Sample records for activating antimicrobial pro-inflammatory

  1. Antimicrobial aspects of inflammatory resolution in the mucosa: A role for pro-resolving mediators1

    PubMed Central

    Campbell, Eric L.; Serhan, Charles N.; Colgan, Sean P.

    2011-01-01

    Mucosal surfaces function as selectively permeable barriers between the host and the outside world. Given their close proximity to microbial antigens, mucosal surfaces have evolved sophisticated mechanisms for maintaining homeostasis and preventing excessive acute inflammatory reactions. The role attributed to epithelial cells was historically limited to serving as a selective barrier, in recent years numerous findings implicate an active role of the epithelium with pro-resolving mediators in the maintenance of immunological equilibrium. In this brief review, we highlight new evidence that the epithelium actively contributes to coordination and resolution of inflammation, principally through the generation of anti-inflammatory and pro-resolution lipid mediators. These autacoids, derived from ω-6 and ω-3 polyunsaturated fatty acids, are implicated in the initiation, progression and resolution of acute inflammation and display specific, epithelial-directed actions focused on mucosalhomeostasis. We also summarize present knowledge of mechanisms for resolution via regulation of epithelial-derived antimicrobial peptides in response to pro-resolving lipid mediators. PMID:21934099

  2. Antimicrobial activity of ProRoot MTA in contact with blood

    PubMed Central

    Farrugia, C.; Baca, P.; Camilleri, J.; Arias Moliz, M. T.

    2017-01-01

    Dental materials based on Portland cement, which is used in the construction industry have gained popularity for clinical use due to their hydraulic properties, the interaction with tooth tissue and their antimicrobial properties. The antimicrobial properties are optimal in vitro. However in clinical use contact with blood may affect the antimicrobial properties. This study aims to assess whether antimicrobial properties of the Portland cement-based dental cements such as mineral trioxide aggregate (MTA) are also affected by contact with blood present in clinical situations. ProRoot MTA, a Portland cement-based dental cement was characterized following contact with water, or heparinized blood after 1 day and 7 days aging. The antimicrobial activity under the mentioned conditions was assessed using 3 antimicrobial tests: agar diffusion test, direct contact test and intratubular infection test. MTA in contact with blood was severely discoloured, exhibited an additional phosphorus peak in elemental analysis, no calcium hydroxide peaks and no areas of bacterial inhibition growth in the agar diffusion test were demonstrated. ProRoot MTA showed limited antimicrobial activity, in both the direct contact test and intratubular infection test. When aged in water ProRoot MTA showed higher antimicrobial activity than when aged in blood. Antimicrobial activity reduced significantly after 7 days. Further assessment is required to investigate behaviour in clinical situations. PMID:28128328

  3. Antimicrobial and anti-inflammatory potential therapy for opportunistic microorganisms.

    PubMed

    Assaf, Areej M; Amro, Bassam I; Mashallah, Sundus; Haddadin, Randa N

    2016-05-31

    Methanolic extracts of six plants (Arbutus andrachne, Chrysanthemum coronarium, Inula viscosa, Origanum syriacum, Punica granatum, and Rosmarinus officinalis) used in traditional medicine for the treatment of bacterial and fungal infections were evaluated. The present study was conducted to evaluate the antimicrobial and anti-inflammatory activity of some medicinal plants in lowering the risk of opportunistic infections of the oral cavity caused by Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. Extracts were evaluated separately and in a mixture. The methanolic plant extracts were tested against three opportunistic microorganisms by determining the minimum inhibitory concentration (MIC). They were also evaluated for their ability to suppress the release of the pro-inflammatory cytokine IL-6 while not suppressing the release of the anti-inflammatory cytokine IL-10 from peripheral blood mononuclear cells using ELISA. All extracts showed both antimicrobial and anti-inflammatory activities. However, O. syriacum exhibited the highest antimicrobial activity for the three microorganisms among all of the tested extracts (MIC S. aureus: 1 mg/mL; P. aeruginosa: 2 mg/mL; and C. albicans: 1 mg/mL). The extracts inhibited the expression of the pro-inflammatory cytokine IL-6 with apparent dose-dependent responses while they attenuated the secretion of the anti-inflammatory cytokine IL-10. The mixture of O. syriacum and R. officinalis showed an anti-inflammatory effect, with a synergistic antimicrobial effect. These findings support the idea that a diet rich in plants and herbs may contribute to the reduction of inflammation and microbial growth and may also be preventive against various infections, including those related to the oral cavity.

  4. The Development of Antimicrobial α-AApeptides that Suppress Pro-inflammatory Immune Responses

    PubMed Central

    Padhee, Shruti; Smith, Christina; Wu, Haifan; Li, Yaqiong; Manoj, Namitha; Qiao, Qiao; Khan, Zoya; Cao, Chuanhai

    2014-01-01

    Herein we describe the development of a new class of antimicrobial and anti-infective peptidomimetics – cyclic lipo-α-AApeptides. They have potent and broad-spectrum antibacterial activity against a range of clinically relevant pathogens, including both multidrug-resistant Gram-positive and Gram-negative bacteria. Fluorescence microscopy suggests that cyclic lipo-α-AApeptides kill bacteria by disrupting bacterial membranes, possibly through a mechanism similar to that of cationic host defense peptides (HDPs). Furthermore, the cyclic lipo-α-AApeptide can mimic cationic host-defense peptides by antagonizing Toll-Like Receptor 4 (TLR4) signaling responses and suppressing pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α). Our results suggest that by mimicking host-defense peptides (HDPs), cyclic lipo-α-AApeptides may emerge to be a new class of antibiotic agents through direct bacteria killing, as well as novel anti-infective agents through immunomodulation. PMID:24677440

  5. Anti-leishmanial, anti-inflammatory and antimicrobial activities of phenolic derivatives from Tibouchina paratropica.

    PubMed

    Tracanna, María I; Fortuna, Antonio M; Cárdenas, Angel V Contreras; Marr, Alexandra K; McMaster, W Robert; Gómez-Velasco, Anaximandro; Sánchez-Arreola, Eugenio; Hernández, Luis Ricardo; Bach, Horacio

    2015-03-01

    A new phenolic derivative, 2,8-dihydroxy-7H-furo[2,3-f]chromen-7-one (1), together with isoquercitrin (2), was isolated from the aerial parts of Tibouchina paratropica. Compound structures were elucidated by spectroscopic methods. Both compounds show antimicrobial activity towards a panel of bacterial and fungal pathogens, and compound 1 displayed potent anti-parasitic activity against Leishmania donovani (IC50  = 0.809 µg/mL). In addition, an 85% reduction in the secretion of the pro-inflammatory cytokine IL-6 was recorded when macrophages challenged with lipopolysaccharide were exposed to compound 1, but no effect on the anti-inflammatory IL-10 was observed. Compound 2 showed neither anti-parasitic nor anti-inflammatory properties. In addition, no cytotoxic activities were observed against the human-derived macrophage THP-1 cells. Copyright © 2014 John Wiley & Sons, Ltd.

  6. Anti-Inflammatory Effect of Apigenin on LPS-Induced Pro-Inflammatory Mediators and AP-1 Factors in Human Lung Epithelial Cells.

    PubMed

    Patil, Rajeshwari H; Babu, R L; Naveen Kumar, M; Kiran Kumar, K M; Hegde, Shubha M; Nagesh, Rashmi; Ramesh, Govindarajan T; Sharma, S Chidananda

    2016-02-01

    Apigenin is one of the plant flavonoids present in fruits and vegetables, acting as an important nutraceutical component. It is recognized as a potential antioxidant, antimicrobial, and anti-inflammatory molecule. In the present study, the mechanism of anti-inflammatory action of apigenin on lipopolysaccharide (LPS)-induced pro-inflammatory cytokines and activator protein-1 (AP-1) factors in human lung A549 cells was investigated. The anti-inflammatory activity of apigenin on LPS-induced inflammation was determined by analyzing the expression of pro-inflammatory cytokines, nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and different AP-1 factors. Apigenin significantly inhibited the LPS-induced expression of iNOS, COX-2, expression of pro-inflammatory cytokines (IL-1β, IL-2, IL-6, IL-8, and TNF-α), and AP-1 proteins (c-Jun, c-Fos, and JunB) including nitric oxide production. Study confirms the anti-inflammatory effect of apigenin by inhibiting the expression of inflammatory mediators and AP-1 factors involved in the inflammation and its importance in the treatment of lung inflammatory diseases.

  7. Antimicrobial, antioxidant, and anti-inflammatory activities of essential oils from five selected herbs.

    PubMed

    Tsai, Mei-Lin; Lin, Chih-Chien; Lin, Wei-Chao; Yang, Chao-Hsun

    2011-01-01

    Eucalyptus bridgesiana, Cymbopogon martinii, Thymus vulgaris, Lindernia anagallis, and Pelargonium fragrans are five species of herbs used in Asia. Their essential oils were analyzed by GC-MS, and a total of 36 components were detected. The results of our study indicated that, except for the essential oil of P. fragrans, all of the essential oils demonstrated obvious antimicrobial activity against a broad range of microorganisms. The C. martinii essential oil, which is rich in geraniol, was the most effective antimicrobial additive. All of the essential oils demonstrated antioxidant activities on 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay, β-carotene/linoleic acid assay, and nitric oxide radical scavenging assay. Furthermore, the T. vulgaris essential oil, which possesses plentiful thymol, exhibited the highest antioxidant activity. For P. acnes-induced secretion of pro-inflammatory cytokines, the essential oils of P. aeruginosa, C. martinii, and T. vulgaris reduced the TNF-α, IL-1β, and IL-8 secretion levels of THP-1 cells.

  8. Peptoid-Substituted Hybrid Antimicrobial Peptide Derived from Papiliocin and Magainin 2 with Enhanced Bacterial Selectivity and Anti-inflammatory Activity.

    PubMed

    Shin, Areum; Lee, Eunjung; Jeon, Dasom; Park, Young-Guen; Bang, Jeong Kyu; Park, Yong-Sun; Shin, Song Yub; Kim, Yangmee

    2015-06-30

    Antimicrobial peptides (AMPs) are important components of the host innate immune system. Papiliocin is a 37-residue AMP purified from larvae of the swallowtail butterfly Papilio xuthus. Magainin 2 is a 23-residue AMP purified from the skin of the African clawed frog Xenopus laevis. We designed an 18-residue hybrid peptide (PapMA) incorporating N-terminal residues 1-8 of papiliocin and N-terminal residues 4-12 of magainin 2, joined by a proline (Pro) hinge. PapMA showed high antimicrobial activity but was cytotoxic to mammalian cells. To decrease PapMA cytotoxicity, we designed a lysine (Lys) peptoid analogue, PapMA-k, which retained high antimicrobial activity but displayed cytotoxicity lower than that of PapMA. Fluorescent dye leakage experiments and confocal microscopy showed that PapMA targeted bacterial cell membranes whereas PapMA-k penetrated bacterial cell membranes. Nuclear magnetic resonance experiments revealed that PapMA contained an N-terminal α-helix from Lys(3) to Lys(7) and a C-terminal α-helix from Lys(10) to Lys(17), with a Pro(9) hinge between them. PapMA-k also had two α-helical structures in the same region connected with a flexible hinge residue at Nlys(9), which existed in a dynamic equilibrium of cis and trans conformers. Using lipopolysaccharide-stimulated RAW264.7 macrophages, the anti-inflammatory activity of PapMA and PapMA-k was confirmed by inhibition of nitric oxide and inflammatory cytokine production. In addition, treatment with PapMA and PapMA-k decreased the level of ultraviolet irradiation-induced expression of genes encoding matrix metalloproteinase-1 (MMP-1), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in human keratinocyte HaCaT cells. Thus, PapMA and PapMA-k are potent peptide antibiotics with antimicrobial and anti-inflammatory activity, with PapMA-k displaying enhanced bacterial selectivity.

  9. Anti-cancer, anti-inflammatory and anti-microbial activities of plant extracts used against hematological tumors in traditional medicine of Jordan.

    PubMed

    Assaf, Areej M; Haddadin, Randa N; Aldouri, Nedhal A; Alabbassi, Reem; Mashallah, Sundus; Mohammad, Mohammad; Bustanji, Yasser

    2013-02-13

    Mercurialis annua L., Bongardia chrysogonum L., and Viscum cruciatum Sieb have been traditionally used by local herbalists in Jordan for the treatment of hematopoietic neoplasms. To determine the anti-cancer, anti-inflammatory and anti-microbial potentials of the three extracts against two of the most common hematopoietic malignancies in the Jordanian populations; Burkitt's lymphoma and Multiple myeloma. The anti-cancer activity was tested against the two cell lines (BJAB Burkitt's lymphoma and U266 multiple myeloma) using the MTT and trypan blue assays. The agar dilution assay was used to study the anti-microbial activity against Gram-positive bacteria, Gram-negative bacteria, anaerobic bacteria and yeast. The pro-inflammatory cytokines interleukin (IL) -1β, IL-8 and tumor necrosis factor-α (TNF-α) were measured in the pretreated cell lines using ELISA assay to determine the anti-inflammatory activity of Viscum cruciatum Sieb against the two cell lines. The results show no evidence of stimulation of tumor growth by any of the three extracts comprising cell lines from hematological malignancies, but Viscum cruciatum Sieb showed a selective anticancer activity against BJAB cells, with IC(50) value of 14.21μg/ml. The antimicrobial effect was only noticed with Viscum cruciatum extract by inhibiting Staphylococcus aureus, Candida albicans and Propionibacterium acne, but not Pseudomonas aeruginosa at MIC of 1.25, 1.25, 0.625 and <5mg/ml, respectively. The highest activity was against the anaerobic bacteria Propionibacterium acne. Viscum cruciatum Sieb extract showed an inhibitory effect on the pro-inflammatory cytokine IL-8, but it increased TNF-α and IL-1β secretions in BJAB cells. Whereas, it had an inhibitory effect on TNF-α and IL-1β cytokines while it enhanced IL-8 secretions in U266 cells. Among the three tested herbal extracts used in the traditional medicine in Jordan, only Viscum cruciatum Sieb showed high anti-cancer and anti-microbial potentials. They

  10. Different activities of Schinus areira L.: anti-inflammatory or pro-inflammatory effect.

    PubMed

    Davicino, R; Mattar, A; Casali, Y; Anesini, C; Micalizzi, B

    2010-12-01

    The anti-inflammatory drugs possess many serious side effects at doses commonly prescribed. It is really important to discover novel regulators of inflammation from natural sources with minimal adverse effects. Schinus areira L. is a plant native from South America and is used in folk medicine as an anti-inflammatory herb. For this study, the activity of aqueous extracts on inflammation and the effect on superoxide anion production in mice macrophages were assayed. Aqueous extracts were prepared by soaking herbs in cold water (cold extract), boiling water (infusion), and simmering water (decoction). Cold extract possess an anti-inflammatory activity. Decoction and infusion showed pro-inflammatory activity. Cold extract increased the production of superoxide anion. It has been proposed to use diverse methods to obtain extracts of S. areira L. with different effects. Cold extract, decoction, and infusion could be utilized as extracts or as pharmacological preparations for topical application.

  11. Evaluation of anti-inflammatory and antimicrobial activity of AHPL/AYTOP/0213 cream

    PubMed Central

    Nipanikar, Sanjay U.; Nagore, Dheeraj; Chitlange, Soham S.; Buzruk, Devashree

    2017-01-01

    Background: Acne vulgaris is almost a widespread disease occurring in all races. Propionibacterium acnes initiate acne and inflammatory mediators aggravate it. Conventional therapies for acne include comedolytic, anti-inflammatory, and anti-biotic agents. Due to adverse effects of these therapies, people are searching for alternative options. In this context, a polyherbal formulation AHPL/AYTOP/0213 cream was developed for the treatment of Acne. Objective: The objective of this study is to study anti-inflammatory and antimicrobial activities of AHPL/AYTOP/0213 cream. Materials and Methods: Skin irritation study was conducted on AHPL/AYTOP/0213 cream as per OECD guidelines. (1) Anti-inflammatory activity: Anti-inflammatory activity of AHPL/AYTOP/0213 cream in comparison with diclofenac sodium cream was assessed in carrageenan-induced rat paw edema model. (2) Antimicrobial activity for P. acnes: P. acnes were incubated under anaerobic conditions. Aliquots of molten brain–heart infusion with glucose agar were used as the agar base. Formulation and clindamycin (10 mg/ml) were introduced in to the Agar wells randomly. (3) Antimicrobial activity for Staphylococcus epidermidis and Staphylococcus aureus: bacteria were incubated under aerobic conditions at 37°C. Tryptic soy broth with glucose agar was used as the agar base. A volume of 0.5 ml of formulation and clindamycin (10 mg/ml) were introduced in to the wells randomly. The antibacterial activity was evaluated by measuring zones of inhibition (in mm). Results: AHPL/AYTOP/0213 cream is nonirritant. Significant reduction in rat paw edema (43%) was observed with AHPL/AYTOP/0213 which was also comparable to diclofenac sodium cream (56.09%). Zone of inhibition for formulation was 20.68 mm, 28.20 mm, and 21.40 mm for P. acnes, S. epidermidis and S. aureus, respectively, which was comparable to clindamycin. The minimum inhibitory concentration of formulation AHPL/AYTOP/0213 obtained in anti-microbial study was 2.5 mg

  12. Antimicrobial and Anti-Inflammatory Activities of Endophytic Fungi Talaromyces wortmannii Extracts against Acne-Inducing Bacteria

    PubMed Central

    Schwendinger, Katja; Kreiseder, Birgit; Wiederstein, Martina; Pretsch, Dagmar; Genov, Miroslav; Hollaus, Ralph; Zinssmeister, Daniela; Debbab, Abdesamad; Hundsberger, Harald; Eger, Andreas; Proksch, Peter; Wiesner, Christoph

    2014-01-01

    Acne vulgaris is the most common skin disease, causing significant psychosocial problems such as anxiety and depression similar to a chronic illness for those afflicted. Currently, obtainable agents for acne treatment have limited use. Thus, development of novel agents to treat this disease is a high medical need. The anaerobic bacterium Propionibacterium acnes has been implicated in the inflammatory phase of acne vulgaris by activating pro-inflammatory mediators such as the interleukin-8 (IL-8) via the NF-κB and MAPK pathways. Talaromyces wortmannii is an endophytic fungus, which is known to produce high bioactive natural compounds. We hypothesize that compound C but also the crude extract from T. wortmannii may possess both antibacterial activity especially against P. acnes and also anti-inflammatory properties by inhibiting TNF-α-induced ICAM-1 expression and P. acnes-induced IL-8 release. Treatment of keratinocytes (HaCaT) with P. acnes significantly increased NF-κB and activator protein-1 (AP-1) activation, as well as IL-8 release. Compound C inhibited P. acnes-mediated activation of NF-κB and AP-1 by inhibiting IκB degradation and the phosphorylation of ERK and JNK MAP kinases, and IL-8 release in a dose-dependent manner. Based on these results, compound C has effective antimicrobial activity against P. acnes and anti-inflammatory activity, and we suggest that this substance or the crude extract are alternative treatments for antibiotic/anti-inflammatory therapy for acne vulgaris. PMID:24887557

  13. Antimicrobial activity, cytotoxicity and inflammatory response of novel plastics embedded with silver nanoparticles.

    PubMed

    Martínez-Gutiérrez, Fidel; Guajardo-Pacheco, Jesús M; Noriega-Trevino, María E; Thi, Emily P; Reiner, Neil; Orrantia, Erasmo; Av-Gay, Yossef; Ruiz, Facundo; Bach, Horacio

    2013-03-01

    Infections associated with medical devices are an important cause of morbidity and mortality. Microorganisms are responsible for catheter infections that may then result in the local or systemic dissemination of the microorganism into the bloodstream. The aim of this study was to evaluate the antimicrobial activity of silver nanoparticles (AgNPs) embedded in polyurethane plastics, commonly used for catheter fabrication. AgNPs in the range of 25-30 nm were synthesized and embedded in polyurethane plastics at different concentrations. The antimicrobial activities of these plastics were tested against the three pathogenic microorganisms, Escherichia coli, Staphylococcus epidermidis and Candida albicans, frequently associated with catheter infections. The cytotoxicity of the plastics was evaluated on human-derived macrophages using propidium iodide and the secretion of the pro- and anti-inflammatory cytokines IL-6, IL-10 and TNF-a was measured using ELISA. A significant reduction of 6- to 7-log in the number of bacteria was measured, while a reduction of 90% was measured in the case of C. albicans. Neither cytotoxic effect on macrophages nor immunological response was observed. Plastics embedded with AgNPs have great potential to limit microbial colonization of implanted medical devices.

  14. Evaluation of Anti-inflammatory and Antimicrobial Activity of AHPL/AYCAP/0413 Capsule.

    PubMed

    Nipanikar, Sanjay; Chitlange, Sohan; Nagore, Dheeraj

    2017-01-01

    Conventional therapeutic agents used for treatment of Acne are associated with various adverse effects necessitating development of safe and effective alternative therapeutic agents. In this context, a polyherbal formulation AHPL/AYCAP/0413 was developed for treatment of Acne. To evaluate Anti-inflammatory and antimicrobial activity of AHPL/AYCAP/0413. 1) Anti-inflammatory activity: Anti-inflammatory activity of AHPL/AYCAP/0413 in comparison with Diclofenac was assessed in carrageenan induced rat Paw edema model. 2) Anti-microbial activity for P. acne : Propionibacterium acnes were incubated under anaerobic conditions. Aliquots of molten BHI with glucose agar were used as the agar base. Formulation and clindamycin (10 μg/ml) were introduced in to the Agar wells randomly. 3) Anti-microbial activity for Staphylococcus epidermidis and Staphylococcus aureus : Staphylococcus epidermidis and Staphylococcus aureus were incubated under aerobic conditions at 37°C. TSB with glucose agar was used as the agar base. 0.5ml of formulation and clindamycin (10 μg/ml) were introduced in to the wells randomly. The antibacterial activity was evaluated by measuring zones of inhibition (in mm). Significant reduction in rat paw edema (51% inhibition) was observed with formulation AHPL/AYCAP/0413 which was also comparable to that of Diclofenac (58% inhibition). Zone of inhibition for formulation was 18.33 mm, 19.20 mm and 26.30 mm for P. acnes , S. epidermidis and S. aureus respectively. This activity was also comparable to that of Clindamycin. AHPL/AYCAP/0413 capsule possesses significant Anti-inflammatory and Anti-microbial activities which further justifies its role in the management of Acne vulgaris. Anti-inflammatory and antimicrobial activities of polyherbal formulation AHPL/AYCAP/0413 were evaluatedAHPL/AYCAP/0413 contains Guduchi extract ( Tinospora cordifolia ), Manjishtha extract ( Rubia cordifolia ), Sariva extract ( Hemidesmus indicus ), Nimba extract ( Azardirachta indica

  15. Antimicrobial peptides and pro-inflammatory cytokines are differentially regulated across epidermal layers following bacterial stimuli.

    PubMed

    Percoco, Giuseppe; Merle, Chloé; Jaouen, Thomas; Ramdani, Yasmina; Bénard, Magalie; Hillion, Mélanie; Mijouin, Lily; Lati, Elian; Feuilloley, Marc; Lefeuvre, Luc; Driouich, Azeddine; Follet-Gueye, Marie-Laure

    2013-12-01

    The skin is a natural barrier between the body and the environment and is colonised by a large number of microorganisms. Here, we report a complete analysis of the response of human skin explants to microbial stimuli. Using this ex vivo model, we analysed at both the gene and protein level the response of epidermal cells to Staphylococcus epidermidis (S. epidermidis) and Pseudomonas fluorescens (P. fluorescens), which are present in the cutaneous microbiota. We showed that both bacterial species affect the structure of skin explants without penetrating the living epidermis. We showed by real-time quantitative polymerase chain reaction (qPCR) that S. epidermidis and P. fluorescens increased the levels of transcripts that encode antimicrobial peptides (AMPs), including human β defensin (hBD)2 and hBD3, and the pro-inflammatory cytokines interleukin (IL)-1α and (IL)-1-β, as well as IL-6. In addition, we analysed the effects of bacterial stimuli on the expression profiles of genes related to innate immunity and the inflammatory response across the epidermal layers, using laser capture microdissection (LCM) coupled to qPCR. We showed that AMP transcripts were principally upregulated in suprabasal keratinocytes. Conversely, the expression of pro-inflammatory cytokines was upregulated in the lower epidermis. These findings were confirmed by protein localisation using specific antibodies coupled to optical or electron microscopy. This work underscores the potential value of further studies that use LCM on human skin explants model to study the roles and effects of the epidermal microbiota on human skin physiology. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Synthesis and structure-activity relationships of novel cationic lipids with anti-inflammatory and antimicrobial activities.

    PubMed

    Myint, Melissa; Bucki, Robert; Janmey, Paul A; Diamond, Scott L

    2015-07-15

    Certain membrane-active cationic steroids are known to also possess both anti-inflammatory and antimicrobial properties. This combined functionality is particularly relevant for potential therapies of infections associated with elevated tissue damage, for example, cystic fibrosis airway disease, a condition characterized by chronic bacterial infections and ongoing inflammation. In this study, six novel cationic glucocorticoids were synthesized using beclomethasone, budesonide, and flumethasone. Products were either monosubstituted or disubstituted, containing one or two steroidal groups, respectively. In vitro evaluation of biological activities demonstrated dual anti-inflammatory and antimicrobial properties with limited cytotoxicity for all synthesized compounds. Budesonide-derived compounds showed the highest degree of both glucocorticoid and antimicrobial properties within their respective mono- and disubstituted categories. Structure-activity analyses revealed that activity was generally related to the potency of the parent glucocorticoid. Taken together, these data indicate that these types of dual acting cationic lipids can be synthesized with the appropriate starting steroid to tailor activities as desired. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Pro-Inflammatory Activated Kupffer Cells by Lipids Induce Hepatic NKT Cells Deficiency through Activation-Induced Cell Death

    PubMed Central

    Tang, Tongfang; Sui, Yongheng; Lian, Min; Li, Zhiping; Hua, Jing

    2013-01-01

    Background Dietary lipids play an important role in the progression of non-alcoholic fatty liver disease (NAFLD) through alternation of liver innate immune response. Aims The present study was to investigate the effect of lipid on Kupffer cells phenotype and function in vivo and in vitro. And further to investigate the impact of lipid on ability of Kupffer cell lipid antigen presentation to activate NKT cells. Methods Wild type male C57BL/6 mice were fed either normal or high-fat diet. Hepatic steatosis, Kupffer cell abundance, NKT cell number and cytokine gene expression were evaluated. Antigen presentation assay was performed with Kupffer cells treated with certain fatty acids in vitro and co-cultured with NKT cells. Results High-fat diet induced hepatosteatosis, significantly increased Kupffer cells and decreased hepatic NKT cells. Lipid treatment in vivo or in vitro induced increase of pro-inflammatory cytokines gene expression and toll-like receptor 4 (TLR4) expression in Kupffer cells. Kupffer cells expressed high levels of CD1d on cell surface and only presented exogenous lipid antigen to activate NKT cells. Ability of Kupffer cells to present antigen and activate NKT cells was enhanced after lipid treatment. In addition, pro-inflammatory activated Kupffer cells by lipid treatment induced hepatic NKT cells activation-induced apoptosis and necrosis. Conclusion High-fat diet increase Kupffer cells number and induce their pro-inflammatory status. Pro-inflammatory activated Kupfffer cells by lipid promote hepatic NKT cell over-activation and cell death, which lead to further hepatic NKT cell deficiency in the development of NAFLD. PMID:24312613

  18. Identification and Characterization of the First Cathelicidin from Sea Snakes with Potent Antimicrobial and Anti-inflammatory Activity and Special Mechanism*

    PubMed Central

    Wei, Lin; Gao, Jiuxiang; Zhang, Shumin; Wu, Sijin; Xie, Zeping; Ling, Guiying; Kuang, Yi-Qun; Yang, Yongliang; Yu, Haining; Wang, Yipeng

    2015-01-01

    Cathelicidins are a family of gene-encoded peptide effectors of innate immunity found exclusively in vertebrates. They play pivotal roles in host immune defense against microbial invasions. Dozens of cathelicidins have been identified from several vertebrate species. However, no cathelicidin from marine reptiles has been characterized previously. Here we report the identification and characterization of a novel cathelicidin (Hc-CATH) from the sea snake Hydrophis cyanocinctus. Hc-CATH is composed of 30 amino acids, and the sequence is KFFKRLLKSVRRAVKKFRKKPRLIGLSTLL. Circular dichroism spectroscopy and structure modeling analysis indicated that Hc-CATH mainly assumes an amphipathic α-helical conformation in bacterial membrane-mimetic solutions. It possesses potent broad-spectrum and rapid antimicrobial activity. Meanwhile, it is highly stable and shows low cytotoxicity toward mammalian cells. The microbial killing activity of Hc-CATH is executed through the disruption of cell membrane and lysis of bacterial cells. In addition, Hc-CATH exhibited potent anti-inflammatory activity by inhibiting the LPS-induced production of nitric oxide (NO) and pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6. Hc-CATH directly binds with LPS to neutralize its toxicity, and it also binds to Toll-like receptor 4 (TLR4/MD2 complex), which therefore inhibits the binding of LPS to TLR4/MD2 complex and the subsequent activation of LPS-induced inflammatory response pathways. Taken together, our study demonstrates that Hc-CATH, the first cathelicidin from sea snake discovered to have both antimicrobial and anti-inflammatory activity, is a potent candidate for the development of peptide antibiotics. PMID:26013823

  19. Enhancement of the anti-inflammatory activity of temporin-1Tl-derived antimicrobial peptides by tryptophan, arginine and lysine substitutions.

    PubMed

    Rajasekaran, Ganesan; Kamalakannan, Radhakrishnan; Shin, Song Yub

    2015-10-01

    Temporin-1Tl (TL) is a 13-residue frog antimicrobial peptide (AMP) exhibiting potent antimicrobial and anti-inflammatory activity. To develop novel AMP with improved anti-inflammatory activity and antimicrobial selectivity, we designed and synthesized a series of TL analogs by substituting Trp, Arg and Lys at selected positions. Except for Escherichia coli and Staphylococcus epidermidis, all TL analogs exhibited retained or increased antimicrobial activity against seven bacterial strains including three methicillin-resistant Staphylococcus aureus strains compared with TL. TL-1 and TL-4 showed a little increase in antimicrobial selectivity, while TL-2 and TL-3 displayed slightly decreased antimicrobial selectivity because of their about twofold increased hemolytic activity. All TL analogs demonstrated greatly increased anti-inflammatory activity, evident by their higher inhibition of the production tumor necrosis factor-α (TNF-α) and nitric oxide and the mRNA expression of inducible nitric oxide synthase and TNF-α in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells, compared with TL. Taken together, the peptide anti-inflammatory activity is as follows: TL-2 ≈ TL-3 ≈ TL-4 > TL-1 > TL. In addition, LPS binding ability of the peptides corresponded with their anti-inflammatory activity. These results apparently suggest that the anti-inflammatory activity of TL analogs is associated with the direct binding ability between these peptides and LPS. Collectively, our designed TL analogs possess improved anti-inflammatory activity and retain antimicrobial activity without a significant increase in hemolysis. Therefore, it is evident that our TL analogs constitute promising candidates for the development of peptide therapeutics for gram-negative bacterial infection. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.

  20. Antibacterial and anti-inflammatory activity of a temporin B peptide analogue on an in vitro model of cystic fibrosis.

    PubMed

    Bezzerri, Valentino; Avitabile, Concetta; Dechecchi, Maria Cristina; Lampronti, Ilaria; Borgatti, Monica; Montagner, Giulia; Cabrini, Giulio; Gambari, Roberto; Romanelli, Alessandra

    2014-10-01

    Natural peptides with antimicrobial properties are deeply investigated as tools to fight bacteria resistant to common antibiotics. Small peptides, as those belonging to the temporin family, are very attractive because their activity can easily be tuned after small modification to their primary sequence. Structure-activity studies previously reported by us allowed the identification of one peptide, analogue of temporin B, TB_KKG6A, showing, unlike temporin B, antimicrobial activity against both Gram-positive and Gram-negative bacteria. In this paper, we investigated the antimicrobial and anti-inflammatory activity of the peptide TB_KKG6A against Pseudomonas aeruginosa. Interestingly, we found that the peptide exhibits antimicrobial activity at low concentrations, being able to downregulate the pro-inflammatory chemokines and cytokines interleukin (IL)-8, IL-1β, IL-6 and tumor necrosis factor-α produced downstream infected human bronchial epithelial cells. Experiments were carried out also with temporin B, which was found to show pro-inflammatory activity. Details on the interaction between TB_KKG6A and the P. aeruginosa LPS were obtained by circular dichroism and fluorescence studies. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.

  1. The antimicrobial effect of CEN1HC-Br against Propionibacterium acnes and its therapeutic and anti-inflammatory effects on acne vulgaris.

    PubMed

    Han, Rui; Blencke, Hans-Matti; Cheng, Hao; Li, Chun

    2018-01-01

    Propionibacterium acnes is a commensal bacterium, which is involved in acne inflammation. An antimicrobial peptide named CEN1HC-Br, which was isolated and characterized form the green sea urchin, has been shown to possess broad-spectrum antibacterial activity. Little is known concerning the potential effects of its antibacterial and anti-inflammatory properties against P. acnes. To examine the potency of CEN1HC-Br in acne treatment, we conducted experiments to analyze the antibacterial and anti-inflammatory activities of CEN1HC-Br both in vitro and in vivo. The antimicrobial activity of CEN1HC-Br was evaluated by minimal inhibitory concentration (MIC) assays using the broth dilution method. To elucidate the in vitro anti-inflammatory effect, HaCaT cells and human monocytes were treated with different concentration of CEN1HC-Br after stimulation by P. acnes. The expression of TLR2 and the secretion of the pro-inflammatory cytokines IL-6, IL-8, IL-1β, TNF-α, IL-12, respectively, were measured by enzyme immunoassays. An evaluation of P. acnes-induced ear edema in rat ear was conducted to compare the in vivo antibacterial and anti-inflammatory effect of CEN1HC-Br, the expression of IL-8, TNF-α, MMP-2 and TLR2 was evaluated by immunohistochemistry and real time-PCR. CEN1HC-Br showed stronger antimicrobial activity against P. acnes than clindamycin. CEN1HC-Br significantly reduced the expression of interleukin IL-12p40, IL-6, IL-1β, TNF-α and TLR2 in monocytes, but they were not influenced by clindamycin. Both CEN1HC-Br and Clindamycin attenuated P. acnes-induced ear swelling in rat along with pro-inflammatory cytokines IL-8, TNF-α, MMP-2 and TLR2. Our data demonstrates that CEN1HC-Br is bactericidal against P. acnes and that it has an anti-inflammatory effect on monocytes. The anti-inflammatory effect may partially occur through TLR2 down-regulation, triggering an innate immune response and the inhibition of pro-inflammatory cytokines. Copyright © 2017 The

  2. Activation of AMPK in human fetal membranes alleviates infection-induced expression of pro-inflammatory and pro-labour mediators.

    PubMed

    Lim, R; Barker, G; Lappas, M

    2015-04-01

    In non-gestational tissues, the activation of adenosine monophosphate (AMP)-activated kinase (AMPK) is associated with potent anti-inflammatory actions. Infection and/or inflammation, by stimulating pro-inflammatory cytokines and matrix metalloproteinase (MMP)-9, play a central role in the rupture of fetal membranes. However, no studies have examined the role of AMPK in human labour. Fetal membranes, from term and preterm, were obtained from non-labouring and labouring women, and after preterm pre-labour rupture of membranes (PPROM). AMPK activity was assessed by Western blotting of phosphorylated AMPK expression. To determine the effect of AMPK activators on pro-inflammatory cytokines, fetal membranes were pre-treated with AMPK activators then stimulated with bacterial products LPS and flagellin or viral dsDNA analogue poly(I:C). Primary amnion cells were used to determine the effect of AMPK activators on IL-1β-stimulated MMP-9 expression. AMPK activity was decreased with term labour. There was no effect of preterm labour. AMPK activity was also decreased in preterm fetal membranes, in the absence of labour, with PROM compared to intact membranes. AMPK activators AICAR, phenformin and A769662 significantly decreased IL-6 and IL-8 stimulated by LPS, flagellin and poly(I:C). Primary amnion cells treated with AMPK activators significantly decreased IL-1β-induced MMP-9 expression. The decrease in AMPK activity in fetal membranes after spontaneous term labour and PPROM indicates an anti-inflammatory role for AMPK in human labour and delivery. The use of AMPK activators as possible therapeutics for threatened preterm labour would be an exciting future avenue of research. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Allicin enhances host pro-inflammatory immune responses and protects against acute murine malaria infection

    PubMed Central

    2012-01-01

    Background During malaria infection, multiple pro-inflammatory mediators including IFN-γ, TNF and nitric oxide (NO) play a crucial role in the protection against the parasites. Modulation of host immunity is an important strategy to improve the outcome of malaria infection. Allicin is the major biologically active component of garlic and shows anti-microbial activity. Allicin is also active against protozoan parasites including Plasmodium, which is thought to be mediated by inhibiting cysteine proteases. In this study, the immunomodulatory activities of allicin were assessed during acute malaria infection using a rodent malaria model Plasmodium yoelii 17XL. Methods To determine whether allicin modulates host immune responses against malaria infection, mice were treated with allicin after infection with P. yoelii 17XL. Mortality was checked daily and parasitaemia was determined every other day. Pro-inflammatory mediators and IL-4 were quantified by ELISA, while NO level was determined by the Griess method. The populations of dendritic cells (DCs), macrophages, CD4+ T and regulatory T cells (Treg) were assessed by FACS. Results Allicin reduced parasitaemia and prolonged survival of the host in a dose-dependent manner. This effect is at least partially due to improved host immune responses. Results showed that allicin treatment enhanced the production of pro-inflammatory mediators such as IFN-γ, TNF, IL-12p70 and NO. The absolute numbers of CD4+ T cells, DCs and macrophages were significantly higher in allicin-treated mice. In addition, allicin promoted the maturation of CD11c+ DCs, whereas it did not cause major changes in IL-4 and the level of anti-inflammatory cytokine IL-10. Conclusions Allicin could partially protect host against P. yoelii 17XL through enhancement of the host innate and adaptive immune responses. PMID:22873687

  4. Allicin enhances host pro-inflammatory immune responses and protects against acute murine malaria infection.

    PubMed

    Feng, Yonghui; Zhu, Xiaotong; Wang, Qinghui; Jiang, Yongjun; Shang, Hong; Cui, Liwang; Cao, Yaming

    2012-08-08

    During malaria infection, multiple pro-inflammatory mediators including IFN-γ, TNF and nitric oxide (NO) play a crucial role in the protection against the parasites. Modulation of host immunity is an important strategy to improve the outcome of malaria infection. Allicin is the major biologically active component of garlic and shows anti-microbial activity. Allicin is also active against protozoan parasites including Plasmodium, which is thought to be mediated by inhibiting cysteine proteases. In this study, the immunomodulatory activities of allicin were assessed during acute malaria infection using a rodent malaria model Plasmodium yoelii 17XL. To determine whether allicin modulates host immune responses against malaria infection, mice were treated with allicin after infection with P. yoelii 17XL. Mortality was checked daily and parasitaemia was determined every other day. Pro-inflammatory mediators and IL-4 were quantified by ELISA, while NO level was determined by the Griess method. The populations of dendritic cells (DCs), macrophages, CD4+ T and regulatory T cells (Treg) were assessed by FACS. Allicin reduced parasitaemia and prolonged survival of the host in a dose-dependent manner. This effect is at least partially due to improved host immune responses. Results showed that allicin treatment enhanced the production of pro-inflammatory mediators such as IFN-γ, TNF, IL-12p70 and NO. The absolute numbers of CD4+ T cells, DCs and macrophages were significantly higher in allicin-treated mice. In addition, allicin promoted the maturation of CD11c+ DCs, whereas it did not cause major changes in IL-4 and the level of anti-inflammatory cytokine IL-10. Allicin could partially protect host against P. yoelii 17XL through enhancement of the host innate and adaptive immune responses.

  5. Pro-inflammatory AGE-RAGE signaling is activated during arousal from hibernation in ground squirrel adipose.

    PubMed

    Logan, Samantha M; Storey, Kenneth B

    2018-01-01

    Inflammation is generally suppressed during hibernation, but select tissues (e.g. lung) have been shown to activate both antioxidant and pro-inflammatory pathways, particularly during arousal from torpor when breathing rates increase and oxidative metabolism fueling the rewarming process produces more reactive oxygen species. Brown and white adipose tissues are now understood to be major hubs for the regulation of immune and inflammatory responses, yet how these potentially damaging processes are regulated by fat tissues during hibernation has hardly been studied. The advanced glycation end-product receptor (RAGE) can induce pro-inflammatory responses when bound by AGEs (which are glycated and oxidized proteins, lipids, or nucleic acids) or damage associated molecular pattern molecules (DAMPs, which are released from dying cells). Since gene expression and protein synthesis are largely suppressed during torpor, increases in AGE-RAGE pathway proteins relative to a euthermic control could suggest some role for these pro-inflammatory mediators during hibernation. This study determined how the pro-inflammatory AGE-RAGE signaling pathway is regulated at six major time points of the torpor-arousal cycle in brown and white adipose from a model hibernator, Ictidomys tridecemlineatus . Immunoblotting, RT-qPCR, and a competitive ELISA were used to assess the relative gene expression and protein levels of key regulators of the AGE-RAGE pathway during a hibernation bout. The results of this study revealed that RAGE is upregulated as animals arouse from torpor in both types of fat, but AGE and DAMP levels either remain unchanged or decrease. Downstream of the AGE-RAGE cascade, nfat5 was more highly expressed during arousal in brown adipose. An increase in RAGE protein levels and elevated mRNA levels of the downstream transcription factor nfat5 during arousal suggest the pro-inflammatory response is upregulated in adipose tissue of the hibernating ground squirrel. It is unlikely

  6. Evaluation of antimicrobial and anti-inflammatory activities of seed extracts from six Nigella species.

    PubMed

    Landa, Premysl; Marsik, Petr; Havlik, Jaroslav; Kloucek, Pavel; Vanek, Tomas; Kokoska, Ladislav

    2009-04-01

    Seed extracts from six species of the genus Nigella (Family Ranunculaceae)-Nigella arvensis, Nigella damascena, Nigella hispanica, Nigella nigellastrum, Nigella orientalis, and Nigella sativa-obtained by successive extraction with n-hexane, chloroform, and methanol, were tested for their antimicrobial activity against 10 strains of pathogenic bacteria and yeast using the microdilution method as well as for anti-inflammatory properties by in vitro cyclooxygenase (COX)-1 and COX-2 assay. Chemical characterization of active extracts was carried out including free and fixed fatty acid analysis. Comparison of antimicrobial activity showed that N. arvensis chloroform extract was the most potent among all species tested, inhibiting Gram-positive bacterial and yeast strains with minimum inhibitory concentration (MIC) values ranging from 0.25 to 1 mg/mL. With the exception of selective inhibitory action of n-hexane extract of N. orientalis on growth of Bacteroides fragilis (MIC = 0.5 mg/mL), we observed no antimicrobial activity for other Nigella species. Anti-inflammatory screening revealed that N. sativa, N. orientalis, N. hispanica, N. arvensis n-hexane, and N. hispanica chloroform extracts had strong inhibitory activity (more than 80%) on COX-1 and N. orientalis, N. arvensis, and N. hispanica n-hexane extracts were most effective against COX-2, when the concentration of extracts was 100 microg/mL in both COX assays. In conclusion, N. arvensis, N. orientalis, and N. hispanica seeds, for the first time examined for antimicrobial and anti-inflammatory effects, revealed their significant activity in one or both assays.

  7. De novo design and synthesis of ultra-short peptidomimetic antibiotics having dual antimicrobial and anti-inflammatory activities.

    PubMed

    Murugan, Ravichandran N; Jacob, Binu; Ahn, Mija; Hwang, Eunha; Sohn, Hoik; Park, Hyo-Nam; Lee, Eunjung; Seo, Ji-Hyung; Cheong, Chaejoon; Nam, Ky-Youb; Hyun, Jae-Kyung; Jeong, Ki-Woong; Kim, Yangmee; Shin, Song Yub; Bang, Jeong Kyu

    2013-01-01

    Much attention has been focused on the design and synthesis of potent, cationic antimicrobial peptides (AMPs) that possess both antimicrobial and anti-inflammatory activities. However, their development into therapeutic agents has been limited mainly due to their large size (12 to 50 residues in length) and poor protease stability. In an attempt to overcome the issues described above, a set of ultra-short, His-derived antimicrobial peptides (HDAMPs) has been developed for the first time. Through systematic tuning of pendant hydrophobic alkyl tails at the N(π)- and N(τ)-positions on His, and the positive charge of Arg, much higher prokaryotic selectivity was achieved, compared to human AMP LL-37. Additionally, the most potent HDAMPs showed promising dual antimicrobial and anti-inflammatory activities, as well as anti-methicillin-resistant Staphylococcus aureus (MRSA) activity and proteolytic resistance. Our results from transmission electron microscopy, membrane depolarization, confocal laser-scanning microscopy, and calcein-dye leakage experiments propose that HDAMP-1 kills microbial cells via dissipation of the membrane potential by forming pore/ion channels on bacterial cell membranes. The combination of the ultra-short size, high-prokaryotic selectivity, potent anti-MRSA activity, anti-inflammatory activity, and proteolytic resistance of the designed HDAMP-1, -3, -5, and -6 makes these molecules promising candidates for future antimicrobial therapeutics.

  8. Pro-Inflammatory and Pro-Oxidant Status of Pancreatic Islet In Vitro Is Controlled by TLR-4 and HO-1 Pathways

    PubMed Central

    Vivot, Kevin; Langlois, Allan; Bietiger, William; Dal, Stéphanie; Seyfritz, Elodie; Pinget, Michel; Jeandidier, Nathalie; Maillard, Elisa; Gies, Jean-Pierre; Sigrist, Séverine

    2014-01-01

    Since their isolation until implantation, pancreatic islets suffer a major stress leading to the activation of inflammatory reactions. The maintenance of controlled inflammation is essential to preserve survival and function of the graft. Identification and targeting of pathway(s) implicated in post-transplant detrimental inflammatory events, is mandatory to improve islet transplantation success. We sought to characterize the expression of the pro-inflammatory and pro-oxidant mediators during islet culture with a focus on Heme oxygenase (HO-1) and Toll-like receptors-4 signaling pathways. Rat pancreatic islets were isolated and pro-inflammatory and pro-oxidant status were evaluated after 0, 12, 24 and 48 hours of culture through TLR-4, HO-1 and cyclooxygenase-2 (COX-2) expression, CCL-2 and IL-6 secretion, ROS (Reactive Oxygen Species) production (Dihydroethidine staining, DHE) and macrophages migration. To identify the therapeutic target, TLR4 inhibition (CLI-095) and HO-1 activation (cobalt protoporphyrin,CoPP) was performed. Activation of NFκB signaling pathway was also investigated. After isolation and during culture, pancreatic islet exhibited a proinflammatory and prooxidant status (increase levels of TLR-4, COX-2, CCL-2, IL-6, and ROS). Activation of HO-1 or inhibition of TLR-4 decreased inflammatory status and oxidative stress of islets. Moreover, the overexpression of HO-1 induced NFκB phosphorylation while the inhibition of TLR-4 had no effect NFκB activation. Finally, inhibition of pro-inflammatory pathway induced a reduction of macrophages migration. These data demonstrated that the TLR-4 signaling pathway is implicated in early inflammatory events leading to a pro-inflammatory and pro-oxidant status of islets in vitro. Moreover, these results provide the mechanism whereby the benefits of HO-1 target in TLR-4 signaling pathway. HO-1 could be then an interesting target to protect islets before transplantation. PMID:25343247

  9. Glutathione S-transferase pi modulates NF-κB activation and pro-inflammatory responses in lung epithelial cells.

    PubMed

    Jones, Jane T; Qian, Xi; van der Velden, Jos L J; Chia, Shi Biao; McMillan, David H; Flemer, Stevenson; Hoffman, Sidra M; Lahue, Karolyn G; Schneider, Robert W; Nolin, James D; Anathy, Vikas; van der Vliet, Albert; Townsend, Danyelle M; Tew, Kenneth D; Janssen-Heininger, Yvonne M W

    2016-08-01

    Nuclear Factor kappa B (NF-κB) is a transcription factor family critical in the activation of pro- inflammatory responses. The NF-κB pathway is regulated by oxidant-induced post-translational modifications. Protein S-glutathionylation, or the conjugation of the antioxidant molecule, glutathione to reactive cysteines inhibits the activity of inhibitory kappa B kinase beta (IKKβ), among other NF-κB proteins. Glutathione S-transferase Pi (GSTP) is an enzyme that has been shown to catalyze protein S-glutathionylation (PSSG) under conditions of oxidative stress. The objective of the present study was to determine whether GSTP regulates NF-κB signaling, S-glutathionylation of IKK, and subsequent pro-inflammatory signaling. We demonstrated that, in unstimulated cells, GSTP associated with the inhibitor of NF-κB, IκBα. However, exposure to LPS resulted in a rapid loss of association between IκBα and GSTP, and instead led to a protracted association between IKKβ and GSTP. LPS exposure also led to increases in the S-glutathionylation of IKKβ. SiRNA-mediated knockdown of GSTP decreased IKKβ-SSG, and enhanced NF-κB nuclear translocation, transcriptional activity, and pro-inflammatory cytokine production in response to lipopolysaccharide (LPS). TLK117, an isotype-selective inhibitor of GSTP, also enhanced LPS-induced NF-κB transcriptional activity and pro-inflammatory cytokine production, suggesting that the catalytic activity of GSTP is important in repressing NF-κB activation. Expression of both wild-type and catalytically-inactive Y7F mutant GSTP significantly attenuated LPS- or IKKβ-induced production of GM-CSF. These studies indicate a complex role for GSTP in modulating NF-κB, which may involve S-glutathionylation of IKK proteins, and interaction with NF-κB family members. Our findings suggest that targeting GSTP is a potential avenue for regulating the activity of this prominent pro-inflammatory and immunomodulatory transcription factor. Copyright

  10. Pro-inflammatory capacity of classically activated monocytes relates positively to muscle mass and strength.

    PubMed

    Beenakker, Karel G M; Westendorp, Rudi G J; de Craen, Anton J M; Slagboom, Pieternella E; van Heemst, Diana; Maier, Andrea B

    2013-08-01

    In mice, monocytes that exhibit a pro-inflammatory profile enter muscle tissue after muscle injury and are crucial for clearance of necrotic tissue and stimulation of muscle progenitor cell proliferation and differentiation. The aim of this study was to test if pro-inflammatory capacity of classically activated (M1) monocytes relates to muscle mass and strength in humans. This study included 191 male and 195 female subjects (mean age 64.2 years (SD 6.4) and 61.9 ± 6.4, respectively) of the Leiden Longevity Study. Pro-inflammatory capacity of M1 monocytes was assessed by ex vivo stimulation of whole blood with Toll-like receptor (TLR) 4 agonist lipopolysaccharide (LPS) and TLR-2/1 agonist tripalmitoyl-S-glycerylcysteine (Pam₃Cys-SK₄), both M1 phenotype activators. Cytokines that stimulate M1 monocyte response (IFN-γ and GM-CSF) as well as cytokines that are secreted by M1 monocytes (IL-6, TNF-α, IL-12, and IL-1β) were measured. Analyses were adjusted for age, height, and body fat mass. Upon stimulation with LPS, the cytokine production capacity of INF-γ, GM-CSF, and TNF-α was significantly positively associated with lean body mass, appendicular lean mass and handgrip strength in men, but not in women. Upon stimulation with Pam₃Cys-SK₄, IL-6; TNF-α; and Il-1β were significantly positively associated with lean body mass and appendicular lean in women, but not in men. Taken together, this study shows that higher pro-inflammatory capacity of M1 monocytes upon stimulation is associated with muscle characteristics and sex dependent. © 2013 John Wiley & Sons Ltd and the Anatomical Society.

  11. LYATK1 potently inhibits LPS-mediated pro-inflammatory response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xi, Feng; Liu, Yuan; Wang, Xiujuan

    Lipopolysaccharide (LPS)-primed monocytes/macrophages produce pro-inflammatory cytokines, which could lead to endotoxin shock. TGF-β-activated kinase1 (TAK1) activation is involved in the process. In the current study, we studied the potential effect of a selective TAK1 inhibitor, LYTAK1, on LPS-stimulated response both in vitro and in vivo. We demonstrated that LYTAK1 inhibited LPS-induced mRNA expression and production of several pro-inflammatory cytokines [interleukin 1β (IL-1β), tumor necrosis factor-α (TNFα) and interleukin-6 (IL-6)] in RAW 264.7 macrophages. LYTAK1's activity was almost nullified with TAK1 shRNA-knockdown. Meanwhile, in both primary mouse bone marrow derived macrophages (BMDMs) and human peripheral blood mononuclear cells (PBMCs), LPS-induced pro-inflammatory cytokine productionmore » was again attenuated with LYTAK1 co-treatment. Molecularly, LYTAK1 dramatically inhibited LPS-induced TAK1-nuclear factor kappa B (NFκB) and mitogen-activated protein kinase (Erk, Jnk and p38) activation in RAW 264.7 cells, mouse BMDMs and human PBMCs. In vivo, oral administration of LYTAK1 inhibited LPS-induced activation of TAK1-NFκB-p38 in ex-vivo cultured PBMCs, and cytokine production and endotoxin shock in mice. Together, these results demonstrate that LYTAK1 inhibits LPS-induced production of several pro-inflammatory cytokines and endotoxin shock probably through blocking TAK1-regulated signalings. - Highlights: • LYTAK1 inhibits LPS-induced pro-inflammatory cytokine production in RAW 264.7 cells. • The effect by LYTAK1 is more potent than other known TAK1 inhibitors. • LYTAK1 inhibits LPS-induced cytokine production in primary macrophages/monocytes. • LYTAK1 inhibits LPS-induced TAK1-NFκB and MAPK activation in macrophages/monocytes. • LYTAK1 gavage inhibits LPS-induced endotoxin shock and cytokine production in mice.« less

  12. De Novo Design and Synthesis of Ultra-Short Peptidomimetic Antibiotics Having Dual Antimicrobial and Anti-Inflammatory Activities

    PubMed Central

    Ahn, Mija; Hwang, Eunha; Sohn, Hoik; Park, Hyo-Nam; Lee, Eunjung; Seo, Ji-Hyung; Cheong, Chaejoon; Nam, Ky-Youb; Hyun, Jae-Kyung; Jeong, Ki-Woong; Kim, Yangmee; Shin, Song Yub; Bang, Jeong Kyu

    2013-01-01

    Background Much attention has been focused on the design and synthesis of potent, cationic antimicrobial peptides (AMPs) that possess both antimicrobial and anti-inflammatory activities. However, their development into therapeutic agents has been limited mainly due to their large size (12 to 50 residues in length) and poor protease stability. Methodology/Principal Findings In an attempt to overcome the issues described above, a set of ultra-short, His-derived antimicrobial peptides (HDAMPs) has been developed for the first time. Through systematic tuning of pendant hydrophobic alkyl tails at the N(π)- and N(τ)-positions on His, and the positive charge of Arg, much higher prokaryotic selectivity was achieved, compared to human AMP LL-37. Additionally, the most potent HDAMPs showed promising dual antimicrobial and anti-inflammatory activities, as well as anti–methicillin-resistant Staphylococcus aureus (MRSA) activity and proteolytic resistance. Our results from transmission electron microscopy, membrane depolarization, confocal laser-scanning microscopy, and calcein-dye leakage experiments propose that HDAMP-1 kills microbial cells via dissipation of the membrane potential by forming pore/ion channels on bacterial cell membranes. Conclusion/Significance The combination of the ultra-short size, high-prokaryotic selectivity, potent anti-MRSA activity, anti-inflammatory activity, and proteolytic resistance of the designed HDAMP-1, -3, -5, and -6 makes these molecules promising candidates for future antimicrobial therapeutics. PMID:24302996

  13. Synthesis, evaluation and modeling of some triazolothienopyrimidinones as anti-inflammatory and antimicrobial agents.

    PubMed

    Bekhit, Adnan A; Farghaly, Ahmed M; Shafik, Ragab M; Elsemary, Mona Ma; El-Shoukrofy, Mai S; Bekhit, Alaa El-Din A; Ibrahim, Tamer M

    2017-06-01

    New triazolotetrahydrobenzothienopyrimidinone derivatives were synthesized. Their structures were confirmed, and their anti-inflammatory, antimicrobial activities and ulcerogenic potentials were evaluated. Compounds 7a, 10a and 11a showed minimal ulcerogenic effect and high selectivity toward human recombinant COX-2 over COX-1 enzyme with IC 50 values of 1.39, 1.22 and 0.56 μM, respectively. Their docking outcome correlated with their biological activity and confirmed the high selectivity binding toward COX-2. Compound 12b displayed antimicrobial activity comparable to that of ampicillin against Escherichia coli while compounds 6 and 11c were similar to ampicillin against Staphylococcus aureus. In addition, compounds 7a, 9a, 10b and 11c showed dual anti-inflammatory/antimicrobial activities. This work represents a promising matrix for developing new potential anti-inflammatory, antimicrobial and dual antimicrobial/anti-inflammatory candidates. [Formula: see text].

  14. Preliminary screening of some traditional zulu medicinal plants for anti-inflammatory and anti-microbial activities.

    PubMed

    Lin, J; Opoku, A R; Geheeb-Keller, M; Hutchings, A D; Terblanche, S E; Jäger, A K; van Staden, J

    1999-12-15

    Aqueous and methanolic extracts from different parts of nine traditional Zulu medicinal plants, of the Vitaceae from KwaZulu-Natal, South Africa were evaluated for therapeutic potential as anti-inflammatory and anti-microbial agents. Of the twenty-nine crude extracts assayed for prostaglandin synthesis inhibitors, only five methanolic extracts of Cyphostemma natalitium-root, Rhoicissus digitata-leaf, R. rhomboidea-root, R. tomentosa-leaf/stem and R. tridentata-root showed significant inhibition of cyclo-oxygenase (COX-1). The extracts of R. digitata-leaf and of R. rhomboidea-root exhibited the highest inhibition of prostaglandin synthesis with 53 and 56%, respectively. The results suggest that Rhoicissus digitata leaves and of Rhoicissus rhomboidea roots may have the potential to be used as anti-inflammatory agents. All the screened plant extracts showed some degrees of anti-microbial activity against gram-positive and gram-negative microorganisms. The methanolic extracts of C. natalitium-stem and root, R. rhomboidea-root, and R. tomentosa-leaf/stem, showed different anti-microbial activities against almost all micro-organisms tested. Generally, these plant extracts inhibited the gram-positive micro-organisms more than the gram-negative ones. Several plant extracts inhibited the growth of Candida albicans while only one plant extract showed inhibitory activity against Saccharomyces cerevisiae. All the plant extracts which demonstrated good anti-inflammatory activities also showed better inhibitory activity against Candida albicans.

  15. Characterization of a microbial polysaccharide-based bioflocculant and its anti-inflammatory and pro-coagulant activity.

    PubMed

    Zhong, Chunying; Cao, Gang; Rong, Kuan; Xia, Zhengwu; Peng, Ting; Chen, Honggao; Zhou, Jiangang

    2018-01-01

    We describe a novel bioflocculant, MBF-15, which is an exopolysaccharide extracted from the alkaliphilic bacterium Paenibacillus jamilae. The biophysical characteristics of MBF-15 were determined using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. MBF-15 was also evaluated for its biocompatibility by examining its inflammatory, coagulant, and hemostatic properties in vitro and in vivo. Pretreatment of peripheral blood mononuclear cells with MBF-15 inhibited lipopolysaccharide-stimulated expression of inducible nitric oxide synthase, production of nitric oxide, and secretion of pro-inflammatory cytokines, including tumor necrosis factor-α and interleukin-6. In addition, MBF-15 increased both mRNA and protein levels of the anti-inflammatory cytokines transforming growth factor-β and IL-10. The hemocompatibility of MBF-15 was investigated by measuring the hemolysis ratio and clotting times. MBF-15 had high pro-thrombogenic activity but was not hemolytic. In a rat model, MBF-15 showed superior hemostatic properties compared with chitosan. Thus, MBF-15 offers a promising combination of anti-inflammatory and pro-coagulant properties that may be useful for hemostasis in a variety of clinical settings. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. NF-κB activation primes cells to a pro-inflammatory polarized response to a TLR7 agonist

    PubMed Central

    Lee, Jongdae; Hayashi, Masaaki; Lo, Jeng-Fan; Fearns, Colleen; Chu, Wen-Ming; Luo, Yunping; Xiang, Rong; Chuang, Tsung-Hsien

    2009-01-01

    Toll-like receptor 7 (TLR7) mediates anti-viral immunity by recognizing ssRNA viruses. Small molecular weight TLR7 agonists have been approved, or are being evaluated, for treatment of cancers or infectious diseases. Although TLR7 is predominantly expressed in a restricted set of immune cell types including plasmacytoid dendritic cells (pDCs), it is also expressed in non-native expressing cells (e.g., hepatocytes) under certain circumstances. To elucidate the molecular basis of TLR7 induction by pro-inflammatory stimulation and the subsequent cellular responses in these non-native TLR7-expressing cell types, we firstly cloned and characterized the 5′-promoter region of TLR7. The proximal region of this promoter drives the transcription of the TLR7 gene. Pro-inflammatory stimuli activated TLR7 transcription via a NF-κB binding motif in this region, and this activation could be blocked by mutation of the NF-κB binding site or addition of NF-κB inhibitors. Further studies showed that pretreatment of the Hep3B hepatocytes with TNF-α or IL-1 rendered them responsive to TLR7 activation by a TLR7 agonist. However, distinct from TLR7 activation in pDCs, which respond to stimulation with Th1 polarized cytokine production, TLR7 induction by pro-inflammatory signals in hepatocytes reconstitutes the NF-κB-dependent cascade but not the IRF7-dependent cascade, resulting in a pro-inflammatory polarized response rather than a Th1 polarized response. These results indicate that inflammatory stimulation is capable of priming cells to respond to TLR7 agonist with an immune response that differs from that in native TLR7-expressing cells. PMID:19426145

  17. Antimicrobial, Anti-inflammatory and Antioxidant Activities of Jatropha multifida L. (Euphorbiaceae).

    PubMed

    Anani, Kokou; Adjrah, Yao; Améyapoh, Yaovi; Karou, Simplice Damintoti; Agbonon, Amegnona; de Souza, Comlan; Gbeassor, Messanvi

    2016-01-01

    Jatropha multifida is used in Togolease folk medicine for the healing of chronic wounds. This study aims to investigate antibacterial, anti-inflammatory and antioxidant activities of the leaves ethanolic extract. The antimicrobial activity was assayed by National Committee for Clinical Laboratory Standards broth microdilution method on strains of Staphylococcus aureus and Pseudomoas aeruginosa isolated from wounds, whereas the anti-inflammatory activity was performed by carrageenan and histamine induced paw edema method in rat modele. The 2, 2-diphenyl-1picrylhydrazyl (DPPH) free radical scavenging and ferric reducing antioxidant power (FRAP) were used for the antioxidant activity. The antibacterial assay showed an in vitro growth inhibition of P. aeruginosa and S. aureus in dose-dependent manner, with minimum inhibitory concentration values ranging from 2.5 to 3.12 mg/mL for S. aureus and from 6.25 to 12.5 mg/mL for P. aeruginosa. The maximum paw anti-inflammatory effect occurred after 3 and 5 h administration of histamine and carrageenan, respectively. The DPPH radical scavenging and the FRAP assays yielded weak antioxidant activity. J. multifida possesses antibacterial and anti-inflammatory activities that could justify the use of the plant for the treatment of wounds in the folk medicine. Antibacterial on germs isolated from wound, anti-inflammatory and antioxidant activities of Jatropha multifida were assayed by NCCLS broth method, carrageenan and histamine, DPPH and FRAP respectively. The results indicated that Jatropha multifida possesses antibacterial and anti-inflammatory and weak antioxidant activities that could justify its use for the treatment of wounds in the folk medicine.

  18. Anti-Inflammatory Action of an Antimicrobial Model Peptide That Suppresses the TRIF-Dependent Signaling Pathway via Inhibition of Toll-Like Receptor 4 Endocytosis in Lipopolysaccharide-Stimulated Macrophages.

    PubMed

    Shim, Do-Wan; Heo, Kang-Hyuck; Kim, Young-Kyu; Sim, Eun-Jeong; Kang, Tae-Bong; Choi, Jae-Wan; Sim, Dae-Won; Cheong, Sun-Hee; Lee, Seung-Hong; Bang, Jeong-Kyu; Won, Hyung-Sik; Lee, Kwang-Ho

    2015-01-01

    Antimicrobial peptides (AMPs), also called host defense peptides, particularly those with amphipathic helical structures, are emerging as target molecules for therapeutic development due to their immunomodulatory properties. Although the antimicrobial activity of AMPs is known to be exerted primarily by permeation of the bacterial membrane, the mechanism underlying its anti-inflammatory activity remains to be elucidated. We report potent anti-inflammatory activity of WALK11.3, an antimicrobial model peptide with an amphipathic helical conformation, in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. This peptide inhibited the expression of inflammatory mediators, including nitric oxide, COX-2, IL-1β, IL-6, INF-β, and TNF-α. Although WALK11.3 did not exert a major effect on all downstream signaling in the MyD88-dependent pathway, toll-like receptor 4 (TLR4)- mediated pro-inflammatory signals were markedly attenuated in the TRIF-dependent pathway due to inhibition of the phosphorylation of STAT1 by attenuation of IRF3 phosphorylation. WALK11.3 specifically inhibited the endocytosis of TLR4, which is essential for triggering TRIF-mediated signaling in macrophage cells. Hence, we suggest that specific interference with TLR4 endocytosis could be one of the major modes of the anti-inflammatory action of AMPs. Our designed WALK11 peptides, which possess both antimicrobial and anti-inflammatory activities, may be promising molecules for the development of therapies for infectious inflammation.

  19. Resveratrol post-transcriptionally regulates pro-inflammatory gene expression via regulation of KSRP RNA binding activity

    PubMed Central

    Bollmann, Franziska; Art, Julia; Henke, Jenny; Schrick, Katharina; Besche, Verena; Bros, Matthias; Li, Huige; Siuda, Daniel; Handler, Norbert; Bauer, Florian; Erker, Thomas; Behnke, Felix; Mönch, Bettina; Härdle, Lorena; Hoffmann, Markus; Chen, Ching-Yi; Förstermann, Ulrich; Dirsch, Verena M.; Werz, Oliver; Kleinert, Hartmut; Pautz, Andrea

    2014-01-01

    Resveratrol shows beneficial effects in inflammation-based diseases like cancer, cardiovascular and chronic inflammatory diseases. Therefore, the molecular mechanisms of the anti-inflammatory resveratrol effects deserve more attention. In human epithelial DLD-1 and monocytic Mono Mac 6 cells resveratrol decreased the expression of iNOS, IL-8 and TNF-α by reducing mRNA stability without inhibition of the promoter activity. Shown by pharmacological and siRNA-mediated inhibition, the observed effects are SIRT1-independent. Target-fishing and drug responsive target stability experiments showed selective binding of resveratrol to the RNA-binding protein KSRP, a central post-transcriptional regulator of pro-inflammatory gene expression. Knockdown of KSRP expression prevented resveratrol-induced mRNA destabilization in human and murine cells. Resveratrol did not change KSRP expression, but immunoprecipitation experiments indicated that resveratrol reduces the p38 MAPK-related inhibitory KSRP threonine phosphorylation, without blocking p38 MAPK activation or activity. Mutation of the p38 MAPK target site in KSRP blocked the resveratrol effect on pro-inflammatory gene expression. In addition, resveratrol incubation enhanced KSRP-exosome interaction, which is important for mRNA degradation. Finally, resveratrol incubation enhanced its intra-cellular binding to the IL-8, iNOS and TNF-α mRNA. Therefore, modulation of KSRP mRNA binding activity and, thereby, enhancement of mRNA degradation seems to be the common denominator of many anti-inflammatory effects of resveratrol. PMID:25352548

  20. Manduca sexta proprophenoloxidase activating proteinase-3 (PAP3) stimulates melanization by activating proPAP3, proSPHs, and proPOs

    PubMed Central

    Wang, Yang; Lu, Zhiqiang; Jiang, Haobo

    2014-01-01

    Melanization participates in various insect physiological processes including antimicrobial immune responses. Phenoloxidase (PO), a critical component of the enzyme system catalyzing melanin formation, is produced as an inactive precursor prophenoloxidase (proPO) and becomes active via specific proteolytic cleavage by proPO activating proteinase (PAP). In Manduca sexta, three PAPs can activate proPOs in the presence of two serine proteinase homologs (SPH1 and SPH2). While the hemolymph proteinases (HPs) that generate the active PAPs are known, it is unclear how the proSPHs (especially proSPH1) are activated. In this study, we isolated from plasma of bar-stage M. sexta larvae an Ile-Glu-Ala-Arg-p-nitroanilide hydrolyzing enzyme that cleaved the proSPHs. This proteinase, PAP3, generated active SPH1 and SPH2, which function as cofactors for PAP3 in proPO activation. Cleavage of the purified recombinant proSPHs by PAP3 yielded 38 kDa bands similar in mobility to the SPHs formed in vivo. Surprisingly, PAP3 also can activate proPAP3 to stimulate melanization in a direct positive feedback loop. The enhanced proPO activation concurred with the cleavage activation of proHP6, proHP8, proPAP1, proPAP3, proSPH1, proSPH2, proPOs, but not proHP14 or proHP21. These results indicate that PAP3, like PAP1, is a key factor of the self-reinforcing mechanism in the proPO activation system, which is linked to other immune responses in M. sexta. PMID:24768974

  1. Alpha-Melanocyte Stimulating Hormone: An Emerging Anti-Inflammatory Antimicrobial Peptide

    PubMed Central

    Singh, Madhuri; Mukhopadhyay, Kasturi

    2014-01-01

    The alpha-melanocyte stimulating hormone (α-MSH) is a neuropeptide belonging to the melanocortin family. It is well known for its anti-inflammatory and antipyretic effects and shares several characteristics with antimicrobial peptides (AMPs). There have been some recent reports about the direct antimicrobial activity of α-MSH against various microbes belonging to both fungal and bacterial pathogens. Similar to α-MSH's anti-inflammatory properties, its C-terminal residues also exhibit antimicrobial activity parallel to that of the entire peptide. This review is focused on the current findings regarding the direct antimicrobial potential and immunomodulatory mechanism of α-MSH and its C-terminal fragments, with particular emphasis on the prospects of α-MSH based peptides as a strong anti-infective agent. PMID:25140322

  2. Antimicrobial, Anti-inflammatory and Antioxidant Activities of Jatropha multifida L. (Euphorbiaceae)

    PubMed Central

    Anani, Kokou; Adjrah, Yao; Améyapoh, Yaovi; Karou, Simplice Damintoti; Agbonon, Amegnona; de Souza, Comlan; Gbeassor, Messanvi

    2016-01-01

    Background: Jatropha multifida is used in Togolease folk medicine for the healing of chronic wounds. Objective: This study aims to investigate antibacterial, anti-inflammatory and antioxidant activities of the leaves ethanolic extract. Materials and Methods: The antimicrobial activity was assayed by National Committee for Clinical Laboratory Standards broth microdilution method on strains of Staphylococcus aureus and Pseudomoas aeruginosa isolated from wounds, whereas the anti-inflammatory activity was performed by carrageenan and histamine induced paw edema method in rat modele. The 2, 2-diphenyl-1picrylhydrazyl (DPPH) free radical scavenging and ferric reducing antioxidant power (FRAP) were used for the antioxidant activity. Results: The antibacterial assay showed an in vitro growth inhibition of P. aeruginosa and S. aureus in dose-dependent manner, with minimum inhibitory concentration values ranging from 2.5 to 3.12 mg/mL for S. aureus and from 6.25 to 12.5 mg/mL for P. aeruginosa. The maximum paw anti-inflammatory effect occurred after 3 and 5 h administration of histamine and carrageenan, respectively. The DPPH radical scavenging and the FRAP assays yielded weak antioxidant activity. Conclusion: J. multifida possesses antibacterial and anti-inflammatory activities that could justify the use of the plant for the treatment of wounds in the folk medicine. SUMMARY Antibacterial on germs isolated from wound, anti-inflammatory and antioxidant activities of Jatropha multifida were assayed by NCCLS broth method, carrageenan and histamine, DPPH and FRAP respectively. The results indicated that Jatropha multifida possesses antibacterial and anti-inflammatory and weak antioxidant activities that could justify its use for the treatment of wounds in the folk medicine. PMID:27034606

  3. Evolutionary Conservation of Divergent Pro-Inflammatory and Homeostatic Responses in Lamprey Phagocytes

    PubMed Central

    Havixbeck, Jeffrey J.; Rieger, Aja M.; Wong, Michael E.; Wilkie, Michael P.; Barreda, Daniel R.

    2014-01-01

    In higher vertebrates, phagocytosis plays a critical role in development and immunity, based on the internalization and removal of apoptotic cells and invading pathogens, respectively. Previous studies describe the effective uptake of these particles by lower vertebrate and invertebrate phagocytes, and identify important molecular players that contribute to this internalization. However, it remains unclear if individual phagocytes mediate internalization processes in these ancient organisms, and how this impacts the balance of pro-inflammatory and homeostatic events within their infection sites. Herein we show that individual phagocytes of the jawless vertebrate Petromyzon marinus (sea lamprey), like those of teleost fish and mice, display the capacity for divergent pro-inflammatory and homeostatic responses following internalization of zymosan and apoptotic cells, respectively. Professional phagocytes (macrophages, monocytes, neutrophils) were the primary contributors to the internalization of pro-inflammatory particles among goldfish (C. auratus) and lamprey (P. marinus) hematopoietic leukocytes. However, goldfish showed a greater ability for zymosan phagocytosis when compared to their jawless counterparts. Coupled to this increase was a significantly lower sensitivity of goldfish phagocytes to homeostatic signals derived from apoptotic cell internalization. Together, this translated into a significantly greater capacity for induction of antimicrobial respiratory burst responses compared to lamprey phagocytes, but also a decreased efficacy in apoptotic cell-driven leukocyte homeostatic mechanisms that attenuate this pro-inflammatory process. Overall, our results show the long-standing evolutionary contribution of intrinsic phagocyte mechanisms for the control of inflammation, and illustrate one effective evolutionary strategy for increased responsiveness against invading pathogens. In addition, they highlight the need for development of complementary regulatory

  4. Evolutionary conservation of divergent pro-inflammatory and homeostatic responses in Lamprey phagocytes.

    PubMed

    Havixbeck, Jeffrey J; Rieger, Aja M; Wong, Michael E; Wilkie, Michael P; Barreda, Daniel R

    2014-01-01

    In higher vertebrates, phagocytosis plays a critical role in development and immunity, based on the internalization and removal of apoptotic cells and invading pathogens, respectively. Previous studies describe the effective uptake of these particles by lower vertebrate and invertebrate phagocytes, and identify important molecular players that contribute to this internalization. However, it remains unclear if individual phagocytes mediate internalization processes in these ancient organisms, and how this impacts the balance of pro-inflammatory and homeostatic events within their infection sites. Herein we show that individual phagocytes of the jawless vertebrate Petromyzon marinus (sea lamprey), like those of teleost fish and mice, display the capacity for divergent pro-inflammatory and homeostatic responses following internalization of zymosan and apoptotic cells, respectively. Professional phagocytes (macrophages, monocytes, neutrophils) were the primary contributors to the internalization of pro-inflammatory particles among goldfish (C. auratus) and lamprey (P. marinus) hematopoietic leukocytes. However, goldfish showed a greater ability for zymosan phagocytosis when compared to their jawless counterparts. Coupled to this increase was a significantly lower sensitivity of goldfish phagocytes to homeostatic signals derived from apoptotic cell internalization. Together, this translated into a significantly greater capacity for induction of antimicrobial respiratory burst responses compared to lamprey phagocytes, but also a decreased efficacy in apoptotic cell-driven leukocyte homeostatic mechanisms that attenuate this pro-inflammatory process. Overall, our results show the long-standing evolutionary contribution of intrinsic phagocyte mechanisms for the control of inflammation, and illustrate one effective evolutionary strategy for increased responsiveness against invading pathogens. In addition, they highlight the need for development of complementary regulatory

  5. The Pro-inflammatory Effects of Glucocorticoids in the Brain

    PubMed Central

    Duque, Erica de Almeida; Munhoz, Carolina Demarchi

    2016-01-01

    Glucocorticoids are a class of steroid hormones derived from cholesterol. Their actions are mediated by the glucocorticoid and mineralocorticoid receptors, members of the superfamily of nuclear receptors, which, once bound to their ligands, act as transcription factors that can directly modulate gene expression. Through protein–protein interactions with other transcription factors, they can also regulate the activity of many genes in a composite or tethering way. Rapid non-genomic signaling was also demonstrated since glucocorticoids can act through membrane receptors and activate signal transduction pathways, such as protein kinases cascades, to modulate other transcriptions factors and activate or repress various target genes. By all these different mechanisms, glucocorticoids regulate numerous important functions in a large variety of cells, not only in the peripheral organs but also in the central nervous system during development and adulthood. In general, glucocorticoids are considered anti-inflammatory and protective agents due to their ability to inhibit gene expression of pro-inflammatory mediators and other possible damaging molecules. Nonetheless, recent studies have uncovered situations in which these hormones can act as pro-inflammatory agents depending on the dose, chronicity of exposure, and the structure/organ analyzed. In this review, we will provide an overview of the conditions under which these phenomena occur, a discussion that will serve as a basis for exploring the mechanistic foundation of glucocorticoids pro-inflammatory gene regulation in the brain. PMID:27445981

  6. Effects of dietary resveratrol supplementation on hepatic and serum pro-/anti-inflammatory activity in juvenile GIFT tilapia, Oreochromis niloticus.

    PubMed

    Zheng, Yao; Zhao, Zhixiang; Wu, Wei; Song, Chao; Meng, Shunlong; Fan, Limin; Bing, Xuwen; Chen, Jiazhang

    2017-08-01

    Dietary resveratrol (RES) supplementation may have some pharmacological effects including anti-inflammation. Previous studies have shown that Kupffer cell activation and apoptosis induction increases the transcription of pro- and anti-inflammatory cytokines. The main purpose of this study was to investigate the pro- and anti-inflammatory activities of 0.1 or 0.3 g/kg RES as a dietary supplement in juvenile freshwater tilapia (Oreochromis niloticus). The results showed that hepatic and serum immunoglobulin M (IgM) significantly decreased and increased while anti- and pro-inflammatory cytokines significantly increased and decreased, respectively, in the RES-treated groups. The expression of serum and hepatic IgM and anti-inflammatory cytokines [interleukin (IL)-10] and its inverse inhibitor interferon (IFN)-γ significantly increased while pro-inflammatory cytokine transcription significantly decreased. Hematoxylin-eosin staining and scanning electron microscopy revealed intestinal deformation, irregular goblet cells, and apoptotic cells in the 0.3 g/kg RES groups. RES (0.3 g/kg) also induced necrosis, apoptosis, reduction in Kupffer cell number, compressed sinusoids, and deformation of epidermal cells in the liver of the treated groups. In conclusion, the results of the present study show that high doses of RES were absorbed in the gut and then damaged the liver and intestinal tissue. Copyright © 2017. Published by Elsevier Ltd.

  7. Chronic Interpersonal Stress Predicts Activation of Pro- and Anti- Inflammatory Signaling Pathways Six Months Later

    PubMed Central

    Miller, Gregory; Rohleder, Nicolas; Cole, Steve W.

    2009-01-01

    OBJECTIVE Chronic interpersonal difficulties have a detrimental influence on mental and physical health, but little is known about the mechanisms underlying this phenomenon. METHODS 103 healthy young women (mean age = 17) were administered a structured interview to assess the degree of chronic interpersonal stress in their lives. At the same time blood was drawn to measure systemic inflammation, the expression of signaling molecules that regulate immune activation, and leukocyte production of the cytokine interleukin-6 following ex vivo stimulation with lipopolysaccharide. All of the immunologic assessments were repeated six months later. RESULTS To the extent subjects were high in chronic interpersonal stress at baseline, their leukocytes displayed greater increases in mRNA for the pro-inflammatory transcription factor nuclear factor-kappa B (NF-κB) over the next six months. They also showed larger increases in mRNA for inhibitor of kappaB, a molecule that sequesters NF-κB in the cytoplasm and minimizes its pro-inflammatory activities. Chronic interpersonal stress at baseline was unrelated to changes in biomarkers of systemic inflammation, but was associated with increasingly pronounced interleukin-6 responses to lipopolysaccharide. These associations were independent of demographics, lifestyle variables, and depressive symptoms. CONCLUSIONS These findings suggest that chronic interpersonal difficulties accentuate expression of pro- and anti-inflammatory signaling molecules. While this process does not result in systemic inflammation under quiescent conditions, it does accentuate leukocytes’ inflammatory response to microbial challenge. These dynamics may underlie the excess morbidity associated with social stress, particularly in inflammation-sensitive diseases like depression and atherosclerosis. PMID:19073750

  8. Endogenous pro-resolving and anti-inflammatory lipid mediators: a new pharmacologic genus

    PubMed Central

    Serhan, C N; Chiang, N

    2008-01-01

    Complete resolution of an acute inflammatory response and its return to homeostasis are essential for healthy tissues. Here, we overview ongoing efforts to characterize cellular and molecular mechanisms that govern the resolution of self-limited inflammation. Systematic temporal analyses of evolving inflammatory exudates using mediator lipidomics-informatics, proteomics, and cellular trafficking with murine resolving exudates demonstrate novel endogenous pathways of local-acting mediators that share both anti-inflammatory and pro-resolving properties. In murine systems, resolving-exudate leukocytes switch their phenotype to actively generate new families of mediators from major omega-3 fatty acids EPA and DHA termed resolvins and protectins. Recent advances on their biosynthesis and actions are reviewed with a focus on the E-series resolvins (RvE1, RvE2), D series resolvins (RvD1, RvD2) and the protectins including neuroprotectin D1/protectin D1 (NPD1/PD1) as well as their aspirin-triggered epimeric forms. Members of each new family demonstrate potent stereo-specific actions, joining the lipoxins as endogenous local signals that govern resolution and endogenous anti-inflammation mechanisms. In addition to their origins and roles in resolution biology in the immune system, recent findings indicate that these new mediator families also display potent protective actions in lung, kidney, and eye as well as enhance microbial clearance. Thus, these endogenous agonists of resolution pathways constitute a novel genus of chemical mediators that possess pro-resolving, anti-inflammatory, and antifibrotic as well as host-directed antimicrobial actions. These may be useful in the design of new therapeutics and treatments for diseases with the underlying trait of uncontrolled inflammation and redox organ stress. PMID:17965751

  9. Anti-Inflammatory Action of an Antimicrobial Model Peptide That Suppresses the TRIF-Dependent Signaling Pathway via Inhibition of Toll-Like Receptor 4 Endocytosis in Lipopolysaccharide-Stimulated Macrophages

    PubMed Central

    Shim, Do-Wan; Heo, Kang-Hyuck; Kim, Young-Kyu; Sim, Eun-Jeong; Kang, Tae-Bong; Choi, Jae-Wan; Sim, Dae-Won; Cheong, Sun-Hee; Lee, Seung-Hong; Bang, Jeong-Kyu; Won, Hyung-Sik; Lee, Kwang-Ho

    2015-01-01

    Antimicrobial peptides (AMPs), also called host defense peptides, particularly those with amphipathic helical structures, are emerging as target molecules for therapeutic development due to their immunomodulatory properties. Although the antimicrobial activity of AMPs is known to be exerted primarily by permeation of the bacterial membrane, the mechanism underlying its anti-inflammatory activity remains to be elucidated. We report potent anti-inflammatory activity of WALK11.3, an antimicrobial model peptide with an amphipathic helical conformation, in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. This peptide inhibited the expression of inflammatory mediators, including nitric oxide, COX-2, IL-1β, IL-6, INF-β, and TNF-α. Although WALK11.3 did not exert a major effect on all downstream signaling in the MyD88-dependent pathway, toll-like receptor 4 (TLR4)- mediated pro-inflammatory signals were markedly attenuated in the TRIF-dependent pathway due to inhibition of the phosphorylation of STAT1 by attenuation of IRF3 phosphorylation. WALK11.3 specifically inhibited the endocytosis of TLR4, which is essential for triggering TRIF-mediated signaling in macrophage cells. Hence, we suggest that specific interference with TLR4 endocytosis could be one of the major modes of the anti-inflammatory action of AMPs. Our designed WALK11 peptides, which possess both antimicrobial and anti-inflammatory activities, may be promising molecules for the development of therapies for infectious inflammation. PMID:26017270

  10. Chemical Profile and Antioxidant, Anti-Inflammatory, Antimutagenic and Antimicrobial Activities of Geopropolis from the Stingless Bee Melipona orbignyi.

    PubMed

    Santos, Helder Freitas Dos; Campos, Jaqueline Ferreira; Santos, Cintia Miranda Dos; Balestieri, José Benedito Perrella; Silva, Denise Brentan; Carollo, Carlos Alexandre; de Picoli Souza, Kely; Estevinho, Leticia Miranda; Dos Santos, Edson Lucas

    2017-05-03

    Geopropolis is a resin mixed with mud, produced only by stingless bees. Despite being popularly known for its medicinal properties, few scientific studies have proven its biological activities. In this context, the objective of this study was to determine the chemical composition and antioxidant, anti-inflammatory, antimutagenic and antimicrobial activities of the Melipona orbignyi geopropolis. The hydroalcoholic extract of geopropolis (HEGP) was prepared and its chemical composition determined by high performance liquid chromatography coupled to diode array detector and mass spectrometry (HPLC-DAD-MS). The antioxidant activity was determined by the capture of free radicals and inhibition of lipid peroxidation in human erythrocytes. The anti-inflammatory activity was evaluated by the inhibition of the hyaluronidase enzyme and the antimutagenic action was investigated in Saccharomyces cerevisiae colonies. The antimicrobial activities were determined against bacteria and yeasts, isolated from reference strains and hospital origin. The chemical composition of HEGP included flavonoids, derivatives of glycosylated phenolic acids and terpenoids. HEGP showed high antioxidant activity, it inhibited the activity of the inflammatory enzyme hyaluronidase and reduced the mutagenic effects in S. cerevisiae . In relation to the antimicrobial activity, it promoted the death of all microorganisms evaluated. In conclusion, this study reveals for the first time the chemical composition of the HEGP of M. orbignyi and demonstrates its pharmacological properties.

  11. Antimicrobial, Antioxidant, and Anti-Inflammatory Activities of Essential Oils of Selected Aromatic Plants from Tajikistan.

    PubMed

    Sharopov, Farukh; Braun, Markus Santhosh; Gulmurodov, Isomiddin; Khalifaev, Davlat; Isupov, Salomiddin; Wink, Michael

    2015-11-02

    Antimicrobial, antioxidant, and anti-inflammatory activities of the essential oils of 18 plant species from Tajikistan (Central Asia) were investigated. The essential oil of Origanum tyttanthum showed a strong antibacterial activity with both minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 312.5 µg/mL for E. coli , 625 µg/mL (MIC) and 1250 µg/mL (MBC) for MRSA (methicillin-resistant Staphylococcus aureus), respectively. The essential oil of Galagania fragrantissima was highly active against MRSA at concentrations as low as 39.1 µg/mL and 78.2 µg/mL for MIC and MBC, respectively. Origanum tyttanthum essential oil showed the highest antioxidant activity with IC 50 values of 0.12 mg/mL for ABTS (2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid)) and 0.28 mg/mL for DPPH (2,2-diphenyl-1-picrylhydrazyl) . Galagania fragrantissima and Origanum tyttanthum essential oils showed the highest anti-inflammatory activity; IC 50 values of 5-lipoxygenase (5-LOX) inhibition were 7.34 and 14.78 µg/mL, respectively. In conclusion, essential oils of Origanum tyttanthum and Galagania fragrantissima exhibit substantial antimicrobial, antioxidant, and anti-inflammatory activities. They are interesting candidates in phytotherapy.

  12. Antimicrobial and anti-inflammatory activities of Pleurostylia capensis Turcz (Loes) (celastraceae).

    PubMed

    Razwinani, Mapula; Tshikalange, Thilivhali Emmanuel; Motaung, Shirley C K M

    2014-01-01

    Pleurostylia capensis is a large tree that can reach the maximum height of 20 m long, and it have been traditionally used as cosmetic, for steam bath, ritual body wash, and as a purgative to treat symptoms of witchcraft. Using ethanol, chloroform, dichloromethane (DCM), ethyl acetate (EA), and water extracts, leaves, bark and roots of Pleurostylia capensis were investigated scientifically for their effectiveness in antimicrobial, antioxidant and anti-inflammatory activities using standard methods. The extracts were evaluated for antimicrobial activity against Gram positive (Staphylococcus aureus, Bacillus cereus, and Mycobacterium smegmatis), Gram negative (Escherichia coli, Klebsiella pneumonia, Klebsiella oxytoca, Streptococcus pyogenes, Pseudomonas aeruginosa and Salmonella typhimurium), and Candida albicans. The antioxidant activity was investigated using 2, 2-diphenlyl-1-picrylhadrazyl (DPPH), free radical scavenging assay. The anti-inflammatory activity of P. capensis extracts was evaluated against both cyclooxygenase enzymes (COX 1 and 2). The ethyl acetate extracts of P. capensis showed a strong antimicrobial activity against B. cereus, K. pneumonia, S. pyogenes, and M. smegmatis with MIC value of 0.39 and 0.78 mg/ml. While the ethanol bark extract was most active against M. smegmatis with MIC value of 0.78 mg/ml; the least potent activity was observed with dichloromethane, chloroform and water extracts, with an MIC value ranging from 1.56 mg/ml to 50.0 mg/ml. The plant extracts proved to be good antioxidant agent, whereas extracts of ethanol were the most active, with IC50 ranging from 1.00 to 1.74 µg/ml, which is lower, and in close range to Vitamin C (1.40 µg/ml). Its moderation to potent inhibitory activity was observed in all extracts. Ethanol and dichloromethane extracts were among the most potent when compared to water and petroleum ether extracts. The water extracts showed to be nontoxic on the Hek cell line with an IC50 value of 204.0, and 207

  13. Morinda citrifolia lipid transfer protein 1 exhibits anti-inflammatory activity by modulation of pro- and anti-inflammatory cytokines.

    PubMed

    Campos, Dyély C O; Costa, Andrea S; Luz, Patrícia B; Soares, Pedro M G; Alencar, Nylane M N; Oliveira, Hermógenes D

    2017-10-01

    Previous reports have demonstrated that a thermostable lipid transfer protein isolated from noni seeds (McLTP 1 ; 9.4kDa) displays anti-nociceptive and anti-inflammatory activities. This work aimed to investigate the underlying mechanisms of the anti-inflammatory activity of McLTP 1 in mice. The protein was solubilised in sterile saline (0.9% NaCl) immediately before the treatment of mice by oral or intraperitoneal routes at doses of 8mg/kg. Given orally or intraperitoneally, McLTP 1 significantly inhibited (p<0.05) cell migration in experimental models of carrageenan-induced peritonitis and the formation of paw oedema induced by carrageenan and dextran. Additionally, McLTP 1 demonstrated the ability to significantly inhibit the production of the cytokines IL-1β, IL-6, and TNF-α (p<0.05) and to promote an increase in the production of the anti-inflammatory cytokine IL-10. The treatment of mice with McLTP 1 by the oral or i.p route reduced pancreatic injury and activities of amylase, lipase, and pancreatitis-associated lung injury. This study suggested that the observed anti-inflammatory effects of McLTP 1 can be related to modulation of pro- and anti-inflammatory cytokine levels. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Anti-Inflammatory Benefits of Antibiotics: Tylvalosin Induces Apoptosis of Porcine Neutrophils and Macrophages, Promotes Efferocytosis, and Inhibits Pro-Inflammatory CXCL-8, IL1α, and LTB4 Production, While Inducing the Release of Pro-Resolving Lipoxin A4 and Resolvin D1.

    PubMed

    Moges, Ruth; De Lamache, Dimitri Desmonts; Sajedy, Saman; Renaux, Bernard S; Hollenberg, Morley D; Muench, Gregory; Abbott, Elizabeth M; Buret, Andre G

    2018-01-01

    Excessive accumulation of neutrophils and their uncontrolled death by necrosis at the site of inflammation exacerbates inflammatory responses and leads to self-amplifying tissue injury and loss of organ function, as exemplified in a variety of respiratory diseases. In homeostasis, neutrophils are inactivated by apoptosis, and non phlogistically removed by neighboring macrophages in a process known as efferocytosis, which promotes the resolution of inflammation. The present study assessed the potential anti-inflammatory and pro-resolution benefits of tylvalosin, a recently developed broad-spectrum veterinary macrolide derived from tylosin. Recent findings indicate that tylvalosin may modulate inflammation by suppressing NF-κB activation. Neutrophils and monocyte-derived macrophages were isolated from fresh blood samples obtained from 12- to 22-week-old pigs. Leukocytes exposed to vehicle or to tylvalosin (0.1, 1.0, or 10 µg/mL; 0.096-9.6 µM) were assessed at various time points for apoptosis, necrosis, efferocytosis, and changes in the production of cytokines and lipid mediators. The findings indicate that tylvalosin increases porcine neutrophil and macrophage apoptosis in a concentration- and time-dependent manner, without altering levels of necrosis or reactive oxygen species production. Importantly, tylvalosin increased the release of pro-resolving Lipoxin A 4 (LXA 4 ) and Resolvin D1 (RvD 1 ) while inhibiting the production of pro-inflammatory Leukotriene B4 (LTB 4 ) in Ca 2+ ionophore-stimulated porcine neutrophils. Tylvalosin increased neutrophil phospholipase C activity, an enzyme involved in releasing arachidonic acid from membrane stores. Tylvalosin also inhibited pro-inflammatory chemokine (C-X-C motif) ligand 8 (CXCL-8, also known as Interleukin-8) and interleukin-1 alpha (IL-1α) protein secretion in bacterial lipopolysaccharide-stimulated macrophages. Together, these data illustrate that tylvalosin has potent immunomodulatory effects in porcine

  15. Anti-Inflammatory Benefits of Antibiotics: Tylvalosin Induces Apoptosis of Porcine Neutrophils and Macrophages, Promotes Efferocytosis, and Inhibits Pro-Inflammatory CXCL-8, IL1α, and LTB4 Production, While Inducing the Release of Pro-Resolving Lipoxin A4 and Resolvin D1

    PubMed Central

    Moges, Ruth; De Lamache, Dimitri Desmonts; Sajedy, Saman; Renaux, Bernard S.; Hollenberg, Morley D.; Muench, Gregory; Abbott, Elizabeth M.; Buret, Andre G.

    2018-01-01

    Excessive accumulation of neutrophils and their uncontrolled death by necrosis at the site of inflammation exacerbates inflammatory responses and leads to self-amplifying tissue injury and loss of organ function, as exemplified in a variety of respiratory diseases. In homeostasis, neutrophils are inactivated by apoptosis, and non phlogistically removed by neighboring macrophages in a process known as efferocytosis, which promotes the resolution of inflammation. The present study assessed the potential anti-inflammatory and pro-resolution benefits of tylvalosin, a recently developed broad-spectrum veterinary macrolide derived from tylosin. Recent findings indicate that tylvalosin may modulate inflammation by suppressing NF-κB activation. Neutrophils and monocyte-derived macrophages were isolated from fresh blood samples obtained from 12- to 22-week-old pigs. Leukocytes exposed to vehicle or to tylvalosin (0.1, 1.0, or 10 µg/mL; 0.096–9.6 µM) were assessed at various time points for apoptosis, necrosis, efferocytosis, and changes in the production of cytokines and lipid mediators. The findings indicate that tylvalosin increases porcine neutrophil and macrophage apoptosis in a concentration- and time-dependent manner, without altering levels of necrosis or reactive oxygen species production. Importantly, tylvalosin increased the release of pro-resolving Lipoxin A4 (LXA4) and Resolvin D1 (RvD1) while inhibiting the production of pro-inflammatory Leukotriene B4 (LTB4) in Ca2+ ionophore-stimulated porcine neutrophils. Tylvalosin increased neutrophil phospholipase C activity, an enzyme involved in releasing arachidonic acid from membrane stores. Tylvalosin also inhibited pro-inflammatory chemokine (C–X–C motif) ligand 8 (CXCL-8, also known as Interleukin-8) and interleukin-1 alpha (IL-1α) protein secretion in bacterial lipopolysaccharide-stimulated macrophages. Together, these data illustrate that tylvalosin has potent immunomodulatory effects in porcine

  16. Differential Pro-Inflammatory Responses of Astrocytes and Microglia Involve STAT3 Activation in Response to 1800 MHz Radiofrequency Fields

    PubMed Central

    Lu, Yonghui; He, Mindi; Zhang, Yang; Xu, Shangcheng; Zhang, Lei; He, Yue; Chen, Chunhai; Liu, Chuan; Pi, Huifeng; Yu, Zhengping; Zhou, Zhou

    2014-01-01

    Microglia and astrocytes play important role in maintaining the homeostasis of central nervous system (CNS). Several CNS impacts have been postulated to be associated with radiofrequency (RF) electromagnetic fields exposure. Given the important role of inflammation in neural physiopathologic processes, we investigated the pro-inflammatory responses of microglia and astrocytes and the involved mechanism in response to RF fields. Microglial N9 and astroglial C8-D1A cells were exposed to 1800 MHz RF for different time with or without pretreatment with STAT3 inhibitor. Microglia and astrocytes were activated by RF exposure indicated by up-regulated CD11b and glial fibrillary acidic protein (GFAP). However, RF exposure induced differential pro-inflammatory responses in astrocytes and microglia, characterized by different expression and release profiles of IL-1β, TNF-α, IL-6, PGE2, nitric oxide (NO), inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX2). Moreover, the RF exposure activated STAT3 in microglia but not in astrocytes. Furthermore, the STAT3 inhibitor Stattic ameliorated the RF-induced release of pro-inflammatory cytokines in microglia but not in astrocytes. Our results demonstrated that RF exposure differentially induced pro-inflammatory responses in microglia and astrocytes, which involved differential activation of STAT3 in microglia and astrocytes. Our data provide novel insights into the potential mechanisms of the reported CNS impacts associated with mobile phone use and present STAT3 as a promising target to protect humans against increasing RF exposure. PMID:25275372

  17. Differential pro-inflammatory responses of astrocytes and microglia involve STAT3 activation in response to 1800 MHz radiofrequency fields.

    PubMed

    Lu, Yonghui; He, Mindi; Zhang, Yang; Xu, Shangcheng; Zhang, Lei; He, Yue; Chen, Chunhai; Liu, Chuan; Pi, Huifeng; Yu, Zhengping; Zhou, Zhou

    2014-01-01

    Microglia and astrocytes play important role in maintaining the homeostasis of central nervous system (CNS). Several CNS impacts have been postulated to be associated with radiofrequency (RF) electromagnetic fields exposure. Given the important role of inflammation in neural physiopathologic processes, we investigated the pro-inflammatory responses of microglia and astrocytes and the involved mechanism in response to RF fields. Microglial N9 and astroglial C8-D1A cells were exposed to 1800 MHz RF for different time with or without pretreatment with STAT3 inhibitor. Microglia and astrocytes were activated by RF exposure indicated by up-regulated CD11b and glial fibrillary acidic protein (GFAP). However, RF exposure induced differential pro-inflammatory responses in astrocytes and microglia, characterized by different expression and release profiles of IL-1β, TNF-α, IL-6, PGE2, nitric oxide (NO), inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX2). Moreover, the RF exposure activated STAT3 in microglia but not in astrocytes. Furthermore, the STAT3 inhibitor Stattic ameliorated the RF-induced release of pro-inflammatory cytokines in microglia but not in astrocytes. Our results demonstrated that RF exposure differentially induced pro-inflammatory responses in microglia and astrocytes, which involved differential activation of STAT3 in microglia and astrocytes. Our data provide novel insights into the potential mechanisms of the reported CNS impacts associated with mobile phone use and present STAT3 as a promising target to protect humans against increasing RF exposure.

  18. Anti-Inflammatory and Antimicrobial Properties of Flavonoids from Heliotropium subulatum Exudate.

    PubMed

    Singh, Bharat; Sharma, Ram A

    2015-01-01

    Heliotropium subulatum is an erect or procumbent perennial herb; leaves contain foliar trichomes and its resinous exudate is used in traditional medicine. The anti-inflammatory activity of dichloromethane fraction and isolated flavonoids was evaluated by using carrageenan and CFA-induced paw oedema models. Similarly, the disc diffusion and microdilution methods were used for the assessment of antimicrobial activity. Five isolated flavonoids were investigated for their antiinflammatory and antimicrobial activities. Eriodictyol demonstrated maximum anti-inflammatory activity (53.09%) at 30.0 mg/kg dose on 6(th) h and similarly, it inhibited the CFA-induced arthritis swelling (41.84%) with 30.0 mg/kg dose on 8(th) day respectively. As per disc diffusion and microdilution methods used for antimicrobial activity determination, the pinocembrin was found to be most active against Staphylococcus aureus (IZ=27±0.7 mm, 08 μg/ml dose) and Candida albicans (IZ=17±0.9 mm; 12 μg/ml dose). These investigated results revealed that the eriodictyol and pinocembrin showed significant anti-inflammatory and antimicrobial activities. Further studies which aimed to investigate the mechanism of action of these isolated flavonoids in the treatment of inflammations and various types of infections have been initiated.

  19. ErbB4 signaling stimulates pro-inflammatory macrophage apoptosis and limits colonic inflammation

    PubMed Central

    Schumacher, Michael A; Hedl, Matija; Abraham, Clara; Bernard, Jessica K; Lozano, Patricia R; Hsieh, Jonathan J; Almohazey, Dana; Bucar, Edie B; Punit, Shivesh; Dempsey, Peter J; Frey, Mark R

    2017-01-01

    Efficient clearance of pro-inflammatory macrophages from tissues after resolution of a challenge is critical to prevent prolonged inflammation. Defects in clearance can contribute to conditions such as inflammatory bowel disease, and thus may be therapeutically targetable. However, the signaling pathways that induce termination of pro-inflammatory macrophages are incompletely defined. We tested whether the ErbB4 receptor tyrosine kinase, previously not known to have role in macrophage biology, is involved in this process. In vitro, pro-inflammatory activation of cultured murine and human macrophages induced ErbB4 expression; in contrast, other ErbB family members were not induced in pro-inflammatory cells, and other innate immune lineages (dendritic cells, neutrophils) did not express detectable ErbB4 levels. Treatment of activated pro-inflammatory macrophages with the ErbB4 ligand neuregulin-4 (NRG4) induced apoptosis. ErbB4 localized to the mitochondria in these cells. Apoptosis was accompanied by loss of mitochondrial membrane potential, and was dependent upon the proteases that generate the cleaved ErbB4 intracellular domain fragment, suggesting a requirement for this fragment and mitochondrial pathway apoptosis. In vivo, ErbB4 was highly expressed on pro-inflammatory macrophages but not neutrophils during experimental DSS colitis in C57Bl/6 mice. Active inflammation in this model suppressed NRG4 expression, which may allow for macrophage persistence and ongoing inflammation. Consistent with this notion, NRG4 levels rebounded during the recovery phase, and administration of exogenous NRG4 during colitis reduced colonic macrophage numbers and ameliorated inflammation. These data define a novel role for ErbB4 in macrophage apoptosis, and outline a mechanism of feedback inhibition that may promote resolution of colitis. PMID:28230865

  20. Human β-defensin 3 affects the activity of pro-inflammatory pathways associated with MyD88 and TRIF

    PubMed Central

    Semple, Fiona; MacPherson, Heather; Webb, Sheila; Cox, Sarah L; Mallin, Lucy J; Tyrrell, Christine; Grimes, Graeme R; Semple, Colin A; Nix, Matthew A; Millhauser, Glenn L; Dorin, Julia R

    2011-01-01

    β-Defensins are cationic host defense peptides that form an amphipathic structure stabilized by three intramolecular disulfide bonds. They are key players in innate and adaptive immunity and have recently been shown to limit the production of pro-inflammatory cytokines in TLR4-stimulated macrophages. In the present study, we investigate the mechanism underlying the anti-inflammatory effect of human β-defensin 3 (hBD3). We show that the canonical structure of hBD3 is required for this immunosuppressive effect and that hBD3 rapidly associates with and enters macrophages. Examination of the global effect of hBD3 on transcription in TLR4-stimulated macrophages shows that hBD3 inhibits the transcription of pro-inflammatory genes. Among the altered genes there is significant enrichment of groups involved in the positive regulation of NF-κB including components of Toll-like receptor signaling pathways. We confirm these observations by showing corresponding decreases in protein levels of pro-inflammatory cytokines and cell surface molecules. In addition, we show that hBD3 reduces NF-κB signaling in cells transfected with MyD88 or TRIF and that hBD3 inhibits the TLR4 response in both MyD88- and TRIF-deficient macrophages. Taken together these findings suggest that the mechanism of hBD3 anti-inflammatory activity involves specific targeting of TLR signaling pathways resulting in transcriptional repression of pro-inflammatory genes. PMID:21809339

  1. Chemical Profile and Antioxidant, Anti-Inflammatory, Antimutagenic and Antimicrobial Activities of Geopropolis from the Stingless Bee Melipona orbignyi

    PubMed Central

    dos Santos, Helder Freitas; Campos, Jaqueline Ferreira; dos Santos, Cintia Miranda; Balestieri, José Benedito Perrella; Silva, Denise Brentan; Carollo, Carlos Alexandre; de Picoli Souza, Kely; Estevinho, Leticia Miranda; dos Santos, Edson Lucas

    2017-01-01

    Geopropolis is a resin mixed with mud, produced only by stingless bees. Despite being popularly known for its medicinal properties, few scientific studies have proven its biological activities. In this context, the objective of this study was to determine the chemical composition and antioxidant, anti-inflammatory, antimutagenic and antimicrobial activities of the Melipona orbignyi geopropolis. The hydroalcoholic extract of geopropolis (HEGP) was prepared and its chemical composition determined by high performance liquid chromatography coupled to diode array detector and mass spectrometry (HPLC-DAD-MS). The antioxidant activity was determined by the capture of free radicals and inhibition of lipid peroxidation in human erythrocytes. The anti-inflammatory activity was evaluated by the inhibition of the hyaluronidase enzyme and the antimutagenic action was investigated in Saccharomyces cerevisiae colonies. The antimicrobial activities were determined against bacteria and yeasts, isolated from reference strains and hospital origin. The chemical composition of HEGP included flavonoids, derivatives of glycosylated phenolic acids and terpenoids. HEGP showed high antioxidant activity, it inhibited the activity of the inflammatory enzyme hyaluronidase and reduced the mutagenic effects in S. cerevisiae. In relation to the antimicrobial activity, it promoted the death of all microorganisms evaluated. In conclusion, this study reveals for the first time the chemical composition of the HEGP of M. orbignyi and demonstrates its pharmacological properties. PMID:28467350

  2. Upregulated LINE-1 Activity in the Fanconi Anemia Cancer Susceptibility Syndrome Leads to Spontaneous Pro-inflammatory Cytokine Production.

    PubMed

    Brégnard, Christelle; Guerra, Jessica; Déjardin, Stéphanie; Passalacqua, Frank; Benkirane, Monsef; Laguette, Nadine

    2016-06-01

    Fanconi Anemia (FA) is a genetic disorder characterized by elevated cancer susceptibility and pro-inflammatory cytokine production. Using SLX4(FANCP) deficiency as a working model, we questioned the trigger for chronic inflammation in FA. We found that absence of SLX4 caused cytoplasmic DNA accumulation, including sequences deriving from active Long INterspersed Element-1 (LINE-1), triggering the cGAS-STING pathway to elicit interferon (IFN) expression. In agreement, absence of SLX4 leads to upregulated LINE-1 retrotransposition. Importantly, similar results were obtained with the FANCD2 upstream activator of SLX4. Furthermore, treatment of FA cells with the Tenofovir reverse transcriptase inhibitor (RTi), that prevents endogenous retrotransposition, decreased both accumulation of cytoplasmic DNA and pro-inflammatory signaling. Collectively, our data suggest a contribution of endogenous RT activities to the generation of immunogenic cytoplasmic nucleic acids responsible for inflammation in FA. The additional observation that RTi decreased pro-inflammatory cytokine production induced by DNA replication stress-inducing drugs further demonstrates the contribution of endogenous RTs to sustaining chronic inflammation. Altogether, our data open perspectives in the prevention of adverse effects of chronic inflammation in tumorigenesis. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Cancer Associated Fibroblasts express pro-inflammatory factors in human breast and ovarian tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erez, Neta, E-mail: netaerez@post.tau.ac.il; Glanz, Sarah; Raz, Yael

    Highlights: •CAFs in human breast and ovarian tumors express pro-inflammatory factors. •Expression of pro-inflammatory factors correlates with tumor invasiveness. •Expression of pro-inflammatory factors is associated with NF-κb activation in CAFs. -- Abstract: Inflammation has been established in recent years as a hallmark of cancer. Cancer Associated Fibroblasts (CAFs) support tumorigenesis by stimulating angiogenesis, cancer cell proliferation and invasion. We previously demonstrated that CAFs also mediate tumor-enhancing inflammation in a mouse model of skin carcinoma. Breast and ovarian carcinomas are amongst the leading causes of cancer-related mortality in women and cancer-related inflammation is linked with both these tumor types. However, themore » role of CAFs in mediating inflammation in these malignancies remains obscure. Here we show that CAFs in human breast and ovarian tumors express high levels of the pro-inflammatory factors IL-6, COX-2 and CXCL1, previously identified to be part of a CAF pro-inflammatory gene signature. Moreover, we show that both pro-inflammatory signaling by CAFs and leukocyte infiltration of tumors are enhanced in invasive ductal carcinoma as compared with ductal carcinoma in situ. The pro-inflammatory genes expressed by CAFs are known NF-κB targets and we show that NF-κB is up-regulated in breast and ovarian CAFs. Our data imply that CAFs mediate tumor-promoting inflammation in human breast and ovarian tumors and thus may be an attractive target for stromal-directed therapeutics.« less

  4. Human β-defensin 3 affects the activity of pro-inflammatory pathways associated with MyD88 and TRIF.

    PubMed

    Semple, Fiona; MacPherson, Heather; Webb, Sheila; Cox, Sarah L; Mallin, Lucy J; Tyrrell, Christine; Grimes, Graeme R; Semple, Colin A; Nix, Matthew A; Millhauser, Glenn L; Dorin, Julia R

    2011-11-01

    β-Defensins are cationic host defense peptides that form an amphipathic structure stabilized by three intramolecular disulfide bonds. They are key players in innate and adaptive immunity and have recently been shown to limit the production of pro-inflammatory cytokines in TLR4-stimulated macrophages. In the present study, we investigate the mechanism underlying the anti-inflammatory effect of human β-defensin 3 (hBD3). We show that the canonical structure of hBD3 is required for this immunosuppressive effect and that hBD3 rapidly associates with and enters macrophages. Examination of the global effect of hBD3 on transcription in TLR4-stimulated macrophages shows that hBD3 inhibits the transcription of pro-inflammatory genes. Among the altered genes there is significant enrichment of groups involved in the positive regulation of NF-κB including components of Toll-like receptor signaling pathways. We confirm these observations by showing corresponding decreases in protein levels of pro-inflammatory cytokines and cell surface molecules. In addition, we show that hBD3 reduces NF-κB signaling in cells transfected with MyD88 or TRIF and that hBD3 inhibits the TLR4 response in both MyD88- and TRIF-deficient macrophages. Taken together these findings suggest that the mechanism of hBD3 anti-inflammatory activity involves specific targeting of TLR signaling pathways resulting in transcriptional repression of pro-inflammatory genes. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Activation of PPARγ inhibits pro-inflammatory cytokines production by upregulation of miR-124 in vitro and in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dan; Shi, Liuyan; Xin, Wei

    Peroxisome proliferator-activated receptor gamma (PPARγ) and miR-124 have been reported to play important roles in regulation of inflammation. However, the underlying anti-inflammatory mechanisms remain not well understood. In the present study, we demonstrated that the expression level of PPARγ is positively correlated with that of miR-124 in patients with sepsis. Activation of PPARγ upregulates miR-124 and in turn inhibits miR-124 target gene. PPARγ bound directly to PPRE in the miR-124 promoter region, and enhanced the promoter transcriptional activity. PPARγ-induced miR-124 is involved in the suppression of pro-inflammatory cytokine in vitro and in vivo. These results suggest that PPARγ-induced miR-124 inhibits the productionmore » of pro-inflammatory cytokines is a novel PPARγ anti-inflammatory mechanism and also indicate that miR-124 may be a potential therapeutic target for the treatment of inflammatory diseases. - Highlights: • The expression level of PPARγ is positively correlated with that of miR-124 in patients with sepsis. • PPARγ upregulates miR-124 and in turn inhibits miR-124 target gene. • PPARγ promotes miR-124 transcription through binding to miR-124 promoter region. • Inhibition of miR-124 attenuates the PPARγ-mediated suppression of proinflammatory cytokines in vitro. • PPARγ-induced miR-124 is involved in the suppression of pro-inflammatory cytokine in vivo.« less

  6. Irradiation induces regionally specific alterations in pro-inflammatory environments in rat brain

    PubMed Central

    Lee, Won Hee; Sonntag, William E.; Mitschelen, Matthew; Yan, Han; Lee, Yong Woo

    2010-01-01

    Purpose Pro-inflammatory environments in the brain have been implicated in the onset and progression of neurological disorders. In the present study, we investigate the hypothesis that brain irradiation induces regionally specific alterations in cytokine gene and protein expression. Materials and methods Four month old F344 × BN rats received either whole brain irradiation with a single dose of 10 Gy γ-rays or sham-irradiation, and were maintained for 4, 8, and 24 h following irradiation. The mRNA and protein expression levels of pro-inflammatory mediators were analysed by real-time reverse transcriptase-polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), and immunofluorescence staining. To elucidate the molecular mechanisms of irradiation-induced brain inflammation, effects of irradiation on the DNA-binding activity of pro-inflammatory transcription factors were also examined. Results A significant and marked up-regulation of mRNA and protein expression of pro-inflammatory mediators, including tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and monocyte chemoattractant protein-1 (MCP-1), was observed in hippocampal and cortical regions isolated from irradiated brain. Cytokine expression was regionally specific since TNF-α levels were significantly elevated in cortex compared to hippocampus (57% greater) and IL-1β levels were elevated in hippocampus compared to cortical samples (126% greater). Increases in cytokine levels also were observed after irradiation of mouse BV-2 microglial cells. A series of electrophoretic mobility shift assays (EMSA) demonstrated that irradiation significantly increased activation of activator protein-1 (AP-1), nuclear factor-κB (NF-κB), and cAMP response element-binding protein (CREB). Conclusion The present study demonstrated that whole brain irradiation induces regionally specific pro-inflammatory environments through activation of AP-1, NF-κB, and CREB and overexpression of TNF-α, IL

  7. NSAID-activated gene 1 mediates pro-inflammatory signaling activation and paclitaxel chemoresistance in type I human epithelial ovarian cancer stem-like cells.

    PubMed

    Kim, Ki-Hyung; Park, Seong-Hwan; Do, Kee Hun; Kim, Juil; Choi, Kyung Un; Moon, Yuseok

    2016-11-01

    Epithelial ovarian cancer (EOC) remains the most lethal gynecologic malignancy in developed countries. Chronic endogenous sterile pro-inflammatory responses are strongly linked to EOC progression and chemoresistance to anti-cancer therapeutics. In the present study, the activity of epithelial NF-κB, a key pro-inflammatory transcription factor, was enhanced with the progress of EOC. This result was mechanistically linked with an increased expression of NSAID-Activated Gene 1 (NAG-1) in MyD88-positive type I EOC stem-like cells, compared with that in MyD88-negative type II EOC cells. Elevated NAG-1 as a potent biomarker of poor prognosis in the ovarian cancer was positively associated with the levels of NF-κB activation, chemokines and stemness markers in type I EOC cells. In terms of signal transduction, NAG-1-activated SMAD-linked and non-canonical TGFβ-activated kinase 1 (TAK-1)-activated pathways contributed to NF-κB activation and the subsequent induction of some chemokines and cancer stemness markers. In addition to effects on NF-κB-dependent gene regulation, NAG-1 was involved in expression of EGF receptor and subsequent activation of EGF receptor-linked signaling. The present study also provided evidences for links between NAG-1-linked signaling and chemoresistance in ovarian cancer cells. NAG-1 and pro-inflammatory NF-κB were positively associated with resistance to paclitaxel in MyD88-positive type I EOC cells. Mechanistically, this chemoresistance occurred due to enhanced activation of the SMAD-4- and non-SMAD-TAK-1-linked pathways. All of the present data suggested NAG-1 protein as a crucial mediator of EOC progression and resistance to the standard first-line chemotherapy against EOC, particularly in MyD88-positive ovarian cancer stem-like cells.

  8. Inhibition of pro-inflammatory mediators: role of Bacopa monniera (L.) Wettst.

    PubMed

    Viji, Vijayan; Helen, Antony

    2011-10-01

    Bacopa monniera (L.) Wettst is a renowned plant in the Ayurvedic system of medicine. The present study seeks to identify the anti-inflammatory activity of two fractions from the methanolic extract of Bacopa, viz. the triterpenoid and bacoside-enriched fractions. The ability of these two fractions to inhibit the production of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-6 was tested using lipopolysaccharide (LPS)-activated peripheral blood mononuclear cells and peritoneal exudate cells in vitro. We found that triterpenoid and bacoside-enriched fractions significantly inhibited LPS-activated TNF-α, IL-6 and nitrite production in mononuclear cells. Significant antioxidant activity was exhibited by the bacoside enriched fraction compared to the triterpenoid fraction. Carrageenan-induced hind paw oedema assay revealed that triterpenoid and bacoside-enriched fractions exerted anti-oedematogenic effect, while in the arthritis model only the triterpenoid fraction exerted an anti-arthritic potential. The present study provides an insight into the ability of Bacopa monniera to inhibit inflammation through modulation of pro-inflammatory mediator release.

  9. The pro-resolving lipid mediator Maresin 1 protects against cerebral ischemia/reperfusion injury by attenuating the pro-inflammatory response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xian, Wenjing; Wu, Yan; Xiong, Wei

    Inflammation plays a crucial role in acute ischemic stroke pathogenesis. Macrophage-derived Maresin 1 (MaR1) is a newly uncovered mediator with potent anti-inflammatory abilities. Here, we investigated the effect of MaR1 on acute inflammation and neuroprotection in a mouse brain ischemia reperfusion (I/R) model. Male C57 mice were subjected to 1-h middle cerebral artery occlusion (MCAO) and reperfusion. By the methods of 2,3,5-triphenyltetrazolium chloride, haematoxylin and eosin or Fluoro-Jade B staining, neurological deficits scoring, ELISA detection, immunofluorescence assay and western blot analysis, we found that intracerebroventricular injection of MaR1 significantly reduced the infarct volume and neurological defects, essentially protected the brainmore » tissue and neurons from injury, alleviated pro-inflammatory reactions and NF-κB p65 activation and nuclear translocation. Taken together, our results suggest that MaR1 significantly protects against I/R injury probably by inhibiting pro-inflammatory reactions. - Highlights: • MaR1 significantly protects against ischemia reperfusion injury. • MaR1 inhibits pro-inflammatory cytokines and chemokines and reducing glial activation and neutrophil infiltration. • These effects at least partially occurred via suppression of the NF-κB p65 signalling pathway.« less

  10. Human Properdin Opsonizes Nanoparticles and Triggers a Potent Pro-inflammatory Response by Macrophages without Involving Complement Activation

    PubMed Central

    Kouser, Lubna; Paudyal, Basudev; Kaur, Anuvinder; Stenbeck, Gudrun; Jones, Lucy A.; Abozaid, Suhair M.; Stover, Cordula M.; Flahaut, Emmanuel; Sim, Robert B.; Kishore, Uday

    2018-01-01

    Development of nanoparticles as tissue-specific drug delivery platforms can be considerably influenced by the complement system because of their inherent pro-inflammatory and tumorigenic consequences. The complement activation pathways, and its recognition subcomponents, can modulate clearance of the nanoparticles and subsequent inflammatory response and thus alter the intended translational applications. Here, we report, for the first time, that human properdin, an upregulator of the complement alternative pathway, can opsonize functionalized carbon nanotubes (CNTs) via its thrombospondin type I repeat (TSR) 4 and 5. Binding of properdin and TSR4+5 is likely to involve charge pattern/polarity recognition of the CNT surface since both carboxymethyl cellulose-coated carbon nanotubes (CMC-CNT) and oxidized (Ox-CNT) bound these proteins well. Properdin enhanced the uptake of CMC-CNTs by a macrophage cell line, THP-1, mounting a robust pro-inflammatory immune response, as revealed by qRT-PCR, multiplex cytokine array, and NF-κB nuclear translocation analyses. Properdin can be locally synthesized by immune cells in an inflammatory microenvironment, and thus, its interaction with nanoparticles is of considerable importance. In addition, recombinant TSR4+5 coated on the CMC-CNTs inhibited complement consumption by CMC-CNTs, suggesting that nanoparticle decoration with TSR4+5, can be potentially used as a complement inhibitor in a number of pathological contexts arising due to exaggerated complement activation. PMID:29483907

  11. Phytochemical Analysis and Antimicrobial, Antinociceptive, and Anti-Inflammatory Activities of Two Chemotypes of Pimenta pseudocaryophyllus (Myrtaceae)

    PubMed Central

    de Paula, Joelma Abadia Marciano; Silva, Maria do Rosário Rodrigues; Costa, Maysa P.; Diniz, Danielle Guimarães Almeida; Sá, Fabyola A. S.; Alves, Suzana Ferreira; Costa, Élson Alves; Lino, Roberta Campos; de Paula, José Realino

    2012-01-01

    Preparations from Pimenta pseudocaryophyllus (Gomes) L.R. Landrum (Myrtaceae) have been widely used in Brazilian folk medicine. This study aims to evaluate the antimicrobial activity of the crude ethanol extracts, fractions, semipurified substances, and essential oils obtained from leaves of two chemotypes of P. pseudocaryophyllus and to perform the antinociceptive and anti-inflammatory screening. The ethanol extracts were purified by column chromatography and main compounds were spectrally characterised (1D and 2D 1H and 13C NMR). The essential oils constituents were identified by GC/MS. The broth microdilution method was used for testing the antimicrobial activity. The abdominal contortions induced by acetic acid and the ear oedema induced by croton oil were used for screening of antinociceptive and anti-inflammatory activities, respectively. The phytochemical analysis resulted in the isolation of pentacyclic triterpenes, flavonoids, and phenol acids. The oleanolic acid showed the best profile of antibacterial activity for Gram-positive bacteria (31.2–125 μg mL−1), followed by the essential oil of the citral chemotype (62.5–250 μg mL−1). Among the semipurified substances, Ppm5, which contained gallic acid, was the most active for Candida spp. (31.2 μg mL−1) and Cryptococcus spp. (3.9–15.6 μg mL−1). The crude ethanol extract and fractions from citral chemotype showed antinociceptive and anti-inflammatory effects. PMID:23082081

  12. Activity of antimicrobial peptide mimetics in the oral cavity: II. Activity against periopathogenic biofilms and anti-inflammatory activity

    PubMed Central

    Hua, J; Scott, R.W.; Diamond, G

    2011-01-01

    Whereas periodontal disease is ultimately of bacterial etiology, from multispecies biofilms of gram-negative anaerobic microorganisms, much of the deleterious effects are caused by the resultant epithelial inflammatory response. Hence, development of a treatment that combines anti-biofilm antibiotic activity with anti-inflammatory activity would be of great utility. Antimicrobial peptides (AMPs) such as defensins are naturally occurring peptides that exhibit broad-spectrum activity as well as a variety of immunomodulatory activities. Furthermore, bacteria do not readily develop resistance to these agents. However, clinical studies have suggested that they do not represent optimal candidates for exogenous therapeutic agents. Small-molecule mimetics of these AMPs exhibit similar activities to the parent peptides, in addition to having low toxicity, high stability and low cost. To determine whether AMP mimetics have the potential for treatment of periodontal disease, we examined the activity of one mimetic, mPE, against biofilm cultures of Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis. Metabolic assays as well as culture and biomass measurement assays demonstrated that mPE exhibits potent activity against biofilm cultures of both species. Furthermore, as little as 2 µg ml−1 mPE was sufficient to inhibit interleukin-1β-induced secretion of interleukin-8 in both gingival epithelial cells and THP-1 cells. This anti-inflammatory activity is associated with a reduction in activation of nuclear factor-κB, suggesting that mPE can act both as an anti-biofilm agent in an anaerobic environment and as an anti-inflammatory agent in infected tissues. PMID:21040516

  13. Antimicrobial, Cytotoxic, Anti-Inflammatory, and Antioxidant Activity of Culinary Processed Shiitake Medicinal Mushroom (Lentinus edodes, Agaricomycetes) and Its Major Sulfur Sensory-Active Compound-Lenthionine.

    PubMed

    Kupcova, Kristyna; Stefanova, Iveta; Plavcova, Zuzana; Hosek, Jan; Hrouzek, Pavel; Kubec, Roman

    2018-01-01

    The antimicrobial, cytotoxic, anti-inflammatory, and antioxidant properties of aqueous extracts of raw and culinary processed shiitake mushrooms were evaluated and compared with those of lenthionine (1,2,3,5,6-penta-thiepane), the principal aroma-bearing substance of the shiitake medicinal mushroom (Lentinus edodes). Antimicrobial activity was tested using a panel of 4 strains of bacteria, 2 yeasts, and 2 fungi. Cytotoxic properties were evaluated against 3 cell lines (HepG2, HeLa, PaTu), whereas the anti-inflammatory activity of tested samples was assayed based on their ability to attenuate the secretion of the cytokine tumor necrosis factor-α. Antioxidant activity was measured using in vitro DPPH and ABTS assays. It was found that lenthionine possesses significant antimicrobial properties; it is remarkably effective in inhibiting the growth of yeasts and fungi (minimum inhibitory concentration, 2-8 μg/mL) and thus is comparable to standard antifungal agents. Lenthionine is also able to decrease significantly the production of tumor necrosis factor-a and thus could be at least partly responsible for the observed anti-inflammatory effect of shiitake. On the other hand, lenthionine does not seem to contribute significantly to the well-known anticancer and antioxidant effects of the mushroom.

  14. Anti-inflammatory, antioxidant, and antimicrobial activities of Cocos nucifera var. typica

    PubMed Central

    2013-01-01

    Background Teas from the husk fiber of Cocos nucifera are used in the folk medicine to treat arthritis and other inflammatory processes. Some works show that some varieties have biological activities. However, one of the main variety of the species, C. nucifera var. typica, known in Brazil as “gigante”, was not studied yet. Thus, this study evaluates if this variety has the anti-inflammatory and antimicrobial activities already reported in other varieties. Methods C. nucifera aqueous crude extract (10, 50, and 100 mg/kg) and the reference drugs morphine (1 mg/kg) and acetylsalicylic acid (100 mg/kg) were evaluated in models of inflammation (formalin-induced licking and subcutaneous air pouch). The antioxidant activity was evaluated by 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) photometric assay and compared with those of the standards (quercetin, rutin, and ascorbic acid). The extract was also screened against Candida albicans, Escherichia coli, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus (MRSA), in the agar diffusion method. The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were determined by the broth micro-dilution assay. Activities of combinations of the extract and antibiotics (methicillin or vancomycin) against MRSA were evaluated using checkerboard assays. Results The extract significantly inhibited the time that the animals spent licking the formalin-injected paws (second phase). The extract also inhibited the inflammatory process induced by subcutaneous carrageenan injection by reducing cell migration, protein extravasation, and TNF-α production. Additionally, the extract showed an antioxidant potential in vitro as good as standards in their antioxidant activity. The extract was active only against S. aureus and MRSA. MIC and the bactericidal concentrations were identical (1,024 μg/ml). The extract and methicillin acted synergistically against the clinical MRSA isolate, whereas an

  15. Anti-inflammatory, antioxidant, and antimicrobial activities of Cocos nucifera var. typica.

    PubMed

    Silva, Rafaela Ribeiro; Oliveira e Silva, Davi; Fontes, Humberto Rollemberg; Alviano, Celuta Sales; Fernandes, Patricia Dias; Alviano, Daniela Sales

    2013-05-16

    Teas from the husk fiber of Cocos nucifera are used in the folk medicine to treat arthritis and other inflammatory processes. Some works show that some varieties have biological activities. However, one of the main variety of the species, C. nucifera var. typica, known in Brazil as "gigante", was not studied yet. Thus, this study evaluates if this variety has the anti-inflammatory and antimicrobial activities already reported in other varieties. C. nucifera aqueous crude extract (10, 50, and 100 mg/kg) and the reference drugs morphine (1 mg/kg) and acetylsalicylic acid (100 mg/kg) were evaluated in models of inflammation (formalin-induced licking and subcutaneous air pouch). The antioxidant activity was evaluated by 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) photometric assay and compared with those of the standards (quercetin, rutin, and ascorbic acid). The extract was also screened against Candida albicans, Escherichia coli, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus (MRSA), in the agar diffusion method. The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were determined by the broth micro-dilution assay. Activities of combinations of the extract and antibiotics (methicillin or vancomycin) against MRSA were evaluated using checkerboard assays. The extract significantly inhibited the time that the animals spent licking the formalin-injected paws (second phase). The extract also inhibited the inflammatory process induced by subcutaneous carrageenan injection by reducing cell migration, protein extravasation, and TNF-α production. Additionally, the extract showed an antioxidant potential in vitro as good as standards in their antioxidant activity. The extract was active only against S. aureus and MRSA. MIC and the bactericidal concentrations were identical (1,024 μg/ml). The extract and methicillin acted synergistically against the clinical MRSA isolate, whereas an indifferent effect was detected

  16. The novel 3,4-dihydropyrimidin-2(1H)-one urea derivatives of N-aryl urea: synthesis, anti-inflammatory, antibacterial and antifungal activity evaluation.

    PubMed

    Tale, Rajesh H; Rodge, Atish H; Hatnapure, Girish D; Keche, Ashish P

    2011-08-01

    A series of novel 3,4-dihydropyrimidin-2(1H)-one urea derivatives of biological interest were prepared by sequential Bigineli's reaction, reduction followed by reaction of resulting amines with different arylisocynates. All the synthesized (1-23) compounds were screened against the pro-inflammatory cytokines (TNF-α and IL-6) and antimicrobial activity (antibacterial and antifungal). Biological activity evaluation study reveled that among all the compounds screened, compounds 12 and 17 found to have promising anti-inflammatory activity (68-62% TNF-α and 92-86% IL-6 inhibitory activity at 10 μM). Interestingly compounds 3, 4, 5, 6, 15, 22 and 23 revealed promising antimicrobial activity at MIC of 10-30 μg/mL against selected pathogenic bacteria and fungi. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Enzymatic and Pro-Inflammatory Activities of Bothrops lanceolatus Venom: Relevance for Envenomation

    PubMed Central

    Delafontaine, Marie; Villas-Boas, Isadora Maria; Mathieu, Laurence; Josset, Patrice; Blomet, Joël

    2017-01-01

    Bothrops lanceolatus, commonly named ‘Fer-de-Lance’, is an endemic snake of the French Caribbean Island of Martinique. Envenomations by B. lanceolatus present clinical aspects characterized by systemic thrombotic syndrome and important local inflammation, involving edema and pain but limited hemorrhage. To investigate mechanisms of venom-induced inflammation, B. lanceolatus venom was characterized, its cross-reactivity with bothropic antivenom explored, its cytotoxicity on human keratinocytes and vascular cells, and the production of cytokines and chemokines were analyzed. We used electrophoretic separation, zymography, colorimetric or fluorimetric enzymatic assays, and immunochemical assays. Therapeutic South American bothropic antivenom cross-reacted with B. lanceolatus venom and completely or partially abolished its PLA2, hyaluronidase, and proteolytic activities, as well as its cytotoxicity for keratinocytes. The substrate specificity of B. lanceolatus venom proteases was emphasized. B. lanceolatus venom cytotoxicity was compared to the B. jararaca venom. Both venoms were highly cytotoxic for keratinocytes (HaCaT), whereas B. lanceolatus venom showed particularly low toxicity for endothelial cells (EAhy926). Patterns of cytokine and chemokine production by cells exposed to the venoms were highly pro-inflammatory. Thus, the results presented here show that B. lanceolatus venom toxins share important antigenic similarities with South American Bothrops species toxins, although their proteases have acquired particular substrate specificity. Moreover, the venom displays important cytotoxic and pro-inflammatory action on human cell types such as keratinocytes and endothelial cells, which are important players in the local and systemic compartments affected by the envenomation. PMID:28783135

  18. Toll-like receptor-mediated inhibition of Gas6 and ProS expression facilitates inflammatory cytokine production in mouse macrophages

    PubMed Central

    Deng, Tingting; Zhang, Yue; Chen, Qiaoyuan; Yan, Keqin; Han, Daishu

    2012-01-01

    Activation of Toll-like receptors (TLRs) triggers rapid inflammatory cytokine production in various cell types. The exogenous product of growth-arrest-specific gene 6 (Gas6) and Protein S (ProS) inhibit the TLR-triggered inflammatory responses through the activation of Tyro3, Axl and Mer (TAM) receptors. However, regulation of the Gas6/ProS-TAM system remains largely unknown. In the current study, mouse macrophages are shown to constitutively express Gas6 and ProS, which synergistically suppress the basal and TLR-triggered production of inflammatory cytokines, including those of tumour necrosis factor-α, interleukin-6 and interleukin-1β, by the macrophages in an autocrine manner. Notably, TLR signalling markedly decreases Gas6 and ProS expression in macrophages through the activation of the nuclear factor-κB. Further, the down-regulation of Gas6 and ProS by TLR signalling facilitates the TLR-mediated inflammatory cytokine production in mouse macrophages. These results describe a self-regulatory mechanism of TLR signalling through the suppression of Gas6 and ProS expression. PMID:22043818

  19. PhosphoLipid transfer protein (PLTP) exerts a direct pro-inflammatory effect on rheumatoid arthritis (RA) fibroblasts-like-synoviocytes (FLS) independently of its lipid transfer activity

    PubMed Central

    Deckert, Valérie; Daien, Claire I.; Che, Hélène; Elhmioui, Jamila; Lemaire, Stéphanie; Pais de Barros, Jean-Paul; Desrumaux, Catherine; Combe, Bernard; Hahne, Michael; Lagrost, Laurent; Morel, Jacques

    2018-01-01

    Rheumatoid arthritis (RA) is a chronic inflammatory rheumatic disease with modification of lipids profile and an increased risk of cardiovascular events related to inflammation. Plasma phospholipid transfer protein (PLTP) exerts a lipid transfer activity through its active form. PLTP can also bind to receptors such as ATP-binding cassette transporter A1 (ABCA1). In addition to its role in lipoprotein metabolism and atherosclerosis, the latest advances came in support of a complex role of PLTP in the regulation of the inflammatory response, both with pro-inflammatory or anti-inflammatory properties. The aim of the present study was to decipher the role of PLTP in joint inflammation and to assess its relevance in the context of RA. PLTP expression was examined by western-blot and by immunochemistry. ABCA1 expression was analyzed by flow cytometry. Lipid transfer activity of PLTP and pro-inflammatory cytokines were measured in sera and synovial fluid (SF) from RA patients and controls (healthy subjects or osteoarthritis patients [OA]). FLS were treated with both lipid-transfer active form and inactive form of recombinant human PLTP. IL-8, IL-6, VEGF and MMP3 produced by FLS were assessed by ELISA, and proliferation by measuring 3H-Thymidine incorporation. RA synovial tissues showed higher PLTP staining than OA and PLTP protein levels were also significantly higher in RA-FLS. In addition, RA, unlike OA patients, displayed elevated levels of PLTP activity in SF, which correlated with pro-inflammatory cytokines. Both lipid-transfer active and inactive forms of PLTP significantly increased the production of cytokines and proliferation of FLS. ABCA1 was expressed on RAFLS and PLTP activated STAT3 pathway. To conclude, PLTP is highly expressed in the joints of RA patients and may directly trigger inflammation and FLS proliferation, independently of its lipid transfer activity. These results suggest a pro-inflammatory role for PLTP in RA. PMID:29565987

  20. Magnoflorine Enhances LPS-Activated Pro-Inflammatory Responses via MyD88-Dependent Pathways in U937 Macrophages.

    PubMed

    Haque, Md Areeful; Jantan, Ibrahim; Harikrishnan, Hemavathy; Abdul Wahab, Siti Mariam

    2018-06-15

    Magnoflorine, a major bioactive metabolite isolated from Tinospora crispa, has been reported for its diverse biochemical and pharmacological properties. However, there is little report on its underlying mechanisms of action on immune responses, particularly on macrophage activation. In this study, we aimed to investigate the effects of magnoflorine, isolated from T. crispa on the pro-inflammatory mediators generation induced by LPS and the concomitant NF- κ B, MAPKs, and PI3K-Akt signaling pathways in U937 macrophages. Differentiated U937 macrophages were treated with magnoflorine and the release of pro-inflammatory mediators was evaluated through ELISA, while the relative mRNA expression of the respective mediators was quantified through qRT-PCR. Correspondingly, western blotting was executed to observe the modulatory effects of magnoflorine on the expression of various markers related to NF- κ B, MAPK and PI3K-Akt signaling activation in LPS-primed U937 macrophages. Magnoflorine significantly enhanced the upregulation of TNF- α , IL-1 β , and PGE 2 production as well as COX-2 protein expression. Successively, magnoflorine prompted the mRNA transcription level of these pro-inflammatory mediators. Magnoflorine enhanced the NF- κ B activation by prompting p65, I κ B α , and IKK α / β phosphorylation as well as I κ B α degradation. Besides, magnoflorine treatments concentration-dependently augmented the phosphorylation of JNK, ERK, and p38 MAPKs as well as Akt. The immunoaugmenting effects were further confirmed by investigating the effects of magnoflorine on specific inhibitors, where the treatment with specific inhibitors of NF- κ B, MAPKs, and PI3K-Akt proficiently blocked the magnoflorine-triggered TNF- α release and COX-2 expression. Magnoflorine furthermore enhanced the MyD88 and TLR4 upregulation. The results suggest that magnoflorine has high potential on augmenting immune responses. Georg Thieme Verlag KG Stuttgart · New York.

  1. Anti-inflammatory, gastroprotective, free-radical-scavenging, and antimicrobial activities of hawthorn berries ethanol extract.

    PubMed

    Tadić, Vanja M; Dobrić, Silva; Marković, Goran M; Dordević, Sofija M; Arsić, Ivana A; Menković, Nebojsa R; Stević, Tanja

    2008-09-10

    Hawthorn [Crataegus monogyna Jacq. and Crataegus oxyacantha L.; sin. Crataegus laevigata (Poiret) DC., Rosaceae] leaves, flowers, and berries are used in traditional medicine in the treatment of chronic heart failure, high blood pressure, arrhythmia, and various digestive ailments, as well as geriatric and antiarteriosclerosis remedies. According to European Pharmacopoeia 6.0, hawthorn berries consist of the dried false fruits of these two species or their mixture. The present study was carried out to test free-radical-scavenging, anti-inflammatory, gastroprotective, and antimicrobial activities of hawthorn berries ethanol extract. Phenolic compounds represented 3.54%, expressed as gallic acid equivalents. Determination of total flavonoid aglycones content yielded 0.18%. The percentage of hyperoside, as the main flavonol component, was 0.14%. With respect to procyanidins content, the obtained value was 0.44%. DPPH radical-scavenging capacity of the extract was concentration-dependent, with EC50 value of 52.04 microg/mL (calculation based on the total phenolic compounds content in the extract). Oral administration of investigated extract caused dose-dependent anti-inflammatory effect in a model of carrageenan-induced rat paw edema. The obtained anti-inflammatory effect was 20.8, 23.0, and 36.3% for the extract doses of 50, 100, and 200 mg/kg, respectively. In comparison to indomethacin, given in a dose producing 50% reduction of rat paw edema, the extract given in the highest tested dose (200 mg/kg) showed 72.4% of its activity. Gastroprotective activity of the extract was investigated using an ethanol-induced acute stress ulcer in rats with ranitidine as a reference drug. Hawthorn extract produced dose-dependent gastroprotective activity (3.8 +/- 2.1, 1.9 +/- 1.7, and 0.7 +/- 0.5 for doses of 50, 100, and 200 mg/kg, respectively), with the efficacy comparable to that of the reference drug. Antimicrobial testing of the extract revealed its moderate bactericidal

  2. Globular adiponectin induces a pro-inflammatory response in human astrocytic cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Zhongxiao; Mah, Dorrian; Simtchouk, Svetlana

    Highlights: • Adiponectin receptors are expressed in human astrocytes. • Globular adiponectin induces secretion of IL-6 and MCP-1 from cultured astrocytes. • Adiponectin may play a pro-inflammatory role in astrocytes. - Abstract: Neuroinflammation, mediated in part by activated brain astrocytes, plays a critical role in the development of neurodegenerative disorders, including Alzheimer’s disease (AD). Adiponectin is the most abundant adipokine secreted from adipose tissue and has been reported to exert both anti- and pro-inflammatory effects in peripheral tissues; however, the effects of adiponectin on astrocytes remain unknown. Shifts in peripheral concentrations of adipokines, including adiponectin, could contribute to the observedmore » link between midlife adiposity and increased AD risk. The aim of the present study was to characterize the effects of globular adiponectin (gAd) on pro-inflammatory cytokine mRNA expression and secretion in human U373 MG astrocytic cells and to explore the potential involvement of nuclear factor (NF)-κB, p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK)1/2, c-Jun N-terminal kinase (JNK) and phosphatidylinositide 3-kinases (PI3 K) signaling pathways in these processes. We demonstrated expression of adiponectin receptor 1 (adipoR1) and adipoR2 in U373 MG cells and primary human astrocytes. gAd induced secretion of interleukin (IL)-6 and monocyte chemoattractant protein (MCP)-1, and gene expression of IL-6, MCP-1, IL-1β and IL-8 in U373 MG cells. Using specific inhibitors, we found that NF-κB, p38MAPK and ERK1/2 pathways are involved in gAd-induced induction of cytokines with ERK1/2 contributing the most. These findings provide evidence that gAd may induce a pro-inflammatory phenotype in human astrocytes.« less

  3. Pro-Tumoral Inflammatory Myeloid Cells as Emerging Therapeutic Targets.

    PubMed

    Szebeni, Gabor J; Vizler, Csaba; Nagy, Lajos I; Kitajka, Klara; Puskas, Laszlo G

    2016-11-23

    Since the observation of Virchow, it has long been known that the tumor microenvironment constitutes the soil for the infiltration of inflammatory cells and for the release of inflammatory mediators. Under certain circumstances, inflammation remains unresolved and promotes cancer development. Here, we review some of these indisputable experimental and clinical evidences of cancer related smouldering inflammation. The most common myeloid infiltrate in solid tumors is composed of myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs). These cells promote tumor growth by several mechanisms, including their inherent immunosuppressive activity, promotion of neoangiogenesis, mediation of epithelial-mesenchymal transition and alteration of cellular metabolism. The pro-tumoral functions of TAMs and MDSCs are further enhanced by their cross-talk offering a myriad of potential anti-cancer therapeutic targets. We highlight these main pro-tumoral mechanisms of myeloid cells and give a general overview of their phenotypical and functional diversity, offering examples of possible therapeutic targets. Pharmacological targeting of inflammatory cells and molecular mediators may result in therapies improving patient condition and prognosis. Here, we review experimental and clinical findings on cancer-related inflammation with a major focus on creating an inventory of current small molecule-based therapeutic interventions targeting cancer-related inflammatory cells: TAMs and MDSCs.

  4. Lymphocyte senescence in COPD is associated with decreased histone deacetylase 2 expression by pro-inflammatory lymphocytes.

    PubMed

    Hodge, Greg; Jersmann, Hubertus; Tran, Hai B; Roscioli, Eugene; Holmes, Mark; Reynolds, Paul N; Hodge, Sandra

    2015-10-24

    Histone acetyltransferases (HAT) and histone deacetylases (HDAC) are enzymes that upregulate and down-regulate pro-inflammatory gene transcription respectively. HDAC2 is required by corticosteroids to switch off activated inflammatory genes and is reduced in lung macrophages in COPD. We have shown that COPD patients have increased steroid resistant CD28null (senescent) pro-inflammatory T and NKT-like peripheral blood cells (particularly CD8+ subsets) and we hypothesized that these changes would be associated with a loss of HDAC2 from these senescent pro-inflammatory lymphocytes. Blood was collected from 10 COPD and 10 aged-matched controls. Intracellular pro-inflammatory cytokines, IFNγ and TNFα, and expression of CD28, HDAC2 and HAT, were determined in lymphocyte subsets in the presence of ± 5 mg/ml theophylline (HDAC2 activator), 10 μM prednisolone and 2.5 ng/ml cyclosporine A (immunosuppressant), using flow cytometry. There was a loss of HDAC2 from CD28null CD8+ T and NKT-like cells in COPD. There was a significant negative correlation between HDAC2 expression and the percentage of CD28null CD8+ T and NKT-like cells producing IFNγ or TNFα in all subjects (eg, COPD: R = -.763, p < 0.001 for T-cell IFNγ). There was a synergistic upregulation of HDAC2 and associated decrease in pro-inflammatory cytokine production in CD28nullCD8+ T and NKT-like cells in the presence of 5 mg/L theophylline + 10(-6) M prednisolone or 2.5 ng/mL cyclosporine A (CsA). Lymphocyte senescence in COPD is associated with loss of HDAC2 in CD28nullCD8+ T and NKT-like cells. Alternative treatment options such as combined theophylline with low-dose CsA, that inhibit these pro-inflammatory cells, may reduce systemic inflammation in COPD.

  5. Pro-Inflammatory Cytokines in Psychiatric Disorders in Children and Adolescents: A Review.

    PubMed

    Miłkowska, Paulina; Popko, Katarzyna; Demkow, Urszula; Wolańczyk, Tomasz

    2017-04-30

    Cytokines are a large group of small proteins which play a significant role in cell signaling and regulate a variety of processes in organisms, including proliferation and differentiation of many cells, mediation in defense reactions and regulation of hematopoiesis. Cytokines can be divided into those with pro- and those with anti-inflammatory properties. In the group of pro-inflammatory cytokines the most important are: IL-1 beta, IL-6, TNF-alpha, and IFN-gamma. Pro-inflammatory cytokines might be involved in the pathophysiology of many psychiatric conditions in adults, but their role in children and adolescents is less clear. The aim of this article is to demonstrate the patterns of pro-inflammatory cytokines in children and adolescents.

  6. Pro-inflammatory Cytokines in Psychiatric Disorders in Children and Adolescents: A Review.

    PubMed

    Miłkowska, Paulina; Popko, Katarzyna; Demkow, Urszula; Wolańczyk, Tomasz

    2017-01-01

    Cytokines are a large group of small proteins which play a significant role in cell signaling and regulate a variety of processes in organisms, including proliferation and differentiation of many cells, mediation in defense reactions and regulation of hematopoiesis. Cytokines can be divided into those with pro- and those with anti-inflammatory properties. In the group of pro-inflammatory cytokines the most important are: IL-1 beta, IL-6, TNF-alpha, and IFN-gamma. Pro-inflammatory cytokines might be involved in the pathophysiology of many psychiatric conditions in adults, but their role in children and adolescents is less clear. The aim of this article is to demonstrate the patterns of pro-inflammatory cytokines in children and adolescents.

  7. Antimicrobial and Anti-Inflammatory Activities of Pterygota macrocarpa and Cola gigantea (Sterculiaceae)

    PubMed Central

    Agyare, Christian; Koffuor, George Asumeng; Boamah, Vivian Etsiapa; Adu, Francis; Mensah, Kwesi Boadu; Adu-Amoah, Louis

    2012-01-01

    Pterygota macrocarpa and Cola gigantea are African medicinal plants used in traditional medicine for the treatment of sores, skin infections, and other inflammatory conditions including pains. This study therefore aims at investigating the antimicrobial properties of ethanol leaf and stem bark extracts of P. macrocarpa and C. gigantea using the agar diffusion and the micro-dilution techniques and also determining the anti-inflammatory properties of the extracts of these plants in carrageenan-induced foot edema in seven-day old chicks. The minimum inhibitory concentration of both ethanol leaf and bark extracts of P. macrocarpa against the test organisms was from 0.125 to 2.55 mg/mL and that of C. gigantea extracts was 0.125 to 2.75 mg/mL. Extracts with concentration of 50 mg/mL were most active against the test organisms according to the agar diffusion method. All the extracts of P. macrocarpa and C. gigantea at 30, 100, and 300 mg/kg body weight except ethanol leaf extract of C. gigantea exhibited significant anti-inflammatory effects (P ≤ 0.001). PMID:22690251

  8. Chemical Characterization and Antioxidant, Antimicrobial, and Anti-Inflammatory Activities of South Brazilian Organic Propolis.

    PubMed

    Tiveron, Ana Paula; Rosalen, Pedro Luiz; Franchin, Marcelo; Lacerda, Risia Cristina Coelho; Bueno-Silva, Bruno; Benso, Bruna; Denny, Carina; Ikegaki, Masaharu; Alencar, Severino Matias de

    2016-01-01

    South Brazilian organic propolis (OP), which has never been studied before, was assessed and its chemical composition, scavenging potential of reactive oxygen species, antimicrobial and anti-inflammatory activities are herein presented. Based on the chemical profile obtained using HPLC, OP was grouped into seven variants (OP1-OP7) and all of them exhibited high scavenging activity, mainly against superoxide and hypochlorous acid species. OP1, OP2, and OP3 had the smallest minimal inhibitory concentration (MIC) against Gram-positive bacteria Streptococcus mutans, Streptococcus oralis, and Streptococcus aureus (12.5-100 μg/mL). OP1, OP2, OP3, and OP4 were more effective against Pseudomonas aeruginosa (Gram-negative), with MIC values ranging from 100 to 200 μg/mL. OP6 showed anti-inflammatory activity by decreasing NF-kB activation and TNF-α release in RAW 264.7 macrophages, and expressing the NF-κB-luciferase reporter stable gene. Therefore, south Brazilian OP can be considered an excellent source of bioactive compounds with great potential of application in the pharmaceutical and food industry.

  9. Dietary supplementation with rutin has pro-/anti-inflammatory effects in the liver of juvenile GIFT tilapia, Oreochromis niloticus.

    PubMed

    Zheng, Yao; Zhao, Zhixiang; Fan, Limin; Meng, Shunlong; Song, Chao; Qiu, Liping; Xu, Pao; Chen, Jiazhang

    2017-05-01

    Dietary supplementation with rutin may have some pharmacological qualities including anti-inflammatory effects. Kupffer cell activation resulted in increased transcription of pro- and anti-inflammatory cytokines. The main purpose of this study was to investigate the pro- and anti-inflammatory activities in juvenile freshwater tilapia, Oreochromis niloticus, in response to 0.1 or 0.3 g/kg dietary supplementation of rutin. Results showed that hepatic IgM, anti-inflammatory-cytokines, and pro-inflammatory cytokines were significantly decreased in groups treated with high doses of rutin. Hepatic IgM and anti-inflammatory cytokines (IL-10 and IFN-γ) transcripts were significantly decreased, whereas the transcripts of the pro-inflammatory cytokines, TNFα and IL-1β were significantly decreased, whereas IL-8 was significantly increased. The number of Kupffer cells in rutin-treated groups was significantly decreased, and scanning electron micrographs showed that rutin enriched the number of gut microvilli and secretion pits. With the phenomena of cell apoptosis occurred in the rutin groups, the present study demonstrated that optimum levels of rutin may be beneficial but excessive level may cause liver impairment, which may be absorbed by the gut and then transported to the liver. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Design of peptide mimetics to block pro-inflammatory functions of HA fragments.

    PubMed

    Hauser-Kawaguchi, Alexandra; Luyt, Leonard G; Turley, Eva

    2018-01-31

    Hyaluronan is a simple extracellular matrix polysaccharide that actively regulates inflammation in tissue repair and disease processes. The native HA polymer, which is large (>500 kDa), contributes to the maintenance of homeostasis. In remodeling and diseased tissues, polymer size is strikingly polydisperse, ranging from <10 kDa to >500 kDa. In a diseased or stressed tissue context, both smaller HA fragments and high molecular weight HA polymers can acquire pro-inflammatory functions, which result in the activation of multiple receptors, triggering pro-inflammatory signaling to diverse stimuli. Peptide mimics that bind and scavenge HA fragments have been developed, which show efficacy in animal models of inflammation. These studies indicate both that HA fragments are key to driving inflammation and that scavenging these is a viable therapeutic approach to blunting inflammation in disease processes. This mini-review summarizes the peptide-based methods that have been reported to date for blocking HA signaling events as an anti-inflammatory therapeutic approach. Copyright © 2017 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  11. Sintered indium-tin oxide particles induce pro-inflammatory responses in vitro, in part through inflammasome activation.

    PubMed

    Badding, Melissa A; Schwegler-Berry, Diane; Park, Ju-Hyeong; Fix, Natalie R; Cummings, Kristin J; Leonard, Stephen S

    2015-01-01

    Indium-tin oxide (ITO) is used to make transparent conductive coatings for touch-screen and liquid crystal display electronics. As the demand for consumer electronics continues to increase, so does the concern for occupational exposures to particles containing these potentially toxic metal oxides. Indium-containing particles have been shown to be cytotoxic in cultured cells and pro-inflammatory in pulmonary animal models. In humans, pulmonary alveolar proteinosis and fibrotic interstitial lung disease have been observed in ITO facility workers. However, which ITO production materials may be the most toxic to workers and how they initiate pulmonary inflammation remain poorly understood. Here we examined four different particle samples collected from an ITO production facility for their ability to induce pro-inflammatory responses in vitro. Tin oxide, sintered ITO (SITO), and ventilation dust particles activated nuclear factor kappa B (NFκB) within 3 h of treatment. However, only SITO induced robust cytokine production (IL-1β, IL-6, TNFα, and IL-8) within 24 h in both RAW 264.7 mouse macrophages and BEAS-2B human bronchial epithelial cells. Our lab and others have previously demonstrated SITO-induced cytotoxicity as well. These findings suggest that SITO particles activate the NLRP3 inflammasome, which has been implicated in several immune-mediated diseases via its ability to induce IL-1β release and cause subsequent cell death. Inflammasome activation by SITO was confirmed, but it required the presence of endotoxin. Further, a phagocytosis assay revealed that pre-uptake of SITO or ventilation dust impaired proper macrophage phagocytosis of E. coli. Our results suggest that adverse inflammatory responses to SITO particles by both macrophage and epithelial cells may initiate and propagate indium lung disease. These findings will provide a better understanding of the molecular mechanisms behind an emerging occupational health issue.

  12. Chemical Characterization and Antioxidant, Antimicrobial, and Anti-Inflammatory Activities of South Brazilian Organic Propolis

    PubMed Central

    Tiveron, Ana Paula; Rosalen, Pedro Luiz; Franchin, Marcelo; Lacerda, Risia Cristina Coelho; Bueno-Silva, Bruno; Benso, Bruna; Denny, Carina; Ikegaki, Masaharu; de Alencar, Severino Matias

    2016-01-01

    South Brazilian organic propolis (OP), which has never been studied before, was assessed and its chemical composition, scavenging potential of reactive oxygen species, antimicrobial and anti-inflammatory activities are herein presented. Based on the chemical profile obtained using HPLC, OP was grouped into seven variants (OP1–OP7) and all of them exhibited high scavenging activity, mainly against superoxide and hypochlorous acid species. OP1, OP2, and OP3 had the smallest minimal inhibitory concentration (MIC) against Gram-positive bacteria Streptococcus mutans, Streptococcus oralis, and Streptococcus aureus (12.5–100 μg/mL). OP1, OP2, OP3, and OP4 were more effective against Pseudomonas aeruginosa (Gram-negative), with MIC values ranging from 100 to 200 μg/mL. OP6 showed anti-inflammatory activity by decreasing NF-kB activation and TNF-α release in RAW 264.7 macrophages, and expressing the NF-κB-luciferase reporter stable gene. Therefore, south Brazilian OP can be considered an excellent source of bioactive compounds with great potential of application in the pharmaceutical and food industry. PMID:27802316

  13. Glucocorticoid Receptor-Mediated Repression of Pro-Inflammatory Genes in Rheumatoid Arthritis

    DTIC Science & Technology

    2015-10-01

    1 AWARD NUMBER: W81XWH-14-1-0314 TITLE: Glucocorticoid Receptor-Mediated Repression of Pro-Inflammatory Genes in Rheumatoid Arthritis ...19 Sep 2015 4. TITLE AND SUBTITLE Glucocorticoid Receptor-Mediated Repression of Pro- Inflammatory Genes in Rheumatoid Arthritis 5a. CONTRACT NUMBER...SUBJECT TERMS Rheumatoid arthritis , inflammation and autoimmunity, macrophages, glucocorticoid receptor, transcriptional regulation, coactivators and

  14. Contractile activity of human skeletal muscle cells prevents insulin resistance by inhibiting pro-inflammatory signalling pathways.

    PubMed

    Lambernd, S; Taube, A; Schober, A; Platzbecker, B; Görgens, S W; Schlich, R; Jeruschke, K; Weiss, J; Eckardt, K; Eckel, J

    2012-04-01

    Obesity is closely associated with muscle insulin resistance and is a major risk factor for the pathogenesis of type 2 diabetes. Regular physical activity not only prevents obesity, but also considerably improves insulin sensitivity and skeletal muscle metabolism. We sought to establish and characterise an in vitro model of human skeletal muscle contraction, with a view to directly studying the signalling pathways and mechanisms that are involved in the beneficial effects of muscle activity. Contracting human skeletal muscle cell cultures were established by applying electrical pulse stimulation. To induce insulin resistance, skeletal muscle cells were incubated with human adipocyte-derived conditioned medium, monocyte chemotactic protein (MCP)-1 and chemerin. Similarly to in exercising skeletal muscle in vivo, electrical pulse stimulation induced contractile activity in human skeletal muscle cells, combined with the formation of sarcomeres, activation of AMP-activated protein kinase (AMPK) and increased IL-6 secretion. Insulin-stimulated glucose uptake was substantially elevated in contracting cells compared with control. The incubation of skeletal muscle cells with adipocyte-conditioned media, chemerin and MCP-1 significantly reduced the insulin-stimulated phosphorylation of Akt. This effect was abrogated by concomitant pulse stimulation of the cells. Additionally, pro-inflammatory signalling by adipocyte-derived factors was completely prevented by electrical pulse stimulation of the myotubes. We showed that the effects of electrical pulse stimulation on skeletal muscle cells were similar to the effect of exercise on skeletal muscle in vivo in terms of enhanced AMPK activation and IL-6 secretion. In our model, muscle contractile activity eliminates insulin resistance by blocking pro-inflammatory signalling pathways. This novel model therefore provides a unique tool for investigating the molecular mechanisms that mediate the beneficial effects of muscle

  15. Anti-inflammatory Activity of Grains of Paradise (Aframomum melegueta Schum) Extract

    PubMed Central

    2015-01-01

    The ethanolic extract of grains of paradise (Aframomum melegueta Schum, Zingiberaceae) has been evaluated for inhibitory activity on cyclooxygenase-2 (COX-2) enzyme, in vivo for the anti-inflammatory activity and expression of several pro-inflammatory genes. Bioactivity-guided fractionation showed that the most active COX-2 inhibitory compound in the extract was [6]-paradol. [6]-Shogaol, another compound from the extract, was the most active inhibitory compound in pro-inflammatory gene expression assays. In a rat paw edema model, the whole extract reduced inflammation by 49% at 1000 mg/kg. Major gingerols from the extract [6]-paradol, [6]-gingerol, and [6]-shogaol reduced inflammation by 20, 25 and 38%. respectively when administered individually at a dose of 150 mg/kg. [6]-Shogaol efficacy was at the level of aspirin, used as a positive control. Grains of paradise extract has demonstrated an anti-inflammatory activity, which is in part due to the inhibition of COX-2 enzyme activity and expression of pro-inflammatory genes. PMID:25293633

  16. Immunomodulatory and Anti-Inflammatory Activities of Chicken Cathelicidin-2 Derived Peptides

    PubMed Central

    van Dijk, Albert; van Eldik, Mandy; Veldhuizen, Edwin J. A.; Tjeerdsma-van Bokhoven, Hanne L. M.; de Zoete, Marcel R.; Bikker, Floris J.; Haagsman, Henk P.

    2016-01-01

    Host Defence Peptides and derived peptides are promising classes of antimicrobial and immunomodulatory lead compounds. For this purpose we examined whether chicken cathelicidin-2 (CATH-2)-derived peptides modulate the function and inflammatory response of avian immune cells. Using a chicken macrophage cell line (HD11) we found that full-length CATH-2 dose-dependently induced transcription of chemokines CXCLi2/IL-8, MCP-3 and CCLi4/RANTES, but not of pro-inflammatory cytokine IL-1β. In addition, CATH-2 efficiently inhibited IL-1β and nitric oxide production by HD11 cells induced by different sources of lipopolysaccharides (LPS). N-terminal truncated CATH-2 derived peptides maintained the capacity to selectively induce chemokine transcription, but despite their high LPS affinity several analogs lacked LPS-neutralizing capacity. Substitution of phenylalanine residues by tryptophan introduced endotoxin neutralization capacity in inactive truncated CATH-2 derived peptides. In contrast, amino acid substitution of phenylalanine by tyrosine abrogated endotoxin neutralization activity of CATH-2 analogs. These findings support a pivotal role for aromatic residues in peptide-mediated endotoxin neutralization by CATH-2 analogs and were shown to be independent of LPS affinity. The capacity to modulate chemokine production and dampen endotoxin-induced pro-inflammatory responses in chicken immune cells implicates that small CATH-2 based peptides could serve as leads for the design of CATH-2 based immunomodulatory anti-infectives. PMID:26848845

  17. Immunomodulatory and Anti-Inflammatory Activities of Chicken Cathelicidin-2 Derived Peptides.

    PubMed

    van Dijk, Albert; van Eldik, Mandy; Veldhuizen, Edwin J A; Tjeerdsma-van Bokhoven, Hanne L M; de Zoete, Marcel R; Bikker, Floris J; Haagsman, Henk P

    2016-01-01

    Host Defence Peptides and derived peptides are promising classes of antimicrobial and immunomodulatory lead compounds. For this purpose we examined whether chicken cathelicidin-2 (CATH-2)-derived peptides modulate the function and inflammatory response of avian immune cells. Using a chicken macrophage cell line (HD11) we found that full-length CATH-2 dose-dependently induced transcription of chemokines CXCLi2/IL-8, MCP-3 and CCLi4/RANTES, but not of pro-inflammatory cytokine IL-1β. In addition, CATH-2 efficiently inhibited IL-1β and nitric oxide production by HD11 cells induced by different sources of lipopolysaccharides (LPS). N-terminal truncated CATH-2 derived peptides maintained the capacity to selectively induce chemokine transcription, but despite their high LPS affinity several analogs lacked LPS-neutralizing capacity. Substitution of phenylalanine residues by tryptophan introduced endotoxin neutralization capacity in inactive truncated CATH-2 derived peptides. In contrast, amino acid substitution of phenylalanine by tyrosine abrogated endotoxin neutralization activity of CATH-2 analogs. These findings support a pivotal role for aromatic residues in peptide-mediated endotoxin neutralization by CATH-2 analogs and were shown to be independent of LPS affinity. The capacity to modulate chemokine production and dampen endotoxin-induced pro-inflammatory responses in chicken immune cells implicates that small CATH-2 based peptides could serve as leads for the design of CATH-2 based immunomodulatory anti-infectives.

  18. Chebulagic acid Chebulinic acid and Gallic acid, the active principles of Triphala, inhibit TNFα induced pro-angiogenic and pro-inflammatory activities in retinal capillary endothelial cells by inhibiting p38, ERK and NFkB phosphorylation.

    PubMed

    Shanmuganathan, Sivasankar; Angayarkanni, Narayanasamy

    2018-04-17

    Tumor necrosis factor-α (TNFα) a pleiotropic cytokine induces pro-inflammatory and pro-angiogenic changes in conditions such as diabetic retinopathy (DR) and neovascular age related macular degeneration (NV-AMD). Hence, inhibition of TNFα mediated changes can benefit the management of DR and NV-AMD. Triphala, an ayurvedic herbal preparation is known to have immunomodulatry functions. In this study we evaluated the alcoholic extract of triphala (AlE) and its compounds Chebulagic acid (CA), Chebulinic acid (CI) and Gallic acid (GA) for their anti-TNFα activity. TNFα induced pro-inflammatory and pro-angiogenic changes in the retinal-choroid microvascular endothelial cells (RF/6A). Treatment with CA/CI/GA and the whole Triphala extract showed characteristic inhibition of MMP-9, cell proliferation/migration and tube formation as well the expression of IL-6, IL-8 and MCP-1 without affecting cell viability. This was mediated by inhibition of p38, ERK and NFκB phosphorylation. Ex vivo angiogenesis assay using chick chorioallantoic membrane (CAM) model also showed that TNFα-induced angiogenesis and it was inhibited by AlE and its active principles. Further, in silico studies revealed that CA, CI and GA are capable of binding the TNFα-receptor-1 to mediate anti-TNFα activity. This study explains the immunomodulatory function of Triphala, evaluated in the context of retinal and choroid vasculopathies in vitro and ex vivo; which showed that CA, CI and GA can be a potential pharmacological agents in the management of DR and NV-AMD. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Insulin decreases expression of the pro-inflammatory receptor Proteinase-Activated Receptor-2 on human airway epithelial cells.

    PubMed

    Gandhi, Vivek D; Palikhe, Nami Shrestha; Hamza, Shereen M; Dyck, Jason R B; Buteau, Jean; Vliagoftis, Harissios

    2018-06-08

    The authors show that insulin, a hormone with anti-inflammatory properties, decreases the expression of a pro-inflammatory receptor on airway epithelial cells. This observation may explain the heightened respiratory inflammation seen in patients with metabolic syndrome. Copyright © 2018. Published by Elsevier Inc.

  20. Endogenous anti-inflammatory neuropeptides and pro-resolving lipid mediators: a new therapeutic approach for immune disorders

    PubMed Central

    Anderson, Per; Delgado, Mario

    2008-01-01

    Identification of the factors that regulate the immune tolerance and control the appearance of exacerbated inflammatory conditions is crucial for the development of new therapies of inflammatory and autoimmune diseases. Although much is known about the molecular basis of initiating signals and pro-inflammatory chemical mediators in inflammation, it has only recently become apparent that endogenous stop signals are critical at early checkpoints within the temporal events of inflammation. Some neuropeptides and lipid mediators that are produced during the ongoing inflammatory response have emerged as endogenous anti-inflammatory agents that participate in the regulation of the processes that ensure self-tolerance and/or inflammation resolution. Here we examine the latest research findings, which indicate that neuropeptides participate in maintaining immune tolerance in two distinct ways: by regulating the balance between pro-inflammatory and anti-inflammatory factors, and by inducing the emergence of regulatory T cells with suppressive activity against autoreactive T-cell effectors. On the other hand, we also focus on lipid mediators biosynthesized from ω-3 and ω-6 polyunsaturated fatty-acids in inflammatory exudates that promote the resolution phase of acute inflammation by regulating leucocyte influx to and efflux from local inflamed sites. Both anti-inflammatory neuropeptides and pro-resolving lipid mediators have shown therapeutic potential for a variety of inflammatory and autoimmune disorders and could be used as biotemplates for the development of novel pharmacologic agents. PMID:18554314

  1. GPR120 in adipocytes has differential roles in the production of pro-inflammatory adipocytokines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasan, Arif Ul, E-mail: ahasan@med.kagawa-u.ac.jp; Department of Pharmacology, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793; Ohmori, Koji

    How nutritional excess leads to inflammatory responses in metabolic syndrome is not well characterized. Here, we evaluated the effects of ω-3 polyunsaturated fatty acid specific G-protein coupled receptor 120 (GPR120) activation on inflammatory pathways in adipocytes, and the influence of this process on macrophage migration. Using 3T3-L1 adipocytes, we found that agonizing GPR120 using its synthetic ligand, GSK137647, attenuated both basal and lipopolysaccharide-induced production of interleukin-6 (IL-6) and C-C motif chemokine ligand 2 (CCL2). Moreover, the intervention reduced the phosphorylation of nuclear factor kappa B inhibitor alpha (IκBα) and nuclear translocation of nuclear factor kappa-B p65 subunit (p65). Furthermore, themore » silencing of GPR120 itself reduced IL-6 and CCL2 mRNA expression. Inhibition of protein kinase C (PKC) augmented the down-regulatory effect of GSK137647 on IL-6 and CCL2 mRNA. Using a luciferase assay to measure promoter activity of the IL-6 gene in mouse embryonic fibroblasts, we demonstrated that exogenous transfection of GPR120 alone reduced the promoter activity, which was augmented by GSK137647. Inhibition of PKC further reduced the promoter activity. Nevertheless, RAW 264.7 macrophages grown in conditioned medium collected from GSK137647-treated adipocytes attenuated the expressions of matrix metalloproteinases-9 and -3, and tissue inhibitor of metalloproteinase-1. Conditioned medium also inhibited the lipopolysaccharide-induced migration of these macrophages. Taken together, these findings provide critical evidence that although GPR120 is associated with a PKC-mediated pro-inflammatory pathway, the direct inhibitory effects of GPR120 on the nuclear factor kappa B pathway are anti-inflammatory. Moreover, GPR120 activity can attenuate the adipocyte-mediated enhanced production of extracellular matrix-modulating factors in macrophages and can reduce their migration by a paracrine mechanism. - Highlights: • Agonizing

  2. Inflamm-aging does not simply reflect increases in pro-inflammatory markers.

    PubMed

    Morrisette-Thomas, Vincent; Cohen, Alan A; Fülöp, Tamàs; Riesco, Éléonor; Legault, Véronique; Li, Qing; Milot, Emmanuel; Dusseault-Bélanger, Françis; Ferrucci, Luigi

    2014-07-01

    Many biodemographic studies use biomarkers of inflammation to understand or predict chronic disease and aging. Inflamm-aging, i.e. chronic low-grade inflammation during aging, is commonly characterized by pro-inflammatory biomarkers. However, most studies use just one marker at a time, sometimes leading to conflicting results due to complex interactions among the markers. A multidimensional approach allows a more robust interpretation of the various relationships between the markers. We applied principal component analysis (PCA) to 19 inflammatory biomarkers from the InCHIANTI study. We identified a clear, stable structure among the markers, with the first axis explaining inflammatory activation (both pro- and anti-inflammatory markers loaded strongly and positively) and the second axis innate immune response. The first but not the second axis was strongly correlated with age (r=0.56, p<0.0001, r=0.08 p=0.053), and both were strongly predictive of mortality (hazard ratios per PCA unit (95% CI): 1.33 (1.16-1.53) and 0.87 (0.76-0.98) respectively) and multiple chronic diseases, but in opposite directions. Both axes were more predictive than any individual markers for baseline chronic diseases and mortality. These results show that PCA can uncover a novel biological structure in the relationships among inflammatory markers, and that key axes of this structure play important roles in chronic disease. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Tumor necrosis factor-alpha activates signal transduction in hypothalamus and modulates the expression of pro-inflammatory proteins and orexigenic/anorexigenic neurotransmitters.

    PubMed

    Amaral, Maria E; Barbuio, Raquel; Milanski, Marciane; Romanatto, Talita; Barbosa, Helena C; Nadruz, Wilson; Bertolo, Manoel B; Boschero, Antonio C; Saad, Mario J A; Franchini, Kleber G; Velloso, Licio A

    2006-07-01

    Tumor necrosis factor-alpha (TNF-alpha) is known to participate in the wastage syndrome that accompanies cancer and severe infectious diseases. More recently, a role for TNF-alpha in the pathogenesis of type 2 diabetes mellitus and obesity has been shown. Much of the regulatory action exerted by TNF-alpha upon the control of energy stores depends on its action on the hypothalamus. In this study, we show that TNF-alpha activates canonical pro-inflammatory signal transduction pathways in the hypothalamus of rats. These signaling events lead to the transcriptional activation of an early responsive gene and to the induction of expression of cytokines and a cytokine responsive protein such as interleukin-1beta, interleukin-6, interleukin-10 and suppressor of cytokine signalling-3, respectively. In addition, TNF-alpha induces the expression of neurotransmitters involved in the control of feeding and thermogenesis. Thus, TNF-alpha may act directly in the hypothalamus inducing a pro-inflammatory response and the modulation of expression of neurotransmitters involved in energy homeostasis.

  4. VIP modulates the pro-inflammatory maternal response, inducing tolerance to trophoblast cells

    PubMed Central

    Fraccaroli, Laura; Alfieri, Julio; Larocca, Luciana; Calafat, Mario; Roca, Valeria; Lombardi, Eduardo; Ramhorst, Rosanna; Leirós, Claudia Pérez

    2009-01-01

    Background and purpose Successful embryo implantation is followed by a local pro-inflammatory and Th1 response, subsequently controlled by a Th2 response. Vasoactive intestinal peptide (VIP) has anti-inflammatory effects and promotes tolerogenic/Th2 responses while favouring embryonic development. We investigated the potential regulatory role of VIP on human trophoblast cells, maternal pro-inflammatory responses and trophoblast-maternal leukocyte interactions. Experimental approach We tested VIP effects directly on a trophoblast cell line (Swan 71 cells) and after co-culture with maternal peripheral blood mononuclear cells (PBMCs) as models of the feto-maternal dialogue. We also co-cultured maternal and paternal PBMCs to test effects of endogenous VIP on maternal alloresponses. Key results Swan 71 cells express VPAC1 receptors and VIP induced their proliferation and the expression of leukaemia inhibitor factor, a pro-implantatory marker. After interaction with trophoblast cells, VIP increased Foxp3, the proportion of CD4+CD25+Foxp3+ cells within maternal PBMCs and transforming growth factor β expression. Also, during the trophoblast-maternal PBMCs interaction, VIP reduced pro-inflammatory mediators [interleukin (IL)-6, monocyte chemoattractant protein 1, nitric oxide], while increasing IL-10. Trophoblast cells produced VIP which dose-dependently suppressed allomaternal responses, accompanied by reduced expression of the T cell transcription factor, T-bet. Conclusions and implications Vasoactive intestinal peptide induced pro-implantatory markers and trophoblast cell proliferation, while controlling the initial pro-inflammatory response, by increasing maternal regulatory T cells and anti-inflammatory cytokines. As an autocrine regulatory peptide VIP might contribute to fetal survival through two mechanisms; a direct trophic effect on trophoblast cells and an immunomodulatory effect that favours tolerance to fetal antigens. PMID:19133995

  5. Dietary gamma oryzanol plays a significant role in the anti-inflammatory activity of rice bran oil by decreasing pro-inflammatory mediators secreted by peritoneal macrophages of rats.

    PubMed

    Rao, Y Poorna Chandra; Sugasini, D; Lokesh, B R

    2016-10-28

    Ricebran oil (RBO) is promoted as heart friendly oil because of its ability to maintain serum lipids at desirable levels. Inflammation also plays an important role on cardiovascular health. The role of minor constituents present in unsaponifiable fraction (UF) of RBO on inflammatory markers is not well understood. To evaluate this, we have taken RBO with UF (RBO-N), RBO stripped of UF (RBO-MCR) and RBO-MCR supplemented with UF from RBO (UFRBO) or Gamma-Oryzanol (γ-ORY) were added in AIN-93 diets which was then fed to Wistar rats for a period of 60 days. Groundnut oil with UF (GNO-N), UF removed GNO (GNO-MCR) and GNO-MCR supplemented with UF from RBO or γ-ORY was also used for comparison. The peritoneal macrophages from the rats were activated and pro-inflammatory mediators such as Reactive Oxygen Species (ROS), eicosanoids, cytokines, hydrolytic enzymes of lysosomal origin were monitored. The results indicated that UF of RBO and γ-ORY supplemented in the dietary oils play a significant role in reducing the secretion of pro-inflammatory mediators by macrophages. Hence γ-ORY in RBO significantly contributed to the anti-inflammatory properties of RBO. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. α-Fetoprotein as a modulator of the pro-inflammatory response of human keratinocytes

    PubMed Central

    Potapovich, AI; Pastore, S; Kostyuk, VA; Lulli, D; Mariani, V; De Luca, C; Dudich, EI; Korkina, LG

    2009-01-01

    Background and purpose: The immunomodulatory effects of α-fetoprotein (AFP) on lymphocytes and macrophages have been described in vitro and in vivo. Recombinant forms of human AFP have been proposed as potential therapeutic entities for the treatment of autoimmune diseases. We examined the effects of embryonic and recombinant human AFP on the spontaneous, UVA- and cytokine-induced pro-inflammatory responses of human keratinocytes. Experimental approach: Cultures of primary and immortalized human keratinocytes (HaCaT) and human blood T lymphocytes were used. The effects of AFP on cytokine expression were studied by bioplexed elisa and quantitative reverse transcriptase polymerase chain reaction assay. Kinase and nuclear factor kappa B (NFκB) phosphorylation were quantified by intracellular elisa. Nuclear activator protein 1 and NFκB DNA binding activity was measured by specific assays. Nitric oxide and H2O2 production and redox status were assessed by fluorescent probe and biochemical methods. Key results: All forms of AFP enhanced baseline expression of cytokines, chemokines and growth factors. AFP dose-dependently increased tumour necrosis factor alpha-stimulated granulocyte macrophage colony stimulating factor and interleukin 8 expression and decreased tumour necrosis factor alpha-induced monocyte chemotactic protein 1 and IP-10 (interferon gamma-produced protein of 10 kDa) expression. AFP induced a marked activator protein 1 activation in human keratinocytes. AFP also increased H2O2 and modulated nitrite/nitrate levels in non-stimulated keratinocytes whereas it did not affect these parameters or cytokine release from UVA-stimulated cells. Phosphorylation of extracellular signal-regulated kinase (ERK1/2) and Akt1 but not NFκB was activated by AFP alone or by its combination with UVA. Conclusions and implications: Exogenous AFP induces activation of human keratinocytes, with de novo expression of a number of pro-inflammatory mediators and modulation of their

  7. Functional relevance of protein glycosylation to the pro-inflammatory effects of extracellular matrix metalloproteinase inducer (EMMPRIN) on monocytes/macrophages.

    PubMed

    Ge, Heng; Yuan, Wei; Liu, Jidong; He, Qing; Ding, Song; Pu, Jun; He, Ben

    2015-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) is an important pro-inflammatory protein involved in the cellular functions of monocytes/macrophages. We have hypothesized that high-level heterogeneousness of protein glycosylation of EMMPRIN may have functional relevance to its biological effects and affect the inflammatory activity of monocytes/macrophages. The glycosylation patterns of EMMPRIN expressed by monocytes/macrophages (THP-1 cells) in response to different extracellular stimuli were observed, and the structures of different glycosylation forms were identified. After the purification of highly- and less-glycosylated proteins respectively, the impacts of different glycosylation forms on the pro-inflammatory effects of EMMPRIN were examined in various aspects, such as cell adhesion to endothelial cells, cell migrations, cytokine expression, and activation of inflammatory signalling pathway. 1) It was mainly the highly-glycosylated form of EMMPRIN (HG-EMMPRIN) that increased after being exposed to inflammatory signals (PMA and H2O2). 2) Glycosylation of EMMPRIN in monocytes/macrophages led to N-linked-glycans being added to the protein, with the HG form containing complex-type glycans and the less-glycosylated form (LG) the simple type. 3) Only the HG-EMMPRIN but not the LG-EMMPRIN exhibited pro-inflammatory effects and stimulated inflammatory activities of the monocytes/macrophages (i.e., activation of ERK1/2 and NF-κB pathway, enhanced monocyte-endothelium adhesion, cell migration and matrix metalloproteinase -9 expression). Post-transcriptional glycosylation represents an important mechanism that determines the biological effects of EMMPRIN in monocytes/macrophages. Glycosylation of EMMPRIN may serve as a potential target for regulating the inflammatory activities of monocytes/macrophages.

  8. N-terminal fragment of cardiac myosin binding protein-C triggers pro-inflammatory responses in vitro

    PubMed Central

    Lipps, Christoph; Nguyen, Jenine H.; Pyttel, Lukas; Lynch, Thomas L.; Liebetrau, Christoph; Aleshcheva, Ganna; Voss, Sandra; Dörr, Oliver; Nef, Holger M.; Möllmann, Helge; Hamm, Christian W.; Sadayappan, Sakthivel; Troidl, Christian

    2016-01-01

    Myocardial infarction (MI) leads to loss and degradation of contractile cardiac tissue followed by sterile inflammation of the myocardium through activation and recruitment of innate and adaptive cells of the immune system. Recently, it was shown that cardiac myosin binding protein-C (cMyBP-C), a protein of the cardiac sarcomere, is degraded following MI, releasing a predominant N-terminal 40-kDa fragment (C0C1f) into myocardial tissue and the systemic circulation. We hypothesized that early release of C0C1f contributes to the initiation of inflammation and plays a key role in recruitment and activation of immune cells. Therefore, we investigated the role of C0C1f on macrophage / monocyte activation using both mouse bone marrow-derived macrophages and human monocytes. Here we demonstrate that C0C1f leads to macrophage / monocyte activation in vitro. Furthermore, C0C1f induces strong upregulation of pro-inflammatory cytokines (interleukin-6 (IL-6), tumor necrosis factor α (TNFα), and interleukin-1β (IL-1β)) in cultured murine macrophages and human monocytes, resulting in a pro-inflammatory phenotype. We identified the toll-like receptor 4 (TLR4), toll-like receptor 2 (TLR2), and Advanced Glycosylation End Product-Specific Receptor (RAGE) as potential receptors for C0C1f whose activation leads to mobilization of the NFκB signaling pathway, a central mediator of the pro-inflammatory signaling cascade. Thus, C0C1f appears to be a key player in the initiation of inflammatory processes and might also play an important role upon MI. PMID:27616755

  9. Parenchymal and Stromal Cells Contribute to Pro-Inflammatory Myocardial Environment at Early Stages of Diabetes: Protective Role of Resveratrol.

    PubMed

    Savi, Monia; Bocchi, Leonardo; Sala, Roberto; Frati, Caterina; Lagrasta, Costanza; Madeddu, Denise; Falco, Angela; Pollino, Serena; Bresciani, Letizia; Miragoli, Michele; Zaniboni, Massimiliano; Quaini, Federico; Del Rio, Daniele; Stilli, Donatella

    2016-11-16

    Background: Little information is currently available concerning the relative contribution of cardiac parenchymal and stromal cells in the activation of the pro-inflammatory signal cascade, at the initial stages of diabetes. Similarly, the effects of early resveratrol (RSV) treatment on the negative impact of diabetes on the different myocardial cell compartments remain to be defined. Methods: In vitro challenge of neonatal cardiomyocytes and fibroblasts to high glucose and in vivo/ex vivo experiments on a rat model of Streptozotocin-induced diabetes were used to specifically address these issues. Results: In vitro data indicated that, besides cardiomyocytes, neonatal fibroblasts contribute to generating initial changes in the myocardial environment, in terms of pro-inflammatory cytokine expression. These findings were mostly confirmed at the myocardial tissue level in diabetic rats, after three weeks of hyperglycemia. Specifically, monocyte chemoattractant protein-1 and Fractalkine were up-regulated and initial abnormalities in cardiomyocyte contractility occurred. At later stages of diabetes, a selective enhancement of pro-inflammatory macrophage M1 phenotype and a parallel reduction of anti-inflammatory macrophage M2 phenotype were associated with a marked disorganization of cardiomyocyte ultrastructural properties. RSV treatment inhibited pro-inflammatory cytokine production, leading to a recovery of cardiomyocyte contractile efficiency and a reduced inflammatory cell recruitment. Conclusion: Early RSV administration could inhibit the pro-inflammatory diabetic milieu sustained by different cardiac cell types.

  10. Potential anti-inflammatory, antioxidant and antimicrobial activities of Sambucus australis.

    PubMed

    Benevides Bahiense, Jhéssica; Marques, Franciane Martins; Figueira, Mariana Moreira; Vargas, Thais Souza; Kondratyuk, Tamara P; Endringer, Denise Coutinho; Scherer, Rodrigo; Fronza, Marcio

    2017-12-01

    Sambucus australis Cham. & Schltdl. (Adoxaceae) is used in Brazilian folk medicine to treat inflammatory disorders. To evaluate the in vitro anti-inflammatory, antioxidant and antimicrobial properties of S. australis. The anti-inflammatory activity of ethanol extracts of the leaf and bark of S. australis (1-100 μg/mL) were studied in lipopolysaccharide/interferon γ stimulated murine macrophages RAW 264.7 cells (24 h incubation) by investigating the release of nitric oxide (NO) and tumour necrosis factor-alpha (TNF-α) and in the TNF-α-induced nuclear factor kappa (NF-κB) assay. Minimum inhibitory concentration (MIC) was determined by the microdilution test (24 h incubation). Antioxidant activity was determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP) and the NO scavenging assays. Chemical composition was assessed by LC-MS/MS. Antioxidant activities in the DPPH (IC 50 43.5 and 66.2 μg/mL), FRAP (IC 50 312.6 and 568.3 μg/mL) and NO radical scavenging assays (IC 50 285.0 and 972.6 μg/mL) were observed in the leaf and bark ethanol extracts, respectively. Solely the leaf extract showed significant inhibition of NO and TNF-α production in RAW264.7 cells at concentrations of 2 and 100 μg/mL, respectively, and suppression of TNF-α inhibition of NF-κB by 12.8 and 20.4% at concentrations of 50 and 100 μg/mL, respectively. The extract also exhibited antibacterial activity against Salmonella typhimurium (MIC 250 μg/mL) and Klebsiella pneumoniae (MIC 250 μg/mL). LC-MS/MS revealed the presence of chlorogenic acid and rutin as major compounds. The results indicate that the ethanol leaf extract of S. australis exhibit prominent anti-inflammatory effects.

  11. Dual evaluation of some novel 2-amino-substituted coumarinylthiazoles as anti-inflammatory-antimicrobial agents and their docking studies with COX-1/COX-2 active sites.

    PubMed

    Chandak, Navneet; Kumar, Pawan; Kaushik, Pawan; Varshney, Parul; Sharma, Chetan; Kaushik, Dhirender; Jain, Sudha; Aneja, Kamal R; Sharma, Pawan K

    2014-08-01

    Synthesis of total eighteen 2-amino-substituted 4-coumarinylthiazoles including sixteen new compounds (3a-o and 5b) bearing the benzenesulfonamide moiety is described in the present report. All the synthesized target compounds were examined for their in vivo anti-inflammatory (AI) activity and in vitro antimicrobial activity. Results revealed that six compounds (3 d, 3 f, 3 g, 3 h, 3 j and 3 n) exhibited pronounced anti-inflammatory activity comparable to the standard drug indomethacin. AI results were further confirmed by the docking studies of the most active (3n) and the least active compound (3a) with COX-1 and COX-2 active sites. In addition, most of the compounds exhibited moderate antimicrobial activity against Gram-positive bacteria as well as fungal yeast, S. cervisiae. Comparison between 3 and 5 indicated that incorporation of additional substituted pyrazole nucleus into the scaffold significantly enhanced AI activity.

  12. Pro-inflammatory and anti-inflammatory cytokine expression in post-treatment apical periodontitis

    PubMed Central

    Porpino, Mariana Teixeira Maneschy; Antunes, Henrique dos Santos; Rodrigues, Renata Costa Val; Perez, Alejandro Ron; Pires, Fábio Ramôa; Siqueira, José Freitas; Armada, Luciana

    2018-01-01

    Abstract Objective: This study evaluated the expression of pro-inflammatory (IL-1β, IL-6, IFN-γ and TNF-α) and anti-inflammatory (IL-4 and TGF-β) cytokines in apical periodontitis lesions. Correlations between these cytokines and clinical and cone-beam computed tomographic (CBCT) data were also assessed. Material and Methods: Apical periodontitis lesions’ data were obtained from 27 patients subjected to periradicular surgery. Specimens were processed for histopathologic and immunohistochemical analysis. Sections were evaluated according to the amount of positive staining for each antibody. Expression levels of the target mediators were compared with clinical and CBCT data. Results: Twenty lesions were diagnosed as granuloma and 7 as cyst. In granulomas, IL-4 expression was significantly higher than IL-6 (p=0.001) and TNF-α (p=0.001). There was a significant relationship between high levels of TNF-α and lesions <5 mm (p=0.017). In cysts, IL-6 expression was significant lower than IL-4 (p=0.001) and IFN-γ (p=0.004). There was a significant relationship between high levels of TGF-β and endodontic treatment performed ≤4 years before (p=0.045). In general, IL-4 was the most expressed mediator in both cysts and granulomas. Conclusions: There was a balance between the expression of pro-inflammatory and anti-inflammatory cytokines associated with the chronic periradicular inflammatory process. TNF-α and TGF-β were related to some clinical and CBCT data. PMID:29898177

  13. Phytochemical screening and study of antioxidant, antimicrobial, antidiabetic, anti-inflammatory and analgesic activities of extracts from stem wood of Pterocarpus marsupium Roxburgh.

    PubMed

    Pant, Dipak Raj; Pant, Narayan Dutt; Saru, Dil Bahadur; Yadav, Uday Narayan; Khanal, Dharma Prasad

    2017-01-01

    The main aims of the study were to evaluate the phytochemical constituents and to study the antioxidant, antimicrobial, antidiabetic, anti-inflammatory, and analgesic activities of extracts from stem wood of Pterocarpus marsupium . Ethanol, acetone and isopropyl alcohol (IPA) (1:1) extracts of stem wood of P. marsupium were subjected to phytochemical screening and analysis of biological activities from August 2015 to January 2016. The antioxidant assay was carried out using 2, 2-diphenyl-1-picrylhydrazyl scavenging method, antimicrobial activity testing by cup diffusion method, antidiabetic test evaluation by oral glucose tolerance test in mice, anti-inflammatory effect was evaluated by hind paw edema method in mice and analgesic test evaluation by a chemical writhing method in mice. The results of the study revealed that P. marsupium is a source of various phytoconstituents such as alkaloids, glycosides, saponins, tannins, proteins, carbohydrates, cardiac glycosides, flavonoids, and terpenoids. Both the acetone and IPA extract as well as the ethanol extract of stem wood of P. marsupium exhibited a dose-dependent antioxidant activity. Acetone and IPA extract showed antibacterial activity against Gram-positive bacteria, while the ethanolic extract was found to possess antidiabetic activity. The antidiabetic activity of the extract was found to be time and dose-dependent. Similarly, the acetone and IPA extract was found to have anti-inflammatory activity, which was also time and dose-dependent. Furthermore, the ethanolic extract showed analgesic activity, which was dose-dependent. The ethanolic extract was found to be nontoxic. Thus, this study laid sufficient background for the further research on extracts from stem wood of P. marsupium for identification, subsequent purification and isolation of compounds having antibacterial, antidiabetic, anti-inflammatory, and analgesic activities.

  14. Functional Relevance of Protein Glycosylation to the Pro-Inflammatory Effects of Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) on Monocytes/Macrophages

    PubMed Central

    Ge, Heng; Yuan, Wei; Liu, Jidong; He, Qing; Ding, Song; Pu, Jun; He, Ben

    2015-01-01

    Background and Objective Extracellular matrix metalloproteinase inducer (EMMPRIN) is an important pro-inflammatory protein involved in the cellular functions of monocytes/macrophages. We have hypothesized that high-level heterogeneousness of protein glycosylation of EMMPRIN may have functional relevance to its biological effects and affect the inflammatory activity of monocytes/macrophages. Methods The glycosylation patterns of EMMPRIN expressed by monocytes/macrophages (THP-1 cells) in response to different extracellular stimuli were observed, and the structures of different glycosylation forms were identified. After the purification of highly- and less-glycosylated proteins respectively, the impacts of different glycosylation forms on the pro-inflammatory effects of EMMPRIN were examined in various aspects, such as cell adhesion to endothelial cells, cell migrations, cytokine expression, and activation of inflammatory signalling pathway. Results 1) It was mainly the highly-glycosylated form of EMMPRIN (HG-EMMPRIN) that increased after being exposed to inflammatory signals (PMA and H2O2). 2) Glycosylation of EMMPRIN in monocytes/macrophages led to N-linked-glycans being added to the protein, with the HG form containing complex-type glycans and the less-glycosylated form (LG) the simple type. 3) Only the HG-EMMPRIN but not the LG-EMMPRIN exhibited pro-inflammatory effects and stimulated inflammatory activities of the monocytes/macrophages (i.e., activation of ERK1/2 and NF-κB pathway, enhanced monocyte-endothelium adhesion, cell migration and matrix metalloproteinase -9 expression). Conclusions Post-transcriptional glycosylation represents an important mechanism that determines the biological effects of EMMPRIN in monocytes/macrophages. Glycosylation of EMMPRIN may serve as a potential target for regulating the inflammatory activities of monocytes/macrophages. PMID:25658763

  15. A pro-inflammatory role of deubiquitinating enzyme cylindromatosis (CYLD) in vascular smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Shuai; Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208; Lv, Jiaju

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Cyld deficiency suppresses pro-inflammatory phenotypic switch of VSMCs. Black-Right-Pointing-Pointer Cyld deficiency inhibits MAPK rather than NF-kB activity in inflamed VSMCs. Black-Right-Pointing-Pointer CYLD is up-regulated in the coronary artery with neointimal hyperplasia. -- Abstract: CYLD, a deubiquitinating enzyme (DUB), is a critical regulator of diverse cellular processes, ranging from proliferation and differentiation to inflammatory responses, via regulating multiple key signaling cascades such as nuclear factor kappa B (NF-{kappa}B) pathway. CYLD has been shown to inhibit vascular lesion formation presumably through suppressing NF-{kappa}B activity in vascular cells. However, herein we report a novel role of CYLD in mediating pro-inflammatory responsesmore » in vascular smooth muscle cells (VSMCs) via a mechanism independent of NF-{kappa}B activity. Adenoviral knockdown of Cyld inhibited basal and the tumor necrosis factor alpha (TNF{alpha})-induced mRNA expression of pro-inflammatory cytokines including monocyte chemotactic protein-1 (Mcp-1), intercellular adhesion molecule (Icam-1) and interleukin-6 (Il-6) in rat adult aortic SMCs (RASMCs). The CYLD deficiency led to increases in the basal NF-{kappa}B transcriptional activity in RASMCs; however, did not affect the TNF{alpha}-induced NF-{kappa}B activity. Intriguingly, the TNF{alpha}-induced I{kappa}B phosphorylation was enhanced in the CYLD deficient RASMCs. While knocking down of Cyld decreased slightly the basal expression levels of I{kappa}B{alpha} and I{kappa}B{beta} proteins, it did not alter the kinetics of TNF{alpha}-induced I{kappa}B protein degradation in RASMCs. These results indicate that CYLD suppresses the basal NF-{kappa}B activity and TNF{alpha}-induced I{kappa}B kinase activation without affecting TNF{alpha}-induced NF-{kappa}B activity in VSMCs. In addition, knocking down of Cyld suppressed TNF{alpha}-induced activation of mitogen activated

  16. Synthesis and biological evaluation of pyrazolylthiazole carboxylic acids as potent anti-inflammatory-antimicrobial agents.

    PubMed

    Khloya, Poonam; Kumar, Satish; Kaushik, Pawan; Surain, Parveen; Kaushik, Dhirender; Sharma, Pawan K

    2015-03-15

    Current Letter presents design, synthesis and biological evaluation of a novel series of pyrazolylthiazole carboxylates 1a-1p and corresponding acid derivatives 2a-2p. All 32 novel compounds were tested for their in vivo anti-inflammatory activity by carrageenan-induced rat paw edema method as well as for in vitro antimicrobial activity. All the tested compounds exhibited excellent AI activity profile. Three compounds 1p (R=Cl, R(1)=Cl), 2c (R=H, R(1)=F) and 2n (R=Cl, R(1)=OCH3) were identified as potent anti-inflammatory agents exhibiting edema inhibition of 93.06-89.59% which is comparable to the reference drug indomethacin (91.32%) after 3h of carrageenan injection while most of the other compounds displayed inhibition ⩾80%. In addition, pyrazolylthiazole carboxylic acids (2a-2p) also showed good antimicrobial profile. Compound 2h (R=OCH3, R(1)=Cl) showed excellent antimicrobial activity (MIC 6.25μg/mL) against both Gram positive bacteria comparable with the reference drug ciprofloxacin (MIC 6.25μg/mL). Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Pathogen- and host-directed anti-inflammatory activities of macrolide antibiotics.

    PubMed

    Steel, Helen C; Theron, Annette J; Cockeran, Riana; Anderson, Ronald; Feldman, Charles

    2012-01-01

    Macrolide antibiotics possess several, beneficial, secondary properties which complement their primary antimicrobial activity. In addition to high levels of tissue penetration, which may counteract seemingly macrolide-resistant bacterial pathogens, these agents also possess anti-inflammatory properties, unrelated to their primary antimicrobial activity. Macrolides target cells of both the innate and adaptive immune systems, as well as structural cells, and are beneficial in controlling harmful inflammatory responses during acute and chronic bacterial infection. These secondary anti-inflammatory activities of macrolides appear to be particularly effective in attenuating neutrophil-mediated inflammation. This, in turn, may contribute to the usefulness of these agents in the treatment of acute and chronic inflammatory disorders of both microbial and nonmicrobial origin, predominantly of the airways. This paper is focused on the various mechanisms of macrolide-mediated anti-inflammatory activity which target both microbial pathogens and the cells of the innate and adaptive immune systems, with emphasis on their clinical relevance.

  18. Pathogen- and Host-Directed Anti-Inflammatory Activities of Macrolide Antibiotics

    PubMed Central

    Steel, Helen C.; Theron, Annette J.; Cockeran, Riana; Anderson, Ronald; Feldman, Charles

    2012-01-01

    Macrolide antibiotics possess several, beneficial, secondary properties which complement their primary antimicrobial activity. In addition to high levels of tissue penetration, which may counteract seemingly macrolide-resistant bacterial pathogens, these agents also possess anti-inflammatory properties, unrelated to their primary antimicrobial activity. Macrolides target cells of both the innate and adaptive immune systems, as well as structural cells, and are beneficial in controlling harmful inflammatory responses during acute and chronic bacterial infection. These secondary anti-inflammatory activities of macrolides appear to be particularly effective in attenuating neutrophil-mediated inflammation. This, in turn, may contribute to the usefulness of these agents in the treatment of acute and chronic inflammatory disorders of both microbial and nonmicrobial origin, predominantly of the airways. This paper is focused on the various mechanisms of macrolide-mediated anti-inflammatory activity which target both microbial pathogens and the cells of the innate and adaptive immune systems, with emphasis on their clinical relevance. PMID:22778497

  19. S632A3, a new glutarimide antibiotic, suppresses lipopolysaccharide-induced pro-inflammatory responses via inhibiting the activation of glycogen synthase kinase 3β.

    PubMed

    Deng, Hongbin; Zhang, Na; Wang, Yan; Chen, Jinjing; Shen, Jiajia; Wang, Zhen; Xu, Rong; Zhang, Jingpu; Song, Danqing; Li, Diandong

    2012-12-10

    Inflammatory mediators including inducible nitric oxide (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α) and Interleukin-6 (IL-6) contribute to the course of a variety of inflammatory diseases. S632A3 is a new member of the glutarimide antibiotics isolated from a cultured broth of Streptomyces hygroscopicus S632 with a potent NF-κB inhibitory activity. In the present study, we investigated the anti-inflammatory effects and the underlying molecular mechanism of S632A3 on lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. S632A3 concentration-dependently inhibited LPS-induced NO and prostaglandin E(2) (PGE(2)) production through the suppression of iNOS and COX-2 at gene transcription levels. In addition, S632A3 suppressed NF-κB-dependent inflammatory responses by inhibiting the activation of glycogen synthase kinase 3β (GSK-3β), while the activation of IκB kinase (IKK) complex was unaffected. S632A3 suppressed NF-κB activity by differentially affecting the CREB (cAMP response element-binding protein) and NF-κB p65 interacting with the coactivator CBP (CREB binding protein). S632A3 also inhibited GSK-3β-elicited iNOS and COX-2 expression. Moreover, S632A3 was shown to inhibit the activation of ASK1 (Apoptosis-signal regulating kinase 1) and p38 mitogen-activated protein kinase, therefore attenuated the LPS-induced NF-κB activity in macrophages. Furthermore, S632A3 significantly reduced the pro-inflammatory cytokines TNF-α and IL-6 production while increased the anti-inflammatory cytokine IL-10 production in LPS-stimulated RAW264.7 cells. Our study thus provides a molecular mechanism by which S632A3 inhibited LPS-induced pro-inflammatory response in macrophages through interfering with the activation of GSK-3β and ASK1-p38 signaling. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. In vivo antioxidative property, antimicrobial and wound healing activity of flower extracts of Pyrostegia venusta (Ker Gawl) Miers.

    PubMed

    Roy, Purabi; Amdekar, Sarika; Kumar, Avnish; Singh, Rambir; Sharma, Poonam; Singh, Vinod

    2012-03-06

    Pyrostegia venusta (Ker Gawl) Miers. (Bignoniaceae), has been traditionally used as a remedy for treating white patches and infections on the skin (leukoderma, vitiligo). To investigate wound healing and antimicrobial activity of flower extract of Pyrostegia venusta, including in vivo antioxidant activity. Methanolic extracts of Pyrostegia venusta flowers were studied for wound healing efficiency along with its effect on pro-inflammatory and anti-inflammatory cytokines was assessed using excision and incision model of wound repair in Wistar rats. Healing was assessed by the rate of wound contraction, tensile strength, breaking strength, hydroxyproline and hexosamine content. Antimicrobial activity of the flower extract against twelve microorganisms was also assessed. In vivo antioxidant activity was performed to understand the mechanism of wound healing potency. The results indicated that Pyrostegia venusta extract has potent wound healing capacity as evident from the wound contraction and increased tensile strength. Hydroxyproline and hexosamine expression were also correlative with the healing pattern observed. Pyrostegia venusta extract exhibited moderate antimicrobial activity against the organisms: Bacillus subtilis, Staphylococcus epidermidis, Staphylococcus pyogenes, Staphylococcus aureus, Escherichia coli, Micrococcus luteus, Enterobacter aerogenes, Salmonella typhi, Pseudomonas aeruginosa, Candida albicans, Aspergillus niger and Candida tropicana. During early wound healing phase TNF-α and IL-6 level were found to be up regulated by Pyrostegia venusta treatment. Increased wound contraction and tensile strength, augmented hydroxyproline and hexosamine content along with antioxidative activity and moderate antimicrobial activity support the early wound healing exhibited by Pyrostegia venusta flower extract. Induction in cytokine production may be one of the mechanisms involved in accelerating the wound healing by Pyrostegia venusta extract. Results suggest

  1. The BCL-2 family protein Bid is critical for pro-inflammatory signaling in astrocytes.

    PubMed

    König, Hans-Georg; Coughlan, Karen S; Kinsella, Sinéad; Breen, Bridget A; Prehn, Jochen H M

    2014-10-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the loss of motoneurons in the spinal cord, brainstem and motor cortex. Mutations in the superoxide dismutase 1 (SOD1) gene represent a frequent genetic determinant and recapitulate a disease phenotype similar to ALS when expressed in mice. Previous studies using SOD1(G93A) transgenic mice have suggested a paracrine mechanism of neuronal loss, in which cytokines and other toxic factors released from astroglia or microglia trigger motoneuron degeneration. Several pro-inflammatory cytokines activate death receptors and may downstream from this activate the Bcl-2 family protein, Bid. We here sought to investigate the role of Bid in astrocyte activation and non-cell autonomous motoneuron degeneration. We found that spinal cord Bid protein levels increased significantly during disease progression in SOD1(G93A) mice. Subsequent experiments in vitro indicated that Bid was expressed at relatively low levels in motoneurons, but was enriched in astrocytes and microglia. Bid was strongly induced in astrocytes in response to pro-inflammatory cytokines or exposure to lipopolysaccharide. Experiments in bid-deficient astrocytes or astrocytes treated with a small molecule Bid inhibitor demonstrated that Bid was required for the efficient activation of transcription factor nuclear factor-κB in response to these pro-inflammatory stimuli. Finally, we found that conditioned medium from wild-type astrocytes, but not from bid-deficient astrocytes, was toxic when applied to primary motoneuron cultures. Collectively, our data demonstrate a new role for the Bcl-2 family protein Bid as a mediator of astrocyte activation during neuroinflammation, and suggest that Bid activation may contribute to non-cell autonomous motoneuron degeneration in ALS. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. A novel pleiotropic effect of aspirin: Beneficial regulation of pro- and anti-inflammatory mechanisms in microglial cells.

    PubMed

    Kata, Diana; Földesi, Imre; Feher, Liliana Z; Hackler, Laszlo; Puskas, Laszlo G; Gulya, Karoly

    2017-06-01

    Aspirin, one of the most widely used non-steroidal anti-inflammatory drugs, has extensively studied effects on the cardiovascular system. To reveal further pleiotropic, beneficial effects of aspirin on a number of pro- and anti-inflammatory microglial mechanisms, we performed morphometric and functional studies relating to phagocytosis, pro- and anti-inflammatory cytokine production (IL-1β, tumor necrosis factor-α (TNF-α) and IL-10, respectively) and analyzed the expression of a number of inflammation-related genes, including those related to the above functions, in pure microglial cells. We examined the effects of aspirin (0.1mM and 1mM) in unchallenged (control) and bacterial lipopolysaccharide (LPS)-challenged secondary microglial cultures. Aspirin affected microglial morphology and functions in a dose-dependent manner as it inhibited LPS-elicited microglial activation by promoting ramification and the inhibition of phagocytosis in both concentrations. Remarkably, aspirin strongly reduced the pro-inflammatory IL-1β and TNF-α production, while it increased the anti-inflammatory IL-10 level in LPS-challenged cells. Moreover, aspirin differentially regulated the expression of a number of inflammation-related genes as it downregulated such pro-inflammatory genes as Nos2, Kng1, IL1β, Ptgs2 or Ccr1, while it upregulated some anti-inflammatory genes such as IL10, Csf2, Cxcl1, Ccl5 or Tgfb1. Thus, the use of aspirin could be beneficial for the prophylaxis of certain neurodegenerative disorders as it effectively ameliorates inflammation in the brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Leukocyte Inclusion within a Platelet Rich Plasma-Derived Fibrin Scaffold Stimulates a More Pro-Inflammatory Environment and Alters Fibrin Properties

    PubMed Central

    Anitua, Eduardo; Zalduendo, Mar; Troya, María; Padilla, Sabino; Orive, Gorka

    2015-01-01

    One of the main differences among platelet-rich plasma (PRP) products is the inclusion of leukocytes that may affect the biological efficacy of these autologous preparations. The purpose of this study was to evaluate whether the addition of leukocytes modified the morphological, biomechanical and biological properties of PRP under normal and inflammatory conditions. The release of pro-inflammatory cytokines from plasma rich in growth factors (PRGF) and leukocyte-platelet rich plasma (L-PRP) scaffolds was determined by enzyme-linked immunosorbent assay (ELISA) and was significantly increased under an inflammatory condition when leukocytes were included in the PRP. Fibroblasts and osteoblasts treated with L-PRP, under an inflammatory situation, underwent a greater activation of NFĸB pathway, proliferated significantly less and secreted a higher concentration of pro-inflammatory cytokines. These cellular events were assessed through Western blot and fluorimetric and ELISA methods, respectively. Therefore, the inclusion of leukocytes induced significantly higher pro-inflammatory conditions. PMID:25823008

  4. Vamorolone, a dissociative steroidal compound, reduces pro-inflammatory cytokine expression in glioma cells and increases activity and survival in a murine model of cortical tumor.

    PubMed

    Wells, Elizabeth; Kambhampati, Madhuri; Damsker, Jesse M; Gordish-Dressman, Heather; Yadavilli, Sridevi; Becher, Oren J; Gittens, Jamila; Stampar, Mojca; Packer, Roger J; Nazarian, Javad

    2017-02-07

    Corticosteroids, such as dexamethasone, are routinely used as palliative care in neuro-oncology for their anti-inflammatory benefits, however many patients experience dose limiting side effects caused by glucocorticoid response element (GRE)-mediated transcription. The purpose of this study was to use a murine model to investigate a new steroid alternative, vamorolone, which promises to reduce side effects through dissociating GRE-mediated transcription and NF-κB -mediated anti-inflammatory actions. To compare vamorolone to dexamethasone in reducing pro-inflammatory signals in vitro, murine glioma cells were treated with dexamethasone, vamorolone or vehicle control. Changes in mRNA expression were assessed using the nanostring inflammatory platform. Furthermore, drug efficacy, post-treatment behavioral activity and side effects were assessed by treating two cohorts of brain tumor bearing mice with dexamethasone, vamorolone, or vehicle control. Our investigation showed that treatment with vamorolone resulted in a reduction of pro-inflammatory signals in tumor cells in vitro similar to treatment with dexamethasone. Treatment with vamorolone resulted in a better safety profile in comparison to dexamethasone treatment. Vamorolone- treated mice showed similar or better activity and survival when compared to dexamethasone-treated mice. Our data indicate vamorolone is a potential steroid-sparing alternative for treating patients with brain tumors.

  5. Effect of laser-assisted scaling and root planing on the expression of pro-inflammatory cytokines in the gingival crevicular fluid of patients with chronic periodontitis: A systematic review.

    PubMed

    Kellesarian, Sergio Varela; Malignaggi, Vanessa Ros; Majoka, Hasham Abdullah; Al-Kheraif, Abdulaziz A; Kellesarian, Tammy Varela; Romanos, Georgios E; Javed, Fawad

    2017-06-01

    The aim of the present systematic review was to assess the efficacy of laser-assisted (low level laser therapy [LLLT], high intensity laser therapy [HILT], or antimicrobial photodynamic therapy [aPDT]) scaling and root planing (SRP) compared with SRP alone on the expression of inflammatory cytokines in the gingival crevicular (GCF) of patients with chronic periodontitis (CP). In order to address the focused question: "What is the efficacy of SRP with and without laser and/or aPDT on the expression of pro-inflammatory cytokines in the GCF of patients with CP?" an electronic search without time or language restrictions was conducted up to and including February 2017 in indexed databases using various key words. Twenty-two randomized control trials were included in the present systematic review. Nine studies and six studies assessed the efficacy of LLLT and HILT, as adjunct to SRP, respectively. Seven studies assessed the efficacy of aPDT as adjunct to SRP on down-regulating the expression of pro-inflammatory cytokines in the GCF among patients with CP. The outcomes of the studies included based upon the reduction in the levels of pro-inflammatory cytokines were inconsistent. The role of laser-assisted SRP on the expression of pro-inflammatory cytokines in the GCF of patients with CP remains unclear. Further long term and well-designed randomized clinical trials are needed in this regard. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Osteoimmunology and the influence of pro-inflammatory cytokines on osteoclasts

    PubMed Central

    Zupan, Janja; Jeras, Matjaž; Marc, Janja

    2013-01-01

    Bone and immune system are functionally interconnected. Immune and bone cells derive from same progenitors in the bone marrow, they share a common microenvironment and are being influenced by similar mediators. The evidence on increased bone resorption associated with inappropriate activation of T cells such as during inflammation, is well established. However, the molecular mechanisms beyond this clinical observation have begun to be intensively studied with the advancement of osteoimmunology. Now days, we have firm evidence on the influence of numerous proinflammatory cytokines on bone cells, with the majority of data focused on osteoclasts, the bone resorbing cells. It has been shown that some proinflammatory cytokines could possess osteoclastogenic and/or anti-osteoclastogenic properties and can target osteoclasts directly or via receptor activator of nuclear factor κB (RANK)/RANK ligand(RANKL)/osteoprotegerin (OPG) system. Several studies have reported opposing data regarding (anti)osteoclastogenic properties of these cytokines. Therefore, the first part of this review is summarizing current evidence on the influence of pro-inflammatory cytokines on osteoclasts and thus on bone resorption. In the second part, the evidence on the role of pro-inflammatory cytokines in osteoporosis and osteoarthritis is reviewed to show that unravelling the mechanisms beyond such complex bone diseases, is almost impossible without considering skeletal and immune systems as an indivisible integrated system. PMID:23457765

  7. Olive oil polyphenols reduce oxysterols -induced redox imbalance and pro-inflammatory response in intestinal cells.

    PubMed

    Serra, Gessica; Incani, Alessandra; Serreli, Gabriele; Porru, Laura; Melis, M Paola; Tuberoso, Carlo I G; Rossin, Daniela; Biasi, Fiorella; Deiana, Monica

    2018-05-16

    Dietary habits may strongly influence intestinal homeostasis. Oxysterols, the oxidized products of cholesterol present in cholesterol-containing foodstuffs, have been shown to exert pro-oxidant and pro-inflammatory effects, altering intestinal epithelial layer and thus contributing to the pathogenesis of human inflammatory bowel diseases and colon cancer. Extra virgin olive oil polyphenols possess antioxidant and anti-inflammatory properties, and concentrate in the intestinal lumen, where may help in preventing intestinal diseases. In the present study we evaluated the ability of an extra virgin olive oil phenolic extract to counteract the pro-oxidant and pro-inflammatory action of a representative mixture of dietary oxysterols in the human colon adenocarcinoma cell line (Caco-2) undergoing full differentiation into enterocyte-like cells. Oxysterols treatment significantly altered differentiated Caco-2 cells redox status, leading to oxidant species production and a decrease of GSH levels, after 1 h exposure, followed by an increase of cytokines production, IL-6 and IL-8, after 24 h. Oxysterol cell treatment also induced after 48 h an increase of NO release, due to the induction of iNOS. Pretreatment with the phenolic extract counteracted oxysterols effects, at least in part by modulating one of the main pathways activated in the cellular response to the action of oxysterols, the MAPK-NF-kB pathway. We demonstrated the ability of the phenolic extract to directly modulate p38 and JNK1/2 phosphorylation and activation of NF-kB, following its inhibitor IkB phosphorylation. The phenolic extract also inhibited iNOS induction, keeping NO concentration at the control level. Our results suggest a protective effect at intestinal level of extra virgin olive oil polyphenols, able to prevent or limit redox unbalance and the onset and progression of chronic intestinal inflammation. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Repurposing mitochondria from ATP production to ROS generation drives a pro-inflammatory phenotype in macrophages that depends on succinate oxidation by complex II

    PubMed Central

    Logan, A; Costa, A. S. H.; Varma, M.; Bryant, C. E.; Tourlomousis, P.; Däbritz, J. H. M.; Gottlieb, E.; Latorre, I.; Corr, S.C.; McManus, G.; Ryan, D.; Jacobs, H.T.; Szibor, M.; Xavier, R. J.; Braun, T.; Frezza, C.; Murphy, M. P.; O’Neill, L. A.

    2018-01-01

    Activated macrophages undergo metabolic reprogramming which drives their pro-inflammatory phenotype, but the mechanistic basis for this remains obscure. Here we demonstrate that upon lipopolysaccharide (LPS) stimulation macrophages shift from producing ATP by oxidative phosphorylation to glycolysis, while also increasing succinate levels. We show that increased mitochondrial oxidation of succinate via succinate dehydrogenase (SDH) and an elevation of mitochondrial membrane potential combine to drive mitochondrial ROS production. RNA sequencing reveals that this combination induces a pro-inflammatory gene expression profile, while an inhibitor of succinate oxidation, dimethyl malonate (DMM), promotes an anti-inflammatory outcome. Blocking ROS production with rotenone, by uncoupling mitochondria, or by expressing the alternative oxidase (AOX) inhibits this inflammatory phenotype, with AOX protecting mice from LPS lethality. The metabolic alterations that occur upon activation of macrophages therefore repurpose mitochondria from ATP synthesis to ROS production in order to promote a pro-inflammatory state. PMID:27667687

  9. Bromelain Treatment Decreases Secretion of Pro-Inflammatory Cytokines and Chemokines by Colon Biopsies In Vitro

    PubMed Central

    Onken, Jane E.; Greer, Paula K.; Calingaert, Brian; Hale, Laura P.

    2008-01-01

    Oral bromelain has been anecdotally reported to decrease inflammation in ulcerative colitis (UC). Proteolytically active bromelain is known to decrease expression of mRNAs encoding pro-inflammatory cytokines by human leukocytes in vitro. To assess the effect of bromelain on mucosal secretion of cytokines in inflammatory bowel disease (IBD), endoscopic colon biopsies from patients with UC, Crohn’s disease (CD), and non-IBD controls were treated in vitro with bromelain or media, then cultured. Secretion of pro-inflammatory cytokines and chemokines was measured. Significant increases in granulocyte colony stimulating factor (G-CSF), interferon (IFN)-γ, interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF) were detected in the media from actively inflamed areas in UC and CD as compared with non-inflamed IBD tissue and non-IBD controls. In vitro bromelain treatment decreased secretion of G-CSF, granulocyte-macrophage colony stimulating factor (GM-CSF), IFN-γ, CCL4/macrophage inhibitory protein (MIP)-1β, and TNF by inflamed tissue in IBD. Bromelain may be a novel therapy for IBD. PMID:18160345

  10. LL-37-derived short antimicrobial peptide KR-12-a5 and its d-amino acid substituted analogs with cell selectivity, anti-biofilm activity, synergistic effect with conventional antibiotics, and anti-inflammatory activity.

    PubMed

    Kim, Eun Young; Rajasekaran, Ganesan; Shin, Song Yub

    2017-08-18

    KR-12-a5 is a 12-meric α-helical antimicrobial peptide (AMP) with dual antimicrobial and anti-inflammatory activities designed from human cathelicidin LL-37. We designed and synthesized a series of d-amino acid-substituted analogs of KR-12-a5 with the aim of developing novel α-helical AMPs that possess higher cell selectivity than KR-12-a5, while maintaining the anti-inflammatory activity. d-amino acid incorporation into KR-12-a5 induced a significant improvement in the cell selectivity by 2.6- to 13.6-fold as compared to KR-12-a5, while maintaining the anti-inflammatory activity. Among the three analogs, KR-12-a5 (6- D L) with d-amino acid in the polar-nonpolar interface (Leu 6 ) showed the highest cell selectivity (therapeutic index: 61.2). Similar to LL-37, KR-12-a5 and its analogs significantly inhibited the expression and secretion of NO, TNF-α, IL-6 and MCP-1 from LPS-stimulated RAW264.7 cells. KR-12-a5 and its analogs showed a more potent antimicrobial activity against antibiotic-resistant bacteria, including clinically isolated MRSA, MDRPA, and VREF than LL-37 and melittin. Furthermore, compared to LL-37, KR-12-a5 and its analogs showed greater synergistic effects with conventional antibiotics, such as chloramphenicol, ciprofloxacin, and oxacillin against MDRPA; KR-12-a5 and its analogs had a FICI range between 0.25 and 0.5, and LL-37 had a range between 0.75 and 1.5. KR-12-a5 and its analogs were found to be more effective anti-biofilm agents against MDRPA than LL-37. In addition, KR-12-a5 and its analogs maintained antimicrobial activity in physiological salts and human serum. SYTOX Green uptake and membrane depolarization studies revealed that KR-12-a5 and its analogs kills microbial cells by permeabilizing the cell membrane and damaging membrane integrity. Taken together, our results suggest that KR-12-a5 and its analogs can be developed further as novel antimicrobial/anti-inflammatory agents to treat antibiotic-resistant infections. Copyright

  11. The anti-inflammatory effect of the synthetic antimicrobial peptide 19-2.5 in a murine sepsis model: a prospective randomized study

    PubMed Central

    2013-01-01

    Introduction Increasing rates of multi-resistant bacteria are a major problem in the treatment of critically ill patients. Furthermore, conventional antibiotics lead to the release of bacterial derived membrane parts initiating pro-inflammatory cascades with potential harm to the patient. Antimicrobial peptides (AMP) may kill bacteria without releasing pro-inflammatory factors. Thus, we compared three newly developed synthetic anti-lipopolysaccharide peptides (SALPs) with a broader range of efficacy to suppress cytokine release in plasma and CD14 mRNA expression in organ tissue in a murine, polymicrobial sepsis model. Methods A randomized, experimental trial was conducted in an animal research facility. Male NMRI mice (n = 90; 8- to 12-weeks old) were randomized to the following six groups: (i) sham operation and parenteral vehicle (NaCl 0.9%) administration (sham); (ii) cecal ligation and puncture (CLP) and vehicle infusion (sepsis-control), (iii) CLP and polymyxin B infusion (polyB), or (iv to vi) CLP and infusion of three different synthetic antimicrobial peptides Peptide 19-2.5 (Pep2.5), Peptide 19-4 (Pep4) or Peptide 19-8 (Pep8). All animals underwent arterial and venous catheterization for hemodynamic monitoring 48 hours prior to CLP or sham-operation. Physical appearance and behavior (activity), plasma cytokine levels, and CD14 mRNA expression in heart, lung, liver, spleen and kidney tissue were determined 24 hours after CLP or sham operation. Results Only Pep2.5 significantly enhanced the activity after CLP, whereas none of the therapeutic regimens elevated the mean arterial pressure or heart rate. The strongly elevated IL-6, IL-10 and monocyte chemoattractant protein serum levels in septic animals were significantly reduced after Pep2.5 administration (P < 0.001, P < 0.001, and P < 0.001, respectively). Similarly, Pep2.5 significantly reduced the sepsis-induced CD14 mRNA expression in heart (P = 0.003), lung (P = 0.008), and spleen tissue (P = 0.009) but

  12. Intracellular NAD+ levels are associated with LPS-induced TNF-α release in pro-inflammatory macrophages

    PubMed Central

    Al-Shabany, Abbas Jawad; Moody, Alan John; Foey, Andrew David; Billington, Richard Andrew

    2016-01-01

    Metabolism and immune responses have been shown to be closely linked and as our understanding increases, so do the intricacies of the level of linkage. NAD+ has previously been shown to regulate tumour necrosis factor-α (TNF-α) synthesis and TNF-α has been shown to regulate NAD+ homoeostasis providing a link between a pro-inflammatory response and redox status. In the present study, we have used THP-1 differentiation into pro- (M1-like) and anti- (M2-like) inflammatory macrophage subset models to investigate this link further. Pro- and anti-inflammatory macrophages showed different resting NAD+ levels and expression levels of NAD+ homoeostasis enzymes. Challenge with bacterial lipopolysaccharide, a pro-inflammatory stimulus for macrophages, caused a large, biphasic and transient increase in NAD+ levels in pro- but not anti-inflammatory macrophages that were correlated with TNF-α release and inhibition of certain NAD+ synthesis pathways blocked TNF-α release. Lipopolysaccharide stimulation also caused changes in mRNA levels of some NAD+ homoeostasis enzymes in M1-like cells. Surprisingly, despite M2-like cells not releasing TNF-α or changing NAD+ levels in response to lipopolysaccharide, they showed similar mRNA changes compared with M1-like cells. These data further strengthen the link between pro-inflammatory responses in macrophages and NAD+. The agonist-induced rise in NAD+ shows striking parallels to well-known second messengers and raises the possibility that NAD+ is acting in a similar manner in this model. PMID:26764408

  13. Corticosteroid-Induced MKP-1 Represses Pro-Inflammatory Cytokine Secretion by Enhancing Activity of Tristetraprolin (TTP) in ASM Cells.

    PubMed

    Prabhala, Pavan; Bunge, Kristin; Ge, Qi; Ammit, Alaina J

    2016-10-01

    Exaggerated cytokine secretion drives pathogenesis of a number of chronic inflammatory diseases, including asthma. Anti-inflammatory pharmacotherapies, including corticosteroids, are front-line therapies and although they have proven clinical utility, the molecular mechanisms responsible for their actions are not fully understood. The corticosteroid-inducible gene, mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1, DUSP1) has emerged as a key molecule responsible for the repressive effects of steroids. MKP-1 is known to deactivate p38 MAPK phosphorylation and can control the expression and activity of the mRNA destabilizing protein-tristetraprolin (TTP). But whether corticosteroid-induced MKP-1 acts via p38 MAPK-mediated modulation of TTP function in a pivotal airway cell type, airway smooth muscle (ASM), was unknown. While pretreatment of ASM cells with the corticosteroid dexamethasone (preventative protocol) is known to reduce ASM synthetic function in vitro, the impact of adding dexamethasone after stimulation (therapeutic protocol) had not been explored. Whether dexamethasone modulates TTP in a p38 MAPK-dependent manner in this cell type was also unknown. We address this herein and utilize an in vitro model of asthmatic inflammation where ASM cells were stimulated with the pro-asthmatic cytokine tumor necrosis factor (TNF) and the impact of adding dexamethasone 1 h after stimulation assessed. IL-6 mRNA expression and protein secretion was significantly repressed by dexamethasone acting in a temporally distinct manner to increase MKP-1, deactivate p38 MAPK, and modulate TTP phosphorylation status. In this way, dexamethasone-induced MKP-1 acts via p38 MAPK to switch on the mRNA destabilizing function of TTP to repress pro-inflammatory cytokine secretion from ASM cells. J. Cell. Physiol. 231: 2153-2158, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Pro-inflammatory NF-κB and early growth response gene 1 regulate epithelial barrier disruption by food additive carrageenan in human intestinal epithelial cells.

    PubMed

    Choi, Hye Jin; Kim, Juil; Park, Seong-Hwan; Do, Kee Hun; Yang, Hyun; Moon, Yuseok

    2012-06-20

    The widely used food additive carrageenan (CGN) has been shown to induce intestinal inflammation, ulcerative colitis-like symptoms, or neoplasm in the gut epithelia in animal models, which are also clinical features of human inflammatory bowel disease. In this study, the effects of CGN on pro-inflammatory transcription factors NF-κB and early growth response gene 1 product (EGR-1) were evaluated in terms of human intestinal epithelial barrier integrity. Both pro-inflammatory transcription factors were elevated by CGN and only NF-κB activation was shown to be involved in the induction of pro-inflammatory cytokine interleukin-8. Moreover, the integrity of the in vitro epithelial monolayer under the CGN insult was maintained by both activated pro-inflammatory transcription factors NF-κB and EGR-1. Suppression of NF-κB or EGR-1 aggravated barrier disruption by CGN, which was associated with the reduced gene expression of tight junction component zonula occludens 1 and its irregular localization in the epithelial monolayer. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  15. Dark chocolate attenuates intracellular pro-inflammatory reactivity to acute psychosocial stress in men: A randomized controlled trial.

    PubMed

    Kuebler, Ulrike; Arpagaus, Angela; Meister, Rebecca E; von Känel, Roland; Huber, Susanne; Ehlert, Ulrike; Wirtz, Petra H

    2016-10-01

    Flavanol-rich dark chocolate consumption relates to lower risk of cardiovascular mortality, but underlying mechanisms are elusive. We investigated the effect of acute dark chocolate consumption on inflammatory measures before and after stress. Healthy men, aged 20-50years, were randomly assigned to a single intake of either 50g of flavanol-rich dark chocolate (n=31) or 50g of optically identical flavanol-free placebo-chocolate (n=34). Two hours after chocolate intake, both groups underwent the 15-min Trier Social Stress Test. We measured DNA-binding-activity of the pro-inflammatory transcription factor NF-κB (NF-κB-BA) in peripheral blood mononuclear cells, as well as plasma and whole blood mRNA levels of the pro-inflammatory cytokines IL-1β and IL-6, and the anti-inflammatory cytokine IL-10, prior to chocolate intake as well as before and several times after stress. We also repeatedly measured the flavanol epicatechin and the stress hormones epinephrine and cortisol in plasma and saliva, respectively. Compared to the placebo-chocolate-group, the dark-chocolate-group revealed a marginal increase in IL-10 mRNA prior to stress (p=0.065), and a significantly blunted stress reactivity of NF-κB-BA, IL-1β mRNA, and IL-6 mRNA (p's⩽0.036) with higher epicatechin levels relating to lower pro-inflammatory stress reactivity (p's⩽0.033). Stress hormone changes to stress were controlled. None of the other measures showed a significant chocolate effect (p's⩾0.19). Our findings indicate that acute flavanol-rich dark chocolate exerts anti-inflammatory effects both by increasing mRNA expression of the anti-inflammatory cytokine IL-10 and by attenuating the intracellular pro-inflammatory stress response. This mechanism may add to beneficial effects of dark chocolate on cardiovascular health. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. [Expression of plant antimicrobial peptide pro-SmAMP2 gene increases resistance of transgenic potato plants to Alternaria and Fusarium pathogens].

    PubMed

    Vetchinkina, E M; Komakhina, V V; Vysotskii, D A; Zaitsev, D V; Smirnov, A N; Babakov, A V; Komakhin, R A

    2016-09-01

    The chickweed (Stellaria media L.) pro-SmAMP2 gene encodes the hevein-like peptides that have in vitro antimicrobial activity against certain harmful microorganisms. These peptides play an important role in protecting the chickweed plants from infection, and the pro-SmAMP2 gene was previously used to protect transgenic tobacco and Arabidopsis plants from phytopathogens. In this study, the pro-SmAMP2 gene under control of viral CaMV35S promoter or under control of its own pro-SmAMP2 promoter was transformed into cultivated potato plants of two cultivars, differing in the resistance to Alternaria: Yubiley Zhukova (resistant) and Skoroplodny (susceptible). With the help of quantitative real-time PCR, it was demonstrated that transgenic potato plants expressed the pro-SmAMP2 gene under control of both promoters at the level comparable to or exceeding the level of the potato actin gene. Assessment of the immune status of the transformants demonstrated that expression of antimicrobial peptide pro-SmAMP2 gene was able to increase the resistance to a complex of Alternaria sp. and Fusarium sp. phytopathogens only in potato plants of the Yubiley Zhukova cultivar. The possible role of the pro-SmAMP2 products in protecting potatoes from Alternaria sp. and Fusarium sp. is discussed.

  17. Effect of calcium carbonate particle shape on phagocytosis and pro-inflammatory response in differentiated THP-1 macrophages.

    PubMed

    Tabei, Yosuke; Sugino, Sakiko; Eguchi, Kenichiro; Tajika, Masahiko; Abe, Hiroko; Nakajima, Yoshihiro; Horie, Masanori

    2017-08-19

    Phagocytosis is a physiological process used by immune cells such as macrophages to actively ingest and destroy foreign pathogens and particles. It is the cellular process that leads to the failure of drug delivery carriers because the drug carriers are cleared by immune cells before reaching their target. Therefore, clarifying the mechanism of particle phagocytosis would have a significant implication for both fundamental understanding and biomedical engineering. As far as we know, the effect of particle shape on biological response has not been fully investigated. In the present study, we investigated the particle shape-dependent cellular uptake and biological response of differentiated THP-1 macrophages by using calcium carbonate (CaCO 3 )-based particles as a model. Transmission electron microscopy analysis revealed that the high uptake of needle-shaped CaCO 3 particles by THP-1 macrophages because of their high phagocytic activity. In addition, the THP-1 macrophages exposed to needle-shaped CaCO 3 accumulated a large amount of calcium in the intracellular matrix. The enhanced release of interleukin-8 (IL-8) and tumor necrosis factor-alpha (TNF-α) by the THP-1 macrophages suggested that the needle-shaped CaCO 3 particles trigger a pro-inflammatory response. In contrast, no pro-inflammatory response was induced in undifferentiated THP-1 monocytes exposed to either needle- or cuboidal-shaped CaCO 3 particles, probably because of their low phagocytic activity. We also found that phosphate-coated particles efficiently repressed cellular uptake and the resulting pro-inflammatory response in both THP-1 macrophages and primary peritoneal macrophages. Our results indicate that the pro-inflammatory response of macrophages upon exposure to CaCO 3 particles is shape- and surface property-dependent, and is mediated by the intracellular accumulation of calcium ions released from phagocytosed CaCO 3 particles. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Aronia melanocarpa Concentrate Ameliorates Pro-Inflammatory Responses in HaCaT Keratinocytes and 12-O-Tetradecanoylphorbol-13-Acetate-Induced Ear Edema in Mice.

    PubMed

    Goh, Ah Ra; Youn, Gi Soo; Yoo, Ki-Yeon; Won, Moo Ho; Han, Sang-Zin; Lim, Soon Sung; Lee, Keun Wook; Choi, Soo Young; Park, Jinseu

    2016-07-01

    Abnormal expression of pro-inflammatory mediators such as cell adhesion molecules and cytokines has been implicated in various inflammatory skin diseases, including atopic dermatitis. In this study, we investigated the anti-inflammatory activity of Aronia melanocarpa concentrate (AC) and its action mechanisms using in vivo and in vitro skin inflammation models. Topical application of AC on mouse ears significantly suppressed 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ear edema formation, as judged by measuring ear thickness and weight, and histological analysis. Topical administration of AC also reduced the expression of pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6 in TPA-stimulated mouse ears. Pretreatment with AC suppressed TNF-α-induced ICAM-I expression and subsequent monocyte adhesiveness in human keratinocyte cell line HaCaT. In addition, AC significantly decreased intracellular reactive oxygen species (ROS) generation as well as mitogen-activated protein kinase (MAPK) activation in TNF-α-stimulated HaCaT cells. AC and its constituent cyanidin 3-glucoside also attenuated TNF-α-induced IKK activation, IκB degradation, p65 phosphorylation/nuclear translocation, and p65 DNA binding activity in HaCaT cells. Overall, our results indicate that AC exerts anti-inflammatory activities by inhibiting expression of pro-inflammatory mediators in vitro and in vivo possibly through suppression of ROS-MAPK-NF-κB signaling pathways. Therefore, AC may be developed as a therapeutic agent to treat various inflammatory skin diseases.

  19. Arctigenin, a phenylpropanoid dibenzylbutyrolactone lignan, inhibits type I-IV allergic inflammation and pro-inflammatory enzymes.

    PubMed

    Lee, Ji Yun; Kim, Chang Jong

    2010-06-01

    We previously reported that arctigenin, a phenylpropanoid dibenzylbutyrolactone lignan isolated from Forsythia koreana, exhibits anti-inflammatory, antioxidant, and analgesic effects in animal models. In addition, arctigenin inhibited eosinophil peroxidase and activated myeloperoxidase in inflamed tissues. In this study, we tested the effects of arctigenin on type I-IV allergic inflammation and pro-inflammatory enzymes in vitro and in vivo. Arctigenin significantly inhibited the heterologous passive cutaneous anaphylaxis induced by ovalbumin in mice at 15 mg/kg, p.o., and compound 48/80-induced histamine release from rat peritoneal mast cells at 10 microM. Arctigenin (15 mg/kg, p.o.) significantly inhibited reversed cutaneous anaphylaxis. Further, arctigenin (15 mg/kg, p.o.) significantly inhibited the Arthus reaction to sheep's red blood cells, decreasing the hemolysis titer, the hemagglutination titer, and the plaque-forming cell number for SRBCs. In addition, arctigenin significantly inhibited delayed type hypersensitivity at 15 mg/kg, p.o. and the formation of rosette-forming cells at 45 mg/kg, p.o. Contact dermatitis induced by picrylchloride and dinitrofluorobenzene was significantly (p < 0.05) inhibited by surface treatment with arctigenin (0.3 mg/ear). Furthermore, arctigenin dose-dependently inhibited pro-inflammatory enzymes, such as cyclooxygenase-1 and 2, 5-lipoxygenase, phospholipase A2, and phosphodiesterase. Our results show that arctigenin significantly inhibited B- and T-cell mediated allergic inflammation as well as pro-inflammatory enzymes.

  20. Pro-inflammatory effects of metals in persons and animals exposed to tobacco smoke.

    PubMed

    Milnerowicz, Halina; Ściskalska, Milena; Dul, Magdalena

    2015-01-01

    Metals present in tobacco smoke have the ability to cause a pro-oxidant/antioxidant imbalance through the direct generation of free radicals in accordance with the Fenton or Haber-Weiss reaction and redox properties. Metals can also interact with antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase) and small molecular antioxidants (glutathione) through binding to SH groups or by replacement of metals ions in the catalytic center of enzymes. Excessive free radicals production can induce an inflammatory response. The aim of this study was to review the information on the induction of inflammation by metals present in tobacco smoke such as lead (Pb), cadmium (Cd), arsenic (As), aluminum (Al), nickel (Ni) and mercury (Hg). In cellular immune response, it was demonstrated that radicals induced by metals can disrupt the transcription signaling pathway mediated by the mitogen-activated protein kinase (induced by Pb), NLRP3-ASC-caspase 1 (induced by Ni), tyrosine kinase Src (induced by As) and the nuclear factor κB (induced by Pb, Ni, Hg). The result of this is a gene transcription for early inflammatory cytokines, such as Interleukine 1β, Interleukine 6, and Tumor necrosis factor α). These cytokines can cause leukocytes recruitment and secretions of other pro-inflammatory cytokines and chemokines, which intensifies the inflammatory response. Some metals, such as cadmium (Cd), can activate an inflammatory response through tissue damage induction mediated by free radicals, which also results in leukocytes recruitment and cytokines secretions. Inflammation generated by metals can be reduced by metallothionein, which has the ability to scavenge free radicals and bind toxic metals through the release of Zn and oxidation of SH groups. Copyright © 2014 Elsevier GmbH. All rights reserved.

  1. Epidermal keratinocytes initiate wound healing and pro-inflammatory immune responses following percutaneous schistosome infection

    PubMed Central

    Bourke, Claire D.; Prendergast, Catriona T.; Sanin, David E.; Oulton, Tate E.; Hall, Rebecca J.; Mountford, Adrian P.

    2015-01-01

    Keratinocytes constitute the majority of cells in the skin’s epidermis, the first line of defence against percutaneous pathogens. Schistosome larvae (cercariae) actively penetrate the epidermis to establish infection, however the response of keratinocytes to invading cercariae has not been investigated. Here we address the hypothesis that cercariae activate epidermal keratinocytes to promote the development of a pro-inflammatory immune response in the skin. C57BL/6 mice were exposed to Schistosoma mansoni cercariae via each pinna and non-haematopoietic cells isolated from epidermal tissue were characterised for the presence of different keratinocyte sub-sets at 6, 24 and 96 h p.i. We identified an expansion of epidermal keratinocyte precursors (CD45−, CD326−, CD34+) within 24 h of infection relative to naïve animals. Following infection, cells within the precursor population displayed a more differentiated phenotype (α6integrin−) than in uninfected skin. Parallel immunohistochemical analysis of pinnae cryosections showed that this expansion corresponded to an increase in the intensity of CD34 staining, specifically in the basal bulge region of hair follicles of infected mice, and a higher frequency of keratinocyte Ki67+ nuclei in both the hair follicle and interfollicular epidermis. Expression of pro-inflammatory cytokine and stress-associated keratin 6b genes was also transiently upregulated in the epidermal tissue of infected mice. In vitro exposure of keratinocyte precursors isolated from neonatal mouse skin to excretory/secretory antigens released by penetrating cercariae elicited IL-1α and IL-1β production, supporting a role for keratinocyte precursors in initiating cutaneous inflammatory immune responses. Together, these observations indicate that S.mansoni cercariae and their excretory/secretory products act directly upon epidermal keratinocytes, which respond by initiating barrier repair and pro-inflammatory mechanisms similar to those

  2. Zinc deficiency induces vascular pro-inflammatory parameters associated with NF-kappaB and PPAR signaling.

    PubMed

    Shen, Huiyun; Oesterling, Elizabeth; Stromberg, Arnold; Toborek, Michal; MacDonald, Ruth; Hennig, Bernhard

    2008-10-01

    Marginal intake of dietary zinc can be associated with increased risk of cardiovascular diseases. In the current study we hypothesized that vascular dysfunction and associated inflammatory events are activated during a zinc deficient state. We tested this hypothesis using both vascular endothelial cells and mice lacking the functional LDL-receptor gene. Zinc deficiency increased oxidative stress and NF-kappaB DNA binding activity, and induced COX-2 and E-selectin gene expression, as well as monocyte adhesion in cultured endothelial cells. The NF-kappaB inhibitor CAPE significantly reduced the zinc deficiency-induced COX-2 expression, suggesting regulation through NF-kappaB signaling. PPAR can inhibit NF-kappaB signaling, and our previous data have shown that PPAR transactivation activity requires adequate zinc. Zinc deficiency down-regulated PPARalpha expression in cultured endothelial cells. Furthermore, the PPARgamma agonist rosiglitazone was unable to inhibit the adhesion of monocytes to endothelial cells during zinc deficiency, an event which could be reversed by zinc supplementation. Our in vivo data support the importance of PPAR dysregulation during zinc deficiency. For example, rosiglitazone induced inflammatory genes (e.g., MCP-1) only during zinc deficiency, and adequate zinc was required for rosiglitazone to down-regulate pro-inflammatory markers such as iNOS. In addition, rosiglitazone increased IkappaBalpha protein expression only in zinc adequate mice. Finally, plasma data from LDL-R-deficient mice suggest an overall pro-inflammatory environment during zinc deficiency and support the concept that zinc is required for proper anti-inflammatory or protective functions of PPAR. These studies suggest that zinc nutrition can markedly modulate mechanisms of the pathology of inflammatory diseases such as atherosclerosis.

  3. Histone-like DNA binding protein of Streptococcus intermedius induces the expression of pro-inflammatory cytokines in human monocytes via activation of ERK1/2 and JNK pathways.

    PubMed

    Liu, Dali; Yumoto, Hiromichi; Hirota, Katsuhiko; Murakami, Keiji; Takahashi, Kanako; Hirao, Kouji; Matsuo, Takashi; Ohkura, Kazuto; Nagamune, Hideaki; Miyake, Yoichiro

    2008-01-01

    Streptococcus intermedius is a commensal associated with serious, deep-seated purulent infections in major organs, such as the brain and liver. Histone-like DNA binding protein (HLP) is an accessory architectural protein in a variety of bacterial cellular processes. In this study, we investigated the mechanisms of pro-inflammatory cytokine inductions in THP-1 cells by stimulation with recombinant HLP of S. intermedius (rSi-HLP). rSi-HLP stimulation-induced production of pro-inflammatory cytokines (IL-8, IL-1 beta and TNF-alpha) occurred in a time- and dose-dependent manner. In contrast with the heat-stable activity of DNA binding, the induction activity of rSi-HLP was heat-unstable. In subsequent studies, rSi-HLP acted cooperatively with lipoteichoic acid, the synthetic Toll-like receptor 2 agonist, Pam3CSK4, and the cytosolic nucleotide binding oligomerization domain 2 receptor agonist, muramyldipeptide. Furthermore, Western blot and blocking assays with specific inhibitors showed that rSi-HLP stimulation induced the activation of cell signal transduction pathways, extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK). In addition to its physiological role in bacterial growth through DNA binding, these results indicate that Si-HLP can trigger a cascade of events that induce pro-inflammatory responses via ERK1/2 and JNK signal pathways, and suggest that bacterial HLP may contribute to the activation of host innate immunity during bacterial infection.

  4. Diacerein inhibits the pro-atherogenic & pro-inflammatory effects of IL-1 on human keratinocytes & endothelial cells.

    PubMed

    Mohan, Girish C; Zhang, Huayi; Bao, Lei; Many, Benjamin; Chan, Lawrence S

    2017-01-01

    We investigated IL-1-induced regulation of genes related to inflammation and atherogenesis in human keratinocytes and endothelial cells, and if 'diacerein', an oral IL-1 inhibiting drug currently approved for use in osteoarthritis, would reverse IL-1's effects on these cells. Primary human keratinocytes and coronary artery endothelial cells were treated with either IL-1α or IL-1β, with and without diacerein. Using PCR-array, we assessed differential gene-expression regulated by IL-1 and diacerein. We identified 34 pro-atherogenic genes in endothelial cells and 68 pro-inflammatory genes in keratinocytes significantly (p<0.05) regulated at least 2-fold by IL-1, in comparison to control. Diacerein completely or partially reversed this regulation on almost all genes. Using ELISA, we confirmed diacerein's ability to reverse IL-1-driven gene-regulation of 11 selected factors, at the protein level. The results support a novel idea that diacerein acts as an inhibitor of the pro-atherogenic and pro-inflammatory effects of IL-1. Diacerein may have therapeutic applications to diminish IL-1-induced skin inflammation in psoriasis and attenuate IL-1-induced development of atherosclerosis. Further investigation into diacerein's effect on skin inflammation, atherogenesis and cardiovascular risk in animal models or humans is warranted.

  5. Diacerein inhibits the pro-atherogenic & pro-inflammatory effects of IL-1 on human keratinocytes & endothelial cells

    PubMed Central

    Bao, Lei; Many, Benjamin; Chan, Lawrence S.

    2017-01-01

    We investigated IL-1-induced regulation of genes related to inflammation and atherogenesis in human keratinocytes and endothelial cells, and if ‘diacerein’, an oral IL-1 inhibiting drug currently approved for use in osteoarthritis, would reverse IL-1’s effects on these cells. Primary human keratinocytes and coronary artery endothelial cells were treated with either IL-1α or IL-1β, with and without diacerein. Using PCR-array, we assessed differential gene-expression regulated by IL-1 and diacerein. We identified 34 pro-atherogenic genes in endothelial cells and 68 pro-inflammatory genes in keratinocytes significantly (p<0.05) regulated at least 2-fold by IL-1, in comparison to control. Diacerein completely or partially reversed this regulation on almost all genes. Using ELISA, we confirmed diacerein’s ability to reverse IL-1-driven gene-regulation of 11 selected factors, at the protein level. The results support a novel idea that diacerein acts as an inhibitor of the pro-atherogenic and pro-inflammatory effects of IL-1. Diacerein may have therapeutic applications to diminish IL-1-induced skin inflammation in psoriasis and attenuate IL-1-induced development of atherosclerosis. Further investigation into diacerein’s effect on skin inflammation, atherogenesis and cardiovascular risk in animal models or humans is warranted. PMID:28323859

  6. Myeloid-derived NF-κB negative regulation of PU.1 and cEBPβ-driven pro-inflammatory cytokine production restrains LPS-induced Shock

    PubMed Central

    Vanoni, Simone; Tsai, Yi Ting; Waddell, Amanda; Waggoner, Lisa; Klarquist, Jared; Divanovic, Senad; Hoebe, Kasper; Steinbrecher, Kris A.; Hogan, Simon P.

    2017-01-01

    Sepsis is a life-threatening event predominantly caused by gram-negative bacteria. Bacterial infection causes a pronounced macrophage (MΦ) and dendritic cell (DC) activation that leads to excessive pro-inflammatory cytokine interleukin (IL)-1β, IL-6, and Tumor necrosis factor (TNF)-α production (cytokine storm), resulting in endotoxic shock. Previous experimental studies have revealed that inhibiting Nuclear Factor kappa Beta (NF-κB) signaling ameliorates disease symptoms; however, the contribution of myeloid p65 in endotoxic shock remains elusive. In this study, we demonstrate increased mortality in mice lacking p65 in the myeloid lineage (p65Δmye) compared to wild type (WT) mice upon ultra-pure LPS (U-LPS) challenge. We show that increased susceptibility to Lipopolysaccharide (LPS)-induced shock was associated with elevated serum level of IL-1β and IL-6. Mechanistic analyses revealed that LPS-induced pro-inflammatory cytokine production was ameliorated in p65-deficient bone marrow–derived macrophages (BMDMs); however, p65-deficient “activated” peritoneal macrophages (MΦs) exhibited elevated IL-1β and IL-6. We show that the elevated pro-inflammatory cytokine secretion was due in part to increased accumulation of IL-1β mRNA and protein in activated inflammatory MΦs. The increased IL-1β was linked with heightened binding of PU.1 and CCAAT/Enhancer Binding Protein Beta (cEBPβ to Il1b and Il6 promoters in activated inflammatory MΦs. Our data provides insight into a role for NF-κB in the negative regulation of pro-inflammatory cytokines in myeloid cells. PMID:27932520

  7. The effects of central pro-and anti-inflammatory immune challenges on depressive-like behavior induced by chronic forced swim stress in rats.

    PubMed

    Pan, Yuqin; Lin, Wenjuan; Wang, Weiwen; Qi, Xiaoli; Wang, Donglin; Tang, Mingming

    2013-06-15

    Although increasing evidence demonstrates that both chronic stressors and inflammatory immune activation contribute to pathophysiology and behavioral alterations associated with major depression, little is known about the interaction effect of central inflammatory immune activation and stress on depressive-like behavior. Our previous work has shown that 14-day chronic forced swim stress induces significant depressive-like behavior. The present investigation assessed whether pro-inflammatory cytokine and anti-inflammatory cytokine challenges have differential interaction effect on depressive-like behavior induced by chronic forced swim stress in rats. The pro-inflammatory and anti-inflammatory immune challenges were achieved respectively by central administration of lipopolysaccharide (LPS), a pro-inflammatory cytokine inducer, and interleukin-10 (IL-10), an anti-inflammatory cytokine. It was found that either central LPS treatment alone or chronic forced swim stress alone significantly induced depressive-like behavior, including reduced body weight gain, reduced saccharin preference and reduced locomotor activity. However, there was no significant synergistic or additive effect of central LPS treatment and stress on depressive-like behavior. LPS treatment did not exacerbate the depressive-like behavior induced by forced swim stress. Nevertheless, IL-10 reversed depressive-like behavior induced by forced swim stress, a finding indicating that IL-10 has antidepressant effect on behavioral depression induced by stress. The present findings provide new insight into the complexity of the immunity-inflammation hypothesis of depression. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. 11β-Hydroxysteroid dehydrogenase 1 contributes to the pro-inflammatory response of keratinocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Itoi, Saori; Terao, Mika, E-mail: mterao@derma.med.osaka-u.ac.jp; Murota, Hiroyuki

    Highlights: •We investigate the role of 11β-HSD1 in skin inflammation. •Various stimuli increase expression of 11β-HSD1 in keratinocytes. •11β-HSD1 knockdown by siRNA decreases cortisol levels in media. •11β-HSD1 knockdown abrogates the response to pro-inflammatory cytokines. •Low-dose versus high-dose cortisol has opposing effects on keratinocyte inflammation. -- Abstract: The endogenous glucocorticoid, cortisol, is released from the adrenal gland in response to various stress stimuli. Extra-adrenal cortisol production has recently been reported to occur in various tissues. Skin is known to synthesize cortisol through a de novo pathway and through an activating enzyme. The enzyme that catalyzes the intracellular conversion of hormonally-inactivemore » cortisone into active cortisol is 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1). We recently reported that 11β-HSD1 is expressed in normal human epidermal keratinocytes (NHEKs) and negatively regulates proliferation of NHEKs. In this study, we investigated the role of 11β-HSD1 in skin inflammation. Expression of 11β-HSD1 was induced by UV-B irradiation and in response to the pro-inflammatory cytokines, IL-1β and TNFα. Increased cortisol concentrations in culture media also increased in response to these stimuli. To investigate the function of increased 11β-HSD1 in response to pro-inflammatory cytokines, we knocked down 11β-HSD1 by transfecting siRNA. Production of IL-6 and IL-8 in response to IL-1β or TNFα stimulation was attenuated in NHEKs transfected with si11β-HSD1 compared with control cells. In addition, IL-1β-induced IL-6 production was enhanced in cultures containing 1 × 10{sup −13} M cortisol, whereas 1 × 10{sup −5} M cortisol attenuated production of IL-6. Thus, cortisol showed immunostimulatory and immunosuppressive activities depending on its concentration. Our results indicate that 11β-HSD1 expression is increased by various stimuli. Thus, regulation of cytosolic

  9. The pro-apoptotic serum activity is an independent mortality predictor of patients with heart failure.

    PubMed

    Rössig, Lothar; Fichtlscherer, Stephan; Heeschen, Christopher; Berger, Jürgen; Dimmeler, Stefanie; Zeiher, Andreas M

    2004-09-01

    Systemic inflammation with elevated serum levels of circulating pro-inflammatory cytokines is a major determinant of prognosis in heart failure (HF). Since serum of patients with HF induces apoptosis of endothelial cells (EC), we aimed to determine whether the pro-apoptotic activity in the serum may predict prognosis of patients with HF. We measured the pro-apoptotic activity in the serum of 48 patients with HF of different aetiology by an ex vivo cell culture assay and subsequently monitored these patients for the single endpoint all-cause mortality. During follow-up, 16 patients died and 11 patients received a heart transplant. Survivors had a lower pro-apoptotic serum activity (P=0.007). By univariate analysis, pro-apoptotic serum activity, NYHA class, pro-BNP, low blood pressure, and creatinine levels were significantly associated with mortality. In a multivariable stepwise Cox-regression model, the pro-apoptotic serum activity (adjusted hazard ratio, HR=1.85 per %, P=0.008), elevated pro-BNP levels (HR=9.35 per log[pro-BNP], P=0.001), and low blood pressure (HR=0.96 per mmHg, P=0.041) remained as independent predictors of death. In this exploratory study, the pro-apoptotic serum capacity is independently associated with a worse prognosis in patients with HF, suggesting that the assessment of serum-induced EC apoptosis could provide an integrative estimate of the deleterious effects of various pro-inflammatory cytokines and other cytotoxic factors in HF.

  10. Bioactive Extract from Moringa oleifera Inhibits the Pro-inflammatory Mediators in Lipopolysaccharide Stimulated Macrophages

    PubMed Central

    Fard, Masoumeh Tangestani; Arulselvan, Palanisamy; Karthivashan, Govindarajan; Adam, Siti Khadijah; Fakurazi, Sharida

    2015-01-01

    Introduction: Inflammation is a well-known physiological response to protect the body against infection and restore tissue injury. Nevertheless, the chronic inflammation can trigger various inflammatory associated diseases/disorder. Moringa oleifera is a widely grown plant in most tropical countries and it has been recognized traditionally for several medicinal benefits. Objectives: The objective of this study was to investigate the anti-inflammatory properties of M. oleifera extract on lipopolysaccharide (LPS) - stimulated macrophages. Materials and Methods: The anti-inflammatory effect of M. oleifera hydroethanolic bioactive leaves extracts was evaluated by assessing the inhibition of nitric oxide (NO) production during Griess reaction and the expression of pro-inflammatory mediators in macrophages. Results: Interestingly, we found that M. oleifera hydroethanolic bioactive leaves extract significantly inhibited the secretion of NO production and other inflammatory markers such as prostaglandin E2, tumor necrosis factor alpha, interleukin (IL)-6, and IL-1β. Meanwhile, the bioactive extract has induced the production of IL-10 in a dose-dependent manner. In addition, M. oleifera hydroethanolic bioactive leaves extract effectively suppressed the protein expression of inflammatory markers inducible NO synthase, cyclooxygenase-2, and nuclear factor kappa-light-chain-enhancer of activated B-cells p65 in LPS-induced RAW264.7 macrophages in a dose-dependent manner. Conclusion: These findings support the traditional use of M. oleifera plant as an effective treatment for inflammation associated diseases/disorders. SUMMARY Hydroethanolic extracts of Moringa oleifera effectively inhibit the NO production in LPS induced inflammatory model.M. oleifera crude extracts successfully modulate the production of pro-inflammatory mediators in LPS stimulated macrophages.M. oleifera extracts suppressed the expression of inflammatory mediators in LPS stimulated macrophages. PMID:27013794

  11. New perspectives for natural antimicrobial peptides: application as antinflammatory drugs in a murine model.

    PubMed

    Capparelli, Rosanna; De Chiara, Francesco; Nocerino, Nunzia; Montella, Rosa Chiara; Iannaccone, Marco; Fulgione, Andrea; Romanelli, Alessandra; Avitabile, Concetta; Blaiotta, Giuseppe; Capuano, Federico

    2012-11-17

    Antimicrobial peptides (AMPs) are an ancient group of defense molecules. AMPs are widely distributed in nature (being present in mammals, birds, amphibians, insects, plants, and microorganisms). They display bactericidal as well as immunomodulatory properties. The aim of this study was to investigate the antimicrobial and anti-inflammatory activities of a combination of two AMPs (temporin B and the royal jellein I) against Staphylococcus epidermidis. The temporin B (TB-KK) and the royal jelleins I, II, III chemically modified at the C terminal (RJI-C, RJII-C, RJIII-C), were tested for their activity against 10 different Staphylococcus epidermidis strains, alone and in combination. Of the three royal jelleins, RJI-C showed the highest activity. Moreover, the combination of RJI-C and TB-KK (MIX) displayed synergistic activity. In vitro, the MIX displayed low hemolytic activity, no NO2- production and the ability to curb the synthesis of the pro-inflammatory cytokines TNF-α and IFN-γ to the same extent as acetylsalicylic acid. In vivo, the MIX sterilized mice infected with Staphylococcus epidermidis in eleven days and inhibited the expression of genes encoding the prostaglandin-endoperoxide synthase 2 (COX-2) and CD64, two important parameters of inflammation. The study shows that the MIX - a combination of two naturally occurring peptides - displays both antimicrobial and anti-inflammatory activities.

  12. Adherent Human Alveolar Macrophages Exhibit a Transient Pro-Inflammatory Profile That Confounds Responses to Innate Immune Stimulation

    PubMed Central

    Tomlinson, Gillian S.; Booth, Helen; Petit, Sarah J.; Potton, Elspeth; Towers, Greg J.; Miller, Robert F.; Chain, Benjamin M.; Noursadeghi, Mahdad

    2012-01-01

    Alveolar macrophages (AM) are thought to have a key role in the immunopathogenesis of respiratory diseases. We sought to test the hypothesis that human AM exhibit an anti-inflammatory bias by making genome-wide comparisons with monocyte derived macrophages (MDM). Adherent AM obtained by bronchoalveolar lavage of patients under investigation for haemoptysis, but found to have no respiratory pathology, were compared to MDM from healthy volunteers by whole genome transcriptional profiling before and after innate immune stimulation. We found that freshly isolated AM exhibited a marked pro-inflammatory transcriptional signature. High levels of basal pro-inflammatory gene expression gave the impression of attenuated responses to lipopolysaccharide (LPS) and the RNA analogue, poly IC, but in rested cells pro-inflammatory gene expression declined and transcriptional responsiveness to these stimuli was restored. In comparison to MDM, both freshly isolated and rested AM showed upregulation of MHC class II molecules. In most experimental paradigms ex vivo adherent AM are used immediately after isolation. Therefore, the confounding effects of their pro-inflammatory profile at baseline need careful consideration. Moreover, despite the prevailing view that AM have an anti-inflammatory bias, our data clearly show that they can adopt a striking pro-inflammatory phenotype, and may have greater capacity for presentation of exogenous antigens than MDM. PMID:22768282

  13. The role of the JAK2-STAT3 pathway in pro-inflammatory responses of EMF-stimulated N9 microglial cells

    PubMed Central

    2010-01-01

    Background In several neuropathological conditions, microglia can become overactivated and cause neurotoxicity by initiating neuronal damage in response to pro-inflammatory stimuli. Our previous studies have shown that exposure to electromagnetic fields (EMF) activates cultured microglia to produce tumor necrosis factor (TNF)-α and nitric oxide (NO) through signal transduction involving the activator of transcription STAT3. Here, we investigated the role of STAT3 signaling in EMF-induced microglial activation and pro-inflammatory responses in more detail than the previous study. Methods N9 microglial cells were treated with EMF exposure or a sham treatment, with or without pretreatment with an inhibitor (Pyridone 6, P6) of the Janus family of tyrosine kinases (JAK). The activation state of microglia was assessed via immunoreaction using the microglial marker CD11b. Levels of inducible nitric oxide synthase (iNOS), TNF-α and NO were measured using real-time reverse transcription-polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA) and the nitrate reductase method. Activation of JAKs and STAT3 proteins was evaluated by western blotting for specific tyrosine phosphorylation. The ability of STAT3 to bind to DNA was detected with an electrophoresis mobility shift assay (EMSA). Results EMF was found to significantly induce phosphorylation of JAK2 and STAT3, and DNA-binding ability of STAT3 in N9 microglia. In addition, EMF dramatically increased the expression of CD11b, TNF-α and iNOS, and the production of NO. P6 strongly suppressed the phosphorylation of JAK2 and STAT3 and diminished STAT3 activity in EMF-stimulated microglia. Interestingly, expression of CD11b as well as gene expression and production of TNF-α and iNOS were suppressed by P6 at 12 h, but not at 3 h, after EMF exposure. Conclusions EMF exposure directly triggers initial activation of microglia and produces a significant pro-inflammatory response. Our findings confirm that

  14. Rationale and Means to Target Pro-Inflammatory Interleukin-8 (CXCL8) Signaling in Cancer

    PubMed Central

    Campbell, Laura M.; Maxwell, Pamela J.; Waugh, David J.J.

    2013-01-01

    It is well established that chronic inflammation underpins the development of a number of human cancers, with pro-inflammatory signaling within the tumor microenvironment contributing to tumor progression and metastasis. CXCL8 is an ELR+ pro-inflammatory CXC-chemokine which mediates its effects via signaling through two G protein-coupled receptors, CXCR1 and CXCR2. Elevated CXCL8-CXCR1/2 signaling within the tumor microenvironment of numerous cancers is known to enhance tumor progression via activation of signaling pathways promoting proliferation, angiogenesis, migration, invasion and cell survival. This review provides an overview of established roles of CXCL8-CXCR1/2 signaling in cancer and subsequently, discusses the possible strategies of targeting CXCL8-CXCR1/2 signaling in cancer, covering indirect strategies (e.g., anti-inflammatories, NFκB inhibitors) and direct CXCL8 or CXCR1/2 inhibition (e.g., neutralizing antibodies, small molecule receptor antagonists, pepducin inhibitors and siRNA strategies). Reports of pre-clinical cancer studies and clinical trials using CXCL8-CXCR1/2-targeting strategies for the treatment of inflammatory diseases will be discussed. The future translational opportunities for use of such agents in oncology will be discussed, with emphasis on exploitation in stratified populations. PMID:24276377

  15. Four new carbazole alkaloids from Murraya koenigii that display anti-inflammatory and anti-microbial activities.

    PubMed

    Nalli, Yedukondalu; Khajuria, Vidushi; Gupta, Shilpa; Arora, Palak; Riyaz-Ul-Hassan, Syed; Ahmed, Zabeer; Ali, Asif

    2016-03-28

    In our present study, four new, designated as murrayakonine A-D (), along with 18 known carbazole alkaloids were isolated from CHCl3 : MeOH (1 : 1) crude extracts of the stems and leaves of Murraya koenigii (Linn.) Spreng. The structures of the all isolated compounds were characterized by analysis of HR-ESI-MS and NMR (1D and 2D spectroscopy) results, and comparison of their data with the literature data. For the first time, all the isolates were evaluated for their anti-inflammatory activities, using both in vitro and in vivo experiments, against the key inflammatory mediators TNF-α and IL-6. The new compound murrayakonine A (), O-methylmurrayamine A () and mukolidine () were proven to be the most active, efficiently inhibiting TNF-α and IL-6 release in a dose-dependent manner and showing decreased LPS induced TNF-α and IL-6 production in human PBMCs. Furthermore, all the isolates were screened for their antimicrobial potential, and the compounds girinimbine () (IC50 3.4 μM) and 1-hydroxy-7-methoxy-8-(3-methylbut-2-en-1-yl)-9H-carbazole-3-carbaldehyde () (IC50 10.9 μM) displayed potent inhibitory effects against Bacillus cereus. Furthermore, compounds murrayamine J () (IC50 11.7 μM) and koenimbine () (IC50 17.0 μM) were active against Staphylococcus aureus. However, none of the compounds were found to be active against Escherichia coli or Candida albicans.

  16. Phytochemical Composition, Antioxidant, Antimicrobial and in Vivo Anti-inflammatory Activity of Traditionally Used Romanian Ajuga laxmannii (Murray) Benth. (“Nobleman’s Beard” – Barba Împăratului)

    PubMed Central

    Toiu, Anca; Mocan, Andrei; Vlase, Laurian; Pârvu, Alina E.; Vodnar, Dan C.; Gheldiu, Ana-Maria; Moldovan, Cadmiel; Oniga, Ilioara

    2018-01-01

    In the Romanian folk medicine, aerial parts of Ajuga laxmannii (“nobleman’s beard,” Romanian – “barba boierului” or “avrămească” or “creştinească”) are traditionally used as galactagogue and anti-inflammatory agents. The present study aimed to evaluate the chemical composition (polyphenols, iridoids, and phytosterols), antioxidant, antimicrobial and in vivo anti-inflammatory activity of different extracts of A. laxmannii aerial parts. The major identified bioactive compounds were rutin, 8-O-acetylharpagide and β-sitosterol. The antioxidant activity of A. laxmannii extracts was evaluated using several methods, and the results showed good antiradical effects. Moreover, the antimicrobial evaluation showed a potent antifungal activity against C. albicans and P. funiculosum. Furthermore, the anti-inflammatory effect was determined by monitoring some parameters involved in the inflammatory process. The results obtained showed differences between the analyzed extracts; and therefore the importance of choosing the best solvent in order to extract the appropriate amount of bioactive compounds. A. laxmannii ethanol extract showed an anti-inflammatory effect by reducing total leukocytes, PMN, phagocytosis, and oxidative stress. Compared to diclofenac, only the 50 mg/mL A. laxmannii extract had better anti-inflammatory and anti-oxidative stress effects, and this could justify the importance of a correlation between the activity and the used concentration. These findings strongly suggest that A. laxmannii could be considered as a valuable source of bioactive compounds, which could be further valued as anti-inflammatory agents in the composition of several herbal drugs. PMID:29551972

  17. Transferrin-derived synthetic peptide induces highly conserved pro-inflammatory responses of macrophages.

    PubMed

    Haddad, George; Belosevic, Miodrag

    2009-02-01

    We examined the induction of macrophage pro-inflammatory responses by transferrin-derived synthetic peptide originally identified following digestion of transferrin from different species (murine, bovine, human N-lobe and goldfish) using elastase. The mass spectrometry analysis of elastase-digested murine transferrin identified a 31 amino acid peptide located in the N2 sub-domain of the transferrin N-lobe, that we named TMAP. TMAP was synthetically produced and shown to induce a number of pro-inflammatory genes by quantitative PCR. TMAP induced chemotaxis, a potent nitric oxide response, and TNF-alpha secretion in different macrophage populations; P338D1 macrophage-like cells, mouse peritoneal macrophages, mouse bone marrow-derived macrophages (BMDM) and goldfish macrophages. The treatment of BMDM cultures with TMAP stimulated the production of nine cytokines and chemokines (IL-6, MCP-5, MIP-1 alpha, MIP-1 gamma, MIP-2, GCSF, KC, VEGF, and RANTES) that was measured using cytokine antibody array and confirmed by Western blot. Our results indicate that transferrin-derived peptide, TMAP, is an immunomodulating molecule capable of inducing pro-inflammatory responses in lower and higher vertebrates.

  18. The Effective Regulation of Pro- and Anti-inflammatory Cytokines Induced by Combination of PA-MSHA and BPIFB1 in Initiation of Innate Immune Responses.

    PubMed

    Zhou, Weiqiang; Duan, Zhiwen; Yang, Biao; Xiao, Chunling

    2017-01-01

    PA-MSHA and BPIFB1 play especially important roles in triggering innate immune responses by inducing production of pro- or anti-inflammatory cytokines in the oral cavity and upper airway. We found that PA-MSHA had a strong ability to activate pro-inflammatory cytokines such as IL-1β, IL-6 and TNF-α. However, BPIFB1 alone did not express a directly inductive effect. With incubation of PA-MSHA and BPIFB1, the combination can activate the CD14/TLR4/MyD88 complex and induce secretion of subsequent downstream cytokines. We used a proteome profiler antibody array to evaluate the phosphokinases status with PA-MSHA and BPIFB1 treatment. The results showed that the activation of MAPK, STAT, and PI-3K pathways is involved in PA-MSHA-BPIFB1 treatment, and that the related pathways control the secretion of targeting cytokines in the downstream. When we assessed the content changes of cytokines, we found that PA-MSHA-BPIFB1 treatment increased the production of pro-inflammatory cytokines in the early phase of treatment and induced the increase of IL-4 in the late phase. Our observations suggest that PA-MSHA-BPIFB1 stimulates the release of pro-inflammatory cytokines, and thereby initiates the innate immune system against inflammation. Meanwhile, the gradual release of anti-inflammatory cytokine IL-4 by PA-MSHA-BPIFB1 can also regulate the degree of inflammatory response; thus the host can effectively resist the environmental risks, but also manipulate inflammatory response in an appropriate and adjustable manner.

  19. Butyrate modulating effects on pro-inflammatory pathways in human intestinal epithelial cells.

    PubMed

    Elce, A; Amato, F; Zarrilli, F; Calignano, A; Troncone, R; Castaldo, G; Canani, R B

    2017-10-13

    Butyrate acts as energy source for intestinal epithelial cells and as key mediator of several immune processes, modulating gene expression mainly through histone deacetylation inhibition. Thanks to these effects, butyrate has been proposed for the treatment of many intestinal diseases. Aim of this study was to investigate the effect of butyrate on the expression of a large series of target genes encoding proteins involved in pro-inflammatory pathways. We performed quantitative real-time-PCR analysis of the expression of 86 genes encoding proteins bearing to pro-inflammatory pathways, before and after butyrate exposure, in primary epithelial cells derived from human small intestine and colon. Butyrate significantly down-regulated the expression of genes involved in inflammatory response, among which nuclear factor kappa beta, interferon-gamma, Toll like 2 receptor and tumour necrosis factor-alpha. Further confirmations of these data, including studies at protein level, would support the use of butyrate as effective therapeutic strategy in intestinal inflammatory disorders.

  20. Induction of Pro-Inflammatory Response via Activated Macrophage-Mediated NF-κB and STAT3 Pathways in Gastric Cancer Cells.

    PubMed

    Zhou, Yujuan; Xia, Longzheng; Liu, Qiang; Wang, Heran; Lin, Jingguan; Oyang, Linda; Chen, Xiaoyan; Luo, Xia; Tan, Shiming; Tian, Yutong; Su, Min; Wang, Ying; Chen, Pan; Wu, Yang; Wang, Hui; Liao, Qianjin

    2018-06-19

    Chronic inflammation plays an important role in the initiation and progression of gastric cancer (GC). However, the role and relationship of activated macrophages with gastric mucous epithelium cells in initiating and maintaining the inflammatory process during gastric carcinogenesis remains unclear. The tumour associated macrophages (TAMs) density of gastric cancer was characterized by immunohistochemistry, and the relationship between macrophages and gastric epithelium cells was analysed using an in vitro culture system that imitates the inflammatory microenvironment. The production of pro-inflammatory cytokines was detected by enzyme-linked immunosorbent assay (ELISA) and quantitative real-time PCR (qRT-PCR). MTT assays, Western blotting, qRT-PCR, and luciferase reporter assays were used to detect the effects of cell proliferation, as well as the NF-κB and STAT3 signalling pathways. TAMs infiltrated with a high intensity in GC and were significantly correlated with histology grade (P = 0.012), metastasis (P = 0.001), TNM stage (P = 0.002), and poor prognosis in patients (PFS, P = 0.005; OS, P = 0.028). In addition, IL-6 and IL-8 were elevated in the serum of GC patients and significantly promoted the growth of GC. The exposure of BGC823 gastric cancer cells to a conditioned medium from LPS-treated D-THP-1 cells significantly induced the production of TNF-α, IL-6, IL-1β and IL-8 (P< 0.01). LPS and LPS-treated D-THP-1-conditioned media promoted gastric cancer cell proliferation and triggered the significant activation of NF-κB and STAT3 with a concomitant degradation of IκBα and an increase in JAK2 phosphorylation (P < 0.05). Moreover, gastric cancer cells markedly expressed cell membrane LPS receptors, such as TLR1, TLR4, TLR6, CD14 and MD2. TAMs are closely associated with the growth of GC and prognosis in GC patients. GC cells may directly sustain and amplify the local pro-inflammatory response upon encountering activated macrophages and LPS via NF

  1. Synthesis, in Vivo Anti-inflammatory, and in Vitro Antimicrobial Activity of New 5-Benzofuranyl Fused Pyrimidines.

    PubMed

    Nassar, Ekhlass; El-Badry, Yaser Abdel-Moemen; El Kazaz, Hagar

    2016-01-01

    Chalcone (3) has been synthesized as a new chalcone derivative bearing benzofuran moiety at 1 position. Such chalcone was used as a model dielectrophile applied to react with some nucleophiles such as 5-amino pyrazoles, 5-amino-1,2,4-triazole, 2-aminobenzimidazole, and 6-uraciles under Michael reaction conditions and resulted in a new series of fused pyrimidines such as pyrazolo[1,5-a]pyrimidines 7a-e, [1,2,4]-triazolo[1,5-a]pyrimidine 9, pyrimido[1,2-a]benzimidazole 11, and synthesis of pyrido[2,3-d]pyrimidinones 13a and b. The structures of the synthesized target heterocyclic compounds were confirmed by microanalytical and spectral data such as Fourier transform (FT)-IR, (1)H-NMR, and MS spectra. The newly synthesized compounds were evaluated for their anti-inflammatory and antimicrobial activities; most showed significant activities.

  2. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues

    NASA Astrophysics Data System (ADS)

    Zanganeh, Saeid; Hutter, Gregor; Spitler, Ryan; Lenkov, Olga; Mahmoudi, Morteza; Shaw, Aubie; Pajarinen, Jukka Sakari; Nejadnik, Hossein; Goodman, Stuart; Moseley, Michael; Coussens, Lisa Marie; Daldrup-Link, Heike Elisabeth

    2016-11-01

    Until now, the Food and Drug Administration (FDA)-approved iron supplement ferumoxytol and other iron oxide nanoparticles have been used for treating iron deficiency, as contrast agents for magnetic resonance imaging and as drug carriers. Here, we show an intrinsic therapeutic effect of ferumoxytol on the growth of early mammary cancers, and lung cancer metastases in liver and lungs. In vitro, adenocarcinoma cells co-incubated with ferumoxytol and macrophages showed increased caspase-3 activity. Macrophages exposed to ferumoxytol displayed increased mRNA associated with pro-inflammatory Th1-type responses. In vivo, ferumoxytol significantly inhibited growth of subcutaneous adenocarcinomas in mice. In addition, intravenous ferumoxytol treatment before intravenous tumour cell challenge prevented development of liver metastasis. Fluorescence-activated cell sorting (FACS) and histopathology studies showed that the observed tumour growth inhibition was accompanied by increased presence of pro-inflammatory M1 macrophages in the tumour tissues. Our results suggest that ferumoxytol could be applied 'off label' to protect the liver from metastatic seeds and potentiate macrophage-modulating cancer immunotherapies.

  3. Effects of prandial challenge on triglyceridemia, glycemia, and pro-inflammatory activity in persons with chronic paraplegia

    PubMed Central

    Ellenbroek, Dennis; Kressler, Jochen; Cowan, Rachel E.; Burns, Patricia A.; Mendez, Armando J.; Nash, Mark S.

    2015-01-01

    Context/Objective Exaggerated postprandial lipemia has been reported after spinal cord injury (SCI). We examined metabolite and accompanying pro-inflammatory biomarker responses to repeat feeding of typical high-fat meals in individuals with chronic paraplegia. Design Descriptive trial. Methods Metabolites (triglycerides, glucose, and insulin) and inflammatory biomarkers (interleukin-6 and high-sensitivity C-reactive protein (hsCRP)) were measured under fasting conditions in 11 recreationally active individuals with chronic (>1 year) paraplegia. Subjects received high-fat meals at time point 0 and again at minute 240. Antecubital venous blood was obtained at time points −30 (fasting), 0 (first meal), 30, 60, 90, 120, 240 (second meal), 360, and 480 minutes. Correlations were examined among the study variables. Exploratory subgroup analysis was performed for subjects with levels of postprandial glucose greater than >200 mg/dl. Results Triglycerides showed a significant rise 4 hours after eating. Basal inflammatory markers were elevated, and did not undergo additional change during the testing. Additionally, subjects with excessive postprandial glucose responses showed higher hsCRP levels than those having typical glucose responses both for fasting (11.8 ± 6.5 vs. 2.9 ± 2.7 mg/l, P = 0.064) and postprandial (11.1 ± 4.9 vs. 3.7 ± 3.8 mg/l, P = 0.018) values. Conclusions Despite elevations in metabolic response markers, inflammatory markers did not change significantly after consumption of population-representative (i.e. hypercaloric) mixed-nutrient meals. Levels of fasting CRP in the high-risk range are consistent with other reports in persons with SCI and continue to pose concern for their cardiovascular disease risk. The possible association between postprandial metabolic responses and inflammatory states warrants further investigation to identify individual component risks for this secondary health hazard. PMID:24617559

  4. Development and Sequential Analysis of a New Multi-Agent, Anti-Acne Formulation Based on Plant-Derived Antimicrobial and Anti-Inflammatory Compounds.

    PubMed

    Saviuc, Crina; Ciubucă, Bianca; Dincă, Gabriela; Bleotu, Coralia; Drumea, Veronica; Chifiriuc, Mariana-Carmen; Popa, Marcela; Gradisteanu Pircalabioru, Gratiela; Marutescu, Luminita; Lazăr, Veronica

    2017-01-17

    The antibacterial and anti-inflammatory potential of natural, plant-derived compounds has been reported in many studies. Emerging evidence indicates that plant-derived essential oils and/or their major compounds may represent a plausible alternative treatment for acne, a prevalent skin disorder in both adolescent and adult populations. Therefore, the purpose of this study was to develop and subsequently analyze the antimicrobial activity of a new multi-agent, synergic formulation based on plant-derived antimicrobial compounds (i.e., eugenol, β-pinene, eucalyptol, and limonene) and anti-inflammatory agents for potential use in the topical treatment of acne and other skin infections. The optimal antimicrobial combinations selected in this study were eugenol/β-pinene/salicylic acid and eugenol/β-pinene/2-phenoxyethanol/potassium sorbate. The possible mechanisms of action revealed by flow cytometry were cellular permeabilization and inhibition of efflux pumps activity induced by concentrations corresponding to sub-minimal inhibitory (sub-MIC) values. The most active antimicrobial combination represented by salycilic acid/eugenol/β-pinene/2-phenoxyethanol/potassium sorbate was included in a cream base, which demonstrated thermodynamic stability and optimum microbiological characteristics.

  5. A Prospective Open-label Pilot Study of Fluvastatin on Pro-inflammatory and Pro-thrombotic Biomarkers in Antiphospholipid Antibody Positive Patients

    PubMed Central

    Erkan, Doruk; Willis, Rohan; Murthy, Vijaya L.; Basra, Gurjot; Vega, JoAnn; Ruiz Limón, Patricia; Carrera, Ana Laura; Papalardo, Elizabeth; Martínez-Martínez, Laura Aline; González, Emilio B.; Pierangeli, Silvia S.

    2014-01-01

    Objective: To determine if pro-inflammatory and pro-thrombotic biomarkers are differentially upregulated in persistently antiphospholipid antibody (aPL)-positive patients, and to examine the effects of fluvastatin on these biomarkers. Methods: Four groups of patients (age 18-65) were recruited: a) Primary Antiphospholipid Syndrome (PAPS); b) Systemic Lupus Erythematosus (SLE) with APS (SLE/APS); c) Persistent aPL positivity without SLE or APS (Primary aPL); and d) Persistent aPL positivity with SLE but no APS (SLE/aPL). The frequency-matched control group, used for baseline data comparison, was identified from a databank of healthy persons. Patients received fluvastatin 40 mg daily for three months. At three months, patients stopped the study medication and they were followed for another three months. Blood samples for 12 pro-inflammatory and pro-thrombotic biomarkers were collected monthly for six months. Results: Based on the comparison of the baseline samples of 41 aPL-positive patients with 30 healthy controls, 9/12 (75%) biomarkers (interleukin [IL]-6, IL1β, vascular endothelial growth factor [VEGF], tumor necrosis factor [TNF]-□α, interferon [IFN]-α, inducible protein-10 [IP10], soluble CD40 ligand [sCD40L], soluble tissue factor [sTF], and intracellular cellular adhesion molecule [ICAM]-1) were significantly elevated. Twenty-four patients completed the study; fluvastatin significantly and reversibly reduced the levels of 6/12 (50%) biomarkers (IL1β, VEGF, TNFα, IP10, sCD40L, and sTF). Conclusion: Our prospective mechanistic study demonstrates that pro-inflammatory and pro-thrombotic biomarkers, which are differentially upregulated in persistently aPL-positive patients, can be reversibly reduced by fluvastatin. Thus, statin-induced modulation of the aPL effects on target cells can be a valuable future approach in the management of aPL-positive patients. PMID:23933625

  6. High sodium diet converts renal proteoglycans into pro-inflammatory mediators in rats

    PubMed Central

    Shrestha, Pragyi; Sarpong, Kwaku A.; Yazdani, Saleh; el Masri, Rana; de Jong, Wilhelmina H. A.; Navis, Gerjan; Vivès, Romain R.; van den Born, Jacob

    2017-01-01

    Background High dietary sodium aggravates renal disease by affecting blood pressure and by its recently shown pro-inflammatory and pro-fibrotic effects. Moreover, pro-inflammatory modification of renal heparan sulfate (HS) can induce tissue remodeling. We aim to investigate if high sodium intake in normotensive rats converts renal HS into a pro-inflammatory phenotype, able to bind more sodium and orchestrate inflammation, fibrosis and lymphangiogenesis. Methods Wistar rats received a normal diet for 4 weeks, or 8% NaCl diet for 2 or 4 weeks. Blood pressure was monitored, and plasma, urine and tissue collected. Tissue sodium was measured by flame spectroscopy. Renal HS and tubulo-interstitial remodeling were studied by biochemical, immunohistochemical and qRT-PCR approaches. Results High sodium rats showed a transient increase in blood pressure (week 1; p<0.01) and increased sodium excretion (p<0.05) at 2 and 4 weeks compared to controls. Tubulo-interstitial T-cells, myofibroblasts and mRNA levels of VCAM1, TGF-β1 and collagen type III significantly increased after 4 weeks (all p<0.05). There was a trend for increased macrophage infiltration and lymphangiogenesis (both p = 0.07). Despite increased dermal sodium over time (p<0.05), renal concentrations remained stable. Renal HS of high sodium rats showed increased sulfation (p = 0.05), increased L-selectin binding to HS (p<0,05), and a reduction of sulfation-sensitive anti-HS mAbs JM403 (p<0.001) and 10E4 (p<0.01). Hyaluronan expression increased under high salt conditions (p<0.01) without significant changes in the chondroitin sulfate proteoglycan versican. Statistical analyses showed that sodium-induced tissue remodeling responses partly correlated with observed HS changes. Conclusion We show that high salt intake by healthy normotensive rats convert renal HS into high sulfated pro-inflammatory glycans involved in tissue remodeling events, but not in increased sodium storage. PMID:28594849

  7. Steroid Resistant CD8+CD28null NKT-Like Pro-inflammatory Cytotoxic Cells in Chronic Obstructive Pulmonary Disease.

    PubMed

    Hodge, Greg; Hodge, Sandra

    2016-01-01

    Corticosteroid resistance is a major barrier to effective treatment in chronic obstructive pulmonary disease (COPD), and failure to suppress systemic inflammation in these patients may result in increased comorbidity. Although much of the research to date has focused on the role of macrophages and neutrophils involved in inflammation in the airways in COPD, recent evidence suggests that CD8 + T cells may be central regulators of the inflammatory network in this disease. CD8 + cytotoxic pro-inflammatory T cells have been shown to be increased in the peripheral blood and airways in patients with COPD, whereas smokers that have not progressed to COPD only show an increase in the lungs. Although the mechanisms underlying steroid resistance in these lymphocytes is largely unknown, new research has identified a role for cytotoxic pro-inflammatory CD8 + T-cells and CD8 + natural killer T-like (NKT-like) cells. Increased numbers of these cells and their significant loss of the co-stimulatory molecule CD28 have been shown in COPD, consistent with findings in the elderly and in clinical conditions involving chronic activation of the immune system. In COPD, these senescent cells expressed increased levels of the cytotoxic mediators, perforin and granzyme b, and the pro-inflammatory cytokines, IFNγ and TNFα. They also demonstrated increased cytotoxicity toward lung epithelial cells and importantly were resistant to immunosuppression by corticosteroids compared with their CD28 + counterparts. Further research has shown these cells evade the immunosuppressive effects of steroids via multiple mechanisms. This mini review will focus on cytotoxic pro-inflammatory CD8 + CD28 null NKT-like cells involved in COPD and novel approaches to reverse steroid resistance in these cells.

  8. Steroid Resistant CD8+CD28null NKT-Like Pro-inflammatory Cytotoxic Cells in Chronic Obstructive Pulmonary Disease

    PubMed Central

    Hodge, Greg; Hodge, Sandra

    2016-01-01

    Corticosteroid resistance is a major barrier to effective treatment in chronic obstructive pulmonary disease (COPD), and failure to suppress systemic inflammation in these patients may result in increased comorbidity. Although much of the research to date has focused on the role of macrophages and neutrophils involved in inflammation in the airways in COPD, recent evidence suggests that CD8+ T cells may be central regulators of the inflammatory network in this disease. CD8+ cytotoxic pro-inflammatory T cells have been shown to be increased in the peripheral blood and airways in patients with COPD, whereas smokers that have not progressed to COPD only show an increase in the lungs. Although the mechanisms underlying steroid resistance in these lymphocytes is largely unknown, new research has identified a role for cytotoxic pro-inflammatory CD8+ T-cells and CD8+ natural killer T-like (NKT-like) cells. Increased numbers of these cells and their significant loss of the co-stimulatory molecule CD28 have been shown in COPD, consistent with findings in the elderly and in clinical conditions involving chronic activation of the immune system. In COPD, these senescent cells expressed increased levels of the cytotoxic mediators, perforin and granzyme b, and the pro-inflammatory cytokines, IFNγ and TNFα. They also demonstrated increased cytotoxicity toward lung epithelial cells and importantly were resistant to immunosuppression by corticosteroids compared with their CD28+ counterparts. Further research has shown these cells evade the immunosuppressive effects of steroids via multiple mechanisms. This mini review will focus on cytotoxic pro-inflammatory CD8+CD28null NKT-like cells involved in COPD and novel approaches to reverse steroid resistance in these cells. PMID:28066427

  9. Cyclic dipeptides from rhabditid entomopathogenic nematode-associated Bacillus cereus have antimicrobial activities.

    PubMed

    Nishanth Kumar, S; Nath, Vishnu Sukumari; Pratap Chandran, R; Nambisan, Bala

    2014-02-01

    The cell free culture filtrate of Bacillus cereus associated with an entomopathogenic nematode, Rhabditis (Oscheius) sp. exhibited strong antimicrobial activity. The ethyl acetate extract of the bacterial culture filtrate was purified by silica gel column chromatography to obtain four bioactive compounds. The structure and absolute stereochemistry of these compounds were determined based on extensive spectroscopic analyses (FABMS, (1)H NMR, (13)C NMR, (1)H-(1)H COSY, (1)H-(13)C HMBC) and Marfey's method. The compounds were identified as cyclic dipeptides (CDPs): cyclo(L-Pro-L-Trp), cyclo(L-Leu-L-Val), cyclo(D-Pro-D-Met), and cyclo(D-Pro-D-Phe), respectively. Compounds recorded significant antibacterial activity against all the test bacteria (Staphylococcus epidermidis, Staphylococcus aureus, Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa and methicillin-resistant S. aureus) except cyclo(L-Leu-L-Val). Cyclo(L-Leu-L-Val) recorded activity only against Gram positive bacteria. Best antibacterial activity was recorded by cyclo(L-Pro-L-Trp) against S. aureus (4 μg/ml). The four compounds were active against all the five fungi tested (Trichophyton rubrum, Aspergillus flavus, Candida albicans, Candida tropicalis and Cryptococcus neoformans) and the activity was compared with amphotericin B, the standard fungicide. The highest activity of 1 μg/ml by cyclo(L-Pro-L-Trp) was recorded against T. rubrum, a human pathogen responsible for causing athlete's foot, jock itch, and ringworm. The activity of cyclo(L-Pro-L-Trp) against T. rubrum, C. neoformans and C. albicans were better than amphotericin B, the standard antifungal agent. To our knowledge, this is the first report of antifungal activity of CDPs against the human pathogenic fungi T. rubrum and C. neoformans. The four CDPs are nontoxic to healthy human cell line up to 200 μg/ml. We conclude that the bacterium associated with entomopathogenic nematode is promising sources of natural antimicrobial

  10. Synthesis of Gallic Acid Analogs as Histamine and Pro-Inflammatory Cytokine Inhibitors for Treatment of Mast Cell-Mediated Allergic Inflammation.

    PubMed

    Fei, Xiang; Je, In-Gyu; Shin, Tae-Yong; Kim, Sang-Hyun; Seo, Seung-Yong

    2017-05-29

    Gallic acid (3,4,5-trihydroxybenzoic acid), is a natural product found in various foods and herbs that are well known as powerful antioxidants. Our previous report demonstrated that it inhibits mast cell-derived inflammatory allergic reactions by blocking histamine release and pro-inflammatory cytokine expression. In this report, various amide analogs of gallic acid have been synthesized by introducing different amines through carbodiimide-mediated amide coupling and Pd/C-catalyzed hydrogenation. These compounds showed a modest to high inhibitory effect on histamine release and pro-inflammatory cytokine expression. Among them, the amide bearing ( S )-phenylglycine methyl ester 3d was found to be more active than natural gallic acid. Further optimization yielded several ( S )- and ( R )-phenylglycine analogs that inhibited histamine release in vitro. Our findings suggest that some gallamides could be used as a treatment for allergic inflammatory diseases.

  11. The antiangiogenic role of the pro-inflammatory cytokine interleukin-31

    PubMed Central

    Kan, Tal; Raviv, Ziv; Timaner, Michael; Karin, Nathan; Hershkovitz, Dov

    2017-01-01

    Pro-inflammatory cytokines in the tumor microenvironment are known for their ability to either inhibit or promote cancer progression. Here we evaluated the role of Interleukin-31 (IL31), a protein belonging to the pro-inflammatory IL-6 cytokine family which has been characterized in autoimmune disease, in tumorigenesis. We show that IL31 and its receptor, IL31RA, are highly expressed in various human and mouse cancer cell lines, as well as in tumor specimens from cancer patients. MC38 murine colon carcinoma cells depleted of IL31 exhibit an increase in invasive and migratory properties in vitro, effects that are reversed by supplementing the cells with exogenous IL31. In vivo, IL31-depleted MC38 tumor cells implanted to mice grow faster than control tumors. In contrast, MC38 tumor-bearing mice infused with recombinant IL31, exhibit a significant reduction in tumor growth than control mice. Furthermore, IL31 infusion reduces the number of metastatic lesions in the lungs of mice bearing 4T1 murine metastatic breast carcinoma. Lastly, injecting tumor-bearing, chemotherapy-treated mice with a long-lived IL31-IgG fusion protein reduces tumor growth, angiogenesis and pulmonary metastasis to a greater extent than when chemotherapy is used alone. The IL31 anti-tumor activity is explained, in part, by the anti-angiogenic effects demonstrated both in vitro and in vivo highlighting the potential use of IL31 as an anti-cancer drug. PMID:28147314

  12. Moclobemide exerts anti-inflammatory effect in lipopolysaccharide-activated primary mixed glial cell culture.

    PubMed

    Bielecka, A M; Paul-Samojedny, M; Obuchowicz, E

    2010-12-01

    An increasing body of evidence indicates that glial activation and neuroinflammation play an important role in the pathogenesis of psychiatric and neurodegenerative diseases. Activated glial cells secrete various cytokines that influence neurotransmission, hypothalamus-pituitary-adrenal axis activity, neuronal plasticity and neurogenesis. It has been suggested that alterations in cytokine networks are involved in the mechanism of action of antidepressant drugs. Until now, only a few studies demonstrated that some tricyclic antidepressants and selective serotonin reuptake inhibitors reduced production of pro-inflammatory cytokines in brain glia cells. We have investigated for the first time whether the antidepressant, moclobemide (a reversible selective inhibitor of monoamine oxidase-A) has an influence on pro-inflammatory cytokines [interleukin (IL)-1β and tumor necrosis factor (TNF)-α] and anti-inflammatory cytokine (IL-10) in primary rat mixed glial cell cultures stimulated by lipopolysaccharide (LPS). Our results showed that moclobemide used in a wide range of concentrations diminished LPS-stimulated IL-1β and TNF-α mRNAs expression in cellular extracts and remarkably reduced the levels of both pro-inflammatory cytokines in culture medium. In opposite to this, the drug had no influence on IL-10 mRNA and slightly reduced IL-10 concentration. Moreover, moclobemide decreased LPS-stimulated translocation of NFκB p65 subunit into cellular nuclei. These results suggest that moclobemide exerts anti-inflammatory effect in the central nervous system because it affects the balance between pro- and anti-inflammatory cytokines (IL-1β, TNF-α/IL-10) in primary mixed glial cell cultures.

  13. MicroRNA-155 facilitates skeletal muscle regeneration by balancing pro- and anti-inflammatory macrophages

    PubMed Central

    Nie, M; Liu, J; Yang, Q; Seok, H Y; Hu, X; Deng, Z-L; Wang, D-Z

    2016-01-01

    Skeletal muscle has remarkable regeneration capacity and regenerates in response to injury. Muscle regeneration largely relies on muscle stem cells called satellite cells. Satellite cells normally remain quiescent, but in response to injury or exercise they become activated and proliferate, migrate, differentiate, and fuse to form multinucleate myofibers. Interestingly, the inflammatory process following injury and the activation of the myogenic program are highly coordinated, with myeloid cells having a central role in modulating satellite cell activation and regeneration. Here, we show that genetic deletion of microRNA-155 (miR-155) in mice substantially delays muscle regeneration. Surprisingly, miR-155 does not appear to directly regulate the proliferation or differentiation of satellite cells. Instead, miR-155 is highly expressed in myeloid cells, is essential for appropriate activation of myeloid cells, and regulates the balance between pro-inflammatory M1 macrophages and anti-inflammatory M2 macrophages during skeletal muscle regeneration. Mechanistically, we found that miR-155 suppresses SOCS1, a negative regulator of the JAK-STAT signaling pathway, during the initial inflammatory response upon muscle injury. Our findings thus reveal a novel role of miR-155 in regulating initial immune responses during muscle regeneration and provide a novel miRNA target for improving muscle regeneration in degenerative muscle diseases. PMID:27277683

  14. Inflammatory signaling in human Tuberculosis granulomas is spatially organized

    PubMed Central

    Marakalala, Mohlopheni J.; Raju, Ravikiran M.; Sharma, Kirti; Zhang, Yanjia J.; Eugenin, Eliseo A.; Prideaux, Brendan; Daudelin, Isaac B.; Chen, Pei-Yu; Booty, Matthew G.; Kim, Jin Hee; Eum, Seok Yong; Via, Laura E.; Behar, Samuel M.; Barry, Clifton E.; Mann, Matthias; Dartois, Véronique; Rubin, Eric J.

    2016-01-01

    Granulomas are the pathological hallmark of tuberculosis (TB). However, their function and mechanisms of formation remain poorly understood. To understand the role of granulomas in TB, we analyzed the proteomes of granulomas from subjects with tuberculosis in an unbiased fashion. Using laser capture microdissection, mass spectrometry and confocal microscopy, we generated detailed molecular maps of human granulomas. We found that the centers of granulomas possess a pro-inflammatory environment characterized by anti-microbial peptides, ROS and pro-inflammatory eicosanoids. Conversely, the tissue surrounding the caseum possesses a comparatively anti-inflammatory signature. These findings are consistent across a set of six subjects and in rabbits. While the balance between systemic pro- and anti-inflammatory signals is crucial to TB disease outcome, here we find that these signals are physically segregated within each granuloma. The protein and lipid snapshots of human and rabbit lesions analysed here suggest that the pathologic response to TB is shaped by the precise anatomical localization of these inflammatory pathways during the development of the granuloma. PMID:27043495

  15. Inflammatory signaling in human tuberculosis granulomas is spatially organized.

    PubMed

    Marakalala, Mohlopheni J; Raju, Ravikiran M; Sharma, Kirti; Zhang, Yanjia J; Eugenin, Eliseo A; Prideaux, Brendan; Daudelin, Isaac B; Chen, Pei-Yu; Booty, Matthew G; Kim, Jin Hee; Eum, Seok Yong; Via, Laura E; Behar, Samuel M; Barry, Clifton E; Mann, Matthias; Dartois, Véronique; Rubin, Eric J

    2016-05-01

    Granulomas are the pathological hallmark of tuberculosis (TB). However, their function and mechanisms of formation remain poorly understood. To understand the role of granulomas in TB, we analyzed the proteomes of granulomas from subjects with tuberculosis in an unbiased manner. Using laser-capture microdissection, mass spectrometry and confocal microscopy, we generated detailed molecular maps of human granulomas. We found that the centers of granulomas have a pro-inflammatory environment that is characterized by the presence of antimicrobial peptides, reactive oxygen species and pro-inflammatory eicosanoids. Conversely, the tissue surrounding the caseum has a comparatively anti-inflammatory signature. These findings are consistent across a set of six human subjects and in rabbits. Although the balance between systemic pro- and anti-inflammatory signals is crucial to TB disease outcome, here we find that these signals are physically segregated within each granuloma. From the protein and lipid snapshots of human and rabbit lesions analyzed here, we hypothesize that the pathologic response to TB is shaped by the precise anatomical localization of these inflammatory pathways during the development of the granuloma.

  16. Anti-inflammatory activity of animal oils from the Peruvian Amazon.

    PubMed

    Schmeda-Hirschmann, Guillermo; Delporte, Carla; Valenzuela-Barra, Gabriela; Silva, Ximena; Vargas-Arana, Gabriel; Lima, Beatriz; Feresin, Gabriela E

    2014-10-28

    Animal oils and fats from the fishes Electrophorus electricus and Potamotrygon motoro, the reptiles Boa constrictor, Chelonoidis denticulata (Geochelone denticulata) and Melanosuchus niger and the riverine dolphin Inia geoffrensis are used as anti-inflammatory agents in the Peruvian Amazon. The aim of the study was to assess the topic anti-inflammatory effect of the oils/fats as well as to evaluate its antimicrobial activity and fatty acid composition. The oils/fats were purchased from a traditional store at the Iquitos market of Belen, Peru. The topic anti-inflammatory effect was evaluated by the mice ear edema induced by arachidonic acid (AA) and 12-O-tetradecanoylphorbol-13-acetate (TPA) at the dose of 3mg oil/ear. Indomethacine and nimesulide were used as reference anti-inflammatory drugs. The application resembles the traditional topical use of the oils. The antimicrobial effect of the oils/fats was assessed by the microdilution test against reference strains of Escherichia coli, Staphylococcus aureus and Salmonella enteritidis. The fatty acid composition of the oils/fats (as methyl esters) was determined by GC and GC-MS analysis after saponification. All oils/fats showed topic anti-inflammatory activity, with better effect in the TPA-induced mice ear edema assay. The most active drugs were Potamotrygon motoro, Melanosuchus niger and Geochelone denticulata. In the AA-induced assay, the best activity was found for Potamotrygon motoro and Electrophorus electricus oil. The oil of Electrophorus electricus also showed a weak antimicrobial effect with MIC values of 250 µg/mL against Escherichia coli ATCC 25922 and Salmonella enteritidis-MI. The main fatty acids in the oils were oleic, palmitic and linoleic acids. Topical application of all the oils/fats investigated showed anti-inflammatory activity in the mice ear edema assay. The effect can be related with the identity and composition of the fatty acids in the samples. This study gives support to the traditional

  17. The importance of being kinked: role of Pro residues in the selectivity of the helical antimicrobial peptide P5.

    PubMed

    Bobone, Sara; Bocchinfuso, Gianfranco; Park, Yoonkyung; Palleschi, Antonio; Hahm, Kyung-Soo; Stella, Lorenzo

    2013-12-01

    Antimicrobial peptides (AMPs) are promising compounds for developing new antibiotic drugs against drug-resistant bacteria. Many of them kill bacteria by perturbing their membranes but exhibit no significant toxicity towards eukaryotic cells. The identification of the features responsible for this selectivity is essential for their pharmacological development. AMPs exhibit few conserved features, but a statistical analysis of an AMP sequence database indicated that many α-helical AMPs surprisingly have a helix-breaking Pro residue in the middle of their sequence. To discriminate among the different possible hypotheses for the functional role of this feature, we designed an analogue of the antimicrobial peptide P5, in which the central Pro was deleted (analogue P5Del). Pro removal resulted in a dramatic increase of toxicity. This was explained by the observation that P5Del binds both charged and neutral membranes, whereas P5 has no appreciable affinity towards neutral bilayers. CD and simulative data provided a rationalization of this behavior. In solution P5, due to the presence of Pro, attains compact conformations, in which its apolar residues are partially shielded from the solvent, whereas P5Del is more helical. These structural differences reduce the hydrophobic driving force for association of P5 to neutral membranes, whereas its binding to anionic bilayers can still take place because of electrostatic attraction. After membrane binding, the Pro residue does not preclude the attainment of a membrane-active amphiphilic helical conformation. These findings shed light on the role of Pro residues in the selectivity of AMPs and provide hints for the design of new, highly selective compounds. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.

  18. Human β-defensin 3 has immunosuppressive activity in vitro and in vivo

    PubMed Central

    Semple, Fiona; Webb, Sheila; Li, Hsin-Ni; Patel, Hetal B; Perretti, Mauro; Jackson, Ian J; Gray, Mohini; Davidson, Donald J; Dorin, Julia R

    2010-01-01

    β-defensins are antimicrobial peptides with an essential role in the innate immune response. In addition β-defensins can also chemoattract cells involved in adaptive immunity. Until now, based on evidence from dendritic cell stimulation, human β defensin-3 (hBD3) was considered pro-inflammatory. We present evidence here that hBD3 lacks pro-inflammatory activity in human and mouse primary Mφ. In addition, in the presence of LPS, hBD3 and the murine orthologue Defb14 (but not hBD2), effectively inhibit TNF-α and IL-6 accumulation implying an anti-inflammatory function. hBD3 also inhibits CD40/IFN-γ stimulation of Mφ and in vivo, hBD3 significantly reduces the LPS-induced TNF-α level in serum. Recent work has revealed that hBD3 binds melanocortin receptors but we provide evidence that these are not involved in hBD3 immunomodulatory activity. This implies a dual role for hBD3 in antimicrobial activity and resolution of inflammation. PMID:20104491

  19. Human beta-defensin 3 has immunosuppressive activity in vitro and in vivo.

    PubMed

    Semple, Fiona; Webb, Sheila; Li, Hsin-Ni; Patel, Hetal B; Perretti, Mauro; Jackson, Ian J; Gray, Mohini; Davidson, Donald J; Dorin, Julia R

    2010-04-01

    Beta-defensins are antimicrobial peptides with an essential role in the innate immune response. In addition beta-defensins can also chemoattract cells involved in adaptive immunity. Until now, based on evidence from dendritic cell stimulation, human beta defensin-3 (hBD3) was considered pro-inflammatory. We present evidence here that hBD3 lacks pro-inflammatory activity in human and mouse primary Mphi. In addition, in the presence of LPS, hBD3 and the murine orthologue Defb14 (but not hBD2), effectively inhibit TNF-alpha and IL-6 accumulation implying an anti-inflammatory function. hBD3 also inhibits CD40/IFN-gamma stimulation of Mphi and in vivo, hBD3 significantly reduces the LPS-induced TNF-alpha level in serum. Recent work has revealed that hBD3 binds melanocortin receptors but we provide evidence that these are not involved in hBD3 immunomodulatory activity. This implies a dual role for hBD3 in antimicrobial activity and resolution of inflammation.

  20. THE EFFECTS OF ANTI-INFLAMMATORY IFNγ AND PRO-INFLAMMATORY TNFα, IL-1β ON CHEMOKINE RELEASE IN MOUSE EPITHELIAL CELLS

    EPA Science Inventory

    RATIONALE: Asthma is a chronic inflammatory disorder of the airways that affects nearly 20 million individuals in the US. Airway inflammation is a hallmark characteristic of asthma and is the result of numerous pro-inflammatory cytokines such as IL-1β and TNFα . Interestingly...

  1. 11β-Hydroxysteroid dehydrogenase 1 contributes to the pro-inflammatory response of keratinocytes.

    PubMed

    Itoi, Saori; Terao, Mika; Murota, Hiroyuki; Katayama, Ichiro

    2013-10-18

    The endogenous glucocorticoid, cortisol, is released from the adrenal gland in response to various stress stimuli. Extra-adrenal cortisol production has recently been reported to occur in various tissues. Skin is known to synthesize cortisol through a de novo pathway and through an activating enzyme. The enzyme that catalyzes the intracellular conversion of hormonally-inactive cortisone into active cortisol is 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1). We recently reported that 11β-HSD1 is expressed in normal human epidermal keratinocytes (NHEKs) and negatively regulates proliferation of NHEKs. In this study, we investigated the role of 11β-HSD1 in skin inflammation. Expression of 11β-HSD1 was induced by UV-B irradiation and in response to the pro-inflammatory cytokines, IL-1β and TNFα. Increased cortisol concentrations in culture media also increased in response to these stimuli. To investigate the function of increased 11β-HSD1 in response to pro-inflammatory cytokines, we knocked down 11β-HSD1 by transfecting siRNA. Production of IL-6 and IL-8 in response to IL-1β or TNFα stimulation was attenuated in NHEKs transfected with si11β-HSD1 compared with control cells. In addition, IL-1β-induced IL-6 production was enhanced in cultures containing 1 × 10(-13) M cortisol, whereas 1 × 10(-5) M cortisol attenuated production of IL-6. Thus, cortisol showed immunostimulatory and immunosuppressive activities depending on its concentration. Our results indicate that 11β-HSD1 expression is increased by various stimuli. Thus, regulation of cytosolic cortisol concentrations by 11β-HSD1 appears to modulate expression of inflammatory cytokines in NHEKs. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Dimethyl fumarate blocks pro-inflammatory cytokine production via inhibition of TLR induced M1 and K63 ubiquitin chain formation.

    PubMed

    McGuire, Victoria A; Ruiz-Zorrilla Diez, Tamara; Emmerich, Christoph H; Strickson, Sam; Ritorto, Maria Stella; Sutavani, Ruhcha V; Weiβ, Anne; Houslay, Kirsty F; Knebel, Axel; Meakin, Paul J; Phair, Iain R; Ashford, Michael L J; Trost, Matthias; Arthur, J Simon C

    2016-08-08

    Dimethyl fumarate (DMF) possesses anti-inflammatory properties and is approved for the treatment of psoriasis and multiple sclerosis. While clinically effective, its molecular target has remained elusive - although it is known to activate anti-oxidant pathways. We find that DMF inhibits pro-inflammatory cytokine production in response to TLR agonists independently of the Nrf2-Keap1 anti-oxidant pathway. Instead we show that DMF can inhibit the E2 conjugating enzymes involved in K63 and M1 polyubiquitin chain formation both in vitro and in cells. The formation of K63 and M1 chains is required to link TLR activation to downstream signaling, and consistent with the block in K63 and/or M1 chain formation, DMF inhibits NFκB and ERK1/2 activation, resulting in a loss of pro-inflammatory cytokine production. Together these results reveal a new molecular target for DMF and show that a clinically approved drug inhibits M1 and K63 chain formation in TLR induced signaling complexes. Selective targeting of E2s may therefore be a viable strategy for autoimmunity.

  3. LL-37-derived membrane-active FK-13 analogs possessing cell selectivity, anti-biofilm activity and synergy with chloramphenicol and anti-inflammatory activity.

    PubMed

    Rajasekaran, Ganesan; Kim, Eun Young; Shin, Song Yub

    2017-05-01

    Although the human-derived antimicrobial peptide (AMP) LL-37 has potent antimicrobial and anti-inflammatory activities, its therapeutic application is limited by its low cell selectivity and high production cost due to its large size. To overcome these problems, we tried to develop novel LL-37-derived short α-helical AMPs with improved cell selectivity and without a significant loss of anti-inflammatory activity relative to that of parental LL-37. Using amino acid substitution, we designed and synthesized a series of FK13 analogs based on the sequence of the 13-meric short FK13 peptide (residues 17-29 of LL-37) that has been identified as the region responsible for the antimicrobial activity of LL-37. Among the designed FK13 analogs, FK-13-a1 and FK-13-a7 showed high cell selectivity and retained the anti-inflammatory activity. The therapeutic index (a measure of cell selectivity) of FK-13-a1 and FK-13-a7 was 6.3- and 2.3-fold that of parental LL-37, respectively. Furthermore, FK-13-a1 and FK-13-a7 displayed more potent antimicrobial activity against antibiotic-resistant bacteria including MRSA, MDRPA, and VREF, than did LL-37. In addition, FK-13-a1 and FK-13-a7 exhibited greater synergistic effects with chloramphenicol against MRSA and MDRPA and were more effective anti-biofilm agents against MDRPA than LL-37 was. Moreover, FK-13-a1 and FK-13-a7 maintained their activities in the presence of physiological salts and human serum. SYTOX green uptake, membrane depolarization and killing kinetics revealed that FK13-a1 and FK13-a7 kills microbial cells by permeabilizing the cell membrane and damaging membrane integrity. Taken together, our results suggest that FK13-a1 and FK13-a7 can be developed as novel antimicrobial/anti-inflammatory agents. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Anti-inflammatory activity of traditional Chinese medicinal herbs.

    PubMed

    Pan, Min-Hsiung; Chiou, Yi-Shiou; Tsai, Mei-Ling; Ho, Chi-Tang

    2011-10-01

    Accumulating epidemiological and clinical evidence shows that inflammation is an important risk factor for various human diseases. Thus, suppressing chronic inflammation has the potential to delay, prevent, and control various chronic diseases, including cerebrovascular, cardiovascular, joint, skin, pulmonary, blood, lymph, liver, pancreatic, and intestinal diseases. Various natural products from traditional Chinese medicine (TCM) have been shown to safely suppress proinflammatory pathways and control inflammation-associated disease. In vivo and/or in vitro studies have demonstrated that anti-inflammatory effects of TCM occur by inhibition of the expression of master transcription factors (for example, nuclear factor-κB (NF-κB)), pro-inflammatory cytokines (for example, tumor necrosis factor-α (TNF-α), chemokines (for example, chemokine (C-C motif) ligand (CCL)-24), intercellular adhesion molecule expression and pro-inflammatory mediators (for example, inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX2)). However, a handful of review articles have focused on the anti-inflammatory activities of TCM and explore their possible mechanisms of action. In this review, we summarize recent research attempting to identify the anti-inflammatory constituents of TCM and their molecular targets that may create new opportunities for innovation in modern pharmacology.

  5. Indolyl-isoxazolidines attenuate LPS-stimulated pro-inflammatory cytokines and increase survival in a mouse model of sepsis: Identification of potent lead.

    PubMed

    Singh, Gagandeep; Singh, Gurjit; Bhatti, Rajbir; Gupta, Mehak; Kumar, Ajay; Sharma, Ankita; Singh Ishar, Mohan Paul

    2018-06-10

    A library of indolyl-isoxazolidines (6-9) has been synthesized by regio- and stereoselective microwave irradiated 1,3-dipolar cycloadditions of C-(3-indolyl)-N-phenylnitrone (2') with variedly substituted dipolarophiles (3'-5') and screened for their anti-inflammatory activities through inhibition of pro-inflammatory cytokines such as TNF-α and IL-6. Amongst the evaluated compounds (6-9), bicyclic isoxazolidine (9a) was found to exhibit significant inhibitory potential against LPS induced human IL-6 and TNF-α in THP-1 cells. Compound 9a was further assessed for in vivo analgesic and anti-inflammatory activities via acetic acid induced writhing and carrageenan induced paw edema models in mice, respectively. The results showed that compound possesses potent anti-inflammatory-analgesic activity comparable to indomethacin and did not show toxicity up to a 2000 mg kg -1 dose as evidenced by histopathological studies. Consequently, the most active compound 9a was also evaluated against LPS-induced septic death and exhibited a significant protection in in vivo mouse model. Taken all together, the results suggest that the compound 9a is able to attenuate pro-inflammatory cytokines such as IL-6 and TNF-α; accelerate resolution of inflammation, and also increased survival rate of septic mice. Therefore, these "lead" isoxazolidines can be used as promising candidate for further analgesic/anti-inflammatory drug design and development. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  6. Macrophage Pro-Inflammatory Response to Francisella novicida Infection Is Regulated by SHIP

    PubMed Central

    Parsa, Kishore V. L; Ganesan, Latha P; Rajaram, Murugesan V. S; Gavrilin, Mikhail A; Balagopal, Ashwin; Mohapatra, Nrusingh P; Wewers, Mark D; Schlesinger, Larry S; Gunn, John S; Tridandapani, Susheela

    2006-01-01

    Francisella tularensis, a Gram-negative facultative intracellular pathogen infecting principally macrophages and monocytes, is the etiological agent of tularemia. Macrophage responses to F. tularensis infection include the production of pro-inflammatory cytokines such as interleukin (IL)-12, which is critical for immunity against infection. Molecular mechanisms regulating production of these inflammatory mediators are poorly understood. Herein we report that the SH2 domain-containing inositol phosphatase (SHIP) is phosphorylated upon infection of primary murine macrophages with the genetically related F. novicida, and negatively regulates F. novicida–induced cytokine production. Analyses of the molecular details revealed that in addition to activating the MAP kinases, F. novicida infection also activated the phosphatidylinositol 3-kinase (PI3K)/Akt pathway in these cells. Interestingly, SHIP-deficient macrophages displayed enhanced Akt activation upon F. novicida infection, suggesting elevated PI3K-dependent activation pathways in absence of SHIP. Inhibition of PI3K/Akt resulted in suppression of F. novicida–induced cytokine production through the inhibition of NFκB. Consistently, macrophages lacking SHIP displayed enhanced NFκB-driven gene transcription, whereas overexpression of SHIP led to decreased NFκB activation. Thus, we propose that SHIP negatively regulates F. novicida–induced inflammatory cytokine response by antagonizing the PI3K/Akt pathway and suppressing NFκB-mediated gene transcription. A detailed analysis of phosphoinositide signaling may provide valuable clues for better understanding the pathogenesis of tularemia. PMID:16848641

  7. The ratios of pro-inflammatory to anti-inflammatory cytokines in the serum of chronic periodontitis patients with and without type 2 diabetes and/or smoking habit.

    PubMed

    Miranda, Tamires Szeremeske; Heluy, Sílvia Lacerda; Cruz, Daniele Ferreira; da Silva, Hélio Doyle Pereira; Feres, Magda; Figueiredo, Luciene Cristina; Duarte, Poliana Mendes

    2018-05-08

    This study assessed the impact of chronic periodontitis (CP) and CP associated with type 2 diabetes mellitus (DM) and/or smoking on the serum ratios of pro- to anti-inflammatory cytokines. Subjects were assigned into one of the following groups: control (n = 25, non-diabetic non-smokers with no history of periodontitis), CP (n = 26, non-diabetic non-smokers with CP), DMCP (n = 30, non-smokers with DM and CP), SCP (n = 27, non-diabetic smokers with CP), and SDMCP (n = 22, smokers with type 2 DM and CP). Serum levels of 18 cytokines were measured using multiplex immunoassays. Six ratios of pro-inflammatory to anti-inflammatory cytokines were significantly higher in the CP group than in the control group (p < 0.05). Eleven, seventeen and nine ratios of pro-inflammatory to anti-inflammatory cytokines were significantly higher in the DMCP, SCP and SDMCP groups than in the control group, respectively (p < 0.05). The SCP group presented higher serum ratios of tumor necrosis factor (TNF)-α/interleukin (IL)-4, TNF-α/IL-5, IL-17/IL-13 and IL-6/IL-13 (p < 0.05) than the CP group. Cluster analysis revealed a relevant cluster composed of ten cytokines (IL-17, IL-23, interferon-γ, IL-12, IL-1β, IL-2, IL-21, IL-6, IL-4 and granulocyte-macrophage colony-stimulating factor [GM-CSF]) in the serum of subjects from the DMCP group. The ratios of pro- to anti-inflammatory cytokines shift to favor a pro-inflammatory status in the serum of patients with CP and even more when CP is associated with one or both risk factors. CP and CP associated with hyperglycemia and/or smoking might contribute to a systemic inflammatory burden and increased risk of systemic complications.

  8. Adipose Tissue as an Endocrine Organ: An Update on Pro-inflammatory and Anti-inflammatory Microenvironment.

    PubMed

    Smitka, Kvido; Marešová, Dana

    2015-01-01

    Adipose tissue is recognized as an active endocrine organ that produces a number of endocrine substances referred to as "adipokines" including leptin, adiponectin, adipolin, visfatin, omentin, tumour necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), resistin, pigment epithelium-derived factor (PEDF), and progranulin (PGRN) which play an important role in the food intake regulation and significantly influence insulin sensitivity and in some cases directly affect insulin resistance in skeletal muscle, liver, and adipose tissue. The review summarizes current knowledge about adipose tissue-derived hormones and their influence on energy homeostasis regulation. The possible therapeutic potential of these adipokines in the treatment of insulin resistance, endothelial dysfunction, a pro-inflammatory response, obesity, eating disorders, progression of atherosclerosis, type 1 diabetes, and type 2 diabetes is discussed.

  9. [The degree of chronic renal failure is associated with the rate of pro-inflammatory cytokines, hyperhomocysteinemia and with oxidative stress].

    PubMed

    Tbahriti, H F; Messaoudi, A; Kaddous, A; Bouchenak, M; Mekki, K

    2014-06-01

    To evaluate pro-inflammatory cytokines, homocysteinemia and markers of oxidative status in the course of chronic renal failure. One hundred and two patients (male/female: 38/64; age: 45±07 years) with chronic renal failure were divided into 4 groups according to the National Kidney Foundation classification. They included 28 primary stage renal failure patients, 28 moderate stage renal failure, 28 severe stage renal failure and 18 end stage renal failure. The inflammatory status was evaluated by the determination of pro-inflammatory cytokines (tumor necrosis factor-α, interleukin-1β, interleukin-6) and total homocysteine. Pro-oxidant status was assessed by assaying thiobarbituric acid reactive substances, hydroperoxides, and protein carbonyls. Antioxidant defence was performed by analysis of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase. Inflammatory markers were elevated in the end stage renal failure group compared to the other groups (P<0.001). Indeed, an increase in thiobarbituric acid reactive substances, hydroperoxides and protein carbonyls was noted in the end stage renal failure group in comparison with the other groups (P<0.001), while the levels of antioxidants enzymes activity were decreased in the study population (P<0.001). Impaired renal function is closely associated with the elevation of inflammatory markers leading to both increased markers of oxidative stress and decreased antioxidant defense. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  10. LIGHT is involved in the pathogenesis of rheumatoid arthritis by inducing the expression of pro-inflammatory cytokines and MMP-9 in macrophages

    PubMed Central

    Kim, Won-Jung; Kang, Yoon-Joong; Koh, Eun-Mi; Ahn, Kwang-Sung; Cha, Hoon-Suk; Lee, Won-Ha

    2005-01-01

    Macrophages play a crucial role in the perpetuation of inflammation and irreversible cartilage damage during the development of rheumatoid arthritis (RA). LIGHT (TNFSF14) and its receptor TR2 (TNFRSF14) are known to have pro-inflammatory activities in foam cells of atherosclerotic plaques. We tested a hypothesis that LIGHT and TR2 are involved in activation of monocyte/macrophages in RA synovium. Immunohistochemical analysis of RA synovial tissue samples revealed that both LIGHT and TR2 are expressed in CD68 positive macrophages. In contrast, synovial tissue samples from osteoarthritis (OA) patients failed to reveal the expression of LIGHT. Expression of TR2 in RA synovial macrophages was also detected using flow cytometry analysis. To identify the role of LIGHT in the functioning of macrophages in RA, we isolated macrophage enriched cells from RA synovial fluid and stimulated them with LIGHT. LIGHT induced expression of matrix metalloproteinase-9 and pro-inflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-8. These data indicate that LIGHT and TR2 expressed in macrophages are involved in the pathogenesis of RA by inducing the expression pro-inflammatory cytokines and matrix degrading enzymes. PMID:15667572

  11. Cell-free culture supernatant of Bifidobacterium breve CNCM I-4035 decreases pro-inflammatory cytokines in human dendritic cells challenged with Salmonella typhi through TLR activation.

    PubMed

    Bermudez-Brito, Miriam; Muñoz-Quezada, Sergio; Gomez-Llorente, Carolina; Matencio, Esther; Bernal, Maria J; Romero, Fernando; Gil, Angel

    2013-01-01

    Dendritic cells (DCs) constitute the first point of contact between gut commensals and our immune system. Despite growing evidence of the immunomodulatory effects of probiotics, the interactions between the cells of the intestinal immune system and bacteria remain largely unknown. Indeed,, the aim of this work was to determine whether the probiotic Bifidobacterium breve CNCM I-4035 and its cell-free culture supernatant (CFS) have immunomodulatory effects in human intestinal-like dendritic cells (DCs) and how they respond to the pathogenic bacterium Salmonella enterica serovar Typhi, and also to elucidate the molecular mechanisms involved in these interactions. Human DCs were directly challenged with B. breve/CFS, S. typhi or a combination of these stimuli for 4 h. The expression pattern of genes involved in Toll-like receptor (TLR) signaling pathway and cytokine secretion was analyzed. CFS decreased pro-inflammatory cytokines and chemokines in human intestinal DCs challenged with S. typhi. In contrast, the B. breve CNCM I-4035 probiotic strain was a potent inducer of the pro-inflammatory cytokines and chemokines tested, i.e., TNF-α, IL-8 and RANTES, as well as anti-inflammatory cytokines including IL-10. CFS restored TGF-β levels in the presence of Salmonella. Live B.breve and its supernatant enhanced innate immune responses by the activation of TLR signaling pathway. These treatments upregulated TLR9 gene transcription. In addition, CFS was a more potent inducer of TLR9 expression than the probiotic bacteria in the presence of S. typhi. Expression levels of CASP8 and IRAK4 were also increased by CFS, and both treatments induced TOLLIP gene expression. Our results indicate that the probiotic strain B. breve CNCM I-4035 affects the intestinal immune response, whereas its supernatant exerts anti-inflammatory effects mediated by DCs. This supernatant may protect immune system from highly infectious agents such as Salmonella typhi and can down-regulate pro-inflammatory

  12. Cell-Free Culture Supernatant of Bifidobacterium breve CNCM I-4035 Decreases Pro-Inflammatory Cytokines in Human Dendritic Cells Challenged with Salmonella typhi through TLR Activation

    PubMed Central

    Bermudez-Brito, Miriam; Muñoz-Quezada, Sergio; Gomez-Llorente, Carolina; Matencio, Esther; Bernal, Maria J.; Romero, Fernando; Gil, Angel

    2013-01-01

    Dendritic cells (DCs) constitute the first point of contact between gut commensals and our immune system. Despite growing evidence of the immunomodulatory effects of probiotics, the interactions between the cells of the intestinal immune system and bacteria remain largely unknown. Indeed,, the aim of this work was to determine whether the probiotic Bifidobacterium breve CNCM I-4035 and its cell-free culture supernatant (CFS) have immunomodulatory effects in human intestinal-like dendritic cells (DCs) and how they respond to the pathogenic bacterium Salmonella enterica serovar Typhi, and also to elucidate the molecular mechanisms involved in these interactions. Human DCs were directly challenged with B. breve/CFS, S. typhi or a combination of these stimuli for 4 h. The expression pattern of genes involved in Toll-like receptor (TLR) signaling pathway and cytokine secretion was analyzed. CFS decreased pro-inflammatory cytokines and chemokines in human intestinal DCs challenged with S. typhi. In contrast, the B. breve CNCM I-4035 probiotic strain was a potent inducer of the pro-inflammatory cytokines and chemokines tested, i.e., TNF-α, IL-8 and RANTES, as well as anti-inflammatory cytokines including IL-10. CFS restored TGF-β levels in the presence of Salmonella. Live B.breve and its supernatant enhanced innate immune responses by the activation of TLR signaling pathway. These treatments upregulated TLR9 gene transcription. In addition, CFS was a more potent inducer of TLR9 expression than the probiotic bacteria in the presence of S. typhi. Expression levels of CASP8 and IRAK4 were also increased by CFS, and both treatments induced TOLLIP gene expression. Our results indicate that the probiotic strain B. breve CNCM I-4035 affects the intestinal immune response, whereas its supernatant exerts anti-inflammatory effects mediated by DCs. This supernatant may protect immune system from highly infectious agents such as Salmonella typhi and can down-regulate pro-inflammatory

  13. A pro-inflammatory role for Th22 cells in Helicobacter pylori-associated gastritis.

    PubMed

    Zhuang, Yuan; Cheng, Ping; Liu, Xiao-fei; Peng, Liu-sheng; Li, Bo-sheng; Wang, Ting-ting; Chen, Na; Li, Wen-hua; Shi, Yun; Chen, Weisan; Pang, Ken C; Zeng, Ming; Mao, Xu-hu; Yang, Shi-ming; Guo, Hong; Guo, Gang; Liu, Tao; Zuo, Qian-fei; Yang, Hui-jie; Yang, Liu-yang; Mao, Fang-yuan; Lv, Yi-pin; Zou, Quan-ming

    2015-09-01

    Helper T (Th) cell responses are critical for the pathogenesis of Helicobacter pylori-induced gastritis. Th22 cells represent a newly discovered Th cell subset, but their relevance to H. pylori-induced gastritis is unknown. Flow cytometry, real-time PCR and ELISA analyses were performed to examine cell, protein and transcript levels in gastric samples from patients and mice infected with H. pylori. Gastric tissues from interleukin (IL)-22-deficient and wild-type (control) mice were also examined. Tissue inflammation was determined for pro-inflammatory cell infiltration and pro-inflammatory protein production. Gastric epithelial cells and myeloid-derived suppressor cells (MDSC) were isolated, stimulated and/or cultured for Th22 cell function assays. Th22 cells accumulated in gastric mucosa of both patients and mice infected with H. pylori. Th22 cell polarisation was promoted via the production of IL-23 by dendritic cells (DC) during H. pylori infection, and resulted in increased inflammation within the gastric mucosa. This inflammation was characterised by the CXCR2-dependent influx of MDSCs, whose migration was induced via the IL-22-dependent production of CXCL2 by gastric epithelial cells. Under the influence of IL-22, MDSCs, in turn, produced pro-inflammatory proteins, such as S100A8 and S100A9, and suppressed Th1 cell responses, thereby contributing to the development of H. pylori-associated gastritis. This study, therefore, identifies a novel regulatory network involving H. pylori, DCs, Th22 cells, gastric epithelial cells and MDSCs, which collectively exert a pro-inflammatory effect within the gastric microenvironment. Efforts to inhibit this Th22-dependent pathway may therefore prove a valuable strategy in the therapy of H. pylori-associated gastritis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  14. Volatile oil from striped African pepper (Xylopia parviflora, Annonaceae) possesses notable chemopreventive, anti-inflammatory and antimicrobial potential.

    PubMed

    Woguem, Verlaine; Fogang, Hervet P D; Maggi, Filippo; Tapondjou, Léon A; Womeni, Hilaire M; Quassinti, Luana; Bramucci, Massimo; Vitali, Luca A; Petrelli, Dezemona; Lupidi, Giulio; Papa, Fabrizio; Vittori, Sauro; Barboni, Luciano

    2014-04-15

    Fruits of Xylopia parviflora, well known as striped African pepper, are sold in the Cameroonian markets as a flavouring ingredient to make traditional soups. The essential oil hydrodistilled from fruits was analysed for in vitro biological activities, namely cytotoxic, anti-inflammatory, antimicrobial and antioxidant, by MTT, nitric oxide inhibitory assay, agar disc diffusion method, and DPPH and ABTS assays. The essential oil composition, analysed by GC and GC-MS, was dominated by monoterpene hydrocarbons (50.0%) responsible for the pepper odour, such as β-pinene (34.0%) and α-pinene (10.3%). The oil induced a strong inhibitory effect on tumour cells MDA-MB 231 and HCT116, with inhibition values close to those of cisplatin. A dose-dependent decrease in NO production was noted in RAW 264.7 macrophages treated with the oil, revealing a promising anti-inflammatory potential. The essential oil showed a measurable antimicrobial activity against all the species tested, while the radical scavenging activity was low. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Hederagenin Supplementation Alleviates the Pro-Inflammatory and Apoptotic Response to Alcohol in Rats.

    PubMed

    Kim, Gyeong-Ji; Song, Da Hye; Yoo, Han Seok; Chung, Kang-Hyun; Lee, Kwon Jai; An, Jeung Hee

    2017-01-06

    In this study, we determined the effects of hederagenin isolated from Akebia quinata fruit on alcohol-induced hepatotoxicity in rats. Specifically, we investigated the hepatoprotective, anti-inflammatory, and anti-apoptotic effects of hederagenin, as well as the role of AKT and mitogen-activated protein kinase (MAPK) signaling pathways in ethanol-induced liver injury. Experimental animals were randomly divided into three groups: normal (sham), 25% ethanol, and 25% ethanol + hederagenin (50 mg/kg/day). Each group was orally administered the respective treatments once per day for 21 days. Acetaldehyde dehydrogenase-2 mRNA expression was higher and alcohol dehydrogenase mRNA expression was lower in the ethanol + hederagenin group than those in the ethanol group. Pro-inflammatory cytokines, including TNF-α, IL-6, and cyclooxygenase-2, significantly increased in the ethanol group, but these increases were attenuated by hederagenin. Moreover, Western blot analysis showed increased expression of the apoptosis-associated protein, Bcl-2, and decreased expression of Bax and p53 after treatment with hederagenin. Hederagenin treatment attenuated ethanol-induced increases in activated p38 MAPK and increased the levels of phosphorylated AKT and ERK. Hederagenin alleviated ethanol-induced liver damage through anti-inflammatory and anti-apoptotic activities. These results suggest that hederagenin is a potential candidate for preventing alcoholic liver injury.

  16. Minocycline enhances the mesenchymal stromal/stem cell pro-healing phenotype in triple antimicrobial-loaded hydrogels.

    PubMed

    Guerra, Alberto Daniel; Rose, Warren E; Hematti, Peiman; Kao, W John

    2017-03-15

    Mesenchymal stromal/stem cells (MSCs) have demonstrated pro-healing properties including an anti-inflammatory cytokine profile and the promotion of angiogenesis via expression of growth factors in pre-clinical models. MSCs encapsulated in poly(ethylene glycol) diacrylate (PEGdA) and thiolated gelatin poly(ethylene glycol) (Gel-PEG-Cys) crosslinked hydrogels have led to controlled cellular presentation at wound sites with favorable wound healing outcomes. However, the therapeutic potential of MSC-loaded hydrogels may be limited by non-specific protein adsorption on the delivery matrix that could facilitate the initial adhesion of microorganisms and subsequent virulent biofilm formation. Antimicrobials loaded concurrently in the hydrogels with MSCs could reduce microbial bioburden and promote healing, but the antimicrobial effect on the MSC wound healing capacity and the antibacterial efficacy of the hydrogels is unknown. We demonstrate that minocycline specifically induces a favorable change in MSC migration capacity, proliferation, gene expression, extracellular matrix (ECM) attachment, and adhesion molecule and growth factor release with subsequent increased angiogenesis. We then demonstrate that hydrogels loaded with MSCs, minocycline, vancomycin, and linezolid can significantly decrease bacterial bioburden. Our study suggests that minocycline can serve as a dual mechanism for the regenerative capacity of MSCs and the reduction of bioburden in triple antimicrobial-loaded hydrogels. Wound healing is a complex biological process that can be hindered by bacterial infection, excessive inflammation, and inadequate microvasculature. In this study, we develop a new formulation of poly(ethylene glycol) diacrylate and thiolated gelatin poly(ethylene glycol) crosslinked hydrogels loaded with minocycline, vancomycin, linezolid, and mesenchymal stromal/stem cells that induces a favorable wound healing phenotype in mesenchymal stromal/stem cells and prevents bacterial

  17. Suppression of pro-inflammatory and pro-survival biomarkers in oral cancer patients consuming a black raspberry phytochemical-rich troche

    PubMed Central

    Knobloch, Thomas J.; Uhrig, Lana K.; Pearl, Dennis K.; Casto, Bruce C.; Warner, Blake M.; Clinton, Steven K.; Sardo-Molmenti, Christine L.; Ferguson, Jeanette M.; Daly, Brett T.; Riedl, Kenneth; Schwartz, Steven J.; Vodovotz, Yael; Buchta, Anthony J.; Schuller, David E.; Ozer, Enver; Agrawal, Amit; Weghorst, Christopher M.

    2016-01-01

    Black raspberries (BRBs) demonstrate potent inhibition of aerodigestive tract carcinogenesis in animal models. However, translational clinical trials evaluating the ability of BRB phytochemicals to impact molecular biomarkers in the oral mucosa remain limited. The present phase 0 study addresses a fundamental question for oral cancer food-based prevention: Do BRB phytochemicals successfully reach the targeted oral tissues and reduce pro-inflammatory and anti-apoptotic gene expression profiles? Patients with biopsy-confirmed oral squamous cell carcinomas (OSCCs) administered oral troches containing freeze-dried BRB powder from the time of enrollment to the date of curative intent surgery (13.9 ± 1.27 days). Transcriptional biomarkers were evaluated in patient-matched OSCCs and non-involved high at-risk mucosa (HARM) for BRB-associated changes. Significant expression differences between baseline OSCC and HARM tissues were confirmed using a panel of genes commonly deregulated during oral carcinogenesis. Following BRB troche administration, the expression of pro-survival genes (AURKA, BIRC5, EGFR) and pro-inflammatory genes (NFKB1, PTGS2) were significantly reduced. There were no BRB-associated Grade 3–4 toxicities or adverse events and 79.2% (N = 30) of patients successfully completed the study with high levels of compliance (97.2%). The BRB phytochemicals cyanidin-3-rutinoside and cyanidin-3-xylosylrutinoside were detected in all OSCC tissues analyzed, demonstrating that bioactive components were successfully reaching targeted OSCC tissues. We confirmed that hallmark anti-apoptotic and pro-inflammatory molecular biomarkers were over-expressed in OSCCs and that their gene expression was significantly reduced following BRB troche administration. Since these molecular biomarkers are fundamental to oral carcinogenesis and are modifiable, they may represent emerging biomarkers of molecular efficacy for BRB-mediated oral cancer chemoprevention. PMID:26701664

  18. Fractionation, amino acid profiles, antimicrobial and free radical scavenging activities of Citrullus lanatus seed protein.

    PubMed

    Dash, Priyanka; Ghosh, Goutam

    2017-12-01

    In the present study, a modified Osborne fractionation method was followed to isolate albumin (C alb ), globulin (C glo ), prolamin (C pro ) and glutelin (C glu ) successively from seeds of Citrullus lanatus (watermelon). This research work was undertaken to investigate the antimicrobial and antioxidant activities of isolated protein fractions of C. lanatus seed. Amino acid composition and molecular weight distribution were determined to establish their relationship with antimicrobial and antioxidant activity. Among all the fractions, C pro was found to be most effective against A. baumannii followed by C alb and C glo . The results showed that growth of inhibition of these protein fractions differ significantly from each other (p ≤ 0.05). In view of antioxidant potential, C glo exhibited strongest antioxidant capacity while C glu showed weakest antioxidant potential.

  19. Association between the Pro12Ala polymorphism of peroxisome proliferator-activated receptor gamma 2 and inflammatory bowel disease: a meta-analysis.

    PubMed

    Zhang, Zhi-Feng; Yang, Ning; Zhao, Gang; Zhu, Lei; Wang, Li-Xia

    2012-01-01

    Peroxisome proliferator-activated receptor gamma (PPARγ), a nuclear receptor, has been implicated playing a role in the development of inflammatory bowel disease (IBD). However, previous studies evaluating the association between the PPARγ2 Pro12Ala polymorphism and IBD are inconsistent. We performed a meta-analysis to determine whether the PPARγ2 Pro12Ala mutation was associated with the presence of IBD. Electronic databases were searched for case-control studies evaluating the association between the Pro12Ala mutation and the presence of IBD. Effects were summarized with the methods recommended by the Cochrane Collaboration. A total of 7 studies including 1002 ulcerative colitis (UC) cases, 1090 Crohǹs disease (CD) cases and 1983 controls were involved in this meta-analysis. In the overall analysis, no significant association of this polymorphism with UC or CD was found. In the subgroup analyses in different populations, AlaAla genotype seemed to protect the European Caucasian population against the development of CD (Pro vs Ala: OR = 1.135, 95%CI = 0.951-1.354, P = 0.162, Bon = 1.000; ProPro vs ProAla: OR = 1.042, 95%CI = 0.852-1.273, P = 0.690, Bon = 1.000; ProPro vs AlaAla: OR = 2.379, 95%CI = 1.110-5.100, P = 0.026, Bon = 0.156; ProAla vs AlaAla: OR = 2.315, 95%CI = 1.064-5.037, P = 0.034, Bon = 0.204; Pro homozygotes vs Ala positives: OR = 1.094, 95%CI = 0.899-1.330, P = 0.371, Bon = 1.000; Pro positives vs Ala homozygotes: OR = 2.360, 95%CI = 1.103-5.053, P = 0.027, Bon = 0.162; heterozygotes vs all homozygotes: OR = 0.976, 95%CI = 0.799-1.192, P = 0.809, Bon = 1.000). There was no significant association of this polymorphism with UC or CD in the East Asian population and the Turkish population. AlaAla genotype may be a protective factor in the European Caucasian population against the development of CD in a recessive way.

  20. Antimicrobial and Attractant Roles for Chemerin in the Oral Cavity during Inflammatory Gum Disease

    PubMed Central

    Godlewska, Urszula; Brzoza, Piotr; Sroka, Aneta; Majewski, Pawel; Jentsch, Holger; Eckert, Martin; Eick, Sigrun; Potempa, Jan; Zabel, Brian A.; Cichy, Joanna

    2017-01-01

    Periodontal inflammation is one of the most common chronic inflammatory conditions in humans. Despite recent advances in identifying and characterizing oral microbiota dysbiosis in the pathogenesis of gum disease, just how host factors maintain a healthy homeostatic oral microbial community or prevent the development of a pathogenic oral microbiota remains poorly understood. An important determinant of microbiota fate is local antimicrobial proteins. Here, we report that chemoattractant protein chemerin, which we recently identified as a potent endogenous antimicrobial agent in body barriers such as the skin, is present in the oral cavity under homeostatic and inflammatory conditions. Chemerin and a chemerin-derived antimicrobial peptide are bactericidal against select bacteria strategically positioned in dental biofilm. Gingival crevicular samples from patients with gingivitis but not periodontitis contain abundant bioactive chemerin capable of inducing CMKLR1-dependent leukocyte migration. Gingipains secreted by the periodontopathogen P. gingivalis inactivate chemerin. Together, these data suggest that as an antimicrobial agent and leukocyte chemoattractant, chemerin likely contributes to antimicrobial immune defense in the oral cavity. PMID:28424689

  1. Antimicrobial and Attractant Roles for Chemerin in the Oral Cavity during Inflammatory Gum Disease.

    PubMed

    Godlewska, Urszula; Brzoza, Piotr; Sroka, Aneta; Majewski, Pawel; Jentsch, Holger; Eckert, Martin; Eick, Sigrun; Potempa, Jan; Zabel, Brian A; Cichy, Joanna

    2017-01-01

    Periodontal inflammation is one of the most common chronic inflammatory conditions in humans. Despite recent advances in identifying and characterizing oral microbiota dysbiosis in the pathogenesis of gum disease, just how host factors maintain a healthy homeostatic oral microbial community or prevent the development of a pathogenic oral microbiota remains poorly understood. An important determinant of microbiota fate is local antimicrobial proteins. Here, we report that chemoattractant protein chemerin, which we recently identified as a potent endogenous antimicrobial agent in body barriers such as the skin, is present in the oral cavity under homeostatic and inflammatory conditions. Chemerin and a chemerin-derived antimicrobial peptide are bactericidal against select bacteria strategically positioned in dental biofilm. Gingival crevicular samples from patients with gingivitis but not periodontitis contain abundant bioactive chemerin capable of inducing CMKLR1-dependent leukocyte migration. Gingipains secreted by the periodontopathogen P. gingivalis inactivate chemerin. Together, these data suggest that as an antimicrobial agent and leukocyte chemoattractant, chemerin likely contributes to antimicrobial immune defense in the oral cavity.

  2. Naringin attenuates the development of carrageenan-induced acute lung inflammation through inhibition of NF-κb, STAT3 and pro-inflammatory mediators and enhancement of IκBα and anti-inflammatory cytokines.

    PubMed

    Ahmad, Sheikh Fayaz; Attia, Sabry M; Bakheet, Saleh A; Zoheir, Khairy M A; Ansari, Mushtaq Ahmad; Korashy, Hesham M; Abdel-Hamied, Hala E; Ashour, Abdelkader E; Abd-Allah, Adel R A

    2015-04-01

    Naringin has been reported to possess diverse pharmacological properties, including anti-arthritic and anti-inflammatory activities. The aim of the present study was to determine the potential anti-inflammatory effect of naringin in a mouse model of carrageenan-induced pleurisy. A single dose of naringin (40 and 80 mg/kg) was administered per oral (p.o.) 1 h before carrageenan (Cg) administration. Pro- and anti-inflammatory cytokines were analysed in pleural fluid. We also assessed the effects of naringin on the expression levels of iNOS, inducible cyclooxygenase isoform (COX-2), ICAM-1, MIP-2, PGE2, STAT3, TGF-β1, nuclear factor kappa B (NF-κB) and inhibitor of kappa B (IκBα) in lung tissue. The histological examinations revealed anti-inflammatory effect of naringin while Cg group deteriorated. Naringin downregulated Th1 and upregulated Th2 cytokines. Western blot analyses revealed increased protein expression of NF-κB, STAT3 and COX-2 and decreased IκBα in response to Cg treatment, which were reversed by the treatment with naringin. In the Cg group, mRNA expression levels of pro-inflammatory mediators upregulated and anti-inflammatory mediators downregulated. Naringin reversed these actions.

  3. The effect of pro-inflammatory cytokines on immunophenotype, differentiation capacity and immunomodulatory functions of human mesenchymal stem cells.

    PubMed

    Pourgholaminejad, Arash; Aghdami, Nasser; Baharvand, Hossein; Moazzeni, Seyed Mohammad

    2016-09-01

    Mesenchymal stem cells (MSCs), as cells with potential clinical utilities, have demonstrated preferential incorporation into inflammation sites. Immunophenotype and immunomodulatory functions of MSCs could alter by inflamed-microenvironments due to the local pro-inflammatory cytokine milieu. A major cellular mediator with specific function in promoting inflammation and pathogenicity of autoimmunity are IL-17-producing T helper 17 (Th17) cells that polarize in inflamed sites in the presence of pro-inflammatory cytokines such as Interleukin-1β (IL-1β), IL-6 and IL-23. Since MSCs are promising candidate for cell-based therapeutic strategies in inflammatory and autoimmune diseases, Th17 cell polarizing factors may alter MSCs phenotype and function. In this study, human bone-marrow-derived MSCs (BM-MSC) and adipose tissue-derived MSCs (AD-MSC) were cultured with or without IL-1β, IL-6 and IL-23 as pro-inflammatory cytokines. The surface markers and their differentiation capacity were measured in cytokine-untreated and cytokine-treated MSCs. MSCs-mediated immunomodulation was analyzed by their regulatory effects on mixed lymphocyte reaction (MLR) and the level of IL-10, TGF-β, IL-4, IFN-γ and TNF-α production as immunomodulatory cytokines. Pro-inflammatory cytokines showed no effect on MSCs morphology, immunophenotype and co-stimulatory molecules except up-regulation of CD45. Adipogenic and osteogenic differentiation capacity increased in CD45+ MSCs. Moreover, cytokine-treated MSCs preserved the suppressive ability of allogeneic T cell proliferation and produced higher level of TGF-β and lower level of IL-4. We concluded pro-inflammatory cytokines up-regulate the efficacy of MSCs in cell-based therapy of degenerative, inflammatory and autoimmune disorders. Copyright © 2016. Published by Elsevier Ltd.

  4. Kaempferol protects ethanol-induced gastric ulcers in mice via pro-inflammatory cytokines and NO.

    PubMed

    Li, Qinchen; Hu, Xinxin; Xuan, Yanhan; Ying, Jianghua; Fei, Yujia; Rong, Jielu; Zhang, Yong; Zhang, Jian; Liu, Chunyan; Liu, Zheng

    2018-03-01

    Gastric ulcers (GUs) are common pathologies that affect many people around the world. Excessive alcohol consumption is one of the main causes of GUs; however, there are still lack of effective drugs for the prevention or therapy of GUs. In this study, we evaluated the protective effects and possible mechanisms of kaempferol (KAE) against acute ethanol-induced lesions to the gastric mucosa in mice. Fasted mice were orally given vehicle (0.9% saline), omeprazole (20 mg/kg), or KAE (40, 80, or 160 mg/kg) for 1 h in different experimental sets prior to the establishment of the GU model by challenge with absolute ethanol (10 ml/kg). Animals were euthanized 1 h after ethanol intake, and their plasma and stomach tissues were subject to further examination. Macroscopic and microscopic lesions, and immunological and biochemical parameters were observed. The effects of inflammation were investigated using the following indicators: tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, myeloperoxidase (MPO), and nitric oxide (NO). Results showed that KAE significantly decreased the ulcer index, increased the preventive index, completely protected the mucosa from lesions, and preserved gastric mucosal glycoprotein. KAE decreased MPO activity and pro-inflammatory cytokine (TNF-α, and IL-1β) levels, and improved NO levels. The gastroprotective activity of KAE might be attributed to the preservation of gastric mucous glycoproteins levels, thus by inhibiting neutrophil accumulation and MPO activity, adjusting the levels of pro-inflammatory cytokines, and improving NO production.

  5. Interleukin 10 inhibits pro-inflammatory cytokine responses and killing of Burkholderia pseudomallei.

    PubMed

    Kessler, Bianca; Rinchai, Darawan; Kewcharoenwong, Chidchamai; Nithichanon, Arnone; Biggart, Rachael; Hawrylowicz, Catherine M; Bancroft, Gregory J; Lertmemongkolchai, Ganjana

    2017-02-20

    Melioidosis, caused by Burkholderia pseudomallei, is endemic in northeastern Thailand and Northern Australia. Severe septicemic melioidosis is associated with high levels of pro-inflammatory cytokines and is correlated with poor clinical outcomes. IL-10 is an immunoregulatory cytokine, which in other infections can control the expression of pro-inflammatory cytokines, but its role in melioidosis has not been addressed. Here, whole blood of healthy seropositive individuals (n = 75), living in N. E. Thailand was co-cultured with B. pseudomallei and production of IL-10 and IFN-γ detected and the cellular sources identified. CD3 - CD14 + monocytes were the main source of IL-10. Neutralization of IL-10 increased IFN-γ, IL-6 and TNF-α production and improved bacteria killing. IFN-γ production and microbicidal activity were impaired in individuals with diabetes mellitus (DM). In contrast, IL-10 production was unimpaired in individuals with DM, resulting in an IL-10 dominant cytokine balance. Neutralization of IL-10 restored the IFN-γ response of individuals with DM to similar levels observed in healthy individuals and improved killing of B. pseudomallei in vitro. These results demonstrate that monocyte derived IL-10 acts to inhibit potentially protective cell mediated immune responses against B. pseudomallei, but may also moderate the pathological effects of excessive cytokine production during sepsis.

  6. Diversity, Antimicrobial Action and Structure-Activity Relationship of Buffalo Cathelicidins

    PubMed Central

    Brahma, Biswajit; Patra, Mahesh Chandra; Karri, Satyanagalakshmi; Chopra, Meenu; Mishra, Purusottam; De, Bidhan Chandra; Kumar, Sushil; Mahanty, Sourav; Thakur, Kiran; Poluri, Krishna Mohan; Datta, Tirtha Kumar; De, Sachinandan

    2015-01-01

    Cathelicidins are an ancient class of antimicrobial peptides (AMPs) with broad spectrum bactericidal activities. In this study, we investigated the diversity and biological activity of cathelicidins of buffalo, a species known for its disease resistance. A series of new homologs of cathelicidin4 (CATHL4), which were structurally diverse in their antimicrobial domain, was identified in buffalo. AMPs of newly identified buffalo CATHL4s (buCATHL4s) displayed potent antimicrobial activity against selected Gram positive (G+) and Gram negative (G-) bacteria. These peptides were prompt to disrupt the membrane integrity of bacteria and induced specific changes such as blebing, budding, and pore like structure formation on bacterial membrane. The peptides assumed different secondary structure conformations in aqueous and membrane-mimicking environments. Simulation studies suggested that the amphipathic design of buCATHL4 was crucial for water permeation following membrane disruption. A great diversity, broad-spectrum antimicrobial action, and ability to induce an inflammatory response indicated the pleiotropic role of cathelicidins in innate immunity of buffalo. This study suggests short buffalo cathelicidin peptides with potent bactericidal properties and low cytotoxicity have potential translational applications for the development of novel antibiotics and antimicrobial peptidomimetics. PMID:26675301

  7. Immuno-modulation and anti-inflammatory benefits of antibiotics: the example of tilmicosin.

    PubMed

    Buret, André G

    2010-01-01

    Exaggerated immune responses, such as those implicated in severe inflammatory reactions, are costly to the metabolism. Inflammation and pro-inflammatory mediators negatively affect production in the food animal industry by reducing growth, feed intake, reproduction, milk production, and metabolic health. An ever-increasing number of findings have established that antibiotics, macrolides in particular, may generate anti-inflammatory effects, including the modulation of pro-inflammatory cytokines and the alteration of neutrophil function. The effects are time- and dose-dependent, and the mechanisms responsible for these phenomena remain incompletely understood. Recent studies, mostly using the veterinary macrolide tilmicosin, may have shed new light on the mode of action of some macrolides and their anti-inflammatory properties. Indeed, research findings demonstrate that this compound, amongst others, induces neutrophil apoptosis, which in turn provides anti-inflammatory benefits. Studies using tilmicosin model systems in vitro and in vivo demonstrate that this antibiotic has potent immunomodulatory effects that may explain why at least parts of its clinical benefits are independent of anti-microbial effects. More research is needed, using this antibiotic and others that may have similar properties, to clarify the biological mechanisms responsible for antibiotic-induced neutrophil apoptosis, and how this, in turn, may provide enhanced clinical benefits. Such studies may help establish a rational basis for the development of novel, efficacious, anti-microbial compounds that generate anti-inflammatory properties in addition to their antibacterial effects.

  8. Evaluation of wound healing, anti-microbial and antioxidant potential of Pongamia pinnata in wistar rats.

    PubMed

    Dwivedi, Deepak; Dwivedi, Mona; Malviya, Sourabh; Singh, Vinod

    2017-01-01

    To investigate wound healing, antimicrobial and antioxidant activity of leaf extract of Pongamia Pinnata . Methanolic extracts of P. pinnata leaf were studied for wound healing efficiency, and was assessed by the rate of wound contraction, tensile strength, breaking strength, hydroxyproline and hexosamine content, along with its effect on pro-inflammatory and anti-inflammatory cytokines was assessed using excision and incision model of wound repair in Wistar rats. Antimicrobial activity against ten microorganisms was also assessed. In vivo antioxidant activity was performed to understand the mechanism of wound healing potency. The results indicated that P. pinnata extract has potent wound healing capacity as evident from the wound contraction and increased tensile strength. Hydroxyproline and hexosamine expression were also well correlated with the healing pattern observed. extract exhibited significant antimicrobial activity, Staphylococcus aureus, Staphylococcus pyogenes, Staphylococcus epidermidis, Escherichia coli, Micrococcus luteus, Enterobacter aerogenes, Salmonella typhi, Pseudomonas aeruginosa, Candida albicans, Aspergillus niger also indicate that P. pinnata posses potent antioxidant activity by inhibition lipid peroxidation, reduce glutathione, superoxide dismutase level and increases catalase activity. During early wound healing phase TNF-α and IL-6 level were found to be up-regulated by P. pinnata treatment. Increased wound contraction and tensile strength, augmented hydroxyproline and hexosamine content, antioxidative activity and moderate antimicrobial activity support the early wound healing exhibited by P. pinnata . Induction in cytokine production may be one of the mechanisms in accelerating the wound healing. Results suggest that P. pinnata may be useful in tropical management of wound healing.

  9. MiR-29b antagonizes the pro-inflammatory tumor-promoting activity of multiple myeloma-educated dendritic cells

    PubMed Central

    Botta, C; Cucè, M; Pitari, M R; Caracciolo, D; Gullà, A; Morelli, E; Riillo, C; Biamonte, L; Gallo Cantafio, M E; Prabhala, R; Mignogna, C; Di Vito, A; Altomare, E; Amodio, N; Di Martino, M T; Correale, P; Rossi, M; Giordano, A; Munshi, N C; Tagliaferri, P; Tassone, P

    2018-01-01

    Dendritic cells (DCs) have a key role in regulating tumor immunity, tumor cell growth and drug resistance. We hypothesized that multiple myeloma (MM) cells might recruit and reprogram DCs to a tumor-permissive phenotype by changes within their microRNA (miRNA) network. By analyzing six different miRNA-profiling data sets, miR-29b was identified as the only miRNA upregulated in normal mature DCs and significantly downregulated in tumor-associated DCs. This finding was validated in primary DCs co-cultured in vitro with MM cell lines and in primary bone marrow DCs from MM patients. In DCs co-cultured with MM cells, enforced expression of miR-29b counteracted pro-inflammatory pathways, including signal transducer and activator of transcription 3 and nuclear factor-κB, and cytokine/chemokine signaling networks, which correlated with patients’ adverse prognosis and development of bone disease. Moreover, miR-29b downregulated interleukin-23 in vitro and in the SCID-synth-hu in vivo model, and antagonized a Th17 inflammatory response. All together, these effects translated into strong anti-proliferative activity and reduction of genomic instability of MM cells. Our study demonstrates that MM reprograms the DCs functional phenotype by downregulating miR-29b whose reconstitution impairs DCs ability to sustain MM cell growth and survival. These results underscore miR-29b as an innovative and attractive candidate for miRNA-based immune therapy of MM. PMID:29158557

  10. Serrulatane Diterpenoid from Eremophila neglecta Exhibits Bacterial Biofilm Dispersion and Inhibits Release of Pro-inflammatory Cytokines from Activated Macrophages.

    PubMed

    Mon, Htwe H; Christo, Susan N; Ndi, Chi P; Jasieniak, Marek; Rickard, Heather; Hayball, John D; Griesser, Hans J; Semple, Susan J

    2015-12-24

    The purpose of this study was to assess the biofilm-removing efficacy and inflammatory activity of a serrulatane diterpenoid, 8-hydroxyserrulat-14-en-19-oic acid (1), isolated from the Australian medicinal plant Eremophila neglecta. Biofilm breakup activity of compound 1 on established Staphylococcus epidermidis and Staphylococcus aureus biofilms was compared to the antiseptic chlorhexidine and antibiotic levofloxacin. In a time-course study, 1 was deposited onto polypropylene mesh to mimic a wound dressing and tested for biofilm removal. The ex-vivo cytotoxicity and effect on lipopolysaccharide-induced pro-inflammatory cytokine release were studied in mouse primary bone-marrow-derived macrophage (BMDM) cells. Compound 1 was effective in dispersing 12 h pre-established biofilms with a 7 log10 reduction of viable bacterial cell counts, but was less active against 24 h biofilms (approximately 2 log10 reduction). Compound-loaded mesh showed dosage-dependent biofilm-removing capability. In addition, compound 1 displayed a significant inhibitory effect on tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) secretion from BMDM cells, but interleukin-1 beta (IL-1β) secretion was not significant. The compound was not cytotoxic to BMDM cells at concentrations effective in removing biofilm and lowering cytokine release. These findings highlight the potential of this serrulatane diterpenoid to be further developed for applications in wound management.

  11. Inhibition of soluble epoxide hydrolase contributes to the anti-inflammatory effect of antimicrobial triclocarban in a murine model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Junyan; Qiu Hong; Morisseau, Christophe

    The increasing use of the antimicrobial triclocarban (TCC) in personal care products (PCPs) has resulted in concern regarding environmental pollution. TCC is a potent inhibitor of soluble epoxide hydrolase (sEH). Inhibitors of sEH (sEHIs) are anti-inflammatory, anti-hypertensive and cardio-protective in multiple animal models. However, the in vivo effects anticipated from a sEHI have not been reported for TCC. Here we demonstrated the anti-inflammatory effects in vivo of TCC in a murine model. TCC was employed in a lipopolysaccharide (LPS)-challenged murine model. Systolic blood pressure, plasma levels of several inflammatory cytokines and chemokine, and metabolomic profile of plasma oxylipins were determined.more » TCC significantly reversed LPS-induced morbid hypotension in a time-dependent manner. TCC significantly repressed the increased release of inflammatory cytokines and chemokine caused by LPS. Furthermore, TCC significantly shifted the oxylipin profile in vivo in a time-dependent manner towards resolution of inflammation as expected from a sEHI. These results demonstrated that at the doses used TCC is anti-inflammatory in the murine model. This study suggests that TCC may provide some benefits in humans in addition to its antimicrobial activities due to its potent inhibition of sEH. It may be a promising starting point for developing new low volume high value applications of TCC. However these biological effects also caution against the general over use of TCC in PCPs. - Graphical abstract: Display Omitted Research Highlights: > Anti-microbial triclocarban (TCC) is anti-inflammatory in a murine model. > TCC significantly shifted the oxylipin profile in vivo as expected from a sEHI. > TCC significantly reversed LPS-induced morbid hypotension in a time-dependent manner. > TCC significantly repressed LPS-induced increased release of inflammatory cytokines.« less

  12. Protective effect of Esculin in adjuvant-induced arthritic (AIA) rats via attenuating pro-inflammatory cytokines and oxidative stress.

    PubMed

    Zheng, L; Yang, L; Wang, Z; Chen, C; Su, Y

    2015-11-08

    The present study was intended to exemplify the protective effect of Esculin (ES; 6,7-dihydroxycoumarin-6-o-glucoside) on the adjuvant induced arthritis in adult female Sprague Dawley rats. It has been found that, treatment of ES has significantly improved the body weight of rats accompanied with a reduction of paw volume in comparison to arthritic control. In addition, ES exhibit inhibitory effect on various pro-inflammatory cytokines, for instance, IL-1β and TNF-α. The level of oxidative stress markers, i.e., nitric oxide and peroxide was also found suppressed after treatment. The treatment of ES prevents the tissue injury mediated via oxidative stress via up-regulating the level of endogenous GSH in a dose dependent manner. Thus, it has been corroborated that, ES exerts potent anti-arthritic activity via attenuating pro-inflammatory cytokines and oxidative stress.

  13. Mitochondrial reactive oxygen species mediate the lipopolysaccharide-induced pro-inflammatory response in human gingival fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xue; Wang, Xiaoxuan; Zheng, Ming, E-mail: zhengm@bjmu.edu.cn

    Although periodontal diseases are initiated by bacteria that colonize the tooth surface and gingival sulcus, the host response is believed to play an essential role in the breakdown of connective tissue and bone. Mitochondrial reactive oxygen species (mtROS) have been proposed to regulate the activation of the inflammatory response by the innate immune system. However, the role of mtROS in modulating the response of human gingival fibroblasts (HGFs) to immune stimulation by lipopolysaccharides (LPS) has yet to be fully elucidated. Here, we showed that LPS from Porphyromonas gingivalis stimulated HGFs to increase mtROS production, which could be inhibited by treatmentmore » with a mitochondrial-targeted exogenous antioxidant (mito-TEMPO) or transfection with manganese superoxide dismutase (MnSOD). A time-course study revealed that an increase in the concentration of mtROS preceded the expression of inflammatory cytokines in HGFs. Mito-TEMPO treatment or MnSOD transfection also significantly prevented the LPS-induced increase of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α. Furthermore, suppressing LPS-induced mtROS generation inhibited the activation of p38, c-Jun N-terminal kinase, and inhibitor of nuclear factor-κB kinase, as well as the nuclear localization of nuclear factor-κB. These results demonstrate that mtROS generation is a key signaling event in the LPS-induced pro-inflammatory response of HGFs. - Highlights: • Inflammation is thought to promote pathogenic changes in periodontitis. • We investigated mtROS as a regulator of inflammation in gingival fibroblasts. • Targeted antioxidants were used to inhibit mtROS production after LPS challenge. • Inhibiting mtROS generation suppressed the secretion of pro-inflammatory cytokines. • JNK, p38, IKK, and NF-κB were shown to act as transducers of mtROS signaling.« less

  14. Anti-inflammatory and angiogenic activity of polysaccharide extract obtained from Tibetan kefir.

    PubMed

    Prado, Maria Rosa Machado; Boller, Christian; Zibetti, Rosiane Guetter Mello; de Souza, Daiany; Pedroso, Luciana Lopes; Soccol, Carlos Ricardo

    2016-11-01

    The search for new bioactive molecules is a driving force for research pharmaceutical industries, especially those molecules obtained from fermentation. The molecules possessing angiogenic and anti-inflammatory attributes have attracted attention and are the focus of this study. Angiogenic activity from kefir polysaccharide extract, via chorioallantoic membrane assay, exhibited a pro-angiogenic effect compared with vascular endothelial factor (pro-angiogenic) and hydrocortisone (anti-angiogenic) activity as standards with an EC50 of 192ng/mL. In terms of anti-inflammatory activity determined via hyaluronidase enzyme assay, kefir polysaccharide extract inhibited the enzyme with a minimal activity of 2.08mg/mL and a maximum activity of 2.57mg/mL. For pharmaceutical purposes, kefir polysaccharide extract is considered to be safe because it does not inhibit VERO cells in cytotoxicity assays. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. The amelioration of phagocytic ability in microglial cells by curcumin through the inhibition of EMF-induced pro-inflammatory responses

    PubMed Central

    2014-01-01

    Background Insufficient clearance by microglial cells, prevalent in several neurological conditions and diseases, is intricately intertwined with MFG-E8 expression and inflammatory responses. Electromagnetic field (EMF) exposure can elicit the pro-inflammatory activation and may also trigger an alteration of the clearance function in microglial cells. Curcumin has important roles in the anti-inflammatory and phagocytic process. Here, we evaluated the ability of curcumin to ameliorate the phagocytic ability of EMF-exposed microglial cells (N9 cells) and documented relative pathways. Methods N9 cells were pretreated with or without recombinant murine MFG-E8 (rmMFG-E8), curcumin and an antibody of toll-like receptor 4 (anti-TLR4), and subsequently treated with EMF or a sham exposure. Their phagocytic ability was evaluated using phosphatidylserine-containing fluorescent bioparticles. The pro-inflammatory activation of microglia was assessed via CD11b immunoreactivity and the production of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β) and nitric oxide (NO) via the enzyme-linked immunosorbent assay or the Griess test. We evaluated the ability of curcumin to ameliorate the phagocytic ability of EMF-exposed N9 cells, including checking the expression of MFG-E8, αvβ3 integrin, TLR4, nuclear factor-κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3) using Western blotting. Results EMF exposure dramatically enhanced the expression of CD11b and depressed the phagocytic ability of N9 cells. rmMFG-E8 could clearly ameliorate the phagocytic ability of N9 cells after EMF exposure. We also found that EMF exposure significantly increased the secretion of pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β) and the production of NO; however, these increases were efficiently chilled by the addition of curcumin to the culture medium. This reduction led to the amelioration of the phagocytic ability of EMF-exposed N9 cells

  16. Pro-inflammatory effects of interleukin-17A on vascular smooth muscle cells involve NAD(P)H- oxidase derived reactive oxygen species.

    PubMed

    Pietrowski, Eweline; Bender, Bianca; Huppert, Jula; White, Robin; Luhmann, Heiko J; Kuhlmann, Christoph R W

    2011-01-01

    T cells are known for their contribution to the inflammatory element of atherosclerosis. Recently, it has been demonstrated that the Th17 derived cytokine IL-17 is involved in the pro-inflammatory response of vascular smooth muscle cells (VSMC). The aim of the present study was to examine whether reactive oxygen species (ROS) might be involved in this context. The effect of IL-17A on ROS generation was examined using the fluorescent dye 2'7'-dichlorodihydrofluorescein (H(2)DCF) in primary murine VSMC. IL-17A induced an increase in H(2)DCF fluorescence in VSMC, and this effect was blocked by the NAD(P)H-oxidase inhibitor apocynin and siRNA targeting Nox2. The p38-MAPK inhibitors SB203580 and SB202190 dose-dependently reduced the IL-17A induced ROS production. The IL-17A induced release of the pro-inflammatory cytokines IL-6, G-CSF, GM-CSF and MCP-1 from VSMC, as detected by the Luminex technology, was completely abolished by NAD(P)H-oxidase inhibition. Taken together, our data indicate that IL-17A causes the NAD(P)H-oxidase dependent generation of ROS leading to a pro-inflammatory activation of VSMC. Copyright © 2010 S. Karger AG, Basel.

  17. Rheumatoid arthritis synovial fibroblasts produce a soluble form of the interleukin-7 receptor in response to pro-inflammatory cytokines

    PubMed Central

    Badot, V; Durez, P; Van den Eynde, BJ; Nzeusseu-Toukap, A; Houssiau, FA; Lauwerys, BR

    2011-01-01

    Abstract We previously demonstrated that baseline synovial overexpression of the interleukin-7 receptor α-chain (IL-7R) is associated with poor response to tumour necrosis factor (TNF) blockade in rheumatoid arthritis (RA). We found that IL-7R gene expression is induced in fibroblast-like synovial cells (FLS) by the addition of TNF-α, IL-1β and combinations of TNF-α+ IL-1β or TNF-α+ IL-17, thereby suggesting that these cytokines play a role in the resistance to TNF blockade in RA. Because FLS and CD4 T cells also produce a soluble form of IL-7R (sIL-7R), resulting from an alternative splicing of the full-length transcript, we wondered whether expression of sIL-7R is similarly regulated by pro-inflammatory cytokines. We also investigated whether sIL-7R is detectable in the serum of RA patients and associated with response to TNF blockade. RA FLS were cultured in the presence of pro-inflammatory cytokines and sIL-7R concentrations were measured in culture supernatants. Similarly, sIL-7R titres were measured in sera obtained from healthy individuals, early untreated RA patients with active disease and disease-modifying anti-rheumatic drug (DMARD)-resistant RA patients prior to initiation of TNF-blockade. Baseline serum sIL-7R titres were correlated with validated clinical measurements of disease activity. We found that exposure of RA FLS to pro-inflammatory cytokines (TNF-α, IL-1β and combinations of TNF-α and IL-1β or TNF-α and IL-17) induces sIL-7R secretion. Activated CD4 T cells also produce sIL-7R. sIL-7R serum levels are higher in RA patients as compared to controls. In DMARD-resistant patients, high sIL-7R serum concentrations are strongly associated with poor response to TNF-blockade. In conclusion, sIL-7R is induced by pro-inflammatory cytokines in RA FLS. sIL-7R could qualify as a new biomarker of response to therapy in RA. PMID:21129157

  18. The rapid antidepressant effect of ketamine in rats is associated with down-regulation of pro-inflammatory cytokines in the hippocampus

    PubMed Central

    Wang, Nan; Yu, Hai-Ying; Shen, Xiao-Feng; Gao, Zhi-Qin; Yang, Chun; Yang, Jian-Jun

    2015-01-01

    Objectives. Active inflammatory responses play an important role in the pathogenesis of depression. We hypothesized that the rapid antidepressant effect of ketamine is associated with the down-regulation of pro-inflammatory mediators. Methods. Forty-eight rats were equally randomized into six groups (a control and five chronic unpredictable mild stress (CUMS) groups) and given either saline or 10 mg/kg ketamine, respectively. The forced swimming test was performed, and the hippocampus was subsequently harvested for the determination of levels of interleukin (IL)-1β, IL-6, tumour necrosis factor-α (TNF-α), indoleamine 2,3-dioxygenase (IDO), kynurenine (KYN), and tryptophan (TRP). Results. CUMS induced depression-like behaviours and up-regulated the hippocampal levels of IL-1β, IL-6, TNF-α, IDO, and the KYN/TRP ratio, which were attenuated by a sub-anaesthetic dose of ketamine. Conclusion. CUMS-induced depression-like behaviours are associated with a reduction in hippocampal inflammatory mediators, whereas ketamine’s antidepressant effect is associated with a down-regulation of pro-inflammatory cytokines in the rat hippocampus. PMID:26220286

  19. Particles from wood smoke and traffic induce differential pro-inflammatory response patterns in co-cultures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocbach, Anette; Herseth, Jan Inge; Lag, Marit

    2008-10-15

    The inflammatory potential of particles from wood smoke and traffic has not been well elucidated. In this study, a contact co-culture of monocytes and pneumocytes was exposed to 10-40 {mu}g/cm{sup 2} of particles from wood smoke and traffic for 12, 40 and 64 h to determine their influence on pro-inflammatory cytokine release (TNF-{alpha}, IL-1, IL-6, IL-8) and viability. To investigate the role of organic constituents in cytokine release the response to particles, their organic extracts and the washed particles were compared. Antagonists were used to investigate source-dependent differences in intercellular signalling (TNF-{alpha}, IL-1). The cytotoxicity was low after exposure tomore » particles from both sources. However, wood smoke, and to a lesser degree traffic-derived particles, induced a reduction in cell number, which was associated with the organic fraction. The release of pro-inflammatory cytokines was similar for both sources after 12 h, but traffic induced a greater release than wood smoke particles with increasing exposure time. The organic fraction accounted for the majority of the cytokine release induced by wood smoke, whereas the washed traffic particles induced a stronger response than the corresponding organic extract. TNF-{alpha} and IL-1 antagonists reduced the release of IL-8 induced by particles from both sources. In contrast, the IL-6 release was only reduced by the IL-1 antagonist during exposure to traffic-derived particles. In summary, particles from wood smoke and traffic induced differential pro-inflammatory response patterns with respect to cytokine release and cell number. Moreover, the influence of the organic particle fraction and intercellular signalling on the pro-inflammatory response seemed to be source-dependent.« less

  20. Retention of antimicrobial activity in plaque and saliva following mouthrinse use in vivo.

    PubMed

    Otten, M P T; Busscher, H J; van der Mei, H C; Abbas, F; van Hoogmoed, C G

    2010-01-01

    The aim of this study was to determine the contribution of plaque and saliva towards the prolonged activity, also called substantivity, of three antimicrobial mouthrinses (Listerine®, Meridol®, Crest Pro Health®), used in combination with a toothpaste (Prodent Coolmint®). Volunteers brushed for 4 weeks with a toothpaste without antimicrobial claims, while during the last 2 weeks half of the volunteers used an antimicrobial mouthrinse in addition to brushing. At the end of the experimental period, plaque and saliva samples were collected 6 h after oral hygiene, and bacterial concentrations and viabilities were determined. The contribution of plaque and saliva towards substantivity was assessed by combining plaque obtained after mechanical cleaning only with plaque and saliva obtained after additional use of an antimicrobial rinse. Subsequently, resulting viabilities of the combined plaques were determined. The viabilities of plaque samples after additional rinsing with mouthrinses were lower than of plaque obtained after mechanical cleaning only, regardless of the rinse involved. Moreover, plaque collected 6 h after rinsing with antimicrobial mouthrinses contained a surplus of antimicrobial activity. Only Listerine showed decreased viability in saliva, but none of the mouthrinses showed any residual antimicrobial activity in saliva. The findings indicate that plaque left behind after mechanical cleaning contributes to the prolonged substantivity of antimicrobial mouthrinses. Copyright © 2010 S. Karger AG, Basel.

  1. Antimicrobial, Antioxidant, Anti-Inflammatory, and Cytotoxic Activities of Propolis from the Stingless Bee Tetragonisca fiebrigi (Jataí).

    PubMed

    Campos, Jaqueline Ferreira; Dos Santos, Uilson Pereira; da Rocha, Paola Dos Santos; Damião, Marcio José; Balestieri, José Benedito Perrella; Cardoso, Claudia Andrea Lima; Paredes-Gamero, Edgar Julian; Estevinho, Leticia Miranda; de Picoli Souza, Kely; Dos Santos, Edson Lucas

    2015-01-01

    Propolis from stingless bees Tetragonisca fiebrigi found in Brazil is used in folk medicine by their nutritional and therapeutic properties. However, there are no scientific records evidencing such properties. The present study was designed to investigate the chemical composition and the biological properties of propolis from T. fiebrigi. For this, the chemical composition of the ethanol extract of propolis (EEP) was determined by GC-MS and presented phenolic compounds, alcohol, and terpenes as its major class compounds. The antimicrobial activity was accessed in gram-positive and gram-negative bacteria and in fungi, isolated from different biological fluids and reference strains. The EEP was active against all microorganisms and showed antioxidant activity by scavenging free radicals, inhibiting hemolysis and lipid peroxidation in human erythrocytes incubated with an oxidizing agent. The anti-inflammatory potential of the EEP was confirmed by inhibition of the hyaluronidase enzyme. The cytotoxic activity was concentration-dependent against K562 cells, with a predominance of death by necrosis. Taken together, these results show that propolis from T. fiebrigi has important therapeutic activities, which suggest its potential application in the pharmaceutical industry, as well as in health foods, beverages, and nutritional supplements.

  2. Tumour necrosis factor receptor trafficking dysfunction opens the TRAPS door to pro-inflammatory cytokine secretion

    PubMed Central

    Turner, Mark D.; Chaudhry, Anupama; Nedjai, Belinda

    2011-01-01

    Cytokines are secreted from macrophages and other cells of the immune system in response to pathogens. Additionally, in autoinflammatory diseases cytokine secretion occurs in the absence of pathogenic stimuli. In the case of TRAPS [TNFR (tumour necrosis factor receptor)-associated periodic syndrome], inflammatory episodes result from mutations in the TNFRSF1A gene that encodes TNFR1. This work remains controversial, however, with at least three distinct separate mechanisms of receptor dysfunction having been proposed. Central to these hypotheses are the NF-κB (nuclear factor κB) and MAPK (mitogen-activated protein kinase) families of transcriptional activators that are able to up-regulate expression of a number of genes, including pro-inflammatory cytokines. The present review examines each proposed mechanism of TNFR1 dysfunction, and addresses how these processes might ultimately impact upon cytokine secretion and disease pathophysiology. PMID:22115362

  3. Pyrazole derived ultra-short antimicrobial peptidomimetics with potent anti-biofilm activity.

    PubMed

    Ahn, Mija; Gunasekaran, Pethaiah; Rajasekaran, Ganesan; Kim, Eun Young; Lee, Soo-Jae; Bang, Geul; Cho, Kun; Hyun, Jae-Kyung; Lee, Hyun-Ju; Jeon, Young Ho; Kim, Nam-Hyung; Ryu, Eun Kyoung; Shin, Song Yub; Bang, Jeong Kyu

    2017-01-05

    In this study, we report on the first chemical synthesis of ultra-short pyrazole-arginine based antimicrobial peptidomimetics derived from the newly synthesized N-alkyl/aryl pyrazole amino acids. Through the systematic tuning of hydrophobicity, charge, and peptide length, we identified the shortest peptide Py11 with the most potent antimicrobial activity. Py11 displayed greater antimicrobial activity against antibiotic-resistant bacteria, including MRSA, MDRPA, and VREF, which was approximately 2-4 times higher than that of melittin. Besides its higher selectivity (therapeutic index) toward bacterial cells than LL-37, Py11 showed highly increased proteolytic stability against trypsin digestion and maintained its antimicrobial activity in the presence of physiological salts. Interestingly, Py11 exhibited higher anti-biofilm activity against MDRPA compared to LL-37. The results from fluorescence spectroscopy and transmission electron microscopy (TEM) suggested that Py11 kills bacterial cells possibly by integrity disruption damaging the cell membrane, leading to the cytosol leakage and eventual cell lysis. Furthermore, Py11 displayed significant anti-inflammatory (endotoxin-neutralizing) activity by inhibiting LPS-induced production of nitric oxide (NO) and TNF-α. Collectively, our results suggest that Py11 may serve as a model compound for the design of antimicrobial and antisepsis agents. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Cationic host defense peptides; novel antimicrobial therapeutics against Category A pathogens and emerging infections.

    PubMed

    Findlay, Fern; Proudfoot, Lorna; Stevens, Craig; Barlow, Peter G

    2016-01-01

    Cationic Host Defense Peptides (HDP, also known as antimicrobial peptides) are crucial components of the innate immune system and possess broad-spectrum antibacterial, antiviral, and immunomodulatory activities. They can contribute to the rapid clearance of biological agents through direct killing of the organisms, inhibition of pro-inflammatory mediators such as lipopolysaccharide, and by modulating the inflammatory response to infection. Category A biological agents and materials, as classified by the United States National Institutes for Health, the US Centers for Disease Control and Prevention, and the US Department of Homeland Security, carry the most severe threat in terms of human health, transmissibility, and preparedness. As such, there is a pressing need for novel frontline approaches for prevention and treatment of diseases caused by these organisms, and exploiting the broad antimicrobial activity exhibited by cationic host defense peptides represents an exciting priority area for clinical research. This review will summarize what is known about the antimicrobial and antiviral effects of the two main families of cationic host defense peptides, cathelicidins, and defensins in the context of Category A biological agents which include, but are not limited to; anthrax (Bacillus anthracis), plague (Yersinia pestis), smallpox (Variola major), tularemia (Francisella tularensis). In addition, we highlight priority areas, particularly emerging viral infections, where more extensive research is urgently required.

  5. Association between the Pro12Ala Polymorphism of Peroxisome Proliferator-Activated Receptor Gamma 2 and Inflammatory Bowel Disease: A Meta-Analysis

    PubMed Central

    Zhao, Gang; Zhu, Lei; Wang, Li-Xia

    2012-01-01

    Background Peroxisome proliferator-activated receptor gamma (PPARγ), a nuclear receptor, has been implicated playing a role in the development of inflammatory bowel disease (IBD). However, previous studies evaluating the association between the PPARγ2 Pro12Ala polymorphism and IBD are inconsistent. We performed a meta-analysis to determine whether the PPARγ2 Pro12Ala mutation was associated with the presence of IBD. Methods and Findings Electronic databases were searched for case-control studies evaluating the association between the Pro12Ala mutation and the presence of IBD. Effects were summarized with the methods recommended by the Cochrane Collaboration. A total of 7 studies including 1002 ulcerative colitis (UC) cases, 1090 Crohǹs disease (CD) cases and 1983 controls were involved in this meta-analysis. In the overall analysis, no significant association of this polymorphism with UC or CD was found. In the subgroup analyses in different populations, AlaAla genotype seemed to protect the European Caucasian population against the development of CD (Pro vs Ala: OR = 1.135, 95%CI = 0.951–1.354, P = 0.162, Bon = 1.000; ProPro vs ProAla: OR = 1.042, 95%CI = 0.852–1.273, P = 0.690, Bon = 1.000; ProPro vs AlaAla: OR = 2.379, 95%CI = 1.110–5.100, P = 0.026, Bon = 0.156; ProAla vs AlaAla: OR = 2.315, 95%CI = 1.064–5.037, P = 0.034, Bon = 0.204; Pro homozygotes vs Ala positives: OR = 1.094, 95%CI = 0.899–1.330, P = 0.371, Bon = 1.000; Pro positives vs Ala homozygotes: OR = 2.360, 95%CI = 1.103–5.053, P = 0.027, Bon = 0.162; heterozygotes vs all homozygotes: OR = 0.976, 95%CI = 0.799–1.192, P = 0.809, Bon = 1.000). There was no significant association of this polymorphism with UC or CD in the East Asian population and the Turkish population. Conclusion AlaAla genotype may be a protective factor in the European Caucasian population against the

  6. The Alzheimer's Disease-Associated Amyloid β-Protein Is an Antimicrobial Peptide

    PubMed Central

    Soscia, Stephanie J.; Kirby, James E.; Washicosky, Kevin J.; Tucker, Stephanie M.; Ingelsson, Martin; Hyman, Bradley; Burton, Mark A.; Goldstein, Lee E.; Duong, Scott; Tanzi, Rudolph E.; Moir, Robert D.

    2010-01-01

    Background The amyloid β-protein (Aβ) is believed to be the key mediator of Alzheimer's disease (AD) pathology. Aβ is most often characterized as an incidental catabolic byproduct that lacks a normal physiological role. However, Aβ has been shown to be a specific ligand for a number of different receptors and other molecules, transported by complex trafficking pathways, modulated in response to a variety of environmental stressors, and able to induce pro-inflammatory activities. Methodology/Principal Findings Here, we provide data supporting an in vivo function for Aβ as an antimicrobial peptide (AMP). Experiments used established in vitro assays to compare antimicrobial activities of Aβ and LL-37, an archetypical human AMP. Findings reveal that Aβ exerts antimicrobial activity against eight common and clinically relevant microorganisms with a potency equivalent to, and in some cases greater than, LL-37. Furthermore, we show that AD whole brain homogenates have significantly higher antimicrobial activity than aged matched non-AD samples and that AMP action correlates with tissue Aβ levels. Consistent with Aβ-mediated activity, the increased antimicrobial action was ablated by immunodepletion of AD brain homogenates with anti-Aβ antibodies. Conclusions/Significance Our findings suggest Aβ is a hitherto unrecognized AMP that may normally function in the innate immune system. This finding stands in stark contrast to current models of Aβ-mediated pathology and has important implications for ongoing and future AD treatment strategies. PMID:20209079

  7. Pro-inflammatory and anti-inflammatory compounds exert similar effects on P-glycoprotein in blood-brain barrier endothelial cells.

    PubMed

    Torres-Vergara, Pablo; Penny, Jeffrey

    2018-06-01

    The effects of anti-inflammatory glucocorticoids dexamethasone (DX) and hydrocortisone (HC), pro-inflammatory cytokine interleukin-1β (IL-1β) and dietary long-chain polyunsaturated fatty acids (PUFAs) on expression and activity of the ATP-binding cassette transporter P-glycoprotein (P-GP) were studied in porcine brain endothelial cells (PBECs). Primary PBECs were treated for 24 h with glucocorticoids, IL-1β and long-chain PUFAs. P-GP activity was determined by measuring intracellular calcein accumulation and P-GP expression by Western blotting. The effect of PUFAs on membrane fluidity was assessed by fluorescence recovery after photobleaching (FRAP). Dexamethasone, HC and IL-1β significantly increased P-GP expression and activity. The effect of IL-1β was attenuated by the IL-1 receptor antagonist (IL-1RA). This is the first report of the combined actions of IL-1β and IL-1RA on P-GP expression and the first evidence of glucocorticoid-mediated P-GP up-regulation in PBECs. Arachidonic acid (AA), docosahexaenoic acid (DHA) and eicosapentenoic acid (EPA) significantly decreased P-GP activity without affecting expression or membrane fluidity. AA, DHA and EPA counteracted IL-1β-mediated increases in P-GP activity, while AA and EPA, but not DHA, counteracted glucocorticoid-mediated increase in P-GP activity. While glucocorticoids and IL-1β possess opposing actions in inflammation, they demonstrate functional consistency by increasing P-GP expression and activity in PBECs. © 2018 Royal Pharmaceutical Society.

  8. Identification of a novel pro-inflammatory human skin-homing Vγ9Vδ2 T cell subset with a potential role in psoriasis

    PubMed Central

    LAGGNER, Ute; DI MEGLIO, Paola; PERERA, Gayathri K.; HUNDHAUSEN, Christian; LACY, Katie E.; ALI, Niwa; SMITH, Catherine H.; HAYDAY, Adrian C.; NICKOLOFF, Brian J.; NESTLE, Frank O.

    2011-01-01

    γδ T cells mediate rapid tissue responses in murine skin and participate in cutaneous immune regulation including protection against cancer. The role of human γδ cells in cutaneous homeostasis and pathology is poorly characterized. In this study we show in vivo evidence that human blood contains a distinct subset of pro-inflammatory cutaneous lymphocyte antigen (CLA) and C-C chemokine receptor (CCR) 6 positive Vγ9Vδ2 T cells, which is rapidly recruited into perturbed human skin. Vγ9Vδ2 T cells produced an array of pro-inflammatory mediators including IL-17A and activated keratinocytes in a TNF-α and IFN-γ dependent manner. Examination of the common inflammatory skin disease psoriasis revealed a striking reduction of circulating Vγ9Vδ2 T cells in psoriasis patients compared to healthy controls and atopic dermatitis patients. Decreased numbers of circulating Vγ9Vδ2 T cells normalized after successful treatment with psoriasis-targeted therapy. Together with the increased presence of Vγ9Vδ2 T cells in psoriatic skin, this data indicates redistribution of Vγ9Vδ2 T cells from the blood to the skin compartment in psoriasis. In summary, we report a novel human pro-inflammatory γδ T cell involved in skin immune surveillance with immediate response characteristics and with potential clinical relevance in inflammatory skin disease. PMID:21813772

  9. Flavocoxid, a dual inhibitor of cyclooxygenase and 5-lipoxygenase, blunts pro-inflammatory phenotype activation in endotoxin-stimulated macrophages.

    PubMed

    Altavilla, D; Squadrito, F; Bitto, A; Polito, F; Burnett, B P; Di Stefano, V; Minutoli, L

    2009-08-01

    The flavonoids, baicalin and catechin, from Scutellaria baicalensis and Acacia catechu, respectively, have been used for various clinical applications. Flavocoxid is a mixed extract containing baicalin and catechin, and acts as a dual inhibitor of cyclooxygenase (COX) and 5-lipoxygenase (LOX) enzymes. The anti-inflammatory activity, measured by protein and gene expression of inflammatory markers, of flavocoxid in rat peritoneal macrophages stimulated with Salmonella enteritidis lipopolysaccharide (LPS) was investigated. LPS-stimulated (1 microg.mL(-1)) peritoneal rat macrophages were co-incubated with different concentrations of flavocoxid (32-128 microg.mL(-1)) or RPMI medium for different incubation times. Inducible COX-2, 5-LOX, inducible nitric oxide synthase (iNOS) and inhibitory protein kappaB-alpha (IkappaB-alpha) levels were evaluated by Western blot analysis. Nuclear factor kappaB (NF-kappaB) binding activity was investigated by electrophoretic mobility shift assay. Tumour necrosis factor-alpha (TNF-alpha) gene and protein expression were measured by real-time polymerase chain reaction and enzyme-linked immunosorbent assay respectively. Finally, malondialdehyde (MDA) and nitrite levels in macrophage supernatants were evaluated. LPS stimulation induced a pro-inflammatory phenotype in rat peritoneal macrophages. Flavocoxid (128 microg.mL(-1)) significantly inhibited COX-2 (LPS = 18 +/- 2.1; flavocoxid = 3.8 +/- 0.9 integrated intensity), 5-LOX (LPS = 20 +/- 3.8; flavocoxid = 3.1 +/- 0.8 integrated intensity) and iNOS expression (LPS = 15 +/- 1.1; flavocoxid = 4.1 +/- 0.4 integrated intensity), but did not modify COX-1 expression. PGE(2) and LTB(4) levels in culture supernatants were consequently decreased. Flavocoxid also prevented the loss of IkappaB-alpha protein (LPS = 1.9 +/- 0.2; flavocoxid = 7.2 +/- 1.6 integrated intensity), blunted increased NF-kappaB binding activity (LPS = 9.2 +/- 2; flavocoxid = 2.4 +/- 0.7 integrated intensity) and the enhanced

  10. Antimicrobial and anti-inflammatory activity of switchgrass-derived extractives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labbe, Nicole; Ownley, Bonnie H.; Gwinn, Kimberly D.

    Switchgrass is an increasingly important biofuel crop, but knowledge of switchgrass fungal pathogens is not extensive. The purpose of this research was to identify the fungal pathogens that decrease crop yield of switchgrass grown in Tennessee and to investigate a potential sustainable disease management strategy from a value-added by-product of the switchgrass biofuel conversion process. The specific objectives were 1) to identify and characterize prevalent fungal pathogens of switchgrass in Tennessee, 2) assess switchgrass seed produced in the United States for seedborne fungal pathogens, and 3) evaluate switchgrass extractives for antimicrobial activity against plant pathogens.

  11. Ultrafine particles from diesel vehicle emissions at different driving cycles induce differential vascular pro-inflammatory responses: Implication of chemical components and NF-κB signaling

    PubMed Central

    2010-01-01

    Background Epidemiological evidence supports the association between exposure to ambient particulate matter (PM) and cardiovascular diseases. Chronic exposure to ultrafine particles (UFP; Dp <100 nm) is reported to promote atherosclerosis in ApoE knockout mice. Atherogenesis-prone factors induce endothelial dysfunction that contributes to the initiation and progression of atherosclerosis. We previously demonstrated that UFP induced oxidative stress via c-Jun N-terminal Kinases (JNK) activation in endothelial cells. In this study, we investigated pro-inflammatory responses of human aortic endothelial cells (HAEC) exposed to UFP emitted from a diesel truck under an idling mode (UFP1) and an urban dynamometer driving schedule (UFP2), respectively. We hypothesize that UFP1 and UFP2 with distinct chemical compositions induce differential pro-inflammatory responses in endothelial cells. Results UFP2 contained a higher level of redox active organic compounds and metals on a per PM mass basis than UFP1. While both UFP1 and UFP2 induced superoxide production and up-regulated stress response genes such as heme oxygenease-1 (HO-1), OKL38, and tissue factor (TF), only UFP2 induced the expression of pro-inflammatory genes such as IL-8 (2.8 ± 0.3-fold), MCP-1 (3.9 ± 0.4-fold), and VCAM (6.5 ± 1.1-fold) (n = 3, P < 0.05). UFP2-exposed HAEC also bound to a higher number of monocytes than UFP1-exposed HAEC (Control = 70 ± 7.5, UFP1 = 106.7 ± 12.5, UFP2 = 137.0 ± 8.0, n = 3, P < 0.05). Adenovirus NF-κB Luciferase reporter assays revealed that UFP2, but not UFP1, significantly induced NF-κB activities. NF-κB inhibitor, CAY10512, significantly abrogated UFP2-induced pro-inflammatory gene expression and monocyte binding. Conclusion While UFP1 induced higher level of oxidative stress and stress response gene expression, only UFP2, with higher levels of redox active organic compounds and metals, induced pro-inflammatory responses via NF-κB signaling. Thus, UFP with distinct

  12. Immuno-modulation and anti-inflammatory benefits of antibiotics: The example of tilmicosin

    PubMed Central

    Buret, André G.

    2010-01-01

    Exagerated immune responses, such as those implicated in severe inflammatory reactions, are costly to the metabolism. Inflammation and pro-inflammatory mediators negatively affect production in the food animal industry by reducing growth, feed intake, reproduction, milk production, and metabolic health. An ever-increasing number of findings have established that antibiotics, macrolides in particular, may generate anti-inflammatory effects, including the modulation of pro-inflammatory cytokines and the alteration of neutrophil function. The effects are time- and dose-dependent, and the mechanisms responsible for these phenomena remain incompletely understood. Recent studies, mostly using the veterinary macrolide tilmicosin, may have shed new light on the mode of action of some macrolides and their anti-inflammatory properties. Indeed, research findings demonstrate that this compound, amongst others, induces neutrophil apoptosis, which in turn provides anti-inflammatory benefits. Studies using tilmicosin model systems in vitro and in vivo demonstrate that this antibiotic has potent immunomodulatory effects that may explain why at least parts of its clinical benefits are independent of anti-microbial effects. More research is needed, using this antibiotic and others that may have similar properties, to clarify the biological mechanisms responsible for antibiotic-induced neutrophil apoptosis, and how this, in turn, may provide enhanced clinical benefits. Such studies may help establish a rational basis for the development of novel, efficacious, anti-microbial compounds that generate anti-inflammatory properties in addition to their antibacterial effects. PMID:20357951

  13. Xenon triggers pro-inflammatory effects and suppresses the anti-inflammatory response compared to sevoflurane in patients undergoing cardiac surgery.

    PubMed

    Breuer, Thomas; Emontzpohl, Christoph; Coburn, Mark; Benstoem, Carina; Rossaint, Rolf; Marx, Gernot; Schälte, Gereon; Bernhagen, Juergen; Bruells, Christian S; Goetzenich, Andreas; Stoppe, Christian

    2015-10-15

    Cardiac surgery encompasses various stimuli that trigger pro-inflammatory mediators, reactive oxygen species and mobilization of leucocytes. The aim of this study was to evaluate the effect of xenon on the inflammatory response during cardiac surgery. This randomized trial enrolled 30 patients who underwent elective on-pump coronary-artery bypass grafting in balanced anaesthesia of either xenon or sevoflurane. For this secondary analysis, blood samples were drawn prior to the operation, intra-operatively and on the first post-operative day to measure the pro- and anti-inflammatory cytokines interleukin-6 (IL-6), interleukin-8/C-X-C motif ligand 8 (IL-8/CXCL8), and interleukin-10 (IL-10). Chemokines such as C-X-C motif ligand 12/ stromal cell-derived factor-1α (CXCL12/SDF-1α) and macrophage migration inhibitory factor (MIF) were measured to characterize xenon's perioperative inflammatory profile and its impact on migration of peripheral blood mononuclear cells (PBMC). Xenon enhanced the postoperative increase of IL-6 compared to sevoflurane (Xenon: 90.7 versus sevoflurane: 33.7 pg/ml; p = 0.035) and attenuated the increase of IL-10 (Xenon: 127.9 versus sevoflurane: 548.3 pg/ml; p = 0.028). Both groups demonstrated a comparable intraoperative increase of oxidative stress (intra-OP: p = 0.29; post-OP: p = 0.65). While both groups showed an intraoperative increase of the cardioprotective mediators MIF and CXCL12/SDF-1α, only MIF levels decreased in the xenon group on the first postoperative day (50.0 ng/ml compared to 23.3 ng/ml; p = 0.012), whereas it remained elevated after sevoflurane anaesthesia (58.3 ng/ml to 53.6 ng/ml). Effects of patients' serum on chemotactic migration of peripheral mononuclear blood cells taken from healthy volunteers indicated a tendency towards enhanced migration after sevoflurane anaesthesia (p = 0.07). Compared to sevoflurane, balanced xenon anaesthesia triggers pro-inflammatory effects and suppresses the anti-inflammatory response in

  14. Pro-inflammatory cytokines downregulate Hsp27 and cause apoptosis of human retinal capillary endothelial cells.

    PubMed

    Nahomi, Rooban B; Palmer, Allison; Green, Katelyn M; Fort, Patrice E; Nagaraj, Ram H

    2014-02-01

    The formation of acellular capillaries in the retina, a hallmark feature of diabetic retinopathy, is caused by apoptosis of endothelial cells and pericytes. The biochemical mechanism of such apoptosis remains unclear. Small heat shock proteins play an important role in the regulation of apoptosis. In the diabetic retina, pro-inflammatory cytokines are upregulated. In this study, we investigated the effects of pro-inflammatory cytokines on small heat shock protein 27 (Hsp27) in human retinal endothelial cells (HREC). In HREC cultured in the presence of cytokine mixtures (CM), a significant downregulation of Hsp27 at the protein and mRNA level occurred, with no effect on HSF-1, the transcription factor for Hsp27. The presence of high glucose (25mM) amplified the effects of cytokines on Hsp27. CM activated indoleamine 2,3-dioxygenase (IDO) and enhanced the production of kynurenine and ROS. An inhibitor of IDO, 1-methyl tryptophan (MT), inhibited the effects of CM on Hsp27. CM also upregulated NOS2 and, consequently, nitric oxide (NO). A NOS inhibitor, L-NAME, and a ROS scavenger blocked the CM-mediated Hsp27 downregulation. While a NO donor in the culture medium did not decrease the Hsp27 content, a peroxynitrite donor and exogenous peroxynitrite did. The cytokines and high glucose-induced apoptosis of HREC were inhibited by MT and L-NAME. Downregulation of Hsp27 by a siRNA treatment promoted apoptosis in HREC. Together, these data suggest that pro-inflammatory cytokines induce the formation of ROS and NO, which, through the formation of peroxynitrite, reduce the Hsp27 content and bring about apoptosis of retinal capillary endothelial cells. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Citrus bergamia Juice Extract Attenuates β-Amyloid-Induced Pro-Inflammatory Activation of THP-1 Cells Through MAPK and AP-1 Pathways

    PubMed Central

    Currò, Monica; Risitano, Roberto; Ferlazzo, Nadia; Cirmi, Santa; Gangemi, Chiara; Caccamo, Daniela; Ientile, Riccardo; Navarra, Michele

    2016-01-01

    Flavonoids have been shown to be effective in protecting against age-related cognitive and motor decline in both in vitro and in vivo models. Recently, a flavonoid-rich extract of Citrus bergamia juice (BJe) has been shown to display anti-oxidant and anti-inflammatory properties against LPS-induced activation of human THP-1 monocytes. In the light of these observations, we wondered whether BJe may be beneficial against neuroinflammatory processes, such as those observed in Alzheimer’s disease. To this aim we used THP-1 monocytes to investigate the mechanisms underlying the beneficial potential of BJe against amyloid-beta1–42 (Aβ1−42) -mediated inflammation. Exposure of THP-1 cells to Aβ1−42 significantly induced the expression and secretion of IL-6 and IL-1β in THP-1 cells and increased the phosphorylation of ERK 1/2 as well as p46 and p54 members of JNK family. Moreover, Aβ1−42 raises AP-1 DNA binding activity in THP-1-treated cells. Interestingly, all these effects were reduced in the presence of BJe. Our data indicate that BJe may effectively counteract the pro-inflammatory activation of monocytes/microglial cells exposed to amyloid fibrils, suggesting a promising role as a natural drug against neuroinflammatory processes. PMID:26853104

  16. Citrus bergamia Juice Extract Attenuates β-Amyloid-Induced Pro-Inflammatory Activation of THP-1 Cells Through MAPK and AP-1 Pathways.

    PubMed

    Currò, Monica; Risitano, Roberto; Ferlazzo, Nadia; Cirmi, Santa; Gangemi, Chiara; Caccamo, Daniela; Ientile, Riccardo; Navarra, Michele

    2016-02-08

    Flavonoids have been shown to be effective in protecting against age-related cognitive and motor decline in both in vitro and in vivo models. Recently, a flavonoid-rich extract of Citrus bergamia juice (BJe) has been shown to display anti-oxidant and anti-inflammatory properties against LPS-induced activation of human THP-1 monocytes. In the light of these observations, we wondered whether BJe may be beneficial against neuroinflammatory processes, such as those observed in Alzheimer's disease. To this aim we used THP-1 monocytes to investigate the mechanisms underlying the beneficial potential of BJe against amyloid-beta1-42 (Aβ1-42) -mediated inflammation. Exposure of THP-1 cells to Aβ1-42 significantly induced the expression and secretion of IL-6 and IL-1β in THP-1 cells and increased the phosphorylation of ERK 1/2 as well as p46 and p54 members of JNK family. Moreover, Aβ1-42 raises AP-1 DNA binding activity in THP-1-treated cells. Interestingly, all these effects were reduced in the presence of BJe. Our data indicate that BJe may effectively counteract the pro-inflammatory activation of monocytes/microglial cells exposed to amyloid fibrils, suggesting a promising role as a natural drug against neuroinflammatory processes.

  17. The stereochemical effect of SMAP-29 and SMAP-18 on bacterial selectivity, membrane interaction and anti-inflammatory activity.

    PubMed

    Jacob, Binu; Rajasekaran, Ganesan; Kim, Eun Young; Park, Il-Seon; Bang, Jeong-Kyu; Shin, Song Yub

    2016-05-01

    Sheep myeloid antimicrobial peptide-29 (SMAP-29) is a cathelicidin-related antimicrobial peptide derived from sheep myeloid cells. In order to investigate the effects of L-to-D-amino acid substitution in SMAP-29 on bacterial selectivity, membrane interaction and anti-inflammatory activity, we synthesized its two D-enantiomeric peptides (SMAP-29-E1 and SMAP-29-E2 containing D-Ile and D-allo-Ile, respectively) and two diastereomeric peptides (SMAP-29-D1 and SMAP-29-D2). Additionally, in order to address the effect of L-to-D-amino acid substitution in the N-terminal helical peptide of SMAP-29 (named SMAP-18) on antimicrobial activity, we synthesized its two D-enantiomeric peptides (SMAP-18-E1 and SMAP-18-E2), which are composed of D-amino acids entirely. L-to-D-amino acid substitution in membrane-targeting AMP, SMAP-29 did not affect its antimicrobial activity. However, D-allo-Ile containing-SMAP-29-E2 and SMAP-29-D2 exhibited less hemolytic activity compared to D-Ile containing-SMAP-29-E1 and SMAP-29-D1, respectively. L-to-D-amino acid substitution in intracellular targeting-AMPs, SMAP-18 and buforin-2 improved antimicrobial activity by 2- to eightfold. The improved antimicrobial activity of the D-isomers of SMAP-18 and buforin-2 seems to be due to the stability against proteases inside bacterial cells. Membrane depolarization and dye leakage suggested that the membrane-disruptive mode of SMAP-29-D1 and SMAP-29-D2 is different from that of SMAP-29, SMAP-29-E1, and SMAP-29-E2. L-to-D-amino acid substitution in SMAP-29 improved anti-inflammatory activity in LPS-stimulated RAW 264.7 cells. In summary, we propose here that D-allo-Ile substitution is a more powerful strategy for increasing bacterial selectivity than D-Ile substitution in the design of D-enantiomeric and diastereomeric AMPs. SMAP-29-D1, and SMAP-29-D2 with improved bacterial selectivity and anti-inflammatory activity can serve as promising candidates for the development of anti-inflammatory and

  18. Toxicity of boehmite nanoparticles: impact of the ultrafine fraction and of the agglomerates size on cytotoxicity and pro-inflammatory response.

    PubMed

    Forest, Valérie; Pailleux, Mélanie; Pourchez, Jérémie; Boudard, Delphine; Tomatis, Maura; Fubini, Bice; Sennour, Mohamed; Hochepied, Jean-François; Grosseau, Philippe; Cottier, Michèle

    2014-08-01

    Boehmite (γ-AlOOH) nanoparticles (NPs) are used in a wide range of industrial applications. However, little is known about their potential toxicity. This study aimed at a better understanding of the relationship between the physico-chemical properties of these NPs and their in vitro biological activity. After an extensive physico-chemical characterization, the cytotoxicity, pro-inflammatory response and oxidative stress induced by a bulk industrial powder and its ultrafine fraction were assessed using RAW264.7 macrophages. Although the bulk powder did not trigger a significant biological activity, pro-inflammatory response was highly enhanced with the ultrafine fraction. This observation was confirmed with boehmite NPs synthesized at the laboratory scale, with well-defined and tightly controlled physico-chemical features: toxicity was increased when NPs were dispersed. In conclusion, the agglomerates size of boehmite NPs has a major impact on their toxicity, highlighting the need to study not only raw industrial powders containing NPs but also the ultrafine fractions representative of respirable particles.

  19. The macrophage marker translocator protein (TSPO) is down-regulated on pro-inflammatory 'M1' human macrophages.

    PubMed

    Narayan, Nehal; Mandhair, Harpreet; Smyth, Erica; Dakin, Stephanie Georgina; Kiriakidis, Serafim; Wells, Lisa; Owen, David; Sabokbar, Afsie; Taylor, Peter

    2017-01-01

    The translocator protein (TSPO) is a mitochondrial membrane protein, of as yet uncertain function. Its purported high expression on activated macrophages, has lent utility to TSPO targeted molecular imaging in the form of positron emission tomography (PET), as a means to detect and quantify inflammation in vivo. However, existing literature regarding TSPO expression on human activated macrophages is lacking, mostly deriving from brain tissue studies, including studies of brain malignancy, and inflammatory diseases such as multiple sclerosis. Here, we utilized three human sources of monocyte derived macrophages (MDM), from THP-1 monocytes, healthy peripheral blood monocytes and synovial fluid monocytes from patients with rheumatoid arthritis, to undertake a detailed investigation of TSPO expression in activated macrophages. In this work, we demonstrate a consistent down-regulation of TSPO mRNA and protein in macrophages activated to a pro-inflammatory, or 'M1' phenotype. Conversely, stimulation of macrophages to an M2 phenotype with IL-4, dexamethasone or TGF-β1 did not alter TSPO expression, regardless of MDM source. The reasons for this are uncertain, but our study findings add some supporting evidence for recent investigations concluding that TSPO may be involved in negative regulation of inflammatory responses in macrophages.

  20. Tie2 signaling cooperates with TNF to promote the pro-inflammatory activation of human macrophages independently of macrophage functional phenotype.

    PubMed

    García, Samuel; Krausz, Sarah; Ambarus, Carmen A; Fernández, Beatriz Malvar; Hartkamp, Linda M; van Es, Inge E; Hamann, Jörg; Baeten, Dominique L; Tak, Paul P; Reedquist, Kris A

    2014-01-01

    Angiopoietin (Ang) -1 and -2 and their receptor Tie2 play critical roles in regulating angiogenic processes during development, homeostasis, tumorigenesis, inflammation and tissue repair. Tie2 signaling is best characterized in endothelial cells, but a subset of human and murine circulating monocytes/macrophages essential to solid tumor formation express Tie2 and display immunosuppressive properties consistent with M2 macrophage polarization. However, we have recently shown that Tie2 is strongly activated in pro-inflammatory macrophages present in rheumatoid arthritis patient synovial tissue. Here we examined the relationship between Tie2 expression and function during human macrophage polarization. Tie2 expression was observed under all polarization conditions, but was highest in IFN-γ and IL-10 -differentiated macrophages. While TNF enhanced expression of a common restricted set of genes involved in angiogenesis and inflammation in GM-CSF, IFN-γ and IL-10 -differentiated macrophages, expression of multiple chemokines and cytokines, including CXCL3, CXCL5, CXCL8, IL6, and IL12B was further augmented in the presence of Ang-1 and Ang-2, via Tie2 activation of JAK/STAT signaling. Conditioned medium from macrophages stimulated with Ang-1 or Ang-2 in combination with TNF, sustained monocyte recruitment. Our findings suggest a general role for Tie2 in cooperatively promoting the inflammatory activation of macrophages, independently of polarization conditions.

  1. Both direct and indirect effects account for the pro-inflammatory activity of enteropathogenic mycotoxins on the human intestinal epithelium: Stimulation of interleukin-8 secretion, potentiation of interleukin-1{beta} effect and increase in the transepithelial passage of commensal bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maresca, Marc; Yahi, Nouara; Younes-Sakr, Lama

    Mycotoxins are fungal secondary metabolites responsible of food-mediated intoxication in animals and humans. Deoxynivalenol, ochratoxin A and patulin are the best known enteropathogenic mycotoxins able to alter intestinal functions resulting in malnutrition, diarrhea, vomiting and intestinal inflammation in vivo. Although their effects on intestinal barrier and transport activities have been extensively characterized, the mechanisms responsible for their pro-inflammatory effect are still poorly understood. Here we investigated if mycotoxin-induced intestinal inflammation results from a direct and/or indirect pro-inflammatory activity of these mycotoxins on human intestinal epithelial cells, using differentiated Caco-2 cells as model and interleukin 8 (IL-8) as an indicator ofmore » intestinal inflammation. Deoxynivalenol was the only mycotoxin able to directly increase IL-8 secretion (10- to 15-fold increase). We also investigated if these mycotoxins could indirectly stimulate IL-8 secretion through: (i) a modulation of the action of pro-inflammatory molecules such as the interleukin-1beta (IL-1{beta}), and/or (ii) an increase in the transepithelial passage of non-invasive commensal Escherichia coli. We found that deoxynivalenol, ochratoxin A and patulin all potentiated the effect of IL-1{beta} on IL-8 secretion (ranging from 35% to 138% increase) and increased the transepithelial passage of commensal bacteria (ranging from 12- to 1544-fold increase). In addition to potentially exacerbate established intestinal inflammation, these mycotoxins may thus participate in the induction of sepsis and intestinal inflammation in vivo. Taken together, our results suggest that the pro-inflammatory activity of enteropathogenic mycotoxins is mediated by both direct and indirect effects.« less

  2. Pro-inflammatory activity in rats of thiocyanate, a metabolite of the hydrocyanic acid inhaled from tobacco smoke.

    PubMed

    Whitehouse, Michael Wellesley; Jones, Mark

    2009-10-01

    To seek a mechanism linking tobacco smoking with the increased incidence and severity of rheumatoid arthritis, deduced from many retrospective surveys, by studying arthritis/fibrosis development in rats. Rats (>300) received low levels of sodium/potassium thiocyanate (10 or 25 mmol/l) in their drinking water to raise their blood thiocyanate levels, mimicking the elevated levels of blood, salivary and urinary thiocyanate found in smokers. Thiocyanate supplements increased the severity of experimental arthritis induced by tailbase injection of (1) Freund's complete adjuvants (mycobacteria plus various adjuvant-active oils), (2) collagen type-II with Freund's incomplete adjuvant (no mycobacteria), (3) the synthetic lipid amine, avridine in an oil and (4) the natural hydrocarbons squalene (C(30)H(50)) and pristane (C(19)H(40)). This pro-arthritic effect was independent of sex, rat strain or changing diet and housing facilities. Thiocyanate supplements also amplified the acute/persisting inflammatory responses to paw injections of pristane, zymosan and microcrystalline hydroxyapatite. Iodide salts also mimicked some of these effects of thiocyanate. Thiocyanate, a detoxication product of HCN present in tobacco smoke, increased (or even induced) inflammatory responses to several agents causing arthritis or fibrotic inflammation in rats. It, therefore, can act as a co-arthritigen, or 'virulence factor' and could be a therapeutic target to reduce arthritis expression and morbidity.

  3. Oral administration of geraniol ameliorates acute experimental murine colitis by inhibiting pro-inflammatory cytokines and NF-κB signaling.

    PubMed

    Medicherla, Kanakaraju; Sahu, Bidya Dhar; Kuncha, Madhusudana; Kumar, Jerald Mahesh; Sudhakar, Godi; Sistla, Ramakrishna

    2015-09-01

    Ulcerative colitis is associated with a considerable reduction in the quality of life of patients. The use of phyto-ingredients is becoming an increasingly attractive approach for the management of colitis. Geraniol is a monoterpene with anti-inflammatory and antioxidative properties. In this study, we investigated the therapeutic potential of geraniol as a complementary and alternative medicine against dextran sulphate sodium (DSS)-induced ulcerative colitis in mice. Disease activity indices (DAI) comprising body weight loss, presence of occult blood and stool consistency were assessed for evaluation of colitis symptoms. Intestinal damage was assessed by evaluating colon length and its histology. Pre-treatment with geraniol significantly reduced the DAI score, improved stool consistency (without occult blood) and increased the colon length. The amount of pro-inflammatory cytokines, specifically TNF-α, IL-1β and IL-6 and the activity of myeloperoxidase in colon tissue were significantly decreased in geraniol pre-treated mice. Western blot analyses revealed that geraniol interfered with NF-κB signaling by inhibiting NF-κB (p65)-DNA binding, and IκBα phosphorylation, degradation and subsequent increase in nuclear translocation. Moreover, the expressions of downstream target pro-inflammatory enzymes such as iNOS and COX-2 were significantly reduced by geraniol. Pre-treatment with geraniol also restored the DSS-induced decline in antioxidant parameters such as reduced glutathione and superoxide dismutase activity and attenuated the increase in lipid peroxidation marker, thiobarbituric acid reactive substances and nitrative stress marker, nitrites in colon tissue. Thus, our results suggest that geraniol is a potential therapeutic agent for inflammatory bowel disease.

  4. Minocycline modulates NFκB phosphorylation and enhances antimicrobial activity against Staphylococcus aureus in mesenchymal stromal/stem cells.

    PubMed

    Guerra, Alberto Daniel; Rose, Warren E; Hematti, Peiman; Kao, W John

    2017-07-21

    Mesenchymal stromal/stem cells (MSCs) have demonstrated pro-healing properties due to their anti-inflammatory, angiogenic, and even antibacterial properties. We have shown previously that minocycline enhances the wound healing phenotype of MSCs, and MSCs encapsulated in poly(ethylene glycol) and gelatin-based hydrogels with minocycline have antibacterial properties against Staphylococcus aureus (SA). Here, we investigated the signaling pathway that minocycline modulates in MSCs which results in their enhanced wound healing phenotype and determined whether preconditioning MSCs with minocycline has an effect on antimicrobial activity. We further investigated the in-vivo antimicrobial efficacy of MSC and antibiotic-loaded hydrogels in inoculated full-thickness cutaneous wounds. Modulation of cell signaling pathways in MSCs with minocycline was analyzed via western blot, immunofluorescence, and ELISA. Antimicrobial efficacy of MSCs pretreated with minocycline was determined by direct and transwell coculture with SA. MSC viability after SA coculture was determined via a LIVE/DEAD® stain. Internalization of SA by MSCs pretreated with minocycline was determined via confocal imaging. All protein and cytokine analysis was done via ELISA. The in-vivo antimicrobial efficacy of MSC and antibiotic-loaded hydrogels was determined in Sprague-Dawley rats inoculated with SA. Two-way ANOVA for multiple comparisons was used with Bonferroni test assessment and an unpaired two-tailed Student's t test was used to determine p values for all assays with multiple or two conditions, respectively. Minocycline leads to the phosphorylation of transcriptional nuclear factor-κB (NFκB), but not c-Jun NH 2 -terminal kinase (JNK) or mitogen-activated protein kinase (ERK). Inhibition of NFκB activation prevented the minocycline-induced increase in VEGF secretion. Preconditioning of MSCs with minocycline led to a reduced production of the antimicrobial peptide LL-37, but enhanced antimicrobial

  5. The role of pro-inflammatory and anti-inflammatory adipokines on exercise-induced bronchospasm in obese adolescents undergoing treatment.

    PubMed

    da Silva, Patrícia Leão; de Mello, Marco Túlio; Cheik, Nadia Carla; Sanches, Priscila Lima; Piano, Aline; Corgosinho, Flávia Campos; Campos, Raquel Munhoz da Silveira; Carnier, June; Inoue, Daniela; do Nascimento, Claudia Mo; Oyama, Lila M; Tock, Lian; Tufik, Sérgio; Dâmaso, Ana R

    2012-04-01

    Recent studies have demonstrated a greater prevalence in exercise-induced bronchospasm (EIB) in obese adolescents. However, the role of pro-/anti-inflammatory adipokines and the repercussions of obesity treatment on EIB need to be explored further. Therefore, the objective of this study was to evaluate the role of pro-/anti-inflammatory adipokines on EIB in obese adolescents evaluated after long-term interdisciplinary therapy. Thirty-five post-pubertal obese adolescents, including 20 non-EIB (body mass index [BMI] 36 ± 5 kg/m(2)) and 15 EIB (BMI 36 ± 5 kg/m(2)), were enrolled in this study. Body composition was measured by plethysmography, using the BOD POD body composition system, and visceral fat was analyzed by ultrasound. Serum levels of adiponectin and leptin were analyzed. EIB and lung function were evaluated according to the American Thoracic Society criteria. Patients were recruited to a 1-year interdisciplinary intervention of weight loss, consisting of medical, nutritional, exercise, and psychological components. Anthropometrics and lung function variables improved significantly after the therapy in both groups. Furthermore we observed a reduction in EIB occurrence in obese adolescents after treatment. There was an increase in adiponectin levels and a reduction in leptin levels after the therapy. In addition, a low FEV(1) value was a risk factor associated with EIB occurrence at baseline, and was correlated after treatment with changes in anthropometric and maximal O(2) consumption values as well as the adipokines profile. In the present study it was demonstrated that 1 year of interdisciplinary therapy decreased EIB frequency in obese adolescents, paralleled by an increase in lung function and improvement in pro-/anti-inflammatory adipokines.

  6. In Vitro Antimicrobial and Antiproliferative Activity of Amphipterygium adstringens

    PubMed Central

    Rodriguez-Garcia, A.; Peixoto, I. T. A.; Verde-Star, M. J.; De la Torre-Zavala, S.; Aviles-Arnaut, H.; Ruiz, A. L. T. G.

    2015-01-01

    Amphipterygium adstringens is a plant widely used in Mexican traditional medicine for its known anti-inflammatory and antiulcer properties. In this work, we evaluated the in vitro antimicrobial and antiproliferative activities of the methanolic extract of A. adstringens against oral pathogens such as Streptococcus mutans, Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Candida albicans, and Candida dubliniensis, using microdilution (MIC) and agar diffusion methods (MBC), and the antiproliferative activity evaluating total growth inhibition (TGI) by staining the protein content with sulforhodamine B (SRB), using nine human cancer cell lines. Crude extract (CE) of A. adstringens showed some degree of activity against one or more of the strains with a MIC from 0.125 mg/mL to 63 mg/mL and MBC from 1.6 to 6.3 mg/mL and cytotoxic activity, particularly against NCI-ADR/RES, an ovarian cell line expressing multiple resistance drugs phenotype. The CE is a complex mixture of possible multitarget metabolites that could be responsible for both antimicrobial and antiproliferative activities, and further investigation is required to elucidate the identity of active compounds. Nevertheless the CE itself is useful in the development of new antimicrobial treatment based on natural products to prevent oral diseases and as alternative natural source for cancer treatment and prevention. PMID:26451151

  7. Design, Synthesis and Evaluation of Novel Phthalimide Derivatives as in Vitro Anti-Microbial, Anti-Oxidant and Anti-Inflammatory Agents.

    PubMed

    Lamie, Phoebe F; Phillopes, John N; El-Gendy, Ahmed O; Rarova, Lucie; Gruz, Jiri

    2015-09-14

    Sixteen new phthalimide derivatives were synthesized and evaluated for their in vitro anti-microbial, anti-oxidant and anti-inflammatory activities. The cytotoxicity for all synthesized compounds was also determined in cancer cell lines and in normal human cells. None of the target derivatives had any cytotoxic activity. (ZE)-2-[4-(1-Hydrazono-ethyl) phenyl]isoindoline-1,3-dione (12) showed remarkable anti-microbial activity. Its activity against Bacillus subtilis was 133%, 106% and 88.8% when compared with the standard antibiotics ampicillin, cefotaxime and gentamicin, respectively. Compound 12 also showed its highest activities in Gram negative bacteria against Pseudomonas aeruginosa where the percentage activities were 75% and 57.6% when compared sequentially with the standard antibiotics cefotaxime and gentamicin. It was also found that the compounds 2-[4-(4-ethyl-3-methyl-5-thioxo-1,2,4-triazolidin-3-yl)phenyl]isoindoline-1,3-dione (13b) and 2-[4-(3-methyl-5-thioxo-4-phenyl-1,2,4-triazolidin-3-yl)phenyl]isoindoline-1,3-dione (13c) had anti-oxidant activity. 4-(N'-{1-[4-(1,3-Dioxo-1,3-dihydro-isoindol-2-yl)-phenyl]-ethylidene}-hydrazino)-benzenesulfonamide (17c) showed the highest in vitro anti-inflammatory activity of the tested compounds (a decrease of 32%). To determine the mechanism of the anti-inflammatory activity of 17c, a docking study was carried out on the COX-2 enzyme. The results confirmed that 17c had a higher binding energy score (-17.89 kcal/mol) than that of the ligand celecoxib (-17.27 kcal/mol).

  8. Plant flavones enhance antimicrobial activity of respiratory epithelial cell secretions against Pseudomonas aeruginosa

    PubMed Central

    Hariri, Benjamin M.; McMahon, Derek B.; Chen, Bei; Adappa, Nithin D.; Palmer, James N.; Kennedy, David W.

    2017-01-01

    Flavones are a class of natural plant secondary metabolites that have anti-inflammatory and anti-bacterial effects. Some flavones also activate the T2R14 bitter taste receptor, which is expressed in motile cilia of the sinonasal epithelium and activates innate immune nitric oxide (NO) production. Flavones may thus be potential therapeutics for respiratory infections. Our objective was to examine the anti-microbial effects of flavones on the common sinonasal pathogens Candida albicans, Staphylococcus aureus, and Pseudomonas aeruginosa, evaluating both planktonic and biofilm growth. Flavones had only very low-level antibacterial activity alone. They did not reduce biofilm formation, but did reduce production of the important P. aeruginosa inflammatory mediator and ciliotoxin pyocyanin. However, flavones exhibited synergy against P. aeruginosa in the presence of antibiotics or recombinant human lysozyme. They also enhanced the efficacy of antimicrobials secreted by cultured and primary human airway cells grown at air-liquid interface. This suggests that flavones may have anti-gram-negative potential as topical therapeutics when combined with antibiotics or in the context of innate antimicrobials secreted by the respiratory or other epithelia. This may have an additive effect when combined with T2R14-activated NO production. Additional studies are necessary to understand which flavone compounds or mixtures are the most efficacious. PMID:28931063

  9. Antimicrobial activity and regulation of CXCL9 and CXCL10 in oral keratinocytes.

    PubMed

    Marshall, Alison; Celentano, Antonio; Cirillo, Nicola; Mignogna, Michele D; McCullough, Michael; Porter, Stephen

    2016-10-01

    Chemokine (C-X-C motif) ligand (CXCL)9 and CXCL10 are dysregulated in oral inflammatory conditions, and it is not known if these chemokines target microorganisms that form oral biofilm. The aim of this study was to investigate the antimicrobial activity of CXCL9 and CXCL10 on oral microflora and their expression profiles in oral keratinocytes following exposure to inflammatory and infectious stimuli. Streptococcus sanguinis was used as a model and Escherichia coli as a positive control. The antimicrobial effect of CXCL9/CXCL10 was tested using a radial diffusion assay. mRNA transcripts were isolated from lipopolysaccharide (LPS)-treated and untreated (control) oral keratinocyte cell lines at 2-, 4-, 6-, and 8-h time-points of culture. The CXCL9/10 expression profile in the presence or absence of interferon-γ (IFN-γ) was assessed using semiquantitative PCR. Although both chemokines demonstrated antimicrobial activity, CXCL9 was the most effective chemokine against both S. sanguinis and E coli. mRNA for CXCL10 was expressed in control cells and its production was enhanced at all time-points following stimulation with LPS. Conversely, CXCL9 mRNA was not expressed in control or LPS-stimulated cells. Finally, stimulation with IFN-γ enhanced basal expression of both CXCL9 and CXCL10 in oral keratinocytes. Chemokines derived from oral epithelium, particularly CXCL9, demonstrate antimicrobial properties. Bacterial and inflammatory-stimulated up-regulation of CXCL9/10 could represent a key element in oral bacterial colonization homeostasis and host-defense mechanisms. © 2016 Eur J Oral Sci.

  10. Anti-inflammatory, anti-bacterial activity and structure-activity relationships of substitutions on 4-thiazolidinone derivatives - Part-1.

    PubMed

    Naeem, Muhammad; Chadhury, Muhammad Nawaz; Amjad, Rana; Rehaman, Salma; Khan, Kahlida

    2012-10-01

    Environmentally benign and economically feasible procedures have been adopted for the synthesis of novel biologically potential 4-thiazolidinone derivatives. Purpose built microwave oven and ionic liquids (PTCs) showed wrack improvements in yield, time and cost. The yield of 1st series (01-08) obtained in the ranged from 82.4-94.2% and for 2nd series (09-16) obtained 80.6-92.8%. The compounds (01-16) were applied for anti-inflammatory activity at concentrations of 0.5 and 01 mg/kg in carrageenan induced acute and formalin induced chronic inflammatory procedures in mice and better results were obtained at 0.5 mg/kg dose. Some of the compounds 03, 04, 07, 12, 13 showed remarkable anti-inflammatory activity in both procedures as compared to the standard reference drug 2-(2,6-dichloranilino) phenyl acetic acid (diclofenac). Particularly compound 12 and 13 may be used as a non-steroidal anti-inflammatory drug (NSAID) to reduce inflammation. The compounds (01-16) were screened for their antimicrobial activity (in-vivo) and found that the compounds 12, 13 and 14 exhibited comparable or higher antibacterial activity then ciprofloxacin (standard) against E. coli, S. enteritidis, P. aeruginosa, S. aureus and B. subtilis. The compounds of series-2 showed significant activity as compared with ciprofloxacin. These compounds could be lead to the selection and use as efficient antimicrobial agents, especially for the treatment of multi-drug resistant infections.

  11. A20 restricts ubiquitination of pro-interleukin-1β protein complexes and suppresses NLRP3 inflammasome activity

    PubMed Central

    Duong, Bao H.; Onizawa, Michio; Oses-Prieto, Juan A.; Advincula, Rommel; Burlingame, Alma; Malynn, Barbara A.; Ma, Averil

    2015-01-01

    SUMMARY Inappropriate inflammasome activation contributes to multiple human diseases, but the mechanisms by which inflammasomes are suppressed are poorly understood. The NFκB inhibitor A20 is a ubiquitin-modifying enzyme that may prevent human inflammatory diseases and lymphomas. Here, we report that A20-deficient macrophages, unlike normal cells, exhibit spontaneous NLRP3 inflammasome activity to LPS alone. The kinase RIPK3, but not the adaptor MyD88, is required for this response. In normal cells, A20 constitutively associates with caspase-1 and pro-IL-1β, and NLRP3 activation further promotes A20 recruitment to the inflammasome. Pro-IL-1β also co-immunoprecipitates with RIPK1, RIPK3, caspase-1 and caspase-8 in a complex that is modified with K63-linked and unanchored polyubiquitin. In A20-deficient macrophages, this pro-IL-1β-associated ubiquitination is markedly increased in a RIPK3-dependent manner. Mass spectrometric and mutational analyses reveal that K133 of pro-IL-1β is a physiological ubiquitination site that supports processing. Our study reveals a novel mechanism by which A20 prevents inflammatory diseases. PMID:25607459

  12. Characteristics of the antitumor activities in tumor cells and modulation of the inflammatory response in RAW264.7 cells of a novel antimicrobial peptide, chrysophsin-1, from the red sea bream (Chrysophrys major).

    PubMed

    Hsu, Jung-Chieh; Lin, Li-Ching; Tzen, Jason T C; Chen, Jyh-Yih

    2011-05-01

    The antimicrobial peptide, chrysophsin-1, exhibits antimicrobial activities with similar efficiencies for both gram-negative and gram-positive bacteria. In this study, we examined the antitumor activity and modulation of the inflammatory response of a synthetic chrysophsin-1 peptide. In vitro results showed that chrysophsin-1 had greater inhibitory effects against human fibrosarcoma (HT-1080), histiocytic lymphoma (U937), and epithelial carcinoma (HeLa) cells. LDH release by HeLa cells was comparable to that of an MTS assay after treatment with 1.5-3 μg/ml chrysophsin-1 for 24h. Under SEM and TEM observations, we found no intact cell membranes after chrysophsin-1 treatment of HeLa cells for 8h. The suggested mechanism of the cytotoxic activity of chrysophsin-1 was disruption of cancer cell membranes. In addition, we also examined caspase-3, -8, and -9 activities by Western blotting; the results excluded the participation of apoptosis in chrysophsin-1's effect on HeLa cells. Stimulation by lipopolysaccharide induced tumor necrosis factor (TNF)-α which was able to modulate chrysophsin-1 treatment of RAW264.7 cells and inhibited endogenous TNF-α release but did not block its secretion. With data from this study, we demonstrate that chrysophsin-1 has antimicrobial and antitumor activities and modulates the inflammatory response in RAW264.7 cells. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Decursinol angelate blocks transmigration and inflammatory activation of cancer cells through inhibition of PI3K, ERK and NF-kappaB activation.

    PubMed

    Kim, Won-Jung; Lee, Min-Young; Kim, Jung-Hee; Suk, Kyoungho; Lee, Won-Ha

    2010-10-01

    Inflammation is known to be closely associated with the development of cancer. Decursinol angelate (DA), a coumarin compound isolated from Angelica gigas and related compounds have been shown to possess potent anti-inflammatory activities. However, little is known about their effects on the inflammatory processes associated with cancer. In this study, the anti-inflammatory effect of DA was evaluated in cancer cell lines with respect to cellular invasion through the extracellular matrix (ECM) and the expression of pro-inflammatory mediators such as cytokine, cell adhesion molecules and matrix metalloproteinase (MMP)-9. DA inhibited the invasion of fibrosarcoma cell line, HT1080 and breast cancer cell line, MDA-MB-231 in the Matrigel invasion assay. DA-mediated suppression of cancer cell invasion was accomplished by suppression of PI3K activity known to be associated with cytoskeletal rearrangement related to cellular migration. DA also suppressed the adhesion of cancer cells to ECM mediated by down-regulation of beta(1)-integrin expression levels. Furthermore, DA inhibited the expression of pro-inflammatory cytokines and MMP-9 through suppression of PI3K, ERK and NF-kappaB activation. These results demonstrate that DA suppresses invasion and inflammatory activation of cancer cells through modulation of PI3K/AKT, ERK and NF-kappaB. These anti-inflammatory activities of DA may contribute to its anti-cancer activity. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  14. Edible blue-green algae reduce the production of pro-inflammatory cytokines by inhibiting NF-κB pathway in macrophages and splenocytes

    PubMed Central

    Ku, Chai Siah; Pham, Tho X.; Park, Youngki; Kim, Bohkyung; Shin, Min; Kang, Insoo; Lee, Jiyoung

    2013-01-01

    Background Chronic inflammation contributes to the development of pathological disorders including insulin resistance and atherosclerosis. Identification of anti-inflammatory natural products can prevent the inflammatory diseases. Methods Anti-inflammatory effects of blue-green algae (BGA), i.e., Nostoc commune var. Sphaeroides Kützing (NO) and Spirulina Platensis (SP), were compared in RAW 264.7 and mouse bone marrow-derived macrophages (BMM) as well as splenocytes from apolipoprotein E knockout (apoE−/−) mice fed BGA. Results When macrophages pretreated with 100 μg/ml NO lipid extract (NOE) or SP lipid extract (SPE) were activated by lipopolysaccharide (LPS), expression and secretion of pro-inflammatory cytokines, such as tumor necrosis factor α (TNFα), interleukin 1β (IL-1β), and IL-6, were significantly repressed. NOE and SPE also significantly repressed the expression of TNFα and IL-1β in BMM. LPS-induced secretion of IL-6 was lower in splenocytes from apoE−/− fed an atherogenic diet containing 5% NO or SP for 12 weeks. In RAW 264.7 macrophages, NOE and SPE markedly decreased nuclear translocation of NF-κB. The degree of repression of pro-inflammatory gene expression by algal extracts was much stronger than that of SN50, an inhibitor of NF-κB nuclear translocation. Trichostatin A, a pan histone deacetylase inhibitor, increased basal expression of IL-1β and attenuated the repression of the gene expression by SPE. SPE significantly down-regulated mRNA abundance of 11 HDAC isoforms, consequently increasing acetylated histone 3 levels. Conclusion NOE and SPE repress pro-inflammatory cytokine expression and secretion in macrophages and splenocytes via inhibition of NF-κB pathway. Histone acetylation state is likely involved in the inhibition. General significance This study underscores natural products can exert anti-inflammatory effects by epigenetic modifications such as histone acetylation. PMID:23357040

  15. Protein-bound polysaccharides from Coriolus versicolor attenuate LPS-induced synthesis of pro-inflammatory cytokines and stimulate PBMCs proliferation.

    PubMed

    Jędrzejewski, Tomasz; Pawlikowska, Małgorzata; Piotrowski, Jakub; Kozak, Wiesław

    2016-10-01

    Protein-bound polysaccharides (PBP) isolated from Coriolus versicolor (CV) are classified as biological response modifiers capable of exhibiting various biological activities, such as anti-tumour and immunopotentiating activity. Since we have found in vivo studies that the tested PBP induced prolongation of endotoxin fever in rats, the aim of the present study was to investigate the in vitro effect of the PBP on the production of pro-inflammatory cytokines by the lipolysaccharide (LPS)-stimulated rat peripheral blood mononuclear cells (PBMCs). The results showed that the PBP affect the immunomodulating properties of the LPS-treated PBMCs by the enhancement of mitogenic activity and attenuation of the LPS-induced production of interleukin (IL)-1β and IL-6. Moreover, the tested polysaccharides peptides themselves also exhibit immunomodulatory properties manifested in the increased cell proliferation and pro-inflammatory cytokine release from PBMCs. The effect of PBP on the both phenomena was time-dependent and occurred in the U-shaped dose response manner. These findings are significant when considering the use of commercially available PBP from CV extract by cancer patients suffering from immunodeficiency, who may experience microbial infections during therapy. Copyright © 2016 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  16. Etiogenic factors present in the cerebrospinal fluid from amyotrophic lateral sclerosis patients induce predominantly pro-inflammatory responses in microglia.

    PubMed

    Mishra, Pooja-Shree; Vijayalakshmi, K; Nalini, A; Sathyaprabha, T N; Kramer, B W; Alladi, Phalguni Anand; Raju, T R

    2017-12-16

    Microglial cell-associated neuroinflammation is considered as a potential contributor to the pathophysiology of sporadic amyotrophic lateral sclerosis. However, the specific role of microglia in the disease pathogenesis remains to be elucidated. We studied the activation profiles of the microglial cultures exposed to the cerebrospinal fluid from these patients which recapitulates the neurodegeneration seen in sporadic amyotrophic lateral sclerosis. This was done by investigating the morphological and functional changes including the expression levels of prostaglandin E2 (PGE2), cyclooxygenase-2 (COX-2), TNF-α, IL-6, IFN-γ, IL-10, inducible nitric oxide synthase (iNOS), arginase, and trophic factors. We also studied the effect of chitotriosidase, the inflammatory protein found upregulated in the cerebrospinal fluid from amyotrophic lateral sclerosis patients, on these cultures. We report that the cerebrospinal fluid from amyotrophic lateral sclerosis patients could induce an early and potent response in the form of microglial activation, skewed primarily towards a pro-inflammatory profile. It was seen in the form of upregulation of the pro-inflammatory cytokines and factors including IL-6, TNF-α, iNOS, COX-2, and PGE2. Concomitantly, a downregulation of beneficial trophic factors and anti-inflammatory markers including VEGF, glial cell line-derived neurotrophic factor, and IFN-γ was seen. In addition, chitotriosidase-1 appeared to act specifically via the microglial cells. Our findings demonstrate that the cerebrospinal fluid from amyotrophic lateral sclerosis patients holds enough cues to induce microglial inflammatory processes as an early event, which may contribute to the neurodegeneration seen in the sporadic amyotrophic lateral sclerosis. These findings highlight the dynamic role of microglial cells in the pathogenesis of the disease, thus suggesting the need for a multidimensional and temporally guarded therapeutic approach targeting the inflammatory

  17. Fatigue in Patients with Multiple Sclerosis: Is It Related to Pro- and Anti-Inflammatory Cytokines?

    PubMed Central

    Malekzadeh, Arjan; Van de Geer-Peeters, Wietske; De Groot, Vincent; Elisabeth Teunissen, Charlotte; Beckerman, Heleen; TREFAMS-ACE Study Group

    2015-01-01

    Objective. To investigate the pathophysiological role of pro- and anti-inflammatory cytokines in primary multiple sclerosis-related fatigue. Methods. Fatigued and non-fatigued patients with multiple sclerosis (MS) were recruited and their cytokine profiles compared. Patients with secondary fatigue were excluded. Fatigue was assessed with the self-reported Checklist Individual Strength (CIS20r), subscale fatigue. A CIS20r fatigue cut-off score of 35 was applied to differentiate between non-fatigued (CIS20r fatigue ≤34) and fatigued (CIS20r fatigue ≥35) patients with MS. Blood was collected to determine the serum concentrations of pro-inflammatory cytokines (IL-1β, IL-2, IL-6, IL-8, IL-12p70, IL-17, TNFα, and IFN-γ) and anti-inflammatory cytokines (IL-4, IL-5, IL-10, and IL-13). We controlled for the confounding effect of age, gender, duration of MS, disease severity, type of MS, and use of immunomodulatory drugs. Results. Similar cytokine levels were observed between MS patients with (n = 21) and without fatigue (n = 14). Adjusted multiple regression analyses showed a single significant positive relationship, that of IL-6 with CIS20r fatigue score. The explained variance of the IL-6 model was 21.1%, once adjusted for the confounding effect of age. Conclusion. The pro-inflammatory cytokine interleukin-6 (IL-6) may play a role in the pathophysiology of primary fatigue in patients with MS. Trial Registrations. ISRCTN69520623, ISRCTN58583714, and ISRCTN82353628. PMID:25722532

  18. Food-grade antimicrobials potentiate the antibacterial activity of 1,2-hexanediol.

    PubMed

    Yogiara; Hwang, S J; Park, S; Hwang, J-K; Pan, J-G

    2015-05-01

    Preservative agents determining the shelf life of cosmetic products must have effective antimicrobial activity while meeting safety requirements for topical use. In this study, we determined the antimicrobial activity of 1,2-hexanediol against several Gram-positive and Gram-negative bacteria. Antimicrobial susceptibility tests have shown that 1,2-hexanediol exhibits broad-spectrum activity against Gram-positive and Gram-negative bacteria with MICs of 0·5-2% (v/v). The bactericidal concentration of 1,2-hexanediol was ranging from 1 to 2 × MIC as demonstrated by time-kill curve assay. A membrane depolarization assay showed that 1,2-hexanediol disrupted the cytoplasmic membrane potential. A checkerboard assay indicated that the effective concentration of 1,2-hexanediol was reduced up to 0·25-0·5 × MIC when combined with macelignan and octyl gallate against Gram-positive bacteria. However, this combination was not effective against Gram-negative bacteria. A turbidity reduction assay demonstrated that the combination of a high concentration of 1,2-hexanediol with food-grade antimicrobial compounds could trigger lytic activity towards Bacillus cereus cells. The remaining cell turbidity was 24·6 and 22·2% when 2% of 1,2-hexanediol was combined with 8 mg l(-1) octyl gallate or with 32 mg l(-1) macelignan respectively. This study showed that food-grade antimicrobial compounds may be used in combination with 1,2-hexanediol to increase its efficacy as a preservative agent in cosmetics. The antimicrobial activity of 1,2-hexanediol against Gram-positive and Gram-negative bacteria was potentiated with food-grade antimicrobials including xanthorrhizol, macelignan, panduratin A and octyl gallate, which have already been reported to display anti-inflammatory and other beneficial activities related to cosmetics. Therefore, the combination of 1,2-hexanediol and these food-grade antimicrobial agents would have benefits not only for increasing the antimicrobial activity

  19. Pro-inflammatory cytokines and leukocyte oxidative burst in chronic kidney disease: culprits or innocent bystanders?

    PubMed

    Neirynck, Nathalie; Glorieux, Griet; Schepers, Eva; Dhondt, Annemieke; Verbeke, Francis; Vanholder, Raymond

    2015-06-01

    Pro-inflammatory cytokines are elevated in chronic kidney disease (CKD), a condition characterized by microinflammation with oxidative stress as key feature. However, their role in the inflammatory response at uraemic concentrations has not yet been defined. In this study, the contribution of cytokines on induction of leukocyte oxidative stress was investigated. Whole blood from healthy donors was incubated with 20-1400 pg/mL TNFα, 5-102.8 pg/mL IL-6, 20-400 pg/mL IL-1β and 75-1200 pg/mL IL-18 separately or in combination. Oxidative burst was measured, at baseline and after stimulation with fMLP (Phagoburst™). The effect of the TNFα blocker, adalimumab (Ada), was evaluated on TNFα-induced ROS production. Finally, the association between TNFα and the composite end point all-cause mortality or first cardiovascular event was analysed in a CKD population stage 4-5 (n = 121). While interleukin (IL)-6, IL-1β and IL-18 alone induced no ROS activation of normal leukocytes, irrespective of concentrations, TNFα induced ROS activation at baseline (P < 0.01) and after fMLP stimulation (P < 0.05), but only at uraemic concentrations in the high range (400 and 1400 pg/mL). A similar pattern was observed with all cytokines in combination, but already at intermediate uraemic concentrations (all P < 0.05, except for monocytes after fMLP stimulation: n.s.), suggesting synergism between cytokines. ROS production induced by TNFα (400 pg/mL) and the cytokine combination was blocked with Ada. Uraemia-related oxidative stress in leukocytes of haemodialysis patients was however not blocked by Ada. In patients, TNFα was not associated to adverse events (HR: 1.52, 95% CI 0.81-2.85, P = 0.13). Among several pro-inflammatory cytokines, TNFα alone was pro-oxidative but only at high-range uraemic concentrations. Adding a TNFα blocker, Ada, blocked this ROS production, but not the oxidative stress in blood samples from haemodialysis patients, suggesting that other uraemic toxins than

  20. A low dose lipid infusion is sufficient to induce insulin resistance and a pro-inflammatory response in human subjects.

    PubMed

    Liang, Hanyu; Lum, Helen; Alvarez, Andrea; Garduno-Garcia, Jose de Jesus; Daniel, Benjamin J; Musi, Nicolas

    2018-01-01

    The root cause behind the low-grade inflammatory state seen in insulin resistant (obesity and type 2 diabetes) states is unclear. Insulin resistant subjects have elevations in plasma free fatty acids (FFA), which are ligands for the pro-inflammatory toll-like receptor (TLR)4 pathway. We tested the hypothesis that an experimental elevation in plasma FFA (within physiological levels) in lean individuals would upregulate TLR4 and activate downstream pathways (e.g., MAPK) in circulating monocytes. Twelve lean, normal glucose-tolerant subjects received a low dose (30 ml/h) 48 h lipid or saline infusion on two different occasions. Monocyte TLR4 protein level, MAPK phosphorylation, and expression of genes in the TLR pathway were determined before and after each infusion. The lipid infusion significantly increased monocyte TLR4 protein and phosphorylation of JNK and p38 MAPK. Lipid-mediated increases in TLR4 and p38 phosphorylation directly correlated with reduced peripheral insulin sensitivity (M value). Lipid increased levels of multiple genes linked to inflammation, including several TLRs, CD180, MAP3K7, and CXCL10. Monocytes exposed in vivo to lipid infusion exhibited enhanced in vitro basal and LPS-stimulated IL-1β secretion. In lean subjects, a small increase in plasma FFA (as seen in insulin resistant subjects) is sufficient to upregulate TLR4 and stimulate inflammatory pathways (MAPK) in monocytes. Moreover, lipids prime monocytes to endotoxin. We provide proof-of-concept data in humans indicating that the low-grade inflammatory state characteristic of obesity and type 2 diabetes could be caused (at least partially) by pro-inflammatory monocytes activated by excess lipids present in these individuals.

  1. Indoline-3-propionate and 3-aminopropyl carbamates reduce lung injury and pro-inflammatory cytokines induced in mice by LPS.

    PubMed

    Finkin-Groner, E; Moradov, D; Shifrin, H; Bejar, C; Nudelman, A; Weinstock, M

    2015-02-01

    In the search for safer and effective anti-inflammatory agents, we investigated the effect of methyl indoline-3-propionate and indoline-3-(3-aminopropyl) carbamates on LPS-induced lung injury and pro-inflammatory cytokines in mice. Their mechanism of action was determined in murine peritoneal macrophages. Lung injury was induced by intratracheal infusion of LPS and assessed by the change in lung weight and structure by light microscopy after staining by haematoxylin and eosin. In LPS-activated macrophages, MAPK proteins and IκBα were measured by Western blotting and the transcription factors, AP-1 and NF-κB by electromobility shift assay. Cytokines in the plasma and spleen of mice injected with LPS were measured by elisa-based assay. AN917 and AN680 (1-10 pM) decreased TNF-α protein in macrophages by inhibiting phosphorylation of p38 MAPK, IκBα degradation and activation of AP-1 and NF-κB without affecting cell viability. In vivo, these compounds (10 μmol · kg(-1)) markedly decreased lung injury induced by LPS and the elevation of TNF-α and IL-6 in lung, plasma and spleen. Activation of α-7nACh receptors contributed to the reduction of TNF-α by AN917, which inhibited AChE in the spleen by 35%. Indoline carbamates are potent inhibitors of pro-inflammatory mediators in murine macrophages and in mice injected with LPS, acting via the p38 MAPK, AP-1 and NF-κB cascades. Indirect α-7nACh receptor activation by AN917, through inhibition of AChE, contributes to its anti-inflammatory effect. Indoline carbamates may have therapeutic potential for lung injury and other diseases associated with chronic inflammation without causing immunosuppression. © 2014 The British Pharmacological Society.

  2. Indoline-3-propionate and 3-aminopropyl carbamates reduce lung injury and pro-inflammatory cytokines induced in mice by LPS

    PubMed Central

    Finkin-Groner, E; Moradov, D; Shifrin, H; Bejar, C; Nudelman, A; Weinstock, M

    2015-01-01

    Background and Purpose In the search for safer and effective anti-inflammatory agents, we investigated the effect of methyl indoline-3-propionate and indoline-3-(3-aminopropyl) carbamates on LPS-induced lung injury and pro-inflammatory cytokines in mice. Their mechanism of action was determined in murine peritoneal macrophages. Experimental Approach Lung injury was induced by intratracheal infusion of LPS and assessed by the change in lung weight and structure by light microscopy after staining by haematoxylin and eosin. In LPS-activated macrophages, MAPK proteins and IκBα were measured by Western blotting and the transcription factors, AP-1 and NF-κB by electromobility shift assay. Cytokines in the plasma and spleen of mice injected with LPS were measured by elisa-based assay. Key Results AN917 and AN680 (1–10 pM) decreased TNF-α protein in macrophages by inhibiting phosphorylation of p38 MAPK, IκBα degradation and activation of AP-1 and NF-κB without affecting cell viability. In vivo, these compounds (10 μmol·kg−1) markedly decreased lung injury induced by LPS and the elevation of TNF-α and IL-6 in lung, plasma and spleen. Activation of α-7nACh receptors contributed to the reduction of TNF-α by AN917, which inhibited AChE in the spleen by 35%. Conclusion and Implications Indoline carbamates are potent inhibitors of pro-inflammatory mediators in murine macrophages and in mice injected with LPS, acting via the p38 MAPK, AP-1 and NF-κB cascades. Indirect α-7nACh receptor activation by AN917, through inhibition of AChE, contributes to its anti-inflammatory effect. Indoline carbamates may have therapeutic potential for lung injury and other diseases associated with chronic inflammation without causing immunosuppression. PMID:25322956

  3. Suppression of wear particle induced pro-inflammatory cytokine and chemokine production in macrophages via NF-κB decoy oligodeoxynucleotide: A preliminary report

    PubMed Central

    Lin, Tzu-hua; Yao, Zhenyu; Sato, Taishi; Keeney, Michael; Li, Chenguang; Pajarinen, Jukka; Yang, Fan; Egashira, Kensuke; Goodman, Stuart B.

    2014-01-01

    Total joint replacement (TJR) is a very cost-effective surgery for end-stage arthritis. One important goal is to decrease the revision rate especially because TJR has been extended to younger patients. Continuous production of ultra-high molecular weight polyethylene (UHMWPE) wear particles induces macrophage infiltration and chronic inflammation, which can lead to peri-prosthetic osteolysis. Targeting individual pro-inflammatory cytokines directly has not reversed the osteolytic process in clinical trials, due to compensatory upregulation of other pro-inflammatory factors. We hypothesized that targeting the important transcription factor NF-κB could mitigate the inflammatory response to wear particles, potentially diminishing osteolysis. In the current study, we suppressed NF-κB activity in mouse RAW264.7 and human THP1 macrophage cell lines, as well as primary mouse and human macrophages, via competitive binding with double strand decoy oligodeoxynucleotide (ODN) containing an NF-κB binding element. We found that macrophage exposure to UHMWPE particles induced multiple pro-inflammatory cytokine and chemokine expression including TNF-α, MCP1, MIP1α and others. Importantly, the decoy ODN significantly suppressed the induced cytokine and chemokine expression in both murine and human macrophages, and resulted in suppression of macrophage recruitment. The strategic use of decoy NF-κB ODN, delivered locally, could potentially diminish particle-induced peri-prosthetic osteolysis. PMID:24814879

  4. Evaluation of pro-inflammatory events induced by Bothrops alternatus snake venom.

    PubMed

    Echeverría, Silvina; Leiguez, Elbio; Guijas, Carlos; do Nascimento, Neide Galvão; Acosta, Ofelia; Teixeira, Catarina; Leiva, Laura C; Rodríguez, Juan Pablo

    2018-02-01

    Inflammation is a major local feature of envenomation by bothropic snakes being characterized by a prominent local edema, pain, and extensive swelling. There are reports demonstrating that whole Bothrops snake venoms and toxins isolated from them are able to activate macrophages functions, such as phagocytosis, production of reactive oxygen, cytokines and eicosanoids, however, little is known about the effects of Bothrops alternatus (B.a.) venom on macrophages. In this work, we evaluated the proinflammatory effects of B.a. venom with in vivo and in vitro experiments using the Raw 264.7 cell line and mouse peritoneal macrophages. We detected that B.a. venom augments cell permeability (2-fold), and cellular extravasation (mainly neutrophils), increase proinflammatory cytokines IL1 (∼300-fold), IL12 (∼200-fold), and TNFα (∼80-fold) liberation and induce the expression of enzymes related to lipid signaling, such as cPLA 2α and COX-2. Additionally, using lipidomic techniques we detected that this venom produces a release of arachidonic acid (∼10 nMol/mg. Protein) and other fatty acids (16:0 and 18:1 n-9c). Although much of these findings were described in inflammatory processes induced by other bothropic venoms, here we demonstrate that B.a. venom also stimulates pro-inflammatory pathways involving lipid mediators of cell signaling. In this sense, lipidomics analysis of macrophages stimulated with B.a. venom evidenced that the main free fatty acids are implicated in the inflammatory response, and also demonstrated that this venom, is able to activate lipid metabolism even with a low content of PLA 2 . Copyright © 2017. Published by Elsevier B.V.

  5. The Role of Interleukin-1 and Interleukin-18 in Pro-Inflammatory and Anti-Viral Responses to Rhinovirus in Primary Bronchial Epithelial Cells

    PubMed Central

    Kay, Linda; Parker, Lisa C.; Sabroe, Ian; Sleeman, Matthew A.; Briend, Emmanuel; Finch, Donna K.

    2013-01-01

    Human Rhinovirus (HRV) is associated with acute exacerbations of chronic respiratory disease. In healthy individuals, innate viral recognition pathways trigger release of molecules with direct anti-viral activities and pro-inflammatory mediators which recruit immune cells to support viral clearance. Interleukin-1alpha (IL-1α), interleukin-1beta (IL-1β) and interleukin-18 (IL-18) have critical roles in the establishment of neutrophilic inflammation, which is commonly seen in airways viral infection and thought to be detrimental in respiratory disease. We therefore investigated the roles of these molecules in HRV infection of primary human epithelial cells. We found that all three cytokines were released from infected epithelia. Release of these cytokines was not dependent on cell death, and only IL-1β and IL-18 release was dependent on caspase-1 catalytic activity. Blockade of IL-1 but not IL-18 signaling inhibited up-regulation of pro-inflammatory mediators and neutrophil chemoattractants but had no effect on virus induced production of interferons and interferon-inducible genes, measured at both mRNA and protein level. Similar level of virus mRNA was detected with and without IL-1RI blockade. Hence IL-1 signaling, potentially involving both IL-1β and IL-1α, downstream of viral recognition plays a key role in induction of pro-inflammatory signals and potentially in recruitment and activation of immune cells in response to viral infection instigated by the epithelial cells, whilst not participating in direct anti-viral responses. PMID:23723976

  6. Steroid resistance in COPD is associated with impaired molecular chaperone Hsp90 expression by pro-inflammatory lymphocytes.

    PubMed

    Hodge, Greg; Roscioli, Eugene; Jersmann, Hubertus; Tran, Hai B; Holmes, Mark; Reynolds, Paul N; Hodge, Sandra

    2016-10-21

    Corticosteroid resistance is a major barrier to effective treatment of COPD. We have shown that the resistance is associated with decreased expression of glucocorticoid receptor (GCR) by senescent CD28nullCD8+ pro-inflammatory lymphocytes in peripheral blood of COPD patients. GCR must be bound to molecular chaperones heat shock proteins (Hsp) 70 and Hsp90 to acquire a high-affinity steroid binding conformation, and traffic to the nucleus. We hypothesized a loss of Hsp70/90 from these lymphocytes may further contribute to steroid resistance in COPD. Blood was collected from COPD (n = 10) and aged-matched controls (n = 10). To assess response to steroids, cytotoxic mediators, intracellular pro-inflammatory cytokines, CD28, GCR, Hsp70 and Hsp90 were determined in T and NKT-like cells in the presence of ± 10 μM prednisolone and 2.5 ng/mL cyclosporine A (binds to GCR-Hsp70/90 complex) using flow cytometry, western blot and fluorescence microscopy. A loss of expression of Hsp90 and GCR from CD28null CD8+ T and NKT-like cells in COPD was noted (Hsp70 unchanged). Loss of Hsp90 expression correlated with the percentage of CD28null CD8+ T and NKT-like cells producing IFNγ or TNFα in all subjects (eg, COPD: R = -0.763, p = 0.007 for T-cell IFNγ). Up-regulation of Hsp90 and associated decrease in pro-inflammatory cytokine production was found in CD28nullCD8+ T and NKT-like cells in the presence of 10 μM prednisolone and 2.5 ng/mL cyclosporine A. Loss of Hsp90 from cytotoxic/pro-inflammatory CD28nullCD8+ T and NKT-like cells could contribute to steroid resistance in COPD. Combination prednisolone and low-dose cyclosporine A therapy inhibits these pro-inflammatory cells and may reduce systemic inflammation in COPD.

  7. Oxazolo[4,5-b]pyridine-Based Piperazinamides as GSK-3β Inhibitors with Potential for Attenuating Inflammation and Suppression of Pro-Inflammatory Mediators.

    PubMed

    Tantray, Mushtaq A; Khan, Imran; Hamid, Hinna; Alam, Mohammad Sarwar; Dhulap, Abhijeet; Ganai, Ajaz Ahmad

    2017-08-01

    Recent studies reveal that glycogen synthase kinase-3β (GSK-3β) acts as a pro-inflammatory enzyme, and by inhibiting this kinase, inflammation can be controlled. In this regard, a series of 17 piperazine-linked oxazolo[4,5-b]pyridine-based derivatives was synthesized and evaluated for in vitro GSK-3β inhibitory and in vivo anti-inflammatory activity. The compounds 7d, 7e, 7g, and 7c displayed the best GSK-3β inhibitory activity among all the synthesized compounds, with corresponding IC 50 values of 0.34, 0.39, 0.47, and 0.53 µM. Among the compounds 7d, 7e, 7g, and 7c examined for in vivo anti-inflammatory activity in the rat paw edema model, compound 7d exhibited maximum inhibition, reducing the paw volume by 62.79 and 65.91% at 3 and 5 h post-carrageenan administration, respectively, in comparison to indomethacin (76.74% at 3 h and 79.54% at 5 h after carrageenan administration). Furthermore, these compounds (7d, 7e, 7g, and 7c) were also found to substantially inhibit pro-inflammatory mediators, i.e., TNF-α, IL-1β, and IL-6, ex vivo in comparison to indomethacin and did not pose any gastric ulceration risk, indicating the potential of this oxazolopyridine scaffold for the development of GSK-3β inhibitors and their application as anti-inflammatory agents. © 2017 Deutsche Pharmazeutische Gesellschaft.

  8. Flavocoxid, a dual inhibitor of cyclooxygenase and 5-lipoxygenase, blunts pro-inflammatory phenotype activation in endotoxin-stimulated macrophages

    PubMed Central

    Altavilla, D; Squadrito, F; Bitto, A; Polito, F; Burnett, BP; Di Stefano, V; Minutoli, L

    2009-01-01

    Background and purpose: The flavonoids, baicalin and catechin, from Scutellaria baicalensis and Acacia catechu, respectively, have been used for various clinical applications. Flavocoxid is a mixed extract containing baicalin and catechin, and acts as a dual inhibitor of cyclooxygenase (COX) and 5-lipoxygenase (LOX) enzymes. The anti-inflammatory activity, measured by protein and gene expression of inflammatory markers, of flavocoxid in rat peritoneal macrophages stimulated with Salmonella enteritidis lipopolysaccharide (LPS) was investigated. Experimental approach: LPS-stimulated (1 µg·mL−1) peritoneal rat macrophages were co-incubated with different concentrations of flavocoxid (32–128 µg·mL−1) or RPMI medium for different incubation times. Inducible COX-2, 5-LOX, inducible nitric oxide synthase (iNOS) and inhibitory protein κB-α (IκB-α) levels were evaluated by Western blot analysis. Nuclear factor κB (NF-κB) binding activity was investigated by electrophoretic mobility shift assay. Tumour necrosis factor-α (TNF-α) gene and protein expression were measured by real-time polymerase chain reaction and enzyme-linked immunosorbent assay respectively. Finally, malondialdehyde (MDA) and nitrite levels in macrophage supernatants were evaluated. Key results: LPS stimulation induced a pro-inflammatory phenotype in rat peritoneal macrophages. Flavocoxid (128 µg·mL−1) significantly inhibited COX-2 (LPS = 18 ± 2.1; flavocoxid = 3.8 ± 0.9 integrated intensity), 5-LOX (LPS = 20 ± 3.8; flavocoxid = 3.1 ± 0.8 integrated intensity) and iNOS expression (LPS = 15 ± 1.1; flavocoxid = 4.1 ± 0.4 integrated intensity), but did not modify COX-1 expression. PGE2 and LTB4 levels in culture supernatants were consequently decreased. Flavocoxid also prevented the loss of IκB-α protein (LPS = 1.9 ± 0.2; flavocoxid = 7.2 ± 1.6 integrated intensity), blunted increased NF-κB binding activity (LPS = 9.2 ± 2; flavocoxid = 2.4 ± 0.7 integrated intensity) and the

  9. Cationic host defense peptides; novel antimicrobial therapeutics against Category A pathogens and emerging infections

    PubMed Central

    Findlay, Fern; Proudfoot, Lorna; Stevens, Craig

    2016-01-01

    Cationic Host Defense Peptides (HDP, also known as antimicrobial peptides) are crucial components of the innate immune system and possess broad-spectrum antibacterial, antiviral, and immunomodulatory activities. They can contribute to the rapid clearance of biological agents through direct killing of the organisms, inhibition of pro-inflammatory mediators such as lipopolysaccharide, and by modulating the inflammatory response to infection. Category A biological agents and materials, as classified by the United States National Institutes for Health, the US Centers for Disease Control and Prevention, and the US Department of Homeland Security, carry the most severe threat in terms of human health, transmissibility, and preparedness. As such, there is a pressing need for novel frontline approaches for prevention and treatment of diseases caused by these organisms, and exploiting the broad antimicrobial activity exhibited by cationic host defense peptides represents an exciting priority area for clinical research. This review will summarize what is known about the antimicrobial and antiviral effects of the two main families of cationic host defense peptides, cathelicidins, and defensins in the context of Category A biological agents which include, but are not limited to; anthrax (Bacillus anthracis), plague (Yersinia pestis), smallpox (Variola major), tularemia (Francisella tularensis). In addition, we highlight priority areas, particularly emerging viral infections, where more extensive research is urgently required. PMID:27315342

  10. Terbinafine stimulates the pro-inflammatory responses in human monocytic THP-1 cells through an ERK signaling pathway.

    PubMed

    Mizuno, Katsuhiko; Fukami, Tatsuki; Toyoda, Yasuyuki; Nakajima, Miki; Yokoi, Tsuyoshi

    2010-10-23

    Oral antifungal terbinafine has been reported to cause liver injury with inflammatory responses in a small percentage of patients. However the underlying mechanism remains unknown. To examine the inflammatory reactions, we investigated whether terbinafine and other antifungal drugs increase the release of pro-inflammatory cytokines using human monocytic cells. Dose- and time-dependent changes in the mRNA expression levels and the release of interleukin (IL)-8 and tumor necrosis factor (TNF)α from human monocytic THP-1 and HL-60 cells with antifungal drugs were measured. Effects of terbinafine on the phosphorylation of extracellular signal-regulated kinase (ERK)1/2, p38 mitogen-activated protein (MAP) kinase and c-Jun N-terminal kinase (JNK)1/2 were investigated. The release of IL-8 and TNFα from THP-1 and HL-60 cells was significantly increased by treatment with terbinafine but not by fluconazole, suggesting that terbinafine can stimulate monocytes and increase the pro-inflammatory cytokine release. Terbinafine also significantly increased the phosphorylation of ERK1/2 and p38 MAP kinase in THP-1 cells. Pretreatment with a MAP kinase/ERK kinase (MEK)1/2 inhibitor U0126 significantly suppressed the increase of IL-8 and TNFα levels by terbinafine treatment in THP-1 cells, but p38 MAPK inhibitor SB203580 did not. These results suggested that an ERK1/2 pathway plays an important role in the release of IL-8 and TNFα in THP-1 cells treated with terbinafine. The release of inflammatory mediators by terbinafine might be one of the mechanisms underlying immune-mediated liver injury. This in vitro method may be useful to predict adverse inflammatory reactions that lead to drug-induced liver injury. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Intermittent hydrostatic pressure inhibits matrix metalloproteinase and pro-inflammatory mediator release from human osteoarthritic chondrocytes in vitro.

    PubMed

    Trindade, Michael C D; Shida, Jun-ichi; Ikenoue, Takashi; Lee, Mel S; Lin, Eric Y; Yaszay, Burt; Yerby, Scott; Goodman, Stuart B; Schurman, David J; Smith, R Lane

    2004-09-01

    This study tested the hypothesis that intermittent hydrostatic pressure applied to human osteoarthritic chondrocytes modulates matrix metalloproteinase and pro-inflammatory mediator release in vitro. Human osteoarthritic articular chondrocytes were isolated and cultured as primary high-density monolayers. For testing, chondrocyte cultures were transferred to serum-free medium and maintained without loading or with exposure to intermittent hydrostatic pressure (IHP) at 10 MPa at a frequency of 1 Hz for periods of 6, 12 and 24 h. Levels of matrix metalloproteinase-2, -9 (MMP-2, -9), tissue inhibitor of metalloproteinase-1 (TIMP-1), and the pro-inflammatory mediators, interleukin-6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1), released into the culture medium were assessed by ELISA. Matrix metalloproteinase activity was confirmed by zymographic analysis. In the absence of IHP, levels of MMP-2, TIMP-1, IL-6, and MCP-1 in the chondrocyte culture medium increased in a time-dependent manner. Application of IHP decreased MMP-2 levels at all time periods tested, relative to unloaded control cultures maintained for the same time periods. Although 84/82 kDa bands were faintly detectable by zymography, MMP-9 levels were not quantifiable in medium from loaded or unloaded cultures by ELISA. TIMP-1 levels were not altered in response to IHP at any time period tested. IL-6 and MCP-1 levels decreased in cultures exposed to IHP at 12 and 24 h, relative to unloaded control cultures maintained for the same time periods. IHP decreased release of MMP-2, IL-6 and MCP-1 by osteoarthritic chondrocytes in vitro suggesting that pressure influences cartilage stability by modulating chondrocyte expression of these degradative and pro-inflammatory proteins in vivo.

  12. Naegleria fowleri Lysate Induces Strong Cytopathic Effects and Pro-inflammatory Cytokine Release in Rat Microglial Cells

    PubMed Central

    Lee, Yang-Jin; Park, Chang-Eun; Kim, Jong-Hyun; Sohn, Hae-Jin; Lee, Jinyoung; Jung, Suk-Yul

    2011-01-01

    Naegleria fowleri, a ubiquitous free-living ameba, causes fatal primary amebic meningoencephalitis in humans. N. fowleri trophozoites are known to induce cytopathic changes upon contact with microglial cells, including necrotic and apoptotic cell death and pro-inflammatory cytokine release. In this study, we treated rat microglial cells with amebic lysate to probe contact-independent mechanisms for cytotoxicity, determining through a combination of light microscopy and scanning and transmission electron microscopy whether N. fowleri lysate could effect on both necrosis and apoptosis on microglia in a time- as well as dose-dependent fashion. A 51Cr release assay demonstrated pronounced lysate induction of cytotoxicity (71.5%) toward microglial cells by 24 hr after its addition to cultures. In an assay of pro-inflammatory cytokine release, microglial cells treated with N. fowleri lysate produced TNF-α, IL-6, and IL-1β, though generation of the former 2 cytokines was reduced with time, and that of the last increased throughout the experimental period. In summary, N. fowleri lysate exerted strong cytopathic effects on microglial cells, and elicited pro-inflammatory cytokine release as a primary immune response. PMID:22072830

  13. Naegleria fowleri lysate induces strong cytopathic effects and pro-inflammatory cytokine release in rat microglial cells.

    PubMed

    Lee, Yang-Jin; Park, Chang-Eun; Kim, Jong-Hyun; Sohn, Hae-Jin; Lee, Jinyoung; Jung, Suk-Yul; Shin, Ho-Joon

    2011-09-01

    Naegleria fowleri, a ubiquitous free-living ameba, causes fatal primary amebic meningoencephalitis in humans. N. fowleri trophozoites are known to induce cytopathic changes upon contact with microglial cells, including necrotic and apoptotic cell death and pro-inflammatory cytokine release. In this study, we treated rat microglial cells with amebic lysate to probe contact-independent mechanisms for cytotoxicity, determining through a combination of light microscopy and scanning and transmission electron microscopy whether N. fowleri lysate could effect on both necrosis and apoptosis on microglia in a time- as well as dose-dependent fashion. A (51)Cr release assay demonstrated pronounced lysate induction of cytotoxicity (71.5%) toward microglial cells by 24 hr after its addition to cultures. In an assay of pro-inflammatory cytokine release, microglial cells treated with N. fowleri lysate produced TNF-α, IL-6, and IL-1β, though generation of the former 2 cytokines was reduced with time, and that of the last increased throughout the experimental period. In summary, N. fowleri lysate exerted strong cytopathic effects on microglial cells, and elicited pro-inflammatory cytokine release as a primary immune response.

  14. Antioxidants inhibit SAA formation and pro-inflammatory cytokine release in a human cell model of alkaptonuria.

    PubMed

    Spreafico, Adriano; Millucci, Lia; Ghezzi, Lorenzo; Geminiani, Michela; Braconi, Daniela; Amato, Loredana; Chellini, Federico; Frediani, Bruno; Moretti, Elena; Collodel, Giulia; Bernardini, Giulia; Santucci, Annalisa

    2013-09-01

    Alkaptonuria (AKU) is an ultra-rare autosomal recessive disease that currently lacks an appropriate therapy. Recently we provided experimental evidence that AKU is a secondary serum amyloid A (SAA)-based amyloidosis. The aim of the present work was to evaluate the use of antioxidants to inhibit SAA amyloid and pro-inflammatory cytokine release in AKU. We adopted a human chondrocytic cell AKU model to evaluate the anti-amyloid capacity of a set of antioxidants that had previously been shown to counteract ochronosis in a serum AKU model. Amyloid presence was evaluated by Congo red staining. Homogentisic acid-induced SAA production and pro-inflammatory cytokine release (overexpressed in AKU patients) were evaluated by ELISA and multiplex systems, respectively. Lipid peroxidation was evaluated by means of a fluorescence-based assay. Our AKU model allowed us to prove the efficacy of ascorbic acid combined with N-acetylcysteine, taurine, phytic acid and lipoic acid in significantly inhibiting SAA production, pro-inflammatory cytokine release and membrane lipid peroxidation. All the tested antioxidant compounds were able to reduce the production of amyloid and may be the basis for establishing new therapies for AKU amyloidosis.

  15. Antioxidants inhibit SAA formation and pro-inflammatory cytokine release in a human cell model of alkaptonuria

    PubMed Central

    Spreafico, Adriano; Millucci, Lia; Ghezzi, Lorenzo; Geminiani, Michela; Braconi, Daniela; Amato, Loredana; Chellini, Federico; Frediani, Bruno; Moretti, Elena; Collodel, Giulia; Bernardini, Giulia

    2013-01-01

    Objective. Alkaptonuria (AKU) is an ultra-rare autosomal recessive disease that currently lacks an appropriate therapy. Recently we provided experimental evidence that AKU is a secondary serum amyloid A (SAA)-based amyloidosis. The aim of the present work was to evaluate the use of antioxidants to inhibit SAA amyloid and pro-inflammatory cytokine release in AKU. Methods. We adopted a human chondrocytic cell AKU model to evaluate the anti-amyloid capacity of a set of antioxidants that had previously been shown to counteract ochronosis in a serum AKU model. Amyloid presence was evaluated by Congo red staining. Homogentisic acid-induced SAA production and pro-inflammatory cytokine release (overexpressed in AKU patients) were evaluated by ELISA and multiplex systems, respectively. Lipid peroxidation was evaluated by means of a fluorescence-based assay. Results. Our AKU model allowed us to prove the efficacy of ascorbic acid combined with N-acetylcysteine, taurine, phytic acid and lipoic acid in significantly inhibiting SAA production, pro-inflammatory cytokine release and membrane lipid peroxidation. Conclusion. All the tested antioxidant compounds were able to reduce the production of amyloid and may be the basis for establishing new therapies for AKU amyloidosis. PMID:23704321

  16. Fructo-oligosaccharide attenuates the production of pro-inflammatory cytokines and the activation of JNK/Jun pathway in the lungs of D-galactose-treated Balb/cJ mice.

    PubMed

    Yeh, Shu-Lan; Wu, Tzu-Chin; Chan, Shu-Ting; Hong, Meng-Jun; Chen, Hsiao-Ling

    2014-01-01

    This study determined the effects of long-term D-galactose (DG) injection on the lung pro-inflammatory and fibrotic status and whether fructo-oligosaccharide (FO) could attenuate such effects. Forty Balb/cJ mice (12 weeks of age) were divided into four groups: control (s.c. saline) (basal diet), DG (s.c. 1.2 g DG/kg body weight) (basal diet), DG + FO (FO diet, 2.5% w/w FO), and DG + E (vitamin E diet, α-tocopherol 0.2% w/w) serving as an antioxidant control group. These animals were killed after 49 day of treatments. Another group of naturally aging (NA) mice without any injection was killed at 64 weeks of age to be an aging control group. D-galactose treatment, generally similar to NA, increased the lung pro-inflammatory status, as shown in the IL-6 and IL-1β levels and the expression of phospho-Jun and phospho-JNK, and the fibrotic status as shown in the hydroxyproline level compared to the vehicle. FO diminished the DG-induced increases in the lung IL-1β level and expressions of total Jun, phospho-JNK, and attenuated DG effects on lung IL-6 and hydroxyproline, while α-tocopherol exerted anti-inflammatory effects on all parameters determined. FO, as well as α-tocopherol, modulated the large bowel ecology by increasing the fecal bifidobacteria and cecal butyrate levels compared with DG. D-galactose treatment mimicked the lung pro-inflammatory status as shown in the NA mice. FO attenuated the DG-induced lung pro-inflammatory status and down-regulated JNK/Jun pathway in the lung, which could be mediated by the prebiotic effects and metabolic products of FO in the large intestine.

  17. In Vitro Anti-inflammatory and Antimicrobial Activities of Azithromycin After Loaded in Chitosan- and Tween 20-Based Oil-in-Water Macroemulsion for Acne Management.

    PubMed

    Shunmugaperumal, Tamilvanan; Kaur, Varinder

    2016-06-01

    The objectives of the current investigation are (1) to prepare and characterize (particle size, surface charge (potential zeta), surface morphology by transmission electron microscopy, drug content, and drug release) the azithromycin (AZM, 100 mg)-loaded oil-in-water (o/w) macroemulsion, (2) to assess the toxicity of macroemulsion with or without AZM using RBC lysis test in comparison with AZM in phosphate buffer solution of pH 7.4, (3) to compare the in vitro antimicrobial activity (in Escherichia coli using zone inhibition assay) of AZM-loaded macroemulsion with its aqueous solution, and (4) to assess the in vitro anti-inflammatory effect (using egg albumin denaturation bioassay) of the AZM-loaded macroemulsion in comparison with diclofenac sodium in phosphate buffer solution of pH 7.4. The AZM-loaded macroemulsion possessed the dispersed oil droplets with a mean diameter value of 52.40 ± 1.55 μm. A reversal in the zeta potential value from negative (-2.16 ± 0.75 mV) to positive (+6.52 ± 0.96 mV) was noticed when AZM was added into the macroemulsion. At a 1:5 dilution ratio, 2.06 ± 0.03 mg of drug was released from macroemulsion followed by 1.01 ± 0.01 and 0.25 ± 0.08 mg, respectively, for 1:10 and 1:40 dilution ratios. Antimicrobial activity maintenance and significant reduction of RBC lysis property were noticed for AZM after loaded in the macroemulsion. However, an increment in the absorbance values for emulsion-treated samples in comparison to the control samples was noticed in the anti-inflammatory test. This speculates the potential of the AZM-loaded emulsion to manage inflammatory conditions produced at Acne vulgaris.

  18. Celecoxib Inhibits Prion Protein 90-231-Mediated Pro-inflammatory Responses in Microglial Cells.

    PubMed

    Villa, Valentina; Thellung, Stefano; Corsaro, Alessandro; Novelli, Federica; Tasso, Bruno; Colucci-D'Amato, Luca; Gatta, Elena; Tonelli, Michele; Florio, Tullio

    2016-01-01

    Activation of microglia is a central event in the atypical inflammatory response occurring during prion encephalopathies. We report that the prion protein fragment encompassing amino acids 90-231 (PrP90-231), a model of the neurotoxic activity of the pathogenic prion protein (PrP(Sc)), causes activation of both primary microglia cultures and N9 microglial cells in vitro. This effect was characterized by cell proliferation arrest and induction of a secretory phenotype, releasing prostaglandin E2 (PGE2) and nitric oxide (NO). Conditioned medium from PrP90-231-treated microglia induced in vitro cytotoxicity of A1 mesencephalic neurons, supporting the notion that soluble mediators released by activated microglia contributes to the neurodegeneration during prion diseases. The neuroinflammatory role of COX activity, and its potential targeting for anti-prion therapies, was tested measuring the effects of ketoprofen and celecoxib (preferential inhibitors of COX1 and COX2, respectively) on PrP90-231-induced microglial activation. Celecoxib, but not ketoprofen significantly reverted the growth arrest as well as NO and PGE2 secretion induced by PrP90-231, indicating that PrP90-231 pro-inflammatory response in microglia is mainly dependent on COX2 activation. Taken together, these data outline the importance of microglia in the neurotoxicity occurring during prion diseases and highlight the potentiality of COX2-selective inhibitors to revert microglia as adjunctive pharmacological approach to contrast the neuroinflammation-dependent neurotoxicity.

  19. The histone acetyltransferase p300 inhibitor C646 reduces pro-inflammatory gene expression and inhibits histone deacetylases

    PubMed Central

    van den Bosch, Thea; Boichenko, Alexander; Leus, Niek G. J.; Eleni Ourailidou, Maria; Wapenaar, Hannah; Rotili, Dante; Mai, Antonello; Imhof, Axel; Bischoff, Rainer; Haisma, Hidde J.; Dekker, Frank J.

    2016-01-01

    Lysine acetylations are reversible posttranslational modifications of histone and non-histone proteins that play important regulatory roles in signal transduction cascades and gene expression. Lysine acetylations are regulated by histone acetyltransferases as writers and histone deacetylases as erasers. Because of their role in signal transduction cascades, these enzymes are important players in inflammation. Therefore, applications of histone acetyltransferase inhibitors to reduce inflammatory responses are interesting. Among the few histone acetyltransferase inhibitors described, C646 is one of the most potent (Ki of 0.4 μM for histone acetyltransferase p300). C646 was described to regulate the NF-κB pathway; an important pathway in inflammatory responses, which is regulated by acetylation. Interestingly, this pathway has been implicated in asthma and COPD. Therefore we hypothesized that via regulation of the NF-κB signaling pathway, C646 can inhibit pro-inflammatory gene expression, and have potential for the treatment of inflammatory lung diseases. In line with this, here we demonstrate that C646 reduces pro-inflammatory gene expression in RAW264.7 murine macrophages and murine precision-cut lung slices. To unravel its effects on cellular substrates we applied mass spectrometry and found, counterintuitively, a slight increase in acetylation of histone H3. Based on this finding, and structural features of C646, we presumed inhibitory activity of C646 on histone deacetylases, and indeed found inhibition of histone deacetylases from 7 μM and higher concentrations. This indicates that C646 has potential for further development towards applications in the treatment of inflammation, however, its newly discovered lack of selectivity at higher concentrations needs to be taken into account. PMID:26718586

  20. Anti-inflammatory, Antioxidant and Antimicrobial Activity Characterization and Toxicity Studies of Flowers of "Jarilla", a Medicinal Shrub from Argentina.

    PubMed

    Moreno, Alejandra; Nuño, Gabriela; Cuello, Soledad; Sayago, Jorge E; Alberto, María Rosa; Zampini, Catiana; Isla, María Inés

    2015-06-01

    Zuccagnia punctata Cav. (Fabaceae) is an Argentine medicinal aromatic shrub (jarilla pispito, puspus, lata and jarilla macho). The chalcones were identified as pigments responsible for the yellow color of the flowers. Hydroethanolic extracts were obtained both from fresh flowers and from flowers dried by lyophilization. The extracts were standardized by their phenolic and flavonoids content. Their fingerprints by HPLC-DAD indicated the presence of two chalcones as major compounds (2',4'-dihydroxychalcone and 2',4'-dihydroxy-3'-methoxychalcone). Both extracts showed the same total phenolic, non-flavonoid phenolic and flavonoid phenolic content and their phenolic profiles were similar. The polyphenolic extracts exhibited antioxidant (free radical scavenging and inhibitory activity on lipoperoxidation) and anti-inflammatory (inhibition of lipoxygenase and cyclooxygenase enzymes) activities. The flower extracts were active against six Candida species with MIC values between 60 and 120 μg GAE x mL(-1) and were also active on methicillin-resistant Staphylococcus aureus (MIC: 250 μg GAE x mL(-1)) and Enterococcus faecalis (MIC: 500 μg GAE x mL(-1)). The extracts were neither toxic (Artemia salina test) nor mutagenic (Ames test). Jarilla flowers could be considered as a new dietary supplement that could help to prevent pathologies associated with oxidative stress and the polyphenolic extract obtained from them could be considered as a standardized phytotherapeutic product with antimicrobial, antioxidant and anti-inflammatory activities. The aim of this work was to determine the pigments responsible for the yellow color of the flowers of Z. punctata and to evaluate the functional properties of the polyphenolic extract of the flowers. The toxicity (Artemia salina) and mutagenic activity (Ames test) of the extract were also evaluated.

  1. Caspase-8 regulates the expression of pro- and anti-inflammatory cytokines in human bone marrow-derived mesenchymal stromal cells.

    PubMed

    Moen, Siv H; Westhrin, Marita; Zahoor, Muhammad; Nørgaard, Nikolai N; Hella, Hanne; Størdal, Berit; Sundan, Anders; Nilsen, Nadra J; Sponaas, Anne-Marit; Standal, Therese

    2016-09-01

    Mesenchymal stem cells, also called mesenchymal stromal cells, MSCs, have great potential in stem cell therapy partly due to their immunosuppressive properties. How these cells respond to chronic inflammatory stimuli is therefore of importance. Toll-like receptors (TLR)s are innate immune receptors that mediate inflammatory signals in response to infection, stress, and damage. Caspase-8 is involved in activation of NF-kB downstream of TLRs in immune cells. Here we investigated the role of caspase-8 in regulating TLR-induced cytokine production from human bone marrow-derived mesenchymal stromal cells (hBMSCs). Cytokine expression in hBMCs in response to poly(I:C) and LPS was evaluated by PCR, multiplex cytokine assay, and ELISA. TLR3, TRIF, and caspase-8 were silenced using siRNA. Caspase-8 was also inhibited using a caspase-8 inhibitor, z-IEDT. We found that TLR3 agonist poly(I:C) and TLR4 agonist LPS induced secretion of several pro-inflammatory cytokines in a TLR-dependent manner which required the TLR signaling adaptor molecule TRIF. Further, poly(I:C) reduced the expression of anti-inflammatory cytokines HGF and TGFβ whereas LPS reduced HGF expression only. Notably, caspase-8 was involved in the induction of IL- IL-1β, IL-6, CXCL10, and in the inhibition of HGF and TGFβ. Caspase-8 appears to modulate hBMSCs into gaining a pro-inflammatory phenotype. Therefore, inhibiting caspase-8 in hBMSCs might promote an immunosuppressive phenotype which could be useful in clinical applications to treat inflammatory disorders.

  2. Myocardin Regulates Vascular Smooth Muscle Cell Inflammatory Activation and Disease

    PubMed Central

    Ackers-Johnson, Matthew; Talasila, Amarnath; Sage, Andrew P; Long, Xiaochun; Bot, Ilze; Morrell, Nicholas W; Bennett, Martin R; Miano, Joseph M.; Sinha, Sanjay

    2015-01-01

    Objective Atherosclerosis, the cause of 50% of deaths in westernised societies, is widely regarded as a chronic vascular inflammatory disease. Vascular smooth muscle cell (VSMC) inflammatory activation in response to local pro-inflammatory stimuli contributes to disease progression and is a pervasive feature in developing atherosclerotic plaques. Therefore, it is of considerable therapeutic importance to identify mechanisms that regulate the VSMC inflammatory response. Approach and Results We report that myocardin, a powerful myogenic transcriptional coactivator, negatively regulates VSMC inflammatory activation and vascular disease. Myocardin levels are reduced during atherosclerosis, in association with phenotypic switching of smooth muscle cells. Myocardin deficiency accelerates atherogenesis in hypercholesterolemic ApoE−/− mice. Conversely, increased myocardin expression potently abrogates the induction of an array of inflammatory cytokines, chemokines and adhesion molecules in VSMCs. Expression of myocardin in VSMCs reduces lipid uptake, macrophage interaction, chemotaxis and macrophage-endothelial tethering in vitro, and attenuates monocyte accumulation within developing lesions in vivo. These results demonstrate that endogenous levels of myocardin are a critical regulator of vessel inflammation. Conclusions We propose myocardin as a guardian of the contractile, non-inflammatory VSMC phenotype, with loss of myocardin representing a critical permissive step in the process of phenotypic transition and inflammatory activation, at the onset of vascular disease. PMID:25614278

  3. Mindfulness-Based Stress Reduction Training Reduces Loneliness and Pro-Inflammatory Gene Expression in Older Adults: A Small Randomized Controlled Trial

    PubMed Central

    Creswell, J. David; Irwin, Michael R.; Burklund, Lisa J.; Lieberman, Matthew D.; Arevalo, Jesusa M. G.; Ma, Jeffrey; Breen, Elizabeth Crabb; Cole, Steven W.

    2013-01-01

    Lonely older adults have increased expression of pro-inflammatory genes as well as increased risk for morbidity and mortality. Previous behavioral treatments have attempted to reduce loneliness and its concomitant health risks, but have had limited success. The present study tested whether the 8-week Mindfulness-Based Stress Reduction (MBSR) program (compared to a Wait-List control group) reduces loneliness and downregulates loneliness-related pro-inflammatory gene expression in older adults (N=40). Consistent with study predictions, mixed effect linear models indicated that the MBSR program reduced loneliness, compared to small increases in loneliness in the control group (treatment condition × time interaction: F(1,35)=7.86, p=.008). Moreover, at baseline, there was an association between reported loneliness and upregulated pro-inflammatory NF-κB-related gene expression in circulating leukocytes, and MBSR downregulated this NF-κB-associated gene expression profile at post-treatment. Finally, there was a trend for MBSR to reduce C Reactive Protein (treatment condition × time interaction: (F(1,33)=3.39, p=.075). This work provides an initial indication that MBSR may be a novel treatment approach for reducing loneliness and related pro-inflammatory gene expression in older adults. PMID:22820409

  4. Ureaplasma Species Differentially Modulate Pro- and Anti-Inflammatory Cytokine Responses in Newborn and Adult Human Monocytes Pushing the State Toward Pro-Inflammation

    PubMed Central

    Glaser, Kirsten; Silwedel, Christine; Fehrholz, Markus; Waaga-Gasser, Ana M.; Henrich, Birgit; Claus, Heike; Speer, Christian P.

    2017-01-01

    Background: Ureaplasma species have been associated with chorioamnionitis and preterm birth and have been implicated in the pathogenesis of neonatal short and long-term morbidity. However, being mostly commensal bacteria, controversy remains on the pro-inflammatory capacity of Ureaplasma. Discussions are ongoing on the incidence and impact of prenatal, perinatal, and postnatal infection. The present study addressed the impact of Ureaplasma isolates on monocyte-driven inflammation. Methods: Cord blood monocytes of term neonates and adult monocytes, either native or LPS-primed, were cultured with Ureaplasma urealyticum (U. urealyticum) serovar 8 (Uu8) and Ureaplasma parvum serovar 3 (Up3). Using qRT-PCR, cytokine flow cytometry, and multi-analyte immunoassay, we assessed mRNA and protein expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-8, IL-12p40, IL-10, and IL-1 receptor antagonist (IL-1ra) as well as Toll-like receptor (TLR) 2 and TLR4. Results: Uu8 and Up3 induced mRNA expression and protein release of TNF-α, IL-1β and IL-8 in term neonatal and adult monocytes (p < 0.01 and p < 0.05). Intracellular protein expression of TNF-α, IL-1β and IL-8 in Ureaplasma-stimulated cells paralleled those results. Ureaplasma-induced cytokine levels did not significantly differ from LPS-mediated levels except for lower intracellular IL-1β in adult monocytes (Uu8: p < 0.05). Remarkably, ureaplasmas did not induce IL-12p40 response and promoted lower amounts of anti-inflammatory IL-10 and IL-1ra than LPS, provoking a cytokine imbalance more in favor of pro-inflammation (IL-1β/IL-10, IL-8/IL-10 and IL-8/IL-1ra: p < 0.01, vs. LPS). In contrast to LPS, both isolates induced TLR2 mRNA in neonatal and adult cells (p < 0.001 and p < 0.05) and suppressed TLR4 mRNA in adult monocytes (p < 0.05). Upon co-stimulation, Uu8 and Up3 inhibited LPS-induced intracellular IL-1β (p < 0.001 and p < 0.05) and IL-8 in adult monocytes (p < 0.01), while LPS-induced neonatal

  5. Cross-talk between oxidative stress and pro-inflammatory cytokines in acute pancreatitis: a key role for protein phosphatases.

    PubMed

    Escobar, Javier; Pereda, Javier; Arduini, Alessandro; Sandoval, Juan; Sabater, Luis; Aparisi, Luis; López-Rodas, Gerardo; Sastre, Juan

    2009-01-01

    Acute pancreatitis is an acute inflammatory process localized in the pancreatic gland that frequently involves peripancreatic tissues. It is still under investigation why an episode of acute pancreatitis remains mild affecting only the pancreas or progresses to a severe form leading to multiple organ failure and death. Proinflammatory cytokines and oxidative stress play a pivotal role in the early pathophysiological events of the disease. Cytokines such as interleukin 1beta and tumor necrosis factor alpha initiate and propagate almost all consequences of the systemic inflammatory response syndrome. On the other hand, depletion of pancreatic glutathione is an early hallmark of acute pancreatitis and reactive oxygen species are also associated with the inflammatory process. Changes in thiol homestasis and redox signaling decisively contribute to amplification of the inflammatory cascade through mitogen activated protein kinase (MAP kinase) pathways. This review focuses on the relationship between oxidative stress, pro-inflammatory cytokines and MAP kinase/protein phosphatase pathways as major modulators of the inflammatory response in acute pancreatitis. Redox sensitive signal transduction mediated by inactivation of protein phosphatases, particularly protein tyrosin phosphatases, is highlighted.

  6. Dihydro-CDDO-trifluoroethyl amide suppresses inflammatory responses in macrophages via activation of Nrf2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Bin; Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208; Abdalrahman, Akram

    2014-02-21

    Highlights: • Dh404 suppresses the expression of a selected set of pro-inflammatory cytokines in inflamed macrophages via activating Nrf2. • Dh404 activates Nrf2 while keeping Keap1 function intact in macrophages. • Dh404 minimally regulates NF-κB pathway in macrophages. - Abstract: Nuclear factor erythroid 2-related factor (Nrf2) is the major regulator of cellular defenses against various pathological stresses in a variety of organ systems, thus Nrf2 has evolved to be an attractive drug target for the treatment and/or prevention of human disease. Several synthetic oleanolic triterpenoids including dihydro-CDDO-trifluoroethyl amide (dh404) appear to be potent activators of Nrf2 and exhibit chemopreventive promisesmore » in multiple disease models. While the pharmacological efficacy of Nrf2 activators may be dependent on the nature of Nrf2 activation in specific cell types of target organs, the precise role of Nrf2 in mediating biological effects of Nrf2 activating compounds in various cell types remains to be further explored. Herein we report a unique and Nrf2-dependent anti-inflammatory profile of dh404 in inflamed macrophages. In lipopolysaccharide (LPS)-inflamed RAW264.7 macrophages, dh404 dramatically suppressed the expression of pro-inflammatory cytokines including inducible nitric oxide synthase (iNOS), monocyte chemotactic protein-1 (MCP-1), and macrophage inflammatory protein-1 beta (MIP-1β), while minimally regulating the expression of interleulin-6 (IL-6), IL-1β, and tumor necrosis factor alpha (TNFα). Dh404 potently activated Nrf2 signaling; however, it did not affect LPS-induced NF-κB activity. Dh404 did not interrupt the interaction of Nrf2 with its endogenous inhibitor Kelch-like ECH associating protein 1 (Keap1) in macrophages. Moreover, knockout of Nrf2 blocked the dh404-induced anti-inflammatory responses in LPS-inflamed macrophages. These results demonstrated that dh404 suppresses pro-inflammatory responses in macrophages via an

  7. TAM receptor-dependent regulation of SOCS3 and MAPKs contributes to pro-inflammatory cytokine downregulation following chronic NOD2 stimulation of human macrophages1

    PubMed Central

    Zheng, Shasha; Hedl, Matija; Abraham, Clara

    2014-01-01

    Microbial-induced cytokine regulation is critical to intestinal immune homeostasis. Acute stimulation of NOD2, the Crohn’s disease-associated sensor of bacterial peptidoglycan, induces cytokines. However, cytokines are attenuated after chronic NOD2 and pattern recognition receptor (PRR) stimulation of macrophages; similar attenuation is observed in intestinal macrophages. The role of Tyro3, Axl and Mer (TAM) receptors in regulating chronic PRR stimulation and NOD2-induced outcomes has not been examined. Moreover, TAM receptors have been relatively less investigated in human macrophages. Whereas TAM receptors did not downregulate acute NOD2-induced cytokines in primary human macrophages, they were essential for downregulating signaling and pro-inflammatory cytokine secretion after chronic NOD2 and TLR4 stimulation. Axl and Mer were similarly required in mice for cytokine downregulation after chronic NOD2 stimulation in vivo and in intestinal tissues. Consistently, TAM expression was increased in human intestinal myeloid-derived cells. Chronic NOD2 stimulation led to IL-10- and TGFβ-dependent TAM upregulation in human macrophages, which in turn, upregulated SOCS3 expression. Restoring SOCS3 expression under TAM knockdown conditions restored chronic NOD2-mediated pro-inflammatory cytokine downregulation. In contrast to the upregulated pro-inflammatory cytokines, attenuated IL-10 secretion was maintained in TAM-deficient macrophages upon chronic NOD2 stimulation. The level of MAPK activation in TAM-deficient macrophages after chronic NOD2 stimulation was insufficient to upregulate IL-10 secretion; however, full restoration of MAPK activation under these conditions restored c-Fos, c-Jun, MAFK and PU.1 binding to the IL-10 promoter and IL-10 secretion. Therefore, TAM receptors are critical for downregulating pro-inflammatory cytokines under the chronic NOD2 stimulation conditions observed in the intestinal environment. PMID:25567680

  8. Targeting peripheral blood pro-inflammatory cytotoxic lymphocytes by inhibiting CD137 expression: novel potential treatment for COPD.

    PubMed

    Hodge, Greg; Holmes, Mark; Jersmann, Hubertus; Reynolds, Paul N; Hodge, Sandra

    2014-05-15

    We have shown that chronic obstructive pulmonary disease (COPD) is associated with increased production of pro-inflammatory cytokines and the cytotoxic mediator, granzyme B by peripheral blood steroid resistant CD28nullCD137 + CD8+ T cells and granzyme B by NKT-like and NK cells. We hypothesized that we could target these pro-inflammatory/cytotoxic lymphocytes by inhibiting co-stimulation through CD137. Isolated PBMC from patients with COPD and healthy controls were stimulated with phytohaemagglutinin (PHA) ± blocking anti-CD137 ± 10(-6) M methylprednislone (MP) (±stimulatory anti-CD137 ± control antibodies). Pro-inflammatory cytokine profiles and expression of granzyme B, by T, NKT-like CD28 ± subsets and NK cells were determined using flow cytometry. There was a significant decrease in the percentage of T, NKT-like subsets and NK cells producing IFNγ, TNFα and granzyme B in all subjects in the presence of anti-CD137 blocking antibody compared with PHA alone (eg, 60% decrease in CD8 + granzyme B + cells) or MP. Stimulatory anti-CD137 was associated with an increase in the percentage of pro-inflammatory/cytotoxic cells. The inhibitory effect of anti-CD137 on IFNγ, TNFα and granzyme B production by CD28null cells was greater than by CD28+ cells. Blocking CD137 expression is associated with downregulation of IFNγ, TNFα and granzyme B by CD8+ T and NKT-like and NK cells. Targeting CD137 may have novel therapeutic implications for patients with COPD.

  9. Human adipocytes are highly sensitive to intermittent hypoxia induced NF-kappaB activity and subsequent inflammatory gene expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Cormac T.; Kent, Brian D.; Crinion, Sophie J.

    Highlights: • Intermittent hypoxia (IH) leads to NF-κB activation in human primary adipocytes. • Adipocytes bear higher pro-inflammatory potential than other human primary cells. • IH leads to upregulation of multiple pro-inflammatory genes in human adipocytes. - Abstract: Introduction: Intermittent hypoxia (IH)-induced activation of pro-inflammatory pathways is a major contributing factor to the cardiovascular pathophysiology associated with obstructive sleep apnea (OSA). Obesity is commonly associated with OSA although it remains unknown whether adipose tissue is a major source of inflammatory mediators in response to IH. The aim of this study was to test the hypothesis that IH leads to augmentedmore » inflammatory responses in human adipocytes when compared to cells of non-adipocyte lineages. Methods and results: Human primary subcutaneous and visceral adipocytes, human primary microvascular pulmonary endothelial cells (HUMEC-L) and human primary small airway epithelial cells (SAEC) were exposed to 0, 6 or 12 cycles of IH or stimulated with tumor necrosis factor (TNF)-α. IH led to a robust increase in NF-κB DNA-binding activity in adipocytes compared with normoxic controls regardless of whether the source of adipocytes was visceral or subcutaneous. Notably, the NF-κB response of adipocytes to both IH and TNF-α was significantly greater than that in HUMEC-L and SAEC. Western blotting confirmed enhanced nuclear translocation of p65 in adipocytes in response to IH, accompanied by phosphorylation of I-κB. Parallel to p65 activation, we observed a significant increase in secretion of the adipokines interleukin (IL)-8, IL-6 and TNF-α with IH in adipocytes accompanied by significant upregulation of mRNA expression. PCR-array suggested profound influence of IH on pro-inflammatory gene expression in adipocytes. Conclusion: Human adipocytes demonstrate strong sensitivity to inflammatory gene expression in response to acute IH and hence, adipose tissue may

  10. Protopine reduces the inflammatory activity of lipopolysaccharide-stimulated murine macrophages.

    PubMed

    Bae, Deok Sung; Kim, Young Hoon; Pan, Cheol-Ho; Nho, Chu Won; Samdan, Javzan; Yansan, Jamyansan; Lee, Jae Kown

    2012-02-01

    Protopine is an isoquinoline alkaloid contained in plants in northeast Asia. In this study, we investigated whether protopine derived from Hypecoum erectum L could suppress lipopolysaccharide (LPS)-induced inflammatory responses in murine macrophages (Raw 264.7 cells). Protopine was found to reduce nitric oxide (NO), cyclooxygenase-2 (COX-2), and prostaglandin E(2) (PGE(2)) production by LPS-stimulated Raw 264.7 cells, without a cytotoxic effect. Pre-treatment of Raw 264.7 cells with protopine reduced the production of pro-inflammatory cytokines. These inhibitory effects were caused by blocking phosphorylation of mitogen-activated protein kinases (MAP kinases) and also blocking activation of a nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB).

  11. α-Mangostin: Anti-Inflammatory Activity and Metabolism by Human Cells

    PubMed Central

    Gutierrez-Orozco, Fabiola; Chitchumroonchokchai, Chureeporn; Lesinski, Gregory B.; Suksamrarn, Sunit; Failla, Mark L.

    2013-01-01

    Information about the anti-inflammatory activity and metabolism of α-mangostin (α-MG), the most abundant xanthone in mangosteen fruit, in human cells is limited. On the basis of available literature, we hypothesized that α-MG will inhibit the secretion of pro-inflammatory mediators by control and activated macrophage-like THP-1, hepatic HepG2, enterocyte-like Caco-2, and colon HT-29 human cell lines, as well as primary human monocyte-derived macrophages (MDM), and that such activity would be influenced by the extent of metabolism of the xanthone. α-MG attenuated TNF-α and IL-8 secretion by the various cell lines but increased TNF-α output by both quiescent and LPS-treated MDM. The relative amounts of free and phase II metabolites of α-MG and other xanthones present in media 24 h after addition of α-MG was shown to vary by cell type and inflammatory insult. Increased transport of xanthones and their metabolites across Caco-2 cell monolayers suggests enhanced absorption during an inflammatory episode. The anti-inflammatory activities of xanthones and their metabolites in different tissues merit consideration. PMID:23578285

  12. Pro-inflammatory Cytokine Expression of Spleen Dendritic Cells in Mouse Toxoplasmosis

    PubMed Central

    Nam, Ho-Woo; Ahn, Hye-Jin

    2011-01-01

    Dendritic cells have been known as a member of strong innate immune cells against infectious organelles. In this study, we evaluated the cytokine expression of splenic dendritic cells in chronic mouse toxoplasmosis by tissue cyst-forming Me49 strain and demonstrated the distribution of lymphoid dendritic cells by fluorescence-activated cell sorter (FACS). Pro-inflammatory cytokines, such as IL-1α, IL-1β, IL-6, and IL-10 increased rapidly at week 1 post-infection (PI) and peaked at week 3 PI. Serum IL-10 level followed the similar patterns. FACS analysis showed that the number of CD8α+/CD11c+ splenic dendritic cells increased at week 1 and peaked at week 3 PI. In conclusion, mouse splenic dendritic cells showed early and rapid cytokine changes and may have important protective roles in early phases of murine toxoplasmosis. PMID:21738265

  13. A low dose lipid infusion is sufficient to induce insulin resistance and a pro-inflammatory response in human subjects

    PubMed Central

    Lum, Helen; Alvarez, Andrea; Garduno-Garcia, Jose de Jesus; Daniel, Benjamin J.; Musi, Nicolas

    2018-01-01

    Objective The root cause behind the low-grade inflammatory state seen in insulin resistant (obesity and type 2 diabetes) states is unclear. Insulin resistant subjects have elevations in plasma free fatty acids (FFA), which are ligands for the pro-inflammatory toll-like receptor (TLR)4 pathway. We tested the hypothesis that an experimental elevation in plasma FFA (within physiological levels) in lean individuals would upregulate TLR4 and activate downstream pathways (e.g., MAPK) in circulating monocytes. Research design and methods Twelve lean, normal glucose-tolerant subjects received a low dose (30 ml/h) 48 h lipid or saline infusion on two different occasions. Monocyte TLR4 protein level, MAPK phosphorylation, and expression of genes in the TLR pathway were determined before and after each infusion. Results The lipid infusion significantly increased monocyte TLR4 protein and phosphorylation of JNK and p38 MAPK. Lipid-mediated increases in TLR4 and p38 phosphorylation directly correlated with reduced peripheral insulin sensitivity (M value). Lipid increased levels of multiple genes linked to inflammation, including several TLRs, CD180, MAP3K7, and CXCL10. Monocytes exposed in vivo to lipid infusion exhibited enhanced in vitro basal and LPS-stimulated IL-1β secretion. Conclusions In lean subjects, a small increase in plasma FFA (as seen in insulin resistant subjects) is sufficient to upregulate TLR4 and stimulate inflammatory pathways (MAPK) in monocytes. Moreover, lipids prime monocytes to endotoxin. We provide proof-of-concept data in humans indicating that the low-grade inflammatory state characteristic of obesity and type 2 diabetes could be caused (at least partially) by pro-inflammatory monocytes activated by excess lipids present in these individuals. PMID:29649324

  14. N(epsilon)-carboxymethyllysine-modified proteins are unable to bind to RAGE and activate an inflammatory response.

    PubMed

    Buetler, Timo M; Leclerc, Estelle; Baumeyer, Alexandra; Latado, Helia; Newell, John; Adolfsson, Oskar; Parisod, Véronique; Richoz, Janique; Maurer, Sarah; Foata, Francis; Piguet, Dominique; Junod, Sylviane; Heizmann, Claus W; Delatour, Thierry

    2008-03-01

    Advanced glycation endproducts (AGEs) containing carboxymethyllysine (CML) modifications are generally thought to be ligands of the receptor for AGEs, RAGEs. It has been argued that this results in the activation of pro-inflammatory pathways and diseases. However, it has not been shown conclusively that a CML-modified protein can interact directly with RAGE. Here, we have analyzed whether beta-lactoglobulin (bLG) or human serum albumin (HSA) modified chemically to contain only CML (10-40% lysine modification) can (i) interact with RAGE in vitro and (ii) interact with and activate RAGE in lung epithelial cells. Our results show that CML-modified bLG or HSA are unable to bind to RAGE in a cell-free assay system (Biacore). Furthermore, they are unable to activate pro-inflammatory signaling in the cellular system. Thus, CML probably does not form the necessary structure(s) to interact with RAGE and activate an inflammatory signaling cascade in RAGE-expressing cells.

  15. Exercise as a pro-cognitive, pro-neurogenic and anti-inflammatory intervention in transgenic mouse models of Alzheimer's disease.

    PubMed

    Ryan, Sinéad M; Kelly, Áine M

    2016-05-01

    It is now well established, at least in animal models, that exercise elicits potent pro-cognitive and pro-neurogenic effects. Alzheimer's disease (AD) is one of the leading causes of dementia and represents one of the greatest burdens on healthcare systems worldwide, with no effective treatment for the disease to date. Exercise presents a promising non-pharmacological option to potentially delay the onset of or slow down the progression of AD. Exercise interventions in mouse models of AD have been explored and have been found to reduce amyloid pathology and improve cognitive function. More recent studies have expanded the research question by investigating potential pro-neurogenic and anti-inflammatory effects of exercise. In this review we summarise studies that have examined exercise-mediated effects on AD pathology, cognitive function, hippocampal neurogenesis and neuroinflammation in transgenic mouse models of AD. Furthermore, we attempt to identify the optimum exercise conditions required to elicit the greatest benefits, taking into account age and pathology of the model, as well as type and duration of exercise. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Antimicrobial and anti-inflammatory activities, wound-healing effectiveness and chemical characterization of the latex of Jatropha neopauciflora Pax.

    PubMed

    Hernandez-Hernandez, A B; Alarcon-Aguilar, F J; Almanza-Perez, J C; Nieto-Yañez, O; Olivares-Sanchez, J M; Duran-Diaz, A; Rodriguez-Monroy, M A; Canales-Martinez, M M

    2017-05-23

    Jatropha neopauciflora Pax is an endemic species to Mexico, and its latex is used in traditional medicine to treat mouth infections when there are loose teeth and to heal wounds. In this research, we evaluated the antimicrobial activity, wound healing efficacy and chemical characterization of J. neopauciflora latex in a murine model. The antibacterial activity was determined using Gram positive and negative strains, the antifungal activity was determined using yeast and filamentous fungi, and the wound healing efficacy of the latex was determined using the tensiometric method. The anti-inflammatory activity was evaluated using the plantar oedema model in rats, administering the latex orally and topically. Cytotoxic activity was determined in vitro in two different cell lines. Antioxidant capacity, total phenolics, total flavonoids, reducing carbohydrates and latex proteins were quantified. The latex analysis was performed by High Performance Liquid Chromatography (HPLC). Finally, molecular exclusion chromatography was performed. The latex demonstrated antibacterial activity. The most sensitive strains were Gram positive bacteria, particularly S. aureus (MIC=2mg/mL), and the latex had bacteriostatic activity. The latex did not show antifungal activity. The latex demonstrated a wound-healing efficacy, even the positive control (Recoveron). The orally administered latex demonstrated the best anti-inflammatory activity and was not toxic to either of the 2 cell lines. The latex had a high antioxidant capacity (SA 50 =5.4µg/mL), directly related to the total phenolic (6.9mg GAE/mL) and flavonoid (12.53µg QE/mL) concentration. The carbohydrate concentration was 18.52µg/mL, and fructose was the most abundantly expressed carbohydrate in the latex (14.63µg/mL, 79.03%). Additionally, the latex contained proteins (7.62µg/mL) in its chemical constitution. As secondary metabolites, the HPLC analysis indicated the presence of phenols and flavonoids. The J. neopauciflora

  17. Kefir-isolated bacteria and yeasts inhibit Shigella flexneri invasion and modulate pro-inflammatory response on intestinal epithelial cells.

    PubMed

    Bolla, P A; Abraham, A G; Pérez, P F; de Los Angeles Serradell, M

    2016-02-01

    The aim of this work was to evaluate the ability of a kefir-isolated microbial mixture containing three bacterial and two yeast strains (MM) to protect intestinal epithelial cells against Shigella flexneri invasion, as well as to analyse the effect on pro-inflammatory response elicited by this pathogen. A significant decrease in S. flexneri strain 72 invasion was observed on both HT-29 and Caco-2 cells pre-incubated with MM. Pre-incubation with the individual strains Saccharomyces cerevisiae CIDCA 8112 or Lactococcus lactis subsp. lactis CIDCA 8221 also reduced the internalisation of S. flexneri into HT-29 cells although in a lesser extent than MM. Interestingly, Lactobacillus plantarum CIDCA 83114 exerted a protective effect on the invasion of Caco-2 and HT-29 cells by S. flexneri. Regarding the pro-inflammatory response on HT-29 cells, S. flexneri infection induced a significant activation of the expression of interleukin 8 (IL-8), chemokine (C-C motif) ligand 20 (CCL20) and tumour necrosis factor alpha (TNF-α) encoding genes (P<0.05), whereas incubation of cells with MM did not induce the expression of any of the mediators assessed. Interestingly, pre-incubation of HT-29 monolayer with MM produced an inhibition of S. flexneri-induced IL-8, CCL20 and TNF-α mRNA expression. In order to gain insight on the effect of MM (or the individual strains) on this pro-inflammatory response, a series of experiments using a HT-29-NF-κB-hrGFP reporter system were performed. Pre-incubation of HT-29-NF-κB-hrGFP cells with MM significantly dampened Shigella-induced activation. Our results showed that the contribution of yeast strain Kluyveromyces marxianus CIDCA 8154 seems to be crucial in the observed effect. In conclusion, results presented in this study demonstrate that pre-treatment with a microbial mixture containing bacteria and yeasts isolated from kefir, resulted in inhibition of S. flexneri internalisation into human intestinal epithelial cells, along with the

  18. Anti-inflammatory and anti-bacterial properties of tetramethylhexadecenyl succinyl cysteine (TSC): a skin-protecting cosmetic functional ingredient.

    PubMed

    Fernandéz, J R; Rouzard, K; Voronkov, M; Huber, K L; Stock, J B; Stock, M; Gordon, J S; Pérez, E

    2015-02-01

    The skin is the first line of defence against exposure to microbial, physical, environmental and chemical insults. In mobilizing a protective response, several different cell types located in our skin release and respond to pro-inflammatory cytokines ensuring skin homeostasis and health. However, chronic activation of this response eventually causes damage resulting in premature ageing. Diosodium tetramethylhexadecenyl succinyl cysteine (TSC or SIG1273), an isoprenylcysteine small molecule, down modulates these inflammatory signalling pathways in various cell types (keratinocytes, peripheral blood mononuclear cells (PBMCs) and endothelial cells) and possesses anti-bacterial properties. Thus, TSC represents a novel cosmetic functional ingredient that provides a broad spectrum of benefits for the skin. To assess the anti-inflammatory properties of TSC in several cutaneous cell types and further investigate its anti-microbial activity. Cultured normal human epidermal keratinocytes were exposed to chemical irritant phorbol 12-myrisate 13-acetate (TPA) or ultraviolet-B light (UVB) to induce pro-inflammatory cytokine (IL-6, IL-8 and TNF-α) production. T-cell receptor (TCR) activation of PBMCs and nickel (Ni(2+) ) treatments of human dermal microvascular endothelial cells (HDMECs) were performed resulting in IL-4, IL-6, IL-8 and IL-17 production. Streptococcus pyogenes were cultured to determine minimal inhibitory concentration values. In vitro studies demonstrate TSC blocks TPA and UVB-induced cytokine production in cultured keratinocytes. Similarly, TSC inhibits overproduction of IL-4 and IL-17 in T-cell receptor (TCR)-activated PBMCs as well as nickel induction of IL-6 and IL-8 in HDMECs. Lastly, TSC demonstrated anti-microbial properties, inhibiting cell growth of S. pyogenes. Tetramethylhexadecenyl succinyl cysteine represents a novel cosmetic functional ingredient that provides a dual modulating benefit of skin protection to individuals by reducing inflammation in

  19. Unilateral nephrectomy diminishes ischemic acute kidney injury through enhanced perfusion and reduced pro-inflammatory and pro-fibrotic responses

    PubMed Central

    Qi, Haiyun; Damgaard, Mads; Laustsen, Christoffer; Pedersen, Michael; Krag, Søren; Birn, Henrik; Nørregaard, Rikke; Jespersen, Bente

    2017-01-01

    While unilateral nephrectomy (UNx) is suggested to protect against ischemia-reperfusion injury (IRI) in the remaining kidney, the mechanisms underlying this protection remain to be elucidated. In this study, functional MRI was employed in a renal IRI rat model to reveal global and regional changes in renal filtration, perfusion, oxygenation and sodium handling, and microarray and pathway analyses were conducted to identify protective molecular mechanisms. Wistar rats were randomized to either UNx or sham UNx immediately prior to 37 minutes of unilateral renal artery clamping or sham operation under sevoflurane anesthesia. MRI was performed 24 hours after reperfusion. Blood and renal tissue were harvested. RNA was isolated for microarray analysis and QPCR validation of gene expression results. The perfusion (T1 value) was significantly enhanced in the medulla of the post-ischemic kidney following UNx. UNx decreased the expression of fibrogenic genes, i.a. Col1a1, Fn1 and Tgfb1 in the post-ischemic kidney. This was associated with a marked decrease in markers of activated myofibroblasts (Acta2/α-Sma and Cdh11) and macrophages (Ccr2). This was most likely facilitated by down-regulation of Pdgfra, thus inhibiting pericyte-myofibroblast differentiation, chemokine production (Ccl2/Mcp1) and macrophage infiltration. UNx reduced ischemic histopathologic injury. UNx may exert renoprotective effects against IRI through increased perfusion in the renal medulla and alleviation of the acute pro-inflammatory and pro-fibrotic responses possibly through decreased myofibroblast activation. The identified pathways involved may serve as potential therapeutic targets and should be taken into account in experimental models of IRI. PMID:29267404

  20. Beta-Glucan Activated Human B-Lymphocytes Participate in Innate Immune Responses by Releasing Pro-inflammatory Cytokines and Stimulating Neutrophil Chemotaxis

    PubMed Central

    Ali, Mohamed F.; Driscoll, Christopher B.; Walters, Paula R.; Limper, Andrew H.; Carmona, Eva M.

    2015-01-01

    B-lymphocytes play an essential regulatory role in the adaptive immune response through antibody production during infection. A less known function of B-lymphocytes is their ability to respond directly to infectious antigens through stimulation of pattern recognition receptors expressed on their surfaces. β-glucans are carbohydrates present in the cell wall of many pathogenic fungi that can be detected in the peripheral blood of patients during infection. They have been shown to participate in the innate inflammatory response as they can directly activate peripheral macrophages and dendritic cells. However, their effect as direct stimulators of B-lymphocytes has not been yet fully elucidated. The aim of this study was to examine the molecular mechanisms and cytokine profiles generated following β-glucan stimulation of B-lymphocytes, compared with the well-established TLR-9 agonist CpG-oligodeoxynucleotide (CpG) and study the participation of β-glucan stimulated B-cells in the innate immune response. Herein, we demonstrate that β-glucan activated B-lymphocytes upregulate pro-inflammatory cytokines (TNFα, IL-6 and IL-8). Interestingly, β-glucan, unlike CpG, had no effect on B-lymphocyte proliferation or IgM production. When compared with CpG (TLR9 agonist), β-glucan-activated cells secreted significantly higher levels of IL-8. Furthermore, IL-8 secretion was partially mediated by Dectin-1 and required SYK, MAPKs and the transcription factors NF-κB and AP-1. Moreover, we observed that conditioned media from β-glucan stimulated B-lymphocytes elicited neutrophil chemotaxis. These studies suggest that β-glucan activated B-lymphocytes have an important and novel role in fungal innate immune responses. PMID:26519534

  1. Mindfulness-Based Stress Reduction training reduces loneliness and pro-inflammatory gene expression in older adults: a small randomized controlled trial.

    PubMed

    Creswell, J David; Irwin, Michael R; Burklund, Lisa J; Lieberman, Matthew D; Arevalo, Jesusa M G; Ma, Jeffrey; Breen, Elizabeth Crabb; Cole, Steven W

    2012-10-01

    Lonely older adults have increased expression of pro-inflammatory genes as well as increased risk for morbidity and mortality. Previous behavioral treatments have attempted to reduce loneliness and its concomitant health risks, but have had limited success. The present study tested whether the 8-week Mindfulness-Based Stress Reduction (MBSR) program (compared to a Wait-List control group) reduces loneliness and downregulates loneliness-related pro-inflammatory gene expression in older adults (N = 40). Consistent with study predictions, mixed effect linear models indicated that the MBSR program reduced loneliness, compared to small increases in loneliness in the control group (treatment condition × time interaction: F(1,35) = 7.86, p = .008). Moreover, at baseline, there was an association between reported loneliness and upregulated pro-inflammatory NF-κB-related gene expression in circulating leukocytes, and MBSR downregulated this NF-κB-associated gene expression profile at post-treatment. Finally, there was a trend for MBSR to reduce C Reactive Protein (treatment condition × time interaction: (F(1,33) = 3.39, p = .075). This work provides an initial indication that MBSR may be a novel treatment approach for reducing loneliness and related pro-inflammatory gene expression in older adults. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Anti-inflammatory and cytotoxic activities of Bursera copallifera

    PubMed Central

    Columba-Palomares, M. F. María C.; Villareal, Dra. María L.; Acevedo Quiroz, M. C. Macdiel E.; Marquina Bahena, M. C. Silvia; Álvarez Berber, Dra. Laura P.; Rodríguez-López, Dra. Verónica

    2015-01-01

    Background: The plant species Bursera copallifera (DC) bullock is used in traditional medicine to treat inflammation. The leaves of this plant can be prepared as an infusion to treat migraines, bronchitis, and dental pain Objective: The purpose of this study was to determine the anti-inflammatory and cytotoxic activities of organic extracts from the stems, stem bark, and leaves of B. copallifera, which was selected based on the knowledge of its traditional use. Materials and Methods: We evaluated the ability of extracts to inhibit mouse ear inflammation in response to topical application of 12-O tetradecanoylphorbol-13-acetate. The extracts with anti-inflammatory activity were evaluated for their inhibition of pro-inflammatory enzymes. In addition, the in vitro cytotoxic activities of the organic extracts were evaluated using the sulforhodamine B assay. Results: The hydroalcoholic extract of the stems (HAS) exhibited an anti-inflammatory activity of 54.3% (0.5 mg/ear), whereas the anti-inflammatory activity of the dichloromethane-methanol extract from the leaves (DMeL) was 55.4% at a dose of 0.1 mg/ear. Methanol extract from the leaves (MeL) showed the highest anti-inflammatory activity (IC50 = 4.4 μg/mL), hydroalcoholic extract of leaves, and DMeL also reduce the enzyme activity, (IC50 = 6.5 μg/mL, IC50 = 5.7 μg/mL), respectively, from stems HAS exhibit activity at the evaluated concentrations (IC50 =6.4 μg/mL). The hydroalcoholic extract of the stems exhibited the highest cytotoxic activity against a breast adenocarcinoma cell line (MCF7, IC50 = 0.90 μg/mL), whereas DMeL exhibited an IC50 value of 19.9 μg/mL. Conclusion: In conclusion, extracts from leaves and stems inhibited cyclooxygenase-1, which is the target enzyme for nonsteroidal anti inflammatory drugs, and some of these extracts demonstrated substantial antiproliferative effects against the MCF7 cell line. These results validate the traditional use of B. copallifera. PMID:26664022

  3. Anti-inflammatory and cytotoxic activities of Bursera copallifera.

    PubMed

    Columba-Palomares, M F María C; Villareal, Dra María L; Acevedo Quiroz, M C Macdiel E; Marquina Bahena, M C Silvia; Álvarez Berber, Dra Laura P; Rodríguez-López, Dra Verónica

    2015-10-01

    The plant species Bursera copallifera (DC) bullock is used in traditional medicine to treat inflammation. The leaves of this plant can be prepared as an infusion to treat migraines, bronchitis, and dental pain. The purpose of this study was to determine the anti-inflammatory and cytotoxic activities of organic extracts from the stems, stem bark, and leaves of B. copallifera, which was selected based on the knowledge of its traditional use. We evaluated the ability of extracts to inhibit mouse ear inflammation in response to topical application of 12-O tetradecanoylphorbol-13-acetate. The extracts with anti-inflammatory activity were evaluated for their inhibition of pro-inflammatory enzymes. In addition, the in vitro cytotoxic activities of the organic extracts were evaluated using the sulforhodamine B assay. The hydroalcoholic extract of the stems (HAS) exhibited an anti-inflammatory activity of 54.3% (0.5 mg/ear), whereas the anti-inflammatory activity of the dichloromethane-methanol extract from the leaves (DMeL) was 55.4% at a dose of 0.1 mg/ear. Methanol extract from the leaves (MeL) showed the highest anti-inflammatory activity (IC50 = 4.4 μg/mL), hydroalcoholic extract of leaves, and DMeL also reduce the enzyme activity, (IC50 = 6.5 μg/mL, IC50 = 5.7 μg/mL), respectively, from stems HAS exhibit activity at the evaluated concentrations (IC50 =6.4 μg/mL). The hydroalcoholic extract of the stems exhibited the highest cytotoxic activity against a breast adenocarcinoma cell line (MCF7, IC50 = 0.90 μg/mL), whereas DMeL exhibited an IC50 value of 19.9 μg/mL. In conclusion, extracts from leaves and stems inhibited cyclooxygenase-1, which is the target enzyme for nonsteroidal anti inflammatory drugs, and some of these extracts demonstrated substantial antiproliferative effects against the MCF7 cell line. These results validate the traditional use of B. copallifera.

  4. Healthy working school teachers with high effort-reward-imbalance and overcommitment show increased pro-inflammatory immune activity and a dampened innate immune defence.

    PubMed

    Bellingrath, Silja; Rohleder, Nicolas; Kudielka, Brigitte M

    2010-11-01

    To test whether chronic work stress is accompanied by altered immune functioning, changes in lymphocyte subsets and in lymphocyte production of cytokines were examined in reaction to acute psychosocial stress. Work stress was measured according to Siegrist's effort-reward-imbalance (ERI) model. ERI reflects stress due to a lack of reciprocity between costs and gains at work. Overcommitment (OC) is conceptualized as a dysfunctional coping pattern mainly characterized by the inability to withdraw from work obligations. Fifty-five healthy teachers (34 women, 21 men, mean age 50.0 ± 8.47 years) were exposed to a standardized laboratory stressor (Trier Social Stress Test). Lymphocyte subset counts and lymphocyte production of tumor-necrosis-factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-2, -4, -6 and -10 were measured before and after challenge. High levels of ERI and OC were associated with lower natural killer (NK) cell (CD16+/56+) numbers whereas high levels of OC were related to a lower increase in T-helper cells (CD4+) after stress. Furthermore, subjects with higher ERI showed an overall increased pro-inflammatory activity, with higher TNF-α production at both time points and elevated pre-stress IL-6 production. IL-10 production decreased with higher ERI after stress. The ratios of TNF-α/IL-10 and IL-6/IL-10 were significantly increased in subjects high on ERI. Finally, OC was associated with higher IL-2 production post-stress. The present findings suggest a dampened innate immune defence, reflected in lower NK cell numbers together with an increased pro-inflammatory activity in teachers high on ERI and OC. Such pathways could partly be responsible for the increased vulnerability for stress-related diseases in individuals suffering from chronic work stress. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Dual Role of GM-CSF as a Pro-Inflammatory and a Regulatory Cytokine: Implications for Immune Therapy

    PubMed Central

    Bhattacharya, Palash; Budnick, Isadore; Singh, Medha; Thiruppathi, Muthusamy; Alharshawi, Khaled; Elshabrawy, Hatem; Holterman, Mark J.

    2015-01-01

    Granulocyte macrophage colony stimulating factor (GM-CSF) is generally recognized as an inflammatory cytokine. Its inflammatory activity is primarily due its role as a growth and differentiation factor for granulocyte and macrophage populations. In this capacity, among other clinical applications, it has been used to bolster anti-tumor immune responses. GM-CSF-mediated inflammation has also been implicated in certain types of autoimmune diseases, including rheumatoid arthritis and multiple sclerosis. Thus, agents that can block GM-CSF or its receptor have been used as anti-inflammatory therapies. However, a review of literature reveals that in many situations GM-CSF can act as an anti-inflammatory/regulatory cytokine. We and others have shown that GM-CSF can modulate dendritic cell differentiation to render them “tolerogenic,” which, in turn, can increase regulatory T-cell numbers and function. Therefore, the pro-inflammatory and regulatory effects of GM-CSF appear to depend on the dose and the presence of other relevant cytokines in the context of an immune response. A thorough understanding of the various immunomodulatory effects of GM-CSF will facilitate more appropriate use and thus further enhance its clinical utility. PMID:25803788

  6. Suppression of pro-inflammatory T-cell responses by human mesothelial cells.

    PubMed

    Lin, Chan-Yu; Kift-Morgan, Ann; Moser, Bernhard; Topley, Nicholas; Eberl, Matthias

    2013-07-01

    Human γδ T cells reactive to the microbial metabolite (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP) contribute to acute inflammatory responses. We have previously shown that peritoneal dialysis (PD)-associated infections with HMB-PP producing bacteria are characterized by locally elevated γδ T-cell frequencies and poorer clinical outcome compared with HMB-PP negative infections, implying that γδ T cells may be of diagnostic, prognostic and therapeutic value in acute disease. The regulation by local tissue cells of these potentially detrimental γδ T-cell responses remains to be investigated. Freshly isolated γδ or αβ T cells were cultured with primary mesothelial cells derived from omental tissue, or with mesothelial cell-conditioned medium. Stimulation of cytokine production and proliferation by peripheral T cells in response to HMB-PP or CD3/CD28 beads was assessed by flow cytometry. Resting mesothelial cells were potent suppressors of pro-inflammatory γδ T cells as well as CD4+ and CD8+ αβ T cells. The suppression of γδ T-cell responses was mediated through soluble factors released by primary mesothelial cells and could be counteracted by SB-431542, a selective inhibitor of TGF-β and activin signalling. Recombinant TGF-β1 but not activin-A mimicked the mesothelial cell-mediated suppression of γδ T-cell responses to HMB-PP. The present findings indicate an important regulatory function of mesothelial cells in the peritoneal cavity by dampening pro-inflammatory T-cell responses, which may help preserve the tissue integrity of the peritoneal membrane in the steady state and possibly during the resolution of acute inflammation.

  7. Suppression of Propionibacterium acnes Infection and the Associated Inflammatory Response by the Antimicrobial Peptide P5 in Mice

    PubMed Central

    Ryu, Sunhyo; Han, Hyo Mi; Song, Peter I.

    2015-01-01

    The cutaneous inflammation associated with acne vulgaris is caused by the anaerobic bacterium Propionibacterium acnes through activation of the innate immune system in the skin. Current standard treatments for acne have limitations that include adverse effects and poor efficacy in many patients, making development of a more effective therapy highly desirable. In the present study, we demonstrate the protective effects of a novel customized α-helical cationic peptide, P5, against P. acnes-induced inflammatory responses in vitro and in vivo. Application of P5 significantly reduced expression of two inflammatory cytokines IL-8 and TNF-α in P. acnes-treated primary human keratinocytes, where P5 appeared to act in part by binding to bacterial lipoteichoic acid, thereby suppressing TLR2-to-NF-κB signaling. In addition, in a mouse model of acne vulgaris, P5 exerted both anti-inflammatory and antimicrobial effects against P. acnes, but exerted no cytotoxic effects against skin cells. These results demonstrate that P5, and perhaps other cationic antimicrobial peptides, offer the unique ability to reduce numbers P. acnes cells in the skin and to inhibit the inflammation they trigger. This suggests these peptides could potentially be used to effectively treat acne without adversely affecting the skin. PMID:26197393

  8. Smart Dressings Based on Nanostructured Fibers Containing Natural Origin Antimicrobial, Anti-Inflammatory, and Regenerative Compounds

    PubMed Central

    Andreu, Vanesa; Mendoza, Gracia; Arruebo, Manuel; Irusta, Silvia

    2015-01-01

    inert effects of those natural origin occurring materials, the scientific community leads towards the identification of the main active components involved and their mechanism of action during the corresponding healing, antimicrobial, or regenerative processes and in carrying out systematic and comparative controlled tests. Once those natural origin components have been identified and their efficacy validated through solid clinical trials, their combination within nanostructured dressings can open up new avenues in the fabrication of bioactive dressings with outstanding characteristics for wound care. The motivation of this work is to analyze the state of the art in the use of different essential oils, honey, cationic peptides, aloe vera, plant extracts, and other natural origin occurring materials as antimicrobial, anti-inflammatory and regenerative components with the aim of clarifying their potential clinical use in bioactive dressings. We conclude that, for those natural occurring materials, more clinical trials are needed to reach a sufficient level of evidence as therapeutic agents for wound healing management. PMID:28793497

  9. A polymeric nanoparticle formulation of curcumin (NanoCurc™) ameliorates CCl4-induced hepatic injury and fibrosis through reduction of pro-inflammatory cytokines and stellate cell activation

    PubMed Central

    Bisht, Savita; Khan, Mehtab A; Bekhit, Mena; Bai, Haibo; Cornish, Toby; Mizuma, Masamichi; Rudek, Michelle A; Zhao, Ming; Maitra, Amarnath; Ray, Balmiki; Lahiri, Debomoy; Maitra, Anirban; Anders, Robert A

    2012-01-01

    Plant-derived polyphenols such as curcumin hold promise as a therapeutic agent in the treatment of chronic liver diseases. However, its development is plagued by poor aqueous solubility resulting in poor bioavailability. To circumvent the suboptimal bioavailability of free curcumin, we have developed a polymeric nanoparticle formulation of curcumin (NanoCurc™) that overcomes this major pitfall of the free compound. In this study, we show that NanoCurc™ results in sustained intrahepatic curcumin levels that can be found in both hepatocytes and non-parenchymal cells. NanoCurc™ markedly inhibits carbon tetrachloride-induced liver injury, production of pro-inflammatory cytokines and fibrosis. It also enhances antioxidant levels in the liver and inhibits pro-fibrogenic transcripts associated with activated myofibroblasts. Finally, we show that NanoCurc™ directly induces stellate cell apoptosis in vitro. Our results suggest that NanoCurc™ might be an effective therapy for patients with chronic liver disease. PMID:21691262

  10. Human Langerhans Cells with Pro-inflammatory Features Relocate within Psoriasis Lesions

    PubMed Central

    Eidsmo, Liv; Martini, Elisa

    2018-01-01

    Psoriasis is a common skin disease that presents with well-demarcated patches of inflammation. Recurrent disease in fixed areas of the skin indicates a localized disease memory that is preserved in resolved lesions. In line with such concept, the involvement of tissue-resident immune cells in psoriasis pathology is increasingly appreciated. Langerhans cells (LCs) are perfectly placed to steer resident T cells and local tissue responses in psoriasis. Here, we present an overview of the current knowledge of LCs in human psoriasis, including findings that highlight pro-inflammatory features of LCs in psoriasis lesions. We also review the literature on conflicting data regarding LC localization and functionality in psoriasis. Our review highlights that further studies are needed to elucidate the molecular mechanisms that drive LCs functionality in inflammatory diseases. PMID:29520279

  11. Lymphocyte senescence in COPD is associated with loss of glucocorticoid receptor expression by pro-inflammatory/cytotoxic lymphocytes.

    PubMed

    Hodge, Greg; Jersmann, Hubertus; Tran, Hai B; Holmes, Mark; Reynolds, Paul N; Hodge, Sandra

    2015-01-09

    Glucocorticoid (GC) resistance is a major barrier in COPD treatment. We have shown increased expression of the drug efflux pump, Pgp1 in cytotoxic/pro-inflammatory lymphocytes in COPD. Loss of lymphocyte co-stimulatory molecule CD28 (lymphocyte senescence) was associated with a further increase in their pro-inflammatory/cytotoxic potential and resistance to GC. We hypothesized that lymphocyte senescence and increased Pgp1 are also associated with down-regulation of the GC receptor (GCR). Blood was collected from 10 COPD and 10 healthy aged-matched controls. Flow cytometry was applied to assess intracellular pro-inflammatory cytokines, CD28, Pgp1, GCR, steroid binding and relative cytoplasm/nuclear GCR by CD28+ and CD28null T, NKT-like cells. GCR localization was confirmed by fluorescent microscopy. COPD was associated with increased numbers of CD28nullCD8+ T and NKT-like cells. Loss of CD28 was associated with an increased percentage of T and NKT-like cells producing IFNγ or TNFα and associated with a loss of GCR and Dex-Fluor staining but unchanged Pgp1. There was a significant loss of GCR in CD8 + CD28null compared with CD8 + CD28+ T and NKT-like cells from both COPD and controls (eg, mean ± SEM 8 ± 3% GCR + CD8 + CD28null T-cells vs 49 ± 5% GCR + CD8 + CD28+ T-cells in COPD). There was a significant negative correlation between GCR expression and IFNγ and TNFα production by T and NKT-like cells(eg, COPD: T-cell IFNγ R = -.615; ) and with FEV1 in COPD (R = -.777). COPD is associated with loss of GCR in senescent CD28null and NKT-like cells suggesting alternative treatment options to GC are required to inhibit these pro-inflammatory/cytotoxic cells.

  12. Antimicrobial Activity and Phytochemical Analysis of Organic Extracts from Cleome spinosa Jaqc.

    PubMed Central

    da Silva, Ana P. Sant'Anna; Nascimento da Silva, Luís C.; Martins da Fonseca, Caíque S.; de Araújo, Janete M.; Correia, Maria T. dos Santos; Cavalcanti, Marilene da Silva; Lima, Vera L. de Menezes

    2016-01-01

    Due to the use of Cleome spinosa Jacq. (Cleomaceae) in traditional medicine against inflammatory and infectious processes, this study evaluated the in vitro antimicrobial potential and phytochemical composition of extracts from its roots and leaves. From leaves (L) and roots (R) of C. spinosa different extracts were obtained (cyclohexane: ChL and ChR; chloroform: CL and CR; ethyl acetate: EAL and EAR, methanol: ML and MR). The antimicrobial activity was evaluated by the broth microdilution method to obtain the minimum inhibitory (MIC) and microbicidal (MMC) concentrations against 17 species, including bacteria and yeasts. Additionally, antimicrobial and combinatory effects with oxacillin were assessed against eight clinical isolates of Staphylococcus aureus. All C. spinosa extracts showed a broad spectrum of antimicrobial activity, as they have inhibited all tested bacteria and yeasts. This activity seems to be related to the phytochemicals (flavonoid, terpenoids and saponins) detected into the extracts of C. spinosa. ChL and CL extracts were the most actives, with MIC less than 1 mg/mL against S. aureus, Bacillus subtilis, and Micrococcus luteus. It is important to note that these concentrations are much lower than their 50% hemolysis concentration (HC50) values. Strong correlations were found between the average MIC against S. aureus and their phenolic (r = −0.89) and flavonoid content (r = −0.87), reinforcing the possible role of these metabolite classes on the antimicrobial activity of C. spinosa derived extracts. Moreover, CL and CR showed the best inhibitory activity against S. aureus clinical isolates, they also showed synergistic action with oxacillin against all these strains (at least at one combined proportion). These results encourage the identification of active substances which could be used as lead(s) molecules in the development of new antimicrobial drugs. PMID:27446005

  13. [Rational antimicrobial therapy in patients with purulent inflammatory diseases of maxillofacial area].

    PubMed

    Bogatov, B B; Denis, A G; Koliadov, N F

    2015-01-01

    The aim of the study was to reveal optimal antimicrobial agents in patients with purulent inflammatory diseases of maxillofacial area according to bacteriological study results. One hundred twenty-one culture samples from 32 patients aged from 21 to 68 years admitted to Nurnberg Maxillofacial Surgery Clinic. Pathogenic flora was mostly mixed with 66.9% of anaerobic germs in the majority of cases irresponsible to ampicillin (1.3%) and clindamycin (0.7%). The drugs of choice are ampicillin/sulbactam and amoxicillin/clavulanate. Bacteriological study should be included as a useful tool in treatment protocols of patients with purulent inflammatory diseases of maxillofacial area.

  14. Bordetella Pertussis Toxin does not induce the release of pro-inflammatory cytokines in human whole blood.

    PubMed

    Bache, Christina; Spreitzer, Ingo; Becker, Bjoern; Loeschner, Bettina; Rosskopf, Ute; Hanschmann, Kay-Martin; Schwanig, Michael; Schneider, Christian K; Lieb, Bernhard; Montag, Thomas

    2012-08-01

    Pertussis Toxin (PTx) is one of the most important virulence factors of Bordetella pertussis, the cause of whooping cough. Therefore, the inactivated toxin is an obligatory constituent of acellular pertussis vaccines. It is described in the literature that both native PTx and recombinant Pertussis Toxin (PTg) activate human monocytes whereas others report an inhibition of mammalian monocytes during pertussis infection. B. pertussis, as a Gram-negative bacterium, harbours naturally lipopolysaccharide (LPS, also known as endotoxin), one of the strongest stimulators of monocytes. The latter is triggered via the interaction of endotoxin with inter alia the surface receptor CD14. Consequently, it is necessary to consider a potential contamination of Pertussis Toxin preparations with LPS. First, we determined the LPS content in different preparations of PTx and PTg. All preparations examined were contaminated with LPS; therefore, possible PTx- and PTg-driven monocyte activation independently of LPS was investigated. To meet these aims, we examined monocyte response to PTx and PTg while blocking the LPS receptor CD14 with a specific monoclonal antibody (anti-CD14 mAb). In addition, all toxin preparations examined underwent an LPS depletion. Our results show that it is contaminating LPS, not Pertussis Toxin, which activates human monocytes. Blocking the CD14 receptor prevents Pertussis Toxin-mediated induction of pro-inflammatory cytokines in human monocytes. The depletion of LPS from Pertussis Toxin leads to the same effect. Additionally, the PTx toxicity after LPS depletion procedure was confirmed by animal tests. In contrast, the original Pertussis Toxin preparations not treated as mentioned above generate strong monocyte activation. The results in this publication allow the conclusion that purified Pertussis Toxin preparations do not induce the release of pro-inflammatory cytokines in human whole blood.

  15. Interactions between pro-inflammatory cytokines and statins on depression in patients with acute coronary syndrome.

    PubMed

    Kim, Sung-Wan; Kang, Hee-Ju; Bae, Kyung-Yeol; Shin, Il-Seon; Hong, Young Joon; Ahn, Young-Keun; Jeong, Myung Ho; Berk, Michael; Yoon, Jin-Sang; Kim, Jae-Min

    2018-01-03

    Pro-inflammatory cytokines are associated with the development of depression and statins exert anti-inflammatory and antidepressant effects. The present study aimed to investigate associations between interleukin (IL)-6 and IL-18 and depression in patients with acute coronary syndrome (ACS) and potential interactions between statin use and pro-inflammatory cytokines on depression in this population. We used pooled datasets from 1-year follow-up data from a 24-week randomized double-blind placebo-controlled trial (RCT) of escitalopram for treatment of depressive disorder and data from a naturalistic, prospective, observational cohort study in patients with ACS. IL-6 and IL-18 levels were measured at baseline. Logistic regression models were used to investigate independent associations of IL-6/IL-18 levels with depressive disorder at baseline and at 1year. We repeated all analyses by reference to statin use to determine whether any significant association emerged. Of the 969 participants, 378 (39.0%) had major or minor depression at baseline. Of 711 patients followed-up at 1year, 183 (25.7%) had depression. Logistic regression analysis showed that higher IL-6 and IL-18 levels at baseline were significantly associated with baseline depression after adjusting for other variables (adjusted p-values=0.005 and 0.001, respectively). IL-6 and IL-18 levels were also significantly higher in patients with depression at the 1-year follow-up after adjusting for other variables amongst those not taking statins (adjusted p-values=0.040 and 0.004, respectively); but this was not the case in patients taking statins. Levels of pro-inflammatory cytokines appear to predict development of depression after ACS and statins attenuate the effects of cytokines on depression. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Pro-inflammatory cytokines expression increases following low- and high-magnitude cyclic loading of lumbar ligaments

    PubMed Central

    D’Ambrosia, Peter; King, Karen; Davidson, Bradley; Zhou, Bing He; Lu, Yun

    2010-01-01

    Repetitive or overuse disorders of the lumbar spine affect the lives of workers and athletes. We hypothesize that repetitive anterior lumbar flexion–extension under low or high load will result in significantly elevated pro-inflammatory cytokines expression several hours post-activity. High loads will exhibit significantly higher expression than low loads. Lumbar spine of in vivo feline was subjected to cyclic loading at 0.25 Hz for six 10-min periods with 10 min of rest in between. One group was subjected to a low peak load of 20 N, whereas the second group to a high peak load of 60 N. Following a 7-h post-loading rest, the supraspinous ligaments of L-3/4, L-4/5 and L-5/6 and the unstimulated T-10/11 were excised for mRNA analysis and IL-1β, IL-6, IL-8, TNFα and TGFβ1 pro-inflammatory cytokines expression. Creep (laxity) developed in the lumbar spine during the loading and the subsequent 7 h of rest was calculated. A two-way mixed model ANOVA was used to assess difference in each cytokines expression between the two groups and control. Tukey HSD post hoc analysis delineated specific significant effects. Significance was set at 0.05. Low and high-load groups exhibited development of creep throughout the cyclic loading period and gradual recovery throughout the 7-h rest period. Residual creep of 24.8 and 30.2% were present in the low and high-load groups, respectively, 7-h post-loading. Significant increases in expression of all cytokines measured relative to control were obtained for supraspinous ligaments from both low and high-load magnitudes. IL-6, IL-8 and TGFβ1 expression in the high-load group were significantly higher relative to the low-load group. Significant increases in cytokines expression indicating tissue inflammation are observed several hours post-repetitive lumbar flexion–extension regardless of the load magnitude applied. Repetitive occupational and athletic activity, regardless of the load applied, may be associated with the

  17. Anti-bacterial and anti-inflammatory properties of capric acid against Propionibacterium acnes: a comparative study with lauric acid.

    PubMed

    Huang, Wen-Cheng; Tsai, Tsung-Hsien; Chuang, Lu-Te; Li, You-Yi; Zouboulis, Christos C; Tsai, Po-Jung

    2014-03-01

    Propionibacterium acnes (P. acnes) is a commensal bacterium which is possibly involved in acne inflammation. The saturated fatty acid, lauric acid (C12:0) has been shown to possess antibacterial and anti-inflammatory properties against P. acnes. Little is known concerning the potential effects of its decanoic counterpart, capric acid (C10:0). To examine the antibacterial and anti-inflammatory activities of capric acid against P. acnes and to investigate the mechanism of the anti-inflammatory action. The antimicrobial activity of fatty acids was detected using the broth dilution method. An evaluation of P. acnes-induced ear edema in mice was conducted to evaluate the in vivo anti-inflammatory effect. To elucidate the in vitro anti-inflammatory effect, human SZ95 sebocytes and monocytic THP-1 cells were treated with P. acnes alone or in the presence of a fatty acid. The mRNA levels and secretion of pro-inflammatory cytokines were measured by qRT-PCR and enzyme immunoassay, respectively. NF-κB activation and MAPK expression were analyzed by ELISA and Western blot, respectively. Lauric acid had stronger antimicrobial activity against P. acnes than capric acid in vitro and in vivo. However, both fatty acids attenuated P. acnes-induced ear swelling in mice along with microabscess and significantly reduced interleukin (IL)-6 and CXCL8 (also known as IL-8) production in P. acnes-stimulated SZ95 sebocytes. P. acnes-induced mRNA levels and secretion of IL-8 and TNF-α in THP-1 cells were suppressed by both fatty acids, which inhibited NF-κB activation and the phosphorylation of MAP kinases. Our data demonstrate that both capric acid and lauric acid exert bactericidal and anti-inflammatory activities against P. acnes. The anti-inflammatory effect may partially occur through the inhibition of NF-κB activation and the phosphorylation of MAP kinases. Copyright © 2013 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  18. Effects of Egg Shell Membrane Hydrolysates on Anti-Inflammatory, Anti-Wrinkle, Anti-Microbial Activity and Moisture-Protection.

    PubMed

    Yoo, Jinhee; Park, Kimoon; Yoo, Youngji; Kim, Jongkeun; Yang, Heejin; Shin, Youngjae

    2014-01-01

    This study was conducted to examine the effects of eggshell membrane hydrolysates (ESMH) on the anti-inflammatory, anti-wrinkle, anti-microbial activity, and moisture-protection for cosmetic use. Whole ESMH (before fractionation), and fraction I (>10 kDa), fraction II (3-10 kDa), and fraction III (<3 kDa) of the hydrolysates were assessed in this experiment. As lipopolysaccharide (LPS) and IFN-γ caused the inflammation on Raw264.7 cell, whole ESMH and fraction I showed to be effective in inhibiting the induction of cell inflammation depending on the concentration, and also showed outstanding effect to suppress the skin inflammation. Fraction I inhibited collagenase and elastase activities to a greater extent than the other fractions, while all fractions had antibiotic effects at concentrations of 10 mg/disc and 20 mg/disc. In addition, it showed the moisture protection effects of skin on the holding amount and losing amount of moisture in upper-inner arm of the human body with a relatively low loss rate in skin, which confirmed that the hydrolyzed fractions of ESM helps to form the superior protective layer of moisture. It was concluded that ESMH fractions with different molecular weights, especially the 10 kDa fraction, have anti-lipopolysaccharide, anti-IFN-γ-induced inflammation, anti- collagenase and elastase activities, and thus can be used as a cosmetic agent to protect skin.

  19. The macrophage marker translocator protein (TSPO) is down-regulated on pro-inflammatory ‘M1’ human macrophages

    PubMed Central

    Mandhair, Harpreet; Smyth, Erica; Dakin, Stephanie Georgina; Kiriakidis, Serafim; Wells, Lisa; Owen, David; Sabokbar, Afsie; Taylor, Peter

    2017-01-01

    The translocator protein (TSPO) is a mitochondrial membrane protein, of as yet uncertain function. Its purported high expression on activated macrophages, has lent utility to TSPO targeted molecular imaging in the form of positron emission tomography (PET), as a means to detect and quantify inflammation in vivo. However, existing literature regarding TSPO expression on human activated macrophages is lacking, mostly deriving from brain tissue studies, including studies of brain malignancy, and inflammatory diseases such as multiple sclerosis. Here, we utilized three human sources of monocyte derived macrophages (MDM), from THP-1 monocytes, healthy peripheral blood monocytes and synovial fluid monocytes from patients with rheumatoid arthritis, to undertake a detailed investigation of TSPO expression in activated macrophages. In this work, we demonstrate a consistent down-regulation of TSPO mRNA and protein in macrophages activated to a pro-inflammatory, or ‘M1’ phenotype. Conversely, stimulation of macrophages to an M2 phenotype with IL-4, dexamethasone or TGF-β1 did not alter TSPO expression, regardless of MDM source. The reasons for this are uncertain, but our study findings add some supporting evidence for recent investigations concluding that TSPO may be involved in negative regulation of inflammatory responses in macrophages. PMID:28968465

  20. Genetic and Imaging Approaches Reveal Pro-Inflammatory and Immunoregulatory Roles of Mast Cells in Contact Hypersensitivity.

    PubMed

    Gaudenzio, Nicolas; Marichal, Thomas; Galli, Stephen J; Reber, Laurent L

    2018-01-01

    Contact hypersensitivity (CHS) is a common T cell-mediated skin disease induced by epicutaneous sensitization to haptens. Mast cells (MCs) are widely deployed in the skin and can be activated during CHS responses to secrete diverse products, including some with pro-inflammatory and anti-inflammatory functions. Conflicting results have been obtained regarding pathogenic versus protective roles of MCs in CHS, and this has been attributed in part to the limitations of certain models for studying MC functions in vivo . This review discusses recent advances in the development and analysis of mouse models to investigate the roles of MCs and MC-associated products in vivo . Notably, fluorescent avidin-based two-photon imaging approaches enable in vivo selective labeling and simultaneous tracking of MC secretory granules (e.g., during MC degranulation) and MC gene activation by real-time longitudinal intravital microscopy in living mice. The combination of such genetic and imaging tools has shed new light on the controversial role played by MCs in mouse models of CHS. On the one hand, they can amplify CHS responses of mild severity while, on the other hand, can limit the inflammation and tissue injury associated with more severe or chronic models, in part by representing an initial source of the anti-inflammatory cytokine IL-10.

  1. The influence of occupational chronic lead exposure on the levels of selected pro-inflammatory cytokines and angiogenic factors.

    PubMed

    Machoń-Grecka, A; Dobrakowski, M; Boroń, M; Lisowska, G; Kasperczyk, A; Kasperczyk, S

    2017-05-01

    The aim of the study was to determine the effect of occupational exposure to lead on the blood levels of pro-inflammatory cytokines and selected factors that influence angiogenesis. The study population was divided into two groups. The first group consisted of 56 male workers chronically exposed to lead. The second group (control) was comprised of 24 male administrative workers. The serum levels of interleukin 1β (IL-1β), interleukin 6 (IL-6), and tumor necrosis factor α (TNF-α) were significantly higher in the group of workers chronically exposed to lead compared to control values by 38%, 68%, and 57%, respectively. Similarly, the values of soluble vascular endothelial growth factor receptor-1 (sVEGFR-1) and fibroblast growth factor-basic (FGF-basic) were higher by 19% and 63%, respectively. In the group of workers chronically exposed to lead, there were positive correlations between the levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) and angiogenic factors (VEGF, FGF-basic, sVEGFR-1, and soluble angiopoietin receptor). In the control group, there were no correlations between the levels of the abovementioned parameters. Results of the present study indicate that chronic occupational lead exposure promotes inflammatory processes via induction of pro-inflammatory cytokines, modulates angiogenesis, and elicits interdependencies between the immune response and angiogenic factors.

  2. Effects of pro-inflammatory cytokines, lipopolysaccharide and COX-2 mediators on human colonic neuromuscular function and epithelial permeability.

    PubMed

    Safdari, B K; Sia, T C; Wattchow, D A; Smid, S D

    2016-07-01

    Chronic colitis is associated with decreased colonic muscle contraction and loss of mucosal barrier function. Pro-inflammatory cytokines and bacterial lipopolysaccharide (LPS) are important in the generation and maintenance of inflammation. While colitis is associated with upregulated COX-2 -derived prostanoids and nitric oxide (NO), the direct activity of pro-inflammatory cytokines on human colonic neuromuscular function is less clear. This study investigated the effects of IBD-associated pro-inflammatory cytokines IL-17, TNF-α, IL-1β and LPS on human colonic muscle strip contractility, alone and following inhibition of COX-2 or nitric oxide production. In addition, human colonic epithelial Caco-2 cell monolayers were treated with LPS or COX-2 mediators including prostaglandins (PGE2, PGF2α) or their corresponding ethanolamides (PGE2-EA or PGF2α-EA) over 48h and trans-epithelial electrical resistance used to record permeability changes. Longitudinal muscle strips were obtained from healthy colonic resection margins and mounted in organ baths following IL-17, TNF-α, IL-1β and bacterial LPS incubations in an explant setting over 20h. Contraction in response to acetylcholine (ACh) was then measured, before and after either COX-2 inhibition (nimesulide; 10(-5)M) or nitric oxide synthase (NOS) inhibition (l-NNA; 10(-4)M). None of the cytokine or LPS explant incubations affected the potency or maximum cholinergic contraction in vitro, and subsequent COX-2 blockade with nimesulide revealed a significant but similar decrease in potency of ACh-evoked contraction in control, LPS and cytokine-incubated muscle strips. Pre-treatment with l-NNA provided no functional differences in the potency or maximum contractile responses to ACh in cytokine or LPS-incubated colonic longitudinal smooth muscle. Only PGE2 transiently increased Caco-2 monolayer permeability at 24h, while LPS (10μg/ml) increased permeability over 24-48h. These findings indicate that cholinergic

  3. IL-10 plays a pivotal role in anti-inflammatory effects of resveratrol in activated microglia cells.

    PubMed

    Cianciulli, Antonia; Dragone, Teresa; Calvello, Rosa; Porro, Chiara; Trotta, Teresa; Lofrumento, Dario Domenico; Panaro, Maria Antonietta

    2015-02-01

    The development of agents that can modulate microglial activation has been suggested as one potential strategy for the treatment or prevention of neurodegenerative diseases. Among these agents, resveratrol, with its anti-inflammatory action, has been described to have neuroprotective effects. In this paper we demonstrate that in LPS-stimulated microglia resveratrol pretreatment reduced, in a dose-dependent manner, pro-inflammatory cytokines IL-1β, TNF-α and IL-6 mRNA expression and increased the release of anti-inflammatory interleukin (IL)-10. Moreover, resveratrol pretreatment up-regulated the phosphorylated forms of JAK1 and STAT3, as well as suppressor of cytokine signaling (SOCS)3 protein expression in LPS activated cells, demonstrating that the JAK-STAT signaling pathway is involved in the anti-inflammatory effect exerted by resveratrol. By supplementing the cultures with an IL-10 neutralizing antibody (IL-10NA) we obtained the opposite effect. Taken together, these data allow us to conclude that the LPS-induced pro-inflammatory response in microglial cells can be markedly reduced by resveratrol, through IL-10 dependent up-regulation of SOCS3, requiring the JAK-STAT signaling pathway. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Design and synthesis of some new 2,3'-bipyridine-5-carbonitriles as potential anti-inflammatory/antimicrobial agents.

    PubMed

    Elzahhar, Perihan A; Elkazaz, Salwa; Soliman, Raafat; El-Tombary, Alaa A; Shaltout, Hossam A; El-Ashmawy, Ibrahim M; Abdel Wahab, Abeer E; El-Hawash, Soad A

    2017-08-01

    Inflammation may cause accumulation of fluid in the injured area, which may promote bacterial growth. Other reports disclosed that non-steroidal anti-inflammatory drugs may enhance progression of bacterial infection. This work describes synthesis of new series of 2,3'-bipyridine-5-carbonitriles as structural analogs of etoricoxib, linked at position-6 to variously substituted thio or oxo moieties. Biological screening results revealed that compounds 2b, 4b, 7e and 8 showed significant acute and chronic AI activities and broad spectrum of antimicrobial activity. In addition, similarity ensemble approach was applied to predict potential biological targets of the tested compounds. Then, pharmacophore modeling study was employed to determine the most important structural parameters controlling bioactivity. Moreover, title compounds showed physicochemical properties within those considered adequate for drug candidates. This study explored the potential of such series of compounds as structural leads for further modification to develop a new class of dual AI-antimicrobial agents.

  5. Anti-inflammatory and antiproliferative activities of trifolirhizin, a flavonoid from Sophora flavescens roots

    PubMed Central

    Zhou, Huiping; Lutterodt, Herman; Cheng, Zhihong; Yu, Liangli (Lucy)

    2009-01-01

    Trifolirhizin, a pterocarpan flavonoid, was isolated from the roots of Sophora flavescens, and its chemical structure was confirmed by1H and 13C NMR and MS spectra. Its anti-inflammatory activity was examined in lipopolysaccharide (LPS)-stimulated mouse J774A.1 macrophages. Trifolirhizin not only dose-dependently inhibited LPS-induced expression of pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), but also inhibited lipopolysaccharide (LPS)-induced expression of cyclooxygenase-2 (COX-2). In addition, trifolirhizin showed in vitro inhibitory effects on the growth of human A2780 ovarian and H23 lung cancer cells. These results suggest that trifolirhizin possesses potential anti-inflammatory and anti-cancer activities. PMID:19402641

  6. High mobility group box (HMGB) proteins of Plasmodium falciparum: DNA binding proteins with pro-inflammatory activity.

    PubMed

    Kumar, Krishan; Singal, Ankita; Rizvi, M Moshahid A; Chauhan, Virander S

    2008-06-01

    High mobility group box chromosomal protein 1 (HMGB1), known as an abundant, non-histone architectural chromosomal protein, is highly conserved across different species. Homologues of HMGB1 were identified and cloned from malaria parasite, Plasmodium falciparum. Sequence analyses showed that the P. falciparum HMGB1 (PfHMGB1) exhibits 45, 23 and 18%, while PfHMGB2 shares 42, 21 and 17% homology with Saccharomyces cerevisiae, human and mouse HMG box proteins respectively. Parasite PfHMGB1and PfHMGB2 proteins contain one HMG Box domain similar to B-Box of mammalian HMGB1. Electrophoretic Mobility Shift Assay (EMSA) showed that recombinant PfHMGB1 and PfHMGB2 bind to DNA. Immunofluorescence Assay using specific antibodies revealed that these proteins are expressed abundantly in the ring stage nuclei. Significant levels of PfHMGB1 and PfHMGB2 were also present in the parasite cytosol at trophozoite and schizont stages. Both, PfHMGB1 and PfHMGB2 were found to be potent inducers of pro-inflammatory cytokines such as TNFalpha from mouse peritoneal macrophages as analyzed by both reverse transcription PCR and by ELISA. These results suggest that secreted PfHMGB1 and PfHMGB2 may be responsible for eliciting/ triggering host inflammatory immune responses associated with malaria infection.

  7. A novel derivative of decursin, CSL-32, blocks migration and production of inflammatory mediators and modulates PI3K and NF-κB activities in HT1080 cells.

    PubMed

    Lee, Seung-Hee; Lee, Jee Hyun; Kim, Eun-Ju; Kim, Won-Jung; Suk, Kyoungho; Kim, Joo-Hwan; Song, Gyu Yong; Lee, Won-Ha

    2012-07-01

    Decursin and related coumarin compounds in herbal extracts have a number of biological activities against inflammation, angiogenesis and cancer. We have analysed a derivative of decursin (CSL-32) for activity against inflammatory activation of cancer cells, such as migration, invasion and expression of pro-inflammatory mediators. The human fibrosarcoma cell line, HT1080, was treated with TNFα (tumour necrosis factor α) in the presence or absence of CSL-32. The cellular responses and modification of signalling adapters were analysed with respect to the production of pro-inflammatory mediators, as also migration, adhesion and invasion. Treatment of HT1080 cells with CSL-32 inhibited their proliferation, without affecting cell viability, and TNFα-induced expression of pro-inflammatory mediators, such as MMP-9 (matrix metalloproteinase-9) and IL-8 (interleukin-8). CSL-32 also suppressed phosphorylation and degradation of IκB (inhibitory κB), phosphorylation of p65 subunit of NF-κB (nuclear factor-κB) and nuclear translocation of NF-κB, which are required for the expression of pro-inflammatory mediators. In addition, CSL-32 inhibited invasion and migration of HT1080 cells, as also cellular adhesion to fibronectin, an ECM (extracellular matrix) protein. CSL-32 treatment resulted in a dose-dependent inhibition of PI3K (phosphoinositide 3-kinase) activity, required for the cellular migration. The analyses show that CSL-32 inhibits processes associated with inflammation, such as the production of pro-inflammatory mediators, as well as adhesion, migration and invasion in HT1080 cells.

  8. Inhibition of pro-inflammatory enzymes by medicinal plants from the Argentinean highlands (Puna).

    PubMed

    Torres-Carro, Romina; Isla, María Inés; Thomas-Valdes, Samanta; Jiménez-Aspee, Felipe; Schmeda-Hirschmann, Guillermo; Alberto, María Rosa

    2017-06-09

    Human groups in the Argentinean Andes highlands (Puna) selected native plants as anti-inflammatory agents. The indications of use are mainly to relieve pain, as infusions, ethanolic extracts or plasters. The objective of the study was to assess the effect of hydroalcoholic extracts from native highland plants as anti-inflammatory agents according to the traditional indications of use. The chemical profile of the three most active species was analyzed by HPLC-ESI-MS to get an insight into the constituents and the effects observed according to the ethnopharmacological information. Hydroalcoholic extracts from 13 Argentinean Puna plants used as anti-inflammatory were evaluated as inhibitors of the pro-inflammatory enzymes phospholipase A 2 (sPLA 2 ), lipoxygenase (LOX), hyaluronidase, and for their capacity to stabilize red blood cells membrane. In addition, the extracts were evaluated to determine their reducing power, iron chelating capacity and ABTS •+ radical scavenging effect. The chemical profiles of the most active species were analyzed by HPLC-ESI-MS. Among the species investigated, Ephedra multiflora was the most active as LOX inhibitor (IC 50 :132µg/mL), by reducing the non-heme iron group and by scavenging radicals. The IC 50 values of the reference compounds caffeic acid and naproxen were 57.0 and 14.0µg/mL, respectively. Parastrephia lucida showed the highest sPLA 2 inhibitory effect (63% of inhibition at 200µg/mL). Under the same experimental conditions, the IC 50 of the reference compound acetylsalicylic acid was 65±1µg/mL. Tessaria absinthioides exhibited the best inhibition towards hyaluronidase with an IC 50 of 93.2±4.3µg/mL. Under the same experimental conditions, the reference compounds quercetin and indomethacin presented IC 50 values of 340.0±17.0 and 502.0±10.0µg/mL, respectively. Among the most active species, 13 compounds were tentatively identified by HPLC-ESI-MS in E. multiflora and P. lucida, and 12 compounds in T. absinthioides

  9. Formononetin ameliorates mast cell-mediated allergic inflammation via inhibition of histamine release and production of pro-inflammatory cytokines

    PubMed Central

    Xu, Ning; An, Jun

    2017-01-01

    Various allergic diseases cause allergic inflammation, which is mediated by mast cells. The current study investigated the anti-allergic inflammatory effects of formononetin and its mechanism of action in vitro using mast cells. Levels of histamine and pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6, were measured to assess the effects of formononetin on allergic inflammation. The activation of intracellular calcium and nuclear factor (NF)-κB, as well as the activity of caspase-1, were assessed to determine the mechanism of action. It was determined that difference concentrations of formononetin (0.1, 1 and 10 µM) suppressed histamine release and secretion of TNF-α, IL-1β and IL-6. Further investigations indicated that the effects of formononetin were associated with a reduction of intracellular calcium, suppression of NF-κB activation and upstream IκKα phosphorylation and inhibition of caspase-1 activity. Therefore, the results of the current study demonstrated that formononetin ameliorated mast cell-mediated allergic inflammation. PMID:29250144

  10. Formononetin ameliorates mast cell-mediated allergic inflammation via inhibition of histamine release and production of pro-inflammatory cytokines.

    PubMed

    Xu, Ning; An, Jun

    2017-12-01

    Various allergic diseases cause allergic inflammation, which is mediated by mast cells. The current study investigated the anti-allergic inflammatory effects of formononetin and its mechanism of action in vitro using mast cells. Levels of histamine and pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6, were measured to assess the effects of formononetin on allergic inflammation. The activation of intracellular calcium and nuclear factor (NF)-κB, as well as the activity of caspase-1, were assessed to determine the mechanism of action. It was determined that difference concentrations of formononetin (0.1, 1 and 10 µM) suppressed histamine release and secretion of TNF-α, IL-1β and IL-6. Further investigations indicated that the effects of formononetin were associated with a reduction of intracellular calcium, suppression of NF-κB activation and upstream IκKα phosphorylation and inhibition of caspase-1 activity. Therefore, the results of the current study demonstrated that formononetin ameliorated mast cell-mediated allergic inflammation.

  11. Anti-inflammatory and antinociceptive effects of Chinese medicine SQ gout capsules and its modulation of pro-inflammatory cytokines focusing on gout arthritis.

    PubMed

    Kodithuwakku, Nandani Darshika; Pan, Min; Zhu, Yi-lin; Zhang, Yan-yan; Feng, Yi-dong; Fang, Wei-rong; Li, Yun-man

    2013-12-12

    Shuang-Qi gout capsule is a traditional Chinese medicine prescription, which has been used in the treatment of joint pain, inflammation and gout arthritis. This study evaluates anti-inflammatory and antinociceptive effects of Shuang-Qi gout capsule and its modulation of pro-inflammatory cytokines with special reference to gout arthritis. Anti-inflammatory effect of Shuang-Qi gout capsule was investigated bymice tail-flick response, acetic acid induced writhing response, Xylene-induced auricle inflammation and the hind paw volume of the monosodium urate (MSU) crystal induced rats with different time durations. To investigate the effects on gout arthritis, ankle joint of rats induced by MSU crystals and assessed for edema and histopathological changes. In vitro, prepared serum was incubated with urate crystal induced HUVE cells and the release of TNF-α and IL-1β determined by ELISA. Shuang-Qi gout capsule showed significant and dose dependent anti-inflammatory effect via reducing edema and pain, throughout all the models. The high dose of Shuang-Qi gout capsule and Indomethacin significantly attenuated the edema. Histopathological results showed that high and medium dose of Shuang-Qi gout capsule and Indomethacin reduced gouty joint inflammatory features, while the high dose of Shuang-Qi gout capsule showed a better therapeutic effect. High and medium dose of Shuang-Qi gout capsule significantly reduced the release of TNF-α and IL-1β (p<0.05). Shuang-Qi gout capsule can effectively inhibit the inflammation, analgesia, through the modulation of emission of pro-inflammatory cytokines and the curative effect is dose dependent. Conversely, these MSU induced in vivo and in vitro studies of Shuang-Qi gout capsule suggest that, Shuang-Qi gout capsule may be a potential agent for treatment in gouty arthritis. © 2013 Published by Elsevier Ireland Ltd.

  12. Anti-inflammatory activity of standardized dichloromethane extract of Salvia connivens on macrophages stimulated by LPS.

    PubMed

    González-Chávez, Marco Martín; Ramos-Velázquez, Cinthia Saraí; Serrano-Vega, Roberto; Pérez-González, Cuauhtemoc; Sánchez-Mendoza, Ernesto; Pérez-Gutiérrez, Salud

    2017-12-01

    A previous study demonstrated that the chloroform extract of Salvia connivens Epling (Lamiaceae) has anti-inflammatory activity. Identification of the active components in the dicholorometane extract (DESC), and, standardization of the extract based in ursolic acid. DESC was prepared by percolation with dichlromethane and after washed with hot hexane, its composition was determined by CG-MS and NMR, and standardized by HPLC. The anti-inflammatory activity was tested on acute TPA-induced mouse ear oedema at doses of 2.0 mg/ear. The cell viability of macrophages was evaluated by MTT method, and pro- and anti-inflammatory interleukin levels were measured using an ELISA kit. Ursolic acid, oleanolic acid, dihydroursolic acid and eupatorin were identified in DESC, which was standardized based on the ursolic acid concentration (126 mg/g). The anti-inflammatory activities of DESC, the acid mixture, and eupatorin (2 mg/ear) were 60.55, 57.20 and 56.40% inhibition, respectively, on TPA-induced ear oedema. The IC 50 of DESC on macrophages was 149.4 μg/mL. DESC (25 μg/mL) significantly reduced TNF-α (2.0-fold), IL-1β (2.2-fold) and IL-6 (2.0-fold) in macrophages stimulated with LPS and increased the production of IL-10 (1.9-fold). Inflammation is a basic response to injuries, and macrophages are involved in triggering inflammation. Macrophage cells exhibit a response to LPS, inducing inflammatory mediators, and DESC inhibits the biosynthesis of the pro-inflammatory and promote anti-inflammatory cytokines. DESC has an anti-inflammatory effect; reduced the levels of IL-1β, Il-6 and TNF-α; and increases IL-10 in macrophages stimulated with LPS. Ursolic acid is a good phytochemical marker.

  13. Lipophilic components of diesel exhaust particles induce pro-inflammatory responses in human endothelial cells through AhR dependent pathway(s).

    PubMed

    Brinchmann, Bendik C; Skuland, Tonje; Rambøl, Mia H; Szoke, Krisztina; Brinchmann, Jan E; Gutleb, Arno C; Moschini, Elisa; Kubátová, Alena; Kukowski, Klara; Le Ferrec, Eric; Lagadic-Gossmann, Dominique; Schwarze, Per E; Låg, Marit; Refsnes, Magne; Øvrevik, Johan; Holme, Jørn A

    2018-05-11

    Exposure to traffic-derived particulate matter (PM), such as diesel exhaust particles (DEP), is a leading environmental cause of cardiovascular disease (CVD), and may contribute to endothelial dysfunction and development of atherosclerosis. It is still debated how DEP and other inhaled PM can contribute to CVD. However, organic chemicals (OC) adhered to the particle surface, are considered central to many of the biological effects. In the present study, we have explored the ability of OC from DEP to reach the endothelium and trigger pro-inflammatory reactions, a central step on the path to atherosclerosis. Exposure-relevant concentrations of DEP (0.12 μg/cm 2 ) applied on the epithelial side of an alveolar 3D tri-culture, rapidly induced pro-inflammatory and aryl hydrocarbon receptor (AhR)-regulated genes in the basolateral endothelial cells. These effects seem to be due to soluble lipophilic constituents rather than particle translocation. Extractable organic material of DEP (DEP-EOM) was next fractionated with increasing polarity, chemically characterized, and examined for direct effects on pro-inflammatory and AhR-regulated genes in human microvascular endothelial (HMEC-1) cells and primary human endothelial cells (PHEC) from four healthy donors. Exposure-relevant concentrations of lipophilic DEP-EOM (0.15 μg/cm 2 ) induced low to moderate increases in IL-1α, IL-1β, COX2 and MMP-1 gene expression, and the MMP-1 secretion was increased. By contrast, the more polar EOM had negligible effects, even at higher concentrations. Use of pharmacological inhibitors indicated that AhR and protease-activated receptor-2 (PAR-2) were central in regulation of EOM-induced gene expression. Some effects also seemed to be attributed to redox-responses, at least at the highest exposure concentrations tested. Although the most lipophilic EOM, that contained the majority of PAHs and aliphatics, had the clearest low-concentration effects, there was no straight-forward link

  14. Investigation of the role of interleukin-6 and hepcidin antimicrobial peptide in the development of anemia with age

    PubMed Central

    McCranor, Bryan J.; Langdon, Jacqueline M.; Prince, Olivier D.; Femnou, Laurette K.; Berger, Alan E.; Cheadle, Chris; Civin, Curt I.; Kim, Airie; Rivera, Seth; Ganz, Tomas; Vaulont, Sophie; Xue, Qian-Li; Walston, Jeremy D.; Roy, Cindy N.

    2013-01-01

    Anemia is common in older adults and associated with adverse health outcomes in epidemiological studies. A thorough understanding of the complex pathophysiological mechanisms driving anemia in the elderly is lacking; but inflammation, iron restriction, and impaired erythroid maturation are thought to influence the phenotype. We hypothesized that interleukin-6 contributes to this anemia, given its pro-inflammatory activities, its ability to induce hepcidin antimicrobial peptide, and its negative impact on several tissues in older adults. We tested this hypothesis by comparing changes in indices of inflammation, iron metabolism and erythropoiesis in aged C57BL/6 mice to aged mice with targeted deletions of interleukin-6 or hepcidin antimicrobial peptide. Circulating neutrophil and monocyte numbers and inflammatory cytokines increased with age. Decline in hemoglobin concentration and red blood cell number indicated that C57BL/6, interleukin-6 knockout mice, and hepcidin antimicrobial peptide knockout mice all demonstrated impaired erythropoiesis by 24 months. However, the interleukin-6 knock out genotype and the hepcidin antimicrobial peptide knock out genotype resulted in improved erythropoiesis in aged mice. Increased erythropoietic activity in the spleen suggested that the erythroid compartment was stressed in aged C57BL/6 mice compared to aged interleukin-6 knockout mice. Our data suggest C57BL/6 mice are an appropriate mammalian model for the study of anemia with age. Furthermore, although interleukin-6 and hepcidin antimicrobial peptide are not required, they can participate in the development of anemia in aging mice, and could be targeted, pre-clinically, with existing interventions to determine the feasibility of such agents for the treatment of anemia in older adults. PMID:23996485

  15. c-Kit modifies the inflammatory status of smooth muscle cells.

    PubMed

    Song, Lei; Martinez, Laisel; Zigmond, Zachary M; Hernandez, Diana R; Lassance-Soares, Roberta M; Selman, Guillermo; Vazquez-Padron, Roberto I

    2017-01-01

    c-Kit is a receptor tyrosine kinase present in multiple cell types, including vascular smooth muscle cells (SMC). However, little is known about how c-Kit influences SMC biology and vascular pathogenesis. High-throughput microarray assays and in silico pathway analysis were used to identify differentially expressed genes between primary c-Kit deficient (Kit W/W-v ) and control (Kit +/+ ) SMC. Quantitative real-time RT-PCR and functional assays further confirmed the differences in gene expression and pro-inflammatory pathway regulation between both SMC populations. The microarray analysis revealed elevated NF-κB gene expression secondary to the loss of c-Kit that affects both the canonical and alternative NF-κB pathways. Upon stimulation with an oxidized phospholipid as pro-inflammatory agent, c-Kit deficient SMC displayed enhanced NF-κB transcriptional activity, higher phosphorylated/total p65 ratio, and increased protein expression of NF-κB regulated pro-inflammatory mediators with respect to cells from control mice. The pro-inflammatory phenotype of mutant cells was ameliorated after restoring c-Kit activity using lentiviral transduction. Functional assays further demonstrated that c-Kit suppresses NF-κB activity in SMC in a TGFβ-activated kinase 1 (TAK1) and Nemo-like kinase (NLK) dependent manner. Our study suggests a novel mechanism by which c-Kit suppresses NF-κB regulated pathways in SMC to prevent their pro-inflammatory transformation.

  16. Holi colours contain PM10 and can induce pro-inflammatory responses.

    PubMed

    Bossmann, Katrin; Bach, Sabine; Höflich, Conny; Valtanen, Kerttu; Heinze, Rita; Neumann, Anett; Straff, Wolfgang; Süring, Katrin

    2016-01-01

    At Holi festivals, originally celebrated in India but more recently all over the world, people throw coloured powder (Holi powder, Holi colour, Gulal powder) at each other. Adverse health effects, i.e. skin and ocular irritations as well as respiratory problems may be the consequences. The aim of this study was to uncover some of the underlying mechanisms. We analysed four different Holi colours regarding particle size using an Electric field cell counting system. In addition, we incubated native human cells with different Holi colours and determined their potential to induce a pro-inflammatory response by quantifying the resulting cytokine production by means of ELISA (Enzyme Linked Immunosorbent Assay) and the resulting leukocyte oxidative burst by flow cytometric analysis. Moreover, we performed the XTT (2,3-Bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) and Propidium iodide cytotoxicity tests and we measured the endotoxin content of the Holi colour samples by means of the Limulus Amebocyte Lysate test (LAL test). We show here that all tested Holi colours consist to more than 40 % of particles with an aerodynamic diameter smaller than 10 μm, so called PM10 particles (PM, particulate matter). Two of the analysed Holi powders contained even more than 75 % of PM10 particles. Furthermore we demonstrate in cell culture experiments that Holi colours can induce the production of the pro-inflammatory cytokines TNF-α (Tumor necrosis factor-α), IL-6 (Interleukine-6) and IL-1β (Interleukine-1β). Three out of the four analysed colours induced a significantly higher cytokine response in human PBMCs (Peripheral Blood Mononuclear Cells) and whole blood than corn starch, which is often used as carrier substance for Holi colours. Moreover we show that corn starch and two Holi colours contain endotoxin and that certain Holi colours display concentration dependent cytotoxic effects in higher concentration. Furthermore we reveal that in principle Holi

  17. St. John's wort attenuates irinotecan-induced diarrhea via down-regulation of intestinal pro-inflammatory cytokines and inhibition of intestinal epithelial apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu Zeping; Yang Xiaoxia; Chan Suiyung

    Diarrhea is a common dose-limiting toxicity associated with cancer chemotherapy, in particular for drugs such as irinotecan (CPT-11), 5-fluouracil, oxaliplatin, capecitabine and raltitrexed. St. John's wort (Hypericum perforatum, SJW) has anti-inflammatory activity, and our preliminary study in the rat and a pilot study in cancer patients found that treatment of SJW alleviated irinotecan-induced diarrhea. In the present study, we investigated whether SJW modulated various pro-inflammatory cytokines including interleukins (IL-1{beta}, IL-2, IL-6), interferon (IFN-{gamma}) and tumor necrosis factor-{alpha} (TNF-{alpha}) and intestinal epithelium apoptosis in rats. The rats were treated with irinotecan at 60 mg/kg for 4 days in combination with oralmore » SJW or SJW-free control vehicle at 400 mg/kg for 8 days. Diarrhea, tissue damage, body weight loss, various cytokines including IL-1{beta}, IL-2, IL-6, IFN-{gamma} and TNF-{alpha} and intestinal epithelial apoptosis were monitored over 11 days. Our studies demonstrated that combined SJW markedly reduced CPT-11-induced diarrhea and intestinal lesions. The production of pro-inflammatory cytokines such as IL-1{beta}, IFN-{gamma} and TNF-{alpha} was significantly up-regulated in intestine. In the mean time, combined SJW significantly suppressed the intestinal epithelial apoptosis induced by CPT-11 over days 5-11. In particular, combination of SJW significantly inhibited the expression of TNF-{alpha} mRNA in the intestine over days 5-11. In conclusion, inhibition of pro-inflammatory cytokines and intestinal epithelium apoptosis partly explained the protective effect of SJW against the intestinal toxicities induced by irinotecan. Further studies are warranted to explore the potential for STW as an agent in combination with chemotherapeutic drugs to lower their dose-limiting toxicities.« less

  18. Pro-inflammatory effects of the Th1 chemokine CXCL10 in acquired aplastic anaemia.

    PubMed

    Li, Junhong; Ge, Meili; Lu, Shihong; Shi, Jun; Li, Xingxin; Wang, Min; Huang, Jinbo; Shao, Yingqi; Huang, Zhendong; Zhang, Jing; Nie, Neng; Zheng, Yizhou

    2017-06-01

    CXCL10/IFN-γ-induced protein 10 (IP-10) and its corresponding receptor CXCR3 have long been considered to be involved in the pathophysiology of type 1 T (Th1) cell-orientated autoimmune diseases. However, the exact role of CXCL10 in the pathogenesis of aplastic anaemia (AA) has not been thoroughly studied. The aim of our study was to evaluate the plasma level of CXCL10 and its effects on CD4 + T cell differentiation in AA. In our study, we found that an elevated plasma level of CXCL10 was negatively correlated with platelet, absolute neutrophil and reticulocyte counts, while it was positively correlated with the proportion of lymphocytes in white blood cells in AA patients. To confirm the pro-inflammatory effects of CXCL10 in AA, we isolated CD4 + T cells and evaluated the function of CXCL10 in CD4 + T cell differentiation. In vitro stimulation experiments further revealed the pro-inflammatory role of CXCL10 in AA, partially by promoting the secretion of interferon (IFN)-γ and IL-17. In addition, CXCL10 significantly skewed CD4 + T cell differentiation to Th1 cells and T helper 17 (Th17) cells in AA patients, while it inhibited the differentiation of type 2 T (Th2) cells only in controls. The mRNA expression of transcription factors representative of T cell differentiation was detected by RT-PCR. Consistently, our results showed that after CXCL10 treatment, the expression of T-bet and RORγt was significantly enhanced, while the expression of GATA3 was inhibited. In conclusion, our results indicated that CXCL10, a pro-inflammatory chemokine, might be involved in the abnormal immune response in AA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Synergistic Antibacterial and Anti-Inflammatory Activity of Temporin A and Modified Temporin B In Vivo

    PubMed Central

    Capparelli, Rosanna; Romanelli, Alessandra; Iannaccone, Marco; Nocerino, Nunzia; Ripa, Raffaella; Pensato, Soccorsa; Pedone, Carlo; Iannelli, Domenico

    2009-01-01

    Temporins are antimicrobial peptides secreted by the granular glands of the European red frog (Rana temporaria). They are 10–14 amino acid long polypeptides active prevalently against gram positive bacteria. This study shows that a synthetic temporin B analogue (TB-YK), acquires the capacity to act in synergism with temporin A and to exert antimicrobial and anti-inflammatory activity in vivo against gram positive and gram negative bacteria. Administration of 3.4 mg/Kg of temporin A (TA)+1.6 mg/Kg TB-YK, given to individual mice concurrently with a lethal dose of bacteria (gram positive or negative), rescued 100% of the animals. More importantly, the same doses of temporins, administered one week after experimental infection with a sub lethal dose of bacteria, sterilized 100% of the animals within 3–6 days. Also, it is described an animal model based on the use of sub lethal doses of bacteria, which closely mimics bacterial infection in humans. The model offers the possibility to test in a preclinical setting the true potential of TA and TB-YK in combination as antimicrobial and anti-inflammatory agents. PMID:19784377

  20. Chondroprotective and anti-inflammatory role of melanocortin peptides in TNF-α activated human C-20/A4 chondrocytes

    PubMed Central

    Kaneva, Magdalena K; Kerrigan, Mark JP; Grieco, Paolo; Curley, G Paul; Locke, Ian C; Getting, Stephen J

    2012-01-01

    BACKGROUND AND PURPOSE Melanocortin MC1 and MC3 receptors, mediate the anti-inflammatory effects of melanocortin peptides. Targeting these receptors could therefore lead to development of novel anti-inflammatory therapeutic agents. We investigated the expression of MC1 and MC3 receptors on chondrocytes and the role of α-melanocyte-stimulating hormone (α-MSH) and the selective MC3 receptor agonist, [DTRP8]-γ-MSH, in modulating production of inflammatory cytokines, tissue-destructive proteins and induction of apoptotic pathway(s) in the human chondrocytic C-20/A4 cells. EXPERIMENTAL APPROACH Effects of α-MSH, [DTRP8]-γ-MSH alone or in the presence of the MC3/4 receptor antagonist, SHU9119, on TNF-α induced release of pro-inflammatory cytokines, MMPs, apoptotic pathway(s) and cell death in C-20/A4 chondrocytes were investigated, along with their effect on the release of the anti-inflammatory cytokine IL-10. KEY RESULTS C-20/A4 chondrocytes expressed functionally active MC1,3 receptors. α-MSH and [DTRP8]-γ-MSH treatment, for 30 min before TNF-α stimulation, provided a time-and-bell-shaped concentration-dependent decrease in pro-inflammatory cytokines (IL-1β, IL-6 and IL-8) release and increased release of the chondroprotective and anti-inflammatory cytokine, IL-10, whilst decreasing expression of MMP1, MMP3, MMP13 genes.α-MSH and [DTRP8]-γ-MSH treatment also inhibited TNF-α-induced caspase-3/7 activation and chondrocyte death. The effects of [DTRP8]-γ-MSH, but not α-MSH, were abolished by the MC3/4 receptor antagonist, SHU9119. CONCLUSION AND IMPLICATIONS Activation of MC1/MC3 receptors in C-20/A4 chondrocytes down-regulated production of pro-inflammatory cytokines and cartilage-destroying proteinases, inhibited initiation of apoptotic pathways and promoted release of chondroprotective and anti-inflammatory cytokines. Developing small molecule agonists to MC1/MC3 receptors could be a viable approach for developing chondroprotective and anti-inflammatory

  1. Antimicrobial-induced endotoxin and cytokine activity in an in vitro model of septicemia in foals.

    PubMed

    Bentley, Adrienne P; Barton, Michelle H; Lee, Margie D; Norton, Natalie A; Moore, James N

    2002-05-01

    To determine which antimicrobials that are used to treat neonatal foals with septicemia attributable to Escherichia coli will minimize endotoxin release from bacteria and subsequent activity of inflammatory mediators while maintaining bactericidal efficacy. Blood samples from 10 healthy foals. Escherichia coli isolates A and B were isolated from 2 septicemic foals, and minimal inhibitory concentrations (MIC) were determined for 9 antimicrobials. Five of these antimicrobials were tested in vitro at 2 and 20 times their respective MIC. Whole blood or mononuclear cells grown in tissue-culture media were incubated with 105 colony-forming units of E. coli and each antimicrobial or saline (0.9% NaCl) solution. After 6 hours, number of viable bacteria remaining was determined, and supernatant was tested for endotoxin and tumor necrosis activity. Testing in whole blood was compromised by bactericidal effects of the blood itself. In mononuclear cell suspensions, each antimicrobial significantly reduced the number of viable bacteria to low or undetectable amounts. Antimicrobials did not differ significantly in efficacy of bacterial killing. Amikacin used alone or in combination with ampicillin resulted in significantly less endotoxin activity than did ampicillin, imipenem, or ceftiofur alone. There was a correlation between TNF-alpha and endotoxin activity. Aminoglycosides appear less likely to induce endotoxemia and TNF-alpha synthesis during bactericidal treatment of E. coli septicemia, compared with beta-lactam antimicrobials. Use of ampicillin, imipenem, or ceftiofur in the treatment of septicemic neonatal foals should be accompanied by appropriate treatment for endotoxemia.

  2. Coccinia grandis (L.) Voigt Leaf Extract Exhibits Antileishmanial Effect Through Pro-inflammatory Response: An In Vitro Study.

    PubMed

    Pramanik, Asmita; Paik, Dibyendu; Naskar, Kshudiram; Chakraborti, Tapati

    2017-01-01

    The conventional drugs used for the treatment of human visceral leishmaniasis have concerns about the toxicity and most importantly parasite resistance. To overcome these troubles, more efforts are made for the development of innovative therapeutic agents having effective antileishmanial activity and simultaneously stimulate adaptive immune system of host cells. Hence, search for new leishmanicidal from the natural origin like plants has shown its effectiveness for the treatment of this tropical disease. The aim of this study is to investigate and characterize the antileishmanial efficacy of Coccinia grandis (L.) Voigt leaf extract (Cg-Ex) with its immunomodulatory property against Leishmania donovani in an in vitro experimental model. Cg-Ex significantly reduces the intracellular L. donovani parasite load with IC 50  value 193 ± 0.78 µg/ml, but it has lower cytotoxicity on the murine RAW 264.7 macrophage cell line. Interestingly, Cg-Ex induces the generation of potent antimicrobials like reactive oxygen species and nitric oxide dose dependently in infected murine macrophages. Moreover, the increased production of Th1 cytokines (IL-12, TNF-α) with a concurrent decrease of Th2 cytokines (IL-10, TGF-β) was also observed in Cg-Ex-treated infected host macrophages. Our results thus confirm that serine protease inhibitor(s)-rich Cg-Ex exhibits antileishmanial activity in vitro, and this was mediated through the modulation of pro-inflammatory cytokines. On the whole, the present findings first demonstrate the antileishmanial property of Cg-Ex targeting the Leishmania serine protease resulting protection of host cells with Th1 cytokine expression. Thus, these data indicate that C. grandis leaf extract (Cg-Ex) might be considered as a new lead for designing alternative and novel natural therapeutic against visceral leishmaniasis.

  3. A Pronounced Inflammatory Activity Characterizes the Early Fracture Healing Phase in Immunologically Restricted Patients

    PubMed Central

    Hoff, Paula; Gaber, Timo; Strehl, Cindy; Jakstadt, Manuela; Hoff, Holger; Schmidt-Bleek, Katharina; Lang, Annemarie; Röhner, Eric; Huscher, Dörte; Matziolis, Georg; Burmester, Gerd-Rüdiger; Schmidmaier, Gerhard; Perka, Carsten; Duda, Georg N.; Buttgereit, Frank

    2017-01-01

    Immunologically restricted patients such as those with autoimmune diseases or malignancies often suffer from delayed or insufficient fracture healing. In human fracture hematomas and the surrounding bone marrow obtained from immunologically restricted patients, we analyzed the initial inflammatory phase on cellular and humoral level via flow cytometry and multiplex suspension array. Compared with controls, we demonstrated higher numbers of immune cells like monocytes/macrophages, natural killer T (NKT) cells, and activated T helper cells within the fracture hematomas and/or the surrounding bone marrow. Also, several pro-inflammatory cytokines such as Interleukin (IL)-6 and Tumor necrosis factor α (TNFα), chemokines (e.g., Eotaxin and RANTES), pro-angiogenic factors (e.g., IL-8 and Macrophage migration inhibitory factor: MIF), and regulatory cytokines (e.g., IL-10) were found at higher levels within the fracture hematomas and/or the surrounding bone marrow of immunologically restricted patients when compared to controls. We conclude here that the inflammatory activity on cellular and humoral levels at fracture sites of immunologically restricted patients considerably exceeds that of control patients. The initial inflammatory phase profoundly differs between these patient groups and is probably one of the reasons for prolonged or insufficient fracture healing often occurring within immunologically restricted patients. PMID:28282868

  4. Pharmacological insight into the anti-inflammatory activity of sesquiterpene lactones from Neurolaena lobata (L.) R.Br. ex Cass.

    PubMed

    McKinnon, R; Binder, M; Zupkó, I; Afonyushkin, T; Lajter, I; Vasas, A; de Martin, R; Unger, C; Dolznig, H; Diaz, R; Frisch, R; Passreiter, C M; Krupitza, G; Hohmann, J; Kopp, B; Bochkov, V N

    2014-10-15

    Neurolaena lobata is a Caribbean medicinal plant used for the treatment of several conditions including inflammation. Recent data regarding potent anti-inflammatory activity of the plant and isolated sesquiterpene lactones raised our interest in further pharmacological studies. The present work aimed at providing a mechanistic insight into the anti-inflammatory activity of N. lobata and eight isolated sesquiterpene lactones, as well as a structure-activity relationship and in vivo anti-inflammatory data. The effect of the extract and its compounds on the generation of pro-inflammatory proteins was assessed in vitro in endothelial and monocytic cells by enzyme-linked immunosorbent assay. Their potential to modulate the expression of inflammatory genes was further studied at the mRNA level. In vivo anti-inflammatory activity of the chemically characterized extract was evaluated using carrageenan-induced paw edema model in rats. The compounds and extract inhibited LPS- and TNF-α-induced upregulation of the pro-inflammatory molecules E-selectin and interleukin-8 in HUVECtert and THP-1 cells. LPS-induced elevation of mRNA encoding for E-selectin and interleukin-8 was also suppressed. Furthermore, the extract inhibited the development of acute inflammation in rats. Sesquiterpene lactones from N. lobata interfered with the induction of inflammatory cell adhesion molecules and chemokines in cells stimulated with bacterial products and cytokines. Structure-activity analysis revealed the importance of the double bond at C-4-C-5 and C-2-C-3 and the acetyl group at C-9 for the anti-inflammatory activity. The effect was confirmed in vivo, which raises further interest in the therapeutic potential of the compounds for the treatment of inflammatory diseases. Copyright © 2014 Elsevier GmbH. All rights reserved.

  5. Pro-inflammatory cytokines can act as intracellular modulators of commensal bacterial virulence

    PubMed Central

    Mahdavi, Jafar; Royer, Pierre-Joseph; Sjölinder, Hong S.; Azimi, Sheyda; Self, Tim; Stoof, Jeroen; Wheldon, Lee M.; Brännström, Kristoffer; Wilson, Raymond; Moreton, Joanna; Moir, James W. B.; Sihlbom, Carina; Borén, Thomas; Jonsson, Ann-Beth; Soultanas, Panos; Ala'Aldeen, Dlawer A. A.

    2013-01-01

    Interactions between commensal pathogens and hosts are critical for disease development but the underlying mechanisms for switching between the commensal and virulent states are unknown. We show that the human pathogen Neisseria meningitidis, the leading cause of pyogenic meningitis, can modulate gene expression via uptake of host pro-inflammatory cytokines leading to increased virulence. This uptake is mediated by type IV pili (Tfp) and reliant on the PilT ATPase activity. Two Tfp subunits, PilE and PilQ, are identified as the ligands for TNF-α and IL-8 in a glycan-dependent manner, and their deletion results in decreased virulence and increased survival in a mouse model. We propose a novel mechanism by which pathogens use the twitching motility mode of the Tfp machinery for sensing and importing host elicitors, aligning with the inflamed environment and switching to the virulent state. PMID:24107297

  6. Oily fraction of Semecarpus anacardium Linn nuts involves protein kinase C activation for its pro-inflammatory response.

    PubMed

    Tripathi, Yamini B; Pandey, Nidhi; Tripathi, Deepshikha; Tripathi, Pratibha

    2010-12-01

    The oily fraction (non polar fraction-NPF) of S. anacardium (SA) significantly increased the expression of protein kinase C-delta (PKC-delta) in macrophages in concentration dependent manner, which was similar to phorbol myristate acetate (PMA) response. Further, H-7 (1-(5-isoquinolinesulphonyl)-2-methylpiperazine), an inhibitor of PKC significantly inhibited this NPF mediated response in a concentration dependent manner. In the post treatment kinetics, H-7 showed this inhibition only up to 6 min post NPF/PMA addition, but in similar condition, quercetin, a flavone with reported antioxidant property, showed this inhibition only up to 2 min. The results clearly suggest that oily fraction of SA nuts enhances the expression of PKC protein, which may be responsible for its reported pro-inflammatory property.

  7. Blueberries reduce pro-inflammatory cytokine TNF-alpha and IL-6 production in mouse macrophages by inhibiting NF Kappa B activation and the MAPK pathway

    USDA-ARS?s Scientific Manuscript database

    Blueberries (BB) have been reported to attenuate atherosclerosis in apoE deficient (ApoE-/-) mice. The aim of this study was to evaluate the effects of BB in reducing pro-inflammatory cytokine production in mouse macrophages. ApoE-/- mice were fed AIN-93G diet (CD) or CD formulated to contain 1% fre...

  8. Vaccination induced changes in pro-inflammatory cytokine levels as an early putative biomarker for cognitive improvement in a transgenic mouse model for Alzheimer disease.

    PubMed

    Lin, Xiaoyang; Bai, Ge; Lin, Linda; Wu, Hengyi; Cai, Jianfeng; Ugen, Kenneth E; Cao, Chuanhai

    2014-01-01

    Several pieces of experimental evidence suggest that administration of anti-β amyloid (Aβ) vaccines, passive anti-Aβ antibodies or anti-inflammatory drugs can reduce Aβ deposition as well as associated cognitive/behavioral deficits in an Alzheimer disease (AD) transgenic (Tg) mouse model and, as such, may have some efficacy in human AD patients as well. In the investigation reported here an Aβ 1-42 peptide vaccine was administered to 16-month old APP+PS1 transgenic (Tg) mice in which Aβ deposition, cognitive memory deficits as well as levels of several pro-inflammatory cytokines were measured in response to the vaccination regimen. After vaccination, the anti-Aβ 1-42 antibody-producing mice demonstrated a significant reduction in the sera levels of 4 pro-inflammatory cytokines (TNF-α, IL-6, IL-1 α, and IL-12). Importantly, reductions in the cytokine levels of TNF-α and IL-6 were correlated with cognitive/behavioral improvement in the Tg mice. However, no differences in cerebral Aβ deposition in these mice were noted among the different control and experimental groups, i.e., Aβ 1-42 peptide vaccinated, control peptide vaccinated, or non-vaccinated mice. However, decreased levels of pro-inflammatory cytokines as well as improved cognitive performance were noted in mice vaccinated with the control peptide as well as those immunized with the Aβ 1-42 peptide. These findings suggest that reduction in pro-inflammatory cytokine levels in these mice may be utilized as an early biomarker for vaccination/treatment induced amelioration of cognitive deficits and are independent of Aβ deposition and, interestingly, antigen specific Aβ 1-42 vaccination. Since cytokine changes are typically related to T cell activation, the results imply that T cell regulation may have an important role in vaccination or other immunotherapeutic strategies in an AD mouse model and potentially in AD patients. Overall, these cytokine changes may serve as a predictive marker for AD

  9. E-cigarettes and flavorings induce inflammatory and pro-senescence responses in oral epithelial cells and periodontal fibroblasts.

    PubMed

    Sundar, Isaac K; Javed, Fawad; Romanos, Georgios E; Rahman, Irfan

    2016-11-22

    Electronic-cigarettes (e-cigs) represent a significant and increasing proportion of tobacco product consumption, which may pose an oral health concern. Oxidative/carbonyl stress via protein carbonylation is an important factor in causing inflammation and DNA damage. This results in stress-induced premature senescence (a state of irreversible growth arrest which re-enforces chronic inflammation) in gingival epithelium, which may contribute to the pathogenesis of oral diseases. We show that e-cigs with flavorings cause increased oxidative/carbonyl stress and inflammatory cytokine release in human periodontal ligament fibroblasts, Human Gingival Epithelium Progenitors pooled (HGEPp), and epigingival 3D epithelium. We further show increased levels of prostaglandin-E2 and cycloxygenase-2 are associated with upregulation of the receptor for advanced glycation end products (RAGE) by e-cig exposure-mediated carbonyl stress in gingival epithelium/tissue. Further, e-cigs cause increased oxidative/carbonyl and inflammatory responses, and DNA damage along with histone deacetylase 2 (HDAC2) reduction via RAGE-dependent mechanisms in gingival epithelium. A greater response is elicited by flavored e-cigs. Increased oxidative stress, pro-inflammatory and pro-senescence responses (DNA damage and HDAC2 reduction) can result in dysregulated repair due to proinflammatory and pro-senescence responses in periodontal cells. These data highlight the pathologic role of e-cig aerosol and its flavoring to cells and tissues of the oral cavity in compromised oral health.

  10. Anti-angiogenesis effect of the novel anti-inflammatory and pro-resolving lipid mediators.

    PubMed

    Jin, Yiping; Arita, Makoto; Zhang, Qiang; Saban, Daniel R; Chauhan, Sunil K; Chiang, Nan; Serhan, Charles N; Dana, Reza

    2009-10-01

    Resolvins and lipoxins are lipid mediators generated from essential polyunsaturated fatty acids that are the first dual anti-inflammatory and pro-resolving signals identified in the resolution phase of inflammation. Here the authors investigated the potential of aspirin-triggered lipoxin (LX) A4 analog (ATLa), resolving (Rv) D1, and RvE1, in regulating angiogenesis in a murine model. ATLa and RvE1 receptor expression was tested in different corneal cell populations by RT-PCR. Corneal neovascularization (CNV) was induced by suture or micropellet (IL-1 beta, VEGF-A) placement. Mice were then treated with ATLa, RvD1, RvE1, or vehicle, subconjunctivally at 48-hour intervals. Infiltration of neutrophils and macrophages was quantified after immunofluorescence staining. The mRNA expression levels of inflammatory cytokines, VEGFs, and VEGFRs were analyzed by real-time PCR. CNV was evaluated intravitally and morphometrically. The receptors for LXA4, ALX/Fpr-rs-2 and for RvE1, ChemR23 were each expressed by epithelium, stromal keratocytes, and infiltrated CD11b(+) cells in corneas. Compared to the vehicle-treated eye, ATLa-, RvD1-, and RvE1-treated eyes had reduced numbers of infiltrating neutrophils and macrophages and reduced mRNA expression levels of TNF-alpha, IL-1 alpha, IL-1 beta, VEGF-A, VEGF-C, and VEGFR2. Animals treated with these mediators had significantly suppressed suture-induced or IL-1 beta-induced hemangiogenesis (HA) but not lymphangiogenesis. Interestingly, only the application of ATLa significantly suppressed VEGF-A-induced HA. ATLa, RvE1, and RvD1 all reduce inflammatory corneal HA by early regulation of resolution mechanisms in innate immune responses. In addition, ATLa directly inhibits VEGF-A-mediated angiogenesis and is the most potent inhibitor of NV among this new genus of dual anti-inflammatory and pro-resolving lipid mediators.

  11. Ureaplasma isolates stimulate pro-inflammatory CC chemokines and matrix metalloproteinase-9 in neonatal and adult monocytes

    PubMed Central

    Silwedel, Christine; Fehrholz, Markus; Henrich, Birgit; Waaga-Gasser, Ana Maria; Claus, Heike; Speer, Christian P.

    2018-01-01

    Being generally regarded as commensal bacteria, the pro-inflammatory capacity of Ureaplasma species has long been debated. Recently, we confirmed Ureaplasma–driven pro-inflammatory cytokine responses and a disturbance of cytokine equilibrium in primary human monocytes in vitro. The present study addressed the expression of CC chemokines and matrix metalloproteinase-9 (MMP-9) in purified term neonatal and adult monocytes stimulated with serovar 8 of Ureaplasma urealyticum (Uu) and serovar 3 of U. parvum (Up). Using qRT-PCR and multi-analyte immunoassay, we assessed mRNA and protein expression of the monocyte chemotactic proteins 1 and 3 (MCP-1/3), the macrophage inflammatory proteins 1α and 1β (MIP-1α/β) as well as MMP-9. For the most part, both isolates stimulated mRNA expression of all given chemokines and MMP-9 in cord blood and adult monocytes (p<0.05 and p<0.01). These results were paralleled by Uu and Up-induced secretion of MCP-1 protein in both cells (neonatal: p<0.01, adult: p<0.05 and p<0.01). Release of MCP-3, MIP-1α, MIP-1β and MMP-9 was enhanced upon exposure to Up (neonatal: p<0.05, p<0.01 and p<0.001, respectively; adult: p<0.05). Co-stimulation of LPS-primed monocytes with Up increased LPS-induced MCP-1 release in neonatal cells (p<0.05) and aggravated LPS-induced MMP-9 mRNA in both cell subsets (neonatal: p<0.05, adult: p<0.01). Our results document considerable expression of pro-inflammatory CC chemokines and MMP-9 in human monocytes in response to Ureaplasma isolates in vitro, adding to our previous data. Findings from co-stimulated cells indicate that Ureaplasma may modulate monocyte immune responses to a second stimulus. PMID:29558521

  12. Widespread activation of immunity and pro-inflammatory programs in peripheral blood leukocytes of HIV-infected patients with impaired lung gas exchange.

    PubMed

    Crothers, Kristina; Petrache, Irina; Wongtrakool, Cherry; Lee, Patty J; Schnapp, Lynn M; Gharib, Sina A

    2016-04-01

    HIV infection is associated with impaired lung gas transfer as indicated by a low diffusing capacity (DLCO), but the mechanisms are not well understood. We hypothesized that HIV-associated gas exchange impairment is indicative of system-wide perturbations that could be reflected by alterations in peripheral blood leukocyte (PBL) gene expression. Forty HIV-infected (HIV(+)) and uninfected (HIV(-)) men with preserved versus low DLCO were enrolled. All subjects were current smokers and those with acute illness, lung diseases other than COPD or asthma were excluded. Total RNA was extracted from PBLs and hybridized to whole-genome microarrays. Gene set enrichment analysis (GSEA) was performed between HIV(+) versus HIV(-) subjects with preserved DLCO and those with low DLCO to identify differentially activated pathways. Using pathway-based analyses, we found that in subjects with preserved DLCO, HIV infection is associated with activation of processes involved in immunity, cell cycle, and apoptosis. Applying a similar analysis to subjects with low DLCO, we identified a much broader repertoire of pro-inflammatory and immune-related pathways in HIV(+) patients relative to HIV(-) subjects, with up-regulation of multiple interleukin pathways, interferon signaling, and toll-like receptor signaling. We confirmed elevated circulating levels of IL-6 in HIV(+) patients with low DLCO relative to the other groups. Our findings reveal that PBLs of subjects with HIV infection and low DLCO are distinguished by widespread enrichment of immuno-inflammatory programs. Activation of these pathways may alter the biology of circulating leukocytes and play a role in the pathogenesis of HIV-associated gas exchange impairment. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  13. Angiotensin peptides attenuate platelet-activating factor-induced inflammatory activity in rats.

    PubMed

    Sato, Akira; Yokoyama, Izumi; Ebina, Keiichi

    2015-11-01

    Angiotensin (Ang)--a peptide that is part of the renin-angiotensin system-induces vasoconstriction and a subsequent increase in blood pressure; Ang peptides, especially AngII, can also act as potent pro-inflammatory mediators. Platelet-activating factor (PAF) is a potent phospholipid mediator that is implicated in many inflammatory diseases. In this study, we investigated the effects of Ang peptides (AngII, AngIII, and AngIV) on PAF-induced inflammatory activity. In experiments using a rat hind-paw oedema model, AngII markedly and dose-dependently attenuated the paw oedema induced by PAF. The inhibitory effects of AngIII and AngIV on PAF-induced paw oedema were lower than that of AngII. Two Ang receptors, the AT1 and AT2 receptors, did not affect the AngII-mediated attenuation of PAF-induced paw oedema. Moreover, intrinsic tyrosine fluorescence studies demonstrated that AngII, AngIII, and AngIV interact with PAF, and that their affinities were closely correlated with their inhibitory effects on PAF-induced rat paw oedema. Also, AngII interacted with metabolite/precursor of PAF (lyso-PAF), and an oxidized phospholipid, 1-palmitoyl-2-(5'-oxo-valeroyl)-sn-glycero-3-phosphocholine (POVPC), which bears a marked structural resemblance to PAF. Furthermore, POVPC dose-dependently inhibited AngII-mediated attenuation of PAF-induced paw oedema. These results suggest that Ang peptides can attenuate PAF-induced inflammatory activity through binding to PAF and lyso-PAF in rats. Therefore, Ang peptides may be closely involved in the regulation of many inflammatory diseases caused by PAF. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Citral and eugenol modulate DNA damage and pro-inflammatory mediator genes in murine peritoneal macrophages.

    PubMed

    Porto, Marilia de Paula; da Silva, Glenda Nicioli; Luperini, Bruno Cesar Ottoboni; Bachiega, Tatiana Fernanda; de Castro Marcondes, João Paulo; Sforcin, José Maurício; Salvadori, Daisy Maria Fávero

    2014-11-01

    Citral and eugenol have been broadly studied because of their anti-inflammatory, antioxidant and antiparasitic potentials. In this study, the effects of citral (25, 50 and 100 µg/mL) and eugenol (0.31, 0.62, 1.24 and 2.48 µg/mL) on the expression (RT-PCR) of the pro-inflammatory mediator genes NF-κB1, COX-2 and TNF-α were evaluated in mouse peritoneal macrophages with or without activation by a bacterial lipopolysaccharide (LPS). Additionally, the genotoxic potentials of two compounds and their capacities to modulate the DNA damage induced by doxorubicin (DXR) were investigated using the comet assay. The data revealed that neither citral nor eugenol changed COX-2, NF-κB1 or TNF-α expression in resting macrophages. However, in LPS-activated cells, citral induced the hypoexpression of COX-2 (100 µg/mL) and TNF-α (50 and 100 µg/mL). Hypoexpression of TNF-α was also detected after cellular exposure to eugenol at the highest concentration (2.48 µg/mL). Both compounds exhibited genotoxic potential (citral at 50 and 100 µg/mL and eugenol at all concentrations) but also showed chemopreventive effects, in various treatment protocols. Both citral and eugenol might modulate inflammatory processes and DXR-induced DNA damage, but the use of these compounds must be viewed with caution because they are also able to induce primary DNA lesions.

  15. Pro-inflammatory effects and oxidative stress in lung macrophages and epithelial cells induced by ambient particulate matter.

    PubMed

    Michael, S; Montag, M; Dott, W

    2013-12-01

    The objective of this study was to compare the toxicological effects of different source-related ambient PM10 samples in regard to their chemical composition. In this context we investigated airborne PM from different sites in Aachen, Germany. For the toxicological investigation human alveolar epithelial cells (A549) and murine macrophages (RAW264.7) were exposed from 0 to 96 h to increasing PM concentrations (0-100 μg/ml) followed by analyses of cell viability, pro-inflammatory and oxidative stress responses. The chemical analysis of these particles indicated the presence of 21 elements, water-soluble ions and PAHs. The toxicological investigations of the PM10 samples demonstrated a concentration- and time-dependent decrease in cell viability and an increase in pro-inflammatory and oxidative stress markers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. NF-κB Activation in Hypothalamic Pro-opiomelanocortin Neurons Is Essential in Illness- and Leptin-induced Anorexia*

    PubMed Central

    Jang, Pil-Geum; Namkoong, Cherl; Kang, Gil Myoung; Hur, Man-Wook; Kim, Seung-Whan; Kim, Geun Hyang; Kang, Yeoungsup; Jeon, Min-Jae; Kim, Eun Hee; Lee, Myung-Shik; Karin, Michael; Baik, Ja-Hyun; Park, Joong-Yeol; Lee, Ki-Up; Kim, Young-Bum; Kim, Min-Seon

    2010-01-01

    Anorexia and weight loss are prevalent in infectious diseases. To investigate the molecular mechanisms underlying these phenomena, we established animal models of infection-associated anorexia by administrating bacterial and viral products, lipopolysaccharide (LPS) and human immunodeficiency virus-1 transactivator protein (Tat). In these models, we found that the nuclear factor-κB (NF-κB), a pivotal transcription factor for inflammation-related proteins, was activated in the hypothalamus. In parallel, administration of LPS and Tat increased hypothalamic pro-inflammatory cytokine production, which was abrogated by inhibition of hypothalamic NF-κB. In vitro, NF-κB activation directly stimulated the transcriptional activity of pro-opiomelanocortin (POMC), a precursor of anorexigenic melanocortin, and mediated the stimulatory effects of LPS, Tat, and pro-inflammatory cytokines on POMC transcription, implying the involvement of NF-κB in controlling feeding behavior. Consistently, hypothalamic injection of LPS and Tat caused a significant reduction in food intake and body weight, which was prevented by blockade of NF-κB and melanocortin. Furthermore, disruption of IκB kinase-β, an upstream kinase of NF-κB, in POMC neurons attenuated LPS- and Tat-induced anorexia. These findings suggest that infection-associated anorexia and weight loss are mediated via NF-κB activation in hypothalamic POMC neurons. In addition, hypothalamic NF-κB was activated by leptin, an important anorexigenic hormone, and mediates leptin-stimulated POMC transcription, indicating that hypothalamic NF-κB also serves as a downstream signaling pathway of leptin. PMID:20097762

  17. NF-kappaB activation in hypothalamic pro-opiomelanocortin neurons is essential in illness- and leptin-induced anorexia.

    PubMed

    Jang, Pil-Geum; Namkoong, Cherl; Kang, Gil Myoung; Hur, Man-Wook; Kim, Seung-Whan; Kim, Geun Hyang; Kang, Yeoungsup; Jeon, Min-Jae; Kim, Eun Hee; Lee, Myung-Shik; Karin, Michael; Baik, Ja-Hyun; Park, Joong-Yeol; Lee, Ki-Up; Kim, Young-Bum; Kim, Min-Seon

    2010-03-26

    Anorexia and weight loss are prevalent in infectious diseases. To investigate the molecular mechanisms underlying these phenomena, we established animal models of infection-associated anorexia by administrating bacterial and viral products, lipopolysaccharide (LPS) and human immunodeficiency virus-1 transactivator protein (Tat). In these models, we found that the nuclear factor-kappaB (NF-kappaB), a pivotal transcription factor for inflammation-related proteins, was activated in the hypothalamus. In parallel, administration of LPS and Tat increased hypothalamic pro-inflammatory cytokine production, which was abrogated by inhibition of hypothalamic NF-kappaB. In vitro, NF-kappaB activation directly stimulated the transcriptional activity of pro-opiomelanocortin (POMC), a precursor of anorexigenic melanocortin, and mediated the stimulatory effects of LPS, Tat, and pro-inflammatory cytokines on POMC transcription, implying the involvement of NF-kappaB in controlling feeding behavior. Consistently, hypothalamic injection of LPS and Tat caused a significant reduction in food intake and body weight, which was prevented by blockade of NF-kappaB and melanocortin. Furthermore, disruption of I kappaB kinase-beta, an upstream kinase of NF-kappaB, in POMC neurons attenuated LPS- and Tat-induced anorexia. These findings suggest that infection-associated anorexia and weight loss are mediated via NF-kappaB activation in hypothalamic POMC neurons. In addition, hypothalamic NF-kappaB was activated by leptin, an important anorexigenic hormone, and mediates leptin-stimulated POMC transcription, indicating that hypothalamic NF-kappaB also serves as a downstream signaling pathway of leptin.

  18. HLA-B27-Homodimer-Specific Antibody Modulates the Expansion of Pro-Inflammatory T-Cells in HLA-B27 Transgenic Rats.

    PubMed

    Marroquin Belaunzaran, Osiris; Kleber, Sascha; Schauer, Stefan; Hausmann, Martin; Nicholls, Flora; Van den Broek, Maries; Payeli, Sravan; Ciurea, Adrian; Milling, Simon; Stenner, Frank; Shaw, Jackie; Kollnberger, Simon; Bowness, Paul; Petrausch, Ulf; Renner, Christoph

    2015-01-01

    HLA-B27 is a common genetic risk factor for the development of Spondyloarthritides (SpA). HLA-B27 can misfold to form cell-surface heavy chain homodimers (B272) and induce pro-inflammatory responses that may lead to SpA pathogenesis. The presence of B272 can be detected on leukocytes of HLA-B27+ Ankylosing spondylitis (AS) patients and HLA-B27 transgenic rats. We characterized a novel B272-specific monoclonal antibody to study its therapeutic use in HLA-B27 associated disorders. The monoclonal HD5 antibody was selected from a phage library to target cell-surface B272 homodimers and characterized for affinity, specificity and ligand binding. The immune modulating effect of HD5 was tested in HLA-B27 transgenic rats. Onset and progression of disease profiles were monitored during therapy. Cell-surface B272 and expansion of pro-inflammatory cells from blood, spleen and draining lymph nodes were assessed by flow cytometry. HD5 bound B272 with high specificity and affinity (Kd = 0.32 nM). HD5 blocked cell-surface interaction of B272 with immune regulatory receptors KIR3DL2, LILRB2 and Pirb. In addition, HD5 modulated the production of TNF from CD4+ T-cells by limiting B272 interactions in vitro. In an HLA-B27 transgenic rat model repetitive dosing of HD5 reduced the expansion of pro-inflammatory CD4+ T-cells, and decreased the levels of soluble TNF and number of cell-surface B272 molecules. HD5 predominantly inhibits early TNF production and expansion of pro-inflammatory CD4+ T-cells in HLA-B27 transgenic rats. Monoclonal antibodies targeting cell-surface B272 propose a new concept for the modulation of inflammatory responses in HLA-B27 related disorders.

  19. HLA-B27-Homodimer-Specific Antibody Modulates the Expansion of Pro-Inflammatory T-Cells in HLA-B27 Transgenic Rats

    PubMed Central

    Marroquin Belaunzaran, Osiris; Kleber, Sascha; Schauer, Stefan; Hausmann, Martin; Nicholls, Flora; Van den Broek, Maries; Payeli, Sravan; Ciurea, Adrian; Milling, Simon; Stenner, Frank; Shaw, Jackie; Kollnberger, Simon; Bowness, Paul; Petrausch, Ulf; Renner, Christoph

    2015-01-01

    Objectives HLA-B27 is a common genetic risk factor for the development of Spondyloarthritides (SpA). HLA-B27 can misfold to form cell-surface heavy chain homodimers (B272) and induce pro-inflammatory responses that may lead to SpA pathogenesis. The presence of B272 can be detected on leukocytes of HLA-B27+ Ankylosing spondylitis (AS) patients and HLA-B27 transgenic rats. We characterized a novel B272–specific monoclonal antibody to study its therapeutic use in HLA-B27 associated disorders. Methods The monoclonal HD5 antibody was selected from a phage library to target cell-surface B272 homodimers and characterized for affinity, specificity and ligand binding. The immune modulating effect of HD5 was tested in HLA-B27 transgenic rats. Onset and progression of disease profiles were monitored during therapy. Cell-surface B272 and expansion of pro-inflammatory cells from blood, spleen and draining lymph nodes were assessed by flow cytometry. Results HD5 bound B272 with high specificity and affinity (Kd = 0.32 nM). HD5 blocked cell-surface interaction of B272 with immune regulatory receptors KIR3DL2, LILRB2 and Pirb. In addition, HD5 modulated the production of TNF from CD4+ T-cells by limiting B272 interactions in vitro. In an HLA-B27 transgenic rat model repetitive dosing of HD5 reduced the expansion of pro-inflammatory CD4+ T-cells, and decreased the levels of soluble TNF and number of cell-surface B272 molecules. Conclusion HD5 predominantly inhibits early TNF production and expansion of pro-inflammatory CD4+ T-cells in HLA-B27 transgenic rats. Monoclonal antibodies targeting cell-surface B272 propose a new concept for the modulation of inflammatory responses in HLA-B27 related disorders. PMID:26125554

  20. Quantification of polyphenols and evaluation of antimicrobial, analgesic and anti-inflammatory activities of aqueous and acetone-water extracts of Libidibia ferrea, Parapiptadenia rigida and Psidium guajava.

    PubMed

    de Araújo, Aurigena Antunes; Soares, Luiz Alberto Lira; Assunção Ferreira, Magda Rhayanny; de Souza Neto, Manoel André; da Silva, Giselle Ribeiro; de Araújo, Raimundo Fernandes; Guerra, Gerlane Coelho Bernardo; de Melo, Maria Celeste Nunes

    2014-10-28

    Vast numbers of plant species from northeastern Brazil have not yet been phytochemically or biologically evaluated. The goal of this work was to obtain, characterize and show the antimicrobial, analgesic and anti-inflammatory activities of aqueous and acetone-water extracts of Libidibia ferrea, Parapiptadenia rigida and Psidium guajava. The plant material (100g) was dried, and the crude extracts were obtained by using turbo-extraction (10%; w/v) with water or acetone:water (7:3, v/v) as the extraction solvent. High-performance liquid chromatography (HPLC) methods were used to screen the crude extracts for hydrolysable tannins (gallic acid) and condensed tannins (catechins). The antibacterial activity was evaluated by agar-diffusion and microdilution methods against Gram-positive strains (Staphylococcus aureus ATCC 25923, Staphylococcus epidermidis INCQS 00016, Enterococcus faecalis ATCC 29212 and a clinical isolate of methicillin-resistant Staphylococcus aureus) as well as Gram-negative strains (Escherichia coli ATCC 25922, Salmonella enteritidis INCQS 00258, Shigella flexneri and Klebsiella pneumoniae). To evaluate the anti-inflammatory activity, a leukocyte migration model was used. Analgesic activity was determined by the hot plate test and the acetic acid-induced abdominal writhing test. Data were analyzed by analysis of variance (ANOVA) at a significance level of 5%. Parapiptadenia rigida presented the highest amount of total polyphenols (35.82 ± 0.20%), while the greatest catechin content was found in the acetone-water extract of Psidium guajava (EAWPg; 1.04 μg/g). The largest amounts of catechins were found in the aqueous extract of Libidibia ferrea (EALf; 1.07 μg/g) and the acetone-water extract of Parapiptadenia rigida (EAWPr; 1.0 μg/g). All extracts showed activity against Gram-positive bacteria. The aqueous and acetone-water extracts of Psidium guajava showed the greatest inhibition zones in the agar diffusion tests. In the evaluation of the minimum

  1. Contributions of early adversity to pro-inflammatory phenotype in infancy: the buffer provided by attachment security.

    PubMed

    Measelle, Jeffrey R; Ablow, Jennifer C

    2018-02-01

    Adversity early in life is associated with systemic inflammation by adolescence and beyond. At present, few studies have investigated the associations between different forms of adversity and inflammation during infancy, making it difficult to specify the origins of disease vulnerability. This study examined the association between multiple forms of early adversity - socioeconomic status disadvantage, familial stress, maternal depression, and security of attachment - and individual differences in a composite measure of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, and tumor necrosis factor-alpha) and the inflammatory protein C-reactive protein that were collected via saliva when (n = 49) children were 17 months old. In addition to gauging the direct effects of adversity, we also tested the hypothesis that infants' attachment relationship with their mother might buffer infants against the immunologic effects of early adversity. Results show that familial stress, maternal depression, and security of attachment were directly associated with infant salivary inflammation and that attachment status moderated the effect of maternal depression. The findings suggest that exposure to certain forms of adversity very early in life may engender a pro-inflammatory phenotype with possible life-long implications for health.

  2. Poor sleep quality is associated with greater circulating pro-inflammatory cytokines and severity and frequency of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) symptoms in women.

    PubMed

    Milrad, Sara F; Hall, Daniel L; Jutagir, Devika R; Lattie, Emily G; Ironson, Gail H; Wohlgemuth, William; Nunez, Maria Vera; Garcia, Lina; Czaja, Sara J; Perdomo, Dolores M; Fletcher, Mary Ann; Klimas, Nancy; Antoni, Michael H

    2017-02-15

    Poor sleep quality has been linked to inflammatory processes and worse disease outcomes in the context of many chronic illnesses, but less is known in conditions such as chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME). This study examines the relationships between sleep quality, pro-inflammatory cytokines, and CFS/ME symptoms. Sixty women diagnosed with CFS/ME were assessed using the Pittsburgh Sleep Quality Index (PSQI), Fatigue Symptom Inventory (FSI) and Center for Disease Control and Prevention (CDC)-based CFS/ME symptom questionnaires. Circulating plasma pro-inflammatory cytokine levels were measured by ELISA. Multiple regression analyses examined associations between sleep, cytokines and symptoms, controlling for age, education, and body mass index. Poor sleep quality (PSQI global score) was associated with greater pro-inflammatory cytokine levels: interleukin-1β (IL-1β) (β=0.258, p=0.043), IL-6 (β=0.281, p=0.033), and tumor necrosis factor-alpha (TNF-α) (β=0.263, p=0.044). Worse sleep quality related to greater fatigue severity (β=0.395, p=0.003) and fatigue-related interference with daily activities (β=0.464, p<0.001), and more severe and frequent CDC-defined core CFS/ME symptoms (β=0.499, p<0.001, and β=0.556, p<0.001, respectively). Results underscore the importance of managing sleep-related difficulties in this patient population. Further research is needed to identify the etiology of sleep disruptions in CFS/ME and mechanistic factors linking sleep quality to symptom severity and inflammatory processes. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Better cognitive control of emotional information is associated with reduced pro-inflammatory cytokine reactivity to emotional stress.

    PubMed

    Shields, Grant S; Kuchenbecker, Shari Young; Pressman, Sarah D; Sumida, Ken D; Slavich, George M

    2016-01-01

    Stress is strongly associated with several mental and physical health problems that involve inflammation, including asthma, cardiovascular disease, certain types of cancer, and depression. It has been hypothesized that better cognitive control of emotional information may lead to reduced inflammatory reactivity to stress and thus better health, but to date no studies have examined whether differences in cognitive control predict pro-inflammatory cytokine responses to stress. To address this issue, we conducted a laboratory-based experimental study in which we randomly assigned healthy young-adult females to either an acute emotional stress (emotionally evocative video) or no-stress (control video) condition. Salivary levels of the key pro-inflammatory cytokines IL-1β, IL-6, and IL-8 were measured before and after the experimental manipulation, and following the last cytokine sample, we assessed participants' cognitive control of emotional information using an emotional Stroop task. We also assessed participants' cortisol levels before and after the manipulation to verify that documented effects were specific to cytokines and not simply due to increased nonwater salivary output. As hypothesized, the emotional stressor triggered significant increases in IL-1β, IL-6, and IL-8. Moreover, even in fully adjusted models, better cognitive control following the emotional (but not control) video predicted less pronounced cytokine responses to that stressor. In contrast, no effects were observed for cortisol. These data thus indicate that better cognitive control specifically following an emotional stressor is uniquely associated with less pronounced pro-inflammatory cytokine reactivity to such stress. These findings may therefore help explain why superior cognitive control portends better health over the lifespan.

  4. The expression of TRPV channels, prostaglandin E2 and pro-inflammatory cytokines during behavioural fever in fish.

    PubMed

    Boltana, Sebastian; Sanhueza, Nataly; Donoso, Andrea; Aguilar, Andrea; Crespo, Diego; Vergara, Daniela; Arriagada, Gabriel; Morales-Lange, Byron; Mercado, Luis; Rey, Sonia; Tort, Lluis; Mackenzie, Simon

    2018-03-21

    A fever, or increased body temperature, is a symptom of inflammation, which is a complex defence reaction of the organism to pathogenic infections. After pathogens enter the body, immune cells secrete a number of agents, the functions of which stimulate the body to develop a functional immune and fever response. In mammals it is known that PGE 2 is the principal mediator of fever. The extent to which PGE 2 and other pro-inflammatory cytokines such as TNF-α, IL-6, or IL-1β could be involved in the induction of behavioural fever in fish remains to be clarified. Several members of the transient receptor potential (TRP) family of ion channels have been implicated as transducers of thermal stimuli, including TRPV1 and TRPV2, which are activated by heat. Here we show that members of the TRP family, TRPV1 and TRPV4, may participate in the coordination of temperature sensing during the behavioural fever. To examine the behavioral fever mechanism in Salmo salar an infection with IPNV, infectious pancreatic necrosis virus, was carried out by an immersion challenge with 10 × 10 5 PFU/mL -1 of IPNV. Behavioural fever impacted upon the expression levels of both TRPV1 and TRPV4 mRNAs after the viral challenge and revealed a juxtaposed regulation of TRPV channels. Our results suggest that an increase in the mRNA abundance of TRPV1 is tightly correlated with a significant elevation in the expression of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α and PGE 2 ) in the Pre-Optic Area (POA) and cytokine release in plasma. Together, these data indicate that the reduction of TRPV4 expression during behavioural fever may contribute to the onset of behavioural fever influencing movement toward higher water temperatures. Our data also suggest an effect of TRPV channels in the regulation of behavioural fever through activation of EP3 receptors in the central nervous system by PGE 2 induced by plasma-borne cytokines. These results highlight for first time in mobile ectotherms the

  5. c-Kit modifies the inflammatory status of smooth muscle cells

    PubMed Central

    Song, Lei; Martinez, Laisel; Zigmond, Zachary M.; Hernandez, Diana R.; Lassance-Soares, Roberta M.; Selman, Guillermo

    2017-01-01

    Background c-Kit is a receptor tyrosine kinase present in multiple cell types, including vascular smooth muscle cells (SMC). However, little is known about how c-Kit influences SMC biology and vascular pathogenesis. Methods High-throughput microarray assays and in silico pathway analysis were used to identify differentially expressed genes between primary c-Kit deficient (KitW/W–v) and control (Kit+/+) SMC. Quantitative real-time RT-PCR and functional assays further confirmed the differences in gene expression and pro-inflammatory pathway regulation between both SMC populations. Results The microarray analysis revealed elevated NF-κB gene expression secondary to the loss of c-Kit that affects both the canonical and alternative NF-κB pathways. Upon stimulation with an oxidized phospholipid as pro-inflammatory agent, c-Kit deficient SMC displayed enhanced NF-κB transcriptional activity, higher phosphorylated/total p65 ratio, and increased protein expression of NF-κB regulated pro-inflammatory mediators with respect to cells from control mice. The pro-inflammatory phenotype of mutant cells was ameliorated after restoring c-Kit activity using lentiviral transduction. Functional assays further demonstrated that c-Kit suppresses NF-κB activity in SMC in a TGFβ-activated kinase 1 (TAK1) and Nemo-like kinase (NLK) dependent manner. Discussion Our study suggests a novel mechanism by which c-Kit suppresses NF-κB regulated pathways in SMC to prevent their pro-inflammatory transformation. PMID:28626608

  6. Flavonoids from Engineered Tomatoes Inhibit Gut Barrier Pro-inflammatory Cytokines and Chemokines, via SAPK/JNK and p38 MAPK Pathways

    PubMed Central

    Tomlinson, Matthew L.; Butelli, Eugenio; Martin, Cathie; Carding, Simon R.

    2017-01-01

    Flavonoids are a diverse group of plant secondary metabolites, known to reduce inflammatory bowel disease symptoms. How they achieve this is largely unknown. Our study focuses on the gut epithelium as it receives high topological doses of dietary constituents, maintains gut homeostasis, and orchestrates gut immunity. Dysregulation leads to chronic gut inflammation, via dendritic cell (DC)-driven immune responses. Tomatoes engineered for enriched sets of flavonoids (anthocyanins or flavonols) provided a unique and complex naturally consumed food matrix to study the effect of diet on chronic inflammation. Primary murine colonic epithelial cell-based inflammation assays consist of chemokine induction, apoptosis and proliferation, and effects on kinase pathways. Primary murine leukocytes and DCs were used to assay effects on transmigration. A murine intestinal cell line was used to assay wound healing. Engineered tomato extracts (enriched in anthocyanins or flavonols) showed strong and specific inhibitory effects on a set of key epithelial pro-inflammatory cytokines and chemokines. Chemotaxis assays showed a resulting reduction in the migration of primary leukocytes and DCs. Activation of epithelial cell SAPK/JNK and p38 MAPK signaling pathways were specifically inhibited. The epithelial wound healing-associated STAT3 pathway was unaffected. Cellular migration, proliferation, and apoptosis assays confirmed that wound healing processes were not affected by flavonoids. We show flavonoids target epithelial pro-inflammatory kinase pathways, inhibiting chemotactic signals resulting in reduced leukocyte and DC chemotaxis. Thus, both anthocyanins and flavonols modulate epithelial cells to become hyporesponsive to bacterial stimulation. Our results identify a viable mechanism to explain the in vivo anti-inflammatory effects of flavonoids. PMID:29326940

  7. Flavonoids from Engineered Tomatoes Inhibit Gut Barrier Pro-inflammatory Cytokines and Chemokines, via SAPK/JNK and p38 MAPK Pathways.

    PubMed

    Tomlinson, Matthew L; Butelli, Eugenio; Martin, Cathie; Carding, Simon R

    2017-01-01

    Flavonoids are a diverse group of plant secondary metabolites, known to reduce inflammatory bowel disease symptoms. How they achieve this is largely unknown. Our study focuses on the gut epithelium as it receives high topological doses of dietary constituents, maintains gut homeostasis, and orchestrates gut immunity. Dysregulation leads to chronic gut inflammation, via dendritic cell (DC)-driven immune responses. Tomatoes engineered for enriched sets of flavonoids (anthocyanins or flavonols) provided a unique and complex naturally consumed food matrix to study the effect of diet on chronic inflammation. Primary murine colonic epithelial cell-based inflammation assays consist of chemokine induction, apoptosis and proliferation, and effects on kinase pathways. Primary murine leukocytes and DCs were used to assay effects on transmigration. A murine intestinal cell line was used to assay wound healing. Engineered tomato extracts (enriched in anthocyanins or flavonols) showed strong and specific inhibitory effects on a set of key epithelial pro-inflammatory cytokines and chemokines. Chemotaxis assays showed a resulting reduction in the migration of primary leukocytes and DCs. Activation of epithelial cell SAPK/JNK and p38 MAPK signaling pathways were specifically inhibited. The epithelial wound healing-associated STAT3 pathway was unaffected. Cellular migration, proliferation, and apoptosis assays confirmed that wound healing processes were not affected by flavonoids. We show flavonoids target epithelial pro-inflammatory kinase pathways, inhibiting chemotactic signals resulting in reduced leukocyte and DC chemotaxis. Thus, both anthocyanins and flavonols modulate epithelial cells to become hyporesponsive to bacterial stimulation. Our results identify a viable mechanism to explain the in vivo anti-inflammatory effects of flavonoids.

  8. Antimicrobial activity of spices.

    PubMed

    Arora, D S; Kaur, J

    1999-08-01

    Spices have been shown to possess medicinal value, in particular, antimicrobial activity. This study compares the sensitivity of some human pathogenic bacteria and yeasts to various spice extracts and commonly employed chemotherapeutic substances. Of the different spices tested only garlic and clove were found to possess antimicrobial activity. The bactericidal effect of garlic extract was apparent within 1 h of incubation and 93% killing of Staphylococcus epidermidis and Salmonella typhi was achieved within 3 h. Yeasts were totally killed in 1 h by garlic extract but in 5 h with clove. Some bacteria showing resistance to certain antibiotics were sensitive to extracts of both garlic and clove. Greater anti-candidal activity was shown by garlic than by nystatin. Spices might have a great potential to be used as antimicrobial agents.

  9. IL-17A contributes to the pathogenesis of endometriosis by triggering pro-inflammatory cytokines and angiogenic growth factors

    PubMed Central

    Ahn, Soo Hyun; Edwards, Andrew K.; Singh, Sukhbir S.; Young, Steven L.; Lessey, Bruce A.; Tayade, Chandrakant

    2015-01-01

    Endometriosis is a chronic, inflammatory disease characterized by the growth of endometrial tissue in aberrant locations outside the uterus. Neo-angiogenesis or establishment of new blood supply is one of the fundamental requirements of endometriotic lesion survival in the peritoneal cavity. IL-17A is emerging as a potent angiogenic and pro-inflammatory cytokine involved in the pathophysiology of several chronic inflammatory diseases such as rheumatoid arthritis and psoriasis. However, sparse information is available in the context of endometriosis. In this study, we demonstrate the potential importance of IL-17A in the pathogenesis and pathophysiology of endometriosis. The data show a differential expression of IL-17A in human ectopic endometriotic lesions and matched eutopic endometrium from women with endometriosis. Importantly, surgical removal of lesions resulted in significantly reduced plasma IL-17A concentrations. Immunohistochemistry revealed localization of IL-17A primarily in the stroma of matched ectopic and eutopic tissue samples. In vitro stimulation of endometrial epithelial carcinoma cells, Ishikawa cells and human umbilical vein endothelial cells with IL-17A revealed significant increase in angiogenic (VEGF, IL-8), pro-inflammatory (IL-6, IL-1β) and chemotactic cytokines (G-CSF, CXCL12, CXCL1, CX3CL1). Furthermore, IL-17A promoted tubulogenesis of HUVECs plated on matrigel in a dose-dependent manner. Thus we provide the first evidence that endometriotic lesions produce IL-17A and that the removal of the lesion via laparoscopic surgery leads to the significant reduction in the systemic levels of IL-17A. Taken together, our data shows a likely important role of IL-17A in promoting angiogenesis and pro-inflammatory environment in the peritoneal cavity for the establishment and maintenance of endometriosis lesions. PMID:26259585

  10. Antimicrobial Activities of Clove and Thyme Extracts

    PubMed Central

    Nzeako, B C; Al-Kharousi, Zahra S N; Al-Mahrooqui, Zahra

    2006-01-01

    Objective: It has been postulated that geographical locations of the herbs affect the constituents of their essential oils and thus the degree of their antimicrobial action. This study examine two samples of clove obtained from Sri Lanka and Zanzibar and two samples of thyme from Iran and Oman to determine the antimicrobial potential of their extracted oils. Method: The active agents in each plant were extracted by steam distillation and by boiling. The antimicrobial activities of the extracts were determined at neat and by two-fold dilutions in well agar diffusion technique using Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Streptococcus pyogenes, Corynebacterium species, Salmonella species, Bacteroides fragilis and Candida albicans. Results: All oil extracts possessed antimicrobial activity against all bacteria and yeast tested. Their water extracts exhibited lower antimicrobial activity, though thyme aqueous extract was active only against S. aureus. The lowest concentration of antimicrobial activity (0.1% i.e., 1:1024) was obtained with thyme oil extract using Candida albicans. There was no significant difference in antimicrobial activity between clove obtained from Sri Lanka or Zanzibar or thyme obtained from Iran or Oman. Conclusion: Our experiment showed that the country of origin of the herbs has no effect on their antimicrobial activity. However, further work is necessary to ascertain why Candida albicans displayed remarkable degree of sensitivity with the extracts than all the other organisms test. PMID:21748125

  11. Extracorporeal photopheresis reduces the number of mononuclear cells that produce pro-inflammatory cytokines, when tested ex-vivo.

    PubMed

    Bladon, John; Taylor, Peter

    2002-01-01

    Extracorporeal photopheresis (ECP) has been shown to be clinically effective in the treatment of many T cell-mediated conditions. ECP's mechanism of action includes the induction of apoptosis and the release of pro-inflammatory cytokines. Recently, we have observed early lymphoid apoptosis, detectable immediately post ECP. We were interested to determine what influence ECP has on pro-inflammatory cytokine secretion at this early pre-infusion stage. Samples from 6 cutaneous T cell lymphoma (CTCL) and 5 graft versus host disease (GvHD) patients were taken pre ECP and immediately post ECP, prior to re-infusion. Following separation, the PBMCs were added to a cell culture medium and stimulated with PMA, Ionomycin, and Brefeldin A for 6 hours. Using flow cytometry, intracellular cytokine expression of IFNgamma and TNFalpha was determined in the T cell population. The monocytes were evaluated for IL6, IFNgamma, IL12, and TNFalpha. For both patient groups, the number of IFNgamma-expressing T cells fell significantly at re-infusion, whilst both T cell- and monocyte-expressing TNFalpha levels were reduced at re-infusion. All other cytokines tested showed no significant change post ECP. For GvHD, pro-inflammatory cytokines have a pathological role. Their down-regulation may have a direct clinical benefit. However, the reduction in the number of IFNgamma- and TNFalpha-expressing mononuclear cells means, at this early stage, it is unlikely that these cytokines assist in the removal of the malignant Th2 cells present in CTCL. Copyright 2002 Wiley-Liss, Inc.

  12. Transcutaneous electrical nerve stimulation (TENS) accelerates cutaneous wound healing and inhibits pro-inflammatory cytokines.

    PubMed

    Gürgen, Seren Gülşen; Sayın, Oya; Cetin, Ferihan; Tuç Yücel, Ayşe

    2014-06-01

    The purpose of this study was to evaluate transcutaneous electrical nerve stimulation (TENS) and other common treatment methods used in the process of wound healing in terms of the expression levels of pro-inflammatory cytokines. In the study, 24 female and 24 male adult Wistar-Albino rats were divided into five groups: (1) the non-wounded group having no incision wounds, (2) the control group having incision wounds, (3) the TENS (2 Hz, 15 min) group, (4) the physiological saline (PS) group and (5) the povidone iodine (PI) group. In the skin sections, interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were assessed with enzyme-linked immunosorbent assay and immunohistochemical methods. In the non-wounded group, the expression of IL-1β, IL-6, and TNF-α signaling molecules was weaker in the whole tissue; however, in the control group, significant inflammatory response occurred, and strong cytokine expression was observed in the dermis, granulation tissue, hair follicles, and sebaceous glands (P < 0.05). In the TENS group, the decrease in TNF-α, IL-1β, and IL-6 immunoreaction in the skin was significant compared to the other forms of treatment (P < 0.05). Distinctive decreases of pro-inflammatory cytokines observed in the dermis in the TENS group suggest that TENS shortened the healing process by inhibating the inflammation phase.

  13. Synthesis of new N-substituted 5-arylidene-2,4-thiazolidinediones as anti-inflammatory and antimicrobial agents.

    PubMed

    Nastasă, Cristina; Tiperciuc, Brînduşa; Pârvu, Alina; Duma, Mihaela; Ionuţ, Ioana; Oniga, Ovidiu

    2013-06-01

    A novel series of 5-arylidene-2,4-thiazolidinediones (TZDs) 2a-p was synthesized from the condensation of 3-((2-phenylthiazol-4-yl)methyl)thiazolidine-2,4-dione with different benzaldehyde derivatives. All the structures were confirmed by their spectral (IR, ¹H NMR, ¹³C NMR and mass) and elemental analytical data. The new molecules were evaluated in vivo as anti-inflammatory agents in an acute experimental inflammation, evaluating the acute phase bone marrow response and phagocyte activity. All compounds, excepting one, reduced the absolute leukocytes count due to the lower neutrophil percentage. Phagocytary index was decreased by the same molecules, while only half of them reduced the phagocytary activity. The effect was superior to meloxicam, the reference anti-inflammatory drug, for the majority of the TZD derivatives. The new molecules were also investigated for their antimicrobial properties on Gram-positive and Gram-negative bacteria and one fungal strain. Two compounds (2e and 2n) manifested growth inhibition capacity on all the tested strains. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The lipid A of Burkholderia multivorans C1576 smooth-type lipopolysaccharide and its pro-inflammatory activity in a cystic fibrosis airways model.

    PubMed

    Ieranò, Teresa; Cescutti, Paola; Leone, Maria Rosaria; Luciani, Alessandro; Rizzo, Roberto; Raia, Valeria; Lanzetta, Rosa; Parrilli, Michelangelo; Maiuri, Luigi; Silipo, Alba; Molinaro, Antonio

    2010-12-01

    Cystic fibrosis is an autosomal recessive disorder and it is characterised by chronic bacterial airway infection which leads to progressive lung deterioration, sometimes with fatal outcome. Burkholderia multivorans and Burkholderia cenocepacia are the species responsible for most of the infections of cystic fibrosis patients. Lipopolysaccharide endotoxins (LPSs) are among the foremost factors of pathogenesis of Gram-negative infection and, in particular, lipid A is the endotoxic portion of LPS responsible for eliciting host innate immune response. In this work, the complete primary structure of the lipid A from B. multivorans C1576 has been defined and, further, its pro-inflammatory activity in a cystic fibrosis airways model is shown. The structure of B. multivorans lipid A was attained by chemical, mass spectrometry and nuclear magnetic resonance analyses whereas its biological activity was assessed on the intestinal epithelial cell line CACO-2 cells, on the airway epithelial IB3-1 cells, carrying the ΔF508/W1282X CFTR mutation and on an ex vivo model of culture explants of nasal polyps.

  15. Neutrophils induce macrophage anti-inflammatory reprogramming by suppressing NF-κB activation.

    PubMed

    Marwick, John A; Mills, Ross; Kay, Oliver; Michail, Kyriakos; Stephen, Jillian; Rossi, Adriano G; Dransfield, Ian; Hirani, Nikhil

    2018-06-04

    Apoptotic cells modulate the function of macrophages to control and resolve inflammation. Here, we show that neutrophils induce a rapid and sustained suppression of NF-κB signalling in the macrophage through a unique regulatory relationship which is independent of apoptosis. The reduction of macrophage NF-κB activation occurs through a blockade in transforming growth factor β-activated kinase 1 (TAK1) and IKKβ activation. As a consequence, NF-κB (p65) phosphorylation is reduced, its translocation to the nucleus is inhibited and NF-κB-mediated inflammatory cytokine transcription is suppressed. Gene Set Enrichment Analysis reveals that this suppression of NF-κB activation is not restricted to post-translational modifications of the canonical NF-κB pathway, but is also imprinted at the transcriptional level. Thus neutrophils exert a sustained anti-inflammatory phenotypic reprogramming of the macrophage, which is reflected by the sustained reduction in the release of pro- but not anti- inflammatory cytokines from the macrophage. Together, our findings identify a novel apoptosis-independent mechanism by which neutrophils regulate the mediator profile and reprogramming of monocytes/macrophages, representing an important nodal point for inflammatory control.

  16. MicroRNA-9 regulates the expression of peroxisome proliferator-activated receptor δ in human monocytes during the inflammatory response

    PubMed Central

    THULIN, PETRA; WEI, TIANLING; WERNGREN, OLIVERA; CHEUNG, LOUISA; FISHER, RACHEL M.; GRANDÉR, DAN; CORCORAN, MARTIN; EHRENBORG, EWA

    2013-01-01

    PPARδ is involved in the inflammatory response and its expression is induced by cytokines, however, limited knowledge has been produced regarding its regulation. Since recent findings have shown that microRNAs, which are small non-coding RNAs that regulate gene expression, are involved in the immune response, we set out to investigate whether PPARδ can be regulated by microRNAs expressed in monocytes. Bioinformatic analysis identified a putative miR-9 target site within the 3′-UTR of PPARδ that was subsequently verified to be functional using reporter constructs. Primary human monocytes stimulated with LPS showed a downregulation of PPARδ and its target genes after 4 h while the expression of miR-9 was induced. Analysis of pro-inflammatory (M1) and anti-inflammatory (M2) macrophages showed that human PPARδ mRNA as well as miR-9 expression was higher in M1 compared to M2 macrophages. Furthermore, treatment with the PPARδ agonist, GW501516, induced the expression of PPARδ target genes in the pro-inflammatory M1 macrophages while no change was observed in the anti-inflammatory M2 macrophages. Taken together, these data suggest that PPARδ is regulated by miR-9 in monocytes and that activation of PPARδ may be of importance in M1 pro-inflammatory but not in M2 anti-inflammatory macrophages in humans. PMID:23525285

  17. Pro-inflammatory cytokines and oxidative stress/antioxidant parameters characterize the bio-humoral profile of early cachexia in lung cancer patients.

    PubMed

    Fortunati, Nicoletta; Manti, Roberta; Birocco, Nadia; Pugliese, Mariateresa; Brignardello, Enrico; Ciuffreda, Libero; Catalano, Maria G; Aragno, Manuela; Boccuzzi, Giuseppe

    2007-12-01

    Cancer-related cachexia, that is present in about 50% of cancer patients and accounts for 20% of all cancer deaths, is clinically characterized by progressive weight loss, anorexia, metabolic alterations, asthenia, depletion of lipid stores and severe loss of skeletal muscle proteins. The main biochemical and molecular alterations that are responsible for the syndrome are prematurely present in the progress of the disease and the identification of the early stages of cachexia can be useful in targetting patients who will benefit from early treatment. The aim of the present study was to delineate the bio-humoral profile of a group of lung cancer patients either non-cachectic or cachectic by evaluating serum pro-inflammatory cytokines and oxidative stress/antioxidant parameters (both recognized to be involved in cachexia pathogenesis) and pro-inflammatory cytokine gene expression in PBMC (Peripheral blood mononuclear cells) of cancer patients. All serum pro-inflammatory cytokines and oxidative stress/antioxidant parameters significantly increased in neoplastic patients, but only TNF-alpha, ROS, GSH and vitamin E showed a significantly greater increase in cachectic patients. Pro-inflammatory cytokine gene expression mirrored serum level behaviour except for IL-6 that was increased in serum but not as gene expression, suggesting its provenience from tumour tissue. Our data support that the simultaneous determination of ROS, GSH, vitamin E, together with TNF-alpha allows the identification of a lung cancer patient developing cancer-related cachexia. This bio-humoral profile should be used for the early diagnosis and follow-up of the syndrome. Moreover, the evaluation of gene expression in patient PBMC was helpful in differentiating tumour vs host factors, therefore being useful in the study of pathogenetic mechanisms in neoplastic cachectic patients.

  18. Collagen-derived N-acetylated proline-glycine-proline upregulates the expression of pro-inflammatory cytokines and extracellular matrix proteases in nucleus pulposus cells via the NF-κB and MAPK signaling pathways.

    PubMed

    Feng, Chencheng; He, Jinyue; Zhang, Yang; Lan, Minghong; Yang, Minghui; Liu, Huan; Huang, Bo; Pan, Yong; Zhou, Yue

    2017-07-01

    N-acetylated proline-glycine-proline (N-Ac-PGP) is a chemokine involved in inflammatory diseases and is found to accumulate in degenerative discs. N-Ac-PGP has been demonstrated to have a pro-inflammatory effect on human cartilage endplate stem cells. However, the effect of N-Ac-PGP on human intervertebral disc cells, especially nucleus pulposus (NP) cells, remains unknown. The purpose of this study was to investigate the effect of N-Ac-PGP on the expression of pro-inflammatory factors and extracellular matrix (ECM) proteases in NP cells and the molecular mechanism underlying this effect. Therefore, Milliplex assays were used to detect the levels of various inflammatory cytokines in conditioned culture medium of NP cells treated with N-Ac-PGP, including interleukin-1β (IL-1β), IL-6, IL-17, tumor necrosis factor-α (TNF-α) and C-C motif ligand 2 (CCL2). RT-qPCR was also used to determine the expression of pro-inflammatory cytokines and ECM proteases in the NP cells treated with N-Ac-PGP. Moreover, the role of nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways in mediating the effect of N-Ac-PGP on the phenotype of NP cells was investigated using specific signaling inhibitors. Milliplex assays showed that NP cells treated with N-Ac-PGP (10 and 100 µg/ml) secreted higher levels of IL-1β, IL-6, IL-17, TNF-α and CCL2 compared with the control. RT-qPCR assays showed that NP cells treated with N-Ac-PGP (100 µg/ml) had markedly upregulated expression of matrix metalloproteinase 3 (MMP3), MMP13, a disintegrin and metalloproteinase with thrombospondin motif 4 (ADAMTS4), ADAMTS5, IL-6, CCL-2, CCL-5 and C-X-C motif chemokine ligand 10 (CXCL10). Moreover, N-Ac-PGP was shown to activate the MAPK and NF-κB signaling pathways in NP cells. MAPK and NF-κB signaling inhibitors suppressed the upregulation of proteases and pro-inflammatory cytokines in NP cells treated with N-Ac-PGP. In conclusion, N-Ac-PGP induces the

  19. Development and evaluation of thymol-chitosan hydrogels with antimicrobial-antioxidant activity for oral local delivery.

    PubMed

    Alvarez Echazú, María Inés; Olivetti, Christian Ezequiel; Anesini, Claudia; Perez, Claudio Javier; Alvarez, Gisela Solange; Desimone, Martin Federico

    2017-12-01

    Nowadays, the research of innovative drug delivery devices is focused on the design of multiple drug delivery systems, the prevention of drug side effects and the reduction of dosing intervals. Particularly, new mucosal delivery systems for antimicrobials, antioxidants and anti-inflammatory drugs has a growing development, regards to the avoidance of side effects, easy administration and a suitable drug concentration in the mucosa. In this work, chitosan hydrogels are evaluated as a biodegradable scaffold and as a bioactive agent carrier of an antioxidant-antimicrobial compound called thymol. Throughout the study, swelling behavior, viscoelastic properties and thermal analysis are highlighted to present its advantages for a biomedical application. Furthermore, the in vitro results obtained indicate that thymol-chitosan hydrogels are biocompatible when exposed to [3T3] fibroblasts, exhibit antimicrobial activity against Staphylococcus aureus and Streptococcus mutans for 72h and antioxidant activity for 24h. These are desirable properties for a mucosal delivery system for an antimicrobial-antioxidant dual therapy for periodontal disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. PGH1, the Precursor for the Anti-Inflammatory Prostaglandins of the 1-series, Is a Potent Activator of the Pro-Inflammatory Receptor CRTH2/DP2

    PubMed Central

    Schröder, Ralf; Xue, Luzheng; Konya, Viktoria; Martini, Lene; Kampitsch, Nora; Whistler, Jennifer L.; Ulven, Trond; Heinemann, Akos; Pettipher, Roy; Kostenis, Evi

    2012-01-01

    Prostaglandin H1 (PGH1) is the cyclo-oxygenase metabolite of dihomo-γ-linolenic acid (DGLA) and the precursor for the 1-series of prostaglandins which are often viewed as “anti-inflammatory”. Herein we present evidence that PGH1 is a potent activator of the pro-inflammatory PGD2 receptor CRTH2, an attractive therapeutic target to treat allergic diseases such as asthma and atopic dermatitis. Non-invasive, real time dynamic mass redistribution analysis of living human CRTH2 transfectants and Ca2+ flux studies reveal that PGH1 activates CRTH2 as PGH2, PGD2 or PGD1 do. The PGH1 precursor DGLA and the other PGH1 metabolites did not display such effect. PGH1 specifically internalizes CRTH2 in stable CRTH2 transfectants as assessed by antibody feeding assays. Physiological relevance of CRTH2 ligation by PGH1 is demonstrated in several primary human hematopoietic lineages, which endogenously express CRTH2: PGH1 mediates migration of and Ca2+ flux in Th2 lymphocytes, shape change of eosinophils, and their adhesion to human pulmonary microvascular endothelial cells under physiological flow conditions. All these effects are abrogated in the presence of the CRTH2 specific antagonist TM30089. Together, our results identify PGH1 as an important lipid intermediate and novel CRTH2 agonist which may trigger CRTH2 activation in vivo in the absence of functional prostaglandin D synthase. PMID:22442685

  1. Primate Neural Retina Upregulates IL-6 and IL-10 in Response to a Herpes Simplex Vector Suggesting the Presence of a Pro-/Anti-inflammatory Axis

    PubMed Central

    Sauter, Monica M.; Brandt, Curtis R.

    2016-01-01

    Injection of herpes simplex virus vectors into the vitreous of primate eyes induces an acute, transient uveitis. The purpose of this study was to characterize innate immune responses of macaque neural retina tissue to the herpes simplex virus type 1-based gene delivery vector hrR3. PCR array analysis demonstrated the induction of the pro-inflammatory cytokine IL-6, as well as the anti-inflammatory cytokine IL-10, following hrR3 exposure. Secretion of IL-6 was detected by ELISA and cone photoreceptors and Muller cells were the predominant IL-6 positive cell types. RNA in situ hybridization confirmed that IL-6 was expressed in photoreceptor and Muller cells. The IL-10 positive cells in the inner nuclear layer were identified as amacrine cells by immunofluorescence staining with calretinin antibody. hrR3 challenge resulted in activation of NFκB (p65) in Muller glial cells, but not in cone photoreceptors, suggesting a novel regulatory mechanism for IL-6 expression in cone cells. hrR3 replication was not required for IL-6 induction or NFκB (p65) activation. These data suggest a pro-inflammatory (IL-6)/anti-inflammatory (IL-10) axis exists in neural retina and the severity of acute posterior uveitis may be determined by this interaction. Further studies are needed to identify the trigger for IL-6 and IL-10 induction and the mechanism of IL-6 induction in cone cells. PMID:27170050

  2. Brazilian Red Propolis Attenuates Inflammatory Signaling Cascade in LPS-Activated Macrophages

    PubMed Central

    Bueno-Silva, Bruno; Kawamoto, Dione; Ando-Suguimoto, Ellen S.; Alencar, Severino M.; Rosalen, Pedro L.; Mayer, Marcia P. A.

    2015-01-01

    Although previous studies suggested an anti-inflammatory property of Brazilian red propolis (BRP), the mechanisms involved in the anti-inflammatory effects of BRP and its activity on macrophages were still not elucidated. This study aimed to evaluate whether BRP attenuates the inflammatory effect of LPS on macrophages and to investigate its underlying mechanisms. BRP was added to RAW 264.7 murine macrophages after activation with LPS. NO production, cell viability, cytokines profile were evaluated. Activation of inflammatory signaling pathways and macrophage polarization were determined by RT-qPCR and Western blot. BRP at 50 μg/ml inhibited NO production by 78% without affecting cell viability. Cd80 and Cd86 were upregulated whereas mrc1 was down regulated by BRP indicating macrophage polarization at M1. BRP attenuated the production of pro-inflammatory mediators IL-12, GM-CSF, IFN-Ɣ, IL-1β in cell supernatants although levels of TNF- α and IL-6 were slightly increased after BRP treatment. Levels of IL-4, IL-10 and TGF-β were also reduced by BRP. BRP significantly reduced the up-regulation promoted by LPS of transcription of genes in inflammatory signaling (Pdk1, Pak1, Nfkb1, Mtcp1, Gsk3b, Fos and Elk1) and of Il1β and Il1f9 (fold-change rate > 5), which were further confirmed by the inhibition of NF-κB and MAPK signaling pathways. Furthermore, the upstream adaptor MyD88 adaptor-like (Mal), also known as TIRAP, involved in TLR2 and TLR4 signaling, was down- regulated in BRP treated LPS-activated macrophages. Given that BRP inhibited multiple signaling pathways in macrophages involved in the inflammatory process activated by LPS, our data indicated that BRP is a noteworthy food-source for the discovery of new bioactive compounds and a potential candidate to attenuate exhacerbated inflammatory diseases. PMID:26660901

  3. Associations among serum pro- and anti-inflammatory cytokines, metabolic mediators, body condition, and uterine disease in postpartum dairy cows.

    PubMed

    Kasimanickam, Ramanathan K; Kasimanickam, Vanmathy R; Olsen, Jesse R; Jeffress, Erin J; Moore, Dale A; Kastelic, John P

    2013-11-09

    Adipose tissue is an active endocrine organ which secretes a wide range of hormones and protein factors, collectively termed adipokines. Adipokines affect appetite and satiety, glucose and lipid metabolism, inflammation and immune functions. The objectives were to evaluate serum concentrations of adipokines (adiponectin, leptin, tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta and IL-6) in lactating dairy cows with postpartum uterine inflammatory conditions (metritis, clinical endometritis or subclinical endometritis) and in cows experiencing loss of body condition, and to assess the relationship of adipokines and body condition loss in the establishment of persistent uterine inflammatory conditions. Lactating multiparous Holstein cows (N = 40), with body condition scores (BCS) from 2 to 4 (eight cows for each 0.5 score increment) were enrolled. Body condition was monitored for all cows weekly for 7 weeks post calving; cows with uterine inflammatory conditions were also re-evaluated 2 weeks later. Blood samples were collected from 1 week prior to calving to 7 weeks after calving for determination of serum concentrations of adipokines, insulin and insulin like growth factor (IGF)-1. Cows with metritis or clinical endometritis had higher serum concentrations of adiponectin, leptin, TNF-alpha, IL-1beta and IL-6 compared to normal cows (P < 0.05). Furthermore, serum leptin, TNF-alpha, IL-1beta and IL-6 were higher in cows with subclinical endometritis compared to normal cows (P < 0.05), and insulin and IGF-1 concentrations were lower in cows with metritis or clinical endometritis. Cows with low BCS (2 and 2.5) had significantly higher adiponectin, TNF-alpha, IL-1beta and IL-6 than those with high BCS (3 to 4). Cows with persistent uterine inflammatory conditions had higher adiponectin, leptin TNF-alpha, IL-1beta and IL-6 and insulin compared to normal and spontaneously recovered cows, except for IGF-1 (P < 0.05). Serum concentrations of adipokines, insulin

  4. Associations among serum pro- and anti-inflammatory cytokines, metabolic mediators, body condition, and uterine disease in postpartum dairy cows

    PubMed Central

    2013-01-01

    Background Adipose tissue is an active endocrine organ which secretes a wide range of hormones and protein factors, collectively termed adipokines. Adipokines affect appetite and satiety, glucose and lipid metabolism, inflammation and immune functions. The objectives were to evaluate serum concentrations of adipokines (adiponectin, leptin, tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta and IL-6) in lactating dairy cows with postpartum uterine inflammatory conditions (metritis, clinical endometritis or subclinical endometritis) and in cows experiencing loss of body condition, and to assess the relationship of adipokines and body condition loss in the establishment of persistent uterine inflammatory conditions. Methods Lactating multiparous Holstein cows (N = 40), with body condition scores (BCS) from 2 to 4 (eight cows for each 0.5 score increment) were enrolled. Body condition was monitored for all cows weekly for 7 weeks post calving; cows with uterine inflammatory conditions were also re-evaluated 2 weeks later. Blood samples were collected from 1 week prior to calving to 7 weeks after calving for determination of serum concentrations of adipokines, insulin and insulin like growth factor (IGF)-1. Results Cows with metritis or clinical endometritis had higher serum concentrations of adiponectin, leptin, TNF-alpha, IL-1beta and IL-6 compared to normal cows (P < 0.05). Furthermore, serum leptin, TNF-alpha, IL-1beta and IL-6 were higher in cows with subclinical endometritis compared to normal cows (P < 0.05), and insulin and IGF-1 concentrations were lower in cows with metritis or clinical endometritis. Cows with low BCS (2 and 2.5) had significantly higher adiponectin, TNF-alpha, IL-1beta and IL-6 than those with high BCS (3 to 4). Cows with persistent uterine inflammatory conditions had higher adiponectin, leptin TNF-alpha, IL-1beta and IL-6 and insulin compared to normal and spontaneously recovered cows, except for IGF-1 (P < 0.05). Conclusions

  5. Differential In Vitro and In Vivo Toxicities of Antimicrobial Peptide Prodrugs for Potential Use in Cystic Fibrosis

    PubMed Central

    Schütte, André; Reeves, Emer; Greene, Catherine; Humphreys, Hilary; Mall, Marcus; Fitzgerald-Hughes, Deirdre; Devocelle, Marc

    2016-01-01

    There has been considerable interest in the use of antimicrobial peptides (AMPs) as antimicrobial agents for the treatment of many conditions, including cystic fibrosis (CF). The challenging conditions of the CF patient lung require robust AMPs that are active in an environment of high proteolytic activity but that also have low cytotoxicity and immunogenicity. Previously, we developed prodrugs of AMPs that limited the cytotoxic effects of AMP treatment by rendering the antimicrobial activity dependent on the host enzyme neutrophil elastase (NE). However, cytotoxicity remained an issue. Here, we describe the further optimization of the AMP prodrug (pro-AMP) model for CF to produce pro-WMR, a peptide with greatly reduced cytotoxicity (50% inhibitory concentration against CFBE41o- cells, >300 μM) compared to that of the previous group of pro-AMPs. The bactericidal activity of pro-WMR was increased in NE-rich bronchoalveolar lavage (BAL) fluid from CF patients (range, 8.4% ± 6.9% alone to 91.5% ± 5.8% with BAL fluid; P = 0.0004), an activity differential greater than that of previous pro-AMPs. In a murine model of lung delivery, the pro-AMP modification reduced host toxicity, with pro-WMR being less toxic than the active peptide. Previously, host toxicity issues have hampered the clinical application of AMPs. However, the development of application-specific AMPs with modifications that minimize toxicity similar to those described here can significantly advance their potential use in patients. The combination of this prodrug strategy with a highly active AMP has the potential to produce new therapeutics for the challenging conditions of the CF patient lung. PMID:26902766

  6. Ultrafine particles affect the balance of endogenous pro- and anti-inflammatory lipid mediators in the lung: in-vitro and in-vivo studies

    PubMed Central

    2012-01-01

    Background Exposure to ultrafine particles exerts diverse harmful effects including aggravation of pulmonary diseases like asthma. Recently we demonstrated in a mouse model for allergic airway inflammation that particle-derived oxidative stress plays a crucial role during augmentation of allergen-induced lung inflammation by ultrafine carbon particle (UfCP) inhalation. The mechanisms how particle inhalation might change the inflammatory balance in the lungs, leading to accelerated inflammatory reactions, remain unclear. Lipid mediators, known to be immediately generated in response to tissue injury, might be strong candidates for priming this particle-triggered change of the inflammatory balance. Methods We hypothesize that inhalation of UfCP may disturb the balance of pro- and anti-inflammatory lipid mediators in: i) a model for acute allergic pulmonary inflammation, exposing mice for 24 h before allergen challenge to UfCP inhalation (51.7 nm, 507 μg/m3), and ii) an in-vitro model with primary rat alveolar macrophages (AM) incubated with UfCP (10 μg/1 x 106 cells/ml) for 1 h. Lungs and AM were analysed for pro- and anti-inflammatory lipid mediators, namely leukotriene B4 (LTB4), prostaglandin E2 (PGE2), 15(S)-hydroxy-eicosatetraenoic acid (15(S)-HETE), lipoxin A4 (LXA4) and oxidative stress marker 8-isoprostane by enzyme immunoassays and immunohistochemistry. Results In non-sensitized mice UfCP exposure induced a light non-significant increase of all lipid mediators. Similarly but significantly in rat AM all lipid mediators were induced already within 1 h of UfCP stimulation. Also sensitized and challenge mice exposed to filtered air showed a partially significant increase in all lipid mediators. In sensitized and challenged mice UfCP exposure induced highest significant levels of all lipid mediators in the lungs together with the peak of allergic airway inflammation on day 7 after UfCP inhalation. The levels of LTB4, 8-isoprostane and PGE2 were significantly

  7. Asiatic acid ameliorates pulmonary fibrosis induced by bleomycin (BLM) via suppressing pro-fibrotic and inflammatory signaling pathways.

    PubMed

    Dong, Shu-Hong; Liu, Yan-Wei; Wei, Feng; Tan, Hui-Zhen; Han, Zhi-Dong

    2017-05-01

    Idiopathic pulmonary fibrosis is known as a life-threatening disease with high mortality and limited therapeutic strategies. In addition, the molecular mechanism by which pulmonary fibrosis developed is not fully understood. Asiatic acid (AA) is a triterpenoid, isolated from Centella asiatica, exhibiting efficient anti-inflammatory and anti-oxidative activities. In our study, we attempted to explore the effect of Asiatic acid on bleomycin (BLM)-induced pulmonary fibrosis in mice. The findings indicated that pre-treatment with Asiatic acid inhibited BLM-induced lung injury and fibrosis progression in mice. Further, Asiatic acid down-regulates inflammatory cells infiltration in bronchoalveolar lavage fluid (BALF) and pro-inflammatory cytokines expression in lung tissue specimens induced by BLM. Also, Asiatic acid apparently suppressed transforming growth factor-beta 1 (TGF-β1) expression in tissues of lung, accompanied with Collagen I, Collagen III, α-SMA and matrix metalloproteinase (TIMP)-1 decreasing, as well as Smads and ERK1/2 inactivation. Of note, Asiatic acid reduces NOD-like receptor, pyrin domain containing-3 (NLRP3) inflammasome. The findings indicated that Asiatic acid might be an effective candidate for pulmonary fibrosis and inflammation treatment. Copyright © 2017. Published by Elsevier Masson SAS.

  8. Lipid homeostasis and inflammatory activation are disturbed in classically activated macrophages with peroxisomal β-oxidation deficiency.

    PubMed

    Geric, Ivana; Tyurina, Yulia Y; Krysko, Olga; Krysko, Dmitri V; De Schryver, Evelyn; Kagan, Valerian E; Van Veldhoven, Paul P; Baes, Myriam; Verheijden, Simon

    2018-03-01

    Macrophage activation is characterized by pronounced metabolic adaptation. Classically activated macrophages show decreased rates of mitochondrial fatty acid oxidation and oxidative phosphorylation and acquire a glycolytic state together with their pro-inflammatory phenotype. In contrast, alternatively activated macrophages require oxidative phosphorylation and mitochondrial fatty acid oxidation for their anti-inflammatory function. Although it is evident that mitochondrial metabolism is regulated during macrophage polarization and essential for macrophage function, little is known on the regulation and role of peroxisomal β-oxidation during macrophage activation. In this study, we show that peroxisomal β-oxidation is strongly decreased in classically activated bone-marrow-derived macrophages (BMDM) and mildly induced in alternatively activated BMDM. To examine the role of peroxisomal β-oxidation in macrophages, we used Mfp2 -/- BMDM lacking the key enzyme of this pathway. Impairment of peroxisomal β-oxidation in Mfp2 -/- BMDM did not cause lipid accumulation but rather an altered distribution of lipid species with very-long-chain fatty acids accumulating in the triglyceride and phospholipid fraction. These lipid alterations in Mfp2 -/- macrophages led to decreased inflammatory activation of Mfp2 -/- BMDM and peritoneal macrophages evidenced by impaired production of several inflammatory cytokines and chemokines, but did not affect anti-inflammatory polarization. The disturbed inflammatory responses of Mfp2 -/- macrophages did not affect immune cell infiltration, as mice with selective elimination of MFP2 from myeloid cells showed normal monocyte and neutrophil influx upon challenge with zymosan. Together, these data demonstrate that peroxisomal β-oxidation is involved in fine-tuning the phenotype of macrophages, probably by influencing the dynamic lipid profile during macrophage polarization. © 2017 John Wiley & Sons Ltd.

  9. Variable transcription of pro- and anti-inflammatory cytokines in phocine lymphocytes following canine distemper virus infection.

    PubMed

    Seibel, H; Siebert, U; Rosenberger, T; Baumgärtner, W

    2014-10-15

    Canine distemper virus (CDV) is a highly contagious viral pathogen. Domesticated dogs are the main reservoir of CDV. Although phocine distemper virus was responsible for the recent epidemics in seals in the North and Baltic Seas, most devastating epidemics in seals were also caused by CDV. To further study the pathogenesis of CDV infection in seals, it was the aim of the present study to investigate the mechanisms of CDV induced immunosuppression in seals by analyzing the gene transcription of different pro- and anti-inflammatory cytokines in Concanavalin A (Con A) stimulated and non-stimulated phocine lymphocytes in vitro following infection with the CDV Onderstepoort (CDV-OND) strain. Phocine lymphocytes were isolated via density gradient centrifugation. The addition of 1 μg/ml Con A and virus was either performed simultaneously or lymphocytes were stimulated for 48 h with Con A prior to virus infection. Gene transcription of interleukin (IL)-6, IL-12 and tumor necrosis factor alpha (TNFα) as pro-inflammatory cytokines and IL-4, IL-10 and transforming growth factor beta (TGFβ) as anti-inflammatory cytokines were determined by using RT-qPCR. CDV-OND infection caused an initial increase of pro-inflammatory phocine cytokines mRNA 24h after infection, followed by a decrease in gene transcription after 48 h. A strong increase in the transcription of IL-4 and TGFβ was detected after 48 h when virus and mitogen were added simultaneously. An increased IL-10 production occurred only when stimulation and infection were performed simultaneously. Furthermore, an inhibition of IL-12 on IL-4 was noticed in phocine lymphocytes which were stimulated for 48 h prior to infection. In summary, the duration of the stimulation or the lymphocytes seem to have an important influence on the cytokine transcription and indicates that the outcome of CDV infection is dependent on various factors that might sensitize lymphocytes or make them more susceptible or reactive to CDV infection

  10. Divergent pro-inflammatory profile of human dendritic cells in response to commensal and pathogenic bacteria associated with the airway microbiota.

    PubMed

    Larsen, Jeppe Madura; Steen-Jensen, Daniel Bisgaard; Laursen, Janne Marie; Søndergaard, Jonas Nørskov; Musavian, Hanieh Sadat; Butt, Tariq Mahmood; Brix, Susanne

    2012-01-01

    Recent studies using culture-independent methods have characterized the human airway microbiota and report microbial communities distinct from other body sites. Changes in these airway bacterial communities appear to be associated with inflammatory lung disease, yet the pro-inflammatory properties of individual bacterial species are unknown. In this study, we compared the immune stimulatory capacity on human monocyte-derived dendritic cells (DCs) of selected airway commensal and pathogenic bacteria predominantly associated with lungs of asthma or COPD patients (pathogenic Haemophillus spp. and Moraxella spp.), healthy lungs (commensal Prevotella spp.) or both (commensal Veillonella spp. and Actinomyces spp.). All bacteria were found to induce activation of DCs as demonstrated by similar induction of CD83, CD40 and CD86 surface expression. However, asthma and COPD-associated pathogenic bacteria provoked a 3-5 fold higher production of IL-23, IL-12p70 and IL-10 cytokines compared to the commensal bacteria. Based on the differential cytokine production profiles, the studied airway bacteria could be segregated into three groups (Haemophilus spp. and Moraxella spp. vs. Prevotella spp. and Veillonella spp. vs. Actinomyces spp.) reflecting their pro-inflammatory effects on DCs. Co-culture experiments found that Prevotella spp. were able to reduce Haemophillus influenzae-induced IL-12p70 in DCs, whereas no effect was observed on IL-23 and IL-10 production. This study demonstrates intrinsic differences in DC stimulating properties of bacteria associated with the airway microbiota.

  11. Divergent Pro-Inflammatory Profile of Human Dendritic Cells in Response to Commensal and Pathogenic Bacteria Associated with the Airway Microbiota

    PubMed Central

    Larsen, Jeppe Madura; Steen-Jensen, Daniel Bisgaard; Laursen, Janne Marie; Søndergaard, Jonas Nørskov; Musavian, Hanieh Sadat; Butt, Tariq Mahmood; Brix, Susanne

    2012-01-01

    Recent studies using culture-independent methods have characterized the human airway microbiota and report microbial communities distinct from other body sites. Changes in these airway bacterial communities appear to be associated with inflammatory lung disease, yet the pro-inflammatory properties of individual bacterial species are unknown. In this study, we compared the immune stimulatory capacity on human monocyte-derived dendritic cells (DCs) of selected airway commensal and pathogenic bacteria predominantly associated with lungs of asthma or COPD patients (pathogenic Haemophillus spp. and Moraxella spp.), healthy lungs (commensal Prevotella spp.) or both (commensal Veillonella spp. and Actinomyces spp.). All bacteria were found to induce activation of DCs as demonstrated by similar induction of CD83, CD40 and CD86 surface expression. However, asthma and COPD-associated pathogenic bacteria provoked a 3–5 fold higher production of IL-23, IL-12p70 and IL-10 cytokines compared to the commensal bacteria. Based on the differential cytokine production profiles, the studied airway bacteria could be segregated into three groups (Haemophilus spp. and Moraxella spp. vs. Prevotella spp. and Veillonella spp. vs. Actinomyces spp.) reflecting their pro-inflammatory effects on DCs. Co-culture experiments found that Prevotella spp. were able to reduce Haemophillus influenzae-induced IL-12p70 in DCs, whereas no effect was observed on IL-23 and IL-10 production. This study demonstrates intrinsic differences in DC stimulating properties of bacteria associated with the airway microbiota. PMID:22363778

  12. Antimicrobial activity of Nigerian medicinal plants

    PubMed Central

    Anyanwu, Madubuike Umunna; Okoye, Rosemary Chinazam

    2017-01-01

    Antimicrobial resistance (AMR) is currently one of the major threats facing mankind. The emergence and rapid spread of multi- and pan-drug-resistant organisms (such as vancomycin-, methicillin-, extended-spectrum β-lactam-, carbapenem- and colistin-resistant organisms) has put the world in a dilemma. The health and economic burden associated with AMR on a global scale are dreadful. Available antimicrobials have been misused and are almost ineffective with some of these drugs associated with dangerous side effects in some individuals. Development of new, effective, and safe antimicrobials is one of the ways by which AMR burden can be reduced. The rate at which microorganisms develop AMR mechanisms outpaces the rate at which new antimicrobials are being developed. Medicinal plants are potential sources of new antimicrobial molecules. There is renewed interest in antimicrobial activities of phytochemicals. Nigeria boasts of a huge heritage of medicinal plants and there is avalanche of researches that have been undertaken to screen antimicrobial activities of these plants. Scientific compilation of these studies could provide useful information on the antimicrobial properties of the plants. This information can be useful in the development of new antimicrobial drugs. This paper reviews antimicrobial researches that have been undertaken on Nigerian medicinal plants. PMID:28512606

  13. Engineering antimicrobial peptides with improved antimicrobial and hemolytic activities.

    PubMed

    Zhao, Jun; Zhao, Chao; Liang, Guizhao; Zhang, Mingzhen; Zheng, Jie

    2013-12-23

    The rapid rise of antibiotic resistance in pathogens becomes a serious and growing threat to medicine and public health. Naturally occurring antimicrobial peptides (AMPs) are an important line of defense in the immune system against invading bacteria and microbial infection. In this work, we present a combined computational and experimental study of the biological activity and membrane interaction of the computationally designed Bac2A-based peptide library. We used the MARTINI coarse-grained molecular dynamics with adaptive biasing force method and the umbrella sampling technique to investigate the translocation of a total of 91 peptides with different amino acid substitutions through a mixed anionic POPE/POPG (3:1) bilayer and a neutral POPC bilayer, which mimic the bacterial inner membrane and the human red blood cell (hRBC) membrane, respectively. Potential of mean force (PMF, free energy profile) was obtained to measure the free energy barrier required to transfer the peptides from the bulk water phase to the water-membrane interface and to the bilayer interior. Different PMF profiles can indeed identify different membrane insertion scenarios by mapping out peptide-lipid energy landscapes, which are correlated with antimicrobial activity and hemolytic activity. Computationally designed peptides were further tested experimentally for their antimicrobial and hemolytic activities using bacteria growth inhibition assay and hemolysis assay. Comparison of PMF data with cell assay results reveals a good correlation of the peptides between predictive transmembrane activity and antimicrobial/hemolytic activity. Moreover, the most active mutants with the balanced substitutions of positively charged Arg and hydrophobic Trp residues at specific positions were discovered to achieve the improved antimicrobial activity while minimizing red blood cell lysis. Such substitutions provide more effective and cooperative interactions to distinguish the peptide interaction with

  14. Sex-, stress-, and sympathetic post-ganglionic neuron-dependent changes in the expression of pro- and anti-inflammatory mediators in rat dural immune cells

    PubMed Central

    McIlvried, Lisa A; Borghesi, Lisa A; Gold, Michael S

    2015-01-01

    Background Migraine attacks are associated with sterile inflammation of the dura. Immune cells are a primary source of inflammatory mediators, and we therefore sought to further explore the link between dural immune cells and migraine. Objective Based on the observations that migraine is more common in women than in men, stress is the most common trigger for a migraine attack, and sympathetic post-ganglionic innervation of the dura enables local control of dural immune cells, we hypothesized that stress shifts the balance of inflammatory mediator expression in dural immune cells toward those that trigger a migraine attack, where these changes are larger in females and dependent, at least in part, on sympathetic post-ganglionic innervation of the dura. Our objective was to test this hypothesis. Methods Dura were obtained from naïve or stressed, intact or surgically sympathectomized, adult male and female rats. Dura were assessed immediately or 24 hrs after termination of four continuous days of unpredictable, mild stressors. Following enzymatic digestion of each dura, myeloid and lymphoid derived dural immune cells were isolated by fluorescence activated cell sorting for semi-quantitative polymerase chain reaction analysis. Results In myeloid derived dural immune cells there was an increase in pro-inflammatory mediator mRNA following stress, particularly in females, which remained elevated with a 24 hr delay after stress. There was a stress-induced decrease in anti-inflammatory mediator mRNA immediately after stress in females, but not males. The stress-induced changes were attenuated in sympathectomized females. In lymphoid derived dural immune cells, there was a persistent increase in pro-inflammatory mediator mRNA following stress, particularly in females. A stress-induced increase in anti-inflammatory mediator mRNA was also observed in both males and females, and was further attenuated in sympathectomized females. Conclusions Consistent with our hypothesis

  15. Structure and activation of pro-activin A

    PubMed Central

    Wang, Xuelu; Fischer, Gerhard; Hyvönen, Marko

    2016-01-01

    Activins are growth factors with multiple roles in the development and homeostasis. Like all TGF-β family of growth factors, activins are synthesized as large precursors from which mature dimeric growth factors are released proteolytically. Here we have studied the activation of activin A and determined crystal structures of the unprocessed precursor and of the cleaved pro-mature complex. Replacing the natural furin cleavage site with a HRV 3C protease site, we show how the protein gains its bioactivity after proteolysis and is as active as the isolated mature domain. The complex remains associated in conditions used for biochemical analysis with a dissociation constant of 5 nM, but the pro-domain can be actively displaced from the complex by follistatin. Our high-resolution structures of pro-activin A share features seen in the pro-TGF-β1 and pro-BMP-9 structures, but reveal a new oligomeric arrangement, with a domain-swapped, cross-armed conformation for the protomers in the dimeric protein. PMID:27373274

  16. Cyclodextrins: A Weapon in the Fight Against Antimicrobial Resistance

    NASA Astrophysics Data System (ADS)

    Wong, Chew Ee; Dolzhenko, Anton V.; Lee, Sui Mae; Young, David James

    Antimicrobial resistance poses one of the most serious global challenges of our age. Cyclodextrins (CDs) are widely utilized excipients in formulations because of their solubilizing properties, low toxicity, and low inflammatory response. This review summarizes recent investigations of antimicrobial agents involving CDs and CD-based antimicrobial materials. CDs have been employed for antimicrobial applications either through formation of inclusion complexes or by chemical modification of their hydroxyl groups to tailor pharmaceutically active compounds. Applications of these CD inclusion complexes include drug delivery, antimicrobial coatings on materials (e.g., biomedical devices and implants) and antimicrobial dressings that help to prevent wound infections. There are relatively limited studies of chemically modified CDs with antimicrobial activity. The mechanism of action of antimicrobial CD inclusion complexes and derivatives needs further elucidation, but activity of CDs and their derivatives is often associated with their interaction with bacterial cell membranes.

  17. Anti-inflammatory activity of copao (Eulychnia acida Phil., Cactaceae) fruits.

    PubMed

    Jiménez-Aspee, Felipe; Alberto, Maria Rosa; Quispe, Cristina; Soriano, Maria del Pilar Caramantin; Theoduloz, Cristina; Zampini, Iris Catiana; Isla, Maria Ines; Schmeda-Hirschmann, Guillermo

    2015-06-01

    Copao (Eulychnia acida Phil., Cactaceae) is an endemic species occurring in northern Chile. The edible fruits of this plant are valued for its acidic and refreshing taste. Phenolic-enriched extracts from copao fruit pulp and epicarp, collected in the Elqui and Limari river valleys, were assessed by its in vitro ability to inhibit the pro-inflammatory enzymes lipoxygenase (LOX) and cyclooxygenases (COX-1 and COX-2). At 100 μg/mL, pulp extracts showed better effect towards LOX than epicarp extract, while COX-2 inhibition was observed for both epicarp and pulp samples. In general, the extracts were inactive towards COX-1. A positive correlation was observed between the anti-inflammatory activity and the main phenolic compounds found in this fruit. Copao fruits from the Limari valley, a main place of collection and commercialization, showed major activity, adding evidence on the possible health-beneficial effects of this native Chilean fruit.

  18. N-terminal pro-brain-type natriuretic peptide (NT-pro-BNP) and mortality risk in early inflammatory polyarthritis: results from the Norfolk Arthritis Registry (NOAR)

    PubMed Central

    Mirjafari, Hoda; Welsh, Paul; Verstappen, Suzanne M M; Wilson, Paddy; Marshall, Tarnya; Edlin, Helena; Bunn, Diane; Chipping, Jacqueline; Lunt, Mark; Symmons, Deborah P M; Sattar, Naveed; Bruce, Ian N

    2014-01-01

    Background We measured N-terminal pro-brain natriuretic peptide (NT-pro-BNP), a marker of cardiac dysfunction, in an inception cohort with early inflammatory polyarthritis (IP) and assessed its association with disease phenotype, cardiovascular disease (CVD), all-cause and CVD related mortality. Methods Subjects with early IP were recruited to the Norfolk Arthritis Register from January 2000 to December 2008 and followed up to death or until March 2010 including any data from the national death register. The associations of baseline NT-pro-BNP with IP related factors and CVD were assessed by linear regression. Cox proportional hazards models examined the independent association of baseline NT-pro-BNP with all-cause and CVD mortality. Results We studied 960 early IP subjects; 163 (17%) had prior CVD. 373 (39%) patients had a baseline NT-pro-BNP levels ≥100 pg/ml. NT-pro-BNP was associated with age, female gender, HAQ score, CRP, current smoking, history of hypertension, prior CVD and the presence of carotid plaque. 92 (10%) IP subjects died including 31 (3%) from CVD. In an age and gender adjusted analysis, having a raised NT-pro-BNP level (≥100 pg/ml) was associated with both all-cause and CVD mortality (adjusted HR (95% CI) 2.36 (1.42 to 3.94) and 3.40 (1.28 to 9.03), respectively). These findings were robust to adjustment for conventional CVD risk factors and prevalent CVD. Conclusions In early IP patients, elevated NT-pro-BNP is related to HAQ and CRP and predicts all-cause and CVD mortality independently of conventional CVD risk factors. Further study is required to identify whether NT-pro-BNP may be clinically useful in targeting intensive interventions to IP patients at greatest risk of CVD. PMID:23511225

  19. Potent pro-inflammatory and pro-fibrotic molecules, osteopontin and galectin-3, are not major disease modulators of laminin α2 chain-deficient muscular dystrophy

    PubMed Central

    Gawlik, Kinga I.; Holmberg, Johan; Svensson, Martina; Einerborg, Mikaela; Oliveira, Bernardo M. S.; Deierborg, Tomas; Durbeej, Madeleine

    2017-01-01

    A large number of human diseases are caused by chronic tissue injury with fibrosis potentially leading to organ failure. There is a need for more effective anti-fibrotic therapies. Congenital muscular dystrophy type 1A (MDC1A) is a devastating form of muscular dystrophy caused by laminin α2 chain-deficiency. It is characterized with early inflammation and build-up of fibrotic lesions, both in patients and MDC1A mouse models (e.g. dy3K/dy3K). Despite the enormous impact of inflammation on tissue remodelling in disease, the inflammatory response in MDC1A has been poorly described. Consequently, a comprehensive understanding of secondary mechanisms (impaired regeneration, enhanced fibrosis) leading to deterioration of muscle phenotype in MDC1A is missing. We have monitored inflammatory processes in dy3K/dy3K muscle and created mice deficient in laminin α2 chain and osteopontin or galectin-3, two pro-inflammatory and pro-fibrotic molecules drastically increased in dystrophic muscle. Surprisingly, deletion of osteopontin worsened the phenotype of dy3K/dy3K mice and loss of galectin-3 did not reduce muscle pathology. Our results indicate that osteopontin could even be a beneficial immunomodulator in MDC1A. This knowledge is essential for the design of future therapeutic interventions for muscular dystrophies that aim at targeting inflammation, especially that osteopontin inhibition has been suggested for Duchenne muscular dystrophy therapy. PMID:28281577

  20. Succinate Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory Macrophages.

    PubMed

    Mills, Evanna L; Kelly, Beth; Logan, Angela; Costa, Ana S H; Varma, Mukund; Bryant, Clare E; Tourlomousis, Panagiotis; Däbritz, J Henry M; Gottlieb, Eyal; Latorre, Isabel; Corr, Sinéad C; McManus, Gavin; Ryan, Dylan; Jacobs, Howard T; Szibor, Marten; Xavier, Ramnik J; Braun, Thomas; Frezza, Christian; Murphy, Michael P; O'Neill, Luke A

    2016-10-06

    Activated macrophages undergo metabolic reprogramming, which drives their pro-inflammatory phenotype, but the mechanistic basis for this remains obscure. Here, we demonstrate that upon lipopolysaccharide (LPS) stimulation, macrophages shift from producing ATP by oxidative phosphorylation to glycolysis while also increasing succinate levels. We show that increased mitochondrial oxidation of succinate via succinate dehydrogenase (SDH) and an elevation of mitochondrial membrane potential combine to drive mitochondrial reactive oxygen species (ROS) production. RNA sequencing reveals that this combination induces a pro-inflammatory gene expression profile, while an inhibitor of succinate oxidation, dimethyl malonate (DMM), promotes an anti-inflammatory outcome. Blocking ROS production with rotenone by uncoupling mitochondria or by expressing the alternative oxidase (AOX) inhibits this inflammatory phenotype, with AOX protecting mice from LPS lethality. The metabolic alterations that occur upon activation of macrophages therefore repurpose mitochondria from ATP synthesis to ROS production in order to promote a pro-inflammatory state. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  1. Hydrocarbon-stapled lipopeptides exhibit selective antimicrobial activity.

    PubMed

    Jenner, Zachary B; Crittenden, Christopher M; Gonzalez, Martín; Brodbelt, Jennifer S; Bruns, Kerry A

    2017-05-01

    Antimicrobial peptides (AMPs) occur widely in nature and have been studied for their therapeutic potential. AMPs are of interest due to the large number of possible chemical structural combinations using natural and unnatural amino acids, with varying effects on their biological activities. Using physicochemical properties from known naturally occurring amphipathic cationic AMPs, several hydrocarbon-stapled lipopeptides (HSLPs) were designed, synthesized, and tested for antimicrobial properties. Peptides were chemically modified by N-terminal acylation, C-terminal amidation, and some were hydrocarbon stapled by intramolecular olefin metathesis. The effects of peptide length, amphipathic character, and stapling on antimicrobial activity were tested against Escherichia coli, three species of Gram-positive bacteria (Staphylococcus aureus, Bacillus megaterium, and Enterococcus faecalis), and two strains of Candida albicans. Peptides were shown to disrupt liposomes of different phospholipid composition, as measured by leakage of a fluorescent compound from vesicles. Peptides with (S)-2-(4'-pentenyl)-alanine substituted for l-alanine in a reference peptide showed a marked increase in antimicrobial activity, hemolysis, and membrane disruption. Stapled peptides exhibited slightly higher antimicrobial potency; those with greatest hydrophobic character showed the greatest hemolysis and liposome leakage, but lower antimicrobial activity. The results support a model of HSLPs as membrane-disruptive AMPs with potent antimicrobial activity and relatively low hemolytic potential at biologically active peptide concentrations. © 2017 Wiley Periodicals, Inc.

  2. Pro-inflammatory Analysis of Macrophages in Contact with Titanium Particles and Porphyromonas gingivalis.

    PubMed

    Dodo, Cindy Goes; Meirelles, Luiz; Aviles-Reyes, Alejandro; Ruiz, Karina Gonzalez Silvério; Abranches, Jacqueline; Cury, Altair Antoninha Del Bel

    2017-01-01

    During insertion of titanium dental implants, particles may shear from the implant to the periimplant region causing osteolysis, and their association with bacteria can exacerbate the inflammatory reaction. However, the association of a high invasive bacterium from the oral cavity, Porphyromonas gingivalis (Pg), and titanium particles remains unknown. This study evaluated pro-inflammatory reaction of human macrophages in contact with micro and nanoparticles of titanium associated with Porphyromonas gingivalis lipopolysaccharide (PgLPS). THP-1 cell were used and treated for 12, 24 and 48 h following 6 groups: Control(C), PgLPS (L); Microparticles (M); Nanoparticles (N); PgLPS and microparticles (LM); PgLPS and nanoparticles (LN). The following assays were carried out: i) cell viability using MTS, ii) cell morphology by SEM and iii) expression of tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β) and interleukin-6 (IL-6) by qRT-PCR and ELISA. For statistics two-way ANOVA followed by Tukey's test was used (p<0.05). After treatment, cells presented similar viability and morphology demonstrating that the treatments were not able to induce cell death. Gene expression was significantly higher for TNF-α and IL1-β after 12 h, and for IL-6 after 24 h in the N and LN groups. Cytokine production over time was an ascending curve for TNF-α with the peak at 48 h and IL1-β and IL-6 had a straight line among the time points, although cells from N group presented a significant production of IL-6 at 48 h. In conclusion, these results suggest that titanium nanoparticles stimulate stronger pro-inflammatory response in macrophages, independent of their association with LPS from P.gingivalis.

  3. Anti-inflammatory effect of a human prothrombin fragment-2-derived peptide, NSA9, in EOC2 microglia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Ji Yeon; Kim, Tae Hyong; Kim, Soung Soo

    2008-04-11

    Pro-inflammatory mediators, such as nitric oxide (NO), prostaglandin E{sub 2} (PGE{sub 2}), and several cytokines (tumor necrosis factor (TNF)-{alpha}, interleukin (IL)-1{beta}, and IL-6) are responsible for central nervous system (CNS) injuries that include ischemia, Alzheimer's disease, and neural death. Inhibition of these pro-inflammatory mediators would be an effective therapy to reduce the progression of neurodegenerative diseases. In this study, we examined the anti-inflammatory effects of a human prothrombin fragment-2-derived peptide, NSA9 (NSAVQLVEN), on the production of pro-inflammatory mediators in lipopolysaccharide (LPS)-activated brain microglia. NSA9 significantly inhibited the release of NO, PGE{sub 2}, and pro-inflammatory cytokines in a dose-dependent manner. Furthermore,more » NSA9 reduced the expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 mRNA and protein, which control the production of NO and PGE{sub 2}, respectively. Moreover, NSA9 suppressed the LPS-induced nuclear translocation and activation of nuclear factor-{kappa}B (NF-{kappa}B). These results suggest that NSA9 strongly inhibits the pro-inflammatory responses of microglia through the modulation of NF-{kappa}B activity.« less

  4. RTA 408, A Novel Synthetic Triterpenoid with Broad Anticancer and Anti-Inflammatory Activity

    PubMed Central

    Probst, Brandon L.; Trevino, Isaac; McCauley, Lyndsey; Bumeister, Ron; Dulubova, Irina; Wigley, W. Christian; Ferguson, Deborah A.

    2015-01-01

    Semi-synthetic triterpenoids are antioxidant inflammation modulator (AIM) compounds that inhibit tumor cell growth and metastasis. Compounds in the AIM class bind to Keap1 and attenuate Nrf2 degradation. In the nucleus, Nrf2 increases antioxidant gene expression and reduces pro-inflammatory gene expression. By increasing Nrf2 activity, AIMs reduce reactive oxygen species and inflammation in the tumor microenvironment, which reverses tumor-mediated immune evasion and inhibits tumor growth and metastasis. AIMs also directly inhibit tumor cell growth by modulating oncogenic signaling pathways, such as IKKβ/NF-κB. Here, we characterized the in vitro antioxidant, anti-inflammatory, and anticancer activities of RTA 408, a novel AIM that is currently being evaluated in patients with advanced malignancies. At low concentrations (≤ 25 nM), RTA 408 activated Nrf2 and suppressed nitric oxide and pro-inflammatory cytokine levels in interferon-γ-stimulated RAW 264.7 macrophage cells. At higher concentrations, RTA 408 inhibited tumor cell growth (GI50 = 260 ± 74 nM) and increased caspase activity in tumor cell lines, but not in normal primary human cells. Consistent with the direct effect of AIMs on IKKβ, RTA 408 inhibited NF-κB signaling and decreased cyclin D1 levels at the same concentrations that inhibited cell growth and induced apoptosis. RTA 408 also increased CDKN1A (p21) levels and JNK phosphorylation. The in vitro activity profile of RTA 408 is similar to that of bardoxolone methyl, which was well-tolerated by patients at doses that demonstrated target engagement. Taken together, these data support clinical evaluation of RTA 408 for cancer treatment. PMID:25897966

  5. Antimicrobial activity of chemomechanical gingival retraction products.

    PubMed

    Hsu, Belinda; Lee, Stephanie; Schwass, Donald; Tompkins, Geoffrey

    2017-07-01

    Application of astringent hemostatic agents is the most widely used technique for gingival retraction, and a variety of products are offered commercially. However, these products may have additional unintended yet clinically beneficial properties. The authors assessed the antimicrobial activities of marketed retraction products against plaque-associated bacteria in both planktonic and biofilm assays, in vitro. The authors assessed hemostatic solutions, gels, pellets, retraction cords, pastes, and their listed active agents against a collection of microorganisms by means of conventional agar diffusion and minimum bacteriostatic and bactericidal concentration determinations. The authors then tested the most active products against monospecies biofilms grown on hydroxyapatite disks. All of the tested retraction products exhibited some antimicrobial activity. The results of the most active products were comparable with those of a marketed mouthwash. The listed retraction-active agents displayed relatively little activity when tested in pure form. At 10% dilution, some products evidenced inhibitory activity against most tested bacteria within 3 minutes of exposure, whereas others displayed variable effects after 10 minutes. The most active agents reduced, but did not completely prevent, the metabolic activity of a monospecies biofilm. Commercial gingival retraction products exhibit antimicrobial effects to various degrees in vitro. Some products display rapid bactericidal activity. The antimicrobial activity is not owing to the retraction-active agents. Biofilm bacteria are less sensitive to the antimicrobial effects of the agents. The rapidity of killing by some hemostatic agents suggests an antimicrobial effect that may be efficacious during clinical placement. The results of this in vitro study suggest that clinicians should be aware of the potential antimicrobial effects of some hemostatic agents, but more research is needed to confirm these observations in

  6. Truncated thioredoxin (Trx-80) promotes pro-inflammatory macrophages of the M1 phenotype and enhances atherosclerosis.

    PubMed

    Mahmood, Dler Faieeq Darweesh; Abderrazak, Amna; Couchie, Dominique; Lunov, Oleg; Diderot, Vimala; Syrovets, Tatiana; Slimane, Mohamed-Naceur; Gosselet, Fabien; Simmet, Thomas; Rouis, Mustapha; El Hadri, Khadija

    2013-07-01

    Vascular cells are particularly susceptible to oxidative stress that is believed to play a key role in the pathogenesis of cardiovascular disorders. Thioredoxin-1 (Trx-1) is an oxidative stress-limiting protein with anti-inflammatory and anti-apoptotic properties. In contrast, its truncated form (Trx-80) exerts pro-inflammatory effects. Here we analyzed whether Trx-80 might exert atherogenic effects by promoting macrophage differentiation into the M1 pro-inflammatory phenotype. Trx-80 at 1 µg/ml significantly attenuated the polarization of anti-inflammatory M2 macrophages induced by exposure to either IL-4 at 15 ng/ml or IL-4/IL-13 (10 ng/ml each) in vitro, as evidenced by the expression of the characteristic markers, CD206 and IL-10. By contrast, in LPS-challenged macrophages, Trx-80 significantly potentiated the differentiation into inflammatory M1 macrophages as indicated by the expression of the M1 cytokines, TNF-α and MCP-1. When Trx-80 was administered to hyperlipoproteinemic ApoE2.Ki mice at 30 µg/g body weight (b.w.) challenged either with LPS at 30 µg/30 g (b.w.) or IL-4 at 500 ng/30 g (b.w.), it significantly induced the M1 phenotype but inhibited differentiation of M2 macrophages in thymus and liver. When ApoE2.Ki mice were challenged once weekly with LPS for 5 weeks, they showed severe atherosclerotic lesions enriched with macrophages expressing predominantly M1 over M2 markers. Such effect was potentiated when mice received daily, in addition to LPS, the Trx-80. Moreover, the Trx-80 treatment led to a significantly increased aortic lesion area. The ability of Trx-80 to promote differentiation of macrophages into the classical proinflammatory phenotype may explain its atherogenic effects in cardiovascular diseases. Copyright © 2013 Wiley Periodicals, Inc.

  7. Therapeutic potential of GW501516 and the role of Peroxisome proliferator-activated receptor β/δ and B-cell lymphoma 6 in inflammatory signaling in human pancreatic cancer cells.

    PubMed

    Smith, Russell W; Coleman, Jeffrey D; Thompson, Jerry T; Vanden Heuvel, John P

    2016-12-01

    Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) is a member of the nuclear receptor superfamily and a ligand-activated transcription factor that is involved in the regulation of the inflammatory response via activation of anti-inflammatory target genes and ligand-induced disassociation with the transcriptional repressor B-cell lymphoma 6 (BCL6). Chronic pancreatitis is considered to be a significant etiological factor for pancreatic cancer development, and a better understanding of the underlying mechanisms of the transition between inflammation and carcinogenesis would help further elucidate chemopreventative options. The aim of this study was to determine the role of PPARβ/δ and BCL6 in human pancreatic cancer of ductal origin, as well as the therapeutic potential of PPARβ/δ agonist, GW501516. Over-expression of PPARβ/δ inhibited basal and TNFα-induced Nfkb luciferase activity. GW501516-activated PPARβ/δ suppressed TNFα-induced Nfkb reporter activity. RNAi knockdown of Pparb attenuated the GW501516 effect on Nfkb luciferase, while knockdown of Bcl6 enhanced TNFα-induced Nfkb activity. PPARβ/δ activation induced expression of several anti-inflammatory genes in a dose-dependent manner, and GW501516 inhibited Mcp1 promoter-driven luciferase in a BCL6-dependent manner. Several pro-inflammatory genes were suppressed in a BCL6-dependent manner. Conditioned media from GW501516-treated pancreatic cancer cells suppressed pro-inflammatory expression in THP-1 macrophages as well as reduced invasiveness across a basement membrane. These results demonstrate that PPARβ/δ and BCL6 regulate anti-inflammatory signaling in human pancreatic cancer cells by inhibiting NFκB and pro-inflammatory gene expression, and via induction of anti-inflammatory target genes. Activation of PPARβ/δ may be a useful target in pancreatic cancer therapeutics.

  8. Pro-Inflammatory and Pro-Fibrogenic Effects of Ionic and Particulate Arsenide and Indium-Containing Semiconductor Materials in the Murine Lung.

    PubMed

    Jiang, Wen; Wang, Xiang; Osborne, Olivia J; Du, Yingjie; Chang, Chong Hyun; Liao, Yu-Pei; Sun, Bingbing; Jiang, Jinhong; Ji, Zhaoxia; Li, Ruibin; Liu, Xiangsheng; Lu, Jianqin; Lin, Sijie; Meng, Huan; Xia, Tian; Nel, André E

    2017-02-28

    We have recently shown that the toxicological potential of GaAs and InAs particulates in cells is size- and dissolution-dependent, tending to be more pronounced for nano- vs micron-sized particles. Whether the size-dependent dissolution and shedding of ionic III-V materials also apply to pulmonary exposure is unclear. While it has been demonstrated that micron-sized III-V particles, such as GaAs and InAs, are capable of inducing hazardous pulmonary effects in an occupational setting as well as in animal studies, the effect of submicron particles (e.g., the removal of asperities during processing of semiconductor wafers) is unclear. We used cytokine profiling to compare the pro-inflammatory effects of micron- and nanoscale GaAs and InAs particulates in cells as well as the murine lung 40 h and 21 days after oropharyngeal aspiration. Use of cytokine array technology in macrophage and epithelial cell cultures demonstrated a proportionally higher increase in the levels of matrix metalloproteinase inducer (EMMPRIN), macrophage migration inhibitory factor (MIF), and interleukin 1β (IL-1β) by nanosized (n) GaAs and n-InAs as well as As(III). n-GaAs and n-InAs also triggered higher neutrophil counts in the bronchoalveolar lavage fluid (BALF) of mice than micronscale particles 40 h post-aspiration, along with increased production of EMMPRIN and MIF. In contrast, in animals sacrificed 21 days after exposure, only n-InAs induced fibrotic lung changes as determined by increased lung collagen as well as increased levels of TGF-β1 and PDGF-AA in the BALF. A similar trend was seen for EMMPRIN and matrix metallopeptidase (MMP-9) levels in the BALF. Nano- and micron-GaAs had negligible subacute effects. Importantly, the difference between the 40 h and 21 days data appears to be biopersistence of n-InAs, as demonstrated by ICP-OES analysis of lung tissue. Interestingly, an ionic form of In, InCl 3 , also showed pro-fibrogenic effects due to the formation of insoluble In(OH) 3

  9. Pro-Inflammatory and Pro-Fibrogenic Effects of Ionic and Particulate Arsenide and Indium-Containing Semiconductor Materials in the Murine Lung

    PubMed Central

    Jiang, Wen; Wang, Xiang; Osborne, Olivia J.; Du, Yingjie; Chang, Chong Hyun; Liao, Yu-Pei; Sun, Bingbing; Jiang, Jinhong; Ji, Zhaoxia; Li, Ruibin; liu, Xiangsheng; Lu, Jianqin; Lin, Sijie; Meng, Huan; Xia, Tian; Nel, André E.

    2017-01-01

    We have recently shown that the toxicological potential of GaAs and InAs particulates in cells is size- and dissolution-dependent, tending to be more pronounced for nano- vs. micron-sized particles. Whether the size-dependent dissolution and shedding of ionic III-V materials also apply to pulmonary exposure is unclear. While has been demonstrated that micron-sized III-V particles, such as GaAs and InAs, are capable of inducing hazardous pulmonary effects in an occupational setting, as well as in animal studies, the effect of sub-micron particles (e.g., the removal of asperities during processing of semiconductor wafers) is unclear. We used cytokine profiling to compare the pro-inflammatory effects of micron- and nanoscale GaAs and InAs particulates in cells as well as the murine lung 40 h and 21 days after oropharyngeal aspiration. Use of cytokine array technology in macrophage and epithelial cell cultures demonstrated a proportionally higher increase in the levels of extracellular matrix metalloproteinase inducer (EMMPRIN), macrophage migration inhibitory factor (MIF), and interleukin 1β (IL-1β) by nano-sized (n) GaAs and n-InAs as well as As(III). n-GaAs and n-InAs also triggered higher neutrophil counts in the bronchoalveolar lavage fluid (BALF) of mice than micronscale particles 40 h post-aspiration, along with increased production of EMMPRIN and MIF. In contrast, in animals sacrificed 21 days after exposure, only n-InAs induced fibrotic lung changes as determined by increased lung collagen as well as increased levels of TGF-β1 and PDGF-AA in the BALF. A similar trend was seen for EMMPRIN and matrix metallopeptidase (MMP-9) levels in the BALF. Nano- and micron-GaAs had negligible sub-acute effects. Importantly, the difference between the 40 h and 21 days data appears to be biopersistence of n-InAs, as demonstrated by ICP-OES analysis of lung tissue. Interestingly, an ionic form of In, InCl3, also showed pro-fibrogenic effects due to the formation of

  10. Persistent activation of nuclear factor-kappa B and expression of pro-inflammatory cytokines in bone marrow cells after exposure of mice to protons

    NASA Astrophysics Data System (ADS)

    Rithidech, Kanokporn; Reungpatthanaphong, Paiboon; Honikel, Louise; Whorton, Elbert

    Protons are the most abundant component of solar particle events (SPEs) in space. Information is limited on early-and late-occurring in vivo biological effects of exposure to protons at doses and dose rates that are similar to what astronauts encounter in space. We conducted a study series to fill this knowledge gap. We focused on the biological effects of 100 MeV/n protons, which are one of the most abundant types of protons induced during SPEs. We gave BALB/cJ mice a whole-body exposure to 0.5 or 1.0 Gy of 100 MeV/n protons, delivered at 0.5 or 1.0 cGy/min. These doses and dose rates of protons were selected because they are comparable to those of SPEs taking place in space. For each dose and dose rate of 100 MeV/n protons, mice exposed to 0 Gy of protons served as sham controls. Mice included in this study were also part of a study series conducted to examine the extent and the mechanisms involved in in vivo induction of genomic instability (expressed as late-occurring chromosome instability) by 100 MeV/n protons. Bone marrow (BM) cells were collected from groups of mice for analyses at different times post-exposure, i.e. early time-points (1.5, 3, and 24 hr) and late time-points (1 and 6 months). At each harvest time, there were five mice per treatment group. Several endpoints were used to investigate the biological effects of 100 MeV/n protons in BM cells from irradiated and sham control mice. The scope of this study was to determine the dose-rate effects of 0.5 Gy of 100 MeV/n protons in BM cells on the kinetics of nuclear factor-kappa B (NF-kappa B) activation and the expression of selected NF-kappa B target proteins known to be involved in inflammatory response, i.e. pro-inflammatory cytokines (TNF-alpha, IL-1 beta, and IL-6). Significantly high levels (p values ranging from p¡0.01 and p¡0.05) of activated NF-kappa B were observed in BM cells collected from irradiated mice, relative to those obtained from the corresponding sham controls, at all time

  11. EFFECT OF PREGNANE XENOBIOTIC RECEPTOR ACTIVATION ON INFLAMMATORY BOWEL DISEASE TREATED WITH RIFAXIMIN.

    PubMed

    Wan, Y C; Li, T; Han, Y-D; Zhang, H-Y; Lin, H; Zhang, B

    2015-01-01

    The causes and pathogenesis of Inflammatory Bowel Disease (IBD) are still not clearly understood. This study aims to prove the important role of rifaximin played in inflammatory reaction caused by abnormity of the intestinal mucosal immune system. Intestinal microflora can greatly promote and maintain the inflammatory reaction of IBD, therefore, antibiotics can be used to treat IBD. Rifaximin is a medicine usually used for local intestinal infection. Many clinical and basic studies have shown that both a single application of rifaximin and the joint application with other medicines could achieve a good efficacy. This paper studied the activation of Pregnane Xenobiotic Receptor (PXR) in treating IBD with rifaximin and analyzed its efficacy in IBD when PXR was involved in the transport of medicine and metabolism. The results prove that rifaximin can not only serve as an anti-microbial drug, but can activate PXR and actually weaken the reaction of IBD. Thus it is safe to say that rifaximin has great potential in treating IBD.

  12. Antimicrobial Peptides and Complement in Neonatal Hypoxia-Ischemia Induced Brain Damage

    PubMed Central

    Rocha-Ferreira, Eridan; Hristova, Mariya

    2015-01-01

    Hypoxic-ischemic encephalopathy (HIE) is a clinical condition in the neonate, resulting from oxygen deprivation around the time of birth. HIE affects 1–5/1000 live births worldwide and is associated with the development of neurological deficits, including cerebral palsy, epilepsy, and cognitive disabilities. Even though the brain is considered as an immune-privileged site, it has innate and adaptive immune response and can produce complement (C) components and antimicrobial peptides (AMPs). Dysregulation of cerebral expression of AMPs and C can exacerbate or ameliorate the inflammatory response within the brain. Brain ischemia triggers a prolonged inflammatory response affecting the progression of injury and secondary energy failure and involves both innate and adaptive immune systems, including immune-competent and non-competent cells. Following injury to the central nervous system (CNS), including neonatal hypoxia-ischemia (HI), resident microglia, and astroglia are the main cells providing immune defense to the brain in a stimulus-dependent manner. They can express and secrete pro-inflammatory cytokines and therefore trigger prolonged inflammation, resulting in neurodegeneration. Microglial cells express and release a wide range of inflammation-associated molecules including several components of the complement system. Complement activation following neonatal HI injury has been reported to contribute to neurodegeneration. Astrocytes can significantly affect the immune response of the CNS under pathological conditions through production and release of pro-inflammatory cytokines and immunomodulatory AMPs. Astrocytes express β-defensins, which can chemoattract and promote maturation of dendritic cells (DC), and can also limit inflammation by controlling the viability of these same DC. This review will focus on the balance of complement components and AMPs within the CNS following neonatal HI injury and the effect of that balance on the subsequent brain damage

  13. Anti-inflammatory intestinal activity of Combretum duarteanum Cambess. in trinitrobenzene sulfonic acid colitis model

    PubMed Central

    de Morais Lima, Gedson Rodrigues; Machado, Flavia Danniele Frota; Périco, Larissa Lucena; de Faria, Felipe Meira; Luiz-Ferreira, Anderson; Souza Brito, Alba Regina Monteiro; Pellizzon, Cláudia Helena; Hiruma-Lima, Clélia Akiko; Tavares, Josean Fechine; Barbosa Filho, José Maria; Batista, Leônia Maria

    2017-01-01

    AIM To evaluate the anti-inflammatory intestinal effect of the ethanolic extract (EtOHE) and hexane phase (HexP) obtained from the leaves of Combretum duarteanum (Cd). METHODS Inflammatory bowel disease was induced using trinitrobenzenesulfonic acid in acute and relapsed ulcerative colitis in rat models. Damage scores, and biochemical, histological and immunohistochemical parameters were evaluated. RESULTS Both Cd-EtOHE and Cd-HexP caused significant reductions in macroscopic lesion scores and ulcerative lesion areas. The vegetable samples inhibited myeloperoxidase increase, as well as pro-inflammatory cytokines TNF-α and IL-1β. Anti-inflammatory cytokine IL-10 also increased in animals treated with the tested plant samples. The anti-inflammatory intestinal effect is related to decreased expression of cyclooxygenase-2, proliferating cell nuclear antigen, and an increase in superoxide dismutase. CONCLUSION The data indicate anti-inflammatory intestinal activity. The effects may also involve participation of the antioxidant system and principal cytokines relating to inflammatory bowel disease. PMID:28293082

  14. Pro-Inflammatory wnt5a and Anti-Inflammatory sFRP5 Are Differentially Regulated by Nutritional Factors in Obese Human Subjects

    PubMed Central

    Schulte, Dominik M.; Müller, Nike; Neumann, Katrin; Oberhäuser, Frank; Faust, Michael; Güdelhöfer, Heike; Brandt, Burkhard; Krone, Wilhelm; Laudes, Matthias

    2012-01-01

    Background Obesity is associated with macrophage infiltration of adipose tissue. These inflammatory cells affect adipocytes not only by classical cytokines but also by the secreted glycopeptide wnt5a. Healthy adipocytes are able to release the wnt5a inhibitor sFRP5. This protective effect, however, was found to be diminished in obesity. The aim of the present study was to examine (1) whether obese human subjects exhibit increased serum concentrations of wnt5a and (2) whether wnt5a and/or sFRP5 serum concentrations in obese subjects can be influenced by caloric restriction. Methodology 23 obese human subjects (BMI 44.1±1.1 kg/m2) and 12 age- and sex-matched lean controls (BMI 22.3±0.4 kg/m2) were included in the study. Obese subjects were treated with a very low-calorie diet (approximately 800 kcal/d) for 12 weeks. Body composition was assessed by impedance analysis, insulin sensitivity was estimated by HOMA-IR and the leptin-to-adiponectin ratio and wnt5a and sFRP5 serum concentrations were measured by ELISA. sFRP5 expression in human adipose tissue biopsies was further determined on protein level by immunohistology. Principal Findings Pro-inflammatory wnt5a was not measurable in any serum sample of lean control subjects. In patients with obesity, however, wnt5a became significantly detectable consistent with low grade inflammation in such subjects. Caloric restriction resulted in a weight loss from 131.9±4.0 to 112.3±3.2 kg in the obese patients group. This was accompanied by a significant decrease of HOMA-IR and leptin-to-adiponectin ratio, indicating improved insulin sensitivity. Interestingly, these metabolic improvements were associated with a significant increase in serum concentrations of the anti-inflammatory factor and wnt5a-inhibitor sFRP5. Conclusions/Significance Obesity is associated with elevated serum levels of pro-inflammatory wnt5a in humans. Furthermore, caloric restriction beneficially affects serum concentrations of anti-inflammatory sFRP5

  15. The drug efflux pump Pgp1 in pro-inflammatory lymphocytes is a target for novel treatment strategies in COPD.

    PubMed

    Hodge, Greg; Holmes, Mark; Jersmann, Hubertus; Reynolds, Paul N; Hodge, Sandra

    2013-06-03

    Pro-inflammatory/cytotoxic T cells (IFNγ, TNFα, granzyme B+) are increased in the peripheral circulation in COPD. NKT-like and NK cells are effector lymphocytes that we have also shown to be major sources of pro-inflammatory cytokines and granzymes. P-glycoprotein 1 (Pgp1) is a transmembrane efflux pump well characterised in drug resistant cancer cells. We hypothesized that Pgp1 would be increased in peripheral blood T, NKT-like and NK cells in patients with COPD, and that this would be accompanied by increased expression of IFNγ, TNFα and granzyme B. We further hypothesized that treatment with cyclosporine A, a Pgp1 inhibitor, would render cells more sensitive to treatment with corticosteroids. Pgp1, granzyme B, IFNγ and TNFα expression were measured in peripheral blood T, NK and NKT-like cells from COPD patients and control subjects (± cyclosporine A and prednisolone) following in vitro stimulation and results correlated with uptake of efflux dye Calcein-AM using flow cytometry. There was increased Pgp1 expression by peripheral blood T, NKT-like and NK cells co-expressing IFNγ, TNFα and granzyme B in COPD patients compared with controls (e.g. %IFNγ/Pgp1 T, NKT-like, NK for COPD (Control): 25(6), 54(27), 39(23)). There was an inverse correlation between Pgp1 expression and Calcein-AM uptake. Treatment with 2.5 ng/ml cylosporin A and10-6 M prednisolone resulted in synergistic inhibition of pro-inflammatory cytokines in Pgp1 + cells (p < 0.05 for all). Treatment strategies that target Pgp1 in T, NKT-like and NK cells may reduce systemic inflammatory mediators in COPD and improve patient morbidity.

  16. Recombinant human erythropoietin reduces plasminogen activator inhibitor and ameliorates pro-inflammatory responses following trauma

    PubMed Central

    Shiehmorteza, M.; Ahmadi, A.; Abdollahi, M.; Nayebpour, M.; Mohammadi, M.; Hamishehkar, H.; Najafi, A.; Pazoki, M.; Mojtahedzadeh, M.

    2011-01-01

    Background and the purpose of the study sBesides its hematopoietic effects, erythropoietin (EPO) by mobilization of iron and modulation of some inflammatory cytokines has antioxidant and anti-inflammatory properties. The purpose of this study was to evaluate these effects of erythropoietin and its impact on organ function in traumatized patients. Methods Twenty-six ICU-admitted traumatized patients within 24 hrs after trauma were randomly assigned to the EPO (received EPO, 300 units/Kg/day) and Control (not received EPO) groups. The inflammatory biomarkers including Tumor Necrosis Factor alpha (TNF-α), Interleukin 1 (IL-1), Plasminogen Activator Inhibitor 1 (PAI-1) and Nitrotyrosine were recorded at the admission, 3, 6 and 9 days thereafter. Acute Physiology and Chronic Health Evaluation (APACHE II) and Sequential Organ Failure Assessment (SOFA) scores were also recorded. Results Among 12 patients (EPO group) TNF-α level at the day of 9 (P=0.046), and within EPO group at the days of 3 (P=0.026 ameliorate), 6 (P=0.016), and 9 (P=0.052) were significantly lowered. Level of IL-1 and PAI-1 decreased significantly at days of 3, 6 and 9 post intervention. Also there were significant differences between two groups in the SOFA score during three measured time intervals (the first, third and seventh days). Conclusion From the results of this study it seems that injection of erythrocyte stimulating agent is well tolerated and inhibits the inflammatory response and oxidative stress following trauma. PMID:22615653

  17. Pro-Inflammatory Cytokine Levels in HIV Infected and Uninfected Pregnant Women with and without Preeclampsia.

    PubMed

    Maharaj, Niren Ray; Phulukdaree, Alisa; Nagiah, Savania; Ramkaran, Prithiksha; Tiloke, Charlette; Chuturgoon, Anil Amichund

    2017-01-01

    Preeclampsia and HIV/AIDS are inflammatory conditions that contribute significantly to adverse maternal and foetal outcomes. The immune reconstitution effects of HAART on inflammatory mediators has not been adequately studied in pregnancy and may impact on the inflammatory cytokine network in women with co-morbid preeclampsia. Our study evaluated changes in pro-inflammatory cytokines IL-2, TNF-α, IFN-γ and IL-6 in HIV infected preeclamptic women on HAART. A prospective experimental study was conducted at Prince Mshiyeni Memorial Hospital between July 2013 and September 2014. One hundred and ninety three pregnant women were recruited into 4 groups: uninfected normotensive (50; 26%), infected normotensive (45; 23%), uninfected preeclamptic (53; 28%) and infected preeclamptic women (45; 23%). Serum levels of cytokines TNF-α, IFN- γ, IL-2 and IL-6 were determined using commercially available kits and a Cytometric Bead Array (CBA). Comparative data was recorded and analysed descriptively. In the control groups (normotensive), significantly lower values were found in IL-2 (p = 0.010), TNF-α (p = 0.045), and IL-6 (p = 0.005); and a non-significant decrease was observed in IFN-γ (p = 0.345) in HIV infected women on HAART compared to uninfected controls. In the experimental group (preeclamptic) women, significantly reduced levels were observed in IL-2 and TNF-α (p = 0.001; p = 0.000) and non-significant decreases were observed in IFN-γ and IL-6 (p = 0.023; p = 0.086) in HIV infected women on HAART compared with uninfected preeclamptic women. Non-significant differences were observed between uninfected preeclamptic and normotensive women. In uncomplicated/normotensive pregnancies, HIV/HAART is associated with significant decreases in IL-2, TNF-α and IL-6, and in preeclamptic women significant decreases in IL-2 and TNF-α were observed. These findings suggest that HIV/HAART impacts on pro-inflammatory cytokines in women with co-morbid preeclampsia. This provides a

  18. Short-term alpha-tocopherol treatment during neonatal period modulates pro-inflammatory response to endotoxin (LPS) challenge in the same calves several months later

    USDA-ARS?s Scientific Manuscript database

    Vitamin E, a major natural antioxidant, has been previously shown to attenuate pro-inflammatory response to immune challenge in cattle. Our objective was to evaluate the effect of short-term treatment with alpha-tocopherol in newborn calves on selected elements of the pro-inflamatory response to LPS...

  19. Effect of re-expansion after short-period lung collapse on pulmonary capillary permeability and pro-inflammatory cytokine gene expression in isolated rabbit lungs.

    PubMed

    Funakoshi, T; Ishibe, Y; Okazaki, N; Miura, K; Liu, R; Nagai, S; Minami, Y

    2004-04-01

    Re-expansion pulmonary oedema is a rare complication caused by rapid re-expansion of a chronically collapsed lung. Several cases of pulmonary oedema associated with one-lung ventilation (OLV) have been reported recently. Elevated levels of pro-inflammatory cytokines in pulmonary oedema fluid are suggested to play important roles in its development. Activation of cytokines after re-expansion of collapsed lung during OLV has not been thoroughly investigated. Here we investigated the effects of re-expansion of the collapsed lung on pulmonary oedema formation and pro-inflammatory cytokine expression. Lungs isolated from female white Japanese rabbits were perfused and divided into a basal (BAS) group (n=7, baseline measurement alone), a control (CONT) group (n=9, ventilated without lung collapse for 120 min) and an atelectasis (ATEL) group (n=9, lung collapsed for 55 min followed by re-expansion and ventilation for 65 min). Pulmonary vascular resistance (PVR) and the coefficient of filtration (Kfc) were measured at baseline and 60 and 120 min. At the end of perfusion, bronchoalveolar lavage fluid/plasma protein ratio (B/P), wet/dry lung weight ratio (W/D) and mRNA expressions of tumour necrosis factor (TNF)-alpha, interleukin (IL)-1beta and myeloperoxidase (MPO) were determined. TNF-alpha and IL-1beta mRNA were significantly up-regulated in lungs of the ATEL group compared with BAS and CONT, though no significant differences were noted in PVR, Kfc, B/P and W/D within and between groups. MPO increased at 120 min in CONT and ATEL groups. Pro-inflammatory cytokines were up-regulated upon re-expansion and ventilation after short-period lung collapse, though no changes were noted in pulmonary capillary permeability.

  20. Anti-Inflammatory Activity of Citric Acid-Treated Wheat Germ Extract in Lipopolysaccharide-Stimulated Macrophages.

    PubMed

    Jeong, Hee-Yeong; Choi, Yong-Seok; Lee, Jae-Kang; Lee, Beom-Joon; Kim, Woo-Ki; Kang, Hee

    2017-07-10

    Until recently, fermentation was the only processing used to improve the functionality of wheat germ. The release of 2,6-dimethoxy-1,4-benzoquinone (DMBQ) from hydroquinone glycosides during the fermentation process is considered a marker of quality control. Here, we treated wheat germ extract with citric acid (CWG) to release DMBQ and examined the anti-inflammatory activity of this extract using a lipopolysaccharide-activated macrophage model. Treatment of wheat germ with citric acid resulted in detectable release of DMBQ but reduced total phenolic and total flavonoid contents compared with untreated wheat germ extract (UWG). CWG inhibited secretion of the pro-inflammatory cytokines tumor necrosis factor-α, interleukin (IL)-6, and IL-12 and the synthesis of cyclooxygenase-2, while UWG only decreased IL-12 production. CWG and UWG induced high levels of anti-inflammatory IL-10 and heme oxygenase-1. CWG specifically inhibited phosphorylation of NF-κB p65 and p38 kinase at 15 min after LPS stimulation. Our study showed that citric acid treatment enhanced the anti-inflammatory activity of wheat germ extract.

  1. Structure-Based Design and Synthesis of a Small Molecule that Exhibits Anti-inflammatory Activity by Inhibition of MyD88-mediated Signaling to Bacterial Toxin Exposure.

    PubMed

    Alam, Shahabuddin; Javor, Sacha; Degardin, Melissa; Ajami, Dariush; Rebek, Mitra; Kissner, Teri L; Waag, David M; Rebek, Julius; Saikh, Kamal U

    2015-08-01

    Both Gram-positive and Gram-negative pathogens or pathogen-derived components, such as staphylococcal enterotoxins (SEs) and endotoxin (LPS) exposure, activate MyD88-mediated pro-inflammatory cellular immunity for host defense. However, dysregulated MyD88-mediated signaling triggers exaggerated immune response that often leads to toxic shock and death. Previously, we reported a small molecule compound 1 mimicking BB-loop structure of MyD88 was capable of inhibiting pro-inflammatory response to SEB exposure in mice. In this study, we designed a dimeric structure compound 4210 covalently linked with compound 1 by a non-polar cyclohexane linker which strongly inhibited the production of pro-inflammatory cytokines in human primary cells to SEB (IC50 1-50 μm) or LPS extracted from Francisella tularensis, Escherichia coli, or Burkholderia mallei (IC50 10-200 μm). Consistent with cytokine inhibition, in a ligand-induced cell-based reporter assay, compound 4210 inhibited Burkholderia mallei or LPS-induced MyD88-mediated NF-kB-dependent expression of reporter activity (IC50 10-30 μm). Furthermore, results from a newly expressed MyD88 revealed that 4210 inhibited MyD88 dimer formation which is critical for pro-inflammatory signaling. Importantly, a single administration of compound 4210 in mice showed complete protection from lethal toxin challenge. Collectively, these results demonstrated that compound 4210 inhibits toxin-induced inflated pro-inflammatory immune signaling, thus displays a potential bacterial toxin therapeutic. © 2014 John Wiley & Sons A/S.

  2. A Pro-Inflammatory Role for Nuclear Factor Kappa B in Childhood Obstructive Sleep Apnea Syndrome

    PubMed Central

    Israel, Lee P.; Benharoch, Daniel; Gopas, Jacob; Goldbart, Aviv D.

    2013-01-01

    Study Objectives: Childhood obstructive sleep apnea syndrome (OSAS) is associated with an elevation of inflammatory markers such as C-reactive protein (CRP) that correlates with specific morbidities and subsides following intervention. In adults, OSAS is associated with activation of the transcription factor nuclear factor kappa B (NF-kB). We explored the mechanisms underlying NF-kB activation, based on the hypothesis that specific NF-kB signaling is activated in children with OSAS. Design: Adenoid and tonsillar tissues from children with OSAS and matched controls were immunostained against NF-kB classical (p65 and p50) and alternative (RelB and p52) pathway subunits, and NF-kB-dependent cytokines: interleukin (IL)- 1α, IL-1β, tumor necrosis factor-α, and IL-8). Serum CRP levels were measured in all subjects. NF-kB induction was evaluated by a luciferase-NF-kB reporter assay in L428 cells constitutively expressing NF-kB and in Jurkat cells with inducible NF-kB expression. p65 translocation to the nucleus, reflecting NF-kB activation, was measured in cells expressing fluorescent NF-kB-p65-GFP (green fluorescent protein). Setting: Sleep research laboratory. Patients or Participants: Twenty-five children with OSAS and 24 without OSAS. Interventions: N/A. Measurements and Results: Higher expression of IL-1α and classical NF-kB subunits p65 and p50 was observed in adenoids and tonsils of children with OSAS. Patient serum induced NF-kB activity, as measured by a luciferase-NF-kB reporter assay and by induction of p65 nuclear translocation in cells permanently transfected with GFP-p65 plasmid. IL-1β showed increased epithelial expression in OSAS tissues. Conclusions: Nuclear factor kappa B is locally and systemically activated in children with obstructive sleep apnea syndrome. This observation may motivate the search for new anti-inflammatory strategies for controlling nuclear factor kappa B activation in obstructive sleep apnea syndrome. Citation: Israel LP

  3. PF4-HIT antibody (KKO) complexes activate broad innate immune and inflammatory responses.

    PubMed

    Haile, Lydia A; Rao, Roshni; Polumuri, Swamy K; Arepally, Gowthami M; Keire, David A; Verthelyi, Daniela; Sommers, Cynthia D

    2017-11-01

    Heparin-induced thrombocytopenia (HIT) is an immune-mediated complication of heparin anticoagulation therapy resulting in thrombocytopenia frequently accompanied by thrombosis. Current evidence suggests that HIT is associated with antibodies developed in response to multi-molecular complexes formed by platelet factor 4 (PF4) bound to heparin or cell surface glycosaminoglycans. These antibody complexes activate platelets and monocytes typically through FcγRIIA receptors increasing the production of PF4, inflammatory mediators, tissue factor and thrombin. The influence of underlying events in HIT including complex-induced pro-inflammatory cell activation and structural determinants leading to local inflammatory responses are not fully understood. The stoichiometry and complex component requirements were determined by incubating fresh peripheral blood mononuclear cells (PBMC) with different concentrations of unfractionated heparin (H), low molecular weight heparin (LMWH), PF4- and anti-PF4-H complex antibodies (KKO). Cytokine mRNA or protein were measured by qRT-PCR or Meso Scale Discovery technology, respectively. Gene expression profile analysis for 594 genes was performed using Nanostring technology and analyzed using Ingenuity Pathway Analysis software. The data show that antibodies magnify immune responses induced in PBMCs by PF4 alone or in complex with heparin or LMWH. We propose that following induction of HIT antibodies by heparin-PF4 complexes, binding of the antibodies to PF4 is sufficient to induce a local pro-inflammatory response which may play a role in the progression of HIT. In vitro assays using PBMCs may be useful in characterizing local inflammatory and innate immune responses induced by HIT antibodies in the presence of PF4 and different sources of heparins. The findings and conclusions in this article are solely the responsibility of the authors and are not being formally disseminated by the Food and Drug Administration. Thus, they should not be

  4. Variability of NT-proBNP and Its Relationship with Inflammatory Status in Patients with Stable Essential Hypertension: A 2-Year Follow-Up Study

    PubMed Central

    Roselló-Lletí, Esther; Calabuig, Jose R.; Morillas, Pedro; Cortés, Raquel; Martínez-Dolz, Luis; Almenar, Luis; González-Juanatey, Jose R.; Lauwers, Catheline; Salvador, Antonio; Portolés, Manuel; Bertomeu, Vicente; Rivera, Miguel

    2012-01-01

    Background The variability of NT-proBNP levels has been studied in heart failure, yet no data exist on these changes over time in hypertensive patients. Furthermore, studies on the relationship between natriuretic peptides and inflammatory status are limited. Methodology/Principal Findings 220 clinically and functionally asymptomatic stable patients (age 59±13, 120 male) out of 252 patients with essential hypertension were followed up, and NT-proBNP was measured at baseline, 12 and 24 months. No differences in NT-proBNP were found with respect to the basal stage in the hypertrophic group, but significant changes were found in non-hypertrophic subjects. The reproducibility of NT-proBNP measurements was better in patients with hypertrophy than in the non-hypertrophic group for the three intervals (stage I-basal; stage II-stage I; stage II-basal) with a reference change value of 34%, 35% and 41%, respectively, in the hypertrophic group. A more elevated coefficient of correlation was obtained in the hypertrophic group than in patients without hypertrophy: basal versus stage I (r = 0.79, p<0.0001 and r = 0.59, p<0.0001) and stage I versus stage II (r = 0.86, p<0.0001 and r = 0.56, p<0.0001). Finally, levels of NT-proBNP significantly correlated with sTNF-R1 (p<0.0001) and IL-6 (p<0.01) during follow-up. A multivariate linear regression analysis showed that sTNF-R1 is an independent factor of NT-proBNP. Conclusions/Significance This work shows that there is good stability in NT-proBNP levels in a follow-up study of asymptomatic patients with stable hypertension and left ventricular hypertrophy. As a consequence, assessment of NT-proBNP concentrations may be a useful tool for monitoring the follow-up of hypertensive patients with hypertrophy. Measured variations in peptide levels, exceeding 35% in a 12-month follow-up and 41% in a 24-month follow-up, may indicate an increase in cardiovascular risk, and therefore implies adjustment in the medical treatment

  5. Determination of anti-inflammatory activities of standardised preparations of plant- and mushroom-based foods.

    PubMed

    Gunawardena, Dhanushka; Shanmugam, Kirubakaran; Low, Mitchell; Bennett, Louise; Govindaraghavan, Suresh; Head, Richard; Ooi, Lezanne; Münch, Gerald

    2014-02-01

    Chronic inflammatory processes contribute to the pathogenesis of many age-related diseases. In search of anti-inflammatory foods, we have systematically screened a variety of common dietary plants and mushrooms for their anti-inflammatory activity. A selection of 115 samples was prepared by a generic food-compatible processing method involving heating. These products were tested for their anti-inflammatory activity in murine N11 microglia and RAW 264.7 macrophages, using nitric oxide (NO) and tumour necrosis factor-α (TNF-α) as pro-inflammatory readouts. Ten food samples including lime zest, English breakfast tea, honey-brown mushroom, button mushroom, oyster mushroom, cinnamon and cloves inhibited NO production in N11 microglia, with IC50 values below 0.5 mg/ml. The most active samples were onion, oregano and red sweet potato, exhibiting IC50 values below 0.1 mg/ml. When these ten food preparations were retested in RAW 264.7 macrophages, they all inhibited NO production similar to the results obtained in N11 microglia. In addition, English breakfast tea leaves, oyster mushroom, onion, cinnamon and button mushroom preparations suppressed TNF-α production, exhibiting IC50 values below 0.5 mg/ml in RAW 264.7 macrophages. In summary, anti-inflammatory activity in these food samples survived 'cooking'. Provided that individual bioavailability allows active compounds to reach therapeutic levels in target tissues, these foods may be useful in limiting inflammation in a variety of age-related inflammatory diseases. Furthermore, these foods could be a source for the discovery of novel anti-inflammatory drugs.

  6. Disruption of erythrocyte antioxidant defense system, hematological parameters, induction of pro-inflammatory cytokines and DNA damage in liver of co-exposed rats to aluminium and acrylamide.

    PubMed

    Ghorbel, Imen; Maktouf, Sameh; Kallel, Choumous; Ellouze Chaabouni, Semia; Boudawara, Tahia; Zeghal, Najiba

    2015-07-05

    The individual toxic effects of aluminium and acrylamide are well known but there are no data on their combined effects. The present study was undertaken to determine (i) hematological parameters during individual and combined chronic exposure to aluminium and acrylamide (ii) correlation of oxidative stress in erythrocytes with pro-inflammatory cytokines expression, DNA damage and histopathological changes in the liver. Rats were exposed to aluminium (50 mg/kg body weight) in drinking water and acrylamide (20 mg/kg body weight) by gavage, either individually or in combination for 3 weeks. Exposure rats to AlCl3 or/and ACR provoked an increase in MDA, AOPP, H2O2 and a decrease in GSH and NPSH levels in erythrocytes. Activities of catalase, glutathione peroxidase and superoxide dismutase were decreased in all treated rats. Our results showed that all treatments induced an increase in WBC, erythrocyte osmotic fragility and a decrease in RBC, Hb and Ht. While MCV, MCH, MCHC remained unchanged. Hepatic pro-inflammatory cytokines expression including tumor necrosis factor-α, interleukin-6, interleukin-1β was increased suggesting leucocytes infiltration in the liver. A random DNA degradation was observed on agarose gel only in the liver of co-exposed rats to AlCl3 and ACR treatment. Interestingly, co-exposure to these toxicants exhibited synergism based on physical and biochemical variables in erythrocytes, pro-inflammatory cytokines and DNA damage in liver. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Anti-inflammatory and wound healing activities of calophyllolide isolated from Calophyllum inophyllum Linn.

    PubMed

    Nguyen, Van-Linh; Truong, Cong-Tri; Nguyen, Binh Cao Quan; Vo, Thanh-Niem Van; Dao, Trong-Thuc; Nguyen, Van-Dan; Trinh, Dieu-Thuong Thi; Huynh, Hieu Kim; Bui, Chi-Bao

    2017-01-01

    Due to the high-cost and limitations of current wound healing treatments, the search for alternative approaches or drugs, particularly from medicinal plants, is of key importance. In this study, we report anti-inflammatory and wound healing activities of the major calophyllolide (CP) compound isolated from Calophyllum inophyllum Linn. The results showed that CP had no effect on HaCaT cell viability over a range of concentrations. CP reduced fibrosis formation and effectively promoted wound closure in mouse model without causing body weight loss. The underlying molecular mechanisms of wound repair by CP was investigated. CP markedly reduced MPO activity, and increased M2 macrophage skewing, as shown by up-regulation of M2-related gene expression, which is beneficial to the wound healing process. CP treatment prevented a prolonged inflammatory process by down-regulation of the pro-inflammatory cytokines-IL-1β, IL-6, TNF-α, but up-regulation of the anti-inflammatory cytokine, IL-10. This study is the first to indicate a plausible role for CP in accelerating the process of wound healing through anti-inflammatory activity mechanisms, namely, by regulation of inflammatory cytokines, reduction in MPO, and switching of macrophages to an M2 phenotype. These findings may enable the utilization of CP as a potent therapeutic for cutaneous wound healing.

  8. Key role of hydrogen peroxide in antimicrobial activity of spring, Honeydew maquis and chestnut grove Corsican honeys on Pseudomonas aeruginosa DNA.

    PubMed

    Poli, J-P; Guinoiseau, E; Luciani, A; Yang, Y; Battesti, M-J; Paolini, J; Costa, J; Quilichini, Y; Berti, L; Lorenzi, V

    2018-05-01

    In honeys, several molecules have been known for their antibacterial or wound healing properties. Corsican honeys just began to be tested for their antimicrobial activity with promising results on Pseudomonas aeruginosa. So, identification of active molecules and their mode of action was determined. Hydrogen peroxide concentrations were evaluated and, in parallel, the minimal inhibitory concentrations (MIC) values were performed with and without catalase. More, the quantity of phenolic compounds and ORAC assay were measured. Observation of antibacterial action was done using scanning electron microscopy (SEM) followed by plasmidic DNA extraction. MIC values of chestnut grove and honeydew maquis honeys vary between 7 and 8%, showing a strong antimicrobial capacity, associated with a plasmidic DNA degradation. When catalase is added, MIC values significatively increase (25%) without damaging DNA, proving the importance of H 2 O 2 . This hypothesis is confirmed by SEM micrographies which did not show any morphological damages but a depletion in bacterial population. Although, such low concentrations of H 2 O 2 (between 23 μmol l -1 and 54 μmol l -1 ) cannot explain antimicrobial activity and might be correlated with phenolic compounds concentration. Thus, Corsican honeys seem to induce DNA damage when H 2 O 2 and phenolic compounds act in synergy by a putative pro-oxidant effect. We started to determine the antibacterial efficiency of Corsican chestnut grove and honeydew maquis honeys on Pseudomonas aeruginosa. No morphological alteration of the bacterial surface was observed. Antimicrobial action seems to be related to the synergy between hydrogen peroxide and phenolic compounds. The exerted pro-oxidant activity leads to a degradation of P. aeruginosa plasmidic DNA. This is the first study that investigate the primary antibacterial mechanism of Corsican honeys. © 2018 The Society for Applied Microbiology.

  9. Synthesized zinc peroxide nanoparticles (ZnO2-NPs): a novel antimicrobial, anti-elastase, anti-keratinase, and anti-inflammatory approach toward polymicrobial burn wounds

    PubMed Central

    El-Zawawy, Nessma Ahmed; Fareed, Mervat F; Bedaiwy, Mohamed Yaser

    2017-01-01

    Increasing of multidrug resistance (MDR) remains an intractable challenge for burn patients. Innovative nanomaterials are also in high demand for the development of new antimicrobial biomaterials that inevitably have opened new therapeutic horizons in medical approaches and lead to many efforts for synthesizing new metal oxide nanoparticles (NPs) for better control of the MDR associated with the polymicrobial burn wounds. Recently, it seems that metal oxides can truly be considered as highly efficient inorganic agents with antimicrobial properties. In this study, zinc peroxide NPs (ZnO2-NPs) were synthesized using the co-precipitation method. Synthesized ZnO2-NPs were characterized by X-ray diffraction, Fourier transformed infrared, transmission electron microscopy, thermogravimetric analysis, differential scanning calorimetry, and ultraviolet-visible spectroscopy. The characterization techniques revealed synthesis of the pure phase of non-agglomerated ZnO2-NPs having sizes in the range of 15–25 nm with a transition temperature of 211°C. Antimicrobial activity of ZnO2-NPs was determined against MDR Pseudomonas aeruginosa (PA) and Aspergillus niger (AN) strains isolated from burn wound infections. Both strains, PA6 and AN4, were found to be more susceptible strains to ZnO2-NPs. In addition, a significant decrease in elastase and keratinase activities was recorded with increased concentrations of ZnO2-NPs until 200 µg/mL. ZnO2-NPs revealed a significant anti-inflammatory activity against PA6 and AN4 strains as demonstrated by membrane stabilization, albumin denaturation, and proteinase inhibition. Moreover, the results of in vivo histopathology assessment confirmed the potential role of ZnO2-NPs in the improvement of skin wound healing in the experimental animal models. Clearly, the synthesized ZnO2-NPs have demonstrated a competitive capability as antimicrobial, anti-elastase, anti-keratinase, and anti-inflammatory candidates, suggesting that the ZnO2-NPs are

  10. Synthesized zinc peroxide nanoparticles (ZnO2-NPs): a novel antimicrobial, anti-elastase, anti-keratinase, and anti-inflammatory approach toward polymicrobial burn wounds.

    PubMed

    Ali, Sameh Samir; Morsy, Reda; El-Zawawy, Nessma Ahmed; Fareed, Mervat F; Bedaiwy, Mohamed Yaser

    2017-01-01

    Increasing of multidrug resistance (MDR) remains an intractable challenge for burn patients. Innovative nanomaterials are also in high demand for the development of new antimicrobial biomaterials that inevitably have opened new therapeutic horizons in medical approaches and lead to many efforts for synthesizing new metal oxide nanoparticles (NPs) for better control of the MDR associated with the polymicrobial burn wounds. Recently, it seems that metal oxides can truly be considered as highly efficient inorganic agents with antimicrobial properties. In this study, zinc peroxide NPs (ZnO 2 -NPs) were synthesized using the co-precipitation method. Synthesized ZnO 2 -NPs were characterized by X-ray diffraction, Fourier transformed infrared, transmission electron microscopy, thermogravimetric analysis, differential scanning calorimetry, and ultraviolet-visible spectroscopy. The characterization techniques revealed synthesis of the pure phase of non-agglomerated ZnO 2 -NPs having sizes in the range of 15-25 nm with a transition temperature of 211°C. Antimicrobial activity of ZnO 2 -NPs was determined against MDR Pseudomonas aeruginosa (PA) and Aspergillus niger (AN) strains isolated from burn wound infections. Both strains, PA6 and AN4, were found to be more susceptible strains to ZnO 2 -NPs. In addition, a significant decrease in elastase and keratinase activities was recorded with increased concentrations of ZnO 2 -NPs until 200 µg/mL. ZnO 2 -NPs revealed a significant anti-inflammatory activity against PA6 and AN4 strains as demonstrated by membrane stabilization, albumin denaturation, and proteinase inhibition. Moreover, the results of in vivo histopathology assessment confirmed the potential role of ZnO 2 -NPs in the improvement of skin wound healing in the experimental animal models. Clearly, the synthesized ZnO 2 -NPs have demonstrated a competitive capability as antimicrobial, anti-elastase, anti-keratinase, and anti-inflammatory candidates, suggesting that the

  11. Pro-inflammatory Cytokines Are Involved in Fluoride-Induced Cytotoxic Potential in HeLa Cells.

    PubMed

    Wang, Hong-Wei; Zhou, Bian-Hua; Cao, Jian-Wen; Zhao, Jing; Zhao, Wen-Peng; Tan, Pan-Pan

    2017-01-01

    This study was designed to investigate the pro-inflammatory cytokines and their involvement in the cytotoxic potential of fluoride (F) in HeLa cells. HeLa cells were cultured with varying F concentrations (1-50 mg/L) for 48 h, and treatment effects were analyzed. The viability of HeLa cells was determined with a colorimetric method. The concentrations of IL-1β, IL-2, IL-6, and TNF-a in culture supernatant were measured through enzyme linked immunosorbent assay (ELISA). The mRNA expression levels of IL-1β, IL-2, IL-6 and TNF-a were subjected to transcript analysis and quantified through reverse transcription real-time PCR. Results showed that 10, 20 and 50 mg/L F significantly decreased the viability of HeLa cells incubated for 24 and 48 h. With their cytotoxic effect, the concentrations of IL-1β, IL-2, IL-6, and TNF-a decreased significantly in response to F, especially at 20 and 50 mg/L for 48 h. The mRNA expression levels of IL-1β, IL-2, IL-6, and TNF-a were downregulated at 50 mg/L F for 48 h. Therefore, F inhibited HeLa cell growth; as such, F could be used to alleviate the inhibition of pro-inflammatory cytokine expression.

  12. Anti-inflammatory Activity of Constituents Isolated from Aerial Part of Angelica acutiloba Kitagawa.

    PubMed

    Uto, Takuhiro; Tung, Nguyen Huu; Taniyama, Risa; Miyanowaki, Tosihide; Morinaga, Osamu; Shoyama, Yukihiro

    2015-12-01

    Recently, the resources of medicinal plants have been exhausting. The root of Angelica acutiloba is one of the most important ingredients in Japanese Kampo medicine for the treatment of gynecological diseases. In our search for alternative medicinal plant resources of the root of A. acutiloba, we found that its aerial part has the anti-inflammatory potency as well as the root. Phytochemical investigation of the aerial part resulted in the isolation of four compounds including a new dimeric phthalide, namely tokiaerialide (2), along with Z-ligustilide (1), falcarindiol (3), and bergaptol (4). Next, we investigated the in vitro anti-inflammatory activity of 1-4 in lipopolysaccharide-stimulated RAW264 macrophages. Among the isolated compounds, 1 exhibited the most potent inhibition against lipopolysaccharide-induced production of prostaglandin E2 , nitric oxide, and pro-inflammatory cytokines (interleukin-6 and tumor necrosis factor-α). Compounds 3 and 4 also inhibited all inflammatory mediators, but their inhibitory abilities were weaker than those of 1. Furthermore, 1, 3, and 4 strongly also induced heme oxygenase-1. These results suggest that 1, 3, and 4 potentially exert anti-inflammatory activity, and the aerial part of A. acutiloba may be considered to be a useful medicinal resource for inflammatory diseases. Copyright © 2015 John Wiley & Sons, Ltd.

  13. New aspects on the hepatoprotective potential associated with the antioxidant, hypocholesterolemic and anti-inflammatory activities of Vernonia condensata Baker.

    PubMed

    Silva, Jucélia Barbosa da; Mendes, Renata de Freitas; Tomasco, Vívian; Pinto, Nícolas de Castro Campos; de Oliveira, Luiz Gustavo; Rodrigues, Matheus Nehrer; Aragão, Danielle Maria de Oliveira; Aguiar, Jair Adriano Kopke de; Alves, Maria Silvana; Castañon, Maria Christina Nogueira Marques; Ribeiro, Antônia; Scio, Elita

    2017-02-23

    Vernonia condensata Baker (Asteraceae) is traditionally used in South American Countries as an anti-inflammatory, analgesic and hepatoprotective. This study aimed to investigate the in vivo hepatoprotective and antioxidant, and the in vitro anti-inflammatory activities of the ethyl acetate partition (EAP) from the ethanolic extract of this medicinal plant leaves. For the in vivo hepatoprotective activity, rats were pretreated orally for seven days with vehicle, silymarin 100mg/kg or EAP 50, 100 and 200mg/kg. Then, acetaminophen 3g/kg was also orally administrated. Animals were euthanatized 24h after the damage inducement. The levels of the serum enzymes ALT, AST and ALP were determined, as well as the triglycerides, total cholesterol and fractions. The antioxidant activity was evaluated by TBARS assay and by the measurement of glutathione reductase, superoxide dismutase and catalase activities in the rats liver tissue. The in vitro anti-inflammatory assay using Raw 264.7 cell line induced by lipopolysaccharide was conducted to verify EAP ability to inhibit pro-inflammatory cytokines. EAP was able to inhibit all the acute biochemical alterations caused by acetaminophen overdose. EAP inhibited malondialdehyde formation, maintained the catalase and increased the glutathione reductase activities. Also, EAP decreased NO, IL-6 and TNF-α levels at concentrations from 10 to 20µg/mL. 1,5-dicaffeoylquinic acid was isolated and identified as the major compound in EAP. Apigenin, luteolin, chlorogenic acid were also identified. EAP anti-inflammatory action may be due to its antioxidant activity or its capacity to inhibit the pro-inflammatory cytokines. These results strongly suggested that V. condensata may be useful as a possible therapy against liver damage. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  14. Lysosomes Integrate Metabolic-Inflammatory Cross-talk in Primary Macrophage Inflammasome Activation*

    PubMed Central

    Weber, Kassandra; Schilling, Joel D.

    2014-01-01

    Macrophage dysfunction and inflammasome activation have been implicated in the pathogenesis of diabetes and its complications. Prolonged inflammation and impaired healing are hallmarks of the diabetic response to tissue injury, and excessive inflammasome activation has been associated in these phenotypes. However, the mechanisms that regulate the inflammasome in response to lipid metabolic and inflammatory stress are incompletely understood. We have shown previously that IL-1β secretion is induced in primary macrophages exposed to the dietary saturated fatty acid palmitate in combination with LPS. In this study, we sought to unravel the mechanisms underlying the activation of this lipotoxic inflammasome. We demonstrate that palmitate-loaded primary macrophages challenged with LPS activate the NLRP3 inflammasome through a mechanism that involves the lysosome. Interestingly, the lysosome was involved in both the regulation of pro-IL-1β levels and its subsequent cleavage/release. The lysosomal protease cathepsin B was required for IL-1β release but not pro-IL-1β production. In contrast, disrupting lysosomal calcium regulation decreased IL-1β release by reducing pro-IL-1β levels. The calcium pathway involved the calcium-activated phosphatase calcineurin, which stabilized IL-1β mRNA. Our findings provide evidence that the lysosome plays a key role in both the priming and assembly phases of the lipostoxic inflammasome. These findings have potential relevance to the hyperinflammatory phenotypes observed in diabetics during tissue damage or infection and identify lysosomes and calcineurin as potential therapeutic targets. PMID:24532802

  15. Anti-inflammatory activity of the active components from the roots of Cosmos bipinnatus in lipopolysaccharide-stimulated RAW 264.7 macrophages.

    PubMed

    Sohn, Sang-Hyun; Yun, Bong-Sik; Kim, So-Young; Choi, Wahn-Soo; Jeon, Hyun-Soo; Yoo, Jun-Sik; Kim, Si-Kwan

    2013-01-01

    We isolated a sesquiterpene lactone from the methanol extract of the roots of Cosmos bipinnatus, namely, MDI (a mixture of dihydrocallitrisin and isohelenin). The anti-inflammatory activity of MDI was evaluated using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. MDI significantly inhibited the expression of inducible nitric oxide synthase and cyclooxygenase-2. Consistent with these results, the production of NO and prostaglandin E2 (PGE2) was suggested to be suppressed by MDI in a concentration-dependent manner (IC50 value was 0.94 and 2.88 µg mL(-1) for NO and PGE2, respectively). In addition, MDI significantly inhibited the expressions of pro-inflammatory cytokines such as IL-1β, IL-6, IFN-γ and TNF-α. Furthermore, MDI attenuated DNA-binding activity of NF-κB by inhibiting the phosphorylation of IκB. These results indicate that MDI isolated from the roots of C. bipinnatus shows anti-inflammatory activity in LPS-stimulated murine macrophages by modulating the NF-κB pathway.

  16. Antimicrobial activity of tempeh gembus hydrolyzate

    NASA Astrophysics Data System (ADS)

    Noviana, A.; Dieny, F. F.; Rustanti, N.; Anjani, G.; Afifah, D. N.

    2018-02-01

    Tropical disease can be prevented by consumming fermented foods that have antimicrobial activity. One of them is tempeh gembus that has short shelf life. It can be overcome by processing it into hydrolyzate. This study aimed to determine antimicrobial activity of tempeh gembus hydrolyzate. Tempeh gembus was made of local soybean from Grobogan. They were added 5,000 ppm, 8,000 ppm, and 10,000 ppm of bromelain enzyme (TGH BE). Antimicrobial effects of TGH BE were tested against Staphylococcus aureus, Escherichia coli, Bacillus subtilis, and Steptococcus mutans. Antimicrobial test was carried out using Kirby-Bauer Disc Diffussion method. Soluble protein test used Bradford method. The largest inhibition zone against S. aureus and S. mutans were shown by TGH BE 8,000 ppm, 0.89±0.53 mm and 2.40±0.72 mm. The largest inhibition zone of B. subtilis, 7.33±2,25 mm, was shown by TGH BE 5,000 ppm. There wasn’t antimicrobial effect of TGH BE against E. coli. There weren’t significant differences of soluble protein (P=0.293) and the inhibition zones againt S. aureus (P = 0.967), E. coli (P = 1.000), B. subtilis (P = 0.645), S. mutans (P=0.817) of all treatments. There were antimicrobial activities of TGH BE against S. aureus, B. subtilis, and S. mutans.

  17. Copper(ii) oxide nanoparticles penetrate into HepG2 cells, exert cytotoxicity via oxidative stress and induce pro-inflammatory response

    NASA Astrophysics Data System (ADS)

    Piret, Jean-Pascal; Jacques, Diane; Audinot, Jean-Nicolas; Mejia, Jorge; Boilan, Emmanuelle; Noël, Florence; Fransolet, Maude; Demazy, Catherine; Lucas, Stéphane; Saout, Christelle; Toussaint, Olivier

    2012-10-01

    The potential toxic effects of two types of copper(ii) oxide (CuO) nanoparticles (NPs) with different specific surface areas, different shapes (rod or spheric), different sizes as raw materials and similar hydrodynamic diameter in suspension were studied on human hepatocarcinoma HepG2 cells. Both CuO NPs were shown to be able to enter into HepG2 cells and induce cellular toxicity by generating reactive oxygen species. CuO NPs increased the abundance of several transcripts coding for pro-inflammatory interleukins and chemokines. Transcriptomic data, siRNA knockdown and DNA binding activities suggested that Nrf2, NF-κB and AP-1 were implicated in the response of HepG2 cells to CuO NPs. CuO NP incubation also induced activation of MAPK pathways, ERKs and JNK/SAPK, playing a major role in the activation of AP-1. In addition, cytotoxicity, inflammatory and antioxidative responses and activation of intracellular transduction pathways induced by rod-shaped CuO NPs were more important than spherical CuO NPs. Measurement of Cu2+ released in cell culture medium suggested that Cu2+ cations released from CuO NPs were involved only to a small extent in the toxicity induced by these NPs on HepG2 cells.The potential toxic effects of two types of copper(ii) oxide (CuO) nanoparticles (NPs) with different specific surface areas, different shapes (rod or spheric), different sizes as raw materials and similar hydrodynamic diameter in suspension were studied on human hepatocarcinoma HepG2 cells. Both CuO NPs were shown to be able to enter into HepG2 cells and induce cellular toxicity by generating reactive oxygen species. CuO NPs increased the abundance of several transcripts coding for pro-inflammatory interleukins and chemokines. Transcriptomic data, siRNA knockdown and DNA binding activities suggested that Nrf2, NF-κB and AP-1 were implicated in the response of HepG2 cells to CuO NPs. CuO NP incubation also induced activation of MAPK pathways, ERKs and JNK/SAPK, playing a major

  18. MSCs ameliorates DPN induced cellular pathology via [Ca2+ ]i homeostasis and scavenging the pro-inflammatory cytokines.

    PubMed

    Chandramoorthy, Harish C; Bin-Jaliah, Ismaeel; Karari, Hussian; Rajagopalan, Prasanna; Ahmed Shariff, Mohammed Eajaz; Al-Hakami, Ahmed; Al-Humayad, Suliman M; Baptain, Fawzi A; Ahmed, Humeda Suekit; Yassin, Hanaa Z; Haidara, Mohamed A

    2018-02-01

    The MSCs of various origins are known to ameliorate or modulate cell survival strategies. We investigated, whether UCB MSCs could improve the survival of the human neuronal cells and/or fibroblast assaulted with DPN sera. The results showed, the co-culture of UCB MSCs with human neuronal cells and/or fibroblasts could effectively scavenge the pro-inflammatory cytokines TNF-α, IL-1β, IFN-ɤ and IL - 12 and control the pro-apoptotic expression of p53/Bax. Further co-culture of UCB MSCs have shown to induce anti-inflammatory cytokines like IL-4, IL-10 and TGF-β and anti-apoptotic Bclxl/Bcl2 expression in the DPN sera stressed cells. Amelioration of elevated [Ca 2+ ] i and cROS, the portent behind the NFκB/Caspase-3 mediated inflammation in DPN rescued the cells from apoptosis. The results of systemic administration of BM MSCs improved DPN pathology in rat as extrapolated from human cell model. The BM MSCs ameliorated prolonged distal motor latency (control: 0.70 ± 0.06, DPN: 1.29 ± 0.13 m/s DPN + BM MSCs: 0.89 ± 0.02 m/s, p < 0.05) and lowered high amplitude of compound muscle action potentials (CMAPs) (control: 12.36 ± 0.41, DPN: 7.52 ± 0.61 mV, DPN + MSCs: 8.79 ± 0.53 mV, p < 0.05), while slowly restoring the plasma glucose levels. Together, all these results showed that administration of BM or UCB MSCs improved the DPN via ameliorating pro-inflammatory cytokine signaling and [Ca 2+ ] i homeostasis. © 2017 Wiley Periodicals, Inc.

  19. [BIOLOGICAL ACTIVITY OF ANTIMICROBIAL PEPTIDES FROM CHICKENS THROMBOCYTES].

    PubMed

    Sycheva, M V; Vasilchenko, A S; Rogozhin, E A; Pashkova, T M; Popova, L P; Kartashova, O L

    2016-01-01

    Isolation and study of biological activity of antimicrobial peptides from chickens thrombocytes. Peptides from chickens thrombocytes, obtained by reverse-phase high-performance liquid chromatography method with stepped and linear gradients of concentration increase of the organic solvent were used in the study. Their antimicrobial activity was determined by microtitration method in broth; mechanism of biological effect--by using fluorescent spectroscopy method with DNA-tropic dyes. Individual fractions of peptides were isolated from chickens thrombocytes, that possess antimicrobial activity against Staphylococcus aureus P209 and Escherichia coli K12. A disruption of integrity of barrier structures of microorganisms under the effect of thrombocyte antimicrobial peptides and predominance of cells with damaged membrane in the population of E. coli was established. The data obtained on antimicrobial activity and mechanism of bactericidal effect of the peptide fractions from chickens thrombocytes isolated for the first time expand the understanding of functional properties of chickens thrombocytes and open a perspective for their further study with the aim of use as antimicrobial means.

  20. Executive control, ERP and pro-inflammatory activity in emotionally exhausted middle-aged employees. Comparison between subclinical burnout and mild to moderate depression.

    PubMed

    Gajewski, Patrick D; Boden, Sylvia; Freude, Gabriele; Potter, Guy G; Claus, Maren; Bröde, Peter; Watzl, Carsten; Getzmann, Stephan; Falkenstein, Michael

    2017-12-01

    Burnout is a syndrome occurring mainly in individuals with long-term stressful work. The main complaints are emotional exhaustion and reduced performance. Burnout also largely overlaps with depression. Both are characterized by increased incidence of infections due to dysregulation of the immune system, overexpression of pro-inflammatory cytokines and cognitive deficits, particularly related to executive functions. To distinguish between burnout and depression already at the pre-clinical stage, the present double-blinded study compared immunological and cognitive parameters in seventy-six employees from emotionally demanding occupations who were post-hoc subdivided into two groups scoring low (EE-) and high (EE+) in emotional exhaustion and low (DE-) and high (DE+) in depression. Immunological parameters were measured from blood samples. Executive functions were studied by analyzing event-related brain potentials (ERPs) and performance during a task switching paradigm. Psychosocial job parameters were measured with standardized questionnaires. Burnout and mild to moderate depression largely overlapped. However, several subjects showed burnout without depressive symptoms. Higher levels of the pro-inflammatory cytokines IL-6 and IL-12 were correlated with burnout severity and depressive symptoms in male individuals. In the switch task a trend for lower performance in the EE+ vs. EE- group and no difference between DE+ and DE- groups were found. In the ERPs, however, differences were observed which distinguished between subclinical burnout and depression: the terminal contingent negative variation (CNV), indicating preparatory activity and the P3b, related to allocation of cognitive resources were generally reduced in EE+ vs. EE-, whereas no differences were found in the DE+ vs. DE- groups. The frontal P3a was selectively reduced in switch trials in the EE+ vs. EE- group and showed only a trend in DE+ vs. DE-, indicating impairment of executive control in subclinical

  1. Brine shrimp cytotoxicity of Caesalpinia pulcherrima aerial parts, antimicrobial activity and characterisation of isolated active fractions.

    PubMed

    Chanda, Sumitra; Baravalia, Yogesh

    2011-12-01

    Caesalpinia pulcherrima Swartz. is an ornamental plant, shrub or a small tree belonging to the family Caesalpiniaceae. The plant has been used for the treatment of inflammatory disorders, skin diseases and so on. In this study, the cytotoxicity of the methanol extract of the aerial parts of C. pulcherrima was tested using an Artemia salina (brine shrimp) bioassay. Further, the methanol extract was fractionated by silica gel column chromatography using a solvent gradient of hexane:ethyl acetate:methanol in different ratios and 56 fractions were collected. On the basis of thin layer chromatography profiles, 13 major fractions were obtained, which were tested for antimicrobial activity against 14 microorganisms using the agar disc diffusion method and also tested for their minimal inhibitory concentration and minimal bactericidal concentration values. In terms of cytotoxicity, the extract caused 26% mortality of brine shrimp larvae after 24 h at a concentration of 1000 µg mL(-1). Fractions 3, 9 and 10 showed significant antimicrobial activities. Phytochemical analysis of these three fractions led to the identification of 11 compounds, and their structures were established by means of gas chromatography-mass spectroscopy techniques. These findings suggest that these bioactive compounds may be useful as potential antimicrobials. Further investigation is needed to establish the mode of action of these bioactive compounds.

  2. Interplay between pro-inflammatory cytokines and growth factors in depressive illnesses

    PubMed Central

    Audet, Marie-Claude; Anisman, Hymie

    2013-01-01

    The development of depressive disorders had long been attributed to monoamine variations, and pharmacological treatment strategies likewise focused on methods of altering monoamine availability. However, the limited success achieved by treatments that altered these processes spurred the search for alternative mechanisms and treatments. Here we provide a brief overview concerning a possible role for pro-inflammatory cytokines and growth factors in major depression, as well as the possibility of targeting these factors in treating this disorder. The data suggest that focusing on one or another cytokine or growth factor might be counterproductive, especially as these factors may act sequentially or in parallel in affecting depressive disorders. It is also suggested that cytokines and growth factors might be useful biomarkers for individualized treatments of depressive illnesses. PMID:23675319

  3. Mast Cell and M1 Macrophage Infiltration and Local Pro-Inflammatory Factors Were Attenuated with Incretin-Based Therapies in Obesity-Related Glomerulopathy.

    PubMed

    He, Jiao; Yuan, Geheng; Cheng, Fangxiao; Zhang, Junqing; Guo, Xiaohui

    2017-09-01

    The global increase of obesity parallels the obesity-related glomerulopathy (ORG) epidemic. Dipeptidyl peptidase 4 inhibitors and glucagon-like peptide-1 receptor agonists were well recognized to attenuate renal injury independent of glucose control in diabetic nephropathy. There are limited studies focusing on their effects on ORG. We explored the effects of incretin-based therapies on early ORG and the inflammatory responses involved mainly concentrated on mast cell (MC) and macrophage (M) infiltration and local pro-inflammatory factors. ORG rat models were induced by high-fat diet and then divided into ORG vehicle, vildagliptin (3 mg/kg/day, qd) and liraglutide (200 μg/kg, bid) treated groups. After 8 weeks of treatments, albuminuria, glomerular histology, renal inflammatory cell infiltration, and pro-inflammatory factors were analyzed. Early ORG model was demonstrated by albuminuria, glomerulomegaly, foot process fusion, and mesangial and endothelial mild proliferation. Incretin-based therapies limited body weight gain and improved insulin sensitivity. ORG was alleviated, manifested by decreased average glomerular area, attenuated mesangial and endothelial cell proliferation, and revived cell-to-cell propagation of podocytes, which contributed to reduced albuminuria. Compared with ORG vehicle, MC and M1 macrophage (pro-inflammatory) infiltration and M1/M2 ratio were significantly decreased; M2 macrophage (anti-inflammatory) was not significantly increased after incretin-based treatments. Tumor necrosis factor-α (TNF-α) and IL-6 in renal cortex were significantly downregulated, while transforming growth factor-β1 (TGF-β1) remained unchanged. Incretin-based treatments could alleviate high-fat diet-induced ORG partly through the systemic insulin sensitivity improvement and the attenuated local inflammation, mainly by the decrease of MC and M1 macrophage infiltration and reduction of TNF-α and IL-6.

  4. (1→6)- and (1→3)(1→6)-β-glucans from Lasiodiplodia theobromae MMBJ: Structural characterization and pro-inflammatory activity.

    PubMed

    Oliveira, Kassandra S M; Di Bastiani, Mirela; Cordeiro, Lucimara M C; Costa, Mírian F; Toledo, Karina A; Iacomini, Marcello; Babosa, Aneli M; Dekker, Robert F H; Nascimento, Valéria M G

    2015-11-20

    The chemical composition and structural characterization of exopolysaccharides from the fungus Lasiodiplodia theobromae MMBJ are described, and the immunomodulatory activity of a purified β-glucan was evaluated. L. theobromae MMBJ produced three different β-glucans. One, fraction PEPS, was a branched (1→3)(1→6)-β-glucan and was insoluble in cold water. The other two, fractions SEPS-005R and SEPS-10E, were characterized as linear (1→6)-β-glucans with molar mass of 1.8×10(6)Da and 7.0×10(3)Da, respectively. From a total of 2.2g/L of EPS produced by L. theobromae through submerged fermentation, 1.5g/L (67%) was of the branched (1→3)(1→6)-β-glucan, while 25% (w/w) were linear (1→6)-β-glucans. Tests conducted with macrophages showed that the high molar mass (1→6)-β-glucan fraction (SEPS-005R) induced a pro-inflammatory response pattern. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Anti-inflammatory and anti-granuloma activity of Berberis aristata DC. in experimental models of inflammation

    PubMed Central

    Kumar, Rohit; Gupta, Yogendra Kumar; Singh, Surender

    2016-01-01

    Objective: Berberis aristata (Berberidaceae) is an important medicinal plant used in traditional system of medicine for the treatment of rheumatoid arthritis and other inflammatory disorders. The aim of the present study is to scientifically validate the traditional use of BA in the treatment of inflammatory disorders. Materials and Methods: Anti-inflammatory and anti-granuloma activity of BA hydroalcoholic extract (BAHE) were evaluated in experimental models, viz., carrageenan-induced paw edema, cotton pellet-induced granuloma formation, and complete Freund's adjuvant-induced stimulation of peritoneal macrophages in rats. Expression of inflammatory mediators, viz., tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), IL-6, IL-10, TNF-R1, and cyclooxygenase-2 (COX-2) was carried out in serum and peritoneal macrophages to derive the plausible mechanism of BAHE in activated peritoneal macrophages. Results: Pretreatment with BAHE produced a dose-dependent reduction (P < 0.01) in carrageenan-induced paw edema and cotton pellet-induced granuloma model. BAHE treatment produced significant (P < 0.01) reduction in serum inflammatory cytokine levels as compared to control. Protein expression of pro-inflammatory markers, IL-1β, IL-6, TNF-R1, and COX-2, was found to be reduced in stimulated macrophages whereas anti-inflammatory cytokine, IL-10, was upregulated in peritoneal macrophages. Conclusion: The result of the present study thus demonstrates the anti-inflammatory and anti-granuloma activity of BAHE which may be attributed to its inhibitory activity on macrophage-derived cytokine and mediators. PMID:27114638

  6. Novel chimeric peptide with enhanced cell specificity and anti-inflammatory activity.

    PubMed

    Kim, Young-Min; Kim, Nam-Hong; Lee, Jong-Wan; Jang, Jin-Sun; Park, Yung-Hoon; Park, Seong-Cheol; Jang, Mi-Kyeong

    2015-07-31

    An antimicrobial peptide (AMP), Hn-Mc, was designed by combining the N-terminus of HPA3NT3 and the C-terminus of melittin. This chimeric AMP exhibited potent antibacterial activity with low minimal inhibitory concentrations (MICs), ranging from 1 to 2 μM against four drug-susceptible bacteria and ten drug-resistant bacteria. Moreover, the hemolysis and cytotoxicity was reduced significantly compared to those of the parent peptides, highlighting its high cell selectivity. The morphological changes in the giant unilamellar vesicles and bacterial cell surfaces caused by the Hn-Mc peptide suggested that it killed the microbial cells by damaging the membrane envelope. An in vivo study also demonstrated the antibacterial activity of the Hn-Mc peptide in a mouse model infected with drug-resistant bacteria. In addition, the chimeric peptide inhibited the expression of lipopolysaccharide (LPS)-induced cytokines in RAW 264.7 cells by preventing the interaction between LPS and Toll-like receptors. These results suggest that this chimeric peptide is an antimicrobial and anti-inflammatory candidate as a pharmaceutic agent. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Breastmilk from obese mothers has pro-inflammatory properties and decreased neuroprotective factors

    PubMed Central

    Panagos, PG; Vishwanathan, R; Penfield-Cyr, A; Matthan, NR; Shivappa, N; Wirth, MD; Hebert, JR; Sen, S

    2016-01-01

    OBJECTIVE To determine the impact of maternal obesity on breastmilk composition. STUDY DESIGN Breastmilk and food records from 21 lean and 21 obese women who delivered full-term infants were analyzed at 2 months post-partum. Infant growth and adiposity were measured at birth and 2 months of age. RESULT Breastmilk from obese mothers had higher omega-6 to omega-3 fatty acid ratio and lower concentrations of docosahexaenoic acid, eicosapentaenoic acid, docasapentaenoic acid and lutein compared with lean mothers (P < 0.05), which were strongly associated with maternal body mass index. Breastmilk saturated fatty acid and monounsaturated fatty acid concentrations were positively associated with maternal dietary inflammation, as measured by dietary inflammatory index. There were no differences in infant growth measurements. CONCLUSION Breastmilk from obese mothers has a pro-inflammatory fatty acid profile and decreased concentrations of fatty acids and carotenoids that have been shown to have a critical role in early visual and neurodevelopment. Studies are needed to determine the link between these early-life influences and subsequent cardiometabolic and neurodevelopmental outcomes. PMID:26741571

  8. Anti-inflammatory activity of methylene chloride fraction from Glehnia littoralis extract via suppression of NF-kappa B and mitogen-activated protein kinase activity.

    PubMed

    Yoon, Taesook; Cheon, Myeong Sook; Lee, A Yeong; Lee, Do Yeon; Moon, Byeong Cheol; Chun, Jin Mi; Choo, Byung Kil; Kim, Ho Kyoung

    2010-01-01

    Glehnia littoralis (Umbelliferae) has been used traditionally in Korean, Japanese, and Chinese medicine for the treatment of immune-related diseases; however, its anti-inflammatory activity and underlying mechanism remain to be defined. We investigated the anti-inflammatory effect and inhibitory mechanism on inflammation by the methylene chloride fraction from Glehnia littoralis extract (MCF-GLE), which was more effective than Glehnia littoralis extract (GLE). MCF-GLE inhibited 12-O-Tetradecanoyl-phorbol-13-acetate (TPA)-induced inflammation in an inflammatory edema mouse model. Also, MCF-GLE strongly inhibited the releases of nitric oxide (NO), prostaglandin E(2) (PGE(2)), tumor necrosis factor-alpha (TNF-alpha), and interleukin-1beta (IL-1beta) and significantly suppressed the mRNA and protein expression of inducible nitric oxide synthase and cyclooxygenase-2 in lipopolysaccharide-stimulated RAW 264.7 macrophage cells in a dose-dependent manner. Furthermore, MCF-GLE suppressed NF-kappaB activation and IkappaB-alpha degradation. MCF-GLE also attenuated the activation of ERK and JNK in a dose-dependent manner. These results indicate that MCF-GLE has an inhibitory effect on the in vivo and in vitro inflammatory reaction and is a possible therapeutic agent. Our results suggest that the anti-inflammatory properties of MCF-GLE may result from the inhibition of pro-inflammatory mediators, such as NO, PGE(2), TNF-alpha, and IL-1beta via suppression of NF-kappaB- and mitogen-activated protein kinases-dependent pathways.

  9. Antimicrobial activity of blended essential oil preparation.

    PubMed

    Tadtong, Sarin; Suppawat, Supatcha; Tintawee, Anchalee; Saramas, Phanida; Jareonvong, Suchada; Hongratanaworakit, Tapanee

    2012-10-01

    Antimicrobial activities of two blended essential oil preparations comprising lavender oil, petigrain oil, clary sage oil, ylang ylang oil and jasmine oil were evaluated against various pathogenic microorganisms. Both preparations showed antimicrobial activity in the agar disc diffusion assay against the Gram-positive bacteria, Staphylococcus aureus ATCC6538 and S. epidermidis isolated strain, the fungus, Candida albicans ATCC10231, and the Gram-negative bacterium, Escherichia coli ATCC25922, but showed no activity against Pseudomonas aeruginosa ATCC9027. The minimum inhibitory concentration (MIC) of these preparations was evaluated. By the broth microdilution assay, preparation 1, comprising lavender oil, clary sage oil, and ylang ylang oil (volume ratio 3:4:3), exhibited stronger antimicrobial activity than preparation 2, which was composed of petigrain oil, clary sage oil, and jasmine oil (volume ratio 3:4:3). Moreover, the sum of the fractional inhibitory concentrations (Sigma fic) of preparation 1 expressed a synergistic antimicrobial effect against the tested microorganisms (Sigma ficantimicrobial effect of either blended oil preparations or single/pure essential oils may be influenced by the amount of linalool and linalyl acetate, and the number of active components in either the blended preparations or single/pure essential oils. In addition, blended oil preparations expressed synergistic antimicrobial effect by the accumulation of active components such as linalool and linalyl acetate and combining active constituents of more than one oil.

  10. Inhibitory effect of Jeju endemic seaweeds on the production of pro-inflammatory mediators in mouse macrophage cell line RAW 264.7*

    PubMed Central

    Yang, Eun-Jin; Moon, Ji-Young; Kim, Min-Jin; Kim, Dong Sam; Kim, Chan-Shick; Lee, Wook Jae; Lee, Nam Ho; Hyun, Chang-Gu

    2010-01-01

    Seaweed has been used in traditional cosmetics and as a herbal medicine in treatments for cough, boils, goiters, stomach ailments, and urinary diseases, and for reducing the incidence of tumors, ulcers, and headaches. Despite the fact that seaweeds are frequently used in the practice of human health, little is known about the role of seaweed in the context of inflammation. This study aimed to investigate the influence of Jeju endemic seaweed on a mouse macrophage cell line (RAW 264.7) under the stimulation of lipopolysaccharide (LPS). Ethyl acetate extracts obtained from 14 different kinds of Jeju seaweeds were screened for inhibitory effects on pro-inflammatory mediators. Our results revealed that extracts from five seaweeds, Laurencia okamurae, Grateloupia elliptica, Sargassum thunbergii, Gloiopeltis furcata, and Hizikia fusiformis, were potent inhibitors of the production of pro-inflammatory mediators such as nitric oxide (NO), prostaglandin E2 (PGE2), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). Based on these results, the anti-inflammatory effects and low cell toxicity of these seaweed extracts suggest potential therapeutic applications in the regulation of the inflammatory response. PMID:20443209

  11. Overexpression of Annexin A1 Suppresses Pro-Inflammatory Factors in PC12 Cells Induced by 1-Methyl-4-Phenylpyridinium

    PubMed Central

    Kiani-Esfahani, Abbas; Kazemi Sheykhshabani, Sedigheh; Peymani, Maryam; Hashemi, Motahare-Sadat; Ghaedi, Kamran; Nasr-Esfahani, Mohammad Hossein

    2016-01-01

    Objective Annexin A1 (ANXA1) is suggested to have anti-inflammatory function. However, the precise function of ANXA1 has remained unclear. In this study, we therefore examined the potency of ANXA1 in regulating reactive oxygen species (ROS) production and suppressing pro-inflammatory responses in PC12 cells induced by 1-methyl-4-phenylpyridinium (MPP+). Materials and Methods In this experimental study, cDNA of ANXA1 was cloned and inserted to the PGL268 pEpi-FGM18F vector to produce a recombinant PGL/ANXA1 vector for transfection into the PC12 cells. ANXA1 transfected cells were then treated with MPP+. Apoptosis and the content of pro-inflammatory factors including ROS, Interlukin-6 (IL-6), inducible nitric oxide synthase (iNOS) and nuclear factor-kappa B (NF-κB) were assessed by flow-cytometry, real-time quantitative polymerase chain reaction (RT-qPCR) and western blot in ANXA1-transfected cells and the data were compared with those obtained from mock and control cells. Results Data revealed that overexpression of ANXA1 is associated with decreased levels of ROS and expression level of IL-6 and iNOS transcripts, and NF-κB protein in MPP+ treated PC12 cells. Conclusion ANXA1 may be considered as an agent for prevention of neurodegenerative or inflammatory conditions. PMID:27540524

  12. Overexpression of Annexin A1 Suppresses Pro-Inflammatory Factors in PC12 Cells Induced by 1-Methyl-4-Phenylpyridinium.

    PubMed

    Kiani-Esfahani, Abbas; Kazemi Sheykhshabani, Sedigheh; Peymani, Maryam; Hashemi, Motahare-Sadat; Ghaedi, Kamran; Nasr-Esfahani, Mohammad Hossein

    2016-01-01

    Annexin A1 (ANXA1) is suggested to have anti-inflammatory function. However, the precise function of ANXA1 has remained unclear. In this study, we therefore examined the potency of ANXA1 in regulating reactive oxygen species (ROS) production and suppressing pro-inflammatory responses in PC12 cells induced by 1-methyl-4-phenylpyridinium (MPP+). In this experimental study, cDNA of ANXA1 was cloned and inserted to the PGL268 pEpi-FGM18F vector to produce a recombinant PGL/ANXA1 vector for transfection into the PC12 cells. ANXA1 transfected cells were then treated with MPP+. Apoptosis and the content of pro-inflammatory factors including ROS, Interlukin-6 (IL-6), inducible nitric oxide synthase (iNOS) and nuclear factor-kappa B (NF-κB) were assessed by flow-cytometry, real-time quantitative polymerase chain reaction (RT-qPCR) and western blot in ANXA1-transfected cells and the data were compared with those obtained from mock and control cells. Data revealed that overexpression of ANXA1 is associated with decreased levels of ROS and expression level of IL-6 and iNOS transcripts, and NF-κB protein in MPP+ treated PC12 cells. ANXA1 may be considered as an agent for prevention of neurodegenerative or inflammatory conditions.

  13. CD161 Defines a Functionally Distinct Subset of Pro-Inflammatory Natural Killer Cells

    PubMed Central

    Kurioka, Ayako; Cosgrove, Cormac; Simoni, Yannick; van Wilgenburg, Bonnie; Geremia, Alessandra; Björkander, Sophia; Sverremark-Ekström, Eva; Thurnheer, Christine; Günthard, Huldrych F.; Khanna, Nina; Aubert, V; Arancibia-Cárcamo, CV; Walker, Lucy Jane; Arancibia-Cárcamo, Carolina V.; Newell, Evan W.; Willberg, Christian B.; Klenerman, Paul

    2018-01-01

    CD161 is a C-type lectin-like receptor expressed on the majority of natural killer (NK) cells; however, the significance of CD161 expression on NK cells has not been comprehensively investigated. Recently, we found that CD161 expression identifies a transcriptional and innate functional phenotype that is shared across various T cell populations. Using mass cytometry and microarray experiments, we demonstrate that this functional phenotype extends to NK cells. CD161 marks NK cells that have retained the ability to respond to innate cytokines during their differentiation, and is lost upon cytomegalovirus-induced maturation in both healthy and human immunodeficiency virus (HIV)-infected patients. These pro-inflammatory NK cells are present in the inflamed lamina propria where they are enriched for integrin CD103 expression. Thus, CD161 expression identifies NK cells that may contribute to inflammatory disease pathogenesis and correlates with an innate responsiveness to cytokines in both T and NK cells. PMID:29686665

  14. Neisseria meningitidis elicits a pro-inflammatory response involving IκBζ in a human blood-cerebrospinal fluid barrier model.

    PubMed

    Borkowski, Julia; Li, Li; Steinmann, Ulrike; Quednau, Natascha; Stump-Guthier, Carolin; Weiss, Christel; Findeisen, Peter; Gretz, Norbert; Ishikawa, Hiroshi; Tenenbaum, Tobias; Schroten, Horst; Schwerk, Christian

    2014-09-13

    The human-specific, Gram-negative bacterium Neisseria meningitidis (Nm) is a leading cause of bacterial meningitis worldwide. The blood-cerebrospinal fluid barrier (BCSFB), which is constituted by the epithelial cells of the choroid plexus (CP), has been suggested as one of the potential entry sites of Nm into the CSF and can contribute to the inflammatory response during infectious diseases of the brain. Toll-like receptors (TLRs) are involved in mediating signal transduction caused by the pathogens. Using a recently established in vitro model of the human BCSFB based on human malignant CP papilloma (HIBCPP) cells we investigated the cellular response of HIBCPP cells challenged with the meningitis-causing Nm strain, MC58, employing transcriptome and RT-PCR analysis, cytokine bead array, and enzyme-linked immunosorbent assay (ELISA). In comparison, we analyzed the answer to the closely related unencapsulated carrier isolate Nm α14. The presence of TLRs in HIBCPP and their role during signal transduction caused by Nm was studied by RT-PCR and the use of specific agonists and mutant bacteria. We observed a stronger transcriptional response after infection with strain MC58, in particular with its capsule-deficient mutant MC58siaD-, which correlated with bacterial invasion levels. Expression evaluation and Gene Set Enrichment Analysis pointed to a NFκB-mediated pro-inflammatory immune response involving up-regulation of the transcription factor IκBζ. Infected cells secreted significant levels of pro-inflammatory chemokines and cytokines, including, among others, IL8, CXCL1-3, and the IκBζ target gene product IL6. The expression profile of pattern recognition receptors in HIBCPP cells and the response to specific agonists indicates that TLR2/TLR6, rather than TLR4 or TLR2/TLR1, is involved in the cellular reaction following Nm infection. Our data show that Nm can initiate a pro-inflammatory response in human CP epithelial cells probably involving TLR2/TLR6

  15. Isotretinoin therapy changes the expression of antimicrobial peptides in acne vulgaris.

    PubMed

    Borovaya, Alena; Dombrowski, Yvonne; Zwicker, Stephanie; Olisova, Olga; Ruzicka, Thomas; Wolf, Ronald; Schauber, Jürgen; Sárdy, Miklós

    2014-10-01

    In acne vulgaris, antimicrobial peptides (AMPs) could play a dual role; i.e., protective by acting against Propionibacterium acnes, pro-inflammatory by acting as signalling molecules. The cutaneous expression of 15 different AMPs was investigated in acne patients; furthermore, the impact of isotretinoin therapy on AMP expression was analysed in skin biopsies from 13 patients with acne vulgaris taken before, during and after a 6-month treatment cycle with isotretinoin using quantitative real-time polymerase chain reaction. Cutaneous expression of the AMPs cathelicidin, human β-defensin-2 (HBD-2), lactoferrin, lysozyme, psoriasin (S100A7), koebnerisin (S100A15), and RNase 7 was upregulated in untreated acne vulgaris, whereas α-defensin-1 (HNP-1) was downregulated compared to controls. While relative expression levels of cathelicidin, HBD-2, lactoferrin, psoriasin (S100A7), and koebnerisin (S100A15) decreased during isotretinoin treatment, only those of cathelicidin and koebnerisin returned to normal after 6 months of isotretinoin therapy. The increased expression of lysozyme and RNase 7 remained unaffected by isotretinoin treatment. The levels of granulysin, RANTES (CCL5), perforin, CXCL9, substance P, chromogranin B, and dermcidin were not regulated in untreated acne patients and isotretinoin had no effect on these AMPs. In conclusion, the expression of various AMPs is altered in acne vulgaris. Isotretinoin therapy normalizes the cutaneous production of distinct AMPs while the expression of others is still increased in healing acne. Considering the antimicrobial and pro-inflammatory role of AMPs, these molecules could serve as specific targets for acne therapy and maintenance of clinical remission.

  16. Anti-inflammatory effects of ethanolic extract from Sargassum horneri (Turner) C. Agardh on lipopolysaccharide-stimulated macrophage activation via NF-κB pathway regulation.

    PubMed

    Kim, Mi Eun; Jung, Yun Chan; Jung, Inae; Lee, Hee-Woo; Youn, Hwa-Young; Lee, Jun Sik

    2015-01-01

    Inflammation is major symptom of the innate immune response by infection of microbes. Macrophages, one of immune response related cells, play a role in inflammatory response. Recent studies reported that various natural products can regulate the activation of immune cells such as macrophage. Sargassum horneri (Turner) C. Agardh is one of brown algae. Recently, various seaweeds including brown algae have antioxidant and anti-inflammatory effects. However, anti-inflammatory effects of Sargassum horneri (Turner) C. Agardh are still unknown. In this study, we investigated anti-inflammatory effects of ethanolic extract of Sargassum horneri (Turner) C. Agardh (ESH) on RAW 264.7 murine macrophage cell line. The ESH was extracted from dried Sargassum horneri (Turner) C. Agardh with 70% ethanol and then lyophilized at -40 °C. ESH was not cytotoxic to RAW 264.7, and nitric oxide (NO) production induced by LPS-stimulated macrophage activation was significantly decreased by the addition of 200 μg/mL of ESH. Moreover, ESH treatment reduced mRNA level of cytokines, including IL-1β, and pro-inflammatory genes such as iNOS and COX-2 in LPS-stimulated macrophage activation in a dose-dependent manner. ESH was found to elicit anti-inflammatory effects by inhibiting ERK, p-p38 and NF-κB phosphorylation. In addition, ESH inhibited the release of IL-1β in LPS-stimulated macrophages. These results suggest that ESH elicits anti-inflammatory effects on LPS-stimulated macrophage activation via the inhibition of ERK, p-p38, NF-κB, and pro-inflammatory gene expression.

  17. Antimicrobial activity of eugenol and essential oils containing eugenol: A mechanistic viewpoint.

    PubMed

    Marchese, Anna; Barbieri, Ramona; Coppo, Erika; Orhan, Ilkay Erdogan; Daglia, Maria; Nabavi, Seyed Fazel; Izadi, Morteza; Abdollahi, Mohammad; Nabavi, Seyed Mohammad; Ajami, Marjan

    2017-11-01

    Eugenol is a hydroxyphenyl propene, naturally occurring in the essential oils of several plants belonging to the Lamiaceae, Lauraceae, Myrtaceae, and Myristicaceae families. It is one of the major constituents of clove (Syzygium aromaticum (L.) Merr. & L.M. Perry, Myrtaceae) oil and is largely used in both foods and cosmetics as a flavoring agent. A large body of recent scientific evidence supports claims from traditional medicine that eugenol exerts beneficial effects on human health. These effects are mainly associated with antioxidant and anti-inflammatory activities. Eugenol has also shown excellent antimicrobial activity in studies, being active against fungi and a wide range of gram-negative and gram-positive bacteria. The aim of this review is to analyze scientific data from the main published studies describing the antibacterial and antifungal activities of eugenol targeting different kind of microorganisms, such as those responsible for human infectious diseases, diseases of the oral cavity, and food-borne pathogens. This article also reports the effects of eugenol on multi-drug resistant microorganisms. On the basis of this collected data, eugenol represents a very interesting bioactive compound with broad spectrum antimicrobial activity against both planktonic and sessile cells belonging to food-decaying microorganisms and human pathogens.

  18. Antimicrobial activity of Miconia species (Melastomataceae).

    PubMed

    Rodrigues, Juliana; Michelin, Danielle Carvalho; Rinaldo, Daniel; Zocolo, Guilherme Julião; dos Santos, Lourdes Campaner; Vilegas, Wagner; Salgado, Hérida Regina Nunes

    2008-03-01

    This work evaluated the antimicrobial activity of the methanol and chloroform extracts of the leaves of Miconia cabucu, Miconia rubiginosa, and Miconia stenostachya using the disc-diffusion method. The results obtained showed that the methanol extracts of the leaves of M. rubiginosa and M. stenostachya and the chloroform extract of the leaves of M. cabucu presented antimicrobial activity against the tested microorganisms.

  19. Anti-inflammatory effects of ursodeoxycholic acid by lipopolysaccharide-stimulated inflammatory responses in RAW 264.7 macrophages

    PubMed Central

    Ko, Wan-Kyu; Lee, Soo-Hong; Kim, Sung Jun; Jo, Min-Jae; Kumar, Hemant; Han, In-Bo; Sohn, Seil

    2017-01-01

    Purpose The aim of this study was to investigate the anti-inflammatory effects of Ursodeoxycholic acid (UDCA) in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Methods We induced an inflammatory process in RAW 264.7 macrophages using LPS. The anti-inflammatory effects of UDCA on LPS-stimulated RAW 264.7 macrophages were analyzed using nitric oxide (NO). Pro-inflammatory and anti-inflammatory cytokines were analyzed by quantitative real time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). The phosphorylations of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 in mitogen-activated protein kinase (MAPK) signaling pathways and nuclear factor kappa-light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) signaling pathways were evaluated by western blot assays. Results UDCA decreased the LPS-stimulated release of the inflammatory mediator NO. UDCA also decreased the pro-inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin 1-α (IL-1α), interleukin 1-β (IL-1β), and interleukin 6 (IL-6) in mRNA and protein levels. In addition, UDCA increased an anti-inflammatory cytokine interleukin 10 (IL-10) in the LPS-stimulated RAW 264.7 macrophages. UDCA inhibited the expression of inflammatory transcription factor nuclear factor kappa B (NF-κB) in LPS-stimulated RAW 264.7 macrophages. Furthermore, UDCA suppressed the phosphorylation of ERK, JNK, and p38 signals related to inflammatory pathways. In addition, the phosphorylation of IκBα, the inhibitor of NF-κB, also inhibited by UDCA. Conclusion UDCA inhibits the pro-inflammatory responses by LPS in RAW 264.7 macrophages. UDCA also suppresses the phosphorylation by LPS on ERK, JNK, and p38 in MAPKs and NF-κB pathway. These results suggest that UDCA can serve as a useful anti-inflammatory drug. PMID:28665991

  20. Analgesic, Anti- inflammatory, Anti- lipoxygenase Activity and Characterization of Three Bioactive Compounds in the Most Active Fraction of Leptadenia reticulata (Retz.)Wight & Arn. – A Valuable Medicinal Plant

    PubMed Central

    Mohanty, Sudipta Kumar; Swamy, Mallappa Kumara; Middha, Sushil Kumar; Prakash, Lokesh; Subbanarashiman, Balasubramanya; Maniyam, Anuradha

    2015-01-01

    Leptadenia reticulata was reported to be used for several medicinal purposes. The present study was undertaken to evaluate anti-inflammatory, analgesic and lipid peroxidation inhibition activities of L. reticulata. The anti-inflammatory assay was performed by λ-carrageenan and formalin induced paw edema test. Pro inflammatory mediators (IL2, IL6, TNF-α) in serum of treated and control organism were analyzed by quantitative ELISA. Lipid peroxidation inhibition was measured by thiobarbituric acid reactive substances (TBARS) assay. Analysis of the most active fraction revealed the presence of one phenolic compound (p-coumaric acid), two flavonoids (rutin and quercetin) which also determined quantitatively. The ethyl acetate fraction at 600 mg/Kg significantly inhibited λ-carrageenan and formalin induced paw edema by 60.59% and 59.24% respectively. Notable reduction in percentage of writhing (76.25%), induced by acetic acid signifies the potent analgesic activity. Lower level of pro-inflammatory cytokines (IL-2, IL-6, TNF-α) in serum at the 4th hour of λ-Carrageenan injection indicated the inhibition of cyclooxigenase-2 (Cox-2), Nitric oxide (NO) and release of prostaglandin to prevent inflammation. The study also demonstrated the decrease in malonaldehyde (MDA) concentration which revealed the lipid peroxidation inhibition potential of the plant. Our finding provides evidence for potent biological activities in tested model which is supported by its characterized bioactive compounds and ethnomedicinal relevance. PMID:26330883

  1. Antimicrobial activity and cytotoxic effects of Magnolia dealbata and its active compounds.

    PubMed

    Jacobo-Salcedo, Maria del Rosario; Gonzalez-Espindola, Luis Angel; Alonso-Castro, Angel Josabad; Gonzalez-Martinez, Marisela del Rocio; Domínguez, Fabiola; Garcia-Carranca, Alejandro

    2011-08-01

    Multi-drug resistance is of great concern for public health worldwide and necessitates the search for new antimicrobials from sources such as plants. Several Magnolia (Magnoliaceae) species have been reported to exert antimicrobial effects on sensitive and multidrug-resistant microorganisms. However, the antimicrobial properties of Magnolia dealbata have not been experimentally evaluated. The antimicrobial effects of an ethanol extract of Magnolia dealbata seeds (MDE) and its active compounds honokiol (HK) and magnolol (MG) were tested against the phytopathogen Clavibacter michiganensis subsp. michiganensis and several human multi-drug resistant pathogens using the disk-diffusion assay. The effects of MDE and its active compounds on the viability of human peripheral blood mononuclear cells (PBMC) were evaluated using MTT assay. MDE and its active compounds had antimicrobial activity (inhibition zone > 10 mm) against C. michiganensis, Pseudomonas aeruginosa, Acinetobacter baumannii, Acinetobacter lwoffii, Candida albicans, Candida tropicalis and Trichosporon belgeii. The results suggest that M. dealbata and its active compounds have selective antimicrobial effects against drug-resistant fungal and Gram (-) bacteria and exert minimal toxic effects on human PMBC.

  2. Pinocembrin attenuates lipopolysaccharide-induced inflammatory responses in Labeo rohita macrophages via the suppression of the NF-κB signalling pathway.

    PubMed

    Giri, Sib Sankar; Sen, Shib Sankar; Sukumaran, Venkatachalam; Park, Se Chang

    2016-09-01

    Pinocembrin is a flavonoid that has been reported to exhibit various pharmacological and biological activities including antimicrobial, antioxidant, and anti-inflammatory. To explore the anti-inflammatory activity of pinocembrin in a fish cell line, we investigated its ability to regulate the inflammatory mediators elevated by lipopolysaccharide (LPS) in Labeo rohita head-kidney (HK) macrophages. HK macrophages of L. rohita were treated with LPS (1 μg mL(-1)) in the presence or absence of pinocembrin. We examined the inhibitory effect of pinocembrin on LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production. The inhibitory effect of pinocembrin on nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) was investigated by RT-PCR and western blot. The effect of pinocembrin on pro-inflammatory cytokines (tumour necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β)) and anti-inflammatory cytokine IL-10 was investigated by ELISA and RT-PCR. The phosphorylation of three mitogen activated protein kinases (MAPKs) ERK, JNK, and p38 was analysed by western blot. Pinocembrin inhibited LPS-induced productions of NO and PGE2, and also markedly inhibited TNF-α, IL-1β, iNOS, and COX-2 production in a concentration-dependent manner. In addition, TNF-α and IL-1β mRNA expression levels decreased significantly, while IL-10 mRNA expression increased (P < 0.05) with pinocembrin pre-treatment. RT-PCR and western blot analysis showed that pinocembrin decreased both the mRNA and protein expression levels of LPS-induced iNOS and COX-2 in HK macrophages. Pinocembrin suppressed the phosphorylation of MAPK in LPS-stimulated HK macrophages. Further, pinocembrin significantly inhibited LPS-induced NF-κB transcriptional activity via the attenuation of IκBα degradation. Taken together, pinocembrin reduced the levels of pro-inflammatory mediators, such as iNOS, COX-2, TNF-α, and IL-1β, by inhibiting NF-κB activation via the suppression of ERK and p38

  3. Antimicrobial activity of Gentiana lutea L. extracts.

    PubMed

    Savikin, Katarina; Menković, Nebojsa; Zdunić, Gordana; Stević, Tatjana; Radanović, Dragoja; Janković, Teodora

    2009-01-01

    Methanolic extracts of flowers and leaves of Gentiana lutea L., together with the isolated compounds mangiferin, isogentisin and gentiopicrin, were used to investigate the antimicrobial activity of the plant. A variety of Gram-positive and Gram-negative bacteria as well as the yeast Candida albicans has been included in this study. Both extracts and isolated compounds showed antimicrobial activity with MIC values ranging from 0.12-0.31 mg/ml. Our study indicated that the synergistic activity of the pure compounds may be responsible for the good antimicrobial effect of the extracts. Quantification of the secondary metabolites was performed using HPLC.

  4. Understanding the potential benefits of thyme and its derived products for food industry and consumer health: From extraction of value-added compounds to the evaluation of bioaccessibility, bioavailability, anti-inflammatory, and antimicrobial activities.

    PubMed

    Lorenzo, Jose M; Mousavi Khaneghah, Amin; Gavahian, Mohsen; Marszałek, Krystian; Eş, Ismail; Munekata, Paulo E S; Ferreira, Isabel C F R; Barba, Francisco J

    2018-05-17

    Natural bioactive compounds isolated from several aromatic plants have been studied for centuries due to their unique characteristics that carry great importance in food, and pharmaceutical, and cosmetic industries. For instance, several beneficial activities have been attributed to some specific compounds found in Thymus such as anti-inflammatory, antioxidant, antimicrobial, and antiseptic properties. Moreover, these compounds are classified as Generally Recognized as Safe (GRAS) which means they can be used as an ingrident of may food producs. Conventional extraction processes of these compounds and their derived forms from thyme leaves are well established. Hoewever, they present some important drawbacks such as long extraction time, low yield, high solvent consumption and degradation thermolabile compounds. Therefore, innovative extraction techniques such as ultrasound, microwave, enzyme, ohmic and heat-assisted methods can be useful strategies to enhance the exytraction yield and to reduce processing temperature, extraction time, and energy and solvent consumption. Furthermore, bioaccessibility and bioavailability aspects of these bioactive compounds as well as their metabolic fates are crucial for developing novel functional foods. Additionally, immobilization methods to improve stability, solubility, and the overall bioavailability of these valuable compounds are necessary for their commercial applications. This review aims to give an overall perspective of innovative extraction techniques to extract the targeted compounds with anti-inflammatory and antimicrobial activities. Moreover, the bioaccessi-bility and bioavailability of these compounds before and after processing discussed. In addition, some of the most important characteristics of thyme and their derived products discussed in this paper.

  5. In ovo delivery of Toll-like receptor 2 ligand, lipoteichoic acid induces pro-inflammatory mediators reducing post-hatch infectious laryngotracheitis virus infection.

    PubMed

    Thapa, S; Nagy, E; Abdul-Careem, M F

    2015-04-15

    Toll-like receptor (TLR) ligands are pathogen associated molecular patterns (PAMPs) recognized by the TLRs resulting in induction of host innate immune responses. One of the PAMPs that binds to TLR2 and cluster of differentiation (CD) 14 is lipotechoic acid (LTA), which activates downstream signals culminating in the release of pro-inflammatory cytokines. In this study, we investigated whether in ovo LTA delivery leads to the induction of antiviral responses against post-hatch infectious laryngotracheitis virus (ILTV) infection. We first delivered the LTA into embryo day (ED)18 eggs via in ovo route so that the compound is available at the respiratory mucosa. Then the LTA treated and control ED18 eggs were allowed to hatch and the hatched chicken was infected with ILTV intratracheally on the day of hatch. We found that in ovo delivered LTA reduces ILTV infection post-hatch. We also found that in ovo delivery of LTA significantly increases mRNA expression of pro-inflammatory mediators in pre-hatch embryo lungs as well as mononuclear cell infiltration, predominantly macrophages, in lung of post-hatch chickens. Altogether, the data suggest that in ovo delivered LTA could be used to reduce ILTV infection in newly hatched chickens. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Obesity-associated metabolic syndrome spontaneously induces infiltration of pro-inflammatory macrophage in synovium and promotes osteoarthritis

    PubMed Central

    Sun, Antonia RuJia; Panchal, Sunil K.; Friis, Thor; Sekar, Sunderajhan; Crawford, Ross; Brown, Lindsay; Xiao, Yin

    2017-01-01

    Objectives Epidemiological and experimental studies have established obesity to be an important risk factor for osteoarthritis (OA), however, the mechanisms underlying this link remains largely unknown. Here, we studied local inflammatory responses in metabolic-OA. Methods Wistar rats were fed with control diet (CD) and high-carbohydrate, high-fat diet (HCHF) for period of 8 and 16 weeks. After euthanasia, the knees were examined to assess the articular cartilage changes and inflammation in synovial membrane. Further IHC was conducted to determine the macrophage-polarization status of the synovium. In addition, CD and HCHF synovial fluid was co-cultured with bone marrow-derived macrophages to assess the effect of synovial fluid inflammation on macrophage polarisation. Results Our study showed that, obesity induced by a high-carbohydrate, high-fat (HCHF) diet is associated with spontaneous and local inflammation of the synovial membranes in rats even before the cartilage degradation. This was followed by increased synovitis and increased macrophage infiltration into the synovium and a predominant elevation of pro-inflammatory M1 macrophages. In addition, bone marrow derived macrophages, cultured with synovial fluid collected from the knees of obese rats exhibited a pro-inflammatory M1 macrophage phenotype. Conclusion Our study demonstrate a strong association between obesity and a dynamic immune response locally within synovial tissues. Furthermore, we have also identified synovial resident macrophages to play a vital role in the inflammation caused by the HCHF diet. Therefore, future therapeutic strategies targeted at the synovial macrophage phenotype may be the key to break the link between obesity and OA. PMID:28859108

  7. P5CDH affects the pathways contributing to Pro synthesis after ProDH activation by biotic and abiotic stress conditions

    PubMed Central

    Rizzi, Yanina S.; Monteoliva, Mariela I.; Fabro, Georgina; Grosso, Carola L.; Laróvere, Laura E.; Alvarez, María E.

    2015-01-01

    Plants facing adverse conditions usually alter proline (Pro) metabolism, generating changes that help restore the cellular homeostasis. These organisms synthesize Pro from glutamate (Glu) or ornithine (Orn) by two-step reactions that share Δ1 pyrroline-5-carboxylate (P5C) as intermediate. In the catabolic process, Pro is converted back to Glu using a different pathway that involves Pro dehydrogenase (ProDH), P5C dehydrogenase (P5CDH), and P5C as intermediate. Little is known about the coordination of the catabolic and biosynthetic routes under stress. To address this issue, we analyzed how P5CDH affects the activation of Pro synthesis, in Arabidopsis tissues that increase ProDH activity by transient exposure to exogenous Pro, or infection with Pseudomonas syringae pv. tomato. Wild-type (Col-0) and p5cdh mutant plants subjected to these treatments were used to monitor the Pro, Glu, and Orn levels, as well as the expression of genes from Pro metabolism. Col-0 and p5cdh tissues consecutively activated ProDH and Pro biosynthetic genes under both conditions. However, they manifested a different coordination between these routes. When external Pro supply was interrupted, wild-type leaves degraded Pro to basal levels at which point Pro synthesis, mainly via Glu, became activated. Under the same condition, p5cdh leaves sustained ProDH induction without reducing the Pro content but rather increasing it, apparently by stimulating the Orn pathway. In response to pathogen infection, both genotypes showed similar trends. While Col-0 plants seemed to induce both Pro biosynthetic routes, p5cdh mutant plants may primarily activate the Orn route. Our study contributes to the functional characterization of P5CDH in biotic and abiotic stress conditions, by revealing its capacity to modulate the fate of P5C, and prevalence of Orn or Glu as Pro precursors in tissues that initially consumed Pro. PMID:26284090

  8. Cellular Mechanics of Primary Human Cervical Fibroblasts: Influence of Progesterone and a Pro-inflammatory Cytokine.

    PubMed

    Shukla, Vasudha; Barnhouse, Victoria; Ackerman, William E; Summerfield, Taryn L; Powell, Heather M; Leight, Jennifer L; Kniss, Douglas A; Ghadiali, Samir N

    2018-01-01

    The leading cause of neonatal mortality, pre-term birth, is often caused by pre-mature ripening/opening of the uterine cervix. Although cervical fibroblasts play an important role in modulating the cervix's extracellular matrix (ECM) and mechanical properties, it is not known how hormones, i.e., progesterone, and pro-inflammatory insults alter fibroblast mechanics, fibroblast-ECM interactions and the resulting changes in tissue mechanics. Here we investigate how progesterone and a pro-inflammatory cytokine, IL-1β, alter the biomechanical properties of human cervical fibroblasts and the fibroblast-ECM interactions that govern tissue-scale mechanics. Primary human fibroblasts were isolated from non-pregnant cervix and treated with estrogen/progesterone, IL-1β or both. The resulting changes in ECM gene expression, matrix remodeling, traction force generation, cell-ECM adhesion and tissue contractility were monitored. Results indicate that IL-1β induces a significant reduction in traction force and ECM adhesion independent of pre-treatment with progesterone. These cell level effects altered tissue-scale mechanics where IL-1β inhibited the contraction of a collagen gel over 6 days. Interestingly, progesterone treatment alone did not modulate traction forces or gel contraction but did result in a dramatic increase in cell-ECM adhesion. Therefore, the protective effect of progesterone may be due to altered adhesion dynamics as opposed to altered ECM remodeling.

  9. TGR5 signalling inhibits the production of pro-inflammatory cytokines by in vitro differentiated inflammatory and intestinal macrophages in Crohn's disease

    PubMed Central

    Yoneno, Kazuaki; Hisamatsu, Tadakazu; Shimamura, Katsuyoshi; Kamada, Nobuhiko; Ichikawa, Riko; Kitazume, Mina T; Mori, Maiko; Uo, Michihide; Namikawa, Yuka; Matsuoka, Katsuyoshi; Sato, Toshiro; Koganei, Kazutaka; Sugita, Akira; Kanai, Takanori; Hibi, Toshifumi

    2013-01-01

    Bile acids (BAs) play important roles not only in lipid metabolism, but also in signal transduction. TGR5, a transmembrane receptor of BAs, is an immunomodulative factor, but its detailed mechanism remains unclear. Here, we aimed to delineate how BAs operate in immunological responses via the TGR5 pathway in human mononuclear cell lineages. We examined TGR5 expression in human peripheral blood monocytes, several types of in vitro differentiated macrophages (Mϕs) and dendritic cells. Mϕs differentiated with macrophage colony-stimulating factor and interferon-γ (Mγ-Mϕs), which are similar to the human intestinal lamina propria CD14+ Mϕs that contribute to Crohn's disease (CD) pathogenesis by production of pro-inflammatory cytokines, highly expressed TGR5 compared with any other type of differentiated Mϕ and dendritic cells. We also showed that a TGR5 agonist and two types of BAs, deoxycholic acid and lithocholic acid, could inhibit tumour necrosis factor-α production in Mγ-Mϕs stimulated by commensal bacterial antigen or lipopolysaccharide. This inhibitory effect was mediated by the TGR5–cAMP pathway to induce phosphorylation of c-Fos that regulated nuclear factor-κB p65 activation. Next, we analysed TGR5 levels in lamina propria mononuclear cells (LPMCs) obtained from the intestinal mucosa of patients with CD. Compared with non-inflammatory bowel disease, inflamed CD LPMCs contained more TGR5 transcripts. Among LPMCs, isolated CD14+ intestinal Mϕs from patients with CD expressed TGR5. In isolated intestinal CD14+ Mϕs, a TGR5 agonist could inhibit tumour necrosis factor-α production. These results indicate that TGR5 signalling may have the potential to modulate immune responses in inflammatory bowel disease. PMID:23566200

  10. Fingolimod Phosphate Inhibits Astrocyte Inflammatory Activity in Mucolipidosis IV.

    PubMed

    Weinstock, Laura; Furness, Amanda M; Herron, Shawn; Smith, Sierra S; Sankar, Sitara; DeRosa, Samantha G; Gao, Dadi; Mepyans, Molly E; Scotto Rosato, Anna; Medina, Diego L; Vardi, Ayelet; Ferreira, Natalia S; Cho, Soo Min; Futerman, Anthony H; Slaugenhaupt, Susan A; Wood, Levi B; Grishchuk, Yulia

    2018-05-16

    Mucolipidosis IV (MLIV) is an orphan neurodevelopmental disease that causes severe neurologic dysfunction and loss of vision. Currently there is no therapy for MLIV. It is caused by loss of function of the lysosomal channel mucolipin-1, also known as TRPML1. Knockout of the Mcoln1 gene in a mouse model mirrors clinical and neuropathological signs in humans. Using this model, we previously observed robust activation of microglia and astrocytes in early symptomatic stages of disease. Here we investigate the consequence of mucolipin-1 loss on astrocyte inflammatory activation in vivo and in vitro and apply a pharmacological approach to restore Mcoln1-/- astrocyte homeostasis using a clinically approved immunomodulator, fingolimod. We found that Mcoln1-/- mice over-express numerous pro-inflammatory cytokines, some of which were also over-expressed in astrocyte cultures. Changes in the cytokine profile in Mcoln1-/- astrocytes are concomitant with changes in phospho-protein signaling, including activation of PI3K/Akt and MAPK pathways. Fingolimod promotes cytokine homeostasis, down-regulates signaling within the PI3K/Akt and MAPK pathways, and restores the lysosomal compartment in Mcoln1-/- astrocytes. These data suggest that fingolimod is a promising candidate for preclinical evaluation in our MLIV mouse model, which, in case of success, can be rapidly translated into clinical trial.

  11. An enhancer peptide for membrane-disrupting antimicrobial peptides

    PubMed Central

    2010-01-01

    Background NP4P is a synthetic peptide derived from a natural, non-antimicrobial peptide fragment (pro-region of nematode cecropin P4) by substitution of all acidic amino acid residues with amides (i.e., Glu → Gln, and Asp → Asn). Results In the presence of NP4P, some membrane-disrupting antimicrobial peptides (ASABF-α, polymyxin B, and nisin) killed microbes at lower concentration (e.g., 10 times lower minimum bactericidal concentration for ASABF-α against Staphylococcus aureus), whereas NP4P itself was not bactericidal and did not interfere with bacterial growth at ≤ 300 μg/mL. In contrast, the activities of antimicrobial agents with a distinct mode of action (indolicidin, ampicillin, kanamycin, and enrofloxacin) were unaffected. Although the membrane-disrupting activity of NP4P was slight or undetectable, ASABF-α permeabilized S. aureus membranes with enhanced efficacy in the presence of NP4P. Conclusions NP4P selectively enhanced the bactericidal activities of membrane-disrupting antimicrobial peptides by increasing the efficacy of membrane disruption against the cytoplasmic membrane. PMID:20152058

  12. Effects of Equivalent Sympathetic Activation during Hypoglycemia on Endothelial Function and Pro-Atherothrombotic Balance in Healthy Individuals and Obese Standard Treated Type 2 Diabetes

    PubMed Central

    Joy, Nino G.; Mikeladze, Maia; Younk, Lisa M.; Tate, Donna B.; Davis, Stephen N.

    2016-01-01

    Objective Recent studies in type 2 diabetes have reported an association between hypoglycemia and severe cardiovascular adverse events, which are relatively increased in standard versus intensively treated individuals. The aim of this study was to determine the effects of equivalent sympathetic nervous system (SNS) activity during moderate hypoglycemia on in-vivo endothelial function, pro-inflammatory, pro-atherothrombotic, and pro-coagulant responses in healthy and standard treated type 2 diabetes individuals. Research design and methods Eleven type 2 diabetes and 16 healthy individuals participated in single 2 day studies. Day 1 involved a 2 hr hyperinsulinemic/euglycemic clamp and day 2, a 2 hr hyperinsulinemic/hypoglycemic clamp of 3.2±1 mmol/L in type 2 diabetes and (2.9±0.1 mmol/L) in healthy individuals. Results ICAM-1, VCAM-1, P-selectin, PAI-1, VEGF and endothelin-1 (ET-1) fell during hyperinsulinemic euglycemia but increased during hypoglycemia in type 2 diabetes and healthy individuals. Epinephrine and norepinephrine levels were equivalent during hypoglycemia in type 2 DM and healthy individuals. However, despite similar SNS drive but milder and hypoglycemia there were greater ICAM-1, VCAM-1, PAI-1, VEGF and ET-1 responses in the type 2 diabetes group. Endogenous and exogenous nitric oxide mediated arterial vasodilation were also impaired only during hypoglycemia in type 2 diabetes. Conclusion We conclude that, milder hypoglycemia but equivalent SNS activation results in more diffuse endothelial dysfunction and a greater pro-inflammatory, pro-atherothrombotic and pro-coagulant state in standard treated type 2 diabetes as compared to healthy individuals. PMID:27832858

  13. Protective Effects of N-Acetyl Cysteine against Diesel Exhaust Particles-Induced Intracellular ROS Generates Pro-Inflammatory Cytokines to Mediate the Vascular Permeability of Capillary-Like Endothelial Tubes

    PubMed Central

    Tseng, Chia-Yi; Chang, Jing-Fen; Wang, Jhih-Syuan; Chang, Yu-Jung; Gordon, Marion K.; Chao, Ming-Wei

    2015-01-01

    Exposure to diesel exhaust particles (DEP) is associated with pulmonary and cardiovascular diseases. Previous studies using in vitro endothelial tubes as a simplified model of capillaries have found that DEP-induced ROS increase vascular permeability with rearrangement or internalization of adherens junctional VE-cadherin away from the plasma membrane. This allows DEPs to penetrate into the cell and capillary lumen. In addition, pro-inflammatory cytokines are up-regulated and mediate vascular permeability in response to DEP. However, the mechanisms through which these DEP-induced pro-inflammatory cytokines increase vascular permeability remain unknown. Hence, we examined the ability of DEP to induce permeability of human umbilical vein endothelial cell tube cells to investigate these mechanisms. Furthermore, supplementation with NAC reduces ROS production following exposure to DEP. HUVEC tube cells contributed to a pro-inflammatory response to DEP-induced intracellular ROS generation. Endothelial oxidative stress induced the release of TNF-α and IL-6 from tube cells, subsequently stimulating the secretion of VEGF-A independent of HO-1. Our data suggests that DEP-induced intracellular ROS and release of the pro-inflammatory cytokines TNF- α and IL-6, which would contribute to VEGF-A secretion and disrupt cell-cell borders and increase vasculature permeability. Addition of NAC suppresses DEP-induced ROS efficiently and reduces subsequent damages by increasing endogenous glutathione. PMID:26148005

  14. Poly(NIPAm-AMPS) nanoparticles for targeted delivery of anti-inflammatory cell penetrating peptides

    NASA Astrophysics Data System (ADS)

    Bartlett, Rush Lloyd, II

    Inflammatory diseases such as osteoarthritis and rheumatoid arthritis cause $127.8 billion in US healthcare expenditures each year and are the cause of disability for 27% of disabled persons in the United States. Current treatment options rarely halt disease progression and often result in significant unwanted and debilitating side effects. Our laboratory has previously developed a family of cell penetrating peptides (CPPs) which inhibit the activity of mitogen activated protein kinase activate protein kinase 2 (MK2). MK2 mediates the inflammatory response by activating Tristetraprline (TTP). Once activated, TTP rapidly stabilizes AU rich regions of pro-inflammatory cytokine mRNA which allows translation of pro-inflammatory cytokines to occur. Blocking MK2 with our labs CPPs yields a decrease in inflammatory activity but CPPs by are highly non specific and prone to rapid enzymatic degradation in vivo.. In order to increase the potency of MK2 inhibiting CPPs we have developed a novel nanoparticle drug carrier composed of poly(N-isopropylacrylamide-co-2-acrylamido-2-methyl-1-propanesulfonic acid). This drug carrier has been shown to have preliminary efficacy in vitro and ex vivo for suppressing pro-inflammatory cytokine production when releasing CPPs. This thesis will present progress made on three aims: Specific Aim 1) Create and validate a NIPAm based drug delivery system that mimics the binding and release previously observed between cell penetrating peptides and glycosaminoglycans. Specific Aim 2) Engineer degradability into poly(NIPAm-AMPS) nanoparticles to enable more drug to be released and qualify that system in vitro. Specific Aim 3) Validate poly(NIPAm-AMPS) nanoparticles for targeted drug delivery in an ex vivo inflammatory model. Overall we have developed a novel anionic nanoparticle system that is biocompatible and efficient at loading and releasing cell penetrating peptides to inflamed tissue. Once loaded with a CPP the nanoparticle drug complex is

  15. Enhancement of Anti-Inflammatory Activity of Curcumin Using Phosphatidylserine-Containing Nanoparticles in Cultured Macrophages.

    PubMed

    Wang, Ji; Kang, Yu-Xia; Pan, Wen; Lei, Wan; Feng, Bin; Wang, Xiao-Juan

    2016-06-20

    Macrophages are one kind of innate immune cells, and produce a variety of inflammatory cytokines in response to various stimuli, such as oxidized low density lipoprotein found in the pathogenesis of atherosclerosis. In this study, the effect of phosphatidylserine on anti-inflammatory activity of curcumin-loaded nanostructured lipid carriers was investigated using macrophage cultures. Different amounts of phosphatidylserine were used in the preparation of curcumin nanoparticles, their physicochemical properties and biocompatibilities were then compared. Cellular uptake of the nanoparticles was investigated using a confocal laser scanning microscope and flow cytometry analysis in order to determine the optimal phosphatidylserine concentration. In vitro anti-inflammatory activities were evaluated in macrophages to test whether curcumin and phosphatidylserine have interactive effects on macrophage lipid uptake behavior and anti-inflammatory responses. Here, we showed that macrophage uptake of phosphatidylserine-containing nanostructured lipid carriers increased with increasing amount of phosphatidylserine in the range of 0%-8%, and decreased when the phosphatidylserine molar ratio reached over 12%. curcumin-loaded nanostructured lipid carriers significantly inhibited lipid accumulation and pro-inflammatory factor production in cultured macrophages, and evidently promoted release of anti-inflammatory cytokines, when compared with curcumin or phosphatidylserine alone. These results suggest that the delivery system using PS-based nanoparticles has great potential for efficient delivery of drugs such as curcumin, specifically targeting macrophages and modulation of their anti-inflammatory functions.

  16. Antimicrobial activity against oral pathogens and immunomodulatory effects and toxicity of geopropolis produced by the stingless bee Melipona fasciculata Smith

    PubMed Central

    2011-01-01

    Background Native bees of the tribe Meliponini produce a distinct kind of propolis called geopropolis. Although many pharmacological activities of propolis have already been demonstrated, little is known about geopropolis, particularly regarding its antimicrobial activity against oral pathogens. The present study aimed at investigating the antimicrobial activity of M. fasciculata geopropolis against oral pathogens, its effects on S. mutans biofilms, and the chemical contents of the extracts. A gel prepared with a geopropolis extract was also analyzed for its activity on S. mutans and its immunotoxicological potential. Methods Antimicrobial activities of three hydroalcoholic extracts (HAEs) of geopropolis, and hexane and chloroform fractions of one extract, were evaluated using the agar diffusion method and the broth dilution technique. Ethanol (70%, v/v) and chlorhexidine (0.12%, w/w) were used as negative and positive controls, respectively. Total phenol and flavonoid concentrations were assayed by spectrophotometry. Immunotoxicity was evaluated in mice by topical application in the oral cavity followed by quantification of biochemical and immunological parameters, and macro-microscopic analysis of animal organs. Results Two extracts, HAE-2 and HAE-3, showed inhibition zones ranging from 9 to 13 mm in diameter for S. mutans and C. albicans, but presented no activity against L. acidophilus. The MBCs for HAE-2 and HAE-3 against S. mutans were 6.25 mg/mL and 12.5 mg/mL, respectively. HAE-2 was fractionated, and its chloroform fraction had an MBC of 14.57 mg/mL. HAE-2 also exhibited bactericidal effects on S. mutans biofilms after 3 h of treatment. Significant differences (p < 0.05) in total phenol and flavonoid concentrations were observed among the samples. Signs toxic effects were not observed after application of the geopropolis-based gel, but an increase in the production of IL-4 and IL-10, anti-inflammatory cytokines, was detected. Conclusions In summary

  17. Antimicrobial activity against oral pathogens and immunomodulatory effects and toxicity of geopropolis produced by the stingless bee Melipona fasciculata Smith.

    PubMed

    Liberio, Silvana A; Pereira, Antônio Luís A; Dutra, Richard P; Reis, Aramys S; Araújo, Maria José A M; Mattar, Nadia S; Silva, Lucilene A; Ribeiro, Maria Nilce S; Nascimento, Flávia Raquel F; Guerra, Rosane N M; Monteiro-Neto, Valério

    2011-11-04

    Native bees of the tribe Meliponini produce a distinct kind of propolis called geopropolis. Although many pharmacological activities of propolis have already been demonstrated, little is known about geopropolis, particularly regarding its antimicrobial activity against oral pathogens. The present study aimed at investigating the antimicrobial activity of M. fasciculata geopropolis against oral pathogens, its effects on S. mutans biofilms, and the chemical contents of the extracts. A gel prepared with a geopropolis extract was also analyzed for its activity on S. mutans and its immunotoxicological potential. Antimicrobial activities of three hydroalcoholic extracts (HAEs) of geopropolis, and hexane and chloroform fractions of one extract, were evaluated using the agar diffusion method and the broth dilution technique. Ethanol (70%, v/v) and chlorhexidine (0.12%, w/w) were used as negative and positive controls, respectively. Total phenol and flavonoid concentrations were assayed by spectrophotometry. Immunotoxicity was evaluated in mice by topical application in the oral cavity followed by quantification of biochemical and immunological parameters, and macro-microscopic analysis of animal organs. Two extracts, HAE-2 and HAE-3, showed inhibition zones ranging from 9 to 13 mm in diameter for S. mutans and C. albicans, but presented no activity against L. acidophilus. The MBCs for HAE-2 and HAE-3 against S. mutans were 6.25 mg/mL and 12.5 mg/mL, respectively. HAE-2 was fractionated, and its chloroform fraction had an MBC of 14.57 mg/mL. HAE-2 also exhibited bactericidal effects on S. mutans biofilms after 3 h of treatment. Significant differences (p < 0.05) in total phenol and flavonoid concentrations were observed among the samples. Signs toxic effects were not observed after application of the geopropolis-based gel, but an increase in the production of IL-4 and IL-10, anti-inflammatory cytokines, was detected. In summary, geopropolis produced by M. fasciculata can

  18. Dynamic Changes in Pro- and Anti-Inflammatory Cytokine Profiles and Gamma Interferon Receptor Signaling Integrity Correlate with Tuberculosis Disease Activity and Response to Curative Treatment▿

    PubMed Central

    Sahiratmadja, Edhyana; Alisjahbana, Bachti; de Boer, Tjitske; Adnan, Iskandar; Maya, Anugrah; Danusantoso, Halim; Nelwan, Ronald H. H.; Marzuki, Sangkot; van der Meer, Jos W. M.; van Crevel, Reinout; van de Vosse, Esther; Ottenhoff, Tom H. M.

    2007-01-01

    Pro- and anti-inflammatory cytokines and their signaling pathways play key roles in protection from and pathogenesis of mycobacterial infection, and their balance and dynamic changes may control or predict clinical outcome. Peripheral blood cells' capacity to produce proinflammatory (tumor necrosis factor alpha [TNF-α], interleukin-12/23p40 [IL-12/23p40], and gamma interferon [IFN-γ]) and anti-inflammatory (IL-10) cytokines in response to Mycobacterium tuberculosis or unrelated stimuli (lipopolysaccharide, phytohemagglutinin) was studied in 93 pulmonary tuberculosis (TB) patients and 127 healthy controls from Indonesia. Their cells' ability to respond to IFN-γ was examined to investigate whether M. tuberculosis infection can also inhibit IFN-γ receptor (IFN-γR) signaling. Although there was interindividual variability in the observed responses, the overall results revealed that M. tuberculosis-induced TNF-α and IFN-γ levels showed opposite trends. Whereas TNF-α production was higher in active-TB patients than in controls, IFN-γ production was strongly depressed during active TB, correlated inversely with TB disease severity, and increased during therapy. By contrast, mitogen-induced IFN-γ production, although lower in patients than in controls, did not change during treatment, suggesting an M. tuberculosis-specific and reversible component in the depression of IFN-γ. Depressed IFN-γ production was not due to decreased IL-12/IL-23 production. Importantly, IFN-γ-inducible responses were also significantly depressed during active TB and normalized during treatment, revealing disease activity-related and reversible impairment in IFN-γR signaling in TB. Finally, IFN-γ/IL-10 ratios significantly correlated with TB cure. Taken together, these results show that M. tuberculosis-specific stimulation of IFN-γ (but not TNF-α) production and IFN-γR signaling are significantly depressed in active TB, correlate with TB disease severity and activity, and

  19. Antimicrobial peptides: a review of how peptide structure impacts antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Soares, Jason W.; Mello, Charlene M.

    2004-03-01

    Antimicrobial peptides (AMPs) have been discovered in insects, mammals, reptiles, and plants to protect against microbial infection. Many of these peptides have been isolated and studied exhaustively to decipher the molecular mechanisms that impart protection against infectious bacteria, fungi, and viruses. Unfortunately, the molecular mechanisms are still being debated within the scientific community but valuable clues have been obtained through structure/function relationship studies1. Biophysical studies have revealed that cecropins, isolated from insects and pigs, exhibit random structure in solution but undergo a conformational change to an amphipathic α-helix upon interaction with a membrane surface2. The lack of secondary structure in solution results in an extremely durable peptide able to survive exposure to high temperatures, organic solvents and incorporation into fibers and films without compromising antibacterial activity. Studies to better understand the antimicrobial action of cecropins and other AMPs have provided insight into the importance of peptide sequence and structure in antimicrobial activities. Therefore, enhancing our knowledge of how peptide structure imparts function may result in customized peptide sequences tailored for specific applications such as targeted cell delivery systems, novel antibiotics and food preservation additives. This review will summarize the current state of knowledge with respect to cell binding and antimicrobial activity of AMPs focusing primarily upon cecropins.

  20. Vaccinium bracteatum Thunb. Exerts Anti-Inflammatory Activity by Inhibiting NF-κB Activation in BV-2 Microglial Cells

    PubMed Central

    Kwon, Seung-Hwan; Ma, Shi-Xun; Ko, Yong-Hyun; Seo, Jee-Yeon; Lee, Bo-Ram; Lee, Taek Hwan; Kim, Sun Yeou; Lee, Seok-Yong; Jang, Choon-Gon

    2016-01-01

    This study was designed to evaluate the pharmacological effects of Vaccinium bracteatum Thunb. methanol extract (VBME) on microglial activation and to identify the underlying mechanisms of action of these effects. The anti-inflammatory properties of VBME were studied using lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. We measured the production of nitric oxide (NO), inducible NO synthase (iNOS), cyclooxygenase (COX)-2, prostaglandin E2 (PGE2), tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6) as inflammatory parameters. We also examined the effect of VBME on intracellular reactive oxygen species (ROS) production and the activity of nuclear factor-kappa B p65 (NF-κB p65). VBME significantly inhibited LPS-induced production of NO and PGE2 and LPS-mediated upregulation of iNOS and COX-2 expression in a dose-dependent manner; importantly, VBME was not cytotoxic. VBME also significantly reduced the generation of the pro-inflammatory cytokines TNF-α, IL-1β, and IL-6. In addition, VBME significantly dampened intracellular ROS production and suppressed NF-κB p65 translocation by blocking IκB-α phosphorylation and degradation in LPS-stimulated BV2 cells. Our findings indicate that VBME inhibits the production of inflammatory mediators in BV-2 microglial cells by suppressing NF-κB signaling. Thus, VBME may be useful in the treatment of neurodegenerative diseases due to its ability to inhibit inflammatory mediator production in activated BV-2 microglial cells. PMID:27169820

  1. Vaccinium bracteatum Thunb. Exerts Anti-Inflammatory Activity by Inhibiting NF-κB Activation in BV-2 Microglial Cells.

    PubMed

    Kwon, Seung-Hwan; Ma, Shi-Xun; Ko, Yong-Hyun; Seo, Jee-Yeon; Lee, Bo-Ram; Lee, Taek Hwan; Kim, Sun Yeou; Lee, Seok-Yong; Jang, Choon-Gon

    2016-09-01

    This study was designed to evaluate the pharmacological effects of Vaccinium bracteatum Thunb. methanol extract (VBME) on microglial activation and to identify the underlying mechanisms of action of these effects. The anti-inflammatory properties of VBME were studied using lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. We measured the production of nitric oxide (NO), inducible NO synthase (iNOS), cyclooxygenase (COX)-2, prostaglandin E₂ (PGE₂), tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6) as inflammatory parameters. We also examined the effect of VBME on intracellular reactive oxygen species (ROS) production and the activity of nuclear factor-kappa B p65 (NF-κB p65). VBME significantly inhibited LPS-induced production of NO and PGE2 and LPS-mediated upregulation of iNOS and COX-2 expression in a dose-dependent manner; importantly, VBME was not cytotoxic. VBME also significantly reduced the generation of the pro-inflammatory cytokines TNF-α, IL-1β, and IL-6. In addition, VBME significantly dampened intracellular ROS production and suppressed NF-κB p65 translocation by blocking IκB-α phosphorylation and degradation in LPS-stimulated BV2 cells. Our findings indicate that VBME inhibits the production of inflammatory mediators in BV-2 microglial cells by suppressing NF-κB signaling. Thus, VBME may be useful in the treatment of neurodegenerative diseases due to its ability to inhibit inflammatory mediator production in activated BV-2 microglial cells.

  2. Foeniculum vulgare essential oils: chemical composition, antioxidant and antimicrobial activities.

    PubMed

    Miguel, Maria Graça; Cruz, Cláudia; Faleiro, Leonor; Simões, Mariana T F; Figueiredo, Ana Cristina; Barroso, José G; Pedro, Luis G

    2010-02-01

    The essential oils from Foeniculum vulgare commercial aerial parts and fruits were isolated by hydrodistillation, with different distillation times (30 min, 1 h, 2 h and 3 h), and analyzed by GC and GC-MS. The antioxidant ability was estimated using four distinct methods. Antibacterial activity was determined by the agar diffusion method. Remarkable differences, and worrying from the quality and safety point of view, were detected in the essential oils. trans-Anethole (31-36%), alpha-pinene (14-20%) and limonene (11-13%) were the main components of the essentials oil isolated from F. vulgare dried aerial parts, whereas methyl chavicol (= estragole) (79-88%) was dominant in the fruit oils. With the DPPH method the plant oils showed better antioxidant activity than the fruits oils. With the TBARS method and at higher concentrations, fennel essential oils showed a pro-oxidant activity. None of the oils showed a hydroxyl radical scavenging capacity > 50%, but they showed an ability to inhibit 5-lipoxygenase. The essential oils showed a very low antimicrobial activity. In general, the essential oils isolated during 2 h were as effective, from the biological activity point of view, as those isolated during 3 h.

  3. Fluoride exposure abates pro-inflammatory response and induces in vivo apoptosis rendering zebrafish (Danio rerio) susceptible to bacterial infections.

    PubMed

    Singh, Rashmi; Khatri, Preeti; Srivastava, Nidhi; Jain, Shruti; Brahmachari, Vani; Mukhopadhyay, Asish; Mazumder, Shibnath

    2017-04-01

    The present study describes the immunotoxic effect of chronic fluoride exposure on adult zebrafish (Danio rerio). Zebrafish were exposed to fluoride (71.12 mg/L; 1/10 LC 50 ) for 30 d and the expression of selected genes studied. We observed significant elevation in the detoxification pathway gene cyp1a suggesting chronic exposure to non-lethal concentration of fluoride is indeed toxic to fish. Fluoride mediated pro-oxidative stress is implicated with the downregulation in superoxide dismutase 1 and 2 (sod1/2) genes. Fluoride affected DNA repair machinery by abrogating the expression of the DNA repair gene rad51 and growth arrest and DNA damage inducible beta a gene gadd45ba. The upregulated expression of casp3a coupled with altered Bcl-2 associated X protein/B-cell lymphoma 2 ratio (baxa/bcl2a) clearly suggested chronic fluoride exposure induced the apoptotic cascade in zebrafish. Fluoride-exposed zebrafish when challenged with non-lethal dose of fish pathogen A. hydrophila revealed gross histopathology in spleen, bacterial persistence and significant mortality. We report that fluoride interferes with system-level output of pro-inflammatory cytokines tumour necrosis factor-α, interleukin-1β and interferon-γ, as a consequence, bacteria replicate efficiently causing significant fish mortality. We conclude, chronic fluoride exposure impairs the redox balance, affects DNA repair machinery with pro-apoptotic implications and suppresses pro-inflammatory cytokines expression abrogating host immunity to bacterial infections. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. An antimicrobial helix A-derived peptide of heparin cofactor II blocks endotoxin responses in vivo.

    PubMed

    Papareddy, Praveen; Kalle, Martina; Singh, Shalini; Mörgelin, Matthias; Schmidtchen, Artur; Malmsten, Martin

    2014-05-01

    Host defense peptides are key components of the innate immune system, providing multi-facetted responses to invading pathogens. Here, we describe that the peptide GKS26 (GKSRIQRLNILNAKFAFNLYRVLKDQ), corresponding to the A domain of heparin cofactor II (HCII), ameliorates experimental septic shock. The peptide displays antimicrobial effects through direct membrane disruption, also at physiological salt concentration and in the presence of plasma and serum. Biophysical investigations of model lipid membranes showed the antimicrobial action of GKS26 to be mirrored by peptide incorporation into, and disordering of, bacterial lipid membranes. GKS26 furthermore binds extensively to bacterial lipopolysaccharide (LPS), as well as its endotoxic lipid A moiety, and displays potent anti-inflammatory effects, both in vitro and in vivo. Thus, for mice challenged with ip injection of LPS, GKS26 suppresses pro-inflammatory cytokines, reduces vascular leakage and infiltration in lung tissue, and normalizes coagulation. Together, these findings suggest that GKS26 may be of interest for further investigations as therapeutic against severe infections and septic shock. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Baclofen, a GABABR Agonist, Ameliorates Immune-Complex Mediated Acute Lung Injury by Modulating Pro-Inflammatory Mediators

    PubMed Central

    Jin, Shunying; Merchant, Michael L.; Ritzenthaler, Jeffrey D.; McLeish, Kenneth R.; Lederer, Eleanor D.; Torres-Gonzalez, Edilson; Fraig, Mostafa; Barati, Michelle T.; Lentsch, Alex B.; Roman, Jesse; Klein, Jon B.; Rane, Madhavi J.

    2015-01-01

    Immune-complexes play an important role in the inflammatory diseases of the lung. Neutrophil activation mediates immune-complex (IC) deposition-induced acute lung injury (ALI). Components of gamma amino butyric acid (GABA) signaling, including GABA B receptor 2 (GABABR2), GAD65/67 and the GABA transporter, are present in the lungs and in the neutrophils. However, the role of pulmonary GABABR activation in the context of neutrophil-mediated ALI has not been determined. Thus, the objective of the current study was to determine whether administration of a GABABR agonist, baclofen would ameliorate or exacerbate ALI. We hypothesized that baclofen would regulate IC-induced ALI by preserving pulmonary GABABR expression. Rats were subjected to sham injury or IC-induced ALI and two hours later rats were treated intratracheally with saline or 1 mg/kg baclofen for 2 additional hours and sacrificed. ALI was assessed by vascular leakage, histology, TUNEL, and lung caspase-3 cleavage. ALI increased total protein, tumor necrosis factor α (TNF-α and interleukin-1 receptor associated protein (IL-1R AcP), in the bronchoalveolar lavage fluid (BALF). Moreover, ALI decreased lung GABABR2 expression, increased phospho-p38 MAPK, promoted IκB degradation and increased neutrophil influx in the lung. Administration of baclofen, after initiation of ALI, restored GABABR expression, which was inhibited in the presence of a GABABR antagonist, CGP52432. Baclofen administration activated pulmonary phospho-ERK and inhibited p38 MAPK phosphorylation and IκB degradation. Additionally, baclofen significantly inhibited pro-inflammatory TNF-α and IL-1βAcP release and promoted BAL neutrophil apoptosis. Protective effects of baclofen treatment on ALI were possibly mediated by inhibition of TNF-α- and IL-1β-mediated inflammatory signaling. Interestingly, GABABR2 expression was regulated in the type II pneumocytes in lung tissue sections from lung injured patients, further suggesting a

  6. Expression of Inflammation-related Intercellular Adhesion Molecules in Cardiomyocytes In Vitro and Modulation by Pro-inflammatory Agents.

    PubMed

    El-Battrawy, Ibrahim; Tülümen, Erol; Lang, Siegfried; Akin, Ibrahim; Behnes, Michael; Zhou, Xiabo; Mavany, Martin; Bugert, Peter; Bieback, Karen; Borggrefe, Martin; Elmas, Elif

    2016-01-01

    Cell-surface adhesion molecules regulate multiple intercellular and intracellular processes and play important roles in inflammation by facilitating leukocyte endothelial transmigration. Whether cardiomyocytes express surface-adhesion molecules related to inflammation and the effect of pro-inflammatory mediators remain unknown. In the present study, the expression of different cell-adhesion molecules (CD11a, CD11b, CD31, CD62P, CD162, F11 receptor and mucosal vascular addressin cell adhesion molecule 1 (MADCAM1)) and the effect of pro-inflammatory mediators were investigated in an in vitro model of human cardiomyocytes. Cells were supplied as a primary culture of cardiac alpha actin-positive cells from human heart tissue. The cells were incubated for 24 h with 1 U/ml thrombin or 700 ng/ml lipopolysaccharide (LPS) or with a combination of both. The expression of the cell adhesion molecules was measured by flow cytometry. In cultured human cardiomyocytes, 22.8% of cells expressed CD31, 7.1% MADCAM1 and 2.6% F11R. CD11a, CD11b, CD62P and CD162 were expressed by fewer than 2% of the cells at baseline. CD31 expression increased on incubation of cardiomyocytes with thrombin by 26% (p<0.05) and with LPS by 26% (p=0.06). The combination of thrombin and LPS did not result in increased levels of CD31 (p>0.10). The pro-inflammatory agents LPS and thrombin had no effect on the expression of MADCAM1 and F11R. Inflammation-related cell-adhesion molecules CD31, MADCAM1 and F11R were shown to be expressed on the surface of human cardiomyocytes in an in vitro model. Incubation with LPS or thrombin resulted in increased expression of CD31, however, it did not modify the expression of the cell adhesion molecules MADCAM1 and F11R. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  7. Apo-9′-Fucoxanthinone, Isolated from Sargassum muticum, Inhibits CpG-Induced Inflammatory Response by Attenuating the Mitogen-Activated Protein Kinase Pathway

    PubMed Central

    Chae, Doobyeong; Manzoor, Zahid; Kim, Sung Chun; Kim, Sohyun; Oh, Tae-Heon; Yoo, Eun-Sook; Kang, Hee-Kyoung; Hyun, Jin-Won; Lee, Nam Ho; Ko, Mi-Hee; Koh, Young-Sang

    2013-01-01

    Sargassum muticum (S. muticum) is a brown edible alga and widely distributed in Korea. This report was designed to evaluate the anti-inflammatory properties of apo-9′-fucoxanthinone (APO-9′) isolated from S. muticum on pro-inflammatory cytokine production. S. muticum extract (SME) exhibited significant inhibitory effects on pro-inflammatory cytokine production in bone marrow-derived macrophages (BMDMs) and dendritic cells (BMDCs). APO-9′ pre-treatment in the CpG DNA-stimulated BMDMs and BMDCs showed a strong dose-dependent inhibitory effect on interleukin (IL)-12 p40, IL-6 and tumor necrosis factor (TNF)-α production with IC50 values ranging from 5.31 to 13.79. It exhibited a strong inhibitory effect on the phosphorylation of ERK1/2 and on activator protein (AP)-1 reporter activity. APO-9′ pre-treatment exhibited significant inhibition of CpG DNA-induced production of inducible nitric oxide synthase. Taken together, these data suggest that SME and APO-9′ have a significant anti-inflammatory property and warrant further studies concerning the potentials of SME and APO-9′ for medicinal use. PMID:23985898

  8. The effect of garlic tablet on pro-inflammatory cytokines in postmenopausal osteoporotic women: a randomized controlled clinical trial.

    PubMed

    Mozaffari-Khosravi, Hassan; Hesabgar, Hamideh-al-Sadat; Owlia, Mohammad-Bagher; Hadinedoushan, Hossein; Barzegar, Kazem; Fllahzadeh, Mohammad Hossein

    2012-12-01

    Menopause is one of the important causes of osteoporosis which results from estrogen deficiency. In addition, some clinical and experimental evidence indicates that there is an association between increasing pro-inflammatory cytokine activity and postmenopausal bone loss. The purpose of this study was to determine the effect of garlic tablet on pro-inflammatory cytokines in postmenopausal osteoporotic women. The present study was a double-blind randomized controlled clinical trial in Yazd conducted during November 2009 until July 2010. The sample included 44 postmenopausal osteoporotic women who were randomly assigned into two groups: the garlic group (GG) and the placebo group (PG). Participants in GG took two garlic tablets daily for 1 month and the participants in PG took placebo tablets in the same manner. Serum interlukin-1, interlukin-6, and tumor necrosis factor alpha (TNF-α) were measured using the ELISA method before and after the intervention. Also, 24-hour dietary recall was recorded for estimation of daily intake of some nutrients. Data were analyzed using SPSS software. There was no statistically significant difference between interlukin-1 and interlukin-6 in the two groups before and after the intervention. The mean of TNF-α did not show any statistically significant difference between the two groups before and after the intervention, but it was significantly reduced by about 47% (from 31.14±50.53 to 19.33±22.19 ng/ml, P-value = 0.05) in GG after the intervention, However, no significant difference was seen in PG. The present study produced some evidence for an immunomodulatory effect of garlic, as well as the modulation of cytokine production.

  9. Differential regulation of macrophage inflammatory activation by fibrin and fibrinogen.

    PubMed

    Hsieh, Jessica Y; Smith, Tim D; Meli, Vijaykumar S; Tran, Thi N; Botvinick, Elliot L; Liu, Wendy F

    2017-01-01

    macrophages on fibrin matrices exerts an anti-inflammatory effect, whereas the soluble precursor fibrinogen stimulates inflammatory activation. Moreover, culture on fibrin completely abrogates inflammatory signaling caused by fibrinogen or known inflammatory stimuli including LPS and IFN-γ. Together, these studies show that the presentation of fibrin(ogen) is important for regulating a switch between macrophage pro- and anti-inflammatory behavior. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Inflammatory cell phenotypes in AAAs; their role and potential as targets for therapy

    PubMed Central

    Dale, Matthew A; Ruhlman, Melissa K.; Baxter, B. Timothy

    2015-01-01

    Abdominal aortic aneurysms are characterized by chronic inflammatory cell infiltration. AAA is typically an asymptomatic disease and caused approximately 15,000 deaths annually in the U.S. Previous studies have examined both human and murine aortic tissue for the presence of various inflammatory cell types. Studies show that in both human and experimental AAAs, prominent inflammatory cell infiltration, such as CD4+ T cells and macrophages, occurs in the damaged aortic wall. These cells have the ability to undergo phenotypic modulation based on microenvironmental cues, potentially influencing disease progression. Pro-inflammatory CD4+ T cells and classically activated macrophages dominate the landscape of aortic infiltrates. The skew to pro-inflammatory phenotypes alters disease progression and plays a role in causing chronic inflammation. The local cytokine production and presence of inflammatory mediators, such as extracellular matrix breakdown products, influence the uneven balance of the inflammatory infiltrate phenotypes. Understanding and developing new strategies that target the pro-inflammatory phenotype could provide useful therapeutic targets for a disease with no current pharmacological intervention. PMID:26044582

  11. Anti-inflammatory activity of hydroalcoholic extracts of Lavandula dentata L. and Lavandula stoechas L.

    PubMed

    Algieri, Francesca; Rodriguez-Nogales, Alba; Vezza, Teresa; Garrido-Mesa, Jose; Garrido-Mesa, Natividad; Utrilla, M Pilar; González-Tejero, M Reyes; Casares-Porcel, Manuel; Molero-Mesa, Joaquin; Del Mar Contreras, Maria; Segura-Carretero, Antonio; Pérez-Palacio, José; Diaz, Caridad; Vergara, Noemí; Vicente, Francisca; Rodriguez-Cabezas, M Elena; Galvez, Julio

    2016-08-22

    Plants from genus Lavandula have been used as anti-inflammatory drugs in Mediterranean traditional medicine. Nowadays, there is a growing interest for complementary medicine, including herbal remedies, to treat inflammatory bowel disease (IBD). To test the anti-inflammatory properties of Lavandula dentata and Lavandula stoechas extracts in two inflammatory experimental models: TNBS model of rat colitis and the carrageenan-induced paw edema in mice, in order to mimic the intestinal conditions and the extra-intestinal manifestations of human IBD, respectively. The extracts were characterized through the qualitative HPLC analysis. Then, they were assayed in vitro and in vivo. In vitro studies were performed in BMDMs and CMT-93 epithelial cells with different concentrations of the extracts (ranging from 0.1 to 100µg/ml). The extracts were tested in vivo in the TNBS model of rat colitis (10 and 25mg/kg) and in the carrageenan-induced paw edema in mice (10, 25 and 100mg/kg). L. dentata and L. stoechas extracts displayed immunomodulatory properties in vitro down-regulating different mediators of inflammation like cytokines and nitric oxide. They also showed anti-inflammatory effects in the TNBS model of colitis as evidenced by reduced myeloperoxidase activity and increased total glutathione content, indicating a decrease of neutrophil infiltration and an improvement of the oxidative state. Besides, both extracts modulated the expression of pro-inflammatory cytokines and chemokines, and ameliorated the altered epithelial barrier function. They also displayed anti-inflammatory effects in the carrageenan-induced paw edema in mice, since a significant reduction of the paw thickness was observed. This was associated with a down-regulation of the expression of different inducible enzymes like MMP-9, iNOS and COX-2 and pro-inflammatory cytokines, all involved in the maintenance of the inflammatory condition. L. dentata and L. stoechas extracts showed intestinal anti-inflammatory

  12. Comparison of pro-inflammatory cytokines of non-healing and healing cutaneous leishmaniasis.

    PubMed

    Moafi, M; Rezvan, H; Sherkat, R; Taleban, R; Asilian, A; Hamid Zarkesh-Esfahani, S; Nilforoushzadeh, M A; Jaffary, F; Mansourian, M; Sokhanvari, F; Ansari, N

    2017-04-01

    Cutaneous leishmaniasis (CL) heals spontaneously within several weeks or months, but, in rare cases, CL-active lesions last for many years. In this study, we assessed cell-mediated immunity in non-healing CL through the measurement of three pro-inflammatory cytokines: Interferon-γ (IFN-γ), IL-17a and CXCL-11. For this, 32 patients afflicted with healing or non-healing CL were recruited in this study. Peripheral blood mononuclear cells (PBMCs) of every patient were treated with three antigens: purified protein derivative (PPD), soluble Leishmania antigen (SLA) and phytohaemagglutinin (PHA). Cytokine quantification was performed using enzyme-linked immunosorbent assay (ELISA) method. Results of our study showed that neither cytokine produced in the presence of a PPD stimulator (as an irrelevant antigen) significantly differed between the healing and non-healing groups (P-value ≥0.05 for all of them). However, IFN-γ, CXCL-11 and IL-17a levels produced in the presence of PHA or SLA were significantly higher within the healing than in the non-healing group (P-value <0.01 for all of them). It seems that appropriate levels of IFN-γ, as well as IL-17a and CXCL-11, contribute to the control of Leishmania infection. © 2017 The Foundation for the Scandinavian Journal of Immunology.

  13. Both common and specialty mushrooms inhibit adhesion molecule expression and in vitro binding of monocytes to human aortic endothelial cells in a pro-inflammatory environment

    PubMed Central

    2010-01-01

    Background Cardiovascular disease (CVD) is a leading cause of mortality in the United States as well as globally. Epidemiological studies show that regular fruit and vegetable consumption reduces CVD risk, in part, due to antioxidant activity and immunomodulation since oxidative stress and inflammation are features of atherogenesis. Accumulating evidence also shows that dietary fungi, viz., mushrooms, can protect against chronic disease by altering inflammatory environments such as those associated with CVD although most research has focused on specialty mushrooms. In this study, we tested the ability of both common and specialty mushrooms to inhibit cellular processes associated with CVD. Methods Human aortic endothelial cells (HAEC) were incubated overnight with control media with dimethylsulfoxide (DMSO) vehicle (1% v/v) or containing DMSO extracts of whole dehydrated mushrooms (0.1 mg/mL), which included Agaricus bisporus (white button and crimini), Lentinula edodes (shiitake), Pleurotus ostreatus (oyster), and Grifola frondosa (maitake). Monolayers were subsequently washed and incubated with medium alone or containing the pro-inflammatory cytokine IL-1β (5 ng/mL) for 6 h to upregulate pro-atherosclerotic adhesion molecules (AM). AM expression was assayed by ELISA and binding of U937 human monocytes pre-loaded with fluorescent dye was determined. Results White button mushrooms consistently reduced (p < 0.05) VCAM-1, ICAM-1, and E-selectin-1 expression, whereas other test mushrooms significantly modulated AM expression singly, collectively, or combinatorially. All mushrooms, however, significantly reduced binding of monocytes to both quiescent and cytokine-stimulated monolayers. Conclusion These data provide evidence that dietary mushrooms can inhibit cellular processes such as adhesion molecule expression and ultimate binding of monocytes to the endothelium under pro-inflammatory conditions, which are associated with CVD. As a result, these findings support

  14. Activation of the omega-3 fatty acid receptor GPR120 mediates anti-inflammatory actions in immortalized hypothalamic neurons.

    PubMed

    Wellhauser, Leigh; Belsham, Denise D

    2014-03-27

    Overnutrition and the ensuing hypothalamic inflammation is a major perpetuating factor in the development of metabolic diseases, such as obesity and diabetes. Inflamed neurons of the CNS fail to properly regulate energy homeostasis leading to pathogenic changes in glucose handling, feeding, and body weight. Hypothalamic neurons are particularly sensitive to pro-inflammatory signals derived locally and peripherally, and it is these neurons that become inflamed first upon high fat feeding. Given the prevalence of metabolic disease, efforts are underway to identify therapeutic targets for this inflammatory state. At least in the periphery, omega-3 fatty acids and their receptor, G-protein coupled receptor 120 (GPR120), have emerged as putative targets. The role for GPR120 in the hypothalamus or CNS in general is poorly understood. Here we introduce a novel, immortalized cell model derived from the rat hypothalamus, rHypoE-7, to study GPR120 activation at the level of the individual neuron. Gene expression levels of pro-inflammatory cytokines were studied by quantitative reverse transcriptase-PCR (qRT-PCR) upon exposure to tumor necrosis factor α (TNFα) treatment in the presence or absence of the polyunsaturated omega-3 fatty acid docosahexaenoic acid (DHA). Signal transduction pathway involvement was also studied using phospho-specific antibodies to key proteins by western blot analysis. Importantly, rHypoE-7 cells exhibit a transcriptional and translational inflammatory response upon exposure to TNFα and express abundant levels of GPR120, which is functionally responsive to DHA. DHA pretreatment prevents the inflammatory state and this effect was inhibited by the reduction of endogenous GPR120 levels. GPR120 activates both AKT (protein kinase b) and ERK (extracellular signal-regulated kinase); however, the anti-inflammatory action of this omega-3 fatty acid (FA) receptor is AKT- and ERK-independent and likely involves the GPR120-transforming growth factor-β-activated

  15. Fatty acid conjugation enhances the activities of antimicrobial peptides.

    PubMed

    Li, Zhining; Yuan, Penghui; Xing, Meng; He, Zhumei; Dong, Chuanfu; Cao, Yongchang; Liu, Qiuyun

    2013-04-01

    Antimicrobial peptides are small molecules that play a crucial role in innate immunity in multi-cellular organisms, and usually expressed and secreted constantly at basal levels to prevent infection, but local production can be augmented upon an infection. The clock is ticking as rising antibiotic abuse has led to the emergence of many drug resistance bacteria. Due to their broad spectrum antibiotic and antifungal activities as well as anti-viral and anti-tumor activities, efforts are being made to develop antimicrobial peptides into future microbial agents. This article describes some of the recent patents on antimicrobial peptides with fatty acid conjugation. Potency and selectivity of antimicrobial peptide can be modulated with fatty acid tails of variable length. Interaction between membranes and antimicrobial peptides was affected by fatty acid conjugation. At concentrations above the critical miscelle concentration (CMC), propensity of solution selfassembly hampered binding of the peptide to cell membranes. Overall, fatty acid conjugation has enhanced the activities of antimicrobial peptides, and occasionally it rendered inactive antimicrobial peptides to be bioactive. Antimicrobial peptides can not only be used as medicine but also as food additives.

  16. In vitro anti-inflammatory and anti-cancer activities of Cuscuta reflexa Roxb.

    PubMed

    Suresh, V; Sruthi, V; Padmaja, B; Asha, V V

    2011-04-12

    To determine anti-inflammatory and anti-cancer activities of Cuscuta reflexa in cell lines (in vitro). Anti-inflammatory activity of the water extract was analysed in vitro using lipopolysaccharide (LPS) induced inflammatory reactions in murine macrophage cell line RAW264.7. The expression of COX-2 and TNF-α genes involved in inflammation was analysed by SQ RT-PCR. EMSA was conducted to analyse the influence of the extract on NF-κB signalling. Anti-cancer activity was analysed on Hep3B cells by MTT assay, DAPI staining, annexin V staining and SQ-RT PCR analysis of BAX, Bcl-2, p53 and survivin. The extract down regulated LPS induced over expression of TNF-α and COX-2 in RAW264.7 cells; blocked NF-κB binding to its motifs and induced apoptosis in Hep3B cells as evidenced from MTT, DAPI staining and annexin V staining assays. The extract up regulated pro-apoptotic factors BAX and p53, and down regulated anti-apoptotic factors Bcl-2 and survivin. The study showed that Cuscuta reflexa inhibits LPS induced inflammatory responses in RAW264.7 cells through interplay of TNF-α, COX-2 and NF-κB signalling. It induced apoptosis in Hep3B cells through the up regulation of p53, BAX and down regulation of Bcl-2 and survivin. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  17. Nickel(II) Complex of Polyhydroxybenzaldehyde N4-Thiosemicarbazone Exhibits Anti-Inflammatory Activity by Inhibiting NF-κB Transactivation

    PubMed Central

    Loh, Sheng Wei; Looi, Chung Yeng; Hassandarvish, Pouya; Phan, Alicia Yi Ling; Wong, Won Fen; Wang, Hao; Paterson, Ian C.; Ea, Chee Kwee; Mustafa, Mohd Rais; Maah, Mohd Jamil

    2014-01-01

    Background The biological properties of thiosemicarbazone have been widely reported. The incorporation of some transition metals such as Fe, Ni and Cu to thiosemicarbazone complexes is known to enhance its biological effects. In this study, we incorporated nickel(II) ions into thiosemicarbazone with N4-substitution groups H3L (H; H3L1, CH3; H3L2, C6H5; H3L3 and C2H5; H3L4) and examined its potential anti-inflammatory activity. Methodology/Principal Findings Four ligands (1–4) and their respective nickel-containing complexes (5–8) were synthesized and characterized. The compounds synthesized were tested for their effects on NF-κB nuclear translocation, pro-inflammatory cytokines secretion and NF-κB transactivation activity. The active compound was further evaluated on its ability to suppress carrageenan-induced acute inflammation in vivo. A potential binding target of the active compound was also predicted by molecular docking analysis. Conclusions/Significance Among all synthesized compounds tested, we found that complex [Ni(H2L1)(PPh3)]Cl (5) (complex 5), potently inhibited IκBα degradation and NF-κB p65 nuclear translocation in LPS-stimulated RAW264.7 cells as well as TNFα-stimulated HeLa S3 cells. In addition, complex 5 significantly down-regulated LPS- or TNFα-induced transcription of NF-κB target genes, including genes that encode the pro-inflammatory cytokines TNFα, IFNβ and IL6. Luciferase reporter assays confirmed that complex 5 inhibited the transactivation activity of NF-κB. Furthermore, the anti-inflammatory effect of complex 5 was also supported by its suppressive effect on carrageenan-induced paw edema formation in wild type C57BL/6 mice. Interestingly, molecular docking study showed that complex 5 potentially interact with the active site of IKKβ. Taken together, we suggest complex 5 as a novel NF-κB inhibitor with potent anti-inflammatory effects. PMID:24977407

  18. Mycobacterial Antigen Driven Activation of CD14++CD16− Monocytes Is a Predictor of Tuberculosis-Associated Immune Reconstitution Inflammatory Syndrome

    PubMed Central

    Andrade, Bruno B.; Singh, Amrit; Narendran, Gopalan; Schechter, Melissa E.; Nayak, Kaustuv; Subramanian, Sudha; Anbalagan, Selvaraj; Jensen, Stig M. R.; Porter, Brian O.; Antonelli, Lis R.; Wilkinson, Katalin A.; Wilkinson, Robert J.; Meintjes, Graeme; van der Plas, Helen; Follmann, Dean; Barber, Daniel L.; Swaminathan, Soumya; Sher, Alan; Sereti, Irini

    2014-01-01

    Paradoxical tuberculosis-associated immune reconstitution inflammatory syndrome (TB-IRIS) is an aberrant inflammatory response occurring in a subset of TB-HIV co-infected patients initiating anti-retroviral therapy (ART). Here, we examined monocyte activation by prospectively quantitating pro-inflammatory plasma markers and monocyte subsets in TB-HIV co-infected patients from a South Indian cohort at baseline and following ART initiation at the time of IRIS, or at equivalent time points in non-IRIS controls. Pro-inflammatory biomarkers of innate and myeloid cell activation were increased in plasma of IRIS patients pre-ART and at the time of IRIS; this association was confirmed in a second cohort in South Africa. Increased expression of these markers correlated with elevated antigen load as measured by higher sputum culture grade and shorter duration of anti-TB therapy. Phenotypic analysis revealed the frequency of CD14++CD16− monocytes was an independent predictor of TB-IRIS, and was closely associated with plasma levels of CRP, TNF, IL-6 and tissue factor during IRIS. In addition, production of inflammatory cytokines by monocytes was higher in IRIS patients compared to controls pre-ART. These data point to a major role of mycobacterial antigen load and myeloid cell hyperactivation in the pathogenesis of TB-IRIS, and implicate monocytes and monocyte-derived cytokines as potential targets for TB-IRIS prevention or treatment. PMID:25275318

  19. JS-III-49, a hydroquinone derivative, exerts anti-inflammatory activity by targeting Akt and p38

    PubMed Central

    Yi, Young-Su

    2017-01-01

    Since previous studies have reported that hydroquinone (HQ) exerted immunosuppressive and anti-inflammatory activity, various HQ derivatives have been synthesized and their biological activities investigated. In this study, we explored the anti-inflammatory activity of JS-III-49, a novel HQ derivative, in macrophage-mediated inflammatory responses. JS-III-49 suppressed the production of the inflammatory mediators nitric oxide (NO) and prostaglandin E2 (PGE2) and down-regulated the mRNA expression of the inflammatory enzymes cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) as well as the expression of the pro-inflammatory cytokines interleukin-6 (IL-6) and IL-1b without cytotoxicity in LPS-stimulated RAW264.7 cells. JS-III-49 inhibited nuclear translocation of the NF-kB transcription factors p65 and p50 by directly targeting Akt, an upstream kinase of the NF-kB pathway, in LPS-stimulated RAW264.7 cells. However, JS-III-49 did not directly inhibit the kinase activities of Src and Syk, which are upstream kinases of Akt, in LPS-stimulated RAW264.7 cells. Moreover, JS-III-49 suppressed the nuclear translocation of c-Fos, one of the components of AP-1, by specifically targeting p38, an upstream mitogen-activated protein kinase (MAPK) in the AP-1 pathway in LPS-stimulated RAW264.7 cells. These results suggest that JS-III-49 plays an anti-inflammatory role in LPS-stimulated macrophages by targeting Akt and p38 in the NF-kB and AP-1 pathways, respectively. PMID:28461777

  20. JS-III-49, a hydroquinone derivative, exerts anti-inflammatory activity by targeting Akt and p38.

    PubMed

    Yi, Young-Su; Kim, Mi-Yeon; Cho, Jae Youl

    2017-05-01

    Since previous studies have reported that hydroquinone (HQ) exerted immunosuppressive and anti-inflammatory activity, various HQ derivatives have been synthesized and their biological activities investigated. In this study, we explored the anti-inflammatory activity of JS-III-49, a novel HQ derivative, in macrophage-mediated inflammatory responses. JS-III-49 suppressed the production of the inflammatory mediators nitric oxide (NO) and prostaglandin E 2 (PGE 2 ) and down-regulated the mRNA expression of the inflammatory enzymes cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) as well as the expression of the pro-inflammatory cytokines interleukin-6 (IL-6) and IL-1b without cytotoxicity in LPS-stimulated RAW264.7 cells. JS-III-49 inhibited nuclear translocation of the NF-kB transcription factors p65 and p50 by directly targeting Akt, an upstream kinase of the NF-kB pathway, in LPS-stimulated RAW264.7 cells. However, JS-III-49 did not directly inhibit the kinase activities of Src and Syk, which are upstream kinases of Akt, in LPS-stimulated RAW264.7 cells. Moreover, JS-III-49 suppressed the nuclear translocation of c-Fos, one of the components of AP-1, by specifically targeting p38, an upstream mitogen-activated protein kinase (MAPK) in the AP-1 pathway in LPS-stimulated RAW264.7 cells. These results suggest that JS-III-49 plays an anti-inflammatory role in LPS-stimulated macrophages by targeting Akt and p38 in the NF-kB and AP-1 pathways, respectively.