorylated ChE cannot.

  2. Time-dependent crack growth behavior of alloy 617 and alloy 230 at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Roy, Shawoon Kumar

    2011-12-01

    Two Ni-base solid-solution-strengthened superalloys: INCONEL 617 and HAYNES 230 were studied to check sustained loading crack growth (SLCG) behavior at elevated temperatures appropriate for Next Generation Nuclear Plant (NGNP) applictaions with constant stress intensity factor (Kmax= 27.75 MPa✓m) in air. The results indicate a time-dependent rate controlling process which can be characterized by a linear elastic fracture mechanics (LEFM) parameter -- stress intensity factor (K). At elevated temperatures, the crack growth mechanism was best described using a damage zone concept. Based on results and study, SAGBOE (stress accelerated grain boundary oxidation embrittlement) is considered the primary reason for time-dependent SLCG. A thermodynamic equation was considered to correlate all the SLCG results to determine the thermal activation energy in the process. A phenomenological model based on a time-dependent factor was developed considering the previous researcher's time-dependent fatigue crack propagation (FCP) results and current SLCG results to relate cycle-dependent and time-dependent FCP for both alloys. Further study includes hold time (3+300s) fatigue testing and no hold (1s) fatigue testing with various load ratios (R) at 700°C with a Kmax of 27.75 MPa✓m. Study results suggest an interesting point: crack growth behavior is significantly affected with the change in R value in cycle-dependent process whereas in time-dependent process, change in R does not have any significant effect. Fractography study showed intergranular cracking mode for all time-dependent processes and transgranular cracking mode for cycle-dependent processes. In Alloy 230, SEM images display intergranular cracking with carbide particles, dense oxides and dimple mixed secondary cracks for time-dependent 3+300s FCP and SLCG test. In all cases, Alloy 230 shows better crack growth resistance compared to Alloy 617.

  3. Temperature-Dependent Kinetic Prediction for Reactions Described by Isothermal Mathematics

    DOE PAGES

    Dinh, L. N.; Sun, T. C.; McLean, W.

    2016-09-12

    Most kinetic models are expressed in isothermal mathematics. In addition, this may lead unaware scientists either to the misconception that classical isothermal kinetic models cannot be used for any chemical process in an environment with a time-dependent temperature profile or, even worse, to a misuse of them. In reality, classical isothermal models can be employed to make kinetic predictions for reactions in environments with time-dependent temperature profiles, provided that there is a continuity/conservation in the reaction extent at every temperature–time step. In this article, fundamental analyses, illustrations, guiding tables, and examples are given to help the interested readers using eithermore » conventional isothermal reacted fraction curves or rate equations to make proper kinetic predictions for chemical reactions in environments with temperature profiles that vary, even arbitrarily, with time simply by the requirement of continuity/conservation of reaction extent whenever there is an external temperature change.« less

  4. Stimulus-Dependent Effects of Temperature on Bitter Taste in Humans

    PubMed Central

    Andrew, Kendra

    2017-01-01

    This study investigated the effects of temperature on bitter taste in humans. The experiments were conducted within the context of current understanding of the neurobiology of bitter taste and recent evidence of stimulus-dependent effects of temperature on sweet taste. In the first experiment, the bitterness of caffeine and quinine sampled with the tongue tip was assessed at 4 different temperatures (10°, 21°, 30°, and 37 °C) following pre-exposure to the same solution or to water for 0, 3, or 10 s. The results showed that initial bitterness (0-s pre-exposure) followed an inverted U-shaped function of temperature for both stimuli, but the differences across temperature were statistically significant only for quinine. Conversely, temperature significantly affected adaptation to the bitterness of quinine but not caffeine. A second experiment used the same procedure to test 2 additional stimuli, naringin and denatonium benzoate. Temperature significantly affected the initial bitterness of both stimuli but had no effect on adaptation to either stimulus. These results confirm that like sweet taste, temperature affects bitter taste sensitivity and adaptation in stimulus-dependent ways. However, the thermal effect on quinine adaptation, which increased with warming, was opposite to what had been found previously for adaptation to sweetness. The implications of these results are discussed in relation to findings from prior studies of temperature and bitter taste in humans and the possible neurobiological mechanisms of gustatory thermal sensitivity. PMID:28119357

  5. Temperature dependence of phonons in photosynthesis proteins

    NASA Astrophysics Data System (ADS)

    Xu, Mengyang; Myles, Dean; Blankenship, Robert; Markelz, Andrea

    Protein long range vibrations are essential to biological function. For many proteins, these vibrations steer functional conformational changes. For photoharvesting proteins, the structural vibrations play an additional critical role in energy transfer to the reaction center by both phonon assisted energy transfer and energy dissipation. The characterization of these vibrations to understand how they are optimized to balance photoharvesting and photoprotection is challenging. To date this characterization has mainly relied on fluorescence line narrowing measurements at cryogenic temperatures. However, protein dynamics has a strong temperature dependence, with an apparent turn on in anharmonicity between 180-220 K. If this transition affects intramolecular vibrations, the low temperature measurements will not represent the phonon spectrum at biological temperatures. Here we use the new technique of anisotropic terahertz microscopy (ATM) to measure the intramolecular vibrations of FMO complex. ATM is uniquely capable of isolating protein vibrations from isotropic background. We find resonances both red and blue shift with temperature above the dynamical transition. The results indicate that the characterization of vibrations must be performed at biologically relevant temperatures to properly understand the energy overlap with the excitation energy transfer. This work was supported by NSF:DBI 1556359, BioXFEL seed Grant funding from NSF:DBI 1231306, DOE: DE-SC0016317, and the Bruce Holm University at Buffalo Research Foundation Grant.

  6. Surface Temperature Dependence of Hydrogen Ortho-Para Conversion on Amorphous Solid Water.

    PubMed

    Ueta, Hirokazu; Watanabe, Naoki; Hama, Tetsuya; Kouchi, Akira

    2016-06-24

    The surface temperature dependence of the ortho-to-para conversion of H_{2} on amorphous solid water is first reported. A combination of photostimulated desorption and resonance-enhanced multiphoton ionization techniques allowed us to sensitively probe the conversion on the surface of amorphous solid water at temperatures of 9.2-16 K. Within a narrow temperature window of 8 K, the conversion time steeply varied from ∼4.1×10^{3} to ∼6.4×10^{2}  s. The observed temperature dependence is discussed in the context of previously suggested models and the energy dissipation process. The two-phonon process most likely dominates the conversion rate at low temperatures.

  7. Scale-dependency of the global mean surface temperature trend and its implication for the recent hiatus of global warming.

    PubMed

    Lin, Yong; Franzke, Christian L E

    2015-08-11

    Studies of the global mean surface temperature trend are typically conducted at a single (usually annual or decadal) time scale. The used scale does not necessarily correspond to the intrinsic scales of the natural temperature variability. This scale mismatch complicates the separation of externally forced temperature trends from natural temperature fluctuations. The hiatus of global warming since 1999 has been claimed to show that human activities play only a minor role in global warming. Most likely this claim is wrong due to the inadequate consideration of the scale-dependency in the global surface temperature (GST) evolution. Here we show that the variability and trend of the global mean surface temperature anomalies (GSTA) from January 1850 to December 2013, which incorporate both land and sea surface data, is scale-dependent and that the recent hiatus of global warming is mainly related to natural long-term oscillations. These results provide a possible explanation of the recent hiatus of global warming and suggest that the hiatus is only temporary.

  8. Improved Regression Analysis of Temperature-Dependent Strain-Gage Balance Calibration Data

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.

    2015-01-01

    An improved approach is discussed that may be used to directly include first and second order temperature effects in the load prediction algorithm of a wind tunnel strain-gage balance. The improved approach was designed for the Iterative Method that fits strain-gage outputs as a function of calibration loads and uses a load iteration scheme during the wind tunnel test to predict loads from measured gage outputs. The improved approach assumes that the strain-gage balance is at a constant uniform temperature when it is calibrated and used. First, the method introduces a new independent variable for the regression analysis of the balance calibration data. The new variable is designed as the difference between the uniform temperature of the balance and a global reference temperature. This reference temperature should be the primary calibration temperature of the balance so that, if needed, a tare load iteration can be performed. Then, two temperature{dependent terms are included in the regression models of the gage outputs. They are the temperature difference itself and the square of the temperature difference. Simulated temperature{dependent data obtained from Triumph Aerospace's 2013 calibration of NASA's ARC-30K five component semi{span balance is used to illustrate the application of the improved approach.

  9. On the temperature dependence of possible S8 infrared bands in planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Khare, B. N.; Sagan, C.

    1976-01-01

    Measurements of the temperature dependence between 77 and 333 K of the infrared spectrum of cyclic octatomic sulfur are reported. It is suggested that the 23 micrometer Jovian feature is not due to 3 sub 8 and that the temperature dependence of the frequency of the 835/cm band of S sub 8 may be a useful temperature marker in planetary studies.

  10. Predicting body temperature and activity of adult Polyommatus icarus using neural network models under current and projected climate scenarios.

    PubMed

    Howe, P D; Bryant, S R; Shreeve, T G

    2007-10-01

    We use field observations in two geographic regions within the British Isles and regression and neural network models to examine the relationship between microhabitat use, thoracic temperatures and activity in a widespread lycaenid butterfly, Polyommatus icarus. We also make predictions for future activity under climate change scenarios. Individuals from a univoltine northern population initiated flight with significantly lower thoracic temperatures than individuals from a bivoltine southern population. Activity is dependent on body temperature and neural network models of body temperature are better at predicting body temperature than generalized linear models. Neural network models of activity with a sole input of predicted body temperature (using weather and microclimate variables) are good predictors of observed activity and were better predictors than generalized linear models. By modelling activity under climate change scenarios for 2080 we predict differences in activity in relation to both regional differences of climate change and differing body temperature requirements for activity in different populations. Under average conditions for low-emission scenarios there will be little change in the activity of individuals from central-southern Britain and a reduction in northwest Scotland from 2003 activity levels. Under high-emission scenarios, flight-dependent activity in northwest Scotland will increase the greatest, despite smaller predicted increases in temperature and decreases in cloud cover. We suggest that neural network models are an effective way of predicting future activity in changing climates for microhabitat-specialist butterflies and that regional differences in the thermoregulatory response of populations will have profound effects on how they respond to climate change.

  11. Synthesis, structure and temperature dependent luminescence of Eu3+ doped hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Luo, Xiaobing; Luo, Xiaoxia; Wang, Hongwei; Deng, Yue; Yang, Peixin; Tian, Yili

    2018-01-01

    A series of Eu3+ substituted hydroxyapatite (HA) were prepared by co-precipitation reactions. The phase, fluorescence and temperature dependent luminescence of the phosphors were investigated by X-ray diffraction (XRD) and photoluminescence (PL). It is found that the doped Eu3+ ions have entered the hexagonal lattice with no obvious secondary phase were detected by XRD. The 5D0 → 7F0 transition was clearly split into two even at room temperature. The predominate 573 nm peak illustrates Eu3+ ions occupy more Ca(II) sites. The temperature dependent luminescent results show HA:xEu might be applied as one potential optical thermometry material.

  12. Denitrification Temperature Dependence in Remote, Cold, and N-Poor Lake Sediments

    NASA Astrophysics Data System (ADS)

    Palacin-Lizarbe, Carlos; Camarero, Lluís.; Catalan, Jordi

    2018-02-01

    The reservoir size and pathway rates of the nitrogen (N) cycle have been deeply modified by the human enhancement of N fixation, atmospheric emissions, and climate warming. Denitrification (DEN) transforms nitrate into nitrogenous gas and thus removes reactive nitrogen (Nr) back to the atmospheric reservoir. There is still a rather limited knowledge of the denitrification rates and their temperature dependence across ecosystems; particularly, for the abundant cold and N-poor freshwater systems (e.g., Arctic and mountain lakes). We experimentally investigated the denitrification rates of mountain lake sediments by manipulating nitrate concentration and temperature on field collected cores. DEN rates were nitrate limited in field conditions and showed a large potential for an immediate DEN increase with both warming and higher Nr load. The estimated activation energy (Ea) for denitrification at nitrate saturation was 46 ± 7 kJ mol-1 (Q10 1.7 ± 0.4). The apparent Ea increased with nitrate (μM) limitation as Ea = 46 + 419 [NO3-]-1. Accordingly, we suggest that climate warming may have a synergistic effect with N emission reduction to readjusting the N cycle. Changes of nitrate availability might be more relevant than direct temperature effects on denitrification.

  13. Temperature-dependent errors in nuclear lattice simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Dean; Thomson, Richard

    2007-06-15

    We study the temperature dependence of discretization errors in nuclear lattice simulations. We find that for systems with strong attractive interactions the predominant error arises from the breaking of Galilean invariance. We propose a local 'well-tempered' lattice action which eliminates much of this error. The well-tempered action can be readily implemented in lattice simulations for nuclear systems as well as cold atomic Fermi systems.

  14. Frequency and temperature dependence of dielectric properties of chicken meat

    USDA-ARS?s Scientific Manuscript database

    Dielectric properties of chicken breast meat were measured with an open-ended coaxial-line probe between 200 MHz and 20 GHz at temperatures ranging from -20 degree C to +25 degree C. At a given temperature, the frequency dependence of the dielectric constant reveals two relaxations while those of th...

  15. Temperature-dependent photoluminescence analysis of ZnO nanowire array annealed in air

    NASA Astrophysics Data System (ADS)

    Sun, Yanan; Gu, Xiuquan; Zhao, Yulong; Wang, Linmeng; Qiang, Yinghuai

    2018-05-01

    ZnO nanowire arrays (NWAs) were prepared on transparent conducting fluorine doped tin oxide (FTO) substrates through a facile hydrothermal method, followed by a 500 °C annealing to improve their crystalline qualities and photoelectrochemical (PEC) activities. It was found that the annealing didn't change the morphology, but resulted in a significant reduction of the donor concentration. Temperature-dependent photoluminescence (PL) was carried out for a comprehensive analysis of the effect from annealing. Noteworthy, four dominant peaks were identified from the 10 K spectrum of a 500 °C annealed sample, and they were assigned to FX, D0X, (e, D0) and (e, D0) -1LO, respectively. Of them, the FX emission was only existed below 130 K, while the room-temperature (RT) PL spectrum was dominated by the D0X emission.

  16. Changing body temperature affects the T2* signal in the rat brain and reveals hypothalamic activity.

    PubMed

    Vanhoutte, G; Verhoye, M; Van der Linden, A

    2006-05-01

    This study was designed to determine brain activity in the hypothalamus-in particular the thermoregulatory function of the hypothalamic preoptic area (PO). We experimentally changed the body temperature in rats within the physiological range (37-39 degrees C) and monitored changes in blood oxygenation level-dependent (BOLD) MR signal. To explore PO activity we had to deal with general signal changes caused by temperature-dependent alterations in the affinity of oxygen for hemoglobin, which contributes to BOLD contrast because it is partly sensitive to the amount of paramagnetic deoxyhemoglobin in the voxel. To reduce these overall temperature-induced effects, we corrected the BOLD data using brain-specific correction algorithms. The results showed activity of the PO during body warming from 38 degrees C to 39 degrees C, supported by an increased BOLD signal after correction. This is the first fMRI study on the autonomous nervous system in which hypothalamic activity elicited by changes in the internal environment (body temperature) was monitored. In this study we also demonstrate 1) that any fMRI study of anesthetized small animals should guard against background BOLD signal drift, since animals are vulnerable to body temperature fluctuations; and 2) the existence of a link between PO activity and the sympathetically-mediated opening of the arteriovenous anastomoses in a parallel study on the rat tail, a peripheral thermoregulatory organ.

  17. Unfolding of a temperature-sensitive domain controls voltage-gated channel activation

    PubMed Central

    Arrigoni, Cristina; Rohaim, Ahmed; Shaya, David; Findeisen, Felix; Stein, Richard A.; Nurva, Shailika Reddy; Mishra, Smriti; Mchaourab, Hassane S.; Minor, Daniel L.

    2016-01-01

    Voltage-gated ion channels (VGICs) are outfitted with diverse cytoplasmic domains that impact function. To examine how such elements may affect VGIC behavior, we addressed how the bacterial voltage-gated sodium channel (BacNaV) C-terminal cytoplasmic domain (CTD) affects function. Our studies show that the BacNaV CTD exerts a profound influence on gating through a temperature-dependent unfolding transition in a discrete cytoplasmic domain, the neck domain, proximal to the pore. Structural and functional studies establish that the BacNaV CTD comprises a bi-partite four-helix bundle that bears an unusual hydrophilic core whose integrity is central to the unfolding mechanism and that couples directly to the channel activation gate. Together, our findings define a general principle for how the widespread four-helix bundle cytoplasmic domain architecture can control VGIC responses, uncover a mechanism underlying the diverse BacNaV voltage dependencies, and demonstrate that a discrete domain can encode the temperature dependent response of a channel. PMID:26919429

  18. Modeling and Compensating Temperature-Dependent Non-Uniformity Noise in IR Microbolometer Cameras

    PubMed Central

    Wolf, Alejandro; Pezoa, Jorge E.; Figueroa, Miguel

    2016-01-01

    Images rendered by uncooled microbolometer-based infrared (IR) cameras are severely degraded by the spatial non-uniformity (NU) noise. The NU noise imposes a fixed-pattern over the true images, and the intensity of the pattern changes with time due to the temperature instability of such cameras. In this paper, we present a novel model and a compensation algorithm for the spatial NU noise and its temperature-dependent variations. The model separates the NU noise into two components: a constant term, which corresponds to a set of NU parameters determining the spatial structure of the noise, and a dynamic term, which scales linearly with the fluctuations of the temperature surrounding the array of microbolometers. We use a black-body radiator and samples of the temperature surrounding the IR array to offline characterize both the constant and the temperature-dependent NU noise parameters. Next, the temperature-dependent variations are estimated online using both a spatially uniform Hammerstein-Wiener estimator and a pixelwise least mean squares (LMS) estimator. We compensate for the NU noise in IR images from two long-wave IR cameras. Results show an excellent NU correction performance and a root mean square error of less than 0.25 ∘C, when the array’s temperature varies by approximately 15 ∘C. PMID:27447637

  19. Dependence of Plastic TATB Shock-Wave Sensitivity on Temperature, Density and Technology Factors

    NASA Astrophysics Data System (ADS)

    Vlasov, Yu. A.; Kosolapov, V. B.; Fomicheva, L. V.; Khabarov, I. P.

    1999-06-01

    Mixed TATB-based HE is the most perspective because of the manufacture and exploitation safety of its items. At the same time the safety of these explosive, at high temperatures, which take place at emergencies, causes the certain anxiety. Plastic TATB shock-wave sensitivity (SWS) researches has shown that temperature as one of the important factors of external influence is not always the determining reason of SWS change. It is known that density influence on SWS significantly. At the same time density depends on temperature and technology of details manufacturing. In this connection in this work the temperature dependence of plastic TATB SWS was studied in view of convertible and irreversible changes of density (p) under heating at -50[C up to 90[C . It is shown that during these influences the dependence of threshold pressure of initiation (P) from temperature is explained, first of all, by change of HE density, caused by its thermal expansion (compression), and also by irreversible changes of p and HE structure, arising at heating. It is found also that the share of irreversible change of density depends on technology of HE details manufacturing and is explained by relaxation of residual pressure in them. The mentioned relaxation is finished after the first cycles of thermal influence. The value of density change, caused by this factor, depends on temperature and duration of heating.

  20. TEMPERATURE-DEPENDENT VISCOELASTIC PROPERTIES OF THE HUMAN SUPRASPINATUS TENDON

    PubMed Central

    Huang, Chun-Yuh; Wang, Vincent M.; Flatow, Evan L.; Mow, Van C.

    2009-01-01

    Temperature effects on the viscoelastic properties of the human supraspinatus tendon were investigated using static stress-relaxation experiments and Quasi-Linear Viscoelastic (QLV) theory. Twelve supraspinatus tendons were randomly assigned to one of two test groups for tensile testing using the following sequence of temperatures: (1) 37°C, 27°C, and 17°C (Group I, n=6), or (2) 42°C, 32°C, and 22°C (Group II, n=6). QLV parameter C was found to increase at elevated temperatures, suggesting greater viscous mechanical behavior at higher temperatures. Elastic parameters A and B showed no significant difference among the six temperatures studied, implying that the viscoelastic stress response of the supraspinatus tendon is not sensitive to temperature over shorter testing durations. Using regression analysis, an exponential relationship between parameter C and test temperature was implemented into QLV theory to model temperature-dependent viscoelastic behavior. This modified approach facilitates the theoretical determination of the viscoelastic behavior of tendons at arbitrary temperatures. PMID:19159888

  1. Characterizing the temperature dependence of electronic packaging-material properties

    NASA Astrophysics Data System (ADS)

    Fu, Chia-Yu; Ume, Charles

    1995-06-01

    A computer-controlled, temperature-dependent material characterization system has been developed for thermal deformation analysis in electronic packaging applications, especially for printed wiring assembly warpage study. For fiberglass-reinforced epoxy (FR-4 type) material, the Young's moduli decrease to as low as 20-30% of the room-temperature values, while the shear moduli decrease to as low as 60-70% of the room-temperature values. The electrical resistance strain gage technique was used in this research. The test results produced overestimated values in property measurements, and this was shown in a case study. A noncontact strau]n measurement technique (laser extensometer) is now being used to measure these properties. Discrepancies of finite-element warpage predictions using different property values increase as the temperature increases from the stress-free temperature.

  2. How Does CIGS Performance Depend on Temperature at the Microscale?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stuckelberger, Michael E.; Nietzold, Tara; West, Bradley M.

    Unveiling the correlation among electrical performance, elemental distribution, and defects at the microscale is crucial for the understanding and improvement of the overall solar cell performance. While this is true in general for solar cells with polycrystalline absorber layers, it is particularly critical for defect engineering of the complex quaternary CuIn xGa 1-xSe 2 (CIGS) material system. Studying these relationships under standard ambient conditions can provide important insights but does not provide input on the behavior of the cell under real operating conditions. In this contribution, we take a close look at the complex temperature dependence of defects and voltagemore » in CIGS at the microscale. We have developed correlative X-raymicroscopymethods and adapted them for temperature-dependent measurements of the locally generated voltage and elemental compositions at the microscale. We have applied these techniques to industrial CIGS solar cells covering temperatures from room temperature up to 100 degrees C. Finally, we find underperforming areas spanning multiple grains that do not correlate with the elemental distribution of major absorber constituents. However, we demonstrate that low-performing areas perform better at higher temperatures relative to the high-performing areas.« less

  3. How Does CIGS Performance Depend on Temperature at the Microscale?

    DOE PAGES

    Stuckelberger, Michael E.; Nietzold, Tara; West, Bradley M.; ...

    2017-11-03

    Unveiling the correlation among electrical performance, elemental distribution, and defects at the microscale is crucial for the understanding and improvement of the overall solar cell performance. While this is true in general for solar cells with polycrystalline absorber layers, it is particularly critical for defect engineering of the complex quaternary CuIn xGa 1-xSe 2 (CIGS) material system. Studying these relationships under standard ambient conditions can provide important insights but does not provide input on the behavior of the cell under real operating conditions. In this contribution, we take a close look at the complex temperature dependence of defects and voltagemore » in CIGS at the microscale. We have developed correlative X-raymicroscopymethods and adapted them for temperature-dependent measurements of the locally generated voltage and elemental compositions at the microscale. We have applied these techniques to industrial CIGS solar cells covering temperatures from room temperature up to 100 degrees C. Finally, we find underperforming areas spanning multiple grains that do not correlate with the elemental distribution of major absorber constituents. However, we demonstrate that low-performing areas perform better at higher temperatures relative to the high-performing areas.« less

  4. Nonlinear temperature dependence of glue-induced birefringence in polarization maintaining FBG sensors

    NASA Astrophysics Data System (ADS)

    Hopf, Barbara; Koch, Alexander W.; Roths, Johannes

    2016-05-01

    Glue-induced stresses decrease the accuracy of surface-mounted fiber Bragg gratings (FBG). Significant temperature dependent glue-induced birefringence was verified when a thermally cured epoxy-based bonding technique had been used. Determining the peak separation of two azimuthally aligned FBGs in PM fibers combined with a polarization resolved measurement set-up in a temperature range between -30°C and 150°C revealed high glue-induced stresses at low temperatures. Peak separations of about 60 pm and a nonlinear temperature dependence of the glue-induced birefringence due to stress relaxation processes and a visco-elastic behavior of the used adhesive have been shown.

  5. Temperature, illumination and fluence dependence of current and voltage in electron irradiated solar cells

    NASA Technical Reports Server (NTRS)

    Obenschain, A. F.; Faith, T. J.

    1973-01-01

    Emperical equations have been derived from measurements of solar cell photovoltaic characteristics relating light generated current, IL, and open circuit voltage, VO, to cell temperature, T, intensity of illumination, W, and 1 Mev electron fluence, phi both 2 ohm-cm and 10 ohm-cm cells were tested. The temperature dependency of IL is similar for both resistivities at 140mw/sq cm; at high temperature the coefficient varies with fluence as phi 0.18, while at low temperatures the coefficient is relatively independent of fluence. Fluence dependent degration causes a decrease in IL at a rate proportional to phi 0.153 for both resistivities. At all intensities other than 560 mw/sq cm, a linear dependence of IL on illumination was found. The temperature coefficient of voltage was, to a good approximation, independent of both temperature and illumination for both resistivities. Illumination dependence of VOC was logarithmic, while the decrease with fluence of VOC varied as phi 0.25 for both resistivities.

  6. Temperature Dependence in the Terahertz Spectrum of Nicotinamide: Anharmonicity and Hydrogen-Bonded Network.

    PubMed

    Takahashi, Masae; Okamura, Nubuyuki; Fan, Xinyi; Shirakawa, Hitoshi; Minamide, Hiroaki

    2017-04-06

    We have investigated the terahertz-spectral property of nicotinamide focusing on the temperature dependence in the range of 14-300 K. We observed that almost all peaks in the terahertz spectrum of the nicotinamide crystal showed a remarkable shift with temperature, whereas the lowest-frequency peak at 34.8 cm -1 showed a negligible shift with temperature. By analyzing the terahertz spectrum with the dispersion-corrected density functional theory calculations, we found that the difference in the temperature dependence of the peak shift is well understood in terms of the presence/absence of stretching vibration of the intermolecular hydrogen bond in the mode and the change of cell parameters. The anharmonicity in the dissociation potential energy of very weak intermolecular hydrogen bonding causes the remarkable peak shift with temperature in the terahertz spectrum of nicotinamide. This finding suggests that the assignment and identification of peaks in the terahertz spectrum are systematically enabled by temperature-dependent measurements.

  7. Time- and temperature-dependent failures of a bonded joint

    NASA Astrophysics Data System (ADS)

    Sihn, Sangwook

    This dissertation summarizes my study of time- and temperature-dependent behavior of a tubular lap bonded joint to provide a design methodology for windmill blade structures. The bonded joint is between a cast-iron rod and a GFRP composite pipe. The adhesive material is an epoxy containing chopped glass fibers. We proposed a new fabrication method to make concentric and void-less specimens of the tubular joint with a thick adhesive bondline to stimulate the root bond of a blade. The thick bondline facilitates the joint assembly of actual blades. For a better understanding of the behavior of the bonded joint, we studied viscoelastic behavior of the adhesive materials by measuring creep compliance at several temperatures during loading period. We observed that the creep compliance depends highly on the period of loading and the temperature. We applied time-temperature equivalence to the creep compliance of the adhesive material to obtain time-temperature shift factors. We also performed constant-rate of monotonically increased uniaxial tensile tests to measure static strength of the tubular lap joint at several temperatures and different strain-rates. We observed two failure modes from load-deflection curves and failed specimens. One is the brittle mode, which was caused by weakness of the interfacial strength occurring at low temperature and short period of loading. The other is the ductile mode, which was caused by weakness of the adhesive material at high temperature and long period of loading. Transition from the brittle to the ductile mode appeared as the temperature or the loading period increased. We also performed tests under uniaxial tensile-tensile cyclic loadings to measure fatigue strength of the bonded joint at several temperatures, frequencies and stress ratios. The fatigue data are analyzed statistically by applying the residual strength degradation model to calculate statistical distribution of the fatigue life. Combining the time-temperature

  8. Temperature dependent energy levels of methylammonium lead iodide perovskite

    NASA Astrophysics Data System (ADS)

    Foley, Benjamin J.; Marlowe, Daniel L.; Sun, Keye; Saidi, Wissam A.; Scudiero, Louis; Gupta, Mool C.; Choi, Joshua J.

    2015-06-01

    Temperature dependent energy levels of methylammonium lead iodide are investigated using a combination of ultraviolet photoemission spectroscopy and optical spectroscopy. Our results show that the valence band maximum and conduction band minimum shift down in energy by 110 meV and 77 meV as temperature increases from 28 °C to 85 °C. Density functional theory calculations using slab structures show that the decreased orbital splitting due to thermal expansion is a major contribution to the experimentally observed shift in energy levels. Our results have implications for solar cell performance under operating conditions with continued sunlight exposure and increased temperature.

  9. Temperature-dependent respiration-growth relations in ancestral maize cultivars

    Treesearch

    Bruce N. Smith; Jillian L. Walker; Rebekka L. Stone; Angela R. Jones; Lee D. Hansen

    2001-01-01

    Shoots from 4- to 6-day old seedlings of seven ancestral or old cultivars of Zea mays L. were placed in a calorimeter. Dark metabolic heat rate (q) and CO2 production rate (RCO2) were measured at nine temperatures (5, 10, 15, 20, 25, 30, 35, 40, and 45 °C). Temperature dependencies of q and RCO2 were used to model response of both growth and substrate carbon conversion...

  10. A method to correct for temperature dependence and measure simultaneously dose and temperature using a plastic scintillation detector

    PubMed Central

    Therriault-Proulx, Francois; Wootton, Landon; Beddar, Sam

    2015-01-01

    Plastic scintillation detectors (PSDs) work well for radiation dosimetry. However, they show some temperature dependence, and a priori knowledge of the temperature surrounding the PSD is required to correct for this dependence. We present a novel approach to correct PSD response values for temperature changes instantaneously and without the need for prior knowledge of the temperature value. In addition to rendering the detector temperature-independent, this approach allows for actual temperature measurement using solely the PSD apparatus. With a temperature-controlled water tank, the temperature was varied from room temperature to more than 40°C and the PSD was used to measure the dose delivered from a cobalt-60 photon beam unit to within an average of 0.72% from the expected value. The temperature was measured during each acquisition with the PSD and a thermocouple and values were within 1°C of each other. The depth-dose curve of a 6-MV photon beam was also measured under warm non-stable conditions and this curve agreed to within an average of −0.98% from the curve obtained at room temperature. The feasibility of rendering PSDs temperature-independent was demonstrated with our approach, which also enabled simultaneous measurement of both dose and temperature. This novel approach improves both the robustness and versatility of PSDs. PMID:26407188

  11. Temperature-dependent change in the nature of glass fracture under electron bombardment

    NASA Astrophysics Data System (ADS)

    Kravchenko, A. A.

    1991-04-01

    We report the experimental discovery of a temperature-dependent change in the nature of glass fracture under low-energy (<10 keV) electron bombardment. This is shown to depend on the transition from the thermal-shock to the thermalfluctuation mechanism of fracture at the limiting temperature T1 = (Tg - 150) °C. The high-temperature cleavage fracture of K8 and TF1 glasses was studied and the threshold value of the critical power initiating cleavage fracture was determined (for the glasses studied Θthr = 50 70 W·sec·cm-2).

  12. Use Dependence of Heat Sensitivity of Vanilloid Receptor TRPV2

    PubMed Central

    Liu, Beiying; Qin, Feng

    2016-01-01

    Thermal TRP channels mediate temperature transduction and pain sensation. The vanilloid receptor TRPV2 is involved in detection of noxious heat in a subpopulation of high-threshold nociceptors. It also plays a critical role in development of thermal hyperalgesia, but the underlying mechanism remains uncertain. Here we analyze the heat sensitivity of the TRPV2 channel. Heat activation of the channel exhibits strong use dependence. Prior heat activation can profoundly alter its subsequent temperature responsiveness, causing decreases in both temperature activation threshold and slope sensitivity of temperature dependence while accelerating activation time courses. Notably, heat and agonist activations differ in cross use-dependence. Prior heat stimulation can dramatically sensitize agonist responses, but not conversely. Quantitative analyses indicate that the use dependence in heat sensitivity is pertinent to the process of temperature sensing by the channel. The use dependence of TRPV2 reveals that the channel can have a dynamic temperature sensitivity. The temperature sensing structures within the channel have multiple conformations and the temperature activation pathway is separate from the agonist activation pathway. Physiologically, the use dependence of TRPV2 confers nociceptors with a hypersensitivity to heat and thus provides a mechanism for peripheral thermal hyperalgesia. PMID:27074678

  13. Temperature dependent photoluminescence and micromapping of multiple stacks InAs quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Ming, E-mail: ming.xu@lgep.supelec.fr; Jaffré, Alexandre, E-mail: ming.xu@lgep.supelec.fr; Alvarez, José, E-mail: ming.xu@lgep.supelec.fr

    2015-02-27

    We utilized temperature dependent photoluminescence (PL) techniques to investigate 1, 3 and 5 stack InGaAs quantum dots (QDs) grown on cross-hatch patterns. PL mapping can well reproduce the QDs distribution as AFM and position dependency of QD growth. It is possible to observe crystallographic dependent PL. The temperature dependent spectra exhibit the QDs energy distribution which reflects the size and shape. The inter-dot carrier coupling effect is observed and translated as a red shift of 120mV on the [1–10] direction peak is observed at 30K on 1 stack with regards to 3 stacks samples, which is assigned to lateral coupling.

  14. Effects of seasonal change and experimental warming on the temperature dependence of photosynthesis in the canopy leaves of Quercus serrata.

    PubMed

    Yamaguchi, Daisuke P; Nakaji, Tatsuro; Hiura, Tsutom; Hikosaka, Kouki

    2016-10-01

    The effects of warming on the temperature response of leaf photosynthesis have become an area of major concern in recent decades. Although growth temperature (GT) and day length (DL) affect leaf gas exchange characteristics, the way in which these factors influence the temperature dependence of photosynthesis remains uncertain. We established open-top canopy chambers at the canopy top of a deciduous forest, in which average daytime leaf temperature was increased by 1.0 °C. We conducted gas exchange measurements for the canopy leaves of deciduous trees exposed to artificial warming during different seasons. The carbon dioxide assimilation rate at 20 °C (A 20 ) was not affected by warming, whereas that at 25 °C (A 25 ) tended to be higher in leaves exposed to warming. Warming increased the optimal temperature of photosynthesis by increasing the activation energy for the maximum rate of carboxylation. Regression analysis indicated that both GT and DL strongly influenced gas exchange characteristics. Sensitivity analysis revealed that DL affected A without obvious effects on the temperature dependence of A, whereas GT almost maintained constant A 20 and strongly influenced the temperature dependence. These results indicate that GT and DL have different influences on photosynthesis; GT and DL affect the 'slope' and intercept' of the temperature dependence of photosynthesis, respectively. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Inverse Temperature Dependence of Nuclear Quantum Effects in DNA Base Pairs

    PubMed Central

    2016-01-01

    Despite the inherently quantum mechanical nature of hydrogen bonding, it is unclear how nuclear quantum effects (NQEs) alter the strengths of hydrogen bonds. With this in mind, we use ab initio path integral molecular dynamics to determine the absolute contribution of NQEs to the binding in DNA base pair complexes, arguably the most important hydrogen-bonded systems of all. We find that depending on the temperature, NQEs can either strengthen or weaken the binding within the hydrogen-bonded complexes. As a somewhat counterintuitive consequence, NQEs can have a smaller impact on hydrogen bond strengths at cryogenic temperatures than at room temperature. We rationalize this in terms of a competition of NQEs between low-frequency and high-frequency vibrational modes. Extending this idea, we also propose a simple model to predict the temperature dependence of NQEs on hydrogen bond strengths in general. PMID:27195654

  16. Temperature-dependent behaviours are genetically variable in the nematode Caenorhabditis briggsae.

    PubMed

    Stegeman, Gregory W; de Mesquita, Matthew Bueno; Ryu, William S; Cutter, Asher D

    2013-03-01

    Temperature-dependent behaviours in Caenorhabditis elegans, such as thermotaxis and isothermal tracking, are complex behavioural responses that integrate sensation, foraging and learning, and have driven investigations to discover many essential genetic and neural pathways. The ease of manipulation of the Caenorhabditis model system also has encouraged its application to comparative analyses of phenotypic evolution, particularly contrasts of the classic model C. elegans with C. briggsae. And yet few studies have investigated natural genetic variation in behaviour in any nematode. Here we measure thermotaxis and isothermal tracking behaviour in genetically distinct strains of C. briggsae, further motivated by the latitudinal differentiation in C. briggsae that is associated with temperature-dependent fitness differences in this species. We demonstrate that C. briggsae performs thermotaxis and isothermal tracking largely similar to that of C. elegans, with a tendency to prefer its rearing temperature. Comparisons of these behaviours among strains reveal substantial heritable natural variation within each species that corresponds to three general patterns of behavioural response. However, intraspecific genetic differences in thermal behaviour often exceed interspecific differences. These patterns of temperature-dependent behaviour motivate further development of C. briggsae as a model system for dissecting the genetic underpinnings of complex behavioural traits.

  17. Temperature dependent droplet impact dynamics on flat and textured surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azar Alizadeh; Vaibhav Bahadur; Sheng Zhong

    Droplet impact dynamics determines the performance of surfaces used in many applications such as anti-icing, condensation, boiling and heat transfer. We study impact dynamics of water droplets on surfaces with chemistry/texture ranging from hydrophilic to superhydrophobic and across a temperature range spanning below freezing to near boiling conditions. Droplet retraction shows very strong temperature dependence especially for hydrophilic surfaces; it is seen that lower substrate temperatures lead to lesser retraction. Physics-based analyses show that the increased viscosity associated with lower temperatures can explain the decreased retraction. The present findings serve to guide further studies of dynamic fluid-structure interaction at variousmore » temperatures.« less

  18. Temperature-Dependent Implicit-Solvent Model of Polyethylene Glycol in Aqueous Solution.

    PubMed

    Chudoba, Richard; Heyda, Jan; Dzubiella, Joachim

    2017-12-12

    A temperature (T)-dependent coarse-grained (CG) Hamiltonian of polyethylene glycol/oxide (PEG/PEO) in aqueous solution is reported to be used in implicit-solvent material models in a wide temperature (i.e., solvent quality) range. The T-dependent nonbonded CG interactions are derived from a combined "bottom-up" and "top-down" approach. The pair potentials calculated from atomistic replica-exchange molecular dynamics simulations in combination with the iterative Boltzmann inversion are postrefined by benchmarking to experimental data of the radius of gyration. For better handling and a fully continuous transferability in T-space, the pair potentials are conveniently truncated and mapped to an analytic formula with three structural parameters expressed as explicit continuous functions of T. It is then demonstrated that this model without further adjustments successfully reproduces other experimentally known key thermodynamic properties of semidilute PEG solutions such as the full equation of state (i.e., T-dependent osmotic pressure) for various chain lengths as well as their cloud point (or collapse) temperature.

  19. From powder to solution: hydration dependence of human hemoglobin dynamics correlated to body temperature.

    PubMed

    Stadler, A M; Digel, I; Embs, J P; Unruh, T; Tehei, M; Zaccai, G; Büldt, G; Artmann, G M

    2009-06-17

    A transition in hemoglobin (Hb), involving partial unfolding and aggregation, has been shown previously by various biophysical methods. The correlation between the transition temperature and body temperature for Hb from different species, suggested that it might be significant for biological function. To focus on such biologically relevant human Hb dynamics, we studied the protein internal picosecond motions as a response to hydration, by elastic and quasielastic neutron scattering. Rates of fast diffusive motions were found to be significantly enhanced with increasing hydration from fully hydrated powder to concentrated Hb solution. In concentrated protein solution, the data showed that amino acid side chains can explore larger volumes above body temperature than expected from normal temperature dependence. The body temperature transition in protein dynamics was absent in fully hydrated powder, indicating that picosecond protein dynamics responsible for the transition is activated only at a sufficient level of hydration. A collateral result from the study is that fully hydrated protein powder samples do not accurately describe all aspects of protein picosecond dynamics that might be necessary for biological function.

  20. A study on the dependence of nuclear viscosity on temperature

    NASA Astrophysics Data System (ADS)

    Vardaci, E.; Di Nitto, A.; Nadtochy, P. N.; La Rana, G.; Cinausero, M.; Prete, G.; Gelli, N.; Ashaduzzaman, M.; Davide, F.; Pulcini, A.; Quero, D.; Kozulin, E. M.; Knyazheva, G. N.; Itkis, I. M.

    2018-05-01

    Nuclear viscosity is an irreplaceable ingredient of nuclear fission collective dynamical models. It drives the exchange of energy between the collective variables and the thermal bath of single particle degrees of freedom. Its dependence on the shape and temperature is a matter of controversy. By using systems of intermediate fissility we have demonstrated in a recent study that the viscosity parameters is larger for compact shapes, and decreases for larger deformations of the fissioning system, at variance with the conclusions of the statistical model modified to include empirically viscosity and time scales. In this contribution we propose an experimental scenario to highlight the possible dependence of the viscosity from the temperature.

  1. Temperature- and Length-Dependent Energetics of Formation for Polyalanine Helices in Water: Assignment of wAla(n,T) and Temperature-Dependent CD Ellipticity Standards

    PubMed Central

    Job, Gabriel E.; Kennedy, Robert J.; Heitmann, Björn; Miller, Justin S.; Walker, Sharon M.; Kemp*, Daniel S.

    2006-01-01

    Length-dependent helical propensities wAla(n,T) at T = 10, 25, and 60 °C are assigned from t/c values and NMR 13C chemical shifts for series 1 peptides TrpLysmInp2tLeu–AlantLeuInp2LysmNH2, n = 15, 19, and 25, m = 5, in water. Van’t Hoff analysis of wAla(n,T) show that α-helix formation is primarily enthalpy-driven. For series 2 peptides Ac–Trp Lys5Inp2tLeu–βAspHel–Alan–beta–tLeuInp2Lys5NH2, n = 12 and 22, which contain exceptionally helical Alan cores, protection factor-derived fractional helicities FH are assigned in the range 10–30 °C in water and used to calibrate temperature-dependent CD ellipticities [θ]λ,H,n,T. These are applied to CD data for series 1 peptides, 12 ≤ n ≤ 45, to confirm the wAla(n,T) assignments at T = 25 and 60 °C. The [θ]λ,H,n,T are temperature dependent within the wavelength region, 222 ± 12 nm, and yield a temperature correction for calculation of FH from experimental values of [θ]222,n,T,Exp. PMID:16787087

  2. Temperature-dependent and optimized thermal emission by spheres

    NASA Astrophysics Data System (ADS)

    Nguyen, K. L.; Merchiers, O.; Chapuis, P.-O.

    2018-03-01

    We investigate the temperature and size dependencies of thermal emission by homogeneous spheres as a function of their dielectric properties. Different power laws obtained in this work show that the emitted power can depart strongly from the usual fourth power of temperature given by Planck's law and from the square or the cube of the radius. We also show how to optimize the thermal emission by selecting permittivities leading to resonances, which allow for the so-called super-Planckian regime. These results will be useful as spheres, i.e. the simplest finite objects, are often considered as building blocks of more complex objects.

  3. Orientation and Temperature Dependence of Work-Hardening Rate in Cd Single Crystals

    NASA Astrophysics Data System (ADS)

    Uçar, N.

    1997-03-01

    The orientation and temperature dependence of the work-hardening rate (WHR) has been investigated in tension in the temperature range from room temperature to 500 K in Cd single crystals. The WHR was found to decrease rapidly with increasing temperature. For 21-1-3 orientated crystals, the WHR increases firstly with increasing temperature until it passes a maximum at about 350 K.

  4. Predicting Long-term Temperature Increase for Time-Dependent SAR Levels with a Single Short-term Temperature Response

    PubMed Central

    Carluccio, Giuseppe; Bruno, Mary; Collins, Christopher M.

    2015-01-01

    Purpose Present a novel method for rapid prediction of temperature in vivo for a series of pulse sequences with differing levels and distributions of specific energy absorption rate (SAR). Methods After the temperature response to a brief period of heating is characterized, a rapid estimate of temperature during a series of periods at different heating levels is made using a linear heat equation and Impulse-Response (IR) concepts. Here the initial characterization and long-term prediction for a complete spine exam are made with the Pennes’ bioheat equation where, at first, core body temperature is allowed to increase and local perfusion is not. Then corrections through time allowing variation in local perfusion are introduced. Results The fast IR-based method predicted maximum temperature increase within 1% of that with a full finite difference simulation, but required less than 3.5% of the computation time. Even higher accelerations are possible depending on the time step size chosen, with loss in temporal resolution. Correction for temperature-dependent perfusion requires negligible additional time, and can be adjusted to be more or less conservative than the corresponding finite difference simulation. Conclusion With appropriate methods, it is possible to rapidly predict temperature increase throughout the body for actual MR examinations. (200/200 words) PMID:26096947

  5. Predicting long-term temperature increase for time-dependent SAR levels with a single short-term temperature response.

    PubMed

    Carluccio, Giuseppe; Bruno, Mary; Collins, Christopher M

    2016-05-01

    Present a novel method for rapid prediction of temperature in vivo for a series of pulse sequences with differing levels and distributions of specific energy absorption rate (SAR). After the temperature response to a brief period of heating is characterized, a rapid estimate of temperature during a series of periods at different heating levels is made using a linear heat equation and impulse-response (IR) concepts. Here the initial characterization and long-term prediction for a complete spine exam are made with the Pennes' bioheat equation where, at first, core body temperature is allowed to increase and local perfusion is not. Then corrections through time allowing variation in local perfusion are introduced. The fast IR-based method predicted maximum temperature increase within 1% of that with a full finite difference simulation, but required less than 3.5% of the computation time. Even higher accelerations are possible depending on the time step size chosen, with loss in temporal resolution. Correction for temperature-dependent perfusion requires negligible additional time and can be adjusted to be more or less conservative than the corresponding finite difference simulation. With appropriate methods, it is possible to rapidly predict temperature increase throughout the body for actual MR examinations. © 2015 Wiley Periodicals, Inc.

  6. Cloud droplet activation through oxidation of organic aerosol influenced by temperature and particle phase state: CLOUD ACTIVATION BY AGED ORGANIC AEROSOL

    DOE PAGES

    Slade, Jonathan H.; Shiraiwa, Manabu; Arangio, Andrea; ...

    2017-02-04

    Chemical aging of organic aerosol (OA) through multiphase oxidation reactions can alter their cloud condensation nuclei (CCN) activity and hygroscopicity. However, the oxidation kinetics and OA reactivity depend strongly on the particle phase state, potentially influencing the hydrophobic-to-hydrophilic conversion rate of carbonaceous aerosol. Here, amorphous Suwannee River fulvic acid (SRFA) aerosol particles, a surrogate humic-like substance (HULIS) that contributes substantially to global OA mass, are oxidized by OH radicals at different temperatures and phase states. When oxidized at low temperature in a glassy solid state, the hygroscopicity of SRFA particles increased by almost a factor of two, whereas oxidation ofmore » liquid-like SRFA particles at higher temperatures did not affect CCN activity. Low-temperature oxidation appears to promote the formation of highly-oxygenated particle-bound fragmentation products with lower molar mass and greater CCN activity, underscoring the importance of chemical aging in the free troposphere and its influence on the CCN activity of OA.« less

  7. Temperature Dependence of Radiation Induced Conductivity in Insulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennison, J. R.; Gillespie, Jodie; Hodges, Joshua

    2009-03-10

    This study measures Radiation Induced Conductivity (RIC) of Low Density Polyethylene (LDPE) over temperatures ranging from {approx}110 K to {approx}350 K. RIC occurs when incident ionizing radiation deposits energy and excites electrons into the conduction band of insulators. Conductivity was measured when a voltage was applied across vacuum-baked, thin film LDPE polymer samples in a parallel plate geometry. RIC was calculated as the difference in sample conductivity under no incident radiation and under an incident {approx}4 MeV electron beam at low incident fluxes of 10{sup -4}-10{sup -1} Gr/sec. The steady-state RIC was found to agree well with the standard powermore » law relation, {sigma}{sub RIC} = k{sub RIC}{center_dot}D ring {sup {delta}} between conductivity, {sigma} and adsorbed dose rate, D ring . Both the proportionality constant, k{sub RIC}, and the power, {delta}, were found to be temperature dependant above {approx}250 K, with behavior consistent with photoconductivity models developed for localized trap states in disordered semiconductors. Below {approx}250 K, kRIC and {delta} exhibited little change. The observed difference in temperature dependence might be related to a structural phase transition seen at T{sub {beta}}{approx}256 K in prior studies of mechanical and thermodynamic properties of LDPE.« less

  8. One-shot calculation of temperature-dependent optical spectra and phonon-induced band-gap renormalization

    NASA Astrophysics Data System (ADS)

    Zacharias, Marios; Giustino, Feliciano

    2016-08-01

    Recently, Zacharias et al. [Phys. Rev. Lett. 115, 177401 (2015), 10.1103/PhysRevLett.115.177401] developed an ab initio theory of temperature-dependent optical absorption spectra and band gaps in semiconductors and insulators. In that work, the zero-point renormalization and the temperature dependence were obtained by sampling the nuclear wave functions using a stochastic approach. In the present work, we show that the stochastic sampling of Zacharias et al. can be replaced by fully deterministic supercell calculations based on a single optimal configuration of the atomic positions. We demonstrate that a single calculation is able to capture the temperature-dependent band-gap renormalization including quantum nuclear effects in direct-gap and indirect-gap semiconductors, as well as phonon-assisted optical absorption in indirect-gap semiconductors. In order to demonstrate this methodology, we calculate from first principles the temperature-dependent optical absorption spectra and the renormalization of direct and indirect band gaps in silicon, diamond, and gallium arsenide, and we obtain good agreement with experiment and with previous calculations. In this work we also establish the formal connection between the Williams-Lax theory of optical transitions and the related theories of indirect absorption by Hall, Bardeen, and Blatt, and of temperature-dependent band structures by Allen and Heine. The present methodology enables systematic ab initio calculations of optical absorption spectra at finite temperature, including both direct and indirect transitions. This feature will be useful for high-throughput calculations of optical properties at finite temperature and for calculating temperature-dependent optical properties using high-level theories such as G W and Bethe-Salpeter approaches.

  9. Temperature-dependent innate defense against the common cold virus limits viral replication at warm temperature in mouse airway cells.

    PubMed

    Foxman, Ellen F; Storer, James A; Fitzgerald, Megan E; Wasik, Bethany R; Hou, Lin; Zhao, Hongyu; Turner, Paul E; Pyle, Anna Marie; Iwasaki, Akiko

    2015-01-20

    Most isolates of human rhinovirus, the common cold virus, replicate more robustly at the cool temperatures found in the nasal cavity (33-35 °C) than at core body temperature (37 °C). To gain insight into the mechanism of temperature-dependent growth, we compared the transcriptional response of primary mouse airway epithelial cells infected with rhinovirus at 33 °C vs. 37 °C. Mouse airway cells infected with mouse-adapted rhinovirus 1B exhibited a striking enrichment in expression of antiviral defense response genes at 37 °C relative to 33 °C, which correlated with significantly higher expression levels of type I and type III IFN genes and IFN-stimulated genes (ISGs) at 37 °C. Temperature-dependent IFN induction in response to rhinovirus was dependent on the MAVS protein, a key signaling adaptor of the RIG-I-like receptors (RLRs). Stimulation of primary airway cells with the synthetic RLR ligand poly I:C led to greater IFN induction at 37 °C relative to 33 °C at early time points poststimulation and to a sustained increase in the induction of ISGs at 37 °C relative to 33 °C. Recombinant type I IFN also stimulated more robust induction of ISGs at 37 °C than at 33 °C. Genetic deficiency of MAVS or the type I IFN receptor in infected airway cells permitted higher levels of viral replication, particularly at 37 °C, and partially rescued the temperature-dependent growth phenotype. These findings demonstrate that in mouse airway cells, rhinovirus replicates preferentially at nasal cavity temperature due, in part, to a less efficient antiviral defense response of infected cells at cool temperature.

  10. Temperature dependence of the chromium(III) R1 linewidth in emerald

    NASA Astrophysics Data System (ADS)

    Carceller-Pastor, Ivana; Hutchison, Wayne D.; Riesen, Hans

    2013-03-01

    The temperature dependent contribution to the R1 (2E ← 4A2) linewidth in emerald, Be3Al2Si6O18:Cr3, has been measured by employing spectral hole-burning, fluorescence line narrowing and conventional luminescence experiments. The contribution varies from 0.6 MHz at 6.5 K to ˜420 GHz at 240 K and the line red-shifts by ˜570 GHz. Above 60 K, the dependence is well described by a non-perturbative formalism for two-phonon Raman scattering. Below this temperature the direct one-phonon process between the levels of the split 2E excited state dominates. However, it appears that a localized low-energy phonon leads to a deviation from the standard pattern at lowest temperatures.

  11. In-situ observation of the temperature and orientation dependence of the surface concentration of Ni adatoms deposited on Pd

    NASA Astrophysics Data System (ADS)

    Zimnik, Samantha; Dickmann, Marcel; Hugenschmidt, Christoph

    2017-10-01

    We report the direct observation of the in-situ temperature-dependent migration of Ni adatoms in Pd using Positron annihilation induced Auger Electron Spectroscopy (PAES). For this study, a single atomic layer of Ni was grown on Pd with the crystallographic orientations Pd(111), Pd(110) and Pd(100). The sample temperature was increased from room temperature to 350 °C and the intensity of the Ni and Pd signal was evaluated from the recorded PAES spectra. Due to the outstanding surface sensitivity of PAES a clear tendency for Pd segregation at the surface was observed for all samples. Moreover the activation temperature T0 for surface segregation was found to depend strongly on the surface orientation: We determined T0 to 172± 4 °C, 261± 12 °C and 326± 11 °C for Pd(111), Pd(100) and Pd(110), respectively.

  12. Temperature- and field-dependent characterization of a conductor on round core cable

    NASA Astrophysics Data System (ADS)

    Barth, C.; van der Laan, D. C.; Bagrets, N.; Bayer, C. M.; Weiss, K.-P.; Lange, C.

    2015-06-01

    The conductor on round core (CORC) cable is one of the major high temperature superconductor cable concepts combining scalability, flexibility, mechanical strength, ease of fabrication and high current density; making it a possible candidate as conductor for large, high field magnets. To simulate the boundary conditions of such magnets as well as the temperature dependence of CORC cables a 1.16 m long sample consisting of 15, 4 mm wide SuperPower REBCO tapes was characterized using the ‘FBI’ (force—field—current) superconductor test facility of the Institute for Technical Physics of the Karlsruhe Institute of Technology. In a five step investigation, the CORC cable’s performance was determined at different transverse mechanical loads, magnetic background fields and temperatures as well as its response to swift current changes. In the first step, the sample’s 77 K, self-field current was measured in a liquid nitrogen bath. In the second step, the temperature dependence was measured at self-field condition and compared with extrapolated single tape data. In the third step, the magnetic background field was repeatedly cycled while measuring the current carrying capabilities to determine the impact of transverse Lorentz forces on the CORC cable sample’s performance. In the fourth step, the sample’s current carrying capabilities were measured at different background fields (2-12 T) and surface temperatures (4.2-51.5 K). Through finite element method simulations, the surface temperatures are converted into average sample temperatures and the gained field- and temperature dependence is compared with extrapolated single tape data. In the fifth step, the response of the CORC cable sample to rapid current changes (8.3 kA s-1) was observed with a fast data acquisition system. During these tests, the sample performance remains constant, no degradation is observed. The sample’s measured current carrying capabilities correlate to those of single tapes assuming

  13. Frequency and Temperature Dependent Dielectric Properties of Free-standing Strontium Titanate Thin Films.

    NASA Astrophysics Data System (ADS)

    Dalberth, Mark J.; Stauber, Renaud E.; Anderson, Britt; Price, John C.; Rogers, Charles T.

    1998-03-01

    We will report on the frequency and temperature dependence of the complex dielectric function of free-standing strontium titanate (STO) films. STO is an incipient ferroelectric with electric-field tunable dielectric properties of utility in microwave electronics. The films are grown epitaxially via pulsed laser deposition on a variety of substrates, including lanthanum aluminate (LAO), neodymium gallate (NGO), and STO. An initial film of yttrium barium cuprate (YBCO) is grown on the substrate, followed by deposition of the STO layer. Following deposition, the sacrificial YBCO layer is chemically etched away in dilute nitric acid, leaving the substrate and a released, free-standing STO film. Coplanar capacitor structures fabricated on the released films allow us to measure the dielectric response. We observe a peak dielectric function in excess of 5000 at 35K, change in dielectric constant of over a factor of 8 for 10Volt/micron electric fields, and temperature dependence above 50K that is very similar to bulk material. The dielectric loss shows two peaks, each with a thermally activated behavior, apparently arising from two types of polar defects. We will discuss the correlation between dielectric properties, growth conditions, and strain in the free-standing STO films.

  14. Carrier concentration dependence of donor activation energy in n-type GaN epilayers grown on Si (1 1 1) by plasma-assisted MBE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Mahesh; Central Research Laboratory, Bharat Electronics, Bangalore 560 013; Bhat, Thirumaleshwara N.

    Highlights: ► The n-type GaN layers were grown by plasma-assisted molecular beam epitaxy. ► The optical characteristics of a donor level in Si-doped GaN were studied. ► Activation energy of a Si-related donor was estimated from temperature dependent PL measurements. ► PL peak positions, FWHM of PL and activation energies are found to be proportional to the cube root of carrier density. ► The involvement of donor levels is supported by the temperature-dependent electron concentration measurements. -- Abstract: The n-type GaN layers were grown by plasma-assisted MBE and either intentionally doped with Si or unintentionally doped. The optical characteristics ofmore » a donor level in Si-doped, GaN were studied in terms of photoluminescence (PL) spectroscopy as a function of electron concentration. Temperature dependent PL measurements allowed us to estimate the activation energy of a Si-related donor from temperature-induced decay of PL intensity. PL peak positions, full width at half maximum of PL and activation energies are found to be proportional to the cube root of carrier density. The involvement of donor levels is supported by the temperature-dependent electron concentration measurements.« less

  15. Temperature-Dependent Conformations of Model Viscosity Index Improvers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramasamy, Uma Shantini; Cosimbescu, Lelia; Martini, Ashlie

    2015-05-01

    Lubricants are comprised of base oils and additives where additives are chemicals that are deliberately added to the oil to enhance properties and inhibit degradation of the base oils. Viscosity index (VI) improvers are an important class of additives that reduce the decline of fluid viscosity with temperature [1], enabling optimum lubricant performance over a wider range of operating temperatures. These additives are typically high molecular weight polymers, such as, but not limited to, polyisobutylenes, olefin copolymer, and polyalkylmethacrylates, that are added in concentrations of 2-5% (w/w). Appropriate polymers, when dissolved in base oil, expand from a coiled to anmore » uncoiled state with increasing temperature [2]. The ability of VI additives to increase their molar volume and improve the temperature-viscosity dependence of lubricants suggests there is a strong relationship between molecular structure and additive functionality [3]. In this work, we aim to quantify the changes in polymer size with temperature for four polyisobutylene (PIB) based molecular structures at the nano-scale using molecular simulation tools. As expected, the results show that the polymers adopt more conformations at higher temperatures, and there is a clear indication that the expandability of a polymer is strongly influenced by molecular structure.« less

  16. Temperature dependence of ice-on-rock friction at realistic glacier conditions

    PubMed Central

    Savage, H.; Nettles, M.

    2017-01-01

    Using a new biaxial friction apparatus, we conducted experiments of ice-on-rock friction in order to better understand basal sliding of glaciers and ice streams. A series of velocity-stepping and slide–hold–slide tests were conducted to measure friction and healing at temperatures between −20°C and melting. Experimental conditions in this study are comparable to subglacial temperatures, sliding rates and effective pressures of Antarctic ice streams and other glaciers, with load-point velocities ranging from 0.5 to 100 µm s−1 and normal stress σn = 100 kPa. In this range of conditions, temperature dependences of both steady-state friction and frictional healing are considerable. The friction increases linearly with decreasing temperature (temperature weakening) from μ = 0.52 at −20°C to μ = 0.02 at melting. Frictional healing increases and velocity dependence shifts from velocity-strengthening to velocity-weakening behaviour with decreasing temperature. Our results indicate that the strength and stability of glaciers and ice streams may change considerably over the range of temperatures typically found at the ice–bed interface. This article is part of the themed issue ‘Microdynamics of ice’. PMID:28025297

  17. Use Dependence of Heat Sensitivity of Vanilloid Receptor TRPV2.

    PubMed

    Liu, Beiying; Qin, Feng

    2016-04-12

    Thermal TRP channels mediate temperature transduction and pain sensation. The vanilloid receptor TRPV2 is involved in detection of noxious heat in a subpopulation of high-threshold nociceptors. It also plays a critical role in development of thermal hyperalgesia, but the underlying mechanism remains uncertain. Here we analyze the heat sensitivity of the TRPV2 channel. Heat activation of the channel exhibits strong use dependence. Prior heat activation can profoundly alter its subsequent temperature responsiveness, causing decreases in both temperature activation threshold and slope sensitivity of temperature dependence while accelerating activation time courses. Notably, heat and agonist activations differ in cross use-dependence. Prior heat stimulation can dramatically sensitize agonist responses, but not conversely. Quantitative analyses indicate that the use dependence in heat sensitivity is pertinent to the process of temperature sensing by the channel. The use dependence of TRPV2 reveals that the channel can have a dynamic temperature sensitivity. The temperature sensing structures within the channel have multiple conformations and the temperature activation pathway is separate from the agonist activation pathway. Physiologically, the use dependence of TRPV2 confers nociceptors with a hypersensitivity to heat and thus provides a mechanism for peripheral thermal hyperalgesia. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Temperature Dependence of Brillouin Light Scattering Spectra of Acoustic Phonons in Silicon

    NASA Astrophysics Data System (ADS)

    Somerville, Kevin; Klimovich, Nikita; An, Kyongmo; Sullivan, Sean; Weathers, Annie; Shi, Li; Li, Xiaoqin

    2015-03-01

    Thermal management represents an outstanding challenge in many areas of technology. Electrons, optical phonons, and acoustic phonons are often driven out of local equilibrium in electronic devices or during laser-material interaction processes. Interest in non-equilibrium transport processes has motivated the development of Raman spectroscopy as a local temperature sensor of optical phonons and intermediate frequency acoustic phonons, whereas Brillouin light scattering (BLS) has recently been explored as a temperature sensor of low-frequency acoustic phonons. Here, we report temperature dependent BLS spectra of silicon, with Raman spectra taken simultaneously for comparison. The origins of the observed temperature dependence of the BLS peak position, linewidth, and intensity are examined in order to evaluate their potential use as temperature sensors for acoustic phonons. We determine that the integrated BLS intensity can be used measure the temperature of specific acoustic phonon modes. This work is supported by National Science Foundation (NSF) Thermal Transport Processes Program under Grant CBET-1336968.

  19. The temperature dependence of the anisotropy constants for nickel

    NASA Astrophysics Data System (ADS)

    Szpunar, B.

    1984-04-01

    A universal function is suggested for the description of the temperature dependence of the anisotropy constants for Ni. The function has been obtained from the extended Stevens operators for J→ {1}/{2}. The prediction is in good agreement with experimental data.

  20. Temperature dependence of bromine activation due to reaction of bromide with ozone in a proxy for organic aerosols and its importance for chemistry in surface snow.

    NASA Astrophysics Data System (ADS)

    Edebeli, Jacinta; Ammann, Markus; Gilgen, Anina; Trachsel, Jürg; Avak, Sven; Eichler, Anja; Schneebeli, Martin; Bartels-Rausch, Thorsten

    2017-04-01

    Tropospheric ozone depletion events (ODEs) via halogen activation are observed in both cold and warm climates [1-3]. Very recently, it was suggested that this multiphase halogen activation chemistry dominates in the tropical and subtropical upper troposphere [4]. These occurrences beg the question of temperature dependence of halogen activation in sea-salt aerosol, which are often mixtures of sea-salt and organic molecules [3, 5]. With the application of flow-tubes, the aim of this study is to investigate the temperature dependence of bromine activation via ozone interaction in a bromide containing film as a proxy for mixed organic - sea-salt aersol. Citric acid is used in this study as a hygroscopically characterized matrix and a proxy for oxidized organics, which is of relevance to atmospheric chemistry. Here, we present reactive ozone uptake measured between 258 and 289 K. The data show high reproducibility. With available knowledge, we have reproduced the measured uptake with modelled bulk uptake while accounting for temperature dependence of the substrate's properties as diffusivity, viscosity, and gas solubility. This work is part of a cross-disciplinary project with the aim to investigate the impact of metamorphism on impurity location in aging snow and its consequences for chemical reactivity. Metamorphism drastically shapes the structure and physical properties of snow, which has impacts on heat transfer, albedo, and avalanche formation. Such changes can be driven by water vapour fluxes in dry metamorphism with a mass turnover of as much as 60% per day - much greater than previously thought [6]. The consequences for atmospheric science are a current question of research [7]. Here, we show first results of a joint experiment to probe the re-distribution of impurities during snow metamorphism in artificial snow combined with an investigation of the samples structural changes. Future work is planned with the goal to investigate to which extend the observed re

  1. Rapid nondestructive spectrometric measurement of temperature-dependent gas-liquid solubility equilibria.

    PubMed

    Ma, Jian; Dasgupta, Purnendu K; Yang, Bingcheng

    2011-02-01

    Gas-liquid solubility equilibria (Henry's Law behavior) are of basic interest to many different areas. Temperature-dependent aqueous solubilities of various organic compounds are of fundamental importance in many branches of environmental science. In a number of situations, the gas/dissolved solute of interest has characteristic spectroscopic absorption that is distinct from that of the solvent. For such cases, we report facile nondestructive rapid measurement of the temperature-dependent Henry's law constant (K(H)) in a static sealed spectrometric cell. Combined with a special cell design, multiwavelength measurement permits a large range of K(H) to be spanned. It is possible to derive the K(H) values from the absorbance measured in the gas phase only, the liquid phase only (preferred), and both phases. Underlying principles are developed, and all three approaches are illustrated for a solute like acetone in water. A thermostatic spectrophotometer cell compartment, widely used and available, facilitates rapid temperature changes and allows rapid temperature-dependent equilibrium measurements. Applicability is shown for both acetone and methyl isobutyl ketone. Very little sample is required for the measurement; the K(H) for 4-hydroxynonenal, a marker for oxidative stress, is measured to be 56.9 ± 2.6 M/atm (n = 3) at 37.4 °C with 1 mg of the material available.

  2. Temperature dependence of the anisotropy field of L10 FePt near the Curie temperature

    NASA Astrophysics Data System (ADS)

    Richter, H. J.; Parker, G. J.

    2017-06-01

    Near the Curie temperature, the anisotropy field of magnetically uniaxial L10 FePt is expected to follow the scaling law (1 - T/Tc)β, where T is the temperature and Tc is the Curie temperature. In the literature, β values between 0.36 and 0.65 have been reported. Based on recording measurements and micromagnetic analysis, we show that only the values of β near the low end of the reported range are compatible with the data. We also conclude that thermally activated magnetization reversal at temperatures near Tc cannot be ignored, even at time scales smaller than 1 ns. We demonstrate that thermally activated magnetization reversal at temperatures close to Tc is well described by conventional theory with a frequency factor f0 of the order of 1012 Hz. It is reasoned that the unusually high value for f0 is a consequence of the temperature-induced reduction of the degree of alignment of the micro-spins within the grains.

  3. Temperature-dependent residual shear strength characteristics of smectite-bearing landslide soils

    NASA Astrophysics Data System (ADS)

    Shibasaki, Tatsuya; Matsuura, Sumio; Hasegawa, Yoichi

    2017-02-01

    This paper presents experimental investigations regarding the effect of temperature on the residual strength of landslide soils at slow-to-moderate shearing velocities. We performed ring-shear tests on 23 soil samples at temperatures of 6-29°C. The test results show that the shear strength of smectite-rich soils decreased when temperatures were relatively low. These positive temperature effects (strength losses at lower temperatures) observed for smectite-bearing soils are typical under relatively slow shearing rates. In contrast, under relatively high shearing rates, strength was gained as temperature decreased. As rheological properties of smectite suspensions are sensitive to environmental factors, such as temperature, pH, and dissolved ions, we inferred that temperature-dependent residual strengths of smectitic soils are also attributed to their specific rheological properties. Visual and scanning electron microscope observations of Ca-bentonite suggest that slickensided shear surfaces at slow shearing rates are very shiny and smooth, whereas those at moderate shearing rates are not glossy and are slightly turbulent, indicating that platy smectite particles are strongly orientated at slow velocities. The positive temperature effect is probably due to temperature-dependent microfriction that is mobilized in the parallel directions of the sheet structure of hydrous smectite particles. On the contrary, the influence of microviscous resistance, which appears in the vertical directions of the lamination, is assumed to increase at faster velocities. Our results imply that if slip-surface soils contain high fractions of smectite, decreases in ground temperature can lead to lowered shear resistance of the slip surface and trigger slow landslide movement.

  4. Rate of egg maturation in marine turtles exhibits 'universal temperature dependence'.

    PubMed

    Weber, Sam B; Blount, Jonathan D; Godley, Brendan J; Witt, Matthew J; Broderick, Annette C

    2011-09-01

    1. The metabolic theory of ecology (MTE) predicts that, after correcting for body mass variation among organisms, the rates of most biological processes will vary as a universal function of temperature. However, empirical support for 'universal temperature dependence' (UTD) is currently equivocal and based on studies of a limited number of traits. 2. In many ectothermic animals, the rate at which females produce mature eggs is temperature dependent and may be an important factor in determining the costs of reproduction. 3. We tested whether the rate of egg maturation in marine turtles varies with environmental temperature as predicted by MTE, using the time separating successive clutches of individual females to estimate the rate at which eggs are formed. We also assessed the phenotypic contribution to this rate, by using radio telemetry to make repeated measurements of interclutch intervals for individual green turtles (Chelonia mydas). 4. Rates of egg maturation increased with seasonally increasing water temperatures in radio-tracked green turtles, but were not repeatable for individual females, and did not vary according to maternal body size or reproductive investment (number and size of eggs produced). 5. Using a collated data set from several different populations and species of marine turtles, we then show that a single relationship with water temperature explains most of the variation in egg maturation rates, with a slope that is statistically indistinguishable from the UTD predicted by MTE. However, several alternative statistical models also described the relationship between temperature and egg maturation rates equally parsimoniously. 6. Our results offer novel support for the MTE's predicted UTD of biological rates, although the underlying mechanisms require further study. The strong temperature dependence of egg maturation combined with the apparently weak phenotypic contribution to this rate has interesting behavioural implications in ectothermic

  5. Temperature dependence of damage coefficient in electron irradiated solar cells

    NASA Technical Reports Server (NTRS)

    Faith, T. J.

    1973-01-01

    Measurements of light-generated current vs cell temperature on electron-irradiated n/p silicon solar cells show the temperature coefficient of this current to increase with increasing fluence for both 10-ohm and 20-ohm cells. A relationship between minority-carrier diffusion length and light-generated current was derived by combining measurements of these two parameters: vs fluence at room temperature, and vs cell temperature in cells irradiated to a fluence of 1 x 10 to the 15th power e/sq cm. This relationship was used, together with the light-generated current data, to calculate the temperature dependence of the diffusion-length damage coefficient. The results show a strong decrease in the damage coefficient with increasing temperature in the range experienced by solar panels in synchronous earth orbit.

  6. Temperature-dependent physical properties of egg white for HIFU applications

    NASA Astrophysics Data System (ADS)

    Liu, Yunbo; Maruvada, Subha; Herman, Bruce A.; Harris, Gerald R.

    2012-10-01

    Because egg white denatures at elevated temperature due to its protein content, it has the potential for use as a blood coagulation surrogate in pre-clinical evaluations of thermal therapy procedures such as high intensity focused ultrasound (HIFU) surgery. We therefore have measured the relevant physical properties of egg white, including coagulation temperature, frequency-dependent attenuation, sound speed, viscosity, and thermal properties, as a function of temperature (20 - 95°C). Thermal coagulation and attenuation (5-12 MHz) of cow blood, pig blood, and human blood also were assessed and compared with egg white. For a 30 s thermal exposure, both egg white and blood samples started to denature at 65°C and coagulate into an elastic gel at 85°C. The temperature-dependent parameters were found to be similar to that of the blood samples. For example, the attenuation of egg white ranged from 0.23f1.09 to 2.7f0.5 dB/cm over the 20°C - 95°C range. These results suggest that egg white would make a useful blood mimic for bench testing of therapeutic ultrasound devices.

  7. Corticosteroid dependent and independent effects of a cannabinoid agonist on core temperature, motor activity, and prepulse inhibition of the acoustic startle reflex in Wistar rats.

    PubMed

    Avdesh, Avdesh; Cornelisse, Vincent; Martin-Iverson, Mathew Thomas

    2012-03-01

    There are inconsistent reports on the effects of cannabinoid agonists on prepulse inhibition of the startle reflex (PPI) with increases, decreases, and no effects. It has been hypothesized that the conflicting observations may be as a result of modulation of the effects of cannabinoid agonists by the regulation of corticosteroid release. The purpose of the present study was to determine the effects of CP55940, a cannabinoid agonist, and metyrapone, a corticosteroid synthesis inhibitor on core temperature, motor activity, the startle reflex, and PPI. Startle responses were measured in 64 male Wistar rats while varying startling stimulus intensities, analogous to dose-response curves. A stimulus potency measure (ES(50)) and a response measure, the maximal achievable response (R (MAX)) were derived from the stimulus-response curves. CP55940 reduced core temperature and motor activity; these effects were potentiated by metyrapone. CP55940 increased R (MAX) of startle in the absence of a prepulse by a corticosteroid-dependent mechanism but decreased it when metyrapone was administered before CP55940, a corticosteroid-independent mechanism. The inverse of stimulus potency (ES(50)) was not affected by either drug alone but was increased by the combined drugs. CP55940 increased the prepulse motor gating effects and decreased the prepulse sensory gating effects of the same prepulses but only when given after metyrapone. The most parsimonious interpretation of these effects is that CP55940 has some effects through corticosteroid-dependent actions and opposite effects by corticosteroid-independent actions. These two putative sites of actions affect stimulus gating opposite to their effects on response gating.

  8. Motor-substrate interactions in mycoplasma motility explains non-Arrhenius temperature dependence.

    PubMed

    Chen, Jing; Neu, John; Miyata, Makoto; Oster, George

    2009-12-02

    Mycoplasmas exhibit a novel, substrate-dependent gliding motility that is driven by approximately 400 "leg" proteins. The legs interact with the substrate and transmit the forces generated by an assembly of ATPase motors. The velocity of the cell increases linearly by nearly 10-fold over a narrow temperature range of 10-40 degrees C. This corresponds to an Arrhenius factor that decreases from approximately 45 k(B)T at 10 degrees C to approximately 10 k(B)T at 40 degrees C. On the other hand, load-velocity curves at different temperatures extrapolate to nearly the same stall force, suggesting a temperature-insensitive force-generation mechanism near stall. In this article, we propose a leg-substrate interaction mechanism that explains the intriguing temperature sensitivity of this motility. The large Arrhenius factor at low temperature comes about from the addition of many smaller energy barriers arising from many substrate-binding sites at the distal end of the leg protein. The Arrhenius dependence attenuates at high temperature due to two factors: 1), the reduced effective multiplicity of energy barriers intrinsic to the multiple-site binding mechanism; and 2), the temperature-sensitive weakly facilitated leg release that curtails the power stroke. The model suggests an explanation for the similar steep, sub-Arrhenius temperature-velocity curves observed in many molecular motors, such as kinesin and myosin, wherein the temperature behavior is dominated not by the catalytic biochemistry, but by the motor-substrate interaction.

  9. Motor-Substrate Interactions in Mycoplasma Motility Explains Non-Arrhenius Temperature Dependence

    PubMed Central

    Chen, Jing; Neu, John; Miyata, Makoto; Oster, George

    2009-01-01

    Abstract Mycoplasmas exhibit a novel, substrate-dependent gliding motility that is driven by ∼400 “leg” proteins. The legs interact with the substrate and transmit the forces generated by an assembly of ATPase motors. The velocity of the cell increases linearly by nearly 10-fold over a narrow temperature range of 10–40°C. This corresponds to an Arrhenius factor that decreases from ∼45 kBT at 10°C to ∼10 kBT at 40°C. On the other hand, load-velocity curves at different temperatures extrapolate to nearly the same stall force, suggesting a temperature-insensitive force-generation mechanism near stall. In this article, we propose a leg-substrate interaction mechanism that explains the intriguing temperature sensitivity of this motility. The large Arrhenius factor at low temperature comes about from the addition of many smaller energy barriers arising from many substrate-binding sites at the distal end of the leg protein. The Arrhenius dependence attenuates at high temperature due to two factors: 1), the reduced effective multiplicity of energy barriers intrinsic to the multiple-site binding mechanism; and 2), the temperature-sensitive weakly facilitated leg release that curtails the power stroke. The model suggests an explanation for the similar steep, sub-Arrhenius temperature-velocity curves observed in many molecular motors, such as kinesin and myosin, wherein the temperature behavior is dominated not by the catalytic biochemistry, but by the motor-substrate interaction. PMID:19948122

  10. Unfolding of a Temperature-Sensitive Domain Controls Voltage-Gated Channel Activation.

    PubMed

    Arrigoni, Cristina; Rohaim, Ahmed; Shaya, David; Findeisen, Felix; Stein, Richard A; Nurva, Shailika Reddy; Mishra, Smriti; Mchaourab, Hassane S; Minor, Daniel L

    2016-02-25

    Voltage-gated ion channels (VGICs) are outfitted with diverse cytoplasmic domains that impact function. To examine how such elements may affect VGIC behavior, we addressed how the bacterial voltage-gated sodium channel (BacNa(V)) C-terminal cytoplasmic domain (CTD) affects function. Our studies show that the BacNa(V) CTD exerts a profound influence on gating through a temperature-dependent unfolding transition in a discrete cytoplasmic domain, the neck domain, proximal to the pore. Structural and functional studies establish that the BacNa(V) CTD comprises a bi-partite four-helix bundle that bears an unusual hydrophilic core whose integrity is central to the unfolding mechanism and that couples directly to the channel activation gate. Together, our findings define a general principle for how the widespread four-helix bundle cytoplasmic domain architecture can control VGIC responses, uncover a mechanism underlying the diverse BacNa(V) voltage dependencies, and demonstrate that a discrete domain can encode the temperature-dependent response of a channel. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Temperature-dependent layer breathing modes in two-dimensional materials

    NASA Astrophysics Data System (ADS)

    Maity, Indrajit; Maiti, Prabal K.; Jain, Manish

    2018-04-01

    Relative out-of-plane displacements of the constituent layers of two-dimensional materials give rise to unique low-frequency breathing modes. By computing the height-height correlation functions from molecular dynamics simulations, we show that the layer breathing modes (LBMs) can be mapped consistently to vibrations of a simple linear chain model. Our calculated thickness dependence of LBM frequencies for few-layer (FL) graphene and molybdenum disulfide (MoS2) are in excellent agreement with available experiments. Our results show a redshift of LBM frequency with an increase in temperature, which is a direct consequence of anharmonicities present in the interlayer interaction. We also predict the thickness and temperature dependence of LBM frequencies for FL hexagonal boron nitride. Our Rapid Communication provides a simple and efficient way to probe the interlayer interaction for layered materials and their heterostructures with the inclusion of anharmonic effects.

  12. Size and Temperature Dependence of Electron Transfer between CdSe Quantum Dots and a TiO 2 Nanobelt

    DOE PAGES

    Tafen, De Nyago; Prezhdo, Oleg V.

    2015-02-24

    Understanding charge transfer reactions between quantum dots (QD) and metal oxides is fundamental for improving photocatalytic, photovoltaic and electronic devices. The complexity of these processes makes it difficult to find an optimum QD size with rapid charge injection and low recombination. We combine time-domain density functional theory with nonadiabatic molecular dynamics to investigate the size and temperature dependence of the experimentally studied electron transfer and charge recombination at CdSe QD-TiO 2 nanobelt (NB) interfaces. The electron injection rate shows strong dependence on the QD size, increasing for small QDs. The rate exhibits Arrhenius temperature dependence, with the activation energy ofmore » the order of millielectronvolts. The charge recombination process occurs due to coupling of the electronic subsystem to vibrational modes of the TiO 2 NB. Inelastic electron-phonon scattering happens on a picosecond time scale, with strong dependence on the QD size. Our simulations demonstrate that the electron-hole recombination rate decreases significantly as the QD size increases, in excellent agreement with experiments. The temperature dependence of the charge recombination rates can be successfully modeled within the framework of the Marcus theory through optimization of the electronic coupling and the reorganization energy. Our simulations indicate that by varying the QD size, one can modulate the photoinduced charge separation and charge recombination, fundamental aspects of the design principles for high efficiency devices.« less

  13. Temperature dependence of nucleation rate in a binary solid solution

    NASA Astrophysics Data System (ADS)

    Wang, H. Y.; Philippe, T.; Duguay, S.; Blavette, D.

    2012-12-01

    The influence of regression (partial dissolution) effects on the temperature dependence of nucleation rate in a binary solid solution has been studied theoretically. The results of the analysis are compared with the predictions of the simplest Volmer-Weber theory. Regression effects are shown to have a strong influence on the shape of the curve of nucleation rate versus temperature. The temperature TM at which the maximum rate of nucleation occurs is found to be lowered, particularly for low interfacial energy (coherent precipitation) and high-mobility species (e.g. interstitial atoms).

  14. Temperature dependence of thermal pressure for NaCl

    NASA Astrophysics Data System (ADS)

    Singh, Chandra K.; Pande, Brijesh K.; Pandey, Anjani K.

    2018-05-01

    Engineering applications of the materials can be explored upto the desired limit of accuracy with the better knowledge of its mechanical and thermal properties such as ductility, brittleness and Thermal Pressure. For the resistance to fracture (K) and plastic deformation (G) the ratio K/G is treated as an indication of ductile or brittle character of solids. In the present work we have tested the condition of ductility and brittleness with the calculated values of K/G for the NaCl. It is concluded that the nature of NaCl can be predicted upto high temperature simply with the knowledge of its elastic stiffness constant only. Thermoelastic properties of materials at high temperature is directly related to thermal pressure and volume expansion of the materials. An expression for the temperature dependence of thermal pressure is formulated using basic thermodynamic identities. It is observed that thermal pressure ΔPth calculated for NaCl by using Kushwah formulation is in good agreement with the experimental values also the thermal pressure increases with the increase in temperature.

  15. Sequence and Temperature Dependence of the End-to-End Collision Dynamics of Single-Stranded DNA

    PubMed Central

    Uzawa, Takanori; Isoshima, Takashi; Ito, Yoshihiro; Ishimori, Koichiro; Makarov, Dmitrii E.; Plaxco, Kevin W.

    2013-01-01

    Intramolecular collision dynamics play an essential role in biomolecular folding and function and, increasingly, in the performance of biomimetic technologies. To date, however, the quantitative studies of dynamics of single-stranded nucleic acids have been limited. Thus motivated, here we investigate the sequence composition, chain-length, viscosity, and temperature dependencies of the end-to-end collision dynamics of single-stranded DNAs. We find that both the absolute collision rate and the temperature dependencies of these dynamics are base-composition dependent, suggesting that base stacking interactions are a significant contributor. For example, whereas the end-to-end collision dynamics of poly-thymine exhibit simple, linear Arrhenius behavior, the behavior of longer poly-adenine constructs is more complicated. Specifically, 20- and 25-adenine constructs exhibit biphasic temperature dependencies, with their temperature dependences becoming effectively indistinguishable from that of poly-thymine above 335 K for 20-adenines and 328 K for 25-adenines. The differing Arrhenius behaviors of poly-thymine and poly-adenine and the chain-length dependence of the temperature at which poly-adenine crosses over to behave like poly-thymine can be explained by a barrier friction mechanism in which, at low temperatures, the energy barrier for the local rearrangement of poly-adenine becomes the dominant contributor to its end-to-end collision dynamics. PMID:23746521

  16. The flavoprotein Tah18-dependent NO synthesis confers high-temperature stress tolerance on yeast cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishimura, Akira; Kawahara, Nobuhiro; Takagi, Hiroshi, E-mail: hiro@bs.naist.jp

    Highlights: Black-Right-Pointing-Pointer NO is produced from L-arginine in response to elevated temperature in yeast. Black-Right-Pointing-Pointer Tah18 was first identified as the yeast protein involved in NO synthesis. Black-Right-Pointing-Pointer Tah18-dependent NO synthesis confers tolerance to high-temperature on yeast cells. -- Abstract: Nitric oxide (NO) is a ubiquitous signaling molecule involved in the regulation of a large number of cellular functions. In the unicellular eukaryote yeast, NO may be involved in stress response pathways, but its role is poorly understood due to the lack of mammalian NO synthase (NOS) orthologues. Previously, we have proposed the oxidative stress-induced L-arginine synthesis and its physiologicalmore » role under stress conditions in yeast Saccharomyces cerevisiae. Here, our experimental results indicated that increased conversion of L-proline into L-arginine led to NO production in response to elevated temperature. We also showed that the flavoprotein Tah18, which was previously reported to transfer electrons to the Fe-S cluster protein Dre2, was involved in NO synthesis in yeast. Gene knockdown analysis demonstrated that Tah18-dependent NO synthesis confers high-temperature stress tolerance on yeast cells. As it appears that such a unique cell protection mechanism is specific to yeasts and fungi, it represents a promising target for antifungal activity.« less

  17. Temperature dependence of single-event burnout in n-channel power MOSFET's

    NASA Astrophysics Data System (ADS)

    Johnson, G. H.; Schrimpf, R. D.; Galloway, K. F.; Koga, R.

    1994-03-01

    The temperature dependence of single-event burnout (SEB) in n-channel power metal-oxide-semiconductor field effect transistors (MOSFET's) is investigated experimentally and analytically. Experimental data are presented which indicate that the SEB susceptibility of the power MOSFET decreases with increasing temperature. A previously reported analytical model that describes the SEB mechanism is updated to include temperature variations. This model is shown to agree with the experimental trends.

  18. Temperature dependent x-ray diffraction and dielectric studies of multiferroic GaFeO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Rajeev; Mall, Ashish Kumar, E-mail: ashishm@iitk.ac.in; Gupta, Rajeev

    2016-05-06

    Polycrystalline GaFeO{sub 3} (GFO) samples were synthesized by sol-gel method. The structural and dielectric properties of GaFeO{sub 3} ceramic have been investigated by a combination of XRD and permittivity measurement. The X-ray diffraction spectra shows single phase orthorhombically distorted perovskite structure with Pc2{sub 1}n symmetry over a wide range of temperature 300 K to 600 K, with no evidence of any phase transition. Refined lattice parameters (a, b, c and V) increases with increasing temperature. Temperature dependent dielectric properties were investigated in the frequency range from 100Hz–5MHz. Impedance spectroscopy study on the sample showed that the dielectric constant and acmore » conductivity with frequency increases on increasing the temperature. Cole-Cole plots suggest that the response from grain is dominant at low temperature whereas grain boundary response overcomes as temperature increases. The relaxation activation energy (calculated from Cole-Cole plots) value is found to be 0.32 eV for the grain boundary. We believe that the oxygen ion vacancies play an important role in conduction processes at higher temperatures.« less

  19. Dependence of cerebral-cortex activation in women on environmental factors

    NASA Astrophysics Data System (ADS)

    Pavlov, K. I.; Mukhin, V. N.; Kamenskaya, V. G.; Klimenko, V. M.

    2016-12-01

    The investigation of female physiological reactions to different meteorological conditions and space weather is relevant, since there are little experimental findings in this field. The purpose of this work is to determine how the level of cerebral-cortex activity in women depends on the meteorological and cosmophysical parameters of weather and space processes. We studied electroencephalograms (EEGs) recorded at rest in the sitting position and with eyes closed. We performed four series of measurements of brain bioelectrical activity from February to June 2013. We found that the level of cortical activity recorded by EEG changed significantly during these 6 months. Significant differences were detected between the cortical activity and the parameters of weather and space processes; namely, an increase in the air temperature and a decrease in the wind speed and cosmic-ray energy result in a decrease in the activity rate of the right occipital lobe.

  20. Temperature dependent characteristics of the random telegraph noise on contact resistive random access memory

    NASA Astrophysics Data System (ADS)

    Chang, Liang-Shun; Lin, Chrong Jung; King, Ya-Chin

    2014-01-01

    The temperature dependent characteristics of the random telegraphic noise (RTN) on contact resistive random access memory (CRRAM) are studied in this work. In addition to the bi-level switching, the occurrences of the middle states in the RTN signal are investigated. Based on the unique its temperature dependent characteristics, a new temperature sensing scheme is proposed for applications in ultra-low power sensor modules.

  1. On rate-dependent polycrystal deformation: the temperature sensitivity of cold dwell fatigue

    PubMed Central

    Zhang, Zhen; Cuddihy, M. A.; Dunne, F. P. E.

    2015-01-01

    A temperature and rate-dependent crystal plasticity framework has been used to examine the temperature sensitivity of stress relaxation, creep and load shedding in model Ti-6Al polycrystal behaviour under dwell fatigue conditions. A temperature close to 120°C is found to lead to the strongest stress redistribution and load shedding, resulting from the coupling between crystallographic slip rate and slip system dislocation hardening. For temperatures in excess of about 230°C, grain-level load shedding from soft to hard grains diminishes because of the more rapid stress relaxation, leading ultimately to the diminution of the load shedding and hence, it is argued, the elimination of the dwell debit. Under conditions of cyclic stress dwell, at temperatures between 20°C and 230°C for which load shedding occurs, the rate-dependent accumulation of local slip by ratcheting is shown to lead to the progressive cycle-by-cycle redistribution of stress from soft to hard grains. This phenomenon is termed cyclic load shedding since it also depends on the material's creep response, but develops over and above the well-known dwell load shedding, thus providing an additional rationale for the incubation of facet nucleation. PMID:26528078

  2. Spectroscopy of infrared-active phonons in high-temperature superconductors

    NASA Technical Reports Server (NTRS)

    Litvinchuk, A. P.; Thomsen, C.; Cardona, M.; Borjesson, L.

    1995-01-01

    For a large variety of superconducting materials both experimental and theoretical lattice dynamical studies have been performed to date. The assignment of the observed infrared- and Raman-active phonon modes to the particular lattice eigenmodes is generally accepted. We will concentrate here upon the analysis of the changes of the infrared-phonon parameters (frequency and linewidth) upon entering the superconducting state which, as will be shown, may provide information on the magnitude of the superconductivity-related gap and its dependence on the superconducting transition temperature Tc.

  3. Negative Temperature Dependence of Recrystallized Grain Size: Formulation and Experimental Confirmation on Copper

    PubMed Central

    Elmasry, Mohamed; Liu, Fan; Jiang, Yao; Mao, Ze Ning; Liu, Ying; Wang, Jing Tao

    2017-01-01

    The catalyzing effect on nucleation of recrystallization from existing grains resulting from previous lower temperature deformation is analyzed, analogous to the size effect of foreign nucleus in heterogeneous nucleation. Analytical formulation of the effective nucleation site for recrystallization leads to a negative temperature dependence of recrystallized grain size of metals. Non-isochronal annealing—where annealing time is set just enough for the completion of recrystallization at different temperatures—is conducted on pure copper after severe plastic deformation. More homogeneous and smaller grains are obtained at higher annealing temperature. The good fit between analytical and experimental results unveils the intrinsic feature of this negative temperature dependence of recrystallized grain size. PMID:28772676

  4. Temperature-dependent growth of Botrytis cinerea isolates from potted plants.

    PubMed

    Martínez, J A; Gómez-Bellot, M J; Bañón, S

    2009-01-01

    Botrytis cinereo is a common aggressive saprophyte fungus which also invades injured plant tissues, causing Botrytis blight (Grey mould) in many ornamental plants, including potted flowering plants. Several B. cinerea isolates from potted plants (Pelargonium x hortorum, Lantana camara, Lonicera japonica, Hydrangea macrophylla, and Cyclamen persicum) affected by Botrytis blight in the south of Spain were studied and identified by PCR. The isolates showed phenotypic differences between them, as previously reported by the authors. In this work we demonstrate that these isolates show different temperature-dependent growth phenomena, expressed as mycelial growth rates, conidiation (measured as the number of conidia per colony and time of appearance), mass of both aerial and submerged mycelia, and sclerotia production. Growth rates were assessed from differences in colony area and mass of both aerial and submerged mycelium growing in potato dextrose agar culture medium (PDA). Three temperatures were used to measure these variables (6, 16, and 26 degrees C) and to establish the differences among isolates by modelling the effects of temperature on the growth variables. B. cinerea showed a high degree of phenotypic variability and differences in its growth kinetics, depending on temperature and isolate in question. The isolate from P. x hortorum showed the greatest conidiation although this process did not depend on the temperatures assayed. The growth rate of the isolates from P. x hortorum was the highest. The growth rates in all the isolates were determined and the growth kinetics could be fitted to a typical equation of fungi growing on solid culture medium. The isolate from P. x hortorum was the most vigorous, while the least vigorous was the isolate from L. japonica. A relationship between mycelial growth rate, conidiation and aerial mycelium could be established. A temperature of 26 degrees C accelerated sclerotia production, but only in the isolate from C. persicum

  5. A review of limits on microbial activity in the cryosphere: temperature and water availability

    NASA Astrophysics Data System (ADS)

    Bakermans, C.

    2017-12-01

    The extent of microbial activity in the cryosphere likely depends on many things: the presence of liquid water, an adequate energy and nutrient supply (amount and flux), the absence of damaging conditions, exposure to low temperatures, and the time to evolve adaptations to low temperature conditions. Determining the extent of microbial activity in the cryosphere is a challenge complicated by the reduced availability of liquid water as water freezes and the low rates of diffusion and reaction brought on by low temperatures. Despite these limitations, many studies have demonstrated that reproduction by microorganisms is possible at temperatures of -10 to -20°C and that metabolism continues to even lower temperatures of about -30°C. In addition, microcosm studies in frozen soils and permafrost have demonstrated respiration down to temperatures of -18°C and DNA synthesis at temperatures from 0 to -20°C. In the environment, low temperature conditions (and lack of liquid water) appear to limit microbial activity in a few places like Don Juan Pond and University Valley in Antarctica. Microorganisms may be metabolically active in Arctic permafrost, but metabolism may be so exceptionally slow as to escape detection. Given the slow metabolism expected and the short geological age of permafrost (3 million years at the longest), there is probably insufficient time for microorganisms to evolve to become better adapted to live at subfreezing temperatures. Indeed, terrestrial life may never have the chance to evolve to exploit the low temperature capabilities of its biomolecules in view of the limited times at which cold environments persist on Earth. These observational studies of microorganisms in low temperature environments of the Polar regions expose how the extent of microbial activity at low temperature is entangled with other factors (perhaps inextricably); how the lack of liquid water at low temperatures appears to be the true limit on activity at low temperatures

  6. Temperature dependent dispersion and electron-phonon coupling surface states on Be(1010)

    NASA Astrophysics Data System (ADS)

    Tang, Shu-Jung; Ismail; Sprunger, Philip; Plummer, Ward

    2002-03-01

    Temperature dependent dispersion and electron-phonon coupling surface states on Be(10-10) S.-J Tang*, Ismail* , P.T . Sprunger#, E. W. Plummer* * Department of Physics and Astronomy, University of Tennessee, Knoxville, TN37996 , # Center for Advanced Microstructures and Devices (CAMD), Louisiana State University The surface states dispersing in a large band gap from -A to -Γ in Be(10-10) were studied with high-resolution, angle-resolved photoemission. Spectra reveal that the two zone-boundary surface states, S1 and S2, behave significantly different with respect to band dispersion, the temperature dependence of binding energies, and the electron-phonon coupling. The band dispersion of S1 is purely free-electron like with the maximum binding energy of 0.37+-0.05 eV at -A and effective mass m*/m =0835. However, the maximum binding energy 2.74+-0.05 eV of the S2 is located 0.2Åaway from -A and disperses into the bulk band edge at a binding energy of 1.75+-0.05 eV. Temperature dependent data reveal that the binding energies of S1 and S2 at -A shift in opposite directions at the rate of (-0.61+-0.3)+- 10E-4 eV/K and (1.71+-0.8)+-10E-4 eV/K, respectively. Moreover, from the temperature-dependent spectral widths of the surface states S1 and S2 at , the electron-phonon coupling parameters,λ, have been determined. Unusually different, the coupling strength λ for S1 and S2 are 0.67+-0.03 and 0.51+-0.04, respectively. The differences between the electron-phonon coupling, temperature dependent binding energies, and dispersions between these two zone-centered surface states will be discussed in light unique bonding at the surface and localization.

  7. Temperature Dependence of IP3-Mediated Local and Global Ca2+ Signals

    PubMed Central

    Dickinson, George D.; Parker, Ian

    2013-01-01

    We examined the effect of temperature (12–40°C) on local and global Ca2+ signals mediated by inositol trisphosphate receptor/channels (IP3R) in human neuroblastoma (SH-SY5Y) cells. The amplitudes and spatial spread of local signals arising from single IP3R (blips) and clusters of IP3R (puffs) showed little temperature dependence, whereas their kinetics (durations and latencies) were markedly accelerated by increasing temperature. In contrast, the amplitude of global Ca2+ waves increased appreciably at lower temperatures, probably as a result of the longer duration of IP3R channel opening. Several parameters, including puff and blip durations, puff latency and frequency, and frequency of repetitive Ca2+ waves, showed a biphasic temperature dependence on Arrhenius plots. In all cases the transition temperature occurred at ∼25°C, possibly reflecting a phase transition in the lipids of the endoplasmic reticulum membrane. Although the IP3-evoked Ca2+ signals were qualitatively similar at 25°C and 36°C, one should consider the temperature sensitivity of IP3-mediated signal amplitudes when extrapolating from room temperature to physiological temperature. Conversely, further cooling may be advantageous to improve the optical resolution of channel gating kinetics. PMID:23442860

  8. Coronal temperatures of selected active cool stars as derived from low resolution Einstein observations

    NASA Technical Reports Server (NTRS)

    Vilhu, Osmi; Linsky, Jeffrey L.

    1990-01-01

    Mean coronal temperatures of some active G-K stars were derived from Rev1-processed Einstein-observatory's IPC-spectra. The combined X-ray and transition region emission line data are in rough agreement with static coronal loop models. Although the sample is too small to derive any statistically significant conclusions, it suggests that the mean coronal temperature depends linearly on the inverse Rossby-number, with saturation at short rotation periods.

  9. The temperature dependence of intermediate range oxygen-oxygen correlations in liquid water

    NASA Astrophysics Data System (ADS)

    Schlesinger, Daniel; Wikfeldt, K. Thor; Skinner, Lawrie B.; Benmore, Chris J.; Nilsson, Anders; Pettersson, Lars G. M.

    2016-08-01

    We analyze the recent temperature dependent oxygen-oxygen pair-distribution functions from experimental high-precision x-ray diffraction data of bulk water by Skinner et al. [J. Chem. Phys. 141, 214507 (2014)] with particular focus on the intermediate range where small, but significant, correlations are found out to 17 Å. The second peak in the pair-distribution function at 4.5 Å is connected to tetrahedral coordination and was shown by Skinner et al. to change behavior with temperature below the temperature of minimum isothermal compressibility. Here we show that this is associated also with a peak growing at 11 Å which strongly indicates a collective character of fluctuations leading to the enhanced compressibility at lower temperatures. We note that the peak at ˜13.2 Å exhibits a temperature dependence similar to that of the density with a maximum close to 277 K or 4 °C. We analyze simulations of the TIP4P/2005 water model in the same manner and find excellent agreement between simulations and experiment albeit with a temperature shift of ˜20 K.

  10. Mild Hyperthermia Downregulates Receptor-dependent Neutrophil Function

    PubMed Central

    Fröhlich, Dieter; Wittmann, Sigrid; Rothe, Gregor; Sessler, Daniel I.; Vogel, Peter; Taeger, Kai

    2005-01-01

    Mild hypothermia impairs resistance to infection and, reportedly, impairs phagocytosis and oxidative killing of un-opsonized bacteria. We evaluated various functions at 33 to 41°C in neutrophils taken from volunteers. Adhesion on endothelial cells was determined using light microscopy. Adhesion molecules expression and receptors, phagocytosis, and release of reactive oxidants were assessed using flow cytometric assays. Adhesion protein CD11b expression on resting neutrophils was temperature independent. However, upregulation of CD11b with TNF-α was increased by hypothermia and decreased with hyperthermia. Neutrophil adhesion to either resting or activated endothelial cells was not temperature dependent. Bacterial uptake was inversely related to temperature, more so with E. coli than S. aureus. Temperature dependence of phagocytosis occurred only with opsonized bacteria. Hypothermia slightly increased N-Formyl-L-methionyl-L-leucyl-phenylalanine (FMLP) receptors on neutrophils: hyperthermia decreased expression, especially with TNF-α. FMLP-induced H2O2 production was inversely related to temperature, especially in the presence of TNF-α. Conversely, phorbol-13-myristate-12-acetate, an activator of protein kinase C, induced an extreme and homogenous release of reactive oxidants that increased with temperature. In contrast to non-receptor dependent phagocytosis and oxidative killing, several crucial receptor-dependent neutrophil activities show temperature-dependent regulation, with hypothermia increasing function. The temperature dependence of neutrophil function is thus more complicated than previously appreciated. PMID:15281545

  11. Activation of Phosphorylase Kinase by Physiological Temperature.

    PubMed

    Herrera, Julio E; Thompson, Jackie A; Rimmer, Mary Ashley; Nadeau, Owen W; Carlson, Gerald M

    2015-12-29

    In the six decades since its discovery, phosphorylase kinase (PhK) from rabbit skeletal muscle has usually been studied at 30 °C; in fact, not a single study has examined functions of PhK at a rabbit's body temperature, which is nearly 10 °C greater. Thus, we have examined aspects of the activity, regulation, and structure of PhK at temperatures between 0 and 40 °C. Between 0 and 30 °C, the activity at pH 6.8 of nonphosphorylated PhK predictably increased; however, between 30 and 40 °C, there was a dramatic jump in its activity, resulting in the nonactivated enzyme having a far greater activity at body temperature than was previously realized. This anomalous change in properties between 30 and 40 °C was observed for multiple functions, and both stimulation (by ADP and phosphorylation) and inhibition (by orthophosphate) were considerably less pronounced at 40 °C than at 30 °C. In general, the allosteric control of PhK's activity is definitely more subtle at body temperature. Changes in behavior related to activity at 40 °C and its control can be explained by the near disappearance of hysteresis at physiological temperature. In important ways, the picture of PhK that has emerged from six decades of study at temperatures of ≤30 °C does not coincide with that of the enzyme studied at physiological temperature. The probable underlying mechanism for the dramatic increase in PhK's activity between 30 and 40 °C is an abrupt change in the conformations of the regulatory β and catalytic γ subunits between these two temperatures.

  12. Temperature dependence dynamical permeability characterization of magnetic thin film using near-field microwave microscopy

    NASA Astrophysics Data System (ADS)

    Hung, Le Thanh; Phuoc, Nguyen N.; Wang, Xuan-Cong; Ong, C. K.

    2011-08-01

    A temperature dependence characterization system of microwave permeability of magnetic thin film up to 5 GHz in the temperature range from room temperature up to 423 K is designed and fabricated as a prototype measurement fixture. It is based on the near field microwave microscopy technique (NFMM). The scaling coefficient of the fixture can be determined by (i) calibrating the NFMM with a standard sample whose permeability is known; (ii) by calibrating the NFMM with an established dynamic permeability measurement technique such as shorted microstrip transmission line perturbation method; (iii) adjusting the real part of the complex permeability at low frequency to fit the value of initial permeability. The algorithms for calculating the complex permeability of magnetic thin films are analyzed. A 100 nm thick FeTaN thin film deposited on Si substrate by sputtering method is characterized using the fixture. The room temperature permeability results of the FeTaN film agree well with results obtained from the established short-circuited microstrip perturbation method. Temperature dependence permeability results fit well with the Landau-Lifshitz-Gilbert equation. The temperature dependence of the static magnetic anisotropy H_K^{sta}, the dynamic magnetic anisotropy H_K^{dyn}, the rotational anisotropy Hrot, together with the effective damping coefficient αeff, ferromagnetic resonance fFMR, and frequency linewidth Δf of the thin film are investigated. These temperature dependent magnetic properties of the magnetic thin film are important to the high frequency applications of magnetic devices at high temperatures.

  13. Temperature dependent transport characteristics of graphene/n-Si diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parui, S.; Ruiter, R.; Zomer, P. J.

    2014-12-28

    Realizing an optimal Schottky interface of graphene on Si is challenging, as the electrical transport strongly depends on the graphene quality and the fabrication processes. Such interfaces are of increasing research interest for integration in diverse electronic devices as they are thermally and chemically stable in all environments, unlike standard metal/semiconductor interfaces. We fabricate such interfaces with n-type Si at ambient conditions and find their electrical characteristics to be highly rectifying, with minimal reverse leakage current (<10{sup −10} A) and rectification of more than 10{sup 6}. We extract Schottky barrier height of 0.69 eV for the exfoliated graphene and 0.83 eV for themore » CVD graphene devices at room temperature. The temperature dependent electrical characteristics suggest the influence of inhomogeneities at the graphene/n-Si interface. A quantitative analysis of the inhomogeneity in Schottky barrier heights is presented using the potential fluctuation model proposed by Werner and Güttler.« less

  14. Temperature dependence of exciton and charge carrier dynamics in organic thin films

    NASA Astrophysics Data System (ADS)

    Platt, A. D.; Kendrick, M. J.; Loth, M.; Anthony, J. E.; Ostroverkhova, O.

    2011-12-01

    We report on physical mechanisms behind the temperature-dependent optical absorption, photoluminescence (PL), and photoconductivity in spin-coated films of a functionalized anthradithiophene (ADT) derivative, ADT-triethylsilylethynyl (TES)-F, and its composites with C60 and another ADT derivative, ADT-TIPS-CN. Measurements of absorption and PL spectra, PL lifetimes, and transient photocurrent were performed at temperatures between 98 and 300 K as a function of applied electric field. In pristine ADT-TES-F films, absorptive and emissive species were identified to be disordered H aggregates whose properties are affected by static and dynamic disorder. The exciton bandwidths were ≤0.06 and ˜0.115 eV for absorptive and emissive aggregates, respectively, indicative of higher disorder in the emissive species. The exciton in the latter was found to be delocalized over approximately four to five molecules. The PL properties were significantly modified upon adding a guest molecule to the ADT-TES-F host. In ADT-TES-F/C60 composites, the PL was considerably quenched due to photoinduced electron transfer from ADT-TES-F to C60, while in ADT-TES-F/ADT-TIPS-CN blends, the PL was dominated by emission from an exciplex formed between ADT-TES-F and ADT-TIPS-CN molecules. In all materials, the PL quantum yield dramatically decreased as the temperature increased due to thermally activated nonradiative recombination. Considerable electric-field-induced PL quenching was observed at low temperatures at electric fields above ˜105 V/cm due to tunneling into dark states. No significant contribution of ADT-TES-F emissive exciton dissociation to transient photocurrent was observed. In all materials, charge carriers were photogenerated at sub-500-ps time scales, limited by the laser pulse width, with temperature- and electric-field-independent photogeneration efficiency. In ADT-TES-F/C60 (2%) composites, the photogeneration efficiency was a factor of 2-3 higher than that in pristine ADT

  15. Plate-like convection in fluids with temperature-dependent viscosity

    NASA Astrophysics Data System (ADS)

    Curbelo, J.; Mancho, A. M.

    2015-12-01

    The study of instabilities in fluids in which viscosity experiences a transition at a certain temperature range is of great interest for the understanding of planetary interiors, since this phenomena is suitable for representing a very viscous lithosphere (and thus rather rigid) over a convecting mantle. To this end, we study a 2D convection problem in which viscosity depends on temperature by abruptly changing its value within a narrow temperature gap. Notable solutions are found for a sharp transition viscosity law which are fundamentally related to the presence of a symmetry in the problem. For instance, cyclic series are found consisting of spontaneous plate-like behaviors emerging sporadically through abrupt bursts, and rapidly evolving towards a stagnant lid regime. The plate-like evolution alternates motions towards either right or left, introducing temporary asymmetries on the convecting styles. Further time-dependent regimes with stagnant and plate-like lids are described, which are also greatly influenced by the presence of the symmetry. These results provide convection examples of moving plates, that coexist with subsurface upwards and downwards meandering jets, but without a proper subduction, and can be particularly illustrative for understanding convective styles of the Earth prior to subduction, or that of other planetary bodies.

  16. Convective stirring efficiency in strongly temperature-dependent, infinite Prandtl number fluids: application to planetary mantles.

    NASA Astrophysics Data System (ADS)

    Tosi, N.; Samuel, H.

    2017-12-01

    Many rocky planetary bodies currently exhibit solid-state convection, or have experienced this process during their histories.Such a style of convection is characterized by the negligible influence of inertia, and a rheology known to be strongly temperature-dependent. Convective motion within such planetary envelopes determine their ability to preserve or to homogenize compositional heterogeneities.Therefore, understanding the efficiency of convective stirring is key to the interpretation of petrological, geochemical, and cosmochemical data originating on the Earth from sampled erupted lava, or inferred from meteorite analysis (e.g., Mars). In order to study this problem we have conducted series of numerical experiments in 2D and 3D Cartesian domains heated from below and cooled from above. We varied systematically the Rayleigh number and the activation energy using a strongly temperature-dependent viscosity based on the Arrhenius law for diffusion creep. Given the large values of activation energy considered, all our experiments fall into the stagnant lid regime. Stirring efficiency is determined by computing the finite-time Lyapunov exponents, which provide a measure of the Lagrangian deformation.This systematic exploration allows the degree of heterogeneity and its spatial variability to be quantified, and yields mixing times for both 2D and 3D geometries.Our results indicate significant differences between geometries: 2D cases lead more frequently to steady solutions, for which stirring efficiency is spatially heterogeneous and mostly weak. On the other hand, 3D cases show more time dependence of the velocity field and generally yield more efficient convective stirring, even for cases with a weak time-dependence of the flow. Scaling laws for stirring efficiencies are derived, and will serve as a basis to discuss the application to planetary mantles.

  17. Temperature dependence of interlayer coupling in perpendicular magnetic tunnel junctions with GdOx barriers

    DOE PAGES

    Newhouse-Illige, T.; Xu, Y. H.; Liu, Y. H.; ...

    2018-02-13

    Perpendicular magnetic tunnel junctions with GdO X tunneling barriers have shown a unique voltage controllable interlayer magnetic coupling effect. Here we investigate the quality of the GdO X barrier and the coupling mechanism in these junctions by examining the temperature dependence of the tunneling magnetoresistance and the interlayer coupling from room temperature down to 11 K. The barrier is shown to be of good quality with the spin independent conductance only contributing a small portion, 14%, to the total room temperature conductance, similar to AlO X and MgO barriers. The interlayer coupling, however, shows an anomalously strong temperature dependence includingmore » sign changes below 80 K. This non-trivial temperature dependence is not described by previous models of interlayer coupling and may be due to the large induced magnetic moment of the Gd ions in the barrier.« less

  18. Temperature dependence of interlayer coupling in perpendicular magnetic tunnel junctions with GdOx barriers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newhouse-Illige, T.; Xu, Y. H.; Liu, Y. H.

    Perpendicular magnetic tunnel junctions with GdO X tunneling barriers have shown a unique voltage controllable interlayer magnetic coupling effect. Here we investigate the quality of the GdO X barrier and the coupling mechanism in these junctions by examining the temperature dependence of the tunneling magnetoresistance and the interlayer coupling from room temperature down to 11 K. The barrier is shown to be of good quality with the spin independent conductance only contributing a small portion, 14%, to the total room temperature conductance, similar to AlO X and MgO barriers. The interlayer coupling, however, shows an anomalously strong temperature dependence includingmore » sign changes below 80 K. This non-trivial temperature dependence is not described by previous models of interlayer coupling and may be due to the large induced magnetic moment of the Gd ions in the barrier.« less

  19. High temperature dependence of thermal transport in graphene foam.

    PubMed

    Li, Man; Sun, Yi; Xiao, Huying; Hu, Xuejiao; Yue, Yanan

    2015-03-13

    In contrast to the decreased thermal property of carbon materials with temperature according to the Umklapp phonon scattering theory, highly porous free-standing graphene foam (GF) exhibits an abnormal characteristic that its thermal property increases with temperature above room temperature. In this work, the temperature dependence of thermal properties of free-standing GF is investigated by using the transient electro-thermal technique. Significant increase for thermal conductivity and thermal diffusivity from ∼0.3 to 1.5 W m(-1) K(-1) and ∼4 × 10(-5) to ∼2 × 10(-4) m(2) s(-1) respectively is observed with temperature from 310 K to 440 K for three GF samples. The quantitative analysis based on a physical model for porous media of Schuetz confirms that the thermal conductance across graphene contacts rather than the heat conductance inside graphene dominates thermal transport of our GFs. The thermal expansion effect at an elevated temperature makes the highly porous structure much tighter is responsible for the reduction in thermal contact resistance. Besides, the radiation heat exchange inside the pores of GFs improves the thermal transport at high temperatures. Since free-standing GF has great potential for being used as supercapacitor and battery electrode where the working temperature is always above room temperature, this finding is beneficial for thermal design of GF-based energy applications.

  20. Temperature dependent structural and vibrational properties of liquid indium

    NASA Astrophysics Data System (ADS)

    Patel, A. B.; Bhatt, N. K.

    2018-05-01

    The influence of the temperature effect on both the structure factor and the phonon dispersion relation of liquid indium have been investigated by means of pseudopotential theory. The Percus-Yevick Hard Sphere reference system is applied to describe the structural calculation. The effective electron-ion interaction is explained by using modified empty core potential due to Hasegawa et al. along with a local field correction function due to Ichimaru-Utsumi (IU). The temperature dependence of pair potential needed at higher temperatures was achieved by multiplying the damping factor exp(- π/kBT2k F r ) in the pair potential. Very close agreement of static structure factor, particularly, at elevated temperatures confirms the validity of the local potential. A positive dispersion is found in low-q region and the correct trend of phonon dispersion branches like the experimental; shows all broad features of collective excitations in liquid metals.

  1. Temperature dependence of the dynamics of zone boundary phonons in ZnO:Li

    NASA Astrophysics Data System (ADS)

    Yadav, Harish Kumar; Sreenivas, K.; Gupta, Vinay; Katiyar, R. S.

    2008-12-01

    Investigations of zone boundary phonons in ZnO:Li system (Li concentration: 10%) and their dynamics with temperature are reported. Additional modes at 127, 157, and 194 cm-1 are observed and assigned to zone boundary phonons at critical point M in the Brillouin zone [J. M. Calleja and M. Cardona, Phys. Rev. B 16, 3753 (1977)] due to breakdown of crystal translational symmetry with Li incorporation in ZnO. Anharmonicity in peak frequency and linewidth of the zone boundary phonons in a temperature range from 100 to 1000 K is also analyzed taking into account the decay of zone boundary phonons into three- and four-phonon modes (cubic and quadratic anharmonicities). The anharmonic behavior of peak frequency is found to be feebly dependent on three-phonon decay process but thermal expansion of lattice together with four-phonon decay process appropriately defines the temperature dependence. Linewidths, however, follow the simple four-phonon decay mechanism. E2(low) mode, on the other hand, shows a linear temperature dependency and therefore follows a three-phonon decay channel. The calculated values of phonon lifetimes at 100 K for the 127, 157, 194 cm-1, and E2(low) modes are 8.23, 6.54, 5.32, and 11.39 ps. Decay of the zone boundary phonon modes compared to E2(low) mode reveals that dopant induced disorder has a strong temperature dependency.

  2. Temperature dependent electrical characteristics of Zn/ZnSe/n-GaAs/In structure

    NASA Astrophysics Data System (ADS)

    Sağlam, M.; Güzeldir, B.

    2016-04-01

    We have reported a study of the I-V characteristics of Zn/ZnSe/n-GaAs/In sandwich structure in a wide temperature range of 80-300 K by a step of 20 K, which are prepared by Successive Ionic Layer Adsorption and Reaction (SILAR) method. The main electrical parameters, such as ideality factor and zero-bias barrier height determined from the forward bias I-V characteristics were found strongly depend on temperature and when the increased, the n decreased with increasing temperature. The ideality factor and barrier height values as a function of the sample temperature have been attributed to the presence of the lateral inhomogeneities of the barrier height. Furthermore, the series resistance have been calculated from the I-V measurements as a function of temperature dependent.

  3. Temperature Dependence of Interband Transitions in Wurtzite InP Nanowires.

    PubMed

    Zilli, Attilio; De Luca, Marta; Tedeschi, Davide; Fonseka, H Aruni; Miriametro, Antonio; Tan, Hark Hoe; Jagadish, Chennupati; Capizzi, Mario; Polimeni, Antonio

    2015-04-28

    Semiconductor nanowires (NWs) formed by non-nitride III-V compounds grow preferentially with wurtzite (WZ) lattice. This is contrary to bulk and two-dimensional layers of the same compounds, where only zincblende (ZB) is observed. The absorption spectrum of WZ materials differs largely from their ZB counterparts and shows three transitions, referred to as A, B, and C in order of increasing energy, involving the minimum of the conduction band and different critical points of the valence band. In this work, we determine the temperature dependence (T = 10-310 K) of the energy of transitions A, B, and C in ensembles of WZ InP NWs by photoluminescence (PL) and PL excitation (PLE) spectroscopy. For the whole temperature and energy ranges investigated, the PL and PLE spectra are quantitatively reproduced by a theoretical model taking into account contribution from both exciton and continuum states. WZ InP is found to behave very similarly to wide band gap III-nitrides and II-VI compounds, where the energy of A, B, and C displays the same temperature dependence. This finding unveils a general feature of the thermal properties of WZ materials that holds regardless of the bond polarity and energy gap of the crystal. Furthermore, no differences are observed in the temperature dependence of the fundamental band gap energy in WZ InP NWs and ZB InP (both NWs and bulk). This result points to a negligible role played by the WZ/ZB differences in determining the deformation potentials and the extent of the electron-phonon interaction that is a direct consequence of the similar nearest neighbor arrangement in the two lattices.

  4. Optofluidic intracavity spectroscopy for spatially, temperature, and wavelength dependent refractometry

    NASA Astrophysics Data System (ADS)

    Kindt, Joel D.

    A microfluidic refractometer was designed based on previous optofluidic intracavity spectroscopy (OFIS) chips utilized to distinguish healthy and cancerous cells. The optofluidic cavity is realized by adding high reflectivity dielectric mirrors to the top and bottom of a microfluidic channel. This creates a plane-plane Fabry-Perot optical cavity in which the resonant wavelengths are highly dependent on the optical path length inside the cavity. Refractometry is a useful method to determine the nature of fluids, including the concentration of a solute in a solvent as well as the temperature of the fluid. Advantages of microfluidic systems are the easy integration with lab-on-chip devices and the need for only small volumes of fluid. The unique abilities of the microfluidic refractometer in this thesis include its spatial, temperature, and wavelength dependence. Spatial dependence of the transmission spectrum is inherent through a spatial filtering process implemented with an optical fiber and microscope objective. A sequence of experimental observations guided the change from using the OFIS chip as a cell discrimination device to a complimentary refractometer. First, it was noted the electrode structure within the microfluidic channel, designed to trap and manipulate biological cells with dielectrophoretic (DEP) forces, caused the resonant wavelengths to blue-shift when the electrodes were energized. This phenomenon is consistent with the negative dn/dT property of water and water-based solutions. Next, it was necessary to develop a method to separate the optical path length into physical path length and refractive index. Air holes were placed near the microfluidic channel to exclusively measure the cavity length with the known refractive index of air. The cavity length was then interpolated across the microfluidic channel, allowing any mechanical changes to be taken into account. After the separation of physical path length and refractive index, it was of interest

  5. A study on the temperature dependence of the threshold switching characteristics of Ge2Sb2Te5

    NASA Astrophysics Data System (ADS)

    Lee, Suyoun; Jeong, Doo Seok; Jeong, Jeung-hyun; Zhe, Wu; Park, Young-Wook; Ahn, Hyung-Woo; Cheong, Byung-ki

    2010-01-01

    We investigated the temperature dependence of the threshold switching characteristics of a memory-type chalcogenide material, Ge2Sb2Te5. We found that the threshold voltage (Vth) decreased linearly with temperature, implying the existence of a critical conductivity of Ge2Sb2Te5 for its threshold switching. In addition, we investigated the effect of bias voltage and temperature on the delay time (tdel) of the threshold switching of Ge2Sb2Te5 and described the measured relationship by an analytic expression which we derived based on a physical model where thermally activated hopping is a dominant transport mechanism in the material.

  6. Temperature-dependent magnetostriction as the key factor for martensite reorientation in magnetic field

    NASA Astrophysics Data System (ADS)

    L'vov, Victor A.; Kosogor, Anna

    2016-09-01

    The magnetic field application leads to spatially inhomogeneous magnetostriction of twinned ferromagnetic martensite. When the increasing field and magnetostrictive strain reach certain threshold values, the motion of twin boundaries and magnetically induced reorientation (MIR) of twinned martensite start. The MIR leads to giant magnetically induced deformation of twinned martensite. In the present article, the threshold field (TF) and temperature range of observability of MIR were calculated for the Ni-Mn-Ga martensite assuming that the threshold strain (TS) is temperature-independent. The calculations show that if the TS is of the order of 10-4, the TF strongly depends on temperature and MIR can be observed only above the limiting temperature (~220 K). If the TS is of the order of 10-6, the TF weakly depends on temperature and MIR can be observed at extremely low temperatures. The obtained theoretical results are in agreement with available experimental data.

  7. Temperature dependence of fast carbonyl backbone dynamics in chicken villin headpiece subdomain

    PubMed Central

    Vugmeyster, Liliya; Ostrovsky, Dmitry

    2012-01-01

    Temperature-dependence of protein dynamics can provide information on details of the free energy landscape by probing the characteristics of the potential responsible for the fluctuations. We have investigated the temperature-dependence of picosecond to nanosecond backbone dynamics at carbonyl carbon sites in chicken villin headpiece subdomain protein using a combination of three NMR relaxation rates: 13C′ longitudinal rate, and two cross-correlated rates involving dipolar and chemical shift anisotropy (CSA) relaxation mechanisms, 13C′/13C′−13Cα CSA/dipolar and 13C′/13C′−15N CSA/dipolar. Order parameters have been extracted using the Lipari-Szabo model-free approach assuming a separation of the time scales of internal and molecular motions in the 2–16°C temperature range. There is a gradual deviation from this assumption from lower to higher temperatures, such that above 16°C the separation of the time scales is inconsistent with the experimental data and, thus, the Lipari-Szabo formalism can not be applied. While there are variations among the residues, on the average the order parameters indicate a markedly steeper temperature dependence at backbone carbonyl carbons compared to that probed at amide nitrogens in an earlier study. This strongly advocates for probing sites other than amide nitrogen for accurate characterization of the potential and other thermodynamics characteristics of protein backbone. PMID:21416162

  8. Dependence of the critical temperature in overdoped copper oxides on superfluid density

    NASA Astrophysics Data System (ADS)

    Božović, I.; He, X.; Wu, J.; Bollinger, A. T.

    2016-08-01

    The physics of underdoped copper oxide superconductors, including the pseudogap, spin and charge ordering and their relation to superconductivity, is intensely debated. The overdoped copper oxides are perceived as simpler, with strongly correlated fermion physics evolving smoothly into the conventional Bardeen-Cooper-Schrieffer behaviour. Pioneering studies on a few overdoped samples indicated that the superfluid density was much lower than expected, but this was attributed to pair-breaking, disorder and phase separation. Here we report the way in which the magnetic penetration depth and the phase stiffness depend on temperature and doping by investigating the entire overdoped side of the La2-xSrxCuO4 phase diagram. We measured the absolute values of the magnetic penetration depth and the phase stiffness to an accuracy of one per cent in thousands of samples; the large statistics reveal clear trends and intrinsic properties. The films are homogeneous; variations in the critical superconducting temperature within a film are very small (less than one kelvin). At every level of doping the phase stiffness decreases linearly with temperature. The dependence of the zero-temperature phase stiffness on the critical superconducting temperature is generally linear, but with an offset; however, close to the origin this dependence becomes parabolic. This scaling law is incompatible with the standard Bardeen-Cooper-Schrieffer description.

  9. Investigation on the effects of temperature dependency of material parameters on a thermoelastic loading problem

    NASA Astrophysics Data System (ADS)

    Kumar, Anil; Mukhopadhyay, Santwana

    2017-08-01

    The present work is concerned with the investigation of thermoelastic interactions inside a spherical shell with temperature-dependent material parameters. We employ the heat conduction model with a single delay term. The problem is studied by considering three different kinds of time-dependent temperature and stress distributions applied at the inner and outer surfaces of the shell. The problem is formulated by considering that the thermal properties vary as linear function of temperature that yield nonlinear governing equations. The problem is solved by applying Kirchhoff transformation along with integral transform technique. The numerical results of the field variables are shown in the different graphs to study the influence of temperature-dependent thermal parameters in various cases. It has been shown that the temperature-dependent effect is more prominent in case of stress distribution as compared to other fields and also the effect is significant in case of thermal shock applied at the two boundary surfaces of the spherical shell.

  10. Temperature-dependent Refractive Index of Silicon and Germanium

    NASA Technical Reports Server (NTRS)

    Frey, Bradley J.; Leviton, Douglas B.; Madison, Timothy J.

    2006-01-01

    Silicon and germanium are perhaps the two most well-understood semiconductor materials in the context of solid state device technologies and more recently micromachining and nanotechnology. Meanwhile, these two materials are also important in the field of infrared lens design. Optical instruments designed for the wavelength range where these two materials are transmissive achieve best performance when cooled to cryogenic temperatures to enhance signal from the scene over instrument background radiation. In order to enable high quality lens designs using silicon and germanium at cryogenic temperatures, we have measured the absolute refractive index of multiple prisms of these two materials using the Cryogenic, High-Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center, as a function of both wavelength and temperature. For silicon, we report absolute refractive index and thermo-optic coefficient (dn/dT) at temperatures ranging from 20 to 300 K at wavelengths from 1.1 to 5.6 pin, while for germanium, we cover temperatures ranging from 20 to 300 K and wavelengths from 1.9 to 5.5 microns. We compare our measurements with others in the literature and provide temperature-dependent Sellmeier coefficients based on our data to allow accurate interpolation of index to other wavelengths and temperatures. Citing the wide variety of values for the refractive indices of these two materials found in the literature, we reiterate the importance of measuring the refractive index of a sample from the same batch of raw material from which final optical components are cut when absolute accuracy greater than k5 x 10" is desired.

  11. Temperature-dependent plastic hysteresis in highly confined polycrystalline Nb films

    NASA Astrophysics Data System (ADS)

    Waheed, S.; Hao, R.; Zheng, Z.; Wheeler, J. M.; Michler, J.; Balint, D. S.; Giuliani, F.

    2018-02-01

    In this study, the effect of temperature on the cyclic deformation behaviour of a confined polycrystalline Nb film is investigated. Micropillars encapsulating a thin niobium interlayer are deformed under cyclic axial compression at different test temperatures. A distinct plastic hysteresis is observed for samples tested at elevated temperatures, whereas negligible plastic hysteresis is observed for samples tested at room temperature. These results are interpreted using planar discrete dislocation plasticity incorporating slip transmission across grain boundaries. The effect of temperature-dependent grain boundary energy and dislocation mobility on dislocation penetration and, consequently, the size of plastic hysteresis is simulated to correlate with the experimental results. It is found that the decrease in grain boundary energy barrier caused by the increase in temperature does not lead to any appreciable change in the cyclic response. However, dislocation mobility significantly affects the size of plastic hysteresis, with high mobilities leading to a larger hysteresis. Therefore, it is postulated that the experimental observations are predominantly caused by an increase in dislocation mobility as the temperature is increased above the critical temperature of body-centred cubic niobium.

  12. Temperature dependent Raman investigation of multiwall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Dilawar Sharma, Nita; Singh, Jasveer; Vijay, Aditi

    2018-04-01

    We report anomalous observations in our investigations of the temperature dependent Raman spectroscopic measurement of multiwall carbon nanotubes. The Micro-Raman spectra were recorded with the laser source having 514.5 nm wavelength and within the temperature range of 80-440 K. The major Raman bands, the G and D band, are observed at 1584 and 1348 cm-1, respectively, at ambient. The absence of the radial breathing mode confirms the multiwall nature of carbon nanotubes. It has been observed that with an increase in the temperature above 120 K, there is a shift in Raman bands towards the higher wave-number region. However, a drop in the G and D bands is observed from 80 to 120 K which was not observed for the second order band. Thereafter, all Raman modes exhibited mode hardening up to about 320 K followed by mild softening of the phonon modes. Linear temperature coefficients were found to have higher contribution to mode hardening as compared to higher order terms. Total anharmonicity estimation shows a predominant effect of the quasi-harmonic term as compared to the true anharmonic term.

  13. Strong Temperature Dependence in the Reactivity of H 2 on RuO 2 (110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, Michael A.; Dahal, Arjun; Dohnálek, Zdenek

    2016-08-04

    The ability of hydrogen to facilitate many types of heterogeneous catalysis starts with its adsorption. As such, understanding the temperature-dependence sticking of H2 is critical toward controlling and optimizing catalytic conditions in those cases where adsorption is rate-limiting. In this work, we examine the temperature-dependent sticking of H2/D2 to the clean RuO2(110) surface using the King & Wells molecular beam approach, temperature programmed desorption (TPD) and scanning tunneling microscopy (STM). We show that the sticking probability (molecular or dissociative) of H2/D2 on this surface is highly temperature-dependent, decreasing from ~0.4-0.5 below 25 K to effectively zero above 200 K. Bothmore » STM and TPD reveal that OH/OD formation is severely limited for adsorption temperatures above ~150 K. Previous literature reports of extensive surface hydroxylation from H2/D2 exposures at room temperature were most likely the result of inadvertent contamination brought about from dosing by chamber backfilling.« less

  14. Temperature-dependent subunit exchange and chaperone-like activities of Hsp16.3, a small heat shock protein from Mycobacterium tuberculosis.

    PubMed

    Fu, Xinmiao; Chang, Zengyi

    2004-04-02

    Small heat shock proteins (sHsps) usually exist as oligomers that undergo dynamic oligomeric dissociation/re-association, with the dissociated oligomers as active forms to bind substrate proteins under heat shock conditions. In this study, however, we found that Hsp16.3, one sHsp from Mycobacterium tuberculosis, is able to sensitively modulate its chaperone-like activity in a range of physiological temperatures (from 25 to 37.5 degrees C) while its native oligomeric size is still maintained. Further analysis demonstrated that Hsp16.3 exposes higher hydrophobic surfaces upon temperatures increasing and that a large soluble complex between Hsp16.3 and substrate is formed only in the condition of heating temperature up to 35 and 37.5 degrees C. Structural analysis by fluorescence anisotropy showed that Hsp16.3 nonameric structure becomes more dynamic and variable at elevated temperatures. Moreover, subunit exchange between Hsp16.3 oligomers was found to occur faster upon temperatures increasing as revealed by fluorescence energy resonance transfer. These observations indicate that Hsp16.3 is able to modulate its chaperone activity by adjusting the dynamics of oligomeric dissociation/re-association process while maintaining its static oligomeric size unchangeable. A kinetic model is therefore proposed to explain the mechanism of sHsps-binding substrate proteins through oligomeric dissociation. The present study also implied that Hsp16.3 is at least capable of binding non-native proteins in vivo while expressing in the host organism that survives at 37 degrees C.

  15. The temperature dependences of electromechanical properties of PLZT ceramics

    NASA Astrophysics Data System (ADS)

    Czerwiec, M.; Zachariasz, R.; Ilczuk, J.

    2008-02-01

    The mechanical and electrical properties in lanthanum modified lead zirconate-titanate ceramics of 5/50/50 and 10/50/50 were studied by mechanical loss Q - 1, Young's modulus E, electric permittivity ɛ and tangent of dielectric loss of angle tgδ measurements. The internal friction Q - 1 and Young modulus E measured from 290 K to 600 K shows that Curie temperature TC is located at 574 K and 435 K (1st cycle of heating) respectively for ceramic samples 5/50/50 and 10/50/50. The movement of TC in second cycle of heating to lower temperature (561 K for 5/50/50 and 420 K for 10/50/50) has been observed. Together with Q - 1 and E measurements, temperature dependences of ɛ=f(T) and tgδ=f(T) were determinated in temperature range from 300 K to 730 K. The values of TC obtained during ɛ and tgδ measurements were respectively: 560 K for 5/50/50 and 419 K for 10/50/50. These temperatures are almost as high as the temperatures obtained by internal friction Q - 1 measurements in second cycle of heating. In ceramic sample 10/50/50 the additional maximum on internal friction Q - 1 curve at the temperature 316 K was observed.

  16. Linear dependence of surface expansion speed on initial plasma temperature in warm dense matter

    DOE PAGES

    Bang, Woosuk; Albright, Brian James; Bradley, Paul Andrew; ...

    2016-07-12

    Recent progress in laser-driven quasi-monoenergetic ion beams enabled the production of uniformly heated warm dense matter. Matter heated rapidly with this technique is under extreme temperatures and pressures, and promptly expands outward. While the expansion speed of an ideal plasma is known to have a square-root dependence on temperature, computer simulations presented here show a linear dependence of expansion speed on initial plasma temperature in the warm dense matter regime. The expansion of uniformly heated 1–100 eV solid density gold foils was modeled with the RAGE radiation-hydrodynamics code, and the average surface expansion speed was found to increase linearly withmore » temperature. The origin of this linear dependence is explained by comparing predictions from the SESAME equation-of-state tables with those from the ideal gas equation-of-state. In conclusion, these simulations offer useful insight into the expansion of warm dense matter and motivate the application of optical shadowgraphy for temperature measurement.« less

  17. Temperature dependent electrical properties of rare-earth metal Er Schottky contact on p-type InP

    NASA Astrophysics Data System (ADS)

    Rao, L. Dasaradha; Reddy, N. Ramesha; Kumar, A. Ashok; Reddy, V. Rajagopal

    2013-06-01

    The current-voltage (I-V) characteristics of the Er/p-InP Schottky barrier diodes (SBDs) have been investigated in the temperature range of 300-400K in steps of 25K. The electrical parameters such as ideality factor (n) and zero-bias barrier height (Φbo) are found to be strongly temperature dependent. It is observed that ΦI-V decreases whereas n increases with decreasing temperature. The series resistance is also calculated from the forward I-V characteristics of Er/p-InP SBD and it is found to be strongly dependent on temperature. Further, the temperature dependence of energy distribution of interface state density (NSS) profiles is determined from the forward I-V measurements by taking into account the bias dependence of the effective barrier height and ideality factor. It is observed that the NSS values increase with a decrease in temperature.

  18. Temperature Dependence of the Mechanical Properties of Equiatomic Solid Solution Alloys with FCC Crystal Structures

    DOE PAGES

    Wu, Zhenggang; Bei, Hongbin; Pharr, George M.; ...

    2014-10-03

    We found that compared to decades-old theories of strengthening in dilute solid solutions, the mechanical behavior of concentrated solid solutions is relatively poorly understood. A special subset of these materials includes alloys in which the constituent elements are present in equal atomic proportions, including the high-entropy alloys of recent interest. A unique characteristic of equiatomic alloys is the absence of “solvent” and “solute” atoms, resulting in a breakdown of the textbook picture of dislocations moving through a solvent lattice and encountering discrete solute obstacles. Likewise, to clarify the mechanical behavior of this interesting new class of materials, we investigate heremore » a family of equiatomic binary, ternary and quaternary alloys based on the elements Fe, Ni, Co, Cr and Mn that were previously shown to be single-phase face-centered cubic (fcc) solid solutions. The alloys were arc-melted, drop-cast, homogenized, cold-rolled and recrystallized to produce equiaxed microstructures with comparable grain sizes. Tensile tests were performed at an engineering strain rate of 10 -3 s -1 at temperatures in the range 77–673 K. Unalloyed fcc Ni was processed similarly and tested for comparison. The flow stresses depend to varying degrees on temperature, with some (e.g. NiCoCr, NiCoCrMn and FeNiCoCr) exhibiting yield and ultimate strengths that increase strongly with decreasing temperature, while others (e.g. NiCo and Ni) exhibit very weak temperature dependencies. Moreover, to better understand this behavior, the temperature dependencies of the yield strength and strain hardening were analyzed separately. Lattice friction appears to be the predominant component of the temperature-dependent yield stress, possibly because the Peierls barrier height decreases with increasing temperature due to a thermally induced increase of dislocation width. In the early stages of plastic flow (5–13% strain, depending on material), the temperature

  19. Temperature Dependence of the Thermal Conductivity of Single Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Osman, Mohamed A.; Srivastava, Deepak

    2000-01-01

    The thermal conductivity of several single wall carbon nanotubes (CNT) has been calculated over a temperature range of 100-500 K using molecular dynamics simulations with Tersoff-Brenner potential for C-C interactions. In all cases, starting from similar values at 100K, thermal conductivities show a peaking behavior before falling off at higher temperatures. The peak position shifts to higher temperatures for nanotubes of larger diameter, and no significant dependence on the tube chirality is observed. It is shown that this phenomenon is due to onset of Umklapp scattering, which shifts to higher temperatures for nanotubes of larger diameter.

  20. Diffractometric measurement of the temperature dependence of piezoelectric tensor in GMO monocrystal

    NASA Astrophysics Data System (ADS)

    Breczko, Teodor; Lempaszek, Andrzej

    2007-04-01

    Functional materials, of which an example is ferroelectric, ferroelastic monocrystal of molybdate (III) gadolinium (VI), are often used in the micro-motor operators (micro-servo motors) working in changeable environment conditions. Most frequently this change refers to temperature. That is why the important practical problem is the precise measurement of the value of piezoelectric tensor elements in dependence on the temperature of a particular monocrystal. In the presented article for this kind of measurements, the use of X-ray diffractometer has been shown. The advantage of the method presented is that, apart from precise dependence measurement between the temperature of a monocrystal and the value of piezoelectric tensor elements, it enables synchronous measurement of the value of thermal expansion tensor elements for a monocrystal.

  1. Temperature Dependence of Smectic Liquid Crystals Mixed With Magnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Taylor, Jefferson W.; Kurihara, Lynn K.; Martinez-Miranda, Luz J.

    2012-02-01

    We investigate the properties of bulk liquid crystal mixed with a magnetic nanoparticle (CoFe) as a function of temperature. We compare our results to those of a heat capacity measurement of Cordoyiannis et al.ootnotetextGeorge Cordoyiannis, Lynn K. Kurihara, Luz J. Martinez-Miranda, Christ Glorieux, and Jan Thoen, Phys. Rev. E 79, 011702 (2009) and compare the way the smectic as a function of temperature the way the nematic behaves. We study how the liquid crystal reorganizes in the presence of the functionalized nanoparticles as a function of temperature and compare it to how it behaves at room temperature.ootnotetextL. J. Mart'inez-Miranda, and Lynn Kurihara, J. Appl. Phys, 105, p. 084305 (2009). The X-rays give rise to three or four peaks whose evolution in temperature varies depending on their origin. In particular the second peak does not seem to vary much with temperature, and can be associated with the first several molecular layers attached to the nanoparticles.

  2. Temperature dependence of negative bias under illumination stress and recovery in amorphous indium gallium zinc oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    Hossain Chowdhury, Md Delwar; Migliorato, Piero; Jang, Jin

    2013-04-01

    We have investigated the temperature dependence of negative bias under illumination stress and recovery. The transfer characteristics exhibits a non-rigid shift towards negative gate voltages. For both stress and recovery, the voltage shift in deep depletion is twice that in accumulation. The results support the mechanism we previously proposed, which is creation and annealing of a double donor, likely to be an oxygen vacancy. The time dependence of stress and recovery can be fitted to stretched exponentials. Both processes are thermally activated with activation energies 1.06 eV and 1.25 eV for stress and recovery, respectively. A potential energy diagram is proposed to explain the results.

  3. Extraction of temperature dependent electrical resistivity and thermal conductivity from silicon microwires self-heated to melting temperature

    NASA Astrophysics Data System (ADS)

    Bakan, Gokhan; Adnane, Lhacene; Gokirmak, Ali; Silva, Helena

    2012-09-01

    Temperature-dependent electrical resistivity, ρ(T), and thermal conductivity, k(T), of nanocrystalline silicon microwires self-heated to melt are extracted by matching simulated current-voltage (I-V) characteristics to experimental I-V characteristics. Electrical resistivity is extracted from highly doped p-type wires on silicon dioxide in which the heat losses are predominantly to the substrate and the self-heating depends mainly on ρ(T) of the wires. The extracted ρ(T) decreases from 11.8 mΩ cm at room-temperature to 5.2 mΩ cm at 1690 K, in reasonable agreement with the values measured up to ˜650 K. Electrical resistivity and thermal conductivity are extracted from suspended highly doped n-type silicon wires in which the heat losses are predominantly through the wires. In this case, measured ρ(T) (decreasing from 20.5 mΩ cm at room temperature to 12 mΩ cm at 620 K) is used to extract ρ(T) at higher temperatures (decreasing to 1 mΩ cm at 1690 K) and k(T) (decreasing from 30 W m-1 K-1 at room temperature to 20 W m-1 K-1 at 1690 K). The method is tested by using the extracted parameters to model wires with different dimensions. The experimental and simulated I-V curves for these wires show good agreement up to high voltage and temperature levels. This technique allows extraction of the electrical resistivity and thermal conductivity up to very high temperatures from self-heated microstructures.

  4. Temperature-dependent thermal properties of ex vivo liver undergoing thermal ablation.

    PubMed

    Guntur, Sitaramanjaneya Reddy; Lee, Kang Il; Paeng, Dong-Guk; Coleman, Andrew John; Choi, Min Joo

    2013-10-01

    Thermotherapy uses a heat source that raises temperatures in the target tissue, and the temperature rise depends on the thermal properties of the tissue. Little is known about the temperature-dependent thermal properties of tissue, which prevents us from accurately predicting the temperature distribution of the target tissue undergoing thermotherapy. The present study reports the key thermal parameters (specific heat capacity, thermal conductivity and heat diffusivity) measured in ex vivo porcine liver while being heated from 20 ° C to 90 ° C and then naturally cooled down to 20 ° C. The study indicates that as the tissue was heated, all the thermal parameters resulted in plots with asymmetric quasi-parabolic curves with temperature, being convex downward with their minima at the turning temperature of 35-40 ° C. The largest change was observed for thermal conductivity, which decreased by 9.6% from its initial value (at 20 ° C) at the turning temperature (35 ° C) and rose by 45% at 90 ° C from its minimum (at 35 ° C). The minima were 3.567 mJ/(m(3) ∙ K) for specific heat capacity, 0.520 W/(m.K) for thermal conductivity and 0.141 mm(2)/s for thermal diffusivity. The minimum at the turning temperature was unique, and it is suggested that it be taken as a characteristic value of the thermal parameter of the tissue. On the other hand, the thermal parameters were insensitive to temperature and remained almost unchanged when the tissue cooled down, indicating that their variations with temperature were irreversible. The rate of the irreversible rise at 35 ° C was 18% in specific heat capacity, 40% in thermal conductivity and 38.3% in thermal diffusivity. The study indicates that the key thermal parameters of ex vivo porcine liver vary largely with temperature when heated, as described by asymmetric quasi-parabolic curves of the thermal parameters with temperature, and therefore, substantial influence on the temperature distribution of the tissue undergoing

  5. Energetic radiation influence on temperature dependency of Brillouin frequency in optical fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pheron, X.; Ouerdane, Y.; Delepine-Lesoille, S.

    We present a post mortem study of the influence of energetic radiation on optical fiber Brillouin sensors, both Brillouin spectrum and its temperature dependency in two different fibers, a photosensitive optical fiber and a SMF28. The target application is nuclear wastes repository monitoring where optical fiber Brillouin sensors might be exposed to energetic radiation. UV exposure induced optical losses, Brillouin frequency shifts up to 28 MHz and even a variation of the temperature dependency. The photosensitive optical fiber resulted more sensitive than SMF28{sup TM}. (authors)

  6. On the effect of ballistic overflow on the temperature dependence of the quantum efficiency of InGaN/GaN multiple quantum well light-emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prudaev, I. A., E-mail: funcelab@gmail.com; Kopyev, V. V.; Romanov, I. S.

    The dependences of the quantum efficiency of InGaN/GaN multiple quantum well light-emitting diodes on the temperature and excitation level are studied. The experiment is performed for two luminescence excitation modes. A comparison of the results obtained during photo- and electroluminescence shows an additional (to the loss associated with Auger recombination) low-temperature loss in the high-density current region. This causes inversion of the temperature dependence of the quantum efficiency at temperatures lower than 220–300 K. Analysis shows that the loss is associated with electron leakage from the light-emitting-diode active region. The experimental data are explained using the ballistic-overflow model. The simulationmore » results are in qualitative agreement with the experimental dependences of the quantum efficiency on temperature and current density.« less

  7. Brassinosteroid signaling-dependent root responses to prolonged elevated ambient temperature.

    PubMed

    Martins, Sara; Montiel-Jorda, Alvaro; Cayrel, Anne; Huguet, Stéphanie; Roux, Christine Paysant-Le; Ljung, Karin; Vert, Grégory

    2017-08-21

    Due to their sessile nature, plants have to cope with and adjust to their fluctuating environment. Temperature elevation stimulates the growth of Arabidopsis aerial parts. This process is mediated by increased biosynthesis of the growth-promoting hormone auxin. How plant roots respond to elevated ambient temperature is however still elusive. Here we present strong evidence that temperature elevation impinges on brassinosteroid hormone signaling to alter root growth. We show that elevated temperature leads to increased root elongation, independently of auxin or factors known to drive temperature-mediated shoot growth. We further demonstrate that brassinosteroid signaling regulates root responses to elevated ambient temperature. Increased growth temperature specifically impacts on the level of the brassinosteroid receptor BRI1 to downregulate brassinosteroid signaling and mediate root elongation. Our results establish that BRI1 integrates temperature and brassinosteroid signaling to regulate root growth upon long-term changes in environmental conditions associated with global warming.Moderate heat stimulates the growth of Arabidopsis shoots in an auxin-dependent manner. Here, Martins et al. show that elevated ambient temperature modifies root growth by reducing the BRI1 brassinosteroid-receptor protein level and downregulating brassinosteroid signaling.

  8. Review of temperature dependence of thermal properties, dielectric properties, and perfusion of biological tissues at hyperthermic and ablation temperatures.

    PubMed

    Rossmanna, Christian; Haemmerich, Dieter

    2014-01-01

    The application of supraphysiological temperatures (>40°C) to biological tissues causes changes at the molecular, cellular, and structural level, with corresponding changes in tissue function and in thermal, mechanical and dielectric tissue properties. This is particularly relevant for image-guided thermal treatments (e.g. hyperthermia and thermal ablation) delivering heat via focused ultrasound (FUS), radiofrequency (RF), microwave (MW), or laser energy; temperature induced changes in tissue properties are of relevance in relation to predicting tissue temperature profile, monitoring during treatment, and evaluation of treatment results. This paper presents a literature survey of temperature dependence of electrical (electrical conductivity, resistivity, permittivity) and thermal tissue properties (thermal conductivity, specific heat, diffusivity). Data of soft tissues (liver, prostate, muscle, kidney, uterus, collagen, myocardium and spleen) for temperatures between 5 to 90°C, and dielectric properties in the frequency range between 460 kHz and 3 GHz are reported. Furthermore, perfusion changes in tumors including carcinomas, sarcomas, rhabdomyosarcoma, adenocarcinoma and ependymoblastoma in response to hyperthmic temperatures up to 46°C are presented. Where appropriate, mathematical models to describe temperature dependence of properties are presented. The presented data is valuable for mathematical models that predict tissue temperature during thermal therapies (e.g. hyperthermia or thermal ablation), as well as for applications related to prediction and monitoring of temperature induced tissue changes.

  9. Review of temperature dependence of thermal properties, dielectric properties, and perfusion of biological tissues at hyperthermic and ablation temperatures

    PubMed Central

    Rossmann, Christian; Haemmerich, Dieter

    2016-01-01

    The application of supraphysiological temperatures (>40°C) to biological tissues causes changes at the molecular, cellular, and structural level, with corresponding changes in tissue function and in thermal, mechanical and dielectric tissue properties. This is particularly relevant for image-guided thermal treatments (e.g. hyperthermia and thermal ablation) delivering heat via focused ultrasound (FUS), radiofrequency (RF), microwave (MW), or laser energy; temperature induced changes in tissue properties are of relevance in relation to predicting tissue temperature profile, monitoring during treatment, and evaluation of treatment results. This paper presents a literature survey of temperature dependence of electrical (electrical conductivity, resistivity, permittivity) and thermal tissue properties (thermal conductivity, specific heat, diffusivity). Data of soft tissues (liver, prostate, muscle, kidney, uterus, collagen, myocardium and spleen) for temperatures between 5 to 90°C, and dielectric properties in the frequency range between 460 kHz and 3 GHz are reported. Furthermore, perfusion changes in tumors including carcinomas, sarcomas, rhabdomyosarcoma, adenocarcinoma and ependymoblastoma in response to hyperthmic temperatures up to 46°C are presented. Where appropriate, mathematical models to describe temperature dependence of properties are presented. The presented data is valuable for mathematical models that predict tissue temperature during thermal therapies (e.g. hyperthermia or thermal ablation), as well as for applications related to prediction and monitoring of temperature induced tissue changes. PMID:25955712

  10. Temperature dependence of resonant secondary emission in NaNO 2: Spectral behavior

    NASA Astrophysics Data System (ADS)

    Kato, Riso; Kawaguchi, Yoshizo; Ashida, Masaaki

    1990-05-01

    Spectral behavior of resonant secondary emission in NaNO 2 has been investigated in the temperature range from 2 to 30 K under the excitation near the v00 line of the lowest singlet absorption. With increasing temperature, luminescence lines separated from multiple-order Raman lines become detectable even under the excitation with the off-resonance energy Δ c ≳ 13 cm -1. The intensity of the luminescence line IL( T) increases with temperature in proportion to the phonon number n( hvp, T) in the temperature range T ≲ Δ c/ k, while it increases more steeply in the range T ≳ Δ c/ k. The temperature dependence of IL( T) is ascribed to the increase in the luminescence from the v00 level after the one-phonon assisted transition to the level induced by the off-resonant incident light. The intensity of the Raman line IR( T) decreases gradually in 2-12 K range and shows rapid drop above 12 K. The temperature dependence of IR( T) is ascribed to the dephasing of the intermediate state due to the two-phonon interaction with the reservoir.

  11. The temperature dependence of intermediate range oxygen-oxygen correlations in liquid water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlesinger, Daniel; Pettersson, Lars G. M., E-mail: Lars.Pettersson@fysik.su.se; Wikfeldt, K. Thor

    We analyze the recent temperature dependent oxygen-oxygen pair-distribution functions from experimental high-precision x-ray diffraction data of bulk water by Skinner et al. [J. Chem. Phys. 141, 214507 (2014)] with particular focus on the intermediate range where small, but significant, correlations are found out to 17 Å. The second peak in the pair-distribution function at 4.5 Å is connected to tetrahedral coordination and was shown by Skinner et al. to change behavior with temperature below the temperature of minimum isothermal compressibility. Here we show that this is associated also with a peak growing at 11 Å which strongly indicates a collectivemore » character of fluctuations leading to the enhanced compressibility at lower temperatures. We note that the peak at ∼13.2 Å exhibits a temperature dependence similar to that of the density with a maximum close to 277 K or 4 °C. We analyze simulations of the TIP4P/2005 water model in the same manner and find excellent agreement between simulations and experiment albeit with a temperature shift of ∼20 K.« less

  12. The temperature dependence of intermediate range oxygen-oxygen correlations in liquid water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlesinger, Daniel; Wikfeldt, K. Thor; Skinner, Lawrie B.

    Here, we analyze the recent temperature dependent oxygen-oxygen pair-distribution functions from experimental high-precision x-ray diffraction data of bulk water by Skinner et al. [J. Chem. Phys. 141, 214507 (2014)] with particular focus on the intermediate range where small, but significant, correlations are found out to 17 Å. The second peak in the pair-distribution function at 4.5 Å is connected to tetrahedral coordination and was shown by Skinner et al. to change behavior with temperature below the temperature of minimum isothermal compressibility. Here we show that this is associated also with a peak growing at 11 Å which strongly indicates amore » collective character of fluctuations leading to the enhanced compressibility at lower temperatures. We note that the peak at ~13.2 Å exhibits a temperature dependence similar to that of the density with a maximum close to 277 K or 4 °C. We analyze simulations of the TIP4P/2005 water model in the same manner and find excellent agreement between simulations and experiment albeit with a temperature shift of ~20 K.« less

  13. The temperature dependence of intermediate range oxygen-oxygen correlations in liquid water

    DOE PAGES

    Schlesinger, Daniel; Wikfeldt, K. Thor; Skinner, Lawrie B.; ...

    2016-08-25

    Here, we analyze the recent temperature dependent oxygen-oxygen pair-distribution functions from experimental high-precision x-ray diffraction data of bulk water by Skinner et al. [J. Chem. Phys. 141, 214507 (2014)] with particular focus on the intermediate range where small, but significant, correlations are found out to 17 Å. The second peak in the pair-distribution function at 4.5 Å is connected to tetrahedral coordination and was shown by Skinner et al. to change behavior with temperature below the temperature of minimum isothermal compressibility. Here we show that this is associated also with a peak growing at 11 Å which strongly indicates amore » collective character of fluctuations leading to the enhanced compressibility at lower temperatures. We note that the peak at ~13.2 Å exhibits a temperature dependence similar to that of the density with a maximum close to 277 K or 4 °C. We analyze simulations of the TIP4P/2005 water model in the same manner and find excellent agreement between simulations and experiment albeit with a temperature shift of ~20 K.« less

  14. The effects of temperature dependent recombination rates on performance of InGaN/GaN blue superluminescent light emitting diodes

    NASA Astrophysics Data System (ADS)

    Moslehi Milani, N.; Mohadesi, V.; Asgari, A.

    2015-07-01

    The effects of temperature dependent radiative and nonradiative recombination (Shockley-Read-Hall, spontaneous radiative, and Auger coefficients) on the spectral and power characteristics of a blue multiple quantum well (MQW) superluminescent light emitting diode (SLD or SLED) have been studied. The study is based on the rate equations model, where three rate equations corresponding to MQW active region, separate confinement heterostructure (SCH) layer, and spectral density of optical power are solved self-consistently with no k-selection energy dependent gain and quasi-Fermi level functions at steady state. We have taken into account the temperature effects on Shockley-Read-Hall (SRH), spontaneous radiative, and Auger recombination in the rate equations and have investigated the effects of temperature rising from 300 K to 375 K at a fixed current density. We examine this procedure for a moderate current density and interpret the spectral radiation power and light output power diagrams. The investigation reveals that the main loss due to temperature is related to Auger coefficient.

  15. Temperature Dependence of Nonelectrolyte Permeation across Red Cell Membranes

    PubMed Central

    Galey, W. R.; Owen, J. D.; Solomon, A. K.

    1973-01-01

    The temperature dependence of permeation across human red cell membranes has been determined for a series of hydrophilic and lipophilic solutes, including urea and two methyl substituted derivatives, all the straight-chain amides from formamide through valeramide and the two isomers, isobutyramide and isovaleramide. The temperature coefficient for permeation by all the hydrophilic solutes is 12 kcal mol-1 or less, whereas that for all the lipophilic solutes is 19 kcal mol-1 or greater. This difference is consonant with the view that hydrophilic molecules cross the membrane by a path different from that taken by the lipophilic ones. The thermodynamic parameters associated with lipophile permeation have been studied in detail. ΔG is negative for adsorption of lipophilic amides onto an oil-water interface, whereas it is positive for transfer of the polar head from the aqueous medium to bulk lipid solvent. Application of absolute reaction rate theory makes it possible to make a clear distinction between diffusion across the water-red cell membrane interface and diffusion within the membrane. Diffusion coefficients and apparent activation enthalpies and entropies have been computed for each process. Transfer of the polar head from the solvent into the interface is characterized by ΔG ‡ = 0 kcal mol-1 and ΔS ‡ negative, whereas both of these parameters have large positive values for diffusion within the membrane. Diffusion within the membrane is similar to what is expected for diffusion through a highly associated viscous fluid. PMID:4708405

  16. Temperature Dependence of Faraday Effect-Induced Bias Error in a Fiber Optic Gyroscope

    PubMed Central

    Li, Xuyou; Guang, Xingxing; Xu, Zhenlong; Li, Guangchun

    2017-01-01

    Improving the performance of interferometric fiber optic gyroscope (IFOG) in harsh environments, such as magnetic field and temperature field variation, is necessary for its practical applications. This paper presents an investigation of Faraday effect-induced bias error of IFOG under varying temperature. Jones matrix method is utilized to formulize the temperature dependence of Faraday effect-induced bias error. Theoretical results show that the Faraday effect-induced bias error changes with the temperature in the non-skeleton polarization maintaining (PM) fiber coil. This phenomenon is caused by the temperature dependence of linear birefringence and Verdet constant of PM fiber. Particularly, Faraday effect-induced bias errors of two polarizations always have opposite signs that can be compensated optically regardless of the changes of the temperature. Two experiments with a 1000 m non-skeleton PM fiber coil are performed, and the experimental results support these theoretical predictions. This study is promising for improving the bias stability of IFOG. PMID:28880203

  17. Temperature Dependence of Faraday Effect-Induced Bias Error in a Fiber Optic Gyroscope.

    PubMed

    Li, Xuyou; Liu, Pan; Guang, Xingxing; Xu, Zhenlong; Guan, Lianwu; Li, Guangchun

    2017-09-07

    Improving the performance of interferometric fiber optic gyroscope (IFOG) in harsh environments, such as magnetic field and temperature field variation, is necessary for its practical applications. This paper presents an investigation of Faraday effect-induced bias error of IFOG under varying temperature. Jones matrix method is utilized to formulize the temperature dependence of Faraday effect-induced bias error. Theoretical results show that the Faraday effect-induced bias error changes with the temperature in the non-skeleton polarization maintaining (PM) fiber coil. This phenomenon is caused by the temperature dependence of linear birefringence and Verdet constant of PM fiber. Particularly, Faraday effect-induced bias errors of two polarizations always have opposite signs that can be compensated optically regardless of the changes of the temperature. Two experiments with a 1000 m non-skeleton PM fiber coil are performed, and the experimental results support these theoretical predictions. This study is promising for improving the bias stability of IFOG.

  18. Corresponding states correlation for temperature dependent surface tension of normal saturated liquids

    NASA Astrophysics Data System (ADS)

    Yi, Huili; Tian, Jianxiang

    2014-07-01

    A new simple correlation based on the principle of corresponding state is proposed to estimate the temperature-dependent surface tension of normal saturated liquids. The correlation is a linear one and strongly stands for 41 saturated normal liquids. The new correlation requires only the triple point temperature, triple point surface tension and critical point temperature as input and is able to represent the experimental surface tension data for these 41 saturated normal liquids with a mean absolute average percent deviation of 1.26% in the temperature regions considered. For most substances, the temperature covers the range from the triple temperature to the one beyond the boiling temperature.

  19. Temperature dependence of the isotope chemistry of the heavy elements.

    PubMed Central

    Bigeleisen, J

    1996-01-01

    The temperature coefficient of equilibrium isotope fractionation in the heavy elements is shown to be larger at high temperatures than that expected from the well-studied vibrational isotope effects. The difference in the isotopic behavior of the heavy elements as compared with the light elements is due to the large nuclear isotope field shifts in the heavy elements. The field shifts introduce new mechanisms for maxima, minima, crossovers, and large mass-independent isotope effects in the isotope chemistry of the heavy elements. The generalizations are illustrated by the temperature dependence of the isotopic fractionation in the redox reaction between U(VI) and U(IV) ions. PMID:8790340

  20. (abstract) Ulysses Solar Wind Ion Temperatures: Radial, Latitudinal, and Dynamical Dependencies

    NASA Technical Reports Server (NTRS)

    Goldstein, B. E.; Smith, E. J.; Gosling, J. T.; McComas, D. J.; Balogh, A.

    1996-01-01

    Observations of the Ulysses SWOOPS plasma experiment are used to determine the dependencies of solar wind ion temperatures upon radial distance, speed, and other parameters, and to estimate solar wind heating. Comparisons with three dimensional temperature estimates determined from the ion spectra by a least squares fitting program will be provided (only small samples of data have been reduced with this program).

  1. Temperature dependence of carrier capture by defects in gallium arsenide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wampler, William R.; Modine, Normand A.

    2015-08-01

    This report examines the temperature dependence of the capture rate of carriers by defects in gallium arsenide and compares two previously published theoretical treatments of this based on multi phonon emission (MPE). The objective is to reduce uncertainty in atomistic simulations of gain degradation in III-V HBTs from neutron irradiation. A major source of uncertainty in those simulations is poor knowledge of carrier capture rates, whose values can differ by several orders of magnitude between various defect types. Most of this variation is due to different dependence on temperature, which is closely related to the relaxation of the defect structuremore » that occurs as a result of the change in charge state of the defect. The uncertainty in capture rate can therefore be greatly reduced by better knowledge of the defect relaxation.« less

  2. Charge transport and activation energy of amorphous silicon carbide thin film on quartz at elevated temperature

    NASA Astrophysics Data System (ADS)

    Dinh, Toan; Viet Dao, Dzung; Phan, Hoang-Phuong; Wang, Li; Qamar, Afzaal; Nguyen, Nam-Trung; Tanner, Philip; Rybachuk, Maksym

    2015-06-01

    We report on the temperature dependence of the charge transport and activation energy of amorphous silicon carbide (a-SiC) thin films grown on quartz by low-pressure chemical vapor deposition. The electrical conductivity as characterized by the Arrhenius rule was found to vary distinctly under two activation energy thresholds of 150 and 205 meV, corresponding to temperature ranges of 300 to 450 K and 450 to 580 K, respectively. The a-SiC/quartz system displayed a high temperature coefficient of resistance ranging from -4,000 to -16,000 ppm/K, demonstrating a strong feasibility of using this material for highly sensitive thermal sensing applications.

  3. Low and moderate photosynthetically active radiation affects the flavonol glycosides and hydroxycinnamic acid derivatives in kale (Brassica oleracea var. sabellica) dependent on two low temperatures.

    PubMed

    Neugart, Susanne; Fiol, Michaela; Schreiner, Monika; Rohn, Sascha; Zrenner, Rita; Kroh, Lothar W; Krumbein, Angelika

    2013-11-01

    Kale (Brassica oleracea var. sabellica) contains a large number of naturally occurring structurally different non-acylated and acylated flavonol glycosides as well as hydroxycinnamic acid derivatives. The objective of this study was to determine the effect of low and moderate photosynthetic active radiation (PAR) and how these levels interact with low temperature in these phenolic compounds. Juvenile kale plants were treated with PAR levels from 200 to 800 μmol m(-2) s(-1) at 5 and 10 °C under defined conditions in climate chambers. Of the investigated 20 compounds, 11 and 17 compounds were influenced by PAR and temperature, respectively. In addition, an interaction between PAR and temperature was found for eight compounds. The response of the phenolic compounds to PAR was structure-dependent. While quercetin triglycosides increased with higher PAR at 5 and 10 °C, the kaempferol triglycosides exhibited the highest concentrations at 400 μmol m(-2) s(-1). In contrast, kaempferol diglycosides exhibited the highest concentrations at increased PAR levels of 600 and 800 μmol m(-2) s(-1) at 10 °C. However, key genes of flavonol biosynthesis were influenced by temperature but remained unaffected by PAR. Furthermore, there was no interaction between the PAR level and the low temperature in the response of hydroxycinnamic acid derivatives in kale with the exception of caffeoylquinic acid, which decreased with higher PAR levels of 600 and 800 μmol m(-2) s(-1) and at a lower temperature. In conclusion, PAR and its interaction with temperature could be a suitable tool for modifying the profile of phenolic compounds. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  4. Temperature-dependent sorption of naphthalene, phenanthrene, and pyrene to low organic carbon aquifer sediments

    USGS Publications Warehouse

    Piatt, Joseph J.; Backhus, Debera A.; Capel, Paul D.; Eisenreich, Steven J.

    1996-01-01

    Sorption experiments were conducted with naphthalene, phenanthrene, and pyrene on low organic carbon sediments at 4 and 26 °C using batch and column techniques. Experimental controls ensured the absence of biologic and photolytic activity and colloid-free solution supernatants. Equilibrium distribution coefficients (Kd) increased 1.1−1.6 times with a decrease in temperature of 22 °C. Fraction instantaneous sorption (F) values did not change significantly with a decrease in temperature of 22 °C. Desorption rate constants (k2) decreased 1.2−2.6 times with a decrease in temperature of 22 °C. Times to equilibrium were at least 40 h. The magnitude of observed Kd and k2 values and the effect of temperature on Kd (e.g., low enthalpy of sorption) are consistent with sorbate partitioning between the aqueous phase and small amounts of organic matter (foc = 0.02%) on the sediments. The temperature dependence of Kd and k2 may be small as compared to the effects of heterogeneities in field-scale aquifer systems. Thus, thermal gradients may not be of major importance in most saturated subsurface regimes when predicting solute transport. However, aquifer remediation pump-and-treat times could be decreased because increased temperature decreases both retardation and tailing.

  5. Temperature-dependent elastic anisotropy and mesoscale deformation in a nanostructured ferritic alloy

    DOE PAGES

    Stoica, G. M.; Stoica, A. D.; Miller, M. K.; ...

    2014-10-10

    Nanostructured ferritic alloys (NFA) are a new class of ultrafine-grained oxide dispersion-strengthened steels, promising for service in extreme environments of high temperature and high irradiation in the next-generation of nuclear reactors. This is owing to the remarkable stability of their complex microstructures containing a high density of Y-Ti-O nanoclusters within grains and along the grain boundaries. While nanoclusters have been recognized to be the primary contributor to the exceptional resistance to irradiation and high-temperature creep, very little is known about the mechanical roles of the polycrystalline grains that constitute the bulk ferritic matrix. Here we report the mesoscale characterization ofmore » anisotropic responses of the ultrafine NFA grains to tensile stresses at various temperatures using the state-of-the-art in situ neutron diffraction. We show the first experimental determination of temperature-dependent single-crystal elastic constants for the NFA, and reveal a strong temperature-dependent elastic anisotropy due to a sharp decrease in the shear stiffness constant [c'=(c_11-c_12)/2] when a critical temperature ( T_c ) is approached, indicative of elastic softening and instability of the ferritic matrix. We also show, from anisotropy-induced intergranular strain/stress accumulations, that a common dislocation slip mechanism operates at the onset of yielding for low temperatures, while there is a deformation crossover from low-temperature lattice hardening to high temperature lattice softening in response to extensive plastic deformation.« less

  6. Some like it hot, some like it cold: Temperature dependent biotechnological applications and improvements in extremophilic enzymes.

    PubMed

    Siddiqui, Khawar Sohail

    2015-12-01

    The full biotechnological exploitation of enzymes is still hampered by their low activity, low stability and high cost. Temperature-dependent catalytic properties of enzymes are a key to efficient and cost-effective translation to commercial applications. Organisms adapted to temperature extremes are a rich source of enzymes with broad ranging thermal properties which, if isolated, characterized and their structure-function-stability relationship elucidated, could underpin a variety of technologies. Enzymes from thermally-adapted organisms such as psychrophiles (low-temperature) and thermophiles (high-temperature) are a vast natural resource that is already under scrutiny for their biotechnological potential. However, psychrophilic and thermophilic enzymes show an activity-stability trade-off that necessitates the use of various genetic and chemical modifications to further improve their properties to suit various industrial applications. This review describes in detail the properties and biotechnological applications of both cold-adapted and thermophilic enzymes. Furthermore, the review critically examines ways to improve their value for biotechnology, concluding by proposing an integrated approach involving thermally-adapted, genetically and magnetically modified enzymes to make biocatalysis more efficient and cost-effective. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Phonon focusing and temperature dependences of thermal conductivity of silicon nanofilms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuleyev, I. I., E-mail: kuleev@imp.uran.ru; Bakharev, S. M.; Kuleyev, I. G.

    2015-04-15

    The effect of phonon focusing on the anisotropy and temperature dependences of the thermal conductivities of silicon nanofilms is analyzed using the three-mode Callaway model. The orientations of the film planes and the directions of the heat flux for maximal or minimal heat removal from silicon chip elements at low temperatures, as well as at room temperature, are determined. It is shown that in the case of diffuse reflection of phonons from the boundaries, the plane with the (100) orientation exhibits the lowest scattering ability (and the highest thermal conductivity), while the plane with the (111) orientation is characterized bymore » the highest scattering ability (and the lowest thermal conductivity). The thermal conductivity of wide films is determined to a considerable extent by the orientation of the film plane, while for nanowires with a square cross section, the thermal conductivity is mainly determined by the direction of the heat flux. The effect of elastic energy anisotropy on the dependences of the thermal conductivity on the geometrical parameters of films is analyzed. The temperatures of transition from boundary scattering to bulk relaxation mechanisms are determined.« less

  8. Evaluation of molecular volume change of block copolymer depending on temperature: A SANS study

    DOE PAGES

    Kim, Tae-Hwan; Do, Changwoo; Han, Young-Soo

    2017-12-24

    Amphiphilic Pluronic triblock copolymers form various self-assembled structures such as sphere, cylinder, lamellae and so on, depending on temperature, leading to the increase of hydrophobicity of block copolymers. However, the effective molecular volume change of the block copolymer has not been fully exploited yet, when temperature increases. Here in this paper, we have investigated the effective molecular volume change of the block copolymer upon heating by using the contrast variation small angle neutron scattering. The scattering length densities (SLDs) of the block copolymer were experimentally obtained from the neutron scattering contrast variation method between the solvent and the block copolymermore » at varying temperature. Even though the SLD, which is the intrinsic property of the material, should not be changed by temperature elevation, it was dependent on temperature, indicating that the molecular volume is changed. Therefore, we obtained the increase rate of the molecular volume change of the block copolymer (the effective molecular volume change) from the comparison of the calculated SLD and the standard SLD, which is evaluated by plotting the SANS intensity at the first order Bragg peak as the function of temperature at each volume fraction of D 2O and H 2O that is about 25.5%–51.3% depending on temperature.« less

  9. Evaluation of molecular volume change of block copolymer depending on temperature: A SANS study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Tae-Hwan; Do, Changwoo; Han, Young-Soo

    Amphiphilic Pluronic triblock copolymers form various self-assembled structures such as sphere, cylinder, lamellae and so on, depending on temperature, leading to the increase of hydrophobicity of block copolymers. However, the effective molecular volume change of the block copolymer has not been fully exploited yet, when temperature increases. Here in this paper, we have investigated the effective molecular volume change of the block copolymer upon heating by using the contrast variation small angle neutron scattering. The scattering length densities (SLDs) of the block copolymer were experimentally obtained from the neutron scattering contrast variation method between the solvent and the block copolymermore » at varying temperature. Even though the SLD, which is the intrinsic property of the material, should not be changed by temperature elevation, it was dependent on temperature, indicating that the molecular volume is changed. Therefore, we obtained the increase rate of the molecular volume change of the block copolymer (the effective molecular volume change) from the comparison of the calculated SLD and the standard SLD, which is evaluated by plotting the SANS intensity at the first order Bragg peak as the function of temperature at each volume fraction of D 2O and H 2O that is about 25.5%–51.3% depending on temperature.« less

  10. Cannibalism by damselflies increases with rising temperature

    PubMed Central

    Kirk, Devin; Shea, Dylan

    2017-01-01

    Trophic interactions are likely to change under climate warming. These interactions can be altered directly by changing consumption rates, or indirectly by altering growth rates and size asymmetries among individuals that in turn affect feeding. Understanding these processes is particularly important for intraspecific interactions, as direct and indirect changes may exacerbate antagonistic interactions. We examined the effect of temperature on activity rate, growth and intraspecific size asymmetries, and how these temperature dependencies affected cannibalism in Lestes congener, a damselfly with marked intraspecific variation in size. Temperature increased activity rates and exacerbated differences in body size by increasing growth rates. Increased activity and changes in body size interacted to increase cannibalism at higher temperatures. We argue that our results are likely to be general to species with life-history stages that vary in their temperature dependencies, and that the effects of climate change on communities may depend on the temperature dependencies of intraspecific interactions. PMID:28515331

  11. Cannibalism by damselflies increases with rising temperature.

    PubMed

    Start, Denon; Kirk, Devin; Shea, Dylan; Gilbert, Benjamin

    2017-05-01

    Trophic interactions are likely to change under climate warming. These interactions can be altered directly by changing consumption rates, or indirectly by altering growth rates and size asymmetries among individuals that in turn affect feeding. Understanding these processes is particularly important for intraspecific interactions, as direct and indirect changes may exacerbate antagonistic interactions. We examined the effect of temperature on activity rate, growth and intraspecific size asymmetries, and how these temperature dependencies affected cannibalism in Lestes congener , a damselfly with marked intraspecific variation in size. Temperature increased activity rates and exacerbated differences in body size by increasing growth rates. Increased activity and changes in body size interacted to increase cannibalism at higher temperatures. We argue that our results are likely to be general to species with life-history stages that vary in their temperature dependencies, and that the effects of climate change on communities may depend on the temperature dependencies of intraspecific interactions. © 2017 The Author(s).

  12. Spatial organization and time dependence of Jupiter's tropospheric temperatures, 1980-1993

    NASA Technical Reports Server (NTRS)

    Orton, Glenn S.; Friedson, A. James; Yanamandra-Fisher, Padmavati A.; Caldwell, John; Hammel, Heidi B.; Baines, Kevin H.; Bergstralh, Jay T.; Martin, Terry Z.; West, Robert A.; Veeder, Glenn J., Jr.

    1994-01-01

    The spatial organization and time dependence of Jupiter's temperature near 250-millibar pressure were measured through a jovian year by imaging thermal emission at 18 micrometers. The temperature field is influenced by seasonal radiative forcing, and its banded organization is closely correlated with the visible cloud field. Evidence was found for a quasi-periodic oscillation of temperatures in the Equatorial Zone, a correlation between tropospheric and stratospheric waves in the North Equatorial Belt, and slowly moving thermal features in the North and South Equatorial Belts. There appears to be no common relation between temporal changes of temperature and changes in the visual albedo of the various axisymmetric bands.

  13. Temperature-dependent vibrational spectroscopy to study order-disorder transitions in charge transfer complexes

    NASA Astrophysics Data System (ADS)

    Isaac, Rohan; Goetz, Katelyn P.; Roberts, Drew; Jurchescu, Oana D.; McNeil, L. E.

    2018-02-01

    Charge-transfer (CT) complexes are a promising class of materials for the semiconductor industry because of their versatile properties. This class of compounds shows a variety of phase transitions, which are of interest because of their potential impact on the electronic characteristics. Here temperature-dependent vibrational spectroscopy is used to study structural phase transitions in a set of organic CT complexes. Splitting and broadening of infrared-active phonons in the complex formed between pyrene and pyromellitic dianhydride (PMDA) confirm the structural transition is of the order-disorder type and complement previous x-ray diffraction (XRD) results. We show that this technique is a powerful tool to characterize transitions, and apply it to a range of binary CT complexes composed of polyaromatic hyrdocarbons (anthracene, perylene, phenanthrene, pyrene, and stilbene) and PMDA. We extend the understanding of transitions in perylene-PMDA and pyrene-PMDA, and show that there are no order-disorder transitions present in anthracene-PMDA, stilbene-PMDA and phenanthrene-PMDA in the temperature range investigated here.

  14. Transition from Arrhenius to non-Arrhenius temperature dependence of structural relaxation time in glass-forming liquids: continuous versus discontinuous scenario.

    PubMed

    Popova, V A; Surovtsev, N V

    2014-09-01

    The temperature dependences of α relaxation time τ(α)(T) of three glass-forming liquids (salol, o-terphenyl, and α-picoline) were investigated by a depolarized light scattering technique. A detailed description of τ(α)(T) near T(A), the temperature of the transition from the Arrhenius law at high temperatures to a non-Arrhenius behavior of τ(α)(T) at lower temperatures, was done. It was found that this transition is quite sharp. If the transition is described as switching from the Arrhenius law to the Vogel-Fulcher-Tammann law, it occurs within the temperature range of about 15 K or less. Most of the known expressions for τ(α)(T) cannot describe this sharp transition. Our analysis revealed that this transition can be described either as a discontinuous transition in the spirit of the frustration-limited domain theory [D. Kivelson, G. Tarjus, X. Zhao, and S. A. Kivelson, Phys. Rev. E 53, 751 (1996)], implying a phase transition, or by a phenomenological expression recently suggested [B. Schmidtke, N. Petzold, R. Kahlau, M. Hofmann, and E. A. Rössler, Phys. Rev. E 86, 041507 (2012)], where the activation energy includes the term depending exponentially on temperature.

  15. Temperature-dependent mid-IR absorption spectra of gaseous hydrocarbons

    NASA Astrophysics Data System (ADS)

    Klingbeil, Adam E.; Jeffries, Jay B.; Hanson, Ronald K.

    2007-10-01

    Quantitative mid-IR absorption spectra (2500 3400 cm-1) for 12 pure hydrocarbon compounds are measured at temperatures ranging from 25 to 500 °C using an FTIR spectrometer. The hydrocarbons studied are n-pentane, n-heptane, n-dodecane, 2,2,4-trimethyl-pentane (iso-octane), 2-methyl-butane, 2-methyl-pentane, 2,4,4-trimethyl-1-pentene, 2-methyl-2-butene, propene, toluene, m-xylene, and ethylbenzene. Room-temperature measurements of neat hydrocarbon vapor were made with an instrument resolution of both 0.1 and 1 cm-1 (FWHM) to confirm that the high-resolution setting was required only to resolve the propene absorption spectrum while the spectra of the other hydrocarbons could be resolved with 1 cm-1 resolution. High-resolution (0.1 cm-1), room-temperature measurements of neat hydrocarbons were made at low pressure (˜1 Torr, 133 Pa) and compared to measurements of hydrocarbon/N2 mixtures at atmospheric pressure to verify that no pressure broadening could be observed over this pressure range. The temperature was varied between 25 and 500 °C for atmospheric-pressure measurements of hydrocarbon/N2 mixtures (Xhydrocarbon˜0.06 1.5%) and it was found that the absorption cross section shows simple temperature-dependent behavior for a fixed wavelength over this temperature range. Comparisons with previous FTIR data over a limited temperature range and with high-resolution laser absorption data over a wide temperature range show good agreement.

  16. Temperature dependence of the vibrational spectra of acetanilide: Davydov solitons or Fermi coupling?

    NASA Astrophysics Data System (ADS)

    Johnston, Clifford T.; Swanson, Basil I.

    1985-03-01

    The unusual temperature dependence of the amide-I region in the IR spectrum of acetanilide (C 6H 5NHCOCH 3) has recently been attributed to a self-trapped Davydov-like soliton. The temperature dependence of the single-crystal Raman scattering, from acetanilide and its ND and 13CO substituted analogs in the phonon and internal mode regions has now been studied. The behavior of the amide-I region in the Raman spectra of the normal isotopic species is similar to that observed earlier in infrared studies. However, on the basis of results obtained from the ND and 13CO substituted species the unusual temperature dependence in the 1650 cm -1 region has been attributed to Fermi coupling of the amide-I fundamental and a combination band involving the in-plane NH deformation and a low-frequency torsional mode. As temperature is lowered, the strong blue-shift of the torsional mode results in a commensurate blue-shift in the combination level thereby increasing the Fermi coupling. Temperature tuning of the Fermi coupling results in the anomalous intensity changes observed in the IR and Raman spectra of the amide-I region for the normal isotopic species.

  17. Finite-temperature time-dependent variation with multiple Davydov states

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Fujihashi, Yuta; Chen, Lipeng; Zhao, Yang

    2017-03-01

    The Dirac-Frenkel time-dependent variational approach with Davydov Ansätze is a sophisticated, yet efficient technique to obtain an accurate solution to many-body Schrödinger equations for energy and charge transfer dynamics in molecular aggregates and light-harvesting complexes. We extend this variational approach to finite temperature dynamics of the spin-boson model by adopting a Monte Carlo importance sampling method. In order to demonstrate the applicability of this approach, we compare calculated real-time quantum dynamics of the spin-boson model with that from numerically exact iterative quasiadiabatic propagator path integral (QUAPI) technique. The comparison shows that our variational approach with the single Davydov Ansätze is in excellent agreement with the QUAPI method at high temperatures, while the two differ at low temperatures. Accuracy in dynamics calculations employing a multitude of Davydov trial states is found to improve substantially over the single Davydov Ansatz, especially at low temperatures. At a moderate computational cost, our variational approach with the multiple Davydov Ansatz is shown to provide accurate spin-boson dynamics over a wide range of temperatures and bath spectral densities.

  18. The role of phosphodiesterase activity on the temperature-dependent responses of calf cardiac vein.

    PubMed

    Nurullahoglu, Z U

    2013-01-01

    To evaluate the role of phosphodiesterase (PDE) activity in the cooling (to 28 °C) and warming (41 °C)-induced effects of carbachol on calf cardiac vein. Rings obtained from calf hearts were suspended in organ baths containing 25 ml of Krebs-Henseleit solution, maintained at 37 °C, continuously gassed with 95%O2-5%CO2. At the end of the resting period the preparations were contracted with carbachol (10-9-3x10-4M), at 37 °C. The same protocol was repeated at 28 °C and 41 °C after the preparations were allowed to equilibrate at this temperature for 60 min. In order to analyze the role of PDE activity in the cooling-and warming-induced vascular response, carbachol (10-9-3x10-4M) was applied in the presence of cilostazol (10-6 M), IBMX (10-6 M) and rolipram (10-6 M), respectively. The sensitivity of carbachol was significantly lower during cooling, and higher during warming. Cooling to 28 and warming to 41 °C, after treatment with IBMX, cilostazol or rolipram, significantly decreased the sensitivity to carbachol (p<0.05). The results of the present study suggest that PDE activity plays an essential role in cooling-and warming-induced changes of calf cardiac vein treated with carbachol (Tab. 1, Fig. 2, Ref. 34). Text in PDF www.elis.sk.

  19. Temperature dependence of underdense nanostructure formation in tungsten under helium irradiation

    DOE PAGES

    Valles, G.; Martin-Bragado, I.; Nordlund, K.; ...

    2017-04-19

    Recently, tungsten has been found to form a highly underdense nanostructured morphology (“W fuzz”) when bombarded by an intense flux of He ions, but only in the temperature window 900–2000 K. Furthermore, using object kinetic Monte Carlo simulations (pseudo-3D simulations) parameterized from first principles, we show that this temperature dependence can be understood based on He and point defect clustering, cluster growth, and detrapping reactions. At low temperatures (<900 K), fuzz does not grow because almost all He is trapped in very small He-vacancy clusters. At high temperatures (>2300 K), all He is detrapped from clusters, preventing the formation ofmore » the large clusters that lead to fuzz growth in the intermediate temperature range.« less

  20. Analyzing the Coordinated Gene Network Underlying Temperature-Dependent Sex Determination in Reptiles

    PubMed Central

    Shoemaker, Christina M.; Crews, David

    2009-01-01

    Although gonadogenesis has been extensively studied in vertebrates with genetic sex determination, investigations at the molecular level in nontraditional model organisms with temperature-dependent sex determination are a relatively new area of research. Results show that while the key players of the molecular network underlying gonad development appear to be retained, their functions range from conserved to novel roles. In this review, we summarize experiments investigating candidate molecular players underlying temperature-dependent sex determination. We discuss some of the problems encountered unraveling this network, pose potential solutions, and suggest rewarding future directions of research. PMID:19022389

  1. Assessing the Temperature Dependence of Narrow-Band Raman Water Vapor Lidar Measurements: A Practical Approach

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Venable, Demetrius D.; Walker, Monique; Cardirola, Martin; Sakai, Tetsu; Veselovskii, Igor

    2013-01-01

    Narrow-band detection of the Raman water vapor spectrum using the lidar technique introduces a concern over the temperature dependence of the Raman spectrum. Various groups have addressed this issue either by trying to minimize the temperature dependence to the point where it can be ignored or by correcting for whatever degree of temperature dependence exists. The traditional technique for performing either of these entails accurately measuring both the laser output wavelength and the water vapor spectral passband with combined uncertainty of approximately 0.01 nm. However, uncertainty in interference filter center wavelengths and laser output wavelengths can be this large or larger. These combined uncertainties translate into uncertainties in the magnitude of the temperature dependence of the Raman lidar water vapor measurement of 3% or more. We present here an alternate approach for accurately determining the temperature dependence of the Raman lidar water vapor measurement. This alternate approach entails acquiring sequential atmospheric profiles using the lidar while scanning the channel passband across portions of the Raman water vapor Q-branch. This scanning is accomplished either by tilt-tuning an interference filter or by scanning the output of a spectrometer. Through this process a peak in the transmitted intensity can be discerned in a manner that defines the spectral location of the channel passband with respect to the laser output wavelength to much higher accuracy than that achieved with standard laboratory techniques. Given the peak of the water vapor signal intensity curve, determined using the techniques described here, and an approximate knowledge of atmospheric temperature, the temperature dependence of a given Raman lidar profile can be determined with accuracy of 0.5% or better. A Mathematica notebook that demonstrates the calculations used here is available from the lead author.

  2. Determination of the Temperature Dependence of Heat Capacity for Some Molecular Crystals of Nitro Compounds

    NASA Astrophysics Data System (ADS)

    Kovalev, Yu. M.; Kuropatenko, V. F.

    2018-05-01

    An analysis of the existing approximations used for describing the dependence of heat capacity at a constant volume on the temperature of a molecular crystal has been carried out. It is shown that the considered Debye and Einstein approximations do not enable one to adequately describe the dependence of heat capacity at a constant volume on the temperature of the molecular crystals of nitro compounds. This inference requires the development of special approximations that would describe both low-frequency and high-frequency parts of the vibrational spectra of molecular crystals. This work presents a universal dependence allowing one to describe the dependence of heat capacity at a constant volume on temperature for a number of molecular crystals of nitro compounds.

  3. Temperature Dependence of Raman-Active In-Plane E2g Phonons in Layered Graphene and h-BN Flakes

    NASA Astrophysics Data System (ADS)

    Li, Xiaoli; Liu, Jian; Ding, Kai; Zhao, Xiaohui; Li, Shuai; Zhou, Wenguang; Liang, Baolai

    2018-01-01

    Thermal properties of sp2 systems such as graphene and hexagonal boron nitride (h-BN) have attracted significant attention because of both systems being excellent thermal conductors. This research reports micro-Raman measurements on the in-plane E2g optical phonon peaks ( 1580 cm-1 in graphene layers and 1362 cm-1 in h-BN layers) as a function of temperature from - 194 to 200 °C. The h-BN flakes show higher sensitivity to temperature-dependent frequency shifts and broadenings than graphene flakes. Moreover, the thermal effect in the c direction on phonon frequency in h-BN layers is more sensitive than that in graphene layers but on phonon broadening in h-BN layers is similar as that in graphene layers. These results are very useful to understand the thermal properties and related physical mechanisms in h-BN and graphene flakes for applications of thermal devices.

  4. Ultrawideband temperature-dependent dielectric properties of animal liver tissue in the microwave frequency range.

    PubMed

    Lazebnik, Mariya; Converse, Mark C; Booske, John H; Hagness, Susan C

    2006-04-07

    The development of ultrawideband (UWB) microwave diagnostic and therapeutic technologies, such as UWB microwave breast cancer detection and hyperthermia treatment, is facilitated by accurate knowledge of the temperature- and frequency-dependent dielectric properties of biological tissues. To this end, we characterize the temperature-dependent dielectric properties of a representative tissue type-animal liver-from 0.5 to 20 GHz. Since discrete-frequency linear temperature coefficients are impractical and inappropriate for applications spanning wide frequency and temperature ranges, we propose a novel and compact data representation technique. A single-pole Cole-Cole model is used to fit the dielectric properties data as a function of frequency, and a second-order polynomial is used to fit the Cole-Cole parameters as a function of temperature. This approach permits rapid estimation of tissue dielectric properties at any temperature and frequency.

  5. Temperature-dependent resetting of the molecular circadian oscillator in Drosophila

    PubMed Central

    Goda, Tadahiro; Sharp, Brandi; Wijnen, Herman

    2014-01-01

    Circadian clocks responsible for daily time keeping in a wide range of organisms synchronize to daily temperature cycles via pathways that remain poorly understood. To address this problem from the perspective of the molecular oscillator, we monitored temperature-dependent resetting of four of its core components in the fruitfly Drosophila melanogaster: the transcripts and proteins for the clock genes period (per) and timeless (tim). The molecular circadian cycle in adult heads exhibited parallel responses to temperature-mediated resetting at the levels of per transcript, tim transcript and TIM protein. Early phase adjustment specific to per transcript rhythms was explained by clock-independent temperature-driven transcription of per. The cold-induced expression of Drosophila per contrasts with the previously reported heat-induced regulation of mammalian Period 2. An altered and more readily re-entrainable temperature-synchronized circadian oscillator that featured temperature-driven per transcript rhythms and phase-shifted TIM and PER protein rhythms was found for flies of the ‘Tim 4’ genotype, which lacked daily tim transcript oscillations but maintained post-transcriptional temperature entrainment of tim expression. The accelerated molecular and behavioural temperature entrainment observed for Tim 4 flies indicates that clock-controlled tim expression constrains the rate of temperature cycle-mediated circadian resetting. PMID:25165772

  6. The temperature-dependent diffusion coefficient of helium in zirconium carbide studied with first-principles calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiao-Yong; Lu, Yong; Zhang, Ping, E-mail: zhang-ping@iapcm.ac.cn

    2015-04-28

    The temperature-dependent diffusion coefficient of interstitial helium in zirconium carbide (ZrC) matrix is calculated based on the transition state theory. The microscopic parameters in the activation energy and prefactor are obtained from first-principles total energy and phonon frequency calculations including the all atoms. The obtained activation energy is 0.78 eV, consistent with experimental value. Besides, we evaluated the influence of C and Zr vacancies as the perturbation on helium diffusion, and found the C vacancy seems to confine the mobility of helium and the Zr vacancy promotes helium diffusion in some extent. These results provide a good reference to understand themore » behavior of helium in ZrC matrix.« less

  7. Challenges in Modelling of Lightning-Induced Delamination; Effect of Temperature-Dependent Interfacial Properties

    NASA Technical Reports Server (NTRS)

    Naghipour, P.; Pineda, E. J.; Arnold, S.

    2014-01-01

    Lightning is a major cause of damage in laminated composite aerospace structures during flight. Due to the dielectric nature of Carbon fiber reinforced polymers (CFRPs), the high energy induced by lightning strike transforms into extreme, localized surface temperature accompanied with a high-pressure shockwave resulting in extensive damage. It is crucial to develop a numerical tool capable of predicting the damage induced from a lightning strike to supplement extremely expensive lightning experiments. Delamination is one of the most significant failure modes resulting from a lightning strike. It can be extended well beyond the visible damage zone, and requires sophisticated techniques and equipment to detect. A popular technique used to model delamination is the cohesive zone approach. Since the loading induced from a lightning strike event is assumed to consist of extreme localized heating, the cohesive zone formulation should additionally account for temperature effects. However, the sensitivity to this dependency remains unknown. Therefore, the major focus point of this work is to investigate the importance of this dependency via defining various temperature dependency profiles for the cohesive zone properties, and analyzing the corresponding delamination area. Thus, a detailed numerical model consisting of multidirectional composite plies with temperature-dependent cohesive elements in between is subjected to lightning (excessive amount of heat and pressure) and delamination/damage expansion is studied under specified conditions.

  8. Temperature-Dependent Nanofabrication on Silicon by Friction-Induced Selective Etching.

    PubMed

    Jin, Chenning; Yu, Bingjun; Xiao, Chen; Chen, Lei; Qian, Linmao

    2016-12-01

    Friction-induced selective etching provides a convenient and practical way for fabricating protrusive nanostructures. A further understanding of this method is very important for establishing a controllable nanofabrication process. In this study, the effect of etching temperature on the formation of protrusive hillocks and surface properties of the etched silicon surface was investigated. It is found that the height of the hillock produced by selective etching increases with the etching temperature before the collapse of the hillock. The temperature-dependent selective etching rate can be fitted well by the Arrhenius equation. The etching at higher temperature can cause rougher silicon surface with a little lower elastic modulus and hardness. The contact angle of the etched silicon surface decreases with the etching temperature. It is also noted that no obvious contamination can be detected on silicon surface after etching at different temperatures. As a result, the optimized condition for the selective etching was addressed. The present study provides a new insight into the control and application of friction-induced selective nanofabrication.

  9. Composition-dependent damping and relaxation dynamics in miscible polymer blends above glass transition temperature by anelastic spectroscopy

    NASA Astrophysics Data System (ADS)

    Wu, Xuebang; Shang, Shuying; Xu, Qiaoling; Liu, Changsong; Zhu, Zhengang; Zhang, Guangzhao

    2008-07-01

    Anelastic spectroscopy is used to study the composition dependence of the damping and molecular relaxation dynamics in miscible poly(ethylene oxide) (PEO)/poly(methyl methacrylate) (PMMA) blends above the glass transition temperature. The ultrahigh damping peak of the relaxation type is shown to be associated with the liquid-liquid transition of PMMA. A higher PEO concentration leads to a higher damping performance and a lower transition temperature. The decreasing activation energy with increasing PEO concentration indicates a drastic increase in molecular mobility. Moreover, the relaxation time reveals a transition from the Vogel-Fulcher-Tamman behavior to the Arrhenius behavior due to the intermolecular guest-host interactions.

  10. Temperature dependence of the formation of sulfate aerosols in the stratosphere

    NASA Technical Reports Server (NTRS)

    Yue, G. K.; Deepak, A.

    1982-01-01

    Classical nucleation theory is used in calculations of the temperature dependence of the characteristics and nucleation rates of sulfate aerosols in the binary H2SO4-H2O vapor mixture, in order to assess the influence of temperature on the formation of sulfate aerosols in the stratosphere, and to explore the possibility of new particle formation through homogeneous nucleation processes at regions where temperature is as low as -75 C, rather than the often-assumed -50 or -55 C. Calculation results indicate that the number of particles formed at a lower temperature is larger by several orders of magnitude than at higher temperatures, when water and sulfuric acid vapor concentrations are kept constant, and that large quantities of ultrafine particles which cannot be detected by conventional methods may exist at low-temperature stratospheric regions.

  11. Shock temperature dependent rate law for plastic bonded explosives

    NASA Astrophysics Data System (ADS)

    Aslam, Tariq D.

    2018-04-01

    A reactive flow model for the tri-amino-tri-nitro-benzene (TATB) based plastic bonded explosive PBX 9502 (95% TATB, 5% polymeric binder Kel-F 800) is presented. This newly devised model is based primarily on the shock temperature of the material, along with local pressure, and accurately models a broader range of detonation and initiation scenarios. Specifically, sensitivity changes to the initial explosive temperature are accounted for naturally and with a single set of parameters. The equation of state forms for the reactants and products, as well as the thermodynamic closure of pressure and temperature equilibration, are carried over from the Wescott-Stewart-Davis (WSD) model [Wescott et al., J. Appl. Phys. 98, 053514 (2005) and "Modeling detonation diffraction and dead zones in PBX-9502," in Proceedings of the Thirteenth International Detonation Symposium (2006)]. This newly devised model, with Arrhenius state dependence on the shock temperature, based on the WSD equation of states, is denoted by AWSD. Modifying an existing implementation of the WSD model to the AWSD model in a hydrocode is a rather straightforward procedure.

  12. Monte Carlo method for photon heating using temperature-dependent optical properties.

    PubMed

    Slade, Adam Broadbent; Aguilar, Guillermo

    2015-02-01

    The Monte Carlo method for photon transport is often used to predict the volumetric heating that an optical source will induce inside a tissue or material. This method relies on constant (with respect to temperature) optical properties, specifically the coefficients of scattering and absorption. In reality, optical coefficients are typically temperature-dependent, leading to error in simulation results. The purpose of this study is to develop a method that can incorporate variable properties and accurately simulate systems where the temperature will greatly vary, such as in the case of laser-thawing of frozen tissues. A numerical simulation was developed that utilizes the Monte Carlo method for photon transport to simulate the thermal response of a system that allows temperature-dependent optical and thermal properties. This was done by combining traditional Monte Carlo photon transport with a heat transfer simulation to provide a feedback loop that selects local properties based on current temperatures, for each moment in time. Additionally, photon steps are segmented to accurately obtain path lengths within a homogenous (but not isothermal) material. Validation of the simulation was done using comparisons to established Monte Carlo simulations using constant properties, and a comparison to the Beer-Lambert law for temperature-variable properties. The simulation is able to accurately predict the thermal response of a system whose properties can vary with temperature. The difference in results between variable-property and constant property methods for the representative system of laser-heated silicon can become larger than 100K. This simulation will return more accurate results of optical irradiation absorption in a material which undergoes a large change in temperature. This increased accuracy in simulated results leads to better thermal predictions in living tissues and can provide enhanced planning and improved experimental and procedural outcomes. Copyright

  13. The instantaneous rate dependence in low temperature laboratory rock friction and rock deformation experiments

    USGS Publications Warehouse

    Beeler, N.M.; Tullis, T.E.; Kronenberg, A.K.; Reinen, L.A.

    2007-01-01

    Earthquake occurrence probabilities that account for stress transfer and time-dependent failure depend on the product of the effective normal stress and a lab-derived dimensionless coefficient a. This coefficient describes the instantaneous dependence of fault strength on deformation rate, and determines the duration of precursory slip. Although an instantaneous rate dependence is observed for fracture, friction, crack growth, and low temperature plasticity in laboratory experiments, the physical origin of this effect during earthquake faulting is obscure. We examine this rate dependence in laboratory experiments on different rock types using a normalization scheme modified from one proposed by Tullis and Weeks [1987]. We compare the instantaneous rate dependence in rock friction with rate dependence measurements from higher temperature dislocation glide experiments. The same normalization scheme is used to compare rate dependence in friction to rock fracture and to low-temperature crack growth tests. For particular weak phyllosilicate minerals, the instantaneous friction rate dependence is consistent with dislocation glide. In intact rock failure tests, for each rock type considered, the instantaneous rate dependence is the same size as for friction, suggesting a common physical origin. During subcritical crack growth in strong quartzofeldspathic and carbonate rock where glide is not possible, the instantaneous rate dependence measured during failure or creep tests at high stress has long been thought to be due to crack growth; however, direct comparison between crack growth and friction tests shows poor agreement. The crack growth rate dependence appears to be higher than the rate dependence of friction and fracture by a factor of two to three for all rock types considered. Copyright 2007 by the American Geophysical Union.

  14. Temperature dependence of emission measure in solar X-ray plasmas. 1: Non-flaring active regions

    NASA Technical Reports Server (NTRS)

    Phillips, K. J. H.

    1974-01-01

    X-ray and ultraviolet line emission from hot, optically thin material forming coronal active regions on the sun may be described in terms of an emission measure distribution function, Phi (T). A relationship is developed between line flux and Phi (T), a theory which assumes that the electron density is a single-valued function of temperature. The sources of error involved in deriving Phi (T) from a set of line fluxes are examined in some detail. These include errors in atomic data (collisional excitation rates, assessment of other mechanisms for populating excited states of transitions, element abundances, ion concentrations, oscillator strengths) and errors in observed line fluxes arising from poorly - known instrumental responses. Two previous analyses are discussed in which Phi (T) for a non-flaring active region is derived. A least squares method of Batstone uses X-ray data of low statistical significance, a fact which appears to influence the results considerably. Two methods for finding Phi (T) ab initio are developed. The coefficients are evaluated by least squares. These two methods should have application not only to active-region plasmas, but also to hot, flare-produced plasmas.

  15. Temperature dependent lattice constant of InSb above room temperature

    NASA Astrophysics Data System (ADS)

    Breivik, Magnus; Nilsen, Tron Arne; Fimland, Bjørn-Ove

    2013-10-01

    Using temperature dependent X-ray diffraction on two InSb single crystalline substrates, the bulk lattice constant of InSb was determined between 32 and 325 °C. A polynomial function was fitted to the data: a(T)=6.4791+3.28×10-5×T+1.02×10-8×T2 Å (T in °C), which gives slightly higher values than previously published (which go up to 62 °C). From the fit, the thermal expansion of InSb was calculated to be α(T)=5.062×10-6+3.15×10-9×T K-1 (T in °C). We found that the thermal expansion coefficient is higher than previously published values above 100 °C (more than 10% higher at 325 °C).

  16. Time/Temperature Dependent Tensile Strength of SiC and Al2O3-Based Fibers

    NASA Technical Reports Server (NTRS)

    Yun, Hee Mann; DiCarlo, James A.

    1997-01-01

    In order to understand and model the thermomechanical behavior of fiber-reinforced composites, stress-rupture, fast-fracture, and warm-up rupture studies were conducted on various advanced SiC and Al2O3-based fibers in the,temperature range from 20 to 1400 C in air as well as in inert environments. The measured stress-rupture, fast fracture, and warm-up rupture strengths were correlated into a single master time/temperature-dependent strength plot for each fiber type using thermal activation and slow crack growth theories. It is shown that these plots are useful for comparing and selecting fibers for CMC and MMC reinforcement and that, in comparison to stress rupture tests, the fast-fracture and warm-up tests can be used for rapid generation of these plots.

  17. Temperature dependence of Er³⁺ ionoluminescence and photoluminescence in Gd₂O₃:Bi nanopowder.

    PubMed

    Boruc, Zuzanna; Gawlik, Grzegorz; Fetliński, Bartosz; Kaczkan, Marcin; Malinowski, Michał

    2014-06-01

    Ionoluminescence (IL) and photoluminescence (PL) of trivalent erbium ions (Er(3+)) in Gd2O3 nanopowder host activated with Bi(3+) ions has been studied in order to establish the link between changes in luminescent spectra and temperature of the sample material. IL measurements have been performed with H2 (+) 100 keV ion beam bombarding the target material for a few seconds, while PL spectra have been collected for temperatures ranging from 20 °C to 700 °C. The PL data was used as a reference in determining the temperature corresponding to IL spectra. The collected data enabled the definition of empirical formula based on the Boltzmann distribution, which allows the temperature to be determined with a maximum sensitivity of 9.7 × 10(-3) °C(-1). The analysis of the Er(3+) energy level structure in terms of tendency of the system to stay in thermal equilibrium, explained different behaviors of the line intensities. This work led to the conclusion that temperature changes during ion excitation can be easily defined with separately collected PL spectra. The final result, which is empirical formula describing dependence of fluorescence intensity ratio on temperature, raises the idea of an application of method in temperature control, during processes like ion implantation and some nuclear applications.

  18. Temperature dependent recombination dynamics in InP/ZnS colloidal nanocrystals

    NASA Astrophysics Data System (ADS)

    Shirazi, R.; Kopylov, O.; Kovacs, A.; Kardynał, B. E.

    2012-08-01

    In this letter, we investigate exciton recombination in InP/ZnS core-shell colloidal nanocrystals over a wide temperature range. Over the entire range between room temperature and liquid helium temperature, multi-exponential exciton decay curves are observed and well explained by the presence of bright and dark exciton states, as well as defect states. Two different types of defect are present: one located at the core-shell interface and the other on the surface of the nanocrystal. Based on the temperature dependent contributions of all four states to the total photoluminescence signal, we estimate that the four states are distributed within a 20 meV energy band in nanocrystals that emit at 1.82 eV.

  19. Time dependent and temperature dependent properties of the forward voltage characteristic of InGaN high power LEDs

    NASA Astrophysics Data System (ADS)

    Fulmek, P. L.; Haumer, P.; Wenzl, F. P.; Nemitz, W.; Nicolics, J.

    2017-03-01

    Estimating the junction temperature and its dynamic behavior in dependence of various operating conditions is an important issue, since these properties influence the optical characteristics as well as the aging processes of a light-emitting diode (LED). Particularly for high-power LEDs and pulsed operation, the dynamic behavior and the resulting thermal cycles are of interest. The forward voltage method relies on the existence of a time-independent unique triple of forward-voltage, forward-current, and junction temperature. These three figures should as well uniquely define the optical output power and spectrum, as well as the loss power of the LED, which is responsible for an increase of the junction temperature. From transient FEM-simulations one may expect an increase of the temperature of the active semiconductor layer of some 1/10 K within the first 10 μs. Most of the well-established techniques for junction temperature measurement via forward voltage method evaluate the measurement data several dozens of microseconds after switching on or switching off and estimate the junction temperature by extrapolation towards the time of switching. In contrast, the authors developed a measurement procedure with the focus on the first microseconds after switching. Besides a fast data acquisition system, a precise control of the switching process is required, i.e. a precisely defined current pulse amplitude with fast rise-time and negligible transient by-effects. We start with a short description of the measurement setup and the newly developed control algorithm for the generation of short current pulses. The thermal characterization of the LED chip during the measurement procedures is accomplished by an IR thermography system and transient finite element simulations. The same experimental setup is used to investigate the optical properties of the LED in an Ulbricht-sphere. Our experiments are performed on InGaN LED chips mounted on an Al based insulated metal substrate

  20. Temperature and strain rate dependent behavior of polymer separator for Li-ion batteries

    DOE PAGES

    Kalnaus, Sergiy; Wang, Yanli; Li, Jianlin; ...

    2018-03-07

    Safe performance of advanced Li-ion batteries relies on integrity of the separator membrane which prevents contact between electrodes of opposite polarity. Current work provides detailed study of mechanical behavior of such membrane. Temperature and strain rate sensitivity of the triple-layer polypropylene (PP)/polyethylene (PE)/polypropylene (PP) porous separator for Li-ion batteries was studied experimentally under controlled temperatures of up to 120° (393 K), and strain rates (from 1∙10-4s-1 to 0.1s-1). Digital image correlation was used to study strain localization in separator under load. The results show significant dependence of mechanical properties on temperature, with the yield stress decreasing by 30% and elasticmore » modulus decreasing by a factor of two when the temperature is increased from 20 °C to 50 °C. The strain rate strengthening also decreased with higher temperatures while the temperature softening remained independent of the applied strain rate. Application of temperature creates long lasting changes in mechanical behavior of separator as was revealed by performing experiments after the annealing. Such delayed effect of temperature application appears to have directional dependence. The results demonstrate complex behavior of polymer separator which needs to be considered in proper safety assessments of Li-ion batteries.« less

  1. Temperature and strain rate dependent behavior of polymer separator for Li-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalnaus, Sergiy; Wang, Yanli; Li, Jianlin

    Safe performance of advanced Li-ion batteries relies on integrity of the separator membrane which prevents contact between electrodes of opposite polarity. Current work provides detailed study of mechanical behavior of such membrane. Temperature and strain rate sensitivity of the triple-layer polypropylene (PP)/polyethylene (PE)/polypropylene (PP) porous separator for Li-ion batteries was studied experimentally under controlled temperatures of up to 120° (393 K), and strain rates (from 1∙10-4s-1 to 0.1s-1). Digital image correlation was used to study strain localization in separator under load. The results show significant dependence of mechanical properties on temperature, with the yield stress decreasing by 30% and elasticmore » modulus decreasing by a factor of two when the temperature is increased from 20 °C to 50 °C. The strain rate strengthening also decreased with higher temperatures while the temperature softening remained independent of the applied strain rate. Application of temperature creates long lasting changes in mechanical behavior of separator as was revealed by performing experiments after the annealing. Such delayed effect of temperature application appears to have directional dependence. The results demonstrate complex behavior of polymer separator which needs to be considered in proper safety assessments of Li-ion batteries.« less

  2. Temperature dependent nonlinear metal matrix laminae behavior

    NASA Technical Reports Server (NTRS)

    Barrett, D. J.; Buesking, K. W.

    1986-01-01

    An analytical method is described for computing the nonlinear thermal and mechanical response of laminated plates. The material model focuses upon the behavior of metal matrix materials by relating the nonlinear composite response to plasticity effects in the matrix. The foundation of the analysis is the unidirectional material model which is used to compute the instantaneous properties of the lamina based upon the properties of the fibers and matrix. The unidirectional model assumes that the fibers properties are constant with temperature and assumes that the matrix can be modelled as a temperature dependent, bilinear, kinematically hardening material. An incremental approach is used to compute average stresses in the fibers and matrix caused by arbitrary mechanical and thermal loads. The layer model is incorporated in an incremental laminated plate theory to compute the nonlinear response of laminated metal matrix composites of general orientation and stacking sequence. The report includes comparisons of the method with other analytical approaches and compares theoretical calculations with measured experimental material behavior. A section is included which describes the limitations of the material model.

  3. Effects of stress ratio on the temperature-dependent high-cycle fatigue properties of alloy steels

    NASA Astrophysics Data System (ADS)

    Lü, Zhi-yang; Wan, Ao-shuang; Xiong, Jun-jiang; Li, Kuang; Liu, Jian-zhong

    2016-12-01

    This paper addresses the effects of stress ratio on the temperature-dependent high-cycle fatigue (HCF) properties of alloy steels 2CrMo and 9CrCo, which suffer from substantial vibrational loading at small stress amplitude, high stress ratio, and high frequency in the high-temperature environments in which they function as blade and rotor spindle materials in advanced gas or steam turbine engines. Fatigue tests were performed on alloy steels 2CrMo and 9CrCo subjected to constant-amplitude loading at four stress ratios and at four and three temperatures, respectively, to determine their temperature-dependent HCF properties. The interaction mechanisms between high temperature and stress ratio were deduced and compared with each other on the basis of the results of fractographic analysis. A phenomenological model was developed to evaluate the effects of stress ratio on the temperature-dependent HCF properties of alloy steels 2CrMo and 9CrCo. Good correlation was achieved between the predictions and actual experiments, demonstrating the practical and effective use of the proposed method.

  4. Additional Effects of Silver Nanoparticles on Bactericidal Efficiency Depend on Calcination Temperature and Dip-Coating Speed▿

    PubMed Central

    Le, Nhung Thi Tuyet; Nagata, Hirofumi; Aihara, Mutsumi; Takahashi, Akira; Okamoto, Toshihiro; Shimohata, Takaaki; Mawatari, Kazuaki; Kinouchi, Yhosuke; Akutagawa, Masatake; Haraguchi, Masanobu

    2011-01-01

    There is an increasing interest in the application of photocatalytic properties for disinfection of surfaces, air, and water. Titanium dioxide is widely used as a photocatalyst, and the addition of silver reportedly enhances its bactericidal action. However, the synergy of silver nanoparticles and TiO2 is not well understood. The photocatalytic elimination of Bacillus atrophaeus was examined under different calcination temperatures, dip-coating speeds, and ratios of TiO2, SiO2, and Ag to identify optimal production conditions for the production of TiO2- and/or TiO2/Ag-coated glass for surface disinfection. Photocatalytic disinfection of pure TiO2 or TiO2 plus Ag nanoparticles was dependent primarily on the calcination temperature. The antibacterial activity of TiO2 films was optimal with a high dip-coating speed and high calcination temperature (600°C). Maximal bacterial inactivation using TiO2/Ag-coated glass was also observed following high-speed dip coating but with a low calcination temperature (250°C). Scanning electron microscopy (SEM) showed that the Ag nanoparticles combined together at a high calcination temperature, leading to decreased antibacterial activity of TiO2/Ag films due to a smaller surface area of Ag nanoparticles. The presence of Ag enhanced the photocatalytic inactivation rate of TiO2, producing a more pronounced effect with increasing levels of catalyst loading. PMID:21724887

  5. Temperature-Dependent Modeling and Crosstalk Analysis in Mixed Carbon Nanotube Bundle Interconnects

    NASA Astrophysics Data System (ADS)

    Rai, Mayank Kumar; Garg, Harsh; Kaushik, B. K.

    2017-08-01

    The temperature-dependent circuit modeling and performance analysis in terms of crosstalk in capacitively coupled mixed carbon nanotube bundle (MCB) interconnects, at the far end of the victim line, have been analyzed with four different structures of MCBs (MCB-1, MCB-2, MCB-3 and MCB-4) constituted under case 1 and case 2 at the 22-nm technology node. The impact of tunneling and intershell coupling between adjacent shells on temperature-dependent equivalent circuit parameters of a multi-walled carbon nanotube bundle are also critically analyzed and employed for different MCB structures under case 1. A similar analysis is performed for copper interconnects and comparisons are made between results obtained through these analyses over temperatures ranging from 300 K to 500 K. The simulation program with integrated circuit emphasis simulation results reveals that, compared with all MCB structures under case 1 and case 2, with rise in temperature from 300 K to 500 K, crosstalk-induced noise voltage levels at the far end of the victim line are found to be significantly large in copper. It is also observed that due to the dominance of larger temperature-dependent resistance and ground capacitance in case 1, the MCB-2 is of lower crosstalk-induced noise voltage levels than other structures of MCBs. On the other hand, the MCB-1 has smaller time duration of victim output. Results further reveal that, compared with case 2 of MCB, with rise in temperatures, the victim line gets less prone to crosstalk-induced noise in MCB interconnects constituted under case 1, due to tunneling effects and intershell coupling between adjacent shells. Based on these comparative results, a promising MCB structure (MCB-2) has been proposed among other structures under the consideration of tunneling effects and intershell coupling (case 1).

  6. Voltage Dependence of a Neuromodulator-Activated Ionic Current.

    PubMed

    Gray, Michael; Golowasch, Jorge

    2016-01-01

    The neuromodulatory inward current (IMI) generated by crab Cancer borealis stomatogastric ganglion neurons is an inward current whose voltage dependence has been shown to be crucial in the activation of oscillatory activity of the pyloric network of this system. It has been previously shown that IMI loses its voltage dependence in conditions of low extracellular calcium, but that this effect appears to be regulated by intracellular calmodulin. Voltage dependence is only rarely regulated by intracellular signaling mechanisms. Here we address the hypothesis that the voltage dependence of IMI is mediated by intracellular signaling pathways activated by extracellular calcium. We demonstrate that calmodulin inhibitors and a ryanodine antagonist can reduce IMI voltage dependence in normal Ca(2+), but that, in conditions of low Ca(2+), calmodulin activators do not restore IMI voltage dependence. Further, we show evidence that CaMKII alters IMI voltage dependence. These results suggest that calmodulin is necessary but not sufficient for IMI voltage dependence. We therefore hypothesize that the Ca(2+)/calmodulin requirement for IMI voltage dependence is due to an active sensing of extracellular calcium by a GPCR family calcium-sensing receptor (CaSR) and that the reduction in IMI voltage dependence by a calmodulin inhibitor is due to CaSR endocytosis. Supporting this, preincubation with an endocytosis inhibitor prevented W7 (N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride)-induced loss of IMI voltage dependence, and a CaSR antagonist reduced IMI voltage dependence. Additionally, myosin light chain kinase, which is known to act downstream of the CaSR, seems to play a role in regulating IMI voltage dependence. Finally, a Gβγ-subunit inhibitor also affects IMI voltage dependence, in support of the hypothesis that this process is regulated by a G-protein-coupled CaSR.

  7. Temperature-dependent thermal conductivities of one-dimensional nonlinear Klein-Gordon lattices with a soft on-site potential

    NASA Astrophysics Data System (ADS)

    Yang, Linlin; Li, Nianbei; Li, Baowen

    2014-12-01

    The temperature-dependent thermal conductivities of one-dimensional nonlinear Klein-Gordon lattices with soft on-site potential (soft-KG) are investigated systematically. Similarly to the previously studied hard-KG lattices, the existence of renormalized phonons is also confirmed in soft-KG lattices. In particular, the temperature dependence of the renormalized phonon frequency predicted by a classical field theory is verified by detailed numerical simulations. However, the thermal conductivities of soft-KG lattices exhibit the opposite trend in temperature dependence in comparison with those of hard-KG lattices. The interesting thing is that the temperature-dependent thermal conductivities of both soft- and hard-KG lattices can be interpreted in the same framework of effective phonon theory. According to the effective phonon theory, the exponents of the power-law dependence of the thermal conductivities as a function of temperature are only determined by the exponents of the soft or hard on-site potentials. These theoretical predictions are consistently verified very well by extensive numerical simulations.

  8. Re-estimating temperature-dependent consumption parameters in bioenergetics models for juvenile Chinook salmon

    USGS Publications Warehouse

    Plumb, John M.; Moffitt, Christine M.

    2015-01-01

    Researchers have cautioned against the borrowing of consumption and growth parameters from other species and life stages in bioenergetics growth models. In particular, the function that dictates temperature dependence in maximum consumption (Cmax) within the Wisconsin bioenergetics model for Chinook Salmon Oncorhynchus tshawytscha produces estimates that are lower than those measured in published laboratory feeding trials. We used published and unpublished data from laboratory feeding trials with subyearling Chinook Salmon from three stocks (Snake, Nechako, and Big Qualicum rivers) to estimate and adjust the model parameters for temperature dependence in Cmax. The data included growth measures in fish ranging from 1.5 to 7.2 g that were held at temperatures from 14°C to 26°C. Parameters for temperature dependence in Cmax were estimated based on relative differences in food consumption, and bootstrapping techniques were then used to estimate the error about the parameters. We found that at temperatures between 17°C and 25°C, the current parameter values did not match the observed data, indicating that Cmax should be shifted by about 4°C relative to the current implementation under the bioenergetics model. We conclude that the adjusted parameters for Cmax should produce more accurate predictions from the bioenergetics model for subyearling Chinook Salmon.

  9. L to H mode transition: Parametric dependencies of the temperature threshold

    DOE PAGES

    Bourdelle, C.; Chone, L.; Fedorczak, N.; ...

    2015-06-15

    The L to H mode transition occurs at a critical power which depends on various parameters, such as the magnetic field, the density, etc. Experimental evidence on various tokamaks (JET, ASDEX-Upgrade, DIII-D, Alcator C-Mod) points towards the existence of a critical temperature characterizing the transition. This criterion for the L-H transition is local and is therefore easier to be compared to theoretical approaches. In order to shed light on the mechanisms of the transition, simple theoretical ideas are used to derive a temperature threshold (T th). They are based on the stabilization of the underlying turbulence by a mean radialmore » electric field shear. The nature of the turbulence varies as the collisionality decreases, from resistive ballooning modes to ion temperature gradient and trapped electron modes. The obtained parametric dependencies of the derived T th are tested versus magnetic field, density, effective charge. Furthermore, various robust experimental observations are reproduced, in particular T th increases with magnetic field B and increases with density below the density roll-over observed on the power threshold.« less

  10. Temperature-Dependent Adhesion of Graphene Suspended on a Trench

    PubMed Central

    2015-01-01

    Graphene deposited over a trench has been studied in the context of nanomechanical resonators, where experiments indicate adhesion of the graphene sheet to the trench boundary and sidewalls leads to self-tensioning; however, this adhesion is not well understood. We use molecular dynamics to simulate graphene deposited on a trench and study how adhesion to the sidewalls depends on substrate interaction, temperature, and curvature of the edge of the trench. Over the range of parameters we study, the depth at the center of the sheet is approximately linear in substrate interaction strength and temperature but not trench width, and we explain this using a one-dimensional model for the sheet configuration. PMID:26652939

  11. Temperature dependence of the vapour tension of methyl-substituted phenol derivatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.G. Gagarin

    2007-05-15

    Notable among the coking products of coal are phenol and its derivatives, derived for the coal tar and water layer above ht tar. Given that phenol an its derivatives are mainly extracted from coal tar fractions by rectification, information on how the vapor tension of the individual components depends on the temperature is of great importance. For phenol and various substituted alkylphenols there are tabular data. In the pre-computer era these data were sufficient for the separation of phenol mixtures. However, the development and introduction of information technology in the coal industry and in the design process demands the mathematicalmore » description of the physicochemical processes of coking products. The temperature dependence of the saturated vapor pressure for organic compounds is commonly described by the Antoine equation.« less

  12. Gustatory Receptor Neurons in Manduca sexta Contain a TrpA1-Dependent Signaling Pathway that Integrates Taste and Temperature

    PubMed Central

    2013-01-01

    Temperature modulates the peripheral taste response of many animals, in part by activating transient receptor potential (Trp) cation channels. We hypothesized that temperature would also modulate peripheral taste responses in larval Manduca sexta. We recorded excitatory responses of the lateral and medial styloconic sensilla to chemical stimuli at 14, 22, and 30 °C. The excitatory responses to 5 chemical stimuli—a salt (KCl), 3 sugars (sucrose, glucose, and inositol) and an alkaloid (caffeine)—were unaffected by temperature. In contrast, the excitatory response to the aversive compound, aristolochic acid (AA), increased robustly with temperature. Next, we asked whether TrpA1 mediates the thermally dependent taste response to AA. To this end, we 1) identified a TrpA1 gene in M. sexta; 2) demonstrated expression of TrpA1 in the lateral and medial styloconic sensilla; 3) determined that 2 TrpA1 antagonists (HC-030031 and mecamylamine) inhibit the taste response to AA, but not caffeine; and then 4) established that the thermal dependence of the taste response to AA is blocked by HC-030031. Taken together, our results indicate that TrpA1 serves as a molecular integrator of taste and temperature in M. sexta. PMID:23828906

  13. Evaluation of Temperature-Dependent Effective Material Properties and Performance of a Thermoelectric Module

    NASA Astrophysics Data System (ADS)

    Chien, Heng-Chieh; Chu, En-Ting; Hsieh, Huey-Lin; Huang, Jing-Yi; Wu, Sheng-Tsai; Dai, Ming-Ji; Liu, Chun-Kai; Yao, Da-Jeng

    2013-07-01

    We devised a novel method to evaluate the temperature-dependent effective properties of a thermoelectric module (TEM): Seebeck coefficient ( S m), internal electrical resistance ( R m), and thermal conductance ( K m). After calculation, the effective properties of the module are converted to the average material properties of a p- n thermoelectric pillar pair inside the module: Seebeck coefficient ( S TE), electrical resistivity ( ρ TE), and thermal conductivity ( k TE). For a commercial thermoelectric module (Altec 1091) chosen to verify the novel method, the measured S TE has a maximum value at bath temperature of 110°C; ρ TE shows a positive linear trend dependent on the bath temperature, and k TE increases slightly with increasing bath temperature. The results show the method to have satisfactory measurement performance in terms of practicability and reliability; the data for tests near 23°C agree with published values.

  14. Density of biogas digestate depending on temperature and composition.

    PubMed

    Gerber, Mandy; Schneider, Nico

    2015-09-01

    Density is one of the most important physical properties of biogas digestate to ensure an optimal dimensioning and a precise design of biogas plant components like stirring devices, pumps and heat exchangers. In this study the density of biogas digestates with different compositions was measured using pycnometers at ambient pressure in a temperature range from 293.15 to 313.15K. The biogas digestates were taken from semi-continuous experiments, in which the marine microalga Nannochloropsis salina, corn silage and a mixture of both were used as feedstocks. The results show an increase of density with increasing total solid content and a decrease with increasing temperature. Three equations to calculate the density of biogas digestate were set up depending on temperature as well as on the total solid content, organic composition and elemental composition, respectively. All correlations show a relative deviation below 1% compared to experimental data. Copyright © 2015. Published by Elsevier Ltd.

  15. Temperature and chain length dependence of ultrafast vibrational dynamics of thiocyanate in alkylimidazolium ionic liquids: A random walk on a rugged energy landscape.

    PubMed

    Brinzer, Thomas; Garrett-Roe, Sean

    2017-11-21

    Ultrafast two-dimensional infrared spectroscopy of a thiocyanate vibrational probe (SCN - ) was used to investigate local dynamics in alkylimidazolium bis-[trifluoromethylsulfonyl]imide ionic liquids ([Im n,1 ][Tf 2 N], n = 2, 4, 6) at temperatures from 5 to 80 °C. The rate of frequency fluctuations reported by SCN - increases with increasing temperature and decreasing alkyl chain length. Temperature-dependent correlation times scale proportionally to temperature-dependent bulk viscosities of each ionic liquid studied. A multimode Brownian oscillator model demonstrates that very low frequency (<10 cm -1 ) modes primarily drive the observed spectral diffusion and that these modes broaden and blue shift on average with increasing temperature. An Arrhenius analysis shows activation barriers for local motions around the probe between 5.5 and 6.5 kcal/mol that are very similar to those for translational diffusion of ions. [Im 6,1 ][Tf 2 N] shows an unexpected decrease in activation energy compared to [Im 4,1 ][Tf 2 N] that may be related to mesoscopically ordered polar and nonpolar domains. A model of dynamics on a rugged potential energy landscape provides a unifying description of the observed Arrhenius behavior and the Brownian oscillator model of the low frequency modes.

  16. Brittle Creep of Tournemire Shale: Orientation, Temperature and Pressure Dependences

    NASA Astrophysics Data System (ADS)

    Geng, Zhi; Bonnelye, Audrey; Dick, Pierre; David, Christian; Chen, Mian; Schubnel, Alexandre

    2017-04-01

    Time and temperature dependent rock deformation has both scientific and socio-economic implications for natural hazards, the oil and gas industry and nuclear waste disposal. During the past decades, most studies on brittle creep have focused on igneous rocks and porous sedimentary rocks. To our knowledge, only few studies have been carried out on the brittle creep behavior of shale. Here, we conducted a series of creep experiments on shale specimens coming from the French Institute for Nuclear Safety (IRSN) underground research laboratory located in Tournemire, France. Conventional tri-axial experiments were carried under two different temperatures (26˚ C, 75˚ C) and confining pressures (10 MPa, 80 MPa), for three orientations (σ1 along, perpendicular and 45˚ to bedding). Following the methodology developed by Heap et al. [2008], differential stress was first increased to ˜ 60% of the short term peak strength (10-7/s, Bonnelye et al. 2016), and then in steps of 5 to 10 MPa every 24 hours until brittle failure was achieved. In these long-term experiments (approximately 10 days), stress and strains were recorded continuously, while ultrasonic acoustic velocities were recorded every 1˜15 minutes, enabling us to monitor the evolution of elastic wave speed anisotropy. Temporal evolution of anisotropy was illustrated by inverting acoustic velocities to Thomsen parameters. Finally, samples were investigated post-mortem using scanning electron microscopy. Our results seem to contradict our traditional understanding of loading rate dependent brittle failure. Indeed, the brittle creep failure stress of our Tournemire shale samples was systematically observed ˜50% higher than its short-term peak strength, with larger final axial strain accumulated. At higher temperatures, the creep failure strength of our samples was slightly reduced and deformation was characterized with faster 'steady-state' creep axial strain rates at each steps, and larger final axial strain

  17. Temperature-Dependent Short-Circuit Capability of Silicon Carbide Power MOSFETs

    DOE PAGES

    Wang, Zhiqiang; Shi, Xiaojie; Tolbert, Leon M.; ...

    2016-02-01

    Our paper presents a comprehensive short-circuit ruggedness evaluation and numerical investigation of up-to-date commercial silicon carbide (SiC) MOSFETs. The short-circuit capability of three types of commercial 1200-V SiC MOSFETs is tested under various conditions, with case temperatures from 25 to 200 degrees C and dc bus voltages from 400 to 750 V. It is found that the commercial SiC MOSFETs can withstand short-circuit current for only several microseconds with a dc bus voltage of 750 V and case temperature of 200 degrees C. Moreover, the experimental short-circuit behaviors are compared, and analyzed through numerical thermal dynamic simulation. Specifically, an electrothermalmore » model is built to estimate the device internal temperature distribution, considering the temperature-dependent thermal properties of SiC material. Based on the temperature information, a leakage current model is derived to calculate the main leakage current components (i.e., thermal, diffusion, and avalanche generation currents). Finally, numerical results show that the short-circuit failure mechanisms of SiC MOSFETs can be thermal generation current induced thermal runaway or high-temperature-related gate oxide damage.« less

  18. Temperature dependence of an abiotic glucose/air alkaline fuel cell

    NASA Astrophysics Data System (ADS)

    Orton, Dane; Scott, Daniel

    2015-11-01

    The temperature dependence of a previously developed glucose fuel cell is explored. This cell uses a small molecule dye mediator to transport oxidizable electrons from glucose to a carbon felt anode. This reaction is driven by an air breathing MnO2 cathode. This research investigates how the temperature of the system affects the power production of the fuel cell. Cell performance is observed using either methyl viologen, indigo carmine, trypan blue, or hydroquinone as a mediator at temperatures of 15, 19, 27, 32, 37, 42, and 49 °C. Cyclic voltammetry of the cell anode at the given temperatures with the individual dyes is also presented. The highest power production amongst all of the cells occurs at 32 °C. This occurs with the mediator indigo carmine or with the mediator methyl viologen. These sustained powers are 2.31 mW cm-2 and 2.39 mW cm-2, respectively. This is approximately a 350% increase for these cells compared to their power produced at room temperature. This dramatic increase is likely due to increased solubility of the mediator dye at higher temperatures.

  19. Age-related changes in core body temperature and activity in triple-transgenic Alzheimer's disease (3xTgAD) mice.

    PubMed

    Knight, Elysse M; Brown, Timothy M; Gümüsgöz, Sarah; Smith, Jennifer C M; Waters, Elizabeth J; Allan, Stuart M; Lawrence, Catherine B

    2013-01-01

    Alzheimer's disease (AD) is characterised, not only by cognitive deficits and neuropathological changes, but also by several non-cognitive behavioural symptoms that can lead to a poorer quality of life. Circadian disturbances in core body temperature and physical activity are reported in AD patients, although the cause and consequences of these changes are unknown. We therefore characterised circadian patterns of body temperature and activity in male triple transgenic AD mice (3xTgAD) and non-transgenic (Non-Tg) control mice by remote radiotelemetry. At 4 months of age, daily temperature rhythms were phase advanced and by 6 months of age an increase in mean core body temperature and amplitude of temperature rhythms were observed in 3xTgAD mice. No differences in daily activity rhythms were seen in 4- to 9-month-old 3xTgAD mice, but by 10 months of age an increase in mean daily activity and the amplitude of activity profiles for 3xTgAD mice were detected. At all ages (4-10 months), 3xTgAD mice exhibited greater food intake compared with Non-Tg mice. The changes in temperature did not appear to be solely due to increased food intake and were not cyclooxygenase dependent because the temperature rise was not abolished by chronic ibuprofen treatment. No β-amyloid (Aβ) plaques or neurofibrillary tangles were noted in the hypothalamus of 3xTgAD mice, a key area involved in temperature regulation, although these pathological features were observed in the hippocampus and amygdala of 3xTgAD mice from 10 months of age. These data demonstrate age-dependent changes in core body temperature and activity in 3xTgAD mice that are present before significant AD-related neuropathology and are analogous to those observed in AD patients. The 3xTgAD mouse might therefore be an appropriate model for studying the underlying mechanisms involved in non-cognitive behavioural changes in AD.

  20. Ab initio study of the temperature-dependent structural properties of Al(110)

    NASA Astrophysics Data System (ADS)

    Scharoch, Pawel

    2009-09-01

    Temperature-dependent structural properties of Al(110) surface have been studied ab initio employing the concepts of the potential-energy surface (PES) and the free-energy surface (FES), with the latter based on the harmonic approximation for lattice dynamics. Three effects have been identified as contributing to the temperature-dependent multilayer relaxation: the bulk-substrate thermal expansion, the effect of asymmetry of PESs, and the entropy-driven shift of the minima of FESs. Thanks to the proper choice of constraints for PESs and FESs, it was possible to find relative contribution of the three effects to variation with temperature of the first three interlayer distances. A very satisfactory agreement of the calculation results with experimental data has been obtained. Also, a reference of the theoretical data to the experimentally observed anisotropic surface melting has been noticed. A softening phonon mode has been identified which is responsible for both: the entropy-driven spectacular expansion of the second interlayer distance and the loss of the surface stability. The latter can be associated with the anisotropic surface melting. The methodology applied has been found to be complementary to previous theoretical works [N. Marzari, D. Vanderbilt, A. De Vita, and M. C. Payne, Phys. Rev. Lett. 82, 3296 (1999); S. Narasimhan, Phys. Rev. B 64, 125409 (2001)], by offering another point of view and additional insight into the relative contribution of different physical effects to the temperature-dependent structural phenomena in Al(110) surface.

  1. Angular radiation temperature simulation for time-dependent capsule drive prediction in inertial confinement fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing, Longfei; Yang, Dong; Li, Hang

    2015-02-15

    The x-ray drive on a capsule in an inertial confinement fusion setup is crucial for ignition. Unfortunately, a direct measurement has not been possible so far. We propose an angular radiation temperature simulation to predict the time-dependent drive on the capsule. A simple model, based on the view-factor method for the simulation of the radiation temperature, is presented and compared with the experimental data obtained using the OMEGA laser facility and the simulation results acquired with VISRAD code. We found a good agreement between the time-dependent measurements and the simulation results obtained using this model. The validated model was thenmore » used to analyze the experimental results from the Shenguang-III prototype laser facility. More specifically, the variations of the peak radiation temperatures at different view angles with the albedo of the hohlraum, the motion of the laser spots, the closure of the laser entrance holes, and the deviation of the laser power were investigated. Furthermore, the time-dependent radiation temperature at different orientations and the drive history on the capsule were calculated. The results indicate that the radiation temperature from “U20W112” (named according to the diagnostic hole ID on the target chamber) can be used to approximately predict the drive temperature on the capsule. In addition, the influence of the capsule on the peak radiation temperature is also presented.« less

  2. Temperature Dependence of Optical Linewidth in Single InAs Quantum Dots

    DTIC Science & Technology

    2006-10-19

    the linear temperature coefficient and its dependence on mesa size are described well by exciton scattering by acoustic phonons whose lifetimes are...transformation of a one-particle time-dependent exciton Green’s function. This is equivalent to using a two-particle interband correlation function in...For the disklike case of 2RL we neglect the lateral tunneling . The anisotropy of the valence band should be taken into account: mxy mz. For the

  3. Dependence of the brittle ductile transition on strain-rate-dependent critical homologous temperature

    NASA Astrophysics Data System (ADS)

    Davis, Paul M.

    2017-05-01

    Earthquakes mainly occur in crust or mantle that is below a critical temperature for the tectonic strain-rate, \\dot{e}_t, such that stress builds up to the breaking point before it can relax due to creep. Then long-range stress correlation gives rise to power law seismicity including large events. The limiting temperature depends on pressure, which is taken into account by finding a critical homologous temperature THc = T/TM above which earthquakes are rarely observed (where T, TM are temperature and average melting temperature of constituent minerals). We find that THc for ocean plates is ∼0.55. For California earthquakes, it is also close to 0.55. The uppermost mantle layer of oceanic plates of thickness ∼50 km is composed of harzburgite and depleted peridotite from which basalt has been removed to form ocean crust. Thus it has a higher melting temperature than the peridotite of the surrounding mantle, or the lower halves of plates. Thicknesses of seismicity in deep subduction zones, determined from 2-D polynomial fits to a relocated catalogue, are ∼50 km, which suggests that the earthquake channel is confined to this layer. We construct models to find homologous temperatures in slabs, and find that seismicity thicknesses are also, on average, confined to TH ≤ 0.55 ± 0.05. The associated rheology is compared with that obtained from flexure models of ocean lithosphere. The brittle-ductile transition occurs where viscosity drops from high values in the cold cores of slabs to values of 1022-1023 Pa s, that is, where creep strain-rates become comparable to tectonic rates. The cut-off for deep earthquakes is not sharp. However they appear unlikely to occur if homologous temperature is high TH > 0.55. Exceptions to the rule are anomalously deep earthquakes such as those beneath the Iceland and the Hawaiian hotspots, and the Newport Inglewood Fault. These are smaller events with short-range stress correlation, and can be explained if strain-rates are two to

  4. Force-dependent melting of supercoiled DNA at thermophilic temperatures.

    PubMed

    Galburt, E A; Tomko, E J; Stump, W T; Ruiz Manzano, A

    2014-01-01

    Local DNA opening plays an important role in DNA metabolism as the double-helix must be melted before the information contained within may be accessed. Cells finely tune the torsional state of their genomes to strike a balance between stability and accessibility. For example, while mesophilic life forms maintain negatively superhelical genomes, thermophilic life forms use unique mechanisms to maintain relaxed or even positively supercoiled genomes. Here, we use a single-molecule magnetic tweezers approach to quantify the force-dependent equilibrium between DNA melting and supercoiling at high temperatures populated by Thermophiles. We show that negatively supercoiled DNA denatures at 0.5 pN lower tension at thermophilic vs. mesophilic temperatures. This work demonstrates the ability to monitor DNA supercoiling at high temperature and opens the possibility to perform magnetic tweezers assays on thermophilic systems. The data allow for an estimation of the relative energies of base-pairing and DNA bending as a function of temperature and support speculation as to different general mechanisms of DNA opening in different environments. Lastly, our results imply that average in vivo DNA tensions range between 0.3 and 1.1 pN. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Temperature dependence of Brillouin light scattering spectra of acoustic phonons in silicon

    NASA Astrophysics Data System (ADS)

    Olsson, Kevin S.; Klimovich, Nikita; An, Kyongmo; Sullivan, Sean; Weathers, Annie; Shi, Li; Li, Xiaoqin

    2015-02-01

    Electrons, optical phonons, and acoustic phonons are often driven out of local equilibrium in electronic devices or during laser-material interaction processes. The need for a better understanding of such non-equilibrium transport processes has motivated the development of Raman spectroscopy as a local temperature sensor of optical phonons and intermediate frequency acoustic phonons, whereas Brillouin light scattering (BLS) has recently been explored as a temperature sensor of low-frequency acoustic phonons. Here, we report the measured BLS spectra of silicon at different temperatures. The origins of the observed temperature dependence of the BLS peak position, linewidth, and intensity are examined in order to evaluate their potential use as temperature sensors for acoustic phonons.

  6. Temperature dependence of Brillouin light scattering spectra of acoustic phonons in silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olsson, Kevin S.; Klimovich, Nikita; An, Kyongmo

    2015-02-02

    Electrons, optical phonons, and acoustic phonons are often driven out of local equilibrium in electronic devices or during laser-material interaction processes. The need for a better understanding of such non-equilibrium transport processes has motivated the development of Raman spectroscopy as a local temperature sensor of optical phonons and intermediate frequency acoustic phonons, whereas Brillouin light scattering (BLS) has recently been explored as a temperature sensor of low-frequency acoustic phonons. Here, we report the measured BLS spectra of silicon at different temperatures. The origins of the observed temperature dependence of the BLS peak position, linewidth, and intensity are examined in ordermore » to evaluate their potential use as temperature sensors for acoustic phonons.« less

  7. Influence of geomagnetic activity on mesopause temperature over Yakutia

    NASA Astrophysics Data System (ADS)

    Gavrilyeva, Galina; Ammosov, Petr

    2018-03-01

    The long-term temperature changes of the mesopause region at the hydroxyl molecule OH (6-2) nighttime height and its connection with the geomagnetic activity during the 23rd and beginning of the 24th solar cycles are presented. Measurements were conducted with an infrared digital spectrograph at the Maimaga station (63° N, 129.5° E). The hydroxyl rotational temperature (TOH) is assumed to be equal to the neutral atmosphere temperature at the altitude of ˜ 87 km. The average temperatures obtained for the period 1999 to 2015 are considered. The season of observations starts at the beginning of August and lasts until the middle of May. The maximum of the seasonally averaged temperatures is delayed by 2 years relative to the maximum of the solar radio emission flux (wavelength of 10.7 cm), and correlates with a change in geomagnetic activity (Ap index). Temperature grouping in accordance with the geomagnetic activity level showed that in years with high activity (Ap > 8), the mesopause temperature from October to February is about 10 K higher than in years with low activity (Ap < = 8). Cross-correlation analysis showed no temporal shift between geomagnetic activity and temperature. The correlation coefficient is equal to 0.51 at the 95 % level.

  8. Dependence of Subduction Zone seismicity on Strain-Rate-Dependent Critical Homologous Temperature

    NASA Astrophysics Data System (ADS)

    Davis, P. M.

    2016-12-01

    Earthquakes mainly occur in crust or mantle that is below a critical temperature for the tectonic strain-rate, such that stress builds up to the breaking point before it can relax due to creep. Then long-range stress correlation gives rise to power law seismicity with large events. The limiting temperature depends on pressure, which is taken into account by finding a critical homologous temperature THc=T/TM above which earthquakes are rarely observed. We find that THc for ocean plates is ˜0.55. For California earthquakes, it is also close to 0.55. The uppermost mantle layer of oceanic plates of thickness ˜50 km is composed of harzburgite and depleted peridotite from which basalt has been removed to form ocean crust. Thus it has a higher melting temperature than the peridotite of the surrounding mantle, or the lower halves of plates. Thicknesses of seismicity in deep subduction zones, determined from 2D polynomial fits to a relocated catalog, are ˜50 km, which suggests that the earthquake channel is confined to this layer. We construct models to find homologous temperatures in slabs, and find that seismicity thicknesses are also, on average, confined to TH ≤ 0.55 ± 0.05. The associated rheology is compared with that obtained from flexure models of ocean lithosphere. The brittle-ductile transition occurs where viscosity drops from high values in the cold cores of slabs to values of 1022 to $1023 Pa s, i.e., where creep strain-rates become comparable to tectonic rates. The cutoff for deep earthquakes is not sharp. However they appear unlikely to occur if homologous temperature is high TH>0.55. Exceptions to the rule are anomalously deep earthquakes such as those beneath the Iceland and the Hawaiian hotspots, and the Newport Inglewood Fault. These are smaller events with short-range stress correlation, and can be explained if strain-rates are 2 to 3 orders of magnitude higher than those associated with earthquakes located where TH ≤0.55. We conclude that the

  9. Temperature dependent growth of GaN nanowires using CVD technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Mukesh, E-mail: mukeshjihrnp@gmail.com; Singh, R.; Kumar, Vikram

    2016-05-23

    Growth of GaN nanowires have been carried out on sapphire substrates with Au as a catalyst using chemical vapour deposition technique. GaN nanowires growth have been studied with the experimental parameter as growth temperature. Diameter of grown GaN nanowires are in the range of 50 nm to 100 nm while the nanowire length depends on growth temperature. Morphology of the GaN nanowires have been studied by scanning electron microscopy. Crystalline nature has been observed by XRD patterns. Optical properties of grown GaN nanowires have been investigated by photoluminescence spectra.

  10. Temperature dependence of current polarization in Ni80Fe20 by spin wave Doppler measurements

    NASA Astrophysics Data System (ADS)

    Zhu, Meng; Dennis, Cindi; McMichael, Robert

    2010-03-01

    The temperature dependence of current polarization in ferromagnetic metals will be important for operation of spin-torque switched memories and domain wall devices in a wide temperature range. Here, we use the spin wave Doppler technique[1] to measure the temperature dependence of both the magnetization drift velocity v(T) and the current polarization P(T) in Ni80Fe20. We obtain these values from current-dependent shifts of the spin wave transmission resonance frequency for fixed-wavelength spin waves in current-carrying wires. For current densities of 10^11 A/m^2, we obtain v(T) decreasing from 4.8 ±0.3 m/s to 4.1 ±0.1 m/s and P(T) dropping from 0.75±0.05 to 0.58±0.02 over a temperature range from 80 K to 340 K. [1] V. Vlaminck et al. Science 322, 410 (2008);

  11. RsbV-Independent Induction of the SigB-Dependent General Stress Regulon of Bacillus subtilis during Growth at High Temperature

    PubMed Central

    Holtmann, Gudrun; Brigulla, Matthias; Steil, Leif; Schütz, Alexandra; Barnekow, Karsta; Völker, Uwe; Bremer, Erhard

    2004-01-01

    General stress proteins protect Bacillus subtilis cells against a variety of environmental insults. This adaptive response is particularly important for nongrowing cells, to which it confers a multiple, nonspecific, and preemptive stress resistance. Induction of the general stress response relies on the alternative transcription factor, SigB, whose activity is controlled by a partner switching mechanism that also involves the anti-sigma factor, RsbW, and the antagonist protein, RsbV. Recently, the SigB regulon has been shown to be continuously induced and functionally important in cells actively growing at low temperature. With the exception of this chill induction, all SigB-activating stimuli identified so far trigger a transient expression of the SigB regulon that depends on RsbV. Through a proteome analysis and Northern blot and gene fusion experiments, we now show that the SigB regulon is continuously induced in cells growing actively at 51°C, close to the upper growth limit of B. subtilis. This heat induction of SigB-dependent genes requires the environmental stress-responsive phosphatase RsbU, but not the metabolic stress-responsive phosphatase RsbP. RsbU dependence of SigB activation by heat is overcome in mutants that lack RsbV. In addition, loss of RsbV alone or in combination with RsbU triggers a hyperactivation of the general stress regulon exclusively at high temperatures detrimental for cell growth. These new facets of heat induction of the SigB regulon indicate that the current view of the complex genetic and biochemical regulation of SigB activity is still incomplete and that SigB perceives signals independent of the RsbV-mediated signal transduction pathways under heat stress conditions. PMID:15342585

  12. Time dependent reliability model incorporating continuum damage mechanics for high-temperature ceramics

    NASA Technical Reports Server (NTRS)

    Duffy, Stephen F.; Gyekenyesi, John P.

    1989-01-01

    Presently there are many opportunities for the application of ceramic materials at elevated temperatures. In the near future ceramic materials are expected to supplant high temperature metal alloys in a number of applications. It thus becomes essential to develop a capability to predict the time-dependent response of these materials. The creep rupture phenomenon is discussed, and a time-dependent reliability model is outlined that integrates continuum damage mechanics principles and Weibull analysis. Several features of the model are presented in a qualitative fashion, including predictions of both reliability and hazard rate. In addition, a comparison of the continuum and the microstructural kinetic equations highlights a strong resemblance in the two approaches.

  13. Deposition-temperature dependence of structural anisotropy in amorphous Tb-Fe films

    NASA Astrophysics Data System (ADS)

    Harris, V. G.; Elam, W. T.; Koon, N. C.; Hellman, F.

    1994-02-01

    The anisotropic local structure in a series of amorphous Tb26Fe74 films deposited at different deposition temperatures and having different magnetic anisotropy energies have been investigated using polarization-dependent extended x-ray-absorption fine-structure measurements. Samples deposited at temperatures >=300 K exhibit anisotropic pair correlations where like atomic pairs are favored in plane and unlike pairs are favored out of plane. Both the anisotropic pair correlations and the perpendicular magnetic anisotropy increase with increasing deposition temperature. In contrast, a sample deposited at 77 K was found to have isotropic pair correlations, low perpendicular magnetic anisotropy, and a large (~=1%) in-plane compression.

  14. Experimental Study of Temperature-Dependence Laws of Non-Voigt Absorption Line Shape Parameters

    NASA Astrophysics Data System (ADS)

    Wilzewski, Jonas; Birk, Manfred; Loos, Joep; Wagner, Georg

    2017-06-01

    To improve the understanding of temperature-dependence laws of spectral line shape parameters, spectra of the ν_3 rovibrational band of CO_2 perturbed by 10, 30, 100, 300 and 1000 mbar of N_2 were measured at nine temperatures between 190 K and 330 K using a 22 cm long single-pass absorption cell in a Bruker IFS125 HR Fourier Transform spectrometer. The spectra were fitted employing a quadratic speed-dependent hard collision model in the Hartmann-Tran implementation extended to account for line mixing in the Rosenkranz approximation by means of a multispectrum fitting approach developed at DLR This enables high accuracy parameter retrievals to reproduce the spectra down to noise level and we will present the behavior of line widths, shifts, speed-dependence-, collisional narrowing- and line mixing-parameters over this 140 K temperature range. Tran et al. JQSRT 129, 199-203 (2013); JQSRT 134, 104 (2014). Loos et al., 2014; http://doi.org/10.5281/zenodo.11156. Ngo et al. JQSRT 29, 89-100 (2013); JQSRT 134, 105 (2014).

  15. Activated carbon from peach stones using phosphoric acid activation at medium temperatures.

    PubMed

    Kim, Dong-Su

    2004-01-01

    In the present study, the activation features of phosphoric acid have been investigated using waste peach stones as the raw material in the production of granular activated carbon. Thermogravimetry/differential thermal analysis was conducted to characterize the thermal behavior of peach stone and titration method was used to evaluate the adsorption capacity of the produced activated carbon. It was observed that the iodine value of the activated carbon increased with activation temperature. However, temperatures higher than 500 degrees C caused a thermal destruction, which resulted in the decrease of the adsorption capacity. Activation longer than 1.5 h at 500 degrees C resulted in thermal degradation of the porous structure of the activated carbon. The adsorption capacity was enhanced with increasing of amounts of phosphoric acid, however, excessive phosphoric acid caused a decrease in the iodine value. In addition, it was found that the carbon yields generally decreased with activation temperature and activation time. Scanning electron microscopy analysis was conducted to observe the changes in the poros structure of the activated carbon produced in different temperatures. Activation of carbon by phosphoric acid was found to be superior to that by CaCl2 and gas activation. The activated carbon produced from peach stone was applied as an adsorbent in the treatment of synthesized wastewater containing cadmium ion and its adsorption capacity was found to be as good as that of the commercial one.

  16. Temperature Dependence of the Upper Critical Field in Disordered Hubbard Model with Attraction

    NASA Astrophysics Data System (ADS)

    Kuchinskii, E. Z.; Kuleeva, N. A.; Sadovskii, M. V.

    2017-12-01

    We study disorder effects upon the temperature behavior of the upper critical magnetic field in an attractive Hubbard model within the generalized DMFT+Σ approach. We consider the wide range of attraction potentials U—from the weak coupling limit, where superconductivity is described by BCS model, up to the strong coupling limit, where superconducting transition is related to Bose-Einstein condensation (BEC) of compact Cooper pairs, formed at temperatures significantly higher than superconducting transition temperature, as well as the wide range of disorder—from weak to strong, when the system is in the vicinity of Anderson transition. The growth of coupling strength leads to the rapid growth of H c2( T), especially at low temperatures. In BEC limit and in the region of BCS-BEC crossover H c2( T), dependence becomes practically linear. Disordering also leads to the general growth of H c2( T). In BCS limit of weak coupling increasing disorder lead both to the growth of the slope of the upper critical field in the vicinity of the transition point and to the increase of H c2( T) in the low temperature region. In the limit of strong disorder in the vicinity of the Anderson transition localization corrections lead to the additional growth of H c2( T) at low temperatures, so that the H c2( T) dependence becomes concave. In BCS-BEC crossover region and in BEC limit disorder only slightly influences the slope of the upper critical field close to T c . However, in the low temperature region H c2 ( T may significantly grow with disorder in the vicinity of the Anderson transition, where localization corrections notably increase H c2 ( T = 0) also making H c2( T) dependence concave.

  17. Temperature dependent relaxation of interface-states in graphene on SiO2

    NASA Astrophysics Data System (ADS)

    Singh, Anil Kumar; Gupta, Anjan Kumar

    2018-04-01

    We have studied the evolution of resistance relaxation with temperature in graphene field effect transistor on SiO2. At room temperature, piranha-cleaned-SiO2 devices show slow resistance relaxation while IPA-cleaned-SiO2 devices do not. With cooling the former devices show a decrease in magnitude and time constant of the slow relaxation and it becomes negligible at 250K. Relaxation study at elevated temperature of the IPA-cleaned devices show a gate voltage polarity dependent time constant with respect to the charge neutrality point but it remains almost independent of temperature. The magnitude of relaxation increases with temperature. Further, after annealing at elevated temperature, we found that the relaxation times become independent of gate voltage polarity and its magnitude becomes very small. These observations are discussed using increase in diffusion of interface-species with temperature.

  18. Calculated temperature dependence of elastic constants and phonon dispersion of hcp and bcc beryllium

    NASA Astrophysics Data System (ADS)

    Hahn, Steven; Arapan, Sergiu; Harmon, Bruce; Eriksson, Olle

    2011-03-01

    Conventional first principle methods for calculating lattice dynamics are unable to calculate high temperature thermophysical properties of materials containing modes that are entropically stabilized. In this presentation we use a relatively new approach called self-consistent ab initio lattice dynamics (SCAILD) to study the hcp to bcc transition (1530 K) in beryllium. The SCAILD method goes beyond the harmonic approximation to include phonon-phonon interactions and produces a temperature-dependent phonon dispersion. In the high temperature bcc structure, phonon-phonon interactions dynamically stabilize the N-point phonon. Fits to the calculated phonon dispersion were used to determine the temperature dependence of the elastic constants in the hcp and bcc phases. Work at the Ames Laboratory was supported by the Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-07CH11358.

  19. Activity-Dependence of Synaptic Vesicle Dynamics

    PubMed Central

    Forte, Luca A.

    2017-01-01

    The proper function of synapses relies on efficient recycling of synaptic vesicles. The small size of synaptic boutons has hampered efforts to define the dynamical states of vesicles during recycling. Moreover, whether vesicle motion during recycling is regulated by neural activity remains largely unknown. We combined nanoscale-resolution tracking of individual synaptic vesicles in cultured hippocampal neurons from rats of both sexes with advanced motion analyses to demonstrate that the majority of recently endocytosed vesicles undergo sequences of transient dynamical states including epochs of directed, diffusional, and stalled motion. We observed that vesicle motion is modulated in an activity-dependent manner, with dynamical changes apparent in ∼20% of observed boutons. Within this subpopulation of boutons, 35% of observed vesicles exhibited acceleration and 65% exhibited deceleration, accompanied by corresponding changes in directed motion. Individual vesicles observed in the remaining ∼80% of boutons did not exhibit apparent dynamical changes in response to stimulation. More quantitative transient motion analyses revealed that the overall reduction of vesicle mobility, and specifically of the directed motion component, is the predominant activity-evoked change across the entire bouton population. Activity-dependent modulation of vesicle mobility may represent an important mechanism controlling vesicle availability and neurotransmitter release. SIGNIFICANCE STATEMENT Mechanisms governing synaptic vesicle dynamics during recycling remain poorly understood. Using nanoscale resolution tracking of individual synaptic vesicles in hippocampal synapses and advanced motion analysis tools we demonstrate that synaptic vesicles undergo complex sets of dynamical states that include epochs of directed, diffusive, and stalled motion. Most importantly, our analyses revealed that vesicle motion is modulated in an activity-dependent manner apparent as the reduction in

  20. Effect of the glass transition temperature on alpha-amylase activity in a starch matrix.

    PubMed

    Chaudhary, Vinita; Panyoyai, Naksit; Small, Darryl M; Shanks, Robert A; Kasapis, Stefan

    2017-02-10

    This study optimises a protocol for the estimation of α-amylase activity in a condensed starch matrix in the vicinity of the glass transition region. Enzymatic activity on the vitrified starch system was compared with that of a reference substrate, maltodextrin. The activity was assayed as the rate of release of reducing sugar using a dinitrosalicylic acid procedure. The condensed carbohydrate matrices served the dual purpose of acting as a substrate as well as producing a pronounced effect on the ability to enzymatic hydrolysis. Activation energies were estimated throughout the glass transition region of condensed carbohydrate preparations based on the concept of the spectroscopic shift factor. Results were used to demonstrate a considerable moderation by the mechanical glass transition temperature, beyond the expected linear effect of the temperature dependence, on the reaction rate of starch hydrolysis by α-amylase in comparison with the low-molecular weight chain of maltodextrin. Copyright © 2016. Published by Elsevier Ltd.

  1. Temperature-dependent electrical characteristics and carrier transport mechanism of p-Cu2ZnSnS4/n-GaN heterojunctions

    NASA Astrophysics Data System (ADS)

    Niteesh Reddy, Varra; Reddy, M. Siva Pratap; Gunasekhar, K. R.; Lee, Jung-Hee

    2018-04-01

    This work explores the temperature-dependent electrical characteristics and carrier transport mechanism of Au/p-Cu2ZnSnS4/n-type GaN heterojunction (HJ) diodes with a CZTS interlayer. The electrical characteristics were examined by current-voltage-temperature, turn-on voltage-temperature and series resistance-temperature in the high-temperature range of 300-420 K. It is observed that an exponential decrease in the series resistance ( R S) and increase in the ideality factor ( n) and barrier height ( ϕ b) with increase in temperature. The thermal coefficient ( K j) is determined to be - 1.3 mV K-1 at ≥ 300 K. The effective ϕ b is determined to be 1.21 eV. This obtained barrier height is consistent with the theoretical one. The characteristic temperature ( T 0) resulting from the Cheung's functions [d V/d(ln I) vs. I and H( I) vs. I], is seen that there is good agreement between the T 0 values from both Cheung's functions. The relevant carrier transport mechanisms of Au/p-CZTS/n-type GaN HJ are explained based on the thermally decreased energy band gap of n-type GaN layers, thermally activated deep donors and increased further activated shallow donors.

  2. Temperature dependent current transport of Pd/ZnO nanowire Schottky diodes

    NASA Astrophysics Data System (ADS)

    Gayen, R. N.; Bhattacharyya, S. R.; Jana, P.

    2014-09-01

    Zinc oxide (ZnO) nanowire based Schottky barrier diodes are fabricated by depositing Pd metal contact on top of vertically well-aligned ZnO nanowire arrays. A vertical array of ZnO nanowires on indium tin oxide (ITO) coated glass substrates is synthesized by hybrid wet chemical route. Scanning electron microscopy (SEM), x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) measurement confirm the formation of stoichiometric well-aligned hexagonal (h-ZnO) nanowire arrays with wurtzite structure. Temperature dependent current-voltage (I-V) measurements on palladium-ZnO (Pd/ZnO) nanowire Schottky junctions in the temperature range 303-383 K exhibit excellent rectifying character. From these nonlinear I-V plots, different electrical parameters of diode-like reverse saturation current, barrier height and ideality factor are determined as a function of temperature assuming pure thermionic emission model. The ideality factor is found to decrease while the barrier height increases with the increase in temperature. The series resistance values calculated from Cheung’s functions also show temperature dependency. Such behavior can be attributed to the presence of defects that traps carriers, and barrier height inhomogeneity at the interface of the barrier junction. After barrier height inhomogeneity correction, considering a Gaussian distributed barrier height fluctuation across the Pd/ZnO interface, the estimated values of mean barrier height and modified Richardson constant are more closely matched to the theoretically predicted value for Pd/ZnO Schottky barrier diodes. The variation of density of interface states as a function of interface state energy is also calculated.

  3. Temperature-dependent changes in erythrocytes' cytosol state during natural and artificial hypobiosis.

    PubMed

    Repina, S V; Nardid, O A; Marchenko, V S; Shilo, A V

    2004-05-01

    At present, the question of how the structural state of the erythrocyte cytosol is arranged to maintain essential permeabilities successfully both at normal temperature and during periods with a significant body temperature reduction during hypobiosis remains unanswered. In the present work, we performed comparative investigations of temperature-dependent changes in the cytosol state of erythrocytes from animals subjected to natural (winter hibernating ground squirrels) or artificial hypobiosis. The cytosol state was evaluated by the ESR method of spin probes (TEMPON) within the temperature range of 0-50 degrees C. Erythrocyte resistance to acid hemolysis, which is limited by the permeability of membranes for protons and the state of the anion channel, were determined using the method described by Terskov and Getelson [Biofizika 2 (1957) 259]. A change in cytosol microviscosity of erythrocytes was found as well as a temperature-dependent increase in acid resistance of erythrocytes. Our investigations allow us to conclude that physiological changes occurring in a mammalian organism during natural and artificial hypobiosis are accompanied by structural modifications of the erythrocyte cytosol. The temperature range where these modifications are observed (8, 15, 40 degrees C) suggests that the most probable modifying link is spectrin and/or the sites of its interaction with membrane. The interaction of cytoskeletal components with the cell membrane plays a key role in regulation of membrane permeability, suggesting an important role of this interaction in the adaptive reactions of erythrocytes.

  4. Temperature dependent mobility measurements of alkali earth ions in superfluid helium

    NASA Astrophysics Data System (ADS)

    Putlitz, Gisbert Zu; Baumann, I.; Foerste, M.; Jungmann, K.; Riediger, O.; Tabbert, B.; Wiebe, J.; Zühlke, C.

    1998-05-01

    Mobility measurements of impurity ions in superfluid helium are reported. Alkali earth ions were produced with a laser sputtering technique and were drawn inside the liquid by an electric field. The experiments were carried out in the temperature region from 1.27 up to 1.66 K. The temperature dependence of the mobility of Be^+-ions (measured here for the first time) differs from that of the other alkali earth ions Mg^+, Ca^+, Sr^+ and Ba^+, but behaves similar to that of He^+ (M. Foerste, H. Günther, O. Riediger, J. Wiebe, G. zu Putlitz, Z. Phys. B) 104, 317 (1997). Theories of Atkins (A. Atkins, Phys. Rev.) 116, 1339 (1959) and Cole (M.W. Cole, R.A. Bachmann Phys. Rev. B) 15, 1388 (1977) predict a different defect structure for He^+ and the alkali earth ions: the helium ion is assumed to form a snowball like structure whereas for the alkali earth ions a bubble structure is assumed. If the temperature dependence is a characteristic feature for the different structures, then it seems likely that the Be^+ ion builds a snowball like structure.

  5. Temperature dependence of the band gap of GaAsSb epilayers

    NASA Astrophysics Data System (ADS)

    Lukic-Zrnic, R.; Gorman, B. P.; Cottier, R. J.; Golding, T. D.; Littler, C. L.; Norman, A. G.

    2002-12-01

    We have optically characterized a series of GaAs1-xSbx epilayers (0.19temperature (4 Ktemperature was determined from the photon energy dependence of the absorption coefficient and compared with theoretical predictions. From our results we have obtained the Varshni coefficients, α=(4.2±0.1)×10-4 eV/K and β=(189±9) K, which describe well not only the temperature dependence of the band gap for the entire alloy range of our samples, but also for the past experimental work of others. These values differ significantly from what we believe are the only other reported values by K. G. Merkel et al. [K. G. Merkel et al., Appl. Phys. Lett. 65, 2442 (1994)].

  6. Data-driven modeling of surface temperature anomaly and solar activity trends

    USGS Publications Warehouse

    Friedel, Michael J.

    2012-01-01

    A novel two-step modeling scheme is used to reconstruct and analyze surface temperature and solar activity data at global, hemispheric, and regional scales. First, the self-organizing map (SOM) technique is used to extend annual modern climate data from the century to millennial scale. The SOM component planes are used to identify and quantify strength of nonlinear relations among modern surface temperature anomalies (<150 years), tropical and extratropical teleconnections, and Palmer Drought Severity Indices (0–2000 years). Cross-validation of global sea and land surface temperature anomalies verifies that the SOM is an unbiased estimator with less uncertainty than the magnitude of anomalies. Second, the quantile modeling of SOM reconstructions reveal trends and periods in surface temperature anomaly and solar activity whose timing agrees with published studies. Temporal features in surface temperature anomalies, such as the Medieval Warm Period, Little Ice Age, and Modern Warming Period, appear at all spatial scales but whose magnitudes increase when moving from ocean to land, from global to regional scales, and from southern to northern regions. Some caveats that apply when interpreting these data are the high-frequency filtering of climate signals based on quantile model selection and increased uncertainty when paleoclimatic data are limited. Even so, all models find the rate and magnitude of Modern Warming Period anomalies to be greater than those during the Medieval Warm Period. Lastly, quantile trends among reconstructed equatorial Pacific temperature profiles support the recent assertion of two primary El Niño Southern Oscillation types. These results demonstrate the efficacy of this alternative modeling approach for reconstructing and interpreting scale-dependent climate variables.

  7. Preisach modeling of temperature-dependent ferroelectric response of piezoceramics at sub-switching regime

    NASA Astrophysics Data System (ADS)

    Ochoa, Diego Alejandro; García, Jose Eduardo

    2016-04-01

    The Preisach model is a classical method for describing nonlinear behavior in hysteretic systems. According to this model, a hysteretic system contains a collection of simple bistable units which are characterized by an internal field and a coercive field. This set of bistable units exhibits a statistical distribution that depends on these fields as parameters. Thus, nonlinear response depends on the specific distribution function associated with the material. This model is satisfactorily used in this work to describe the temperature-dependent ferroelectric response in PZT- and KNN-based piezoceramics. A distribution function expanded in Maclaurin series considering only the first terms in the internal field and the coercive field is proposed. Changes in coefficient relations of a single distribution function allow us to explain the complex temperature dependence of hard piezoceramic behavior. A similar analysis based on the same form of the distribution function shows that the KNL-NTS properties soften around its orthorhombic to tetragonal phase transition.

  8. Integrating Temperature-Dependent Life Table Data into a Matrix Projection Model for Drosophila suzukii Population Estimation

    PubMed Central

    Wiman, Nik G.; Walton, Vaughn M.; Dalton, Daniel T.; Anfora, Gianfranco; Burrack, Hannah J.; Chiu, Joanna C.; Daane, Kent M.; Grassi, Alberto; Miller, Betsey; Tochen, Samantha; Wang, Xingeng; Ioriatti, Claudio

    2014-01-01

    Temperature-dependent fecundity and survival data was integrated into a matrix population model to describe relative Drosophila suzukii Matsumura (Diptera: Drosophilidae) population increase and age structure based on environmental conditions. This novel modification of the classic Leslie matrix population model is presented as a way to examine how insect populations interact with the environment, and has application as a predictor of population density. For D. suzukii, we examined model implications for pest pressure on crops. As case studies, we examined model predictions in three small fruit production regions in the United States (US) and one in Italy. These production regions have distinctly different climates. In general, patterns of adult D. suzukii trap activity broadly mimicked seasonal population levels predicted by the model using only temperature data. Age structure of estimated populations suggest that trap and fruit infestation data are of limited value and are insufficient for model validation. Thus, we suggest alternative experiments for validation. The model is advantageous in that it provides stage-specific population estimation, which can potentially guide management strategies and provide unique opportunities to simulate stage-specific management effects such as insecticide applications or the effect of biological control on a specific life-stage. The two factors that drive initiation of the model are suitable temperatures (biofix) and availability of a suitable host medium (fruit). Although there are many factors affecting population dynamics of D. suzukii in the field, temperature-dependent survival and reproduction are believed to be the main drivers for D. suzukii populations. PMID:25192013

  9. Temperature dependence of magnetoresistance in copper single crystals

    NASA Astrophysics Data System (ADS)

    Bian, Q.; Niewczas, M.

    2018-03-01

    Transverse magnetoresistance of copper single crystals has been measured in the orientation of open-orbit from 2 K to 20 K for fields up to 9 T. The experimental Kohler's plots display deviation between individual curves below 16 K and overlap in the range of 16 K-20 K. The violation of the Kohler's rule below 16 K indicates that the magnetotransport can not be described by the classical theory of electron transport on spherical Fermi surface with a single relaxation time. A theoretical model incorporating two energy bands, spherical and cylindrical, with different relaxation times has been developed to describe the magnetoresistance data. The calculations show that the electron-phonon scattering rates at belly and neck regions of the Fermi surface have different temperature dependencies, and in general, they do not follow T3 law. The ratio of the relaxation times in belly and neck regions decreases parabolically with temperature as A - CT2 , with A and C being constants.

  10. Temperature-dependent growth of Geomyces destructans, the fungus that causes bat white-nose syndrome

    USGS Publications Warehouse

    Verant, Michelle L.; Boyles, Justin G.; Waldrep, William; Wibbelt, Gudrun; Blehert, David S.

    2012-01-01

    White-nose syndrome (WNS) is an emergent disease estimated to have killed over five million North American bats. Caused by the psychrophilic fungus Geomyces destructans, WNS specifically affects bats during hibernation. We describe temperature-dependent growth performance and morphology for six independent isolates of G. destructans from North America and Europe. Thermal performance curves for all isolates displayed an intermediate peak with rapid decline in performance above the peak. Optimal temperatures for growth were between 12.5 and 15.8°C, and the upper critical temperature for growth was between 19.0 and 19.8°C. Growth rates varied across isolates, irrespective of geographic origin, and above 12°C all isolates displayed atypical morphology that may have implications for proliferation of the fungus. This study demonstrates that small variations in temperature, consistent with those inherent of bat hibernacula, affect growth performance and physiology of G. destructans, which may influence temperature-dependent progression and severity of WNS in wild bats.

  11. Determination of Temperature- Dependent Mechanical Properties of Carbon Composites Under Tensile and Flexural Loading

    NASA Astrophysics Data System (ADS)

    Chripunow, Andre; Kubisch, Aline; Ruder, Matthias; Forster, Andreas; Korber, Hannes

    2014-06-01

    The presented test setup utilises a custom-built furnace realising test temperatures of up to 500°C. In order to ensure always optimal test conditions the temperature cell can be exchanged depending on the mechanical tests and specimen sizes. Cells for tensile and flexural loadings had been developed. With the latter one it is possible to perform three-point-bending tests, interlaminar-shear-strength tests as well as tests to determine the interlaminar fracture toughness. In this work the effect of fibre orientation on the mechanical properties of CFRP prepreg material under tensile and flexural loads at elevated temperatures was studied. Especially the matrix dominated layups showed a rather early decay of the mechanical properties even at temperatures quite lower than Tg. An analytical model has been used to describe the temperature-dependent properties. The model shows good agreement concerning the strength whereas the proper prediction of the moduli was only possible for the matrix dominated layups.

  12. Inter-individual variation and temperature-dependent antipredator behavior in the snake Tomodon dorsatus (Dipsadidae).

    PubMed

    Citadini, Jessyca Michele; Navas, Carlos Arturo

    2013-07-01

    Although many studies assessed the influence of temperature on the behavior of ectotermic vertebrates, little attention has been given to interindividual variation in the defensive responses of reptiles. In the present study we investigated the defensive behavior of the snake Tomodon dorsatus, in order to test the hypotheses that (1) individuals differ in their antipredator behavior consistently with the concept of behavioral syndromes, (2) temperature influences the defensive behavior, and (3) these two factors interact with each other. There was significant interindividual variation in defensive behavior, as well as consistently aggressive, passive or evasive behaviors. Temperature influenced aggressiveness, which was slightly higher when body temperature was lower, but this trend was only evident in animals with aggressive disposition. Our results corroborate the hypothesis of interaction between individuality of behavior and temperature-dependent defensive behavior in T. dorsatus. These results, together with results from previous studies, suggest that the evolution of temperature-dependent defensive behavior differs among lineages of ectothermic tetrapods. This article is part of a Special Issue entitled: insert SI title. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Temperature dependence of blood viscosity in frogs and turtles: effect on heat exchange with environment.

    PubMed

    Langille, B L; Crisp, B

    1980-09-01

    The temperature dependence of the viscosity of blood from frogs and turtles has been assessed for temperatures between 5 and 40 degrees C. Viscosity of turtles' blood was, on average, reduced from 3.50 +/- 0.16 to 2.13 +/- 0.10 cP between 10 and 30 degrees C, a decline of 39%. Even larger changes in viscosity were observed for frogs' blood with viscosity falling from 4.55 +/- 0.32 to 2.55 +/- 0.25 cP over the same temperature range, a change of 44%. Blood viscosity was highly correlated with hematocrit in both species at all temperatures. Viscosity of blood from both frogs and turtles showed a large standard deviation at all temperatures and this was attributed to large individual-to-individual variations in hematocrit. Turtles heat faster than they cool, regardless of whether tests are performed at temperatures above or below the range of thermal preference. The effect of temperature dependence of blood viscosity on heating and cooling rates is demonstrated.

  14. A revisit to the temperature dependence of electrical resistivity of α - Titanium at low temperatures

    NASA Astrophysics Data System (ADS)

    Sharath Chandra, L. S.; Mondal, R.; Thamizhavel, A.; Dhar, S. K.; Roy, S. B.

    2017-09-01

    The temperature dependence of resistivity ρ(T) of a polycrystalline sample and a single crystal sample (current along the [0001] direction) of α - Titanium (Ti) at low temperatures is revisited to understand the electrical charge transport phenomena in this hexagonal closed pack metal. We show that the ρ(T) in single crystal Ti can be explained by considering the scattering of electrons due to electron-phonon, electron-electron, inter-band s-d and electron-impurity interactions, whereas the ρ(T) of polycrystalline Ti could not be explained by these interactions alone. We observed that the effects of the anisotropy of the hexagonal structure on the electronic band structure and the phonon dispersion need to be taken into account to explain ρ(T) of polycrystalline Ti. Two Debye temperatures corresponding to two different directions for the electron-phonon interactions and inter-band s-d scattering are needed to account the observed ρ(T) in polycrystalline Ti.

  15. Characterization of temperature-dependent optical material properties of polymer powders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laumer, Tobias; SAOT Erlangen Graduate School in Advanced Optical Technologies, 91052 Erlangen; CRC Collaborative Research Center 814 - Additive Manufacturing, 91052 Erlangen

    2015-05-22

    In former works, the optical material properties of different polymer powders used for Laser Beam Melting (LBM) at room temperature have been analyzed. With a measurement setup using two integration spheres, it was shown that the optical material properties of polymer powders differ significantly due to multiple reflections within the powder compared to solid bodies of the same material. Additionally, the absorption behavior of the single particles shows an important influence on the overall optical material properties, especially the reflectance of the powder bed. Now the setup is modified to allow measurements at higher temperatures. Because crystalline areas of semi-crystallinemore » thermoplastics are mainly responsible for the absorption of the laser radiation, the influence of the temperature increase on the overall optical material properties is analyzed. As material, conventional polyamide 12 and polypropylene as new polymer powder material, is used. By comparing results at room temperature and at higher temperatures towards the melting point, the temperature-dependent optical material properties and their influence on the beam-matter interaction during the process are discussed. It is shown that the phase transition during melting leads to significant changes of the optical material properties of the analyzed powders.« less

  16. Temperature Dependence of Low-Frequency Spectra in Molten Bis(trifluoromethylsulfonyl)amide Salts of Imidazolium Cations Studied by Femtosecond Raman-Induced Kerr Effect Spectroscopy.

    PubMed

    Shirota, Hideaki; Kakinuma, Shohei

    2015-07-30

    In this study, the temperature dependence of the low-frequency spectra of liquid bis(trifluoromethylsulfonyl)amide salts of the monocations 1-methyl-3-propylimidazolium and 1-hexyl-3-methylimidazolium and the dications 1,6-bis(3-methylimidazolium-1-yl)hexane and 1,12-bis(3-methylimidazolium-1-yl)dodecane has been investigated by means of femtosecond optical heterodyne-detected Raman-induced Kerr effect spectroscopy. The intensity in the low-frequency region below 20 cm(-1) in the spectra of the four ionic liquids increases with rising temperature. From a line-shape analysis of the broadened low-frequency spectra of the ionic liquids, it is clear that the lowest-frequency component, which peaks at approximately 5 cm(-1), contributes to the temperature dependence of the spectra. This implies that the activity of the intermolecular translational vibrational motion is increasing with rising temperature. It is also possible that decoupling in the crossover process between intermolecular vibrational motion and structural relaxation occurs as a result of a deterioration of the non-Markovian feature or the loss of memory caused by the higher temperature. The peak of the highest-frequency component, which is due mainly to the imidazolium ring libration, shifts to lower frequency with increasing temperature. This is attributed to weaker interactions of the ionic liquids at higher temperatures. Temperature-dependent viscosities from 293 to 353 K of the four ionic liquids have also been characterized.

  17. TRPM2 activation by cyclic ADP-ribose at body temperature is involved in insulin secretion

    PubMed Central

    Togashi, Kazuya; Hara, Yuji; Tominaga, Tomoko; Higashi, Tomohiro; Konishi, Yasunobu; Mori, Yasuo; Tominaga, Makoto

    2006-01-01

    There are eight thermosensitive TRP (transient receptor potential) channels in mammals, and there might be other TRP channels sensitive to temperature stimuli. Here, we demonstrate that TRPM2 can be activated by exposure to warm temperatures (>35°C) apparently via direct heat-evoked channel gating. β-NAD+- or ADP-ribose-evoked TRPM2 activity is robustly potentiated at elevated temperatures. We also show that, even though cyclic ADP-ribose (cADPR) does not activate TRPM2 at 25°C, co-application of heat and intracellular cADPR dramatically potentiates TRPM2 activity. Heat and cADPR evoke similar responses in rat insulinoma RIN-5F cells, which express TRPM2 endogenously. In pancreatic islets, TRPM2 is coexpressed with insulin, and mild heating of these cells evokes increases in both cytosolic Ca2+ and insulin release, which is KATP channel-independent and protein kinase A-mediated. Heat-evoked responses in both RIN-5F cells and pancreatic islets are significantly diminished by treatment with TRPM2-specific siRNA. These results identify TRPM2 as a potential molecular target for cADPR, and suggest that TRPM2 regulates Ca2+ entry into pancreatic β-cells at body temperature depending on the production of cADPR-related molecules, thereby regulating insulin secretion. PMID:16601673

  18. The glutathione-dependent system of antioxidant defense is not modulated by temperature acclimation in muscle tissues from striped bass, Morone saxatilis.

    PubMed

    Grim, Jeffrey M; Simonik, Elizabeth A; Semones, Molly C; Kuhn, Donald E; Crockett, Elizabeth L

    2013-02-01

    Cold temperature generally induces an enhancement of oxidative capacities, a greater content of intracellular lipids, and a remodeling of lipids in biological membranes. These physiological responses may pose a heightened risk of lipid peroxidation (LPO), while warm temperature could result in greater risk of LPO since rates involving reactive oxygen species and LPO will be elevated. The current study examines responses of the glutathione system of antioxidant defense after temperature acclimation. We measured total glutathione (tGSH), and protein levels of GPx1, GPx4, and GST (cardiac and skeletal muscles), and enzymatic activity (skeletal muscle) of glutathione-dependent antioxidants (GPx, GPx4, and GST) in tissues from striped bass (Morone saxatilis) acclimated for six weeks to 7 °C or 25 °C. tGSH of cardiac muscle from cold-acclimated animals was 1.2-times higher than in warm-bodied counterparts, but unchanged with temperature acclimation in skeletal muscle. A second low molecular weight antioxidant, ascorbate was 1.4- and 1.5-times higher in cardiac and skeletal muscle, respectively in warm- than cold-acclimated animals. Despite 1.2-times higher oxidative capacities (as indicated by citrate synthase activity), in skeletal muscle from cold- versus warm-acclimated fish, levels and activities of antioxidant enzymes were similar between acclimation groups. Lipid peroxidation products (as indicated by TBARS), normalized to tissue wet weight, were more than 2-times higher in skeletal muscle from cold- than warm-acclimated animals, however, when normalized to phospholipid content there was no statistical difference between acclimation groups. Our results demonstrate that the physiological changes, associated with acclimation to low temperature in the eurythermal striped bass, are not accompanied by an enhanced antioxidant defense in the glutathione-dependent system. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Locomotor Activity and Body Temperature Patterns over a Temperature Gradient in the Highveld Mole-Rat (Cryptomys hottentotus pretoriae).

    PubMed

    Haupt, Meghan; Bennett, Nigel C; Oosthuizen, Maria K

    2017-01-01

    African mole-rats are strictly subterranean mammals that live in extensive burrow systems. High humidity levels in the burrows prevent mole-rats from thermoregulating using evaporative cooling. However, the relatively stable environment of the burrows promotes moderate temperatures and small daily temperature fluctuations. Mole-rats therefore display a relatively wide range of thermoregulation abilities. Some species cannot maintain their body temperatures at a constant level, whereas others employ behavioural thermoregulation. Here we test the effect of ambient temperature on locomotor activity and body temperature, and the relationship between the two parameters, in the highveld mole-rat. We exposed mole-rats to a 12L:12D and a DD light cycle at ambient temperatures of 30°C, 25°C and 20°C while locomotor activity and body temperature were measured simultaneously. In addition, we investigated the endogenous rhythms of locomotor activity and body temperature at different ambient temperatures. Mole-rats displayed nocturnal activity at all three ambient temperatures and were most active at 20°C, but least active at 30°C. Body temperature was highest at 30°C and lowest at 20°C, and the daily cycle was highly correlated with locomotor activity. We show that the mole-rats have endogenous rhythms for both locomotor activity and body temperature. However, the endogenous body temperature rhythm appears to be less robust compared to the locomotor activity rhythm. Female mole-rats appear to be more sensitive to temperature changes than males, increased heterothermy is evident at lower ambient temperatures, whilst males show smaller variation in their body temperatures with changing ambient temperatures. Mole-rats may rely more heavily on behavioural thermoregulation as it is more energy efficient in an already challenging environment.

  20. Locomotor Activity and Body Temperature Patterns over a Temperature Gradient in the Highveld Mole-Rat (Cryptomys hottentotus pretoriae)

    PubMed Central

    Haupt, Meghan; Bennett, Nigel C.

    2017-01-01

    African mole-rats are strictly subterranean mammals that live in extensive burrow systems. High humidity levels in the burrows prevent mole-rats from thermoregulating using evaporative cooling. However, the relatively stable environment of the burrows promotes moderate temperatures and small daily temperature fluctuations. Mole-rats therefore display a relatively wide range of thermoregulation abilities. Some species cannot maintain their body temperatures at a constant level, whereas others employ behavioural thermoregulation. Here we test the effect of ambient temperature on locomotor activity and body temperature, and the relationship between the two parameters, in the highveld mole-rat. We exposed mole-rats to a 12L:12D and a DD light cycle at ambient temperatures of 30°C, 25°C and 20°C while locomotor activity and body temperature were measured simultaneously. In addition, we investigated the endogenous rhythms of locomotor activity and body temperature at different ambient temperatures. Mole-rats displayed nocturnal activity at all three ambient temperatures and were most active at 20°C, but least active at 30°C. Body temperature was highest at 30°C and lowest at 20°C, and the daily cycle was highly correlated with locomotor activity. We show that the mole-rats have endogenous rhythms for both locomotor activity and body temperature. However, the endogenous body temperature rhythm appears to be less robust compared to the locomotor activity rhythm. Female mole-rats appear to be more sensitive to temperature changes than males, increased heterothermy is evident at lower ambient temperatures, whilst males show smaller variation in their body temperatures with changing ambient temperatures. Mole-rats may rely more heavily on behavioural thermoregulation as it is more energy efficient in an already challenging environment. PMID:28072840

  1. ddRADseq reveals determinants for temperature-dependent sex reversal in Nile tilapia on LG23.

    PubMed

    Wessels, Stephan; Krause, Ina; Floren, Claudia; Schütz, Ekkehard; Beck, Jule; Knorr, Christoph

    2017-07-14

    In Nile tilapia sex determination is governed by a male heterogametic system XX/XY either on LG1 or LG23. The latter carries a Y-specific duplicate of the amh gene, which is a testis-determining factor. Allelic variants in the amh gene demonstrated to be major triggers for autosomal and temperature-dependent sex reversal. Further, QTL on LG23 and LG20 show a temperature-responsiveness with influence on the phenotypic sex relative to the sex chromosomes. Here we present a ddRADseq based approach to identify genomic regions that show unusual large differentiation in terms of fixation index (F ST ) between temperature-treated pseudomales and non-masculinized females using a comparative genome-scan. Genome-wide associations were identified for the temperature-dependent sex using a genetically all-female population devoid of amh-ΔY. Twenty-two thousand three hundred ninety-two SNPs were interrogated for the comparison of temperature-treated pseudomales and females, which revealed the largest differentiation on LG23. Outlier F ST -values (0.35-0.44) were determined for six SNPs in the genomic interval (9,190,077-11,065,693) harbouring the amh gene (9,602,693-9,605,808), exceeding the genome-wide low F ST of 0.013. Association analysis with a set of 9104 selected SNPs confirmed that the same genomic region on LG23 exerts a significant effect on the temperature-dependent sex. This study highlights the role of LG23 in sex determination, harbouring major determinants for temperature-dependent sex reversal in Nile tilapia. Furthermore F ST outlier detection proves a powerful tool for detection of sex-determining regions in fish genomes.

  2. Cobalt related defect levels in silicon analyzed by temperature- and injection-dependent lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Diez, S.; Rein, S.; Roth, T.; Glunz, S. W.

    2007-02-01

    Temperature- and injection-dependent lifetime spectroscopy (TIDLS) as a method to characterize point defects in silicon with several energy levels is demonstrated. An intentionally cobalt-contaminated p-type wafer was investigated by means of lifetime measurements performed at different temperatures up to 151°C. Two defect energy levels were required to model the lifetime curves on basis of the Shockley-Read-Hall statistics. The detailed analysis is based on the determination of the recently introduced defect parameter solution surface (DPSS) in order to extract the underlying defect parameters. A unique solution has been found for a deep defect level located in the upper band gap half with an energy depth of EC-Et=0.38±0.01eV, with a corresponding ratio of capture cross sections k =σn/σp=0.16 within the interval of uncertainty of 0.06-0.69. Additionally, a deep donor level in the lower band gap half known from the literature could be assigned to a second energy level within the DPSS analysis at Et-EV=0.41±0.02eV with a corresponding ratio of capture cross sections k =σn/σp=16±3. An investigation of the temperature dependence of the capture cross section for electrons suggests that the underlying recombination process of the defect in the lower band gap half is driven by a two stage cascade capture with an activation energy of ΔE =52±2meV. These results show that TIDLS in combination with DPSS analysis is a powerful method to characterize even multiple defect levels that are affecting carrier recombination lifetime in parallel.

  3. Temperature-dependent optical band gap of the metastable zinc-blende structure [beta]-GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramirez-Flores, G.; Navarro-Contreras, H.; Lastras-Martinez, A.

    1994-09-15

    The temperature-dependent (10--300 K) optical band gap [ital E][sub 0]([ital T]) of the epitaxial metastable zinc-blende-structure [beta]-GaN(001)4[times]1 has been determined by modulated photoreflectance and used to interpret low-temperature photoluminescence spectra. [ital E][sub 0] in [beta]-GaN was found to vary from 3.302[plus minus]0.004 eV at 10 K to 3.231[plus minus]0.008 eV at 300 K with a temperature dependence given by [ital E][sub 0]([ital T]) =3.302--6.697[times]10[sup [minus]4][ital T][sup 2]/([ital T]+600) eV. The spin-orbit splitting [Delta][sub 0] in the valence band was determined to be 17[plus minus]1 meV. The oscillations in the photoreflectance spectra were very sharp with a broadening parameter [Gamma] ofmore » only 10 meV at 10 K. The dominant transition observed in temperature-dependent photoluminescence was attributed to radiative recombination between a shallow donor, at [congruent]11 meV below the conduction-band edge and the valence band.« less

  4. Incident polarization angle and temperature dependence of polarization and spectral response characteristics in optical fiber couplers.

    PubMed

    Namihira, Y; Kawazawa, T; Wakabayashi, H

    1991-03-20

    The incident polarization angle and temperature dependence of the polarization and spectral response characteristics of three different types of fiber coupler are presented. The couplers are (1) the biconicalfused- twisted-taper single-mode fiber (coupler A), (2) the asymmetric-etched-fused-taper wavelength division multiplex (coupler B), and (3) the biconical-polished polarization maintaining fiber (coupler C), respectively. It is confirmed experimentally that the polarization characteristics of couplers A and B vary greatly with temperature, but those of coupler C are independent of temperature. Also, the wavelength dependence characteristics of the power splitting ratio of couplers B and C have almost no change with temperature. However, the wavelength dependence of coupler A is greatly changed with temperature. Comparing couplers A and B, it is postulated that the sinusoidal variations of the polarization state vs the incident polarization angle are due to the stress birefringence caused by the fiber twisting when the fused fiber coupler is fabricated and packaged.

  5. Temperature- and pressure-dependent absorption cross sections of gaseous hydrocarbons at 3.39 µm

    NASA Astrophysics Data System (ADS)

    Klingbeil, A. E.; Jeffries, J. B.; Hanson, R. K.

    2006-07-01

    The pressure- and temperature-dependent absorption cross sections of several neat hydrocarbons and multi-component fuels are measured using a 3.39 µm helium-neon laser. Absorption cross section measurements are reported for methane, ethylene, propane, n-heptane, iso-octane, n-decane, n-dodecane, JP-10, gasoline and jet-A with an estimated uncertainty of less than 3.5%. The experimental conditions range from 298 to 673 K and from 500 to 2000 Torr with nitrogen as the bath gas. An apparatus is designed to facilitate these measurements, and specific care is taken to ensure the compositional accuracy of the hydrocarbon/N2 mixtures. The absorption cross sections of the smallest hydrocarbons, methane and ethylene, vary with temperature and pressure. The cross sections of larger hydrocarbons show negligible dependence on pressure and only a weak dependence on temperature. The reported data increase the range of conditions and the number of hydrocarbons for which cross section measurements are available at the HeNe laser wavelength.

  6. Age-related changes in core body temperature and activity in triple-transgenic Alzheimer’s disease (3xTgAD) mice

    PubMed Central

    Knight, Elysse M.; Brown, Timothy M.; Gümüsgöz, Sarah; Smith, Jennifer C. M.; Waters, Elizabeth J.; Allan, Stuart M.; Lawrence, Catherine B.

    2013-01-01

    SUMMARY Alzheimer’s disease (AD) is characterised, not only by cognitive deficits and neuropathological changes, but also by several non-cognitive behavioural symptoms that can lead to a poorer quality of life. Circadian disturbances in core body temperature and physical activity are reported in AD patients, although the cause and consequences of these changes are unknown. We therefore characterised circadian patterns of body temperature and activity in male triple transgenic AD mice (3xTgAD) and non-transgenic (Non-Tg) control mice by remote radiotelemetry. At 4 months of age, daily temperature rhythms were phase advanced and by 6 months of age an increase in mean core body temperature and amplitude of temperature rhythms were observed in 3xTgAD mice. No differences in daily activity rhythms were seen in 4- to 9-month-old 3xTgAD mice, but by 10 months of age an increase in mean daily activity and the amplitude of activity profiles for 3xTgAD mice were detected. At all ages (4–10 months), 3xTgAD mice exhibited greater food intake compared with Non-Tg mice. The changes in temperature did not appear to be solely due to increased food intake and were not cyclooxygenase dependent because the temperature rise was not abolished by chronic ibuprofen treatment. No β-amyloid (Aβ) plaques or neurofibrillary tangles were noted in the hypothalamus of 3xTgAD mice, a key area involved in temperature regulation, although these pathological features were observed in the hippocampus and amygdala of 3xTgAD mice from 10 months of age. These data demonstrate age-dependent changes in core body temperature and activity in 3xTgAD mice that are present before significant AD-related neuropathology and are analogous to those observed in AD patients. The 3xTgAD mouse might therefore be an appropriate model for studying the underlying mechanisms involved in non-cognitive behavioural changes in AD. PMID:22864021

  7. Temperature-Dependent Lithium-Ion Diffusion and Activation Energy of Li1.2Co0.13Ni0.13Mn0.54O2 Thin-Film Cathode at Nanoscale by Using Electrochemical Strain Microscopy.

    PubMed

    Yang, Shan; Yan, Binggong; Wu, Jiaxiong; Lu, Li; Zeng, Kaiyang

    2017-04-26

    This paper presents the in situ mapping of temperature-dependent lithium-ion diffusion at the nanometer level in thin film Li 1.2 Co 0.13 Ni 0.13 Mn 0.54 O 2 cathode using electrochemical strain microscopy. The thin-film Li 1.2 Co 0.13 Ni 0.13 Mn 0.54 O 2 cathode exhibits higher lithium-ion diffusivities with increasing temperature, which explains the higher capacity observed in the lithium-ion batteries with a Li-rich cathode at elevated temperature. In addition, the activation energy for lithium-ion diffusion can be extracted in an Arrhenius-type plot at the level of grain structure with the assumption that the ionic movement is diffusion controlled. Compared with the grain interiors, the grain boundaries show relatively lower activation energy; hence, it is the preferred diffusion path for lithium ions. This study has bridged the gap between atomistic calculations and traditional macroscopic experiments, showing direct evidence as well as mechanisms for ionic diffusion for Li-rich cathode material.

  8. Temperature-dependent infrared optical properties of 3C-, 4H- and 6H-SiC

    NASA Astrophysics Data System (ADS)

    Tong, Zhen; Liu, Linhua; Li, Liangsheng; Bao, Hua

    2018-05-01

    The temperature-dependent optical properties of cubic (3C) and hexagonal (4H and 6H) silicon carbide are investigated in the infrared range of 2-16 μm both by experimental measurements and numerical simulations. The temperature in experimental measurement is up to 593 K, while the numerical method can predict the optical properties at elevated temperatures. To investigate the temperature effect, the temperature-dependent damping parameter in the Lorentz model is calculated based on anharmonic lattice dynamics method, in which the harmonic and anharmonic interatomic force constants are determined from first-principles calculations. The infrared phonon modes of silicon carbide are determined from first-principles calculations. Based on first-principles calculations, the Lorentz model is parameterized without any experimental fitting data and the temperature effect is considered. In our investigations, we find that the increasing temperature induces a small reduction of the reflectivity in the range of 10-13 μm. More importantly, it also shows that our first-principles calculations can predict the infrared optical properties at high-temperature effectively which is not easy to be obtained through experimental measurements.

  9. Temperature-dependent studies on the total phenolics, flavonoids, antioxidant activities, and sugar content in six onion varieties.

    PubMed

    Sharma, Kavita; Ko, Eun Young; Assefa, Awraris D; Ha, Soyoung; Nile, Shivraj H; Lee, Eul Tai; Park, Se Won

    2015-06-01

    Heating effect on total phenol, flavonoids, antioxidant activity, and sugar content of six onion varieties has been quantitatively investigated to explore the effect of different temperatures. The onion varieties comprised one red-skinned variety, two white-skinned varieties, and three yellow-skinned varieties. The heating temperature was scanned at 80°C, 100°C, 120°C, and 150°C for 30 minutes each, and quantitative analysis was performed relative to the powdered onion at ambient temperature. Quercetin, glucosides and sugar content were analyzed using high-performance liquid chromatography. The total phenolic and antioxidant content increased in all six varieties. The total flavonoid levels showed a considerable change. On heating the onion samples at 120°C for 30 minutes, the red-skinned variety showed the highest level of total phenolic content [13712.67 ± 1034.85 μg of gallic acid equivalent/g dry weight (μg GAE/g DW)] and total flavonoids [3456.00 ± 185.82 μg of quercetin equivalents/g dry weight (μg Q/g DW)], whereas the content of total phenolics and total flavonoids were 13611.83 ± 341.61 μg GAE/g DW and 3482.87 ± 117.17 μg Q/g DW, respectively, for the yellow-skinned (Sunpower) variety. Quercetin and its glucoside contents increased up to 120°C and then decreased at 150°C, whereas the sugar content continuously decreased with heating. All cultivars showed the same pattern in the heating effect, and the predominant flavonoids were destroyed at higher temperatures. Therefore, it is improper to expose onion powder to a temperature higher than 120°C. Copyright © 2015. Published by Elsevier B.V.

  10. Adsorption of carbon monoxide on smaller gold-cluster anions in an atmospheric-pressure flow-reactor: temperature and humidity dependence.

    PubMed

    Wallace, William T; Wyrwas, Richard B; Leavitt, Andrew J; Whetten, Robert L

    2005-03-07

    In the absence of moisture and at room temperature, the activity and saturation of CO on gold cluster anions, Au(N)-, are known to be highly dependent on the size of the cluster. Small Au(N)- clusters (N = 2,3) showed no adsorption activity, and the saturation CO adsorption values did not increase proportionately to cluster size or area. Here, we report on the effects of water vapor and temperature on the ability of Au(N)- clusters to adsorb CO in a high-pressure, fast-flow reactor. In contrast to all earlier reports, our results using this method show that smaller gold-cluster anions bind single and multiple CO groups at ambient temperature and above. In particular, species previously unseen at room temperature, corresponding to Au2(CO)-, Au3(CO) and Au4(CO)2, have been observed. Apparently, the presence of water vapor facilitates the adsorption of CO on the smaller clusters, possibly by aiding in the release of adsorption energy. As the number of studies concerning gold catalysis has continually increased over the past decade, these results provide important new information on the possible role of moisture in gold catalysis.

  11. Application of reference-modified density functional theory: Temperature and pressure dependences of solvation free energy.

    PubMed

    Sumi, Tomonari; Maruyama, Yutaka; Mitsutake, Ayori; Mochizuki, Kenji; Koga, Kenichiro

    2018-02-05

    Recently, we proposed a reference-modified density functional theory (RMDFT) to calculate solvation free energy (SFE), in which a hard-sphere fluid was introduced as the reference system instead of an ideal molecular gas. Through the RMDFT, using an optimal diameter for the hard-sphere reference system, the values of the SFE calculated at room temperature and normal pressure were in good agreement with those for more than 500 small organic molecules in water as determined by experiments. In this study, we present an application of the RMDFT for calculating the temperature and pressure dependences of the SFE for solute molecules in water. We demonstrate that the RMDFT has high predictive ability for the temperature and pressure dependences of the SFE for small solute molecules in water when the optimal reference hard-sphere diameter determined for each thermodynamic condition is used. We also apply the RMDFT to investigate the temperature and pressure dependences of the thermodynamic stability of an artificial small protein, chignolin, and discuss the mechanism of high-temperature and high-pressure unfolding of the protein. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Redox-active porous coordination polymer based on trinuclear pivalate: Temperature-dependent crystal rearrangement and redox-behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lytvynenko, Anton S.; Kiskin, Mikhail A., E-mail: mkiskin@igic.ras.ru; Dorofeeva, Victoria N.

    2015-03-15

    Linking of trinuclear pivalate Fe{sub 2}NiO(Piv){sub 6} (Piv=O{sub 2}CC(CH{sub 3}){sub 3}) by 2,6-bis(4-pyridyl)-4-(1-naphthyl)pyridine (L) resulted in formation of 1D-porous coordination polymer Fe{sub 2}NiO(Piv){sub 6}(L)·Solv, which was characterized in two forms: DMSO solvate Fe{sub 2}NiO(Piv){sub 6}(L)(DMSO)·2.5DMSO (1) or water solvate Fe{sub 2}NiO(Piv){sub 6}(L)(H{sub 2}O) (2). X-ray structure of 1 was determined. Crystal lattice of 1 at 160 K contained open channels, filled by captured solvent, while temperature growth to 296 K led to the crystal lattice rearrangement and formation of closed voids. Redox-behavior of 2 was studied by cyclic voltammetry for a solid compound, deposited on glassy-carbon electrode. Redox-activity of Lmore » preserved upon incorporation in the coordination polymer. The presence of pores in desolvated sample Fe{sub 2}NiO(Piv){sub 6}(L) was confirmed by the measurements of N{sub 2} and H{sub 2} adsorption at 77 K. Potential barriers of the different molecules diffusion through pores were estimated by the means of molecular mechanics. - Graphical abstract: Redox-behavior of 1D-porous coordination polymer Fe{sub 2}NiO(Piv){sub 6}(L)(H{sub 2}O) was studied by cyclic voltammetry in thin film, deposited on glassy-carbon electrode. Redox-activity of L preserved upon incorporation in the coordination polymer. Potential barriers of different molecules diffusion through pores were estimated by the means of molecular mechanics. - Highlights: • Porous 1D coordination polymer was synthesized. • Temperature growth led to pores closing due to crystal lattice rearrangement. • Redox-activity of ligand preserved upon incorporation into coordination polymer. • Redox-properties of solid coordination polymer were studied in thin film. • Diffusion barriers were evaluated by molecular mechanics.« less

  13. Temperature-dependent self-assembly of NC–Ph{sub 5}–CN molecules on Cu(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pivetta, Marina, E-mail: marina.pivetta@epfl.ch; Pacchioni, Giulia E.; Fernandes, Edgar

    2015-03-14

    We present the results of temperature-dependent self-assembly of dicarbonitrile-pentaphenyl molecules (NC–Ph{sub 5}–CN) on Cu(111). Our low-temperature scanning tunneling microscopy study reveals the formation of metal-organic and purely organic structures, depending on the substrate temperature during deposition (160–300 K), which determines the availability of Cu adatoms at the surface. We use tip functionalization with CO to obtain submolecular resolution and image the coordination atoms, enabling unequivocal identification of metal-coordinated nodes and purely organic ones. Moreover, we discuss the somewhat surprising structure obtained for deposition and measurement at 300 K.

  14. Evaluating linear response in active systems with no perturbing field: Application to the calculation of an effective temperature

    NASA Astrophysics Data System (ADS)

    Szamel, Grzegorz

    We present a method for the evaluation of time-dependent linear response functions for systems of active particles propelled by a persistent (colored) noise from unperturbed simulations. The method is inspired by the Malliavin weights sampling method proposed earlier for systems of (passive) Brownian particles. We illustrate our method by evaluating a linear response function for a single active particle in an external harmonic potential. As an application, we calculate the time-dependent mobility function and an effective temperature, defined through the Einstein relation between the self-diffusion and mobility coefficients, for a system of active particles interacting via a screened-Coulomb potential. We find that this effective temperature decreases with increasing persistence time of the self-propulsion. Initially, for not too large persistence times, it changes rather slowly, but then it decreases markedly when the persistence length of the self-propelled motion becomes comparable with the particle size. Supported by NSF and ERC.

  15. Abnormal temperature dependent behaviors of intersystem crossing and triplet-triplet annihilation in organic planar heterojunction devices

    NASA Astrophysics Data System (ADS)

    Xiang, Jie; Chen, Yingbing; Yuan, De; Jia, Weiyao; Zhang, Qiaoming; Xiong, Zuhong

    2016-09-01

    Anomalous temperature dependent magneto-electroluminescence was observed at low and high magnetic field strength from organic planar heterojunction devices incorporated common phosphorescent host materials of N,N'-dicarbazolyl-3,5-benzene (mCP) or 4,4'-N,N'-dicarbazole-biphenyl (CBP) as an emissive layer. We found that intersystem crossing became stronger with decreasing temperature and that triplet-triplet annihilation (TTA) occurred at room temperature but ceased at low temperature. Analyses of the electroluminescence spectra of these devices and their temperature dependences indicated that the population of exciplex states increased at low temperature, which caused the abnormal behavior of intersystem crossing. Additionally, long lifetime of the excitons within mCP or CBP layer may allow TTA to occur at room temperature, while the reduced population of excitons at low temperature may account for the disappearance of TTA even though the excitons had increased lifetime.

  16. Temperature-Dependent Thermal Boundary Conductance of Monolayer MoS 2 by Raman Thermometry

    DOE PAGES

    Yalon, Eilam; Aslan, Ozgur Burak; Smithe, Kirby K. H.; ...

    2017-10-20

    The electrical and thermal behavior of nanoscale devices based on two-dimensional (2D) materials is often limited by their contacts and interfaces. Here we report the temperature-dependent thermal boundary conductance (TBC) of monolayer MoS 2 with AlN and SiO 2, using Raman thermometry with laser-induced heating. The temperature-dependent optical absorption of the 2D material is crucial in such experiments, which we characterize here for the first time above room temperature. We obtain TBC ~ 15 MW m –2 K –1 near room temperature, increasing as ~ T 0.65 in the range 300–600 K. The similar TBC of MoS 2 with themore » two substrates indicates that MoS 2 is the “softer” material with weaker phonon irradiance, and the relatively low TBC signifies that such interfaces present a key bottleneck in energy dissipation from 2D devices. As a result, our approach is needed to correctly perform Raman thermometry of 2D materials, and our findings are key for understanding energy coupling at the nanoscale.« less

  17. Temperature-Dependent Thermal Boundary Conductance of Monolayer MoS 2 by Raman Thermometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yalon, Eilam; Aslan, Ozgur Burak; Smithe, Kirby K. H.

    The electrical and thermal behavior of nanoscale devices based on two-dimensional (2D) materials is often limited by their contacts and interfaces. Here we report the temperature-dependent thermal boundary conductance (TBC) of monolayer MoS 2 with AlN and SiO 2, using Raman thermometry with laser-induced heating. The temperature-dependent optical absorption of the 2D material is crucial in such experiments, which we characterize here for the first time above room temperature. We obtain TBC ~ 15 MW m –2 K –1 near room temperature, increasing as ~ T 0.65 in the range 300–600 K. The similar TBC of MoS 2 with themore » two substrates indicates that MoS 2 is the “softer” material with weaker phonon irradiance, and the relatively low TBC signifies that such interfaces present a key bottleneck in energy dissipation from 2D devices. As a result, our approach is needed to correctly perform Raman thermometry of 2D materials, and our findings are key for understanding energy coupling at the nanoscale.« less

  18. Effects on temperature and acidic pre-treatment on Fenton-driven oxidation of MTBE-spent granular activated carbon

    EPA Science Inventory

    Temperature-dependent mechanisms in the Fenton-driven chemical oxidation of methyl tert-butyl ether (MTBE)-spent granular activated carbon (GAC) was investigated. Prior to iron (Fe) amendment to the GAC, acid-treatment altered the surface chemistry of the GAC and lowered the p...

  19. Theoretical analysis of the unusual temperature dependence of the kinetic isotope effect in quinol oxidation.

    PubMed

    Ludlow, Michelle K; Soudackov, Alexander V; Hammes-Schiffer, Sharon

    2009-05-27

    In this paper we present theoretical calculations on model biomimetic systems for quinol oxidation. In these model systems, an excited-state [Ru(bpy)(2)(pbim)](+) complex (bpy = 2,2'-dipyridyl, pbim = 2-(2-pyridyl)benzimidazolate) oxidizes a ubiquinol or plastoquinol analogue in acetonitrile. The charge transfer reaction occurs via a proton-coupled electron transfer (PCET) mechanism, in which an electron is transferred from the quinol to the Ru and a proton is transferred from the quinol to the pbim(-) ligand. The experimentally measured average kinetic isotope effects (KIEs) at 296 K are 1.87 and 3.45 for the ubiquinol and plastoquinol analogues, respectively, and the KIE decreases with temperature for plastoquinol but increases with temperature for ubiquinol. The present calculations provide a possible explanation for the differences in magnitudes and temperature dependences of the KIEs for the two systems and, in particular, an explanation for the unusual inverse temperature dependence of the KIE for the ubiquinol analogue. These calculations are based on a general theoretical formulation for PCET reactions that includes quantum mechanical effects of the electrons and transferring proton, as well as the solvent reorganization and proton donor-acceptor motion. The physical properties of the system that enable the inverse temperature dependence of the KIE are a stiff hydrogen bond, which corresponds to a high-frequency proton donor-acceptor motion, and small inner-sphere and solvent reorganization energies. The inverse temperature dependence of the KIE may be observed if the 0/0 pair of reactant/product vibronic states is in the inverted Marcus region, while the 0/1 pair of reactant/product vibronic states is in the normal Marcus region and is the dominant contributor to the overall rate. In this case, the free energy barrier for the dominant transition is lower for deuterium than for hydrogen because of the smaller splittings between the vibronic energy levels

  20. Temperature dependence of the hydrogen-broadening coefficient for the nu 9 fundamental of ethane

    NASA Technical Reports Server (NTRS)

    Halsey, G. W.; Hillman, J. J.; Nadler, Shacher; Jennings, D. E.

    1988-01-01

    Experimental results for the temperature dependence of the H2-broadening coefficient for the nu 9 fundamental of ethane are reported. Measurements were made over the temperature range 95-300 K using a novel low-temperature absorption cell. These spectra were recorded with the Doppler-limited diode laser spectrometer at NASA Goddard. The results are compared with recent measurements and model predictions.

  1. Temperature dependent surface modification of molybdenum due to low energy He+ ion irradiation

    NASA Astrophysics Data System (ADS)

    Tripathi, J. K.; Novakowski, T. J.; Joseph, G.; Linke, J.; Hassanein, A.

    2015-09-01

    In this paper, we report on the temperature dependent surface modifications in molybdenum (Mo) samples due to 100 eV He+ ion irradiation in extreme conditions as a potential candidate to plasma-facing components in fusion devices alternative to tungsten. The Mo samples were irradiated at normal incidence, using an ion fluence of 2.6 × 1024 ions m-2 (with a flux of 7.2 × 1020 ions m-2 s-1). Surface modifications have been studied using high-resolution field emission scanning electron-(SEM) and atomic force (AFM) microscopy. At 773 K target temperature homogeneous evolution of molybdenum nanograins on the entire Mo surface were observed. However, at 823 K target temperature appearance of nano-pores and pin-holes nearby the grain boundaries, and Mo fuzz in patches were observed. The fuzz density increases significantly with target temperatures and continued until 973 K. However, at target temperatures beyond 973 K, counterintuitively, a sequential reduction in the fuzz density has been seen till 1073 K temperatures. At 1173 K and above temperatures, only molybdenum nano structures were observed. Our temperature dependent studies confirm a clear temperature widow, 823-1073 K, for Mo fuzz formation. Ex-situ high resolution X-ray photoelectron spectroscopy studies on Mo fuzzy samples show the evidence of MoO3 3d doublets. This elucidates that almost all the Mo fuzz were oxidized during open air exposure and are thick enough as well. Likewise the microscopy studies, the optical reflectivity measurements also show a sequential reduction in the reflectivity values (i.e., enhancement in the fuzz density) up to 973 K and after then a sequential enhancement in the reflectivity values (i.e., reduction in the fuzz density) with target temperatures. This is in well agreement with microscopy studies where we observed clear temperature window for Mo fuzz growth.

  2. Temperature Dependence of the Thermal Conductivity of a Trapped Dipolar Bose-Condensed Gas

    NASA Astrophysics Data System (ADS)

    Yavari, H.

    2018-02-01

    The thermal conductivity of a trapped dipolar Bose condensed gas is calculated as a function of temperature in the framework of linear response theory. The contributions of the interactions between condensed and noncondensed atoms and between noncondensed atoms in the presence of both contact and dipole-dipole interactions are taken into account to the thermal relaxation time, by evaluating the self-energies of the system in the Beliaev approximation. We will show that above the Bose-Einstein condensation temperature ( T > T BEC ) in the absence of dipole-dipole interaction, the temperature dependence of the thermal conductivity reduces to that of an ideal Bose gas. In a trapped Bose-condensed gas for temperature interval k B T << n 0 g B , E p << k B T ( n 0 is the condensed density and g B is the strength of the contact interaction), the relaxation rates due to dipolar and contact interactions between condensed and noncondensed atoms change as {τ}_{dd12}^{-1}∝ {e}^{-E/{k}_BT} and τ c12 ∝ T -5, respectively, and the contact interaction plays the dominant role in the temperature dependence of the thermal conductivity, which leads to the T -3 behavior of the thermal conductivity. In the low-temperature limit, k B T << n 0 g B , E p >> k B T, since the relaxation rate {τ}_{c12}^{-1} is independent of temperature and the relaxation rate due to dipolar interaction goes to zero exponentially, the T 2 temperature behavior for the thermal conductivity comes from the thermal mean velocity of the particles. We will also show that in the high-temperature limit ( k B T > n 0 g B ) and low momenta, the relaxation rates {τ}_{c12}^{-1} and {τ}_{dd12}^{-1} change linearly with temperature for both dipolar and contact interactions and the thermal conductivity scales linearly with temperature.

  3. Time-dependent low field microwave absorption in the high temperature superconductors

    NASA Astrophysics Data System (ADS)

    Owens, F. J.; Iqbal, Z.

    1990-11-01

    It is observed that the hysteresis in the applied magnetic field position and the intensity at the peak of the low field non-resonant microwave absorption (recorded in an EPR experiment with a modulation amplitude of ∼ 10 G) in the superconducting state of the cuprate superconductors, is time-dependent after the removal of a DC magnetic field sizably greater than the lower critical field. This intrinsic time-dependence, which we attribute to flux creep, is reported here for two copper oxide-based high temperature superconductors.

  4. Temperature-Dependent Function of the Glutamine Phosphoribosylpyrophosphate Amidotransferase Ammonia Channel and Coupling with Glycinamide Ribonucleotide Synthetase in a Hyperthermophile†

    PubMed Central

    Bera, Aloke Kumar; Chen, Sihong; Smith, Janet L.; Zalkin, Howard

    2000-01-01

    Genes encoding glutamine phosphoribosylpyrophosphate amidotransferase (GPAT) and glycinamide ribonucleotide synthetase (GARS) from Aquifex aeolicus were expressed in Escherichia coli, and the enzymes were purified to near homogeneity. Both enzymes were maximally active at a temperature of at least 90°C, with half-lives of 65 min for GPAT and 60 h for GARS at 80°C. GPAT activity is known to depend upon channeling of NH3 from a site in an N-terminal glutaminase domain to a distal phosphoribosylpyrophosphate site in a C-terminal domain where synthesis of phosphoribosylamine (PRA) takes place. The efficiency of channeling of NH3 for synthesis of PRA was found to increase from 34% at 37°C to a maximum of 84% at 80°C. The mechanism for transfer of PRA to GARS is not established, but diffusion between enzymes as a free intermediate appears unlikely based on a calculated PRA half-life of approximately 0.6 s at 90°C. Evidence was obtained for coupling between GPAT and GARS for PRA transfer. The coupling was temperature dependent, exhibiting a transition between 37 and 50°C, and remained relatively constant up to 90°C. The calculated PRA chemical half-life, however, decreased by a factor of 20 over this temperature range. These results provide evidence that coupling involves direct PRA transfer through GPAT-GARS interaction rather than free diffusion. PMID:10850988

  5. Temperature-dependent function of the glutamine phosphoribosylpyrophosphate amidotransferase ammonia channel and coupling with glycinamide ribonucleotide synthetase in a hyperthermophile.

    PubMed

    Bera, A K; Chen, S; Smith, J L; Zalkin, H

    2000-07-01

    Genes encoding glutamine phosphoribosylpyrophosphate amidotransferase (GPAT) and glycinamide ribonucleotide synthetase (GARS) from Aquifex aeolicus were expressed in Escherichia coli, and the enzymes were purified to near homogeneity. Both enzymes were maximally active at a temperature of at least 90 degrees C, with half-lives of 65 min for GPAT and 60 h for GARS at 80 degrees C. GPAT activity is known to depend upon channeling of NH(3) from a site in an N-terminal glutaminase domain to a distal phosphoribosylpyrophosphate site in a C-terminal domain where synthesis of phosphoribosylamine (PRA) takes place. The efficiency of channeling of NH(3) for synthesis of PRA was found to increase from 34% at 37 degrees C to a maximum of 84% at 80 degrees C. The mechanism for transfer of PRA to GARS is not established, but diffusion between enzymes as a free intermediate appears unlikely based on a calculated PRA half-life of approximately 0.6 s at 90 degrees C. Evidence was obtained for coupling between GPAT and GARS for PRA transfer. The coupling was temperature dependent, exhibiting a transition between 37 and 50 degrees C, and remained relatively constant up to 90 degrees C. The calculated PRA chemical half-life, however, decreased by a factor of 20 over this temperature range. These results provide evidence that coupling involves direct PRA transfer through GPAT-GARS interaction rather than free diffusion.

  6. Biomechanics of ant adhesive pads: frictional forces are rate- and temperature-dependent.

    PubMed

    Federle, Walter; Baumgartner, Werner; Hölldobler, Bert

    2004-01-01

    Tarsal adhesive pads enable insects to hold on to smooth plant surfaces. Using a centrifuge technique, we tested whether a "wet adhesion" model of a thin film of liquid secreted between the pad and the surface can explain adhesive and frictional forces in Asian Weaver ants (Oecophylla smaragdina). When forces are acting parallel to the surface, pads in contact with the surface can slide smoothly. Force per unit pad contact area was strongly dependent on sliding velocity and temperature. Seemingly consistent with the effect of a thin liquid film in the contact zone, (1) frictional force linearly increased with sliding velocity, (2) the increment was greater at lower temperatures and (3) no temperature dependence was detected for low-rate perpendicular detachment forces. However, we observed a strong, temperature-independent static friction that was inconsistent with a fully lubricated contact. Static friction was too large to be explained by the contribution of other (sclerotized) body parts. Moreover, the rate-specific increase of shear stress strongly exceeded predictions derived from estimates of the adhesive liquid film's thickness and viscosity. Both lines of evidence indicate that the adhesive secretion alone is insufficient to explain the observed forces and that direct interaction of the soft pad cuticle with the surface ("rubber friction") is involved.

  7. Temperature-dependent spectral linewidths of terahertz Bloch oscillations in biased semiconductor superlattices

    NASA Astrophysics Data System (ADS)

    Unuma, Takeya; Matsuda, Aleph

    2018-04-01

    We investigate temperature-dependent spectral linewidths of Bloch oscillations in biased semiconductor superlattices experimentally and theoretically. The spectral linewidth in a GaAs-based superlattice determined by terahertz emission spectroscopy becomes larger gradually as temperature increases from 80 to 320 K. This behavior can be quantitatively reproduced by a microscopic theory of the spectral linewidth that has been extended to treat the phonon scattering and interface roughness scattering of electrons on a Wannier-Stark ladder. A detailed comparison between the terahertz measurements and theoretical simulations reveals that the LO phonon absorption process governs the increase in the spectral linewidth with increasing temperature.

  8. Temperature dependences of the electric polarization and wave number of incommensurate structures in multiferroics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pikin, S. A., E-mail: pikin@ns.crys.ras.ru

    2016-05-15

    It is shown that the electric polarization and wave number of incommensurate modulations, proportional to each other, increase according to the Landau law in spin multiferroic cycloids near the Néel temperature. In this case, the constant magnetization component (including the one for a conical spiral) is oriented perpendicular to the spin incommensurability wave vector. A similar temperature behavior should manifest itself for spin helicoids, the axes of which are oriented parallel to the polarization vector but their spin rotation planes are oriented perpendicular to the antiferromagnetic order plane. When the directions of axes of the magnetization helicoid and polarization vectormore » coincide, the latter is quadratic with respect to magnetization and linearly depends on temperature, whereas the incommensurate-modulation wave number barely depends on temperature. Structural distortions of unit cells for multiferroics of different types determine their axial behavior.« less

  9. The temperature dependence of optical properties of tungsten in the visible and near-infrared domains: an experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Minissale, Marco; Pardanaud, Cedric; Bisson, Régis; Gallais, Laurent

    2017-11-01

    The knowledge of optical properties of tungsten at high temperatures is of crucial importance in fields such as nuclear fusion and aerospace applications. The optical properties of tungsten are well known at room temperature, but little has been done at temperatures between 300 K and 1000 K in the visible and near-infrared domains. Here, we investigate the temperature dependence of tungsten reflectivity from the ambient to high temperatures (<1000 K) in the 500-1050 nm spectral range, a region where interband transitions make a strong contribution. Experimental measurements, performed via a spectroscopic system coupled with laser remote heating, show that tungsten’s reflectivity increases with temperature and wavelength. We have described these dependences through a Fresnel and two Lorentz-Drude models. The Fresnel model accurately reproduces the experimental curve at a given temperature, but it is able to simulate the temperature dependency of reflectivity only thanks to an ad hoc choice of temperature formulae for the refractive indexes. Thus, a less empirical approach, based on Lorentz-Drude models, is preferred to describe the interaction of light and charge carriers in the solid. The first Lorentz-Drude model, which includes a temperature dependency on intraband transitions, fits experimental results only qualitatively. The second Lorentz-Drude model includes in addition a temperature dependency on interband transitions. It is able to reproduce the experimental results quantitatively, highlighting a non-trivial dependence of interband transitions as a function of temperature. Eventually, we use these temperature dependent Lorentz-Drude models to evaluate the total emissivity of tungsten from 300 K to 3500 K, and we compare our experimental and theoretical findings with previous results.

  10. Temperature-dependent residual shear strength characteristics of smectite-rich landslide soils

    NASA Astrophysics Data System (ADS)

    Shibasaki, Tatsuya; Matsuura, Sumio; Okamoto, Takashi

    2015-04-01

    On gentle clayey slopes in weathered argillaceous rock areas, there exist many landslides which repeatedly reactivate with slow movement. The slip surface soils of these landslides are sometimes composed dominantly of swelling clay mineral (smectite) which is well known to show extremely low residual friction angle. From field data monitored at landslide sites in Japan, it has become clear that some landslides with relatively shallow slip surface begin to move and become active in late autumn or early winter every year. In such cases, the triggering mechanisms of landslides have not been understood well enough, because landslide initiation and movement are not always clearly linked with rises in pore water pressures (ground water levels). In this study, we focus on the influence of seasonal variation in ground temperature on slope stability and have investigated the effect of temperature on the shear strength of slip surface soils. Undisturbed soil samples were collected by boring from the Busuno landslide in Japan. We performed box shear experiments on undisturbed slip surface soils at low temperature ranges (approximately 5-25 °C). XRD analysis revealed that these soils contain high fraction of smectite. Slickensided slip surface within test specimen was coincided with the shearing plane of the shear box and shear displacement was applied precisely along the localized slip surface. Experiments were performed under slow shearing rate condition (0.005mm/min) and the results showed that shear strength decreased with decreasing temperature. Temperature effect was rather significant on frictional angle than on cohesion. Ring shear experiments were also performed on normally-consolidated remoulded samples. Under residual strength condition, temperature-change experiments (cooling-event tests) ranging approximately from 5 to 25 °C were performed on smectite-rich landslide soils and commercial bentonites. As well as the results by box shear test, shear weakening

  11. Disorder dependence electron phonon scattering rate of V82Pd18 - xFex alloys at low temperature

    NASA Astrophysics Data System (ADS)

    Jana, R. N.; Meikap, A. K.

    2018-04-01

    We have systematically investigated the disorder dependence electron phonon scattering rate in three dimensional disordered V82Pd18 - xFex alloys. A minimum in temperature dependence resistivity curve has been observed at low temperature T =Tm. In the temperature range 5 K ≤ T ≤Tm the resistivity correction follows ρo 5 / 2T 1 / 2 law. The dephasing scattering time has been calculated from analysis of magnetoresistivity by weak localization theory. The electron dephasing time is dominated by electron-phonon scattering and follows anomalous temperature (T) and disorder (ρ0) dependence behaviour like τe-ph-1 ∝T2 /ρ0, where ρ0 is the impurity resistivity. The magnitude of the saturated dephasing scattering time (τ0) at zero temperature decreases with increasing disorder of the samples. Such anomalous behaviour of dephasing scattering rate is still unresolved.

  12. Voltage Dependence of a Neuromodulator-Activated Ionic Current123

    PubMed Central

    2016-01-01

    Abstract The neuromodulatory inward current (IMI) generated by crab Cancer borealis stomatogastric ganglion neurons is an inward current whose voltage dependence has been shown to be crucial in the activation of oscillatory activity of the pyloric network of this system. It has been previously shown that IMI loses its voltage dependence in conditions of low extracellular calcium, but that this effect appears to be regulated by intracellular calmodulin. Voltage dependence is only rarely regulated by intracellular signaling mechanisms. Here we address the hypothesis that the voltage dependence of IMI is mediated by intracellular signaling pathways activated by extracellular calcium. We demonstrate that calmodulin inhibitors and a ryanodine antagonist can reduce IMI voltage dependence in normal Ca2+, but that, in conditions of low Ca2+, calmodulin activators do not restore IMI voltage dependence. Further, we show evidence that CaMKII alters IMI voltage dependence. These results suggest that calmodulin is necessary but not sufficient for IMI voltage dependence. We therefore hypothesize that the Ca2+/calmodulin requirement for IMI voltage dependence is due to an active sensing of extracellular calcium by a GPCR family calcium-sensing receptor (CaSR) and that the reduction in IMI voltage dependence by a calmodulin inhibitor is due to CaSR endocytosis. Supporting this, preincubation with an endocytosis inhibitor prevented W7 (N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride)-induced loss of IMI voltage dependence, and a CaSR antagonist reduced IMI voltage dependence. Additionally, myosin light chain kinase, which is known to act downstream of the CaSR, seems to play a role in regulating IMI voltage dependence. Finally, a Gβγ-subunit inhibitor also affects IMI voltage dependence, in support of the hypothesis that this process is regulated by a G-protein-coupled CaSR. PMID:27257619

  13. Temperature Dependence of the Oxygen Reduction Mechanism in Nonaqueous Li–O 2 Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Bin; Xu, Wu; Zheng, Jianming

    The temperature dependence of the oxygen reduction mechanism in Li-O 2 batteries was investigated using carbon nanotube-based air electrodes and 1,2-dimethoxyethane-based electrolyte within a temperature range of 20C to 40C. It is found that the discharge capacity of the Li-O 2 batteries decreases from 7,492 mAh g -1 at 40C to 2,930 mAh g -1 at 0C. However, a sharp increase in capacity was found when the temperature was further decreased and a very high capacity of 17,716 mAh g -1 was observed at 20C at a current density of 0.1 mA cm-2. When the temperature increases from 20C tomore » 40C, the morphologies of the Li 2O 2 formed varied from ultra-small spherical particles to small flakes and then to large flake-stacked toroids. The lifetime of superoxide and the solution pathway play a dominate role on the battery capacity in the temperature range of -20C to 0C, but the electrochemical kinetics of oxygen reduction and the surface pathway dominate the discharge behavior in the temperature range of 0C to 40C. These findings provide fundamental understanding on the temperature dependence of oxygen reduction process in a Li-O 2 battery and will enable a more rational design of Li-O 2 batteries.« less

  14. Temperature Dependence of the Resonant Magnetoelectric Effect in Layered Heterostructures.

    PubMed

    Burdin, Dmitrii A; Ekonomov, Nikolai A; Chashin, Dmitrii V; Fetisov, Leonid Y; Fetisov, Yuri K; Shamonin, Mikhail

    2017-10-16

    The dependence of the resonant direct magnetoelectric effect on temperature is studied experimentally in planar composite structures. Samples of rectangular shapes with dimensions of 5 mm × 20 mm employed ferromagnetic layers of either an amorphous (metallic glass) alloy or nickel with a thickness of 20-200 μm and piezoelectric layers of single crystalline langatate material or lead zirconate titanate piezoelectric ceramics with a thickness of 500 μm. The temperature of the samples was varied in a range between 120 and 390 K by blowing a gaseous nitrogen stream around them. It is shown that the effective characteristics of the magnetoelectric effect-such as the mechanical resonance frequency f r , the quality factor Q and the magnitude of the magnetoelectric coefficient α E at the resonance frequency-are contingent on temperature. The interrelations between the temperature changes of the characteristics of the magnetoelectric effect and the temperature variations of the following material parameters-Young's modulus Y , the acoustic quality factor of individual layers, the dielectric constant ε , the piezoelectric modulus d of the piezoelectric layer as well as the piezomagnetic coefficients λ (n) of the ferromagnetic layer-are established. The effect of temperature on the characteristics of the nonlinear magnetoelectric effect is observed for the first time. The results can be useful for designing magnetoelectric heterostructures with specified temperature characteristics, in particular, for the development of thermally stabilized magnetoelectric devices.

  15. Temperature Dependence of the Resonant Magnetoelectric Effect in Layered Heterostructures

    PubMed Central

    Burdin, Dmitrii A.; Ekonomov, Nikolai A.; Chashin, Dmitrii V.; Fetisov, Leonid Y.; Fetisov, Yuri K.

    2017-01-01

    The dependence of the resonant direct magnetoelectric effect on temperature is studied experimentally in planar composite structures. Samples of rectangular shapes with dimensions of 5 mm × 20 mm employed ferromagnetic layers of either an amorphous (metallic glass) alloy or nickel with a thickness of 20–200 μm and piezoelectric layers of single crystalline langatate material or lead zirconate titanate piezoelectric ceramics with a thickness of 500 μm. The temperature of the samples was varied in a range between 120 and 390 K by blowing a gaseous nitrogen stream around them. It is shown that the effective characteristics of the magnetoelectric effect—such as the mechanical resonance frequency fr, the quality factor Q and the magnitude of the magnetoelectric coefficient αE at the resonance frequency—are contingent on temperature. The interrelations between the temperature changes of the characteristics of the magnetoelectric effect and the temperature variations of the following material parameters—Young’s modulus Y, the acoustic quality factor of individual layers, the dielectric constant ε, the piezoelectric modulus d of the piezoelectric layer as well as the piezomagnetic coefficients λ(n) of the ferromagnetic layer—are established. The effect of temperature on the characteristics of the nonlinear magnetoelectric effect is observed for the first time. The results can be useful for designing magnetoelectric heterostructures with specified temperature characteristics, in particular, for the development of thermally stabilized magnetoelectric devices. PMID:29035312

  16. Temperature-dependence laws of absorption line shape parameters of the CO2 ν3 band

    NASA Astrophysics Data System (ADS)

    Wilzewski, J. S.; Birk, M.; Loos, J.; Wagner, G.

    2018-02-01

    To improve the understanding of temperature-dependence laws of spectral line shape parameters, spectra of the ν3 rovibrational band of CO2 perturbed by 10, 30, 100, 300 and 1000 mbar of N2 were recorded at nine temperatures between 190 K and 330 K using a 22 cm long single-pass absorption cell in a Bruker IFS125 HR Fourier Transform spectrometer. The spectra were fitted employing a quadratic speed-dependent hard collision model in the Hartmann-Tran implementation extended to account for line mixing in the Rosenkranz approximation by means of a multispectrum fitting approach developed at DLR. This enables high accuracy parameter retrievals to reproduce the spectra down to noise level and we present the behavior of line widths, shifts, speed-dependence-, collisional narrowing- and line mixing-parameters over this 140 K temperature range.

  17. Temperature and composition dependence of Mg-based amorphous-alloy structure factors

    NASA Astrophysics Data System (ADS)

    From, M.; Muir, W. B.

    1992-01-01

    Measurements of the x-ray total structure factors for amorphous Mg70Zn30, Ca70Mg30, and Mg85.5Cu14.5 at 9, 150, and 300 K have been made. The composition dependence of the room-temperature structure factors of MgxZn1-x have also been measured for values of x=0.65, 0.70, and 0.75. These compositional changes can be accounted for by the increase in average atomic size as the fraction of the larger Mg atoms increases with x. Also the Perkus-Yevick hard-sphere model is sufficient to calculate the change in structure factor with composition if an experimental structure factor is available from which the sphere diameters and packing fraction can be extracted. The temperature dependence of the structure factors is consistent with the observed thermal expansion and a Debye phonon model with Meisel and Cote's approximation for the multiphonon contribution to the structure factor.

  18. Nicotine Dependence, Physical Activity, and Sedentary Behavior among Adult Smokers.

    PubMed

    Loprinzi, Paul D; Walker, Jerome F

    2015-03-01

    Research has previously demonstrated an inverse association between smoking status and physical activity; however, few studies have examined the association between nicotine dependence and physical activity or sedentary behavior. This study examined the association between nicotine dependence and accelerometer-determined physical activity and sedentary behavior. Data from the 2003-2006 National Health and Nutrition Examination Survey (NHANES) were used. A total of 851 adult (≥20 years) smokers wore an accelerometer for ≥4 days and completed the Fagerstrom Test for Nicotine Dependence scale. Regression models were used to examine the association between nicotine dependence and physical activity/sedentary behavior. After adjusting for age, gender, race-ethnicity, poverty level, hypertension, emphysema, bronchitis, body mass index (BMI), cotinine, and accelerometer wear time, smokers 50 + years of age with greater nicotine dependence engaged in more sedentary behavior (β = 11.4, P = 0.02) and less light-intensity physical activity (β = -9.6, P = 0.03) and moderate-to-vigorous physical activity (MVPA; β = -0.14, P = 0.003) than their less nicotine dependent counterparts. Older adults who are more nicotine dependent engage in less physical activity (both MVPA and light-intensity) and more sedentary behavior than their less nicotine dependent counterparts.

  19. Time-Temperature Dependent Response of Filament Wound Composites for Flywheel Rotors

    NASA Technical Reports Server (NTRS)

    Thesken, John C.; Bowman, Cheryl L.; Arnold, Steven M.; Thompson, Richard C.

    2004-01-01

    Flywheel energy storage offers an attractive alternative to battery systems used in space applications such as the International Space Station. Rotor designs capable of high specific energies benefit from the load carrying capacity of hoop wound carbon fibers but their long-term durability may be limited by time-temperature dependent radial deformations. This was investigated for the carbon/epoxy rotor material, IM7/8552. Coupon specimens were sectioned from filament wound panels. These were tested in compression and tension at room temperature (RT), 95 and 135 C for strain rates from 5x10(exp -6) per second to 5x10(exp -3) per second. Time, temperature and load sign dependent effects were significant transverse to the fiber. At -0.5 percent strain for 72 hr, compressive stresses relaxed 16.4 percent at 135 C and 13 percent at 95 C. Tensile stresses relaxed only 7 percent in 72 hr at 135 C for 0.5 percent strain. Using linear hereditary material response and Boltzmann s principle of superposition to describe this behavior is problematic if not intractable. Micromechanics analysis including the effects of processing residual stresses is needed to resolve the paradoxes. Uniaxial compressive stress relaxation data may be used to bound the loss of radial pre-load stresses in flywheel rotors.

  20. Room-temperature and temperature-dependent QSRR modelling for predicting the nitrate radical reaction rate constants of organic chemicals using ensemble learning methods.

    PubMed

    Gupta, S; Basant, N; Mohan, D; Singh, K P

    2016-07-01

    Experimental determinations of the rate constants of the reaction of NO3 with a large number of organic chemicals are tedious, and time and resource intensive; and the development of computational methods has widely been advocated. In this study, we have developed room-temperature (298 K) and temperature-dependent quantitative structure-reactivity relationship (QSRR) models based on the ensemble learning approaches (decision tree forest (DTF) and decision treeboost (DTB)) for predicting the rate constant of the reaction of NO3 radicals with diverse organic chemicals, under OECD guidelines. Predictive powers of the developed models were established in terms of statistical coefficients. In the test phase, the QSRR models yielded a correlation (r(2)) of >0.94 between experimental and predicted rate constants. The applicability domains of the constructed models were determined. An attempt has been made to provide the mechanistic interpretation of the selected features for QSRR development. The proposed QSRR models outperformed the previous reports, and the temperature-dependent models offered a much wider applicability domain. This is the first report presenting a temperature-dependent QSRR model for predicting the nitrate radical reaction rate constant at different temperatures. The proposed models can be useful tools in predicting the reactivities of chemicals towards NO3 radicals in the atmosphere, hence, their persistence and exposure risk assessment.

  1. Elevated temperature dependence of the anisotropic visible-to-ultraviolet dielectric function of monoclinic β-Ga2O3

    NASA Astrophysics Data System (ADS)

    Mock, A.; VanDerslice, J.; Korlacki, R.; Woollam, J. A.; Schubert, M.

    2018-01-01

    We report on the temperature dependence of the dielectric tensor elements of n-type conductive β-Ga2O3 from 22 °C to 550 °C in the spectral range of 1.5 eV-6.4 eV. We present the temperature dependence of the excitonic and band-to-band transition energy parameters using a previously described eigendielectric summation approach [A. Mock et al., Phys. Rev. B 96, 245205 (2017)]. We utilize a Bose-Einstein analysis of the temperature dependence of the observed transition energies and reveal electron coupling with average phonon temperature in excellent agreement with the average over all longitudinal phonon plasmon coupled modes reported previously [M. Schubert et al., Phys. Rev. B 93, 125209 (2016)]. We also report a linear temperature dependence of the wavelength independent Cauchy expansion coefficient for the anisotropic below-band-gap monoclinic dielectric tensor elements.

  2. Temporal variability in Cu speciation, phytotoxicity, and soil microbial activity of Cu-polluted soils as affected by elevated temperature.

    PubMed

    Fu, Qing-Long; Weng, Nanyan; Fujii, Manabu; Zhou, Dong-Mei

    2018-03-01

    Global warming has obtained increasing attentions due to its multiple impacts on agro-ecosystem. However, limited efforts had been devoted to reveal the temporal variability of metal speciation and phytotoxicity of heavy metal-polluted soils affected by elevated temperature under the global warming scenario. In this study, effects of elevated temperature (15 °C, 25 °C, and 35 °C) on the physicochemical properties, microbial metabolic activities, and phytotoxicity of three Cu-polluted soils were investigated by a laboratory incubation study. Soil physicochemical properties were observed to be significantly altered by elevated temperature with the degree of temperature effect varying in soil types and incubation time. The Biolog and enzymatic tests demonstrated that soil microbial activities were mainly controlled and decreased with increasing incubation temperature. Moreover, plant assays confirmed that the phytotoxicity and Cu uptake by wheat roots were highly dependent on soil types but less affected by incubation temperature. Overall, the findings in this study have highlighted the importance of soil types to better understand the temperature-dependent alternation of soil properties, Cu speciation and bioavailability, as well as phytotoxicity of Cu-polluted soils under global warming scenario. The present study also suggests the necessary of investigating effects of soil types on the transport and accumulation of toxic elements in soil-crop systems under global warming scenario. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Temperature-dependent magnetic anisotropy in the layered magnetic semiconductors Cr I3 and CrB r3

    NASA Astrophysics Data System (ADS)

    Richter, Nils; Weber, Daniel; Martin, Franziska; Singh, Nirpendra; Schwingenschlögl, Udo; Lotsch, Bettina V.; Kläui, Mathias

    2018-02-01

    Chromium trihalides are layered and exfoliable semiconductors and exhibit unusual magnetic properties with a surprising temperature dependence of the magnetization. By analyzing the evolution of the magnetocrystalline anisotropy with temperature in chromium iodide Cr I3 , we find it strongly changes from Ku=300 ±50 kJ / m3 at 5 K to Ku=43 ±7 kJ / m3 at 60 K , close to the Curie temperature. We draw a direct comparison to CrB r3 , which serves as a reference, and where we find results consistent with literature. In particular, we show that the anisotropy change in the iodide compound is more than 3 times larger than in the bromide. We analyze this temperature dependence using a classical model, showing that the anisotropy constant scales with the magnetization at any given temperature below the Curie temperature, indicating that the temperature dependence can be explained by a dominant uniaxial anisotropy where this scaling results from local spin clusters having thermally induced magnetization directions that deviate from the overall magnetization.

  4. Temperature dependence of the distribution of the thermally activated energy barriers in Tl2Ba2CaCu2O8 film

    NASA Astrophysics Data System (ADS)

    Ren, C.; Lin, F. Y.; Ding, S. Y.; Li, Z. M.; Aruna, S. A.; Qiu, L.; Yao, X. X.; Yan, S. L.; Si, M. S.

    1999-06-01

    The effects of frequency and ac amplitude on ac susceptibility have been measured for a thin Tl2Ba2CaCu2O8 film in the range 100 Hz-100 kHz in magnetic field 0.52 T. A phenomenological equation with an asymmetrical distribution of thermally activated energy barriers has been used to analyse these frequency and amplitude dependences of the ac susceptibility icons/Journals/Common/chi" ALT="chi" ALIGN="TOP"/>(icons/Journals/Common/omega" ALT="omega" ALIGN="TOP"/>,hac) in the vicinity of the peak temperature of icons/Journals/Common/chi" ALT="chi" ALIGN="TOP"/>´´. We obtain the effective energy barrier U against amplitude hac (current density j): Uicons/Journals/Common/propto" ALT="propto" ALIGN="TOP"/> hac-0.38. This U(j) relationship shows that the flux lines are in the 3D collective creep regime. Therefore, we conclude that the effective energy barrier is in fact an average of the barrier's distribution, and the distribution function is a distinguished asymmetrical one in this 3D collective creep regime.

  5. On the temperature dependence of the Adam-Gibbs equation around the crossover region in the glass transition

    NASA Astrophysics Data System (ADS)

    Duque, Michel; Andraca, Adriana; Goldstein, Patricia; del Castillo, Luis Felipe

    2018-04-01

    The Adam-Gibbs equation has been used for more than five decades, and still a question remains unanswered on the temperature dependence of the chemical potential it includes. Nowadays, it is a well-known fact that in fragile glass formers, actually the behavior of the system depends on the temperature region it is being studied. Transport coefficients change due to the appearance of heterogeneity in the liquid as it is supercooled. Using the different forms for the logarithmic shift factor and the form of the configurational entropy, we evaluate this temperature dependence and present a discussion on our results.

  6. Zinc-ion-dependent acid phosphatase exhibits magnesium-ion-dependent myo-inositol-1-phosphatase activity.

    PubMed

    Fujimoto, S; Okano, I; Tanaka, Y; Sumida, Y; Tsuda, J; Kawakami, N; Shimohama, S

    1996-06-01

    We have purified bovine brain Zn(2+)-dependent acid phosphatase (Zn(2+)-APase), which requires Zn2+ ions to hydrolyze the substrate p-nitrophenyl phosphate (pNPP) in an acidic environment. The substrate specificity and metal requirement of Zn(2+)-APase at a physiological pH was also studied. The enzyme exhibited hydrolytic activity on myo-inositol-1- and -2-monophosphates, 2'-adenosine monophosphate, 2'-guanosine monophosphate, and the alpha- and beta-glycerophosphates, glucose-1-phosphate, and fructose-6-phosphate in 50 mM Tris-HCl buffer (pH 7.4) in the presence of Mg2+ ions, but not on pNPP and phosphotyrosine. Zn2+, Mn2+ and Co2+ ions were less effective for activation. Among the above substrates, myo-inositol-1-phosphate was the most susceptible to hydrolysis by the enzyme in the presence of 3 mM Mg2+ ions. The enzyme exhibited an optimum pH at around 8 for myo-inositol-1-phosphate in the presence of 3 mM Mg2+ ions. The Mg(2+)-dependent myo-inositol-1-phosphatase activity of the enzyme was significantly inhibited by Li+ ions. The Zn(2+)-dependent p-nitrophenyl phosphatase activity and Mg(2+)-dependent myo-inositol-1-phosphatase activity of the purified enzyme fraction exhibited similar behavior on Sephadex G-100 and Mono Q colomns. These findings suggest that Zn(2+)-APase also exhibits Mg(2+)-dependent myo-inositol-1-phosphatase activity under physiological conditions.

  7. Femtosecond Raman-Induced Kerr Effect Study of Temperature-Dependent Intermolecular Dynamics in Imidazolium-Based Ionic Liquids: Effects of Anion Species and Cation Alkyl Groups.

    PubMed

    Kakinuma, Shohei; Ishida, Tateki; Shirota, Hideaki

    2017-01-12

    The temperature dependence of the intermolecular vibrational dynamics in imidazolium-based ionic liquids (ILs) with 10 different anions was studied by femtosecond Raman-induced Kerr effect spectroscopy. For all ILs investigated in this study, the intensity in the low-frequency region below 50 cm -1 increases, and the spectral density in the high-frequency region above 80 cm -1 decreases (and shows a redshift) with increasing temperature. The first phenomenon would be attributed to the activation of the translational vibrational motions, whereas the second one is ascribed to the slowing librational motion of the imidazolium ring with increasing temperature. Calculated spectra of the density of states for the intermolecular vibrations of 1-butyl-3-methylimidazolium hexafluorophosphate, which is one of the experiment samples studied here, obtained by molecular dynamics simulation agreed well with the experimental results and confirmed the spectral assignments. When we compared the difference spectra between spectra measured at various temperatures and the spectrum measured at 293 K, a clear difference was found in the ∼50 cm -1 region of the Kerr spectra of 1-butyl-3-methylimidazolium thiocyanate and 1-butyl-3-methylimidazolium dicyanamide from those of the other ILs. The difference might have originated from the librational motions of the corresponding anions. We also compared the temperature-dependent Kerr spectra of hexafluorophosphate salts of 1-butyl-3-methylimidazolium, 1-hexyl-3-methylimidazolium, and 1-heptyl-3-methylimidazolium cations. These ILs showed a similar temperature dependence, which was not affected by the alkyl group length. The temperature-dependent viscosities and glass transition temperatures of the ILs were also estimated to determine their fragilities.

  8. Temperature-dependent thermal diffusivity of the Earth's crust and implications for magmatism.

    PubMed

    Whittington, Alan G; Hofmeister, Anne M; Nabelek, Peter I

    2009-03-19

    The thermal evolution of planetary crust and lithosphere is largely governed by the rate of heat transfer by conduction. The governing physical properties are thermal diffusivity (kappa) and conductivity (k = kapparhoC(P)), where rho denotes density and C(P) denotes specific heat capacity at constant pressure. Although for crustal rocks both kappa and k decrease above ambient temperature, most thermal models of the Earth's lithosphere assume constant values for kappa ( approximately 1 mm(2) s(-1)) and/or k ( approximately 3 to 5 W m(-1) K(-1)) owing to the large experimental uncertainties associated with conventional contact methods at high temperatures. Recent advances in laser-flash analysis permit accurate (+/-2 per cent) measurements on minerals and rocks to geologically relevant temperatures. Here we provide data from laser-flash analysis for three different crustal rock types, showing that kappa strongly decreases from 1.5-2.5 mm(2) s(-1) at ambient conditions, approaching 0.5 mm(2) s(-1) at mid-crustal temperatures. The latter value is approximately half that commonly assumed, and hot middle to lower crust is therefore a much more effective thermal insulator than previously thought. Above the quartz alpha-beta phase transition, crustal kappa is nearly independent of temperature, and similar to that of mantle materials. Calculated values of k indicate that its negative dependence on temperature is smaller than that of kappa, owing to the increase of C(P) with increasing temperature, but k also diminishes by 50 per cent from the surface to the quartz alpha-beta transition. We present models of lithospheric thermal evolution during continental collision and demonstrate that the temperature dependence of kappa and C(P) leads to positive feedback between strain heating in shear zones and more efficient thermal insulation, removing the requirement for unusually high radiogenic heat production to achieve crustal melting temperatures. Positive feedback between

  9. Temperature-dependent phosphorous dopant activation in ZnO thin film deposited using plasma immersion ion implantation

    NASA Astrophysics Data System (ADS)

    Murkute, Punam; Ghadi, Hemant; Saha, Shantanu; Chavan, Vinayak; Chakrabarti, Subhananda

    2018-03-01

    High band gap (3.34 eV) and large exciton binding energy (60 meV) at room temperature facilitates ZnO as a useful candidate for optoelectronics devices. Presence of zinc interstitial and oxygen vacancies results in n-type ZnO film. Phosphorus implantation was carried out using plasma immersion ion implantation technique (2kV, 900W) for constant duration (50 s) on RF sputtered ZnO thin films (Sample A). For dopant activation, sample A was subjected to Rapid Thermal Annealing (RTA) at 700, 800, 900 and 1000°C for 10 s in Oxygen ambient (Sample B, C, D, E). Low temperature (18 K) photoluminescence measurement demonstrated strong donor bound exciton peak for sample A. Dominant donor to acceptor pair peak (DAP) was observed for sample D at around 3.22 eV with linewidth of 131.3 meV. High resolution x-ray diffraction measurement demonstrated (001) and (002) peaks for sample A. (002) peak with high intensity was observed from all annealed samples. Incorporation of phosphorus in ZnO films leads to peak shift towards higher 2θ angle indicate tensile strain in implanted samples. Scanning electron microscopy images reveals improvement in grain size distribution along with reduction of implantation related defects. Raman spectra measured A1(LO) peak at around 576 cm-1 for sample A. Low intensity E2 (high) peak was observed for sample D indicating formation of (PZn+2VZn) complexes. From room temperature Hall measurement, sample D measured 1.17 x 1018 cm -3 carrier concentration with low resistivity of 0.464 Ω.

  10. Effects of Temperature and Acidic Pre-Treatment on Fenton-Driven Oxidation of MTBE-Spent Granular Activated Carbon

    EPA Science Inventory

    Temperature-dependent mechanisms in the Fenton-driven chemical oxidation of methyl tert-butyl ether (MTBE)-spent granular activated carbon (GAC) was investigated. Prior to iron (Fe) amendment to the GAC, acid-treatment altered the surface chemistry of the GAC and lowered the pH ...

  11. Temperature dependence of positron annihilation parameters in Tl-Ba-Ca-Cu-O superconductors

    NASA Astrophysics Data System (ADS)

    Sundar, C. S.; Bharathi, A.; Ching, W. Y.; Jean, Y. C.; Hor, P. H.; Meng, R. L.; Huang, Z. J.; Chu, C. W.

    1990-08-01

    The results of positron lifetime and Doppler broadened line-shape parameter measurements as a function of temperature, across Tc, in the Tl-Ba-Ca-Cu-O superconductors are presented. The bulk lifetime in the normal state is found to decrease with the increase in the number of CuO2 layers. Different temperature dependencies of the annihilation parameters are observed in the various Tl systems containing different numbers of CuO2 layers. In the Tl2Ba2Ca2Cu3O10 system, an increase in lifetime is observed below Tc, whereas in Tl2Ba2CaCu2O8, a decrease in lifetime is seen below Tc. In the Tl2Ba2CuO6 system, the lifetime is observed to be temperature independent. The different temperature variations of positron annihilation parameters are discussed in the light of the positron density distribution, obtained with use of the results of the self-consistent orthogonalized linear combination of atomic orbitals band-structure calculations. It is argued that the different temperature dependencies of the annihilation parameters is related to the positron density distribution within the unit cell and arise due to local charge transfer in the vicinity of the CuO2 layer in the superconducting state.

  12. Sequence- and Temperature-Dependent Properties of Unfolded and Disordered Proteins from Atomistic Simulations.

    PubMed

    Zerze, Gül H; Best, Robert B; Mittal, Jeetain

    2015-11-19

    We use all-atom molecular simulation with explicit solvent to study the properties of selected intrinsically disordered proteins and unfolded states of foldable proteins, which include chain dimensions and shape, secondary structure propensity, solvent accessible surface area, and contact formation. We find that the qualitative scaling behavior of the chains matches expectations from theory under ambient conditions. In particular, unfolded globular proteins tend to be more collapsed under the same conditions than charged disordered sequences of the same length. However, inclusion of explicit solvent in addition naturally captures temperature-dependent solvation effects, which results in an initial collapse of the chains as temperature is increased, in qualitative agreement with experiment. There is a universal origin to the collapse, revealed in the change of hydration of individual residues as a function of temperature: namely, that the initial collapse is driven by unfavorable solvation free energy of individual residues, which in turn has a strong temperature dependence. We also observe that in unfolded globular proteins, increased temperature also initially favors formation of native-like (rather than non-native-like) structure. Our results help to establish how sequence encodes the degree of intrinsic disorder or order as well as its response to changes in environmental conditions.

  13. Temperature-dependent Absolute Refractive Index Measurements of Synthetic Fused Silica

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.; Frey, Bradley J.

    2006-01-01

    Using the Cryogenic, High-Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center, we have measured the absolute refractive index of five specimens taken from a very large boule of Corning 7980 fused silica from temperatures ranging from 30 to 310 K at wavelengths from 0.4 to 2.6 microns with an absolute uncertainty of plus or minus 1 x 10 (exp -5). Statistical variations in derived values of the thermo-optic coefficient (dn/dT) are at the plus or minus 2 x 10 (exp -8)/K level. Graphical and tabulated data for absolute refractive index, dispersion, and thermo-optic coefficient are presented for selected wavelengths and temperatures along with estimates of uncertainty in index. Coefficients for temperature-dependent Sellmeier fits of measured refractive index are also presented to allow accurate interpolation of index to other wavelengths and temperatures. We compare our results to those from an independent investigation (which used an interferometric technique for measuring index changes as a function of temperature) whose samples were prepared from the same slugs of material from which our prisms were prepared in support of the Kepler mission. We also compare our results with sparse cryogenic index data from measurements of this material from the literature.

  14. Temperature Dependence of Power Reflectivity of the First-Wall Materials in the Synchrotron Radiation Range

    NASA Astrophysics Data System (ADS)

    Takada, Noriharu; Nagatsu, Masaaki; Shimada, Michiya

    1995-07-01

    The temperature dependence of power reflectivity in the synchrotron radiation range was measured for candidate first-wall materials of the fusion reactor, such as B4C-coated isotropic graphite, C/C composite material, silicon carbide (SiC), tungsten (W), molybdenum (Mo) and SUS-316. The measurements were carried out using a vacuum vessel with a pressure of about 3 mTorr to avoid oxidation. Distinct temperature dependence of reflectivity was observed only for B4C-coated isotropic graphite. For the other materials, power reflectivities were insensitive to temperature in the range from 300 K to ˜900 K. Theoretical analysis of the results is also presented.

  15. Temperature dependence of the spectrum of electrons levitating above solid hydrogen

    NASA Astrophysics Data System (ADS)

    Grigor'ev, P. D.; Dyugaev, A. M.; Lebedeva, E. V.

    2008-03-01

    A theory of photoresonance transitions for the electrons localized above the solid H2 surface is proposed on the basis of the experimental data obtained by V. V. Zav’yalov and I. I. Smol’yaninov [Pis’ma Zh. Éksp. Teor. Fiz. 44, 142 (1986); Zh. Éksp. Teor. Fiz. 92, 339 (1987); Zh. Éksp. Teor. Fiz. 94, 307 (1988)] and a simple model of condensed hydrogen, H2. A new explanation is offered for the strong dependence of the transition frequency v on the hydrogen vapor pressure revealed in the above-cited works. In contrast to the notions that were proposed by V. V. Zav’yalov and I. I. Smol’yaninov [Zh. Éksp. Teor. Fiz. 92, 339 (1987); Zh. Éksp. Teor. Fiz. 94, 307 (1988)]; and V. B. Shikin and S. N. Nazin [Pis’ma Zh. Éksp. Teor. Fiz. 82, 752 (2005)] and based on the effects of the quantum refraction of electrons by hydrogen vapor atoms, the temperature dependence of the frequency ν = ν ( T) is attributed here to the H2 vapor inhomogeneity. The nonanalytic dependence of ν on the vapor density n ν , ν( n ν ) - ν(0) ˜ n {/ν γ } ˜ e-Δ/ T , γ ≅ 0.56 has been revealed from the experimental data. The activation energy Δ corresponds to the “incomplete evaporation” of solid hydrogen [see J. I. Frenkel, Z. Phys. 26, 37 (1924); Kinetic Theory of Liquids (Nauka, Leningrad, 1945; Clarendon, Oxford, 1946)]. The parameter Δ is lower than the energy of the “complete evaporation” of solid H2 equal to 92.6 K.

  16. Temperature-dependent responses of the photosynthetic and chlorophyll fluorescence attributes of apple (Malus domestica) leaves during a sustained high temperature event.

    PubMed

    Greer, Dennis H

    2015-12-01

    The objective of this study was to follow changes in the temperature-dependent responses of photosynthesis and photosystem II performance in leaves of field-grown trees of Malus domestica (Borkh.) cv. 'Red Gala' before and after exposure to a long-term heat event occurring late in the growing season. Light-saturated photosynthesis was optimal at 25 °C before the heat event. The high temperatures caused a reduction in rates at low temperatures (15-20 °C) but increased rates at high temperatures (30-40 °C) and a shift in optimum to 30 °C. Rates at all temperatures increased after the heat event and the optimum shifted to 33 °C, indicative of some acclimation to the high temperatures occurring. Photosystem II attributes were all highly temperature-dependent. The operating quantum efficiency of PSII during the heat event declined, but mostly at high temperatures, partly because of decreased photochemical quenching but also from increased non-photochemical quenching. However, a further reduction in PSII operating efficiency occurred after the heat event subsided. Non-photochemical quenching had subsided, whereas photochemical quenching had increased in the post-heat event period and consistent with a greater fraction of open PSII reaction centres. What remained uncertain was why these effects on PSII performance appeared to have no effect on the process of light-saturated photosynthesis. However, the results provide an enhanced understanding of the impacts of sustained high temperatures on the photosynthetic process and its underlying reactions, notably photochemistry. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  17. Temperature Dependence of the O + HO2 Rate Coefficient

    NASA Technical Reports Server (NTRS)

    Nicovich, J. M.; Wine, P. H.

    1997-01-01

    A pulsed laser photolysis technique has been employed to investigate the kinetics of the radical-radical reaction O((sup 3)P) + HO2 OH + O2 over the temperature range 266-391 K in 80 Torr of N2 diluent gas. O((sup 3)P) was produced by 248.5-nm KrF laser photolysis of O3 followed by rapid quenching of O(1D) to O((sup 3)P) while HO2 was produced by simultaneous photolysis of H2O2 to create OH radicals which, in turn, reacted with H2O2 to yield HO2. The O((sup 3)P) temporal profile was monitored by using time-resolved resonance fluorescence spectroscopy. The HO2 concentration was calculated based on experimentally measured parameters. The following Arrhenius expression describes our experimental results: k(sub 1)(T) equals (2.91 +/- 0.70) x 10(exp -11) exp[(228 +/- 75)/T] where the errors are 2 sigma and represent precision only. The absolute uncertainty in k, at any temperature within the range 266-391 K is estimated to be +/- 22 percent. Our results are in excellent agreement with a discharge flow study of the temperature dependence of k(sub 1) in 1 Torr of He diluent reported by Keyser, and significantly reduce the uncertainty in the rate of this important stratospheric reaction at subambient temperatures.

  18. Temperature-dependent photoluminescence study of InP/ZnS quantum dots

    NASA Astrophysics Data System (ADS)

    Thuy Pham, Thi; Tran, Thi Kim Chi; Liem Nguyen, Quang

    2011-06-01

    This paper reports on the temperature-dependent photoluminescence of InP/ZnS quantum dots under 532 nm excitation, which is above the InP transition energy but well below that of ZnS. The overall photoluminescence spectra show two spectral components. The higher-energy one (named X) is assigned to originate from the excitonic transition; while the low-energy spectral component (named I) is normally interpreted as resulting from lattice imperfections in the crystalline structure of InP/ZnS quantum dots (QDs). Peak positions of both the X and I emissions vary similarly with increasing temperature and the same as the InP bandgap narrowing with temperature. In the temperature range from 15 to 80 K, the ratio of the integrated intensity from the X and the I emissions decreases gradually and then this ratio increases fast at temperatures higher than 80 K. This could result from a population of charge carriers in the lattice imperfection states at a temperature below 80 K to increase the I emission but then with these charge carriers being released to contribute to the X emission.

  19. Local chemical potential, local hardness, and dual descriptors in temperature dependent chemical reactivity theory.

    PubMed

    Franco-Pérez, Marco; Ayers, Paul W; Gázquez, José L; Vela, Alberto

    2017-05-31

    In this work we establish a new temperature dependent procedure within the grand canonical ensemble, to avoid the Dirac delta function exhibited by some of the second order chemical reactivity descriptors based on density functional theory, at a temperature of 0 K. Through the definition of a local chemical potential designed to integrate to the global temperature dependent electronic chemical potential, the local chemical hardness is expressed in terms of the derivative of this local chemical potential with respect to the average number of electrons. For the three-ground-states ensemble model, this local hardness contains a term that is equal to the one intuitively proposed by Meneses, Tiznado, Contreras and Fuentealba, which integrates to the global hardness given by the difference in the first ionization potential, I, and the electron affinity, A, at any temperature. However, in the present approach one finds an additional temperature-dependent term that introduces changes at the local level and integrates to zero. Additionally, a τ-hard dual descriptor and a τ-soft dual descriptor given in terms of the product of the global hardness and the global softness multiplied by the dual descriptor, respectively, are derived. Since all these reactivity indices are given by expressions composed of terms that correspond to products of the global properties multiplied by the electrophilic or nucleophilic Fukui functions, they may be useful for studying and comparing equivalent sites in different chemical environments.

  20. Ambient temperature and activation of implantable cardioverter defibrillators

    NASA Astrophysics Data System (ADS)

    McGuinn, L.; Hajat, S.; Wilkinson, P.; Armstrong, B.; Anderson, H. R.; Monk, V.; Harrison, R.

    2013-09-01

    The degree to which weather influences the occurrence of serious cardiac arrhythmias is not fully understood. To investigate, we studied the timing of activation of implanted cardiac defibrillators (ICDs) in relation to daily outdoor temperatures using a fixed stratum case-crossover approach. All patients attending ICD clinics in London between 1995 and 2003 were recruited onto the study. Temperature exposure for each ICD patient was determined by linking each patient's postcode of residence to their nearest temperature monitoring station in London and the South of England. There were 5,038 activations during the study period. Graphical inspection of ICD activation against temperature suggested increased risk at lower but not higher temperatures. For every 1 °C decrease in ambient temperature, risk of ventricular arrhythmias up to 7 days later increased by 1.2 % (95 % CI -0.6 %, 2.9 %). In threshold models, risk of ventricular arrhythmias increased by 11.2 % (0.5 %, 23.1 %) for every 1° decrease in temperature below 2 °C. Patients over the age of 65 exhibited the highest risk. This large study suggests an inverse relationship between ambient outdoor temperature and risk of ventricular arrhythmias. The highest risk was found for patients over the age of 65. This provides evidence about a mechanism for some cases of low-temperature cardiac death, and suggests a possible strategy for reducing risk among selected cardiac patients by encouraging behaviour modification to minimise cold exposure.