Sample records for activating egfr mutation

  1. Intrinsic resistance to EGFR tyrosine kinase inhibitors in advanced non-small-cell lung cancer with activating EGFR mutations

    PubMed Central

    Wang, Jun; Wang, Baocheng; Chu, Huili; Yao, Yunfeng

    2016-01-01

    Identifying activating EGFR mutations is a useful predictive strategy that helps select a population of advanced non-small-cell lung cancer (NSCLC) patients for treatment with EGFR tyrosine kinase inhibitors (TKIs). Patients with sensitizing EGFR mutations (predominantly an in-frame deletion in exon 19 and an L858R substitution) are highly responsive to first-generation EGFR TKIs, such as gefitinib and erlotinib, and show improved progression-free survival without serious side effects. However, all patients with activating EGFR mutations who are initially responsive to EGFR TKIs eventually develop acquired resistance after a median progression-free survival of 10–16 months, followed by disease progression. Moreover, ~20%–30% of NSCLC patients have no objective tumor regression on initial EGFR TKI treatment, although they harbor an activating EGFR mutation. These patients represent an NSCLC subgroup that is defined as having intrinsic or primary resistance to EGFR TKIs. Different mechanisms of acquired EGFR TKI resistance have been identified, and several novel compounds have been developed to reverse acquired resistance, but little is known about EGFR TKI intrinsic resistance. In this review, we summarize the latest findings involving mechanisms of intrinsic resistance to EGFR TKIs in advanced NSCLC with activating EGFR mutations and present possible therapeutic strategies to overcome this resistance. PMID:27382309

  2. Osimertinib - effective treatment of NSCLC with activating EGFR mutations after progression on EGFR tyrosine kinase inhibitors.

    PubMed

    Skrzypski, Marcin; Szymanowska-Narloch, Amelia; Dziadziuszko, Rafał

    2017-01-01

    Non-small cell lung cancer (NSCLC) driven by activating mutations in epidermal growth factor receptor (EGFR) constitutes up to 10% of NSCLC cases. According to the NCCN recommendations, all patients (with the exception of smoking patients with squamous cell lung cancer) should be screened for the presence of activating EGFR mutations, i.e. deletion in exon 19 or point mutation L858R in exon 21, in order to select the group that benefits from EGFR tyrosine kinase inhibitors (EGFR TKIs) treatment. Among approved agents there are the 1 st generation reversible EGFR TKIs, erlotinib and gefitinib, and the 2 nd generation irreversible EGFR TKI, afatinib. The objective response rates to these drugs in randomised clinical trials were in the range of 56-74%, and median time to progression 9-13 months. The most common determinant of resistance to these drugs is the clonal expansion of cancer cells with T790M mutation (Thr790Met) in exon 20 of EGFR. Osimertinib (Tagrisso™), a 3 rd generation, irreversible EGFR tyrosine kinase inhibitor, constitutes a novel, highly efficacious treatment for NSCLC patients progressing on EGFR TKIs with T790M mutation confirmed as the resistance mechanism. Resistance mutation can be determined in tissue or liquid biopsy obtained after progression on EGFR TKIs. Osimertinib has a favourable toxicity profile, with mild rash and diarrhoea being the most common. In this article, we present three cases that were successfully treated with osimertinib after progression on 1st and 2nd generation EGFR TKIs.

  3. Detection of EGFR Gene Mutation by Mutation-oriented LAMP Method.

    PubMed

    Matsumoto, Naoyuki; Kumasaka, Akira; Ando, Tomohiro; Komiyama, Kazuo

    2018-04-01

    Epidermal growth factor receptor (EGFR) is a target of molecular therapeutics for non-small cell lung cancer. EGFR gene mutations at codons 746-753 promote constitutive EGFR activation and result in worst prognosis. However, these mutations augment the therapeutic effect of EGFR-tyrosine kinase inhibitor. Therefore, the detection of EGFR gene mutations is important for determining treatment planning. The aim of the study was to establish a method to detect EGFR gene mutations at codons 746-753. EGFR gene mutation at codons 746-753 in six cancer cell lines were investigated. A loop-mediated isothermal amplification (LAMP)-based procedure was developed, that employed peptide nucleic acid to suppress amplification of the wild-type allele. This mutation-oriented LAMP can amplify the DNA fragment of the EGFR gene with codons 746-753 mutations within 30 min. Moreover, boiled cells can work as template resources. Mutation oriented-LAMP assay for EGFR gene mutation is sensitive on extracted DNA. This procedure would be capable of detecting EGFR gene mutation in sputum, pleural effusion, broncho-alveolar lavage fluid or trans-bronchial lung biopsy by chair side. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  4. Acquired Resistance Mechanisms to Combination Met-TKI/EGFR-TKI Exposure in Met-Amplified EGFR-TKI-Resistant Lung Adenocarcinoma Harboring an Activating EGFR Mutation.

    PubMed

    Yamaoka, Toshimitsu; Ohmori, Tohru; Ohba, Motoi; Arata, Satoru; Kishino, Yasunari; Murata, Yasunori; Kusumoto, Sojiro; Ishida, Hiroo; Shirai, Takao; Hirose, Takashi; Ohnishi, Tsukasa; Sasaki, Yasutsuna

    2016-12-01

    Met-amplified EGFR-tyrosine kinase inhibitor (TKI)-resistant non-small cell lung cancer (NSCLC) harboring an activating EGFR mutation is responsive to concurrent EGFR-TKI and Met-TKI treatment in a preclinical model. Here, we determined that Met-amplified gefitinib-resistant cells acquire dual resistance to inhibition of EGFR and Met tyrosine kinase activities. PC-9 lung adenocarcinoma cells harboring 15-bp deletions (Del E746_A750) in EGFR exon 19 were treated with increasing concentrations of the Met-TKI PHA665752 and 1 μmol/L gefitinib for 1 year; three resistant clones were established via Met amplification. The three dual-resistance cell lines (PC-9DR2, PC-9DR4, and PC-9DR6, designated as DR2, DR4, and DR6, respectively) exhibited different mechanisms for evading both EGFR and Met inhibition. None of the clones harbored a secondary mutation of EGFR T790M or a Met mutation. Insulin-like growth factor (IGF)/IGF1 receptor activation in DR2 and DR4 cells acted as a bypass signaling pathway. Met expression was attenuated to a greater extent in DR2 than in PC-9 cells, but was maintained in DR4 cells by overexpression of IGF-binding protein 3. In DR6 cells, Met was further amplified by association with HSP90, which protected Met from degradation and induced SET and MYND domain-containing 3 (SMYD3)-mediated Met transcription. This is the first report describing the acquisition of dual resistance mechanisms in NSCLC harboring an activating EGFR mutation to Met-TKI and EGFR-TKI following previous EGFR-TKI treatment. These results might inform the development of more effective therapeutic strategies for NSCLC treatment. Mol Cancer Ther; 15(12); 3040-54. ©2016 AACR. ©2016 American Association for Cancer Research.

  5. De novo activating epidermal growth factor mutations (EGFR) in small-cell lung cancer.

    PubMed

    Thai, Alesha; Chia, Puey L; Russell, Prudence A; Do, Hongdo; Dobrovic, Alex; Mitchell, Paul; John, Thomas

    2017-09-01

    In Australia, mutations in epidermal growth factor mutations (EGFR) occur in 15% of patients diagnosed with non-small-cell lung cancer and are found with higher frequency in female, non-smokers of Asian ethnicity. Activating mutations in the EGFR gene are rarely described in SCLC. We present two cases of de novo EGFR mutations in patients with SCLC detected in tissue and in plasma cell free DNA, both of whom were of Asian ethnicity and never-smokers. These two cases add to the growing body of evidence suggesting that screening for EGFR mutations in SCLC should be considered in patients with specific clinical features. © 2017 Royal Australasian College of Physicians.

  6. Collagen type I induces EGFR-TKI resistance in EGFR-mutated cancer cells by mTOR activation through Akt-independent pathway.

    PubMed

    Yamazaki, Shota; Higuchi, Youichi; Ishibashi, Masayuki; Hashimoto, Hiroko; Yasunaga, Masahiro; Matsumura, Yasuhiro; Tsuchihara, Katsuya; Tsuboi, Masahiro; Goto, Koichi; Ochiai, Atsushi; Ishii, Genichiro

    2018-06-01

    Primary resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) is a serious problem in lung adenocarcinoma patients harboring EGFR mutations. The aim of this study was to examine whether and how collagen type I (Col I), the most abundantly deposited matrix in tumor stroma, affects EGFR-TKI sensitivity in EGFR-mutant cells. We evaluated the EGFR-TKI sensitivity of EGFR-mutated cancer cells cultured with Col I. Changes in the activation of downstream signaling molecules of EGFR were analyzed. We also examined the association between the Col I expression in tumor stroma in surgical specimens and EGFR-TKI response of postoperative recurrence patients with EGFR mutations. Compared to cancer cells without Col I, the survival rate of cancer cells cultured with Col I was significantly higher after EGFR-TKI treatment. In cancer cells cultured with and without Col I, EGFR-TKI suppressed the levels of phosphorylated (p-)EGFR, p-ERK1/2, and p-Akt. When compared to cancer cells without Col I, expression of p-P70S6K, a hallmark of mTOR activation, was dramatically upregulated in cancer cells with Col I. This activation was maintained even after EGFR-TKI treatment. Simultaneous treatment with EGFR-TKI and mTOR inhibitor abrogated Col I-induced resistance to EGFR-TKI. Patients with Col I-rich stroma had a significantly shorter progression-free survival time after EGFR-TKI therapy (238 days vs 404 days; P < .05). Collagen type I induces mTOR activation through an Akt-independent pathway, which results in EGFR-TKI resistance. Combination therapy using EGFR-TKI and mTOR inhibitor could be a possible strategy to combat this resistance. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  7. Bisphosphonates enhance EGFR-TKIs efficacy in advanced NSCLC patients with EGFR activating mutation: A retrospective study

    PubMed Central

    Cai, Xiao-Hong; Yao, Wen-Xiu; Xu, Yong; Liu, Xiao-Ke; Zhu, Wen-Jiang; Wang, Yan; Zhou, Jin; Lu, You; Wang, Yong-Sheng

    2016-01-01

    Background Bisphosphonates have exhibited anti-tumor activity in non-small cell lung cancer (NSCLC). We aimed to evaluate whether the combination of bisphosphonates with tyrosine kinase inhibitors of EGFR (EGFR-TKIs) could obtain a synergistic effect on advanced NSCLC patients with EGFR mutations. Methods Between January 2008 and October 2013, 114 advanced EGFR mutations NSCLC patients who received EGFR-TKIs as first-line therapy were recruited from two cancer centers. Patients were separated into EGFR-TKIs alone or EGFR-TKIs plus bisphosphonates (combination) group. Median progression free survival (mPFS), median overall survival (mOS) distributions and survival curves were analyzed. Results Among the 114 patients, 62 had bone metastases (19 patients treated with EGFR-TKIs, 43 patients treated with EGFR-TKIs + bisphosphonates). Median PFS and OS were significantly improved in combination group compared with EGFR-TKIs group (mPFS: 15.0 vs 7.3 months, P = 0.0017; mOS: 25.2 vs 10.4 months, P = 0.0015) in patients with bone metastases. Among the 71 patients (19 patients with bone metastases) treated with EGFR-TKIs alone, patients with bone metastases had poor survival prognosis (mPFS:7.3 vs 12.1 months, P = 0.0434; mOS:10.4 vs 22.0 months, P = 0.0036). The survival of patients with bone metastases who received EGFR-TKIs plus bisphosphonates therapy was non-inferior to patients without bone metastases treated with EGFR-TKIs alone (mPFS: 15.0 vs 12.1 months, p = 0.1871; mOS: 25.2 vs 22.0 months, p = 0.9798). Conclusions Concomitant use of bisphosphonates and EGFR-TKIs improves therapeutic efficacy and brings survival benefits to NSCLC patients with EGFR mutation and bone metastases. PMID:26624882

  8. Identifying activating mutations in the EGFR gene: prognostic and therapeutic implications in non-small cell lung cancer *

    PubMed Central

    Lopes, Gabriel Lima; Vattimo, Edoardo Filippo de Queiroz; de Castro, Gilberto

    2015-01-01

    Abstract Lung cancer is the leading cause of cancer-related deaths worldwide. Promising new therapies have recently emerged from the development of molecular targeted drugs; particularly promising are those blocking the signal transduction machinery of cancer cells. One of the most widely studied cell signaling pathways is that of EGFR, which leads to uncontrolled cell proliferation, increased cell angiogenesis, and greater cell invasiveness. Activating mutations in the EGFR gene (deletions in exon 19 and mutation L858R in exon 21), first described in 2004, have been detected in approximately 10% of all non-squamous non-small cell lung cancer (NSCLC) patients in Western countries and are the most important predictors of a response to EGFR tyrosine-kinase inhibitors (EGFR-TKIs). Studies of the EGFR-TKIs gefitinib, erlotinib, and afatinib, in comparison with platinum-based regimens, as first-line treatments in chemotherapy-naïve patients have shown that the EGFR-TKIs produce gains in progression-free survival and overall response rates, although only in patients whose tumors harbor activating mutations in the EGFR gene. Clinical trials have also shown EGFR-TKIs to be effective as second- and third-line therapies in advanced NSCLC. Here, we review the main aspects of EGFR pathway activation in NSCLC, underscore the importance of correctly identifying activating mutations in the EGFR gene, and discuss the main outcomes of EGFR-TKI treatment in NSCLC. PMID:26398757

  9. Identifying activating mutations in the EGFR gene: prognostic and therapeutic implications in non-small cell lung cancer.

    PubMed

    Lopes, Gabriel Lima; Vattimo, Edoardo Filippo de Queiroz; Castro Junior, Gilberto de

    2015-01-01

    Lung cancer is the leading cause of cancer-related deaths worldwide. Promising new therapies have recently emerged from the development of molecular targeted drugs; particularly promising are those blocking the signal transduction machinery of cancer cells. One of the most widely studied cell signaling pathways is that of EGFR, which leads to uncontrolled cell proliferation, increased cell angiogenesis, and greater cell invasiveness. Activating mutations in the EGFR gene (deletions in exon 19 and mutation L858R in exon 21), first described in 2004, have been detected in approximately 10% of all non-squamous non-small cell lung cancer (NSCLC) patients in Western countries and are the most important predictors of a response to EGFR tyrosine-kinase inhibitors (EGFR-TKIs). Studies of the EGFR-TKIs gefitinib, erlotinib, and afatinib, in comparison with platinum-based regimens, as first-line treatments in chemotherapy-naïve patients have shown that the EGFR-TKIs produce gains in progression-free survival and overall response rates, although only in patients whose tumors harbor activating mutations in the EGFR gene. Clinical trials have also shown EGFR-TKIs to be effective as second- and third-line therapies in advanced NSCLC. Here, we review the main aspects of EGFR pathway activation in NSCLC, underscore the importance of correctly identifying activating mutations in the EGFR gene, and discuss the main outcomes of EGFR-TKI treatment in NSCLC.

  10. Brigatinib combined with anti-EGFR antibody overcomes osimertinib resistance in EGFR-mutated non-small-cell lung cancer

    NASA Astrophysics Data System (ADS)

    Uchibori, Ken; Inase, Naohiko; Araki, Mitsugu; Kamada, Mayumi; Sato, Shigeo; Okuno, Yasushi; Fujita, Naoya; Katayama, Ryohei

    2017-03-01

    Osimertinib has been demonstrated to overcome the epidermal growth factor receptor (EGFR)-T790M, the most relevant acquired resistance to first-generation EGFR-tyrosine kinase inhibitors (EGFR-TKIs). However, the C797S mutation, which impairs the covalent binding between the cysteine residue at position 797 of EGFR and osimertinib, induces resistance to osimertinib. Currently, there are no effective therapeutic strategies to overcome the C797S/T790M/activating-mutation (triple-mutation)-mediated EGFR-TKI resistance. In the present study, we identify brigatinib to be effective against triple-mutation-harbouring cells in vitro and in vivo. Our original computational simulation demonstrates that brigatinib fits into the ATP-binding pocket of triple-mutant EGFR. The structure-activity relationship analysis reveals the key component in brigatinib to inhibit the triple-mutant EGFR. The efficacy of brigatinib is enhanced markedly by combination with anti-EGFR antibody because of the decrease of surface and total EGFR expression. Thus, the combination therapy of brigatinib with anti-EGFR antibody is a powerful candidate to overcome triple-mutant EGFR.

  11. ASP8273 tolerability and antitumor activity in TKI-naive Japanese patients with EGFR mutation-positive non-small cell lung cancer.

    PubMed

    Azuma, Koichi; Nishio, Makoto; Hayashi, Hidetoshi; Kiura, Katsuyuki; Satouchi, Miyako; Sugawara, Shunichi; Hida, Toyoaki; Iwamoto, Yasuo; Inoue, Akira; Takeda, Koji; Ikeda, Satoshi; Nakagawa, Tomoki; Takeda, Kentaro; Asahina, Seitaro; Komatsu, Kanji; Morita, Satoshi; Fukuoka, Masahiro; Nakagawa, Kazuhiko

    2018-05-28

    Epidermal growth factor receptor (EGFR) activating mutations occur in approximately 50% of East Asian patients with non-small cell lung cancer (NSCLC) and confer sensitivity to tyrosine kinase inhibitors (TKI). ASP8273 is an orally administered, irreversible EGFR-TKI that inhibits EGFR activating mutations and has demonstrated clinical activity in patients with EGFR mutation-positive NSCLC. EGFR-TKI-naïve Japanese adult patients (≥20 years) with NSCLC harboring EGFR mutations were enrolled in this open-label, single-arm, Phase 2 study (NCT02500927). Patients received ASP8273 300mg once daily until discontinuation criteria were met. The primary endpoint was to determine the safety of ASP8273 300mg; secondary endpoint was antitumor activity defined by RECIST v1.1. Thirty-one patients (12M/19F; median age 64 years [range: 31-82]) with EGFR mutation-positive NSCLC were enrolled; as of 23 February 2016, 25 patients (81%) were still on study. Of the 31 patients, 27 (87%) had an ex19del (n=13, 42%) or a L858R (n=14, 45%) EGFR activating mutation; 2 (7%) had L861Q mutation and 5 (16%) had other EGFR activating mutations, two had an activating mutation and the T790M resistance mutation. The most commonly reported treatment-emergent adverse event was diarrhea [n=24, 77%]. All patients had at least 1 post-baseline scan; 1 patient (3%) achieved a confirmed complete response, 13 (42%) had a confirmed partial response, and 15 (48%) had confirmed stable disease (disease control rate: 94% [n=29/31]) per investigator assessment. Once-daily ASP8273 300 mg was generally well tolerated and demonstrated antitumor activity in TKI-naïve Japanese patients with EGFR mutation-positive NSCLC. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. First-line therapy for advanced non-small cell lung cancer with activating EGFR mutation: is combined EGFR-TKIs and chemotherapy a better choice?

    PubMed

    Wang, Shuyun; Gao, Aiqin; Liu, Jie; Sun, Yuping

    2018-03-01

    As the standard first-line treatment for advanced non-small cell lung cancer (NSCLC) with activating epidermal growth factor receptor (EGFR) mutation, EGFR-tyrosine kinase inhibitors (EGFR-TKIs) have significantly improved the median progression-free survival (PFS) up to 18.9 months. However, almost all patients eventually develop acquired resistance to EGFR-TKIs, which limits the first-line PFS. To overcome the resistance and improve overall survival, researchers have tried to identify the resistance mechanisms and develop new treatment strategies, among which a combination of EGFR-TKIs and cytotoxic chemotherapy is one of the hotspots. The data from preclinical and clinical studies on combined EGFR-TKIs and chemotherapy have shown very interesting results. Here, we reviewed the available preclinical and clinical studies on first-line EGFR-TKIs-chemotherapy combination in patients with advanced NSCLC harboring activating EGFR mutation, aiming to provide evidences for more potential choices and shed light on clinical treatment.

  13. Brigatinib combined with anti-EGFR antibody overcomes osimertinib resistance in EGFR-mutated non-small-cell lung cancer

    PubMed Central

    Uchibori, Ken; Inase, Naohiko; Araki, Mitsugu; Kamada, Mayumi; Sato, Shigeo; Okuno, Yasushi; Fujita, Naoya; Katayama, Ryohei

    2017-01-01

    Osimertinib has been demonstrated to overcome the epidermal growth factor receptor (EGFR)-T790M, the most relevant acquired resistance to first-generation EGFR–tyrosine kinase inhibitors (EGFR–TKIs). However, the C797S mutation, which impairs the covalent binding between the cysteine residue at position 797 of EGFR and osimertinib, induces resistance to osimertinib. Currently, there are no effective therapeutic strategies to overcome the C797S/T790M/activating-mutation (triple-mutation)-mediated EGFR–TKI resistance. In the present study, we identify brigatinib to be effective against triple-mutation-harbouring cells in vitro and in vivo. Our original computational simulation demonstrates that brigatinib fits into the ATP-binding pocket of triple-mutant EGFR. The structure–activity relationship analysis reveals the key component in brigatinib to inhibit the triple-mutant EGFR. The efficacy of brigatinib is enhanced markedly by combination with anti-EGFR antibody because of the decrease of surface and total EGFR expression. Thus, the combination therapy of brigatinib with anti-EGFR antibody is a powerful candidate to overcome triple-mutant EGFR. PMID:28287083

  14. Glioma Specific Extracellular Missense Mutations in the First Cysteine Rich Region of Epidermal Growth Factor Receptor (EGFR) Initiate Ligand Independent Activation

    PubMed Central

    Ymer, Susie I.; Greenall, Sameer A.; Cvrljevic, Anna; Cao, Diana X.; Donoghue, Jacqui F.; Epa, V. Chandana; Scott, Andrew M.; Adams, Timothy E.; Johns, Terrance G.

    2011-01-01

    The epidermal growth factor receptor (EGFR) is overexpressed or mutated in glioma. Recently, a series of missense mutations in the extracellular domain (ECD) of EGFR were reported in glioma patients. Some of these mutations clustered within a cysteine-rich region of the EGFR targeted by the therapeutic antibody mAb806. This region is only exposed when EGFR activates and appears to locally misfold during activation. We expressed two of these mutations (R324L and E330K) in NR6 mouse fibroblasts, as they do not express any EGFR-related receptors. Both mutants were autophosphorylated in the absence of ligand and enhanced cell survival and anchorage-independent and xenograft growth. The ECD truncation that produces the de2-7EGFR (or EGFRvIII), the most common EGFR mutation in glioma, generates a free cysteine in this same region. Using a technique optimized for detecting disulfide-bonded dimers, we definitively demonstrated that the de2-7EGFR is robustly dimerized and that ablation of the free cysteine prevents dimerization and activation. Modeling of the R324L mutation suggests it may cause transient breaking of disulfide bonds, leading to similar disulfide-bonded dimers as seen for the de2-7EGFR. These ECD mutations confirm that the cysteine-rich region of EGFR around the mAb806 epitope has a significant role in receptor activation. PMID:24212795

  15. A comparison of ARMS-Plus and droplet digital PCR for detecting EGFR activating mutations in plasma

    PubMed Central

    Zhang, Xinxin; Chang, Ning; Yang, Guohua; Zhang, Yong; Ye, Mingxiang; Cao, Jing; Xiong, Jie; Han, Zhiping; Wu, Shuo; Shang, Lei; Zhang, Jian

    2017-01-01

    In this study, we introduce a novel amplification refractory mutation system (ARMS)-based assay, namely ARMS-Plus, for the detection of epidermal growth factor receptor (EGFR) mutations in plasma samples. We evaluated the performance of ARMS-Plus in comparison with droplet digital PCR (ddPCR) and assessed the significance of plasma EGFR mutations in predicting efficacy of EGFR-tyrosine kinase inhibitor (TKI) regimen. A total of 122 advanced non-small cell lung cancer (NSCLC) patients were enrolled in this study. The tumor tissue samples from these patients were evaluated by conventional ARMS PCR method to confirm their EGFR mutation status. For the 116 plasma samples analyzed by ARMS-Plus, the sensitivity, specificity, and concordance rate were 77.27% (34/44), 97.22% (70/72), and 89.66% (104/116; κ=0.77, P<0.0001), respectively. Among the 71 plasma samples analyzed by both ARMS-Plus and ddPCR, ARMS-Plus showed a higher sensitivity than ddPCR (83.33% versus 70.83%). The presence of EGFR activating mutations in plasma was not associated with the response to EGFR-TKI, although further validation with a larger cohort is required to confirm the correlation. Collectively, the performance of ARMS-Plus and ddPCR are comparable. ARMS-Plus could be a potential alternative to tissue genotyping for the detection of plasma EGFR mutations in NSCLC patients. PMID:29340107

  16. β-catenin contributes to lung tumor development induced by EGFR mutations

    PubMed Central

    Nakayama, Sohei; Sng, Natasha; Carretero, Julian; Welner, Robert; Hayashi, Yuichiro; Yamamoto, Mihoko; Tan, Alistair J.; Yamaguchi, Norihiro; Yasuda, Hiroyuki; Li, Danan; Soejima, Kenzo; Soo, Ross A.; Costa, Daniel B.; Wong, Kwok-Kin; Kobayashi, Susumu S.

    2014-01-01

    The discovery of somatic mutations in epidermal growth factor receptor (EGFR) and development of EGFR tyrosine kinase inhibitors (TKIs) have revolutionized treatment for lung cancer. However, resistance to TKIs emerges in almost all patients and currently no effective treatment is available. Here we show that β-catenin is essential for development of EGFR mutated lung cancers. β-catenin was upregulated and activated in EGFR mutated cells. Mutant EGFR preferentially bound to and tyrosine-phosphorylated β-catenin, leading to increase in β-catenin-mediated transactivation, particularly in cells harboring the gefitinib/erlotinib-resistant gatekeeper EGFR-T790M mutation. Pharmacological inhibition of β-catenin suppressed EGFR-L858R-T790M mutated lung tumor growth and genetic deletion of the β-catenin gene dramatically reduced lung tumor formation in EGFR-L858R-T790M transgenic mice. These data suggest that β-catenin plays an essential role in lung tumorigenesis and that targeting the β-catenin pathway may provide novel strategies to prevent lung cancer development or overcome resistance to EGFR TKIs. PMID:25164010

  17. Prevalence of EGFR Mutations in Lung Cancer in Uruguayan Population

    PubMed Central

    Touya, Diego; Bertoni, Bernardo; Osinaga, Eduardo; Varangot, Mario

    2017-01-01

    Background Incorporation of molecular analysis of the epidermal growth factor receptor (EGFR) gene into routine clinical practice represents a milestone for personalized therapy of the non-small-cell lung cancer (NSCLC). However, the genetic testing of EGFR mutations has not yet become a routine clinical practice in developing countries. In view of different prevalence of such mutations among different ethnicities and geographic regions, as well as the limited existing data from Latin America, our aim was to study the frequency of major types of activating mutations of the EGFR gene in NSCLC patients from Uruguay. Methods We examined EGFR mutations in exons 18 through 21 in 289 NSCLC Uruguayan patients by PCR-direct sequencing. Results EGFR mutations were detected in 53 of the 289 (18.3%) patients, more frequently in women (23.4%) than in men (14.5%). The distribution by exon was similar to that generally reported in the literature. Conclusions This first epidemiological study of EGFR mutations in Uruguay reveals a wide spectrum of mutations and an overall prevalence of 18.3%. The background ethnic structure of the Uruguayan population could play an important role in explaining our findings. PMID:28744312

  18. Epidermal Growth Factor Receptor (EGFR) mutation analysis, gene expression profiling and EGFR protein expression in primary prostate cancer

    PubMed Central

    2011-01-01

    Background Activating mutations of the epidermal growth factor receptor (EGFR) confer sensitivity to the tyrosine kinase inhibitors (TKi), gefitinib and erlotinib. We analysed EGFR expression, EGFR mutation status and gene expression profiles of prostate cancer (PC) to supply a rationale for EGFR targeted therapies in this disease. Methods Mutational analysis of EGFR TK domain (exons from 18 to 21) and immunohistochemistry for EGFR were performed on tumour tissues derived from radical prostatectomy from 100 PC patients. Gene expression profiling using oligo-microarrays was also carried out in 51 of the PC samples. Results EGFR protein overexpression (EGFRhigh) was found in 36% of the tumour samples, and mutations were found in 13% of samples. Patients with EGFRhigh tumours experienced a significantly increased risk of biochemical relapse (hazard ratio-HR 2.52, p=0.02) compared with patients with tumours expressing low levels of EGFR (EGFRlow). Microarray analysis did not reveal any differences in gene expression between EGFRhigh and EGFRlow tumours. Conversely, in EGFRhigh tumours, we were able to identify a 79 gene signature distinguishing mutated from non-mutated tumours. Additionally, 29 genes were found to be differentially expressed between mutated/EGFRhigh (n=3) and mutated/EGFRlow tumours (n=5). Four of the down-regulated genes, U19/EAF2, ABCC4, KLK3 and ANXA3 and one of the up-regulated genes, FOXC1, are involved in PC progression. Conclusions Based on our findings, we hypothesize that accurate definition of the EGFR status could improve prognostic stratification and we suggest a possible role for EGFR-directed therapies in PC patients. Having been generated in a relatively small sample of patients, our results warrant confirmation in larger series. PMID:21266046

  19. Epidermal Growth Factor Receptor (EGFR) mutation analysis, gene expression profiling and EGFR protein expression in primary prostate cancer.

    PubMed

    Peraldo-Neia, Caterina; Migliardi, Giorgia; Mello-Grand, Maurizia; Montemurro, Filippo; Segir, Raffaella; Pignochino, Ymera; Cavalloni, Giuliana; Torchio, Bruno; Mosso, Luciano; Chiorino, Giovanna; Aglietta, Massimo

    2011-01-25

    Activating mutations of the epidermal growth factor receptor (EGFR) confer sensitivity to the tyrosine kinase inhibitors (TKi), gefitinib and erlotinib. We analysed EGFR expression, EGFR mutation status and gene expression profiles of prostate cancer (PC) to supply a rationale for EGFR targeted therapies in this disease. Mutational analysis of EGFR TK domain (exons from 18 to 21) and immunohistochemistry for EGFR were performed on tumour tissues derived from radical prostatectomy from 100 PC patients. Gene expression profiling using oligo-microarrays was also carried out in 51 of the PC samples. EGFR protein overexpression (EGFRhigh) was found in 36% of the tumour samples, and mutations were found in 13% of samples. Patients with EGFRhigh tumours experienced a significantly increased risk of biochemical relapse (hazard ratio-HR 2.52, p=0.02) compared with patients with tumours expressing low levels of EGFR (EGFRlow). Microarray analysis did not reveal any differences in gene expression between EGFRhigh and EGFRlow tumours. Conversely, in EGFRhigh tumours, we were able to identify a 79 gene signature distinguishing mutated from non-mutated tumours. Additionally, 29 genes were found to be differentially expressed between mutated/EGFRhigh (n=3) and mutated/EGFRlow tumours (n=5). Four of the down-regulated genes, U19/EAF2, ABCC4, KLK3 and ANXA3 and one of the up-regulated genes, FOXC1, are involved in PC progression. Based on our findings, we hypothesize that accurate definition of the EGFR status could improve prognostic stratification and we suggest a possible role for EGFR-directed therapies in PC patients. Having been generated in a relatively small sample of patients, our results warrant confirmation in larger series.

  20. Impact of active smoking on survival of patients with metastatic lung adenocarcinoma harboring an epidermal growth factor receptor (EGFR) mutation.

    PubMed

    Erdogan, Bulent; Kodaz, Hilmi; Karabulut, Senem; Cinkaya, Ahmet; Tozkir, Hilmi; Tanriverdi, Ozgur; Cabuk, Devrim; Hacioglu, Muhammed Bekir; Turkmen, Esma; Hacibekiroglu, Ilhan; Uzunoglu, Sernaz; Cicin, Irfan

    2016-11-10

    Lung cancer in smokers and non-smokers demonstrates distinct genetic profiles, and cigarette smoking affects epidermal growth factor receptor (EGFR) function and causes secondary EGFR tyrosine kinase resistance. We evaluated the effect of active smoking in patients with metastatic lung adenocarcinoma. A total of 132 metastatic lung adenocarcinoma patients, diagnosed between 2008 and 2013, with known EGFR mutation status, were evaluated retrospectively. Among these patients, 40 had an activating EGFR mutation. Patients who continued smoking during the treatment were defined as active smokers. Former smokers and never smokers were together defined as non-smokers. The outcomes of the treatment in relation to the EGFR mutation and smoking status were evaluated. The median follow-up time was 10.5 months. The overall response rate for the first-line therapy was significantly higher among the EGFR-mutant patients (p = 0.01), however, smoking status had no impact on the response rate (p = 0.1). The EGFR-mutant active smokers progressed earlier than the non-smokers (p < 0.01). The overall survival (OS) of the non-smokers and patients treated with erlotinib was significantly longer (p = 0.02 and p = 0.01, respectively). Smoking status did not affect the OS in EGFR wild type tumors (p = 0.49) but EGFR-mutant non-smokers had a longer OS than the active smokers (p = 0.01).The active smokers treated with erlotinib had poorer survival than the non-smokers (p = 0.03). Multivariate analysis of EGFR-mutant patients showed that erlotinib treatment at any line and non-smoking were independent prognostic factors for the OS (p = 0.04 and p = 0.01, respectively). Smoking during treatment is a negative prognostic factor in metastatic lung adenocarcinoma with an EGFR mutation.

  1. EGFR TKI as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer

    PubMed Central

    Nan, Xueli; Xie, Chao; Yu, Xueyan; Liu, Jie

    2017-01-01

    After the discovery of activating mutations in EGFR, EGFR tyrosine kinase inhibitors (TKIs) have been introduced into the first-line treatment of non-small-cell lung cancer (NSCLC). A series of studies have shown that EGFR TKI monotherapy as first-line treatment can benefit NSCLC patients harbouring EGFR mutations. Besides, combination strategies based on EGFR TKIs in the first line treatment have also been proved to delay the occurrence of resistance. In this review, we summarize the scientific literature and evidence of EGFR TKIs as first-line therapy from the first-generation EGFR TKIs to conceptually proposed fourth-generation EGFR TKI, and also recommend the application of monotherapy and combination therapies of the EGFR-based targeted therapy with other agents such as chemotherapy, anti-angiogenic drugs and immunecheckpoint inhibitors. PMID:29088904

  2. Hierarchical Modeling of Activation Mechanisms in the ABL and EGFR Kinase Domains: Thermodynamic and Mechanistic Catalysts of Kinase Activation by Cancer Mutations

    PubMed Central

    Dixit, Anshuman; Verkhivker, Gennady M.

    2009-01-01

    Structural and functional studies of the ABL and EGFR kinase domains have recently suggested a common mechanism of activation by cancer-causing mutations. However, dynamics and mechanistic aspects of kinase activation by cancer mutations that stimulate conformational transitions and thermodynamic stabilization of the constitutively active kinase form remain elusive. We present a large-scale computational investigation of activation mechanisms in the ABL and EGFR kinase domains by a panel of clinically important cancer mutants ABL-T315I, ABL-L387M, EGFR-T790M, and EGFR-L858R. We have also simulated the activating effect of the gatekeeper mutation on conformational dynamics and allosteric interactions in functional states of the ABL-SH2-SH3 regulatory complexes. A comprehensive analysis was conducted using a hierarchy of computational approaches that included homology modeling, molecular dynamics simulations, protein stability analysis, targeted molecular dynamics, and molecular docking. Collectively, the results of this study have revealed thermodynamic and mechanistic catalysts of kinase activation by major cancer-causing mutations in the ABL and EGFR kinase domains. By using multiple crystallographic states of ABL and EGFR, computer simulations have allowed one to map dynamics of conformational fluctuations and transitions in the normal (wild-type) and oncogenic kinase forms. A proposed multi-stage mechanistic model of activation involves a series of cooperative transitions between different conformational states, including assembly of the hydrophobic spine, the formation of the Src-like intermediate structure, and a cooperative breakage and formation of characteristic salt bridges, which signify transition to the active kinase form. We suggest that molecular mechanisms of activation by cancer mutations could mimic the activation process of the normal kinase, yet exploiting conserved structural catalysts to accelerate a conformational transition and the enhanced

  3. Identifying EGFR-Expressed Cells and Detecting EGFR Multi-Mutations at Single-Cell Level by Microfluidic Chip

    NASA Astrophysics Data System (ADS)

    Li, Ren; Zhou, Mingxing; Li, Jine; Wang, Zihua; Zhang, Weikai; Yue, Chunyan; Ma, Yan; Peng, Hailin; Wei, Zewen; Hu, Zhiyuan

    2018-03-01

    EGFR mutations companion diagnostics have been proved to be crucial for the efficacy of tyrosine kinase inhibitor targeted cancer therapies. To uncover multiple mutations occurred in minority of EGFR-mutated cells, which may be covered by the noises from majority of un-mutated cells, is currently becoming an urgent clinical requirement. Here we present the validation of a microfluidic-chip-based method for detecting EGFR multi-mutations at single-cell level. By trapping and immunofluorescently imaging single cells in specifically designed silicon microwells, the EGFR-expressed cells were easily identified. By in situ lysing single cells, the cell lysates of EGFR-expressed cells were retrieved without cross-contamination. Benefited from excluding the noise from cells without EGFR expression, the simple and cost-effective Sanger's sequencing, but not the expensive deep sequencing of the whole cell population, was used to discover multi-mutations. We verified the new method with precisely discovering three most important EGFR drug-related mutations from a sample in which EGFR-mutated cells only account for a small percentage of whole cell population. The microfluidic chip is capable of discovering not only the existence of specific EGFR multi-mutations, but also other valuable single-cell-level information: on which specific cells the mutations occurred, or whether different mutations coexist on the same cells. This microfluidic chip constitutes a promising method to promote simple and cost-effective Sanger's sequencing to be a routine test before performing targeted cancer therapy.[Figure not available: see fulltext.

  4. Fatty acid synthase mediates EGFR palmitoylation in EGFR mutated non-small cell lung cancer.

    PubMed

    Ali, Azhar; Levantini, Elena; Teo, Jun Ting; Goggi, Julian; Clohessy, John G; Wu, Chan Shuo; Chen, Leilei; Yang, Henry; Krishnan, Indira; Kocher, Olivier; Zhang, Junyan; Soo, Ross A; Bhakoo, Kishore; Chin, Tan Min; Tenen, Daniel G

    2018-02-15

    Metabolic reprogramming is widely known as a hallmark of cancer cells to allow adaptation of cells to sustain survival signals. In this report, we describe a novel oncogenic signaling pathway exclusively acting in mutated epidermal growth factor receptor (EGFR) non-small cell lung cancer (NSCLC) with acquired tyrosine kinase inhibitor (TKI) resistance. Mutated EGFR mediates TKI resistance through regulation of the fatty acid synthase (FASN), which produces 16-C saturated fatty acid palmitate. Our work shows that the persistent signaling by mutated EGFR in TKI-resistant tumor cells relies on EGFR palmitoylation and can be targeted by Orlistat, an FDA-approved anti-obesity drug. Inhibition of FASN with Orlistat induces EGFR ubiquitination and abrogates EGFR mutant signaling, and reduces tumor growths both in culture systems and in vivo Together, our data provide compelling evidence on the functional interrelationship between mutated EGFR and FASN and that the fatty acid metabolism pathway is a candidate target for acquired TKI-resistant EGFR mutant NSCLC patients. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  5. Driven by Mutations: The Predictive Value of Mutation Subtype in EGFR-Mutated Non-Small Cell Lung Cancer.

    PubMed

    Castellanos, Emily; Feld, Emily; Horn, Leora

    2017-04-01

    EGFR-mutated NSCLC is a genetically heterogeneous disease that includes more than 200 distinct mutations. The implications of mutational subtype for both prognostic and predictive value are being increasingly understood. Although the most common EGFR mutations-exon 19 deletions or L858R mutations-predict sensitivity to EGFR tyrosine kinase inhibitors (TKIs), it is now being recognized that outcomes may be improved in patients with exon 19 deletions. Additionally, 10% of patients will have an uncommon EGFR mutation, and response to EGFR TKI therapy is highly variable depending on the mutation. Given the growing recognition of the genetic and clinical variation seen in this disease, the development of comprehensive bioinformatics-driven tools to both analyze response in uncommon mutation subtypes and inform clinical decision making will be increasingly important. Clinical trials of novel EGFR TKIs should prospectively account for the presence of uncommon mutation subtypes in study design. Copyright © 2016 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  6. Immunostaining with EGFR mutation-specific antibodies: a reliable screening method for lung adenocarcinomas harboring EGFR mutation in biopsy and resection samples.

    PubMed

    Fan, Xiangshan; Liu, Biao; Xu, Haodong; Yu, Bo; Shi, Shanshan; Zhang, Jin; Wang, Xuan; Wang, Jiandong; Lu, Zhenfeng; Ma, Henghui; Zhou, Xiaojun

    2013-08-01

    Mutation analysis of epidermal growth factor receptor (EGFR) is essential in determining the therapeutic strategy for lung adenocarcinoma. Immunohistochemical (IHC) staining with EGFR mutation-specific antibodies of del E746-A750 in exon 19 and L858R in exon 21 has been evaluated in resection specimens in a few studies but rarely in biopsy samples. A total of 169 cases (78 biopsies and 91 resected specimens) of lung adenocarcinoma with EGFR mutation status predefined by direct DNA sequencing were histologically examined, and IHC was performed using EGFR mutation-specific antibodies of del E746-A750 and L858R. The cases with positive results by IHC but negative results by direct DNA sequencing were examined by amplified refractory mutation system. Our results showed that the frequency of EGFR mutations for both E746-A750 deletion and L858R mutation was 38.5% (65/169) by DNA sequencing or amplified refractory mutation system and 34.3% (58/169) by IHC in lung adenocarcinomas. Based on molecular test results, the overall sensitivity, specificity, positive predictive value, and negative predictive value of IHC using these 2 antibodies in all (biopsy/resection) cases were 87.7% (80%/94.3%), 99.0% (97.9%/100%), 98.3% (96%/100%), and 92.8% (88.7%/96.6%), respectively. Lung adenocarcinomas with a predominant acinar, papillary, lepidic, or solid growth pattern more often harbor EGFR mutation of del E746-A750 or L858R. In conclusion, the immunostaining with EGFR del E746-A750 and L858R mutation antibodies is a reliable screening method with high specificity and sensitivity for identifying the EGFR mutation in both resected and biopsied lung adenocarcinomas. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Sequential liquid biopsies reveal dynamic alterations of EGFR driver mutations and indicate EGFR amplification as a new mechanism of resistance to osimertinib in NSCLC.

    PubMed

    Knebel, Franciele H; Bettoni, Fabiana; Shimada, Andrea K; Cruz, Manoel; Alessi, João Victor; Negrão, Marcelo V; Reis, Luiz Fernando L; Katz, Artur; Camargo, Anamaria A

    2017-06-01

    Osimertinib is an EGFR-T790M-specific TKI, which has demonstrated impressive response rates in NSCLC, after failure to first-line anti-EGFR TKIs. However, acquired resistance to osimertinib is also observed and the molecular mechanisms of resistance are not yet fully understood. Monitoring and managing NSCLC patients who progressed on osimertinib is, therefore, emerging as an important clinical challenge. Sequential liquid biopsies were used to monitor a patient with EGFR-exon19del positive NSCLC, who received erlotinib and progressed through the acquisition of the EGFR-T790M mutation. Erlotinib was discontinued and osimertinib was initiated. Blood samples were collected at erlotinib progression and during osimertinib treatment for the detection of the activating (EGFR-exon19del) and resistance mutations (EGFR-T790M, EGFR-C797S, BRAF-V600E, METamp and ERBB2amp) in the plasma DNA using digital droplet PCR. Plasma levels of the activating EGFR-exon19del accurately paralleled the clinical and radiological progression of disease and allowed early detection of AR to osimertinib. Resistance to osimertinib coincided with the emergence of a small tumor cell subpopulation carrying the known EGFR-C797S resistance mutation and an additional subpopulation carrying amplified copies of EGFR-exon19del. Given the existence of multiple AR mechanisms, quantification of the original EGFR activation mutation, instead of the resistance mutations, can be efficiently used to monitor response to osimertinib, allowing early detection of AR. Absolute quantification of both activation and resistance mutations can provide important information on tumor clonal evolution upon progression to osimertinib. Selective amplification of the EGFR-exon19del allele may represent a novel resistance mechanism to osimertinib. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. EGFR Mutation Testing Practices within the Asia Pacific Region

    PubMed Central

    Kerr, Keith M.; Utomo, Ahmad; Rajadurai, Pathmanathan; Tran, Van Khanh; Du, Xiang; Chou, Teh-Ying; Enriquez, Ma. Luisa D.; Lee, Geon Kook; Iqbal, Jabed; Shuangshoti, Shanop; Chung, Jin-Haeng; Hagiwara, Koichi; Liang, Zhiyong; Normanno, Nicola; Park, Keunchil; Toyooka, Shinichi; Tsai, Chun-Ming; Waring, Paul; Zhang, Li; McCormack, Rose; Ratcliffe, Marianne; Itoh, Yohji; Sugeno, Masatoshi; Mok, Tony

    2015-01-01

    Introduction: The efficacy of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in EGFR mutation-positive non–small-cell lung cancer (NSCLC) patients necessitates accurate, timely testing. Although EGFR mutation testing has been adopted by many laboratories in Asia, data are lacking on the proportion of NSCLC patients tested in each country, and the most commonly used testing methods. Methods: A retrospective survey of records from NSCLC patients tested for EGFR mutations during 2011 was conducted in 11 Asian Pacific countries at 40 sites that routinely performed EGFR mutation testing during that period. Patient records were used to complete an online questionnaire at each site. Results: Of the 22,193 NSCLC patient records surveyed, 31.8% (95% confidence interval: 31.2%–32.5%) were tested for EGFR mutations. The rate of EGFR mutation positivity was 39.6% among the 10,687 cases tested. The majority of samples were biopsy and/or cytology samples (71.4%). DNA sequencing was the most commonly used testing method accounting for 40% and 32.5% of tissue and cytology samples, respectively. A pathology report was available only to 60.0% of the sites, and 47.5% were not members of a Quality Assurance Scheme. Conclusions: In 2011, EGFR mutation testing practices varied widely across Asia. These data provide a reference platform from which to improve the molecular diagnosis of NSCLC, and EGFR mutation testing in particular, in Asia. PMID:25376513

  9. EGFR gene copy number alterations are not a useful screening tool for predicting EGFR mutation status in lung adenocarcinoma.

    PubMed

    Russell, Prudence A; Yu, Yong; Do, Hongdo; Clay, Timothy D; Moore, Melissa M; Wright, Gavin M; Conron, Matthew; Wainer, Zoe; Dobrovic, Alexander; McLachlan, Sue-Anne

    2014-01-01

    We investigated if gene copy number (GCN) alterations of the epidermal growth factor receptor (EGFR), as detected by silver enhanced in situ hybridisation (SISH), could be used to select patients for EGFR mutation testing. Resected lung adenocarcinoma specimens with adequate tumour were identified. EGFR SISH was performed using the Ventana Benchmark Ultra platform. EGFR GCN was classified according to the Colorado Classification System. EGFR mutations were scanned by high resolution melting and confirmed by Sanger sequencing. Thirty-four of 96 tumours were EGFR SISH positive (35%), and 31 of 96 tumours harboured one or more EGFR mutations (32%). Of 31 EGFR-mutant tumours, 18 were EGFR SISH positive (58%). There was a statistically significant relationship between the presence of an EGFR mutation and EGFR GCN (p = 0.003). Thirteen of 31 EGFR-mutant tumours were EGFR SISH negative (42%), and 16 of 65 EGFR-wild type tumours were EGFR SISH positive (24%). The sensitivity, specificity, positive predictive value and negative predictive value were 58%, 75%, 52.9% and 79%, respectively. Despite a significant relationship between EGFR GCN alterations and EGFR mutations, our results indicate that EGFR GCN as detected by SISH is not a suitable way to select patients for EGFR mutation testing.

  10. Consensus for EGFR mutation testing in non-small cell lung cancer: results from a European workshop.

    PubMed

    Pirker, Robert; Herth, Felix J F; Kerr, Keith M; Filipits, Martin; Taron, Miquel; Gandara, David; Hirsch, Fred R; Grunenwald, Dominique; Popper, Helmut; Smit, Egbert; Dietel, Manfred; Marchetti, Antonio; Manegold, Christian; Schirmacher, Peter; Thomas, Michael; Rosell, Rafael; Cappuzzo, Federico; Stahel, Rolf

    2010-10-01

    Activating somatic mutations of the tyrosine kinase domain of epidermal growth factor receptor (EGFR) have recently been characterized in a subset of patients with advanced non-small cell lung cancer (NSCLC). Patients harboring these mutations in their tumors show excellent response to EGFR tyrosine kinase inhibitors (EGFR-TKIs). The EGFR-TKI gefitinib has been approved in Europe for the treatment of adult patients with locally advanced or metastatic NSCLC with activating mutations of the EGFR TK. Because EGFR mutation testing is not yet well established across Europe, biomarker-directed therapy only slowly emerges for the subset of NSCLC patients most likely to benefit: those with EGFR mutations. The "EGFR testing in NSCLC: from biology to clinical practice" International Association for the Study of Lung Cancer-European Thoracic Oncology Platform multidisciplinary workshop aimed at facilitating the implementation of EGFR mutation testing. Recommendations for high-quality EGFR mutation testing were formulated based on the opinion of the workshop expert group. Co-operation and communication flow between the various disciplines was considered to be of most importance. Participants agreed that the decision to request EGFR mutation testing should be made by the treating physician, and results should be available within 7 working days. There was agreement on the importance of appropriate sampling techniques and the necessity for the standardization of tumor specimen handling including fixation. Although there was no consensus on which laboratory test should be preferred for clinical decision making, all stressed the importance of standardization and validation of these tests. The recommendations of the workshop will help implement EGFR mutation testing in Europe and, thereby, optimize the use of EGFR-TKIs in clinical practice.

  11. Sapanisertib and Osimertinib in Treating Patients With Stage IV EGFR Mutation Positive Non-small Cell Lung Cancer After Progression on a Previous EGFR Tyrosine Kinase Inhibitor

    ClinicalTrials.gov

    2018-04-25

    EGFR Activating Mutation; EGFR Exon 19 Deletion Mutation; EGFR NP_005219.2:p.G719X; EGFR NP_005219.2:p.L858R; EGFR NP_005219.2:p.L861Q; EGFR T790M Mutation Negative; Recurrent Non-Small Cell Lung Carcinoma; Stage III Non-Small Cell Lung Cancer AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIB Non-Small Cell Lung Cancer AJCC v7; Stage IV Non-Small Cell Lung Cancer AJCC v7

  12. Clinical outcomes of EGFR-TKI treatment and genetic heterogeneity in lung adenocarcinoma patients with EGFR mutations on exons 19 and 21.

    PubMed

    Yu, Jiang-Yong; Yu, Si-Fan; Wang, Shu-Hang; Bai, Hua; Zhao, Jun; An, Tong-Tong; Duan, Jian-Chun; Wang, Jie

    2016-03-21

    Epidermal growth factor receptor (EGFR) mutations, including a known exon 19 deletion (19 del) and exon 21 L858R point mutation (L858R mutation), are strong predictors of the response to EGFR tyrosine kinase inhibitor (EGFR-TKI) treatment in lung adenocarcinoma. However, whether patients carrying EGFR 19 del and L858R mutations exhibit different responsiveness to EGFR-TKIs and what are the potential mechanism for this difference remain controversial. This study aimed to investigate the clinical outcomes of EGFR-TKI treatment in patients with EGFR 19 del and L858R mutations and explore the genetic heterogeneity of tumors with the two mutation subtypes. Of 1127 patients with advanced lung adenocarcinoma harboring EGFR 19 del or L858R mutations, 532 received EGFR-TKI treatment and were included in this study. EGFR 19 del and L858R mutations were detected by using denaturing high-performance liquid chromatography (DHPLC). T790M mutation, which is a common resistant mutation on exon 20 of EGFR, was detected by amplification refractory mutation system (ARMS). Next-generation sequencing (NGS) was used to explore the genetic heterogeneity of tumors with EGFR 19 del and L858R mutations. Of the 532 patients, 319 (60.0%) had EGFR 19 del, and 213 (40.0%) had L858R mutations. The patients with EGFR 19 del presented a significantly higher overall response rate (ORR) for EGFR-TKI treatment (55.2% vs. 43.7%, P = 0.017) and had a longer progression-free survival (PFS) after first-line EGFR-TKI treatment (14.4 vs. 11.4 months, P = 0.034) compared with those with L858R mutations. However, no statistically significant difference in overall survival (OS) was observed between the two groups of patients. T790M mutation status was analyzed in 88 patients before EGFR-TKI treatment and 134 after EGFR-TKI treatment, and there was no significant difference in the co-existence of T790M mutation with EGFR 19 del and L858R mutations before EGFR-TKI treatment (5.6% vs. 8.8%, P = 0.554) or after

  13. EGFR-TKI-induced HSP70 degradation and BER suppression facilitate the occurrence of the EGFR T790 M resistant mutation in lung cancer cells.

    PubMed

    Cao, Xiang; Zhou, Yi; Sun, Hongfang; Xu, Miao; Bi, Xiaowen; Zhao, Zhihui; Shen, Binghui; Wan, Fengyi; Hong, Zhuan; Lan, Lei; Luo, Lan; Guo, Zhigang; Yin, Zhimin

    2018-06-28

    Non-small cell lung cancer (NSCLC) patients harboring EGFR-activating mutations initially respond to EGFR tyrosine kinase inhibitors (EGFR-TKIs) and have shown favorable outcomes. However, acquired drug resistance to EGFR-TKIs develops in almost all patients mainly due to the EGFR T790 M mutation. Here, we show that treatment with low-dose EGFR-TKI results in the emergence of the EGFR T790 M mutation and in the reduction of HSP70 protein levels in HCC827 cells. Erlotinib treatment inhibits HSP70 phosphorylation at tyrosine 41 and increases HSP70 ubiquitination, resulting in HSP70 degradation. We show that EGFR-TKI treatment causes increased DNA damage and enhanced gene mutation rates, which are secondary to the EGFR-TKI-induced reduction of HSP70 protein. Importantly, HSP70 overexpression delays the occurrence of Erlotinib-induced EGFR T790 M mutation. We further demonstrate that HSP70 interacts with multiple enzymes in the base excision repair (BER) pathway and promotes not only the efficiency but also the fidelity of BER. Collectively, our findings show that EGFR-TKI treatment facilitates gene mutation and the emergence of EGFR T790 M secondary mutation by the attenuation of BER via induction of HSP70 protein degradation. Copyright © 2018. Published by Elsevier B.V.

  14. Common Co-activation of AXL and CDCP1 in EGFR-mutation-positive Non-smallcell Lung Cancer Associated With Poor Prognosis.

    PubMed

    Karachaliou, Niki; Chaib, Imane; Cardona, Andres Felipe; Berenguer, Jordi; Bracht, Jillian Wilhelmina Paulina; Yang, Jie; Cai, Xueting; Wang, Zhigang; Hu, Chunping; Drozdowskyj, Ana; Servat, Carles Codony; Servat, Jordi Codony; Ito, Masaoki; Attili, Ilaria; Aldeguer, Erika; Capitan, Ana Gimenez; Rodriguez, July; Rojas, Leonardo; Viteri, Santiago; Molina-Vila, Miguel Angel; Ou, Sai-Hong Ignatius; Okada, Morihito; Mok, Tony S; Bivona, Trever G; Ono, Mayumi; Cui, Jean; Cajal, Santiago Ramón Y; Frias, Alex; Cao, Peng; Rosell, Rafael

    2018-03-01

    Epidermal growth factor receptor (EGFR)-mutation-positive non-smallcell lung cancer (NSCLC) is incurable, despite high rates of response to EGFR tyrosine kinase inhibitors (TKIs). We investigated receptor tyrosine kinases (RTKs), Src family kinases and focal adhesion kinase (FAK) as genetic modifiers of innate resistance in EGFR-mutation-positive NSCLC. We performed gene expression analysis in two cohorts (Cohort 1 and Cohort 2) of EGFR-mutation-positive NSCLC patients treated with EGFR TKI. We evaluated the efficacy of gefitinib or osimertinib with the Src/FAK/Janus kinase 2 (JAK2) inhibitor, TPX0005 in vitro and in vivo. In Cohort 1, CUB domain-containing protein-1 (CDCP1) was an independent negative prognostic factor for progression-free survival (hazard ratio of 1.79, p=0.0407) and overall survival (hazard ratio of 2.23, p=0.0192). A two-gene model based on AXL and CDCP1 expression was strongly associated with the clinical outcome to EGFR TKIs, in both cohorts of patients. Our preclinical experiments revealed that several RTKs and non-RTKs, were up-regulated at baseline or after treatment with gefitinib or osimertinib. TPX-0005 plus EGFR TKI suppressed expression and activation of RTKs and downstream signaling intermediates. Co-expression of CDCP1 and AXL is often observed in EGFR-mutation-positive tumors, limiting the efficacy of EGFR TKIs. Co-treatment with EGFR TKI and TPX-0005 warrants testing. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Mutational status of EGFR and KIT in thymoma and thymic carcinoma.

    PubMed

    Yoh, Kiyotaka; Nishiwaki, Yutaka; Ishii, Genichiro; Goto, Koichi; Kubota, Kaoru; Ohmatsu, Hironobu; Niho, Seiji; Nagai, Kanji; Saijo, Nagahiro

    2008-12-01

    This study was conducted to evaluate the prevalence of EGFR and KIT mutations in thymomas and thymic carcinomas as a means of exploring the potential for molecularly targeted therapy with tyrosine kinase inhibitors. Genomic DNA was isolated from 41 paraffin-embedded tumor samples obtained from 24 thymomas and 17 thymic carcinomas. EGFR exons 18, 19, and 21, and KIT exons 9, 11, 13, and 17, were analyzed for mutations by PCR and direct sequencing. Protein expression of EGFR and KIT was evaluated immunohistochemically. EGFR mutations were detected in 2 of 20 thymomas, but not in any of the thymic carcinomas. All of the EGFR mutations detected were missense mutations (L858R and G863D) in exon 21. EGFR protein was expressed in 71% of the thymomas and 53% of the thymic carcinomas. The mutational analysis of KIT revealed only a missense mutation (L576P) in exon 11 of one thymic carcinoma. KIT protein was expressed in 88% of the thymic carcinomas and 0% of the thymomas. The results of this study indicate that EGFR and KIT mutations in thymomas and thymic carcinomas are rare, but that many of the tumors express EGFR or KIT protein.

  16. Detection of EGFR mutations with mutation-specific antibodies in stage IV non-small-cell lung cancer

    PubMed Central

    2010-01-01

    Background Immunohistochemistry (IHC) with mutation-specific antibodies may be an ancillary method of detecting EGFR mutations in lung cancer patients. Methods EGFR mutation status was analyzed by DNA assays, and compared with IHC results in five non-small-cell lung cancer (NSCLC) cell lines and tumor samples from 78 stage IV NSCLC patients. Results IHC correctly identified del 19 in the H1650 and PC9 cell lines, L858R in H1975, and wild-type EGFR in H460 and A549, as well as wild-type EGFR in tumor samples from 22 patients. IHC with the mAb against EGFR with del 19 was highly positive for the protein in all 17 patients with a 15-bp (ELREA) deletion in exon 19, whereas in patients with other deletions, IHC was weakly positive in 3 cases and negative in 9 cases. IHC with the mAb against the L858R mutation showed high positivity for the protein in 25/27 (93%) patients with exon 21 EGFR mutations (all with L858R) but did not identify the L861Q mutation in the remaining two patients. Conclusions IHC with mutation-specific mAbs against EGFR is a promising method for detecting EGFR mutations in NSCLC patients. However these mAbs should be validated with additional studies to clarify their possible role in routine clinical practice for screening EGFR mutations in NSCLC patients. PMID:21167064

  17. Genomic Profiling on an Unselected Solid Tumor Population Reveals a Highly Mutated Wnt/β-Catenin Pathway Associated with Oncogenic EGFR Mutations.

    PubMed

    Jiang, Jingrui; Protopopov, Alexei; Sun, Ruobai; Lyle, Stephen; Russell, Meaghan

    2018-04-09

    Oncogenic epidermal growth factor receptors (EGFRs) can recruit key effectors in diverse cellular processes to propagate oncogenic signals. Targeted and combinational therapeutic strategies have been successfully applied for treating EGFR-driven cancers. However, a main challenge in EGFR therapies is drug resistance due to mutations, oncogenic shift, alternative signaling, and other potential mechanisms. To further understand the genetic alterations associated with oncogenic EGFRs and to provide further insight into optimal and personalized therapeutic strategies, we applied a proprietary comprehensive next-generation sequencing (NGS)-based assay of 435 genes to systematically study the genomic profiles of 1565 unselected solid cancer patient samples. We found that activating EGFR mutations were predominantly detected in lung cancer, particularly in non-small cell lung cancer (NSCLC). The mutational landscape of EGFR-driven tumors covered most key signaling pathways and biological processes. Strikingly, the Wnt/β-catenin pathway was highly mutated (48 variants detected in 46% of the EGFR-driven tumors), and its variant number topped that in the TP53/apoptosis and PI3K-AKT-mTOR pathways. Furthermore, an analysis of mutation distribution revealed a differential association pattern of gene mutations between EGFR exon 19del and EGFR L858R. Our results confirm the aggressive nature of the oncogenic EGFR-driven tumors and reassure that a combinational strategy should have advantages over an EGFR-targeted monotherapy and holds great promise for overcoming drug resistance.

  18. In vitro modeling to determine mutation specificity of EGFR tyrosine kinase inhibitors against clinically relevant EGFR mutants in non-small-cell lung cancer

    PubMed Central

    Yasuda, Hiroyuki; Hamamoto, Junko; Oashi, Ayano; Ishioka, Kota; Arai, Daisuke; Nukaga, Shigenari; Miyawaki, Masayoshi; Kawada, Ichiro; Naoki, Katsuhiko; Costa, Daniel B.; Kobayashi, Susumu S.; Betsuyaku, Tomoko; Soejima, Kenzo

    2015-01-01

    EGFR mutated lung cancer accounts for a significant subgroup of non-small-cell lung cancer (NSCLC). Over the last decade, multiple EGFR tyrosine kinase inhibitors (EGFR-TKIs) have been developed to target mutated EGFR. However, there is little information regarding mutation specific potency of EGFR-TKIs against various types of EGFR mutations. The purpose of this study is to establish an in vitro model to determine the “therapeutic window” of EGFR-TKIs against various types of EGFR mutations, including EGFR exon 20 insertion mutations. The potency of 1st (erlotinib), 2nd (afatinib) and 3rd (osimertinib and rociletinib) generation EGFR-TKIs was compared in vitro for human lung cancer cell lines and Ba/F3 cells, which exogenously express mutated or wild type EGFR. An in vitro model of mutation specificity was created by calculating the ratio of IC50 values between mutated and wild type EGFR. The in vitro model identified a wide therapeutic window of afatinib for exon 19 deletions and L858R and of osimertinib and rociletinib for T790M positive mutations. The results obtained with our models matched well with previously reported preclinical and clinical data. Interestingly, for EGFR exon 20 insertion mutations, most of which are known to be resistant to 1st and 2nd generation EGFR-TKIS, osimertinib was potent and presented a wide therapeutic window. To our knowledge, this is the first report that has identified the therapeutic window of osimertinib for EGFR exon 20 insertion mutations. In conclusion, this model will provide a preclinical rationale for proper selection of EGFR-TKIs against clinically-relevant EGFR mutations. PMID:26515464

  19. Osimertinib for EGFR T790M mutation-positive non-small cell lung cancer.

    PubMed

    Soejima, Kenzo; Yasuda, Hiroyuki; Hirano, Toshiyuki

    2017-01-01

    Significant advances have been made since the development of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) targeting EGFR mutations in non-small-cell lung cancer (NSCLC), however, lung cancer cells eventually acquire resistance to those agents. Osimertinib (AZD9291) has been developed as 3 rd generation EGFR-TKI with activities against sensitizing mutations and T790 M resistance mutation, which account for about 50% of the mechanisms of acquired resistance to 1 st or 2 nd generation EGFR-TKIs. A recent phase I/II clinical trial with osimertinib for advanced NSCLC patients with known sensitizing EGFR mutations and documented disease progression on prior EGFR-TKIs revealed promising effect with acceptable toxicities. Areas covered: This article summarizes current understanding and available preclinical and clinical data on osimertinib and also discusses future directions. The literature search included PubMed and the latest articles from international conferences. Expert commentary: The development of osimertinib has provided new therapeutic options for NSCLC patients harboring T790 M. Compared with other EGFR-TKIs including rociletinib, osimertinib seems to possess an advantage with respect to the effect and safety profile among existing EGFR-TKIs. However, tumor progression still occurs even when treating with osimertinib. A further understanding of the mechanisms of resistance is eagerly anticipated in order to develop next generation EGFR-TKIs.

  20. Highly sensitive and quantitative evaluation of the EGFR T790M mutation by nanofluidic digital PCR.

    PubMed

    Iwama, Eiji; Takayama, Koichi; Harada, Taishi; Okamoto, Isamu; Ookubo, Fumihiko; Kishimoto, Junji; Baba, Eishi; Oda, Yoshinao; Nakanishi, Yoichi

    2015-08-21

    The mutation of T790M in EGFR is a major mechanism of resistance to treatment with EGFR-TKIs. Only qualitative detection (presence or absence) of T790M has been described to date, however. Digital PCR (dPCR) analysis has recently been applied to the quantitative detection of target molecules in cancer with high sensitivity. In the present study, 25 tumor samples (13 obtained before and 12 after EGFR-TKI treatment) from 18 NSCLC patients with activating EGFR mutations were evaluated for T790M with dPCR. The ratio of the number of T790M alleles to that of activating mutation alleles (T/A) was determined. dPCR detected T790M in all 25 samples. Although T790M was present in all pre-TKI samples from 13 patients, 10 of these patients had a low T/A ratio and manifested substantial tumor shrinkage during treatment with EGFR-TKIs. In six of seven patients for whom both pre- and post-TKI samples were available, the T/A ratio increased markedly during EGFR-TKI treatment. Highly sensitive dPCR thus detected T790M in all NSCLC patients harboring activating EGFR mutations whether or not they had received EGFR-TKI treatment. Not only highly sensitive but also quantitative detection of T790M is important for evaluation of the contribution of T790M to EGFR-TKI resistance.

  1. Common and Rare EGFR and KRAS Mutations in a Dutch Non-Small-Cell Lung Cancer Population and Their Clinical Outcome

    PubMed Central

    Kerner, Gerald S. M. A.; Schuuring, Ed; Sietsma, Johanna; Hiltermann, Thijo J. N.; Pieterman, Remge M.; de Leede, Gerard P. J.; van Putten, John W. G.; Liesker, Jeroen; Renkema, Tineke E. J.; van Hengel, Peter; Platteel, Inge; Timens, Wim; Groen, Harry J. M.

    2013-01-01

    Introduction In randomly assigned studies with EGFR TKI only a minor proportion of patients with NSCLC have genetically profiled biopsies. Guidelines provide evidence to perform EGFR and KRAS mutation analysis in non-squamous NSCLC. We explored tumor biopsy quality offered for mutation testing, different mutations distribution, and outcome with EGFR TKI. Patient and Methods Clinical data from 8 regional hospitals were studied for patient and tumor characteristics, treatment and overall survival. Biopsies sent to the central laboratory were evaluated for DNA quality and subsequently analyzed for mutations in exons 18–21 of EGFR and exon 2 of KRAS by bidirectional sequence analysis. Results Tumors from 442 subsequent patients were analyzed. For 74 patients (17%) tumors were unsuitable for mutation analysis. Thirty-eight patients (10.9%) had EGFR mutations with 79% known activating mutations. One hundred eight patients (30%) had functional KRAS mutations. The mutation spectrum was comparable to the Cosmic database. Following treatment in the first or second line with EGFR TKI median overall survival for patients with EGFR (n = 14), KRAS (n = 14) mutations and wild type EGFR/KRAS (n = 31) was not reached, 20 and 9 months, respectively. Conclusion One out of every 6 tumor samples was inadequate for mutation analysis. Patients with EGFR activating mutations treated with EGFR-TKI have the longest survival. PMID:23922984

  2. Synchronous occurrence of squamous-cell carcinoma "transformation" and EGFR exon 20 S768I mutation as a novel mechanism of resistance in EGFR-mutated lung adenocarcinoma.

    PubMed

    Longo, Lucia; Mengoli, Maria Cecilia; Bertolini, Federica; Bettelli, Stefania; Manfredini, Samantha; Rossi, Giulio

    2017-01-01

    The occurrence of secondary EGFR mutation T790M in exon 20 and histologic "transformation" are common mechanisms underlying resistance to EGFR first- or second-generation tyrosine kinase inhibitors (TKI). We describe here on a hitherto unreported mechanism of EGFR TKI resistance synchronously combining squamous-cell carcinoma change and occurrence of the EGFR exon 20 S768I secondary mutation in a 43 year-old woman with stage IV adenocarcinoma harbouring EGFR exon 21 L858R mutation. After 8 months of response to gefitinib, the patient experienced EGFR TKI resistance and died of leptomeningeal neoplastic dissemination. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. The clinical features of squamous cell lung carcinoma with sensitive EGFR mutations.

    PubMed

    Taniguchi, Yuri; Matsumoto, Yoko; Furukawa, Ryutaro; Ohara, Sayaka; Usui, Kazuhiro

    2018-06-01

    The process of selecting patients on the basis of epidermal growth factor receptor (EGFR) mutations would likely result in a patient population with greater sensitivity to EGFR tyrosine kinase inhibitors (EGFR-TKIs). However, EGFR mutation status is not routinely examined in patients with squamous cell lung cancer (Sq) because of the low incidence of EGFR mutations and the poor clinical response to EGFR-TKIs. We retrospectively reviewed the clinical features of patients at our hospital with Sq who carried EGFR-TKI-sensitive EGFR mutations and assessed their responses to EGFR-TKIs. EGFR mutation status was tested in 23 of 441 patients with Sq (5.2%) admitted to our hospital during the study period. An EGFR mutation (exon 19 deletion 3, L858R 2) was identified in five of the 23 patients (21.7%), all of whom were female never-smokers. Of these five patients, four (4/9; 44.4%) were in the normal lung group, one (1/12; 8.3%) was in the emphysematous lung group, and none (0/2; 0%) in the fibrotic lung group. Two of these five patients with the EGFR mutation received gefitinib and two received afatinib. Although the two patients who were treated with gefitinib did not respond well to treatment (stable disease, 1 patient; progressive disease, 1 patient), the two patients who were treated with afatinib showed a good response (partial response, 2 patients). The administration of afatinib to Sq patients after selecting patients using the EGFR mutation test based on their underlying pulmonary disease and smoking status would likely result in a population with a greater sensitivity to afatinib.

  4. EGFR T790M mutation testing within the osimertinib AURA Phase I study.

    PubMed

    Dearden, Simon; Brown, Helen; Jenkins, Suzanne; Thress, Kenneth S; Cantarini, Mireille; Cole, Rebecca; Ranson, Malcolm; Jänne, Pasi A

    2017-07-01

    Reliable epidermal growth factor receptor (EGFR) mutation testing techniques are required to identify eligible patients with EGFR mutation/T790M positive advanced non-small cell lung cancer (NSCLC), for treatment with osimertinib (AZD9291), an oral, potent, irreversible EGFR tyrosine kinase inhibitor (TKI) selective for EGFR-TKI-sensitizing and T790M resistance mutations over wild-type EGFR. There is no current consensus regarding the best method to detect EGFR T790M mutations. The aim of this study was to describe the concordance between local testing, which used a variety of methods, and central testing, using the cobas ® EGFR Mutation Test, for EGFR-sensitizing mutations and the T790M resistance mutation. Tumor samples were obtained from all patients screened for inclusion onto the osimertinib Phase I expansion component of the AURA Phase I/II study (NCT01802632). Samples underwent central laboratory testing for EGFR-sensitizing mutations and T790M resistance mutation using the cobas ® EGFR Mutation Test. Results were compared with local laboratory test results, based on other testing methodologies including Sanger sequencing, therascreen ® , PNAClamp™, and Sequenom MassARRAY ® . Central laboratory testing was successful in 99% of samples passing histopathology review and testing success rates were comparable across the three central laboratories. Concordance between central and local testing for common sensitizing mutations was high (>98%) and concordance for the T790M mutation was also high (>90%). Tumor heterogeneity, along with other technical factors may have influenced this result. Within the osimertinib AURA Phase I study, EGFR mutation testing across three centralized laboratories using the cobas ® EGFR Mutation Test was feasible and successful, with strong concordance between local and central laboratory results, including for T790M. The cobas ® EGFR Mutation Test has subsequently been approved as the companion diagnostic test for osimertinib in

  5. Comparison of Thoracic Radiotherapy Efficacy Between Patients With and Without EGFR-mutated Lung Adenocarcinoma.

    PubMed

    Li, Ming-Hsien; Tsai, Jo-Ting; Ting, Lai-Lei; Lin, Jang-Chun; Liu, Yu-Chang

    2018-01-01

    To investigate the association between tumor response to thoracic radiotherapy and epidermal growth factor receptor (EGFR) mutation status in patients with lung adenocarcinoma, we collected 48 patients treated between January 2010 and December 2013. Of the 18 patients with EGFR mutation, 15 (83.3%) had a single mutation, and three (16.7%) had double mutation. Different EGFR mutation subtypes exhibited different responses to radiotherapy. The identified double EGFR mutations were associated with reduction of residual tumor burden (RTB) after radiotherapy. In univariate analysis, EGFR mutations in exon 18, 20, and 21 and double EGFR mutation were significant factors predicting RTB. In multivariate analysis, exon 20 mutation was the only significant factor. Patients with EGFR mutation seemed to have longer mean overall survival (OS) compared to the group with wild-type EGFR (31.1 vs. 26.6 months, p=0.49). The median and mean OS in patients with double EGFR mutation vs. wild-type EGFR were 20.1 vs. 16.9 months and 28.9 vs. 26.6 months, respectively. Further studies with larger sample size are warranted to clarify the association of EGFR mutation status with the lung tumor response after radiotherapy. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  6. Preselection of EGFR mutations in non-small-cell lung cancer patients by immunohistochemistry: comparison with DNA-sequencing, EGFR wild-type expression, gene copy number gain and clinicopathological data.

    PubMed

    Gaber, Rania; Watermann, Iris; Kugler, Christian; Vollmer, Ekkehard; Perner, Sven; Reck, Martin; Goldmann, Torsten

    2017-01-01

    Targeting epidermal growth factor receptor (EGFR) in patients with non-small-cell lung cancer (NSCLC) having EGFR mutations is associated with an improved overall survival. The aim of this study is to verify, if EGFR mutations detected by immunohistochemistry (IHC) is a convincing way to preselect patients for DNA-sequencing and to figure out, the statistical association between EGFR mutation, wild-type EGFR overexpression, gene copy number gain, which are the main factors inducing EGFR tumorigenic activity and the clinicopathological data. Two hundred sixteen tumor tissue samples of primarily chemotherapeutic naïve NSCLC patients were analyzed for EGFR mutations E746-A750del and L858R and correlated with DNA-sequencing. Two hundred six of which were assessed by IHC, using 6B6 and 43B2 specific antibodies followed by DNA-sequencing of positive cases and 10 already genotyped tumor tissues were also included to investigate debugging accuracy of IHC. In addition, EGFR wild-type overexpression was IHC evaluated and EGFR gene copy number determination was performed by fluorescence in situ hybridization (FISH). Forty-one÷206 (19.9%) cases were positive for mutated EGFR by IHC. Eight of them had EGFR mutations of exons 18-21 by DNA-sequencing. Hit rate of 10 already genotyped NSCLC mutated cases was 90% by IHC. Positive association was found between EGFR mutations determined by IHC and both EGFR overexpression and increased gene copy number (p=0.002 and p<0.001, respectively). Additionally, positive association was detected between EGFR mutations, high tumor grade and clinical stage (p<0.001). IHC staining with mutation specific antibodies was demonstrated as a possible useful screening test to preselect patients for DNA-sequencing.

  7. Determination of EGFR and KRAS mutational status in Greek non-small-cell lung cancer patients

    PubMed Central

    PAPADOPOULOU, EIRINI; TSOULOS, NIKOLAOS; TSIRIGOTI, ANGELIKI; APESSOS, ANGELA; AGIANNITOPOULOS, KONSTANTINOS; METAXA-MARIATOU, VASILIKI; ZAROGOULIDIS, KONSTANTINOS; ZAROGOULIDIS, PAVLOS; KASARAKIS, DIMITRIOS; KAKOLYRIS, STYLIANOS; DAHABREH, JUBRAIL; VLASTOS, FOTIS; ZOUBLIOS, CHARALAMPOS; RAPTI, AGGELIKI; PAPAGEORGIOU, NIKI GEORGATOU; VELDEKIS, DIMITRIOS; GAGA, MINA; ARAVANTINOS, GERASIMOS; KARAVASILIS, VASILEIOS; KARAGIANNIDIS, NAPOLEON; NASIOULAS, GEORGE

    2015-01-01

    It has been reported that certain patients with non-small-cell lung cancer (NSCLC) that harbor activating somatic mutations within the tyrosine kinase domain of the epidermal growth factor receptor (EGFR) gene may be effectively treated using targeted therapy. The use of EGFR inhibitors in patient therapy has been demonstrated to improve response and survival rates; therefore, it was suggested that clinical screening for EGFR mutations should be performed for all patients. Numerous clinicopathological factors have been associated with EGFR and Kirsten-rat sarcoma oncogene homolog (KRAS) mutational status including gender, smoking history and histology. In addition, it was reported that EGFR mutation frequency in NSCLC patients was ethnicity-dependent, with an incidence rate of ~30% in Asian populations and ~15% in Caucasian populations. However, limited data has been reported on intra-ethnic differences throughout Europe. The present study aimed to investigate the frequency and spectrum of EGFR mutations in 1,472 Greek NSCLC patients. In addition, KRAS mutation analysis was performed in patients with known smoking history in order to determine the correlation of type and mutation frequency with smoking. High-resolution melting curve (HRM) analysis followed by Sanger sequencing was used to identify mutations in exons 18–21 of the EGFR gene and in exon 2 of the KRAS gene. A sensitive next-generation sequencing (NGS) technology was also employed to classify samples with equivocal results. The use of sensitive mutation detection techniques in a large study population of Greek NSCLC patients in routine diagnostic practice revealed an overall EGFR mutation frequency of 15.83%. This mutation frequency was comparable to that previously reported in other European populations. Of note, there was a 99.8% concordance between the HRM method and Sanger sequencing. NGS was found to be the most sensitive method. In addition, female non-smokers demonstrated a high prevalence of

  8. Highly sensitive and quantitative evaluation of the EGFR T790M mutation by nanofluidic digital PCR

    PubMed Central

    Iwama, Eiji; Takayama, Koichi; Harada, Taishi; Okamoto, Isamu; Ookubo, Fumihiko; Kishimoto, Junji; Baba, Eishi; Oda, Yoshinao; Nakanishi, Yoichi

    2015-01-01

    The mutation of T790M in EGFR is a major mechanism of resistance to treatment with EGFR-TKIs. Only qualitative detection (presence or absence) of T790M has been described to date, however. Digital PCR (dPCR) analysis has recently been applied to the quantitative detection of target molecules in cancer with high sensitivity. In the present study, 25 tumor samples (13 obtained before and 12 after EGFR-TKI treatment) from 18 NSCLC patients with activating EGFR mutations were evaluated for T790M with dPCR. The ratio of the number of T790M alleles to that of activating mutation alleles (T/A) was determined. dPCR detected T790M in all 25 samples. Although T790M was present in all pre-TKI samples from 13 patients, 10 of these patients had a low T/A ratio and manifested substantial tumor shrinkage during treatment with EGFR-TKIs. In six of seven patients for whom both pre- and post-TKI samples were available, the T/A ratio increased markedly during EGFR-TKI treatment. Highly sensitive dPCR thus detected T790M in all NSCLC patients harboring activating EGFR mutations whether or not they had received EGFR-TKI treatment. Not only highly sensitive but also quantitative detection of T790M is important for evaluation of the contribution of T790M to EGFR-TKI resistance. PMID:26015401

  9. Clinical outcomes of advanced non-small-cell lung cancer patients with EGFR mutation, ALK rearrangement and EGFR/ALK co-alterations.

    PubMed

    Lou, Na-Na; Zhang, Xu-Chao; Chen, Hua-Jun; Zhou, Qing; Yan, Li-Xu; Xie, Zhi; Su, Jian; Chen, Zhi-Hong; Tu, Hai-Yan; Yan, Hong-Hong; Wang, Zhen; Xu, Chong-Rui; Jiang, Ben-Yuan; Wang, Bin-Chao; Bai, Xiao-Yan; Zhong, Wen-Zhao; Wu, Yi-Long; Yang, Jin-Ji

    2016-10-04

    The co-occurrence of epidermal growth factor receptor (EGFR) mutations and anaplastic lymphoma kinase (ALK) rearrangements constitutes a rare molecular subtype of non-small-cell lung cancer (NSCLC). Herein, we assessed the clinical outcomes and incidence of acquired resistance to tyrosine kinase inhibitors (TKIs) in this subtype. So we enrolled 118 advanced NSCLC treated with TKIs. EGFR mutations and ALK rearrangements were detected by DNA sequencing or Scorpion amplification refractory mutation system and fluorescence in situ hybridization respectively. Immunohistochemistry was used to evaluate the activation of associated proteins. We found that nine in ten patients with EGFR/ALK co-alterations had good response with first-line EGFR TKI, and the objective response rate (ORR) of EGFR TKIs was 80% (8/10) for EGFR/ALK co-altered and 65.5% (55/84) for EGFR-mutant (P = 0.57), with a median progression-free survival (PFS) of 11.2 and 13.2 months, (hazard ratio [HR]=0.95, 95% [CI], 0.49-1.84, P= 0.87). ORR of crizotinib was 40% (2/5) for EGFR/ALK co-altered and 73.9% (17/23) for ALK-rearranged (P= 0.29), with a median PFS of 1.9 and 6.9 months (hazard ratio [HR], 0.40; 95% [CI] 0.15-1.10, P = 0.08). The median overall survival (OS) was 21.3, 23.7, and 18.5 months in EGFR-mutant, ALK-rearranged, and EGFR/ALK co-altered (P= 0.06), and there existed a statistically significant difference in OS between ALK-rearranged and EGFR/ALK co-altered (P=0.03). Taken together, the first-line EGFR-TKI might be the reasonable care for advanced NSCLC harbouring EGFR/ALK co-alterations, whether or nor to use sequential crizotinib should be guided by the status of ALK rearrangement and the relative level of phospho-EGFR and phospho-ALK.

  10. Loss of Activating EGFR Mutant Gene Contributes to Acquired Resistance to EGFR Tyrosine Kinase Inhibitors in Lung Cancer Cells

    PubMed Central

    Kubo, Takuya; Murakami, Yuichi; Kawahara, Akihiko; Azuma, Koichi; Abe, Hideyuki; Kage, Masayoshi; Yoshinaga, Aki; Tahira, Tomoko; Hayashi, Kenshi; Arao, Tokuzo; Nishio, Kazuto; Rosell, Rafael; Kuwano, Michihiko; Ono, Mayumi

    2012-01-01

    Non-small-cell lung cancer harboring epidermal growth factor receptor (EGFR) mutations attains a meaningful response to EGFR-tyrosine kinase inhibitors (TKIs). However, acquired resistance to EGFR-TKIs could affect long-term outcome in almost all patients. To identify the potential mechanisms of resistance, we established cell lines resistant to EGFR-TKIs from the human lung cancer cell lines PC9 and11–18, which harbored activating EGFR mutations. One erlotinib-resistant cell line from PC9 and two erlotinib-resistant cell lines and two gefitinib-resistant cell lines from 11–18 were independently established. Almost complete loss of mutant delE746-A750 EGFR gene was observed in the erlotinib-resistant cells isolated from PC9, and partial loss of the mutant L858R EGFR gene copy was specifically observed in the erlotinib- and gefitinib-resistant cells from 11–18. However, constitutive activation of EGFR downstream signaling, PI3K/Akt, was observed even after loss of the mutated EGFR gene in all resistant cell lines even in the presence of the drug. In the erlotinib-resistant cells from PC9, constitutive PI3K/Akt activation was effectively inhibited by lapatinib (a dual TKI of EGFR and HER2) or BIBW2992 (pan-TKI of EGFR family proteins). Furthermore, erlotinib with either HER2 or HER3 knockdown by their cognate siRNAs also inhibited PI3K/Akt activation. Transfection of activating mutant EGFR complementary DNA restored drug sensitivity in the erlotinib-resistant cell line. Our study indicates that loss of addiction to mutant EGFR resulted in gain of addiction to both HER2/HER3 and PI3K/Akt signaling to acquire EGFR-TKI resistance. PMID:22815900

  11. EGFR-TKIs resistance via EGFR-independent signaling pathways.

    PubMed

    Liu, Qian; Yu, Shengnan; Zhao, Weiheng; Qin, Shuang; Chu, Qian; Wu, Kongming

    2018-02-19

    Tyrosine kinase inhibitors (TKIs)-treatments bring significant benefit for patients harboring epidermal growth factor receptor (EGFR) mutations, especially for those with lung cancer. Unfortunately, the majority of these patients ultimately develop to the acquired resistance after a period of treatment. Two central mechanisms are involved in the resistant process: EGFR secondary mutations and bypass signaling activations. In an EGFR-dependent manner, acquired mutations, such as T790 M, interferes the interaction between TKIs and the kinase domain of EGFR. While in an EGFR-independent manner, dysregulation of other receptor tyrosine kinases (RTKs) or abnormal activation of downstream compounds both have compensatory functions against the inhibition of EGFR through triggering phosphatidylinositol 3-kinase (PI3K)/Akt and mitogen-activated protein kinase (MAPK) signaling axes. Nowadays, many clinical trials aiming to overcome and prevent TKIs resistance in various cancers are ongoing or completed. EGFR-TKIs in accompany with the targeted agents for resistance-related factors afford a promising first-line strategy to further clinical application.

  12. High ratio of T790M to EGFR activating mutations correlate with the osimertinib response in non-small-cell lung cancer.

    PubMed

    Ariyasu, Ryo; Nishikawa, Shingo; Uchibori, Ken; Oh-Hara, Tomoko; Yoshizawa, Takahiro; Dotsu, Yosuke; Koyama, Junji; Saiki, Masafumi; Sonoda, Tomoaki; Kitazono, Satoru; Yanagitani, Noriko; Horiike, Atsushi; Inase, Naohiko; Kasahara, Kazuo; Nishio, Makoto; Katayama, Ryohei

    2018-03-01

    Osimertinib is a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that can overcome resistance due to the Thr790Met (T790M) mutation. However, osimertinib occasionally shows limited efficacy in a small population of patients. We investigated the correlation between the ratio of T790M to EGFR activating mutation and the response to osimertinib. Between April 2016 and April 2017, 44 patients started osimertinib therapy at the Cancer Institute Hospital of the Japanese Foundation for Cancer Research. We performed EGFR mutation analysis of cytological samples from 33 patients using droplet digital PCR. We calculated the ratio of T790M to EGFR activating mutations and correlated it with the systemic response to osimertinib. In tumors from the 33 patients, the average ratio of T790M to EGFR activating mutations was 0.420. Twenty-one of the 33 patients had tumors with a T790M ratio of ≥0.4. The osimertinib response rate was significantly higher (92.3%) in patients with a T790M ratio of ≥0.4 than in those with a T790M ratio of <0.4 (52.6%; p = 0.0237). We examined the correlation between the T790M ratio and the tumor reduction rate and obtained a coefficient of r = 0.417 (p = 0.0175). In patients with a T790M ratio of ≥0.4, the median progression-free survival was 355 days, which was longer, but not significant, than that in patients with a T790M ratio of <0.4 (median: 264 days). In patients with a T790M ratio of ≥0.4, the median treatment duration from first-line therapy onward was 931 days, which was significantly longer than that in patients with a T790M ratio of <0.4 (median, 567.5 days) (p = 0.044). The T790M ratio to EGFR activating mutation in tumor may correlate with the response to osimertinib, and patients with a higher T790M ratio have a longer treatment history. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Mutation analysis of the EGFR pathway genes, EGFR, RAS, PIK3CA, BRAF, and AKT1, in salivary gland adenoid cystic carcinoma.

    PubMed

    Saida, Kosuke; Murase, Takayuki; Ito, Mayuko; Fujii, Kana; Takino, Hisashi; Masaki, Ayako; Kawakita, Daisuke; Ijichi, Kei; Tada, Yuichiro; Kusafuka, Kimihide; Iida, Yoshiyuki; Onitsuka, Tetsuro; Yatabe, Yasushi; Hanai, Nobuhiro; Hasegawa, Yasuhisa; Shinomiya, Hitomi; Nibu, Ken-Ichi; Shimozato, Kazuo; Inagaki, Hiroshi

    2018-03-30

    Adenoid cystic carcinoma (AdCC), one of the most common salivary gland carcinomas, usually has a fatal outcome. Epidermal growth factor receptor (EGFR) pathway gene mutations are important in predicting a patient's prognosis and estimating the efficacy of molecular therapy targeting the EGFR pathway. In this study of salivary gland AdCC (SAdCC), we looked for gene mutations in EGFR, RAS family ( KRAS, HRAS, and NRAS ), PIK3CA, BRAF, and AKT1 , using a highly sensitive single-base extension multiplex assay, SNaPshot. Out of 70 cases, EGFR pathway missense mutations were found in 13 (18.6%): RAS mutations in 10 (14.3%), EGFR in one (1.4%), and PIK3CA in 5 (7.1%). None of the cases showed an EGFR deletion by direct sequencing. Concurrent gene mutations were found in three cases (4.3%). EGFR pathway mutations were significantly associated with a shorter disease-free ( p = 0.011) and overall survival ( p = 0.049) and RAS mutations were as well; ( p = 0.010) and ( p = 0.024), respectively. The gene fusion status as determined by a FISH assay had no significant association with mutations of the genes involved in the EGFR pathway. In conclusion, EGFR pathway mutations, especially RAS mutations, may be frequent in SAdCC, and associated with a poor prognosis for the patient.

  14. EGFR G796D mutation mediates resistance to osimertinib.

    PubMed

    Zheng, Di; Hu, Min; Bai, Yu; Zhu, Xuehua; Lu, Xuesong; Wu, Chunyan; Wang, Jiying; Liu, Li; Wang, Zheng; Ni, Jian; Yang, Zhenfan; Xu, Jianfang

    2017-07-25

    Osimertinib is an effective third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) approved in multiple countries and regions for patients with EGFR T790M mutation-positive non-small cell lung cancer (NSCLC). Despite impressive initial tumor responses, development of drug resistance ultimately limits the benefit of this compound. Mechanisms of resistance to osimertinib are just beginning to emerge, such as EGFR C797S and L718Q mutations, BRAF V600E and PIK3CA E545K mutations, as well as ERBB2 and MET amplification. However, a comprehensive view is still missing. In this study, we presented the first case of Chinese NSCLC patient who developed resistance to osimertinib, and discovered de novo EGFR G796D mutation as a potential mechanism. Our findings provided insights into mechanisms of resistance to osimertinib and highlighted tumor heterogeneity and clonal evolution during the development of drug resistance.

  15. EGFR G796D mutation mediates resistance to osimertinib

    PubMed Central

    Bai, Yu; Zhu, Xuehua; Lu, Xuesong; Wu, Chunyan; Wang, Jiying; Liu, Li; Wang, Zheng; Ni, Jian; Yang, Zhenfan; Xu, Jianfang

    2017-01-01

    Osimertinib is an effective third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) approved in multiple countries and regions for patients with EGFR T790M mutation-positive non-small cell lung cancer (NSCLC). Despite impressive initial tumor responses, development of drug resistance ultimately limits the benefit of this compound. Mechanisms of resistance to osimertinib are just beginning to emerge, such as EGFR C797S and L718Q mutations, BRAF V600E and PIK3CA E545K mutations, as well as ERBB2 and MET amplification. However, a comprehensive view is still missing. In this study, we presented the first case of Chinese NSCLC patient who developed resistance to osimertinib, and discovered de novo EGFR G796D mutation as a potential mechanism. Our findings provided insights into mechanisms of resistance to osimertinib and highlighted tumor heterogeneity and clonal evolution during the development of drug resistance. PMID:28572531

  16. In-silico evidences for binding of Glucokinase activators to EGFR C797S to overcome EGFR resistance obstacle with mutant-selective allosteric inhibition.

    PubMed

    Patel, Harun; Pawara, Rahul; Surana, Sanjay

    2018-03-29

    The tyrosine kinase inhibitors (TKI) against epidermal growth factor receptor (EGFR) are generally utilized as a part of patients with non-small cell lung carcinoma (NSCLC). However, EGFR T790M mutation results in resistance to most clinically available EGFR TKIs. Third-generation EGFR TKIs against the T790M mutation has been in active clinical development to triumph the resistance problem; they covalently bind with conserved Cys797 inside the EGFR active site, offering both potency and kinase-selectivity. Third generation drugs target C797, which makes the C797S resistance mutation more subtle. EGFR C797S mutation was accounted to be a main mechanism of resistance to the third-generation inhibitors. The C797S mutation gives off an impression of being an ideal target for conquering the acquired resistance to the third generation inhibitors. We have performed structure based-virtual screening strategies for binding of glucokinase activator to EGFR C797S, which can overcome EGFR resistance impediment with mutant-selective allosteric inhibition towards all kinds of mutant EGFR (T790M, L858R, TMLR) and WT EGFR. The final filter of Lipinski's Rule of Five, Jargan's Rule of Three and in silico ADME predictions gave 23 hits, which conform to Lipinski's rule and Jorgensen's rule and all their pharmacokinetic parameters are inside the appropriate range characterized for human use, in this manner demonstrating their potential as a drug-like molecule. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Antitumor Activity of Osimertinib, an Irreversible Mutant-Selective EGFR Tyrosine Kinase Inhibitor, in NSCLC Harboring EGFR Exon 20 Insertions.

    PubMed

    Floc'h, Nicolas; Martin, Matthew J; Riess, Jonathan W; Orme, Jonathan P; Staniszewska, Anna D; Ménard, Ludovic; Cuomo, Maria Emanuela; O'Neill, Daniel J; Ward, Richard A; Finlay, M Raymond V; McKerrecher, Darren; Cheng, Mingshan; Vang, Daniel P; Burich, Rebekah A; Keck, James G; Gandara, David R; Mack, Philip C; Cross, Darren A E

    2018-05-01

    EGFR exon 20 insertions (Ex20Ins) account for 4% to 10% of EGFR activating mutations in non-small cell lung cancer (NSCLC). EGFR Ex20Ins tumors are generally unresponsive to first- and second-generation EGFR inhibitors, and current standard of care for NSCLC patients with EGFR Ex20Ins is conventional cytotoxic chemotherapy. Therefore, the development of an EGFR TKI that can more effectively target NSCLC with EGFR Ex20Ins mutations represents a major advance for this patient subset. Osimertinib is a third-generation EGFR TKI approved for the treatment of advanced NSCLC harboring EGFR T790M; however, the activity of osimertinib in EGFR Ex20Ins NSCLC has yet to be fully assessed. Using CRISPR-Cas 9 engineered cell lines carrying the most prevalent Ex20Ins mutations, namely Ex20Ins D770_N771InsSVD (22%) or Ex20Ins V769_D770InsASV (17%), and a series of patient-derived xenografts, we have characterized osimertinib and AZ5104 (a circulating metabolite of osimertinib) activities against NSCLC harboring Ex20Ins. We report that osimertinib and AZ5104 inhibit signaling pathways and cellular growth in Ex20Ins mutant cell lines in vitro and demonstrate sustained tumor growth inhibition of EGFR-mutant tumor xenograft harboring the most prevalent Ex20Ins in vivo The antitumor activity of osimertinib and AZ5104 in NSCLC harboring EGFR Ex20Ins is further described herein using a series of patient-derived xenograft models. Together these data support clinical testing of osimertinib in patients with EGFR Ex20Ins NSCLC. Mol Cancer Ther; 17(5); 885-96. ©2018 AACR . ©2018 American Association for Cancer Research.

  18. Targeted treatment of mutated EGFR-expressing non-small-cell lung cancer: focus on erlotinib with companion diagnostics

    PubMed Central

    Karachaliou, Niki; Rosell, Rafael

    2014-01-01

    Deeper understanding of the pathobiology of non-small-cell lung cancer (NSCLC) has led to the development of small molecules that target genetic mutations known to play critical roles in the progression to metastatic disease. The discovery of epidermal growth factor receptor (EGFR) mutations in 15%–20% of lung adenocarcinomas and the associated response to EGFR tyrosine kinase inhibitors have provided a successful avenue of attack in late-stage adenocarcinomas. Use of the EGFR tyrosine kinase inhibitors gefitinib, erlotinib, and afatinib is limited to patients who have adenocarcinomas with known activating EGFR mutations. However, the EGFR mutation testing landscape is varied and includes many screening and targeted methods, each with its own benefits and limitations. These tests can simplify the drug discovery process, make clinical trials more efficient and informative, and individualize cancer therapy. In practice, the choice of method should be determined by the nature of the sample to be tested, the testing laboratory’s expertise and access to equipment, and whether the detection of only known activating EGFR mutations, or of all possible mutations, is required. Development of companion diagnostic tests for this identification is advancing; nevertheless, the use of such tests merits greater attention. PMID:28210145

  19. Detection of epidermal growth factor receptor gene T790M mutation in cytology samples using the cobas® EGFR mutation test.

    PubMed

    Satouchi, Miyako; Tanaka, Hiroshi; Yoshioka, Hiroshige; Shimokawaji, Tadasuke; Mizuno, Keiko; Takeda, Koji; Yoshino, Ichiro; Seto, Takashi; Kurata, Takayasu; Tashiro, Naoki; Hagiwara, Koichi

    2017-09-01

    Detection of epidermal growth factor receptor (EGFR) gene mutations is essential in deciding therapeutic strategy in non-small cell lung cancer (NSCLC) patients at initial diagnosis. Moreover, in EGFR mutation-positive (EGFRm) NSCLC patients, re-biopsy at disease progression to clarify resistance mechanisms is also important. However, collecting histology samples is often difficult because of inaccessibility and invasiveness. In some cases, only cytology samples can be collected, and studies have reported that cytology samples are appropriate for EGFR gene mutation testing. The cobas ® EGFR Mutation Test (Roche Molecular Systems Inc., Branchburg, New Jersey, USA) is approved as a companion diagnostic for osimertinib, a third-generation EGFR-tyrosine kinase inhibitor approved in Japan. However, it is not clear whether the EGFR T790M mutation can be detected in cytology samples using this test. The primary objective of this study was to assess concordance of EGFR T790M gene mutation detection between histology and matched cytology samples using the cobas ® EGFR Mutation Test. We conducted a multicenter, observational study in Japan. Overall, 41 EGFRm NSCLC patients who had both histology and cytology samples collected at the same time at re-biopsy and with the results of EGFR mutation test using histology samples were enrolled. The EGFR mutation status of both sample types was tested using the cobas ® EGFR Mutation Test and the concordance rates were calculated. The EGFR T790M mutation detection rate in histology and cytology samples was 42.5% and 37.5%, respectively. The overall percent agreement between the histology and cytology samples was 91.7%. These data demonstrate that the cobas ® EGFR Mutation Test can detect the EGFR T790M mutation in both cytology and histology samples. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Profile of the Roche cobas® EGFR mutation test v2 for non-small cell lung cancer.

    PubMed

    Malapelle, Umberto; Sirera, Rafael; Jantus-Lewintre, Eloísa; Reclusa, Pablo; Calabuig-Fariñas, Silvia; Blasco, Ana; Pisapia, Pasquale; Rolfo, Christian; Camps, Carlos

    2017-03-01

    The discovery of driver mutations in non-small cell lung cancer (NSCLC) has led to the development of genome-based personalized medicine. Fifteen to 20% of adenocarcinomas harbor an epidermal growth factor receptor (EGFR) activating mutation associated with responses to EGFR tyrosine kinase inhibitors (TKIs). Individual laboratories' expertise and the availability of appropriate equipment are valuable assets in predictive molecular pathology, although the choice of methods should be determined by the nature of the samples to be tested and whether the detection of only well-characterized EGFR mutations or rather, of all detectable mutations, is required. Areas covered: The EGFR mutation testing landscape is manifold and includes both screening and targeted methods, each with their own pros and cons. Here we review one of these companion tests, the Roche cobas® EGFR mutation test v2, from a methodological point of view, also exploring its liquid-biopsy applications. Expert commentary: The Roche cobas® EGFR mutation test v2, based on real time RT-PCR, is a reliable option for testing EGFR mutations in clinical practice, either using tissue-derived DNA or plasma-derived cfDNA. This application will be valuable for laboratories with whose purpose is purely diagnostic and lacking high-throughput technologies.

  1. HER3 expression is enhanced during progression of lung adenocarcinoma without EGFR mutation from stage 0 to IA1.

    PubMed

    Kumagai, Toru; Tomita, Yasuhiko; Nakatsuka, Shin-Ichi; Kimura, Madoka; Kunimasa, Kei; Inoue, Takako; Tamiya, Motohiro; Nishino, Kazumi; Susaki, Yoshiyuki; Kusu, Takashi; Tokunaga, Toshiteru; Okami, Jiro; Higashiyama, Masahiko; Imamura, Fumio

    2018-04-01

    Activating EGFR mutations, HER2, and HER3 are implicated in lung cancer; however, with the exception of EGFR gene amplification in lung adenocarcinoma harboring EGFR mutations, their involvement in disease progression during the early stages is poorly understood. In this paper, we focused on which receptor is correlated with lung adenocarcinoma progression in the presence or absence of EGFR mutation from stage 0 to IA1. HER2 and HER3 expression and activating EGFR mutations in surgically resected lung adenocarcinoma exhibiting ground glass nodules on chest computed tomography and re-classified to stage 0 and IA1 were examined by immunohistochemistry and peptide nucleic acid-locked nucleic acid PCR clamp method, respectively. HER2 and HER3 expression was detected in 22.2% and 86.1% of samples, respectively. The frequency of EGFR mutation was 45.7% and was not significantly different between stage 0 and IA1 (40.0% and 48.0%, respectively), suggesting that EGFR mutation does not correlate with cancer progression from stage 0 to IA1. HER2 expression also did not correlate to progression. However, not only the frequency, but also the intensity of HER3 expression was increased in stage IA1 lung adenocarcinoma, particularly in lung adenocarcinoma without EGFR mutation. HER3 tends to be intensively expressed during the progression of lung adenocarcinoma without EGFR mutation from carcinoma in situ to invasive carcinoma. © 2018 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  2. Coexistence of EGFR with KRAS, or BRAF, or PIK3CA somatic mutations in lung cancer: a comprehensive mutation profiling from 5125 Chinese cohorts

    PubMed Central

    Li, S; Li, L; Zhu, Y; Huang, C; Qin, Y; Liu, H; Ren-Heidenreich, L; Shi, B; Ren, H; Chu, X; Kang, J; Wang, W; Xu, J; Tang, K; Yang, H; Zheng, Y; He, J; Yu, G; Liang, N

    2014-01-01

    Background: Determining the somatic mutations of epidermal growth factor receptor (EGFR)-pathway networks is the key to effective treatment for non-small cell lung cancer (NSCLC) with tyrosine kinase inhibitors (TKIs).The somatic mutation frequencies and their association with gender, smoking history and histology was analysed and reported in this study. Methods: Five thousand one hundred and twenty-five NSCLC patients' pathology samples were collected, and EGFR, KRAS, BRAF and PIK3CA mutations were detected by multiplex testing. The mutation status of EGFR, KRAS, BRAF and PIK3CA and their association with gender, age, smoking history and histological type were evaluated by appropriate statistical analysis. Results: EGFR, KRAS, BRAF and PIK3CA mutation rates revealed 36.2%, 8.4%, 0.5% and 3.3%, respectively, across the 5125 pathology samples. For the first time, evidence of KRAS mutations were detected in two female, non-smoking patients, age 5 and 14, with NSCLC. Furthermore, we identified 153 double and coexisting mutations and 7 triple mutations. Interestingly, the second drug-resistant mutations, T790M or E545K, were found in 44 samples from patients who had never received TKI treatments. Conclusions: EGFR exons 19, 20 and 21, and BRAF mutations tend to happen in females and non-smokers, whereas KRAS mutations were more inclined to males and smokers. Activating and resistant mutations to EGFR-TKI drugs can coexist and ‘second drug-resistant mutations', T790M or E545K, may be primary mutations in some patients. These results will help oncologists to decide candidates for mutation testing and EGFR-TKI treatment. PMID:24743704

  3. Effects of oncogenic mutations on the conformational free-energy landscape of EGFR kinase

    PubMed Central

    Sutto, Ludovico; Gervasio, Francesco Luigi

    2013-01-01

    Activating mutations in the epidermal growth factor receptor (EGFR) tyrosine kinase are frequently found in many cancers. It has been suggested that changes in the equilibrium between its active and inactive conformations are linked to its oncogenic potential. Here, we quantify the effects of some of the most common single (L858R and T790M) and double (T790M-L858R) oncogenic mutations on the conformational free-energy landscape of the EGFR kinase domain by using massive molecular dynamics simulations together with parallel tempering, metadynamics, and one of the best force-fields available. Whereas the wild-type EGFR catalytic domain monomer is mostly found in an inactive conformation, our results show a clear shift toward the active conformation for all of the mutants. The L858R mutation stabilizes the active conformation at the expense of the inactive conformation and rigidifies the αC-helix. The T790M gatekeeper mutant favors activation by stabilizing a hydrophobic cluster. Finally, T790M with L858R shows a significant positive epistasis effect. This combination not only stabilizes the active conformation, but in nontrivial ways changes the free-energy landscape lowering the transition barriers. PMID:23754386

  4. Effects of oncogenic mutations on the conformational free-energy landscape of EGFR kinase.

    PubMed

    Sutto, Ludovico; Gervasio, Francesco Luigi

    2013-06-25

    Activating mutations in the epidermal growth factor receptor (EGFR) tyrosine kinase are frequently found in many cancers. It has been suggested that changes in the equilibrium between its active and inactive conformations are linked to its oncogenic potential. Here, we quantify the effects of some of the most common single (L858R and T790M) and double (T790M-L858R) oncogenic mutations on the conformational free-energy landscape of the EGFR kinase domain by using massive molecular dynamics simulations together with parallel tempering, metadynamics, and one of the best force-fields available. Whereas the wild-type EGFR catalytic domain monomer is mostly found in an inactive conformation, our results show a clear shift toward the active conformation for all of the mutants. The L858R mutation stabilizes the active conformation at the expense of the inactive conformation and rigidifies the αC-helix. The T790M gatekeeper mutant favors activation by stabilizing a hydrophobic cluster. Finally, T790M with L858R shows a significant positive epistasis effect. This combination not only stabilizes the active conformation, but in nontrivial ways changes the free-energy landscape lowering the transition barriers.

  5. Is MPP a good prognostic factor in stage III lung adenocarcinoma with EGFR exon 19 mutation?

    PubMed

    Zhang, Tian; Wang, Jing; Su, Yanjun; Chen, Xi; Yan, Qingna; Li, Qi; Sun, Leina; Wang, Yuwen; Er, Puchun; Pang, Qingsong; Wang, Ping

    2017-06-20

    Epidermal growth factor receptor (EGFR) is a transmembrane glycoprotein encoded by a gene located in the short arm of chromosome 7. This study aimed to investigate the clinicopathologic characteristics of classic EGFR exon mutation in Chinese patients with TMN stage III lung adenocarcinoma who received radical surgery. A total of 1,801 lung adenocarcinomas were analyzed for mutations in EGFR; 35% exhibited mutation of classic EGFR exons. Clinical and pathologic characteristics of patients with EGFR exon 19 mutation were compared with those who harbored EGFR exon 21 mutation. Patients with EGFR exon 19 mutation had a higher overall survival (OS, p=0.023) than those harboring EGFR exon 21 mutation. Our results demonstrated that patients with a micropapillary pattern (MPP) pathologic type in EGFR exon 19 mutation had a higher OS (p=0.022), and patients with exon 19 mutation were more sensitive to EGFR-tyrosine kinase inhibitors (p=0.032). The results of the current study can be used in decision-making regarding the treatment of patients with classic EGFR exon mutations.

  6. Acquired resistance to an epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) in an uncommon G719S EGFR mutation.

    PubMed

    Osoegawa, Atsushi; Hashimoto, Takafumi; Takumi, Yohei; Abe, Miyuki; Yamada, Tomonori; Kobayashi, Ryoji; Miyawaki, Michiyo; Takeuchi, Hideya; Okamoto, Tatsuro; Sugio, Kenji

    2018-03-28

    Background Acquired resistance (AR) to an epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) is a common event, and several underlying mechanisms, including T790 M, MET amplification and PTEN downregulation, have been reported for the common EGFR mutations. EGFR G719X is an uncommon mutation that has been reported to show sensitivity to EGFR-TKIs. However, no established cell lines harboring the EGFR G719X have been reported in the literature. Materials and Methods G719S-GR cells were established from malignant pleural effusion of a patient whose tumor developed AR from gefitinib treatment. G719S-GR cells were then genotyped and tested for drug sensitivities. Multiplex ligation-dependent probe amplification (MLPA) was used to compare the clinical tumor samples with G719S-GR. Results G719S-GR cells were resistant to EGFR-TKIs with an LC50 of around 10 μM. A genomic analysis showed that G719S-GR cells harbor the EGFR G719S mutation as well as the amplification of EGFR locus. The homozygous deletion of CDKN2A and the loss of PTEN and TSC1 were also detected. On comparing the copy number of tumor suppressor genes using MLPA, G719S-GR cells were found to lack one copy of PTEN, which was not observed in a tumor obtained before gefitinib treatment. Loss of PTEN may result in AKT activation. The mTORC1/2 inhibitor Torin-1 was able to inhibit the downstream signaling when combined with osimertinib. Discussion The newly established G719S-GR cell line may be useful for investigating the mechanism underlying the development of AR in the G719X mutation; the loss of PTEN may be one such mechanism.

  7. Next-Generation EGFR Tyrosine Kinase Inhibitors for Treating EGFR-Mutant Lung Cancer beyond First Line

    PubMed Central

    Sullivan, Ivana; Planchard, David

    2017-01-01

    Tyrosine kinase inhibitors (TKIs) against the human epidermal growth factor receptor (EGFR) are now standard treatment in the clinic for patients with advanced EGFR mutant non-small-cell lung cancer (NSCLC). First-generation EGFR TKIs, binding competitively and reversibly to the ATP-binding site of the EGFR tyrosine kinase domain, have resulted in a significant improvement in outcome for NSCLC patients with activating EGFR mutations (L858R and Del19). However, after a median duration of response of ~12 months, all patients develop tumor resistance, and in over half of these patients this is due to the emergence of the EGFR T790M resistance mutation. The second-generation EGFR/HER TKIs were developed to treat resistant disease, targeting not only T790M but EGFR-activating mutations and wild-type EGFR. Although they exhibited promising anti-T790M activity in the laboratory, their clinical activity among T790M+ NSCLC was poor mainly because of dose-limiting toxicity due to simultaneous inhibition of wild-type EGFR. The third-generation EGFR TKIs selectively and irreversibly target EGFR T790M and activating EGFR mutations, showing promising efficacy in NSCLC resistant to the first- and second-generation EGFR TKIs. They also appear to have lower incidences of toxicity due to the limited inhibitory effect on wild-type EGFR. Currently, the first-generation gefitinib and erlotinib and second-generation afatinib have been approved for first-line treatment of metastatic NSCLC with activating EGFR mutations. Among the third-generation EGFR TKIs, osimertinib is today the only drug approved by the Food and Drug Administration and the European Medicines Agency to treat metastatic EGFR T790M NSCLC patients who have progressed on or after EGFR TKI therapy. In this review, we summarize the available post-progression therapies including third-generation EGFR inhibitors and combination treatment strategies for treating patients with NSCLC harboring EGFR mutations and address the

  8. Longitudinal monitoring of EGFR mutations in plasma predicts outcomes of NSCLC patients treated with EGFR TKIs: Korean Lung Cancer Consortium (KLCC-12-02).

    PubMed

    Lee, Ji Yun; Qing, Xu; Xiumin, Wei; Yali, Bai; Chi, Sangah; Bak, So Hyeon; Lee, Ho Yun; Sun, Jong-Mu; Lee, Se-Hoon; Ahn, Jin Seok; Cho, Eun Kyung; Kim, Dong-Wan; Kim, Hye Ryun; Min, Young Joo; Jung, Sin-Ho; Park, Keunchil; Mao, Mao; Ahn, Myung-Ju

    2016-02-09

    We hypothesized that plasma-based EGFR mutation analysis for NSCLC may be feasible for monitoring treatment response to EGFR TKIs and also predict drug resistance.Clinically relevant mutations including exon 19 deletion (ex19del), L858R and T790M were analyzed using droplet digital PCR (ddPCR) in longitudinally collected plasma samples (n = 367) from 81 NSCLC patients treated with EGFR TKI. Of a total 58 baseline cell-free DNA (cfDNA) samples available for ddPCR analysis, 43 (74.1%) had the same mutation in the matched tumors (clinical sensitivity: 70.8% [17/24] for L858R and 76.5% [26/34] for ex19del). The concordance rates of plasma with tissue-based results of EGFR mutations were 87.9% for L858R and 86.2% for ex19del. All 40 patients who were detected EGFR mutations at baseline showed a dramatic decrease of mutant copies (>50%) in plasma during the first two months after treatment. Median progression-free survival (PFS) was 10.1 months for patients with undetectable EGFR v 6.3 months for detectable EGFR mutations in blood after two-month treatment (HR 3.88, 95% CI 1.48-10.19, P = 0.006). We observed emerging resistance with early detection of T790M as a secondary mutation in 14 (28.6%) of 49 patients. Plasma-based EGFR mutation analysis using ddPCR can monitor treatment response to EGFR TKIs and can lead to early detection of EGFR TKIs resistance. Further studies confirming clinical implications of EGFR mutation in plasma are warranted to guide optimal therapeutic strategies upon knowledge of treatment response and resistance.

  9. Are EGFR tyrosine kinase inhibitors effective in elderly patients with EGFR-mutated non-small cell lung cancer?

    PubMed

    Roviello, Giandomenico; Zanotti, Laura; Cappelletti, Maria Rosa; Gobbi, Angela; Dester, Martina; Paganini, Giovanni; Pacifico, Chiara; Generali, Daniele; Roudi, Raheleh

    2018-02-01

    EGFR tyrosine kinase inhibitors (TKIs) such as erlotinib, gefitinib, and afatinib changed dramatically the history of metastatic non-small cell lung cancer (NSCLC) harbouring EGFR mutations. However, not enough data are available on the efficacy of these targeted drugs in elderly patients. The aim of this study is to analyse the available clinical data evaluating the efficacy of anti-EGFR therapies in elderly patients with advanced NSCLC carrying EGFR mutations. A literature-based meta-analysis of the results of randomized clinical trials was undertaken. Relevant publications from PubMed, the Cochrane Library, and abstracts from American Society of Clinical Oncology meetings were searched. Progression-free survival (PFS), as a measure of the efficacy of treatment, was the primary outcome investigated. The pooled analysis revealed an overall significant improvement in PFS (HR = 0.44, 95% CI 0.28-0.69; p = 0.0004) with the use of EGFR TKIs in EGFR-mutated NSCLC. The data stratification per age subgroups showed that EGFR TKIs were more effective in prolonging PFS in elderly patients, with HR 0.39 (p = 0.008), in comparison with young patients (HR = 0.48; p = 0.04). The results of this study suggest that EGFR TKIs have a significant effect in slowing down diseases progression in elderly patients with advanced NSCLC, therefore representing a valid therapeutic option in this age group.

  10. Cancer stem cell-like population is preferentially suppressed by EGFR-TKIs in EGFR-mutated PC-9 tumor models.

    PubMed

    Yang, Fan; Li, Yang; Liu, Bin; You, Jiacong; Zhou, Qinghua

    2018-01-01

    Although the epidermal growth factor receptor (EGFR) and Wnt/β-catenin signaling systems synergistically regulate many essential developmental and regenerative processes in lung cancer, the mechanisms of their crosstalk remain poorly defined. Our study aimed to investigate an interaction between EGFR and the β-catenin signal. In this study, we described a potent activation of β-catenin by EGFR, which is dependent of the PtdIns3K/AKT pathway. We found EGF activated β-catenin signaling via phosphorylation of EGFR and AKT in EGFR-mutated PC-9 lung cancer cells. Meanwhile, EGFR tyrosine kinase inhibitors (EGFR-TKIs) regulated cancer stem-like cells (CSCs) by inhibiting autophosphorylation of EGFR and downstream signaling proteins, as well as β-catenin. Further, β-catenin depletion by RNA interference virtually eliminated cancer stem cell-like population in PC-9 cells in vitro. The nude mice transplantation model was also performed to confirm EGFR-TKIs strongly inhibited the β-catenin signal and decreased CSCs. Importantly, the reduction of CSCs that sorted out by side population (SP) cells significantly reduced the migration capability. Thus, our results improved the understanding of this process to provide insights into mechanisms of responding to EGFR-TKIs. Our discoveries raise an intriguing question of the role of β-catenin in EGFR-TKIs-treated cancer stem cell-like population(s) and its potential as a new therapeutic target for NSCLC in the future. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. The impact of common and rare EGFR mutations in response to EGFR tyrosine kinase inhibitors and platinum-based chemotherapy in patients with non-small cell lung cancer.

    PubMed

    Arrieta, Oscar; Cardona, Andrés Felipe; Corrales, Luis; Campos-Parra, Alma Delia; Sánchez-Reyes, Roberto; Amieva-Rivera, Eduardo; Rodríguez, July; Vargas, Carlos; Carranza, Hernán; Otero, Jorge; Karachaliou, Nikki; Astudillo, Horacio; Rosell, Rafael

    2015-02-01

    In non-small cell lung cancer (NSCLC), the association between common EGFR mutations (Del EX19/L858R) with EGFR tyrosine kinase inhibitors (EGFR-TKIs) has been well established. However, this has not been investigated for rare EGFR mutations or their impact on treatment response and outcome to EGFR TKIs (primary objective) and chemotherapy (secondary objective). In an observational prospective cohort, we analyzed 188 NSCLC patients from Mexico, Colombia and Costa Rica with EGFR mutations. As a first line of treatment, 66.5% received platinum-based chemotherapy. All patients received TKIs in first-line treatment or after progression to chemotherapy. The clinical-pathological characteristics as well as the f of common and rare EGFR mutations associated with treatment response were analyzed. Of all patients, 79.5% had common and 20.5% had rare EGFR mutations. Lepidic and acinar adenocarcinomas were associated with common EGFR mutations (p=0.010). Patients with common EGFR mutations had higher response rates to EGFR-TKIs than those who had rare EGFR mutations (63.8 vs 32.4%, p<0.001). Women had increased progression-free survival (PFS) to EGFR-TKIs than men (16.4 vs 9.5 months, p=0.02). The median PFS and overall survival (OS) were better in patients with common EGFR mutations (15.5 vs 3.9 months, p<0.001; and 37.3 vs 17.4 months, p<0.001) respectively. Our findings suggested that only patients with rare EGFR mutations could receive platinum-based chemotherapy as a first-line treatment, due to their low response rates and short PFS in response to EGFR-TKIs. Consequently, EGFR-TKIs could be reserved as a second- or third-line treatment. In patients with EGFR mutations, women have better PFS to EGFR-TKIs than men, and rare EGFR mutations are more frequent in high grade adenocarcinomas than in low grade tumors. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Detection of Rare Mutations in EGFR-ARMS-PCR-Negative Lung Adenocarcinoma by Sanger Sequencing.

    PubMed

    Liang, Chaoyue; Wu, Zhuolin; Gan, Xiaohong; Liu, Yuanbin; You, You; Liu, Chenxian; Zhou, Chengzhi; Liang, Ying; Mo, Haiyun; Chen, Allen M; Zhang, Jiexia

    2018-01-01

    This study aimed to identify potential epidermal growth factor receptor (EGFR) gene mutations in non-small cell lung cancer that went undetected by amplification refractory mutation system-Scorpion real-time PCR (ARMS-PCR). A total of 200 specimens were obtained from the First Affiliated Hospital of Guangzhou Medical University from August 2014 to August 2015. In total, 100 ARMS-negative and 100 ARMS-positive specimens were evaluated for EGFR gene mutations by Sanger sequencing. The methodology and sensitivity of each method and the outcomes of EGFR-tyrosine kinase inhibitor (TKI) therapy were analyzed. Among the 100 ARMS-PCR-positive samples, 90 were positive by Sanger sequencing, while 10 cases were considered negative, because the mutation abundance was less than 10%. Among the 100 negative cases, three were positive for a rare EGFR mutation by Sanger sequencing. In the curative effect analysis of EGFR-TKIs, the progression-free survival (PFS) analysis based on ARMS and Sanger sequencing results showed no difference. However, the PFS of patients with a high abundance of EGFR mutation was 12.4 months [95% confidence interval (CI), 11.6-12.4 months], which was significantly higher than that of patients with a low abundance of mutations detected by Sanger sequencing (95% CI, 10.7-11.3 months) (p<0.001). The ARMS method demonstrated higher sensitivity than Sanger sequencing, but was prone to missing mutations due to primer design. Sanger sequencing was able to detect rare EGFR mutations and deemed applicable for confirming EGFR status. A clinical trial evaluating the efficacy of EGFR-TKIs in patients with rare EGFR mutations is needed. © Copyright: Yonsei University College of Medicine 2018

  13. Perturbation of the mutated EGFR interactome identifies vulnerabilities and resistance mechanisms.

    PubMed

    Li, Jiannong; Bennett, Keiryn; Stukalov, Alexey; Fang, Bin; Zhang, Guolin; Yoshida, Takeshi; Okamoto, Isamu; Kim, Jae-Young; Song, Lanxi; Bai, Yun; Qian, Xiaoning; Rawal, Bhupendra; Schell, Michael; Grebien, Florian; Winter, Georg; Rix, Uwe; Eschrich, Steven; Colinge, Jacques; Koomen, John; Superti-Furga, Giulio; Haura, Eric B

    2013-11-05

    We hypothesized that elucidating the interactome of epidermal growth factor receptor (EGFR) forms that are mutated in lung cancer, via global analysis of protein-protein interactions, phosphorylation, and systematically perturbing the ensuing network nodes, should offer a new, more systems-level perspective of the molecular etiology. Here, we describe an EGFR interactome of 263 proteins and offer a 14-protein core network critical to the viability of multiple EGFR-mutated lung cancer cells. Cells with acquired resistance to EGFR tyrosine kinase inhibitors (TKIs) had differential dependence of the core network proteins based on the underlying molecular mechanisms of resistance. Of the 14 proteins, 9 are shown to be specifically associated with survival of EGFR-mutated lung cancer cell lines. This included EGFR, GRB2, MK12, SHC1, ARAF, CD11B, ARHG5, GLU2B, and CD11A. With the use of a drug network associated with the core network proteins, we identified two compounds, midostaurin and lestaurtinib, that could overcome drug resistance through direct EGFR inhibition when combined with erlotinib. Our results, enabled by interactome mapping, suggest new targets and combination therapies that could circumvent EGFR TKI resistance.

  14. Comparison of droplet digital PCR and conventional quantitative PCR for measuring EGFR gene mutation

    PubMed Central

    ZHANG, BO; XU, CHUN-WEI; SHAO, YUN; WANG, HUAI-TAO; WU, YONG-FANG; SONG, YE-YING; LI, XIAO-BING; ZHANG, ZHE; WANG, WEN-JING; LI, LI-QIONG; CAI, CONG-LI

    2015-01-01

    Early detection of epidermal growth factor receptor (EGFR) mutation, particularly EGFR T790M mutation, is of clinical significance. The aim of the present study was to compare the performances of amplification refractory mutation system-based quantitative polymerase chain reaction (ARMS-qPCR) and droplet digital polymerase chain reaction (ddPCR) approaches in the detection of EGFR mutation and explore the feasibility of using ddPCR in the detection of samples with low mutation rates. EGFR gene mutations in plasmid samples with different T790M mutation rates (0.1–5%) and 10 clinical samples were detected using the ARMS-qPCR and ddPCR approaches. The results demonstrated that the ARMS-qPCR method stably detected the plasmid samples (6,000 copies) with 5 and 1% mutation rates, while the ddPCR approach reliably detected those with 5% (398 copies), 1% (57 copies), 0.5% (24 copies) and 0.1% (average 6 copies) mutation rates. For the 10 clinical samples, the results for nine samples by the ARMS-qPCR and ddPCR methods were consistent; however, the sample N006, indicated to be EGFR wild-type by ARMS-qPCR, was revealed to have a clear EGFR T790M mutation with seven copies of mutant alleles in a background of 6,000 wild-type copies using ddPCR technology. This study demonstrates the feasibility of applying the ddPCR system to detect EGFR mutation and identified the advantage of ddPCR in the detection of samples with a low EGFR mutation abundance, particularly the secondary EGFR T790M resistance mutation, which enables early diagnosis before acquired resistance to tyrosine kinase inhibitors becomes clinically detectable. PMID:25780439

  15. Improved EGFR mutation detection using combined exosomal RNA and circulating tumor DNA in NSCLC patient plasma

    PubMed Central

    Krug, A K; Enderle, D; Karlovich, C; Priewasser, T; Bentink, S; Spiel, A; Brinkmann, K; Emenegger, J; Grimm, D G; Castellanos-Rizaldos, E; Goldman, J W; Sequist, L V; Soria, J -C; Camidge, D R; Gadgeel, S M; Wakelee, H A; Raponi, M; Noerholm, M; Skog, J

    2018-01-01

    Abstract Background A major limitation of circulating tumor DNA (ctDNA) for somatic mutation detection has been the low level of ctDNA found in a subset of cancer patients. We investigated whether using a combined isolation of exosomal RNA (exoRNA) and cell-free DNA (cfDNA) could improve blood-based liquid biopsy for EGFR mutation detection in non-small-cell lung cancer (NSCLC) patients. Patients and methods Matched pretreatment tumor and plasma were collected from 84 patients enrolled in TIGER-X (NCT01526928), a phase 1/2 study of rociletinib in mutant EGFR NSCLC patients. The combined isolated exoRNA and cfDNA (exoNA) was analyzed blinded for mutations using a targeted next-generation sequencing panel (EXO1000) and compared with existing data from the same samples using analysis of ctDNA by BEAMing. Results For exoNA, the sensitivity was 98% for detection of activating EGFR mutations and 90% for EGFR T790M. The corresponding sensitivities for ctDNA by BEAMing were 82% for activating mutations and 84% for T790M. In a subgroup of patients with intrathoracic metastatic disease (M0/M1a; n = 21), the sensitivity increased from 26% to 74% for activating mutations (P = 0.003) and from 19% to 31% for T790M (P = 0.5) when using exoNA for detection. Conclusions Combining exoRNA and ctDNA increased the sensitivity for EGFR mutation detection in plasma, with the largest improvement seen in the subgroup of M0/M1a disease patients known to have low levels of ctDNA and poses challenges for mutation detection on ctDNA alone. Clinical Trials NCT01526928 PMID:29216356

  16. Prognostic impact of EGFR mutation in non-small-cell lung cancer patients with family history of lung cancer.

    PubMed

    Kim, Jung Soo; Cho, Min Seong; Nam, Jong Hyeon; Kim, Hyun-Jung; Choi, Kyeng-Won; Ryu, Jeong-Seon

    2017-01-01

    A family history can be a valuable tool in the era of precision medicine. Although a few studies have described an association of family history of lung cancer with EGFR activating mutation, their impact on survival of lung cancer patients is unclear. The study included consecutive 829 non-small-cell lung cancer patients who received analysis of EGFR mutation in a prospective lung cancer cohort. Family history of lung cancer was obtained by face-to-face interviews at the time of diagnosis. An association of EGFR activating mutation with a family history of lung cancer in first-degree relatives was evaluated with multivariate logistic regression analysis, and its association with survival was estimated with Cox's proportional hazards model. Seventy five (9.0%) patients had family history of lung cancer. The EGFR mutation was commonly observed in patients with positive family history compared to those with no family history (46.7% v 31.3%, χ2 p = 0.007). The family history was significantly associated with the EGFR mutation (aOR and 95% CI: 2.01 and 1.18-3.60, p = 0.011). Patients with the positive family history survived longer compared to those without (MST, 17.9 v 13.0 months, log-rank p = 0.037). The presence of the EGFR mutation was associated with better survival in patients without the family history (aHR and 95% CI: 0.72 and 0.57-0.90, p = 0.005). However, this prognostic impact was not observed in patients with the positive family history (aHR and 95% CI: 1.01 and 0.50-2.36, p = 0.832). In comparison to patients without the family history, EGFR activating mutation was common, and it did not affect prognosis in patients with positive family history.

  17. Sample features associated with success rates in population-based EGFR mutation testing.

    PubMed

    Shiau, Carolyn J; Babwah, Jesse P; da Cunha Santos, Gilda; Sykes, Jenna R; Boerner, Scott L; Geddie, William R; Leighl, Natasha B; Wei, Cuihong; Kamel-Reid, Suzanne; Hwang, David M; Tsao, Ming-Sound

    2014-07-01

    Epidermal growth factor receptor (EGFR) mutation testing has become critical in the treatment of patients with advanced non-small-cell lung cancer. This study involves a large cohort and epidemiologically unselected series of EGFR mutation testing for patients with nonsquamous non-small-cell lung cancer in a North American population to determine sample-related factors that influence success in clinical EGFR testing. Data from consecutive cases of Canadian province-wide testing at a centralized diagnostic laboratory for a 24-month period were reviewed. Samples were tested for exon-19 deletion and exon-21 L858R mutations using a validated polymerase chain reaction method with 1% to 5% detection sensitivity. From 2651 samples submitted, 2404 samples were tested with 2293 samples eligible for analysis (1780 histology and 513 cytology specimens). The overall test-failure rate was 5.4% with overall mutation rate of 20.6%. No significant differences in the failure rate, mutation rate, or mutation type were found between histology and cytology samples. Although tumor cellularity was significantly associated with test-success or mutation rates in histology and cytology specimens, respectively, mutations could be detected in all specimen types. Significant rates of EGFR mutation were detected in cases with thyroid transcription factor (TTF)-1-negative immunohistochemistry (6.7%) and mucinous component (9.0%). EGFR mutation testing should be attempted in any specimen, whether histologic or cytologic. Samples should not be excluded from testing based on TTF-1 status or histologic features. Pathologists should report the amount of available tumor for testing. However, suboptimal samples with a negative EGFR mutation result should be considered for repeat testing with an alternate sample.

  18. Spectrum of somatic EGFR, KRAS, BRAF, PTEN mutations and TTF-1 expression in Brazilian lung cancer patients.

    PubMed

    Carneiro, Juliana G; Couto, Patricia G; Bastos-Rodrigues, Luciana; Bicalho, Maria Aparecida C; Vidigal, Paula V; Vilhena, Alyne; Amaral, Nilson F; Bale, Allen E; Friedman, Eitan; De Marco, Luiz

    2014-01-01

    Lung cancer is the leading global cause of cancer-related mortality. Inter-individual variability in treatment response and prognosis has been associated with genetic polymorphisms in specific genes: EGFR, KRAS, BRAF, PTEN and TTF-1. Somatic mutations in EGFR and KRAS genes are reported at rates of 15-40% in non-small cell lung cancer (NSCLC) in ethnically diverse populations. BRAF and PTEN are commonly mutated genes in various cancer types, including NSCLC, with PTEN mutations exerting an effect on the therapeutic response of EGFR/AKT/PI3K pathway inhibitors. TTF-1 is expressed in approximately 80% of lung adenocarcinomas and its positivity correlates with higher prevalence of EGFR mutation in this cancer type. To determine molecular markers for lung cancer in Brazilian patients, the rate of the predominant EGFR, KRAS, BRAF and PTEN mutations, as well as TTF-1 expression, was assessed in 88 Brazilian NSCLC patients. EGFR exon 19 deletions (del746-750) were detected in 3/88 (3·4%) patients. Activating KRAS mutations in codons 12 and 61 were noted in five (5·7%) and two (2·3%) patients, respectively. None of the common somatic mutations were detected in either the BRAF or PTEN genes. TTF-1 was overexpressed in 40·7% of squamous-cell carcinoma (SCC). Our findings add to a growing body of data that highlights the genetic heterogeneity of the abnormal EGFR pathway in lung cancer among ethnically diverse populations.

  19. Radiological Features of Brain Metastases from Non-small Cell Lung Cancer Harboring EGFR Mutation.

    PubMed

    Takamori, Shinkichi; Toyokawa, Gouji; Shimokawa, Mototsugu; Kinoshita, Fumihiko; Kozuma, Yuka; Matsubara, Taichi; Haratake, Naoki; Akamine, Takaki; Mukae, Nobutaka; Hirai, Fumihiko; Tagawa, Tetsuzo; Oda, Yoshinao; Iwaki, Toru; Iihara, Koji; Honda, Hiroshi; Maehara, Yoshihiko

    2018-06-01

    To investigate the radiological features on computed tomography (CT) of brain metastasis (BM) from epidermal growth factor receptor (EGFR)-mutated non-small cell lung cancer (NSCLC). Thirty-four patients with NSCLC with BMs who underwent surgical resection of the BMs at the Department of Neurosurgery, Kyushu University from 2005 to 2016 were enrolled in the study. The EGFR statuses of the 34 BMs were investigated. Radiological features, including the number, size, and location of the tumor, were delineated by CT. Patients with EGFR-mutated BMs had significantly higher frequencies of multiple metastases than those with the non-EGFR-mutated type (p=0.042). BMs harboring mutations in EGFR were more frequently observed in the central area of the brain compared to those without mutations in EGFR (p=0.037). Careful follow-up of patients with EGFR-mutated NSCLC may be necessary given the high frequencies of multiple BMs and their location in the central area of the brain. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  20. Should EGFR mutations be tested in advanced lung squamous cell carcinomas to guide frontline treatment?

    PubMed

    Chiu, Chao-Hua; Chou, Teh-Ying; Chiang, Chi-Lu; Tsai, Chun-Ming

    2014-10-01

    There is no argument over using epidermal growth factor receptor (EGFR) mutation status to guide the frontline treatment for advanced lung adenocarcinoma (LADC); however, the role of the testing in lung squamous cell carcinoma (LSQC) remains controversial. Currently, the guidelines/consensus statements regarding EGFR mutation testing in LSQC are not consistent among different oncology societies. American Society of Clinical Oncology recommends performing EGFR mutation testing in all patients; European Society for Medical Oncology, College of American Pathologists/International Association for the Study of Lung Cancer/Association for Molecular Pathology, and National Comprehensive Cancer Network suggest for some selected group. EGFR mutation is rarely found in LSQC; however, more importantly, it is not a valid predictive biomarker for EGFR tyrosine kinase inhibitors (EGFR-TKI) in LSQC as it has been shown in LADC. Available data showed that the response rate and progression-free survival in EGFR mutant LSQC patients treated with EGFR-TKI are not better than that observed in patients treated with platinum-doublet chemotherapy in the first-line setting. Therefore, in contrast to advanced LADC, EGFR mutation testing may not be necessarily performed upfront in advanced LSQC because not only the mutation rate is low, but also the predictive value is insufficient. For LSQC patients with known sensitizing-EGFR mutations, both conventional chemotherapy and EGFR-TKI are acceptable frontline treatment options.

  1. K-RAS(V12) Induces Autocrine Production of EGFR Ligands and Mediates Radioresistance Through EGFR-Dependent Akt Signaling and Activation of DNA-PKcs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minjgee, Minjmaa; Toulany, Mahmoud; Kehlbach, Rainer

    2011-12-01

    Purpose: It is known that postirradiation survival of tumor cells presenting mutated K-RAS is mediated through autocrine activation of epidermal growth factor receptor (EGFR). In this study the molecular mechanism of radioresistance of cells overexpressing mutated K-RAS(V12) was investigated. Methods and Materials: Head-and-neck cancer cells (FaDu) presenting wild-type K-RAS were transfected with empty vector or vector expressing mutated K-RAS(V12). The effect of K-RAS(V12) on autocrine production of EGFR ligands, activation of EGFR downstream pathways, DNA damage repair, and postirradiation survival was analyzed. Results: Conditioned medium collected from K-RAS(V12)-transfected cells enhanced activation of the phosphatidylinositol-3-kinase-Akt pathway and increased postirradiation survival ofmore » wild-type K-RAS parental cells when compared with controls. These effects were reversed by amphiregulin (AREG)-neutralizing antibody. In addition, secretion of the EGFR ligands AREG and transforming growth factor {alpha} was significantly increased upon overexpression of K-RAS(V12). Expression of mutated K-RAS(V12) resulted in an increase in radiation-induced DNA-dependent protein kinase catalytic subunit (DNA-PKcs) phosphorylation at S2056. This increase was accompanied by increased repair of DNA double-strand breaks. Abrogation of DNA-PKcs phosphorylation by serum depletion or AREG-neutralizing antibody underscored the role of autocrine production of EGFR ligands, namely, AREG, in regulating DNA-PKcs activation in K-RAS mutated cells. Conclusions: These data indicate that radioresistance of K-RAS mutated tumor cells is at least in part due to constitutive production of EGFR ligands, which mediate enhanced repair of DNA double-strand breaks through the EGFR-phosphatidylinositol-3-kinase-Akt cascade.« less

  2. Acquired EGFR T790M Mutation After Relapse Following EGFR-TKI Therapy: A Population-based Multi-institutional Study.

    PubMed

    Kaburagi, Takayuki; Kiyoshima, Moriyuki; Nawa, Takeshi; Ichimura, Hideo; Saito, Takefumi; Hayashihara, Kenji; Yamada, Hideyasu; Satoh, Hiroaki; Endo, Takeo; Inage, Yoshihisa; Saito, Kazuhito; Inagaki, Masaharu; Hizawa, Nobuyuki; Sato, Yukio; Ishikawa, Hiroichi; Sakai, Mitsuaki; Kamiyama, Koichi; Kikuchi, Norihiro; Nakamura, Hiroyuki; Furukawa, Kinya; Kodama, Takahide; Yamashita, Takaaki; Nomura, Akihiro; Yoshida, Susumu

    2018-05-01

    To describe the prevalence and determinants of acquired epidermal growth factor receptor (EGFR) T790M gene mutation in a clinical practice setting. We performed a retrospective chart review study between January 2013 and November 2017 across multiple institutes, covering a population of 3 million people. We reviewed the charts of 233 patients non-small cell lung cancer with EGFR mutations. Of them, 99 (42.5%) patients had acquired T790M mutations in EGFR. Patients ≥75 years old and patients with an exon 19 deletion had higher rates of acquired T790M mutation than did younger patients and those with an exon 21 L858R mutation. In 75 patients treated with afatinib, 34 (45.3%) patients had acquired T790M mutation. The sensitivity of T790M mutation detection was lower in plasma specimens than in biopsy specimens. This population-based study confirms previous studies and highlights potential determinants of acquired T790M mutation to be considered in clinical practice. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  3. Uncommon EGFR mutations in cytological specimens of 1,874 newly diagnosed Indonesian lung cancer patients.

    PubMed

    Syahruddin, Elisna; Wulandari, Laksmi; Sri Muktiati, Nunuk; Rima, Ana; Soeroso, Noni; Ermayanti, Sabrina; Levi, Michael; Hidajat, Heriawaty; Widjajahakim, Grace; Utomo, Ahmad Rusdan Handoyo

    2018-01-01

    We aimed to evaluate the distribution of individual epidermal growth factor receptor ( EGFR ) mutation subtypes found in routine cytological specimens. A retrospective audit was performed on EGFR testing results of 1,874 consecutive cytological samples of newly diagnosed or treatment-naïve Indonesian lung cancer patients (years 2015-2016). Testing was performed by ISO15189 accredited central laboratory. Overall test failure rate was 5.1%, with the highest failure (7.1%) observed in pleural effusion and lowest (1.6%) in needle aspiration samples. EGFR mutation frequency was 44.4%. Tyrosine kinase inhibitor (TKI)-sensitive common EGFR mutations (ins/dels exon 19, L858R) and uncommon mutations (G719X, T790M, L861Q) contributed 57.1% and 29%, respectively. Approximately 13.9% of mutation-positive patients carried a mixture of common and uncommon mutations. Women had higher EGFR mutation rate (52.9%) vs men (39.1%; p <0.05). In contrast, uncommon mutations conferring either TKI responsive (G719X, L861Q) or TKI resistance (T790M, exon 20 insertions) were consistently more frequent in men than in women (67.3% vs 32.7% or 69.4% vs 30.6%; p <0.05). Up to 10% EGFR mutation-positive patients had baseline single mutation T790M, exon 20 insertion, or in coexistence with TKI-sensitive mutations. Up to 9% patients had complex or multiple EGFR mutations, whereby 48.7% patients harbored TKI-resistant mutations. One patient presented third-generation TKI-resistant mutation L792F simultaneously with T790M. Routine diagnostic cytological techniques yielded similar success rate to detect EGFR mutations. Uncommon EGFR mutations were frequent events in Indonesian lung cancer patients.

  4. Uncommon EGFR mutations in cytological specimens of 1,874 newly diagnosed Indonesian lung cancer patients

    PubMed Central

    Syahruddin, Elisna; Wulandari, Laksmi; Sri Muktiati, Nunuk; Rima, Ana; Soeroso, Noni; Ermayanti, Sabrina; Levi, Michael; Hidajat, Heriawaty; Widjajahakim, Grace; Utomo, Ahmad Rusdan Handoyo

    2018-01-01

    Purpose We aimed to evaluate the distribution of individual epidermal growth factor receptor (EGFR) mutation subtypes found in routine cytological specimens. Patients and methods A retrospective audit was performed on EGFR testing results of 1,874 consecutive cytological samples of newly diagnosed or treatment-naïve Indonesian lung cancer patients (years 2015–2016). Testing was performed by ISO15189 accredited central laboratory. Results Overall test failure rate was 5.1%, with the highest failure (7.1%) observed in pleural effusion and lowest (1.6%) in needle aspiration samples. EGFR mutation frequency was 44.4%. Tyrosine kinase inhibitor (TKI)-sensitive common EGFR mutations (ins/dels exon 19, L858R) and uncommon mutations (G719X, T790M, L861Q) contributed 57.1% and 29%, respectively. Approximately 13.9% of mutation-positive patients carried a mixture of common and uncommon mutations. Women had higher EGFR mutation rate (52.9%) vs men (39.1%; p<0.05). In contrast, uncommon mutations conferring either TKI responsive (G719X, L861Q) or TKI resistance (T790M, exon 20 insertions) were consistently more frequent in men than in women (67.3% vs 32.7% or 69.4% vs 30.6%; p<0.05). Up to 10% EGFR mutation–positive patients had baseline single mutation T790M, exon 20 insertion, or in coexistence with TKI-sensitive mutations. Up to 9% patients had complex or multiple EGFR mutations, whereby 48.7% patients harbored TKI-resistant mutations. One patient presented third-generation TKI-resistant mutation L792F simultaneously with T790M. Conclusion Routine diagnostic cytological techniques yielded similar success rate to detect EGFR mutations. Uncommon EGFR mutations were frequent events in Indonesian lung cancer patients. PMID:29615847

  5. Dynamics of EGFR Mutation Load in Plasma for Prediction of Treatment Response and Disease Progression in Patients With EGFR-Mutant Lung Adenocarcinoma.

    PubMed

    Taus, Álvaro; Camacho, Laura; Rocha, Pedro; Hardy-Werbin, Max; Pijuan, Lara; Piquer, Gabriel; López, Eva; Dalmases, Alba; Longarón, Raquel; Clavé, Sergi; Salido, Marta; Albanell, Joan; Bellosillo, Beatriz; Arriola, Edurne

    2018-03-23

    The assessment of epidermal growth factor receptor (EGFR) mutations is crucial for the management of patients with lung adenocarcinoma. Circulating tumor DNA (ctDNA)-based assessment offers advantages over tumor as a minimally invasive method able to capture tumor heterogeneity. Consecutive patients diagnosed with EGFR-mutant lung adenocarcinoma in tumor biopsy were included in this study. Plasma samples were obtained at different time points during the course of the disease. EGFR mutations in plasma were quantified using BEAMing (beads, emulsions, amplification, and magnetics) or digital PCR and were correlated with mutations in tumor and with radiologic response and progression. Two hundred twenty-one plasma samples from 33 patients were analyzed. EGFR mutations in plasma were detected in 83% of all patients and 100% of those with extrathoracic metastases. The dynamics of the EGFR mutation load predicted response in 93% and progression in 89% of cases well in advance of radiologic evaluation. Progression-free survival for patients in whom ctDNA was not detected in plasma during treatment was significantly longer than for those in whom ctDNA remained detectable (295 vs. 55 days; hazard ratio, 17.1; P < .001). The detection of EGFR mutations in ctDNA showed good correlation with that in tumor biopsy and predicted tumor response and progression in most patients. The liquid biopsy for ctDNA-based assessment of EGFR mutations is a reliable technique for diagnosis and follow-up in patients with EGFR-mutant lung adenocarcinoma in routine clinical practice. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Correlation of EGFR or KRAS mutation status with 18F-FDG uptake on PET-CT scan in lung adenocarcinoma.

    PubMed

    Takamochi, Kazuya; Mogushi, Kaoru; Kawaji, Hideya; Imashimizu, Kota; Fukui, Mariko; Oh, Shiaki; Itoh, Masayoshi; Hayashizaki, Yoshihide; Ko, Weijey; Akeboshi, Masao; Suzuki, Kenji

    2017-01-01

    18F-fluoro-2-deoxy-glucose (18F-FDG) positron emission tomography (PET) is a functional imaging modality based on glucose metabolism. The correlation between EGFR or KRAS mutation status and the standardized uptake value (SUV) of 18F-FDG PET scanning has not been fully elucidated. Correlations between EGFR or KRAS mutation status and clinicopathological factors including SUVmax were statistically analyzed in 734 surgically resected lung adenocarcinoma patients. Molecular causal relationships between EGFR or KRAS mutation status and glucose metabolism were then elucidated in 62 lung adenocarcinomas using cap analysis of gene expression (CAGE), a method to determine and quantify the transcription initiation activities of mRNA across the genome. EGFR and KRAS mutations were detected in 334 (46%) and 83 (11%) of the 734 lung adenocarcinomas, respectively. The remaining 317 (43%) patients had wild-type tumors for both genes. EGFR mutations were more frequent in tumors with lower SUVmax. In contrast, no relationship was noted between KRAS mutation status and SUVmax. CAGE revealed that 4 genes associated with glucose metabolism (GPI, G6PD, PKM2, and GAPDH) and 5 associated with the cell cycle (ANLN, PTTG1, CIT, KPNA2, and CDC25A) were positively correlated with SUVmax, although expression levels were lower in EGFR-mutated than in wild-type tumors. No similar relationships were noted with KRAS mutations. EGFR-mutated adenocarcinomas are biologically indolent with potentially lower levels of glucose metabolism than wild-type tumors. Several genes associated with glucose metabolism and the cell cycle were specifically down-regulated in EGFR-mutated adenocarcinomas.

  7. EGFR-TKIs plus chemotherapy demonstrated superior efficacy than EGFR-TKIs alone as first-line setting in advanced NSCLC patients with EGFR mutation and BIM deletion polymorphism.

    PubMed

    Liu, Sangtian; He, Yayi; Jiang, Tao; Ren, Shengxiang; Zhou, Fei; Zhao, Chao; Li, Xuefei; Zhang, Jie; Su, Chunxia; Chen, Xiaoxia; Cai, Weijing; Gao, Guanghui; Li, Wei; Wu, Fengying; Li, Jiayu; Zhao, Jing; Hu, Qiong; Zhao, Mingchuan; Zhou, Caicun; Hirsch, Fred R

    2018-06-01

    Non-small-cell lung cancer (NSCLC) patients with both epidermal growth factor receptor (EGFR) positive mutation and B-cell chronic lymphocytic leukemia/lymphoma-like 11 (BIM) deletion polymorphism had a poor clinical response to EGFR-tyrosine kinase inhibitors (TKIs). The current study aimed to investigate the clinical efficacy and tolerability of EGFR-TKIs plus chemotherapy versus EGFR-TKIs alone as first-line treatment in advanced NSCLC patients with EGFR mutations and BIM deletion polymorphism. A retrospective, non-randomized analysis was conducted. BIM deletion polymorphism was detected using polymerase chain reaction (PCR) analysis and direct sequencing of DNA from peripheral blood cells. Clinical characteristics, overall survival (OS), progress-free-survival (PFS), objective response rate (ORR) and treatment-related adverse events were compared between EGFR-TKIs alone versus EGFR-TKIs plus chemotherapy group. 65 patients were enrolled. 36 of them received EGFR-TKIs and 29 received EGFR-TKIs plus chemotherapy. EGFR-TKIs plus chemotherapy had significantly higher ORR than TKIs alone (65.5% vs. 38.9%, P = 0.046). Median PFS was significantly longer in EGFR-TKIs plus chemotherapy group than in TKIs group (7.2 vs 4.7 m; P = 0.008). Median OS was numerically longer in EGFR-TKIs plus chemotherapy group than in TKIs alone (18.5 vs 14.2 m; P = 0.107). EGFR-TKIs plus chemotherapy was associated with more grade 3 or 4 hematological toxic effects than EGFR-TKIs alone. EGFR-TKIs plus chemotherapy conferred a significantly higher ORR, prolonged PFS and numerically longer OS in advanced NSCLC patients with EGFR mutation and BIM deletion polymorphism. Further prospective studies are needed to validate these findings. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. EGFR mutation testing practices within the Asia Pacific region: results of a multicenter diagnostic survey.

    PubMed

    Yatabe, Yasushi; Kerr, Keith M; Utomo, Ahmad; Rajadurai, Pathmanathan; Tran, Van Khanh; Du, Xiang; Chou, Teh-Ying; Enriquez, Ma Luisa D; Lee, Geon Kook; Iqbal, Jabed; Shuangshoti, Shanop; Chung, Jin-Haeng; Hagiwara, Koichi; Liang, Zhiyong; Normanno, Nicola; Park, Keunchil; Toyooka, Shinichi; Tsai, Chun-Ming; Waring, Paul; Zhang, Li; McCormack, Rose; Ratcliffe, Marianne; Itoh, Yohji; Sugeno, Masatoshi; Mok, Tony

    2015-03-01

    The efficacy of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in EGFR mutation-positive non-small-cell lung cancer (NSCLC) patients necessitates accurate, timely testing. Although EGFR mutation testing has been adopted by many laboratories in Asia, data are lacking on the proportion of NSCLC patients tested in each country, and the most commonly used testing methods. A retrospective survey of records from NSCLC patients tested for EGFR mutations during 2011 was conducted in 11 Asian Pacific countries at 40 sites that routinely performed EGFR mutation testing during that period. Patient records were used to complete an online questionnaire at each site. Of the 22,193 NSCLC patient records surveyed, 31.8% (95% confidence interval: 31.2%-32.5%) were tested for EGFR mutations. The rate of EGFR mutation positivity was 39.6% among the 10,687 cases tested. The majority of samples were biopsy and/or cytology samples (71.4%). DNA sequencing was the most commonly used testing method accounting for 40% and 32.5% of tissue and cytology samples, respectively. A pathology report was available only to 60.0% of the sites, and 47.5% were not members of a Quality Assurance Scheme. In 2011, EGFR mutation testing practices varied widely across Asia. These data provide a reference platform from which to improve the molecular diagnosis of NSCLC, and EGFR mutation testing in particular, in Asia.

  9. Spectrum of EGFR gene mutations in Vietnamese patients with non-small cell lung cancer.

    PubMed

    Vu, Hoang Anh; Xinh, Phan Thi; Ha, Hua Thi Ngoc; Hanh, Ngo Thi Tuyet; Bach, Nguyen Duc; Thao, Doan Thi Phuong; Dat, Ngo Quoc; Trung, Nguyen Sao

    2016-03-01

    Epidermal growth factor receptor (EGFR) mutational status is a crucial biomarker for prediction of response to tyrosine kinase inhibitors in patients with non-small cell lung cancer (NSCLC). Although these mutations have been well characterized in other countries, little is known about the frequency or spectrum of EGFR mutations in Vietnamese NSCLC patients. Using Sanger DNA sequencing, we investigated mutations in EGFR exons 18-21 from 332 patients diagnosed with NSCLC at University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam. DNA was extracted from formalin-fixed, paraffin-embedded tissues, followed by PCR amplification and sequencing. EGFR mutations were detected in 135 samples (40.7%), of which eight samples carried double mutations. In total, 46 different types of EGFR mutations were found, including six novel mutations (p.K713E, p.K714R, p.P794S, p.R803W, p.P848S, and p.K867E). Among the four exons investigated, exon 19 was most frequently mutated (63 out of 332 patients, 19%), with the p.E746_A750del appearing in 43 samples. Exon 21 was mutated in 56 samples (16.9%), of which 47 were p.L858R. Each of exons 18 and 20 was mutated in 12 samples (3.6%). The frequency of EGFR mutations was higher in females than in males (48.9% vs 35%, P = 0.012), but not statistically different between adenocarcinomas and other histological types of NSCLC (41.3% vs 34.5%, P = 0.478). DNA sequencing detected EGFR mutations with high frequency and revealed a broad spectrum of mutation type in Vietnamese patients with NSCLC. © 2015 Wiley Publishing Asia Pty Ltd.

  10. Osimertinib in Untreated EGFR-Mutated Advanced Non-Small-Cell Lung Cancer.

    PubMed

    Soria, Jean-Charles; Ohe, Yuichiro; Vansteenkiste, Johan; Reungwetwattana, Thanyanan; Chewaskulyong, Busyamas; Lee, Ki Hyeong; Dechaphunkul, Arunee; Imamura, Fumio; Nogami, Naoyuki; Kurata, Takayasu; Okamoto, Isamu; Zhou, Caicun; Cho, Byoung Chul; Cheng, Ying; Cho, Eun Kyung; Voon, Pei Jye; Planchard, David; Su, Wu-Chou; Gray, Jhanelle E; Lee, Siow-Ming; Hodge, Rachel; Marotti, Marcelo; Rukazenkov, Yuri; Ramalingam, Suresh S

    2018-01-11

    Osimertinib is an oral, third-generation, irreversible epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) that selectively inhibits both EGFR-TKI-sensitizing and EGFR T790M resistance mutations. We compared osimertinib with standard EGFR-TKIs in patients with previously untreated, EGFR mutation-positive advanced non-small-cell lung cancer (NSCLC). In this double-blind, phase 3 trial, we randomly assigned 556 patients with previously untreated, EGFR mutation-positive (exon 19 deletion or L858R) advanced NSCLC in a 1:1 ratio to receive either osimertinib (at a dose of 80 mg once daily) or a standard EGFR-TKI (gefitinib at a dose of 250 mg once daily or erlotinib at a dose of 150 mg once daily). The primary end point was investigator-assessed progression-free survival. The median progression-free survival was significantly longer with osimertinib than with standard EGFR-TKIs (18.9 months vs. 10.2 months; hazard ratio for disease progression or death, 0.46; 95% confidence interval [CI], 0.37 to 0.57; P<0.001). The objective response rate was similar in the two groups: 80% with osimertinib and 76% with standard EGFR-TKIs (odds ratio, 1.27; 95% CI, 0.85 to 1.90; P=0.24). The median duration of response was 17.2 months (95% CI, 13.8 to 22.0) with osimertinib versus 8.5 months (95% CI, 7.3 to 9.8) with standard EGFR-TKIs. Data on overall survival were immature at the interim analysis (25% maturity). The survival rate at 18 months was 83% (95% CI, 78 to 87) with osimertinib and 71% (95% CI, 65 to 76) with standard EGFR-TKIs (hazard ratio for death, 0.63; 95% CI, 0.45 to 0.88; P=0.007 [nonsignificant in the interim analysis]). Adverse events of grade 3 or higher were less frequent with osimertinib than with standard EGFR-TKIs (34% vs. 45%). Osimertinib showed efficacy superior to that of standard EGFR-TKIs in the first-line treatment of EGFR mutation-positive advanced NSCLC, with a similar safety profile and lower rates of serious adverse events. (Funded

  11. Molecular modeling and description of a newly characterized activating mutation of the EGFR gene in non-small cell lung cancer.

    PubMed

    Otto, Claudia; Csanadi, Agnes; Fisch, Paul; Werner, Martin; Kayser, Gian

    2012-10-22

    Lung cancer is the leading cause of death among malignant diseases in humans worldwide. In the last decade development of new targeted drugs for the treatment of non-small cell lung cancer proved to be a promising approach to prolong the otherwise very poor prognosis of patients with advanced UICC stages. Epidermal growth factor receptor (EGFR) has been in the focus of this lung cancer science and specific activating mutations are eligible for the treatment with specific tyrosine kinase inhibitors like gefitinib or erlotinib. Beside typical deletions in exon 19 and point mutations in exons 18 and 21 several insertions in exon 19 have been described and attributed activating properties as well. This is the first European and overall the 5th description in English literature of one of these specific insertions. To elucidate its structural changes leading to the activating properties we performed molecular modeling studies. These revealed conformational and electrostatic force field changes in the kinase domain of EGFR. To not miss uncommon mutations thorough and precise characterization of EGFR hotspots, i. e. at least exons 18, 19 and 21, should therefore be conducted to provide best medical care and to offer lung cancer patients appropriate cancer treatment. The vistual slides for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/2209889658102062.

  12. Concordant and Discordant EGFR Mutations in Patients with Multifocal Adenocarcinomas: Implications for EGFR Targeted Therapy

    PubMed Central

    Chuang, Jody C.; Shrager, Joseph B.; Wakelee, Heather A.; Neal, Joel W.

    2016-01-01

    Purpose Adenocarcinoma remains the most common subtype of lung cancer in the United States. Most patients present with tumors that are invasive and often metastatic, but some patients develop multiple precursor in-situ or minimally invasive adenocarcinoma tumors which can be synchronous and metachronous. These precursor lesions harbor the same spectrum of genetic mutations found in pure-invasive adenocarcinomas, such as EGFR, KRAS and p53 mutations. It is less clear, however, if separate lesions in patients who present with multifocal disease share common underlying genetic driver mutations. Methods Here we review the relevant literature on molecular driver alterations in adenocarcinoma precursor lesions. We then report four cases with multifocal EGFR mutant adenocarcinomas in whom we performed molecular testing on 2 separate lesions. Findings In two of these patients, the mutations are concordant, and in two cases the mutations are discordant. A review of the literature demonstrates increasing evidence that lesions with discordant mutations may confer a more favorable prognosis, since they are unlikely to represent metastases. Implications Our findings suggest that the emergence of the dominant EGFR driver alteration is often independent between lesions in patients with multifocal adenocarcinomas, and thus the same targeted therapy may not be effective for all lesions. However, genetic testing of multiple lesions can help distinguish separate primary tumors from metastatic disease. PMID:27368115

  13. Association between BIM deletion polymorphism and clinical outcome of EGFR-mutated NSCLC patient with EGFR-TKI therapy: A meta-analysis.

    PubMed

    Ma, Ji-Yong; Yan, Hai-Jun; Gu, Wei

    2015-01-01

    BIM deletion polymorphism was deemed to be associated with downregulation of BIM, resulting in a decreased apoptosis induced by epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) in EGFR mutation-positive non-small cell lung cancer (NSCLC). However, accumulating evidences concerning the association between BIM deletion polymorphism and efficacy of EGFR-TKI and survival in EGFR-mutation-driven NSCLC patient reported contradictory results. A meta-analysis was conducted by combing six original eligible studies including 871 NSCLC patients. Our study showed that BIM deletion polymorphism was significantly associated with poor response to EGFR-TKI therapy in mutant EGFRNSCLC patients (P(h) = 0.309, P(z) = 0.001, OR = 0.39, 95% confidence interval (CI) = 0.23-0.67). Disease control rate (DCR) in mutant EGFRNSCLC patient with treatment of EGFR-TKI was significantly decreased in patients with BIM deletion polymorphism comparing to patients harbored BIM wild variant (P(h) = 0.583, P(Z) = 0.007, OR = 0.46, 95%CI = 0.25-0.85). EGFR mutation-derived NSCLC patient carrying BIM deletion polymorphism had a shorter progression-free survival (PFS; P(h) < 0.001, P(z) < 0.001, hazard ratio (HR) = 1.37, 95%CI = 1.09-1.71) and overall survival (OS; P(h) = 0.90, P(z) = 0.003, HR = 1.25, 95%CI = 1.08-1.45), than those harbored BIM wild variant. These results suggested that BIM deletion polymorphism might be a cause that contributes to primary EGFR-TKI resistance, and it could be used as a genetic predictor for EGFR-TKI outcome and an independent prognostic factor of EGFR mutation-driven NSCLC patient.

  14. Unravelling signal escape through maintained EGFR activation in advanced non-small cell lung cancer (NSCLC): new treatment options

    PubMed Central

    Remon, Jordi; Besse, Benjamin

    2016-01-01

    The discovery of activating epidermal growth factor receptor (EGFR) mutations has opened up a new era in the development of more effective treatments for patients with non-small cell lung cancer (NSCLC). However, patients with EGFR-activating mutated NSCLC treated with EGFR tyrosine kinase inhibitors (TKIs) ultimately develop acquired resistance (AR). Among known cases of patients with AR, 70% of the mechanisms involved in the development of AR to EGFR TKI have been identified and may be categorised as either secondary EGFR mutations such as the T790M mutation, activation of bypass track signalling pathways such as MET amplification, or histologic transformation. EGFR-mutant NSCLC tumours maintain oncogenic addiction to the EGFR pathway beyond progression with EGFR TKI. Clinical strategies that can be implemented in daily clinical practice to potentially overcome this resistance and prolong the outcome in this subgroup of patients are presented. PMID:27843631

  15. Clinical characteristics of non-small cell lung cancer harboring mutations in exon 20 of EGFR or HER2.

    PubMed

    Takeda, Masayuki; Sakai, Kazuko; Hayashi, Hidetoshi; Tanaka, Kaoru; Tanizaki, Junko; Takahama, Takayuki; Haratani, Koji; Nishio, Kazuto; Nakagawa, Kazuhiko

    2018-04-20

    Unlike common epidermal growth factor receptor gene ( EGFR ) mutations that confer sensitivity to tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer (NSCLC), mutations in exon 20 of either EGFR or the human EGFR2 gene ( HER2 ) are associated with insensitivity to EGFR-TKIs, with treatment options for patients with such mutations being limited. Clinical characteristics, outcome of EGFR-TKI or nivolumab treatment, and the presence of coexisting mutations were reviewed for NSCLC patients with exon-20 mutations of EGFR or HER2 as detected by routine application of an amplicon-based next-generation sequencing panel. Between July 2013 and June 2017, 206 patients with pathologically confirmed lung cancer were screened for genetic alterations including HER2 and EGFR mutations. Ten patients harbored HER2 exon-20 insertions (one of whom also carried an exon-19 deletion of EGFR ), and 12 patients harbored EGFR exon-20 mutations. Five of the 13 patients with EGFR mutations were treated with EGFR-TKIs, two of whom manifested a partial response, two stable disease, and one progressive disease. Among the seven patients treated with nivolumab, one patient manifested a partial response, three stable disease, and three progressive disease, with most (86%) of these patients discontinuing treatment as a result of disease progression within 4 months. The H1047R mutation of PIK3CA detected in one patient was the only actionable mutation coexisting with the exon-20 mutations of EGFR or HER2 . Potentially actionable mutations thus rarely coexist with exon-20 mutations of EGFR or HER2 , and EGFR-TKIs and nivolumab show limited efficacy in patients with such exon-20 mutations.

  16. Osimertinib As First-Line Treatment of EGFR Mutation-Positive Advanced Non-Small-Cell Lung Cancer.

    PubMed

    Ramalingam, Suresh S; Yang, James C-H; Lee, Chee Khoon; Kurata, Takayasu; Kim, Dong-Wan; John, Thomas; Nogami, Naoyuki; Ohe, Yuichiro; Mann, Helen; Rukazenkov, Yuri; Ghiorghiu, Serban; Stetson, Daniel; Markovets, Aleksandra; Barrett, J Carl; Thress, Kenneth S; Jänne, Pasi A

    2018-03-20

    Purpose The AURA study ( ClinicalTrials.gov identifier: NCT01802632) included two cohorts of treatment-naïve patients to examine clinical activity and safety of osimertinib (an epidermal growth factor receptor [EGFR] -tyrosine kinase inhibitor selective for EGFR-tyrosine kinase inhibitor sensitizing [ EGFRm] and EGFR T790M resistance mutations) as first-line treatment of EGFR-mutated advanced non-small-cell lung cancer (NSCLC). Patients and Methods Sixty treatment-naïve patients with locally advanced or metastatic EGFRm NSCLC received osimertinib 80 or 160 mg once daily (30 patients per cohort). End points included investigator-assessed objective response rate (ORR), progression-free survival (PFS), and safety evaluation. Plasma samples were collected at or after patients experienced disease progression, as defined by Response Evaluation Criteria in Solid Tumors (RECIST), to investigate osimertinib resistance mechanisms. Results At data cutoff (November 1, 2016), median follow-up was 19.1 months. Overall ORR was 67% (95% CI, 47% to 83%) in the 80-mg group, 87% (95% CI, 69% to 96%) in the 160-mg group, and 77% (95% CI, 64% to 87%) across doses. Median PFS time was 22.1 months (95% CI, 13.7 to 30.2 months) in the 80-mg group, 19.3 months (95% CI, 13.7 to 26.0 months) in the 160-mg group, and 20.5 months (95% CI, 15.0 to 26.1 months) across doses. Of 38 patients with postprogression plasma samples, 50% had no detectable circulating tumor DNA. Nine of 19 patients had putative resistance mechanisms, including amplification of MET (n = 1); amplification of EGFR and KRAS (n = 1); MEK1, KRAS, or PIK3CA mutation (n = 1 each); EGFR C797S mutation (n = 2); JAK2 mutation (n = 1); and HER2 exon 20 insertion (n = 1). Acquired EGFR T790M was not detected. Conclusion Osimertinib demonstrated a robust ORR and prolonged PFS in treatment-naïve patients with EGFRm advanced NSCLC. There was no evidence of acquired EGFR T790M mutation in postprogression plasma samples.

  17. Treating EGFR mutation resistance in non-small cell lung cancer - role of osimertinib.

    PubMed

    Mazza, Valentina; Cappuzzo, Federico

    2017-01-01

    The discovery of mutations in EGFR significantly changed the treatment paradigm of patients with EGFR -mutant non-small cell lung cancer (NSCLC), a particular group of patients with different clinical characteristics and outcome to EGFR -wild-type patients. In these patients, the treatment of choice as first-line therapy is first- or second-generation EGFR-tyrosine kinase inhibitors (EGFR-TKIs), such as gefitinib, erlotinib, or afatinib. Inevitably, after the initial response, all patients become refractory to these drugs. The most common mechanism of acquired resistance to EGFR-TKIs is the development of a second mutation in exon 20 of EGFR ( T790M ). Osimertinib is a third-generation EGFR-TKI designed for overcoming T790M -mediated resistance. Based on the results of efficacy and tolerability of Phase II and Phase III studies, osimertinib has been approved for treatment of advanced EGFR T790M+ mutation NSCLC following progression on a prior EGFR-TKI. Occurrence of acquired resistance to osimertinib represents an urgent need for additional strategies including combination with other agents, such as other targeted therapies or checkpoint inhibitors, or development of new and more potent compounds.

  18. A regional analysis of epidermal growth factor receptor (EGFR) mutated lung cancer for HSE South.

    PubMed

    Kelly, D; Mc Sorley, L; O'Shea, E; Mc Carthy, E; Bowe, S; Brady, C; Sui, J; Dawod, M A; O'Brien, O; Graham, D; McCarthy, J; Burke, L; Power, D; O'Reilly, S; Bambury, R M; Mahony, D O

    2017-11-01

    EGFR mutated lung cancer represents a subgroup with distinct clinical presentations, prognosis, and management requirements. We investigated the survival, prognostic factors, and real-world treatment of NSCLC patients with EGFR mutation in clinical practice. A retrospective review of all specimens sent for EGFR analysis from December 2009 to September 2015 was performed. Patient demographics, specimen type, EGFR mutation status/type, stage at diagnosis, treatment, response rate, and survival data were recorded. 27/334 (8%) patient specimens sent for EGFR testing tested positive for a sensitising EGFR mutation. The median age was 65 years (40-85 years). Exon 19 deletion represented the most commonly detected alteration, accounting for 39% (n = 11). First-line treatment for those with Exon 18, 19, or 21 alterations (n = 24) was with an EGFR tyrosine kinase inhibitor (TKI) in 79% (n = 19). Objective response rate among these patients was 74% and median duration of response was 13 months (range 7-35 months). The incidence of EGFR mutation in our cohort of NSCLC is 9% which is consistent with mutation incidence reported in other countries. The rate of EGFR mutation in our population is slightly below that reported internationally, but treatment outcomes are consistent with published data. Real-world patient data have important contributions to make with regard to quality measurement, incorporating patient experience into guidelines and identifying safety signals.

  19. The frequency of EGFR and KRAS mutations in non-small cell lung cancer (NSCLC): routine screening data for central Europe from a cohort study

    PubMed Central

    Boch, Christian; Kollmeier, Jens; Roth, Andreas; Stephan-Falkenau, Susann; Misch, Daniel; Grüning, Wolfram; Bauer, Torsten Thomas; Mairinger, Thomas

    2013-01-01

    Objectives Owing to novel therapy strategies in epidermal growth factor receptor (EGFR)-mutated patients, molecular analysis of the EGFR and KRAS genome has become crucial for routine diagnostics. Till date these data have been derived mostly from clinical trials, and thus collected in pre-selected populations. We therefore screened ‘allcomers’ with a newly diagnosed non-small cell lung carcinoma (NSCLC) for the frequencies of these mutations. Design A cohort study. Setting Lung cancer centre in a tertiary care hospital. Participants Within 15 months, a total of 552 cases with NSCLC were eligible for analysis. Primary and secondary outcome measures Frequency of scrutinising exons 18, 19 and 21 for the presence of activating EGFR mutation and secondary codon 12 and 13 for activating KRAS mutations. Results Of the 552 patients, 27 (4.9%) showed a mutation of EGFR. 19 of these patients (70%) had deletion E746-A750 in codon 19 or deletion L858R in codon 21. Adenocarcinoma (ACA) was the most frequent histology among patients with EGFR mutations (ACA, 22/254 (8.7%) vs non-ACA, 5/298 (1.7%); p<0.001). Regarding only ACA, the percentage of EGFR mutations was higher in women (16/116 (14%) women vs 6/138 (4.3%) men; p=0.008). Tumours with an activating EGFR mutation were more likely to be from non-smokers (18/27; 67%) rather than smoker (9/27; 33%). KRAS mutation was present in 85 (15%) of all cases. In 73 patients (86%), the mutation was found in exon 12 and in 12 cases (14%) in exon 13. Similarly, ACA had a higher frequency of KRAS mutations than non-ACA (67/254 (26%) vs 18/298 (6.0%); p<0.001). Conclusions We found a lower frequency for EGFR and KRAS mutations in an unselected Caucasian patient cohort as previously published. Taking our results into account, clinical trials may overestimate the mutation frequency for EGFR and KRAS in NSCLC due to important selection biases. PMID:23558737

  20. Mutation abundance affects the therapeutic efficacy of EGFR-TKI in patients with advanced lung adenocarcinoma: A retrospective analysis.

    PubMed

    Wang, Huijuan; Zhang, Mina; Tang, Wanyu; Ma, Jie; Wei, Bing; Niu, Yuanyuan; Zhang, Guowei; Li, Peng; Yan, Xiangtao; Ma, Zhiyong

    2018-03-22

    To investigate the influence of mutation abundance and sites of epidermal growth factor receptor (EGFR) on therapeutic efficacies of EGFR-tyrosine kinase inhibitor (EGFR-TKIs) treatments of patients with advanced non-small cell lung carcinoma (NSCLC). EGFR mutational sites and mutation abundance were analyzed by amplification refractory mutation system (ARMS) in paraffin-embedded tissue sections taken from primary or metastatic tumors of 194 NSCLC patients. The median progression-free survival (PFS) time of the enrolled patients was 9.3 months (95% CI, 8.2-10.8 months). The PFS was significantly different with EGFR gene mutation abundance after EGFR-TKI therapy (P = 0.014). The median PFS was significantly longer when the cut-off value of EGFR mutation abundance of exon 19 or exon 21, and solely exon 19 was > 26.7% and 61.8%, respectively. For patients who received EGFR-TKI as first-line treatment, the median PFS was significantly longer in the high mutation abundance group than in the low mutation abundance group (12.7 vs 8.7 months, P = 0.002). The PFS benefits were greater in patients with a higher abundance of exon 19 deletion mutations in the EGFR gene after EGFR-TKI treatment and first line EGFR-TKI treatment led to improved PFS in high mutation abundance patients.

  1. Brief report: EGFR L858M/L861Q cis mutations confer selective sensitivity to afatinib

    PubMed Central

    Saxon, Jamie A.; Sholl, Lynette M.; Jänne, Pasi A.

    2017-01-01

    Introduction Tyrosine kinase inhibitors (TKIs) have been developed to treat patients with epidermal growth factor receptor (EGFR)-mutant lung cancers. However, the therapeutic efficacy of TKIs in patients with uncommon EGFR mutations remains unclear. Methods Next-generation sequencing was performed on a patient’s lung adenocarcinoma tumor sample, revealing rare combined in cis (on the same allele) EGFR mutations. Stable Ba/F3 and NIH-3T3 cell lines harboring the mutations were established to investigate the effect of first, second, and third generation EGFR TKIs on cell proliferation by MTS assay and EGFR phosphorylation by Western blotting. Results EGFR L858M/L861Q mutations in cis were detected in a non-small cell lung cancer patient’s tumor. The patient demonstrated primary resistance to erlotinib and was subsequently treated with afatinib, which caused tumor regression. In in vitro studies, first and third generation TKIs exhibited a decreased capacity to prevent EGFR phosphorylation and inhibit cell proliferation in EGFR L858M/L861Q cells compared to cells harboring the common EGFR L858R point mutation. In contrast, afatinib treatment reduced proliferation and inhibited EGFR phosphorylation in L858M/L861Q and L858R mutant cells at similar concentrations. Conclusions Afatinib may be a beneficial therapeutic option for a subset of lung cancer patients with rare EGFR mutations in their tumors. Understanding how uncommon mutations affect protein structure and TKI binding will be important for identifying effective targeted therapies for these patients. PMID:28088511

  2. Emergence of EGFR G724S mutation in EGFR-mutant lung adenocarcinoma post progression on osimertinib.

    PubMed

    Oztan, A; Fischer, S; Schrock, A B; Erlich, R L; Lovly, C M; Stephens, P J; Ross, J S; Miller, V; Ali, S M; Ou, S-H I; Raez, L E

    2017-09-01

    Mutations in the epidermal growth factor receptor (EGFR) are drivers for a subset of lung cancers. Osimertinib is a third-generation tyrosine kinase inhibitor (TKI) recently approved for the treatment of T790M-positive non-small cell lung cancer (NSCLC); however, acquired resistance to osimertinib is evident and resistance mechanisms remain incompletely defined. The EGFR G724S mutation was detected using hybrid-capture based comprehensive genomic profiling (CGP) and a hybrid-capture based circulating tumor DNA (ctDNA) assays in two cases of EGFR-driven lung adenocarcinoma in patients who had progressed on osimertinib treatment. This study demonstrates the importance of both tissue and blood based hybrid-capture based genomic profiling at disease progression to identifying novel resistance mechanisms in the clinic. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Efficacy and safety of cytotoxic drug chemotherapy after first-line EGFR-TKI treatment in elderly patients with non-small-cell lung cancer harboring sensitive EGFR mutations.

    PubMed

    Imai, Hisao; Minemura, Hiroyuki; Sugiyama, Tomohide; Yamada, Yutaka; Kaira, Kyoichi; Kanazawa, Kenya; Kasai, Takashi; Kaburagi, Takayuki; Minato, Koichi

    2018-05-08

    Epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) is effective as first-line chemotherapy for patients with advanced non-small-cell lung cancer (NSCLC) harboring sensitive EGFR mutations. However, whether the efficacy of second-line cytotoxic drug chemotherapy after first-line EGFR-TKI treatment is similar to that of first-line cytotoxic drug chemotherapy in elderly patients aged ≥ 75 years harboring sensitive EGFR mutations is unclear. Therefore, we aimed to investigate the efficacy and safety of cytotoxic drug chemotherapy after first-line EGFR-TKI treatment in elderly patients with NSCLC harboring sensitive EGFR mutations. We retrospectively evaluated the clinical effects and safety profiles of second-line cytotoxic drug chemotherapy after first-line EGFR-TKI treatment in elderly patients with NSCLC harboring sensitive EGFR mutations (exon 19 deletion/exon 21 L858R mutation). Between April 2008 and December 2015, 78 elderly patients with advanced NSCLC harboring sensitive EGFR mutations received first-line EGFR-TKI at four Japanese institutions. Baseline characteristics, regimens, responses to first- and second-line treatments, whether or not patients received subsequent treatment, and if not, the reasons for non-administration were recorded. Overall, 20 patients with a median age of 79.5 years (range 75-85 years) were included in our analysis. The overall response, disease control, median progression-free survival, and overall survival rates were 15.0, 60.0%, 2.4, and 13.2 months, respectively. Common adverse events included leukopenia, neutropenia, anemia, thrombocytopenia, malaise, and anorexia. Major grade 3 or 4 toxicities included leukopenia (25.0%) and neutropenia (45.0%). No treatment-related deaths were noted. Second-line cytotoxic drug chemotherapy after first-line EGFR-TKI treatment among elderly patients with NSCLC harboring sensitive EGFR mutations was effective and safe and showed equivalent outcomes to first

  4. The safety and efficacy of osimertinib for the treatment of EGFR T790M mutation positive non-small-cell lung cancer

    PubMed Central

    Gao, Xin; Le, Xiuning; Costa, Daniel B.

    2016-01-01

    First- and second-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are the evidence-based first-line treatment for metastatic non-small-cell lung cancers (NSCLCs) that harbor sensitizing EGFR mutations (i.e., exon 19 deletions or L858R). However, acquired resistance to EGFR TKI monotherapy occurs invariably within a median time frame of one year. The most common form of biological resistance is through the selection of tumor clones harboring the EGFR T790M mutation, present in >50% of repeat biopsies. The presence of the EGFR T790M mutation negates the inhibitory activity of gefitinib, erlotinib, and afatinib. A novel class of third-generation EGFR TKIs has been identified by probing a series of covalent pyrimidine EGFR inhibitors that bind to amino-acid residue C797 of EGFR and preferentially inhibit mutant forms of EGFR versus the wild-type receptor. We review the rapid clinical development and approval of the third-generation EGFR TKI osimertinib for treatment of NSCLCs with EGFR-T790M. PMID:26943236

  5. Functional cooperation between HIF-1α and c-Jun in mediating primary and acquired resistance to gefitinib in NSCLC cells with activating mutation of EGFR.

    PubMed

    Meng, Shuyan; Wang, Guorui; Lu, Yang; Fan, Zhen

    2018-07-01

    Hypoxia-inducible factor 1 (HIF-1) and activator protein 1 (AP-1) are important transcription factors regulating expression of genes involved in cell survival. HIF-1α and c-Jun are key components of HIF-1 and AP-1, respectively, and are regulated by epidermal growth factor receptor (EGFR)-mediated cell signaling and tumor microenvironmental cues. The roles of HIF-1α and c-Jun in development of resistance to EGFR tyrosine kinase inhibitor (TKI) in non-small cell lung cancer (NSCLC) with activating mutation of EGFR have not been explored. In this study, we investigated the roles of HIF-1α and c-Jun in mediating primary and acquired resistance to gefitinib in NSCLC cells with activating mutation of EGFR. Changes in HIF-1α protein and in total and phosphorylated c-Jun levels in relation to changes in total and phosphorylated EGFR levels before and after gefitinib treatment were measured using Western blot analysis in NSCLC cells sensitive or resistant to gefitinib. The impact of overexpression of a constitutively expressed HIF-1α (HIF-1α/ΔODD) or a constitutively active c-Jun upstream regulator (SEK1 S220E/T224D mutant) on cell response to gefitinib was also examined. The effect of pharmacological inhibition of SEK1-JNK-c-Jun pathway on cell response to gefitinib was evaluated. Downregulation of HIF-1α and total and phosphorylated c-Jun levels correlated with cell inhibitory response to gefitinib better than decrease in phosphorylated EGFR did in NSCLC cells with intrinsic or acquired resistance to gefitinib. Overexpression of HIF-1α/ΔODD or SEK1 S220E/T224D mutant conferred resistance to gefitinib. There exists a positive feed-forward regulation loop between HIF-1 and c-Jun. The JNK inhibitor SP600125 sensitized gefitinib-resistant NSCLC cells to gefitinib. HIF-1α and c-Jun functionally cooperate in development of resistance to gefitinib in NSCLC cells. The translational value of inhibiting HIF-1α/c-Jun cooperation in overcoming resistance to EGFR TKI

  6. The Emergent Landscape of Detecting EGFR Mutations Using Circulating Tumor DNA in Lung Cancer

    PubMed Central

    Wei, Fang; Wong, David T.; Su, Wu-Chou

    2015-01-01

    The advances in targeted therapies for lung cancer are based on the evaluation of specific gene mutations especially the epidermal growth factor receptor (EGFR). The assays largely depend on the acquisition of tumor tissue via biopsy before the initiation of therapy or after the onset of acquired resistance. However, the limitations of tissue biopsy including tumor heterogeneity and insufficient tissues for molecular testing are impotent clinical obstacles for mutation analysis and lung cancer treatment. Due to the invasive procedure of tissue biopsy and the progressive development of drug-resistant EGFR mutations, the effective initial detection and continuous monitoring of EGFR mutations are still unmet requirements. Circulating tumor DNA (ctDNA) detection is a promising biomarker for noninvasive assessment of cancer burden. Recent advancement of sensitive techniques in detecting EGFR mutations using ctDNA enables a broad range of clinical applications, including early detection of disease, prediction of treatment responses, and disease progression. This review not only introduces the biology and clinical implementations of ctDNA but also includes the updating information of recent advancement of techniques for detecting EGFR mutation using ctDNA in lung cancer. PMID:26448936

  7. Frequency of EGFR T790M mutation and multimutational profiles of rebiopsy samples from non-small cell lung cancer developing acquired resistance to EGFR tyrosine kinase inhibitors in Japanese patients.

    PubMed

    Ko, Ryo; Kenmotsu, Hirotsugu; Serizawa, Masakuni; Koh, Yasuhiro; Wakuda, Kazushige; Ono, Akira; Taira, Tetsuhiko; Naito, Tateaki; Murakami, Haruyasu; Isaka, Mitsuhiro; Endo, Masahiro; Nakajima, Takashi; Ohde, Yasuhisa; Yamamoto, Nobuyuki; Takahashi, Kazuhisa; Takahashi, Toshiaki

    2016-11-08

    The majority of non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutation eventually develop resistance to EGFR tyrosine kinase inhibitors (TKIs). Minimal information exists regarding genetic alterations in rebiopsy samples from Asian NSCLC patients who develop acquired resistance to EGFR-TKIs. We retrospectively reviewed the medical records of patients with NSCLC harboring EGFR mutations who had undergone rebiopsies after developing acquired resistance to EGFR-TKIs. We analyzed 27 practicable samples using a tumor genotyping panel to assess 23 hot-spot sites of genetic alterations in nine genes (EGFR, KRAS, BRAF, PIK3CA, NRAS, MEK1, AKT1, PTEN, and HER2), gene copy number of EGFR, MET, PIK3CA, FGFR1, and FGFR2, and ALK, ROS1, and RET fusions. Additionally, 34 samples were analyzed by commercially available EGFR mutation tests. Sixty-one patients underwent rebiopsy. Twenty-seven samples were analyzed using our tumor genotyping panel, and 34 samples were analyzed for EGFR mutations only by commercial clinical laboratories. Twenty-one patients (34 %) had EGFR T790M mutation. Using our tumor genotyping panel, MET gene copy number gain was observed in two of 27 (7 %) samples. Twenty patients received continuous treatment with EGFR-TKIs even after disease progression, and 11 of these patients had T790M mutation in rebiopsy samples. In contrast, only 10 of 41 patients who finished EGFR-TKI treatment at disease progression had T790M mutation. The frequency of T790M mutation in patients who received continuous treatment with EGFR-TKIs after disease progression was significantly higher than that in patients who finished EGFR-TKI treatment at disease progression (55 % versus 24 %, p = 0.018). The frequency of T790M mutation in this study was lower than that in previous reports examining western patients. These results suggest that continuous treatment with EGFR-TKI after disease progression may enhance the frequency of EGFR T

  8. EGFR, KRAS, and BRAF mutational profiles of female patients with micropapillary predominant invasive lung adenocarcinoma

    PubMed

    Demirağ, Funda; Yılmaz, Aydın; Yılmaz Demirci, Nilgün; Yılmaz, Ülkü; Erdoğan, Yurdanur

    2017-11-13

    Background/aim: This study aimed to analyze EGFR, KRAS, and BRAF mutations in females with micropapillary predominant invasive lung adenocarcinoma and their relationships with immunohistochemical and clinicopathological patterns.Materials and methods: A total of 15 females with micropapillary lung adenocarcinoma were selected. Mutational analysis of the EGFR, KRAS, and BRAF genes was carried out. Information regarding the demographic data, tumor size, treatment, and survival time for each patient was collated, and the predominant cell type, secondary architectural growth patterns, psammoma bodies, necrosis, and visceral pleural and angiolymphatic invasions were evaluated.Results: We identified EGFR mutation in six cases, KRAS mutation in three cases, and BRAF mutation in one case. EGFR, c-kit, VEGFR, and bcl-2 positivity was observed in ten, seven, four, and six cases, respectively. All cases were positive for VEGF (strong positivity in 11 cases and weak positivity in four cases) and bcl-2 (strong positivity in nine cases and weak positivity in six cases). Seven (46.6%) cases were positive for c-kit and 10 (66.6%) cases were positive for EGFR. Conclusion: EGFR mutation occurred at a higher incidence rate in micropapillary predominant invasive adenocarcinoma than has previously been found in conventional lung adenocarcinomas. KRAS mutation was observed as having a similar frequency to what was previously observed, but the frequency of BRAF mutation was lower than previously reported.

  9. Multiplex Ultrasensitive Genotyping of Patients with Non-Small Cell Lung Cancer for Epidermal Growth Factor Receptor (EGFR) Mutations by Means of Picodroplet Digital PCR.

    PubMed

    Watanabe, Masaru; Kawaguchi, Tomoya; Isa, Shun-Ichi; Ando, Masahiko; Tamiya, Akihiro; Kubo, Akihito; Saka, Hideo; Takeo, Sadanori; Adachi, Hirofumi; Tagawa, Tsutomu; Kawashima, Osamu; Yamashita, Motohiro; Kataoka, Kazuhiko; Ichinose, Yukito; Takeuchi, Yukiyasu; Watanabe, Katsuya; Matsumura, Akihide; Koh, Yasuhiro

    2017-07-01

    Epidermal growth factor receptor (EGFR) mutations have been used as the strongest predictor of effectiveness of treatment with EGFR tyrosine kinase inhibitors (TKIs). Three most common EGFR mutations (L858R, exon 19 deletion, and T790M) are known to be major selection markers for EGFR-TKIs therapy. Here, we developed a multiplex picodroplet digital PCR (ddPCR) assay to detect 3 common EGFR mutations in 1 reaction. Serial-dilution experiments with genomic DNA harboring EGFR mutations revealed linear performance, with analytical sensitivity ~0.01% for each mutation. All 33 EGFR-activating mutations detected in formalin-fixed paraffin-embedded (FFPE) tissue samples by the conventional method were also detected by this multiplex assay. Owing to the higher sensitivity, an additional mutation (T790M; including an ultra-low-level mutation, <0.1%) was detected in the same reaction. Regression analysis of the duplex assay and multiplex assay showed a correlation coefficient (R 2 ) of 0.9986 for L858R, 0.9844 for an exon 19 deletion, and 0.9959 for T790M. Using ddPCR, we designed a multiplex ultrasensitive genotyping platform for 3 common EGFR mutations. Results of this proof-of-principle study on clinical samples indicate clinical utility of multiplex ddPCR for screening for multiple EGFR mutations concurrently with an ultra-rare pretreatment mutation (T790M). Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  10. EGFR TKIs plus WBRT Demonstrated No Survival Benefit Other Than That of TKIs Alone in Patients with NSCLC and EGFR Mutation and Brain Metastases.

    PubMed

    Jiang, Tao; Su, Chunxia; Li, Xuefei; Zhao, Chao; Zhou, Fei; Ren, Shengxiang; Zhou, Caicun; Zhang, Jun

    2016-10-01

    Whether EGFR tyrosine kinase inhibitors (TKIs) plus whole brain radiation therapy (WBRT) provide a better survival benefit than EGFR TKIs alone remains undetermined in patients with NSCLC with EGFR mutation and brain metastases (BMs). A total of 230 patients with NSCLC with EGFR mutation and BM were identified. Within this group, 116 patients received EGFR TKIs alone (as first-line therapy in 91 cases) and 51 patients received EGFR TKIs plus WBRT therapy (as first-line treatment in 30 cases). Compared with TKIs alone, EGFR TKIs plus WBRT had no superior intracranial progression-free survival (PFS) (6.9 versus 7.4 months [p = 0.232]) and systemic PFS (7.5 versus 7.9 months [p = 0.546]) but were associated with worse overall survival (OS) (21.6 versus 26.4 months [p = 0.049]) in NSCLC with EGFR mutation and BM. Chemotherapy plus WBRT was shown to have an intracranial PFS (5.2 versus 5.9 months [p = 0.339]) and OS (10.5 versus 11.0 months [p = 0.977]) similar to those with chemotherapy alone in patients with EGFR of unknown or wild-type status. In multivariate analysis, EGFR mutation was found to be an independent risk factor for BM (hazard ratio = 1.476, p = 0.039) and also a significant independent prognostic factor for OS in patients with NSCLC with BM (hazard ratio = 0.601, p = 0.028). The addition of WBRT to EGFR TKIs did not appear to have survival benefit superior to that of EGFR TKIs alone in with EGFR-mutant NSCLC with BM. WBRT also did not bring additional benefit to chemotherapy in patients with BM and EGFR of wild-type or unknown status. Copyright © 2016 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  11. [Lung adenocarcinoma with concomitant EGFR mutation and ALK rearrangement].

    PubMed

    Caliez, J; Monnet, I; Pujals, A; Rousseau-Bussac, G; Jabot, L; Boudjemaa, A; Leroy, K; Chouaid, C

    2017-05-01

    Among patients with non-small-cell lung cancer, coexistence of EGFR mutation and ALK rearrangement is rare. We describe the clinical features of two patients with this double anomaly. A 62-year-old Caucasian non-smoking woman was diagnosed with cT4N0M0 lung adenocarcinoma. Initial biopsy showed EGFR mutation and ALK rearrangement. She received cisplatin-gemcitabine, followed by 17 months of gemcitabine. Owing to progression, she received erlotinib for 14 months, then paclitaxel for 6 months and finally crizotinib. A partial response was achieved and maintained for 24 months. A 45-year-old Caucasian woman, light smoker, was diagnosed with cT2N3M0 lung adenocarcinoma. Only EGFR mutation was found on initial analysis. She underwent treatment with cisplatin-gemcitabine and thoracic radiotherapy. Progression occurred after 8 months and afatinbib was started. Eight months later, progression was observed with a neoplasic pleural effusion in which tumor cells expressing ALK rearrangement were found. A new FISH analysis was performed on the initial tumor but did not find this rearrangement. Despite a third line of crizotinib, the patient died one month later. The literature shows 45 other cases of these two abnormalities, observed either from the start or during follow-up. EGFR's TKI were almost always given before ALK's TKI. Therapeutic strategy needs to be clarified in cases of double alteration. With regard to the second patient, appearance of ALK rearrangement may constitute a resistance mechanism to EGFR's TKI. Copyright © 2016 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  12. EGFR Somatic Mutations in Lung Tumors: Radon Exposure and Passive-smoking in Former- and Never-smoking U.S. Women

    PubMed Central

    Taga, Masataka; Mechanic, Leah E.; Hagiwara, Nobutoshi; Vähäkangas, Kirsi H.; Bennett, William P.; Alavanja, Michael C. R.; Welsh, Judith A.; Khan, Mohammed A.; Lee, Adam; Diasio, Robert; Edell, Eric; Bungum, Aaron; Jang, Jin Sung; Yang, Ping; Jen, Jin; Harris, Curtis C.

    2012-01-01

    Background Lung cancer patients with mutations in EGFR tyrosine kinase have improved prognosis when treated with EGFR inhibitors. We hypothesized that EGFR mutations may be related to residential radon or passive tobacco smoke. Methods This hypothesis was investigated by analyzing EGFR mutations in seventy lung tumors from a population of never and long-term former female smokers from Missouri with detailed exposure assessments. The relationship with passive-smoking was also examined in never-smoking female lung cancer cases from the Mayo clinic. Results Overall, the frequency of EGFR mutation was 41% [95% Confidence Interval (CI): 32-49%]. Neither radon nor passive-smoking exposure was consistently associated with EGFR mutations in lung tumors. Conclusions The results suggest that EGFR mutations are common in female, never-smoking, lung cancer cases from the U.S, and EGFR mutations are unlikely due to exposure to radon or passive-smoking. PMID:22523180

  13. Sex-specific incidence of EGFR mutation and its association with age and obesity in lung adenocarcinomas: a retrospective analysis.

    PubMed

    Kim, Hye-Ryoun; Kim, Seo Yun; Kim, Cheol Hyeon; Yang, Sung Hyun; Lee, Jae Cheol; Choi, Chang-Min; Na, Im Il

    2017-11-01

    Age and obesity are well-known risk factors for various cancers, but the potential roles of age and obesity in lung cancer, especially in those with activating EGFR mutations, have not been thoroughly evaluated. The aim of this retrospective study is to evaluate the associations between the sex-specific incidence of EGFR mutations and age and obesity. We conducted a retrospective study based on the data from 1378 lung adenocarcinoma cases. The degree of obesity was categorized by body mass index (BMI). The associations between EGFR mutational status and clinical factors, including stage, smoking history, age group (≤45 years, 46-55, 56-65 and >65), and BMI group (<18.5 kg/m 2 , 18.5-22.9, 23.0-24.9 and ≥25.0) were analyzed using logistic regression models for each sex. In men, the incidence of EGFR mutation was inversely associated with age (adjusted odds ratio [OR] for age group = 0.76, p-trend = 0.003) and positively associated with obesity (adjusted OR for BMI group = 1.23, p-trend = 0.04). In contrast, in women, the incidence of EGFR mutation was positively associated with age (adjusted OR for age group = 1.19, p-trend = 0.02). However, the incidence of EGFR mutation was not statistically associated with obesity (adjusted OR for BMI group = 1.03, p-trend = 0.76). Our data suggests that age and obesity may contribute to the sex-specific incidence of EGFR mutation in lung adenocarcinoma in different manners.

  14. Functional mutation analysis of EGFR family genes and corresponding lymph node metastases in head and neck squamous cell carcinoma.

    PubMed

    Hama, Takanori; Yuza, Yuki; Suda, Toshihito; Saito, Yoshimichi; Norizoe, Chihiro; Kato, Takakuni; Moriyama, Hiroshi; Urashima, Mitsuyoshi

    2012-01-01

    Tumors with certain mutations in the epidermal growth factor receptor (EGFR) family genes dramatically respond to EGFR inhibitors. Therefore, these mutations are important factors that influence disease progression and patient survival. We previously studied the mutation status of EGFR in patients with head and neck squamous cell carcinoma (HNSCC). However, the mutation status of lymph node metastases and the frequency of mutations in EGFR family genes have not been extensively studied. In this study, we sequenced the catalytic domains of the three other members of the EGFR family, HER2, HER3, and HER4 in 92 clinical samples of HNSCC. We identified a HER2 mutation (K716E) in one sample but no mutations were found in HER3 or HER4. Next to investigate the relationship between EGFR mutations and tumor metastasis, we compared the DNA sequences of the EGFR gene between the primary tumor and the lymph node metastasis in 31 clinical samples. Only one of the patients with an EGFR mutation in the primary HNSCC carried the same mutation (L858R) in the lymph node metastasis. Finally, we explored the tumorigenic potential of the EGFR mutations that we had previously identified and their sensitivity to two different EGFR tyrosine kinase inhibitors (CL-387785, OSI-420). Ba/F3 cells transformed with mutant EGFR genes were sensitive to treatment with lower concentrations of CL-387785 than of OSI-420. These results contribute to our understanding of the genetic basis of drug sensitivity and will help design drugs that specifically target different subtypes of HNSCC.

  15. EGFR Mutation Analysis for Prospective Patient Selection in Two Phase II Registration Studies of Osimertinib.

    PubMed

    Jenkins, Suzanne; Chih-Hsin Yang, James; Jänne, Pasi A; Thress, Kenneth S; Yu, Karen; Hodge, Rachel; Weston, Susie; Dearden, Simon; Patel, Sabina; Cantarini, Mireille; Shepherd, Frances A

    2017-08-01

    Osimertinib is an oral, central nervous system-active, EGFR tyrosine kinase inhibitor (TKI) for the treatment of EGFR T790M-positive advanced NSCLC. Here we have evaluated EGFR mutation frequencies in two phase II studies of osimertinib (AURA extension and AURA2). After progression while receiving their latest line of therapy, patients with EGFR mutation-positive advanced NSCLC provided tumor samples for mandatory central T790M testing for the study selection criteria. Tumor tissue mutation analysis for patient selection was performed with the Roche cobas EGFR Mutation Test (European Conformity-in vitro diagnostic, labeled investigational use only) (Roche Molecular Systems, Pleasanton, CA). Patients should not have been prescreened for T790M mutation status. The cobas test results were compared with those of the MiSeq next-generation sequencing system (Illumina, San Diego, CA), which was used as a reference method. Samples from 324 and 373 patients screened for AURA extension and AURA2, respectively, produced valid cobas test results. The T790M detection rates were similar between AURA extension and AURA2 (64% and 63%, respectively). The pooled T790M rate was 63%, with no difference by ethnicity (63% for Asian and non-Asian patients alike) or immediately prior treatment with an EGFR TKI (afatinib, 69%; erlotinib, 69%; and gefitinib, 63%). A higher proportion of patients had T790M detected against a background of exon 19 deletions versus L858R mutation (73% versus 58% [p = 0.0002]). In both trials the cobas test demonstrated high sensitivity (positive percent agreement) and specificity (negative percent agreement) for T790M detection when compared with the next-generation sequencing reference method: positive percent agreement of 91% versus 89% and negative percent agreement of 97% versus 98%. In both trials, the rate of detection of T790M mutation in patients with advanced NSCLC was approximately 63% and was unaffected by immediately prior treatment with an

  16. Osimertinib, a third-generation tyrosine kinase inhibitor targeting non-small cell lung cancer with EGFR T790M mutations.

    PubMed

    McCoach, C E; Jimeno, A

    2016-10-01

    Oncogenic driver mutations in the epidermal growth factor receptor (EGFR) gene have provided a focus for effective targeted therapy. Unfortunately, all patients eventually develop resistance to frontline therapy with EGFR tyrosine kinase inhibitors (TKIs). The majority of patients develop a large subclonal population of tumor cells with a T790M mutation that renders these cells resistant to first-generation TKIs. Osimertinib is a third-generation EGFR TKI that was designed to overcome resistance from T790M mutations. This agent has demonstrated strong preclinical activity, and in the clinic it has demonstrated a high objective response rate and progression-free survival in patients with EGFR double mutations (L858R/T790M and exon 19 deletion/T790M). It is now approved by the FDA for patients who have a documented T790M mutation and who have progressed on a prior TKI. Osimertinib is also approved in the E.U. and Japan. Copyright 2016 Prous Science, S.A.U. or its licensors. All rights reserved.

  17. Clinical efficacy of icotinib in lung cancer patients with different EGFR mutation status: a meta-analysis

    PubMed Central

    Xu, Ping; Xiang, Da-Xiong; Yang, Rui; Wei, Wei; Qu, Qiang

    2017-01-01

    Icotinib is a novel and the third listed epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs), which exerts a good anti-tumor efficacy on non-small cell lung cancer (NSCLC). The efficacy of EGFR-TKIs has been shown to be associated with the EGFR mutation status, especially exon 19 deletion (19Del) and exon 21 L858R mutation. Therefore, a meta-analysis was performed to assess the efficacy of icotinib in NSCLC patients harboring EGFR mutations (19Del or L858R) and wild type (19Del and L858R loci wild type). A total of 24 studies were included for comparing the objective response rate (ORR) in the EGFR wild type and mutant patients treated with icotinib. The ORRs of EGFR mutant patients (19Del or L858R) are better than those of EGFR wild type patients (OR = 7.03(5.09–9.71), P < 0.00001). The pooling ORs from 21 studies on the disease control rate (DCR) in EGFR mutant patients are better than those of EGFR wild type patients (OR = 10.54(5.72–19.43), P < 0.00001). Moreover, the ORRs of EGFR 19Del patients are better than those of EGFR L858R patients after pooling ORs of 12 studies (OR = 2.04(1.12–3.73), P = 0.019). However, there was no significant difference on DCRs of EGFR 19Del patients and those of EGFR L858R patients (OR = 2.01(0.94–4.32), P = 0.072). Our findings indicated that compared with EGFR wild type patients, EGFR mutant patients have better ORRs and DCRs after icotinib treatment; EGFR 19Del patients treated with icotinib have better ORRs than EGFR L858R patients. EGFR mutation status is a useful biomarker for the evaluation of icotinib efficacy in NSCLC patients. PMID:28430623

  18. Clinical efficacy of icotinib in lung cancer patients with different EGFR mutation status: a meta-analysis.

    PubMed

    Qu, Jian; Wang, Ya-Nan; Xu, Ping; Xiang, Da-Xiong; Yang, Rui; Wei, Wei; Qu, Qiang

    2017-05-16

    Icotinib is a novel and the third listed epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs), which exerts a good anti-tumor efficacy on non-small cell lung cancer (NSCLC). The efficacy of EGFR-TKIs has been shown to be associated with the EGFR mutation status, especially exon 19 deletion (19Del) and exon 21 L858R mutation. Therefore, a meta-analysis was performed to assess the efficacy of icotinib in NSCLC patients harboring EGFR mutations (19Del or L858R) and wild type (19Del and L858R loci wild type). A total of 24 studies were included for comparing the objective response rate (ORR) in the EGFR wild type and mutant patients treated with icotinib. The ORRs of EGFR mutant patients (19Del or L858R) are better than those of EGFR wild type patients (OR = 7.03(5.09-9.71), P < 0.00001). The pooling ORs from 21 studies on the disease control rate (DCR) in EGFR mutant patients are better than those of EGFR wild type patients (OR = 10.54(5.72-19.43), P < 0.00001). Moreover, the ORRs of EGFR 19Del patients are better than those of EGFR L858R patients after pooling ORs of 12 studies (OR = 2.04(1.12-3.73), P = 0.019). However, there was no significant difference on DCRs of EGFR 19Del patients and those of EGFR L858R patients (OR = 2.01(0.94-4.32), P = 0.072). Our findings indicated that compared with EGFR wild type patients, EGFR mutant patients have better ORRs and DCRs after icotinib treatment; EGFR 19Del patients treated with icotinib have better ORRs than EGFR L858R patients. EGFR mutation status is a useful biomarker for the evaluation of icotinib efficacy in NSCLC patients.

  19. Erlotinib as single agent first line treatment in locally advanced or metastatic activating EGFR mutation-positive lung adenocarcinoma (CEETAC): an open-label, non-randomized, multicenter, phase IV clinical trial.

    PubMed

    Markóczy, Zsolt; Sárosi, Veronika; Kudaba, Iveta; Gálffy, Gabriella; Turay, Ülkü Yilmaz; Demirkazik, Ahmet; Purkalne, Gunta; Somfay, Attila; Pápai-Székely, Zsolt; Rásó, Erzsébet; Ostoros, Gyula

    2018-05-25

    Erlotinib is approved for the first line treatment of epidermal growth factor receptor (EGFR) mutation-positive non-small cell lung cancer. Since the number of prospective studies in Caucasian patients treated in routine clinical setting is limited we conducted a multicenter, phase IV clinical trial to determine the efficacy and safety of erlotinib and to demonstrate the feasibility of the validated standardized companion diagnostic method of EGFR mutation detection. 651 chemonaive, cytologically or histologically verified advanced stage lung adenocarcinoma patients from Hungary, Turkey and Latvia were screened for exon19 microdeletions and exon21 L858R EGFR mutations using the companion diagnostic EGFR test. EGFR mutation-positive, locally advanced or metastatic lung adenocarcinoma patients received as first line treatment erlotinib at 150 mg/day. The primary endpoint was progression-free survival (PFS). 62 EGFR mutation-positive patients (9.5% of screened) were included in the safety/intent-to-treat cohort. Median PFS was 12.8 months (95%CI, 9.9-15.8), objective response rate and one-year survival was 66.1% and 82.5%, respectively. Most frequent treatment related adverse events were diarrhoea and rash. Eastern Oncology Cooperative Group Performance Status (ECOG PS), smoking status and M1a/M1b disease stage were significant prognosticators of PFS (p = 0.017, p = 0.045 and p = 0.002, respectively). There was no significant difference in PFS between the subgroups stratified by gender, age or exon19 vs exon21 mutation. Our study confirmed the efficacy and safety of first line erlotinib monotherapy in Caucasian patients with locally advanced or metastatic lung adenocarcinoma carrying activating EGFR mutations based on the screening with the approved companion diagnostic procedure. ClinicalTrials.gov Identifier: NCT01609543.

  20. The detectability of the pretreatment EGFR T790M mutations in lung adenocarcinoma using CAST-PCR and digital PCR

    PubMed Central

    Tatematsu, Tsutomu; Suzuki, Ayumi; Oda, Risa; Sakane, Tadashi; Kawano, Osamu; Haneda, Hiroshi; Moriyama, Satoru; Sasaki, Hidefumi; Nakanishi, Ryoichi

    2017-01-01

    Background A gatekeeper T790M mutation is thought to cause resistance to epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) treatment. The detection of a 2nd mutation is important for planning the next therapy when patients acquire resistance to the first line EGFR-TKI. Methods We used a competitive allele-specific polymerase chain reaction (CAST-PCR) to analyze the incidence and clinical significance of T790M mutations in 153 lung adenocarcinomas with EGFR-activating mutations. To increase the sensitivity and specificity of the detection of T790M mutations, we subjected 20 of the 153 cases to a digital PCR. The genomic DNAs were extracted from frozen, surgically resected tumor tissue specimens. Results The CAST-PCR detected T790M mutations in 45 (29.4%) of the 153 cases. The analytical sensitivity in the detection T790M mutations was 0.13–2.65% (average 0.27%, median 0.20%). In contrast, the digital PCR, detected T790M mutations in 8 (40%) out of 20 cases. Conclusions Our study shows that the pretreatment incidence of T790M mutation was less than that reported in previous studies. In order to clinically use pretreatment EGFR T790M mutation identification method, we should clarify the adequate methods and tissue preserved status. PMID:28932544

  1. EGFR and KRAS mutation status in non-small-cell lung cancer occurring in HIV-infected patients.

    PubMed

    Créquit, Perrine; Ruppert, Anne-Marie; Rozensztajn, Nathalie; Gounant, Valérie; Vieira, T; Poulot, Virginie; Antoine, Martine; Chouaid, Christos; Wislez, Marie; Cadranel, Jacques; Lavole, Armelle

    2016-06-01

    Non-small-cell lung cancer (NSCLC) is the most common non-acquired immune deficiency syndrome-related malignancy responsible for death. Mutational status is crucial for choosing treatment of advanced NSCLC, yet no data is available on the frequency of epidermal growth factor receptor (EGFR) and Kirsten ras (KRAS) mutations and their impact on NSCLC in human immunodeficiency virus (HIV)-infected patients (HIV-NSCLC). All consecutive HIV-NSCLC patients diagnosed between June 1996 and August 2013 at two Paris university hospitals were reviewed, with tumor samples analyzed for EGFR and KRAS mutational status. Overall, 63 tumor samples were analyzed out of 73 HIV-NSCLC cases, with 63% of advanced NSCLC. There were 60 non-squamous and nine squamous cell carcinomas, with EGFR and KRAS mutations identified in two (3.3%) and seven (11.5%) tumors, respectively. The proportion of KRAS mutations was 29% if solely the more sensitive molecular techniques were considered. The two patients with advanced adenocarcinoma harboring EGFR mutations exhibited lasting partial response to EGFR-tyrosine kinase inhibitors. Overall survival for patients with advanced NSCLC were >30 months for those with EGFR mutations, <3 months for KRAS mutations (n=2), and the median was 9 months [4.1-14.3] for wild-type (n=34). In multivariate analysis, KRAS mutation and CD4<200 cells/μL were associated with poor prognosis (hazard ratio (HR): 24 [4.1-140.2], p=0.0004; HR: 3.1 [1.3-7.5], p=0.01, respectively). EGFR mutation must be investigated in HIV-NSCLC cases due to its predictive and prognostic impact, whereas KRAS mutation is of poor prognostic value. Clinicians should search for drugs dedicated to this target population. Copyright © 2016. Published by Elsevier Ireland Ltd.

  2. Effect of simvastatin on the resistance to EGFR tyrosine kinase inhibitors in a non-small cell lung cancer with the T790M mutation of EGFR.

    PubMed

    Hwang, Ki-Eun; Kwon, Su-Jin; Kim, Young-Suk; Park, Do-Sim; Kim, Byoung-Ryun; Yoon, Kwon-Ha; Jeong, Eun-Taik; Kim, Hak-Ryul

    2014-05-01

    Although non-small cell lung cancer (NSCLC) tumors with activating mutations in the epidermal growth factor receptor (EGFR) are highly responsive to EGFR tyrosine kinase inhibitors (TKIs) including gefitinib and erlotinib, development of acquired resistance is almost inevitable. Statins show antitumor activity, but it is unknown whether they can reverse EGFR-TKIs resistance in NSCLC with the T790M mutation of EGFR. This study investigated overcoming resistance to EGFR-TKI using simvastatin. We demonstrated that addition of simvastatin to gefitinib enhanced caspase-dependent apoptosis in T790M mutant NSCLC cells. Simvastatin also strongly inhibited AKT activation, leading to suppression of β-catenin activity and the expression of its targets, survivin and cyclin D1. Both insulin treatment and AKT overexpression markedly increased p-β-catenin and survivin levels, even in the presence of gefitinib and simvastatin. However, inhibition of AKT by siRNA or LY294002 treatment decreased p-β-catenin and survivin levels. To determine the role of survivin in simvastatin-induced apoptosis of gefitinib-resistant NSCLC, we showed that the proportion of apoptotic cells following treatment with survivin siRNA and the gefitinib-simvastatin combination was greater than the theoretical additive effects, whereas survivin up-regulation could confer protection against gefitinib and simvastatin-induced apoptosis. Similar results were obtained in erlotinib and simvastatin-treated HCC827/ER cells. These findings suggest that survivin is a key molecule that renders T790M mutant NSCLC cells resistant to apoptosis induced by EGFR-TKIs and simvastatin. Overall, these data indicate that simvastatin may overcome EGFR-TKI resistance in T790M mutant NSCLCs via an AKT/β-catenin signaling-dependent down-regulation of survivin and apoptosis induction. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Metastatic site location influences the diagnostic accuracy of ctDNA EGFR- mutation testing in NSCLC patients: a pooled analysis.

    PubMed

    Passiglia, Francesco; Rizzo, Sergio; Rolfo, Christian; Galvano, Antonio; Bronte, Enrico; Incorvaia, Lorena; Listi, Angela; Barraco, Nadia; Castiglia, Marta; Calo, Valentina; Bazan, Viviana; Russo, Antonio

    2018-03-08

    Recent studies evaluated the diagnostic accuracy of circulating tumor DNA (ctDNA) in the detection of epidermal growth factor receptor (EGFR) mutations from plasma of NSCLC patients, overall showing a high concordance as compared to standard tissue genotyping. However it is less clear if the location of metastatic site may influence the ability to identify EGFR mutations in plasma. This pooled analysis aims to evaluate the association between the metastatic site location and the sensitivity of ctDNA analysis in detecting EGFR mutations in NSCLC patients. Data from all published studies, evaluating the sensitivity of plasma-based EGFR-mutation testing, stratified by metastatic site location (extrathoracic (M1b) vs intrathoracic (M1a)) were collected by searching in PubMed, Cochrane Library, American Society of Clinical Oncology, and World Conference of Lung Cancer, meeting proceedings. Pooled Odds ratio (OR) and 95% confidence intervals (95% CIs) were calculated for the ctDNA analysis sensitivity, according to metastatic site location. A total of ten studies, with 1425 patients, were eligible. Pooled analysis showed that the sensitivity of ctDNA-based EGFR-mutation testing is significantly higher in patients with M1b vs M1a disease (OR: 5.09; 95% CIs: 2.93 - 8.84). A significant association was observed for both EGFR-activating (OR: 4.30, 95% CI: 2.35-7.88) and resistant T790M mutations (OR: 11.89, 95% CI: 1.45-97.22), regardless of the use of digital-PCR (OR: 5.85, 95% CI: 3.56-9.60) or non-digital PCR technologies (OR: 2.96, 95% CI: 2.24-3.91). These data suggest that the location of metastatic sites significantly influences the diagnostic accuracy of ctDNA analysis in detecting EGFR mutations in NSCLC patients. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. The Frequency of EGFR Mutation in Lung Adenocarcinoma and the Efficacy of Tyrosine Kinase Inhibitor Therapy in a Hungarian Cohort of Patients.

    PubMed

    Sárosi, Veronika; Balikó, Zoltán; Smuk, Gábor; László, Terézia; Szabó, Mariann; Ruzsics, István; Mezősi, Emese

    2016-10-01

    In the last decades new therapeutic drugs have been developed for the treatment of non-small cell lung cancer (NSCLC) patients. Tyrosine kinase inhibitors (TKIs) significantly increase the progression free survival (PFS) of patients with NSCLC carrying epidermal growth factor receptor (EGFR) mutations. This type of lung cancer occurs mainly among non-smoking women and Asian origin. However, the new ESMO guideline recommends EGFR mutation analysis in every patient with NSCLC, because in patients with activating EGFR mutation, TKIs should be considered as first line therapy. In our recent work, we analyzed data of patients with EGFR-mutant adenocarcinoma from January 2009. The number of patients investigated was 446, among them 44 cases were positive for EGFR mutation. The ratio of positive cases was 9.86 % that is lower than the average mutation rate in Europe and much lower than that found in Asia. The exon 19 deletion was detected in 61.4 % of the patients, while L858R point mutation in exon 21 was observed in 34.1 % of them. In one subject, both exon 19 and 21 mutations were present simultaneously. A rare mutation located in exon 21 was found in another patient. TKI therapy was conducted in 38 patients. The disease control rate by TKI therapy was 85.7 %; primary resistance was documented in five subjects. Non-smoking patients with EGFR mutant adenocarcinoma had the highest benefit from TKI treatment. Our data support the recommendation that EGFR mutation status should be defined in all cases of locally advanced or metastatic lung adenocarcinoma.

  5. BRCA2, EGFR, and NTRK mutations in mismatch repair-deficient colorectal cancers with MSH2 or MLH1 mutations.

    PubMed

    Deihimi, Safoora; Lev, Avital; Slifker, Michael; Shagisultanova, Elena; Xu, Qifang; Jung, Kyungsuk; Vijayvergia, Namrata; Ross, Eric A; Xiu, Joanne; Swensen, Jeffrey; Gatalica, Zoran; Andrake, Mark; Dunbrack, Roland L; El-Deiry, Wafik S

    2017-06-20

    Deficient mismatch repair (MMR) and microsatellite instability (MSI) contribute to ~15% of colorectal cancer (CRCs). We hypothesized MSI leads to mutations in DNA repair proteins including BRCA2 and cancer drivers including EGFR. We analyzed mutations among a discovery cohort of 26 MSI-High (MSI-H) and 558 non-MSI-H CRCs profiled at Caris Life Sciences. Caris-profiled MSI-H CRCs had high mutation rates (50% vs 14% in non-MSI-H, P < 0.0001) in BRCA2. Of 1104 profiled CRCs from a second cohort (COSMIC), MSH2/MLH1-mutant CRCs showed higher mutation rates in BRCA2 compared to non-MSH2/MLH1-mutant tumors (38% vs 6%, P < 0.0000001). BRCA2 mutations in MSH2/MLH1-mutant CRCs included 75 unique mutations not known to occur in breast or pancreatic cancer per COSMIC v73. Only 5 deleterious BRCA2 mutations in CRC were previously reported in the BIC database as germ-line mutations in breast cancer. Some BRCA2 mutations were predicted to disrupt interactions with partner proteins DSS1 and RAD51. Some CRCs harbored multiple BRCA2 mutations. EGFR was mutated in 45.5% of MSH2/MLH1-mutant and 6.5% of non-MSH2/MLH1-mutant tumors (P < 0.0000001). Approximately 15% of EGFR mutations found may be actionable through TKI therapy, including N700D, G719D, T725M, T790M, and E884K. NTRK gene mutations were identified in MSH2/MLH1-mutant CRC including NTRK1 I699V, NTRK2 P716S, and NTRK3 R745L. Our findings have clinical relevance regarding therapeutic targeting of BRCA2 vulnerabilities, EGFR mutations or other identified oncogenic drivers such as NTRK in MSH2/MLH1-mutant CRCs or other tumors with mismatch repair deficiency.

  6. The suitability of small biopsy and cytology specimens for EGFR and other mutation testing in non-small cell lung cancer

    PubMed Central

    Wang, Shu; Yu, Bing; Ng, Chiu Chin; Mercorella, Belinda; Selinger, Christina I.; O’Toole, Sandra A.

    2015-01-01

    Background Patients with advanced non-small cell lung cancer (NSCLC) benefit from treatment with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) when their tumor harbors an activating EGFR mutation. As the majority of NSCLC patients present with advanced disease, cytology and small biopsy specimens are frequently the only tissue available for mutation testing, but can pose challenges due to low tumor content. We aim to better define the suitability of these specimens for mutation testing. Methods NSCLC cases referred to our institution for mutation testing over a 15-month period were retrospectively reviewed. Specimens were tested for mutations including EGFR, KRAS, and BRAF, using a multiplex PCR assay (OncoCarta Panel v1.0) and analyzed on the Agena Bioscience MassARRAY platform. Results A total of 146 specimens were tested, comprising 53 (36.3%) resection specimens (including 28 lung resection specimens), 55 (37.7%) small biopsy specimens and 38 (26%) cytology specimens. Of 142 cases with sufficient DNA for mutation testing, EGFR mutations were detected in 31 specimens (21.8%), KRAS mutations in 31 specimens (21.8%) and BRAF mutations in three specimens (2.1%). There was no significant difference in the EGFR mutation rate between lung resection (10 of 28 cases; 35.7%), small biopsy (9 of 53 cases; 17%), and cytology specimens (8 of 36 cases; 22.2%). Conclusions Our results support the utility of small biopsy and cytology specimens for mutation testing. Careful evaluation of the adequacy of small specimens is required to minimize the risk of false negative or positive results. PMID:25870794

  7. Turning EGFR mutation-positive non-small-cell lung cancer into a chronic disease: optimal sequential therapy with EGFR tyrosine kinase inhibitors

    PubMed Central

    Hirsh, Vera

    2018-01-01

    Four epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), erlotinib, gefitinib, afatinib and osimertinib, are currently available for the management of EGFR mutation-positive non-small-cell lung cancer (NSCLC), with others in development. Although tumors are exquisitely sensitive to these agents, acquired resistance is inevitable. Furthermore, emerging data indicate that first- (erlotinib and gefitinib), second- (afatinib) and third-generation (osimertinib) EGFR TKIs differ in terms of efficacy and tolerability profiles. Therefore, there is a strong imperative to optimize the sequence of TKIs in order to maximize their clinical benefit. Osimertinib has demonstrated striking efficacy as a second-line treatment option in patients with T790M-positive tumors, and also confers efficacy and tolerability advantages over first-generation TKIs in the first-line setting. However, while accrual of T790M is the most predominant mechanism of resistance to erlotinib, gefitinib and afatinib, resistance mechanisms to osimertinib have not been clearly elucidated, meaning that possible therapy options after osimertinib failure are not clear. At present, few data comparing sequential regimens in patients with EGFR mutation-positive NSCLC are available and prospective clinical trials are required. This article reviews the similarities and differences between EGFR TKIs, and discusses key considerations when assessing optimal sequential therapy with these agents for the treatment of EGFR mutation-positive NSCLC. PMID:29383041

  8. A marked response to icotinib in a patient with large cell neuroendocrine carcinoma harboring an EGFR mutation: A case report.

    PubMed

    Wang, Yuehong; Shen, Yi Hong; Ma, Shanni; Zhou, Jianying

    2015-09-01

    The present study reports the case of an 84-year-old male with primary pulmonary large cell neuroendocrine carcinoma (LCNEC) harboring an epidermal growth factor receptor (EGFR) gene mutation that exhibited a long-lasting response to the EGFR-tyrosine kinase inhibitor (EGFR-TKI) icotinib. The patient had an extensive smoking history, a poor performance status, and presented with an irregular mass in the middle lobe of the right lung on computed tomography (CT) and an enlarged left supraclavicular lymph node on physical examination. Right middle lobe bronchial brushing during fiberoptic bronchoscopy identified poorly-differentiated cancer cells. The left supraclavicular lymph node was biopsied and a diagnosis of metastatic LCNEC was determined. Furthermore, an EGFR exon 19 deletion was identified by DNA sequencing. Following diagnosis, icotinib was administered at a dose of 125 mg three times a day. Chest CT scans were performed after 1 month of treatment, which indicated that the tumor was in partial remission. This marked response to icotinib lasted for 8 months. Thus, the present case illustrates the possibility of identifying EGFR mutations in LCNEC and indicates that EGFR-tyrosine kinase inhibitors may be an alternative treatment strategy for patients with LCNEC harboring activating EGFR mutations.

  9. Epidermal Growth Factor Receptor Activation in Glioblastoma through Novel Missense Mutations in the Extracellular Domain

    PubMed Central

    Lee, Jeffrey C; Vivanco, Igor; Beroukhim, Rameen; Huang, Julie H. Y; Feng, Whei L; DeBiasi, Ralph M; Yoshimoto, Koji; King, Jennifer C; Nghiemphu, Phioanh; Yuza, Yuki; Xu, Qing; Greulich, Heidi; Thomas, Roman K; Paez, J. Guillermo; Peck, Timothy C; Linhart, David J; Glatt, Karen A; Getz, Gad; Onofrio, Robert; Ziaugra, Liuda; Levine, Ross L; Gabriel, Stacey; Kawaguchi, Tomohiro; O'Neill, Keith; Khan, Haumith; Liau, Linda M; Nelson, Stanley F; Rao, P. Nagesh; Mischel, Paul; Pieper, Russell O; Cloughesy, Tim; Leahy, Daniel J; Sellers, William R; Sawyers, Charles L; Meyerson, Matthew; Mellinghoff, Ingo K

    2006-01-01

    Background Protein tyrosine kinases are important regulators of cellular homeostasis with tightly controlled catalytic activity. Mutations in kinase-encoding genes can relieve the autoinhibitory constraints on kinase activity, can promote malignant transformation, and appear to be a major determinant of response to kinase inhibitor therapy. Missense mutations in the EGFR kinase domain, for example, have recently been identified in patients who showed clinical responses to EGFR kinase inhibitor therapy. Methods and Findings Encouraged by the promising clinical activity of epidermal growth factor receptor (EGFR) kinase inhibitors in treating glioblastoma in humans, we have sequenced the complete EGFR coding sequence in glioma tumor samples and cell lines. We identified novel missense mutations in the extracellular domain of EGFR in 13.6% (18/132) of glioblastomas and 12.5% (1/8) of glioblastoma cell lines. These EGFR mutations were associated with increased EGFR gene dosage and conferred anchorage-independent growth and tumorigenicity to NIH-3T3 cells. Cells transformed by expression of these EGFR mutants were sensitive to small-molecule EGFR kinase inhibitors. Conclusions Our results suggest extracellular missense mutations as a novel mechanism for oncogenic EGFR activation and may help identify patients who can benefit from EGFR kinase inhibitors for treatment of glioblastoma. PMID:17177598

  10. CT Radiogenomic Characterization of EGFR, K-RAS, and ALK Mutations in Non-Small Cell Lung Cancer.

    PubMed

    Rizzo, Stefania; Petrella, Francesco; Buscarino, Valentina; De Maria, Federica; Raimondi, Sara; Barberis, Massimo; Fumagalli, Caterina; Spitaleri, Gianluca; Rampinelli, Cristiano; De Marinis, Filippo; Spaggiari, Lorenzo; Bellomi, Massimo

    2016-01-01

    To assess the association between CT features and EGFR, ALK, KRAS mutations in non-small cell lung cancer. Patients undergoing chest CT and testing for the above gene mutations were included. Qualitative evaluation of CTs included: lobe; lesion diameter; shape; margins; ground-glass opacity; density; cavitation; air bronchogram; pleural thickening; intratumoral necrosis; nodules in tumour lobe; nodules in non-tumour lobes; pleural retraction; location; calcifications; emphysema; fibrosis; pleural contact; pleural effusion. Statistical analysis was performed to assess association of features with each gene mutation. ROC curves for gene mutations were drawn; the corresponding area under the curve was calculated. P-values <0.05 were considered significant. Of 285 patients, 60/280 (21.43 %) were positive for EGFR mutation; 31/270 (11.48 %) for ALK rearrangement; 64/240 (26.67 %) for KRAS mutation. EGFR mutation was associated with air bronchogram, pleural retraction, females, non-smokers, small lesion size, and absence of fibrosis. ALK rearrangements were associated with age and pleural effusion. KRAS mutation was associated with round shape, nodules in non-tumour lobes, and smoking. This study disclosed associations between CT features and alterations of EGFR (air bronchogram, pleural retraction, small lesion size, absence of fibrosis), ALK (pleural effusion) and KRAS (round lesion shape, nodules in non-tumour lobes). Air bronchogram, pleural retraction, small size relate to EGFR mutation in NSCLC. Pleural effusion and younger age relate to ALK mutation. Round lesion shape, nodules in non-tumour lobes relate to KRAS mutation.

  11. Tissue or blood: which is more suitable for detection of EGFR mutations in non-small cell lung cancer?

    PubMed

    Biaoxue, Rong; Shuanying, Yang

    2018-01-01

    Many studies have evaluated the accuracy of EGFR mutation status in blood against that in tumor tissues as the reference. We conducted this systematic review and meta-analysis to assess whether blood can be used as a substitute for tumor tissue in detecting EGFR mutations. Investigations that provided data on EGFR mutation status in blood were searched in the databases of Medline, Embase, Ovid Technologies and Web of Science. The detect efficiency of EGFR mutations in paired blood and tissues was compared using a random-effects model of meta-analysis. Pooled sensitivity and specificity and diagnostic accuracy were calculated by receiver operating characteristic curve. A total of 19 studies with 2,922 individuals were involved in this meta-analysis. The pooled results showed the positive detection rate of EGFR mutations in lung cancer tissues was remarkably higher than that of paired blood samples (odds ratio [OR] = 1.47, p<0.001). The pooled sensitivity and specificity of blood were 0.65 and 0.91, respectively, and the area under the receiver operating characteristic curve was 0.89. Although blood had a better specificity for detecting EGFR mutations, the absence of blood positivity should not necessarily be construed as confirmed negativity. Patients with negative results for blood should decidedly undergo further biopsies to ascertain EGFR mutations.

  12. Value of combining serum carcinoembryonic antigen and PET/CT in predicting EGFR mutation in non-small cell lung cancer.

    PubMed

    Gu, Jincui; Xu, Siqi; Huang, Lixia; Li, Shaoli; Wu, Jian; Xu, Junwen; Feng, Jinlun; Liu, Baomo; Zhou, Yanbin

    2018-02-01

    We sought to investigate the associations between pretreatment serum Carcinoembryonic antigen (CEA) level, 18 F-Fluoro-2-deoxyglucose ( 18 F-FDG) uptake value of primary tumor and epidermal growth factor receptor ( EGFR ) mutation status in non-small cell lung cancer (NSCLC). We retrospectively reviewed medical records of 210 NSCLC patients who underwent EGFR mutation test and 18 F-FDG positron emission tomography/computed tomography (PET/CT) scan before anti-tumor therapy. The associations between EGFR mutations and patients' characteristics, serum CEA, PET/CT imaging characteristics maximal standard uptake value (SUVmax) of the primary tumor were analyzed. Receiver-operating characteristic (ROC) curve was used to assess the predictive value of these factors. EGFR mutations were found in 70 patients (33.3%). EGFR mutations were more common in high CEA group (CEA ≥7.0 ng/mL) than in low CEA group (CEA <7.0 ng/mL) (40.4% vs . 27.6%; P=0.05). Females (P<0.001), non-smokers (P<0.001), patients with adenocarcinoma (P<0.001) and SUVmax <9.0 (P=0.001) were more likely to be EGFR mutation-positive. Multivariate analysis revealed that gender, tumor histology, pretreatment serum CEA level, and SUVmax were the most significant predictors for EGFR mutations. The ROC curve revealed that combining these four factors yielded a higher calculated AUC (0.80). Gender, histology, pretreatment serum CEA level and SUVmax are significant predictors for EGFR mutations in NSCLC. Combining these factors in predicting EGFR mutations has a moderate diagnostic accuracy, and is helpful in guiding anti-tumor treatment.

  13. Brk/PTK6 Sustains Activated EGFR Signaling through Inhibiting EGFR Degradation and Transactivating EGFR

    PubMed Central

    Li, X; Lu, Y; Liang, K; Hsu, J -M.; Albarracin, C; Mills, G B; Hung, M-C; Fan, Z

    2011-01-01

    Epidermal growth factor receptor (EGFR)-mediated cell signaling is critical for mammary epithelial cell growth and survival; however, targeting EGFR has shown no or only minimal therapeutic benefit in patients with breast cancer. Here, we report a novel regulatory mechanism of EGFR signaling that may explain the low response rates. We found that breast tumor kinase (Brk)/protein-tyrosine kinase 6 (PTK6), a nonreceptor protein tyrosine kinase highly expressed in most human breast tumors, interacted with EGFR and sustained ligand-induced EGFR signaling. We demonstrate that Brk inhibits ligand-induced EGFR degradation through uncoupling activated EGFR from Cbl-mediated EGFR ubiquitination. In addition, upon activation by EGFR, Brk directly phosphorylated Y845 in the EGFR kinase domain, thereby further potentiating EGFR kinase activity. Experimental elevation of Brk conferred resistance of breast cancer cells to cetuximab (an EGFR-blocking antibody)-induced inhibition of cell signaling and proliferation, whereas knockdown of Brk sensitized the cells to cetuximab by inducing apoptosis. Our findings reveal a previously unknown role of Brk in EGFR-targeted therapy. PMID:22231447

  14. Prognostic value of plasma EGFR ctDNA in NSCLC patients treated with EGFR-TKIs.

    PubMed

    Zhang, Chengjuan; Wei, Bing; Li, Peng; Yang, Ke; Wang, Zhizhong; Ma, Jie; Guo, Yongjun

    2017-01-01

    Epidermal growth factor receptor (EGFR) specific mutations have been known to improve survival of patients with non-small-cell lung carcinoma (NSCLC). However, whether there are any changes of EGFR mutations after targeted therapy and its clinical significance is unclear. This study was to identify the status of EGFR mutations after targeted therapy and predict the prognostic significance for NSCLC patients. A total of forty-five (45) NSCLC patients who received EGFR-TKI therapy were enrolled. We identified the changes of EGFR mutations in plasma ctDNA by Amplification Refractory Mutation System (ARMS) PCR technology. In the 45 cases of NSCLC with EGFR mutations, the EGFR mutation status changed in 26 cases, in which, 12 cases (26.7%) from positive to negative, and 14 cases (31.1%) from T790M mutation negative to positive after TKI targeted therapy. The T790M occurance group had a shorter Progression -Free-Survival (PFS) than the groups of EGFR mutation undetected and EGFR mutation turned out to have no change after EGFR-TKI therapy (p < 0.05). According to this study, it's necessary to closely monitor EGFR mutations during follow-up to predict the prognosis of NSCLC patients who are to receive the TKI targeted therapy.

  15. Intratumoral heterogeneity in EGFR mutant NSCLC results in divergent resistance mechanisms in response to EGFR tyrosine kinase inhibition

    PubMed Central

    Soucheray, Margaret; Capelletti, Marzia; Pulido, Inés; Kuang, Yanan; Paweletz, Cloud P.; Becker, Jeffrey H.; Kikuchi, Eiki; Xu, Chunxiao; Patel, Tarun B.; Al-shahrour, Fatima; Carretero, Julián; Wong, Kwok-Kin; Jänne, Pasi A.; Shapiro, Geoffrey I.; Shimamura, Takeshi

    2015-01-01

    Non-small cell lung cancers (NSCLC) that have developed resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), including gefitinib and erlotinib, are clinically linked to an epithelial-to-mesenchymal transition (EMT) phenotype. Here we examined whether modulating EMT maintains the responsiveness of EGFR-mutated NSCLCs to EGFR TKI therapy. Using human NSCLC cell lines harboring mutated-EGFR and a transgenic mouse model of lung cancer driven by mutant EGFR (EGFR-Del19-T790M), we demonstrate that EGFR inhibition induces TGFβ secretion followed by SMAD pathway activation, an event that promotes EMT. Chronic exposure of EGFR-mutated NSCLC cells to TGFβ was sufficient to induce EMT and resistance to EGFR TKI treatment. Furthermore, NSCLC HCC4006 cells with acquired resistance to gefitinib were characterized by a mesenchymal phenotype and displayed a higher prevalence of the EGFR T790M mutated allele. Notably, combined inhibition of EGFR and the TGFβ receptor in HCC4006 cells prevented EMT, but was not sufficient to prevent acquired gefitinib resistance because of an increased emergence of the EGFR T790M allele compared to cells treated with gefitinib alone. Conversely, another independent NSCLC cell line, PC9, reproducibly develops EGFR T790M mutations as the primary mechanism underlying EGFR TKI resistance, even though the prevalence of the mutant allele is lower than that in HCC4006 cells. Thus, our findings underscore heterogeneity within NSCLC cells lines harboring EGFR kinase domain mutations that give rise to divergent resistance mechanisms in response to treatment and anticipate the complexity of EMT suppression as a therapeutic strategy. PMID:26282169

  16. Clinical management and outcome of patients with advanced NSCLC carrying EGFR mutations in Spain.

    PubMed

    Arriola, Edurne; García Gómez, Ramón; Diz, Pilar; Majem, Margarita; Martínez Aguillo, Maite; Valdivia, Javier; Paredes, Alfredo; Sánchez-Torres, José Miguel; Peralta Muñoz, Sergio; Barneto, Isidoro; Gutierrez, Vanesa; Andrade Santiago, Jesús Manuel; Aparisi, Francisco; Isla, Dolores; Ponce, Santiago; Vicente Baz, David; Artal, Angel; Amador, Mariluz; Provencio, Mariano

    2018-01-30

    Although the benefit of first-line epidermal growth factor receptor (EGFR) tyrosine-kinase inhibitors (TKIs) over chemotherapy has been demonstrated in several clinical trials, data from clinical practice is lacking and the optimal EGFR TKI to be used remains unclear. This study aims to assess the real-life diagnostic and clinical management and outcome of patients with advanced non-small-cell lung cancer (NSCLC) carrying EGFR mutations in Spain. All consecutive patients recently diagnosed with advanced or metastatic NSCLC from April 2010 to December 2011 in 18 Spanish hospitals and carrying EGFR mutations were retrospectively evaluated. Between March and November 2013, a total of 187 patients were enrolled (98.3% Caucasian, 61.9% female, 54.9% never-smokers, 89.0% adenocarcinoma). Mutation testing was mainly performed on biopsy tumour tissue specimens (69.0%) using a qPCR-based test (90%) (47.0% Therascreen EGFR PCR Kit). Common sensitising mutations were detected in 79.8% of patients: 57.1% had exon 19 deletions and 22.6% exon 21 L858R point mutations. The vast majority of patients received first-line therapy (n = 168; 92.8%). EGFR TKIs were the most commonly used first-line treatment (81.5%), while chemotherapy was more frequently administered as a second- and third-line option (51.9% and 56.0%, respectively). Of 141 patients who experienced disease progression, 79 (56.0%) received second-line treatment. After disease progression on first-line TKIs (n = 112), 33.9% received chemotherapy, 8.9% chemotherapy and a TKI, and 9.8% continued TKI therapy. Most patients received first-line gefitinib (83.0%), while erlotinib was more frequently used in the second-line setting (83.0%). Progression-free survival (PFS) and overall survival (OS) in patients harbouring common mutations were 11.1 months and 20.1 months respectively (exon 19 deletions: 12.4 and 21.4 months; L858R: 8.3 and 14.5 months), and 3.9 months and 11.1 months respectively for those with rare

  17. Effects of icotinib, a novel epidermal growth factor receptor tyrosine kinase inhibitor, in EGFR-mutated non-small cell lung cancer.

    PubMed

    Yang, Guangdie; Yao, Yinan; Zhou, Jianya; Zhao, Qiong

    2012-06-01

    Epidermal growth factor receptor (EGFR) is one of the most promising targets for non-small cell lung cancer (NSCLC). Our study demonstrated the antitumor effects of icotinib hydrochloride, a highly selective epidermal growth factor receptor tyrosine kinase inhibitor (EGFR TKI), in two EGFR-mutated lung cancer cell lines compared to A549, a cell line without EGFR mutations. We incubated PC-9 and HCC827 human lung cancer cell lines both with (E746-A750) mutations with various concentrations of icotinib and gefitinib for 48 h. Cell proliferation and migration were determined using a real-time cell invasion and migration assay and cytotoxicity assay. Apoptosis was assessed by measuring Annexin V staining using flow cytometry. The antitumor effects of icotinib compared to gefitinib were similar and were most effective in reducing the proliferation of EGFR-mutated cells compared to non-mutated controls. Our results suggest the possibility of icotinib as a new therapeutic agent of EGFR-mutated cancer cells, which has the potential to be used in the first-line treatment of EGFR-mutated NSCLC.

  18. Mechanisms and Clinical Activity of an EGFR and HER2 Exon 20-selective Kinase Inhibitor in Non-small Cell Lung Cancer

    PubMed Central

    Robichaux, Jacqulyne P.; Elamin, Yasir Y.; Tan, Zhi; Carter, Brett W.; Zhang, Shuxing; Liu, Shengwu; Li, Shuai; Chen, Ting; Poteete, Alissa; Estrada-Bernal, Adriana; Le, Anh T.; Truini, Anna; Nilsson, Monique B.; Sun, Huiying; Roarty, Emily; Goldberg, Sarah B.; Brahmer, Julie R.; Altan, Mehmet; Lu, Charles; Papadimitrakopoulou, Vassiliki; Politi6, Katerina; Doebele, Robert C.; Wong, Kwok-Kin; Heymach, John V.

    2018-01-01

    Although most activating mutations of epidermal growth factor receptor (EGFR)-mutant non–small cell lung cancers (NSCLCs) are sensitive to available EGFR tyrosine kinase inhibitors (TKIs), a subset with alterations in exon 20 of EGFR and HER2 are intrinsically resistant and lack an effective therapy. We used in silico, in vitro, and in vivo testing to model structural alterations induced by exon 20 mutations and to identify effective inhibitors. 3D modeling indicated alterations restricted the size of the drug-binding pocket, limiting the binding of large, rigid inhibitors. We found that poziotinib, owing to its small size and flexibility, can circumvent these steric changes and is a potent inhibitor of the most common EGFR and HER2 exon 20 mutants. Poziotinib demonstrated greater activity than approved EGFR TKIs in vitro and in patient-derived xenograft models of EGFR or HER2 exon 20 mutant NSCLC and in genetically engineered mouse models of NSCLC. In a phase 2 trial, the first 11 patients with NSCLC with EGFR exon 20 mutations receiving poziotinib had a confirmed objective response rate of 64%. These data identify poziotinib as a potent, clinically active inhibitor of EGFR and HER2 exon 20 mutations and illuminate the molecular features of TKIs that may circumvent steric changes induced by these mutations. PMID:29686424

  19. EGFR mutations predict a favorable outcome for malignant pleural effusion of lung adenocarcinoma with Tarceva therapy.

    PubMed

    Guo, Haisheng; Wan, Yunyan; Tian, Guangyan; Liu, Qinghua; Kang, Yanmeng; Li, Yuye; Yao, Zhouhong; Lin, Dianjie

    2012-03-01

    The aim of the present study was to evaluate the therapeutic effects and adverse reactions of Tarceva treatment for malignant pleural effusion (MPE) caused by metastatic lung adenocarcinomas. One hundred and twenty-eight patients who failed first-line chemotherapy drug treatment were divided into a mutation and a non-mutation group according to the presence or absence of epidermal growth factor receptor (EGFR) mutations. Each patient received closed drainage combined with simple negative pressure suction after thoracoscopic talc poudrage pleurodesis and oral Tarceva treatment. Short-term and long-term clinical therapeutic effects of Tarceva were evaluated. The EGFR mutation rate in pleural metastatic tissues of lung adenocarcinoma acquired through video-assisted thoracoscopic surgery was higher compared to that in surgical resection specimens, plasma specimens and pleural effusion specimens compared to previously reported results. There were significant statistical differences in the average extubation time (p<0.01), drainage volume of pleural effusion (p<0.05), Karnofsky score and formation of encapsulated pleural effusion 4 weeks after surgery (p<0.05) between these two groups. The number of patients with mild pleural hypertrophy in the mutation group was significantly higher compared to the non-mutation group (p<0.01), while the number of patients with severe pleural hypertrophy was significantly reduced (p<0.05). There was significant statistical discrepancy between these two groups in terms of improvement of peripheral blood carcinoembryonic antigen and tissue polypeptide antigen after 4 weeks of therapy. The complete remission rate and the efficacy rate were higher in the mutation group compared to that in the non-mutation group (p<0.05). There was a longer overall survival time after Tarceva treatment in patients with EGFR mutations than those without EGFR mutation. EGFR mutations predict a favorable outcome for malignant pleural effusion of lung

  20. Determination of EGFR mutations in single cells microdissected from enriched lung tumor cells in peripheral blood.

    PubMed

    Ran, Ran; Li, Longyun; Wang, Mengzhao; Wang, Shulan; Zheng, Zhi; Lin, Peter Ping

    2013-09-01

    A minimally invasive and repeatable approach for real-time epidermal growth factor receptor (EGFR) mutation surveillance would be highly beneficial for individualized therapy of late stage lung cancer patients whose surgical specimens are often not available. We aim to develop a viable method to detect EGFR mutations in single circulating tumor cells (CTCs). Using a model CTC system of spiked tumor cells in whole blood, we evaluated EGFR mutation determination in single tumor cells enriched from blood. We used magnetic beads labeled with antibody against leukocyte surface antigens to deplete leukocytes and enrich native CTCs independent of epithelial marker expression level. We then used laser cell microdissection (LCM) to isolate individual CTCs, followed by whole-genome amplification of the DNA for exon 19 microdeletion, L858R and T790M mutation detection by PCR sequencing. EGFR mutations were successfully measured in individual spiked tumor cells enriched from 7.5 ml whole blood. Whole-genome amplification provided sufficient DNA for mutation determination at multiple sites. Ninety-five percent of the single CTCs microdissected by LCM (19/20) yielded PCR amplicons for at least one of the three mutation sites. The amplification success rates were 55 % (11/20) for exon 19 deletion, 45 % (9/20) for T790M, and 85 % (17/20) for L858R. Sequencing of the amplicons showed allele dropout in the amplification reactions, but mutations were correctly identified in 80 % of the amplicons. EGFR mutation determination from single captured tumor cells from blood is feasible with the approach described here. However, to overcome allele dropout and to obtain reliable information about the tumor's EGFR status, multiple individual tumor cells should be assayed.

  1. EGFR mutations in early-stage and advanced-stage lung adenocarcinoma: Analysis based on large-scale data from China.

    PubMed

    Pi, Can; Xu, Chong-Rui; Zhang, Ming-Feng; Peng, Xiao-Xiao; Wei, Xue-Wu; Gao, Xing; Yan, Hong-Hong; Zhou, Qing

    2018-05-02

    EGFR-tyrosine kinase inhibitors play an important role in the treatment of advanced non-small cell lung cancer (NSCLC). EGFR mutations in advanced NSCLC occur in approximately 35% of Asian patients and 60% of patients with adenocarcinoma. However, the frequency and type of EGFR mutations in early-stage lung adenocarcinoma remain unclear. We retrospectively collected data on patients diagnosed with lung adenocarcinoma tested for EGFR mutation. Early stage was defined as pathological stage IA-IIIA after radical lung cancer surgery, and advanced stage was defined as clinical stage IIIB without the opportunity for curative treatment or stage IV according to the American Joint Committee on Cancer Staging Manual, 7th edition. A total of 1699 patients were enrolled in this study from May 2014 to May 2016; 750 were assigned to the early-stage and 949 to the advanced-stage group. Baseline characteristics of the two groups were balanced, except that there were more smokers in the advanced-stage group (P < 0.001). The total EGFR mutation rate in the early-stage group was similar to that in the advanced-stage group (53.6% vs. 51.4%, respectively; P = 0.379). There was no significant difference in EGFR mutation type between the two groups. In subgroup analysis of smoking history, there was no difference in EGFR mutation frequency or type between the early-stage and advanced-stage groups. Early-stage and advanced-stage groups exhibited the same EGFR mutation frequencies and types. © 2018 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  2. Mutational profiling of non-small-cell lung cancer patients resistant to first-generation EGFR tyrosine kinase inhibitors using next generation sequencing

    PubMed Central

    Jin, Ying; Shao, Yang; Shi, Xun; Lou, Guangyuan; Zhang, Yiping; Wu, Xue; Tong, Xiaoling; Yu, Xinmin

    2016-01-01

    Patients with advanced non-small-cell lung cancer (NSCLC) harboring sensitive epithelial growth factor receptor (EGFR) mutations invariably develop acquired resistance to EGFR tyrosine kinase inhibitors (TKIs). Identification of actionable genetic alterations conferring drug-resistance can be helpful for guiding the subsequent treatment decision. One of the major resistant mechanisms is secondary EGFR-T790M mutation. Other mechanisms, such as HER2 and MET amplifications, and PIK3CA mutations, were also reported. However, the mechanisms in the remaining patients are still unknown. In this study, we performed mutational profiling in a cohort of 83 NSCLC patients with TKI-sensitizing EGFR mutations at diagnosis and acquired resistance to three different first-generation EGFR TKIs using targeted next generation sequencing (NGS) of 416 cancer-related genes. In total, we identified 322 genetic alterations with a median of 3 mutations per patient. 61% of patients still exhibit TKI-sensitizing EGFR mutations, and 36% of patients acquired EGFR-T790M. Besides other known resistance mechanisms, we identified TET2 mutations in 12% of patients. Interestingly, we also observed SOX2 amplification in EGFR-T790M negative patients, which are restricted to Icotinib treatment resistance, a drug widely used in Chinese NSCLC patients. Our study uncovered mutational profiles of NSCLC patients with first-generation EGFR TKIs resistance with potential therapeutic implications. PMID:27528220

  3. Effective assessment of egfr mutation status in bronchoalveolar lavage and pleural fluids by next-generation sequencing.

    PubMed

    Buttitta, Fiamma; Felicioni, Lara; Del Grammastro, Maela; Filice, Giampaolo; Di Lorito, Alessia; Malatesta, Sara; Viola, Patrizia; Centi, Irene; D'Antuono, Tommaso; Zappacosta, Roberta; Rosini, Sandra; Cuccurullo, Franco; Marchetti, Antonio

    2013-02-01

    The therapeutic choice for patients with lung adenocarcinoma depends on the presence of EGF receptor (EGFR) mutations. In many cases, only cytologic samples are available for molecular diagnosis. Bronchoalveolar lavage (BAL) and pleural fluid, which represent a considerable proportion of cytologic specimens, cannot always be used for molecular testing because of low rate of tumor cells. We tested the feasibility of EGFR mutation analysis on BAL and pleural fluid samples by next-generation sequencing (NGS), an innovative and extremely sensitive platform. The study was devised to extend the EGFR test to those patients who could not get it due to the paucity of biologic material. A series of 830 lung cytology specimens was used to select 48 samples (BAL and pleural fluid) from patients with EGFR mutations in resected tumors. These samples included 36 cases with 0.3% to 9% of neoplastic cells (series A) and 12 cases without evidence of tumor (series B). All samples were analyzed by Sanger sequencing and NGS on 454 Roche platform. A mean of 21,130 ± 2,370 sequences per sample were obtained by NGS. In series A, EGFR mutations were detected in 16% of cases by Sanger sequencing and in 81% of cases by NGS. Seventy-seven percent of cases found to be negative by Sanger sequencing showed mutations by NGS. In series B, all samples were negative for EGFR mutation by Sanger sequencing whereas 42% of them were positive by NGS. The very sensitive EGFR-NGS assay may open up to the possibility of specific treatments for patients otherwise doomed to re-biopsies or nontargeted therapies.

  4. The "COLD-PCR approach" for early and cost-effective detection of tyrosine kinase inhibitor resistance mutations in EGFR-positive non-small cell lung cancer.

    PubMed

    Mairinger, Fabian D; Vollbrecht, Claudia; Streubel, Anna; Roth, Andreas; Landt, Olfert; Walter, Henry F R; Kollmeier, Jens; Mairinger, Thomas

    2014-01-01

    Activating epidermal growth factor receptor (EGFR) gene mutations can be successfully treated by EGFR tyrosine kinase inhibitors (EGFR-TKIs), but nearly 50% of all patients' exhibit progression of the disease until treatment because of T790M mutations. It is proposed that this is mostly caused by therapy-resistant tumor clones harboring a T790M mutation. Until now no cost-effective routine-diagnostic method for EGFR-resistance mutation status analysis is available leaving long-time response to TKI treatment to chance. Unambiguous identification of T790M EGFR mutations is mandatory to optimize initial treatment strategies. Artificial EGFR T790M mutations and human wild-type gDNA were prepared in several dilution series. Preferential amplification using coamplification at lower denaturation temperature-PCR (COLD-PCR) of the mutant sequence and subsequent HybProbe melting curve detection or pyrosequencing were performed in comparison to normal processing. COLD-PCR-based amplification allowed the detection of 0.125% T790M mutant DNA in a background of wild-type DNA in comparison to 5% while normal processing. These results were reproducible. COLD-PCR is a powerful and cost-effective tool for routine diagnostic to detect underrepresented tumor clones in clinical samples. A diagnostic tool for unambiguous identification of T790M-mutated minor tumor clones is now available enabling optimized therapy.

  5. Brain metastases in patients with EGFR-mutated or ALK-rearranged non-small-cell lung cancers.

    PubMed

    Rangachari, Deepa; Yamaguchi, Norihiro; VanderLaan, Paul A; Folch, Erik; Mahadevan, Anand; Floyd, Scott R; Uhlmann, Erik J; Wong, Eric T; Dahlberg, Suzanne E; Huberman, Mark S; Costa, Daniel B

    2015-04-01

    Brain metastases (BM) are common in non-small-cell lung cancer (NSCLC). However, the baseline incidence and evolution of BM over time in oncogene-driven NSCLCs are seldom reported. In this study, we evaluated the frequency of BM in patients with epidermal growth factor receptor (EGFR)-mutated or anaplastic lymphoma kinase (ALK)-rearranged NSCLC. The presence of BM, clinicopathologic data, and tumor genotype were retrospectively compiled and analyzed from a cohort of 381 patients. We identified 86 EGFR-mutated (90.7% with metastatic disease; 85.9% received an EGFR inhibitor) and 23 ALK-rearranged (91.3% with metastatic disease; 85.7% received an ALK inhibitor) NSCLCs. BM were present in 24.4% of EGFR-mutated and 23.8% of ALK-rearranged NSCLCs at the time of diagnosis of advanced disease. This study did not demonstrate a difference in the cumulative incidence of BM over time between the two cohorts (EGFR/ALK cohort competing risk regression [CRR] coefficient of 0.78 [95% CI 0.44-1.39], p=0.41). In still living patients with advanced EGFR-mutated NSCLC, 34.2% had BM at 1 year, 38.4% at 2 years, 46.7% at 3 years, 48.7% at 4 years, and 52.9% at 5 years. In still living patients with advanced ALK-rearranged NSCLC, 23.8% had BM at 1 year, 45.5% at 2 years, and 58.4% at 3 years. BM are frequent in advanced EGFR-mutated or ALK-rearranged NSCLCs, with an estimated >45% of patients with CNS involvement by three years of survival with the use of targeted therapies. These data point toward the CNS as an important unmet clinical need in the evolving schema for personalized care in NSCLC. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. ctDNA Determination of EGFR Mutation Status in European and Japanese Patients with Advanced NSCLC: The ASSESS Study.

    PubMed

    Reck, Martin; Hagiwara, Koichi; Han, Baohui; Tjulandin, Sergei; Grohé, Christian; Yokoi, Takashi; Morabito, Alessandro; Novello, Silvia; Arriola, Edurne; Molinier, Olivier; McCormack, Rose; Ratcliffe, Marianne; Normanno, Nicola

    2016-10-01

    To offer patients with EGFR mutation-positive advanced NSCLC appropriate EGFR tyrosine kinase inhibitor treatment, mutation testing of tumor samples is required. However, tissue/cytologic samples are not always available or evaluable. The large, noninterventional diagnostic ASSESS study (NCT01785888) evaluated the utility of circulating free tumor-derived DNA (ctDNA) from plasma for EGFR mutation testing. ASSESS was conducted in 56 centers (in Europe and Japan). Eligible patients (with newly diagnosed locally advanced/metastatic treatment-naive advanced NSCLC) provided diagnostic tissue/cytologic and plasma samples. DNA extracted from tissue/cytologic samples was subjected to EGFR mutation testing using local practices; designated laboratories performed DNA extraction/mutation testing of blood samples. The primary end point was level of concordance of EGFR mutation status between matched tissue/cytologic and plasma samples. Of 1311 patients enrolled, 1288 were eligible. Concordance of mutation status in 1162 matched samples was 89% (sensitivity 46%, specificity 97%, positive predictive value 78%, and negative predictive value 90%). A group of 25 patients with apparent false-positive plasma results was overrepresented for cytologic samples, use of less sensitive tissue testing methodologies, and smoking habits associated with high EGFR mutation frequency, indicative of false-negative tumor results. In cases in which plasma and tumor samples were tested with identical highly sensitive methods, positive predictive value/sensitivity were generally improved. These real-world data suggest that ctDNA is a feasible sample for EGFR mutation analysis. It is important to conduct mutation testing of both tumor and plasma samples in specialized laboratories, using robust/sensitive methods to ensure that patients receive appropriate treatments that target the molecular features of their disease. Copyright © 2016 International Association for the Study of Lung Cancer

  7. Emerging platforms using liquid biopsy to detect EGFR mutations in lung cancer.

    PubMed

    Lin, Chien-Chung; Huang, Wei-Lun; Wei, Fang; Su, Wu-Chou; Wong, David T

    2015-01-01

    Advances in target therapies for lung cancer have enabled detection of gene mutations, specifically those of EGFR. Assays largely depend on the acquisition of tumor tissue biopsy, which is invasive and may not reflect the genomic profile of the tumor at treatment due to tumor heterogeneity or changes that occur during treatment through acquired resistance. Liquid biopsy, a blood test that detects evidence of cancer cells or tumor DNA, has generated considerable interest for its ability to detect EGFR mutations. However, its clinical application is limited by complicated collection methods and the need for technique-dependent platforms. Recently, simpler techniques for EGFR mutant detection in urine or saliva samples have been developed. This review focuses on advances in liquid biopsy and discusses its potential for clinical implementation in lung cancer.

  8. Emerging platforms using liquid biopsy to detect EGFR mutations in lung cancer

    PubMed Central

    Wong; Lin, David T; Huang, Chien-Chung; Wei, Wei-Lun; Su, Fang; Wu-Chou

    2016-01-01

    Summary Advances in target therapies for lung cancer have enabled detection of gene mutations, specifically those of EGFR. Assays largely depend on the acquisition of tumor tissue biopsy, which is invasive and may not reflect the genomic profile of the tumor at treatment due to tumor heterogeneity or changes that occur during treatment through acquired resistance. Liquid biopsy, a blood test that detects evidence of cancer cells or tumor DNA, has generated considerable interest for its ability to detect EGFR mutations, however, its clinical application is limited by complicated collection methods and the need for technique-dependent platforms. Recently, simpler techniques for EGFR mutant detection in in urine or saliva samples have been developed. This review focuses on advances in liquid biopsy and discusses its potential for clinical implementation in lung cancer. PMID:26420338

  9. Intratumor Heterogeneity of ALK-Rearrangements and Homogeneity of EGFR-Mutations in Mixed Lung Adenocarcinoma

    PubMed Central

    Marino, Federica Zito; Liguori, Giuseppina; Aquino, Gabriella; La Mantia, Elvira; Bosari, Silvano; Ferrero, Stefano; Rosso, Lorenzo; Gaudioso, Gabriella; De Rosa, Nicla; Scrima, Marianna; Martucci, Nicola; La Rocca, Antonello; Normanno, Nicola; Morabito, Alessandro; Rocco, Gaetano; Botti, Gerardo; Franco, Renato

    2015-01-01

    Background Non Small Cell Lung Cancer is a highly heterogeneous tumor. Histologic intratumor heterogeneity could be ‘major’, characterized by a single tumor showing two different histologic types, and ‘minor’, due to at least 2 different growth patterns in the same tumor. Therefore, a morphological heterogeneity could reflect an intratumor molecular heterogeneity. To date, few data are reported in literature about molecular features of the mixed adenocarcinoma. The aim of our study was to assess EGFR-mutations and ALK-rearrangements in different intratumor subtypes and/or growth patterns in a series of mixed adenocarcinomas and adenosquamous carcinomas. Methods 590 Non Small Cell Lung Carcinomas tumor samples were revised in order to select mixed adenocarcinomas with available tumor components. Finally, only 105 mixed adenocarcinomas and 17 adenosquamous carcinomas were included in the study for further analyses. Two TMAs were built selecting the different intratumor histotypes. ALK-rearrangements were detected through FISH and IHC, and EGFR-mutations were detected through IHC and confirmed by RT-PCR. Results 10/122 cases were ALK-rearranged and 7 from those 10 showing an intratumor heterogeneity of the rearrangements. 12/122 cases were EGFR-mutated, uniformly expressing the EGFR-mutated protein in all histologic components. Conclusion Our data suggests that EGFR-mutations is generally homogeneously expressed. On the contrary, ALK-rearrangement showed an intratumor heterogeneity in both mixed adenocarcinomas and adenosquamous carcinomas. The intratumor heterogeneity of ALK-rearrangements could lead to a possible impact on the therapeutic responses and the disease outcomes. PMID:26422230

  10. Mutational landscape of EGFR-, MYC-, and Kras-driven genetically engineered mouse models of lung adenocarcinoma

    PubMed Central

    McFadden, David G.; Politi, Katerina; Bhutkar, Arjun; Chen, Frances K.; Song, Xiaoling; Pirun, Mono; Santiago, Philip M.; Kim-Kiselak, Caroline; Platt, James T.; Lee, Emily; Hodges, Emily; Rosebrock, Adam P.; Bronson, Roderick T.; Socci, Nicholas D.; Hannon, Gregory J.; Jacks, Tyler; Varmus, Harold

    2016-01-01

    Genetically engineered mouse models (GEMMs) of cancer are increasingly being used to assess putative driver mutations identified by large-scale sequencing of human cancer genomes. To accurately interpret experiments that introduce additional mutations, an understanding of the somatic genetic profile and evolution of GEMM tumors is necessary. Here, we performed whole-exome sequencing of tumors from three GEMMs of lung adenocarcinoma driven by mutant epidermal growth factor receptor (EGFR), mutant Kirsten rat sarcoma viral oncogene homolog (Kras), or overexpression of MYC proto-oncogene. Tumors from EGFR- and Kras-driven models exhibited, respectively, 0.02 and 0.07 nonsynonymous mutations per megabase, a dramatically lower average mutational frequency than observed in human lung adenocarcinomas. Tumors from models driven by strong cancer drivers (mutant EGFR and Kras) harbored few mutations in known cancer genes, whereas tumors driven by MYC, a weaker initiating oncogene in the murine lung, acquired recurrent clonal oncogenic Kras mutations. In addition, although EGFR- and Kras-driven models both exhibited recurrent whole-chromosome DNA copy number alterations, the specific chromosomes altered by gain or loss were different in each model. These data demonstrate that GEMM tumors exhibit relatively simple somatic genotypes compared with human cancers of a similar type, making these autochthonous model systems useful for additive engineering approaches to assess the potential of novel mutations on tumorigenesis, cancer progression, and drug sensitivity. PMID:27702896

  11. Mutational landscape of EGFR-, MYC-, and Kras-driven genetically engineered mouse models of lung adenocarcinoma.

    PubMed

    McFadden, David G; Politi, Katerina; Bhutkar, Arjun; Chen, Frances K; Song, Xiaoling; Pirun, Mono; Santiago, Philip M; Kim-Kiselak, Caroline; Platt, James T; Lee, Emily; Hodges, Emily; Rosebrock, Adam P; Bronson, Roderick T; Socci, Nicholas D; Hannon, Gregory J; Jacks, Tyler; Varmus, Harold

    2016-10-18

    Genetically engineered mouse models (GEMMs) of cancer are increasingly being used to assess putative driver mutations identified by large-scale sequencing of human cancer genomes. To accurately interpret experiments that introduce additional mutations, an understanding of the somatic genetic profile and evolution of GEMM tumors is necessary. Here, we performed whole-exome sequencing of tumors from three GEMMs of lung adenocarcinoma driven by mutant epidermal growth factor receptor (EGFR), mutant Kirsten rat sarcoma viral oncogene homolog (Kras), or overexpression of MYC proto-oncogene. Tumors from EGFR- and Kras-driven models exhibited, respectively, 0.02 and 0.07 nonsynonymous mutations per megabase, a dramatically lower average mutational frequency than observed in human lung adenocarcinomas. Tumors from models driven by strong cancer drivers (mutant EGFR and Kras) harbored few mutations in known cancer genes, whereas tumors driven by MYC, a weaker initiating oncogene in the murine lung, acquired recurrent clonal oncogenic Kras mutations. In addition, although EGFR- and Kras-driven models both exhibited recurrent whole-chromosome DNA copy number alterations, the specific chromosomes altered by gain or loss were different in each model. These data demonstrate that GEMM tumors exhibit relatively simple somatic genotypes compared with human cancers of a similar type, making these autochthonous model systems useful for additive engineering approaches to assess the potential of novel mutations on tumorigenesis, cancer progression, and drug sensitivity.

  12. Smoking History as a Predictor of Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Patients with Non-Small Cell Lung Cancer Harboring EGFR Mutations.

    PubMed

    Nishinarita, Noriko; Igawa, Satoshi; Kasajima, Masashi; Kusuhara, Seiichiro; Harada, Shinya; Okuma, Yuriko; Sugita, Keisuke; Ozawa, Takahiro; Fukui, Tomoya; Mitsufuji, Hisashi; Yokoba, Masanori; Katagiri, Masato; Kubota, Masaru; Sasaki, Jiichiro; Naoki, Katsuhiko

    2018-04-26

    Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKIs) therapy has been recognized as the standard treatment for patients with non-small cell lung cancer (NSCLC) harboring EGFR mutations. However, resistance to EGFR-TKIs has been observed in certain subpopulations of these patients. We aimed to evaluate the impact of smoking history on the efficacy of EGFR-TKIs. The records of patients (n = 248) with NSCLC harboring activating EGFR mutations who were treated with gefitinib or erlotinib at our institution between March 2010 and June 2016 were retrospectively reviewed, and the treatment outcomes were evaluated. The overall response rate and median progression-free survival (PFS) were 59.7% and 10.7 months, respectively. The overall response rate was significantly higher in the ex- and nonsmokers than in the current smokers (64.6 vs. 51.1%, p = 0.038). PFS also differed significantly between the current smokers and the ex- and nonsmokers (12.4 vs. 7.4 months, p = 0.016). Multivariate analysis identified smoking history as an independent predictor of PFS and overall survival. The clinical data obtained in this study provide a valuable rationale for considering smoking history as a predictor of the efficacy of EGFR-TKI in NSCLC patients harboring activating EGFR mutations. © 2018 S. Karger AG, Basel.

  13. The impact of intermittent versus continuous exposure to EGFR tyrosine kinase inhibitor on selection of EGFR T790M-mutant drug-resistant clones in a lung cancer cell line carrying activating EGFR mutation

    PubMed Central

    Lee, Youngjoo; Choi, Yu-Ra; Kim, Kyoung-Yeon; Shin, Dong Hoon

    2016-01-01

    Drug-resistant cell lines are essential tools for investigating the mechanisms of resistance to molecular-targeted anti-cancer drugs. However, little is known about how to establish clinically relevant drug-resistant cell lines. Our study examined the impact of a drug-free period on the establishment of a cell line with clinically relevant resistance to molecular-targeted drugs. We used PC9 cells, a lung cancer cell line carrying EGFR mutation, because this is a validated target for EGFR tyrosine kinase inhibitors (TKI). PC9 cells were intermittently or continuously exposed to increasing concentrations of gefitinib (0.01 μM to 1.0 μM) and the emergence of the most common acquired resistance mutation in EGFR, T790M, was determined. T790M was detected at a 25-fold lower drug concentration in cells continuously exposed to gefitinib (PC9/GRc) than in cells intermittently exposed to gefitinib (PC9/GRi) (0.04 μM vs 1.0 μM, respectively). The mutation frequencies at those drug concentrations were 19.8% and 8.0% in PC9/GRc and PC9/GRi cells, respectively. After drug-free culture for 8 weeks, resistance to gefitinib decreased in the PC9/GRi cells but not in the PC9/GRc cells. In the PC9/GRc cells, the frequency of the T790M mutation was consistently about 20% from 0.04 μM to 1.0 μM of gefitinib. In the PC9/GRc cells, the T790M mutation was detected in all single-cell clones, at frequencies ranging from 7.0% to 37.0%, with a median of 19.5% (95% confidence interval, 17.3%–20.9%). In conclusion, compared with intermittent drug exposure, continuous exposure might select better minor drug-resistant clones when creating cell lines resistant to molecular-targeted drugs. PMID:27270313

  14. The impact of intermittent versus continuous exposure to EGFR tyrosine kinase inhibitor on selection of EGFR T790M-mutant drug-resistant clones in a lung cancer cell line carrying activating EGFR mutation.

    PubMed

    Lee, Youngjoo; Choi, Yu-Ra; Kim, Kyoung-Yeon; Shin, Dong Hoon

    2016-07-12

    Drug-resistant cell lines are essential tools for investigating the mechanisms of resistance to molecular-targeted anti-cancer drugs. However, little is known about how to establish clinically relevant drug-resistant cell lines. Our study examined the impact of a drug-free period on the establishment of a cell line with clinically relevant resistance to molecular-targeted drugs. We used PC9 cells, a lung cancer cell line carrying EGFR mutation, because this is a validated target for EGFR tyrosine kinase inhibitors (TKI). PC9 cells were intermittently or continuously exposed to increasing concentrations of gefitinib (0.01 μM to 1.0 μM) and the emergence of the most common acquired resistance mutation in EGFR, T790M, was determined. T790M was detected at a 25-fold lower drug concentration in cells continuously exposed to gefitinib (PC9/GRc) than in cells intermittently exposed to gefitinib (PC9/GRi) (0.04 μM vs 1.0 μM, respectively). The mutation frequencies at those drug concentrations were 19.8% and 8.0% in PC9/GRc and PC9/GRi cells, respectively. After drug-free culture for 8 weeks, resistance to gefitinib decreased in the PC9/GRi cells but not in the PC9/GRc cells. In the PC9/GRc cells, the frequency of the T790M mutation was consistently about 20% from 0.04 μM to 1.0 μM of gefitinib. In the PC9/GRc cells, the T790M mutation was detected in all single-cell clones, at frequencies ranging from 7.0% to 37.0%, with a median of 19.5% (95% confidence interval, 17.3%-20.9%). In conclusion, compared with intermittent drug exposure, continuous exposure might select better minor drug-resistant clones when creating cell lines resistant to molecular-targeted drugs.

  15. EGFR trans-activation mediates pleiotrophin-induced activation of Akt and Erk in cultured osteoblasts.

    PubMed

    Fan, Jian-Bo; Liu, Wei; Yuan, Kun; Zhu, Xin-Hui; Xu, Da-Wei; Chen, Jia-Jia; Cui, Zhi-Ming

    2014-05-09

    Pleiotrophin (Ptn) plays an important role in bone growth through regulating osteoblasts' functions. The underlying signaling mechanisms are not fully understood. In the current study, we found that Ptn induced heparin-binding epidermal growth factor (HB-EGF) release to trans-activate EGF-receptor (EGFR) in both primary osteoblasts and osteoblast-like MC3T3-E1 cells. Meanwhile, Ptn activated Akt and Erk signalings in cultured osteoblasts. The EGFR inhibitor AG1478 as well as the monoclonal antibody against HB-EGF (anti-HB-EGF) significantly inhibited Ptn-induced EGFR activation and Akt and Erk phosphorylations in MC3T3-E1 cells and primary osteoblasts. Further, EGFR siRNA depletion or dominant negative mutation suppressed also Akt and Erk activation in MC3T3-E1 cells. Finally, we observed that Ptn increased alkaline phosphatase (ALP) activity and inhibited dexamethasone (Dex)-induced cell death in both MC3T3-E1 cells and primary osteoblasts, such effects were alleviated by AG1478 or anti-HB-EGF. Together, these results suggest that Ptn-induced Akt/Erk activation and some of its pleiotropic functions are mediated by EGFR trans-activation in cultured osteoblasts. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Clinical Factors Predicting Detection of T790M Mutation in Rebiopsy for EGFR-Mutant Non-small-cell Lung Cancer.

    PubMed

    Kawamura, Takahisa; Kenmotsu, Hirotsugu; Omori, Shota; Nakashima, Kazuhisa; Wakuda, Kazushige; Ono, Akira; Naito, Tateaki; Murakami, Haruyasu; Omae, Katsuhiro; Mori, Keita; Tanigawara, Yusuke; Nakajima, Takashi; Ohde, Yasuhisa; Endo, Masahiro; Takahashi, Toshiaki

    2018-03-01

    T790M, a secondary epidermal growth factor receptor (EGFR) mutation, accounts for approximately 50% of acquired resistance to EGFR-tyrosine kinase inhibitors (TKIs). To facilitate the use of third-generation EGFR-TKIs to potentially overcome T790M-mediated resistance, we evaluated the clinical factors influencing the incidence of T790M mutation. We retrospectively screened patients with non-small-cell lung cancer harboring EGFR mutations with progressive disease who were rebiopsied between January 2013 and December 2016. Factors influencing T790M status were evaluated by univariate and multivariate analysis. Among 131 rebiopsied patients for whom EGFR mutation status was available, 58 (44%) had T790M mutations. Patient characteristics at rebiopsy were not significantly different between T790M-positive and -negative groups, except for surgical history (postsurgery recurrence). Total duration of EGFR-TKI treatment before rebiopsy, TKI-free interval, EGFR-TKI treatment history immediately before rebiopsy, continuation of initial EGFR-TKI beyond progressive disease, progression-free survival after initial TKI treatment, and rebiopsy site (other than fluid samples) significantly influenced T790M status. The incidence of T790M mutation was shown by multivariate analysis to be significantly higher in patients with postsurgery recurrence and total duration of EGFR-TKI treatment ≥ 1 year before rebiopsy (odds ratio, 4.2; 95% confidence interval, 1.3-15.7 and odds ratio, 4.4; 95% confidence interval, 1.1-19.8, respectively). Postsurgery recurrence and longer total duration of EGFR-TKI treatment before rebiopsy may represent useful predictive markers for T790M detection. In patients with these clinical factors, rebiopsies are more recommended to detect T790M mutation. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Rapid intracranial response to osimertinib, without radiotherapy, in nonsmall cell lung cancer patients harboring the EGFR T790M mutation

    PubMed Central

    Koba, Taro; Kijima, Takashi; Takimoto, Takayuki; Hirata, Haruhiko; Naito, Yujiro; Hamaguchi, Masanari; Otsuka, Tomoyuki; Kuroyama, Muneyoshi; Nagatomo, Izumi; Takeda, Yoshito; Kida, Hiroshi; Kumanogoh, Atsushi

    2017-01-01

    Abstract Rationale: Most of nonsmall cell lung cancer (NSCLC) patients harboring epidermal growth factor receptor (EGFR) activating mutations eventually acquire resistance to the first EGFR-tyrosine kinase inhibitors (TKIs) therapy after varying periods of treatment. Of note, approximately one-third of those patients develop brain metastases, which deteriorate their quality of life and survival. The effect of systemic chemotherapy on brain metastases after acquisition of EGFR-TKI resistance is limited, and thus far, whole-brain radiation therapy, which may cause the harmful effect on neurocognitive functions, has been the only established therapeutic option for especially symptomatic brain metastases. Osimertinib is a third-generation oral, potent, and irreversible EGFR-TKI. It can bind to EGFRs with high affinity even when the EGFR T790M mutation exists in addition to the sensitizing mutations. Its clinical efficacy for NSCLC patients harboring the T790M mutation has already been shown; however, the evidence of osimertinib on brain metastases has not been documented well, especially in terms of the appropriate timing for treatment and its response evaluation. Patient concerns, Diagnoses, and Interventions: We experienced 2 NSCLC patients with the EGFR T790M mutation; a 67-year-old woman with symptomatic multiple brain metastases administered osimertinib as seventh-line chemotherapy, and a 76-year old man with an asymptomatic single brain metastasis administered osimertinib as fifth-line chemotherapy. Outcomes: These patients showed great response to osimertinib within 2 weeks without radiation therapy. Lessons: These are the first reports to reveal the rapid response of the brain metastases to osimertinib within 2 weeks. These cases suggest the possibility that preemptive administration of osimertinib may help patients to postpone or avoid radiation exposures. In addition, rapid reassessment of the effect of osimertinib on brain metastases could prevent patients

  18. Prognostic Significance of NSCLC and Response to EGFR-TKIs of EGFR-Mutated NSCLC Based on PD-L1 Expression.

    PubMed

    Kobayashi, Kenichi; Seike, Masahiro; Zou, Fenfei; Noro, Rintaro; Chiba, Mika; Ishikawa, Arimi; Kunugi, Shinobu; Kubota, Kaoru; Gemma, Akihiko

    2018-02-01

    Recent clinical trials have shown that immune checkpoint blockades that target either PD-1 or PD-L1 yield remarkable responses in a subgroup of patients with non-small cell lung cancer (NSCLC). We retrospectively examined, by immunohistochemical analysis, 211 NSCLC samples. Using 32 independent samples, we also evaluated PD-L1 expression in NSCLC patients with EGFR gene mutations treated by EGFR-TKIs. Overall survival of PD-L1-positive stages I-III NSCLC and stage I NSCLC and stages I-III squamous cell carcinoma (SQ) were significantly shorter than those of PD-L1-negative NSCLC (p<0.01 and p=0.02 and p=0.01, respectively). In stage I NSCLC and stages I-III SQ, PD-L1 expression was found to be independent predictor of death after multivariate analysis. Response to EGFR-TKIs was not significantly different between PD-L1-positive and PD-L1-negative NSCLC patients with EGFR mutations. PD-L1 expression was a significant independent predictor of poor outcome in NSCLC patients. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  19. Detection of EML4-ALK fusion gene and features associated with EGFR mutations in Chinese patients with non-small-cell lung cancer.

    PubMed

    Wen, Miaomiao; Wang, Xuejiao; Sun, Ying; Xia, Jinghua; Fan, Liangbo; Xing, Hao; Zhang, Zhipei; Li, Xiaofei

    2016-01-01

    Echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase (EML4-ALK) and epidermal growth factor receptor (EGFR) define specific molecular subsets of lung cancer with distinct clinical features. We aimed at revealing the clinical features of EML4-ALK fusion gene and EGFR mutation in non-small-cell lung cancer (NSCLC). We enrolled 694 Chinese patients with NSCLC for analysis. EML4-ALK fusion gene was analyzed by real-time polymerase chain reaction, and EGFR mutations were analyzed by amplified refractory mutation system. Among the 694 patients, 60 (8.65%) patients had EML4-ALK fusions. In continuity correction χ (2) test analysis, EML4-ALK fusion gene was correlated with sex, age, smoking status, and histology, but no significant association was observed between EML4-ALK fusion gene and clinical stage. A total of 147 (21.18%) patients had EGFR mutations. In concordance with previous reports, EGFR mutation was correlated with age, smoking status, histology, and clinical stage, whereas patient age was not significantly associated with EGFR mutation. Meanwhile, to our surprise, six (0.86%) patients had coexisting EML4-ALK fusions and EGFR mutations. EML4-ALK fusion gene defines a new molecular subset in patients with NSCLC. Six patients who harbored both EML4-ALK fusion genes and EGFR mutations were identified in our study. The EGFR mutations and the EML4-ALK fusion genes are coexistent.

  20. Highly Sensitive Droplet Digital PCR Method for Detection of EGFR-Activating Mutations in Plasma Cell-Free DNA from Patients with Advanced Non-Small Cell Lung Cancer.

    PubMed

    Zhu, Guanshan; Ye, Xin; Dong, Zhengwei; Lu, Ya Chao; Sun, Yun; Liu, Yi; McCormack, Rose; Gu, Yi; Liu, Xiaoqing

    2015-05-01

    Epidermal growth factor receptor (EGFR) mutation testing in plasma cell-free DNA from lung cancer patients is an emerging clinical tool. However, compared with tissue testing, the sensitivity of plasma testing is not yet satisfactory because of the highly fragmented nature of plasma cell-free DNA, low fraction of tumor DNA, and limitations of available detection technologies. We therefore developed a highly sensitive and specific droplet digital PCR method for plasma EGFR mutation (exon19 deletions and L858R) testing. Plasma from 86 EGFR-tyrosine kinase inhibitor-naive lung cancer patients was tested and compared with EGFR mutation status of matched tumor tissues tested by amplification refractory mutation system. By using EGFR mutation-positive cell DNA, we optimized the droplet digital PCR assays to reach 0.04% sensitivity. The plasma testing sensitivity and specificity, compared with the matched tumor tissues tested by amplification refractory mutation system, were 81.82% (95% CI, 59.72%-94.81%) and 98.44% (95% CI, 91.60%-99.96%), respectively, for exon19 deletions, with 94.19% concordance rate (κ = 0.840; 95% CI, 0.704-0.976; P < 0.0001), whereas they were 80.00% (95% CI, 51.91%-95.67%) and 95.77% (95% CI, 88.14%-99.12%), respectively, for L858R, with 93.02% concordance rate (κ = 0.758; 95% CI, 0.571-0.945; P < 0.0001). The reported highly sensitive and specific droplet digital PCR assays for EGFR mutation detection have potential in clinical blood testing. Copyright © 2015 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  1. Feasibility of re-biopsy and EGFR mutation analysis in patients with non-small cell lung cancer.

    PubMed

    Kim, Tae-Ok; Oh, In-Jae; Kho, Bo Gun; Park, Ha Young; Chang, Jin Sun; Park, Cheol-Kyu; Shin, Hong-Joon; Lim, Jung-Hwan; Kwon, Yong-Soo; Kim, Yu-Il; Lim, Sung-Chul; Kim, Young-Chul; Choi, Yoo-Duk

    2018-05-14

    In cases of EGFR-tyrosine kinase inhibitor (TKI) failure, re-biopsy may be useful to understand resistance mechanisms and guide further treatment decisions. However, performing re-biopsy is challenging because of several hurdles. We assessed the feasibility of re-biopsy in advanced non-small cell lung cancer (NSCLC) patients in real-world clinical practice. We retrospectively reviewed the clinical and pathologic data of advanced NSCLC patients who experienced disease progression after previous treatment with EGFR-TKIs at a single tertiary hospital in Korea between January 2014 and December 2016. Re-biopsy specimens included small biopsy, surgical tissue, or liquid-based cytology. EGFR mutation was tested using peptide nucleic acid-mediated clamping PCR. Of the 230 NSCLC patients that experienced progression after EGFR-TKI therapy, 105 (45.7%) underwent re-biopsy. Re-biopsy was successfully performed in 94 (89.5%) patients, and 11 patients were diagnosed with no malignancy. The complication rate was 8.6%, including seven cases of pneumothorax. EGFR mutation testing was performed on 75 patients using re-biopsy specimens. Of the 57 patients who had sensitizing mutations at diagnosis, T790M mutations were found in 19 (33.3%), while 38 (66.7%) had no T790M mutation. Multivariate analysis showed that the re-biopsy group was younger (P = 0.002) and exhibited a previous response to EGFR-TKIs (P < 0.001). Re-biopsy in advanced NSCLC is feasible in real world clinical practice, particularly in younger patients and those who achieved a previous response to EGFR-TKIs. © 2018 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  2. EGFR mutation incidence in non-small-cell lung cancer of adenocarcinoma histology: a systematic review and global map by ethnicity (mutMapII)

    PubMed Central

    Midha, Anita; Dearden, Simon; McCormack, Rose

    2015-01-01

    Mutations in the epidermal growth factor receptor (EGFR) gene are commonly observed in non-small-cell lung cancer (NSCLC), particularly in tumors of adenocarcinoma (ADC) histology (NSCLC/ADC). Robust data exist regarding the prevalence of EGFR mutations in Western and Asian patients with NSCLC/ADC, yet there is a lack of data for patients of other ethnicities. This review collated available data with the aim of creating a complete, global picture of EGFR mutation frequency in patients with NSCLC/ADC by ethnicity. Worldwide literature reporting EGFR mutation frequency in patients with NSCLC/ADC was reviewed, to create a map of the world populated with EGFR mutation frequency by country (a ‘global EGFR mutMap’). A total of 151 worldwide studies (n=33162 patients with NSCLC/ADC, of which 9749 patients had EGFR mutation-positive NSCLC/ADC) were included. There was substantial variation in EGFR mutation frequency between studies, even when grouped by geographic region or individual country. As expected, the Asia-Pacific NSCLC/ADC subgroup had the highest EGFR mutation frequency (47% [5958/12819; 87 studies; range 20%-76%]) and the lowest EGFR mutation frequency occurred in the Oceania NSCLC/ADC subgroup (12% [69/570; 4 studies; range 7%-36%]); however, comparisons between regions were limited due to the varying sizes of the patient populations studied. In all regional (geographic) subgroups where data were available, EGFR mutation frequency in NSCLC/ADC was higher in women compared with men, and in never-compared with ever-smokers. This review provides the foundation for a global map of EGFR mutation frequency in patients with NSCLC/ADC. The substantial lack of data from several large geographic regions of the world, notably Africa, the Middle East, Central Asia, and Central and South America, highlights a potential lack of routine mutation testing and the need for further investigations in these regions. PMID:26609494

  3. Case Report: Osimertinib achieved remarkable and sustained disease control in an advanced non-small-cell lung cancer harboring EGFR H773L/V774M mutation complex.

    PubMed

    Yang, Minglei; Tong, Xiaoling; Xu, Xiang; Zheng, Enkuo; Ni, Junjun; Li, Junfang; Yan, Junrong; Shao, Yang W; Zhao, Guofang

    2018-07-01

    Missense mutations in EGFR exon 20 are rare in non-small-cell lung cancer (NSCLC), and mostly insensitive to the first generation tyrosine kinase inhibitors (TKIs) of EGFR. However, their responses to the third generation TKI are unclear. Here, we reported a patient with advanced NSCLC harboring a rare EGFR H773L/V774M mutation complex. Although he was irresponsive to the first generation TKI gefitinib, he demonstrated sustained disease control to osimertinib, suggesting that this complex is an activating mutation of EGFR and can be suppressed by osimertinib. The follow-up genetic profiling revealed multiple acquired new mutations that might be related to his resistance to osimertinib. This finding would provide valuable experience for future treatment of the same mutations. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Clinical validation of a highly sensitive assay to detect EGFR mutations in plasma cell-free DNA from patients with advanced lung adenocarcinoma.

    PubMed

    Li, Yuping; Xu, Hanyan; Su, Shanshan; Ye, Junru; Chen, Junjie; Jin, Xuru; Lin, Quan; Zhang, Dongqing; Ye, Caier; Chen, Chengshui

    2017-01-01

    Circulating tumor DNA (ctDNA) is a promising biomarker for noninvasive epidermal growth factor receptor (EGFR) mutations detection in lung cancer patients, but the existing methods have limitations in sensitivity or in availability. In this study, we evaluated the performance of a novel assay called ADx-SuperARMS in detecting EGFR mutations in plasma cell-free DNA from patients with advanced lung adenocarcinoma. A total of 109 patients with metastatic advanced adenocarcinoma were recruited who provided both blood samples and matched tumor tissue samples. EGFR mutation status in plasma samples were tested with ADx-SuperARMS EGFR assay and tumor tissue samples were tested with ADx-ARMS EGFR assay. The clinical sensitivity, specificity, positive prediction value (PPV), and negative prediction value (NPV) of ADx-SuperARMS EGFR assay were calculated by using EGFR mutation status in tumor tissue as standard reference. A receiver operating characteristic (ROC) analysis was implemented and an area under the curve (AUC) was calculated to evaluate sensitivity and specificity of exon 19 deletion (E19Del) and L858R mutation detection. The objective response rate (ORR) were calculated according to the EGFR mutation status determined by ADx-superARMS as well. 0.2% analytical sensitivity and 100% specificity of the ADx-SuperARMS EGFR assays for EGFR E19Del, L858R, and T790M mutants were confirmed by using a series of diluted cell line DNA. In the clinical study, EGFR mutations were detected in 45.9% (50/109) of the plasma samples and in 56.9% (62/109) of the matched tumor tissue samples. The sensitivity, specificity, PPV and NPV of the ADx-SuperARMS EGFR assay for plasma EGFR mutation detection were 82.0% (50/61), 100% (48/48), 100% (50/50), and 81.4% (48/59), respectively. In ROC analysis, ADx-SuperARMS achieved sensitivity and specificity of 88% and 99% in E19Dels as well as sensitivity and specificity of 89% and 100% in L858R, respectively. Among the 35 patients who were

  5. Droplet digital PCR-based EGFR mutation detection with an internal quality control index to determine the quality of DNA.

    PubMed

    Kim, Sung-Su; Choi, Hyun-Jeung; Kim, Jin Ju; Kim, M Sun; Lee, In-Seon; Byun, Bohyun; Jia, Lina; Oh, Myung Ryurl; Moon, Youngho; Park, Sarah; Choi, Joon-Seok; Chae, Seoung Wan; Nam, Byung-Ho; Kim, Jin-Soo; Kim, Jihun; Min, Byung Soh; Lee, Jae Seok; Won, Jae-Kyung; Cho, Soo Youn; Choi, Yoon-La; Shin, Young Kee

    2018-01-11

    In clinical translational research and molecular in vitro diagnostics, a major challenge in the detection of genetic mutations is overcoming artefactual results caused by the low-quality of formalin-fixed paraffin-embedded tissue (FFPET)-derived DNA (FFPET-DNA). Here, we propose the use of an 'internal quality control (iQC) index' as a criterion for judging the minimum quality of DNA for PCR-based analyses. In a pre-clinical study comparing the results from droplet digital PCR-based EGFR mutation test (ddEGFR test) and qPCR-based EGFR mutation test (cobas EGFR test), iQC index ≥ 0.5 (iQC copies ≥ 500, using 3.3 ng of FFPET-DNA [1,000 genome equivalents]) was established, indicating that more than half of the input DNA was amplifiable. Using this criterion, we conducted a retrospective comparative clinical study of the ddEGFR and cobas EGFR tests for the detection of EGFR mutations in non-small cell lung cancer (NSCLC) FFPET-DNA samples. Compared with the cobas EGFR test, the ddEGFR test exhibited superior analytical performance and equivalent or higher clinical performance. Furthermore, iQC index is a reliable indicator of the quality of FFPET-DNA and could be used to prevent incorrect diagnoses arising from low-quality samples.

  6. EGFR mutation detection in circulating cell-free DNA of lung adenocarcinoma patients: analysis of LUX-Lung 3 and 6

    PubMed Central

    Wu, Yi-Long; Sequist, Lecia V; Hu, Cheng-Ping; Feng, Jifeng; Lu, Shun; Huang, Yunchao; Li, Wei; Hou, Mei; Schuler, Martin; Mok, Tony; Yamamoto, Nobuyuki; O'Byrne, Kenneth; Hirsh, Vera; Gibson, Neil; Massey, Dan; Kim, Miyoung; Yang, James Chih-Hsin

    2017-01-01

    Background: In the Phase III LUX-Lung 3/6 (LL3/LL6) trials in epidermal growth factor receptor (EGFR) mutation-positive lung adenocarcinoma patients, we evaluated feasibility of EGFR mutation detection using circulating cell-free DNA (cfDNA) and prognostic and predictive utility of cfDNA positivity (cfDNA+). Methods: Paired tumour and blood samples were prospectively collected from randomised patients. Mutations were detected using cfDNA from serum (LL3) or plasma (LL6) by a validated allele-specific quantitative real-time PCR kit. Results: EGFR mutation detection rates in cfDNA were 28.6% (serum) and 60.5% (plasma). Mutation detection in blood was associated with advanced disease characteristics, including higher performance score, number of metastatic sites and bone/liver metastases, and poorer prognosis. In patients with common EGFR mutations, afatinib improved progression-free survival vs chemotherapy in cfDNA+ (LL3: HR, 0.35; P=0.0009; LL6: HR, 0.25; P<0.0001) and cfDNA− (LL3: HR, 0.46; P<0.0001; LL6: HR, 0.12; P<0.0001) cohorts. A trend towards overall survival benefit with afatinib was observed in cfDNA+ patients. Conclusions: Plasma cfDNA is a promising alternative to biopsy for EGFR testing. Detectable mutation in blood was associated with more advanced disease and poorer prognosis. Afatinib improved outcomes in EGFR mutation-positive patients regardless of blood mutation status. PMID:28006816

  7. Cost-Effectiveness of Osimertinib for EGFR Mutation-Positive Non-Small Cell Lung Cancer after Progression following First-Line EGFR TKI Therapy.

    PubMed

    Wu, Bin; Gu, Xiaohua; Zhang, Qiang

    2018-02-01

    The aim of this study was to investigate the cost-effectiveness of osimertinib for the treatment of advanced NSCLC with an EGFR T790M mutation after the failure of first-line EGFR tyrosine kinase inhibitor (TKI) therapy. A mathematical model was established by combining a decision tree and the Markov approach to project the cost-effectiveness of osimertinib versus standard chemotherapy for the treatment of patients who harbor an EGFR T790M mutation and have disease progression after first-line EGFR TKI therapy with or without metastases to the central nervous system. The clinical and outcome data were derived from randomized clinical trials and published reports. The health outcome data included quality-adjusted life-years (QALY). The cost data were estimated from the perspectives of the payer in the United States and the health care system in the People's Republic of China. All costs and incremental cost-effectiveness ratios (ICERs) were presented in 2017 U.S. dollars. Sensitivity and scenario analyses with three different settings of T790M mutation testing were performed. Compared with chemotherapy, molecular testing in plasma and tissue followed by osimertinib treatment yielded an additional 0.359 and 0.313 QALYs in the entire U.S. population and the population of those with central nervous system metastases and an EGFR T790M mutation. For these populations, the incremental costs were $83,515 and $74,924 per patient, respectively, and the ICERs were $232,895 and $239,274 per QALY, respectively. For the entire Chinese population and the Chinese population with central nervous system metastases, the ICERs were $48,081 and $53,244 per QALY, respectively. For those with a known T790M mutation, the ICERs of osimertinib over chemotherapy also exceeded the willingness-to-pay threshold. The most influential parameter was the price of osimertinib. Osimertinib treatment for T790M mutation NSCLC is unlikely to be cost-effective from the perspectives of the United States

  8. Detection of EML4-ALK fusion gene and features associated with EGFR mutations in Chinese patients with non-small-cell lung cancer

    PubMed Central

    Wen, Miaomiao; Wang, Xuejiao; Sun, Ying; Xia, Jinghua; Fan, Liangbo; Xing, Hao; Zhang, Zhipei; Li, Xiaofei

    2016-01-01

    Purpose Echinoderm microtubule-associated protein-like 4–anaplastic lymphoma kinase (EML4-ALK) and epidermal growth factor receptor (EGFR) define specific molecular subsets of lung cancer with distinct clinical features. We aimed at revealing the clinical features of EML4-ALK fusion gene and EGFR mutation in non-small-cell lung cancer (NSCLC). Methods We enrolled 694 Chinese patients with NSCLC for analysis. EML4-ALK fusion gene was analyzed by real-time polymerase chain reaction, and EGFR mutations were analyzed by amplified refractory mutation system. Results Among the 694 patients, 60 (8.65%) patients had EML4-ALK fusions. In continuity correction χ2 test analysis, EML4-ALK fusion gene was correlated with sex, age, smoking status, and histology, but no significant association was observed between EML4-ALK fusion gene and clinical stage. A total of 147 (21.18%) patients had EGFR mutations. In concordance with previous reports, EGFR mutation was correlated with age, smoking status, histology, and clinical stage, whereas patient age was not significantly associated with EGFR mutation. Meanwhile, to our surprise, six (0.86%) patients had coexisting EML4-ALK fusions and EGFR mutations. Conclusion EML4-ALK fusion gene defines a new molecular subset in patients with NSCLC. Six patients who harbored both EML4-ALK fusion genes and EGFR mutations were identified in our study. The EGFR mutations and the EML4-ALK fusion genes are coexistent. PMID:27103824

  9. Structural signature of the G719S-T790M double mutation in the EGFR kinase domain and its response to inhibitors

    PubMed Central

    C., George Priya Doss; B., Rajith; Chakraborty, Chiranjib; N., NagaSundaram; Ali, Shabana Kouser; Zhu, Hailong

    2014-01-01

    Some individuals with non-small-cell lung cancer (NSCLC) benefit from therapies targeting epidermal growth factor receptor (EGFR), and the characterization of a new mechanism of resistance to the EGFR-specific antibody gefitinib will provide valuable insight into how therapeutic strategies might be designed to overcome this particular resistance mechanism. The G719S and T790M mutations and their combination were involved in causing different conformational redistribution of EGFR. In the present computational study, we analyzed the impact and structural influence of G719S/T790M double mutation (DM) in EGFR with ligand (gefitinib) through molecular dynamic simulation (50 ns) and docking analysis. We observed the escalation in distance between the functional loop and activation loop with respect to T790M mutation compared to the G719S mutation. Furthermore, we confirmed that the G719S mutation causes the ligand to move closer to the hinge region, whereas T790M makes the ligand escape from the binding pocket. Obtained results provide with an explanation for the resistance induced by T790M and a vital clue for the design of drugs to combat gefitinib resistance. PMID:25091415

  10. EGFR mutation status of paired cerebrospinal fluid and plasma samples in EGFR mutant non-small cell lung cancer with leptomeningeal metastases.

    PubMed

    Zhao, Jing; Ye, Xin; Xu, Yan; Chen, Minjiang; Zhong, Wei; Sun, Yun; Yang, Zhenfan; Zhu, Guanshan; Gu, Yi; Wang, Mengzhao

    2016-12-01

    Central nervous system (CNS) is the prevalent site for metastases in epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI)-relapsed NSCLC patients. To understand the EGFR mutation status in paired cerebrospinal fluid (CSF) and plasma samples after EGFR-TKI treatment failure might be useful to guide the treatment of intra- and extracranial tumors in those patients. Paired CSF and plasma samples were collected from seven NSCLC patients with CNS metastases after EGFR-TKI failure. EGFR mutations were tested by amplification refractory mutation system (ARMS) and droplet digital PCR (ddPCR) methods. Gefitinib concentrations were evaluated by high-performance liquid chromatography-mass spectrometry (HPLC-MS/MS). EGFR mutations were detected in all seven CSF samples, including three of E19-Del, three of L858R and one of E19-Del&T790M by both methods. On the other hand, majority of the matched plasma samples (5/7) were negative for EGFR mutations by both methods. The other two plasma samples were positive for E19-Del&T790M by ddPCR, and one of them had undetectable T790M by ARMS. Gefitinib concentration in CSF was much lower than that in plasma (mean CSF/plasma ratio: 1.8 %). After EGFR-TKI failure, majority of the NSCLC patients with CNS metastases remained positive detection of EGFR sensitive mutations in CSF, but much less detection in the matched plasma. Significantly low exposure of gefitinib in CSF might explain the intracranial protection of the EGFR sensitive mutation positive tumor cells.

  11. Total DNA input is a crucial determinant of the sensitivity of plasma cell-free DNA EGFR mutation detection using droplet digital PCR

    PubMed Central

    Zhao, Jing; Chen, Minjiang; Zhang, Li; Li, Longyun; Wang, Mengzhao

    2017-01-01

    We evaluated the use of droplet digital PCR (ddPCR) to detect plasma cell-free DNA (cfDNA) epidermal growth factor receptor (EGFR) mutations in advanced non-small cell lung cancer (NSCLC) patients. Compared with tumor-tissue-based detection, the sensitivity of ddPCR for detecting plasma cfDNA tyrosine kinase inhibitor (TKI)-sensitizing EGFR mutations was 61.3%, the specificity was 96.7%, and the consistency rate was 81.4% (?=0.605, 95% confidence interval: 0.501-0.706, p <0.0001). The sensitivity declined from 82.6% to 46.7% with decreasing cfDNA inputs (p=0.028). The plasma cfDNA concentration correlated with gender (males vs.females =11.69 ng/mL vs. 9.508 ng/mL; p=0.044), EGFR mutation status (tumor-tissue EGFR mutation-positive (EGFR M+) vs. EGFR mutation-negative (EGFR M-) = 9.61 ng/mL vs. 12.82 ng/mL; p =0.049) and specimen collection time (=2 years vs. >2 years=13.83 ng/mL vs. 6.575 ng/mL; p <0.001), and was greater in tumor-tissue EGFR M+ / plasma EGFR M+ patients than in tumor-tissue EGFR M+/plasma EGFR M- patients (11.61 vs. 7.73 ng/mL, respectively; p=0.003). Thus total cfDNA input crucially influences the sensitivity of plasma cfDNA EGFR mutation testing with ddPCR. Such analysis could be an effective supplemental test for advanced NSCLC patients. PMID:28052016

  12. EGFR and Ras regulate DDX59 during lung cancer development.

    PubMed

    Yang, Lin; Zhang, Hanyin; Chen, Dan; Ding, Peikun; Yuan, Yunchang; Zhang, Yandong

    2018-02-05

    Oncogenes EGFR and ras are frequently mutated and activated in human lung cancers. In this report, we found that both EGFR and Ras signaling can upregulate RNA helicase DDX59 in lung cancer cells. DDX59 can be induced through the mitogen activated protein kinase (MAPK) pathway after EGFR or Ras activation. Inhibitors for Ras/Raf/MAP pathway significantly decreased DDX59 expression at both protein and mRNA levels. Through immunohistochemistry, we found that DDX59 protein expression correlated with Ras and EGFR mutation status in human lung adenocarcinoma. Finally, through a xenograft nude mice model, we demonstrated that DDX59 is pivotal for EGFR mutated lung cancer cell growth in vivo. Our study identified a novel protein downstream of Ras and EGFR, which may serve as a potential therapeutic drug target for lung cancer patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Association of EGFR mutation or ALK rearrangement with expression of DNA repair and synthesis genes in never-smoker women with pulmonary adenocarcinoma.

    PubMed

    Ren, Shengxiang; Chen, Xiaoxia; Kuang, Peng; Zheng, Limou; Su, Chunxia; Li, Jiayu; Li, Bing; Wang, Yongshen; Liu, Lu; Hu, Qiong; Zhang, Jie; Tang, Liang; Li, Xuefei; Zhou, Caicun; Schmid-Bindert, Gerald

    2012-11-15

    Epidermal growth factor receptor (EGFR) mutation and anaplastic lymphoma kinase (ALK) rearrangement may predict the outcome of targeted drug therapy and also are associated with the efficacy of chemotherapy in patients with nonsmall cell lung cancer (NSCLC). The authors of this report investigated the relation of EGFR mutation or ALK rearrangement status and the expression of DNA repair or synthesis genes, including excision repair cross-complementing 1 (ERCC1), ribonucleotide reductase subunit M1 (RRM1), thymidylate synthetase (TS), and breast cancer-early onset (BRCA1), as a potential explanation for these observations. In total, 104 resected lung adenocarcinomas from women who were nonsmokers were analyzed concurrently for EGFR mutations, ALK rearrangements, and mRNA expression of the ERCC1, RRM1, TS, and BRCA1 genes. EGFR mutations were detected with a proprietary detection kit, ALK rearrangements were detected by polymerase chain reaction analysis, and genetic mRNA expression was detected by real-time polymerase chain reaction analysis. Of 104 patients, 73 (70.2%) had EGFR mutations, and 10 (9.6%) had ALK rearrangements. ERCC1 mRNA levels in patients who had EGFR mutations were 3.44 ± 1.94 × 10(-3) , which were significantly lower than the levels in patients who were positive for ALK rearrangements and in patients who were negative for both biomarkers (4.60 ± 1.95 × 10(-3) and 4.95 ± 2.33 × 10(-3) , respectively; P = .010). However, TS mRNA levels were significantly lower in patients who had EGFR mutations (1.15 ± 1.38 × 10(-3) vs 2.69 ± 3.97 × 10(-3) ; P = .006) or ALK rearrangements (1.21 ± 0.78 × 10(-3) vs 2.69 ± 3.97 × 10(-3) ; P = .020) than in patients who were negative for both biomarkers. NSCLC specimens that harbored activating EGFR mutations were more likely to express low ERCC1 and TS mRNA levels, whereas patients with NSCLC who had ALK rearrangement were more likely to express low TS mRNA levels. Copyright © 2012 American Cancer

  14. A study of therapy targeted EGFR/ALK mutations in Indian patients with lung adenocarcinoma: A clinical and epidemiological study.

    PubMed

    Rana, Vandana; Ranjan, Praveer; Jagani, Rajat; Rathi, K R; Kumar, Dharmesh; Khera, Anurag

    2018-04-01

    Established predictive biomarkers for Non-Small Cell Lung Carcinoma (NSCLC) include sensitizing Epidermal Growth Factor Receptor (EGFR) mutations and Anaplastic Lymphoma Kinase (ALK) fusion oncogene. The primary aim of the study is to ascertain the prevalence of EGFR mutation and ALK gene rearrangement in patients of lung adenocarcinoma in Indian population and the second objective is to impress upon the importance of adequate processing of limited tissue samples. Histopathologically confirmed cases of lung adenocarcinoma, whose tumour had been tested for both EGFR and ALK gene mutations, were included in this study. The EGFR mutations were analyzed using PCR and Gene Sequencing. ALK fusion oncogene was found by Fluorescence In Situ Hybridization (FISH) technique using kit of Vysis LSI ALK Dual colour Break Apart Rearrangement probe. A total of 152 cases of lung adenocarcinoma were included. Out of which, 92 (60.5%) were male and 60 (39.5%) were female. After exclusion of 17 cases due to unsatisfactory result, EGFR mutations were found positive in 35.5% cases (48/135). ALK gene rearrangement was found in 7.6% (10/131) after excluding 21 cases with unsatisfactory result. EGFR mutations and ALK gene rearrangement was found to be mutually exclusive. Incidence of EGFR mutations (35.5%) is much higher in Indian population than in Caucasians (13%) and is close to the incidence in East Asian countries. The 7.6% incidence of ALK fusion oncogene in Indian patients establishes the importance of molecular studies to give maximum benefit of targeted therapy to the patients.

  15. First-line gefitinib in Caucasian EGFR mutation-positive NSCLC patients: a phase-IV, open-label, single-arm study

    PubMed Central

    Douillard, J-Y; Ostoros, G; Cobo, M; Ciuleanu, T; McCormack, R; Webster, A; Milenkova, T

    2014-01-01

    Background: Phase-IV, open-label, single-arm study (NCT01203917) to assess efficacy and safety/tolerability of first-line gefitinib in Caucasian patients with stage IIIA/B/IV, epidermal growth factor receptor (EGFR) mutation-positive non-small-cell lung cancer (NSCLC). Methods: Treatment: gefitinib 250 mg day−1 until progression. Primary endpoint: objective response rate (ORR). Secondary endpoints: disease control rate (DCR), progression-free survival (PFS), overall survival (OS) and safety/tolerability. Pre-planned exploratory objective: EGFR mutation analysis in matched tumour and plasma samples. Results: Of 1060 screened patients with NSCLC (859 known mutation status; 118 positive, mutation frequency 14%), 106 with EGFR sensitising mutations were enrolled (female 70.8% adenocarcinoma 97.2% never-smoker 64.2%). At data cutoff: ORR 69.8% (95% confidence interval (CI) 60.5–77.7), DCR 90.6% (95% CI 83.5–94.8), median PFS 9.7 months (95% CI 8.5–11.0), median OS 19.2 months (95% CI 17.0–NC; 27% maturity). Most common adverse events (AEs; any grade): rash (44.9%), diarrhoea (30.8%); CTC (Common Toxicity Criteria) grade 3/4 AEs: 15% SAEs: 19%. Baseline plasma 1 samples were available in 803 patients (784 known mutation status; 82 positive; mutation frequency 10%). Plasma 1 EGFR mutation test sensitivity: 65.7% (95% CI 55.8–74.7). Conclusion: First-line gefitinib was effective and well tolerated in Caucasian patients with EGFR mutation-positive NSCLC. Plasma samples could be considered for mutation analysis if tumour tissue is unavailable. PMID:24263064

  16. A systematic profile of clinical inhibitors responsive to EGFR somatic amino acid mutations in lung cancer: implication for the molecular mechanism of drug resistance and sensitivity.

    PubMed

    Ai, Xinghao; Sun, Yingjia; Wang, Haidong; Lu, Shun

    2014-07-01

    Human epidermal growth factor receptor (EGFR) has become a well-established target for the treatment of patients with non-small cell lung cancer (NSCLC). However, a large number of somatic mutations in such protein have been observed to cause drug resistance or sensitivity during pathological progression, limiting the application of reversible EGFR tyrosine kinase inhibitor therapy in NSCLC. In the current work, we describe an integration of in silico analysis and in vitro assay to profile six representative EGFR inhibitors against a panel of 71 observed somatic mutations in EGFR tyrosine kinase domain. In the procedure, the changes in interaction free energy of inhibitors with EGFR upon various mutations were calculated one by one using a rigorous computational scheme, which was preoptimized based on a set of structure-solved, affinity-known samples to improve its performance in characterizing the EGFR-inhibitor system. This method was later demonstrated to be effective in inferring drug response to the classical L858R and G719S mutations that confer constitutive activation for the EGFR kinase. It is found that the Staurosporine, a natural product isolated from the bacterium Streptomyces staurosporeus, exhibits selective inhibitory activity on the T790M and T790M/L858R mutants. This finding was subsequently solidified by in vitro kinase assay experiment; the inhibitory IC50 values of Staurosporine against wild-type, T790M and T790M/L858R mutant EGFR were measured to be 937, 12 and 3 nM, respectively.

  17. [Mutations of EGFR gene and EML4-ALK fusion gene in superficial lymph node of non-small cell lung cancer].

    PubMed

    Wei, Lili; Li, Xingzhou; Yu, Zhonghe

    2015-07-14

    To explore the mutation status of epidermal growth factor receptor (EGFR) fusion gene and microtubule associated protein like 4-anaplastic lymphoma kinase (EML4-ALK) fusion gene in superficial lymph nodes of non-small cell lung cancer (NSCLC). The technique of fluorescent quantitative polymerase chain reaction (FQ-PCR) was employed for detecting the mutation rate of EGFR gene and EML4-ALK fusion gene for 40 cases of superficial lymph node tissue of NSCLC inpatients at General Military Hospital of Beijing PLA Command from February 2013 to November 2014. And then the correlations were analyzed between EMIA-ALK fusion gene and EGFR gene with clinical features and the clinical efficacies of targeted therapy. The mutation rate of EGFR gene was 35% (14/40) and 50% (10/20) in non-smokers and 46.7% (14/30) in adenocarcinoma patients. The mutation distribution was as follows: exon 18 (n = 1), exon 19 (n =8) and exon 21 (n =5). The mutation rate of EML4-ALK fusion gene was 2. 5% (1/40). EGFR gene mutation was predominantly present in non-smokers (P < 0. 05) and adenocarcinoma (P <0. 01) while no significant difference existed between gender, age or stage (P >0. 05). Those on a targeted therapy had a disease control rate of 93. 3%. Both EGFR gene and EMI4-ALK fusion gene may be detected in superficial lymph nodes of NSCLC patients. The mutation rate of EGFR gene is high in adenocarcinoma and non-smokers while EML4-ALK fusion gene has a low mutation rate.

  18. Comparison of plasma ctDNA and tissue/cytology-based techniques for the detection of EGFR mutation status in advanced NSCLC: Spanish data subset from ASSESS.

    PubMed

    Arriola, E; Paredes-Lario, A; García-Gomez, R; Diz-Tain, P; Constenla, M; García-Girón, C; Márquez, G; Reck, M; López-Vivanco, G

    2018-04-05

    The analysis of epidermal growth factor receptor (EGFR) mutations in many patients with advanced non-small-cell lung cancer (aNSCLC) has provided the opportunity for successful treatment with specific, targeted EGFR tyrosine kinase inhibitors. However, this therapeutic decision may be challenging when insufficient tumor tissue is available for EGFR mutation testing. Therefore, blood surrogate samples for EGFR mutation analysis have been suggested. Data were collected from the Spanish cohort of patients in the large, non-interventional, diagnostic ASSESS study (NCT01785888) evaluating the utility of circulating free tumor-derived DNA from plasma for EGFR mutation testing. The incidence of EGFR mutation in Spain and the level of concordance between matched tissue/cytology and plasma samples were evaluated. In a cohort of 154 eligible patients, EGFR mutations were identified in 15.1 and 11.0% of tumor and plasma samples, respectively. The most commonly used EGFR mutation testing method for the tumor tissue samples was the QIAGEN Therascreen ® EGFR RGQ PCR kit (52.1%). Fragment Length Analysis + PNA LNA Clamp was used for the plasma samples. The concordance rate for EGFR mutation status between the tissue/cytology and plasma samples was 88.8%; the sensitivity was 45.5%, and the specificity was 96.7%. The high concordance between the different DNA sources for EGFR mutation testing supports the use of plasma samples when tumor tissue is unavailable.

  19. Cis-oriented solvent-front EGFR G796S mutation in tissue and ctDNA in a patient progressing on osimertinib: a case report and review of the literature.

    PubMed

    Klempner, Samuel J; Mehta, Pareen; Schrock, Alexa B; Ali, Siraj M; Ou, Sai-Hong Ignatius

    2017-01-01

    Acquired resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI) is a universal event and limits clinical efficacy. The third-generation EGFR inhibitor osimertinib is active in EGFR-mutant/T790M positive non-small-cell lung cancer. Mechanisms of acquired resistance are emerging, and here we describe a cis -oriented solvent-front EGFR G796S mutation as the resistance mechanism observed in a progression biopsy and circulating tumor DNA (ctDNA) from a patient with initial response followed by progression on osimertinib. This is one of the earliest reports of a sole solvent-front tertiary EGFR mutation as a resistance mechanism to osimertinib. Our case suggests a monoclonal resistance mechanism. We review the importance of the solvent-front residues across TKIs and describe known osimertinib resistance mechanisms. We observe that nearly all clinical osimertinib-resistant tertiary EGFR mutations are oriented in cis with EGFR T790M. This case highlights the importance of mutations affecting EGFR kinase domains and supports the feasibility of broad panel ctDNA assays for detection of novel acquired resistance and tumor heterogeneity in routine clinical care.

  20. Mutations of the EGFR, K-ras, EML4-ALK, and BRAF genes in resected pathological stage I lung adenocarcinoma.

    PubMed

    Ohba, Taro; Toyokawa, Gouji; Osoegawa, Atsushi; Hirai, Fumihiko; Yamaguchi, Masafumi; Taguchi, Ken-Ichi; Seto, Takashi; Takenoyama, Mitsuhiro; Ichinose, Yukito; Sugio, Kenji

    2016-09-01

    The EGFR, K-ras, EML4-ALK, and BRAF genes are oncogenic drivers of lung adenocarcinoma. We conducted this study to analyze the mutations of these genes in stage I adenocarcinoma. The subjects of this retrospective study were 256 patients with resected stage I lung adenocarcinoma. We analyzed mutations of the EGFR, K-ras, and BRAF genes, and the EML4-ALK fusion gene. We also assessed disease-free survival (DFS) to evaluate the prognostic value and overall survival (OS) to evaluate the predictive value of treatment after recurrence. Mutations of the EGFR, K-ras, EML4-ALK, and BRAF genes were detected in 120 (46.8 %), 14 (5.5 %), 6 (2.3 %), and 2 (0.8 %) of the 256 tumors. Two tumors had double mutations (0.8 %). The incidence of EGFR mutations was significantly higher in women than in men. The EML4-ALK fusion gene was detected only in younger patients. The DFS and OS of the K-ras mutant group were significantly worse than those of the EGFR mutant group, the EML4-ALK fusion gene group, and the wild-type group. Six of the seven patients with the EML4-ALK fusion gene are still alive without recurrent disease. In patients with stage I adenocarcinoma, mutation of the K-ras gene was a poor prognostic factor for recurrence. The presence of a mutation of the EGFR or EML4-ALK gene was not a prognostic factor.

  1. Clinical and epidemiological study of EGFR mutations and EML4-ALK fusion genes among Indian patients with adenocarcinoma of the lung.

    PubMed

    Doval, Dc; Prabhash, K; Patil, S; Chaturvedi, H; Goswami, C; Vaid, Ak; Desai, S; Dutt, S; Veldore, Vh; Jambhekar, N; Mehta, A; Hazarika, D; Azam, S; Gawande, S; Gupta, S

    2015-01-01

    Mutation in the tyrosine kinase domain of epidermal growth factor receptor (EGFR) is a common feature observed in lung adenocarcinoma. A fusion gene between echinoderm microtubule-associated protein-like 4 (EML4) and the intracellular domain of anaplastic lymphoma kinase (ALK), named EML4-ALK, has been identified in a subset of non-small-cell lung cancer (NSCLC) tumors. The objective of this study was to determine the prevalence of EGFR mutations and EML4-ALK fusions in Indian patients with NSCLC (adenocarcinoma) as well as evaluate their clinical characteristics. Patients with NSCLC, adenocarcinoma histology, whose tumors had been tested for EGFR mutational status, were considered for this study. ALK gene rearrangement was detected by fluorescence in situ hybridization using the Vysis ALK Break Apart Rearrangement Probe Kit. ALK mutation was tested in samples that were negative for EGFR mutation. A total of 500 NSCLC adenocarcinoma patients were enrolled across six centers. There were 337 (67.4%) men and 163 (32.6%) women with a median age of 58 years. One hundred and sixty-four (32.8%) blocks were positive for EGFR mutations, whereas 336 (67.2%) were EGFR wild-type. Of the 336 EGFR-negative blocks, EML4-ALK fusion gene was present in 15 (4.5%) patients, whereas 321 (95.5%) tumors were EML4-ALK negative. The overall incidence of EML4-ALK fusion gene was 3% (15/500). The incidence of EGFR mutations (33%) in this Indian population is close to the reported incidence in Asian patients. EML4-ALK gene fusions are present in lung adenocarcinomas from Indian patients, and the 3% incidence of EML4-ALK gene fusion in EGFR mutation-negative cases is similar to what has been observed in other Western and Asian populations. The mutual exclusivity of EML4-ALK and EGFR mutations suggests implementation of biomarker testing for tumors harboring ALK rearrangements in order to identify patients that can benefit from newer targeted therapies.

  2. Core Needle Lung Biopsy Specimens: Adequacy for EGFR and KRAS Mutational Analysis

    PubMed Central

    Zakowski, Maureen F.; Pao, William; Thornton, Raymond H.; Ladanyi, Marc; Kris, Mark G.; Rusch, Valerie W.; Rizvi, Naiyer A.

    2013-01-01

    OBJECTIVE The purpose of this study was to prospectively compare the adequacy of core needle biopsy specimens with the adequacy of specimens from resected tissue, the histologic reference standard, for mutational analysis of malignant tumors of the lung. SUBJECTS AND METHODS The first 18 patients enrolled in a phase 2 study of gefitinib for lung cancer in July 2004 through August 2005 underwent CT- or fluoroscopy-guided lung biopsy before the start of gefitinib therapy. Three weeks after gefitinib therapy, the patients underwent lung tumor resection. The results of EGFR and KRAS mutational analysis of the core needle biopsy specimens were compared with those of EGFR and KRAS mutational analysis of the surgical specimens. RESULTS Two specimens were unsatisfactory for mutational analysis. The results of mutational assay results of the other 16 specimens were the same as those of analysis of the surgical specimens obtained an average of 31 days after biopsy. CONCLUSION Biopsy with small (18- to 20-gauge) core needles can yield sufficient and reliable samples for mutational analysis. This technique is likely to become an important tool with the increasing use of pharmacotherapy based on the genetics of specific tumors in individual patients. PMID:20028932

  3. Detection of EGFR Variants in Plasma: A Multilaboratory Comparison of the cobas EGFR Mutation Test v2 in Europe.

    PubMed

    Keppens, Cleo; Palma, John F; Das, Partha M; Scudder, Sidney; Wen, Wei; Normanno, Nicola; Van Krieken, J Han; Sacco, Alessandra; Fenizia, Francesca; de Castro, David Gonzalez; Hönigschnabl, Selma; Kern, Izidor; Lopez-Rios, Fernando; Lozano, Maria D; Marchetti, Antonio; Halfon, Philippe; Schuuring, Ed; Setinek, Ulrike; Sorensen, Boe; Taniere, Phillipe; Tiemann, Markus; Vosmikova, Hana; Dequeker, Elisabeth M C

    2018-04-25

    Molecular testing of EGFR is required to predict the response likelihood to targeted therapy in non-small-cell lung cancer. Analysis of circulating tumor DNA in plasma may complement limitations of tumor tissue. This study evaluated the interlaboratory performance and reproducibility of the cobas EGFR Mutation Test v2 to detect EGFR variants in plasma. Fourteen laboratories received two identical panels of 27 single-blinded plasma samples. Samples were wild-type or spiked with plasmid DNA to contain seven common EGFR variants at six predefined concentrations from 50 to 5000 copies per mL. The circulating tumor DNA was extracted by the cobas cfDNA Sample Preparation kit, followed by duplicate analysis with the EGFRv2 kit (Roche Molecular Systems, Pleasanton, CA). Lowest sensitivities were obtained for the c.2156G>C p.(Gly719Ala) and c.2573T>G p.(Leu858Arg) variants for the lowest target copies. For all other variants, sensitivities varied between 96.3% and 100.0%. Specificities were all 98.8% to 100.0%. Coefficients of variation indicated good intra and interlaboratory repeatability and reproducibility, but increased for decreasing concentrations. Prediction models revealed a significant correlation for all variants between the pre-defined copy number and the observed semiquantitative index values which reflects the samples' plasma mutation load. This study demonstrates an overall robust performance of the EGFRv2 kit in plasma. Prediction models may be applied to estimate the plasma mutation load for diagnostic or research purposes. Copyright © 2018 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  4. Establishing an EGFR mutation screening service for non-small cell lung cancer - sample quality criteria and candidate histological predictors.

    PubMed

    Leary, Alexandra F; Castro, David Gonzalez de; Nicholson, Andrew G; Ashley, Sue; Wotherspoon, Andrew; O'Brien, Mary E R; Popat, Sanjay

    2012-01-01

    EGFR screening requires good quality tissue, sensitivity and turn-around time (TAT). We report our experience of routine screening, describing sample type, TAT, specimen quality (cellularity and DNA yield), histopathological description, mutation result and clinical outcome. Non-small cell lung cancer (NSCLC) sections were screened for EGFR mutations (M+) in exons 18-21. Clinical, pathological and screening outcome data were collected for year 1 of testing. Screening outcome alone was collected for year 2. In year 1, 152 samples were tested, most (72%) were diagnostic. TAT was 4.9 days (95%confidence interval (CI)=4.5-5.5). EGFR-M+ prevalence was 11% and higher (20%) among never-smoking women with adenocarcinomas (ADCs), but 30% of mutations occurred in current/ex-smoking men. EGFR-M+ tumours were non-mucinous ADCs and 100% thyroid transcription factor (TTF1+). No mutations were detected in poorly differentiated NSCLC-not otherwise specified (NOS). There was a trend for improved overall survival (OS) among EGFR-M+ versus EGFR-M- patients (median OS=78 versus 17 months). In year 1, test failure rate was 19%, and associated with scant cellularity and low DNA concentrations. However 75% of samples with poor cellularity but representative of tumour were informative and mutation prevalence was 9%. In year 2, 755 samples were tested; mutation prevalence was 13% and test failure only 5.4%. Although samples with low DNA concentration (<2 ng/μL) had more test failures (30% versus 3.9% for [DNA]>2.2 ng/μL), the mutation rate was 9.2%. Routine epidermal growth factor receptor (EGFR) screening using diagnostic samples is fast and feasible even on samples with poor cellularity and DNA content. Mutations tend to occur in better-differentiated non-mucinous TTF1+ ADCs. Whether these histological criteria may be useful to select patients for EGFR testing merits further investigation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Analysis of EGFR, EML4-ALK, KRAS, and c-MET mutations in Chinese lung adenocarcinoma patients.

    PubMed

    Xia, Ning; An, Jian; Jiang, Qing-qing; Li, Min; Tan, Jun; Hu, Cheng-ping

    2013-10-01

    Mutation analysis of cancer driver genes is helpful for determining an optimal treatment strategy. We evaluated mutations in four driver genes, namely epidermal growth factor receptor (EGFR), Kirsten ras oncogene (KRAS), c-MET, and echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase (EML4-ALK), in Chinese lung adenocarcinoma patients from Hunan Province. We enrolled 110 lung adenocarcinoma patients in a single institution. EGFR and KRAS mutations were examined by direct sequencing, the EML4-ALK fusion gene was analyzed by fluorescence in situ hybridization, and c-MET amplification and c-Met protein expression were detected by quantitative PCR and immunohistochemistry, respectively. EGFR and KRAS mutations were observed in 52.7% (58/110) and 3.6% (4/106) of patients, respectively. c-MET amplification was detected in 5.5% (6/110) of patients. In addition, 30% (33/110) of the cases expressed c-Met protein, including all of the patients harboring c-MET amplification. Ten percent (11/110) of patients harbored the EML4-ALK fusion gene, and the frequency of ALK rearrangement was higher than that of other cohort analyses involving patients from other regions in China. Almost all of these gene mutations were exclusive except that in two female non-smoking patients, who harbored an EGFR mutation and EML4-ALK rearrangement simultaneously. In total, 70% of patients in the study harbored one of the four gene mutations. Most Chinese lung adenocarcinoma patients harbor driver gene mutations, among which ALK rearrangements were more common in Hunan patients than in previously reported populations. Future clinical trials should be conducted to determine the safety and efficacy of drug combination targeting different driver mutations.

  6. Epidermal Growth Factor Receptor Mutation (EGFR) Testing for Prediction of Response to EGFR-Targeting Tyrosine Kinase Inhibitor (TKI) Drugs in Patients with Advanced Non-Small-Cell Lung Cancer: An Evidence-Based Analysis.

    PubMed

    2010-01-01

    deaths in Ontario. Those with unresectable or advanced disease are commonly treated with concurrent chemoradiation or platinum-based combination chemotherapy. Although response rates to cytotoxic chemotherapy for advanced NSCLC are approximately 30 to 40%, all patients eventually develop resistance and have a median survival of only 8 to 10 months. Treatment for refractory or relapsed disease includes single-agent treatment with docetaxel, pemetrexed or EGFR-targeting TKIs (gefitinib, erlotinib). TKIs disrupt EGFR signaling by competing with adenosine triphosphate (ATP) for the binding sites at the tyrosine kinase (TK) domain, thus inhibiting the phosphorylation and activation of EGFRs and the downstream signaling network. Gefitinib and erlotinib have been shown to be either non-inferior or superior to chemotherapy in the first- or second-line setting (gefitinib), or superior to placebo in the second- or third-line setting (erlotinib). Certain patient characteristics (adenocarcinoma, non-smoking history, Asian ethnicity, female gender) predict for better survival benefit and response to therapy with TKIs. In addition, the current body of evidence shows that somatic mutations in the EGFR gene are the most robust biomarkers for EGFR-targeting therapy selection. Drugs used in this therapy, however, can be costly, up to C$ 2000 to C$ 3000 per month, and they have only approximately a 10% chance of benefiting unselected patients. For these reasons, the predictive value of EGFR mutation testing for TKIs in patients with advanced NSCLC needs to be determined. EGFR MUTATION TESTING The EGFR gene sequencing by polymerase chain reaction (PCR) assays is the most widely used method for EGFR mutation testing. PCR assays can be performed at pathology laboratories across Ontario. According to experts in the province, sequencing is not currently done in Ontario due to lack of adequate measurement sensitivity. A variety of new methods have been introduced to increase the measurement

  7. Selective gene amplification to detect the T790M mutation in plasma from patients with advanced non-small cell lung cancer (NSCLC) who have developed epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) resistance.

    PubMed

    Nishikawa, Shingo; Kimura, Hideharu; Koba, Hayato; Yoneda, Taro; Watanabe, Satoshi; Sakai, Tamami; Hara, Johsuke; Sone, Takashi; Kasahara, Kazuo; Nakao, Shinji

    2018-03-01

    The epidermal growth factor receptor (EGFR) T790M mutation is associated with resistance to EGFR tyrosine kinase inhibitors (EGFR-TKIs) in non-small cell lung cancer (NSCLC). However, tissues for the genotyping of the EGFR T790M mutation can be difficult to obtain in a clinical setting. The aims of this study were to evaluate a blood-based, non-invasive approach to detecting the EGFR T790M mutation in advanced NSCLC patients using the PointMan™ EGFR DNA enrichment kit, which is a novel method for the selective amplification of specific genotype sequences. Blood samples were collected from NSCLC patients who had activating EGFR mutations and who were resistant to EGFR-TKI treatment. Using cell-free DNA (cfDNA) from plasma, EGFR T790M mutations were amplified using the PointMan™ enrichment kit, and all the reaction products were confirmed using direct sequencing. The concentrations of plasma DNA were then determined using quantitative real-time PCR. Nineteen patients were enrolled, and 12 patients (63.2%) were found to contain EGFR T790M mutations in their cfDNA, as detected by the kit. T790M mutations were detected in tumor tissues in 12 cases, and 11 of these cases (91.7%) also exhibited the T790M mutation in cfDNA samples. The concentrations of cfDNA were similar between patients with the T790M mutation and those without the mutation. The PointMan™ kit provides a useful method for determining the EGFR T790M mutation status in cfDNA.

  8. Emergence of novel and dominant acquired EGFR solvent-front mutations at Gly796 (G796S/R) together with C797S/R and L792F/H mutations in one EGFR (L858R/T790M) NSCLC patient who progressed on osimertinib.

    PubMed

    Ou, Sai-Hong Ignatius; Cui, Jean; Schrock, Alexa B; Goldberg, Michael E; Zhu, Viola W; Albacker, Lee; Stephens, Philip J; Miller, Vincent A; Ali, Siraj M

    2017-06-01

    Acquired epidermal growth factor receptor (EGFR) resistance mutations to osimertinib are common, including the EGFR C797S that abolishes the covalent binding of osimertinib to EGFR. Here we report the emergence of novel EGFR solvent front mutations at Gly796 (G796S/R) in addition to a hinge pocket L792F/H mutations, and C797S/G all in cis with T790M in a single patient on progression on osimertinib as detected by plasma circulating tumor DNA (ctDNA) assay in the course of clinical care. A 69-year-old Caucasian female former light-smoker presented with stage IV EGFR L858R positive adenocarcinoma who developed EGFR T790M mutation after 8 month treatment of erlotinib. The patient was initiated on osimertinib with disease shrinkage after 2 months, but tumor regrowth was observed after 5 months of osimertinib treatment. Assay of plasma ctDNA at this time revealed these different secondary resistance mutations all in trans with each other including distinct mutations at the same codon producing different amino acid changes: G796S/R (mutant allele frequency [MAF]; 14.4%), C797S/G (MAF: 2.26%), L792F/H (MAF: 0.36%), and V802F (MAF: 0.40%), in addition to the pre-existing L858R (MAF:17.9%) and T790M (MAF:18.2%) but all in cis with T790M. The G796S/R mutations are homologous with known reported solvent front mutations in ALK G1202R, ROS1 G2032R, TrkA G595R and TrkC G623R, all of which are associated with acquired resistance to type I TKIs. In silico modeling revealed mutation at G796 interferes with osimertinib binding to the EGFR kinase domain at the phenyl aromatic ring position as this residue forms a narrow "hydrophobic sandwich" with L718, while L792F/H mutation interferes with osimertinib binding at the methoxyl group on the phenyl ring. Multiple resistance mutations at differing allele frequencies including novel EGFR solvent front mutations can emerge in a single patient with progression on osimertinib potentially due to tumor hetereogeneity and definitely present a

  9. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer.

    PubMed

    Misale, Sandra; Yaeger, Rona; Hobor, Sebastijan; Scala, Elisa; Janakiraman, Manickam; Liska, David; Valtorta, Emanuele; Schiavo, Roberta; Buscarino, Michela; Siravegna, Giulia; Bencardino, Katia; Cercek, Andrea; Chen, Chin-Tung; Veronese, Silvio; Zanon, Carlo; Sartore-Bianchi, Andrea; Gambacorta, Marcello; Gallicchio, Margherita; Vakiani, Efsevia; Boscaro, Valentina; Medico, Enzo; Weiser, Martin; Siena, Salvatore; Di Nicolantonio, Federica; Solit, David; Bardelli, Alberto

    2012-06-28

    A main limitation of therapies that selectively target kinase signalling pathways is the emergence of secondary drug resistance. Cetuximab, a monoclonal antibody that binds the extracellular domain of epidermal growth factor receptor (EGFR), is effective in a subset of KRAS wild-type metastatic colorectal cancers. After an initial response, secondary resistance invariably ensues, thereby limiting the clinical benefit of this drug. The molecular bases of secondary resistance to cetuximab in colorectal cancer are poorly understood. Here we show that molecular alterations (in most instances point mutations) of KRAS are causally associated with the onset of acquired resistance to anti-EGFR treatment in colorectal cancers. Expression of mutant KRAS under the control of its endogenous gene promoter was sufficient to confer cetuximab resistance, but resistant cells remained sensitive to combinatorial inhibition of EGFR and mitogen-activated protein-kinase kinase (MEK). Analysis of metastases from patients who developed resistance to cetuximab or panitumumab showed the emergence of KRAS amplification in one sample and acquisition of secondary KRAS mutations in 60% (6 out of 10) of the cases. KRAS mutant alleles were detectable in the blood of cetuximab-treated patients as early as 10 months before radiographic documentation of disease progression. In summary, the results identify KRAS mutations as frequent drivers of acquired resistance to cetuximab in colorectal cancers, indicate that the emergence of KRAS mutant clones can be detected non-invasively months before radiographic progression and suggest early initiation of a MEK inhibitor as a rational strategy for delaying or reversing drug resistance.

  10. A pilot study identifying a potential plasma biomarker for determining EGFR mutations in exons 19 or 21 in lung cancer patients

    PubMed Central

    Pamungkas, Aryo D.; Medriano, Carl A.; Sim, Eunjung; Lee, Sungyong; Park, Youngja H.

    2017-01-01

    The most common type of lung cancer is non-small cell lung cancer (NSCLC), which is frequently characterized by a mutation in the epidermal growth factor receptor (EGFR). Determining the presence of an EGFR mutation in lung cancer is important, as it determines the type of treatment that a patients will receive. Therefore, the aim of the present study was to apply high-resolution metabolomics (HRM) using liquid chromatography-mass spectrometry to identify significant compounds in human plasma samples obtained from South Korean NSCLC patients, as potential biomarkers for providing early detection and diagnosis of minimally-invasive NSCLC. The metabolic differences between lung cancer patients without EGFR mutations were compared with patients harboring EGFR mutations. Univariate analysis was performed, with a false discovery rate of q=0.05, in order to identify significant metabolites between the two groups. In addition, hierarchical clustering analysis was performed to discriminate between the metabolic profiles of the two groups. Furthermore, the significant metabolites were identified and mapped using Mummichog software, in order to generate a potential metabolic network model. Using metabolome-wide association studies, metabolic alterations were identified. Linoleic acid [303.23 m/z, (M+Na)+], 5-methyl tetrahydrofolate [231.10 m/z, (M+2H)+] and N-succinyl-L-glutamate-5 semialdehyde [254.06 m/z, (M+Na)+], were observed to be elevated in patients harboring EGFR mutations, whereas tetradecanoyl carnitine [394.29 m/z, (M+Na)+] was observed to be reduced. This suggests that these compounds may be affected by the EGFR mutation. In conclusion, the present study identified four potential biomarkers in patients with EGFR mutations, using HRM combined with pathway analysis. These results may facilitate the development of novel diagnostic tools for EGFR mutation detection in patients with lung cancer. PMID:28487968

  11. EGFR mutation detection in ctDNA from NSCLC patient plasma: A cross-platform comparison of leading technologies to support the clinical development of AZD9291.

    PubMed

    Thress, Kenneth S; Brant, Roz; Carr, T Hedley; Dearden, Simon; Jenkins, Suzanne; Brown, Helen; Hammett, Tracey; Cantarini, Mireille; Barrett, J Carl

    2015-12-01

    To assess the ability of different technology platforms to detect epidermal growth factor receptor (EGFR) mutations, including T790M, from circulating tumor DNA (ctDNA) in advanced non-small cell lung cancer (NSCLC) patients. A comparison of multiple platforms for detecting EGFR mutations in plasma ctDNA was undertaken. Plasma samples were collected from patients entering the ongoing AURA trial (NCT01802632), investigating the safety, tolerability, and efficacy of AZD9291 in patients with EGFR-sensitizing mutation-positive NSCLC. Plasma was collected prior to AZD9291 dosing but following clinical progression on a previous EGFR-tyrosine kinase inhibitor (TKI). Extracted ctDNA was analyzed using two non-digital platforms (cobas(®) EGFR Mutation Test and therascreen™ EGFR amplification refractory mutation system assay) and two digital platforms (Droplet Digital™ PCR and BEAMing digital PCR [dPCR]). Preliminary assessment (38 samples) was conducted using all four platforms. For EGFR-TKI-sensitizing mutations, high sensitivity (78-100%) and specificity (93-100%) were observed using tissue as a non-reference standard. For the T790M mutation, the digital platforms outperformed the non-digital platforms. Subsequent assessment using 72 additional baseline plasma samples was conducted using the cobas(®) EGFR Mutation Test and BEAMing dPCR. The two platforms demonstrated high sensitivity (82-87%) and specificity (97%) for EGFR-sensitizing mutations. For the T790M mutation, the sensitivity and specificity were 73% and 67%, respectively, with the cobas(®) EGFR Mutation Test, and 81% and 58%, respectively, with BEAMing dPCR. Concordance between the platforms was >90%, showing that multiple platforms are capable of sensitive and specific detection of EGFR-TKI-sensitizing mutations from NSCLC patient plasma. The cobas(®) EGFR Mutation Test and BEAMing dPCR demonstrate a high sensitivity for T790M mutation detection. Genomic heterogeneity of T790M-mediated resistance may

  12. Rapid intracranial response to osimertinib, without radiotherapy, in nonsmall cell lung cancer patients harboring the EGFR T790M mutation: Two Case Reports.

    PubMed

    Koba, Taro; Kijima, Takashi; Takimoto, Takayuki; Hirata, Haruhiko; Naito, Yujiro; Hamaguchi, Masanari; Otsuka, Tomoyuki; Kuroyama, Muneyoshi; Nagatomo, Izumi; Takeda, Yoshito; Kida, Hiroshi; Kumanogoh, Atsushi

    2017-02-01

    Most of nonsmall cell lung cancer (NSCLC) patients harboring epidermal growth factor receptor (EGFR) activating mutations eventually acquire resistance to the first EGFR-tyrosine kinase inhibitors (TKIs) therapy after varying periods of treatment. Of note, approximately one-third of those patients develop brain metastases, which deteriorate their quality of life and survival. The effect of systemic chemotherapy on brain metastases after acquisition of EGFR-TKI resistance is limited, and thus far, whole-brain radiation therapy, which may cause the harmful effect on neurocognitive functions, has been the only established therapeutic option for especially symptomatic brain metastases. Osimertinib is a third-generation oral, potent, and irreversible EGFR-TKI. It can bind to EGFRs with high affinity even when the EGFR T790M mutation exists in addition to the sensitizing mutations. Its clinical efficacy for NSCLC patients harboring the T790M mutation has already been shown; however, the evidence of osimertinib on brain metastases has not been documented well, especially in terms of the appropriate timing for treatment and its response evaluation. We experienced 2 NSCLC patients with the EGFR T790M mutation; a 67-year-old woman with symptomatic multiple brain metastases administered osimertinib as seventh-line chemotherapy, and a 76-year old man with an asymptomatic single brain metastasis administered osimertinib as fifth-line chemotherapy. These patients showed great response to osimertinib within 2 weeks without radiation therapy. These are the first reports to reveal the rapid response of the brain metastases to osimertinib within 2 weeks. These cases suggest the possibility that preemptive administration of osimertinib may help patients to postpone or avoid radiation exposures. In addition, rapid reassessment of the effect of osimertinib on brain metastases could prevent patients from being too late to receive essential radiotherapy.

  13. Cost-effectiveness analysis of EGFR mutation testing in patients with non-small cell lung cancer (NSCLC) with gefitinib or carboplatin-paclitaxel.

    PubMed

    Arrieta, Oscar; Anaya, Pablo; Morales-Oyarvide, Vicente; Ramírez-Tirado, Laura Alejandra; Polanco, Ana C

    2016-09-01

    Assess the cost-effectiveness of an EGFR-mutation testing strategy for advanced NSCLC in first-line therapy with either gefitinib or carboplatin-paclitaxel in Mexican institutions. Cost-effectiveness analysis using a discrete event simulation (DES) model to simulate two therapeutic strategies in patients with advanced NSCLC. Strategy one included patients tested for EGFR-mutation and therapy given accordingly. Strategy two included chemotherapy for all patients without testing. All results are presented in 2014 US dollars. The analysis was made with data from the Mexican frequency of EGFR-mutation. A univariate sensitivity analysis was conducted on EGFR prevalence. Progression-free survival (PFS) transition probabilities were estimated on data from the IPASS and simulated with a Weibull distribution, run with parallel trials to calculate a probabilistic sensitivity analysis. PFS of patients in the testing strategy was 6.76 months (95 % CI 6.10-7.44) vs 5.85 months (95 % CI 5.43-6.29) in the non-testing group. The one-way sensitivity analysis showed that PFS has a direct relationship with EGFR-mutation prevalence, while the ICER and testing cost have an inverse relationship with EGFR-mutation prevalence. The probabilistic sensitivity analysis showed that all iterations had incremental costs and incremental PFS for strategy 1 in comparison with strategy 2. There is a direct relationship between the ICER and the cost of EGFR testing, with an inverse relationship with the prevalence of EGFR-mutation. When prevalence is >10 % ICER remains constant. This study could impact Mexican and Latin American health policies regarding mutation detection testing and treatment for advanced NSCLC.

  14. Combined EGFR/MEK Inhibition Prevents the Emergence of Resistance in EGFR mutant Lung Cancer

    PubMed Central

    Uddin, Sharmeen; Capelletti, Marzia; Ercan, Dalia; Ogino, Atsuko; Pratilas, Christine A.; Rosen, Neal; Gray, Nathanael S.; Wong, Kwok-Kin; Jänne, Pasi A.

    2016-01-01

    Irreversible pyrimidine based EGFR inhibitors, including WZ4002, selectively inhibit both EGFR activating and EGFR inhibitor resistant T790M mutations more potently than wild type EGFR. While this class of mutant selective EGFR inhibitors is effective clinically in lung cancer patients harboring EGFR T790M, prior preclinical studies demonstrate that acquired resistance can occur through genomic alterations that activate ERK1/2 signaling. Here we find that ERK1/2 reactivation occurs rapidly following WZ4002 treatment. Concomitant inhibition of ERK1/2 by the MEK inhibitor trametinib prevents ERK1/2 reactivation, enhances WZ4002 induced apoptosis and inhibits the emergence of resistance in WZ4002 sensitive models known to acquire resistance via both T790M dependent and independent mechanisms. Resistance to WZ4002 in combination with trametinib eventually emerges due to AKT/mTOR reactivation. These data suggest that initial co-targeting of EGFR and MEK could significantly impede the development of acquired resistance in mutant EGFR lung cancer. PMID:26036643

  15. Acquired EGFR L718V mutation mediates resistance to osimertinib in non-small cell lung cancer but retains sensitivity to afatinib.

    PubMed

    Liu, Yutao; Li, Yan; Ou, Qiuxiang; Wu, Xue; Wang, Xiaonan; Shao, Yang W; Ying, Jianming

    2018-04-01

    Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are promising targeted therapies for EGFR-mutated non-small-cell lung cancer (NSCLC) patients. However, acquired resistance inevitably develops. Comprehensive and dynamic companion genomic diagnosis can gain insights into underlying resistance mechanisms, thereby help oncologists and patients to make informed decision on the potential benefit of the treatment. A 67-year-old male who was initially diagnosed of EGFR L858R-mediated NSCLC received multiple lines of chemotherapy and EGFR TKI therapies after surgery. The EGFR mutational status of individual metastatic lesion was determined by genetic testing of the tumor tissue biopsies using next generation sequencing (NGS) throughout the patient's clinical course. An acquired potentially drug-resistant EGFR mutation was functionally validated in vitro and its sensitivity to different EGFR TKIs was assessed simultaneously. We have identified distinct resistance mechanisms to EGFR blockade in different metastatic lung lesions. Acquired EGFR T790M was first detected that leads to the resistance to the gefitinib treatment. Consequently, osimertinib was administrated and the response lasted until disease progressed. We identified a newly acquired EGFR L718V mutation in one lesion in conjunction with L858R, but not T790M, which showed stable disease on the following erlotinib treatment, while EGFR C797S together with L858R/T790M was detected in the other lesion that continuously progressed. In vitro functional studies demonstrated that EGFR-L858R/L718V confers resistance to osimertinib, but retains sensitivity to the second generation TKI afatinib. We reported that distinct resistance mechanisms could arise in different metastases within the same patient in response to EGFR blockade. We also demonstrated in vitro that EGFR L718V mutation mediates resistance to osimertinib, but retains sensitivity to afatinib. We evidenced that dynamic companion genomic

  16. Cost-Effectiveness Analysis of Afatinib versus Gefitinib for First-Line Treatment of Advanced EGFR-Mutated Advanced Non-Small Cell Lung Cancers.

    PubMed

    Chouaid, Christos; Luciani, Laura; LeLay, Katell; Do, Pascal; Bennouna, Jaafar; Perol, Maurice; Moro-Sibilot, Denis; Vergnenègre, Alain; de Pouvourville, Gérard

    2017-10-01

    The irreversible ErbB family blocker afatinib and the reversible EGFR tyrosine kinase inhibitor gefitinib were compared in the multicenter, international, randomized, head-to-head phase 2b LUX-Lung 7 trial for first-line treatment of advanced EGFR mutation-positive NSCLCs. Afatinib and gefitinib costs and patients' outcomes in France were assessed. A partitioned survival model was designed to assess the cost-effectiveness of afatinib versus gefitinib for EGFR mutation-positive NSCLCs. Outcomes and safety were taken primarily from the LUX-Lung 7 trial. Resource use and utilities were derived from that trial, an expert-panel questionnaire, and published literature, limiting expenditures to direct costs. Incremental cost-effectiveness ratios (ICERs) were calculated over a 10-year time horizon for the entire population, and EGFR exon 19 deletion or exon 21 L858R mutation (L858R) subgroups. Deterministic and probabilistic sensitivity analyses were conducted. For all EGFR mutation-positive NSCLCs, the afatinib-versus-gefitinib ICER of was €45,211 per quality-adjusted life-year (QALY) (0.170 QALY gain for an incremental cost of €7697). ICERs for EGFR exon 19 deletion and L858R populations were €38,970 and €52,518, respectively. Afatinib had 100% probability to be cost-effective at a willingness-to-pay threshold of €70,000/QALY for patients with common EGFR mutations. First-line afatinib appears cost-effective compared with gefitinib for patients with EGFR mutation-positive NSCLCs. Copyright © 2017 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  17. Comparison of small biopsy specimens and surgical specimens for the detection of EGFR mutations and EML4-ALK in non-small-cell lung cancer

    PubMed Central

    Xiao, DeSheng; Lu, Can; Zhu, Wei; He, QiuYan; Li, Yong; Fu, ChunYan; Zhou, JianHua; Liu, Shuang; Tao, YongGuang

    2016-01-01

    Epidermal growth factor receptor (EGFR) mutations and anaplastic lymphoma kinase (ALK) fusion genes represent novel oncogenes that are associated with non–small-cell lung cancers (NSCLC). The feasibility of detecting EGFR mutations and ALK fusion genes in small biopsy specimens or surgical specimens was determined. Of the 721 NSCLC patients, a total of 305 cases were positive for EGFR mutations (42.3%). The rate of EGFR mutations in women was significantly higher than that in men. Histologically, the EGFR mutation rate in adenocarcinomas was significantly higher than that in squamous cell carcinomas. No difference in the EGFR mutation rate was observed between surgical specimens (42.1%) and small biopsy specimens (42.4%), which indicated that the EGFR mutation ratios in surgical specimens and small biopsy specimens were not different. In 385 NSCLC patients, 26 cases were positive for EML4-ALK (6.8%). However, 11.7% of the surgical specimens were EML4-ALK-positive, whereas the positive proportion in the small biopsy specimens was only 4.7%, which indicated that EML4-ALK-positive rate in the surgical specimens was significantly higher than that in the small biopsy specimens. Detection of EGFR gene mutations was feasible in small biopsy specimens, and screening for EML4-ALK expression in small biopsy specimens can be used to guide clinical treatments. PMID:27322143

  18. Comparison of small biopsy specimens and surgical specimens for the detection of EGFR mutations and EML4-ALK in non-small-cell lung cancer.

    PubMed

    Xiao, DeSheng; Lu, Can; Zhu, Wei; He, QiuYan; Li, Yong; Fu, ChunYan; Zhou, JianHua; Liu, Shuang; Tao, YongGuang

    2016-09-13

    Epidermal growth factor receptor (EGFR) mutations and anaplastic lymphoma kinase (ALK) fusion genes represent novel oncogenes that are associated with non-small-cell lung cancers (NSCLC). The feasibility of detecting EGFR mutations and ALK fusion genes in small biopsy specimens or surgical specimens was determined. Of the 721 NSCLC patients, a total of 305 cases were positive for EGFR mutations (42.3%). The rate of EGFR mutations in women was significantly higher than that in men. Histologically, the EGFR mutation rate in adenocarcinomas was significantly higher than that in squamous cell carcinomas. No difference in the EGFR mutation rate was observed between surgical specimens (42.1%) and small biopsy specimens (42.4%), which indicated that the EGFR mutation ratios in surgical specimens and small biopsy specimens were not different. In 385 NSCLC patients, 26 cases were positive for EML4-ALK (6.8%). However, 11.7% of the surgical specimens were EML4-ALK-positive, whereas the positive proportion in the small biopsy specimens was only 4.7%, which indicated that EML4-ALK-positive rate in the surgical specimens was significantly higher than that in the small biopsy specimens. Detection of EGFR gene mutations was feasible in small biopsy specimens, and screening for EML4-ALK expression in small biopsy specimens can be used to guide clinical treatments.

  19. Preclinical Comparison of Osimertinib with Other EGFR-TKIs in EGFR-Mutant NSCLC Brain Metastases Models, and Early Evidence of Clinical Brain Metastases Activity.

    PubMed

    Ballard, Peter; Yates, James W T; Yang, Zhenfan; Kim, Dong-Wan; Yang, James Chih-Hsin; Cantarini, Mireille; Pickup, Kathryn; Jordan, Angela; Hickey, Mike; Grist, Matthew; Box, Matthew; Johnström, Peter; Varnäs, Katarina; Malmquist, Jonas; Thress, Kenneth S; Jänne, Pasi A; Cross, Darren

    2016-10-15

    Approximately one-third of patients with non-small cell lung cancer (NSCLC) harboring tumors with EGFR-tyrosine kinase inhibitor (TKI)-sensitizing mutations (EGFRm) experience disease progression during treatment due to brain metastases. Despite anecdotal reports of EGFR-TKIs providing benefit in some patients with EGFRm NSCLC brain metastases, there is a clinical need for novel EGFR-TKIs with improved efficacy against brain lesions. We performed preclinical assessments of brain penetration and activity of osimertinib (AZD9291), an oral, potent, irreversible EGFR-TKI selective for EGFRm and T790M resistance mutations, and other EGFR-TKIs in various animal models of EGFR-mutant NSCLC brain metastases. We also present case reports of previously treated patients with EGFRm-advanced NSCLC and brain metastases who received osimertinib in the phase I/II AURA study (NCT01802632). Osimertinib demonstrated greater penetration of the mouse blood-brain barrier than gefitinib, rociletinib (CO-1686), or afatinib, and at clinically relevant doses induced sustained tumor regression in an EGFRm PC9 mouse brain metastases model; rociletinib did not achieve tumor regression. Under positron emission tomography micro-dosing conditions, [ 11 C]osimertinib showed markedly greater exposure in the cynomolgus monkey brain than [ 11 C]rociletinib and [ 11 C]gefitinib. Early clinical evidence of osimertinib activity in previously treated patients with EGFRm-advanced NSCLC and brain metastases is also reported. Osimertinib may represent a clinically significant treatment option for patients with EGFRm NSCLC and brain metastases. Further investigation of osimertinib in this patient population is ongoing. Clin Cancer Res; 22(20); 5130-40. ©2016 AACR. ©2016 American Association for Cancer Research.

  20. Isolated Brain Metastases as the First Relapse After the Curative Surgical Resection in Non-Small-Cell Lung Cancer Patients With an EGFR Mutation.

    PubMed

    Sadoyama, Shinko; Sekine, Akimasa; Satoh, Hiroaki; Iwasawa, Tae; Kato, Terufumi; Ikeda, Satoshi; Sata, Masafumi; Baba, Tomohisa; Tabata, Erina; Minami, Yuko; Nemoto, Kenji; Hayashihara, Kenji; Saito, Takefumi; Okudela, Koji; Ohashi, Kenichi; Tajiri, Michihiko; Ogura, Takashi

    2018-01-01

    The aim of this study was to clarify the incidence and disease behavior of brain metastases (BM) without extracranial disease (ie, isolated BM) as the first relapse after curative surgery in non-small-cell lung cancer (NSCLC) patients, analyzed according to epidermal growth factor receptor (EGFR) mutation status. A review of the medical charts of consecutive NSCLC patients diagnosed between 2005 and 2016 with BM as the first relapse after curative surgery was performed. Among 1191 patients evaluated for EGFR mutation status, 28 patients who met the inclusion criteria were divided into 2 groups: EGFR mutation group (16 patients) and wild type group (12 patients). At BM diagnosis, the EGFR-mutation group tended to have more commonly isolated BM compared with that in the wild type group (11 of 16 vs. 3 of 12; P = .054). In the EGFR mutation group, the patients with isolated BM showed longer overall survival than those with non-isolated BM (39.6 vs. 18.7 months; P = .038). Notably, isolated BM in the EGFR mutation group was neurologically asymptomatic in 10 of the 11 patients. With regard to upfront treatment for isolated BM in the EGFR mutation group, 10 of 11 patients were treated with only cranial radiotherapy without EGFR tyrosine kinase inhibitors, but two-thirds of the patients (7 of 11; 64%) developed extracranial disease during the study period. In curatively resected NSCLC patients with EGFR mutation, isolated BM would be correlated with better prognosis, but regarded as a precursor to systemic disease. Because isolated BM can be neurologically asymptomatic, it would be important to periodically perform cranial evaluation to detect isolated BM. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. The expression of SALL4 is significantly associated with EGFR, but not KRAS or EML4-ALK mutations in lung cancer.

    PubMed

    Jia, Xiangbo; Qian, Rulin; Zhang, Binbin; Zhao, Song

    2016-10-01

    Lung cancer is the leading cause of cancer-related deaths worldwide; unfortunately, its prognosis is still very poor. Therefore, developing the target molecular is very important for lung cancer diagnosis and treatment, especially in the early stage. With this in view, spalt-like transcription factor 4 ( SALL4 ) is considered a potential biomarker for diagnosis and prognosis in cancers, including lung cancer. In order to better investigate the association between the expression of SALL4 and driver genes mutation, 450 histopathologically diagnosed patients with lung cancer and 11 non-cancer patients were enrolled to test the expression of SALL4 and the status of driver genes mutation. This investigation included epidermal growth factor receptor ( EGFR ), kirsten rat sarcoma viral oncogene homolog ( KRAS ), and a fusion gene of the echinoderm microtubule-associated protein-like 4 ( EML4 ) and the anaplastic lymphoma kinase ( ALK ). The results of the study showed that females harbored more EGFR mutation in adenocarcinoma (ADC). The mutation rate of KRAS and EML4-ALK was about 5%, and the double mutations of EGFR/EML4-ALK were higher than EGFR/KRAS . In the expression analysis, the expression of SALL4 was much higher in cancer tissues than normally expected, especially in tissues that carried EGFR mutation (P<0.05), however, there were no significant differences between different mutation types. Likewise, there were no significant differences between expression of SALL4 and KRAS and EML4-ALK mutations. SALL4 is up regulated in lung cancer specimens and harbors EGFR mutation; this finding indicates that SALL4 expression may be relevant with EGFR , which could provide a new insight to lung cancer therapy. The mechanism needs further investigation and analysis.

  2. Osimertinib (AZD9291) decreases programmed death ligand-1 in EGFR-mutated non-small cell lung cancer cells.

    PubMed

    Jiang, Xiao-Ming; Xu, Yu-Lian; Huang, Mu-Yang; Zhang, Le-Le; Su, Min-Xia; Chen, Xiuping; Lu, Jin-Jian

    2017-11-01

    Osimertinib (AZD9291) is a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) that has been approved for the treatment of EGFR-mutated non-small cell lung cancer (NSCLC). In NSCLC patients, an EGFR mutation is likely to be correlated with high levels of expression of programmed death ligand-1 (PD-L1). Here, we showed that osimertinib decreased PD-L1 expression in human EGFR mutant NSCLC cells in vitro. Osimertinib (125 nmol/L) markedly suppressed PD-L1 mRNA expression in both NCI-H1975 and HCC827 cells. Pretreatment with the N-linked glycosylation inhibitor tunicamycin, osimertinib clearly decreased the production of new PD-L1 protein probably due to a reduction in mRNA. After blocking transcription and translation processes with actinomycin D and cycloheximide, respectively, osimertinib continued to reduce the expression of PD-L1, demonstrating that osimertinib might degrade PD-L1 at the post-translational level, which was confirmed by a cycloheximide chase assay, revealing that osimertinib (125 nmol/L) decreased the half-life of PD-L1 from approximately 17.8 h and 13.8 h to 8.6 h and 4.6 h, respectively, in NCI-H1975 and HCC827 cells. Pretreatment with the proteasome inhibitors (MG-132 or bortezomib) blocked the osimertinib-induced degradation of PD-L1, but an inhibitor of autophagy (chloroquine) did not. In addition, inhibition of GSK3β by LiCl prevented osimertinib-induced PD-L1 degradation. The results demonstrate that osimertinib reduces PD-L1 mRNA expression and induces its protein degradation, suggesting that osimertinib may reactivate the immune activity of T cells in the tumor microenvironment in EGFR-mutated NSCLC patients.

  3. Development of the Third Generation EGFR Tyrosine Kinase Inhibitors for Anticancer Therapy.

    PubMed

    Cheng, Weiyan; Zhou, Jianhua; Tian, Xin; Zhang, Xiaojian

    2016-01-01

    Epidermal growth factor receptor (EGFR) is one of the most important targets in anticancer therapy. Till date, a large number of first and second generation EGFR tyrosine kinase inhibitors (TKIs) have been marketed or advanced into clinical studies. However, the occurrence of TKI-resistant mutations has led to the loss of efficacy of these inhibitors. In the purpose of overcoming resistant mutations and reducing side effects, lots of third generation EGFR inhibitors are explored with promising potencies against EGFR mutations while sparing wild-type EGFR. This review outlines the current landscape of the development of third generation EGFR inhibitors, mainly focusing on the biological properties, clinical status and structure-activity relationships.

  4. EGFR Mutation Testing in Patients with Advanced Non-Small Cell Lung Cancer: A Comprehensive Evaluation of Real-World Practice in an East Asian Tertiary Hospital

    PubMed Central

    Cho, Juhee; Rampal, Sanjay; Han, Joungho; Parasuraman, Bhash; Guallar, Eliseo; Lee, Genehee; Lee, Jeeyun; Shim, Young Mog

    2013-01-01

    Introduction Guidelines for management of non-small cell lung cancer (NSCLC) strongly recommend EGFR mutation testing. These recommendations are particularly relevant in Asians that have higher EGFR mutation prevalence. This study aims to explore current testing practices, logistics of testing, types of EGFR mutation, and prevalence of EGFR mutations in patients with advanced NSCLC in a large comprehensive cancer center in Korea. Methods Our retrospective cohort included 1,503 NSCLC patients aged ≥18 years, with stage IIIB/IV disease, who attended the Samsung Medical Center in Seoul, Korea, from January 2007 through July 2010. Trained oncology nurses reviewed and abstracted data from electronic medical records. Results This cohort had a mean age (SD) of 59.6 (11.1) years, 62.7% were males, and 52.9% never-smokers. The most common NSCLC histological types were adenocarcinoma (70.5%) and squamous cell carcinoma (18.0%). Overall, 39.5% of patients were tested for EGFR mutations. The proportion of patients undergoing EGFR testing during January 2007 through July 2008, August 2008 through September 2009, and October 2009 through July 2010 were 23.3%, 38.3%, and 63.5%, respectively (P<0.001). The median time elapsed between cancer diagnoses and receiving EGFR testing results was 21 days. EGFR testing was most frequently ordered by oncologists (57.7%), pulmonologists (31.9%), and thoracic surgeons (6.6%). EGFR testing was more commonly requested for women, younger patients, stage IV disease, non-smokers, and adenocarcinoma histology. Of 586 cases successfully tested for EGFR mutations, 209 (35.7%) were positive, including 118 cases with exon 19 deletions and 62 with L858R mutations. EGFR mutation positive patients were more likely to be female, never-smokers, never-drinkers and to have adenocarcinoma. Conclusions In a large cancer center in Korea, the proportion of EGFR testing increased from 2007 through 2010. The high frequency of EGFR mutation positive cases warrants

  5. EGFR mutation testing in patients with advanced non-small cell lung cancer: a comprehensive evaluation of real-world practice in an East Asian tertiary hospital.

    PubMed

    Choi, Yoon-La; Sun, Jong-Mu; Cho, Juhee; Rampal, Sanjay; Han, Joungho; Parasuraman, Bhash; Guallar, Eliseo; Lee, Genehee; Lee, Jeeyun; Shim, Young Mog

    2013-01-01

    Guidelines for management of non-small cell lung cancer (NSCLC) strongly recommend EGFR mutation testing. These recommendations are particularly relevant in Asians that have higher EGFR mutation prevalence. This study aims to explore current testing practices, logistics of testing, types of EGFR mutation, and prevalence of EGFR mutations in patients with advanced NSCLC in a large comprehensive cancer center in Korea. Our retrospective cohort included 1,503 NSCLC patients aged ≥18 years, with stage IIIB/IV disease, who attended the Samsung Medical Center in Seoul, Korea, from January 2007 through July 2010. Trained oncology nurses reviewed and abstracted data from electronic medical records. This cohort had a mean age (SD) of 59.6 (11.1) years, 62.7% were males, and 52.9% never-smokers. The most common NSCLC histological types were adenocarcinoma (70.5%) and squamous cell carcinoma (18.0%). Overall, 39.5% of patients were tested for EGFR mutations. The proportion of patients undergoing EGFR testing during January 2007 through July 2008, August 2008 through September 2009, and October 2009 through July 2010 were 23.3%, 38.3%, and 63.5%, respectively (P<0.001). The median time elapsed between cancer diagnoses and receiving EGFR testing results was 21 days. EGFR testing was most frequently ordered by oncologists (57.7%), pulmonologists (31.9%), and thoracic surgeons (6.6%). EGFR testing was more commonly requested for women, younger patients, stage IV disease, non-smokers, and adenocarcinoma histology. Of 586 cases successfully tested for EGFR mutations, 209 (35.7%) were positive, including 118 cases with exon 19 deletions and 62 with L858R mutations. EGFR mutation positive patients were more likely to be female, never-smokers, never-drinkers and to have adenocarcinoma. In a large cancer center in Korea, the proportion of EGFR testing increased from 2007 through 2010. The high frequency of EGFR mutation positive cases warrants the need for generalized testing in

  6. Trastuzumab emtansine delays and overcomes resistance to the third-generation EGFR-TKI osimertinib in NSCLC EGFR mutated cell lines.

    PubMed

    La Monica, Silvia; Cretella, Daniele; Bonelli, Mara; Fumarola, Claudia; Cavazzoni, Andrea; Digiacomo, Graziana; Flammini, Lisa; Barocelli, Elisabetta; Minari, Roberta; Naldi, Nadia; Petronini, Pier Giorgio; Tiseo, Marcello; Alfieri, Roberta

    2017-12-04

    Osimertinib is a third-generation EGFR-TKI with a high selective potency against T790M-mutant NSCLC patients. Considering that osimertinib can lead to enhanced HER-2 expression on cell surface and HER-2 overexpression is a mechanism of resistance to osimertinib, this study was addressed to investigate the potential of combining osimertinib with trastuzumab emtansine (T-DM1) in order to improve the efficacy of osimertinib and delay or overcome resistance in NSCLC cell lines with EGFR activating mutation and with T790M mutation or HER-2 amplification. The effects of osimertinib combined with T-DM1 on cell proliferation, cell cycle, cell death, antibody-dependent cell-mediated cytotoxicity (ADCC), and acquisition of osimertinib resistance was investigated in PC9, PC9-T790M and H1975 cell lines. The potential of overcoming osimertinib resistance with T-DM1 was tested in a PC9/HER2c1 xenograft model. T-DM1 exerted an additive effect when combined with osimertinib in terms of inhibition of cell proliferation, cell death and ADCC induction in PC9, PC9-T790M and H1975 cell lines. Combining osimertinib and T-DM1 using different schedules in long-term growth experiments revealed that the appearance of osimertinib-resistance was prevented in PC9-T790M and delayed in H1975 cells when the two drugs were given together. By contrast, when osimertinib was followed by T-DM1 an antagonistic effect was observed on cell proliferation, cell death and resistance acquisition. In xenograft models, we demonstrated that HER-2 amplification was associated with osimertinib-resistance and that T-DM1 co-administration is a potential strategy to overcome this resistance. Our data suggest that concomitant treatment with osimertinib and T-DM1 may be a promising therapeutic strategy for EGFR-mutant NSCLC.

  7. A Large-scale Cross-sectional Study of ALK Rearrangements and EGFR Mutations in Non-small-cell Lung Cancer in Chinese Han Population

    PubMed Central

    Hong, Shaodong; Fang, Wenfeng; Hu, Zhihuang; Zhou, Ting; Yan, Yue; Qin, Tao; Tang, Yanna; Ma, Yuxiang; Zhao, Yuanyuan; Xue, Cong; Huang, Yan; Zhao, Hongyun; Zhang, Li

    2014-01-01

    The predictive power of age at diagnosis and smoking history for ALK rearrangements and EGFR mutations in non-small-cell lung cancer (NSCLC) remains not fully understood. In this cross-sectional study, 1160 NSCLC patients were prospectively enrolled and genotyped for EML4-ALK rearrangements and EGFR mutations. Multivariate logistic regression analysis was performed to explore the association between clinicopathological features and these two genetic aberrations. Receiver operating characteristic (ROC) curves methodology was applied to evaluate the predictive value. We showed that younger age at diagnosis was the only independent variable associated with EML4-ALK rearrangements (odds ratio (OR) per 5 years' increment, 0.68; p < 0.001), while lower tobacco exposure (OR per 5 pack-years' increment, 0.88; p < 0.001), adenocarcinoma (OR, 6.61; p < 0.001), and moderate to high differentiation (OR, 2.05; p < 0.001) were independently associated with EGFR mutations. Age at diagnosis was a very strong predictor of ALK rearrangements but poorly predicted EGFR mutations, while smoking pack-years may predict the presence of EGFR mutations and ALK rearrangements but with rather limited power. These findings should assist clinicians in assessing the likelihood of EML4-ALK rearrangements and EGFR mutations and understanding their biological implications in NSCLC. PMID:25434695

  8. EGFR Amplification and IDH Mutations in Glioblastoma Patients of the Northeast of Morocco

    PubMed Central

    Louati, Sara; Chbani, Laila; El Fatemi, Hind; Hammas, Nawal; Mikou, Karima; Maaroufi, Mustapha; Benzagmout, Mohammed; Boujraf, Said; El Bardai, Sanae; Giry, Marine; Marie, Yannick; Chaoui El Faiz, Mohammed; Mokhtari, Karima; Amarti, Afaf; Bennis, Sanae

    2017-01-01

    Glioblastomas are the most frequent and aggressive primary brain tumors which are expressing various evolutions, aggressiveness, and prognosis. Thus, the 2007 World Health Organization classification based solely on the histological criteria is no longer sufficient. It should be complemented by molecular analysis for a true histomolecular classification. The new 2016 WHO classification of tumors of the central nervous system uses molecular parameters in addition to histology to reclassify these tumors and reduce the interobserver variability. The aim of this study is to determine the prevalence of IDH mutations and EGFR amplifications in the population of the northeast region of Morocco and then to compare the results with other studies. Methods. IDH1 codon 132 and IDH2 codon 172 were directly sequenced and the amplification of exon 20 of EGFR gene was investigated by qPCR in 65 glioblastoma tumors diagnosed at the University Hospital of Fez between 2010 and 2014. Results. The R132H IDH1 mutation was observed in 8 of 65 tumor samples (12.31%). No mutation of IDH2 was detected. EGFR amplification was identified in 17 cases (26.15%). Conclusion. A systematic search of both histological and molecular markers should be requisite for a good diagnosis and a better management of glioblastomas. PMID:28785587

  9. EGFR Amplification and IDH Mutations in Glioblastoma Patients of the Northeast of Morocco.

    PubMed

    Senhaji, Nadia; Louati, Sara; Chbani, Laila; El Fatemi, Hind; Hammas, Nawal; Mikou, Karima; Maaroufi, Mustapha; Benzagmout, Mohammed; Boujraf, Said; El Bardai, Sanae; Giry, Marine; Marie, Yannick; Chaoui El Faiz, Mohammed; Mokhtari, Karima; Idbaih, Ahmed; Amarti, Afaf; Bennis, Sanae

    2017-01-01

    Glioblastomas are the most frequent and aggressive primary brain tumors which are expressing various evolutions, aggressiveness, and prognosis. Thus, the 2007 World Health Organization classification based solely on the histological criteria is no longer sufficient. It should be complemented by molecular analysis for a true histomolecular classification. The new 2016 WHO classification of tumors of the central nervous system uses molecular parameters in addition to histology to reclassify these tumors and reduce the interobserver variability. The aim of this study is to determine the prevalence of IDH mutations and EGFR amplifications in the population of the northeast region of Morocco and then to compare the results with other studies. Methods . IDH1 codon 132 and IDH2 codon 172 were directly sequenced and the amplification of exon 20 of EGFR gene was investigated by qPCR in 65 glioblastoma tumors diagnosed at the University Hospital of Fez between 2010 and 2014. Results . The R132H IDH1 mutation was observed in 8 of 65 tumor samples (12.31%). No mutation of IDH2 was detected. EGFR amplification was identified in 17 cases (26.15%). Conclusion . A systematic search of both histological and molecular markers should be requisite for a good diagnosis and a better management of glioblastomas.

  10. Erlotinib for Patients with EGFR Wild-Type Metastatic NSCLC: a Retrospective Biomarkers Analysis.

    PubMed

    Inno, Alessandro; Di Noia, Vincenzo; Martini, Maurizio; D'Argento, Ettore; Di Salvatore, Mariantonietta; Arena, Vincenzo; Schinzari, Giovanni; Orlandi, Armando; Larocca, Luigi Maria; Cassano, Alessandra; Barone, Carlo

    2018-03-20

    Erlotinib is approved for the treatment of patients with EGFR mutation positive, metastatic NSCLC. It is also approved as second/third line therapy for EGFR mutation negative patients, but in this setting the benefit of erlotinib is modest and there is no validated biomarker for selecting EGFR wild-type patients who may benefit the most from the treatment. We retrospectively assessed EGFR and K-RAS mutational status, and EGFR, c-MET and IGF1-R expression in tumor samples of 72 patients with metastatic NSCLC treated with erlotinib after at least one prior line of chemotherapy, from 2008 to 2012. We analyzed the association between biomarkers and outcome (RR, PFS, and OS). EGFR mutated patients achieved a better RR (56% vs 8%, p = .002), PFS (10 vs 3 months, HR 0.53, p = 0.48) and OS (20 vs 6 months, HR 0.55, p = .07), compared to EGFR wild-type patients. Among 63 EGFR wild-type patients, those with EGFR high-expression had a better outcome in terms of RR (40% vs 2%, p = .002), PFS (7.5 vs 2 months, HR 0.45, p = .007) and OS (30 vs 5 months, HR 0.34, p < .001) compared to patients with EGFR intermediate or low/negative-expression. IGF1-R expression, c-MET expression and K-RAS mutational status did not significantly affect the outcome; however, no patients with K-RAS mutation or c-MET high-expression achieved an objective response. In patients with metastatic, chemo-refractory EGFR wild-type NSCLC, EGFR high-expression may represent a positive predictor of activity for erlotinib, whereas K-RAS mutation and c-MET high-expression may predict lack of activity. These findings deserve further prospective evaluation.

  11. Molecular Epidemiology of EGFR and KRAS Mutations in 3026 Lung Adenocarcinomas: Higher Susceptibility of Women to Smoking-related KRAS-mutant Cancers

    PubMed Central

    Dogan, Snjezana; Shen, Ronglai; Ang, Daphne C; Johnson, Melissa L; D’Angelo, Sandra P; Paik, Paul K; Brzostowski, Edyta B; Riely, Gregory J; Kris, Mark G; Zakowski, Maureen F; Ladanyi, Marc

    2012-01-01

    Purpose The molecular epidemiology of most EGFR and KRAS mutations in lung cancer remains unclear. Experimental Design We genotyped 3026 lung adenocarcinomas for the major EGFR (exon 19 deletions and L858R) and KRAS (G12, G13) mutations and examined correlations with demographic, clinical and smoking history data. Results EGFR mutations were found in 43% of never smokers (NS) and in 11% of smokers. KRAS mutations occurred in 34% of smokers and in 6% of NS. In patients with smoking histories up to 10 pack-years, EGFR predominated over KRAS. Among former smokers with lung cancer, multivariate analysis showed that, independent of pack-years, increasing smoking-free years raise the likelihood of EGFR mutation. NS were more likely than smokers to have KRAS G>A transition mutation (mostly G12D) (58% vs. 20%, p=0.0001). KRAS G12C, the most common G>T transversion mutation in smokers, was more frequent in women (p=0.007) and these women were younger than men with the same mutation (median 65 vs. 69, p=0.0008) and had smoked less. Conclusions The distinct types of KRAS mutations in smokers vs. NS suggest that most KRAS-mutant lung cancers in NS are not due to secondhand smoke exposure. The higher frequency of KRAS G12C in women, their younger age, and lesser smoking history together support a heightened susceptibility to tobacco carcinogens. PMID:23014527

  12. Management of EGFR-mutated non-small-cell lung cancer: practical implications from a clinical and pathology perspective

    PubMed Central

    Cabanero, M.; Sangha, R.; Sheffield, B.S.; Sukhai, M.; Pakkal, M.; Kamel-Reid, S.; Karsan, A.; Ionescu, D.; Juergens, R.A.; Butts, C.; Tsao, M.S.

    2017-01-01

    Starting in the early 2000s, non-small-cell lung cancer (nsclc) subtypes have evolved from being histologically described to molecularly defined. Management of lung adenocarcinomas now generally requires multiple molecular tests at baseline to define the optimal treatment strategy. More recently, second biopsies performed at progression in patients treated with tyrosine kinase inhibitors (tkis) have further defined the continued use of molecularly targeted therapy. In the present article, we focus on one molecular subtype: EGFR-mutated nsclc. For that patient population, multiple lines of tki therapy are now available either clinically or in clinical trials. Each line of treatment is guided by the specific mutations (for example, L858R, T790M, C797S) identified in EGFR. We first describe the various mechanisms of acquired resistance to EGFR tki treatment. We then focus on strategies that clinicians and pathologists can both use during tissue acquisition and handling to optimize patient results. We also discuss future directions for the molecular characterization of lung cancers with driver mutations, including liquid biopsies. Finally, we provide an algorithm to guide treating physicians managing patients with EGFR-mutated nsclc. The same framework can also be applied to other molecularly defined nsclc subgroups as resistance patterns are elucidated and additional lines of treatment are developed. PMID:28490925

  13. Molecular methods for somatic mutation testing in lung adenocarcinoma: EGFR and beyond

    PubMed Central

    Rogers, Toni-Maree; Fellowes, Andrew; Bell, Anthony; Fox, Stephen

    2015-01-01

    Somatic mutational profiling in cancer has revolutionized the practice of clinical oncology. The discovery of driver mutations in non-small cell lung cancer (NSCLC) is an example of this. Molecular testing of lung adenocarcinoma is now considered standard of care and part of the diagnostic algorithm. This article provides an overview of the workflow of molecular testing in a clinical diagnostic laboratory discussing in particular novel assays that are currently in use for somatic mutation detection in NSCLC focussing on epidermal growth factor receptor (EGFR) mutations and anaplastic lymphoma kinase (ALK), ROS1 and RET rearrangements. PMID:25870795

  14. Serum carcinoembryonic antigen levels before initial treatment are associated with EGFR mutations and EML4- ALK fusion gene in lung adenocarcinoma patients.

    PubMed

    Wang, Wen-Tao; Li, Yin; Ma, Jie; Chen, Xiao-Bing; Qin, Jian-Jun

    2014-01-01

    Epidermal growth factor receptor (EGFR) mutations and echinoderm microtubule associated protein like 4-anaplastic lymphoma kinase (EML4-ALK) define specific molecular subsets of lung adenocarcinomas with distinct clinical features. Our purpose was to analyze clinical features and prognostic value of EGFR gene mutations and the EML4-ALK fusion gene in lung adenocarcinoma. EGFR gene mutations and the EML4-ALK fusion gene were detected in 92 lung adenocarcinoma patients in China. Tumor marker levels before first treatment were measured by electrochemiluminescence immunoassay. EGFR mutations were found in 40.2% (37/92) of lung adenocarcinoma patients, being identified at high frequencies in never-smokers (48.3% vs. 26.5% in smokers; P=0.040) and in patients with abnormal serum carcinoembryonic antigen (CEA) levels before the initial treatment (58.3% vs. 28.6%, P=0.004). Multivariate analysis revealed that a higher serum CEA level before the initial treatment was independently associated with EGFR gene mutations (95%CI: 1.476~11.343, P=0.007). We also identified 8 patients who harbored the EML4-ALK fusion gene (8.7%, 8/92). In concordance with previous reports, younger age was a clinical feature for these (P=0.008). Seven of the positive cases were never smokers, and no coexistence with EGFR mutation was discovered. In addition, the frequency of the EML4-ALK fusion gene among patients with a serum CEA concentration below 5 ng/ml seemed to be higher than patients with a concentration over 5 ng/ml (P=0.021). No significant difference was observed for time to progression and overall survival between EML4-ALK-positive group and EML4-ALK-negative group or between patients with and without an EGFR mutation. The serum CEA level before the initial treatment may be helpful in screening population for EGFR mutations or EML4-ALK fusion gene presence in lung adenocarcinoma patients.

  15. Quantitative targeted proteomic analysis of potential markers of tyrosine kinase inhibitor (TKI) sensitivity in EGFR mutated lung adenocarcinoma.

    PubMed

    Awasthi, Shivangi; Maity, Tapan; Oyler, Benjamin L; Qi, Yue; Zhang, Xu; Goodlett, David R; Guha, Udayan

    2018-04-13

    Lung cancer causes the highest mortality among all cancers. Patients harboring kinase domain mutations in the epidermal growth factor receptor (EGFR) respond to EGFR tyrosine kinase inhibitors (TKIs), however, acquired resistance always develops. Moreover, 30-40% of patients with EGFR mutations exhibit primary resistance. Hence, there is an unmet need for additional biomarkers of TKI sensitivity that complement EGFR mutation testing and predict treatment response. We previously identified phosphopeptides whose phosphorylation is inhibited upon treatment with EGFR TKIs, erlotinib and afatinib in TKI sensitive cells, but not in resistant cells. These phosphosites are potential biomarkers of TKI sensitivity. Here, we sought to develop modified immuno-multiple reaction monitoring (immuno-MRM)-based quantitation assays for select phosphosites including EGFR-pY1197, pY1172, pY998, AHNAK-pY160, pY715, DAPP1-pY139, CAV1-pY14, INPPL1-pY1135, NEDD9-pY164, NF1-pY2579, and STAT5A-pY694. These sites were significantly hypophosphorylated by erlotinib and a 3rd generation EGFR TKI, osimertinib, in TKI-sensitive H3255 cells, which harbor the TKI-sensitizing EGFR L858R mutation. However, in H1975 cells, which harbor the TKI-resistant EGFR L858R/T790M mutant, osimertinib, but not erlotinib, could significantly inhibit phosphorylation of EGFR-pY-1197, STAT5A-pY694 and CAV1-pY14, suggesting these sites also predict response in TKI-resistant cells. We could further validate EGFR-pY-1197 as a biomarker of TKI sensitivity by developing a calibration curve-based modified immuno-MRM assay. In this report, we have shown the development and optimization of MRM assays coupled with global phosphotyrosine enrichment (modified immuno-MRM) for a list of 11 phosphotyrosine peptides. Our optimized assays identified the targets reproducibly in biological samples with good selectivity. We also developed and characterized quantitation methods to determine endogenous abundance of these targets and

  16. Activating HER2 mutations in HER2 gene amplification negative breast cancer

    PubMed Central

    Bose, Ron; Kavuri, Shyam M.; Searleman, Adam C.; Shen, Wei; Shen, Dong; Koboldt, Daniel C.; Monsey, John; Goel, Nicholas; Aronson, Adam B.; Li, Shunqiang; Ma, Cynthia X.; Ding, Li; Mardis, Elaine R.; Ellis, Matthew J.

    2012-01-01

    Data from eight breast cancer genome sequencing projects identified 25 patients with HER2 somatic mutations in cancers lacking HER2 gene amplification. To determine the phenotype of these mutations, we functionally characterized thirteen HER2 mutations using in vitro kinase assays, protein structure analysis, cell culture and xenograft experiments. Seven of these mutations are activating mutations, including G309A, D769H, D769Y, V777L, P780ins, V842I, and R896C. HER2 in-frame deletion 755-759, which is homologous to EGFR exon 19 in-frame deletions, had a neomorphic phenotype with increased phosphorylation of EGFR or HER3. L755S produced lapatinib resistance, but was not an activating mutation in our experimental systems. All of these mutations were sensitive to the irreversible kinase inhibitor, neratinib. These findings demonstrate that HER2 somatic mutation is an alternative mechanism to activate HER2 in breast cancer and they validate HER2 somatic mutations as drug targets for breast cancer treatment. PMID:23220880

  17. Cytomorphological identification of advanced pulmonary adenocarcinoma harboring KRAS mutation in lymph node fine-needle aspiration specimens: Comparative investigation of adenocarcinoma with KRAS and EGFR mutations.

    PubMed

    Song, Dae Hyun; Lee, Boram; Shin, Yooju; Choi, In Ho; Ha, Sang Yun; Lee, Jae Jun; Hong, Min Eui; Choi, Yoon-La; Han, Joungho; Um, Sang-Won

    2015-07-01

    Kirsten rat sarcoma 2 viral oncogene homolog (KRAS) mutation in pulmonary adenocarcinoma is clinically important due to its association with resistance to EGFR inhibitors and poor prognosis. To our knowledge, there has not been a comparative study focusing on cytological nuclear features of pulmonary adenocarcinoma harboring KRAS mutation (KRAS-AD). Hence, we compared the cytomorphology of metastatic KRAS-AD and EGFR-positive adenocarcinoma (EGFR-AD) in aspiration specimens from lymph nodes. Forty lymph node aspiration specimens from forty KRAS-AD patients were collected at Samsung Medical Center (Seoul, Korea) from 2009 to 2013. As a control group, 40 EBUS-FNA lymph node specimens from 20 EGFR-AD patients were collected. EGFR-AD specimens were evaluated at Samsung Medical Center (Seoul, Korea) from 2012 to 2013. All 80 specimens were histologically confirmed to metastatic adenocarcinoma. Two pathologists performed a blinded review of all specimens. Compared with EGFR-AD, KRAS-AD exhibited more severe nuclear pleomorphism (P < 0.001), coarse chromatin (P = 0.001), cherry-red nucleoli (P < 0.001) and naked tumor cells (P = 0.002) with necrotic (P < 0.001) and neutrophilic (P = 0.008) background. Our study provides the first demonstration of cytomorphologic differentiation between metastatic KRAS-AD and metastatic EGFR-AD in lymph node aspiration specimens. © 2014 Wiley Periodicals, Inc.

  18. Association Between Environmental Tobacco Smoke Exposure and the Occurrence of EGFR Mutations and ALK Rearrangements in Never-smokers With Non-Small-cell Lung Cancer: Analyses From a Prospective Multinational ETS Registry.

    PubMed

    Soo, Ross A; Kubo, Akihito; Ando, Masahiko; Kawaguchi, Tomoya; Ahn, Myung-Ju; Ou, Sai-Hong Ignatius

    2017-09-01

    Molecular studies have demonstrated actionable driver oncogene alterations are more frequent in never-smokers with non-small-cell lung cancer (NSCLC). The etiology of these driver oncogenes in patients with NSCLC remains unknown, and environmental tobacco smoke (ETS) is a potential cause in these cases. We assembled clinical and genetic information for never-smoker patients with NSCLC accrued in Japan, Korea, Singapore, and the United States. To determine an association between cumulative ETS and activating EGFR mutations or ALK rearrangements, the Mantel extension test was used. Multivariate analysis on activating EGFR and ALK gene rearrangements was performed using the generalized linear mixed model with nations as a random effect. From July 2007 to December 2012, 498 never-smokers with pathologically proven NSCLC were registered and tested for the association between ETS and EGFR and ALK status. EGFR mutations were more frequent in the ever-ETS cohort (58.4%) compared with the never-ETS cohort (39.6%), and the incidence of EGFR mutations was significantly associated with the increment of cumulative ETS (cETS) in female never-smokers (P = .033), whereas the incidence of ALK rearrangements was not significantly different between the ever-ETS and never-ETS cohorts. Odds ratio for EGFR mutations for each 10-year increment in cETS was 1.091 and 0.89 for female and male never-smokers (P = .031 and P = .263, respectively). Increased ETS exposure was closely associated with EGFR mutations in female never-smokers with NSCLC in the expanded multinational cohort. However, the association of ETS and ALK rearrangements in never-smokers with NSCLC was not significant. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. EGFR kinase-dependent and kinase-independent roles in clear cell renal cell carcinoma.

    PubMed

    Cossu-Rocca, Paolo; Muroni, Maria R; Sanges, Francesca; Sotgiu, Giovanni; Asunis, Anna; Tanca, Luciana; Onnis, Daniela; Pira, Giovanna; Manca, Alessandra; Dore, Simone; Uras, Maria G; Ena, Sara; De Miglio, Maria R

    2016-01-01

    Epidermal growth factor receptor (EGFR) is associated with progression of many epithelial malignancies and represents a significant therapeutic target. Although clear cell renal cell carcinoma (CCRCC) has been widely investigated for EGFR molecular alterations, genetic evidences of EGFR gene activating mutations and/or gene amplification have been rarely confirmed in the literature. Therefore, until now EGFR-targeted therapies in clinical trials have been demonstrated unsuccessful. New evidence has been given about the interactions between EGFR and the sodium glucose co-transporter-1 (SGLT1) in maintaining the glucose basal intracellular level to favour cancer cell growth and survival; thus a new functional role may be attributed to EGFR, regardless of its kinase activity. To define the role of EGFR in CCRCC an extensive investigation of genetic changes and functional kinase activities was performed in a series of tumors by analyzing the EGFR mutational status and expression profile, together with the protein expression of downstream signaling pathways members. Furthermore, we investigated the co-expression of EGFR and SGLT1 proteins and their relationships with clinic-pathological features in CCRCC. EGFR protein expression was identified in 98.4% of CCRCC. Furthermore, it was described for the first time that SGLT1 is overexpressed in CCRCC (80.9%), and that co-expression with EGFR is appreciable in 79.4% of the tumours. Moreover, the activation of downstream EGFR pathways was found in about 79.4% of SGLT1-positive CCRCCs. The mutational status analysis of EGFR failed to demonstrate mutations on exons 18 to 24 and the presence of EGFR-variantIII (EGFRvIII) in all CCRCCs analyzed. FISH analysis revealed absence of EGFR amplification, and high polysomy of chromosome 7. Finally, the EGFR gene expression profile showed gene overexpression in 38.2% of CCRCCs. Our study contributes to define the complexity of EGFR role in CCRCC, identifying its bivalent kinase

  20. EGFR kinase-dependent and kinase-independent roles in clear cell renal cell carcinoma

    PubMed Central

    Cossu-Rocca, Paolo; Muroni, Maria R; Sanges, Francesca; Sotgiu, Giovanni; Asunis, Anna; Tanca, Luciana; Onnis, Daniela; Pira, Giovanna; Manca, Alessandra; Dore, Simone; Uras, Maria G; Ena, Sara; De Miglio, Maria R

    2016-01-01

    Epidermal growth factor receptor (EGFR) is associated with progression of many epithelial malignancies and represents a significant therapeutic target. Although clear cell renal cell carcinoma (CCRCC) has been widely investigated for EGFR molecular alterations, genetic evidences of EGFR gene activating mutations and/or gene amplification have been rarely confirmed in the literature. Therefore, until now EGFR-targeted therapies in clinical trials have been demonstrated unsuccessful. New evidence has been given about the interactions between EGFR and the sodium glucose co-transporter-1 (SGLT1) in maintaining the glucose basal intracellular level to favour cancer cell growth and survival; thus a new functional role may be attributed to EGFR, regardless of its kinase activity. To define the role of EGFR in CCRCC an extensive investigation of genetic changes and functional kinase activities was performed in a series of tumors by analyzing the EGFR mutational status and expression profile, together with the protein expression of downstream signaling pathways members. Furthermore, we investigated the co-expression of EGFR and SGLT1 proteins and their relationships with clinic-pathological features in CCRCC. EGFR protein expression was identified in 98.4% of CCRCC. Furthermore, it was described for the first time that SGLT1 is overexpressed in CCRCC (80.9%), and that co-expression with EGFR is appreciable in 79.4% of the tumours. Moreover, the activation of downstream EGFR pathways was found in about 79.4% of SGLT1-positive CCRCCs. The mutational status analysis of EGFR failed to demonstrate mutations on exons 18 to 24 and the presence of EGFR-variantIII (EGFRvIII) in all CCRCCs analyzed. FISH analysis revealed absence of EGFR amplification, and high polysomy of chromosome 7. Finally, the EGFR gene expression profile showed gene overexpression in 38.2% of CCRCCs. Our study contributes to define the complexity of EGFR role in CCRCC, identifying its bivalent kinase

  1. Known and putative mechanisms of resistance to EGFR targeted therapies in NSCLC patients with EGFR mutations—a review

    PubMed Central

    Stewart, Erin L.; Tan, Samuel Zhixing; Liu, Geoffrey

    2015-01-01

    Lung cancer is the leading cause of cancer related deaths in Canada with non-small cell lung cancer (NSCLC) being the predominant form of the disease. Tumor characterization can identify cancer-driving mutations as treatment targets. One of the most successful examples of cancer targeted therapy is inhibition of mutated epidermal growth factor receptor (EGFR), which occurs in ~10-30% of NSCLC patients. While this treatment has benefited many patients with activating EGFR mutations, almost all who initially benefited will eventually acquire resistance. Approximately 50% of cases of acquired resistance (AR) are due to a secondary T790M mutation in exon 20 of the EGFR gene; however, many of the remaining mechanisms of resistance are still unknown. Much work has been done to elucidate the remaining mechanisms of resistance. This review aims to highlight both the mechanisms of resistance that have already been identified in patients and potential novel mechanisms identified in preclinical models which have yet to be validated in the patient settings. PMID:25806347

  2. Novel mutant-selective EGFR kinase inhibitors against EGFR T790M

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Wenjun; Ercan, Dalia; Chen, Liang

    2010-01-12

    The clinical efficacy of epidermal growth factor receptor (EGFR) kinase inhibitors in EGFR-mutant non-small-cell lung cancer (NSCLC) is limited by the development of drug-resistance mutations, including the gatekeeper T790M mutation. Strategies targeting EGFR T790M with irreversible inhibitors have had limited success and are associated with toxicity due to concurrent inhibition of wild-type EGFR. All current EGFR inhibitors possess a structurally related quinazoline-based core scaffold and were identified as ATP-competitive inhibitors of wild-type EGFR. Here we identify a covalent pyrimidine EGFR inhibitor by screening an irreversible kinase inhibitor library specifically against EGFR T790M. These agents are 30- to 100-fold more potentmore » against EGFR T790M, and up to 100-fold less potent against wild-type EGFR, than quinazoline-based EGFR inhibitors in vitro. They are also effective in murine models of lung cancer driven by EGFR T790M. Co-crystallization studies reveal a structural basis for the increased potency and mutant selectivity of these agents. These mutant-selective irreversible EGFR kinase inhibitors may be clinically more effective and better tolerated than quinazoline-based inhibitors. Our findings demonstrate that functional pharmacological screens against clinically important mutant kinases represent a powerful strategy to identify new classes of mutant-selective kinase inhibitors.« less

  3. Concomitant EML4-ALK rearrangement and EGFR mutation in non-small cell lung cancer patients: a literature review of 100 cases.

    PubMed

    Lo Russo, Giuseppe; Imbimbo, Martina; Corrao, Giulia; Proto, Claudia; Signorelli, Diego; Vitali, Milena; Ganzinelli, Monica; Botta, Laura; Zilembo, Nicoletta; de Braud, Filippo; Garassino, Marina Chiara

    2017-08-29

    The discovery of EGFR mutations and EML4-ALK gene rearrangements has radically changed the therapeutic scenario for patients with advanced non-small cell lung cancer. ALK and EGFR tyrosine-kinase inhibitors showed better activity and efficacy than standard chemotherapy in the first and second line treatment settings, leading to a clear advantage in overall survival of advanced non-small cell lung cancer patients harboring these genetic alterations. Historically the coexistence of EGFR mutations and EML4-ALK rearrangements in the same tumor has been described as virtually impossible. Nevertheless many recent observations seem to show that it is not true in all cases. In this review we will discuss the available literature data regarding this rare group of patients in order to give some suggestions useful for their clinical management. Furthermore we report here two cases of concomitant presence of both alterations that will help us in the development of discussion.

  4. Interactions between EGFR and PD-1/PD-L1 pathway: Implications for treatment of NSCLC.

    PubMed

    Li, Xue; Lian, Zhen; Wang, Shuai; Xing, Ligang; Yu, Jinming

    2018-04-01

    Immune checkpoint inhibitors targeting the programmed cell death receptor/ligand 1 (PD-1/PD-L1) pathway displayed striking and durable clinical responses in patients with non-small-cell lung cancer (NSCLC). However, it is still undefined about the efficacy of PD-1/PD-L1 inhibitors in NSCLC patients with EGFR activating mutations. Preclinical studies indicate the immune modulatory effect of EGFR signaling by regulating expression of MHC I/II and PD-L1 on tumor cells and activity of lymphocytes. Thus, it might be practicable for the use of PD-1/PD-L1 inhibitors as monotherapy or combined with EGFR-TKIs in patients with EGFR activating mutations. In this review, we discussed the regulation effect of EGFR signaling on PD-1/PD-L1 pathway and the potential mechanisms behind combing EGFR-TKIs with PD-1/PD-L1 inhibitors. We also reviewed current available data on PD-1/PD-L1 inhibitors as monotherapy or combined with EGFR-TKIs in NSCLC with EGFR activating mutations, and explored possible factors influence its efficacy, which would be important considerations for future clinical trial designs. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Lung cancer in never-smoker Asian females is driven by oncogenic mutations, most often involving EGFR

    PubMed Central

    Choi, Hye Joo; Lee, Jinseon; Jung, Kyungsoo; Irwin, Darry; Liu, Xiao; Lira, Maruja E.; Mao, Mao; Kim, Hong Kwan; Choi, Yong Soo; Shim, Young Mog; Park, Woong Yang; Choi, Yoon-La; Kim, Jhingook

    2015-01-01

    The aim of this study was to determine the distribution of known oncogenic driver mutations in female never-smoker Asian patients with lung adenocarcinoma. We analyzed 214 mutations across 26 lung cancer-associated genes and three fusion genes using the MassARRAY® LungCarta Panel and the ALK, ROS1, and RET fusion assays in 198 consecutively resected lung adenocarcinomas from never-smoker females at a single institution. EGFR mutation, which was the most frequent driver gene mutation, was detected in 124 (63%) cases. Mutation of ALK, KRAS, PIK3CA, ERBB2, BRAF, ROS1, and RET genesoccurred in 7%, 4%, 2.5%, 1.5%, 1%, 1%, and 1% of cases, respectively. Thus, 79% of lung adenocarcinomas from never-smoker females harbored well-known oncogenic mutations. Mucinous adenocarcinomas tended to have a lower frequency of known driver gene mutations than other histologic subtypes. EGFR mutation was associated with older age and a predominantly acinar pattern, while ALK rearrangement was associated with younger age and a predominantly solid pattern. Lung cancer in never-smoker Asian females is a distinct entity, with the majority of these cancers developing from oncogenic mutations. PMID:25760072

  6. Outcomes of research biopsies in clinical trials of EGFR mutation-positive non-small cell lung cancer patients pretreated with EGFR-tyrosine kinase inhibitors.

    PubMed

    Liao, Bin-Chi; Bai, Ya-Ying; Lee, Jih-Hsiang; Lin, Chia-Chi; Lin, Shu-Yung; Lee, Yee-Fan; Ho, Chao-Chi; Shih, Jin-Yuan; Chang, Yeun-Chung; Yu, Chong-Jen; Chih-Hsin Yang, James; Yang, Pan-Chyr

    2018-04-01

    Research biopsies (RBs) are crucial for developing novel molecular targeted agents. However, the safety and diagnostic yields of RBs have not been investigated in EGFR mutation-positive non-small cell lung cancer (NSCLC) patients pretreated with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs). We searched the medical records of NSCLC patients who participated in lung cancer clinical trials and underwent mandatory RBs between 2012 and 2014 at our institution. Only patients with EGFR mutation-positive NSCLC pretreated with at least 1 EGFR-TKI were enrolled. Of 140 enrolled patients, 73 (52.1%) and 59 (42.1%) had exon 19 deletions and exon 21 L858R mutation, respectively. Before RBs, 108 (77.1%), 83 (59.3%), and 36 (25.7%) patients had been treated with gefitinib, erlotinib, and afatinib, respectively. Computed tomography-guided percutaneous core needle biopsy was the most frequently used modality among 181 RBs performed (50.8%), followed by ultrasonography-guided (32.0%) and endoscopic RBs (16.0%). The most common RB sites were the lung (69.6%), pleura (8.8%), and liver (6.1%). Pathologic examinations revealed malignant cells in most RB specimens (72.9%). Complications due to RBs included pneumothorax (11.6%), bleeding (6.1%), and infection (1.1%). Only 1 patient required chest tube placement for pneumothorax, and 2 patients underwent endotracheal intubation because of bleeding. RBs in this patient population were generally safe. Pneumothorax was the most frequent complication; bleeding, while infrequent, increased the risk of severe events. The diagnostic yields and complications of any particular modality should therefore be discussed with prospective clinical trial participants. Copyright © 2017. Published by Elsevier B.V.

  7. Lung cancer mutation profile of EGFR, ALK, and KRAS: Meta-analysis and comparison of never and ever smokers.

    PubMed

    Chapman, Aaron M; Sun, Kathie Y; Ruestow, Peter; Cowan, Dallas M; Madl, Amy K

    2016-12-01

    Lung cancer is the leading cause of cancer-related mortality. While the majority of lung cancers are associated with tobacco smoke, approximately 10-15% of U.S. lung cancers occur in never smokers. Evidence suggests that lung cancer in never smokers appears to be a distinct disease caused by driver mutations which are different than the genetic pathways observed with lung cancer in smokers. A meta-analysis of human epidemiologic data was conducted to evaluate the profile of common or therapy-targetable mutations in lung cancers of never and ever smokers. Epidemiologic studies (N=167) representing over 63,000 lung cancer cases were identified and used to calculate summary odds ratios for lung cancer in never and ever smokers containing gene mutations: EGFR, chromosomal rearrangements and fusion of EML4 and ALK, and KRAS. This analysis also considered the effect of histopathology, smoking status, sex, and ethnicity. There were significantly increased odds of presenting the EGFR and ALK-EML4 mutations in 1) adenocarcinomas compared to non-small cell lung cancer and 2) never smokers compared to ever smokers. The prevalence of EGFR mutations was higher in Asian women as compared to women of Caucasian/Mixed ethnicity. As the smoking history increased, there was a decreased odds for exhibiting the EGFR mutation, particularly for cases >30 pack-years. Compared to ever smokers, never smokers had a decreased odds of KRAS mutations among those of Caucasian/Mixed ethnicity (OR=0.22, 95% CI: 0.17-0.29) and those of Asian ethnicity (OR=0.39, 95% CI: 0.30-0.50). Our findings show that key driver mutations and several patient features are highly prevalent in lung cancers of never smokers. These associations may be helpful as patient demographic models are developed to predict successful outcomes of targeted therapeutic interventions NSCLC. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. EGFR Gene Amplification and KRAS Mutation Predict Response to Combination Targeted Therapy in Metastatic Colorectal Cancer.

    PubMed

    Khan, Sajid A; Zeng, Zhaoshi; Shia, Jinru; Paty, Philip B

    2017-07-01

    Genetic variability in KRAS and EGFR predicts response to cetuximab in irinotecan refractory colorectal cancer. Whether these markers or others remain predictive in combination biologic therapies including bevacizumab is unknown. We identified predictive biomarkers from patients with irinotecan refractory metastatic colorectal cancer treated with cetuximab plus bevacizumab. Patients who received cetuximab plus bevacizumab for irinotecan refractory colorectal cancer in either of two Phase II trials conducted were identified. Tumor tissue was available for 33 patients. Genomic DNA was extracted and used for mutational analysis of KRAS, BRAF, and p53 genes. Fluorescence in situ hybridization was performed to assess EGFR copy number. The status of single genes and various combinations were tested for association with response. Seven of 33 patients responded to treatment. KRAS mutations were found in 14/33 cases, and 0 responded to treatment (p = 0.01). EGFR gene amplification was seen in 3/33 of tumors and in every case was associated with response to treatment (p < 0.001). TP53 and BRAF mutations were found in 18/33 and 0/33 tumors, respectively, and there were no associations with response to either gene. EGFR gene amplification and KRAS mutations are predictive markers for patients receiving combination biologic therapy of cetuximab plus bevacizumab for metastatic colorectal cancer. One marker or the other is present in the tumor of half of all patients allowing treatment response to be predicted with a high degree of certainty. The role for molecular markers in combination biologic therapy seems promising.

  9. EGFR and KRAS Mutations Predict the Incidence and Outcome of Brain Metastases in Non-Small Cell Lung Cancer

    PubMed Central

    Tomasini, Pascale; Serdjebi, Cindy; Khobta, Nataliya; Metellus, Philippe; Ouafik, L’Houcine; Nanni, Isabelle; Greillier, Laurent; Loundou, Anderson; Fina, Frederic; Mascaux, Celine; Barlesi, Fabrice

    2016-01-01

    Background: Lung cancer is the leading cause of brain metastases (BM). The identification of driver oncogenes and matched targeted therapies has improved outcome in non-small cell lung cancer (NSCLC) patients; however, a better understanding of BM molecular biology is needed to further drive the process in this field. Methods: In this observational study, stage IV NSCLC patients tested for EGFR and KRAS mutations were selected, and BM incidence, recurrence and patients’ outcome were assessed. Results: A total of 144 patients (142 Caucasian and two Asian) were selected, including 11.27% with EGFR-mutant and 33.10% with KRAS-mutant tumors, and 57.04% patients had developed BM. BM incidence was more frequent in patients with EGFR mutation according to multivariate analyses (MVA) (Odds ratio OR = 8.745 [1.743–43.881], p = 0.008). Among patients with treated BM, recurrence after local treatment was less frequent in patients with KRAS mutation (OR = 0.234 [0.078–0.699], p = 0.009). Among patients with untreated BM, overall survival (OS) was shorter for patients with KRAS mutation according to univariate analysis (OR = 7.130 [1.240–41.012], p = 0.028), but not MVA. Conclusions: EGFR and KRAS mutations have a predictive role on BM incidence, recurrence and outcome in Caucasian NSCLC patients. These results may impact the routine management of disease in these patients. Further studies are required to assess the influence of other biomarkers on NSCLC BM. PMID:27999344

  10. Nonsquamous, Non-Small-Cell Lung Cancer Patients Who Carry a Double Mutation of EGFR, EML4-ALK or KRAS: Frequency, Clinical-Pathological Characteristics, and Response to Therapy.

    PubMed

    Ulivi, Paola; Chiadini, Elisa; Dazzi, Claudio; Dubini, Alessandra; Costantini, Matteo; Medri, Laura; Puccetti, Maurizio; Capelli, Laura; Calistri, Daniele; Verlicchi, Alberto; Gamboni, Alessandro; Papi, Maximilian; Mariotti, Marita; De Luigi, Nicoletta; Scarpi, Emanuela; Bravaccini, Sara; Turolla, Gian Michele; Amadori, Dino; Crinò, Lucio; Delmonte, Angelo

    2016-09-01

    Epidermal growth factor receptor (EGFR) and v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations, and echinoderm microtubule-associated protein-like 4 (EML4) anaplastic lymphoma kinase (ALK) translocation are generally considered to be mutually exclusive. However, concomitant mutations are found in a small number of patients and the effect of these on response to targeted therapy is still unknown. We considered 380 non-small-cell lung cancer (NSCLC) patients who underwent nonsequential testing for EGFR and EML4-ALK translocation. KRAS mutation analysis was also performed on 282 patients. We found 1.6%, 1.1%, and 2.5% of patients who showed a double mutation comprising EGFR and EML4-ALK, EGFR and KRAS, and EML4-ALK and KRAS, respectively. Twenty-eight patients with EGFR mutation underwent first-line therapy with a tyrosine kinase receptor; a clinical benefit was observed in 81.8% of patients with EGFR mutations only and in 67% of those who also showed an EML4-ALK translocation. Twelve patients with an EML4-ALK translocation received crizotinib and 7 of these had disease progression within 3 months (2 had a concomitant KRAS mutation and 1 had a concomitant EGFR mutation). Two patients showed stable disease, 1 of whom also had a KRAS mutation. Two patients obtained a partial response and 1 had a complete response; all harbored an EML4-ALK translocation only. The median overall survival of patients who carried an EML4-ALK translocation alone or concomitant with a KRAS mutation was 57.1 (range, 10.7-not reached) and 10.7 (range, 4.6-not reached) months, respectively. Concomitant EGFR, EML4-ALK, or KRAS mutations can occur in NSCLC. Concomitant KRAS mutation and EML4-ALK translocation represents the most common double alteration and confers a poor prognosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. [Clinical Analysis of Icotinib on Beneficiary of 
Advanced Non-small Cell Lung Cancer with EGFR Common Mutation].

    PubMed

    Jiang, Xiaowen; Wang, Wenxian; Zhang, Yiping

    2016-04-20

    Targeted therapy has become an indispensable therapy method in advanced non-small cell lung cancer (NSCLC) treatment. Epithelial growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) can significantly prolong the survival of patients harboring EGFR gene mutation. Icotinb is China's first EGFR-TKI with independent intellectual property rights. The aim of this study is to investigate the clinical characteristics about the beneficiary of advanced NSCLC patients with EGFR Common mutation who were treated with Icotinib. Retrospectively collect the data about beneficiary [progression-free survival (PFS)≥6 months] and analysis of the related risk factors for prognosis. From September 1, 2011 to September 30, 2015, 231 cases of advanced NSCLC beneficiary with EGFR common mutation were enrolled for treatment with icotinib in Zhejiang Cancer Hospital. The one year benefit rate was 67.9% in the group treated with Icotinib as first line, and in the groupas second line or above was 53.6%, which is statisticallysignificant. The two years benefit rate was 18.7% and 9.3%, respectively. The median PFS of first line group and the second line or above was 16.7 and 12.4 months, respectively. The presence of brain metastasis (P=0.010), Prior chemotherapy (P=0.001), Eastern Cooperative Oncology Group (ECOG) score (P=0.001) were the main factors influencing the prognosis. The most common adverse were skin rashes (51 cases, 22.1%) and diarrhea (27 cases, 11.7%). Icotinib offers long-term clinical benefit and good tolerance for advanced NSCLC harboring EGFR gene mutation. Its advantage groups in addition to the patients with brain metastases and better ECOG score, the curative effect of patients with the first-line treatment is superior to second or further line. 
.

  12. Antitumor Efficacy of Dual Blockade of EGFR Signaling by Osimertinib in Combination With Selumetinib or Cetuximab in Activated EGFR Human NCLC Tumor Models.

    PubMed

    Della Corte, Carminia Maria; Ciaramella, Vincenza; Cardone, Claudia; La Monica, Silvia; Alfieri, Roberta; Petronini, Pier Giorgio; Malapelle, Umberto; Vigliar, Elena; Pepe, Francesco; Troncone, Giancarlo; Castellone, Maria Domenica; Troiani, Teresa; Martinelli, Erika; Ciardiello, Fortunato; Morgillo, Floriana

    2018-03-08

    Osimertinib showed great clinical efficacy for activated-EGFR NCLC patient treatment. The aim of this work was to test the efficacy of a complete EGFR-inhibition by osimertinib plus the monoclonal antibody cetuximab or the MEK1/2-inhibitor selumetinib in EGFR-mutated NCLC in vivo models. We evaluated combinations of osimertinib plus selumetinib/cetuximab in HCC827 (E746-A759del/T790M-), H1975 (L858R/T790M+), and PC9-T790M (E746-A759del /T790M+) xenografts in second-line therapy after the development of resistance to osimertinib, and in first-line therapy, and we explored mechanisms of resistance to these treatments. The addition of selumetinib or cetuximab to osimertinib in second-line therapy reverted the sensibility to osimertinib in the majority of mice, with a response rate (RR) of 50% to 80%, and a median progression-free survival (mPFS) of first- plus second-line of therapy of 28 weeks. The early use of combinations in first-line therapy increased the RR to 90%, with an mPFS not reached in all combination arms in the three xenografts models, with a statistically significant superiority (p < 0.005) as compared to osimertinib, achieving in first-line therapy an mPFS time of 17 to 18 weeks. Moreover, in ex vivo primary cell cultures obtained from osimertinib plus selumetinib-resistant tumors, we found Hedgehog pathway activation and we showed that therapy with an SMO inhibitor plus osimertinib and selumetinib inhibited proliferation and migratory and invasive properties of resistant cells. We showed that a dual vertical EGFR blockade with osimertinib plus selumetinib/cetuximab is a novel effective therapeutic option in EGFR-mutated NCLC and that hedgehog pathway activation and its interplay with MAPK is involved in resistance to these combination treatments. Copyright © 2018 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  13. Ubiquitin ligase Cbl-b is involved in icotinib (BPI-2009H)-induced apoptosis and G1 phase arrest of EGFR mutation-positive non-small-cell lung cancer.

    PubMed

    Mu, Xiaodong; Zhang, Ye; Qu, Xiujuan; Hou, Kezuo; Kang, Jian; Hu, Xuejun; Liu, Yunpeng

    2013-01-01

    Epidermal growth factor receptor (EGFR) is one of the most promising targets for non-small-cell lung cancer (NSCLC). Icotinib, a highly selective EGFR tyrosine kinase inhibitor (EGFR-TKI), has shown promising clinical efficacy and safety in patients with NSCLC. The exact molecular mechanism of icotinib remains unclear. In this study, we first investigated the antiproliferative effect of icotinib on NSCLC cells. Icotinib significantly inhibited proliferation of the EGFR-mutated lung cancer HCC827 cells. The IC50 values at 48 and 72 h were 0.67 and 0.07 μ M, respectively. Flow cytometric analysis showed that icotinib caused the G1 phase arrest and increased the rate of apoptosis in HCC827 cells. The levels of cyclin D1 and cyclin A2 were decreased. The apoptotic process was associated with activation of caspase-3, -8, and poly(ADP-ribose) polymerase (PARP). Further study revealed that icotinib inhibited phosphorylation of EGFR, Akt, and extracellular signal-regulated kinase. In addition, icotinib upregulated ubiquitin ligase Cbl-b expression. These observations suggest that icotinib-induced upregulation of Cbl-b is responsible, at least in part, for the antitumor effect of icotinib via the inhibition of phosphoinositide 3-kinase (PI3K)/Akt and mitogen-activated protein kinase pathways in EGFR-mutated NSCLC cells.

  14. Combined point mutation in KRAS or EGFR genes and EML4-ALK translocation in lung cancer patients.

    PubMed

    Jürgens, Jessica; Engel-Riedel, Walburga; Prickartz, Alexander; Ludwig, Corinna; Schildgen, Oliver; Tillmann, Ramona-Liza; Stoelben, Erich; Brockmann, Michael; Schildgen, Verena

    2014-03-01

    A total of three cases with novel constellations regarding mutation patterns in non-small-cell lung cancer (NSCLC) are reported. The mutation patterns that are observed are novel and unexpected. First, a combined simultaneous KRAS mutation and EML4-ALK translocation, both in the main tumor and a bone metastasis, were observed, these mutations are assumed to mutually exclude each other. A further two cases include a father and a daughter, both of whom are suffering from NSCLC with different EGFR mutation patterns. A common cause was assumed; however, could not be deduced to mutations in the KRAS, BRAF and EGFR genes. The aforementioned cases are important, as it must be taken into account that mutations previously assumed to be exclusive can occur in combination, may influence the clinical outcome and may require different therapy compared with single mutated tumors. It has to be discussed whether diagnostic algorithms need to be adapted. The cases of father and daughter show that further unknown factors can influence development of NSCLC.

  15. Contribution of EGFR and ErbB-3 Heterodimerization to the EGFR Mutation-Induced Gefitinib- and Erlotinib-Resistance in Non-Small-Cell Lung Carcinoma Treatments.

    PubMed

    Wang, Debby D; Ma, Lichun; Wong, Maria P; Lee, Victor H F; Yan, Hong

    2015-01-01

    EGFR mutation-induced drug resistance has become a major threat to the treatment of non-small-cell lung carcinoma. Essentially, the resistance mechanism involves modifications of the intracellular signaling pathways. In our work, we separately investigated the EGFR and ErbB-3 heterodimerization, regarded as the origin of intracellular signaling pathways. On one hand, we combined the molecular interaction in EGFR heterodimerization with that between the EGFR tyrosine kinase and its inhibitor. For 168 clinical subjects, we characterized their corresponding EGFR mutations using molecular interactions, with three potential dimerization partners (ErbB-2, IGF-1R and c-Met) of EGFR and two of its small molecule inhibitors (gefitinib and erlotinib). Based on molecular dynamics simulations and structural analysis, we modeled these mutant-partner or mutant-inhibitor interactions using binding free energy and its components. As a consequence, the mutant-partner interactions are amplified for mutants L858R and L858R_T790M, compared to the wild type EGFR. Mutant delL747_P753insS represents the largest difference between the mutant-IGF-1R interaction and the mutant-inhibitor interaction, which explains the shorter progression-free survival of an inhibitor to this mutant type. Besides, feature sets including different energy components were constructed, and efficient regression trees were applied to map these features to the progression-free survival of an inhibitor. On the other hand, we comparably examined the interactions between ErbB-3 and its partners (EGFR mutants, IGF-1R, ErbB-2 and c-Met). Compared to others, c-Met shows a remarkably-strong binding with ErbB-3, implying its significant role in regulating ErbB-3 signaling. Moreover, EGFR mutants corresponding to poor clinical outcomes, such as L858R_T790M, possess lower binding affinities with ErbB-3 than c-Met does. This may promote the communication between ErbB-3 and c-Met in these cancer cells. The analysis verified

  16. Activating mutations in the tyrosine kinase domain of the epidermal growth factor receptor are associated with improved survival in gefitinib-treated chemorefractory lung adenocarcinomas.

    PubMed

    Taron, Miguel; Ichinose, Yukito; Rosell, Rafael; Mok, Tony; Massuti, Bartomeu; Zamora, Lurdes; Mate, Jose Luis; Manegold, Christian; Ono, Mayumi; Queralt, Cristina; Jahan, Thierry; Sanchez, Jose Javier; Sanchez-Ronco, Maria; Hsue, Victor; Jablons, David; Sanchez, Jose Miguel; Moran, Teresa

    2005-08-15

    Activating mutations in the tyrosine kinase domain of the epidermal growth factor receptor (EGFR) confer a strong sensitivity to gefitinib, a selective tyrosine kinase inhibitor of EGFR. We examined EGFR mutations at exons 18, 19, and 21 in tumor tissue from 68 gefitinib-treated, chemorefractory, advanced non-small cell lung cancer patients from the United States, Europe, and Asia and in a highly gefitinib-sensitive non-small cell lung cancer cell line and correlated their presence with response and survival. In addition, in a subgroup of 28 patients for whom the remaining tumor tissue was available, we examined the relationship among EGFR mutations, CA repeats in intron 1 of EGFR, EGFR and caveolin-1 mRNA levels, and increased EGFR gene copy numbers. Seventeen patients had EGFR mutations, all of which were in lung adenocarcinomas. Radiographic response was observed in 16 of 17 (94.1%) patients harboring EGFR mutations, in contrast with 6 of 51 (12.6%) with wild-type EGFR (P < 0.0001). Probability of response increased significantly in never smokers, patients receiving a greater number of prior chemotherapy regimens, Asians, and younger patients. Median survival was not reached for patients with EGFR mutations and was 9.9 months for those with wild-type EGFR (P = 0.001). EGFR mutations tended to be associated with increased numbers of CA repeats and increased EGFR gene copy numbers but not with EGFR and caveolin-1 mRNA overexpression (P = not significant). The presence of EGFR mutations is a major determinant of gefitinib response, and targeting EGFR should be considered in preference to chemotherapy as first-line treatment in lung adenocarcinomas that have demonstrable EGFR mutations.

  17. Acquired resistance mechanisms to tyrosine kinase inhibitors in lung cancer with activating epidermal growth factor receptor mutation--diversity, ductility, and destiny.

    PubMed

    Suda, Kenichi; Mizuuchi, Hiroshi; Maehara, Yoshihiko; Mitsudomi, Tetsuya

    2012-12-01

    Lung cancers that harbor somatic activating mutations in the gene for the epidermal growth factor receptor (EGFR) depend on mutant EGFR for their proliferation and survival; therefore, lung cancer patients with EGFR mutations often dramatically respond to orally available EGFR tyrosine kinase inhibitors (TKIs). However, emergence of acquired resistance is virtually inevitable, thus limiting improvement in patient outcomes. To elucidate and overcome this acquired resistance, multidisciplinary basic and clinical investigational approaches have been applied, using in vitro cell line models or samples obtained from lung cancer patients treated with EGFR-TKIs. These efforts have revealed several acquired resistance mechanisms and candidates, including EGFR secondary mutations (T790M and other rare mutations), MET amplification, PTEN downregulation, CRKL amplification, high-level HGF expression, FAS-NFκB pathway activation, epithelial-mesenchymal transition, and conversion to small cell lung cancer. Interestingly, cancer cells harbor potential destiny and ductility together in acquiring resistance to EGFR-TKIs, as shown in in vitro acquired resistance models. Molecular mechanisms of "reversible EGFR-TKI tolerance" that occur in early phase EGFR-TKI exposure have been identified in cell line models. Furthermore, others have reported molecular markers that can predict response to EGFR-TKIs in clinical settings. Deeper understanding of acquired resistance mechanisms to EGFR-TKIs, followed by the development of molecular target drugs that can overcome the resistance, might turn this fatal disease into a chronic disorder.

  18. Protein Phosphorylation Profiling Using an In Situ Proximity Ligation Assay: Phosphorylation of AURKA-Elicited EGFR-Thr654 and EGFR-Ser1046 in Lung Cancer Cells

    PubMed Central

    Chen, Tzu-Chi; Liu, Yu-Wen; Huang, Yei-Hsuan; Yeh, Yi-Chen; Chou, Teh-Ying; Wu, Yu-Chung; Wu, Chun-Chi; Chen, Yi-Rong; Cheng, Hui-Chuan; Lu, Pei-Jung; Lai, Jin-Mei; Huang, Chi-Ying F.

    2013-01-01

    The epidermal growth factor receptor (EGFR), which is up-regulated in lung cancer, involves the activation of mitogenic signals and triggers multiple signaling cascades. To dissect these EGFR cascades, we used 14 different phospho-EGFR antibodies to quantify protein phosphorylation using an in situ proximity ligation assay (in situ PLA). Phosphorylation at EGFR-Thr654 and -Ser1046 was EGF-dependent in the wild-type (WT) receptor but EGF-independent in a cell line carrying the EGFR-L858R mutation. Using a ProtoAarray™ containing ∼5000 recombinant proteins on the protein chip, we found that AURKA interacted with the EGFR-L861Q mutant. Moreover, overexpression of EGFR could form a complex with AURKA, and the inhibitors of AURKA and EGFR decreased EGFR-Thr654 and -Ser1046 phosphorylation. Immunohistochemical staining of stage I lung adenocarcinoma tissues demonstrated a positive correlation between AURKA expression and phosphorylation of EGFR at Thr654 and Ser1046 in EGFR-mutant specimens, but not in EGFR-WT specimens. The interplay between EGFR and AURKA provides an explanation for the difference in EGF dependency between EGFR-WT and EGFR-mutant cells and may provide a new therapeutic strategy for lung cancer patients carrying EGFR mutations. PMID:23520446

  19. Cell-Free Plasma DNA-Guided Treatment With Osimertinib in Patients With Advanced EGFR-Mutated NSCLC.

    PubMed

    Buder, Anna; Hochmair, Maximilian J; Schwab, Sophia; Bundalo, Tatjana; Schenk, Peter; Errhalt, Peter; Mikes, Romana E; Absenger, Gudrun; Patocka, Kurt; Baumgartner, Bernhard; Setinek, Ulrike; Burghuber, Otto C; Prosch, Helmut; Pirker, Robert; Filipits, Martin

    2018-03-02

    Osimertinib is standard treatment for patients with advanced EGFR T790M-mutated non-small-cell lung cancer who have been pre-treated with EGFR-tyrosine kinase inhibitors (TKIs). We studied whether cell-free plasma DNA for T790M detection can be used to select patients for osimertinib treatment in the clinical routine. From April 2015 to November 2016, we included 119 patients with advanced EGFR-mutated non-small-cell lung cancer who had progressed under treatment with an EGFR-TKI. The T790M mutation status was assessed in cell-free plasma DNA by droplet digital polymerase chain reaction in all patients and by tissue analyses in selected patients. T790M mutations were detected in 85 (93%) patients by analyses of cell-free plasma DNA and in 6 (7%) plasma-negative patients by tumor re-biopsy. Eighty-nine of 91 T790M-positive patients received osimertinib. Median progression-free survival (PFS) was 10.1 months (95% confidence interval [CI]: 8.1-12.1). Median survival was not reached and the 1-year survival was 64%. The response rate was 70% in T790M-positive patients (n = 91) in the intention-to-treat population. PFS trended to be shorter in patients with high T790M copy number (≥10 copies/mL) compared to those with low T790M copy number (<10 copies/mL) (hazard ratio for PFS = 1.72, 95% CI: 0.92-3.2, p = 0.09). A comparable trend was observed for overall survival (hazard ratio for overall survival = 2.16, 95% CI: 0.89-5.25, p = 0.09). No difference in response rate was observed based on T790M copy numbers. Plasma genotyping using digital polymerase chain reaction is clinically useful for the selection of patients who had progressed during first-line EGFR-TKI therapy for treatment with osimertinib. Copyright © 2018 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  20. Structural insights into drug development strategy targeting EGFR T790M/C797S.

    PubMed

    Zhu, Su-Jie; Zhao, Peng; Yang, Jiao; Ma, Rui; Yan, Xiao-E; Yang, Sheng-Yong; Yang, Jing-Wen; Yun, Cai-Hong

    2018-03-02

    Treatment of non-small-cell lung cancers (NSCLCs) harboring primary EGFR oncogenic mutations such as L858R and exon 19 deletion delE746_A750 (Del-19) using gefitinib/erlotinib ultimately fails due to the emergence of T790M mutation. Though WZ4002/CO-1686/AZD9291 are effective in overcoming EGFR T790M by targeting Cys797 via covalent bonding, their efficacy is again limited due to the emergence of C797S mutation. New agents effectively inhibiting EGFR T790M without covalent linkage through Cys 797 may solve this problem. We presented here crystal structures of EGFR activating/drug-resistant mutants in complex with a panel of reversible inhibitors along with mutagenesis and enzyme kinetic data. These data revealed a previously un-described hydrophobic clamp structure in the EGFR kinase which may be exploited to facilitate development of next generation drugs targeting EGFR T790M with or without concomitant C797S. Interestingly, mutations in the hydrophobic clamp that hinder drug binding often also weaken ATP binding and/or abolish kinase activity, thus do not readily result in resistance to the drugs.

  1. Comparison of therapeutic effects of EGFR-tyrosine kinase inhibitors on 19Del and L858R mutations in advanced lung adenocarcinoma and effect on cellular immune function.

    PubMed

    Zhou, Juan; Ben, Suqin

    2018-02-01

    We compared the therapeutic effect of EGFR-tyrosine kinase inhibitors (TKIs) on 19Del and L858R mutations in advanced lung adenocarcinoma on cellular immune function and explored the factors influencing the curative effect and prognosis. Clinical efficacy in the selected 71 patients with lung adenocarcinoma, including 52 patients with 19Del and L858R mutations and 19 wild type patients treated with EGFR-TKIs was retrospectively analyzed. The response rate (RR), disease control rate (DCR), progression-free survival (PFS), overall survival (OS), and cellular immune function were analyzed. The RR, DCR, PFS, and OS of the 19Del group were higher than those of the L858R group; however, there were no statistically significant differences between the groups. χ 2 test results revealed that gender, smoking, and EGFR mutations were associated with DCR. Log-rank analytical results showed that EGFR mutation type was correlated to PFS and OS. Multivariate analysis implied that disease control and mutation type of EGFR were independent prognostic factors of OS. Following TKI treatment, the number of CD3+, CD4+, and NK cells and the CD4+/CD8+ratio increased in both mutation groups; however the results were not statistically significant. There was also no significant difference in the upregulation of immunological function observed, with 46.43% in the 19Del mutation and 45.83% in the L858R mutation group. EGFR 19Del and L858R mutations are good biomarkers for predicting the clinical response of EGFR-TKIs. 19Del mutations may have a better clinical outcome. © 2017 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  2. Detection of wild-type EGFR amplification and EGFRvIII mutation in CSF-derived extracellular vesicles of glioblastoma patients.

    PubMed

    Figueroa, Javier M; Skog, Johan; Akers, Johnny; Li, Hongying; Komotar, Ricardo; Jensen, Randy; Ringel, Florian; Yang, Isaac; Kalkanis, Steven; Thompson, Reid; LoGuidice, Lori; Berghoff, Emily; Parsa, Andrew; Liau, Linda; Curry, William; Cahill, Daniel; Bettegowda, Chetan; Lang, Frederick F; Chiocca, E Antonio; Henson, John; Kim, Ryan; Breakefield, Xandra; Chen, Clark; Messer, Karen; Hochberg, Fred; Carter, Bob S

    2017-10-19

    RNAs within extracellular vesicles (EVs) have potential as diagnostic biomarkers for patients with cancer and are identified in a variety of biofluids. Glioblastomas (GBMs) release EVs containing RNA into cerebrospinal fluid (CSF). Here we describe a multi-institutional study of RNA extracted from CSF-derived EVs of GBM patients to detect the presence of tumor-associated amplifications and mutations in epidermal growth factor receptor (EGFR). CSF and matching tumor tissue were obtained from patients undergoing resection of GBMs. We determined wild-type (wt)EGFR DNA copy number amplification, as well as wtEGFR and EGFR variant (v)III RNA expression in tumor samples. We also characterized wtEGFR and EGFRvIII RNA expression in CSF-derived EVs. EGFRvIII-positive tumors had significantly greater wtEGFR DNA amplification (P = 0.02) and RNA expression (P = 0.03), and EGFRvIII-positive CSF-derived EVs had significantly more wtEGFR RNA expression (P = 0.004). EGFRvIII was detected in CSF-derived EVs for 14 of the 23 EGFRvIII tissue-positive GBM patients. Conversely, only one of the 48 EGFRvIII tissue-negative patients had the EGFRvIII mutation detected in their CSF-derived EVs. These results yield a sensitivity of 61% and a specificity of 98% for the utility of CSF-derived EVs to detect an EGFRvIII-positive GBM. Our results demonstrate CSF-derived EVs contain RNA signatures reflective of the underlying molecular genetic status of GBMs in terms of wtEGFR expression and EGFRvIII status. The high specificity of the CSF-derived EV diagnostic test gives us an accurate determination of positive EGFRvIII tumor status and is essentially a less invasive "liquid biopsy" that might direct mutation-specific therapies for GBMs. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  3. Pemetrexed Singlet Versus Nonpemetrexed-Based Platinum Doublet as Second-Line Chemotherapy after First-Line Epidermal Growth Factor Receptor (EGFR) Tyrosine Kinase Inhibitor Failure in Non-small Cell Lung Cancer Patients with EGFR Mutations.

    PubMed

    Park, Sehhoon; Keam, Bhumsuk; Kim, Se Hyun; Kim, Ki Hwan; Kim, Yu Jung; Kim, Jin-Soo; Kim, Tae Min; Lee, Se-Hoon; Kim, Dong-Wan; Lee, Jong Seok; Heo, Dae Seog

    2015-10-01

    Platinum-based doublet chemotherapy is the treatment of choice for patients with non-small cell lung cancer (NSCLC); however, the role of a platinum-based doublet as second-line therapy after failure of an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) for NSCLC patients has not yet been elucidated. The purpose of this study was to compare the clinical efficacy of pemetrexed versus a platinum-based doublet as second-line therapy after failure of EGFR TKI used as first-line therapy for NSCLC patients with EGFR mutations. We designed a multicenter retrospective cohort study of 314 NSCLC patients with EGFR mutations who received an EGFR TKI as first-line palliative chemotherapy. Our analysis included 83 patients who failed EGFR TKI therapy and received second-line cytotoxic chemotherapy. Forty-six patients were treated using a platinum-based doublet and 37 patients were treated using singlet pemetrexed. The overall response rates of patients receiving a platinum-based doublet and patients receiving pemetrexed were17.4% and 32.4%, respectively (p=0.111). The median progression-free survival (PFS) of patients receiving pemetrexed was significantly longer than that of patients receiving a platinum-based doublet (4.2 months vs. 2.7 months, respectively; p=0.008). The hazard ratio was 0.54 (95% confidence interval, 0.34 to 0.86; p=0.009). Our retrospective analysis found that second-line pemetrexed singlet therapy provided significantly prolonged PFS compared to second-line platinum-based doublet chemotherapy for NSCLC patients with EGFR mutations who failed first-line EGFR TKI. Conduct of prospective studies for confirmation of our results is warranted.

  4. Ubiquitin Ligase Cbl-b Is Involved in Icotinib (BPI-2009H)-Induced Apoptosis and G1 Phase Arrest of EGFR Mutation-Positive Non-Small-Cell Lung Cancer

    PubMed Central

    Mu, Xiaodong; Zhang, Ye; Qu, Xiujuan; Hou, Kezuo; Kang, Jian; Hu, Xuejun; Liu, Yunpeng

    2013-01-01

    Epidermal growth factor receptor (EGFR) is one of the most promising targets for non-small-cell lung cancer (NSCLC). Icotinib, a highly selective EGFR tyrosine kinase inhibitor (EGFR-TKI), has shown promising clinical efficacy and safety in patients with NSCLC. The exact molecular mechanism of icotinib remains unclear. In this study, we first investigated the antiproliferative effect of icotinib on NSCLC cells. Icotinib significantly inhibited proliferation of the EGFR-mutated lung cancer HCC827 cells. The IC50 values at 48 and 72 h were 0.67 and 0.07 μM, respectively. Flow cytometric analysis showed that icotinib caused the G1 phase arrest and increased the rate of apoptosis in HCC827 cells. The levels of cyclin D1 and cyclin A2 were decreased. The apoptotic process was associated with activation of caspase-3, -8, and poly(ADP-ribose) polymerase (PARP). Further study revealed that icotinib inhibited phosphorylation of EGFR, Akt, and extracellular signal-regulated kinase. In addition, icotinib upregulated ubiquitin ligase Cbl-b expression. These observations suggest that icotinib-induced upregulation of Cbl-b is responsible, at least in part, for the antitumor effect of icotinib via the inhibition of phosphoinositide 3-kinase (PI3K)/Akt and mitogen-activated protein kinase pathways in EGFR-mutated NSCLC cells. PMID:23586056

  5. TERT Polymorphism rs2736100-C Is Associated with EGFR Mutation-Positive Non-Small Cell Lung Cancer

    PubMed Central

    Zheng, Yonglan; Niu, Xiaomin; Weng, Xiaoling; Zhang, Hong; Favus, Murray; Zhang, Lanjun; Jia, Weihua; Zeng, Yixin; Amos, Christopher I; Lu, Shun; Wang, Hui-Yun; Liu, Yun; Liu, Wanqing

    2015-01-01

    Purpose Epidermal growth factor receptor (EGFR) mutation-positive (EGFRmut+) non-small cell lung cancer (NSCLC) may be a unique orphan disease. Previous studies suggested that the telomerase reverse transcriptase (TERT) gene polymorphism is associated with demographic and clinical features strongly associated with EGFR mutations, e.g. adenocarcinoma histology, never-smoking history and female gender. We aim to test the association between TERT polymorphism and EGFRmut+ NSCLC. Experimental Design We conducted a genetic association study in Chinese NSCLC patients (n=714) and healthy controls (n=2,520), between the rs2736100 polymorphism and EGFRmut+ NSCLC. We further tested the association between the EGFR mutation status and mean leukocyte telomere length (LTL). The potential function of rs2736100 in lung epithelial cells was also explored. Results The rs2736100-C allele was significantly associated with EGFRmut+ NSCLC (OR=1.52, 95%CI=1.28–1.80, p=1.6×10−6) but not EGFRmut− NSCLC (OR=1.07, 95%CI=0.92–1.24, p=0.4). While NSCLC patients as a whole have significantly longer LTL compared to healthy controls (p≤10−13), the EGFRmut+ patients have even longer LTL compared to EGFRmut-patients (p=0.008). Meanwhile, rs2736100 was significantly associated with TERT mRNA expression in both normal and tumor lung tissues. All results remained significant after controlling for age, gender, smoking status and histology (p<0.05 for all tests). Moreover, the rs2736100 DNA sequence has an allele-specific affinity to nuclear proteins extracted from lung epithelial cells, which led to an altered enhancer activity of the sequence in vitro. Conclusion Our study suggests that telomerase and telomere function may be essential for carcinogenesis of EGFRmut+ NSCLC. Further investigation for the underlying mechanism is warranted. PMID:26149460

  6. Molecular alterations of EGFR and PIK3CA in uterine serous carcinoma.

    PubMed

    Hayes, Monica Prasad; Douglas, Wayne; Ellenson, Lora Hedrick

    2009-06-01

    Uterine serous carcinoma (USC) is an aggressive endometrial cancer associated with poor prognosis despite comprehensive surgical staging and adjuvant chemotherapy and radiation therapy. Biologic targets have yet to be fully explored in this disease and research on such targets could lead to clinical trials utilizing a new class of therapeutics. This study sought to evaluate primary USC tumors for molecular alterations in epidermal growth factor receptor (EGFR) and the recently characterized oncogene PIK3CA, which encodes the catalytic p110-alpha subunit of phosphatidylinositol 3-kinase (PI3K) and thus activates the AKT-mTOR oncogenic pathway. Paraffin-embedded archival tissue of 45 primary USC tumors was utilized in this study. Immunohistochemical analysis of EGFR was performed and cases given a score of 0 to 12 calculated as the product of staining intensity (0 to 3+) and the percentage of positively stained cells (0-4), with 1=1-25%, 2=26-50%, 3=51-75%, and 4=76-100%. For mutational analysis, neoplastic tissue was microdissected and DNA was extracted with phenol-chloroform. Exons 18 through 21 of EGFR and exons 9 and 20 of PIK3CA, the most commonly mutated exons of these genes, were amplified and directly sequenced. When EGFR was evaluated, moderate or strong EGFR membranous staining was observed in 25/45 (56%) USC cases. Thus, a mutational analysis was performed on 35 cases, including all cases with moderate and strong EGFR staining. No mutations were identified in EGFR. In contrast, PIK3CA mutations were confirmed in 5/34 (15%) of USC cases. Four cases were mutated in exon 20 and one case was mutated in exon 9. Since optimal treatment of uterine serous carcinoma remains unknown, novel therapeutic approaches need to be actively pursued. In the current study of primary USC tumors, oncogenic mutations of the PIK3CA gene were seen in 15% of USC cases. This represents the first report of this gene mutation in USC. In addition, EGFR stained positively in the majority

  7. Osimertinib and Necitumumab in Treating Patients With EGFR-Mutant Stage IV or Recurrent Non-small Cell Lung Cancer Who Have Progressed on a Previous EGFR Tyrosine Kinase Inhibitor

    ClinicalTrials.gov

    2018-03-07

    EGFR Exon 19 Deletion Mutation; EGFR Exon 20 Insertion Mutation; EGFR NP_005219.2:p.G719X; EGFR NP_005219.2:p.L858R; EGFR NP_005219.2:p.L861Q; EGFR NP_005219.2:p.T790M; EGFR T790M Mutation Negative; Recurrent Non-Small Cell Lung Carcinoma; Stage IV Non-Small Cell Lung Cancer AJCC v7

  8. Emerging functions of the EGFR in cancer.

    PubMed

    Sigismund, Sara; Avanzato, Daniele; Lanzetti, Letizia

    2018-01-01

    The physiological function of the epidermal growth factor receptor (EGFR) is to regulate epithelial tissue development and homeostasis. In pathological settings, mostly in lung and breast cancer and in glioblastoma, the EGFR is a driver of tumorigenesis. Inappropriate activation of the EGFR in cancer mainly results from amplification and point mutations at the genomic locus, but transcriptional upregulation or ligand overproduction due to autocrine/paracrine mechanisms has also been described. Moreover, the EGFR is increasingly recognized as a biomarker of resistance in tumors, as its amplification or secondary mutations have been found to arise under drug pressure. This evidence, in addition to the prominent function that this receptor plays in normal epithelia, has prompted intense investigations into the role of the EGFR both at physiological and at pathological level. Despite the large body of knowledge obtained over the last two decades, previously unrecognized (herein defined as 'noncanonical') functions of the EGFR are currently emerging. Here, we will initially review the canonical ligand-induced EGFR signaling pathway, with particular emphasis to its regulation by endocytosis and subversion in human tumors. We will then focus on the most recent advances in uncovering noncanonical EGFR functions in stress-induced trafficking, autophagy, and energy metabolism, with a perspective on future therapeutic applications. © 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

  9. Multiplex picoliter-droplet digital PCR for quantitative assessment of EGFR mutations in circulating cell-free DNA derived from advanced non-small cell lung cancer patients

    PubMed Central

    Yu, Qian; Huang, Fei; Zhang, Meilin; Ji, Haiying; Wu, Shenchao; Zhao, Ying; Zhang, Chunyan; Wu, Jiong; Wang, Beili; Pan, Baisheng; Zhang, Xin; Guo, Wei

    2017-01-01

    To explore the possible diagnostic value of liquid biopsy, two multiplex panels using picoliter-droplet digital polymerase chain reaction (ddPCR) were established to quantitatively assess the epidermal growth factor receptor (EGFR) mutations in cell-free DNA (cfDNA) extracted from the plasma of advanced non-small cell lung cancer (NSCLC) patients. Plasma samples derived from 22 patients with stage IIIB/IV NSCLC harboring EGFR mutations in matched tumor tissues confirmed by amplification refractory mutation system (ARMS) analysis were subjected to two multiplex ddPCR panels to assess the abundance of tyrosine kinase inhibitor (TKI) -sensitive (19DEL, L858R) and TKI-resistant (T790 M) mutations. Fluctuations in EGFR mutant abundance were monitored by either of the multiplex ddPCR panels for three patients undergoing EGFR-TKI treatment, with serial plasma sample collections over 2 months. The multiplex ddPCR panels applied to plasma cfDNA from advanced NSCLC patients achieved a total concordance rate of 80% with the EGFR mutation profiles obtained by ARMS from matched biopsy tumor specimens (90% for 19DEL, 95% for L858R, 95% for T790M, respectively) and revealed additional mutant alleles in two subjects. The respective sensitivity and specificity were 90.9 and 88.9% for 19DEL, 87.5 and 100% for L858R, 100 and 93.8% for T790M. The fluctuations of EGFR mutant abundance in serial plasma cfDNA were in accordance with the changes in tumor size as assessed by imaging scans. The authors demonstrated the utility of multiplex ddPCR panels with ultra-sensitivity for quantitative analysis of EGFR mutations in plasma cfDNA and obtained promising usefulness in EGFR-TKI decision-making for advanced NSCLC patients. PMID:29067441

  10. Activating HER2 mutations in HER2 gene amplification negative breast cancer.

    PubMed

    Bose, Ron; Kavuri, Shyam M; Searleman, Adam C; Shen, Wei; Shen, Dong; Koboldt, Daniel C; Monsey, John; Goel, Nicholas; Aronson, Adam B; Li, Shunqiang; Ma, Cynthia X; Ding, Li; Mardis, Elaine R; Ellis, Matthew J

    2013-02-01

    Data from 8 breast cancer genome-sequencing projects identified 25 patients with HER2 somatic mutations in cancers lacking HER2 gene amplification. To determine the phenotype of these mutations, we functionally characterized 13 HER2 mutations using in vitro kinase assays, protein structure analysis, cell culture, and xenograft experiments. Seven of these mutations are activating mutations, including G309A, D769H, D769Y, V777L, P780ins, V842I, and R896C. HER2 in-frame deletion 755-759, which is homologous to EGF receptor (EGFR) exon 19 in-frame deletions, had a neomorphic phenotype with increased phosphorylation of EGFR or HER3. L755S produced lapatinib resistance, but was not an activating mutation in our experimental systems. All of these mutations were sensitive to the irreversible kinase inhibitor, neratinib. These findings show that HER2 somatic mutation is an alternative mechanism to activate HER2 in breast cancer and they validate HER2 somatic mutations as drug targets for breast cancer treatment. We show that the majority of HER2 somatic mutations in breast cancer patients are activating mutations that likely drive tumorigenesis. Several patients had mutations that are resistant to the reversible HER2 inhibitor lapatinib, but are sensitive to the irreversible HER2 inhibitor, neratinib. Our results suggest that patients with HER2 mutation–positive breast cancers could benefit from existing HER2-targeted drugs.

  11. Comparison of EGFR signaling pathway somatic DNA mutations derived from peripheral blood and corresponding tumor tissue of patients with advanced non-small-cell lung cancer using liquidchip technology.

    PubMed

    Zhang, Hui; Liu, Deruo; Li, Shanqing; Zheng, Yongqing; Yang, Xinjie; Li, Xi; Zhang, Quan; Qin, Na; Lu, Jialin; Ren-Heidenreich, Lifen; Yang, Huiyi; Wu, Yuhua; Zhang, Xinyong; Nong, Jingying; Sun, Yifen; Zhang, Shucai

    2013-11-01

    Somatic DNA mutations affecting the epidermal growth factor receptor (EGFR) signaling pathway are known to predict responsiveness to EGFR-tyrosine kinase inhibitor drugs in patients with advanced non-small-cell lung cancers. We evaluated a sensitive liquidchip platform for detecting EGFR, KRAS (alias Ki-ras), proto-oncogene B-Raf, and phosphatidylinositol 3-kinase CA mutations in plasma samples, which were highly correlated with matched tumor tissues from 86 patients with advanced non-small-cell lung cancers. Either EGFR exon 19 or 21 mutations were detected in 36 patients: 23 of whom had identical mutations in both their blood and tissue samples; whereas mutations in the remaining 13 were found only in their tumor samples. These EGFR mutations occurred at a significantly higher frequency in females, never-smokers, and in patients with adenocarcinomas (P ≤ 0.001). The EGFR exon 20 T790M mutation was detected in only one of the paired samples [100% (95% CI, 96% to 100%) agreement]. For KRAS, proto-oncogene B-Raf, and phosphatidylinositol 3-kinase CA mutations, the overall agreements were 97% (95% CI, 90% to 99%), 98% (95% CI, 92% to 99%), and 97% (95% CI, 90% to 99%), respectively, and these were not associated with age, sex, smoking history, or histopathologic type. In conclusion, mutations detected in plasma correlated strongly with mutation profiles in each respective tumor sample, suggesting that this liquidchip platform may offer a rapid and noninvasive method for predicting tumor responsiveness to EGFR-tyrosine kinase inhibitor drugs in patients with advanced non-small-cell lung cancers. Copyright © 2013 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  12. Cost-effectiveness analysis of EGFR mutation testing and gefitinib as first-line therapy for non-small cell lung cancer.

    PubMed

    Narita, Yusuke; Matsushima, Yukiko; Shiroiwa, Takeru; Chiba, Koji; Nakanishi, Yoichi; Kurokawa, Tatsuo; Urushihara, Hisashi

    2015-10-01

    The combination use of gefitinib and epidermal growth factor receptor (EGFR) testing is a standard first-line therapy for patients with non-small cell lung cancer (NSCLC). Here, we examined the cost-effectiveness of this approach in Japan. Our analysis compared the 'EGFR testing strategy', in which EGFR mutation testing was performed before treatment and patients with EGFR mutations received gefitinib while those without mutations received standard chemotherapy, to the 'no-testing strategy,' in which genetic testing was not conducted and all patients were treated with standard chemotherapy. A three-state Markov model was constructed to predict expected costs and outcomes for each strategy. We included only direct medical costs from the healthcare payer's perspective. Outcomes in the model were based on those reported in the Iressa Pan-Asia Study (IPASS). The incremental cost-effectiveness ratio (ICER) was calculated using quality-adjusted life-years (QALYs) gained. Sensitivity and scenario analyses were conducted. The incremental cost and effectiveness per patient of the 'EGFR testing strategy' compared to the 'no-testing strategy' was estimated to be approximately JP¥122,000 (US$1180; US$1=JP¥104 as of February 2014) and 0.036 QALYs. The ICER was then calculated to be around JP¥3.38 million (US$32,500) per QALY gained. These results suggest that the 'EGFR testing strategy' is cost-effective compared with the 'no-testing strategy' when JP¥5.0 million to 6.0 million per QALY gained is considered an acceptable threshold. These results were supported by the sensitivity and scenario analyses. The combination use of gefitinib and EGFR testing can be considered a cost-effective first-line therapy compared to chemotherapy such as carboplatin-paclitaxel for the treatment for NSCLC in Japan. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  13. Resistance to EGFR inhibitors in non-small cell lung cancer: Clinical management and future perspectives.

    PubMed

    Tomasello, Chiara; Baldessari, Cinzia; Napolitano, Martina; Orsi, Giulia; Grizzi, Giulia; Bertolini, Federica; Barbieri, Fausto; Cascinu, Stefano

    2018-03-01

    In the last few years, the development of targeted therapies for non-small cell lung cancer (NSCLC) expressing oncogenic driver mutations (e.g. EGFR) has changed the clinical management and the survival outcomes of this specific minority of patients. Several phase III trials demonstrated the superiority of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) over chemotherapy in EGFR-mutant NSCLC patients. However, in the vast majority of cases EGFR TKIs lose their clinical activity within 8-12 months. Many genetic aberrations have been described as possible mechanisms of EGFR TKIs acquired resistance and can be clustered in four main sub-groups: 1. Development of secondary EGFR mutations; 2. Activation of parallel signaling pathways; 3. Histological transformation; 4. Activation of downstream signaling pathways. In this review we will describe the molecular alterations underlying each of these EGFR TKIs resistance mechanisms, focusing on the currently available and future therapeutic strategies to overcome these phenomena. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Triple Inhibition of EGFR, Met, and VEGF Suppresses Regrowth of HGF-Triggered, Erlotinib-Resistant Lung Cancer Harboring an EGFR Mutation

    PubMed Central

    Nakade, Junya; Takeuchi, Shinji; Nakagawa, Takayuki; Ishikawa, Daisuke; Sano, Takako; Nanjo, Shigeki; Yamada, Tadaaki; Ebi, Hiromichi; Zhao, Lu; Yasumoto, Kazuo; Matsumoto, Kunio; Yonekura, Kazuhiko

    2014-01-01

    Introduction: Met activation by gene amplification and its ligand, hepatocyte growth factor (HGF), imparts resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in EGFR-mutant lung cancer. We recently reported that Met activation by HGF stimulates the production of vascular endothelial growth factor (VEGF) and facilitates angiogenesis, which indicates that HGF induces EGFR-TKI resistance and angiogenesis. This study aimed to determine the effect of triple inhibition of EGFR, Met, and angiogenesis on HGF-triggered EGFR-TKI resistance in EGFR-mutant lung cancer. Methods: Three clinically approved drugs, erlotinib (an EGFR inhibitor), crizotinib (an inhibitor of anaplastic lymphoma kinase and Met), and bevacizumab (anti-VEGF antibody), and TAS-115, a novel dual TKI for Met and VEGF receptor 2, were used in this study. EGFR-mutant lung cancer cell lines PC-9, HCC827, and HGF-gene–transfected PC-9 (PC-9/HGF) cells were examined. Results: Crizotinib and TAS-115 inhibited Met phosphorylation and reversed erlotinib resistance and VEGF production triggered by HGF in PC-9 and HCC827 cells in vitro. Bevacizumab and TAS-115 inhibited angiogenesis in PC-9/HGF tumors in vivo. Moreover, the triplet erlotinib, crizotinib, and bevacizumab, or the doublet erlotinib and TAS-115 successfully inhibited PC-9/HGF tumor growth and delayed tumor regrowth associated with sustained tumor vasculature inhibition even after cessation of the treatment. Conclusion: These results suggest that triple inhibition of EGFR, HGF/Met, and VEGF/VEGF receptor 2, by either a triplet of clinical drugs or TAS-115 combined with erlotinib, may be useful for controlling progression of EGFR-mutant lung cancer by reversing EGFR-TKI resistance and for inhibiting angiogenesis. PMID:24828661

  15. [Efficacy of icotinib for advanced non-small cell lung cancer patients with EGFR status identified].

    PubMed

    Song, Zhengbo; Yu, Xinmin; Cai, Jufen; Shao, Lan; Lin, Baochai; He, Chunxiao; Zhang, Beibei; Zhang, Yiping

    2013-03-01

    As the first epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) in China, icotinib shows promising anticancer activity in vitro and vivo. The phase III clinical study (ICOGEN) showed that icotinib has a good efficacy and tolerability in Chinese patients with advanced non-small cell lung cancer (NSCLC) compared with gefitinib. This retrospective study aims to evaluate the efficacy and tolerability of icotinib monotherapy for advanced NSCLC patients with EGFR mutation and wild-type patients in our hospital. Patients with advanced NSCLC who were treated with icotinib in Zhejiang Cancer Hospital were retrospectively analyzed from August, 2011 to August, 2012. Survival was estimated using Kaplan-Meier analysis and Log-rank tests. The clinical data of 49 patients (13 with wild-type and 36 with EGFR mutation) with NSCLC were enrolled in the current study. The patients' overall objective response rate (ORR) was 58.3% and the disease control rate (DCR) in 36 EGFR mutation patients was 88.9%. The ORR was 7.7% and DCR was 53.8% in the wild-type patients. Median progression-free survival (PFS) with icotinib treatment in EGFR mutation patients was 9.5 months and 2.2 months in wild-type patients (P<0.001). Nineteen patients with EGFR mutation received icotinib as first-line and 17 in further-line treatment. The PFS was 9.5 months in the first-line and 8.5 months for second-line or further-line patients (P=0.41). Median overall survival (OS) in EGFR mutation patients was not reached, but was 12.6 months in wild-type patients. Most of the drug-related adverse events were mild (grade I or II) and reversible with no grade IV toxicity. Icotinib monotherapy showed significant antitumor activity in advanced NSCLC EGFR mutation patients. The toxicity was well tolerated and acceptable.

  16. EGFR blockade enriches for lung cancer stem-like cells through Notch3-dependent signaling

    PubMed Central

    Arasada, Rajeswara Rao; Amann, Joseph M.; Rahman, Mohammad A; Huppert, Stacey S.; Carbone, David P.

    2014-01-01

    Mutations in the epidermal growth factor receptor (EGFR) are the most common actionable genetic abnormalities yet discovered in lung cancer. However, targeting these mutations with kinase inhibitors is not curative in advanced disease and has yet to demonstrate an impact on potentially curable, early-stage disease, with some data suggesting adverse outcomes. Here, we report that treatment of EGFR-mutated lung cancer cell lines with erlotinib, while showing robust cell death, enriches the ALDH+ stem-like cells through EGFR-dependent activation of Notch3. Additionally, we demonstrate that erlotinib treatment increases the clonogenicity of lung cancer cells in a sphere-forming assay, suggesting increased stem-like cell potential. We demonstrate that inhibition of EGFR kinase activity leads to activation of Notch transcriptional targets in a gamma secretase inhibitor sensitive manner and causes Notch activation. leading to an increase in ALDH high+ cells. We also find a kinase-dependent physical association between the Notch3 and EGFR receptors and tyrosine phosphorylation of Notch3. This could explain the worsened survival observed in some studies of erlotinib treatment at early-stage disease, and suggests that specific dual targeting might overcome this adverse effect. PMID:25125655

  17. TP53, STK11 and EGFR Mutations Predict Tumor Immune Profile and the Response to anti-PD-1 in Lung Adenocarcinoma.

    PubMed

    Biton, Jerome; Mansuet-Lupo, Audrey; Pécuchet, Nicolas; Alifano, Marco; Ouakrim, Hanane; Arrondeau, Jennifer; Boudou-Rouquette, Pascaline; Goldwasser, Francois; Leroy, Karen; Goc, Jeremy; Wislez, Marie; Germain, Claire; Laurent-Puig, Pierre; Dieu-Nosjean, Marie-Caroline; Cremer, Isabelle; Herbst, Ronald; Blons, Hélène F; Damotte, Diane

    2018-05-15

    By unlocking anti-tumor immunity, antibodies targeting programmed cell death 1 (PD-1) exhibit impressive clinical results in non-small cell lung cancer, underlining the strong interactions between tumor and immune cells. However, factors that can robustly predict long-lasting responses are still needed. We performed in depth immune profiling of lung adenocarcinoma using an integrative analysis based on immunohistochemistry, flow-cytometry and transcriptomic data. Tumor mutational status was investigated using next-generation sequencing. The response to PD-1 blockers was analyzed from a prospective cohort according to tumor mutational profiles and to PD-L1 expression, and a public clinical database was used to validate the results obtained. We showed that distinct combinations of STK11 , EGFR and TP53 mutations, were major determinants of the tumor immune profile (TIP) and of the expression of PD-L1 by malignant cells. Indeed, the presence of TP53 mutations without co-occurring STK11 or EGFR alterations ( TP53 -mut/ STK11 - EGFR -WT), independently of KRAS mutations, identified the group of tumors with the highest CD8 T cell density and PD-L1 expression. In this tumor subtype, pathways related to T cell chemotaxis, immune cell cytotoxicity, and antigen processing were up-regulated. Finally, a prolonged progression-free survival (PFS: HR=0.32; 95% CI, 0.16-0.63, p <0.001) was observed in anti-PD-1 treated patients harboring TP53 -mut/ STK11 - EGFR -WT tumors. This clinical benefit was even more remarkable in patients with associated strong PD-L1 expression. Our study reveals that different combinations of TP53 , EGFR and STK11 mutations , together with PD-L1 expression by tumor cells, represent robust parameters to identify best responders to PD-1 blockade. Copyright ©2018, American Association for Cancer Research.

  18. Afatinib for an EGFR exon 20 insertion mutation: A case report of progressive stage IV metastatic lung adenocarcinoma with 54 months' survival.

    PubMed

    Chan, Raymond Tsz-Tong

    2018-03-01

    Non-small cell lung cancers (NSCLC) harboring the uncommon epidermal growth factor receptor (EGFR) exon 20 insertion mutations are generally thought to be unresponsive to EGFR-tyrosine kinase inhibitor (TKI) therapy. Presented here is a case of stage IV NSCLC harboring an uncommon EGFR exon 20 insertion mutation that was maintained at minimal progressive disease for 54 months, with 36 months on the second-generation TKI afatinib. Contrary to the existing literature, the patient in this case demonstrated a long, durable response to the EGFR-TKI, which was exhibited by a long survival endpoint. This suggests that stability in clinical symptoms might be sufficient to warrant continuation of therapy. © 2018 The Authors. Asia-Pacific Journal of Clinical Oncology Published by John Wiley & Sons Australia, Ltd.

  19. Concomitant ALK translocation and EGFR mutation in lung cancer: a comparison of direct sequencing and sensitive assays and the impact on responsiveness to tyrosine kinase inhibitor.

    PubMed

    Won, J K; Keam, B; Koh, J; Cho, H J; Jeon, Y K; Kim, T M; Lee, S H; Lee, D S; Kim, D W; Chung, D H

    2015-02-01

    Epidermal growth factor receptor (EGFR) mutation and anaplastic lymphoma kinase (ALK) translocation are considered mutually exclusive in nonsmall-cell lung cancer (NSCLC). However, sporadic cases having concomitant EGFR and ALK alterations have been reported. The present study aimed to assess the prevalence of NSCLCs with concomitant EGFR and ALK alterations using mutation detection methods with different sensitivity and to propose an effective diagnostic and therapeutic strategy. A total of 1458 cases of lung cancer were screened for EGFR and ALK alterations by direct sequencing and flourescence in situ hybridization (FISH), respectively. For the 91 patients identified as having an ALK translocation, peptide nucleic acid (PNA)-clamping real-time PCR, targeted next-generation sequencing (NGS), and mutant-enriched NGS assays were carried out to detect EGFR mutation. EGFR mutations and ALK translocations were observed in 42.4% (612/1445) and 6.3% (91/1445) of NSCLCs by direct sequencing and FISH, respectively. Concomitant EGFR and ALK alterations were detected in four cases, which accounted for 4.4% (4/91) of ALK-translocated NSCLCs. Additional analyses for EGFR using PNA real-time PCR and ultra-deep sequencing by NGS, mutant-enriched NGS increased the detection rate of concomitant EGFR and ALK alterations to 8.8% (8/91), 12.1% (11/91), and 15.4% (14/91) of ALK-translocated NSCLCs, respectively. Of the 14 patients, 3 who were treated with gefitinib showed poor response to gefitinib with stable disease in one and progressive disease in two patients. However, eight patients who received ALK inhibitor (crizotinib or ceritinib) showed good response, with response rate of 87.5% (7/8 with partial response) and durable progression-free survival. A portion of NSCLC patients have concomitant EGFR and ALK alterations and the frequency of co-alteration detection increases when sensitive detection methods for EGFR mutation are applied. ALK inhibitors appear to be effective for

  20. Osimertinib benefit in EGFR-mutant NSCLC patients with T790M-mutation detected by circulating tumour DNA.

    PubMed

    Remon, J; Caramella, C; Jovelet, C; Lacroix, L; Lawson, A; Smalley, S; Howarth, K; Gale, D; Green, E; Plagnol, V; Rosenfeld, N; Planchard, D; Bluthgen, M V; Gazzah, A; Pannet, C; Nicotra, C; Auclin, E; Soria, J C; Besse, B

    2017-04-01

    Approximately 50% of epidermal growth factor receptor (EGFR) mutant non-small cell lung cancer (NSCLC) patients treated with EGFR tyrosine kinase inhibitors (TKIs) will acquire resistance by the T790M mutation. Osimertinib is the standard of care in this situation. The present study assesses the efficacy of osimertinib when T790M status is determined in circulating cell-free tumour DNA (ctDNA) from blood samples in progressing advanced EGFR-mutant NSCLC patients. ctDNA T790M mutational status was assessed by Inivata InVision™ (eTAm-Seq™) assay in 48 EGFR-mutant advanced NSCLC patients with acquired resistance to EGFR TKIs without a tissue biopsy between April 2015 and April 2016. Progressing T790M-positive NSCLC patients received osimertinib (80 mg daily). The objectives were to assess the response rate to osimertinib according to Response Evaluation Criteria in Solid Tumours (RECIST) 1.1, the progression-free survival (PFS) on osimertinib, and the percentage of T790M positive in ctDNA. The ctDNA T790M mutation was detected in 50% of NSCLC patients. Among assessable patients, osimertinib gave a partial response rate of 62.5% and a stable disease rate of 37.5%. All responses were confirmed responses. After median follow up of 8 months, median PFS by RECIST criteria was not achieved (95% CI: 4-NA), with 6- and 12-months PFS of 66.7% and 52%, respectively. ctDNA from liquid biopsy can be used as a surrogate marker for T790M in tumour tissue. © The Author 2017. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Validation and comparison of two NGS assays for the detection of EGFR T790M resistance mutation in liquid biopsies of NSCLC patients.

    PubMed

    Vollbrecht, Claudia; Lehmann, Annika; Lenze, Dido; Hummel, Michael

    2018-04-06

    Analysis of circulating cell-free DNA (cfDNA) derived from peripheral blood ("liquid biopsy") is an attractive alternative to identify non-small cell lung cancer (NSCLC) patients with the EGFR T790M mutation eligible for 3rd generation tyrosine kinase inhibitor therapy. We evaluated two PCR-based next generation sequencing (NGS) approaches, one including unique molecular identifiers (UMI), with focus on highly sensitive EGFR T790M mutation detection. Therefore, we extracted and sequenced cfDNA from synthetic plasma samples spiked with mutated DNA at decreasing allele frequencies and from 21 diagnostic NSCLC patients. Data evaluation was performed to determine the limit of detection (LoD), accuracy, specificity and sensitivity of both assays. Considering all tested reference dilutions and mutations the UMI assay performed best in terms of LoD (1% vs. 5%), sensitivity (95.8% vs. 81.3%), specificity (100% vs. 93.8%) and accuracy (96.9% vs. 84.4%). Comparing mutation status of diagnostic samples with both assays showed 81.3% concordance with primary mutation verifiable in 52% of cases. EGFR T790M was detected concordantly in 6/7 patients with allele frequencies from 0.1% to 27%. In one patient, the T790M mutation was exclusively detectable with the UMI assay. Our data demonstrate that both assays are applicable as multi-biomarker NGS tools enabling the simultaneous detection of primary EGFR driver and resistance mutations. However, for mutations with low allelic frequencies the use of NGS panels with UMI facilitates a more sensitive and reliable detection.

  2. Validation and comparison of two NGS assays for the detection of EGFR T790M resistance mutation in liquid biopsies of NSCLC patients

    PubMed Central

    Vollbrecht, Claudia; Lehmann, Annika; Lenze, Dido; Hummel, Michael

    2018-01-01

    Analysis of circulating cell-free DNA (cfDNA) derived from peripheral blood (“liquid biopsy”) is an attractive alternative to identify non-small cell lung cancer (NSCLC) patients with the EGFR T790M mutation eligible for 3rd generation tyrosine kinase inhibitor therapy. We evaluated two PCR-based next generation sequencing (NGS) approaches, one including unique molecular identifiers (UMI), with focus on highly sensitive EGFR T790M mutation detection. Therefore, we extracted and sequenced cfDNA from synthetic plasma samples spiked with mutated DNA at decreasing allele frequencies and from 21 diagnostic NSCLC patients. Data evaluation was performed to determine the limit of detection (LoD), accuracy, specificity and sensitivity of both assays. Considering all tested reference dilutions and mutations the UMI assay performed best in terms of LoD (1% vs. 5%), sensitivity (95.8% vs. 81.3%), specificity (100% vs. 93.8%) and accuracy (96.9% vs. 84.4%). Comparing mutation status of diagnostic samples with both assays showed 81.3% concordance with primary mutation verifiable in 52% of cases. EGFR T790M was detected concordantly in 6/7 patients with allele frequencies from 0.1% to 27%. In one patient, the T790M mutation was exclusively detectable with the UMI assay. Our data demonstrate that both assays are applicable as multi-biomarker NGS tools enabling the simultaneous detection of primary EGFR driver and resistance mutations. However, for mutations with low allelic frequencies the use of NGS panels with UMI facilitates a more sensitive and reliable detection. PMID:29719623

  3. Impact on disease-free survival of adjuvant erlotinib or gefitinib in patients with resected lung adenocarcinomas that harbor epidermal growth factor receptor (EGFR) mutations

    PubMed Central

    Janjigian, Yelena Y.; Park, Bernard J.; Zakowski, Maureen F.; Ladanyi, Marc; Pao, William; D’Angelo, Sandra P.; Kris, Mark G.; Shen, Ronglai; Zheng, Junting; Azzoli, Christopher G.

    2013-01-01

    Background Patients with stage IV lung adenocarcinoma and EGFR mutation derive clinical benefit from treatment with EGFR tyrosine kinase inhibitors (TKI). Whether treatment with TKI improves outcomes in patients with resected lung adenocarcinoma and EGFR mutation is unknown. Methods Data were analyzed from a surgical database of patients with resected lung adenocarcinoma harboring EGFR exon 19 or 21 mutations. In a multivariate analysis, we evaluated the impact of treatment with adjuvant TKI. Results The cohort consists of 167 patients with completely resected stage I–III lung adenocarcinoma. 93 patients (56%) had exon 19 del, 74 patients (44%) had exon 21 mutations, 56 patients (33%) received perioperative TKI. In a multivariate analysis controlling for sex, stage, type of surgery and adjuvant platinum chemotherapy, the 2-year DFS was 89% for patients treated with adjuvant TKI compared with 72% in control group (hazard ratio [HR] = 0.53; 95% confidence interval [CI] 0.28 to 1.03; p = 0.06). The 2-year OS was 96% with adjuvant EGFR TKI and 90% in the group that did not receive TKI (HR 0.62; 95% CI 0.26 to 1.51; p = 0.296). Conclusions Compared to patients who did not receive adjuvant TKI, we observed a trend toward improvement in disease free survival among individuals with resected stages I–III lung adenocarcinomas harboring mutations in EGFR exons 19 or 21 who received these agents as adjuvant therapy. Based on these data, 320 patients are needed for a randomized trial to prospectively validate this DFS benefit. PMID:21150674

  4. Can EGFR-Tyrosine Kinase Inhibitors (TKI) Alone Without Talc Pleurodesis Prevent Recurrence of Malignant Pleural Effusion (MPE) in Lung Adenocarcinoma.

    PubMed

    Verma, Akash; Chopra, Akhil; Lee, Yeo W; Bharwani, Lavina D; Asmat, Atasha B; Aneez, Dokeu B A; Akbar, Fazuludeen A; Lim, Albert Y H; Chotirmall, Sanjay H; Abisheganaden, John

    2016-01-01

    Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors (EGFR-TKIs) are effective against lung adenocarcinoma. However, limited data is available assessing the effectiveness of EGFR-TKI use in preventing re-accumulation of MPE. To our knowledge, there is no literature on comparison of talc pleurodesis with EGFR-TKIs alone on re-accumulation of MPE in Asian population. We investigated if EGFR-TKI therapy for advanced lung adenocarcinoma with malignant pleural effusion (MPE) is also successful in preventing pleural fluid re-accumulation following initial drainage. An observational cohort study of patients with lung adenocarcinoma and MPE in the year 2012 was conducted. 70 patients presented with MPE from lung adenocarcinoma. Fifty six underwent EGFR mutation testing of which 39 (69.6%) had activating EGFR mutation and 34 (87.1%) received TKI. 20 were managed by pleural fluid drainage only whereas 14 underwent talc pleurodesis following pleural fluid drainage. Time taken for the pleural effusion to re-accumulate in those with and without pleurodesis was 9.9 vs. 11.7 months, p=0.59 respectively. More patients (n=10, 25.6%) with activating EGFR mutation presented with complete opacification (white-out) of the hemithorax compared to none without activating EGFR mutation (p=0.02). In TKI eligible patients, early talc pleurodesis may not confer additional benefit in preventing re-accumulation of pleural effusion and may be reserved for non-adenocarcinoma histology, or EGFR negative adenocarcinoma. Complete opacification of the hemithorax on presentation may serve as an early radiographic signal of positive EGFR mutation status.

  5. Targeted sequencing identifies genetic alterations that confer primary resistance to EGFR tyrosine kinase inhibitor (Korean Lung Cancer Consortium).

    PubMed

    Lim, Sun Min; Kim, Hye Ryun; Cho, Eun Kyung; Min, Young Joo; Ahn, Jin Seok; Ahn, Myung-Ju; Park, Keunchil; Cho, Byoung Chul; Lee, Ji-Hyun; Jeong, Hye Cheol; Kim, Eun Kyung; Kim, Joo-Hang

    2016-06-14

    Non-small-cell lung cancer (NSCLC) patients with activating epidermal growth factor receptor (EGFR) mutations may exhibit primary resistance to EGFR tyrosine kinase inhibitor (TKI). We aimed to examine genomic alterations associated with de novo resistance to gefitinib in a prospective study of NSCLC patients. One-hundred and fifty two patients with activating EGFR mutations were included in this study and 136 patients' tumor sample were available for targeted sequencing of genomic alterations in 22 genes using the Colon and Lung Cancer panel (Ampliseq, Life Technologies). All 132 patients with EGFR mutation were treated with gefitinib for their treatment of advanced NSCLC. Twenty patients showed primary resistance to EGFR TKI, and were classified as non-responders. A total of 543 somatic single-nucleotide variants (498 missense, 13 nonsense) and 32 frameshift insertions/deletions, with a median of 3 mutations per sample. TP53 was most commonly mutated (47%) and mutations in SMAD4 was also common (19%), as well as DDR2 (16%), PIK3CA (15%), STK11 (14%), and BRAF (7%). Genomic mutations in the PI3K/Akt/mTOR pathway were commonly found in non-responders (45%) compared to responders (27%), and they had significantly shorter progression-free survival and overall survival compared to patients without mutations (2.1 vs. 12.8 months, P=0.04, 15.7 vs. not reached, P<0.001). FGFR 1-3 alterations, KRAS mutations and TP53 mutations were more commonly detected in non-responders compared to responders. Genomic mutations in the PI3K/Akt/mTOR pathway were commonly identified in non-responders and may confer resistance to EGFR TKI. Screening lung adenocarcinoma patients with clinical cancer gene test may aid in selecting out those who show primary resistance to EGFR TKI (NCT01697163).

  6. Network Meta-Analysis of Erlotinib, Gefitinib, Afatinib and Icotinib in Patients with Advanced Non-Small-Cell Lung Cancer Harboring EGFR Mutations

    PubMed Central

    Zhao, Yuanyuan; Yang, Yunpeng; Hu, Zhihuang; Xue, Cong; Zhang, Jing; Zhang, Jianwei; Ma, Yuxiang; Zhou, Ting; Yan, Yue; Hou, Xue; Qin, Tao; Dinglin, Xiaoxiao; Tian, Ying; Huang, Peiyu; Huang, Yan; Zhao, Hongyun; Zhang, Li

    2014-01-01

    Background Several EGFR-tyrosine kinase inhibitors (EGFR-TKIs) including erlotinib, gefitinib, afatinib and icotinib are currently available as treatment for patients with advanced non-small-cell lung cancer (NSCLC) who harbor EGFR mutations. However, no head to head trials between these TKIs in mutated populations have been reported, which provides room for indirect and integrated comparisons. Methods We searched electronic databases for eligible literatures. Pooled data on objective response rate (ORR), progression free survival (PFS), overall survival (OS) were calculated. Appropriate networks for different outcomes were established to incorporate all evidences. Multiple-treatments comparisons (MTCs) based on Bayesian network integrated the efficacy and specific toxicities of all included treatments. Results Twelve phase III RCTs that investigated EGFR-TKIs involving 1821 participants with EGFR mutation were included. For mutant patients, the weighted pooled ORR and 1-year PFS of EGFR-TKIs were significant superior to that of standard chemotherapy (ORR: 66.6% vs. 30.9%, OR 5.46, 95%CI 3.59 to 8.30, P<0.00001; 1-year PFS: 42.9% vs. 9.7%, OR 7.83, 95%CI 4.50 to 13.61; P<0.00001) through direct meta-analysis. In the network meta-analyses, no statistically significant differences in efficacy were found between these four TKIs with respect to all outcome measures. Trend analyses of rank probabilities revealed that the cumulative probabilities of being the most efficacious treatments were (ORR, 1-year PFS, 1-year OS, 2-year OS): erlotinib (51%, 38%, 14%, 19%), gefitinib (1%, 6%, 5%, 16%), afatinib (29%, 27%, 30%, 27%) and icotinib (19%, 29%, NA, NA), respectively. However, afatinib and erlotinib showed significant severer rash and diarrhea compared with gefitinib and icotinib. Conclusions The current study indicated that erlotinib, gefitinib, afatinib and icotinib shared equivalent efficacy but presented different efficacy-toxicity pattern for EGFR-mutated patients

  7. Network meta-analysis of erlotinib, gefitinib, afatinib and icotinib in patients with advanced non-small-cell lung cancer harboring EGFR mutations.

    PubMed

    Liang, Wenhua; Wu, Xuan; Fang, Wenfeng; Zhao, Yuanyuan; Yang, Yunpeng; Hu, Zhihuang; Xue, Cong; Zhang, Jing; Zhang, Jianwei; Ma, Yuxiang; Zhou, Ting; Yan, Yue; Hou, Xue; Qin, Tao; Dinglin, Xiaoxiao; Tian, Ying; Huang, Peiyu; Huang, Yan; Zhao, Hongyun; Zhang, Li

    2014-01-01

    Several EGFR-tyrosine kinase inhibitors (EGFR-TKIs) including erlotinib, gefitinib, afatinib and icotinib are currently available as treatment for patients with advanced non-small-cell lung cancer (NSCLC) who harbor EGFR mutations. However, no head to head trials between these TKIs in mutated populations have been reported, which provides room for indirect and integrated comparisons. We searched electronic databases for eligible literatures. Pooled data on objective response rate (ORR), progression free survival (PFS), overall survival (OS) were calculated. Appropriate networks for different outcomes were established to incorporate all evidences. Multiple-treatments comparisons (MTCs) based on Bayesian network integrated the efficacy and specific toxicities of all included treatments. Twelve phase III RCTs that investigated EGFR-TKIs involving 1821 participants with EGFR mutation were included. For mutant patients, the weighted pooled ORR and 1-year PFS of EGFR-TKIs were significant superior to that of standard chemotherapy (ORR: 66.6% vs. 30.9%, OR 5.46, 95%CI 3.59 to 8.30, P<0.00001; 1-year PFS: 42.9% vs. 9.7%, OR 7.83, 95%CI 4.50 to 13.61; P<0.00001) through direct meta-analysis. In the network meta-analyses, no statistically significant differences in efficacy were found between these four TKIs with respect to all outcome measures. Trend analyses of rank probabilities revealed that the cumulative probabilities of being the most efficacious treatments were (ORR, 1-year PFS, 1-year OS, 2-year OS): erlotinib (51%, 38%, 14%, 19%), gefitinib (1%, 6%, 5%, 16%), afatinib (29%, 27%, 30%, 27%) and icotinib (19%, 29%, NA, NA), respectively. However, afatinib and erlotinib showed significant severer rash and diarrhea compared with gefitinib and icotinib. The current study indicated that erlotinib, gefitinib, afatinib and icotinib shared equivalent efficacy but presented different efficacy-toxicity pattern for EGFR-mutated patients. Erlotinib and afatinib revealed

  8. BIM Gene Polymorphism Lowers the Efficacy of EGFR-TKIs in Advanced Nonsmall Cell Lung Cancer With Sensitive EGFR Mutations: A Systematic Review and Meta-Analysis.

    PubMed

    Huang, Wu Feng; Liu, Ai Hua; Zhao, Hai Jin; Dong, Hang Ming; Liu, Lai Yu; Cai, Shao Xi

    2015-08-01

    The strong association between bcl-2-like 11 (BIM) triggered apoptosis and the presence of epidermal growth factor receptor (EGFR) mutations has been proven in nonsmall cell lung cancer (NSCLC). However, the relationship between EGFR-tyrosine kinase inhibitor's (TKI's) efficacy and BIM polymorphism in NSCLC EGFR is still unclear.Electronic databases were searched for eligible literatures. Data on objective response rates (ORRs), disease control rates (DCRs), and progression-free survival (PFS) stratified by BIM polymorphism status were extracted and synthesized based on random-effect model. Subgroup and sensitivity analyses were conducted.A total of 6 studies that involved a total of 773 EGFR mutant advanced NSCLC patients after EGFR-TKI treatment were included. In overall, non-BIM polymorphism patients were associated with significant prolonged PFS (hazard ratio 0.63, 0.47-0.83, P = 0.001) compared to patients with BIM polymorphism. However, only marginal improvements without statistical significance in ORR (odds ratio [OR] 1.71, 0.91-3.24, P = 0.097) and DCR (OR 1.56, 0.85-2.89, P = 0.153) were observed. Subgroup analyses showed that the benefits of PFS in non-BIM polymorphism group were predominantly presented in pooled results of studies involving chemotherapy-naive and the others, and retrospective studies. Additionally, we failed to observe any significant benefit from patients without BIM polymorphism in every subgroup for ORR and DCR.For advanced NSCLC EGFR mutant patients, non-BIM polymorphism ones are associated with longer PFS than those with BIM polymorphism after EGFR-TKIs treatment. BIM polymorphism status should be considered an essential factor in studies regarding EGFR-targeted agents toward EGFR mutant patients.

  9. BIM deletion polymorphisms in Hispanic patients with non-small cell lung cancer carriers of EGFR mutations

    PubMed Central

    Carranza, Hernán; Vargas, Carlos; Otero, Jorge; Corrales-Rodriguez, Luis; Martín, Claudio; Reguart, Noemí; Archila, Pilar; Rodríguez, July; Cuello, Mauricio; Ortíz, Carlos; Franco, Sandra; Rolfo, Christian; Rosell, Rafael

    2016-01-01

    Background Germline alterations in the proapoptotic protein Bcl-2-like 11 (BIM) can have a crucial role in diverse tumors. To determine the clinical utility of detecting BIM deletion polymorphisms (par4226 bp/ par363 bp) in EGFR positive non-small-cell lung cancer (NSCLC) we examined the outcomes of patients with and without BIM alterations. Results BIM deletion was present in 14 patients (15.7%). There were no significant differences between patients with and without BIM-del in clinical characteristics or EGFR mutation type; however, those with BIM-del had a worse overall response rate (ORR) to erlotinib (42.9% vs. 73.3% in patients without BIM-del; p=0.024) as well as a significantly shorter progression-free survival (PFS) (10.8 BIM-del+ vs. 21.7 months for patients without BIM-del; p=0.029) and overall survival (OS) (15.5 BIM-del+ vs. 34.0 months for patients without BIM-del; p=0.035). Multivariate Cox regression analysis showed that BIM-del+ was an independent indicator of shorter PFS (HR 3.0; 95%CI 1.2-7.6; p=0.01) and OS (HR 3.4; 95%CI 1.4-8.3; p=0.006). Methods We studied 89 NSCLC Hispanic patients with EGFR mutation who were treated with erlotinib between January 2009 and November 2014. BIM deletion polymorphisms (BIM-del) was analyzed by PCR in formalin-fixed paraffin-embedded (FFPE) tissues of tumor biopsies. We retrospectively analyzed clinical characteristics, response rate, toxicity, and outcomes among patients with and without BIM-del. Conclusions The incidence of BIM-del found in Hispanic patients is similar to that previously described in Asia. This alteration is associated with a poor clinical response to erlotinib and represents an independent prognostic factor for patients who had NSCLC with an EGFR mutation. PMID:27926478

  10. BIM deletion polymorphisms in Hispanic patients with non-small cell lung cancer carriers of EGFR mutations.

    PubMed

    Cardona, Andrés F; Rojas, Leonardo; Wills, Beatriz; Arrieta, Oscar; Carranza, Hernán; Vargas, Carlos; Otero, Jorge; Corrales-Rodriguez, Luis; Martín, Claudio; Reguart, Noemí; Archila, Pilar; Rodríguez, July; Cuello, Mauricio; Ortíz, Carlos; Franco, Sandra; Rolfo, Christian; Rosell, Rafael; on behalf of the CLICaP

    2016-09-19

    Germline alterations in the proapoptotic protein Bcl-2-like 11 (BIM) can have a crucial role in diverse tumors. To determine the clinical utility of detecting BIM deletion polymorphisms (par4226 bp/ par363 bp) in EGFR positive non-small-cell lung cancer (NSCLC) we examined the outcomes of patients with and without BIM alterations. BIM deletion was present in 14 patients (15.7%). There were no significant differences between patients with and without BIM-del in clinical characteristics or EGFR mutation type; however, those with BIM-del had a worse overall response rate (ORR) to erlotinib (42.9% vs. 73.3% in patients without BIM-del; p=0.024) as well as a significantly shorter progression-free survival (PFS) (10.8 BIM-del+ vs. 21.7 months for patients without BIM-del; p=0.029) and overall survival (OS) (15.5 BIM-del+ vs. 34.0 months for patients without BIM-del; p=0.035). Multivariate Cox regression analysis showed that BIM-del+ was an independent indicator of shorter PFS (HR 3.0; 95%CI 1.2-7.6; p=0.01) and OS (HR 3.4; 95%CI 1.4-8.3; p=0.006). We studied 89 NSCLC Hispanic patients with EGFR mutation who were treated with erlotinib between January 2009 and November 2014. BIM deletion polymorphisms (BIM-del) was analyzed by PCR in formalin-fixed paraffin-embedded (FFPE) tissues of tumor biopsies. We retrospectively analyzed clinical characteristics, response rate, toxicity, and outcomes among patients with and without BIM-del. The incidence of BIM-del found in Hispanic patients is similar to that previously described in Asia. This alteration is associated with a poor clinical response to erlotinib and represents an independent prognostic factor for patients who had NSCLC with an EGFR mutation.

  11. Guide to detecting epidermal growth factor receptor (EGFR) mutations in ctDNA of patients with advanced non-small-cell lung cancer

    PubMed Central

    Normanno, Nicola; Denis, Marc G.; Thress, Kenneth S.; Ratcliffe, Marianne; Reck, Martin

    2017-01-01

    Cancer treatment is evolving towards therapies targeted at specific molecular abnormalities that drive tumor growth. Consequently, to determine which patients are eligible, accurate assessment of molecular aberrations within tumors is required. Obtaining sufficient tumor tissue for molecular testing can present challenges; therefore, circulating free tumor-derived DNA (ctDNA) found in blood plasma has been proposed as an alternative source of tumor DNA. The diagnostic utility of ctDNA for the detection of epidermal growth factor receptor (EGFR) mutations harbored in tumors of patients with advanced non-small-cell lung cancer (NSCLC) is supported by the results of several large studies/meta-analyses. However, recent real-world studies suggest that the performance of ctDNA testing varies between geographic regions/laboratories, demonstrating the need for standardized guidance. In this review, we outline recommendations for obtaining an accurate result using ctDNA, relating to pre-analytical plasma processing, ctDNA extraction, and appropriate EGFR mutation detection methods, based on clinical trial results. We conclude that there are several advantages associated with ctDNA, including the potential for repeated sampling particularly following progression after first-line tyrosine kinase inhibitor (TKI) therapy, as TKIs targeting resistance mutations (eg T790M) are now approved for use in the USA/EU/Japan (at time of writing). However, evidence suggests that ctDNA does not allow detection of EGFR mutations in all patients with known mutation-positive NSCLC. Therefore, although tumor tissue should be the first sample choice for EGFR testing at diagnosis, ctDNA is a promising alternative diagnostic approach. PMID:27980215

  12. MLH1 V384D polymorphism associates with poor response to EGFR tyrosine kinase inhibitors in patients with EGFR L858R-positive lung adenocarcinoma.

    PubMed

    Chiu, Chao-Hua; Ho, Hsiang-Ling; Doong, Howard; Yeh, Yi-Chen; Chen, Mei-Yu; Chou, Teh-Ying; Tsai, Chun-Ming

    2015-04-10

    A significant fraction of patients with lung adenocarcinomas harboring activating epidermal growth factor receptor (EGFR) mutations do not experience clinical benefits from EGFR tyrosine kinase inhibitor (TKI) therapy. Using next-generation sequencing, we screened 739 mutation hotspots in 46 cancer-related genes in EGFR L858R-mutant lung adenocarcinomas from 29 patients who received EGFR-TKI therapy; 13 had short (< 3 months) and 16 had long (> 1 year) progression-free survival (PFS). We discovered MLH1 V384D as a genetic variant enriched in the group of patients with short PFS. Next, we investigated this genetic variation in 158 lung adenocarcinomas with the EGFR L858R mutation and found 14 (8.9%) patients had MLH1 V384D; available blood or non-tumor tissues from patients were also tested positive for MLH1 V384D. Patients with MLH1 V384D had a significantly shorter median PFS than those without (5.1 vs. 10.6 months; P= 0.001). Multivariate analysis showed that MLH1 V384D polymorphism was an independent predictor for a reduced PFS time (hazard ratio, 3.5; 95% confidence interval, 1.7 to 7.2; P= 0.001). In conclusion, MLH1 V384D polymorphism is associated with primary resistance to EGFR-TKIs in patients with EGFR L858R-positive lung adenocarcinoma and may potentially be a novel biomarker to guide treatment decisions.

  13. Multiplex picoliter-droplet digital PCR for quantitative assessment of EGFR mutations in circulating cell-free DNA derived from advanced non-small cell lung cancer patients.

    PubMed

    Yu, Qian; Huang, Fei; Zhang, Meilin; Ji, Haiying; Wu, Shenchao; Zhao, Ying; Zhang, Chunyan; Wu, Jiong; Wang, Beili; Pan, Baisheng; Zhang, Xin; Guo, Wei

    2017-08-01

    To explore the possible diagnostic value of liquid biopsy, two multiplex panels using picoliter-droplet digital polymerase chain reaction (ddPCR) were established to quantitatively assess the epidermal growth factor receptor (EGFR) mutations in cell‑free DNA (cfDNA) extracted from the plasma of advanced non‑small cell lung cancer (NSCLC) patients. Plasma samples derived from 22 patients with stage IIIB/IV NSCLC harboring EGFR mutations in matched tumor tissues confirmed by amplification refractory mutation system (ARMS) analysis were subjected to two multiplex ddPCR panels to assess the abundance of tyrosine kinase inhibitor (TKI) ‑sensitive (19DEL, L858R) and TKI‑resistant (T790 M) mutations. Fluctuations in EGFR mutant abundance were monitored by either of the multiplex ddPCR panels for three patients undergoing EGFR‑TKI treatment, with serial plasma sample collections over 2 months. The multiplex ddPCR panels applied to plasma cfDNA from advanced NSCLC patients achieved a total concordance rate of 80% with the EGFR mutation profiles obtained by ARMS from matched biopsy tumor specimens (90% for 19DEL, 95% for L858R, 95% for T790M, respectively) and revealed additional mutant alleles in two subjects. The respective sensitivity and specificity were 90.9 and 88.9% for 19DEL, 87.5 and 100% for L858R, 100 and 93.8% for T790M. The fluctuations of EGFR mutant abundance in serial plasma cfDNA were in accordance with the changes in tumor size as assessed by imaging scans. The authors demonstrated the utility of multiplex ddPCR panels with ultra‑sensitivity for quantitative analysis of EGFR mutations in plasma cfDNA and obtained promising usefulness in EGFR‑TKI decision‑making for advanced NSCLC patients.

  14. Clinical significance of BRAF non-V600E mutations on the therapeutic effects of anti-EGFR monoclonal antibody treatment in patients with pretreated metastatic colorectal cancer: the Biomarker Research for anti-EGFR monoclonal Antibodies by Comprehensive Cancer genomics (BREAC) study.

    PubMed

    Shinozaki, Eiji; Yoshino, Takayuki; Yamazaki, Kentaro; Muro, Kei; Yamaguchi, Kensei; Nishina, Tomohiro; Yuki, Satoshi; Shitara, Kohei; Bando, Hideaki; Mimaki, Sachiyo; Nakai, Chikako; Matsushima, Koutatsu; Suzuki, Yutaka; Akagi, Kiwamu; Yamanaka, Takeharu; Nomura, Shogo; Fujii, Satoshi; Esumi, Hiroyasu; Sugiyama, Masaya; Nishida, Nao; Mizokami, Masashi; Koh, Yasuhiro; Abe, Yukiko; Ohtsu, Atsushi; Tsuchihara, Katsuya

    2017-11-07

    Patients with BRAF V600E -mutated metastatic colorectal cancer (mCRC) have a poorer prognosis as well as resistance to anti-EGFR antibodies. However, it is unclear whether BRAF mutations other than BRAF V600E (BRAF non-V600E mutations) contribute to anti-EGFR antibody resistance. This study was composed of exploratory and inference cohorts. Candidate biomarkers identified by whole exome sequencing from super-responders and nonresponders in the exploratory cohort were validated by targeted resequencing for patients who received anti-EGFR antibody in the inference cohort. In the exploratory cohort, 31 candidate biomarkers, including KRAS/NRAS/BRAF mutations, were identified. Targeted resequencing of 150 patients in the inference cohort revealed 40 patients with RAS (26.7%), 9 patients with BRAF V600E (6.0%), and 7 patients with BRAF non-V600E mutations (4.7%), respectively. The response rates in RAS, BRAF V600E , and BRAF non-V600E were lower than those in RAS/BRAF wild-type (2.5%, 0%, and 0% vs 31.9%). The median PFS in BRAF non-V600E mutations was 2.4 months, similar to that in RAS or BRAF V600E mutations (2.1 and 1.6 months) but significantly worse than that in wild-type RAS/BRAF (5.9 months). Although BRAF non-V600E mutations identified were a rare and unestablished molecular subtype, certain BRAF non-V600E mutations might contribute to a lesser benefit of anti-EGFR monoclonal antibody treatment.

  15. Association between GWAS-identified lung adenocarcinoma susceptibility loci and EGFR mutations in never-smoking Asian women, and comparison with findings from Western populations

    PubMed Central

    Seow, Wei Jie; Matsuo, Keitaro; Hsiung, Chao Agnes; Shiraishi, Kouya; Song, Minsun; Kim, Hee Nam; Wong, Maria Pik; Hong, Yun-Chul; Hosgood, H. Dean; Wang, Zhaoming; Chang, I-Shou; Wang, Jiu-Cun; Chatterjee, Nilanjan; Tucker, Margaret; Wei, Hu; Mitsudomi, Tetsuya; Zheng, Wei; Kim, Jin Hee; Zhou, Baosen; Caporaso, Neil E.; Albanes, Demetrius; Shin, Min-Ho; Chung, Lap Ping; An, She-Juan; Wang, Ping; Zheng, Hong; Yatabe, Yasushi; Zhang, Xu-Chao; Kim, Young Tae; Shu, Xiao-Ou; Kim, Young-Chul; Bassig, Bryan A.; Chang, Jiang; Ho, James Chung Man; Ji, Bu-Tian; Kubo, Michiaki; Daigo, Yataro; Ito, Hidemi; Momozawa, Yukihide; Ashikawa, Kyota; Kamatani, Yoichiro; Honda, Takayuki; Sakamoto, Hiromi; Kunitoh, Hideo; Tsuta, Koji; Watanabe, Shun-Ichi; Nokihara, Hiroshi; Miyagi, Yohei; Nakayama, Haruhiko; Matsumoto, Shingo; Tsuboi, Masahiro; Goto, Koichi; Yin, Zhihua; Shi, Jianxin; Takahashi, Atsushi; Goto, Akiteru; Minamiya, Yoshihiro; Shimizu, Kimihiro; Tanaka, Kazumi; Wu, Tangchun; Wei, Fusheng; Wong, Jason Y.Y.; Matsuda, Fumihiko; Su, Jian; Kim, Yeul Hong; Oh, In-Jae; Song, Fengju; Lee, Victor Ho Fun; Su, Wu-Chou; Chen, Yuh-Min; Chang, Gee-Chen; Chen, Kuan-Yu; Huang, Ming-Shyan; Yang, Pan-Chyr; Lin, Hsien-Chih; Xiang, Yong-Bing; Seow, Adeline; Park, Jae Yong; Kweon, Sun-Seog; Chen, Chien-Jen; Li, Haixin; Gao, Yu-Tang; Wu, Chen; Qian, Biyun; Lu, Daru; Liu, Jianjun; Jeon, Hyo-Sung; Hsiao, Chin-Fu; Sung, Jae Sook; Tsai, Ying-Huang; Jung, Yoo Jin; Guo, Huan; Hu, Zhibin; Wang, Wen-Chang; Chung, Charles C.; Lawrence, Charles; Burdett, Laurie; Yeager, Meredith; Jacobs, Kevin B.; Hutchinson, Amy; Berndt, Sonja I.; He, Xingzhou; Wu, Wei; Wang, Junwen; Li, Yuqing; Choi, Jin Eun; Park, Kyong Hwa; Sung, Sook Whan; Liu, Li; Kang, Chang Hyun; Hu, Lingmin; Chen, Chung-Hsing; Yang, Tsung-Ying; Xu, Jun; Guan, Peng; Tan, Wen; Wang, Chih-Liang; Sihoe, Alan Dart Loon; Chen, Ying; Choi, Yi Young; Hung, Jen-Yu; Kim, Jun Suk; Yoon, Ho-Il; Cai, Qiuyin; Lin, Chien-Chung; Park, In Kyu; Xu, Ping; Dong, Jing; Kim, Christopher; He, Qincheng; Perng, Reury-Perng; Chen, Chih-Yi; Vermeulen, Roel; Wu, Junjie; Lim, Wei-Yen; Chen, Kun-Chieh; Chan, John K.C.; Chu, Minjie; Li, Yao-Jen; Li, Jihua; Chen, Hongyan; Yu, Chong-Jen; Jin, Li; Lo, Yen-Li; Chen, Ying-Hsiang; Fraumeni, Joseph F.; Liu, Jie; Yamaji, Taiki; Yang, Yang; Hicks, Belynda; Wyatt, Kathleen; Li, Shengchao A.; Dai, Juncheng; Ma, Hongxia; Jin, Guangfu; Song, Bao; Wang, Zhehai; Cheng, Sensen; Li, Xuelian; Ren, Yangwu; Cui, Ping; Iwasaki, Motoki; Shimazu, Taichi; Tsugane, Shoichiro; Zhu, Junjie; Jiang, Gening; Fei, Ke; Wu, Guoping; Chien, Li-Hsin; Chen, Hui-Ling; Su, Yu-Chun; Tsai, Fang-Yu; Chen, Yi-Song; Yu, Jinming; Stevens, Victoria L.; Laird-Offringa, Ite A.; Marconett, Crystal N.; Lin, Dongxin; Chen, Kexin; Wu, Yi-Long; Landi, Maria Teresa; Shen, Hongbing; Rothman, Nathaniel; Kohno, Takashi; Chanock, Stephen J.; Lan, Qing

    2017-01-01

    Abstract To evaluate associations by EGFR mutation status for lung adenocarcinoma risk among never-smoking Asian women, we conducted a meta-analysis of 11 loci previously identified in genome-wide association studies (GWAS). Genotyping in an additional 10,780 never-smoking cases and 10,938 never-smoking controls from Asia confirmed associations with eight known single nucleotide polymorphisms (SNPs). Two new signals were observed at genome-wide significance (P < 5 × 10−8), namely, rs7216064 (17q24.3, BPTF), for overall lung adenocarcinoma risk, and rs3817963 (6p21.3, BTNL2) which is specific to cases with EGFR mutations. In further sub-analyses by EGFR status, rs9387478 (ROS1/DCBLD1) and rs2179920 (HLA-DPB1) showed stronger estimated associations in EGFR-positive compared to EGFR-negative cases. Comparison of the overall associations with published results in Western populations revealed that the majority of these findings were distinct, underscoring the importance of distinct contributing factors for smoking and non-smoking lung cancer. Our results extend the catalogue of regions associated with lung adenocarcinoma in non-smoking Asian women and highlight the importance of how the germline could inform risk for specific tumour mutation patterns, which could have important translational implications. PMID:28025329

  16. The salvage therapy in lung adenocarcinoma initially harbored susceptible EGFR mutation and acquired resistance occurred to the first-line gefitinib and second-line cytotoxic chemotherapy.

    PubMed

    Yang, Chih-Jen; Hung, Jen-Yu; Tsai, Ming-Ju; Wu, Kuan-Li; Liu, Ta-Chih; Chou, Shah-Hwa; Lee, Jui-Ying; Hsu, Jui-Sheng; Huang, Ming-Shyan; Chong, Inn-Wen

    2017-05-10

    Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) such as gefitinib can provide better efficacy and prolonged progression free survival (PFS) than cytotoxic chemotherapy for metastatic lung non-squamous cell carcinoma harboring susceptible EGFR mutations when used as first-line therapy. Cytotoxic chemotherapy is regarded as being the standard therapy to overcome acquired resistance to an initial EGFR TKI. However, there is currently no consensus on how best to treat patients who develop resistance to both an initial EGFR TKI and chemotherapy. We enrolled stage IV lung adenocarcinoma patients with an EGFR mutation and who had developed acquired resistance to gefitinib and cytotoxic chemotherapy from two university-affiliated hospitals in Taiwan from June 2011 to December 2014. Basic demographic data, included Eastern Cooperative Oncology Group (ECOG) performance status were collected, and the response rate, progression-free survival (PFS) and overall survival (OS) were analyzed. Two hundred and nine patients with mutated EGFR and who took gefitinib as the first-line therapy were identified in the study period, of whom 86 received second-line cytotoxic chemotherapy, and 60 who received third-line therapy were eligible for this study. The patients who received cytotoxic chemotherapy had a significantly higher disease control rate than those who received erlotinib (73% vs. 46%, p = 0.0363), however there were no significant differences in PFS (2.9 months vs. 3.1 months, p = 0.9049) and OS (8.9 months vs. 7.9 months, p = 0.4956). Platinum- or pemetrexed-based chemotherapy provided similar PFS and OS as others did. The only significant poor prognostic factors for OS were old age (≥65 years) (HR = 5.97 [2.65-13.44], p < 0.0001) and poor performance status (ECOG ≥2) (HR = 5.84 [2.61-13.09], p < 0.0001). Retreatment with an EGFR TKI is not inferior to cytotoxic chemotherapy when used as salvage therapy for patients

  17. PD-L1 expression according to the EGFR status in primary lung adenocarcinoma.

    PubMed

    Takada, Kazuki; Toyokawa, Gouji; Tagawa, Tetsuzo; Kohashi, Kenichi; Shimokawa, Mototsugu; Akamine, Takaki; Takamori, Shinkichi; Hirai, Fumihiko; Shoji, Fumihiro; Okamoto, Tatsuro; Oda, Yoshinao; Maehara, Yoshihiko

    2018-02-01

    It was reported that programmed cell death-ligand 1 (PD-L1) expression is associated with smoking and wild-type epidermal growth factor receptor (EGFR) in lung adenocarcinoma. However, the association between PD-L1 expression and EGFR mutation site in EGFR mutation-positive lung adenocarcinoma is unclear. We retrospectively examined the relationship between PD-L1 expression and EGFR status in 441 surgically resected primary lung adenocarcinomas. Membrane PD-L1 expression on tumor cells was evaluated by immunohistochemical analysis using a PD-L1 antibody (clone SP142) and defined by tumor proportion scores (TPSs) of 0%, 1-4%, 5-49%, and ≥50%, respectively. Two hundred and eighteen (49.4%) patients had wild-type EGFR, and 223 (50.6%) had mutant EGFR-98 (44.0%) with exon 19 deletion, 116 (52.0%) with exon 21 L858R point mutation, and nine (4.0%) with another EGFR mutation. Overall, Fisher's exact test showed that PD-L1 positivity was associated with wild-type EGFR, and there was only one case with PD-L1 TPS ≥50% among the cases with mutant EGFR. The analysis of cases with mutant EGFR indicated no significant association between EGFR mutation site and PD-L1 expression. However, the prevalence of PD-L1 TPS 5-49% was higher among patients with EGFR exon 19 deletion than with EGFR exon 21 L858R point mutation. PD-L1 expression was significantly associated with wild-type EGFR, and PD-L1 TPS ≥50% seldom overlaps with presence of driver oncogene EGFR. There was no significant difference in PD-L1 expression among the EGFR mutation sites. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Identification of Mutation Accumulation as Resistance Mechanism Emerging in First-Line Osimertinib Treatment.

    PubMed

    Uchibori, Ken; Inase, Naohiko; Nishio, Makoto; Fujita, Naoya; Katayama, Ryohei

    2018-04-24

    The survival of patients with EGFR mutation-positive lung cancer has dramatically improved since the introduction of EGFR tyrosine kinase inhibitors (EGFR-TKIs). Recently, osimertinib showed significantly prolonged progression-free survival than first-generation EGFR-TKI in first-line treatment, suggesting that a paradigm change that would move osimetinib to first-line treatment is indicated. We performed N-ethyl-N-nitrosourea (ENU) mutagenesis screening to uncover the resistant mechanism in first- and second-line osimertinib treatment. Ba/F3 cells harboring EGFR activating-mutation with or without secondary resistant mutation were exposed to ENU for 24 hours to introduce random mutations and selected with gefitinib, afatinib, or osimertinib. Mutations of emerging resistant cells were assessed. The resistance of T790M and C797S to gefitinib and osimertinib, respectively, was prevalent in the mutagenesis screening with the Ba/F3 cells harboring activating-mutation alone. From C797S/activating-mutation expressing Ba/F3, the additional T790M was a major resistant mechanism in gefitinib and afatinib selection and the additional T854A and L792H were minor resistance mechanisms only in afatinib selection. However, the additional T854A or L792H mediated resistance to all classes of EGFR-TKI. Surprisingly, no resistant clone due to secondary mutation emerged from activating-mutation alone in the gefitinib + osimertinib selection. We showed the resistance mechanism to EGFR-TKI focusing on first- and second-line osimertinib using ENU mutagenesis screening. Additional T854A and L792H on C797S/activating-mutation were found as afatinib resistance and not as gefitinib resistance. Thus, compared to afatinib, the first-generation EGFR-TKI might be preferable as second-line treatment to C797S/activating-mutation emerging after first-line osimertinib treatment. Copyright © 2018 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights

  19. The effect of icotinib combined with chemotherapy in untreated non-small-cell lung cancer that harbored EGFR-sensitive mutations in a real-life setting: a retrospective analysis.

    PubMed

    Wang, Lulu; Li, Yan; Li, Luchun; Wu, Zhijuan; Yang, Dan; Ma, Huiwen; Wang, Donglin

    2018-01-01

    This study was conducted to compare the efficacy of a combination of icotinib and chemotherapy with icotinib or chemotherapy alone in untreated non-small cell lung cancer (NSCLC) patients harboring epidermal growth factor receptor (EGFR)-sensitive mutations and to analyze the curative effect of different treatments on different genetic mutations (EGFR 19 exon deletion and L858R mutation) in a real-life setting. One hundred ninety-one patients were studied in this retrospective analysis from January 2013 to December 2015. The baseline characteristics, curative effects and adverse events of patients were analyzed. The primary endpoint was progression free survival (PFS). Longer PFS and overall survival (OS), and better objective response rate (ORR) were observed in the combination group compared to icotinib or chemotherapy along. For patients with an EGFR 19 exon deletion, the PFS, OS, and ORR in the combination group were superior to those in the icotinib or chemotherapy group. For the patients with the EGFR L858R mutation, better PFS and ORR were observed in the combination group, but OS was not obviously prolonged. Grade 3 or 4 adverse events were most commonly reported with combination therapy or chemotherapy alone. No possible drug-related interstitial lung disease or of drug related deaths occurred. The combination of icotinib and chemotherapy in patients with untreated NSCLC harboring sensitive EGFR mutations resulted in improved PFS and OS, especially in those who harbored the EGFR exon 19 deletion.

  20. The effect of icotinib combined with chemotherapy in untreated non-small-cell lung cancer that harbored EGFR-sensitive mutations in a real-life setting: a retrospective analysis

    PubMed Central

    Wang, Lulu; Li, Yan; Li, Luchun; Wu, Zhijuan; Yang, Dan; Ma, Huiwen; Wang, Donglin

    2018-01-01

    Purpose This study was conducted to compare the efficacy of a combination of icotinib and chemotherapy with icotinib or chemotherapy alone in untreated non-small cell lung cancer (NSCLC) patients harboring epidermal growth factor receptor (EGFR)-sensitive mutations and to analyze the curative effect of different treatments on different genetic mutations (EGFR 19 exon deletion and L858R mutation) in a real-life setting. Patients and methods One hundred ninety-one patients were studied in this retrospective analysis from January 2013 to December 2015. The baseline characteristics, curative effects and adverse events of patients were analyzed. The primary endpoint was progression free survival (PFS). Results Longer PFS and overall survival (OS), and better objective response rate (ORR) were observed in the combination group compared to icotinib or chemotherapy along. For patients with an EGFR 19 exon deletion, the PFS, OS, and ORR in the combination group were superior to those in the icotinib or chemotherapy group. For the patients with the EGFR L858R mutation, better PFS and ORR were observed in the combination group, but OS was not obviously prolonged. Grade 3 or 4 adverse events were most commonly reported with combination therapy or chemotherapy alone. No possible drug-related interstitial lung disease or of drug related deaths occurred. Conclusion The combination of icotinib and chemotherapy in patients with untreated NSCLC harboring sensitive EGFR mutations resulted in improved PFS and OS, especially in those who harbored the EGFR exon 19 deletion. PMID:29731642

  1. The Pitfalls of Companion Diagnostics: Evaluation of Discordant EGFR Mutation Results from a Clinical Laboratory and a Central Laboratory.

    PubMed

    Turner, Scott A; Peterson, Jason D; Pettus, Jason R; de Abreu, Francine B; Amos, Christopher I; Dragnev, Konstantin H; Tsongalis, Gregory J

    2016-05-01

    Accurate identification of somatic mutations in formalin-fixed, paraffin-embedded tumor tissue is required for enrollment into clinical trials for many novel targeted therapeutics, including trials requiring EGFR mutation status in non-small-cell lung carcinomas. Central clinical trial laboratories contracted to perform this analysis typically rely on US Food and Drug Administration-approved targeted assays to identify these mutations. We present two cases in which central laboratories inaccurately reported EGFR mutation status because of improper identification and isolation of tumor material and failure to accurately report assay limitations, resulting in enrollment denial. Such cases highlight the need for increased awareness by clinical trials of the limitation of these US Food and Drug Administration-approved assays and the necessity for a mechanism to reevaluate discordant results by alternative laboratory-developed procedures, including clinical next-generation sequencing. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  2. Mig6 Puts the Brakes on Mutant EGFR-Driven Lung Cancer | Center for Cancer Research

    Cancer.gov

    Lung cancer is the most common cause of cancer-related death worldwide. These cancers are often induced by mutations in the epidermal growth factor receptor (EGFR), resulting in constitutive activation of the protein’s tyrosine kinase domain. Lung cancers expressing these EGFR mutants are initially sensitive to tyrosine kinase inhibitors (TKIs), such as erlotinib, but often become resistant by developing compensatory mutations in EGFR or other growth-promoting pathways. To better understand how mutant EGFR initiates and maintains tumor growth in the hopes of identifying novel targets for drug development, Udayan Guha, M.D., Ph.D., of CCR’s Thoracic and Gastrointestinal Oncology Branch, and his colleagues examined the landscape of proteins phosphorylated in EGFR wild type and mutant cells. One protein hyper-phosphorylated in mutant EGFR cells was Mig6, a putative tumor suppressor.

  3. Third generation EGFR TKIs: current data and future directions.

    PubMed

    Tan, Chee-Seng; Kumarakulasinghe, Nesaretnam Barr; Huang, Yi-Qing; Ang, Yvonne Li En; Choo, Joan Rou-En; Goh, Boon-Cher; Soo, Ross A

    2018-02-19

    Acquired T790 M mutation is the commonest cause of resistance for advanced non-small cell lung cancer (NSCLC) epidermal growth factor receptor (EGFR) mutant patients who had progressed after first line EGFR TKI (tyrosine kinase inhibitor). Several third generation EGFR TKIs which are EGFR mutant selective and wild-type (WT) sparing were developed to treat these patients with T790 M acquired resistant mutation. Osimertinib is one of the third generation EGFR TKIs and is currently the most advanced in clinical development. Unfortunately, despite good initial response, patients who was treated with third generation EGFR TKI would develop acquired resistance and several mechanisms had been identified and the commonest being C797S mutation at exon 20. Several novel treatment options were being developed for patients who had progressed on third generation EGFR TKI but they are still in the early phase of development. Osimertinib under FLAURA study had been shown to have better progression-free survival over first generation EGFR TKI in the first line setting and likely will become the new standard of care.

  4. Octogenarians with EGFR-mutated non-small cell lung cancer treated by tyrosine-kinase inhibitor: a multicentric real-world study assessing tolerance and efficacy (OCTOMUT study).

    PubMed

    Corre, Romain; Gervais, Radj; Guisier, Florian; Tassy, Louis; Vinas, Florent; Lamy, Régine; Fraboulet, Gislaine; Greillier, Laurent; Doubre, Helene; Descourt, Renaud; Chouaid, Christos; Auliac, Jean-Bernard

    2018-02-02

    To assess efficacy and tolerance of EGFR tyrosine-kinase inhibitors (TKIs) for advanced EGFR-mutated non-small cell lung cancer (NSCLC) in octogenarians. Patients aged 80 years or older with EGFR-mutated NSCLC treated by EGFR TKI between January 2011 and March 2015 whatever the line of treatment were retrospectively selected. 20 centers retrospectively included 114 patients (women, 77.2%; Caucasians, 98.3%; mean age, 83.9 years). A performance status of 0-1 or 2-3 at diagnosis was reported for 71.6% and 28.4% of patients, respectively. Overall, 95.6% of patients had adenocarcinomas and histological stage at diagnosis was stage IV for 79.8% of patients. EGFR mutations were identified mainly on exon 19 (46.5%) and exon 21 (40.4%). A geriatric assessment was performed in 35.1% of patients. TKI treatment was administered to 97.3% of patients as first or second line of treatment. Overall response rate and disease control rate were 63.3% (69/109) and 78.9% (86/109), respectively. Median progression-free survival was 11.9 months (95% confidence interval [CI], 8.6-14.7) and median overall survival was 20.9 months (95% CI, 14.3-27.1). After progression, 36/95 (37.9%) patients received a new line of chemotherapy. Main toxicities were cutaneous for 66.7% of patients (grade 3-4, 10%), diarrhea for 56.0% (grade 3-4, 15%; grade 5, 2%) and others for 25.7% (grade 3-4, 41%). Octogenarians with EGFR-mutated NSCLC treated by EGFR TKI had clinical outcomes and toxicity profile comparable to younger patients. Geriatric assessment appeared to be underused in this population.

  5. [Cetuximab in combination with icotinib overcomes the acquired resistance caused by EGFR T790M mutation in non-small cell lung cancer].

    PubMed

    Wang, Meng; Zhang, Lianmin; Zhao, Xiaoliang; Liu, Jun; Chen, Yulong; Wang, Changli

    2014-09-01

    can exert synergistic inhibitory effect on the acquired drug resistance caused by T790M mutation of EGFR in NSCLC H1975 cells, interrupts the EGFR-downstream signaling pathway, and enhances the anticancer activity of chemotherapeutic drugs. Our results provide further experimental evidence for the clinical studies of combination of icotinib with cetuximab in the treatment of NSCLC patients associated with secondary drug resistance caused by T790M mutation of EGFR.

  6. A comparative analysis of EGFR mutation status in association with the efficacy of TKI in combination with WBRT/SRS/surgery plus chemotherapy in brain metastasis from non-small cell lung cancer.

    PubMed

    Cai, Ling; Zhu, Jian-fei; Zhang, Xue-wen; Lin, Su-xia; Su, Xiao-dong; Lin, Peng; Chen, Kai; Zhang, Lan-jun

    2014-11-01

    We proposed to identify the efficacy of an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) using whole brain radiotherapy (WBRT)/stereotactic radiosurgery (SRS)/surgery in brain metastases from patients with non-small cell lung cancer (NSCLC) and clarify the association between treatment outcome and EGFR gene mutation status. A total of 282 patients with NSCLC brain metastases who underwent WBRT/SRS/surgery alone or in combination with TKI were enrolled in our study from 2003-2013. Amplification mutation refractory system technology was used to determine the EGFR mutation status in 109 tissue samples. EGFR mutation detection was performed in 109 patients with tumor tissues. The EGFR positive rate was 50 % (55/109), including 26 exon 19 deletions and 24 L858R mutations. The median follow-up time was 28 months. The median overall survival, median progression-free survival of intracranial disease, and median progression-free survival of extracranial disease was significantly longer for patients with TKI treatment (31.9 vs 17.0 months, P < 0.0001; 19.8 vs 12.0 months, P < 0.0001; and 19.6 vs 12.3 months, P < 0.0001; respectively). In subgroup analysis within the TKI group, patients harboring EGFR mutations had better extracranial disease control (20.4 vs 14.1 months, P = 0.032). Administration of TKI agents with conventional therapy compared with conventional therapy alone might be beneficial for overall survival, progression-free survival of intracranial disease and progression-free survival of extracranial disease in patients with brain metastases from NSCLC independent of EGFR mutations.

  7. Detection of EGFR and KRAS mutations in fine-needle aspirates stored on Whatman FTA cards: is this the tool for biobanking cytological samples in the molecular era?

    PubMed

    da Cunha Santos, Gilda; Liu, Ni; Tsao, Ming-Sound; Kamel-Reid, Suzanne; Chin, Kayu; Geddie, William R

    2010-12-25

    The aims of this study were to compare the quality of DNA recovered from fine-needle aspirates (FNAs) stored on Whatman FTA cards with that retrieved from corresponding cell blocks and to determine whether the DNA extracted from the cards is suitable for multiple mutation analyses. FNAs collected from 18 resected lung tumors and cell suspensions from 4 lung cancer cell lines were placed on FTA Indicating Micro Cards and further processed to produce paired formalin-fixed paraffin-embedded (FFPE) cell blocks. Fragment analysis was used for the detection of EGFR exon 19 deletion, and direct sequencing for detection of EGFR exon 21 L858R mutation and exon 2 deletion of KRAS. Corresponding FFPE tissue sections from 2 resection specimens were also tested. Analyses were successful with all FNAs and lung cancer-derived cell lines collected on cards. Polymerase chain reaction failed in 2 cell blocks. For FNAs collected on cards, 5 cases showed EGFR and 3 showed KRAS mutations. Eleven cases were wild type. With cell blocks, 4 cases were found to harbor KRAS and 4 harbored EGFR mutations. All lung cancer-derived cell lines tested positive for their respective mutations, and there was complete agreement between card and cell block FNA samples for EGFR exon 21. For EGFR exon 19, 1 of 18 cases showed discordant results between the card and cell block, and for KRAS 1 of 17. The two resection specimens tested gave concordant results with the FTA card. Storage of cytologic material on FTA cards can maximize and simplify sample procurement for multiple mutational analyses with results similar to those from cell blocks.

  8. Association of mutant EGFR L858R and exon 19 concentration in circulating cell-free DNA using droplet digital PCR with response to EGFR-TKIs in NSCLC

    PubMed Central

    Zhu, Yan-Juan; Zhang, Hai-Bo; Liu, Yi-Hong; Zhu, Ya-Zhen; Chen, Jun; Li, Yong; Bai, Jian-Ping; Liu, Li-Rong; Qu, Yan-Chun; Qu, Xin; Chen, Xian; Zheng, Guang-Juan

    2017-01-01

    The present study aimed to determine the diagnostic concordance of plasma epidermal growth factor receptor (EGFR) mutation using droplet digital polymerase chain reaction (ddPCR) with tumor tissue samples and the predictive clinical significance of plasma EGFR mutation concentration. Plasma DNA samples from patients with non-small cell lung cancer (NSCLC) were analyzed for EGFR exon 21 codon 858 (L858R) mutation, deletion of exon 19 (ex19del) and exon 20 codon 790 (T790M) mutation using ddPCR. Firstly, the mutations in the plasma samples were compared with the matched tumor samples to determine the concordance. Secondly, image examination follow-ups were analyzed to assess the association between plasma EGFR mutation concentration and patients' response to EGFR-tyrosine kinase inhibitors (TKIs). A total of 51 patients with NSCLC were enrolled, including 48 newly diagnosed patients. Compared with tumor tissue samples, the sensitivity and specificity of ddPCR were 76.19% (16/21) and 96.55% (28/29) for mutant L858R, and 88.89% (8/9) and 100% (41/41) for ex19del, respectively. No patient exhibited the T790M mutation in the tumor tissue or plasma samples. Furthermore, 5 patients with the L858R mutation and 4 patients with ex19del in plasma and tumor tissue samples had been followed up with image examination for ≥3 months following EGFR-TKI treatment. The baseline mutant EGFR concentrations were positively correlated with a reduction in tumor burden (Spearman's r=0.7000, P=0.0358). When analyzed separately, ex19del concentrations (Spearman's r=1.0000, P<0.0001) were also positively correlated with the reduction, while mutant L858R concentrations were not (Spearman's r=0.7000, P=0.1881). In the present study, detection of plasma EGFR mutations using ddPCR exhibited sufficient concordance with tumor tissue sample results. Baseline plasma mutant EGFR and ex19del concentrations were significantly and positively correlated with response to EGFR-TKIs. PMID:28789464

  9. Cytology smears as diagnostic material for EGFR gene testing in non-small cell lung cancer.

    PubMed

    Powrózek, Tomasz; Krawczyk, Paweł; Pankowski, Juliusz; Reszka, Katarzyna; Jakubiak, Magdalena; Obrochta, Anna; Wojas-Krawczyk, Kamila; Buczkowski, Jarosław; Milanowski, Janusz

    2015-11-14

    Cytology smears can be effectively used for EGFR mutation testing in the qualification of NSCLC patients for EGFR tyrosine kinase inhibitor therapy. However, tissue specimens are preferred for EGFR mutation analysis. The aim of this study was to estimate the effectiveness of the real-time PCR method for EGFR testing in histology and cytology materials obtained simultaneously from NSCLC patients. Fourteen adenocarcinoma patients with EGFR-mutation-positive primary tumor tissues were included in the study. Corresponding cytological smears of metastatic lymph nodes obtained by EBUS-TBNA were examined. EGFR Mutation Analysis Kit (EntroGen, USA) and real-time PCR (m2000rt system, Abbott, USA) were used for EGFR mutation analysis in both types of material. In primary tumor tissues, 12 deletions in exon 19 and 2 substitutions in exon 21 (L858R mutation) of the EGFR gene were found. Except for 1 deletion in exon 19, the same EGFR gene mutations were detected in all corresponding cytology samples. The percentage of tumor cells, DNA concentration, percentage of mutated DNA as well as ΔCt values were similar in cytology slides and histology material. In both types of materials, no significant correlations were found between the percentage of tumor cells and the percentage of mutated DNA nor between the DNA concentration and the percentage of mutated DNA. We demonstrated the high effectiveness of a sensitive real-time PCR method in EGFR gene mutation detection in cytology smears.

  10. Sulforaphane attenuates EGFR signaling in NSCLC cells.

    PubMed

    Chen, Chi-Yuan; Yu, Zhu-Yun; Chuang, Yen-Shu; Huang, Rui-Mei; Wang, Tzu-Chien V

    2015-06-03

    EGFR, a receptor tyrosine kinase (RTK), is frequently overexpressed and mutated in non-small cell lung cancer (NSCLC). Tyrosine kinase inhibitors (TKIs) have been widely used in the treatment of many cancers, including NSCLC. However, intrinsic and acquired resistance to TKI remains a common obstacle. One strategy that may help overcome EGFR-TKI resistance is to target EGFR for degradation. As EGFR is a client protein of heat-shock protein 90 (HSP90) and sulforaphane is known to functionally regulate HSP90, we hypothesized that sulforaphane could attenuate EGFR-related signaling and potentially be used to treat NSCLC. Our study revealed that sulforaphane displayed antitumor activity against NSCLC cells both in vitro and in vivo. The sensitivity of NSCLC cells to sulforaphane appeared to positively correlate with the inhibition of EGFR-related signaling, which was attributed to the increased proteasomal degradation of EGFR. Combined treatment of NSCLC cells with sulforaphane plus another HSP90 inhibitor (17-AAG) enhanced the inhibition of EGFR-related signaling both in vitro and in vivo. We have shown that sulforaphane is a novel inhibitory modulator of EGFR expression and is effective in inhibiting the tumor growth of EGFR-TKI-resistant NSCLC cells. Our findings suggest that sulforaphane should be further explored for its potential clinical applications against NSCLC.

  11. Irreversible Inhibition of EGFR: Modeling the Combined Pharmacokinetic-Pharmacodynamic Relationship of Osimertinib and Its Active Metabolite AZ5104.

    PubMed

    Yates, James W T; Ashton, Susan; Cross, Darren; Mellor, Martine J; Powell, Steve J; Ballard, Peter

    2016-10-01

    Osimertinib (AZD9291) is a potent, selective, irreversible inhibitor of EGFR-sensitizing (exon 19 and L858R) and T790M-resistant mutation. In vivo, in the mouse, it is metabolized to an active des-methyl metabolite, AZ5104. To understand the therapeutic potential in patients, this study aimed to assess the relationship between osimertinib pharmacokinetics, the pharmacokinetics of the active metabolite, the pharmacodynamics of phosphorylated EGFR reduction, and efficacy in mouse xenograft models of EGFR-driven cancers, including two NSCLC lines. Osimertinib was dosed in xenografted models of EGFR-driven cancers. In one set of experiments, changes in phosphorylated EGFR were measured to confirm target engagement. In a second set of efficacy studies, the resulting changes in tumor volume over time after repeat dosing of osimertinib were observed. To account for the contributions of both molecules, a mathematical modeling approach was taken to integrate the resulting datasets. The model was able to describe the pharmacokinetics, pharmacodynamics, and efficacy in A431, PC9, and NCI-H1975 xenografts, with the differences in sensitivity described by the varying potency against wild-type, sensitizing, and T790M-mutant EGFR and the phosphorylated EGFR reduction required to reduce tumor volume. It was inferred that recovery of pEGFR is slower after chronic dosing due to reduced resynthesis. It was predicted and further demonstrated that although inhibition is irreversible, the resynthesis of EGFR is such that infrequent intermittent dosing is not as efficacious as once daily dosing. Mol Cancer Ther; 15(10); 2378-87. ©2016 AACR. ©2016 American Association for Cancer Research.

  12. Osimertinib in Japanese patients with EGFR T790M mutation-positive advanced non-small cell lung cancer: AURA3 trial.

    PubMed

    Akamatsu, Hiroaki; Katakami, Nobuyuki; Okamoto, Isamu; Kato, Terufumi; Kim, Young Hak; Imamura, Fumio; Shinkai, Masaharu; Hodge, Rachel A; Uchida, Hirohiko; Hida, Toyoaki

    2018-04-26

    Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are the first-line treatment for patients with EGFR mutant non-small cell lung cancer (NSCLC). However, most patients become resistant to these drugs, so their disease progresses. Osimertinib, a third-generation EGFR-TKI that can inhibit the kinase even when the common resistance-conferring Thr790Met (T790M) mutation is present, is a promising therapeutic option for patients whose disease has progressed after first-line EGFR-TKI treatment. AURA3 was a randomized (2:1), open-label, phase 3 study comparing the efficacy of osimertinib (80 mg/day) with platinum-based therapy plus pemetrexed (500 mg/m 2 ) in 419 patients with advanced NSCLC with the EGFR T790M mutation in whom disease had progressed after first-line EGFR-TKI treatment. This subanalysis evaluated the safety and efficacy of osimertinib specifically in 63 Japanese patients enrolled in AURA3. The primary endpoint was progression-free survival (PFS) based on investigator assessment. PFS improvement was clinically meaningful in the osimertinib group (n=41) versus the platinum-pemetrexed group (n=22; hazard ratio 0.27, 95% confidence interval 0.13-0.56). The median PFS was 12.5 and 4.3 months in the osimertinib and platinum-pemetrexed groups, respectively. Grade ≥3 adverse events determined to be related to treatment occurred in five patients (12.2%) treated with osimertinib and 12 patients (54.5%) treated with platinum-pemetrexed. The safety and efficacy results in this subanalysis are consistent with the results of the overall AURA3 study, and support the use of osimertinib in Japanese patients with EGFR mutant and T790M NSCLC whose disease has progressed following first-line EGFR-TKI treatment. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Association between GWAS-identified lung adenocarcinoma susceptibility loci and EGFR mutations in never-smoking Asian women, and comparison with findings from Western populations.

    PubMed

    Seow, Wei Jie; Matsuo, Keitaro; Hsiung, Chao Agnes; Shiraishi, Kouya; Song, Minsun; Kim, Hee Nam; Wong, Maria Pik; Hong, Yun-Chul; Hosgood, H Dean; Wang, Zhaoming; Chang, I-Shou; Wang, Jiu-Cun; Chatterjee, Nilanjan; Tucker, Margaret; Wei, Hu; Mitsudomi, Tetsuya; Zheng, Wei; Kim, Jin Hee; Zhou, Baosen; Caporaso, Neil E; Albanes, Demetrius; Shin, Min-Ho; Chung, Lap Ping; An, She-Juan; Wang, Ping; Zheng, Hong; Yatabe, Yasushi; Zhang, Xu-Chao; Kim, Young Tae; Shu, Xiao-Ou; Kim, Young-Chul; Bassig, Bryan A; Chang, Jiang; Ho, James Chung Man; Ji, Bu-Tian; Kubo, Michiaki; Daigo, Yataro; Ito, Hidemi; Momozawa, Yukihide; Ashikawa, Kyota; Kamatani, Yoichiro; Honda, Takayuki; Sakamoto, Hiromi; Kunitoh, Hideo; Tsuta, Koji; Watanabe, Shun-Ichi; Nokihara, Hiroshi; Miyagi, Yohei; Nakayama, Haruhiko; Matsumoto, Shingo; Tsuboi, Masahiro; Goto, Koichi; Yin, Zhihua; Shi, Jianxin; Takahashi, Atsushi; Goto, Akiteru; Minamiya, Yoshihiro; Shimizu, Kimihiro; Tanaka, Kazumi; Wu, Tangchun; Wei, Fusheng; Wong, Jason Y Y; Matsuda, Fumihiko; Su, Jian; Kim, Yeul Hong; Oh, In-Jae; Song, Fengju; Lee, Victor Ho Fun; Su, Wu-Chou; Chen, Yuh-Min; Chang, Gee-Chen; Chen, Kuan-Yu; Huang, Ming-Shyan; Yang, Pan-Chyr; Lin, Hsien-Chih; Xiang, Yong-Bing; Seow, Adeline; Park, Jae Yong; Kweon, Sun-Seog; Chen, Chien-Jen; Li, Haixin; Gao, Yu-Tang; Wu, Chen; Qian, Biyun; Lu, Daru; Liu, Jianjun; Jeon, Hyo-Sung; Hsiao, Chin-Fu; Sung, Jae Sook; Tsai, Ying-Huang; Jung, Yoo Jin; Guo, Huan; Hu, Zhibin; Wang, Wen-Chang; Chung, Charles C; Lawrence, Charles; Burdett, Laurie; Yeager, Meredith; Jacobs, Kevin B; Hutchinson, Amy; Berndt, Sonja I; He, Xingzhou; Wu, Wei; Wang, Junwen; Li, Yuqing; Choi, Jin Eun; Park, Kyong Hwa; Sung, Sook Whan; Liu, Li; Kang, Chang Hyun; Hu, Lingmin; Chen, Chung-Hsing; Yang, Tsung-Ying; Xu, Jun; Guan, Peng; Tan, Wen; Wang, Chih-Liang; Sihoe, Alan Dart Loon; Chen, Ying; Choi, Yi Young; Hung, Jen-Yu; Kim, Jun Suk; Yoon, Ho-Il; Cai, Qiuyin; Lin, Chien-Chung; Park, In Kyu; Xu, Ping; Dong, Jing; Kim, Christopher; He, Qincheng; Perng, Reury-Perng; Chen, Chih-Yi; Vermeulen, Roel; Wu, Junjie; Lim, Wei-Yen; Chen, Kun-Chieh; Chan, John K C; Chu, Minjie; Li, Yao-Jen; Li, Jihua; Chen, Hongyan; Yu, Chong-Jen; Jin, Li; Lo, Yen-Li; Chen, Ying-Hsiang; Fraumeni, Joseph F; Liu, Jie; Yamaji, Taiki; Yang, Yang; Hicks, Belynda; Wyatt, Kathleen; Li, Shengchao A; Dai, Juncheng; Ma, Hongxia; Jin, Guangfu; Song, Bao; Wang, Zhehai; Cheng, Sensen; Li, Xuelian; Ren, Yangwu; Cui, Ping; Iwasaki, Motoki; Shimazu, Taichi; Tsugane, Shoichiro; Zhu, Junjie; Jiang, Gening; Fei, Ke; Wu, Guoping; Chien, Li-Hsin; Chen, Hui-Ling; Su, Yu-Chun; Tsai, Fang-Yu; Chen, Yi-Song; Yu, Jinming; Stevens, Victoria L; Laird-Offringa, Ite A; Marconett, Crystal N; Lin, Dongxin; Chen, Kexin; Wu, Yi-Long; Landi, Maria Teresa; Shen, Hongbing; Rothman, Nathaniel; Kohno, Takashi; Chanock, Stephen J; Lan, Qing

    2017-01-15

    To evaluate associations by EGFR mutation status for lung adenocarcinoma risk among never-smoking Asian women, we conducted a meta-analysis of 11 loci previously identified in genome-wide association studies (GWAS). Genotyping in an additional 10,780 never-smoking cases and 10,938 never-smoking controls from Asia confirmed associations with eight known single nucleotide polymorphisms (SNPs). Two new signals were observed at genome-wide significance (P < 5 × 10-8), namely, rs7216064 (17q24.3, BPTF), for overall lung adenocarcinoma risk, and rs3817963 (6p21.3, BTNL2) which is specific to cases with EGFR mutations. In further sub-analyses by EGFR status, rs9387478 (ROS1/DCBLD1) and rs2179920 (HLA-DPB1) showed stronger estimated associations in EGFR-positive compared to EGFR-negative cases. Comparison of the overall associations with published results in Western populations revealed that the majority of these findings were distinct, underscoring the importance of distinct contributing factors for smoking and non-smoking lung cancer. Our results extend the catalogue of regions associated with lung adenocarcinoma in non-smoking Asian women and highlight the importance of how the germline could inform risk for specific tumour mutation patterns, which could have important translational implications. Published by Oxford University Press 2016. This work is written by US Government employees and is in the public domain in the US.

  14. Potential influence of interleukin-6 on the therapeutic effect of gefitinib in patients with advanced non-small cell lung cancer harbouring EGFR mutations.

    PubMed

    Tamura, Tomoki; Kato, Yuka; Ohashi, Kadoaki; Ninomiya, Kiichiro; Makimoto, Go; Gotoda, Hiroko; Kubo, Toshio; Ichihara, Eiki; Tanaka, Takehiro; Ichimura, Koichi; Maeda, Yoshinobu; Hotta, Katsuyuki; Kiura, Katsuyuki

    2018-01-01

    Although epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) are a key therapy used for patients with EGFR-mutant non-small cell lung cancer (NSCLC), some of whom do not respond well to its therapy. Cytokine including IL-6 secreted by tumour cells is postulated as a potential mechanism for the primary resistance or low sensitivity to EGFR-TKIs. Fifty-two patients with advanced EGFR-mutant NSCLC who had received gefitinib were assessed retrospectively. The protein expression of IL-6 in the tumour cells was assessed by immunostaining and judged as positive if ≥ 50 of 100 tumour cells stained positively. Of the 52 patients, 24 (46%) and 28 (54%) were defined as IL-6-postitive (group P) and IL-6-negative (group N), respectively. Group P had worse progression-free survival (PFS) than that of group N, which was retained in the multivariate analysis (hazard ratio: 2.39; 95 %CI: 1.00-5.68; p < 0.05). By contrast, the PFS after platinum-based chemotherapy did not differ between groups P and N (p = 0.47). In cell line-based model, the impact of IL-6 on the effect of EGFR-TKIs was assessed. The combination of EGFR-TKI and anti-IL-6 antibody moderately improved the sensitivity of EGFR-TKI in lung cancer cell with EGFR mutation. Interestingly, suppression of EGFR with EGFR-TKI accelerated the activation of STAT3 induced by IL-6. Taken together, tumour IL-6 levels might indicate a subpopulation of EGFR-mutant NSCLC that benefits less from gefitinib monotherapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Octogenarians with EGFR-mutated non-small cell lung cancer treated by tyrosine-kinase inhibitor: a multicentric real-world study assessing tolerance and efficacy (OCTOMUT study)

    PubMed Central

    Corre, Romain; Gervais, Radj; Guisier, Florian; Tassy, Louis; Vinas, Florent; Lamy, Régine; Fraboulet, Gislaine; Greillier, Laurent; Doubre, Helene; Descourt, Renaud; Chouaid, Christos; Auliac, Jean-Bernard

    2018-01-01

    Objective To assess efficacy and tolerance of EGFR tyrosine-kinase inhibitors (TKIs) for advanced EGFR-mutated non-small cell lung cancer (NSCLC) in octogenarians. Patients and methods Patients aged 80 years or older with EGFR-mutated NSCLC treated by EGFR TKI between January 2011 and March 2015 whatever the line of treatment were retrospectively selected. Results 20 centers retrospectively included 114 patients (women, 77.2%; Caucasians, 98.3%; mean age, 83.9 years). A performance status of 0–1 or 2–3 at diagnosis was reported for 71.6% and 28.4% of patients, respectively. Overall, 95.6% of patients had adenocarcinomas and histological stage at diagnosis was stage IV for 79.8% of patients. EGFR mutations were identified mainly on exon 19 (46.5%) and exon 21 (40.4%). A geriatric assessment was performed in 35.1% of patients. TKI treatment was administered to 97.3% of patients as first or second line of treatment. Overall response rate and disease control rate were 63.3% (69/109) and 78.9% (86/109), respectively. Median progression-free survival was 11.9 months (95% confidence interval [CI], 8.6–14.7) and median overall survival was 20.9 months (95% CI, 14.3–27.1). After progression, 36/95 (37.9%) patients received a new line of chemotherapy. Main toxicities were cutaneous for 66.7% of patients (grade 3–4, 10%), diarrhea for 56.0% (grade 3–4, 15%; grade 5, 2%) and others for 25.7% (grade 3–4, 41%). Conclusions Octogenarians with EGFR-mutated NSCLC treated by EGFR TKI had clinical outcomes and toxicity profile comparable to younger patients. Geriatric assessment appeared to be underused in this population. PMID:29492192

  16. Diagnostic accuracy of droplet digital PCR for detection of EGFR T790M mutation in circulating tumor DNA

    PubMed Central

    Tong, Xiang; Wang, Ye; Wang, Chengdi; Jin, Jing; Tian, Panwen; Li, Weimin

    2018-01-01

    Objectives Although different methods have been established to detect epidermal growth factor receptor (EGFR) T790M mutation in circulating tumor DNA (ctDNA), a wide range of diagnostic accuracy values were reported in previous studies. The aim of this meta-analysis was to provide pooled diagnostic accuracy measures for droplet digital PCR (ddPCR) in the diagnosis of EGFR T790M mutation based on ctDNA. Materials and methods A systematic review and meta-analysis were carried out based on resources from Pubmed, Web of Science, Embase and Cochrane Library up to October 11, 2017. Data were extracted to assess the pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio (NLR), diagnostic OR (DOR), and areas under the summary receiver-operating characteristic curve (SROC). Results Eleven of 311 studies identified have met the including criteria. The sensitivity and specificity of ddPCR for the detection of T790M mutation in ctDNA ranged from 0.0% to 100.0% and 63.2% to 100.0%, respectively. For the pooled analysis, ddPCR had a performance of 70.1% (95% CI, 62.7%–76.7%) sensitivity, 86.9 % (95% CI, 80.6%–91.7%) specificity, 3.67 (95% CI, 2.33–5.79) PLR, 0.41 (95% CI, 0.32–0.55) NLR, and 10.83 (95% CI, 5.86–20.03) DOR, with the area under the SROC curve being 0.82. Conclusion The ddPCR harbored a good performance for detection of EGFR T790M mutation in ctDNA. PMID:29844700

  17. Histone Deacetylase 3 Inhibition Overcomes BIM Deletion Polymorphism-Mediated Osimertinib Resistance in EGFR-Mutant Lung Cancer.

    PubMed

    Tanimoto, Azusa; Takeuchi, Shinji; Arai, Sachiko; Fukuda, Koji; Yamada, Tadaaki; Roca, Xavier; Ong, S Tiong; Yano, Seiji

    2017-06-15

    Purpose: The BIM deletion polymorphism is associated with apoptosis resistance to EGFR tyrosine kinase inhibitors (EGFR-TKI), such as gefitinib and erlotinib, in non-small cell lung cancer (NSCLC) harboring EGFR mutations. Here, we investigated whether the BIM deletion polymorphism contributes to resistance against osimertinib, a third-generation EGFR-TKI. In addition, we determined the efficacy of a histone deacetylase (HDAC) inhibitor, vorinostat, against this form of resistance and elucidated the underlying mechanism. Experimental Design: We used EGFR -mutated NSCLC cell lines, which were either heterozygous or homozygous for the BIM deletion polymorphism, to evaluate the effect of osimertinib in vitro and in vivo Protein expression was examined by Western blotting. Alternative splicing of BIM mRNA was analyzed by RT-PCR. Results: EGFR -mutated NSCLC cell lines with the BIM deletion polymorphism exhibited apoptosis resistance to osimertinib in a polymorphism dosage-dependent manner, and this resistance was overcome by combined use with vorinostat. Experiments with homozygous BIM deletion-positive cells revealed that vorinostat affected the alternative splicing of BIM mRNA in the deletion allele, increased the expression of active BIM protein, and thereby induced apoptosis in osimertinib-treated cells. These effects were mediated predominantly by HDAC3 inhibition. In xenograft models, combined use of vorinostat with osimertinib could regress tumors in EGFR -mutated NSCLC cells homozygous for the BIM deletion polymorphism. Moreover, this combination could induce apoptosis even when tumor cells acquired EGFR -T790M mutations. Conclusions: These findings indicate the importance of developing HDAC3-selective inhibitors, and their combined use with osimertinib, for treating EGFR -mutated lung cancers carrying the BIM deletion polymorphism. Clin Cancer Res; 23(12); 3139-49. ©2016 AACR . ©2016 American Association for Cancer Research.

  18. Randomized Adjuvant Chemotherapy of EGFR-Mutated Non-Small Cell Lung Cancer Patients with or without Icotinib Consolidation Therapy

    PubMed Central

    Cai, Kaican; Wu, Hua; Xiong, Gang; Wang, Haofei; Zhang, Ziliang

    2015-01-01

    Background Epidermal growth factor receptor (EGFR) mutations occur in up to 50% of Asian patients with non-small cell lung cancer (NSCLC). Treatment of advanced NSCLC patients with EGFR-tyrosine kinase inhibitor (EGFR-TKI) confers a significant survival benefit. This study assessed the efficacy and safety of chemotherapy with or without icotinib in patients undergoing resection of stage IB to ⅢA EGFR-mutated NSCLC. Methods Patients with surgically resected stage IB (with high risk factors) to ⅢA EGFR-mutated NSCLC were randomly assigned (1:1) to one of two treatment plans. One group received four cycles of platinum-based doublet chemotherapy every three weeks, and the other group received platinum-based chemotherapy supplemented with consolidation therapy of orally administered icotinib (125 mg thrice daily) two weeks after chemotherapy. The icotinib treatment continued for four to eight months, or until the occurrence of disease relapse, metastasis or unacceptable icotinib or chemotherapy toxicity. The primary endpoint was disease-free survival (DFS). Results 41 patients were enrolled between Feb 9, 2011 and Dec 17, 2012. 21 patients were assigned to the combined chemotherapy plus icotinib treatment group, while 20 patients received chemotherapy only. DFS at 12 months was 100% for icotinib-treated patients and 88.9% for chemotherapy-only patients (p = 0. 122). At 18 months DFS for icotinib-treated vs. chemotherapy-only patients was 95.2% vs. 83.3% (p = 0. 225), respectively, and at 24 months DFS was 90.5% vs. 66.7% (p = 0. 066). The adverse chemotherapy effects predominantly presented as gastrointestinal reactions and marrow suppression, and there was no significant difference between the two treatment groups. Patients in the chemotherapy plus icotinib treatment group showed favorable tolerance to oral icotinib. Conclusions The results suggest that chemotherapy plus orally icotinib displayed better DFS compared with chemotherapy only, yet the difference in DFS

  19. Randomized Adjuvant Chemotherapy of EGFR-Mutated Non-Small Cell Lung Cancer Patients with or without Icotinib Consolidation Therapy.

    PubMed

    Feng, Siyang; Wang, Yuanyuan; Cai, Kaican; Wu, Hua; Xiong, Gang; Wang, Haofei; Zhang, Ziliang

    2015-01-01

    Epidermal growth factor receptor (EGFR) mutations occur in up to 50% of Asian patients with non-small cell lung cancer (NSCLC). Treatment of advanced NSCLC patients with EGFR-tyrosine kinase inhibitor (EGFR-TKI) confers a significant survival benefit. This study assessed the efficacy and safety of chemotherapy with or without icotinib in patients undergoing resection of stage IB to ⅢA EGFR-mutated NSCLC. Patients with surgically resected stage IB (with high risk factors) to ⅢA EGFR-mutated NSCLC were randomly assigned (1:1) to one of two treatment plans. One group received four cycles of platinum-based doublet chemotherapy every three weeks, and the other group received platinum-based chemotherapy supplemented with consolidation therapy of orally administered icotinib (125 mg thrice daily) two weeks after chemotherapy. The icotinib treatment continued for four to eight months, or until the occurrence of disease relapse, metastasis or unacceptable icotinib or chemotherapy toxicity. The primary endpoint was disease-free survival (DFS). 41 patients were enrolled between Feb 9, 2011 and Dec 17, 2012. 21 patients were assigned to the combined chemotherapy plus icotinib treatment group, while 20 patients received chemotherapy only. DFS at 12 months was 100% for icotinib-treated patients and 88.9% for chemotherapy-only patients (p = 0. 122). At 18 months DFS for icotinib-treated vs. chemotherapy-only patients was 95.2% vs. 83.3% (p = 0. 225), respectively, and at 24 months DFS was 90.5% vs. 66.7% (p = 0. 066). The adverse chemotherapy effects predominantly presented as gastrointestinal reactions and marrow suppression, and there was no significant difference between the two treatment groups. Patients in the chemotherapy plus icotinib treatment group showed favorable tolerance to oral icotinib. The results suggest that chemotherapy plus orally icotinib displayed better DFS compared with chemotherapy only, yet the difference in DFS was not significant. We would think

  20. Optimization of RAS/BRAF Mutational Analysis Confirms Improvement in Patient Selection for Clinical Benefit to Anti-EGFR Treatment in Metastatic Colorectal Cancer.

    PubMed

    Santos, Cristina; Azuara, Daniel; Garcia-Carbonero, Rocio; Alfonso, Pilar Garcia; Carrato, Alfredo; Elez, Mª Elena; Gomez, Auxiliadora; Losa, Ferran; Montagut, Clara; Massuti, Bartomeu; Navarro, Valenti; Varela, Mar; Lopez-Doriga, Adriana; Moreno, Victor; Valladares, Manuel; Manzano, Jose Luis; Vieitez, Jose Maria; Aranda, Enrique; Sanjuan, Xavier; Tabernero, Josep; Capella, Gabriel; Salazar, Ramon

    2017-09-01

    In metastatic colorectal cancer (mCRC), recent studies have shown the importance to accurately quantify low-abundance mutations of the RAS pathway because anti-EGFR therapy may depend on certain mutation thresholds. We aimed to evaluate the added predictive value of an extended RAS panel testing using two commercial assays and a highly sensitive and quantitative digital PCR (dPCR). Tumor samples from 583 mCRC patients treated with anti-EGFR- ( n = 255) or bevacizumab- ( n = 328) based therapies from several clinical trials and retrospective series from the TTD/RTICC Spanish network were analyzed by cobas, therascreen , and dPCR. We evaluated concordance between techniques using the Cohen kappa index. Response rate, progression-free survival (PFS), and overall survival (OS) were correlated to the mutational status and the mutant allele fraction (MAF). Concordance between techniques was high when analyzing RAS and BRAF (Cohen kappa index around 0.75). We observed an inverse correlation between MAF and response in the anti-EGFR cohort ( P < 0.001). Likelihood ratio analysis showed that a fraction of 1% or higher of any mutated alleles offered the best predictive value. PFS and OS were significantly longer in RAS / BRAF wild-type patients, independently of the technique. However, the predictability of both PFS and OS were higher when we considered a threshold of 1% in the RAS scenario (HR = 1.53; CI 95%, 1.12-2.09 for PFS, and HR = 1.9; CI 95%, 1.33-2.72 for OS). Although the rate of mutations observed among techniques is different, RAS and BRAF mutational analysis improved prediction of response to anti-EGFR therapy. Additionally, dPCR with a threshold of 1% outperformed the other platforms. Mol Cancer Ther; 16(9); 1999-2007. ©2017 AACR . ©2017 American Association for Cancer Research.

  1. The resistance mechanisms and treatment strategies for EGFR-mutant advanced non-small-cell lung cancer

    PubMed Central

    Zhong, Wen-Zhao; Zhou, Qing; Wu, Yi-Long

    2017-01-01

    Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKI) have been established as the standard therapy for EGFR-sensitizing mutant advanced non-small-cell lung cancer (NSCLC). However, patients ultimately develop resistance to these drugs. There are several mechanisms of both primary and secondary resistance to EGFR-TKIs. The primary resistance mechanisms include point mutations in exon 18, deletions or insertions in exon 19, insertions, duplications and point mutations in exon 20 and point mutation in exon 21 of EGFR gene. Secondary resistance to EGFR-TKIs is due to emergence of T790M mutation, activation of alternative signaling pathways, bypassing downstream signaling pathways and histological transformation. Strategies to overcome these intrinsic and acquired resistance mechanisms are complex. With the development of the precision medicine for advanced NSCLC, available systemic and local treatment options have expanded, requiring new clinical algorithms that take into account resistance mechanism. Though combination therapy is emerging as the standard of to overcome resistance mechanisms. Personalized treatment modalities based on molecular diagnosis and monitoring is essential for disease management. Emerging data from the ongoing clinical trials on combination therapy of third generation TKIs and antibodies in EGFR mutant NSCLC are promising for better survival outcomes. PMID:29050366

  2. Redox Regulation of EGFR Signaling Through Cysteine Oxidation1

    PubMed Central

    Truong, Thu H.; Carroll, Kate S.

    2012-01-01

    Epidermal growth factor receptor (EGFR) exemplifies the family of receptor tyrosine kinases that mediate numerous cellular processes including growth, proliferation and differentiation. Moreover, gene amplification and EGFR mutations have been identified in a number of human malignancies, making this receptor an important target for the development of anticancer drugs. In addition to ligand-dependent activation and concomitant tyrosine phosphorylation, EGFR stimulation results in the localized generation of H2O2 by NADPH-dependent oxidases. In turn, H2O2 functions as a secondary messenger to regulate intracellular signaling cascades, largely through the modification of specific cysteine residues within redox-sensitive protein targets, including Cys797 in the EGFR active site. In this review, we highlight recent advances in our understanding of the mechanisms that underlie redox regulation of EGFR signaling and how these discoveries may form the basis for development of new therapeutic strategies to target this and other H2O2-modulated pathways. PMID:23186290

  3. Prevalence of EGFR mutations in newly diagnosed locally advanced or metastatic non-small cell lung cancer Spanish patients and its association with histological subtypes and clinical features: The Spanish REASON study.

    PubMed

    Esteban, E; Majem, M; Martinez Aguillo, M; Martinez Banaclocha, N; Dómine, M; Gómez Aldaravi, L; Juan, O; Cajal, R; Gonzalez Arenas, M C; Provencio, M

    2015-06-01

    The aim of the REASON study is to determine the frequency of EGFR mutation in advanced non-small cell lung cancer (aNSCLC) patients in Spain (all histologies), and to better understand the clinical factors (gender, smoking habits and histological subtypes) that may be associated with EGFR mutations, in an unselected sample of aNSCLC patients. All newly diagnosed aNSCLC patients from 40 selected centers in Spain were prospectively included for a 6-month period. Patient characteristics were obtained from clinical records. Mutation testing was performed on available tumor samples. Exploratory analyses were performed to characterize the clinico-pathological factors associated with presence of EGFR mutations. From March 2010 to March 2011, 1113 patients were included in the study, of which 1009 patients provided sample for EGFR mutation analysis (90.7%). Mutation analysis was not feasible in 146/1113 patients (13.1%) due to either sample unavailability (79/1113; 7.1%) or sample inadequacy (67/1113; 6.0%). Twenty-five out of 1113 patients (2.3%) were excluded due to unavailable information. Most patients (99.5%) were Caucasian, 74.5% were male, and predominantly were current (38.1%) or former smokers (44.0%). Median age was 66 years (range 25-90) and 70.7% of patients had non-squamous histology (57.8% adenocarcinoma, 1.8% bronchoalveolar, 11.1% large-cell carcinoma). Exon 19 deletions and the exon 21 L858R point mutation were analyzed in 942/1009 (93.4%) samples. Mutation rate was 11.6% (82.6% exon 19 dels and 17.4% L858R). To be never smoker (38.1%), female (25.4%), with bronchioloalveolar carcinoma (22.2%) or adenocarcinoma (15.4%) histology was associated with a higher prevalence of EGFR mutations. Exons 18, 20 and 21 (excluding L858R) were analyzed in 505/942 samples, and EGFR mutations were found in 22/505 samples (4.4%). The estimated prevalence of sensitizing EGFR mutations (exon 19 del, exon 21 L858R) in an unselected samples of newly diagnosed aNSCLC patients in

  4. EGFR-L858R mutant enhances lung adenocarcinoma cell invasive ability and promotes malignant pleural effusion formation through activation of the CXCL12-CXCR4 pathway

    PubMed Central

    Tsai, Meng-Feng; Chang, Tzu-Hua; Wu, Shang-Gin; Yang, Hsiao-Yin; Hsu, Yi-Chiung; Yang, Pan-Chyr; Shih, Jin-Yuan

    2015-01-01

    Malignant pleural effusion (MPE) is a common clinical problem in non-small cell lung carcinoma (NSCLC) patients; however, the underlying mechanisms are still largely unknown. Recent studies indicate that the frequency of the L858R mutant form of the epidermal growth factor receptor (EGFR-L858R) is higher in lung adenocarcinoma with MPE than in surgically resected specimens, suggesting that lung adenocarcinoma cells harboring this mutation tend to invade the adjacent pleural cavity. The purpose of this study was to clarify the relationship between the EGFR-L858R mutation and cancer cell invasion ability and to investigate the molecular mechanisms involved in the formation of MPE. We found that expression of EGFR-L858R in lung cancer cells resulted in up-regulation of the CXCR4 in association with increased cancer cell invasive ability and MPE formation. Ectopic expression of EGFR-L858R in lung cancer cells acted through activation of ERK signaling pathways to induce the expression of CXCR4. We also indicated that Inhibition of CXCR4 with small interfering RNA, neutralizing antibody, or receptor antagonist significantly suppressed the EGFR-L858R–dependent cell invasion. These results suggest that targeting the production of CXCR4 and blocking the CXCL12-CXCR4 pathway might be effective strategies for treating NSCLCs harboring a specific type of EGFR mutation. PMID:26338423

  5. Discovery and characterization of a novel irreversible EGFR mutants selective and potent kinase inhibitor CHMFL-EGFR-26 with a distinct binding mode

    PubMed Central

    Chen, Cheng; Yu, Kailin; Zou, Fengming; Wang, Wenchao; Wang, Wei; Wu, Jiaxin; Liu, Juan; Wang, Beilei; Wang, Li; Ren, Tao; Zhang, Shanchun; Yun, Cai-Hong; Liu, Jing; Liu, Qingsong

    2017-01-01

    EGFR T790M mutation accounts for about 40-55% drug resistance for the first generation EGFR kinase inhibitors in the NSCLC. Starting from ibrutinib, a highly potent irreversible BTK kinase inhibitor, which was also found to be moderately active to EGFR T790M mutant, we discovered a highly potent irreversible EGFR inhibitor CHMFL-EGFR-26, which is selectively potent against EGFR mutants including L858R, del19, and L858R/T790M. It displayed proper selectivity window between the EGFR mutants and the wide-type. CHMFL-EGFR-26 exhibited good selectivity profile among 468 kinases/mutants tested (S score (1)=0.02). In addition, X-ray crystallography revealed a distinct “DFG-in” and “cHelix-out” inactive binding mode between CHMFL-EGFR-26 and EGFR T790M protein. The compound showed highly potent anti-proliferative efficacy against EGFR mutant but not wide-type NSCLC cell lines through effective inhibition of the EGFR mediated signaling pathway, induction of apoptosis and arresting of cell cycle progression. CHMFL-EGFR-26 bore acceptable pharmacokinetic properties and demonstrated dose-dependent tumor growth suppression in the H1975 (EGFR L858R/T790M) and PC-9 (EGFR del19) inoculated xenograft mouse models. Currently CHMFL-EGFR-26 is undergoing extensive pre-clinical evaluation for the clinical trial purpose. PMID:28407693

  6. Evaluation of digital PCR for detecting low-level EGFR mutations in advanced lung adenocarcinoma patients: a cross-platform comparison study

    PubMed Central

    Liu, Bing; Li, Lei; Huang, Lixia; Li, Shaoli; Rao, Guanhua; Yu, Yang; Zhou, Yanbin

    2017-01-01

    Emerging evidence has indicated that circulating tumor DNA (ctDNA) from plasma could be used to analyze EGFR mutation status for NSCLC patients; however, due to the low level of ctDNA in plasma, highly sensitive approaches are required to detect low frequency mutations. In addition, the cutoff for the mutation abundance that can be detected in tumor tissue but cannot be detected in matched ctDNA is still unknown. To assess a highly sensitive method, we evaluated the use of digital PCR in the detection of EGFR mutations in tumor tissue from 47 advanced lung adenocarcinoma patients through comparison with NGS and ARMS. We determined the degree of concordance between tumor tissue DNA and paired ctDNA and analyzed the mutation abundance relationship between them. Digital PCR and Proton had a high sensitivity (96.00% vs. 100%) compared with that of ARMS in the detection of mutations in tumor tissue. Digital PCR outperformed Proton in identifying more low abundance mutations. The ctDNA detection rate of digital PCR was 87.50% in paired tumor tissue with a mutation abundance above 5% and 7.59% in paired tumor tissue with a mutation abundance below 5%. When the DNA mutation abundance of tumor tissue was above 3.81%, it could identify mutations in paired ctDNA with a high sensitivity. Digital PCR will help identify alternative methods for detecting low abundance mutations in tumor tissue DNA and plasma ctDNA. PMID:28978074

  7. Cross-talk between AMPK and EGFR dependent Signaling in Non-Small Cell Lung Cancer

    NASA Astrophysics Data System (ADS)

    Praveen, Paurush; Hülsmann, Helen; Sültmann, Holger; Kuner, Ruprecht; Fröhlich, Holger

    2016-06-01

    Lung cancers globally account for 12% of new cancer cases, 85% of these being Non Small Cell Lung Cancer (NSCLC). Therapies like erlotinib target the key player EGFR, which is mutated in about 10% of lung adenocarcinoma. However, drug insensitivity and resistance caused by second mutations in the EGFR or aberrant bypass signaling have evolved as a major challenge in controlling these tumors. Recently, AMPK activation was proposed to sensitize NSCLC cells against erlotinib treatment. However, the underlying mechanism is largely unknown. In this work we aim to unravel the interplay between 20 proteins that were previously associated with EGFR signaling and erlotinib drug sensitivity. The inferred network shows a high level of agreement with protein-protein interactions reported in STRING and HIPPIE databases. It is further experimentally validated with protein measurements. Moreover, predictions derived from our network model fairly agree with somatic mutations and gene expression data from primary lung adenocarcinoma. Altogether our results support the role of AMPK in EGFR signaling and drug sensitivity.

  8. Cross-talk between AMPK and EGFR dependent Signaling in Non-Small Cell Lung Cancer.

    PubMed

    Praveen, Paurush; Hülsmann, Helen; Sültmann, Holger; Kuner, Ruprecht; Fröhlich, Holger

    2016-06-09

    Lung cancers globally account for 12% of new cancer cases, 85% of these being Non Small Cell Lung Cancer (NSCLC). Therapies like erlotinib target the key player EGFR, which is mutated in about 10% of lung adenocarcinoma. However, drug insensitivity and resistance caused by second mutations in the EGFR or aberrant bypass signaling have evolved as a major challenge in controlling these tumors. Recently, AMPK activation was proposed to sensitize NSCLC cells against erlotinib treatment. However, the underlying mechanism is largely unknown. In this work we aim to unravel the interplay between 20 proteins that were previously associated with EGFR signaling and erlotinib drug sensitivity. The inferred network shows a high level of agreement with protein-protein interactions reported in STRING and HIPPIE databases. It is further experimentally validated with protein measurements. Moreover, predictions derived from our network model fairly agree with somatic mutations and gene expression data from primary lung adenocarcinoma. Altogether our results support the role of AMPK in EGFR signaling and drug sensitivity.

  9. Economic Evaluation of Companion Diagnostic Testing for EGFR Mutations and First-Line Targeted Therapy in Advanced Non-Small Cell Lung Cancer Patients in South Korea.

    PubMed

    Lim, Eun-A; Lee, Haeyoung; Bae, Eunmi; Lim, Jaeok; Shin, Young Kee; Choi, Sang-Eun

    2016-01-01

    As targeted therapy becomes increasingly important, diagnostic techniques for identifying targeted biomarkers have also become an emerging issue. The study aims to evaluate the cost-effectiveness of treating patients as guided by epidermal growth factor receptor (EGFR) mutation status compared with a no-testing strategy that is the current clinical practice in South Korea. A cost-utility analysis was conducted to compare an EGFR mutation testing strategy with a no-testing strategy from the Korean healthcare payer's perspective. The study population consisted of patients with stage 3b and 4 lung adenocarcinoma. A decision tree model was employed to select the appropriate treatment regimen according to the results of EGFR mutation testing and a Markov model was constructed to simulate disease progression of advanced non-small cell lung cancer. The length of a Markov cycle was one month, and the time horizon was five years (60 cycles). In the base case analysis, the testing strategy was a dominant option. Quality-adjusted life-years gained (QALYs) were 0.556 and 0.635, and total costs were $23,952 USD and $23,334 USD in the no-testing and testing strategy respectively. The sensitivity analyses showed overall robust results. The incremental cost-effectiveness ratios (ICERs) increased when the number of patients to be treated with erlotinib increased, due to the high cost of erlotinib. Treating advanced adenocarcinoma based on EGFR mutation status has beneficial effects and saves the cost compared to no testing strategy in South Korea. However, the cost-effectiveness of EGFR mutation testing was heavily affected by the cost-effectiveness of the targeted therapy.

  10. Results of the First Italian External Quality Assurance Scheme for somatic EGFR mutation testing in non-small-cell lung cancer.

    PubMed

    Normanno, Nicola; Pinto, Carmine; Taddei, Gianluigi; Gambacorta, Marcello; Castiglione, Francesca; Barberis, Massimo; Clemente, Claudio; Marchetti, Antonio

    2013-06-01

    The Italian Association of Medical Oncology (AIOM) and the Italian Society of Pathology and Cytology organized an external quality assessment (EQA) scheme for EGFR mutation testing in non-small-cell lung cancer. Ten specimens, including three small biopsies with known epidermal growth factor receptor (EGFR) mutation status, were validated in three referral laboratories and provided to 47 participating centers. The participants were requested to perform mutational analysis, using their usual method, and to submit results within a 4-week time frame. According to a predefined scoring system, two points were assigned to correct genotype and zero points to false-negative or false-positive results. The threshold to pass the EQA was set at higher than 18 of 20 points. Two rounds were preplanned. All participating centers submitted the results within the time frame. Polymerase chain reaction (PCR)/sequencing was the main methodology used (n = 37 laboratories), although a few centers did use pyrosequencing (n = 8) or real-time PCR (n = 2). A significant number of analytical errors were observed (n = 20), with a high frequency of false-positive results (n = 16). The lower scores were obtained for the small biopsies. Fourteen of 47 centers (30%) that did not pass the first round, having a score less than or equal to 18 points, used PCR/sequencing, whereas 10 of 10 laboratories, using pyrosequencing or real-time PCR, passed the first round. Eight laboratories passed the second round. Overall, 41of 47 centers (87%) passed the EQA. The results of the EQA for EGFR testing in non-small-cell lung cancer suggest that good quality EGFR mutational analysis is performed in Italian laboratories, although differences between testing methods were observed, especially for small biopsies.

  11. EGFR molecular profiling in advanced NSCLC: a prospective phase II study in molecularly/clinically selected patients pretreated with chemotherapy.

    PubMed

    Milella, Michele; Nuzzo, Carmen; Bria, Emilio; Sperduti, Isabella; Visca, Paolo; Buttitta, Fiamma; Antoniani, Barbara; Merola, Roberta; Gelibter, Alain; Cuppone, Federica; D'Alicandro, Valerio; Ceribelli, Anna; Rinaldi, Massimo; Cianciulli, Anna; Felicioni, Lara; Malatesta, Sara; Marchetti, Antonio; Mottolese, Marcella; Cognetti, Francesco

    2012-04-01

    The optimal use of epidermal growth factor receptor (EGFR)-related molecular markers to prospectively identify tyrosine kinase inhibitor (TKI)-sensitive patients, particularly after a previous chemotherapy treatment, is currently under debate. We designed a prospective phase II study to evaluate the activity of EGFR-TKI in four different patient groups, according to the combination of molecular (EGFR gene mutations, EGFR gene copy number and protein expression, and phosphorylated AKT expression, pAKT) and clinicopathological (histology and smoking habits) factors. Correlations between molecular alterations and clinical outcome were also explored retrospectively for first-line chemotherapy and EGFR-TKI treatment. Patients who had progressed during or after first-line chemotherapy were prospectively assigned to EGFR-TKI treatment as follows: (G1) EGFR mutation (n = 12); (G2) highly polysomic/amplified EGFR (n = 18); (G3) EGFR and/or pAKT positive (n = 41); (G4) adenocarcinoma/bronchoalveolar carcinoma and no smoking history (n = 15). G1 and G4 had the best and second-best overall response rate (25% and 20%, respectively), whereas the worst outcome was observed in G2 (ORR, 6%; p = 0.05). Disease control was highest in G1 and G4 (>50%) and lowest in G3 (<20%) (p = 0.02). Patients selected by EGFR mutation or clinical parameters (G1 and G4) also had significantly better progression-free survival and overall survival (p = 0.02 and p = 0.01, respectively). Multivariate analysis confirmed the impact of sex, smoking history, EGFR/KRAS mutation, and pAKT on outcomes and allowed us to derive an efficient predictive model. Histology, EGFR mutations, and pAKT were independent predictors of response to first-line chemotherapy at retrospective analysis, whereas pAKT and human epidermal growth factor receptor 2 expression were the only independent predictors of progression-free survival and overall survival. Selection of patients based on either EGFR mutation or clinical

  12. The CRISPR/Cas9 system targeting EGFR exon 17 abrogates NF-κB activation via epigenetic modulation of UBXN1 in EGFRwt/vIII glioma cells.

    PubMed

    Huang, Kai; Yang, Chao; Wang, Qi-Xue; Li, Yan-Sheng; Fang, Chuan; Tan, Yan-Li; Wei, Jian-Wei; Wang, Yun-Fei; Li, Xin; Zhou, Jun-Hu; Zhou, Bing-Cong; Yi, Kai-Kai; Zhang, Kai-Liang; Li, Jie; Kang, Chun-Sheng

    2017-03-01

    Worldwide, glioblastoma (GBM) is the most lethal and frequent intracranial tumor. Despite decades of study, the overall survival of GBM patients remains unchanged. epidermal growth factor receptor (EGFR) amplification and gene mutation are thought to be negatively correlated with prognosis. In this study, we used proteomics to determine that UBXN1 is a negative downstream regulator of the EGFR mutation vIII (EGFRvIII). Via bioinformatics analysis, we found that UBXN1 is a factor that can improve glioma patients' overall survival time. We also determined that the down-regulation of UBXN1 is mediated by the upregulation of H3K27me3 in the presence of EGFRvIII. Because NF-κB can be negatively regulated by UBXN1, we believe that EGFRwt/vIII activates NF-κB by suppressing UBXN1 expression. Importantly, we used the latest genomic editing tool, CRISPR/Cas9, to knockout EGFRwt/vIII on exon 17 and further proved that UBXN1 is negatively regulated by EGFRwt/vIII. Furthermore, knockout of EGFR/EGFRvIII could benefit GBM in vitro and in vivo, indicating that CRISPR/Cas9 is a promising therapeutic strategy for both EGFR amplification and EGFR mutation-bearing patients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Clinical mutational profiling of 1006 lung cancers by next generation sequencing

    PubMed Central

    Illei, Peter B.; Belchis, Deborah; Tseng, Li-Hui; Nguyen, Doreen; De Marchi, Federico; Haley, Lisa; Riel, Stacy; Beierl, Katie; Zheng, Gang; Brahmer, Julie R.; Askin, Frederic B.; Gocke, Christopher D.; Eshleman, James R.; Forde, Patrick M.; Lin, Ming-Tseh

    2017-01-01

    Analysis of lung adenocarcinomas for actionable mutations has become standard of care. Here, we report our experience using next generation sequencing (NGS) to examine AKT1, BRAF, EGFR, ERBB2, KRAS, NRAS, and PIK3CA genes in 1006 non-small cell lung cancers in a clinical diagnostic setting. NGS demonstrated high sensitivity. Among 760 mutations detected, the variant allele frequency (VAF) was 2–5% in 33 (4.3%) mutations and 2–10% in 101 (13%) mutations. A single bioinformatics pipeline using Torrent Variant Caller, however, missed a variety of EGFR mutations. Mutations were detected in KRAS (36% of tumors), EGFR (19%) including 8 (0.8%) within the extracellular domain (4 at codons 108 and 4 at codon 289), BRAF (6.3%), and PIK3CA (3.7%). With a broader reportable range, exon 19 deletion and p.L858R accounted for only 36% and 26% of EGFR mutations and p.V600E accounted for only 24% of BRAF mutations. NGS provided accurate sequencing of complex mutations seen in 19% of EGFR exon 19 deletion mutations. Doublet (compound) EGFR mutations were observed in 29 (16%) of 187 EGFR-mutated tumors, including 69% with two non-p.L858R missense mutations and 24% with p.L858 and non-p.L858R missense mutations. Concordant VAFs suggests doublet EGFR mutations were present in a dominant clone and cooperated in oncogenesis. Mutants with predicted impaired kinase, observed in 25% of BRAF-mutated tumors, were associated with a higher incidence of concomitant activating KRAS mutations. NGS demonstrates high analytic sensitivity, broad reportable range, quantitative VAF measurement, single molecule sequencing to resolve complex deletion mutations, and simultaneous detection of concomitant mutations. PMID:29228562

  14. Impact of family history of cancer on the incidence of mutation in epidermal growth factor receptor gene in non-small cell lung cancer patients.

    PubMed

    He, Yayi; Li, Shuai; Ren, Shengxiang; Cai, Weijing; Li, Xuefei; Zhao, Chao; Li, Jiayu; Chen, Xiaoxia; Gao, Guanghui; Li, Wei; Zhou, Fei; Zhou, Caicun

    2013-08-01

    Epidermal growth factor receptor (EGFR) activating mutation is an important predictive biomarker of EGFR tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer (NSCLC), while family history of cancer also plays an important role in the neoplasia of lung cancer. This study aimed to investigate the association between family history of cancer and EGFR mutation status in NSCLC population. From February 2008 to May 2012, 538 consecutive NSCLC patients with known EGFR mutation status were included into this study. Amplification refractory mutation system (ARMS) method was used to detect EGFR mutation. The associations between EGFR mutation and family history of cancer were evaluated using logistic regression models. EGFR activating mutation was found in 220 patients and 117 patients had family cancer histories among first-degree relatives. EGFR mutation was more frequently detected in adenocarcinoma patients (p < 0.001), never-smoker (p < 0.001) and with family history of cancer (p = 0.031), especially who had family history of lung cancer (p = 0.008). In multivariate analysis, the association of EGFR mutation with family history of cancer also existed (p = 0.027). NSCLC patients with family history of cancer, especially family history of lung cancer, might have a significantly higher incidence of EGFR activating mutation. Crown Copyright © 2013. Published by Elsevier Ireland Ltd. All rights reserved.

  15. Quantification and Dynamic Monitoring of EGFR T790M in Plasma Cell-Free DNA by Digital PCR for Prognosis of EGFR-TKI Treatment in Advanced NSCLC

    PubMed Central

    Wang, Zhijie; Chen, Rui; Wang, Shuhang; Zhong, Jia; Wu, Meina; Zhao, Jun; Duan, Jianchun; Zhuo, Minglei; An, Tongtong; Wang, Yuyan; Bai, Hua; Wang, Jie

    2014-01-01

    Background Among advanced non-small cell lung cancer (NSCLC) patients with an acquired resistance to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKI), about 50% carry the T790M mutation, but this frequency in EGFR-TKI-naïve patients and dynamic change during therapy remains unclear. This study investigated the quantification and dynamic change of T790M mutation in plasma cell-free DNA (cf-DNA) of advanced NSCLC patients to assess the clinical outcomes of EGFR-TKI therapy. Materials and Methods We retrospectively investigated 135 patients with advanced NSCLC who obtained progression-free survival (PFS) after EGFR-TKI for >6 months for their EGFR sensitive mutations and T790M mutation in matched pre- and post-TKI plasma samples, using denaturing high-performance liquid chromatography (DHPLC), amplification refractory mutation system (ARMS), and digital-PCR (D-PCR). Real-time PCR was performed to measure c-MET amplification. Results Detection limit of D-PCR in assessing the T790M mutation was approximately 0.03%. D-PCR identified higher frequency of T790M than ARMS in pre-TKI (31.3% vs. 5.5%) and post-TKI (43.0% vs. 25.2%) plasma samples. Patients with pre-TKI T790M showed inferior PFS (8.9 vs. 12.1 months, p = 0.007) and overall survival (OS, 19.3 vs. 31.9 months, p = 0.001) compared with those without T790M. In patients harboring EGFR sensitive mutation, high quantities of pre-TKI T790M predicted poorer PFS (p = 0.001) on EGFR-TKI than low ones. Moreover, patients who experienced increased quantity of T790M during EGFR-TKI treatment showed superior PFS and OS compared with those with decreased changes (p = 0.044 and p = 0.015, respectively). Conclusion Qualitative and quantitative T790M in plasma cf-DNA by D-PCR provided a non-invasive and sensitive assay to predict EGFR-TKI prognosis. PMID:25405807

  16. Primary and acquired EGFR T790M-mutant NSCLC patients identified by routine mutation testing show different characteristics but may both respond to osimertinib treatment.

    PubMed

    Li, Weihua; Qiu, Tian; Guo, Lei; Ling, Yun; Gao, Yibo; Ying, Jianming; He, Jie

    2018-06-01

    Primary EGFR T790M mutation is occasionally identified by routine mutation testing in tyrosine kinase inhibitor (TKI)-naive patients with non-small cell lung cancer (NSCLC). We herein aimed to compare the characteristics of primary and acquired T790M mutations in NSCLC patients, and their response to osimertinib. Using amplification refractory mutation system (ARMS) detection, primary T790M was identified in 0.5% (46/8723) of TKI-naive patients, whereas acquired T790M was detected in 49.7% (71/143) of TKI-relapsed patients. T790M always coexisted with a sensitizing EGFR mutation. Primary T790M more commonly coexisted with L858R, whereas acquired T790M was more likely to coexist with exon 19 deletions. Moreover, next-generation sequencing (NGS) showed that concomitant sensitizing EGFR and primary T790M mutant allele frequencies (MAFs) were highly concordant, but acquired T790M MAFs were significantly lower than the sensitizing EGFR MAFs. Sixteen acquired T790M-mutant patients received osimertinib. The median progression-free survival (PFS) was 8.1 months. Four primary T790M-mutant patients received osimertinib and the median PFS was 8.0 months. Together, our study demonstrates that primary and acquired T790M-mutant patients show distinct differences in some clinical and molecular characteristics, but may both respond to osimertinib treatment. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Comprehensive investigation of oncogenic driver mutations in Chinese non-small cell lung cancer patients.

    PubMed

    Wang, Rui; Zhang, Yang; Pan, Yunjian; Li, Yuan; Hu, Haichuan; Cai, Deng; Li, Hang; Ye, Ting; Luo, Xiaoyang; Zhang, Yiliang; Li, Bin; Shen, Lei; Sun, Yihua; Chen, Haiquan

    2015-10-27

    To determine the frequency of driver mutations in Chinese non-small cell lung cancer (NSCLC) patients. Comprehensive mutational analysis was performed in 1356 lung adenocarcinoma, 503 squamous cell carcinoma, 57 adenosquamous lung carcinoma, 19 large cell carcinoma and 8 sarcomatoid carcinoma. The effect of EGFR tyrosine kinase inhibitors (TKIs) on EGFR-mutated lung adenocarcinoma patients after disease recurrence was investigated. Mutations in EGFR kinase domain, HER2 kinase domain, KRAS, BRAF, ALK, ROS1 and RET were mutually exclusive. In lung adenocarcinoma cases "pan-negative" for the seven above-mentioned driver mutations, we also detected two oncogenic EGFR extracellular domain mutations (A289D and R324L), two HER2 extracellular and transmembrane domain mutations (S310Y and V659E), one ARAF S214C mutation and two CD74-NRG1 fusions. Six (1.2%) FGFR3 activating mutations were identified in lung squamous cell carcinoma (five S249C and one R248C). There were three (15.8%) EGFR mutations and four (21.1%) KRAS mutations in large cell carcinoma. Three (37.5%) KRAS mutations were detected in sarcomatoid carcinoma. In EGFR-mutated lung adenocarcinoma patients who experienced disease recurrence, treatment with EGFR TKIs was an independent predictor of better overall survival (HR = 0.299, 95% CI: 0.172-0.519, P < 0.001). We determined the frequency of driver mutations in a large series of Chinese NSCLC patients. EGFR TKIs might improve the survival outcomes of EGFR-mutated lung adenocarcinoma patients who experienced disease recurrence.

  18. [Clinical Observation of Icotinib Hydrochloride for Advanced Non-small Cell Lung Cancer Patients with EGFR Status Identified].

    PubMed

    Li, Xi; Qin, Na; Wang, Jinghui; Yang, Xinjie; Zhang, Xinyong; Lv, Jialin; Wu, Yuhua; Zhang, Hui; Nong, Jingying; Zhang, Quan; Zhang, Shucai

    2015-12-01

    Icotinib is the first self-developed small molecular drug in China for targeted therapy of lung cancer. Compared to the other two commercially available epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors, gefitinib and erlotinib, icotinib is similar to them in chemical structure, mechanism of activity and therapeutic effects. To explore the efficacy and side effects of icotinib hydrochloride in the treatment of the advanced non-small cell lung cancer (NSCLC) patients with EGFR mutation and wild-type. Patients with advanced NSCLC who were treated with icotinib hydrochloride in Beijing Chest Hospital were retrospective analyzed from March 2009 to December 2014. The clinical data of 124 patients (99 with EGFR mutation and 25 with wild type) with advanced NSCLC were enrolled in this study. The patients' overall objective response rate (ORR) was 51.6 % and the disease control rate (DCR) was 79.8%; The patients with EGFR mutation, ORR was 63.6%, DCR was 93.9%. The ORR was 4.0% and the DCR was 24.0% in the wild-type patients. Median progression-free survival (PFS) with icotinib treatment in EGFR mutation patients was 10.5 months and 1.0 month in wild-type patients. The major adverse events were mild skin rash (30.6%) and diarrhea (16.1%). Monotherapy with icotinib hydrochloride is effective and tolerable for the advanced NSCLC EGFR mutation patients.


  19. EGFR and HER2 activate rigidity sensing only on rigid matrices

    NASA Astrophysics Data System (ADS)

    Saxena, Mayur; Liu, Shuaimin; Yang, Bo; Hajal, Cynthia; Changede, Rishita; Hu, Junqiang; Wolfenson, Haguy; Hone, James; Sheetz, Michael P.

    2017-07-01

    Epidermal growth factor receptor (EGFR) interacts with integrins during cell spreading and motility, but little is known about the role of EGFR in these mechanosensing processes. Here we show, using two different cell lines, that in serum- and EGF-free conditions, EGFR or HER2 activity increase spreading and rigidity-sensing contractions on rigid, but not soft, substrates. Contractions peak after 15-20 min, but diminish by tenfold after 4 h. Addition of EGF at that point increases spreading and contractions, but this can be blocked by myosin-II inhibition. We further show that EGFR and HER2 are activated through phosphorylation by Src family kinases (SFK). On soft surfaces, neither EGFR inhibition nor EGF stimulation have any effect on cell motility. Thus, EGFR or HER2 can catalyse rigidity sensing after associating with nascent adhesions under rigidity-dependent tension downstream of SFK activity. This has broad implications for the roles of EGFR and HER2 in the absence of EGF both for normal and cancerous growth.

  20. EGFR alterations and EML4-ALK rearrangement in primary adenocarcinoma of the urinary bladder.

    PubMed

    Alexander, Riley E; Montironi, Rodolfo; Lopez-Beltran, Antonio; Williamson, Sean R; Wang, Mingsheng; Post, Kristin M; Sen, Joyashree D; Arnold, Ashley K; Zhang, Shaobo; Wang, Xiaoyan; Koch, Michael O; Hahn, Noah M; Masterson, Timothy A; MacLennan, Gregory T; Davidson, Darrell D; Compérat, Eva; Cheng, Liang

    2014-01-01

    The identification of mutations in epidermal growth factor receptor (EGFR) and translocations involving anaplastic lymphoma kinase (ALK) in lung adenocarcinoma has drastically changed understanding of the disease and led to the development of targeted therapies. Adenocarcinoma of the urinary bladder is rare and poorly understood at the molecular level. We undertook this study to determine whether EGFR mutations, increases in EGFR copy number, or ALK translocations are present in these tumors. Twenty-eight cases of primary bladder adenocarcinoma were analyzed. For EGFR mutational analysis, PCR-amplified products were analyzed on the Q24 Pyrosequencer with Qiagen EGFR Pyro Kits. All cases were analyzed via fluorescence in situ hybridization (FISH) using Vysis ALK Break Apart FISH Probes for detection of ALK chromosomal translocation and Vysis Dual Color Probes to assess for increased gene copy number of EGFR. None of the 28 cases examined showed mutational events in EGFR or ALK rearrangements. EGFR polysomy was seen in 10 out of 28 (36%) cases. No correlation with EGFR polysomy was seen in the tumors with respect to age, histologic subtypes, pathologic stage, or lymph node metastasis. In summary, EGFR mutations and ALK rearrangements do not appear to be involved in the development of primary adenocarcinoma of the urinary bladder. A subgroup of cases (36%), however, demonstrated increased gene copy number of EGFR by FISH.

  1. Quantifying EGFR alterations in the lung cancer genome with nanofluidic digital PCR arrays.

    PubMed

    Wang, Jun; Ramakrishnan, Ramesh; Tang, Zhe; Fan, Weiwen; Kluge, Amy; Dowlati, Afshin; Jones, Robert C; Ma, Patrick C

    2010-04-01

    The EGFR [epidermal growth factor receptor (erythroblastic leukemia viral (v-erb-b) oncogene homolog, avian)] gene is known to harbor genomic alterations in advanced lung cancer involving gene amplification and kinase mutations that predict the clinical response to EGFR-targeted inhibitors. Methods for detecting such molecular changes in lung cancer tumors are desirable. We used a nanofluidic digital PCR array platform and 16 cell lines and 20 samples of genomic DNA from resected tumors (stages I-III) to quantify the relative numbers of copies of the EGFR gene and to detect mutated EGFR alleles in lung cancer. We assessed the relative number of EGFR gene copies by calculating the ratio of the number of EGFR molecules (measured with a 6-carboxyfluorescein-labeled Scorpion assay) to the number of molecules of the single-copy gene RPP30 (ribonuclease P/MRP 30kDa subunit) (measured with a 6-carboxy-X-rhodamine-labeled TaqMan assay) in each panel. To assay for the EGFR L858R (exon 21) mutation and exon 19 in-frame deletions, we used the ARMS and Scorpion technologies in a DxS/Qiagen EGFR29 Mutation Test Kit for the digital PCR array. The digital array detected and quantified rare gefitinib/erlotinib-sensitizing EGFR mutations (0.02%-9.26% abundance) that were present in formalin-fixed, paraffin-embedded samples of early-stage resectable lung tumors without an associated increase in gene copy number. Our results also demonstrated the presence of intratumor molecular heterogeneity for the clinically relevant EGFR mutated alleles in these early-stage lung tumors. The digital PCR array platform allows characterization and quantification of oncogenes, such as EGFR, at the single-molecule level. Use of this nanofluidics platform may provide deeper insight into the specific roles of clinically relevant kinase mutations during different stages of lung tumor progression and may be useful in predicting the clinical response to EGFR-targeted inhibitors.

  2. Molecular Basis for Necitumumab Inhibition of EGFR Variants Associated with Acquired Cetuximab Resistance.

    PubMed

    Bagchi, Atrish; Haidar, Jaafar N; Eastman, Scott W; Vieth, Michal; Topper, Michael; Iacolina, Michelle D; Walker, Jason M; Forest, Amelie; Shen, Yang; Novosiadly, Ruslan D; Ferguson, Kathryn M

    2018-02-01

    Acquired resistance to cetuximab, an antibody that targets the EGFR, impacts clinical benefit in head and neck, and colorectal cancers. One of the mechanisms of resistance to cetuximab is the acquisition of mutations that map to the cetuximab epitope on EGFR and prevent drug binding. We find that necitumumab, another FDA-approved EGFR antibody, can bind to EGFR that harbors the most common cetuximab-resistant substitution, S468R (or S492R, depending on the amino acid numbering system). We determined an X-ray crystal structure to 2.8 Å resolution of the necitumumab Fab bound to an S468R variant of EGFR domain III. The arginine is accommodated in a large, preexisting cavity in the necitumumab paratope. We predict that this paratope shape will be permissive to other epitope substitutions, and show that necitumumab binds to most cetuximab- and panitumumab-resistant EGFR variants. We find that a simple computational approach can predict with high success which EGFR epitope substitutions abrogate antibody binding. This computational method will be valuable to determine whether necitumumab will bind to EGFR as new epitope resistance variants are identified. This method could also be useful for rapid evaluation of the effect on binding of alterations in other antibody/antigen interfaces. Together, these data suggest that necitumumab may be active in patients who are resistant to cetuximab or panitumumab through EGFR epitope mutation. Furthermore, our analysis leads us to speculate that antibodies with large paratope cavities may be less susceptible to resistance due to mutations mapping to the antigen epitope. Mol Cancer Ther; 17(2); 521-31. ©2017 AACR . ©2017 American Association for Cancer Research.

  3. Dynein-mediated trafficking negatively regulates LET-23 EGFR signaling

    PubMed Central

    Skorobogata, Olga; Meng, Jassy; Gauthier, Kimberley; Rocheleau, Christian E.

    2016-01-01

    Epidermal growth factor receptor (EGFR) signaling is essential for animal development, and increased signaling underlies many human cancers. Identifying the genes and cellular processes that regulate EGFR signaling in vivo will help to elucidate how this pathway can become inappropriately activated. Caenorhabditis elegans vulva development provides an in vivo model to genetically dissect EGFR signaling. Here we identified a mutation in dhc-1, the heavy chain of the cytoplasmic dynein minus end–directed microtubule motor, in a genetic screen for regulators of EGFR signaling. Despite the many cellular functions of dynein, DHC-1 is a strong negative regulator of EGFR signaling during vulva induction. DHC-1 is required in the signal-receiving cell and genetically functions upstream or in parallel to LET-23 EGFR. LET-23 EGFR accumulates in cytoplasmic foci in dhc-1 mutants, consistent with mammalian cell studies in which dynein is shown to regulate late endosome trafficking of EGFR with the Rab7 GTPase. However, we found different distributions of LET-23 EGFR foci in rab-7 versus dhc-1 mutants, suggesting that dynein functions at an earlier step of LET-23 EGFR trafficking to the lysosome than RAB-7. Our results demonstrate an in vivo role for dynein in limiting LET-23 EGFR signaling via endosomal trafficking. PMID:27654944

  4. Sialylation of EGFR by the ST6Gal-I sialyltransferase promotes EGFR activation and resistance to gefitinib-mediated cell death.

    PubMed

    Britain, Colleen M; Holdbrooks, Andrew T; Anderson, Joshua C; Willey, Christopher D; Bellis, Susan L

    2018-02-05

    The ST6Gal-I sialyltransferase is upregulated in numerous cancers, and high expression of this enzyme correlates with poor patient prognosis in various malignancies, including ovarian cancer. Through its sialylation of a select cohort of cell surface receptors, ST6Gal-I modulates cell signaling to promote tumor cell survival. The goal of the present study was to investigate the influence of ST6Gal-I on another important receptor that controls cancer cell behavior, EGFR. Additionally, the effect of ST6Gal-I on cancer cells treated with the common EGFR inhibitor, gefitinib, was evaluated. Using the OV4 ovarian cancer cell line, which lacks endogenous ST6Gal-I expression, a kinomics assay revealed that cells with forced overexpression of ST6Gal-I exhibited increased global tyrosine kinase activity, a finding confirmed by immunoblotting whole cell lysates with an anti-phosphotyrosine antibody. Interestingly, the kinomics assay suggested that one of the most highly activated tyrosine kinases in ST6Gal-I-overexpressing OV4 cells was EGFR. Based on these findings, additional analyses were performed to investigate the effect of ST6Gal-I on EGFR activation. To this end, we utilized, in addition to OV4 cells, the SKOV3 ovarian cancer cell line, engineered with both ST6Gal-I overexpression and knockdown, as well as the BxPC3 pancreatic cancer cell line with knockdown of ST6Gal-I. In all three cell lines, we determined that EGFR is a substrate of ST6Gal-I, and that the sialylation status of EGFR directly correlates with ST6Gal-I expression. Cells with differential ST6Gal-I expression were subsequently evaluated for EGFR tyrosine phosphorylation. Cells with high ST6Gal-I expression were found to have elevated levels of basal and EGF-induced EGFR activation. Conversely, knockdown of ST6Gal-I greatly attenuated EGFR activation, both basally and post EGF treatment. Finally, to illustrate the functional importance of ST6Gal-I in regulating EGFR-dependent survival, cells were

  5. Economic Analysis of First-Line Treatment with Erlotinib in an EGFR-Mutated Population with Advanced NSCLC.

    PubMed

    Vergnenegre, Alain; Massuti, Bartomeu; de Marinis, Filippo; Carcereny, Enric; Felip, Enriqueta; Do, Pascal; Sanchez, Jose Miguel; Paz-Arez, Luis; Chouaid, Christos; Rosell, Rafael

    2016-06-01

    The cost-effectiveness of first-line tyrosine kinase inhibitor therapy in epidermal growth factor receptor gene (EGFR)-mutated advanced-stage non-small cell lung cancer (NSCLC) is poorly documented. We therefore conducted a cost-effectiveness analysis of first-line treatment with erlotinib versus standard chemotherapy in European patients with advanced-stage EGFR-mutated NSCLC who were enrolled in the European Erlotinib versus Chemotherapy trial. The European Erlotinib versus Chemotherapy study was a multicenter, open-label, randomized phase III trial performed mainly in Spain, France, and Italy. We based our economic analysis on clinical data and data on resource consumption (drugs, drug administration, adverse events, and second-line treatments) collected during this trial. Utility values were derived from the literature. Incremental cost-effectiveness ratios were calculated for the first-line treatment phase and for the overall strategy from the perspective of the three participating countries. Sensitivity analyses were performed by selecting the main cost drivers. Compared with standard first-line chemotherapy, the first-line treatment with erlotinib was cost saving (€7807, €17,311, and €19,364 for Spain, Italy and France, respectively) and yielded a gain of 0.117 quality-adjusted life-years. A probabilistic sensitivity analysis indicated that, given a willingness to pay at least €90,000 for 1 quality-adjusted life-year, the probability that a strategy of first-line erlotinib would be cost-effective was 100% in France, 100% in Italy, and 99.8% in Spain. This economic analysis shows that first-line treatment with erlotinib, versus standard chemotherapy, is a dominant strategy for EGFR-mutated advanced-stage NSCLC in three European countries. Copyright © 2016 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  6. Signaling through the Phosphatidylinositol 3-Kinase (PI3K)/Mammalian Target of Rapamycin (mTOR) Axis Is Responsible for Aerobic Glycolysis mediated by Glucose Transporter in Epidermal Growth Factor Receptor (EGFR)-mutated Lung Adenocarcinoma*

    PubMed Central

    Makinoshima, Hideki; Takita, Masahiro; Saruwatari, Koichi; Umemura, Shigeki; Obata, Yuuki; Ishii, Genichiro; Matsumoto, Shingo; Sugiyama, Eri; Ochiai, Atsushi; Abe, Ryo; Goto, Koichi; Esumi, Hiroyasu; Tsuchihara, Katsuya

    2015-01-01

    Oncogenic epidermal growth factor receptor (EGFR) signaling plays an important role in regulating global metabolic pathways, including aerobic glycolysis, the pentose phosphate pathway (PPP), and pyrimidine biosynthesis. However, the molecular mechanism by which EGFR signaling regulates cancer cell metabolism is still unclear. To elucidate how EGFR signaling is linked to metabolic activity, we investigated the involvement of the RAS/MEK/ERK and PI3K/AKT/mammalian target of rapamycin (mTOR) pathways on metabolic alteration in lung adenocarcinoma (LAD) cell lines with activating EGFR mutations. Although MEK inhibition did not alter lactate production and the extracellular acidification rate, PI3K/mTOR inhibitors significantly suppressed glycolysis in EGFR-mutant LAD cells. Moreover, a comprehensive metabolomics analysis revealed that the levels of glucose 6-phosphate and 6-phosphogluconate as early metabolites in glycolysis and PPP were decreased after inhibition of the PI3K/AKT/mTOR pathway, suggesting a link between PI3K signaling and the proper function of glucose transporters or hexokinases in glycolysis. Indeed, PI3K/mTOR inhibition effectively suppressed membrane localization of facilitative glucose transporter 1 (GLUT1), which, instead, accumulated in the cytoplasm. Finally, aerobic glycolysis and cell proliferation were down-regulated when GLUT1 gene expression was suppressed by RNAi. Taken together, these results suggest that PI3K/AKT/mTOR signaling is indispensable for the regulation of aerobic glycolysis in EGFR-mutated LAD cells. PMID:26023239

  7. Targeting SHP2 for EGFR inhibitor resistant non-small cell lung carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Jie; Zeng, Li-Fan; Shen, Weihua

    Highlights: •SHP2 is required for EGFR inhibitor resistant NSCLC H1975 cell proliferation. •SHP2 inhibitor blocks EGF-stimulated ERK1/2 activation and proliferation. •SHP2 inhibitor exhibits marked anti-tumor activity in H1975 xenograft mice. •SHP2 inhibitor synergizes with PI3K inhibitor in suppressing cell growth. •Targeting SHP2 represents a novel strategy for EGFR inhibitor resistant NSCLCs. -- Abstract: Targeted therapy with inhibitors of epidermal growth factor receptor (EGFR) has produced a noticeable benefit to non-small cell lung cancer (NSCLC) patients whose tumors carry activating mutations (e.g. L858R) in EGFR. Unfortunately, these patients develop drug resistance after treatment, due to acquired secondary gatekeeper mutations in EGFRmore » (e.g. T790M). Given the critical role of SHP2 in growth factor receptor signaling, we sought to determine whether targeting SHP2 could have therapeutic value for EGFR inhibitor resistant NSCLC. We show that SHP2 is required for EGF-stimulated ERK1/2 phosphorylation and proliferation in EGFR inhibitor resistant NSCLC cell line H1975, which harbors the EGFR T790M/L858R double-mutant. We demonstrate that treatment of H1975 cells with II-B08, a specific SHP2 inhibitor, phenocopies the observed growth inhibition and reduced ERK1/2 activation seen in cells treated with SHP2 siRNA. Importantly, we also find that II-B08 exhibits marked anti-tumor activity in H1975 xenograft mice. Finally, we observe that combined inhibition of SHP2 and PI3K impairs both the ERK1/2 and PI3K/AKT signaling axes and produces significantly greater effects on repressing H1975 cell growth than inhibition of either protein individually. Collectively, these results suggest that targeting SHP2 may represent an effective strategy for treatment of EGFR inhibitor resistant NSCLCs.« less

  8. Combination therapy of apatinib with icotinib for primary acquired icotinib resistance in patients with advanced pulmonary adenocarcinoma with EGFR mutation.

    PubMed

    Xia, Pinghui; Cao, Jinlin; Lv, Xiayi; Wang, Luming; Lv, Wang; Hu, Jian

    2018-05-01

    Multi-targeted agents represent the next generation of targeted therapies for solid tumors, and patients with acquired resistance to EGFR-tyrosine kinase inhibitors (TKIs) may also benefit from their combination with TKI therapy. Third-generation targeted drugs, such as osimertinib, are very expensive, thus a more economical solution is required. The aim of this study was to explore the use of apatinib combined with icotinib therapy for primary acquired resistance to icotinib in three patients with advanced pulmonary adenocarcinoma with EGFR mutations. We achieved favorable oncologic outcomes in all three patients, with progression-free survival of four to six months. Unfortunately, the patients ultimately had to cease combination therapy because of intolerable adverse effects of hand and foot syndrome and oral ulcers. Combination therapy of apatinib with icotinib for primary acquired resistance to icotinib may be an option for patients with advanced pulmonary adenocarcinoma with EGFR mutations, but physicians must also be aware of the side effects caused by such therapy. © 2018 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  9. Evaluation of gefitinib efficacy according to body mass index, body surface area, and body weight in patients with EGFR-mutated advanced non-small cell lung cancer.

    PubMed

    Imai, Hisao; Kuwako, Tomohito; Kaira, Kyoichi; Masuda, Tomomi; Miura, Yosuke; Seki, Kaori; Sakurai, Reiko; Utsugi, Mitsuyoshi; Shimizu, Kimihiro; Sunaga, Noriaki; Tomizawa, Yoshio; Ishihara, Shinichi; Ishizuka, Takao; Mogi, Akira; Hisada, Takeshi; Minato, Koichi; Takise, Atsushi; Saito, Ryusei; Yamada, Masanobu

    2017-03-01

    In patients with epidermal growth factor receptor (EGFR)-mutated, advanced, non-small cell lung cancer (NSCLC), common gefitinib-sensitive EGFR mutations that predict a greater response to therapy include the exon 19 deletion and L858R point mutation. The objective of this study was to evaluate whether body surface area (BSA), body weight (BW), and body mass index (BMI) affect gefitinib efficacy in such patients. The medical charts of 138 consecutive patients with advanced NSCLC harboring sensitive EGFR mutations, who underwent gefitinib treatment, were reviewed. The median BSA and BW were used as cutoff values to evaluate their impact on gefitinib efficacy. BMI was categorized as underweight (<18.5 kg/m 2 ), normal (18.5-25 kg/m 2 ), and overweight (≥25 kg/m 2 ). The median BSA and BW were 1.48 m 2 and 53 kg, respectively. The overall response rate, progression-free survival (PFS), and overall survival (OS) were 65.2%, 12.2, and 24.2 months, respectively. There were no significant differences in clinical outcomes according to BSA, BW, or BMI alone. Subgroup analysis based on the mutation type and BSA revealed no significant differences in PFS between the groups; however, the median OS in those with exon 19 deletion combined with low BSA was significantly favorable compared with the other groups. Gefitinib efficacy in patients with NSCLC harboring sensitive EGFR mutations did not differ according to BSA, BW, and BMI. However, OS was superior in patients with both the exon 19 deletion and low BSA.

  10. EGFR and HER2 Activate Rigidity Sensing Only on Rigid Matrices

    PubMed Central

    Saxena, Mayur; Liu, Shuaimin; Yang, Bo; Hajal, Cynthia; Changede, Rishita; Hu, Junqiang

    2017-01-01

    Epidermal growth factor receptor (EGFR) interacts with integrins during cell spreading and motility, but little is known about the role of EGFR in these mechanosensing processes. Here we show, using two different cell lines, that in serum- and EGF-free conditions, EGFR or HER2 activity increase spreading and rigidity-sensing contractions on rigid, but not soft, substrates. Contractions peak after 15–20 min, but diminish by 10-fold after 4 hours. Addition of EGF at that point increases spreading and contractions, but this can be blocked by myosin-II inhibition. We further show that EGFR and HER2 are activated through phosphorylation by Src family kinases (SFK). On soft surfaces, neither EGFR inhibition nor EGF stimulation have any effect on cell motility. Thus, EGFR or HER2 can catalyse rigidity sensing after associating with nascent adhesions under rigidity-dependent tension downstream of SFK activity. This has broad implications for the roles of EGFR and HER2 in absence of EGF both for normal and cancerous growth. PMID:28459445

  11. Epidermal growth factor receptor mutation in gastric cancer.

    PubMed

    Liu, Zhimin; Liu, Lina; Li, Mei; Wang, Zhaohui; Feng, Lu; Zhang, Qiuping; Cheng, Shihua; Lu, Shen

    2011-04-01

    Epidermal growth factor receptor (EGFR) and Kirsten-RAS (KRAS) mutations have been identified as predictors of response to EGFR tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer. We aimed to screen the mutations of both genes in gastric carcinoma to detect the suitability of EGFR TKIs for patients with gastric carcinoma. We screened EGFR mutation in exons 19-21 and KRAS mutation in exon 2 in 58 gastric adenocarcinomas from China using high resolution melting analysis (HRMA). Positive samples were confirmed by DNA sequencing. Three EGFR missense mutations (5.2%) and 22 single nucleotide polymorphisms (SNP, Q787Q, 37.9%) were identified. To our knowledge, we report for the first time three mutation patterns of EGFR, Y801C, L858R and G863D, in gastric carcinoma. Two samples with EGFR mutation were mucinous adenocarcinoma. These three samples were collected from male patients aged over 75 years old. The frequency of KRAS mutation was 10.3% (6/58). The exclusiveness of EGFR and KRAS mutations was proven for the first time in gastric cancer. Gastric carcinoma of the mucinous adenocarcinoma type collected from older male patients may harbour EGFR mutations. The small subset of gastric adenocarcinoma patients may respond to EGFR TKIs.

  12. Cross-talk between AMPK and EGFR dependent Signaling in Non-Small Cell Lung Cancer

    PubMed Central

    Praveen, Paurush; Hülsmann, Helen; Sültmann, Holger; Kuner, Ruprecht; Fröhlich, Holger

    2016-01-01

    Lung cancers globally account for 12% of new cancer cases, 85% of these being Non Small Cell Lung Cancer (NSCLC). Therapies like erlotinib target the key player EGFR, which is mutated in about 10% of lung adenocarcinoma. However, drug insensitivity and resistance caused by second mutations in the EGFR or aberrant bypass signaling have evolved as a major challenge in controlling these tumors. Recently, AMPK activation was proposed to sensitize NSCLC cells against erlotinib treatment. However, the underlying mechanism is largely unknown. In this work we aim to unravel the interplay between 20 proteins that were previously associated with EGFR signaling and erlotinib drug sensitivity. The inferred network shows a high level of agreement with protein-protein interactions reported in STRING and HIPPIE databases. It is further experimentally validated with protein measurements. Moreover, predictions derived from our network model fairly agree with somatic mutations and gene expression data from primary lung adenocarcinoma. Altogether our results support the role of AMPK in EGFR signaling and drug sensitivity. PMID:27279498

  13. Lack of association between the BIM deletion polymorphism and the risk of lung cancer with and without EGFR mutations.

    PubMed

    Ebi, Hiromichi; Oze, Isao; Nakagawa, Takayuki; Ito, Hidemi; Hosono, Satoyo; Matsuda, Fumihiko; Takahashi, Meiko; Takeuchi, Shinji; Sakao, Yukinori; Hida, Toyoaki; Faber, Anthony C; Tanaka, Hideo; Yatabe, Yasushi; Mitsudomi, Tetsuya; Yano, Seiji; Matsuo, Keitaro

    2015-01-01

    The BIM deletion polymorphism in intron 2 was found in a significant percent of the Asian population. Patients with epidermal growth factor receptor (EGFR) mutant lung cancers harboring this BIM polymorphism have shorter progression free survival and overall response rates to EGFR tyrosine kinase inhibitors. However, the association between the BIM deletion polymorphism and lung cancer risk is unknown. The BIM deletion polymorphism was screened by polymerase chain reaction in 765 lung cancer cases and 942 healthy individuals. Carriers possessing one allele of the BIM polymorphism were observed in 13.0% of control cases and 12.8% of lung cancer cases, similar to incidence rates reported earlier in healthy individuals. Homozygote for the BIM polymorphism was observed in four of 942 healthy controls and three of 765 lung cancer cases. The frequency of the BIM deletion polymorphism in lung cancer patients was not related to age, sex, smoking history, or family history of lung cancer. The BIM deletion polymorphism was found in 30 of 212 patients with EGFR wild type lung cancers and 16 of 120 patients with EGFR mutant lung cancers. The frequency of the BIM polymorphism is similar between cancers with wild type EGFR and mutated EGFR (p = 0.78). The BIM deletion polymorphism was not associated with lung cancer susceptibility. Furthermore, the BIM polymorphism is not associated with EGFR mutant lung cancer.

  14. Incorporating Erlotinib or Irinotecan Plus Cisplatin into Chemoradiotherapy for Stage III Non-small Cell Lung Cancer According to EGFR Mutation Status.

    PubMed

    Lee, Youngjoo; Han, Ji-Youn; Moon, Sung Ho; Nam, Byung-Ho; Lim, Kun Young; Lee, Geon Kook; Kim, Heung Tae; Yun, Tak; An, Hye Jin; Lee, Jin Soo

    2017-10-01

    Concurrent chemoradiotherapy (CCRT) is the standard care for stage III non-small cell lung cancer (NSCLC) patients; however, a more effective regimen is needed to improve the outcome by better controlling occult metastases. We conducted two parallel randomized phase II studies to incorporate erlotinib or irinotecan-cisplatin (IP) into CCRT for stage III NSCLC depending on epidermal growth factor receptor (EGFR) mutation status. Patients with EGFR-mutant tumors were randomized to receive three cycles of erlotinib first and then either CCRT with erlotinib followed by erlotinib (arm A) or CCRT with IP only (arm B). Patients with EGFR unknown or wild-type tumors were randomized to receive either three cycles of IP before (arm C) or after CCRT with IP (arm D). Seventy-three patients were screened and the study was closed early because of slow accrual after 59 patients were randomized. Overall, there were seven patients in arm A, five in arm B, 22 in arm C, and 25 in arm D. The response rate was 71.4% and 80.0% for arm A and B, and 70.0% and 73.9% for arm C and D. The median overall survival (OS) was 39.3 months versus 31.2 months for arm A and B (p=0.442), and 16.3 months versus 25.3 months for arm C and D (p=0.050). Patients with sensitive EGFR mutations had significantly longer OS than EGFR-wild patients (74.8 months vs. 25.3 months, p=0.034). There were no unexpected toxicities. Combined-modality treatment by molecular diagnostics is feasible in stage III NSCLC. EGFR-mutant patients appear to be a distinct subset with longer survival.

  15. Gefitinib and EGFR Gene Copy Number Aberrations in Esophageal Cancer.

    PubMed

    Petty, Russell D; Dahle-Smith, Asa; Stevenson, David A J; Osborne, Aileen; Massie, Doreen; Clark, Caroline; Murray, Graeme I; Dutton, Susan J; Roberts, Corran; Chong, Irene Y; Mansoor, Wasat; Thompson, Joyce; Harrison, Mark; Chatterjee, Anirban; Falk, Stephen J; Elyan, Sean; Garcia-Alonso, Angel; Fyfe, David Walter; Wadsley, Jonathan; Chau, Ian; Ferry, David R; Miedzybrodzka, Zosia

    2017-07-10

    Purpose The Cancer Esophagus Gefitinib trial demonstrated improved progression-free survival with the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor gefitinib relative to placebo in patients with advanced esophageal cancer who had disease progression after chemotherapy. Rapid and durable responses were observed in a minority of patients. We hypothesized that genetic aberration of the EGFR pathway would identify patients benefitting from gefitinib. Methods A prespecified, blinded molecular analysis of Cancer Esophagus Gefitinib trial tumors was conducted to compare efficacy of gefitinib with that of placebo according to EGFR copy number gain (CNG) and EGFR, KRAS, BRAF, and PIK3CA mutation status. EGFR CNG was determined by fluorescent in situ hybridization (FISH) using prespecified criteria and EGFR FISH-positive status was defined as high polysomy or amplification. Results Biomarker data were available for 340 patients. In EGFR FISH-positive tumors (20.2%), overall survival was improved with gefitinib compared with placebo (hazard ratio [HR] for death, 0.59; 95% CI, 0.35 to 1.00; P = .05). In EGFR FISH-negative tumors, there was no difference in overall survival with gefitinib compared with placebo (HR for death, 0.90; 95% CI, 0.69 to 1.18; P = .46). Patients with EGFR amplification (7.2%) gained greatest benefit from gefitinib (HR for death, 0.21; 95% CI, 0.07 to 0.64; P = .006). There was no difference in overall survival for gefitinib versus placebo for patients with EGFR, KRAS, BRAF, and PIK3CA mutations, or for any mutation versus none. Conclusion EGFR CNG assessed by FISH appears to identify a subgroup of patients with esophageal cancer who may benefit from gefitinib as a second-line treatment. Results of this study suggest that anti-EGFR therapies should be investigated in prospective clinical trials in different settings in EGFR FISH-positive and, in particular, EGFR-amplified esophageal cancer.

  16. Different EGFR gene mutations in two patients with synchronous multiple lung cancers: A case report

    PubMed Central

    Sakai, Hiroki; Kimura, Hiroyuki; Tsuda, Masataka; Wakiyama, Yoichi; Miyazawa, Tomoyuki; Marushima, Hideki; Kojima, Koji; Hoshikawa, Masahiro; Takagi, Masayuki; Nakamura, Haruhiko

    2017-01-01

    Routine clinical and pathological evaluations to determine the relationship between different lesions are often not completely conclusive. Interestingly, detailed genetic analysis of tumor samples may provide important additional information and identify second primary lung cancers. In the present study, we report cases of two synchronous lung adenocarcinomas composed of two distinct pathological subtypes with different EGFR gene mutations: a homozygous deletion in exon 19 of the papillary adenocarcinoma subtype and a point mutation of L858R in exon 21 of the tubular adenocarcinoma. The present report highlights the clinical importance of molecular cancer biomarkers to guide management decisions in cases involving multiple lung tumors. PMID:29090842

  17. Pathogenic Mutations Associated with Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy Differently Affect Jagged1 Binding and Notch3 Activity via the RBP/JK Signaling Pathway

    PubMed Central

    Joutel, Anne; Monet, Marie; Domenga, Valérie; Riant, Florence; Tournier-Lasserve, Elisabeth

    2004-01-01

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is an inherited vascular dementia characterized by the degeneration of smooth-muscle cells in small cerebral arteries. CADASIL is caused by mutations in NOTCH3, one of the four mammalian homologs to the Drosophila melanogaster NOTCH gene. Disease-associated mutations are distributed throughout the 34 epidermal growth factor–like repeats (EGFRs) that compose the extracellular domain of the Notch3 receptor and result in a loss or a gain of a cysteine residue in one of these EGFRs. In human adults, Notch3 expression is highly restricted to vascular smooth-muscle cells. In patients with CADASIL, there is an abnormal accumulation of Notch3 in the vessel. Molecular pathways linking NOTCH3 mutations to degeneration of vascular smooth-muscle cells are as yet poorly understood. In this study, we investigated the effect of CADASIL mutations on Notch3 activity. We studied five naturally occurring mutations: R90C and C212S, located in the previously identified mutational hotspot EGFR2–5; C428S, shown in this study to be located in the ligand-binding domain EGFR10–11; and C542Y and R1006C, located in EGFR13 and EGFR26, respectively. All five mutant proteins were correctly processed. The C428S and C542Y mutant receptors exhibited a significant reduction in Jagged1-induced transcriptional activity of a RBP/JK responsive luciferase reporter, relative to wild-type Notch3. Impaired signaling activity of these two mutants arose through different mechanisms; the C428S mutant lost its Jagged1-binding ability, whereas C542Y retained it but exhibited an impaired presentation to the cell surface. In contrast, the R90C, C212S, and R1006C mutants retained the ability to bind Jagged1 and were associated with apparently normal levels of signaling activity. We conclude that mutations in Notch3 differently affect Jagged1 binding and Notch3 signaling via the RBP/JK pathway. PMID:14714274

  18. EGFR oligomerization organizes kinase-active dimers into competent signalling platforms

    PubMed Central

    Needham, Sarah R.; Roberts, Selene K.; Arkhipov, Anton; Mysore, Venkatesh P.; Tynan, Christopher J.; Zanetti-Domingues, Laura C.; Kim, Eric T.; Losasso, Valeria; Korovesis, Dimitrios; Hirsch, Michael; Rolfe, Daniel J.; Clarke, David T.; Winn, Martyn D.; Lajevardipour, Alireza; Clayton, Andrew H. A.; Pike, Linda J.; Perani, Michela; Parker, Peter J.; Shan, Yibing; Shaw, David E.; Martin-Fernandez, Marisa L.

    2016-01-01

    Epidermal growth factor receptor (EGFR) signalling is activated by ligand-induced receptor dimerization. Notably, ligand binding also induces EGFR oligomerization, but the structures and functions of the oligomers are poorly understood. Here, we use fluorophore localization imaging with photobleaching to probe the structure of EGFR oligomers. We find that at physiological epidermal growth factor (EGF) concentrations, EGFR assembles into oligomers, as indicated by pairwise distances of receptor-bound fluorophore-conjugated EGF ligands. The pairwise ligand distances correspond well with the predictions of our structural model of the oligomers constructed from molecular dynamics simulations. The model suggests that oligomerization is mediated extracellularly by unoccupied ligand-binding sites and that oligomerization organizes kinase-active dimers in ways optimal for auto-phosphorylation in trans between neighbouring dimers. We argue that ligand-induced oligomerization is essential to the regulation of EGFR signalling. PMID:27796308

  19. Comparison of cross-platform technologies for EGFR T790M testing in patients with non-small cell lung cancer

    PubMed Central

    Li, Xuefei; Zhou, Caicun

    2017-01-01

    Somatic mutations in the gene encoding epidermal growth factor receptor (EGFR) play an important role in determining targeted treatment modalities in non-small cell lung cancer (NSCLC). The EGFR T790M mutation emerges in approximately 50% of cases who acquire resistance to tyrosine kinase inhibitors. Detecting EGFR T790M mutation in tumor tissue is challenging due to heterogeneity of the tumor, low abundance of the mutation and difficulty for re-biopsy in patients with advanced disease. Alternatively, circulating tumor DNA (ctDNA) has been proposed as a non-invasive method for mutational analysis. The presence of EGFR mutations in ctDNA predicts response to the EGFR TKIs in the first-line setting. Molecular testing is now considered a standard care for NSCLC. The advent of standard commercially available kits and targeted mutational analysis has revolutionized the accuracy of mutation detection platforms for detection of EGFR mutations. Our review provides an overview of various commonly used platforms for detecting EGFR T790M mutation in tumor tissue and plasma. PMID:29246024

  20. Effects of polycyclic aromatic compounds in fine particulate matter generated from household coal combustion on response to EGFR mutations in vitro.

    PubMed

    Ho, Kin-Fai; Chang, Chih-Cheng; Tian, Linwei; Chan, Chi-Sing; Musa Bandowe, Benjamin A; Lui, Ka-Hei; Lee, Kang-Yun; Chuang, Kai-Jen; Liu, Chien-Ying; Ning, Zhi; Chuang, Hsiao-Chi

    2016-11-01

    Induction of PM 2.5 -associated lung cancer in response to EGFR-tyrosine kinase inhibitors (EGFR-TKI) remains unclear. Polycyclic aromatic hydrocarbons (PAHs) and their polar derivatives (oxygenated PAHs: OPAHs and azaarenes: AZAs) were characterized in fine particulates (PM 2.5 ) emitted from indoor coal combustion. Samples were collected in Xuanwei (Yunnan Province), a region in China with a high rate of lung cancer. Human lung adenocarcinoma cells A549 (with wild-type EGFR) and HCC827 (with EGFR mutation) were exposed to the PM 2.5 , followed by treatment with EGFR-TKI. Two samples showed significant and dose-dependent reduction in the cell viability in A549. EGFR-TKI further demonstrated significantly decreased in cell viability in A549 after exposure to the coal emissions. Chrysene and triphenylene, dibenzo[a,h]anthracene, benzo[ghi]perylene, azaarenes and oxygenated polycyclic aromatic hydrocarbons (carbonyl-OPAHs) were all associated with EGFR-TKI-dependent reduced cell viability after 72-h exposure to the PM 2.5 . The findings suggest the coal emissions could influence the response of EGFR-TKI in lung cancer cells in Xuanwei. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Involvement of lipid rafts in adhesion-induced activation of Met and EGFR.

    PubMed

    Lu, Ying-Che; Chen, Hong-Chen

    2011-10-27

    Cell adhesion has been shown to induce activation of certain growth factor receptors in a ligand-independent manner. However, the mechanism for such activation remains obscure. Human epidermal carcinoma A431 cells were used as a model to examine the mechanism for adhesion-induced activation of hepatocyte growth factor receptor Met and epidermal growth factor receptor (EGFR). The cells were suspended and replated on culture dishes under various conditions. The phosphorylation of Met at Y1234/1235 and EGFR at Y1173 were used as indicators for their activation. The distribution of the receptors and lipid rafts on the plasma membrane were visualized by confocal fluorescent microscopy and total internal reflection microscopy. We demonstrate that Met and EGFR are constitutively activated in A431 cells, which confers proliferative and invasive potentials to the cells. The ligand-independent activation of Met and EGFR in A431 cells relies on cell adhesion to a substratum, but is independent of cell spreading, extracellular matrix proteins, and substratum stiffness. This adhesion-induced activation of Met and EGFR cannot be attributed to Src activation, production of reactive oxygen species, and the integrity of the cytoskeleton. In addition, we demonstrate that Met and EGFR are independently activated upon cell adhesion. However, partial depletion of Met and EGFR prevents their activation upon cell adhesion, suggesting that overexpression of the receptors is a prerequisite for their self-activation upon cell adhesion. Although Met and EGFR are largely distributed in 0.04% Triton-insoluble fractions (i.e. raft fraction), their activated forms are detected mainly in 0.04% Triton-soluble fractions (i.e. non-raft fraction). Upon cell adhesion, lipid rafts are accumulated at the cell surface close to the cell-substratum interface, while Met and EGFR are mostly excluded from the membrane enriched by lipid rafts. Our results suggest for the first time that cell adhesion to a

  2. Signaling through the Phosphatidylinositol 3-Kinase (PI3K)/Mammalian Target of Rapamycin (mTOR) Axis Is Responsible for Aerobic Glycolysis mediated by Glucose Transporter in Epidermal Growth Factor Receptor (EGFR)-mutated Lung Adenocarcinoma.

    PubMed

    Makinoshima, Hideki; Takita, Masahiro; Saruwatari, Koichi; Umemura, Shigeki; Obata, Yuuki; Ishii, Genichiro; Matsumoto, Shingo; Sugiyama, Eri; Ochiai, Atsushi; Abe, Ryo; Goto, Koichi; Esumi, Hiroyasu; Tsuchihara, Katsuya

    2015-07-10

    Oncogenic epidermal growth factor receptor (EGFR) signaling plays an important role in regulating global metabolic pathways, including aerobic glycolysis, the pentose phosphate pathway (PPP), and pyrimidine biosynthesis. However, the molecular mechanism by which EGFR signaling regulates cancer cell metabolism is still unclear. To elucidate how EGFR signaling is linked to metabolic activity, we investigated the involvement of the RAS/MEK/ERK and PI3K/AKT/mammalian target of rapamycin (mTOR) pathways on metabolic alteration in lung adenocarcinoma (LAD) cell lines with activating EGFR mutations. Although MEK inhibition did not alter lactate production and the extracellular acidification rate, PI3K/mTOR inhibitors significantly suppressed glycolysis in EGFR-mutant LAD cells. Moreover, a comprehensive metabolomics analysis revealed that the levels of glucose 6-phosphate and 6-phosphogluconate as early metabolites in glycolysis and PPP were decreased after inhibition of the PI3K/AKT/mTOR pathway, suggesting a link between PI3K signaling and the proper function of glucose transporters or hexokinases in glycolysis. Indeed, PI3K/mTOR inhibition effectively suppressed membrane localization of facilitative glucose transporter 1 (GLUT1), which, instead, accumulated in the cytoplasm. Finally, aerobic glycolysis and cell proliferation were down-regulated when GLUT1 gene expression was suppressed by RNAi. Taken together, these results suggest that PI3K/AKT/mTOR signaling is indispensable for the regulation of aerobic glycolysis in EGFR-mutated LAD cells. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. A comparison of QuantStudio™ 3D Digital PCR and ARMS-PCR for measuring plasma EGFR T790M mutations of NSCLC patients.

    PubMed

    Feng, Qin; Gai, Fei; Sang, Yaxiong; Zhang, Jie; Wang, Ping; Wang, Yue; Liu, Bing; Lin, Dongmei; Yu, Yang; Fang, Jian

    2018-01-01

    The AURA3 clinical trial has shown that advanced non-small cell lung cancer (NSCLC) patients with EGFR T790M mutations in circulating tumor DNA (ctDNA) could benefit from osimertinib. The aim of this study was to assess the usefulness of QuantStudio™ 3D Digital PCR System platform for the detection of plasma EGFR T790M mutations in NSCLC patients, and compare the performances of 3D Digital PCR and ARMS-PCR. A total of 119 Chinese patients were enrolled in this study. Mutant allele frequency of plasma EGFR T790M was detected by 3D Digital PCR, then 25 selected samples were verified by ARMS-PCR and four of them were verified by next generation sequencing (NGS). In total, 52.94% (69/119) had EGFR T790M mutations detected by 3D Digital PCR. In 69 positive samples, the median mutant allele frequency (AF) was 1.09% and three cases presented low concentration (AF <0.1%). Limited by the amount of plasma DNA, 17 samples (AF <2.5%) and eight samples (T790M-) were selected for verification by ARMS-PCR. Four of those samples were verified by NGS as a third verification method. Among the selected 17 positive cases, ten samples presented mutant allele frequency <0.5%, and seven samples presented intermediate mutant allele frequency (0.5% AF 2.5%). However, only three samples (3/17) were identified as positive by ARMS-PCR, namely, P6 (AF =1.09%), P7 (AF =2.09%), and P8 (AF =2.21%). It is worth mentioning that sample P9 (AF =2.05%, analyzed by 3D Digital PCR) was identified as T790M- by ARMS-PCR. Four samples were identified as T790M+ by both NGS and 3D Digital PCR, and typically three samples (3/4) presented at a low ratio (AF <0.5%). Our study demonstrated that 3D Digital PCR is a novel method with high sensitivity and specificity to detect EGFR T790M mutation in plasma.

  4. Temporal Resolution of Autophosphorylation for Normal and Oncogenic Forms of EGFR and Differential Effects of Gefitinib†

    PubMed Central

    Kim, Youngjoo; Li, Zhimin; Apetri, Mihaela; Luo, BeiBei; Settleman, Jeffrey E.; Anderson, Karen S.

    2012-01-01

    Epidermal growth factor receptor (EGFR) is a member of the ErbB family of receptor tyrosine kinases (RTK). EGFR overexpression or mutation in many different forms of cancers has highlighted its role as an important therapeutic target. Gefitinib, the first small molecule inhibitor of EGFR kinase function to be approved for the treatment of non-small cell lung cancer (NSCLC) by the FDA, demonstrates clinical activity primarily in patients with tumors that harbor somatic kinase domain mutations in EGFR. Here, we compare wild-type EGFR autophosphorylation kinetics to the L834R (also called L858R) EGFR form, one of the most common mutations in lung cancer patients. Using rapid chemical quench, time resolved electrospray mass spectrometry (ESI-MS) and western blot analyses, we examined the order of autophosphorylation in wild-type (WT) and L834R EGFR and the effect of gefitinib (Iressa ™) on the phosphorylation of individual tyrosines. These studies establish that there is a temporal order of autophosphorylation of key tyrosines involved in downstream signaling for WT EGFR and a loss of order for the oncogenic L834R mutant. These studies also reveal unique signature patterns of drug sensitivity for inhibition of tyrosine autophosphorylation by gefitinib; distinct for WT and oncogenic L834R mutant forms of EGFR. Fluorescence studies show that for WT EGFR, the binding affinity for gefitinib is weaker for the phosphorylated protein while for the oncogenic mutant, L834R EGFR, the binding affinity of gefitinib is substantially enhanced and likely contributes to the efficacy observed clinically. This mechanistic information is important in understanding the molecular details underpinning clinical observations as well as to aid in the design of more potent and selective EGFR inhibitors. PMID:22657099

  5. Prognostic factors of afatinib as a first-line therapy for advanced EGFR mutation-positive lung adenocarcinoma: a real-world, large cohort study.

    PubMed

    Liang, Sheng-Kai; Lee, Meng-Rui; Liao, Wei-Yu; Ho, Chao-Chi; Ko, Jen-Chung; Shih, Jin-Yuan

    2018-05-04

    Lung cancer remains the primary cause of cancer-related mortality worldwide. Several treatment modalities are available for lung cancer, including surgery, radiation, and chemotherapy. Among the chemotherapeutics available, afatinib has been shown to be effective for those with epidermal growth factor receptor ( EGFR ) mutation-positive lung adenocarcinoma. Herein, we analyzed the factors affecting the prognosis of patients who received afatinib as a first-line therapy for advanced EGFR mutation-positive lung adenocarcinoma in the real-world setting. Patients who received afatinib as a first-line therapy and were reimbursed by the National Health Insurance were recruited in this study. Data on patient characteristics and treatment courses were collected. In total, 259 patients were enrolled (median follow-up, 22.0 months). Of them, 82 (31.7%) were identified to have brain metastases at baseline, which were associated with poor Eastern Cooperative Oncology Group performance status, high incidence of central nervous system progression, and short overall survival. However, the results of our analysis showed that overall survival was not affected by reductions in the afatinib dosage or any upfront local treatments for brain tumors. Multivariate analyses showed that brain metastases at diagnosis and treatment response to afatinib are two important prognostic factors for the overall survival of patients with EGFR mutation-positive lung adenocarcinoma.

  6. Targeting the Golgi apparatus to overcome acquired resistance of non-small cell lung cancer cells to EGFR tyrosine kinase inhibitors

    PubMed Central

    Katayama, Ryohei; Fang, Siyang; Tsutsui, Saki; Akatsuka, Akinobu; Shan, Mingde; Choi, Hyeong-Wook; Fujita, Naoya; Yoshimatsu, Kentaro; Shiina, Isamu; Yamori, Takao; Dan, Shingo

    2018-01-01

    Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (EGFR-TKIs) were demonstrated to provide survival benefit in patients with non-small cell lung cancer (NSCLC) harboring activating mutations of EGFR; however, emergence of acquired resistance to EGFR-TKIs has been shown to cause poor outcome. To overcome the TKI resistance, drugs with different mode of action are required. We previously reported that M-COPA (2-methylcoprophilinamide), a Golgi disruptor, suppressed the growth of gastric cancers overexpressing receptor tyrosine kinases (RTKs) such as hepatocyte growth factor receptor (MET) via downregulating their cell surface expression. In this study, we examined the antitumor effect of M-COPA on NSCLC cells with TKI resistance. As a result, M-COPA effectively downregulated cell surface EGFR and its downstream signals, and finally exerted in vivo antitumor effect in NSCLC cells harboring secondary (T790M/del19) and tertiary (C797S/T790M/del19) mutated EGFR, which exhibit acquired resistance to first- and third generation EGFR-TKIs, respectively. M-COPA also downregulated MET expression potentially involved in the acquired resistance to EGFR-TKIs via bypassing the EGFR pathway blockade. These results provide the first evidence that targeting the Golgi apparatus might be a promising therapeutic strategy to overcome the vicious cycle of TKI resistance in EGFR-mutated NSCLC cells via downregulating cell surface RTK expression. PMID:29416720

  7. Structure- and reactivity-based development of covalent inhibitors of the activating and gatekeeper mutant forms of the epidermal growth factor receptor (EGFR).

    PubMed

    Ward, Richard A; Anderton, Mark J; Ashton, Susan; Bethel, Paul A; Box, Matthew; Butterworth, Sam; Colclough, Nicola; Chorley, Christopher G; Chuaqui, Claudio; Cross, Darren A E; Dakin, Les A; Debreczeni, Judit É; Eberlein, Cath; Finlay, M Raymond V; Hill, George B; Grist, Matthew; Klinowska, Teresa C M; Lane, Clare; Martin, Scott; Orme, Jonathon P; Smith, Peter; Wang, Fengjiang; Waring, Michael J

    2013-09-12

    A novel series of small-molecule inhibitors has been developed to target the double mutant form of the epidermal growth factor receptor (EGFR) tyrosine kinase, which is resistant to treatment with gefitinib and erlotinib. Our reported compounds also show selectivity over wild-type EGFR. Guided by molecular modeling, this series was evolved to target a cysteine residue in the ATP binding site via covalent bond formation and demonstrates high levels of activity in cellular models of the double mutant form of EGFR. In addition, these compounds show significant activity against the activating mutations, which gefitinib and erlotinib target and inhibition of which gives rise to their observed clinical efficacy. A glutathione (GSH)-based assay was used to measure thiol reactivity toward the electrophilic functionality of the inhibitor series, enabling both the identification of a suitable reactivity window for their potency and the development of a reactivity quantitative structure-property relationship (QSPR) to support design.

  8. Efficacy according to blind independent central review: Post-hoc analyses from the phase III, randomized, multicenter, IPASS study of first-line gefitinib versus carboplatin/paclitaxel in Asian patients with EGFR mutation-positive advanced NSCLC.

    PubMed

    Wu, Yi-Long; Saijo, Nagahiro; Thongprasert, Sumitra; Yang, J C-H; Han, Baohui; Margono, Benjamin; Chewaskulyong, Busayamas; Sunpaweravong, Patrapim; Ohe, Yuichiro; Ichinose, Yukito; Yang, Jin-Ji; Mok, Tony S K; Young, Helen; Haddad, Vincent; Rukazenkov, Yuri; Fukuoka, Masahiro

    2017-02-01

    The Phase III, randomized, open-label IPASS study (NCT00322452) of first-line epidermal growth factor receptor tyrosine kinase inhibitor (EGFR TKI) gefitinib versus carboplatin/paclitaxel for Asian patients with advanced non-small-cell lung cancer (NSCLC) showed that investigator-assessed progression-free survival (PFS) and objective response rate (ORR) were significantly prolonged in patients with EGFR mutation-positive NSCLC who received gefitinib versus patients with EGFR mutation-negative NSCLC. We report post-hoc analyses of IPASS data by blind independent central review (BICR), performed at the request of the US FDA, in a subset of patients with EGFR mutation-positive NSCLC. Eligible patients (aged ≥18 years; histologically/cytologically confirmed Stage IIB/IV adenocarcinoma NSCLC; non- or former light-smokers; treatment-naïve) were randomly assigned 1:1 to gefitinib (250mg/day) or carboplatin (dose calculated to produce an area under the curve of 5 or 6 mg/mL/minute)/paclitaxel (200mg/m 2 ). Primary endpoint: PFS. BICR analyses included PFS, ORR, and duration of response (DoR). Scans from 186 IPASS patients (gefitinib n=88, carboplatin/paclitaxel n=98) with EGFR mutation-positive NSCLC were available for BICR. Consistent with investigator-assessed results, in patients with EGFR mutation-positive NSCLC: PFS (hazard ratio 0.54; 95% confidence interval [CI] 0.38, 0.79; p=0.0012) and ORR (odds ratio 3.00; 95% CI 1.63, 5.54; p=0.0004) were significantly longer with gefitinib versus carboplatin/paclitaxel. The median DoR by BICR was 9.6 months with gefitinib and 5.5 months with carboplatin/paclitaxel. BICR analysis of IPASS data support the original, investigator-assessed results. EGFR mutation-positive status remains a significant predictor of response to first-line TKI therapy. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Rate of EGFR mutation testing for patients with nonsquamous non-small-cell lung cancer with implementation of reflex testing by pathologists

    PubMed Central

    Cheema, P.K.; Raphael, S.; El-Maraghi, R.; Li, J.; McClure, R.; Zibdawi, L.; Chan, A.; Victor, J.C.; Dolley, A.; Dziarmaga, A.

    2017-01-01

    Background Testing for mutation of the EGFR (epidermal growth factor receptor) gene is a standard of care for patients with advanced nonsquamous non-small-cell lung cancer (nsclc). To improve timely access to EGFR results, a few centres implemented reflex testing, defined as a request for EGFR testing by the pathologist at the time of a nonsquamous nsclc diagnosis. We evaluated the impact of reflex testing on EGFR testing rates. Methods A retrospective observational review of the Web-based AstraZeneca Canada EGFR Database from 1 April 2010 to 31 March 2014 found centres within Ontario that had requested EGFR testing through the database and that had implemented reflex testing (with at least 2 years’ worth of data, including the pre- and post-implementation period). Results The 7 included centres had requested EGFR tests for 2214 patients. The proportion of pathologists requesting EGFR tests increased after implementation of reflex testing (53% vs. 4%); conversely, the proportion of medical oncologists requesting tests decreased (46% vs. 95%, p < 0.001). After implementation of reflex testing, the mean number of patients having EGFR testing per centre per month increased significantly [12.6 vs. 4.9 (range: 4.5–14.9), p < 0.001]. Before reflex testing, EGFR testing rates showed a significant monthly increase over time (1.37 more tests per month; 95% confidence interval: 1.19 to 1.55 tests; p < 0.001). That trend could not account for the observed increase with reflex testing, because an immediate increase in EGFR test requests was observed with the introduction of reflex testing (p = 0.003), and the overall trend was sustained throughout the post–reflex testing period (p < 0.001). Conclusions Reflex EGFR testing for patients with nonsquamous nsclc was successfully implemented at multiple centres and was associated with an increase in EGFR testing. PMID:28270720

  10. Consolidative local ablative therapy improves the survival of patients with synchronous oligometastatic NSCLC harboring EGFR activating mutation treated with first-line EGFR-TKIs.

    PubMed

    Xu, Qinghua; Zhou, Fei; Liu, Hui; Jiang, Tao; Li, Xuefei; Xu, Yaping; Zhou, Caicun

    2018-05-28

    The aim of the current study was to investigate whether consolidative local ablative therapy (LAT) can improve the survival of patients with stage IV EGFR-mutant NSCLC who have oligometastatic disease treated with first-line EGFR-TKI therapy. Patients with stage IV EGFR-mutant NSCLC and no more than five metastases within 2 months of diagnosis were identified. All patients were treated with first-line EGFR-TKIs. Consolidative LAT included radiotherapy, surgery or both. Overall survival (OS) and progression-free survival (PFS) were estimated by Kaplan-Meier curves. From October 2010 to May 2016, 145 patients were enrolled, including 51 (35.2%) who received consolidative LAT to all oligometastatic sites (All-LAT group), 55 (37.9%) who received consolidative LAT to either primary tumor or oligometastatic sites (Part-LAT group), and 39 (26.9%) who did not receive any consolidative LAT (Non-LAT group). The median PFS in All-LAT, Part-LAT, and Non-LAT group were 20.6, 15.6, and 13.9 months, respectively (P<0.001). The median OS in All-LAT, Part-LAT, and Non-LAT group were 40.9, 34.1, and 30.8 months, respectively (P<0.001). The difference was statistically significant between All-LAT group and Part-LAT or Non-LAT group but was not between Part-LAT and Non-LAT group. The median OS was significantly improved with consolidative LAT for primary tumor (40.5 versus 31.5 months, P<0.001), brain metastases (38.2 versus 29.2 months, P=0.002), adrenal metastases (37.1 versus 29.2 months, P =0.032). Adverse events (Grade ≥ 3) due to radiotherapy included pneumonitis (7.7%) and esophagitis (16.9%). The current study demonstrated that consolidative LAT to all metastatic sites was a feasible option for patients with EGFR-mutant oligometastatic NSCLC during first-line EGFR-TKI treatment, with significantly improved PFS and OS compared with consolidative LAT to partial sites or observation alone. Copyright © 2018. Published by Elsevier Inc.

  11. S100A9+ MDSC and TAM-mediated EGFR-TKI resistance in lung adenocarcinoma: the role of RELB.

    PubMed

    Feng, Po-Hao; Yu, Chih-Teng; Chen, Kuan-Yuan; Luo, Ching-Shan; Wu, Shen Ming; Liu, Chien-Ying; Kuo, Lu Wei; Chan, Yao-Fei; Chen, Tzu-Tao; Chang, Chih-Cheng; Lee, Chun-Nin; Chuang, Hsiao-Chi; Lin, Chiou-Feng; Han, Chia-Li; Lee, Wei-Hwa; Lee, Kang-Yun

    2018-01-26

    Monocytic myeloid-derived suppressor cells (MDSCs), particularly the S100A9+ subset, has been shown initial clinical relevance. However, its role in EGFR-mutated lung adenocarcinoma, especially to EGFR-tyrosine kinase inhibitor (EGFR-TKI) is not clear. In a clinical setting of EGFR mutated lung adenocarcinoma, a role of the MDSC apart from T cell suppression was also investigated. Blood monocytic S100A9 + MDSC counts were higher in lung cancer patients than healthy donors, and were associated with poor treatment response and shorter progression-free survival (PFS). S100A9 + MDSCs in PBMC were well correlated to tumor infiltrating CD68 + and S100A9 + cells, suggesting an origin of TAMs. Patient's MDMs, mostly from S100A9 + MDSC, similar to primary alveolar macrophages from patients, both expressed S100A9 and CD206, attenuated EGFR-TKI cytotoxicity. Microarray analysis identified up-regulation of the RELB signaling genes, confirmed by Western blotting and functionally by RELB knockdown. In conclusion, blood S100A9 + MDSC is a predictor of poor treatment response to EGFR-TKI, possibly via its derived TAMs through activation of the non-canonical NF-κB RELB pathway. Patients with activating EGFR mutation lung adenocarcinoma receiving first line EGFR TKIs were prospectively enrolled. Peripheral blood mononuclear cells (PBMCs) were collected for MDSCs analysis and for monocyte-derived macrophages (MDMs) and stored tissue for TAM analysis by IHC. A transwell co-culture system of MDMs/macrophages and H827 cells was used to detect the effect of macrophages on H827 and microarray analysis to explore the underlying molecular mechanisms, functionally confirmed by RNA interference.

  12. Mig6 Puts the Brakes on Mutant EGFR-Driven Lung Cancer | Center for Cancer Research

    Cancer.gov

    Lung cancer is the most common cause of cancer-related death worldwide. These cancers are often induced by mutations in the epidermal growth factor receptor (EGFR), resulting in constitutive activation of the protein’s tyrosine kinase domain. Lung cancers expressing these EGFR mutants are initially sensitive to tyrosine kinase inhibitors (TKIs), such as erlotinib, but often

  13. EGFR is involved in dermatofibrosarcoma protuberans progression to high grade sarcoma.

    PubMed

    Osio, Amélie; Xu, Shuo; El Bouchtaoui, Morad; Leboeuf, Christophe; Gapihan, Guillaume; Lemaignan, Christine; Bousquet, Guilhem; Lebbé, Céleste; Janin, Anne; Battistella, Maxime

    2018-02-02

    Dermatofibrosarcoma protuberans (DFSP), amounting to 6% of all soft tissue sarcomas, has a slow growth rate, contrasting with a likelihood for local recurrence and a 10-20% evolution to higher-grade sarcoma, or "transformed DFSP" (DFSP-T). At molecular level, the characteristic COL1A1-PDGFB rearrangement, leading to sustained PDGFR signaling, is not linked to the evolutive potential. Here, we studied EGFR, another tyrosine kinase receptor, using laser-microdissection to select the different histologic components of DFSP (DFSP center, DFSP infiltrative periphery, DFSP-T higher-grade sarcoma), in 22 patients followed over 3 to 156 months. EGFR protein and mRNA were expressed in 13/22 patients with DFSP or DFSP-T, and increased with tumor progression, both in microdissected areas of higher-grade sarcomas and in microdissected areas of local extension. No cancer-associated EGFR gene mutation or copy-number variation, nor any KRAS, BRAF, NRAS hotspot mutations were found in any microdissected area. Among epithelial-mesenchymal transition factors tested, SNAIL 1/2 had the same expression pattern as EGFR while ZEB1/2 or TWIST1/2 did not. Using a proteome profiler phospho-kinase array on 3 DFSP and 3 DFSP-T cryopreserved tissue samples, EGFR phosphorylation was detected in each case. Among EGFR downstream pathways, we found positive correlations between phosphorylation levels of EGFR and STAT5a/b (r = 0.87, p < 0.05) and TOR (r = 0.95, p < 0.01), but not ERK in the MAPK pathway (r = -0.18, p > 0.70). We thus demonstrated that in DFSP evolution to high grade sarcoma, EGFR and SNAIL were involved, with EGFR activation and signaling through TOR and STAT5a/b downstream effectors, which could lead on to new therapies for advanced DFSP.

  14. HER2 activating mutations are targets for colorectal cancer treatment.

    PubMed

    Kavuri, Shyam M; Jain, Naveen; Galimi, Francesco; Cottino, Francesca; Leto, Simonetta M; Migliardi, Giorgia; Searleman, Adam C; Shen, Wei; Monsey, John; Trusolino, Livio; Jacobs, Samuel A; Bertotti, Andrea; Bose, Ron

    2015-08-01

    The Cancer Genome Atlas project identified HER2 somatic mutations and gene amplification in 7% of patients with colorectal cancer. Introduction of the HER2 mutations S310F, L755S, V777L, V842I, and L866M into colon epithelial cells increased signaling pathways and anchorage-independent cell growth, indicating that they are activating mutations. Introduction of these HER2 activating mutations into colorectal cancer cell lines produced resistance to cetuximab and panitumumab by sustaining MAPK phosphorylation. HER2 mutants are potently inhibited by low nanomolar doses of the irreversible tyrosine kinase inhibitors neratinib and afatinib. HER2 gene sequencing of 48 cetuximab-resistant, quadruple (KRAS, NRAS, BRAF, and PIK3CA) wild-type (WT) colorectal cancer patient-derived xenografts (PDX) identified 4 PDXs with HER2 mutations. HER2-targeted therapies were tested on two PDXs. Treatment with a single HER2-targeted drug (trastuzumab, neratinib, or lapatinib) delayed tumor growth, but dual HER2-targeted therapy with trastuzumab plus tyrosine kinase inhibitors produced regression of these HER2-mutated PDXs. HER2 activating mutations cause EGFR antibody resistance in colorectal cell lines, and PDXs with HER2 mutations show durable tumor regression when treated with dual HER2-targeted therapy. These data provide a strong preclinical rationale for clinical trials targeting HER2 activating mutations in metastatic colorectal cancer. ©2015 American Association for Cancer Research.

  15. Analysis of PIK3CA Mutations and Activation Pathways in Triple Negative Breast Cancer.

    PubMed

    Cossu-Rocca, Paolo; Orrù, Sandra; Muroni, Maria Rosaria; Sanges, Francesca; Sotgiu, Giovanni; Ena, Sara; Pira, Giovanna; Murgia, Luciano; Manca, Alessandra; Uras, Maria Gabriela; Sarobba, Maria Giuseppina; Urru, Silvana; De Miglio, Maria Rosaria

    2015-01-01

    Triple Negative Breast Cancer (TNBC) accounts for 12-24% of all breast carcinomas, and shows worse prognosis compared to other breast cancer subtypes. Molecular studies demonstrated that TNBCs are a heterogeneous group of tumors with different clinical and pathologic features, prognosis, genetic-molecular alterations and treatment responsivity. The PI3K/AKT is a major pathway involved in the regulation of cell survival and proliferation, and is the most frequently altered pathway in breast cancer, apparently with different biologic impact on specific cancer subtypes. The most common genetic abnormality is represented by PIK3CA gene activating mutations, with an overall frequency of 20-40%. The aims of our study were to investigate PIK3CA gene mutations on a large series of TNBC, to perform a wider analysis on genetic alterations involving PI3K/AKT and BRAF/RAS/MAPK pathways and to correlate the results with clinical-pathologic data. PIK3CA mutation analysis was performed by using cobas® PIK3CA Mutation Test. EGFR, AKT1, BRAF, and KRAS genes were analyzed by sequencing. Immunohistochemistry was carried out to identify PTEN loss and to investigate for PI3K/AKT pathways components. PIK3CA mutations were detected in 23.7% of TNBC, whereas no mutations were identified in EGFR, AKT1, BRAF, and KRAS genes. Moreover, we observed PTEN loss in 11.3% of tumors. Deregulation of PI3K/AKT pathways was revealed by consistent activation of pAKT and p-p44/42 MAPK in all PIK3CA mutated TNBC. Our data shows that PIK3CA mutations and PI3K/AKT pathway activation are common events in TNBC. A deeper investigation on specific TNBC genomic abnormalities might be helpful in order to select patients who would benefit from current targeted therapy strategies.

  16. [Exon-dependent Subgroup-analysis of the Non-interventional REASON-Study: PFS and OS in EGFR-mutated NSCLC Patients Treated with Gefitinib or Chemotherapy].

    PubMed

    Schuette, W; Dietel, M; Thomas, M; Eberhardt, W; Griesinger, F; Zirrgiebel, U; Radke, S; Schirmacher, P

    2016-08-01

    To analyze the influence of the localization of mutations in the epidermal growth factor receptor (EGFR) gene on progression-free (PFS) and overall survival (OS) in patients (pts) with locally advanced or metastatic non-small cell lung cancer (NSCLC) treated with gefitinib (gef) or chemotherapy (CT) under real world conditions within the REASON study. Subgroups of pts with mutations in exon 19 (n = 141), 18/20 (n = 43), and 21 (n = 104) were analyzed for PFS and OS according to gef or CT treatment and compared using the log-rank test. Pts with mutations in exon 19 and 18/20 treated with gef as first line therapy showed increased PFS and OS compared to CT. This increase was statistically significant in pts with exon 19 mutation (11.3 vs. 6.5 months), but was not found in pts with exon 21 mutation (9.1 vs. 9.3 months). Also, OS was significantly increased in patients with mutation in exon 19 treated with gef ever over all treatment lines compared to CT (21.8 vs. 10.6 months), whereas this was not found in pts with mutation in exon 21 (14.1 vs. 13.9 months). Localization and nature of EGFR mutations influences gefitinib treatment outcomes under routine conditions and should therefore be analyzed in detail. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Epidermal Growth Factor Receptor Mutation Enhances Expression of Cadherin-5 in Lung Cancer Cells.

    PubMed

    Hung, Ming-Szu; Chen, I-Chuan; Lung, Jr-Hau; Lin, Paul-Yann; Li, Ya-Chin; Tsai, Ying-Huang

    2016-01-01

    Epidermal growth factor receptor (EGFR) activation has been shown to play a critical role in tumor angiogenesis. In this study, we investigate the correlation between EGFR mutations and cadherin-5 (CDH5), which is an angiogenic factor, in lung cancer cells. Increased expression CDH5 is observed in lung cancer cells with EGFR mutations. Stable lung cancer cell lines expressing mutant (exon 19 deletion E746-A750, and exon 21 missense mutation L858R) and wild type EGFR genes are established. A significantly higher expression of CDH5 is observed in exon 19 deletion stable lung cancer cells and mouse xenografts. Further studies show that expression of CDH5 is decreased after the inhibition of EGFR and downstream Akt pathways in lung cancer cells with EGFR mutation. In addition, mutant EGFR genes potentiates angiogenesis in lung cancer cells, which is inhibited by CDH5 siRNA, and potentiates migration and invasion in lung cancer cells. Our study shows that mutant EGFR genes are associated with overexpression of CDH5 through increased phosphorylation of EGFR and downstream Akt pathways. Our result may provide an insight into the association of mutant EGFR and CDH5 expression in lung cancer and aid further development of target therapy for NSCLC in the future.

  18. Epidermal Growth Factor Receptor Mutation Enhances Expression of Cadherin-5 in Lung Cancer Cells

    PubMed Central

    Hung, Ming-Szu; Chen, I-Chuan; Lung, Jr-Hau; Lin, Paul-Yann; Li, Ya-Chin; Tsai, Ying-Huang

    2016-01-01

    Epidermal growth factor receptor (EGFR) activation has been shown to play a critical role in tumor angiogenesis. In this study, we investigate the correlation between EGFR mutations and cadherin-5 (CDH5), which is an angiogenic factor, in lung cancer cells. Increased expression CDH5 is observed in lung cancer cells with EGFR mutations. Stable lung cancer cell lines expressing mutant (exon 19 deletion E746-A750, and exon 21 missense mutation L858R) and wild type EGFR genes are established. A significantly higher expression of CDH5 is observed in exon 19 deletion stable lung cancer cells and mouse xenografts. Further studies show that expression of CDH5 is decreased after the inhibition of EGFR and downstream Akt pathways in lung cancer cells with EGFR mutation. In addition, mutant EGFR genes potentiates angiogenesis in lung cancer cells, which is inhibited by CDH5 siRNA, and potentiates migration and invasion in lung cancer cells. Our study shows that mutant EGFR genes are associated with overexpression of CDH5 through increased phosphorylation of EGFR and downstream Akt pathways. Our result may provide an insight into the association of mutant EGFR and CDH5 expression in lung cancer and aid further development of target therapy for NSCLC in the future. PMID:27362942

  19. Monitoring of treatment responses and clonal evolution of tumor cells by circulating tumor DNA of heterogeneous mutant EGFR genes in lung cancer.

    PubMed

    Imamura, Fumio; Uchida, Junji; Kukita, Yoji; Kumagai, Toru; Nishino, Kazumi; Inoue, Takako; Kimura, Madoka; Oba, Shigeyuki; Kato, Kikuya

    2016-04-01

    Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have dramatic effects on EGFR-mutant non-small-cell lung cancer (NSCLC). However, most patients experience disease recurrences, approximately half of which are T790M-mediated. Monitoring EGFR status with re-biopsy has spatiotemporal limitations. EGFR circulating tumor DNA (ctDNA) in serial plasma samples was amplified and 10(5) of them were sequenced with a next-generation sequencer. Plasma mutation (PM) score was defined as the number of reads containing deletions/substitutions in 10(5)EGFR cell free DNA (cfDNA). PM scores of various EGFR mutations showed dynamic, case-specific changes during EGFR-TKI treatments in 52 patients. The effects of the treatment on EGFR ctDNA were evaluated in 38 patients with elevated pre-treatment PM scores. The ctDNA responses correlated well with radiologic responses in radiologic good responders, whereas correlation was poor in non-responders. In addition to the peaks for the most prevalent ctDNA, small peaks of ctDNA with different types of activating EGFR mutations or the T790M mutation (early T790M ctDNA) appeared transiently in 10.5% and 26.3%, respectively. Early T790M ctDNA disappeared in all patients, including 7 who eventually developed acquired resistance accompanied by elevated levels of T790M ctDNA. Monitoring ctDNA is useful in evaluating treatment responses and monitoring driver oncogene status in NSCLC. ctDNA revealed clonal heterogeneity and genetic processes of cancer evolution in individual patients. The simple presence of the T790M mutation may be insufficient to confer EGFR-TKI resistance to tumor cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. A comparison of QuantStudio™ 3D Digital PCR and ARMS-PCR for measuring plasma EGFR T790M mutations of NSCLC patients

    PubMed Central

    Sang, Yaxiong; Zhang, Jie; Wang, Ping; Wang, Yue; Liu, Bing; Lin, Dongmei; Yu, Yang; Fang, Jian

    2018-01-01

    Background The AURA3 clinical trial has shown that advanced non-small cell lung cancer (NSCLC) patients with EGFR T790M mutations in circulating tumor DNA (ctDNA) could benefit from osimertinib. Purpose The aim of this study was to assess the usefulness of QuantStudio™ 3D Digital PCR System platform for the detection of plasma EGFR T790M mutations in NSCLC patients, and compare the performances of 3D Digital PCR and ARMS-PCR. Patients and methods A total of 119 Chinese patients were enrolled in this study. Mutant allele frequency of plasma EGFR T790M was detected by 3D Digital PCR, then 25 selected samples were verified by ARMS-PCR and four of them were verified by next generation sequencing (NGS). Results In total, 52.94% (69/119) had EGFR T790M mutations detected by 3D Digital PCR. In 69 positive samples, the median mutant allele frequency (AF) was 1.09% and three cases presented low concentration (AF <0.1%). Limited by the amount of plasma DNA, 17 samples (AF <2.5%) and eight samples (T790M-) were selected for verification by ARMS-PCR. Four of those samples were verified by NGS as a third verification method. Among the selected 17 positive cases, ten samples presented mutant allele frequency <0.5%, and seven samples presented intermediate mutant allele frequency (0.5% AF 2.5%). However, only three samples (3/17) were identified as positive by ARMS-PCR, namely, P6 (AF =1.09%), P7 (AF =2.09%), and P8 (AF =2.21%). It is worth mentioning that sample P9 (AF =2.05%, analyzed by 3D Digital PCR) was identified as T790M- by ARMS-PCR. Four samples were identified as T790M+ by both NGS and 3D Digital PCR, and typically three samples (3/4) presented at a low ratio (AF <0.5%). Conclusion Our study demonstrated that 3D Digital PCR is a novel method with high sensitivity and specificity to detect EGFR T790M mutation in plasma. PMID:29403309

  1. Apatinib enhances antitumour activity of EGFR-TKIs in non-small cell lung cancer with EGFR-TKI resistance.

    PubMed

    Li, Fang; Zhu, Tengjiao; Cao, Baoshan; Wang, Jiadong; Liang, Li

    2017-10-01

    Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs)-rechallenged therapy for EGFR-mutant non-small cell lung cancer (NSCLC) patients who acquired resistance showed moderate efficacy. Considering the high interrelation between EGFR and vascular endothelial growth factor/vascular endothelial growth factor receptor (VEGF/VEGFR) pathways, we firstly evaluated EGFR-TKI combined with apatinib (a highly selective VEGFR2 inhibitor) in EGFR-TKI-resistant model and patients. Effects of apatinib, gefitinib and gefitinib plus apatinib were assessed on four NSCLC cell lines (A549 with wild-type EGFR, H1975 harbouring L858R and T790M, H1650 and HCC827 harbouring E746_A750 deletion) and xenograft model of acquired resistance that was established by injecting H1975 cells. Furthermore, we retrospectively evaluated EGFR-TKI rechallenge with apatinib in 16 patients. Gefitinib plus apatinib strengthened the effect of gefitinib and apatinib alone on the four NSCLC cell lines, and H1975 was the most susceptible one. Co-administration delayed the tumour growth than mono-therapy in the xenograft model and had better effect on inhibiting the activation of EGFR and VEGFR2 and expression of CD31 (an angiogenesis marker) and vascular endothelial growth factor A (an important pro-angiogenesis factor in the tumour microenvironment). Changes in protein expression of protein kinase B/mammalian target of rapamycin and extracellular signal-regulated kinase pathways demonstrated the potent inhibitory effect on the pro-survival signalling pathways by combined therapy. EGFR-TKI rechallenge with apatinib achieved a median progression-free survival of 4.60 months (95% confidence interval, 2.23-12.52 months) in the patients. Apatinib significantly potentiated the antitumour effect of gefitinib in NSCLC with T790M-related EGFR-TKI resistance both in vivo and vitro. EGFR-TKI rechallenge with apatinib might represent a new option for NSCLC with T790M or unknown resistance mechanism

  2. Antibodies Specifically Targeting a Locally Misfolded Region of Tumor Associated EGFR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrett, T.; Burgess, A; Gan, H

    2009-01-01

    Epidermal Growth Factor Receptor (EGFR) is involved in stimulating the growth of many human tumors, but the success of therapeutic agents has been limited in part by interference from the EGFR on normal tissues. Previously, we reported an antibody (mab806) against a truncated form of EGFR found commonly in gliomas. Remarkably, it also recognizes full-length EGFR on tumor cells but not on normal cells. However, the mechanism for this activity was unclear. Crystallographic structures for Fab:EGFR{sub 287-302} complexes of mAb806 (and a second, related antibody, mAb175) show that this peptide epitope adopts conformations similar to those found in the wtEGFR.more » However, in both conformations observed for wtEGFR, tethered and untethered, antibody binding would be prohibited by significant steric clashes with the CR1 domain. Thus, these antibodies must recognize a cryptic epitope in EGFR. Structurally, it appeared that breaking the disulfide bond preceding the epitope might allow the CR1 domain to open up sufficiently for antibody binding. The EGFR{sub C271A/C283A} mutant not only binds mAb806, but binds with 1:1 stoichiometry, which is significantly greater than wtEGFR binding. Although mAb806 and mAb175 decrease tumor growth in xenografts displaying mutant, overexpressed, or autocrine stimulated EGFR, neither antibody inhibits the in vitro growth of cells expressing wtEGFR. In contrast, mAb806 completely inhibits the ligand-associated stimulation of cells expressing EGFR{sub C271A/C283A}. Clearly, the binding of mAb806 and mAb175 to the wtEGFR requires the epitope to be exposed either during receptor activation, mutation, or overexpression. This mechanism suggests the possibility of generating antibodies to target other wild-type receptors on tumor cells.« less

  3. Using the MCF10A/MCF10CA1a Breast Cancer Progression Cell Line Model to Investigate the Effect of Active, Mutant Forms of EGFR in Breast Cancer Development and Treatment Using Gefitinib

    PubMed Central

    Bessette, Darrell C.; Tilch, Erik; Seidens, Tatjana; Quinn, Michael C. J.; Wiegmans, Adrian P.; Shi, Wei; Cocciardi, Sibylle; McCart-Reed, Amy; Saunus, Jodi M.; Simpson, Peter T.; Grimmond, Sean M.; Lakhani, Sunil R.; Khanna, Kum Kum; Waddell, Nic; Al-Ejeh, Fares; Chenevix-Trench, Georgia

    2015-01-01

    Background Basal-like and triple negative breast cancer (TNBC) share common molecular features, poor prognosis and a propensity for metastasis to the brain. Amplification of epidermal growth factor receptor (EGFR) occurs in ~50% of basal-like breast cancer, and mutations in the epidermal growth factor receptor (EGFR) have been reported in up to ~ 10% of Asian TNBC patients. In non-small cell lung cancer several different mutations in the EGFR tyrosine kinase domain confer sensitivity to receptor tyrosine kinase inhibitors, but the tumourigenic potential of EGFR mutations in breast cells and their potential for targeted therapy is unknown. Materials and Methods Constructs containing wild type, G719S or E746-A750 deletion mutant forms of EGFR were transfected into the MCF10A breast cells and their tumorigenic derivative, MCF10CA1a. The effects of EGFR over-expression and mutation on proliferation, migration, invasion, response to gefitinib, and tumour formation in vivo was investigated. Copy number analysis and whole exome sequencing of the MCF10A and MCF10CA1a cell lines were also performed. Results Mutant EGFR increased MCF10A and MCF10CA1a proliferation and MCF10A gefitinib sensitivity. The EGFR-E746-A750 deletion increased MCF10CA1a cell migration and invasion, and greatly increased MCF10CA1a xenograft tumour formation and growth. Compared to MCF10A cells, MCF10CA1a cells exhibited large regions of gain on chromosomes 3 and 9, deletion on chromosome 7, and mutations in many genes implicated in cancer. Conclusions Mutant EGFR enhances the oncogenic properties of MCF10A cell line, and increases sensitivity to gefitinib. Although the addition of EGFR E746-A750 renders the MCF10CA1a cells more tumourigenic in vivo it is not accompanied by increased gefitinib sensitivity, perhaps due to additional mutations, including the PIK3CA H1047R mutation, that the MCF10CA1a cell line has acquired. Screening TNBC/basal-like breast cancer for EGFR mutations may prove useful for

  4. Surmounting the resistance against EGFR inhibitors through the development of thieno[2,3-d]pyrimidine-based dual EGFR/HER2 inhibitors.

    PubMed

    Milik, Sandra N; Abdel-Aziz, Amal Kamal; Lasheen, Deena S; Serya, Rabah A T; Minucci, Saverio; Abouzid, Khaled A M

    2018-06-06

    In light of the emergence of resistance against the currently available EGFR inhibitors, our study focuses on tackling this problem through the development of dual EGFR/HER2 inhibitors with improved enzymatic affinities. Guided by the binding mode of the marketed dual EGFR/HER2 inhibitor, Lapatinib, we proposed the design of dual EGFR/HER2 inhibitors based on the 6-phenylthieno[2,3-d]pyrimidine as a core scaffold and hinge binder. After two cycles of screening aiming to identify the optimum aniline headgroup and solubilizing group, we eventually identified 27b as a dual EGFR/HER2 inhibitor with IC 50 values of 91.7 nM and 1.2 μM, respectively. Notably, 27b dramatically reduced the viability of various patient-derived cancer cells preferentially overexpressing EGFR/HER2 (A431, MDA-MBA-361 and SKBr3 with IC 50 values of 1.45, 3.5 and 4.83 μM, respectively). Additionally, 27b efficiently thwarted the proliferation of lapatinib-resistant human non-small lung carcinoma (NCI-H1975) cells, harboring T790 M mutation, with IC 50 of 4.2 μM. Consistently, 27b significantly blocked EGF-induced EGFR activation and inactivated its downstream AKT/mTOR/S6 signalling pathway triggering apoptotic cell death in NCI-H1975 cells. The present study presents a promising candidate for further design and development of novel EGFR/HER2 inhibitors capable of overcoming EGFR TKIs resistance. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  5. Mutational Profiling of Non-Small-Cell Lung Cancer Resistant to Osimertinib Using Next-Generation Sequencing in Chinese Patients.

    PubMed

    Nie, Keke; Jiang, Haiping; Zhang, Chunling; Geng, Chuanxin; Xu, Xiajuan; Zhang, Ling; Zhang, Hao; Zhang, Zhongfa; Lan, Ketao; Ji, Youxin

    2018-01-01

    To identify the somatic mutated genes for optimal targets of non-small-cell lung cancer after resistance to osimertinib treatment. Study patients all had advanced lung adenocarcinoma and acquired resistance to osimertinib as a second- or third-line treatment. These patients had harboring EGFR T790M mutation before osimertinib treatment, which was confirmed by Amplification Refractory Mutation System (ARMS) PCR or Next-Generation Sequencing (NGS). After resistance to osimertinib treatment, tumor tissue was collected by core needle biopsy. DNA was extracted from 15 × 5 um sliced section of formalin-fixed paraffin-embedded (FFPE) material and NGS was done. The genetic changes were analyzed. A total of 9 Chinese patients were studied, 5 females and 4 males, age 51-89 years. After progression with osimertinib treatment, core needle biopsy was performed and next-generation sequencing was performed. Nine patients had harboring 62 point mutations, 2 altered gene copies, 2 amplifications, and 1 EML4-ALK gene fusion. No MET or HER2 amplification was found in this cohort study. Nine patients still maintained initial EGFR 19 del or L858R activating mutations, while 7 of them kept EGFR T790M mutations. Among the 7 patients, 5 had secondary EGFR C797S and/or C797G mutations, which all happened in the same allele with T790M mutation. All patients were treated with targets therapies, chemotherapy, or best supportive care (BSC) in accordance with NGS genetic results and patients' performance status; 7 of them are still alive and 2 of them died of disease progression at last follow-up. EGFR C797S/G mutation and the same one presented on the same allele with EGFR T790M mutation were the most common mutation feature and played a key role in resistance to osimertinib in Chinese patients with NSCLC. Tumor cells losing T790M mutation and maintaining EGFR activating mutation might benefit from first-generation EGFR-TKI treatment.

  6. Development of new mouse lung tumor models expressing EGFR T790M mutants associated with clinical resistance to kinase inhibitors.

    PubMed

    Regales, Lucia; Balak, Marissa N; Gong, Yixuan; Politi, Katerina; Sawai, Ayana; Le, Carl; Koutcher, Jason A; Solit, David B; Rosen, Neal; Zakowski, Maureen F; Pao, William

    2007-08-29

    The EGFR T790M mutation confers acquired resistance to kinase inhibitors in human EGFR mutant lung adenocarcinoma, is occasionally detected before treatment, and may confer genetic susceptibility to lung cancer. To study further its role in lung tumorigenesis, we developed mice with inducible expression in type II pneumocytes of EGFR(T790M) alone or together with a drug-sensitive L858R mutation. Both transgenic lines develop lung adenocarcinomas that require mutant EGFR for tumor maintenance but are resistant to an EGFR kinase inhibitor. EGFR(L858R+T790M)-driven tumors are transiently targeted by hsp90 inhibition. Notably, EGFR(T790M)-expressing animals develop tumors with longer latency than EGFR(L858R+T790M)-bearing mice and in the absence of additional kinase domain mutations. These new mouse models of mutant EGFR-dependent lung adenocarcinomas provide insight into clinical observations. The models should also be useful for developing improved therapies for patients with lung cancers harboring EGFR(T790M) alone or in conjunction with drug-sensitive EGFR kinase domain mutations.

  7. Chemotherapeutics-resistance "arms" race: An update on mechanisms involved in resistance limiting EGFR inhibitors in lung cancer.

    PubMed

    Singh, Pankaj Kumar; Silakari, Om

    2017-10-01

    Clinical reports suggest that EGFR-mutated lung cancer usually respond significantly towards small molecule tyrosine kinase inhibitors. Same studies also report the eventual development of acquired resistance within a median time interval of 9 to 14months. One of the major mechanisms involved in this acquired resistance was found to be a secondary point mutation at gate-keeper residue, EGFR T790M. However, there are other recent studies which disclose the role of few other novel key players such as, ZEB1, TOPK etc., in the development of tolerance towards the EGFR TKI's, along with other commonly known mechanisms, such as amplification of signalling pathways such as, c-MET, Erbb2, AXL, additional acquired secondary mutations (PIK3CA, BRAF), or phenotypic transformation (small cell or epithelial to mesenchymal transitions). Interestingly, a recent study showed development of resistance via another point mutation, C797S, in case of tumors which were previously resistant and were administered agents capable of overcoming T790M gatekeeper mutation based resistance. Thus, raising serious concern over the direction of drug development involving tyrosine kinases such as EGFR. Current approaches focussing on development of third generation inhibitors, dual inhibitors or inhibitors of HSP90 have shown significant activity but do not answer the long term question of resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Impact of Weight Loss at Presentation on Survival in Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors (EGFR-TKI) Sensitive Mutant Advanced Non-small Cell Lung Cancer (NSCLC) Treated with First-line EGFR-TKI.

    PubMed

    Lin, Liping; Zhao, Juanjuan; Hu, Jiazhu; Huang, Fuxi; Han, Jianjun; He, Yan; Cao, Xiaolong

    2018-01-01

    Purpose The aim of this study is to evaluate the impact of weight loss at presentation on treatment outcomes of first-line EGFR-tyrosine kinase inhibitors (EGFR-TKI) in EGFR-TKI sensitive mutant NSCLC patients. Methods We retrospectively analyzed the clinical outcomes of 75 consecutive advanced NSCLC patients with EGFR-TKI sensitive mutations (exon 19 deletion or exon 21 L858R) received first-line gefitinib or erlotinib therapy according to weight loss status at presentation in our single center. Results Of 75 EGFR-TKI sensitive mutant NSCLC patients, 49 (65.3%) patients had no weight loss and 26 (34.7%) had weight loss at presentation, the objective response rate (ORR) to EGFR-TKI treatment were similar between the two groups (79.6% vs. 76.9%, p = 0.533). Patients without weight loss at presentation had significantly longer median progression free survival (PFS) (12.4 months vs. 7.6 months; hazard ratio [HR] 0.356, 95% confidence interval [CI] 0.212-0.596, p < 0.001) and overall survival (OS) (28.5 months vs. 20.7 months; HR 0.408, 95% CI 0.215-0.776, p = 0.006) than those with weight loss at presentation; moreover, the stratified analysis by EGFR-TKI sensitive mutation types also found similar trend between these two groups except for OS in EGFR exon 21 L858R mutation patients. Multivariate analysis identified weight loss at presentation and EGFR-TKI sensitive mutation types were independent predictive factors for PFS and OS. Conclusions Weight loss at presentation had a detrimental impact on PFS and OS in EGFR-TKI sensitive mutant advanced NSCLC patients treated with first-line EGFR-TKI. It should be considered as an important factor in the treatment decision or designing of EGFR-TKI clinical trials.

  9. Epidemiological Characteristics, EGFR Status and Management Patterns of Advanced Non-small Cell Lung Cancer Patients: The Greek REASON Observational Registry Study.

    PubMed

    Syrigos, Konstantinos N; Georgoulias, Vasilis; Zarogoulidis, Konstantinos; Makrantonakis, Paris; Charpidou, Andriani; Christodoulou, Christos

    2018-06-01

    Real-world evidence regarding the prevalence of epidermal growth factor receptor (EGFR) mutation-positive status (M+) and the clinicopathological characteristics associated with the presence of EGFR mutations in advanced non-small cell lung cancer (NSCLC) is scarce, especially among Caucasian populations. The present study aimed to bridge this gap, as well as to record treatment patterns and outcomes in routine-care settings. REASON (NCT01153399) was a prospective study of patients with stage IIIB/IV NSCLC and known EGFR mutation status. Clinicopathological, treatment characteristics and clinical outcomes were recorded and correlated with EGFR mutation testing results. Of 575 enrolled patients, EGFR mutations were detected in 15.7% of them. Male gender (p=0.008) and smoking (p<0.001), but not adenocarcinoma, were associated with EGFR M+ status. In the EGFR M+ subpopulation (n=88), absence of bone and/or brain metastasis and presence of exon 19 EGFR M+ status at diagnosis were independently associated with longer progression-free survival (PFS) (p=0.011 and p=0.040, respectively). In our population, males and smokers had decreased odds of harboring an EGFR mutation, while adenocarcinoma histology was not a significant predictor of EGFR M+ status. EGFR M+ patients with bone and/or brain metastases at diagnosis or mutations other than exon 19 deletions were at increased risk for earlier disease progression. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  10. Transition between morule-like and solid components may occur in solid-predominant adenocarcinoma of the lung: report of 2 cases with EGFR and KRAS mutations.

    PubMed

    Tajima, Shogo; Koda, Kenji

    2015-01-01

    A limited number of pulmonary adenocarcinoma cases with morule-like components have been described to date, and the most frequent histological subtype is papillary-predominant adenocarcinoma. Occasionally, this type of adenocarcinoma is associated with solid-predominant adenocarcinoma. EGFR mutations are predominant in adenocarcinoma with morule-like components, followed by ALK rearrangements. Herein, we present 2 cases of solid-predominant adenocarcinoma with morule-like components harboring either an EGFR or KRAS mutation. This KRAS-mutant case is the first to be associated with morule-like components, to the best of our knowledge. Both cases showed transition between micropapillary and morule-like components. Transition between morule-like and solid components was also observed in both cases. Although a few cases of solid-predominant adenocarcinoma have been shown to harbor morule-like components, this type of transition has not been previously well described. We surmised that the solid components of some EGFR-mutant adenocarcinomas might be derived from morule-like components.

  11. A Higher Proportion of the EGFR T790M Mutation May Contribute to the Better Survival of Patients with Exon 19 Deletions Compared with Those with L858R.

    PubMed

    Ke, E-E; Zhou, Qing; Zhang, Qiu-Yi; Su, Jian; Chen, Zhi-Hong; Zhang, Xu-Chao; Xu, Chong-Rui; Yang, Jin-Ji; Tu, Hai-Yan; Yan, Hong-Hong; Zhang, Yi-Chen; Niu, Fei-Yu; Wu, Yi-Long

    2017-09-01

    Increasing evidence has demonstrated that exon 19 deletions (Del19) and L858R mutation in EGFR have different prognostic and predictive roles in NSCLC. We aimed to investigate whether these two mutations produced differences in mechanisms of resistance to EGFR tyrosine kinase inhibitors. Consecutive patients with advanced EGFR-mutant NSCLC who acquired resistance to EGFR tyrosine kinase inhibitors and underwent postprogression biopsy were enrolled. Mechanisms including T790M mutation, mesenchymal-epithelial transition proto-oncogene (MET) amplification, and histological transformation, as well as KRAS, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha gene (PIK3CA) mutation, and anaplastic lymphoma receptor tyrosine kinase gene (ALK) fusion, were analyzed. The prevalence of T790M mutation was significantly higher in the Del19 subgroup than that in L858R subgroup (50.4% versus 36.5%, p = 0.043). Apart from this, there was no difference in other mechanisms including MET amplification and histological transformation. The median overall survival (OS) of patients with T790M mutation was 36.0 months (95% confidence interval [CI]: 30.9-41.2), which was significantly longer than the 26.5 months (95% CI: 24.0-29.0) in MET-positive patients, 19.7 months (95% CI: 18.2-21.2) in patients with histological transformation, and 23.0 months (95% CI: 17.4-28.6) in the KRAS/PIK3CA/ALK-altered population (p = 0.021). The hazard ratios of the MET-amplification subgroup and subgroup with histological transformation were 1.809-fold and 2.370-fold higher than that in T790M-positive subgroup. The median OS times were months 33.3 (95% CI: 28.9-37.7) in the Del19 subgroup and 26.4 months (95% CI: 23.2-29.6) in the L858R subgroup (p = 0.028). However, in multivariable analysis adjusted for T790M genotype, the EGFR mutation subtype was no longer found to be significant. Significant OS benefit was observed in patients with T790M mutation, suggesting that a larger

  12. EGFR Exon 18 Mutations in Lung Cancer: Molecular Predictors of Augmented Sensitivity to Afatinib or Neratinib as Compared with First- or Third-Generation TKIs.

    PubMed

    Kobayashi, Yoshihisa; Togashi, Yosuke; Yatabe, Yasushi; Mizuuchi, Hiroshi; Jangchul, Park; Kondo, Chiaki; Shimoji, Masaki; Sato, Katsuaki; Suda, Kenichi; Tomizawa, Kenji; Takemoto, Toshiki; Hida, Toyoaki; Nishio, Kazuto; Mitsudomi, Tetsuya

    2015-12-01

    Lung cancers harboring common EGFR mutations respond to EGFR tyrosine kinase inhibitors (TKI), whereas exon 20 insertions (Ins20) are resistant to them. However, little is known about mutations in exon 18. Mutational status of lung cancers between 2001 and 2015 was reviewed. Three representative mutations in exon 18, G719A, E709K, and exon 18 deletion (Del18: delE709_T710insD) were retrovirally introduced into Ba/F3 and NIH/3T3 cells. The 90% inhibitory concentrations (IC90s) of first-generation (1G; gefitinib and erlotinib), second-generation (2G; afatinib, dacomitinib, and neratinib), and third-generation TKIs (3G; AZD9291 and CO1686) were determined. Among 1,402 EGFR mutations, Del19, L858R, and Ins20 were detected in 40%, 47%, and 4%, respectively. Exon 18 mutations, including G719X, E709X, and Del18, were present in 3.2%. Transfected Ba/F3 cells grew in the absence of IL3, and NIH/3T3 cells formed foci with marked pile-up, indicating their oncogenic abilities. IC90s of 1G and 3G TKIs in G719A, E709K, and Del18 were much higher than those in Del19 (by >11-50-fold), whereas IC90s of afatinib were only 3- to 7-fold greater than those for Del19. Notably, cells transfected with G719A and E709K exhibited higher sensitivity to neratinib (by 5-25-fold) than those expressing Del19. Patients with lung cancers harboring G719X exhibited higher response rate to afatinib or neratinib (∼ 80%) than to 1G TKIs (35%-56%) by compilation of data in the literature. Lung cancers harboring exon 18 mutations should not be overlooked in clinical practice. These cases can be best treated with afatinib or neratinib, although the currently available in vitro diagnostic kits cannot detect all exon 18 mutations. ©2015 American Association for Cancer Research.

  13. Bevacizumab plus chemotherapy for patients with advanced pulmonary adenocarcinoma harboring EGFR mutations.

    PubMed

    Chen, R-L; Chen, H-J; Jiang, B-Y; Zhang, X-C; Zhou, Q; Tu, H-Y; Zhong, W-Z; Wu, Y-L; Yang, J-J

    2018-02-01

    Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) and bevacizumab plus chemotherapy were effective for EGFR-mutant patients. However, the appropriated treatment orders remained controvertible. We investigated the efficacy of treatment orders between bevacizumab plus chemotherapy and EGFR-TKIs for EGFR-mutant patients with advanced pulmonary adenocarcinoma. This study involved 40 EGFR-mutant patients with advanced pulmonary adenocarcinoma who were treated with bevacizumab plus carboplatin and paclitaxel (Bev + CP) and EGFR-TKIs in different treatment orders or gemcitabine plus cisplatin (GP) in first-line setting. Seventeen patients were treated with Bev + CP and 10 cases with GP in first-line treatment. Thirteen patients received EGFR-TKIs after first-line Bev + CP regimen, while 13 patients were treated with first-line EGFR-TKIs. Progression-free survival (PFS), the response rate (ORR) and overall survival (OS) were evaluated. Median PFS of Bev + CP treatment was significantly longer in first-line than non-first-line settings (11.7 vs. 5.6 months, P = 0.003). Median OS was 37.8 months for EGFR-mutant patients with first-line Bev + CP followed by second-line EGFR-TKIs and 31.0 months for those with first-line EGFR-TKIs and non-first-line Bev + CP, respectively (P = 0.509). Median PFS was 11.7 (95% CI 10.6-12.8) months for Bev + CP group and 4.7 (95% CI 4.4-5.0) months for GP group with the hazard ratio of 0.17 (P = 0.001). ORR was 70.6 and 50.0% in the two groups, respectively (P = 0.415). However, there was no significant difference in median OS (33.7 vs 27.8 months, P = 0.293). First-line Bev + CP followed by EGFR-TKIs might possibly provide favorable prognosis for EGFR-mutant patients. Bev + CP regimen significantly prolonged PFS in first-line than non-first-line settings. These findings warrant further investigations.

  14. Osimertinib and Navitoclax in Treating Patients With EGFR-Positive Previously Treated Advanced or Metastatic Non-small Cell Lung Cancer

    ClinicalTrials.gov

    2018-05-23

    EGFR Activating Mutation; EGFR NP_005219.2:p.T790M; Stage III Non-Small Cell Lung Cancer AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIB Non-Small Cell Lung Cancer AJCC v7; Stage IV Non-Small Cell Lung Cancer AJCC v7

  15. Investigating Novel Resistance Mechanisms to Third-Generation EGFR Tyrosine Kinase Inhibitor Osimertinib in Non-Small Cell Lung Cancer Patients.

    PubMed

    Yang, Zhe; Yang, Nong; Ou, Qiuxiang; Xiang, Yi; Jiang, Tao; Wu, Xue; Bao, Hua; Tong, Xiaoling; Wang, Xiaonan; Shao, Yang W; Liu, Yunpeng; Wang, Yan; Zhou, Caicun

    2018-03-05

    Background: The third-generation EGFR tyrosine kinase inhibitor osimertinib is approved to treat patients with EGFR T790M-positive non-small cell lung cancer (NSCLC) who have developed resistance to earlier-generation drugs. Acquired EGFR C797S mutation has been reported to mediate osimertinib resistance in some patients. However, the remaining resistance mechanisms are largely unknown. Methods: We performed mutation profiling using targeted next-generation sequencing (NGS) for 416 cancer-relevant genes on 93 osimertinib-resistant lung cancer patients' samples, mainly cell-free DNAs (cfDNAs), and matched pretreatment samples of 12 patients. In vitro experiments were conducted to functionally study the secondary EGFR mutations identified. Results: EGFR G796/C797, L792, and L718/G719 mutations were identified in 24.7%, 10.8%, and 9.7% of the cases, respectively, with certain mutations coexisting in one patient with different prevalence. L792 and L718 mutants markedly increased the half inhibitory concentration (IC 50 ) of osimertinib in vitro , among which the L718Q mutation conferred the greatest resistance to osimertinib, as well as gefitinib resistance when not coexisting with T790M. Further analysis of the 12 matched pretreatment samples confirmed that these EGFR mutations were acquired during osimertinib treatment. Alterations in parallel or downstream oncogenes such as MET, KRAS , and PIK3CA were also discovered, potentially contributing to the osimertinib-resistance in patients without EGFR secondary mutations. Conclusions: We present comprehensive mutation profiles of a large cohort of osimertinib-resistance lung cancer patients using mainly cfDNA. Besides C797 mutations, novel secondary mutations of EGFR L718 and L792 residues confer osimertinib resistance, both in vitro and in vivo , and are of great clinical and pharmaceutical relevance. Clin Cancer Res; 1-11. ©2018 AACR. ©2018 American Association for Cancer Research.

  16. Patients with Exon 19 Deletion Were Associated with Longer Progression-Free Survival Compared to Those with L858R Mutation after First-Line EGFR-TKIs for Advanced Non-Small Cell Lung Cancer: A Meta-Analysis

    PubMed Central

    Fang, Wenfeng; Yan, Yue; Hu, Zhihuang; Hong, Shaodong; Wu, Xuan; Qin, Tao; Liang, Wenhua; Zhang, Li

    2014-01-01

    Backgrounds It has been extensively proved that the efficacy of epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) is superior to that of cytotoxic chemotherapy in advanced non-small cell lung cancer (NSCLC) patients harboring sensitive EGFR mutations. However, the question of whether the efficacy of EGFR-TKIs differs between exon 19 deletion and exon 21 L858R mutation has not been yet statistically answered. Methods Subgroup data on hazard ratio (HR) for progression-free survival (PFS) of correlative studies were extracted and synthesized based on random-effect model. Comparison of outcomes between specific mutations was estimated through indirect and direct methods, respectively. Results A total of 13 studies of advanced NSCLC patients with either 19 or 21 exon alteration receiving first-line EGFR-TKIs were included. Based on the data from six clinical trials for indirect meta-analysis, the pooled HRTKI/chemotherapy for PFS were 0.28 (95% CI 0.20–0.38, P<0.001) in patients with 19 exon deletion and 0.47 (95% CI 0.35–0.64, P<0.001) in those with exon 21 L858R mutation. Indirect comparison revealed that the patients with exon 19 deletion had longer PFS than those with exon 21 L858R mutation (HR19 exon deletion/exon 21 L858R mutation  = 0.59, 95% CI 0.38–0.92; P = 0.019). Additionally, direct meta-analysis showed similar result (HR19 exon deletion/exon 21 L858R mutation  = 0.75, 95% CI 0.65 to 0.85; P<0.001) by incorporating another seven studies. Conclusions For advanced NSCLC patients, exon 19 deletion might be associated with longer PFS compared to L858 mutation at exon 21 after first-line EGFR-TKIs. PMID:25222496

  17. Metastatic EML4-ALK fusion detected by circulating DNA genotyping in an EGFR-mutated NSCLC patient and successful management by adding ALK inhibitors: a case report.

    PubMed

    Liang, Wenhua; He, Qihua; Chen, Ying; Chuai, Shaokun; Yin, Weiqiang; Wang, Wei; Peng, Guilin; Zhou, Caicun; He, Jianxing

    2016-02-05

    Rebiopsy is highly recommended to identify the mechanism of acquired resistance to EGFR-TKIs in advanced lung cancer. Recent advances in multiplex genotyping based on circulating tumor DNA (ctDNA) provide a strong and non-invasive alternative for detection of the resistance mechanism. Here we report a multiple metastatic NSCLC patient who was detected to have pure EGFR 19 exon deletion (negative for EML4-ALK and ROS1 in both IHC-based and sequencing assay) in the primary lesion and responded to first-line and second-line EGFR-TKI treatments (erlotinib then HY-15772). At 8 months, most lesions remained well controlled except for the liver metastases which presented dramatic progression. Considering the high risk of bleeding in rebiopsy of hepatic lesions, we conducted a multiplex genomic profiling with ctDNA. Results reported coexistence of EGFR mutation and EML4-ALK gene translocation in plasma which heavily indicated that ALK was the primary reason for progression of the liver lesions. This deduction was supported by the repeated response to ALK inhibitors (crizotinib then AP26113) of the hepatic metastases. This is the first report of the existence of ALK rearrangement in metastatic lesions in an EGFR mutated patient. It highlighted the feasibility and advantages of using ctDNA multiplex genotyping in identifying the heterogeneity across lesions and the resistance mechanism of targeted treatments.

  18. Conformationally constrained peptides target the allosteric kinase dimer interface and inhibit EGFR activation.

    PubMed

    Fulton, Melody D; Hanold, Laura E; Ruan, Zheng; Patel, Sneha; Beedle, Aaron M; Kannan, Natarajan; Kennedy, Eileen J

    2018-03-15

    Although EGFR is a highly sought-after drug target, inhibitor resistance remains a challenge. As an alternative strategy for kinase inhibition, we sought to explore whether allosteric activation mechanisms could effectively be disrupted. The kinase domain of EGFR forms an atypical asymmetric dimer via head-to-tail interactions and serves as a requisite for kinase activation. The kinase dimer interface is primarily formed by the H-helix derived from one kinase monomer and the small lobe of the second monomer. We hypothesized that a peptide designed to resemble the binding surface of the H-helix may serve as an effective disruptor of EGFR dimerization and activation. A library of constrained peptides was designed to mimic the H-helix of the kinase domain and interface side chains were optimized using molecular modeling. Peptides were constrained using peptide "stapling" to structurally reinforce an alpha-helical conformation. Peptide stapling was demonstrated to notably enhance cell permeation of an H-helix derived peptide termed EHBI2. Using cell-based assays, EHBI2 was further shown to significantly reduce EGFR activity as measured by EGFR phosphorylation and phosphorylation of the downstream signaling substrate Akt. To our knowledge, this is the first H-helix-based compound targeting the asymmetric interface of the kinase domain that can successfully inhibit EGFR activation and signaling. This study presents a novel, alternative targeting site for allosteric inhibition of EGFR. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Pretreatment Dynamic Susceptibility Contrast MRI Perfusion in Glioblastoma: Prediction of EGFR Gene Amplification.

    PubMed

    Gupta, A; Young, R J; Shah, A D; Schweitzer, A D; Graber, J J; Shi, W; Zhang, Z; Huse, J; Omuro, A M P

    2015-06-01

    Molecular and genetic testing is becoming increasingly relevant in GBM. We sought to determine whether dynamic susceptibility contrast (DSC) magnetic resonance imaging (MRI) perfusion imaging could predict EGFR-defined subtypes of GBM. We retrospectively identified 106 consecutive glioblastoma (GBM) patients with known EGFR gene amplification, and a subset of 65 patients who also had known EGFRvIII gene mutation status. All patients underwent T2* DSC MRI perfusion. DSC perfusion maps and T2* signal intensity time curves were evaluated, and the following measures of tumor perfusion were recorded: (1) maximum relative cerebral blood volume (rCBV), (2) relative peak height (rPH), and (3) percent signal recovery (PSR). The imaging metrics were correlated to EGFR gene amplification and EGFRvIII mutation status using univariate analyses. EGFR amplification was present in 44 (41.5 %) subjects and absent in 62 (58.5 %). Among the 65 subjects who had undergone EGFRvIII mutation transcript analysis, 18 subjects (27.7 %) tested positive for the EGFRvIII mutation, whereas 47 (72.3 %) did not. Higher median rCBV (3.31 versus 2.62, p = 0.01) and lower PSR (0.70 versus 0.78, p = 0.03) were associated with high levels of EGFR amplification. Higher median rPH (3.68 versus 2.76, p = 0.03) was associated with EGFRvIII mutation. DSC MRI perfusion may have a role in identifying patients with EGFR gene amplification and EGFRvIII gene mutation status, potential targets for individualized treatment protocols. Our results raise the need for further investigation for imaging biomarkers of genetically unique GBM subtypes.

  20. [Current Possibilities for Predicting Responses to EGFR Blockade in Metastatic Colorectal Cancer].

    PubMed

    Němeček, R; Svoboda, M; Slabý, O

    2016-01-01

    The combination of modern systemic chemotherapy and anti-EGFR monoclonal antibodies improves overall survival and quality of life for patients with metastatic colorecal cancer. By contrast, the addition of anti-EGFR therapy to the treatment regime of resistant patients may lead to worse progression-free survival and overall survival. Therefore, identifying sensitive and resistant patients prior to targeted therapy of metastatic colorecal cancer is a key point during the initial decision making process. Previous research shows that primary resistance to EGFR blockade is in most cases caused by constitutive activation of signaling pathways downstream of EGFR. Of all relevant factors (mutation of KRAS, NRAS, BRAF, and PIK3CA oncogenes, inactivation of tumor suppressors PTEN and TP53, amplification of EGFR and HER2, and expression of epiregulin and amphiregulin, mikroRNA miR-31-3p, and miR-31-5p), only evaluation of KRAS and NRAS mutations has entered routine clinical practice. The role of the other markers still needs to be validated. The ongoing benefit of anti-EGFR therapy could be indicated by specific clinical parameters measured after the initiation of targeted therapy, including early tumor shrinkage, the deepness of the response, or hypomagnesemia. The accuracy of predictive dia-gnostic tools could be also increased by examining a combination of predictive markers using next generation sequencing methods. However, unjustified investigation of many molecular markers should be resisted as this may complicate interpretation of the results, particularly in terms of their specific clinical relevance. The aim of this review is to describe current possibilities with respect to predicting responses to EGFR blockade in the context of the EGFR pathway, and the utilization of such results in routine clinical practice.

  1. Epigenetic suppression of EGFR signaling in G-CIMP+ glioblastomas

    PubMed Central

    Goyal, Amit; Gonda, David; Akers, Johnny; Adhikari, Bandita; Patel, Kunal; Vandenberg, Scott; Yan, Wei; Bao, Zhaoshi; Carter, Bob S.; Wang, Renzhi; Mao, Ying; Jiang, Tao; Chen, Clark C.

    2014-01-01

    The intrinsic signaling cascades and cell states associated with the Glioma CpG Island Methylator Phenotype (G-CIMP) remain poorly understood. Using published mRNA signatures associated with EGFR activation, we demonstrate that G-CIMP+ tumors harbor decreased EGFR signaling using three independent datasets, including the Chinese Glioma Genome Atlas(CGGA; n=155), the REMBRANDT dataset (n=288), and The Cancer Genome Atlas (TCGA; n=406). Additionally, an independent collection of 25 fresh-frozen glioblastomas confirmed lowered pERK levels in G-CIMP+ specimens (p<0.001), indicating suppressed EGFR signaling. Analysis of TCGA glioblastomas revealed that G-CIMP+ glioblastomas harbored lowered mRNA levels for EGFR and H-Ras. Induction of G-CIMP+ state by exogenous expression of a mutated isocitrate dehydrogenase 1, IDH1-R132H, suppressed EGFR and H-Ras protein expression as well as pERK accumulation in independent glioblastoma models. These suppressions were associated with increased deposition of the repressive histone markers, H3K9me3 and H3K27me3, in the EGFR and H-Ras promoter regions. The IDH1-R132H expression-induced pERK suppression can be reversed by exogenous expression of H-RasG12V. Finally, the G-CIMP+ Ink4a-Arf−/− EGFRvIII glioblastoma line was more resistant to the EGFR inhibitor, Gefitinib, relative to its isogenic G-CIMP- counterpart. These results suggest that G-CIMP epigenetically regulates EGFR signaling and serves as a predictive biomarker for EGFR inhibitors in glioblastoma patients. PMID:25277177

  2. Epigenetic suppression of EGFR signaling in G-CIMP+ glioblastomas.

    PubMed

    Li, Jie; Taich, Zachary J; Goyal, Amit; Gonda, David; Akers, Johnny; Adhikari, Bandita; Patel, Kunal; Vandenberg, Scott; Yan, Wei; Bao, Zhaoshi; Carter, Bob S; Wang, Renzhi; Mao, Ying; Jiang, Tao; Chen, Clark C

    2014-09-15

    The intrinsic signaling cascades and cell states associated with the Glioma CpG Island Methylator Phenotype (G-CIMP) remain poorly understood. Using published mRNA signatures associated with EGFR activation, we demonstrate that G-CIMP+ tumors harbor decreased EGFR signaling using three independent datasets, including the Chinese Glioma Genome Atlas(CGGA; n=155), the REMBRANDT dataset (n=288), and The Cancer Genome Atlas (TCGA; n=406). Additionally, an independent collection of 25 fresh-frozen glioblastomas confirmed lowered pERK levels in G-CIMP+ specimens (p<0.001), indicating suppressed EGFR signaling. Analysis of TCGA glioblastomas revealed that G-CIMP+ glioblastomas harbored lowered mRNA levels for EGFR and H-Ras. Induction of G-CIMP+ state by exogenous expression of a mutated isocitrate dehydrogenase 1, IDH1-R132H, suppressed EGFR and H-Ras protein expression as well as pERK accumulation in independent glioblastoma models. These suppressions were associated with increased deposition of the repressive histone markers, H3K9me3 and H3K27me3, in the EGFR and H-Ras promoter regions. The IDH1-R132H expression-induced pERK suppression can be reversed by exogenous expression of H-RasG12V. Finally, the G-CIMP+ Ink4a-Arf-/- EGFRvIII glioblastoma line was more resistant to the EGFR inhibitor, Gefitinib, relative to its isogenic G-CIMP- counterpart. These results suggest that G-CIMP epigenetically regulates EGFR signaling and serves as a predictive biomarker for EGFR inhibitors in glioblastoma patients.

  3. Multiple Hotspot Mutations Scanning by Single Droplet Digital PCR.

    PubMed

    Decraene, Charles; Silveira, Amanda B; Bidard, François-Clément; Vallée, Audrey; Michel, Marc; Melaabi, Samia; Vincent-Salomon, Anne; Saliou, Adrien; Houy, Alexandre; Milder, Maud; Lantz, Olivier; Ychou, Marc; Denis, Marc G; Pierga, Jean-Yves; Stern, Marc-Henri; Proudhon, Charlotte

    2018-02-01

    Progress in the liquid biopsy field, combined with the development of droplet digital PCR (ddPCR), has enabled noninvasive monitoring of mutations with high detection accuracy. However, current assays detect a restricted number of mutations per reaction. ddPCR is a recognized method for detecting alterations previously characterized in tumor tissues, but its use as a discovery tool when the mutation is unknown a priori remains limited. We established 2 ddPCR assays detecting all genomic alterations within KRAS exon 2 and EGFR exon 19 mutation hotspots, which are of clinical importance in colorectal and lung cancer, with use of a unique pair of TaqMan ® oligoprobes. The KRAS assay scanned for the 7 most common mutations in codons 12/13 but also all other mutations found in that region. The EGFR assay screened for all in-frame deletions of exon 19, which are frequent EGFR-activating events. The KRAS and EGFR assays were highly specific and both reached a limit of detection of <0.1% in mutant allele frequency. We further validated their performance on multiple plasma and formalin-fixed and paraffin-embedded tumor samples harboring a panel of different KRAS or EGFR mutations. This method presents the advantage of detecting a higher number of mutations with single-reaction ddPCRs while consuming a minimum of patient sample. This is particularly useful in the context of liquid biopsy because the amount of circulating tumor DNA is often low. This method should be useful as a discovery tool when the tumor tissue is unavailable or to monitor disease during therapy. © 2017 American Association for Clinical Chemistry.

  4. Direct interaction between surface β1,4-galactosyltransferase 1 and epidermal growth factor receptor (EGFR) inhibits EGFR activation in hepatocellular carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Wenqing; Weng, Shuqiang; Zhang, Si

    2013-05-10

    Highlights: •β1,4GT1 interacts with EGFR both in vitro and in vivo. •β1,4GT1 co-localizes with EGFR on the cell surface. •β1,4GT1 inhibits {sup 125}I-EGF binding to EGFR. •β1,4GT1 inhibits EGF induced EGFR dimerization and phosphorylation. -- Abstract: Our previous studies showed that cell surface β1,4-galactosyltransferase 1 (β1,4GT1) negatively regulated cell survival through inhibition and modulation of the epidermal growth factor receptor (EGFR) signaling pathway in human hepatocellular carcinoma (HCC) SMMC-7721 cells. However, the underlying mechanism remains unclear. Here we demonstrated that β1,4-galactosyltransferase 1 (β1,4GT1) interacted with EGFR in vitro by GST pull-down analysis. Furthermore, we demonstrated that β1,4GT1 bound to EGFRmore » in vivo by co-immunoprecipitation and determined the co-localization of β1,4GT1 and EGFR on the cell surface via confocal laser scanning microscopy analysis. Finally, using {sup 125}I-EGF binding experiments and Western blot analysis, we found that overexpression of β1,4GT1 inhibited {sup 125}I-EGF binding to EGFR, and consequently reduced the levels of EGFR dimerization and phosphorylation. In contrast, RNAi-mediated knockdown of β1,4GT1 increased the levels of EGFR dimerization and phosphorylation. These data suggest that cell surface β1,4GT1 interacts with EGFR and inhibits EGFR activation.« less

  5. Therapeutic value of EGFR inhibition in CRC and NSCLC: 15 years of clinical evidence.

    PubMed

    Troiani, Teresa; Napolitano, Stefania; Della Corte, Carminia Maria; Martini, Giulia; Martinelli, Erika; Morgillo, Floriana; Ciardiello, Fortunato

    2016-01-01

    Epidermal growth factor receptor (EGFR) plays a key role in tumour evolution, proliferation and immune evasion, and is one of the most important targets for biological therapy, especially for non-small-cell lung cancer (NSCLC) and colorectal cancer (CRC). In the past 15 years, several EGFR antagonists have been approved for the treatment of NSCLC and metastatic CRC (mCRC). To optimise the use of anti-EGFR agents in clinical practice, various clinical and molecular biomarkers have been investigated, thus moving their indication from unselected to selected populations. Nowadays, anti-EGFR drugs represent a gold-standard therapy for metastatic NSCLC harbouring EGFR activating mutation and for RAS wild-type mCRC. Their clinical efficacy is limited by the presence of intrinsic resistance or the onset of acquired resistance. In this review, we provide an overview of the antitumour activity of EGFR inhibitors in NSCLC and CRC and of mechanisms of resistance, focusing on the development of a personalised approach through 15 years of preclinical and clinical research.

  6. Epidermal growth factor receptor mutations in 510 Finnish non--small-cell lung cancer patients.

    PubMed

    Mäki-Nevala, Satu; Rönty, Mikko; Morel, Mike; Gomez, Maria; Dawson, Zoe; Sarhadi, Virinder Kaur; Telaranta-Keerie, Aino; Knuuttila, Aija; Knuutila, Sakari

    2014-06-01

    Among the driver gene mutations in non-small-cell lung cancer, mutations in epidermal growth factor receptor (EGFR) are the most important because of their predictive role in selecting patients eligible for targeted therapy. Our aim was to study EGFR mutations in a Finnish non-small-cell lung cancer cohort of 528 patients. Mutation testing was conducted on DNA extracted from paraffin-embedded, formalin-fixed tumor material using the following real-time polymerase chain reaction-based kits: Therascreen EGFR PCR Kit and cobas EGFR Mutation Test. EGFR mutation frequency was 11.4% and all positive cases were adenocarcinomas, of which a majority had an acinar predominant pattern. Mutations were seen significantly more often in females and never-smokers than in males and smokers. The most frequent mutations were L858R in exon 21 and deletions in exon 19. Overall survival of the patients, not treated with EGFR inhibitor, did not differ between EGFR mutation-positive and EGFR mutation-negative patients. EGFR mutation profile in this Finnish non-small-cell lung cancer cohort resembles in many respect with that of other Western European cohorts, even though the overall frequency of mutations is slightly higher. We show the occurrence of EGFR mutations in patients with occupational asbestos exposure and also in those diagnosed with chronic obstructive pulmonary disease who have not been often investigated before.

  7. Anti-Epidermal Growth Factor Vaccine Antibodies Enhance the Efficacy of Tyrosine Kinase Inhibitors and Delay the Emergence of Resistance in EGFR Mutant Lung Cancer Cells.

    PubMed

    Codony-Servat, Jordi; García-Roman, Silvia; Molina-Vila, Miguel Ángel; Bertran-Alamillo, Jordi; Giménez-Capitán, Ana; Viteri, Santiago; Cardona, Andrés F; d'Hondt, Erik; Karachaliou, Niki; Rosell, Rafael

    2018-05-08

    Mutations in EGFR correlate with impaired response to immune checkpoint inhibitors and the development of novel immunotherapeutic approaches for EGFR mutant non-small cell lung cancer (NSCLC) is of particular interest. Immunization against EGF has demonstrated efficacy in a phase III trial including unselected NSCLC patients, but little was known about the mechanisms involved in the effects of the anti-EGF antibodies generated by vaccination (anti-EGF VacAbs) or their activity in tumor cells with EGFR mutations. The EGFR-mutant, NSCLC cell lines H1975 and PC9, together with several gefitinib and osimertinib-resistant cells derived from PC9, were treated with anti-EGF VacAbs and/or EGFR tyrosine kinase inhibitors (TKIs). Cell viability was analyzed by proliferation assays, cell cycle by fluorescence-activated cell sorting analysis and levels of RNA and proteins by quantitative retro-transcription PCR and Western blotting. Anti-EGF VacAbs generated in rabbits suppressed EGF-induced cell proliferation and cycle progression and inhibited downstream EGFR signaling in EGFR-mutant cells. Sera from patients immunized with an EGF vaccine were also able to block activation of EGFR effectors. In combination, the anti-EGF VacAbs significantly enhanced the antitumor activity of all TKIs tested, suppressed Erk1/2 phosphorylation, blocked the activation of signal transducer and activator of transcription 3 (STAT3) and downregulated the expression of AXL. Finally, anti-EGF VacAbs significantly delayed the emergence in vitro of EGFR TKI resistant clones. EGFR-mutant patients can derive benefit from immunization against EGF, particularly if combined with EGFR TKIs. A Phase I trial of an EGF vaccine in combination with afatinib has been initiated. Copyright © 2018 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  8. Analysis of PIK3CA Mutations and Activation Pathways in Triple Negative Breast Cancer

    PubMed Central

    Muroni, Maria Rosaria; Sanges, Francesca; Sotgiu, Giovanni; Ena, Sara; Pira, Giovanna; Murgia, Luciano; Manca, Alessandra; Uras, Maria Gabriela; Sarobba, Maria Giuseppina; Urru, Silvana; De Miglio, Maria Rosaria

    2015-01-01

    Background Triple Negative Breast Cancer (TNBC) accounts for 12–24% of all breast carcinomas, and shows worse prognosis compared to other breast cancer subtypes. Molecular studies demonstrated that TNBCs are a heterogeneous group of tumors with different clinical and pathologic features, prognosis, genetic-molecular alterations and treatment responsivity. The PI3K/AKT is a major pathway involved in the regulation of cell survival and proliferation, and is the most frequently altered pathway in breast cancer, apparently with different biologic impact on specific cancer subtypes. The most common genetic abnormality is represented by PIK3CA gene activating mutations, with an overall frequency of 20–40%. The aims of our study were to investigate PIK3CA gene mutations on a large series of TNBC, to perform a wider analysis on genetic alterations involving PI3K/AKT and BRAF/RAS/MAPK pathways and to correlate the results with clinical-pathologic data. Materials and Methods PIK3CA mutation analysis was performed by using cobas® PIK3CA Mutation Test. EGFR, AKT1, BRAF, and KRAS genes were analyzed by sequencing. Immunohistochemistry was carried out to identify PTEN loss and to investigate for PI3K/AKT pathways components. Results PIK3CA mutations were detected in 23.7% of TNBC, whereas no mutations were identified in EGFR, AKT1, BRAF, and KRAS genes. Moreover, we observed PTEN loss in 11.3% of tumors. Deregulation of PI3K/AKT pathways was revealed by consistent activation of pAKT and p-p44/42 MAPK in all PIK3CA mutated TNBC. Conclusions Our data shows that PIK3CA mutations and PI3K/AKT pathway activation are common events in TNBC. A deeper investigation on specific TNBC genomic abnormalities might be helpful in order to select patients who would benefit from current targeted therapy strategies. PMID:26540293

  9. Bioinformatics-driven discovery of rational combination for overcoming EGFR-mutant lung cancer resistance to EGFR therapy.

    PubMed

    Kim, Jihye; Vasu, Vihas T; Mishra, Rangnath; Singleton, Katherine R; Yoo, Minjae; Leach, Sonia M; Farias-Hesson, Eveline; Mason, Robert J; Kang, Jaewoo; Ramamoorthy, Preveen; Kern, Jeffrey A; Heasley, Lynn E; Finigan, James H; Tan, Aik Choon

    2014-09-01

    Non-small-cell lung cancer (NSCLC) is the leading cause of cancer death in the United States. Targeted tyrosine kinase inhibitors (TKIs) directed against the epidermal growth factor receptor (EGFR) have been widely and successfully used in treating NSCLC patients with activating EGFR mutations. Unfortunately, the duration of response is short-lived, and all patients eventually relapse by acquiring resistance mechanisms. We performed an integrative systems biology approach to determine essential kinases that drive EGFR-TKI resistance in cancer cell lines. We used a series of bioinformatics methods to analyze and integrate the functional genetics screen and RNA-seq data to identify a set of kinases that are critical in survival and proliferation in these TKI-resistant lines. By connecting the essential kinases to compounds using a novel kinase connectivity map (K-Map), we identified and validated bosutinib as an effective compound that could inhibit proliferation and induce apoptosis in TKI-resistant lines. A rational combination of bosutinib and gefitinib showed additive and synergistic effects in cancer cell lines resistant to EGFR TKI alone. We have demonstrated a bioinformatics-driven discovery roadmap for drug repurposing and development in overcoming resistance in EGFR-mutant NSCLC, which could be generalized to other cancer types in the era of personalized medicine. K-Map can be accessible at: http://tanlab.ucdenver.edu/kMap. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Chronic Obstructive Pulmonary Disease Is Not Associated with KRAS Mutations in Non-Small Cell Lung Cancer.

    PubMed

    Saber, Ali; van der Wekken, Anthonie J; Kerner, Gerald S M A; van den Berge, Maarten; Timens, Wim; Schuuring, Ed; ter Elst, Arja; van den Berg, Anke; Hiltermann, T Jeroen N; Groen, Harry J M

    2016-01-01

    Mutations in epithelial growth factor receptor (EGFR), as well as in the EGFR downstream target KRAS are frequently observed in non-small cell lung cancer (NSCLC). Chronic obstructive pulmonary disease (COPD), an independent risk factor for developing NSCLC, is associated with an increased activation of EGFR. In this study we determined presence of EGFR and KRAS hotspot mutations in 325 consecutive NSCLC patients subjected to EGFR and KRAS mutation analysis in the diagnostic setting and for whom the pulmonary function has been determined at time of NSCLC diagnosis. Information about age at diagnosis, sex, smoking status, forced vital capacity (FVC) and forced expiratory volume in 1 sec (FEV1) was collected. Chronic obstructive pulmonary disease(COPD) was defined according to 2013 GOLD criteria. Chi-Square, student t-test and multivariate logistic regression were used to analyze the data. A total of 325 NSCLC patients were included, 193 with COPD and 132 without COPD. COPD was not associated with presence of KRAS hotspot mutations, while EGFR mutations were significantly higher in non-COPD NSCLC patients. Both female gender (HR 2.61; 95% CI: 1.56-4.39; p<0.001) and smoking (HR 4.10; 95% CI: 1.14-14.79; p = 0.03) were associated with KRAS mutational status. In contrast, only smoking (HR 0.11; 95% CI: 0.04-0.32; p<0.001) was inversely associated with EGFR mutational status. Smoking related G>T and G>C transversions were significantly more frequent in females (86.2%) than in males (61.5%) (p = 0.008). The exon 19del mutation was more frequent in non-smokers (90%) compared to current or past smokers (36.8%). In conclusion, KRAS mutations are more common in females and smokers, but are not associated with COPD-status in NSCLC patients. EGFR mutations are more common in non-smoking NSCLC patients.

  11. KRAS, EGFR, PDGFR-α, KIT and COX-2 status in carcinoma showing thymus-like elements (CASTLE)

    PubMed Central

    2014-01-01

    Background CASTLE (Carcinoma showing thymus-like elements) is a rare malignant neoplasm of the thyroid resembling lymphoepithelioma-like and squamous cell carcinoma of the thymus with different biological behaviour and a better prognosis than anaplastic carcinoma of the thyroid. Methods We retrospectively investigated 6 cases of this very rare neoplasm in order to investigate the mutational status of KRAS, EGFR, PDGFR-α and KIT, as well as the immunohistochemical expression pattern of CD117, EGFR and COX-2, and possibly find new therapeutic targets. Results Diagnosis was confirmed by a moderate to strong expression of CD5, CD117 and CK5/6, whereas thyroglobulin, calcitonin and TTF-1 were negative in all cases. Tumors were also positive for COX-2 and in nearly all cases for EGFR. In four cases single nucleotide polymorphisms (SNPs) could be detected in exon 12 of the PDGFR-α gene (rs1873778), in three cases SNPs were found in exon 20 of the EGFR gene (rs1050171). No mutations were found in the KIT and KRAS gene. Conclusions All tumors showed a COX-2 expression as well as an EGFR expression except for one case and a wild-type KRAS status. No activating mutations in the EGFR, KIT and PDGFR-α gene could be detected. Our data may indicate a potential for targeted therapies, but if these therapeutic strategies are of benefit in CASTLE remains to be determined. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1658499296115016 PMID:24934485

  12. Identification of somatic mutations in EGFR/KRAS/ALK-negative lung adenocarcinoma in never-smokers

    PubMed Central

    2014-01-01

    Background Lung adenocarcinoma is a highly heterogeneous disease with various etiologies, prognoses, and responses to therapy. Although genome-scale characterization of lung adenocarcinoma has been performed, a comprehensive somatic mutation analysis of EGFR/KRAS/ALK-negative lung adenocarcinoma in never-smokers has not been conducted. Methods We analyzed whole exome sequencing data from 16 EGFR/KRAS/ALK-negative lung adenocarcinomas and additional 54 tumors in two expansion cohort sets. Candidate loci were validated by target capture and Sanger sequencing. Gene set analysis was performed using Ingenuity Pathway Analysis. Results We identified 27 genes potentially implicated in the pathogenesis of lung adenocarcinoma. These included targetable genes involved in PI3K/mTOR signaling (TSC1, PIK3CA, AKT2) and receptor tyrosine kinase signaling (ERBB4) and genes not previously highlighted in lung adenocarcinomas, such as SETD2 and PBRM1 (chromatin remodeling), CHEK2 and CDC27 (cell cycle), CUL3 and SOD2 (oxidative stress), and CSMD3 and TFG (immune response). In the expansion cohort (N = 70), TP53 was the most frequently altered gene (11%), followed by SETD2 (6%), CSMD3 (6%), ERBB2 (6%), and CDH10 (4%). In pathway analysis, the majority of altered genes were involved in cell cycle/DNA repair (P <0.001) and cAMP-dependent protein kinase signaling (P <0.001). Conclusions The genomic makeup of EGFR/KRAS/ALK-negative lung adenocarcinomas in never-smokers is remarkably diverse. Genes involved in cell cycle regulation/DNA repair are implicated in tumorigenesis and represent potential therapeutic targets. PMID:24576404

  13. Loss of EGFR confers acquired resistance to AZD9291 in an EGFR-mutant non-small cell lung cancer cell line with an epithelial-mesenchymal transition phenotype.

    PubMed

    Xu, Jing; Zhao, Xiaoting; He, Dengfeng; Wang, Jinghui; Li, Weiying; Liu, Yinghui; Ma, Li; Jiang, Mei; Teng, Yu; Wang, Ziyu; Gu, Meng; Wu, Jianbin; Wang, Yue; Yue, Wentao; Zhang, Shucai

    2018-05-24

    AZD9291 is an irreversible, small-molecule inhibitor which has potency against mutant EGFR- and T790M-resistant mutation. Despite the encouraging efficacy in clinical, the acquired resistance will finally occur. Further study will need to be done to identify the acquired resistance mechanisms and determine the next treatment. We established an AZD9291-resistant cell line (HCC827/AZDR) from parental HCC827 cell line through stepwise pulsed selection of AZD9291. The expression of EGFR and its downstream pathways were determined by western blot analysis or immunofluorescence assay. The sensitivity to indicated agents were evaluated by MTS. Compared with parental HCC827 cells, the HCC827/AZDR cells showed high resistance to AZD9291 and other EGFR-TKIs, and exhibited a mesenchymal-like phenotype. Almost complete loss of EGFR expression was observed in HCC827/AZDR cells. But the activation of downstream pathway, MAPK signaling, was found in HCC827/AZDR cells even in the presence of AZD9291. Inhibition of MAPK signaling had no effect on cell viability of HCC827/AZDR and could not reverse AZD9291 resistance because of the subsequent activation of AKT signaling. When treated with the combination of AKT and MAPK inhibitor, HCC827/AZDR showed remarkable growth inhibition. Loss of EGFR could be proposed as a potential acquired resistance mechanism of AZD9291 in EGFR-mutant NSCLC cells with an EMT phenotype. Despite the loss of EGFR, the activation of MAPK pathway which had crosstalk with AKT pathway could maintain the proliferation and survival of resistant cells. Blocking MAPK and AKT signaling may be a potential therapeutic strategy following AZD9291 resistance.

  14. Biomarkers that currently affect clinical practice: EGFR, ALK, MET, KRAS

    PubMed Central

    Vincent, M.D.; Kuruvilla, M.S.; Leighl, N.B.; Kamel–Reid, S.

    2012-01-01

    New drugs such as pemetrexed, the epidermal growth factor receptor (egfr) tyrosine kinase inhibitors, and the Alk inhibitor crizotinib have recently enabled progress in the management of advanced non-small-cell lung cancer (nsclc). More drugs, especially Met inhibitors, will follow. However, the benefits of these agents are not uniform across the spectrum of nsclc, and optimizing their utility requires some degree of subgrouping of nsclc by the presence or absence of certain biomarkers. The biomarkers of current or imminent value are EGFR and KRAS mutational status, ALK rearrangements, and MET immunohistochemistry. As a predictor of benefit for anti-egfr monoclonal antibodies, EGFR immunohistochemistry is also of potential interest. Some of the foregoing biomarkers (EGFR, ALK, MET) are direct drivers of the malignant phenotype. As such, they are, quite rationally, the direct targets of inhibitory drugs. However, KRAS, while definitely a driver, has resisted attempts at direct pharmacologic manipulation, and its main value might lie in its role as part of an efficient testing algorithm, because KRAS mutations appear to exclude EGFR and ALK mutations. The indirect value of KRAS in determining sensitivity to other targeted agents or to pemetrexed remains controversial. The other biomarkers (EGFR, ALK, MET) may also have indirect value as predictors of sensitivity to chemotherapy in general, to pemetrexed specifically, and to radiotherapy and molecularly targeted agents. These biomarkers have all enabled the co-development of new drugs with companion diagnostics, and they illustrate the paradigm that will govern progress in oncology in the immediate future. However, in nsclc, the acquisition of sufficient biopsy material remains a stubborn obstacle to the evolution of novel targeted therapies. PMID:22787409

  15. EGFR Mutations and ALK Rearrangements Are Associated with Low Response Rates to PD-1 Pathway Blockade in Non-Small Cell Lung Cancer: A Retrospective Analysis.

    PubMed

    Gainor, Justin F; Shaw, Alice T; Sequist, Lecia V; Fu, Xiujun; Azzoli, Christopher G; Piotrowska, Zofia; Huynh, Tiffany G; Zhao, Ling; Fulton, Linnea; Schultz, Katherine R; Howe, Emily; Farago, Anna F; Sullivan, Ryan J; Stone, James R; Digumarthy, Subba; Moran, Teresa; Hata, Aaron N; Yagi, Yukako; Yeap, Beow Y; Engelman, Jeffrey A; Mino-Kenudson, Mari

    2016-09-15

    PD-1 inhibitors are established agents in the management of non-small cell lung cancer (NSCLC); however, only a subset of patients derives clinical benefit. To determine the activity of PD-1/PD-L1 inhibitors within clinically relevant molecular subgroups, we retrospectively evaluated response patterns among EGFR-mutant, anaplastic lymphoma kinase (ALK)-positive, and EGFR wild-type/ALK-negative patients. We identified 58 patients treated with PD-1/PD-L1 inhibitors. Objective response rates (ORR) were assessed using RECIST v1.1. PD-L1 expression and CD8(+) tumor-infiltrating lymphocytes (TIL) were evaluated by IHC. Objective responses were observed in 1 of 28 (3.6%) EGFR-mutant or ALK-positive patients versus 7 of 30 (23.3%) EGFR wild-type and ALK-negative/unknown patients (P = 0.053). The ORR among never- or light- (≤10 pack years) smokers was 4.2% versus 20.6% among heavy smokers (P = 0.123). In an independent cohort of advanced EGFR-mutant (N = 68) and ALK-positive (N = 27) patients, PD-L1 expression was observed in 24%/16%/11% and 63%/47%/26% of pre-tyrosine kinase inhibitor (TKI) biopsies using cutoffs of ≥1%, ≥5%, and ≥50% tumor cell staining, respectively. Among EGFR-mutant patients with paired, pre- and post-TKI-resistant biopsies (N = 57), PD-L1 expression levels changed after resistance in 16 (28%) patients. Concurrent PD-L1 expression (≥5%) and high levels of CD8(+) TILs (grade ≥2) were observed in only 1 pretreatment (2.1%) and 5 resistant (11.6%) EGFR-mutant specimens and was not observed in any ALK-positive, pre- or post-TKI specimens. NSCLCs harboring EGFR mutations or ALK rearrangements are associated with low ORRs to PD-1/PD-L1 inhibitors. Low rates of concurrent PD-L1 expression and CD8(+) TILs within the tumor microenvironment may underlie these clinical observations. Clin Cancer Res; 22(18); 4585-93. ©2016 AACRSee related commentary by Gettinger and Politi, p. 4539. ©2016 American Association for Cancer Research.

  16. EGFR T790M mutation testing of non-small cell lung cancer tissue and blood samples artificially spiked with circulating cell-free tumor DNA: results of a round robin trial.

    PubMed

    Fassunke, Jana; Ihle, Michaela Angelika; Lenze, Dido; Lehmann, Annika; Hummel, Michael; Vollbrecht, Claudia; Penzel, Roland; Volckmar, Anna-Lena; Stenzinger, Albrecht; Endris, Volker; Jung, Andreas; Lehmann, Ulrich; Zeugner, Silke; Baretton, Gustavo; Kreipe, Hans; Schirmacher, Peter; Kirchner, Thomas; Dietel, Manfred; Büttner, Reinhard; Merkelbach-Bruse, Sabine

    2017-10-01

    The European Commision (EC) recently approved osimertinib for the treatment of adult patients with locally advanced or metastatic non-small-cell lung cancer (NSCLC) harboring EGFR T790M mutations. Besides tissue-based testing, blood samples containing cell-free circulating tumor DNA (ctDNA) can be used to interrogate T790M status. Herein, we describe the conditions and results of a round robin trial (RRT) for T790M mutation testing in NSCLC tissue specimens and peripheral blood samples spiked with cell line DNA mimicking tumor-derived ctDNA. The underlying objectives of this two-staged external quality assessment (EQA) approach were (a) to evaluate the accuracy of T790M mutations testing across multiple centers and (b) to investigate if a liquid biopsy-based testing for T790M mutations in spiked blood samples is feasible in routine diagnostic. Based on a successfully completed internal phase I RRT, an open RRT for EGFR T790M mutation testing in tumor tissue and blood samples was initiated. In total, 48 pathology centers participated in the EQA. Of these, 47 (97.9%) centers submitted their analyses within the pre-defined time frame and 44 (tissue), respectively, 40 (plasma) successfully passed the test. The overall success rates in the RRT phase II were 91.7% (tissue) and 83.3% (blood), respectively. Thirty-eight out of 48 participants (79.2%) successfully passed both parts of the RRT. The RRT for blood-based EGFR testing initiated in Germany is, to the best of our knowledge, the first of his kind in Europe. In summary, our results demonstrate that blood-based genotyping for EGFR resistance mutations can be successfully integrated in routine molecular diagnostics complementing the array of molecular methods already available at pathology centers in Germany.

  17. A Comparative Study for Detection of EGFR Mutations in Plasma Cell-Free DNA in Korean Clinical Diagnostic Laboratories

    PubMed Central

    2018-01-01

    Liquid biopsies to genotype the epidermal growth factor receptor (EGFR) for targeted therapy have been implemented in clinical decision-making in the field of lung cancer, but harmonization of detection methods is still scarce among clinical laboratories. We performed a pilot external quality assurance (EQA) scheme to harmonize circulating tumor DNA testing among laboratories. For EQA, we created materials containing different levels of spiked cell-free DNA (cfDNA) in normal plasma. The limit of detection (LOD) of the cobas® EGFR Mutation Test v2 (Roche Molecular Systems) was also evaluated. From November 2016 to June 2017, seven clinical diagnostic laboratories participated in the EQA program. The majority (98.94%) of results obtained using the cobas assay and next-generation sequencing (NGS) were acceptable. Quantitative results from the cobas assay were positively correlated with allele frequencies derived from digital droplet PCR measurements and showed good reproducibility among laboratories. The LOD of the cobas assay was 5~27 copies/mL for p.E746_A750del (exon 19 deletion), 35~70 copies/mL for p.L858R, 18~36 copies/mL for p.T790M, and 15~31 copies/mL for p.A767_V769dup (exon 20 insertion). Deep sequencing of materials (>100,000X depth of coverage) resulted in detection of low-level targets present at frequencies of 0.06~0.13%. Our results indicate that the cobas assay is a reliable and rapid method for detecting EGFR mutations in plasma cfDNA. Careful interpretation is particularly important for p.T790M detection in the setting of relapse. Individual laboratories should optimize NGS performance to maximize clinical utility.

  18. Cellular localization of the activated EGFR determines its effect on cell growth in MDA-MB-468 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyatt, Dustin C.; Ceresa, Brian P.

    2008-11-01

    The epidermal growth factor (EGF) receptor (EGFR) is a ubiquitously expressed receptor tyrosine kinase that regulates diverse cell functions that are dependent upon cell type, the presence of downstream effectors, and receptor density. In addition to activating biochemical pathways, ligand stimulation causes the EGFR to enter the cell via clathrin-coated pits. Endocytic trafficking influences receptor signaling by controlling the duration of EGFR phosphorylation and coordinating the receptor's association with downstream effectors. To better understand the individual contributions of cell surface and cytosolic EGFRs on cell physiology, we used EGF that was conjugated to 900 nm polystyrene beads (EGF-beads). EGF-beads canmore » stimulate the EGFR and retain the activated receptor at the plasma membrane. In MDA-MB-468 cells, a breast cancer cell line that over-expresses the EGFR, only internalized, activated EGFRs stimulate caspase-3 and induce cell death. Conversely, signaling cascades triggered from activated EGFR retained at the cell surface inhibit caspase-3 and promote cell proliferation. Thus, through endocytosis, the activated EGFR can differentially regulate cell growth in MDA-MB-468 cells.« less

  19. Rapamycin prevents the development and progression of mutant epidermal growth factor receptor lung tumors with the acquired resistance mutation T790M.

    PubMed

    Kawabata, Shigeru; Mercado-Matos, José R; Hollander, M Christine; Donahue, Danielle; Wilson, Willie; Regales, Lucia; Butaney, Mohit; Pao, William; Wong, Kwok-Kin; Jänne, Pasi A; Dennis, Phillip A

    2014-06-26

    Lung cancer in never-smokers is an important disease often characterized by mutations in epidermal growth factor receptor (EGFR), yet risk reduction measures and effective chemopreventive strategies have not been established. We identify mammalian target of rapamycin (mTOR) as potentially valuable target for EGFR mutant lung cancer. mTOR is activated in human lung cancers with EGFR mutations, and this increases with acquisition of T790M mutation. In a mouse model of EGFR mutant lung cancer, mTOR activation is an early event. As a single agent, the mTOR inhibitor rapamycin prevents tumor development, prolongs overall survival, and improves outcomes after treatment with an irreversible EGFR tyrosine kinase inhibitor (TKI). These studies support clinical testing of mTOR inhibitors in order to prevent the development and progression of EGFR mutant lung cancers. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  20. EGFR-SGLT1 interaction does not respond to EGFR modulators, but inhibition of SGLT1 sensitizes prostate cancer cells to EGFR tyrosine kinase inhibitors.

    PubMed

    Ren, Jiangong; Bollu, Lakshmi R; Su, Fei; Gao, Guang; Xu, Lei; Huang, Wei-Chien; Hung, Mien-Chie; Weihua, Zhang

    2013-09-01

    Overexpression of epidermal growth factor receptor (EGFR) is associated with poor prognosis in malignant tumors. Sodium/glucose co-transporter 1 (SGLT1) is an active glucose transporter that is overexpressed in many cancers including prostate cancer. Previously, we found that EGFR interacts with and stabilizes SGLT1 in cancer cells. In this study, we determined the micro-domain of EGFR that is required for its interaction with SGLT1 and the effects of activation/inactivation of EGFR on EGFR-SGLT1 interaction, measured the expression of EGFR and SGLT1 in prostate cancer tissues, and tested the effect of inhibition of SGLT1 on the sensitivity of prostate cancer cells to EGFR tyrosine inhibitors. We found that the autophosphorylation region (978-1210 amino acids) of EGFR was required for its sufficient interaction with SGLT1 and that this interaction was independent of EGFR's tyrosine kinase activity. Most importantly, the EGFR-SGLT1 interaction does not respond to EGFR tyrosine kinase modulators (EGF and tyrosine kinase inhibitors). EGFR and SGLT1 co-localized in prostate cancer tissues, and inhibition of SGLT1 by a SGLT1 inhibitor (Phlorizin) sensitized prostate cancer cells to EGFR inhibitors (Gefitinib and Erlotinib). These data suggest that EGFR in cancer cells can exist as either a tyrosine kinase modulator responsive status or an irresponsive status. SGLT1 is a protein involved in EGFR's functions that are irresponsive to EGFR tyrosine kinase inhibitors and, therefore, the EGFR-SGLT1 interaction might be a novel target for prostate cancer therapy. © 2013 Wiley Periodicals, Inc. This article is a U.S. Government work and is in the public domain in the USA.

  1. Properties of resistant cells generated from lung cancer cell lines treated with EGFR inhibitors.

    PubMed

    Ghosh, Gargi; Lian, Xiaojun; Kron, Stephen J; Palecek, Sean P

    2012-03-20

    Epidermal growth factor receptor (EGFR) signaling plays an important role in non-small cell lung cancer (NSCLC) and therapeutics targeted against EGFR have been effective in treating a subset of patients bearing somatic EFGR mutations. However, the cancer eventually progresses during treatment with EGFR inhibitors, even in the patients who respond to these drugs initially. Recent studies have identified that the acquisition of resistance in approximately 50% of cases is due to generation of a secondary mutation (T790M) in the EGFR kinase domain. In about 20% of the cases, resistance is associated with the amplification of MET kinase. In the remaining 30-40% of the cases, the mechanism underpinning the therapeutic resistance is unknown. An erlotinib resistant subline (H1650-ER1) was generated upon continuous exposure of NSCLC cell line NCI-H1650 to erlotinib. Cancer stem cell like traits including expression of stem cell markers, enhanced ability to self-renew and differentiate, and increased tumorigenicity in vitro were assessed in erlotinib resistant H1650-ER1 cells. The erlotinib resistant subline contained a population of cells with properties similar to cancer stem cells. These cells were found to be less sensitive towards erlotinib treatment as measured by cell proliferation and generation of tumor spheres in the presence of erlotinib. Our findings suggest that in cases of NSCLC accompanied by mutant EGFR, treatment targeting inhibition of EGFR kinase activity in differentiated cancer cells may generate a population of cancer cells with stem cell properties.

  2. Evidence-based best practices for EGFR T790M testing in lung cancer in Canada.

    PubMed

    Stockley, T; Souza, C A; Cheema, P K; Melosky, B; Kamel-Reid, S; Tsao, M S; Spatz, A; Karsan, A

    2018-04-01

    Epidermal growth factor receptor (egfr) tyrosine kinase inhibitors (tkis) are recommended as first-line systemic therapy for patients with non-small-cell lung cancer (nsclc) having mutations in the EGFR gene. Resistance to tkis eventually occurs in all nsclc patients treated with such drugs. In patients with resistance to tkis caused by the EGFR T790M mutation, the third-generation tki osimertinib is now the standard of care. For optimal patient management, accurate EGFR T790M testing is required. A multidisciplinary working group of pathologists, laboratory medicine specialists, medical oncologists, a respirologist, and a thoracic radiologist from across Canada was convened to discuss best practices for EGFR T790M mutation testing in Canada. The group made recommendations in the areas of the testing algorithm and the pre-analytic, analytic, and post-analytic aspects of clinical testing for both tissue testing and liquid biopsy circulating tumour dna testing. The recommendations aim to improve EGFR T790M testing in Canada and to thereby improve patient care.

  3. [Influence of Different Therapies on EGFR Mutants by Circulating Cell-free DNA of Lung Adenocarcinoma and Prognosis].

    PubMed

    Su, Fei; Zheng, Ke; Fu, Yiyun; Wu, Qian; Tang, Yuan; Wang, Weiya; Jiang, Lili

    2018-05-20

    Epidermal growth factor receptor (EGFR) gene mutation is closely related to the EGFR-TKI target treatment and prognosis of lung adenocarcinoma patients. The mutation status of EGFR is limited by tissue detection. The purpose of this study was to investigate the difference of EGFR mutants in plasmacirculating cell-free DNA (cfDNA) obtained from patients with non-small cell lung cancer (NSCLC) in three groups: pre-therapy, after traditional chemotherapy and targeted therapy. The aim of this study was to analyze whether the plasma cfDNA could effectively determine the EGFR mutations and monitor the drug resistant gene T790M, as well as its prognostic prediction value in patients with targeted therapy. ARMS (amplification refractory mutation system)-PCR was used to detect EGFR mutations in 107 (50 of pre-therapy, 29 after traditional chemotherapy and 28 after targeted therapy) cases of paired plasma and tumor tissue specimens, followed by comparing their concordance. The sensitivity, specificity and the prognostic value of plasma cfDNA detection were also observed. The total rate of EGFR mutation was 56% (60/107) in all plasma samples and 77.6% (83/107) in corresponding tumor tissues. Completely the same mutants and wild-type EGFR were found in 68.2% cases of paired specimens. The sensitivity of plasma cfDNA detection was 72.3% and the specificity was up to 100%. Patients were sub-categorized according to therapy. The results showed that the highest consistent rate of cfDNA and tumor tissues was found in the group of pre-therapy (74%, 37/50). Whereas, the lowest consistent rate was observed in the targeted therapy group (57.1%, 16/28). It indicated that the targeted treatment could change the EGFR status in plasma cfDNA. Further analyses on inconsistent cases in this group revealed that 50% of them were compound EGFR mutations with T790M. Thereby, it suggested that targeted therapy might induce the emergence of drug resistance gene T790M. This speculation was confirmed

  4. The APPLE Trial: Feasibility and Activity of AZD9291 (Osimertinib) Treatment on Positive PLasma T790M in EGFR-mutant NSCLC Patients. EORTC 1613.

    PubMed

    Remon, Jordi; Menis, Jessica; Hasan, Baktiar; Peric, Aleksandra; De Maio, Eleonora; Novello, Silvia; Reck, Martin; Berghmans, Thierry; Wasag, Bartosz; Besse, Benjamin; Dziadziuszko, Rafal

    2017-09-01

    The AZD9291 (Osimertinib) Treatment on Positive PLasma T790M in EGFR-mutant NSCLC Patients (APPLE) trial is a randomized, open-label, multicenter, 3-arm, phase II study in advanced, epidermal growth factor receptor (EGFR)-mutant and EGFR tyrosine kinase inhibitor (TKI)-naive non-small-cell lung cancer (NSCLC) patients, to evaluate the best strategy for sequencing gefitinib and osimertinib treatment. Advanced EGFR-mutant NSCLC patients, with World Health Organization performance status 0-2 who are EGFR TKI treatment-naive and eligible to receive first-line treatment with EGFR TKI will be randomized to: In all arms, a plasmatic ctDNA T790M test will be performed by a central laboratory at the Medical University of Gdansk (Poland) but will be applied as a predictive marker for making treatment decisions only in arm B. The primary objective is to evaluate the best strategy for sequencing of treatment with gefitinib and osimertinib in advanced NSCLC patients with common EGFR mutations, and to understand the value of liquid biopsy for the decision-making process. The progression-free survival rate at 18 months is the primary end point of the trial. The activity of osimertinib versus gefitinib to prevent brain metastases will be evaluated. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. WHSC1L1-mediated EGFR mono-methylation enhances the cytoplasmic and nuclear oncogenic activity of EGFR in head and neck cancer

    PubMed Central

    Saloura, Vassiliki; Vougiouklakis, Theodore; Zewde, Makda; Deng, Xiaolan; Kiyotani, Kazuma; Park, Jae-Hyun; Matsuo, Yo; Lingen, Mark; Suzuki, Takehiro; Dohmae, Naoshi; Hamamoto, Ryuji; Nakamura, Yusuke

    2017-01-01

    While multiple post-translational modifications have been reported to regulate the function of epidermal growth factor receptor (EGFR), the effect of protein methylation on its function has not been well characterized. In this study, we show that WHSC1L1 mono-methylates lysine 721 in the tyrosine kinase domain of EGFR, and that this methylation leads to enhanced activation of its downstream ERK cascade without EGF stimulation. We also show that EGFR K721 mono-methylation not only affects the function of cytoplasmic EGFR, but also that of nuclear EGFR. WHSC1L1-mediated methylation of EGFR in the nucleus enhanced its interaction with PCNA in squamous cell carcinoma of the head and neck (SCCHN) cells and resulted in enhanced DNA synthesis and cell cycle progression. Overall, our study demonstrates the multifaceted oncogenic function of the protein lysine methyltransferase WHSC1L1 in SCCHN, which is mediated through direct non-histone methylation of the EGFR protein with effects both in its cytoplasmic and nuclear functions. PMID:28102297

  6. Outcomes in patients with non-small-cell lung cancer and acquired Thr790Met mutation treated with osimertinib: a genomic study.

    PubMed

    Lin, Chia-Chi; Shih, Jin-Yuan; Yu, Chong-Jen; Ho, Chao-Chi; Liao, Wei-Yu; Lee, Jih-Hsing; Tsai, Tzu-Hsiu; Su, Kang-Yi; Hsieh, Min-Shu; Chang, Yih-Leong; Bai, Ya-Ying; Huang, Derek De-Rui; Thress, Kenneth S; Yang, James Chih-Hsin

    2018-02-01

    Osimertinib is approved for the treatment of non-small-cell lung cancer in patients who develop the EGFR Thr790Met mutation after treatment with epidermal growth factor receptor (EGFR) tyrosine-kinase inhibitors (TKIs). We assessed outcomes in patients with non-small-cell lung cancer and the EGFR Thr790Met mutation who were treated with osimertinib, a third-generation EGFR TKI, after previous treatment failure with one or more other EGFR TKIs. Eligible patients had been enrolled at one centre in the AURA study, had shown resistance to a previous EGFR TKI, and had EGFR-activating mutations and acquired Thr790Met mutation detectable in tumour tissue or plasma. Patients took 20-240 mg osimertinib per day until disease progression or development of intolerable side-effects. Plasma samples were collected every 6 weeks and tumour tissue biopsy was done at study entry and was optional after disease progression. We tested samples for resistance mechanisms, including EGFR-activating, Thr790Met, and Cys797Ser mutations, and assessed associations with overall survival, progression-free survival, and survival after disease progression. Of 71 patients enrolled in AURA, 53 were eligible for this analysis. Median progression-free survival was 11·1 months (95% CI 8·4-13·9) and overall survival was 16·9 months (11·7-29·1). 47 patients had disease progression. Median overall survival after osimertinib progression was 5·4 months (95% CI 4·1-10·0). Plasma samples were available for 40 patients after disease progression. 12 (30%) of these had the Thr790Met mutation (four of whom also had Cys797Ser mutations). Patients without detectable EGFR-activating mutations in plasma before treatment had the best overall and post-progression survival (22·4 months, 95% CI 15·6-not reached, and 10·8 months, 7·2-not reached, respectively). Loss of the Thr790Met mutation but presence of EGFR-activating mutations in plasma were associated with the shortest progression-free survival (median

  7. Digital PCR analysis of plasma cell-free DNA for non-invasive detection of drug resistance mechanisms in EGFR mutant NSCLC: Correlation with paired tumor samples

    PubMed Central

    Ishii, Hidenobu; Azuma, Koichi; Sakai, Kazuko; Kawahara, Akihiko; Yamada, Kazuhiko; Tokito, Takaaki; Okamoto, Isamu; Nishio, Kazuto; Hoshino, Tomoaki

    2015-01-01

    As the development of resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) has become an issue of concern, identification of the mechanisms responsible has become an urgent priority. However, for research purposes, it is not easy to obtain tumor samples from patients with EGFR mutation-positive non-small-cell lung cancer (NSCLC) that has relapsed after treatment with EGFR-TKIs. Here, using digital PCR assay as an alternative and noninvasive method, we examined plasma and tumor samples from patients with relapsed NSCLC to establish the inter-relationships existing among T790M mutation, activating EGFR mutations, HER2 amplification, and MET amplification. Paired samples of tumor and blood were obtained from a total of 18 patients with NSCLC after they had developed resistance to EGFR-TKI treatment, and the mechanisms of resistance were analyzed by digital PCR. Digital PCR analysis of T790M mutation in plasma had a sensitivity of 81.8% and specificity of 85.7%, the overall concordance between plasma and tissue samples being 83.3%. MET gene copy number gain in tumor DNA was observed by digital PCR in three patients, of whom one exhibited positivity for MET amplification by FISH, whereas no patient demonstrated MET and HER2 copy number gain in plasma DNA. Digital PCR analysis of plasma is feasible and accurate for detection of T790M mutation in NSCLC that becomes resistant to treatment with EGFR-TKIs. PMID:26334838

  8. Environmental tobacco smoke exposure and EGFR and ALK alterations in never smokers' lung cancer. Results from the LCRINS study.

    PubMed

    Torres-Durán, María; Ruano-Ravina, Alberto; Kelsey, Karl T; Parente-Lamelas, Isaura; Leiro-Fernández, Virginia; Abdulkader, Ihab; Provencio, Mariano; Abal-Arca, José; Castro-Añón, Olalla; Montero-Martínez, Carmen; Vidal-García, Iria; Amenedo, Margarita; Golpe-Gómez, Antonio; Martínez, Cristina; Guzmán-Taveras, Rosirys; Mejuto-Martí, María José; Fernández-Villar, Alberto; Barros-Dios, Juan Miguel

    2017-12-28

    Environmental tobacco smoke (ETS) exposure is a main risk factor of lung cancer in never smokers. Epidermal Growth Factor Receptor (EGFR) mutations and ALK translocations are more frequent in never smokers' lung cancer than in ever-smokers. We performed a multicenter case-control study to assess if ETS exposure is associated with the presence of EGFR mutations and its types and if ALK translocations were related with ETS exposure. All patients were never smokers and had confirmed lung cancer diagnosis. ETS exposure during childhood showed a negative association on the probability of EGRF mutation though not significant. Exposure during adulthood, at home or at workplace, did not show any association with EGFR mutation. The mutation type L858R seemed the most associated with a lower probability of EGFR alterations for ETS exposure at home in adult life. There is no apparent association between ETS exposure and ALK translocation. These results might suggest that ETS exposure during childhood or at home in adult life could influence the EGFR mutations profile in lung cancer in never smokers, reducing the probability of presenting EFGR mutation. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Afatinib and Cetuximab in Four Patients With EGFR Exon 20 Insertion-Positive Advanced NSCLC.

    PubMed

    van Veggel, Bianca; de Langen, Adrianus J; Hashemi, Sayed M S; Monkhorst, Kim; Heideman, Daniëlle A M; Thunnissen, Erik; Smit, Egbert F

    2018-04-24

    EGFR exon 20 insertions comprise 4% to 9% of EGFR mutated NSCLC. Despite being an oncogenic driver, they are associated with primary resistance to EGFR tyrosine kinase inhibitors (TKIs). We hypothesized that dual EGFR blockade with afatinib, an irreversible EGFR TKI, and cetuximab, a monoclonal antibody against EGFR, could induce tumor responses. Four patients with EGFR exon 20 insertion-positive NSCLC were treated with afatinib 40 mg once daily and cetuximab 250 mg/m 2 to 500 mg/m 2 every 2 weeks. All patients had stage IV adenocarcinoma of the lung harboring an EGFR exon 20 insertion mutation. Previous lines of treatment consisted of platinum doublet chemotherapy (n = 4) and EGFR TKI (n = 2). Three of four patients showed a partial response according to Response Evaluation Criteria in Solid Tumors (RECIST 1.1). Median progression-free survival was 5.4 months (95% confidence interval: 0.0 - 14.2 months; range 2.7 months - 17.6 months). Toxicity was manageable with appropriate skin management and dose reduction being required in two patients. Dual EGFR blockade with afatinib and cetuximab may induce tumor responses in patients with EGFR exon 20 insertion-positive NSCLC. Copyright © 2018 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  10. Plasma epidermal growth factor receptor mutation testing with a chip-based digital PCR system in patients with advanced non-small cell lung cancer.

    PubMed

    Kasahara, Norimitsu; Kenmotsu, Hirotsugu; Serizawa, Masakuni; Umehara, Rina; Ono, Akira; Hisamatsu, Yasushi; Wakuda, Kazushige; Omori, Shota; Nakashima, Kazuhisa; Taira, Tetsuhiko; Naito, Tateaki; Murakami, Haruyasu; Koh, Yasuhiro; Mori, Keita; Endo, Masahiro; Nakajima, Takashi; Yamada, Masanobu; Kusuhara, Masatoshi; Takahashi, Toshiaki

    2017-04-01

    Epidermal growth factor receptor (EGFR) mutation testing is a companion diagnostic to determine eligibility for treatment with EGFR tyrosine kinase inhibitors (EGFR-TKIs) in non-small cell lung cancer (NSCLC). Recently, plasma-based EGFR testing by digital polymerase chain reaction (dPCR), which enables accurate quantification of target DNA, has shown promise as a minimally invasive diagnostic. Here, we aimed to evaluate the accuracy of a plasma-based EGFR mutation test developed using chip-based dPCR-based detection of 3 EGFR mutations (exon 19 deletions, L858R in exon 21, and T790M in exon 20). Forty-nine patients with NSCLC harboring EGFR-activating mutations were enrolled, and circulating free DNAs (cfDNAs) were extracted from the plasma of 21 and 28 patients before treatment and after progression following EGFR-TKI treatment, respectively. Using reference genomic DNA containing each mutation, the detection limit of each assay was determined to be 0.1%. The sensitivity and specificity of detecting exon 19 deletions and L858R mutations, calculated by comparing the mutation status in the corresponding tumors, were 70.6% and 93.3%, and 66.7% and 100%, respectively, showing similar results compared with previous studies. T790M was detected in 43% of 28 cfDNAs after progression with EGFR-TKI treatment, but in no cfDNAs before the start of the treatment. This chip-based dPCR assay can facilitate detection of EGFR mutations in cfDNA as a minimally invasive method in clinical settings. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Prediction of response to anti-EGFR antibody-based therapies by multigene sequencing in colorectal cancer patients.

    PubMed

    Lupini, Laura; Bassi, Cristian; Mlcochova, Jitka; Musa, Gentian; Russo, Marta; Vychytilova-Faltejskova, Petra; Svoboda, Marek; Sabbioni, Silvia; Nemecek, Radim; Slaby, Ondrej; Negrini, Massimo

    2015-10-27

    The anti-epidermal growth factor receptor (EGFR) monoclonal antibodies (moAbs) cetuximab or panitumumab are administered to colorectal cancer (CRC) patients who harbor wild-type RAS proto-oncogenes. However, a percentage of patients do not respond to this treatment. In addition to mutations in the RAS genes, mutations in other genes, such as BRAF, PI3KCA, or PTEN, could be involved in the resistance to anti-EGFR moAb therapy. In order to develop a comprehensive approach for the detection of mutations and to eventually identify other genes responsible for resistance to anti-EGFR moAbs, we investigated a panel of 21 genes by parallel sequencing on the Ion Torrent Personal Genome Machine platform. We sequenced 65 CRCs that were treated with cetuximab or panitumumab. Among these, 37 samples were responsive and 28 were resistant. We confirmed that mutations in EGFR-pathway genes (KRAS, NRAS, BRAF, PI3KCA) were relevant for conferring resistance to therapy and could predict response (p = 0.001). After exclusion of KRAS, NRAS, BRAF and PI3KCA combined mutations could still significantly associate to resistant phenotype (p = 0.045, by Fisher exact test). In addition, mutations in FBXW7 and SMAD4 were prevalent in cases that were non-responsive to anti-EGFR moAb. After we combined the mutations of all genes (excluding KRAS), the ability to predict response to therapy improved significantly (p = 0.002, by Fisher exact test). The combination of mutations at KRAS and at the five gene panel demonstrates the usefulness and feasibility of multigene sequencing to assess response to anti-EGFR moAbs. The application of parallel sequencing technology in clinical practice, in addition to its innate ability to simultaneously examine the genetic status of several cancer genes, proved to be more accurate and sensitive than the presently in use traditional approaches.

  12. Effects of icotinib on advanced non-small cell lung cancer with different EGFR phenotypes.

    PubMed

    Pan, Huiyun; Liu, Rong; Li, Shengjie; Fang, Hui; Wang, Ziwei; Huang, Sheng; Zhou, Jianying

    2014-09-01

    Icotinib is the first oral epidermal growth factor receptor (EGFR) tyrosine kinase receptor inhibitor, which has been proven to exert significant inhibitory effects on non-small cell lung cancer in vitro. Clinical evidence has showed that the efficacy of Icotinib on retreating advanced non-small cell lung cancer is comparable to Gefitinib. However, different phenotypes of EGFR can affect the therapeutic outcomes of EGFR tyrosine kinase receptor inhibitor. Therefore, our study focused on efficacy and safety of Icotinib in patients with advanced non-small cell lung cancer of different EGPR phenotypes. Clinical data of patients with advanced non-small cell lung cancer who received Icotinib treatment from August, 2011 to May, 2013 were retrospectively analyzed. Kaplan-Meier analysis was used for survival analysis and comparison. 18 wild-type EGFR and 51 mutant type were found in a total of 69 patients. Objective response rate of patients with mutant type EGFR was 54.9 % and disease control rate was 86.3 %. Objective response rate of wild-type patients was 11.1 % (P = 0.0013 vs mutant type), disease control rate was 50.0 % (P = 0.0017). Median progression-free survival (PFS) of mutant type and wild-type patients were 9.7 and 2.6 months, respectively (P < 0.001). Median PFS of exon 19 mutated mutant patients was 11.3 months, mean PFS of exon 21 L858R mutated mutant patients was 8.7 months (P = 0.3145). Median overall survival (OS) of EGFR mutated patients had not reached. OS time of 13 wild-type patients was 12.9 months (P < 0.001). The common adverse reactions of Icotinib included rash, diarrhea, itching skin with occurrence rates of 24.6 % (17/69), 13.0 % (9/69), and 11.6 % (8/69), respectively. Most adverse reactions were grade I-II. Icotinib has great efficacy in EGFR mutated patients, making it an optimal regimen to treat EGFR mutated patients. Furthermore, most of adverse reactions associated with Icotinib treatment were tolerable.

  13. HER2 mutated breast cancer responds to treatment with single agent neratinib, a second generation HER2/EGFR tyrosine kinase inhibitor

    PubMed Central

    Ben–Baruch, Noa Efrat; Bose, Ron; Kavuri, Shyam M.; Ma, Cynthia X.; Ellis, Matthew J.

    2015-01-01

    Activating mutations in the HER2 tyrosine kinase have been identified in human breast cancers that lack HER2 gene amplification. These patients are not candidates for HER2 targeted drugs under current standards of care, but preclinical data strongly suggest that these patients will benefit from anti-HER2 drugs. In this case report, we describe a young woman with metastatic breast cancer whose tumor was found to carry a HER2 L755S mutation, which is in the kinase domain of HER2. Treatment with the second generation HER2/EGFR tyrosine kinase inhibitor, neratinib, resulted in partial response and dramatic improvement in the patient’s function status. This partial response lasted 11 months and when the patient’s cancer progressed, she was treated with neratinib plus capecitabine and her cancer again responded. This second response parallels the benefit seen with continuing trastuzumab in HER2 amplified breast cancer after disease progression. This case is the first report, to our knowledge, of successful single agent treatment of HER2 mutated breast cancer. Two clinical trials of neratinib for HER2 mutated, metastatic breast cancer are currently enrolling patients. Further, data from The Cancer Genome Atlas project have identified HER2 mutations in a wide range of solid tumors, including bladder, colorectal, and non-small cell lung cancer, suggesting that clinical trials of neratinib or neratinib-based combinations for HER2 mutated solid tumors is warranted. PMID:26358790

  14. HER2-Mutated Breast Cancer Responds to Treatment With Single-Agent Neratinib, a Second-Generation HER2/EGFR Tyrosine Kinase Inhibitor.

    PubMed

    Ben-Baruch, Noa Efrat; Bose, Ron; Kavuri, Shyam M; Ma, Cynthia X; Ellis, Matthew J

    2015-09-01

    Activating mutations in the HER2 tyrosine kinase have been identified in human breast cancers that lack HER2 gene amplification. These patients are not candidates for HER2-targeted drugs under current standards of care, but preclinical data strongly suggest that these patients will benefit from anti-HER2 drugs. This case report describes a young woman with metastatic breast cancer whose tumor was found to carry a HER2 L755S mutation, which is in the kinase domain of HER2. Treatment with the second-generation HER2/EGFR tyrosine kinase inhibitor neratinib resulted in partial response and dramatic improvement in the patient's functional status. This partial response lasted 11 months, and when the patient's cancer progressed, she was treated with neratinib plus capecitabine and her cancer again responded. This second response parallels the benefit seen with continuing trastuzumab in HER2-amplified breast cancer after disease progression. This case represents the first report, to our knowledge, of successful single-agent treatment of HER2-mutated breast cancer. Two clinical trials of neratinib for HER2-mutated metastatic breast cancer are currently enrolling patients. Further, data from The Cancer Genome Atlas project have identified HER2 mutations in a wide range of solid tumors, including bladder, colorectal, and non-small cell lung cancers, suggesting that clinical trials of neratinib or neratinib-based combinations for HER2-mutated solid tumors is warranted. Copyright © 2015 by the National Comprehensive Cancer Network.

  15. Activation of EGFR Bypass Signaling by TGFα Overexpression Induces Acquired Resistance to Alectinib in ALK-Translocated Lung Cancer Cells.

    PubMed

    Tani, Tetsuo; Yasuda, Hiroyuki; Hamamoto, Junko; Kuroda, Aoi; Arai, Daisuke; Ishioka, Kota; Ohgino, Keiko; Miyawaki, Masayoshi; Kawada, Ichiro; Naoki, Katsuhiko; Hayashi, Yuichiro; Betsuyaku, Tomoko; Soejima, Kenzo

    2016-01-01

    Alectinib is a highly selective ALK inhibitor and shows promising efficacy in non-small cell lung cancers (NSCLC) harboring the EML4-ALK gene rearrangement. The precise mechanism of acquired resistance to alectinib is not well defined. The purpose of this study was to clarify the mechanism of acquired resistance to alectinib in ALK-translocated lung cancer cells. We established alectinib-resistant cells (H3122-AR) from the H3122 NSCLC cell line, harboring the EML4-ALK gene rearrangement, by long-term exposure to alectinib. The mechanism of acquired resistance to alectinib in H3122-AR cells was evaluated by phospho-receptor tyrosine kinase (phospho-RTK) array screening and Western blotting. No mutation of the ALK-TK domain was found. Phospho-RTK array analysis revealed that the phosphorylation level of EGFR was increased in H3122-AR cells compared with H3122. Expression of TGFα, one of the EGFR ligands, was significantly increased and knockdown of TGFα restored the sensitivity to alectinib in H3122-AR cells. We found combination therapy targeting ALK and EGFR with alectinib and afatinib showed efficacy both in vitro and in a mouse xenograft model. We propose a preclinical rationale to use the combination therapy with alectinib and afatinib in NSCLC that acquired resistance to alectinib by the activation of EGFR bypass signaling. ©2015 American Association for Cancer Research.

  16. Predicting response to EGFR inhibitors in metastatic colorectal cancer: current practice and future directions.

    PubMed

    Shankaran, Veena; Obel, Jennifer; Benson, Al B

    2010-01-01

    The identification of KRAS mutational status as a predictive marker of response to antibodies against the epidermal growth factor receptor (EGFR) has been one of the most significant and practice-changing recent advances in colorectal cancer research. Recently, data suggesting a potential role for other markers (including BRAF mutations, loss of phosphatase and tension homologue deleted on chromosome ten expression, and phosphatidylinositol-3-kinase-AKT pathway mutations) in predicting response to anti-EGFR therapy have emerged. Ongoing clinical trials and correlative analyses are essential to definitively identify predictive markers and develop therapeutic strategies for patients who may not derive benefit from anti-EGFR therapy. This article reviews recent clinical trials supporting the predictive role of KRAS, recent changes to clinical guidelines and pharmaceutical labeling, investigational predictive molecular markers, and newer clinical trials targeting patients with mutated KRAS.

  17. Icariside II activates EGFR-Akt-Nrf2 signaling and protects osteoblasts from dexamethasone.

    PubMed

    Liu, Weidong; Mao, Li; Ji, Feng; Chen, Fengli; Wang, Shouguo; Xie, Yue

    2017-01-10

    The potential effect of icariside II on dexamethasone-induced osteoblast cell damages was evaluated here. In MC3T3-E1 osteoblastic cells and the primary murine osteoblasts, co-treatment with icariside II dramatically attenuated dexamethasone- induced cell death and apoptosis. Icariside II activated Akt signaling, which is required for its actions in osteoblasts. Akt inhibitors (LY294002, perifosine and MK-2206) almost abolished icariside II-induced osteoblast cytoprotection against dexamethasone. Further studies showed that icariside II activated Nrf2 signaling, downstream of Akt, to inhibit dexamethasone-induced reactive oxygen species (ROS) production in MC3T3-E1 cells and primary osteoblasts. On the other hand, Nrf2 shRNA knockdown inhibited icariside II-induced anti-dexamethasone cytoprotection in MC3T3-E1 cells. Finally, we showed that icariside II induced heparin-binding EGF (HB-EGF) production and EGFR trans-activation in MC3T3-E1 cells. EGFR inhibition, via anti-HB-EGF antibody, EGFR inhibitor AG1478 or EGFR shRNA knockdown, almost blocked icariside II-induced Akt-Nrf2 activation in MC3T3-E1 cells. Collectively, we conclude that icariside II activates EGFR-Akt-Nrf2 signaling and protects osteoblasts from dexamethasone. Icariside II might have translational value for the treatment of dexamethasone-associated osteoporosis/osteonecrosis.

  18. Graf regulates hematopoiesis through GEEC endocytosis of EGFR.

    PubMed

    Kim, Sungdae; Nahm, Minyeop; Kim, Najin; Kwon, Yumi; Kim, Joohyung; Choi, Sukwoo; Choi, Eun Young; Shim, Jiwon; Lee, Cheolju; Lee, Seungbok

    2017-11-15

    GTPase regulator associated with focal adhesion kinase 1 (GRAF1) is an essential component of the GPI-enriched endocytic compartment (GEEC) endocytosis pathway. Mutations in the human GRAF1 gene are associated with acute myeloid leukemia, but its normal role in myeloid cell development remains unclear. We show that Graf, the Drosophila ortholog of GRAF1, is expressed and specifically localizes to GEEC endocytic membranes in macrophage-like plasmatocytes. We also find that loss of Graf impairs GEEC endocytosis, enhances EGFR signaling and induces a plasmatocyte overproliferation phenotype that requires the EGFR signaling cascade. Mechanistically, Graf-dependent GEEC endocytosis serves as a major route for EGFR internalization at high, but not low, doses of the predominant Drosophila EGFR ligand Spitz (Spi), and is indispensable for efficient EGFR degradation and signal attenuation. Finally, Graf interacts directly with EGFR in a receptor ubiquitylation-dependent manner, suggesting a mechanism by which Graf promotes GEEC endocytosis of EGFR at high Spi. Based on our findings, we propose a model in which Graf functions to downregulate EGFR signaling by facilitating Spi-induced receptor internalization through GEEC endocytosis, thereby restraining plasmatocyte proliferation. © 2017. Published by The Company of Biologists Ltd.

  19. EGFR-targeted therapies in the post-genomic era.

    PubMed

    Xu, Mary Jue; Johnson, Daniel E; Grandis, Jennifer R

    2017-09-01

    Over 90% of head and neck cancers overexpress the epidermal growth factor receptor (EGFR). In diverse tumor types, EGFR overexpression has been associated with poorer prognosis and outcomes. Therapies targeting EGFR include monoclonal antibodies, tyrosine kinase inhibitors, phosphatidylinositol 3-kinase (PI3K) inhibitors, and antisense gene therapy. Few EGFR-targeted therapeutics are approved for clinical use. The monoclonal antibody cetuximab is a Food and Drug Administration (FDA)-approved EGFR-targeted therapy, yet has exhibited modest benefit in clinical trials. The humanized monoclonal antibody nimotuzumab is also approved for head and neck cancers in Cuba, Argentina, Colombia, Peru, India, Ukraine, Ivory Coast, and Gabon in addition to nasopharyngeal cancers in China. Few other EGFR-targeted therapeutics for head and neck cancers have led to as significant responses as seen in lung carcinomas, for instance. Recent genome sequencing of head and neck tumors has helped identify patient subgroups with improved response to EGFR inhibitors, for example, cetuximab in patients with the KRAS-variant and the tyrosine kinase inhibitor erlotinib for tumors harboring MAPK1 E322K mutations. Genome sequencing has furthermore broadened our understanding of dysregulated pathways, holding the potential to enhance the benefit derived from therapies targeting EGFR.

  20. Robust detection of EGFR copy number changes and EGFR variant III: technical aspects and relevance for glioma diagnostics.

    PubMed

    Jeuken, Judith; Sijben, Angelique; Alenda, Cristina; Rijntjes, Jos; Dekkers, Marieke; Boots-Sprenger, Sandra; McLendon, Roger; Wesseling, Pieter

    2009-10-01

    Epidermal growth factor receptor (EGFR) is commonly affected in cancer, generally in the form of an increase in DNA copy number and/or as mutation variants [e.g., EGFR variant III (EGFRvIII), an in-frame deletion of exons 2-7]. While detection of EGFR aberrations can be expected to be relevant for glioma patients, such analysis has not yet been implemented in a routine setting, also because feasible and robust assays were lacking. We evaluated multiplex ligation-dependent probe amplification (MLPA) for detection of EGFR amplification and EGFRvIII in DNA of a spectrum of 216 diffuse gliomas. EGFRvIII detection was verified at the protein level by immunohistochemistry and at the RNA level using the conventionally used endpoint RT-PCR as well as a newly developed quantitative RT-PCR. Compared to these techniques, the DNA-based MLPA assay for EGFR/EGFRvIII analysis tested showed 100% sensitivity and specificity. We conclude that MLPA is a robust assay for detection of EGFR/EGFRvIII aberrations. While the exact diagnostic, prognostic and predictive value of such EGFR testing remains to be seen, MLPA has great potential as it can reliably and relatively easily be performed on routinely processed (formalin-fixed, paraffin-embedded) tumor tissue in combination with testing for other relevant glioma markers.

  1. Continued EGFR-TKI with concurrent radiotherapy to improve time to progression (TTP) in patients with locally progressive non-small cell lung cancer (NSCLC) after front-line EGFR-TKI treatment.

    PubMed

    Wang, Y; Li, Y; Xia, L; Niu, K; Chen, X; Lu, D; Kong, R; Chen, Z; Sun, J

    2018-03-01

    Epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) is the optimal treatment for EGFR-mutant advanced non-small cell lung cancer (NSCLC). However, most patients developed systemic or local progression due to acquired EGFR-TKI resistance. This retrospective study aimed to evaluate the feasibility of continued EGFR-TKI with concurrent radiotherapy (CTCRT) in patients with local progression after front-line EGFR-TKI treatment. Advanced NSCLC patients with active EGFR mutation who received EGFR-TKI were treated with CTCRT after local progression. Medical data were analyzed for time to progression (TTP), progression-free survival (PFS), tumor response rate, overall survival (OS) and adverse events. A total of 50 irradiated lesions from 44 patients were included. Median TTP and PFS of measurable lesions (n = 31) were both significantly prolonged after local radiotherapy (TTP1 + TTP2 vs. TTP1: 21.7 vs. 16.0 months, P = 0.010; PFS1 + PFS2 vs. PFS1: 21.3 vs. 16.0 months, P = 0.027). For all lesions (n = 50), objective response rate (ORR) and local tumor control rate (LCR) were 54.0 and 84.0%, respectively. Median OS was 26.6 months. There were no serious adverse events before or after radiotherapy. The treatment modality of CTCRT is considerable and effective for EGFR-mutant NSCLC patients even with local failure from front-line EGFR-TKI treatment.

  2. Clinical Outcome of ALK-Positive Non-Small Cell Lung Cancer (NSCLC) Patients with De Novo EGFR or KRAS Co-Mutations Receiving Tyrosine Kinase Inhibitors (TKIs).

    PubMed

    Schmid, Sabine; Gautschi, Oliver; Rothschild, Sacha; Mark, Michael; Froesch, Patrizia; Klingbiel, Dirk; Reichegger, Hermann; Jochum, Wolfram; Diebold, Joachim; Früh, Martin

    2017-04-01

    NSCLC with de novo anaplastic lymphoma receptor tyrosine kinase gene (ALK) rearrangements and EGFR or KRAS mutations co-occur very rarely. Outcomes with tyrosine kinase inhibitors (TKIs) in these patients are poorly understood. Outcomes of patients with metastatic NSCLC de novo co-alterations of ALK/EGFR or ALK/KRAS detected by fluorescence in situ hybridization (ALK) and sequencing (EGFR/KRAS) from six Swiss centers were analyzed. A total of 14 patients with adenocarcinoma were identified. Five patients had ALK/EGFR co-alterations and nine had ALK/KRAS co-alterations. Six of seven patients with ALK/KRAS co-alterations (86%) were primary refractory to crizotinib. One patient has had ongoing disease stabilization for 26 months. Of the patients with ALK/EGFR co-alterations, one immediately progressed after receiving crizotinib for 1.3 months and two had a partial response for 5.7 and 7.3 months, respectively. Three of four patients with ALK/EGFR co-alterations treated with an EGFR TKI achieved one or more responses in different lines of therapy: four patients had a partial response, three with afatinib and one with osimertinib. One patient achieved a complete remission with osimertinib, and one patient was primary refractory to erlotinib. Median PFS during treatment with a first EGFR TKI was 5.8 months (range 3.0-6.9 months). De novo concurrent ALK/KRAS co-alterations were associated with resistance to ALK TKI treatment in seven out of eight patients. In patients with ALK/EGFR co-alterations, outcomes with ALK and EGFR TKIs seem inferior to what would be expected in patients with either alteration alone, but further studies are needed to clarify which patients with ALK/EGFR co-alterations may still benefit from the respective TKI. Copyright © 2016 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  3. Comprehensive Genomic Profiling Identifies Frequent Drug-Sensitive EGFR Exon 19 Deletions in NSCLC not Identified by Prior Molecular Testing.

    PubMed

    Schrock, Alexa B; Frampton, Garrett M; Herndon, Dana; Greenbowe, Joel R; Wang, Kai; Lipson, Doron; Yelensky, Roman; Chalmers, Zachary R; Chmielecki, Juliann; Elvin, Julia A; Wollner, Mira; Dvir, Addie; -Gutman, Lior Soussan; Bordoni, Rodolfo; Peled, Nir; Braiteh, Fadi; Raez, Luis; Erlich, Rachel; Ou, Sai-Hong Ignatius; Mohamed, Mohamed; Ross, Jeffrey S; Stephens, Philip J; Ali, Siraj M; Miller, Vincent A

    2016-07-01

    Reliable detection of drug-sensitive activating EGFR mutations is critical in the care of advanced non-small cell lung cancer (NSCLC), but such testing is commonly performed using a wide variety of platforms, many of which lack rigorous analytic validation. A large pool of NSCLC cases was assayed with well-validated, hybrid capture-based comprehensive genomic profiling (CGP) at the request of the individual treating physicians in the course of clinical care for the purpose of making therapy decisions. From these, 400 cases harboring EGFR exon 19 deletions (Δex19) were identified, and available clinical history was reviewed. Pathology reports were available for 250 consecutive cases with classical EGFR Δex19 (amino acids 743-754) and were reviewed to assess previous non-hybrid capture-based EGFR testing. Twelve of 71 (17%) cases with EGFR testing results available were negative by previous testing, including 8 of 46 (17%) cases for which the same biopsy was analyzed. Independently, five of six (83%) cases harboring C-helical EGFR Δex19 were previously negative. In a subset of these patients with available clinical outcome information, robust benefit from treatment with EGFR inhibitors was observed. CGP identifies drug-sensitive EGFR Δex19 in NSCLC cases that have undergone prior EGFR testing and returned negative results. Given the proven benefit in progression-free survival conferred by EGFR tyrosine kinase inhibitors in patients with these alterations, CGP should be considered in the initial presentation of advanced NSCLC and when previous testing for EGFR mutations or other driver alterations is negative. Clin Cancer Res; 22(13); 3281-5. ©2016 AACR. ©2016 American Association for Cancer Research.

  4. Epidermal growth factor receptor mutations in Japanese men with lung adenocarcinomas.

    PubMed

    Tomita, Masaki; Ayabe, Takanori; Chosa, Eiichi; Kawagoe, Katsuya; Nakamura, Kunihide

    2014-01-01

    Epidermal growth factor receptor (EGFR) mutations play a vital role in the prognosis of patients with lung adenocarcinoma. Such somatic mutations are more common in women who are non-smokers with adenocarcinoma and are of Asian origin. However, to our knowledge, there are few studies that have focused on men. One hundred and eighty-four consecutive patients (90 men and 94 women) of resected lung adenocarcinoma were studied retrospectively. EGFR mutations were positive in 48.9% and negative (wild type) in 51.1%. Overall mutation was significant in women (66.0% vs. 32.2%) compared with men (p<0.001). For overall patients, EGFR mutation status was associated with gender, pStage, pT status, lepidic dominant histologic subtype, pure or mixed ground-glass nodule type on computed tomography and smoking status. However, in men, EGFR mutation status was only associated with lepidic dominant histologic subtype and not the other variables. Interestingly, the Brinkman index of men with mutant EGFR also did not differ from that for the wild type (680.0±619.3 vs. 813.1±552.1 p=0.1077). The clinical characteristics of men with lung adenocarcinoma related to EGFR mutation are not always similar to that of overall patients. Especially we failed to find the relationship between EGFR mutations and smoking status in men.

  5. Comparison of the efficacy of icotinib in patients with non-small-cell lung cancer according to the type of epidermal growth factor receptor mutation.

    PubMed

    Xue, Zhang Xiao; Wen, Wang Xiu; Zhuang, Yu; Hua, Zang Jian; Xia, Yang Ni

    2016-09-01

    Icotinib hydrochloride is a novel epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) with preclinical and clinical activity in non-small-cell lung cancer (NSCLC). Exon 19 deletion and L858R point mutation are the most commonly encountered EGFR mutations in NSCLC, and they predict improved clinical outcomes following treatment with icotinib. The objective of this study was to evaluate the differential clinical efficacy of icotinib in patients with exon 19 deletion or L858R point mutation of the EGFR gene. A total of 104 patients with advanced NSCLC, who harbored exon 19 deletion or L858R point mutation of EGFR and were treated with icotinib, were enrolled in this study. The tumor response and progression-free survival were evaluated. There were no significant differences between patients with EGFR exon 19 deletion and those with L858R point mutation who received treatment with icotinib.

  6. The diagnosis and treatment of brain metastases in EGFR mutant lung cancer.

    PubMed

    Minchom, Anna; Yu, Ken C; Bhosle, Jaishree; O'Brien, Mary

    2014-05-01

    The epidemiology of non-small-cell lung cancer (NSCLC) has changed with a new pattern of disease emerging - a form of adenocarcinoma in mostly younger female patients, who are never or light smokers and more frequently in East Asian populations. Description of EGF receptor (EGFR) mutations has allowed new management strategies to evolve. Oral targeted therapies have broadened the treatment options in the advanced setting with the potential for periods of long term response. The brain is a common site of metastases with EGFR mutated lung cancer typically displaying asymptomatic, small volume, multiple lesions that respond to treatment. We explore the role of local and system therapies for brain metastases in this disease including the role of EGFR inhibitors.

  7. Osimertinib in the treatment of patients with epidermal growth factor receptor T790M mutation-positive metastatic non-small cell lung cancer: clinical trial evidence and experience.

    PubMed

    Sullivan, Ivana; Planchard, David

    2016-12-01

    Patients with advanced epidermal growth factor receptor (EGFR) mutant non-small cell lung cancer (NSCLC) are particularly sensitive to treatment with first- or second-generation EGFR tyrosine kinase inhibitors such as gefitinib, erlotinib and afatinib, which block the cell-signaling pathways that drive the growth of tumor cells. Unfortunately, the majority of patients develop resistance to them after a median duration of response of around 10 months, and in over half of these patients the emergence of the EGFR T790M resistance mutation is detected. Osimertinib is an oral, highly selective, irreversible inhibitor of both EGFR-activating mutations and the T790M-resistance mutation, while sparing the activity of wild-type EGFR This article reviews clinical trial development of osimertinib in patients with NSCLC, presenting efficacy and safety evidence for its value in the EGFR T790M mutation-positive population and in different settings, including patients with metastatic disease. The preclinical background of clinically acquired resistance to osimertinib is presented and the combination tactics being investigated in an attempt to circumvent this are addressed. © The Author(s), 2016.

  8. Osimertinib in the treatment of patients with epidermal growth factor receptor T790M mutation-positive metastatic non-small cell lung cancer: clinical trial evidence and experience

    PubMed Central

    Sullivan, Ivana; Planchard, David

    2016-01-01

    Patients with advanced epidermal growth factor receptor (EGFR) mutant non-small cell lung cancer (NSCLC) are particularly sensitive to treatment with first- or second-generation EGFR tyrosine kinase inhibitors such as gefitinib, erlotinib and afatinib, which block the cell-signaling pathways that drive the growth of tumor cells. Unfortunately, the majority of patients develop resistance to them after a median duration of response of around 10 months, and in over half of these patients the emergence of the EGFR T790M resistance mutation is detected. Osimertinib is an oral, highly selective, irreversible inhibitor of both EGFR-activating mutations and the T790M-resistance mutation, while sparing the activity of wild-type EGFR. This article reviews clinical trial development of osimertinib in patients with NSCLC, presenting efficacy and safety evidence for its value in the EGFR T790M mutation-positive population and in different settings, including patients with metastatic disease. The preclinical background of clinically acquired resistance to osimertinib is presented and the combination tactics being investigated in an attempt to circumvent this are addressed. PMID:27784815

  9. Development of New Mouse Lung Tumor Models Expressing EGFR T790M Mutants Associated with Clinical Resistance to Kinase Inhibitors

    PubMed Central

    Regales, Lucia; Balak, Marissa N.; Gong, Yixuan; Politi, Katerina; Sawai, Ayana; Le, Carl; Koutcher, Jason A.; Solit, David B.; Rosen, Neal; Zakowski, Maureen F.; Pao, William

    2007-01-01

    Background The EGFR T790M mutation confers acquired resistance to kinase inhibitors in human EGFR mutant lung adenocarcinoma, is occasionally detected before treatment, and may confer genetic susceptibility to lung cancer. Methodology/Principal Findings To study further its role in lung tumorigenesis, we developed mice with inducible expression in type II pneumocytes of EGFRT790M alone or together with a drug-sensitive L858R mutation. Both transgenic lines develop lung adenocarcinomas that require mutant EGFR for tumor maintenance but are resistant to an EGFR kinase inhibitor. EGFRL858R+T790M-driven tumors are transiently targeted by hsp90 inhibition. Notably, EGFRT790M-expressing animals develop tumors with longer latency than EGFRL858R+T790M-bearing mice and in the absence of additional kinase domain mutations. Conclusions/Significance These new mouse models of mutant EGFR-dependent lung adenocarcinomas provide insight into clinical observations. The models should also be useful for developing improved therapies for patients with lung cancers harboring EGFRT790M alone or in conjunction with drug-sensitive EGFR kinase domain mutations. PMID:17726540

  10. Rutin inhibits B[a]PDE-induced cyclooxygenase-2 expression by targeting EGFR kinase activity.

    PubMed

    Choi, Seunghwan; Lim, Tae-Gyu; Hwang, Mun Kyung; Kim, Yoon-A; Kim, Jiyoung; Kang, Nam Joo; Jang, Tae Su; Park, Jun-Seong; Yeom, Myeong Hun; Lee, Ki Won

    2013-11-15

    Rutin is a well-known flavonoid that exists in various natural sources. Accumulative studies have represented the biological effects of rutin, such as anti-oxidative and anti-inflammatory effects. However, the underlying mechanisms of rutin and its direct targets are not understood. We investigated whether rutin reduced B[a]PDE-induced-COX-2 expression. The transactivation of AP-1 and NF-κB were inhibited by rutin. Rutin also attenuated B[a]PDE-induced Raf/MEK/ERK and Akt activation, but had no effect on the phosphorylation of EGFR. An in vitro kinase assay revealed rutin suppressed EGFR kinase activity. We also confirmed direct binding between rutin and EGFR, and found that the binding was regressed by ATP. The EGFR inhibitor also inhibited the B[a]PDE-induced MEK/ERK and Akt signaling pathways and subsequently, suppressed COX-2 expression and promoter activity, in addition to suppressing the transactivation of AP-1 and NF-κB. In EGFR(-/-)mouse embryonic fibroblast cells, B[a]PDE-induced COX-2 expression was also diminished. Collectively, rutin inhibits B[a]PDE-induced COX-2 expression by suppressing the Raf/MEK/ERK and Akt signaling pathways. EGFR appeared to be the direct target of rutin. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Photonic modulation of EGFR: 280nm low level light arrests cancer cell activation and migration

    NASA Astrophysics Data System (ADS)

    Botelho, Cláudia M.; Marques, Rogério; Viruthachalam, Thiagarajan; Gonçalves, Odete; Vorum, Henrik; Gomes, Andreia C.; Neves-Petersen, Maria Teresa

    2017-02-01

    Overexpression of the Epidermal Growth Factor Receptor (EGFR) by cancer cells is associated with a poor prognosis for the patient. For several decades, therapies targeting EGFR have been designed, including the use of monoclonal antibodies and small molecule tyrosine kinase inhibitors. The use of these molecules had good clinical results, although its efficiency (and specificity) is still far from being optimal. In this paper, we present a new approach for a possible new cancer therapy targeting EGFR and using low intensity 280nm light. The influence of 280nm UVB illumination on cancer cells stimulated with 2nM of EGF was followed by time-lapse confocal microscopy. The 280nm illumination of the cancer cells blocks EGFR activation, inhibiting EGFR internalization and cell migration thus inhibiting the transition to the metastatic phenotype. Exposure time is a very important factor. The higher the illumination time the more significant differences were observed: 280nm light delayed or completely halted EGFR activation in the cell membrane, mainly at the cell junction level, and delayed or halted EGFR endocytic internalization, filopodia formation and cell migration.

  12. Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors

    PubMed Central

    Akbay, Esra A; Koyama, Shohei; Carretero, Julian; Altabef, Abigail; Tchaicha, Jeremy H; Christensen, Camilla L; Mikse, Oliver R; Cherniack, Andrew D; Beauchamp, Ellen M; Pugh, Trevor J; Wilkerson, Matthew D; Fecci, Peter E; Butaney, Mohit; Reibel, Jacob B; Soucheray, Margaret; Cohoon, Travis J; Janne, Pasi A; Meyerson, Matthew; Hayes, D. Neil; Shapiro, Geoffrey I; Shimamura, Takeshi; Sholl, Lynette M; Rodig, Scott J; Freeman, Gordon J; Hammerman, Peter S; Dranoff, Glenn; Wong, Kwok-Kin

    2013-01-01

    The success in lung cancer therapy with Programmed Death (PD)-1 blockade suggests that immune escape mechanisms contribute to lung tumor pathogenesis. We identified a correlation between Epidermal Growth Factor Receptor (EGFR) pathway activation and a signature of immunosuppression manifested by upregulation of PD-1, PD-L1, cytotoxic T lymphocyte antigen-4 (CTLA-4), and multiple tumor-promoting inflammatory cytokines. We observed decreased cytotoxic T cells and increased markers of T cell exhaustion in mouse models of EGFR-driven lung cancer. PD-1 antibody blockade improved the survival of mice with EGFR-driven adenocarcinomas by enhancing effector T cell function and lowering the levels of tumor-promoting cytokines. Expression of mutant EGFR in bronchial epithelial cells induced PD-L1, and PD-L1 expression was reduced by EGFR inhibitors in non-small cell lung cancer cell lines with activated EGFR. These data suggest that oncogenic EGFR signaling remodels the tumor microenvironment to trigger immune escape, and mechanistically link treatment response to PD-1 inhibition. PMID:24078774

  13. Inhibition of EGFR attenuates fibrosis and stellate cell activation in diet-induced model of nonalcoholic fatty liver disease.

    PubMed

    Liang, Dandan; Chen, Hongjin; Zhao, Leping; Zhang, Wenxin; Hu, Jie; Liu, Zhiguo; Zhong, Peng; Wang, Wei; Wang, Jingying; Liang, Guang

    2018-01-01

    Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease. NAFLD begins with steatosis and advances to nonalcoholic steatohepatitis (NASH) and cirrhosis. The molecular mechanisms involved in NAFLD progression are not understood. Based on recent studies showing dysregulation of epidermal growth factor receptor (EGFR) in animal models of liver injury, we sought to determine if inhibition of EGFR mitigates liver fibrosis and HSC activation in NAFLD. We utilized the high fat diet (HFD)-induced murine model of liver injury to study the role of EGFR in NAFLD. The lipid accumulation, oxidative stress, hepatic stellate cell (HSC) activation and matrix deposition were examined in the liver tissues. We also evaluated the EGFR signaling pathway, ROS activation and pro-fibrogenic phenotype in oxidized low density lipoproteins (ox-LDL) challenged cultured HSCs. We demonstrate that EGFR was phosphorylated in liver tissues of HFD murine model of NAFLD. Inhibition of EGFR prevented diet-induced lipid accumulation, oxidative stress, and HSC activation and matrix deposition. In cultured HSCs, we show that ox-LDL caused rapid activation of the EGFR signaling pathway and induce the production of reactive oxygen species. EGFR also mediated HSC activation and promoted a pro-fibrogenic phenotype. In conclusion, our data demonstrate that EGFR plays an important role in NAFLD and is an attractive target for NAFLD therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Epidermal growth factor receptor mutations in adenocarcinoma in situ and minimally invasive adenocarcinoma detected using mutation-specific monoclonal antibodies.

    PubMed

    Nakamura, Haruhiko; Koizumi, Hirotaka; Kimura, Hiroyuki; Marushima, Hideki; Saji, Hisashi; Takagi, Masayuki

    2016-09-01

    Epidermal growth factor receptor (EGFR) mutation rates in adenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma (MIA) were studied using both DNA analysis and mutation-specific immunohistochemistry. The peptide nucleic acid-locked nucleic acid polymerase chain reaction clamp method was used to detect mutations in exons 18, 19, 20, and 21 of the EGFR gene in DNA samples extracted from paraffin-embedded tissue sections. Simultaneously, immunohistochemical analysis with two EGFR mutation-specific monoclonal antibodies was used to identify proteins resulting from an in-frame deletion in exon 19 (E746_A750del) and a point mutation replacing leucine with arginine at codon 858 of exon 21 (L858R). Forty-three tumors (22 AIS and 21 MIA) were examined. The EGFR mutation rate in AIS detected by DNA analysis was 27.3% (L858R, 5/22; exon 19 deletion,1/22), whereas that detected in MIA was 42.9% (L858R,4/21; exon 19 deletion,5/21). Mutations detected by immunohistochemical analysis included 22.7% (L858R, 4/22; exon 19 deletion, 1/22) in AIS and 42.9% (L858R, 4/21; exon 19 deletion, 5/21) in MIA. Although some results were contradictory, concordant results were obtained using both assays in 38 of 43 cases (88.4%). DNA and immunohistochemical analyses revealed similar EGFR mutation rates in both MIA and AIS, suggesting that mutation-specific monoclonal antibodies are useful to confirm DNA assay results. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Characterization of the efficacies of osimertinib and nazartinib against cells expressing clinically relevant epidermal growth factor receptor mutations.

    PubMed

    Masuzawa, Keita; Yasuda, Hiroyuki; Hamamoto, Junko; Nukaga, Shigenari; Hirano, Toshiyuki; Kawada, Ichiro; Naoki, Katsuhiko; Soejima, Kenzo; Betsuyaku, Tomoko

    2017-12-01

    Third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (EGFR-TKIs) were developed to overcome EGFR T790M-mediated resistance to first- and second-generation EGFR-TKIs. Third-generation EGFR-TKIs, such as osimertinib and nazartinib, are effective for patients with the EGFR T790M mutation. However, there are no direct comparison data to guide the selection of a third-generation EGFR-TKI for patients with different EGFR mutations. We previously established an in vitro model to estimate the therapeutic windows of EGFR-TKIs by comparing their relative efficacies against cells expressing mutant or wild type EGFRs. The present study used this approach to characterize the efficacy of third-generation EGFR-TKIs and compare them with that of other EGFR-TKIs. Treatment efficacy was examined using human lung cancer-derived cell lines and Ba/F3 cells, which were transduced with clinically relevant mutant EGFRs. Interestingly, mutation-related differences in EGFR-TKI sensitivity were observed. For classic EGFR mutations (exon 19 deletion and L858R, with or without T790M), osimertinib showed lower IC50 values and wider therapeutic windows than nazartinib. For less common EGFR mutations (G719S or L861Q), afatinib showed the lowest IC50 values. For G719S+T790M or L861Q+T790M, the IC50 values of osimertinib and nazartinib were around 100 nM, which was 10- to 100-fold higher than those for classic+T790M mutations. On the contrary, osimertinib and nazartinib showed similar efficacies in cells expressing EGFR exon 20 insertions. The findings highlight the diverse mutation-related sensitivity pattern of EGFR-TKIs. These data may help in the selection of EGFR-TKIs for non-small cell lung cancer patients harboring EGFR mutations.

  16. Characterization of the efficacies of osimertinib and nazartinib against cells expressing clinically relevant epidermal growth factor receptor mutations

    PubMed Central

    Masuzawa, Keita; Yasuda, Hiroyuki; Hamamoto, Junko; Nukaga, Shigenari; Hirano, Toshiyuki; Kawada, Ichiro; Naoki, Katsuhiko; Soejima, Kenzo; Betsuyaku, Tomoko

    2017-01-01

    Third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (EGFR-TKIs) were developed to overcome EGFR T790M-mediated resistance to first- and second-generation EGFR-TKIs. Third-generation EGFR-TKIs, such as osimertinib and nazartinib, are effective for patients with the EGFR T790M mutation. However, there are no direct comparison data to guide the selection of a third-generation EGFR-TKI for patients with different EGFR mutations. We previously established an in vitro model to estimate the therapeutic windows of EGFR-TKIs by comparing their relative efficacies against cells expressing mutant or wild type EGFRs. The present study used this approach to characterize the efficacy of third-generation EGFR-TKIs and compare them with that of other EGFR-TKIs. Treatment efficacy was examined using human lung cancer-derived cell lines and Ba/F3 cells, which were transduced with clinically relevant mutant EGFRs. Interestingly, mutation-related differences in EGFR-TKI sensitivity were observed. For classic EGFR mutations (exon 19 deletion and L858R, with or without T790M), osimertinib showed lower IC50 values and wider therapeutic windows than nazartinib. For less common EGFR mutations (G719S or L861Q), afatinib showed the lowest IC50 values. For G719S+T790M or L861Q+T790M, the IC50 values of osimertinib and nazartinib were around 100 nM, which was 10- to 100-fold higher than those for classic+T790M mutations. On the contrary, osimertinib and nazartinib showed similar efficacies in cells expressing EGFR exon 20 insertions. The findings highlight the diverse mutation-related sensitivity pattern of EGFR-TKIs. These data may help in the selection of EGFR-TKIs for non-small cell lung cancer patients harboring EGFR mutations. PMID:29285266

  17. Optimization of Dosing for EGFR-Mutant Non–Small Cell Lung Cancer with Evolutionary Cancer Modeling

    PubMed Central

    Chmielecki, Juliann; Foo, Jasmine; Oxnard, Geoffrey R.; Hutchinson, Katherine; Ohashi, Kadoaki; Somwar, Romel; Wang, Lu; Amato, Katherine R.; Arcila, Maria; Sos, Martin L.; Socci, Nicholas D.; Viale, Agnes; de Stanchina, Elisa; Ginsberg, Michelle S.; Thomas, Roman K.; Kris, Mark G.; Inoue, Akira; Ladanyi, Marc; Miller, Vincent A.; Michor, Franziska; Pao, William

    2012-01-01

    Non–small cell lung cancers (NSCLCs) that harbor mutations within the epidermal growth factor receptor (EGFR) gene are sensitive to the tyrosine kinase inhibitors (TKIs) gefitinib and erlotinib. Unfortunately, all patients treated with these drugs will acquire resistance, most commonly as a result of a secondary mutation within EGFR (T790M). Because both drugs were developed to target wild-type EGFR, we hypothesized that current dosing schedules were not optimized for mutant EGFR or to prevent resistance. To investigate this further, we developed isogenic TKI-sensitive and TKI-resistant pairs of cell lines that mimic the behavior of human tumors. We determined that the drug-sensitive and drug-resistant EGFR-mutant cells exhibited differential growth kinetics, with the drug-resistant cells showing slower growth. We incorporated these data into evolutionary mathematical cancer models with constraints derived from clinical data sets. This modeling predicted alternative therapeutic strategies that could prolong the clinical benefit of TKIs against EGFR-mutant NSCLCs by delaying the development of resistance. PMID:21734175

  18. EGFR tyrosine kinase inhibitors versus chemotherapy as first-line therapy for non-small cell lung cancer patients with the L858R point mutation.

    PubMed

    Xu, Jianlin; Yang, Haitang; Jin, Bo; Lou, Yuqing; Zhang, Yanwei; Zhang, Xueyan; Zhong, Hua; Wang, Huiming; Wu, Dan; Han, Baohui

    2016-11-04

    The efficacy of EGFR tyrosine kinase inhibitors (TKIs) varies among different EGFR mutations. Here, we directly compared the efficacy of first-line TKIs to chemotherapy for non-small cell lung cancer (NSCLC) patients with the L858R mutation. The progression-free survival (PFS) for patients receiving TKIs as first-line therapy was longer than those who received chemotherapy (hazard ratio [HR]: 0.44, P < 0.001). Subgroup analyses showed that first-line TKI therapy resulted in longer PFS among non-smokers (HR: 0.41, P < 0.001), male (HR: 0.49, P = 0.002), female (HR: 0.39, P < 0.001), and patients with adenocarcinoma histology (HR: 0.41, P < 0.001). However, among patients with non-adenocarcinoma histology (HR: 1.11, P = 0.824) and those who used to smoke (HR: 0.55, P = 0.093), first-line TKI therapy failed to demonstrate statistically longer PFS compared to chemotherapy. Our results demonstrated that for patients with L858R mutation, first-line TKI therapy provided better survival benefits. However, among non-adenocarcinoma patients and those who used to smoke, the PFS in cohorts receiving first-line chemotherapy or TKI were not significantly different. The results of the current study will be helpful for decision-making in the treatment of patients with L858R mutation.

  19. Elucidating the genomic architecture of Asian EGFR-mutant lung adenocarcinoma through multi-region exome sequencing.

    PubMed

    Nahar, Rahul; Zhai, Weiwei; Zhang, Tong; Takano, Angela; Khng, Alexis J; Lee, Yin Yeng; Liu, Xingliang; Lim, Chong Hee; Koh, Tina P T; Aung, Zaw Win; Lim, Tony Kiat Hon; Veeravalli, Lavanya; Yuan, Ju; Teo, Audrey S M; Chan, Cheryl X; Poh, Huay Mei; Chua, Ivan M L; Liew, Audrey Ann; Lau, Dawn Ping Xi; Kwang, Xue Lin; Toh, Chee Keong; Lim, Wan-Teck; Lim, Bing; Tam, Wai Leong; Tan, Eng-Huat; Hillmer, Axel M; Tan, Daniel S W

    2018-01-15

    EGFR-mutant lung adenocarcinomas (LUAD) display diverse clinical trajectories and are characterized by rapid but short-lived responses to EGFR tyrosine kinase inhibitors (TKIs). Through sequencing of 79 spatially distinct regions from 16 early stage tumors, we show that despite low mutation burdens, EGFR-mutant Asian LUADs unexpectedly exhibit a complex genomic landscape with frequent and early whole-genome doubling, aneuploidy, and high clonal diversity. Multiple truncal alterations, including TP53 mutations and loss of CDKN2A and RB1, converge on cell cycle dysregulation, with late sector-specific high-amplitude amplifications and deletions that potentially beget drug resistant clones. We highlight the association between genomic architecture and clinical phenotypes, such as co-occurring truncal drivers and primary TKI resistance. Through comparative analysis with published smoking-related LUAD, we postulate that the high intra-tumor heterogeneity observed in Asian EGFR-mutant LUAD may be contributed by an early dominant driver, genomic instability, and low background mutation rates.

  20. Functional Analysis of Somatic Mutations in Lung Cancer

    DTIC Science & Technology

    2015-10-01

    antibody cetuximab [11]. Finally, we have developed novel single cell sequencing approaches to uncover EGFR mutational variants in glioblastoma and their...assessed which mutations are epistatic to EGFR or capable of initiating xenograft tumor formation in vivo. Using eVIP, we identified 69% of mutations...analyzed as impactful whereas 31% appear functionally neutral. A subset of the impactful mutations induce xenograft tumor formation in mice and/or

  1. Crystal structure of EGFR T790 M/C797S/V948R in complex with EAI045.

    PubMed

    Zhao, Peng; Yao, Ming-Yu; Zhu, Su-Jie; Chen, Ji-Yun; Yun, Cai-Hong

    2018-05-23

    Lung cancer is the leading cause of cancer deaths. Epidermal growth factor receptor (EGFR) kinase domain mutations are a common cause of non-small cell lung cancers (NSCLCs), a major subtype of lung cancers. Patients harboring most of these mutations respond well to the anti-EGFR tyrosine kinase inhibitors (TKIs) gefitinib and erlotinib initially, but soon develop resistance to them in about half of the cases due to the emergence of the gatekeeper mutation T790 M. The third-generation TKIs such as AZD9291, HM61713, CO-1686 and WZ4002 can overcome T790 M through covalent binding to the EGFR kinase through Cys 797, but ultimately lose their efficacy upon emergence of the C797S mutation that abolishes the covalent bonding. Therefore to develop new TKIs to overcome EGFR drug-resistant mutants harboring T790 M/C797S is urgently demanded. EAI001 and EAI045 are a new type of EGFR TKIs that bind to EGFR reversibly and not relying on Cys 797. EAI045 in combination with cetuximab is effective in mouse models of lung cancer driven by EGFR L858 R/T790 M and L858 R/T790 M/C797S. Here we report the crystal structure of EGFR T790 M/C797S/V948R in complex with EAI045, and compare it to EGFR T790 M/V948R in complex with EAI001. The complex structure reveals why EAI045 binds tighter to EGFR than does EAI001, and why EAI001 and EAI045 prefer binding to EGFR T790 M. The knowledge may facilitate future drug development studies targeting this very important cancer target. Copyright © 2018. Published by Elsevier Inc.

  2. Sonic Hedgehog modulates EGFR dependent proliferation of neural stem cells during late mouse embryogenesis through EGFR transactivation

    PubMed Central

    Reinchisi, Gisela; Parada, Margarita; Lois, Pablo; Oyanadel, Claudia; Shaughnessy, Ronan; Gonzalez, Alfonso; Palma, Verónica

    2013-01-01

    Sonic Hedgehog (Shh/GLI) and EGFR signaling pathways modulate Neural Stem Cell (NSC) proliferation. How these signals cooperate is therefore critical for understanding normal brain development and function. Here we report a novel acute effect of Shh signaling on EGFR function. We show that during late neocortex development, Shh mediates the activation of the ERK1/2 signaling pathway in Radial Glial cells (RGC) through EGFR transactivation. This process is dependent on metalloprotease activity and accounts for almost 50% of the EGFR-dependent mitogenic response of late NSCs. Furthermore, in HeLa cancer cells, a well-known model for studying the EGFR receptor function, Shh also induces cell proliferation involving EGFR activation, as reflected by EGFR internalization and ERK1/2 phosphorylation. These findings may have important implications for understanding the mechanisms that regulate NSC proliferation during neurogenesis and may lead to novel approaches to the treatment of tumors. PMID:24133411

  3. Epidermal growth factor receptor mutations in lung adenocarcinoma in Malaysian patients.

    PubMed

    Liam, Chong-Kin; Wahid, Mohamed Ibrahim A; Rajadurai, Pathmanathan; Cheah, Yoke-Kqueen; Ng, Tiffany Shi-Yeen

    2013-06-01

    Despite available data from other Asian countries, the prevalence of epidermal growth factor receptor (EGFR) mutations among lung adenocarcinoma patients has not been reported in Malaysia. This study sought to determine the frequency of EGFR mutations among multiethnic Malaysian patients diagnosed with lung adenocarcinoma. Demographic and clinical information of patients whose lung adenocarcinoma biopsy specimens were submitted for EGFR mutation testing at Sime Darby Medical Center from 2009 to 2011 were analyzed. EGFR mutations at exons 18, 19, 20, and 21 were detected either through bidirectional sequencing or real-time polymerase chain reaction. Among 812 patients in the study, 49% were female, 63.7% were ethnic Chinese, 29.4% Malay, 4.8% Indian, and 2.1% other ethnic groups. Mutations were present in the tumors of 321 patients (39.5%), with mutations at exons 19 (23.5%) and 21 (14.9%) being the most common. Mutations were significantly more frequent among women than in men (52.5% versus 27.8%, p < 0.001). Although mutations were more common among Chinese (40.8%) compared with Malay (37.2%) or Indian (33.3%) patients, the difference was not statistically significant (p = 0.591). Of 211 patients with smoking history records, never-smokers had a higher mutation rate compared with ever-smokers (54.8% versus 20.7%, p < 0.001). EGFR mutations were present in 39.5% of patients. Mutations were more common in women and never-smokers with no differences in mutation frequency between different ethnicities. Because of the high mutation rates, reflex testing for EGFR mutation should be a routine practice for advanced lung adenocarcinoma patients in Malaysia.

  4. Activation of sperm EGFR by light irradiation is mediated by reactive oxygen species.

    PubMed

    Shahar, Shiran; Hillman, Pnina; Lubart, Rachel; Ickowicz, Debby; Breitbart, Haim

    2014-01-01

    To acquire fertilization competence, spermatozoa must undergo several biochemical and motility changes in the female reproductive tract, collectively called capacitation. Actin polymerization and the development of hyperactivated motility (HAM) are part of the capacitation process. In a recent study, we showed that irradiation of human sperm with visible light stimulates HAM through a mechanism involving reactive-oxygen-species (ROS), Ca(2+) influx, protein kinases A (PKA), and sarcoma protein kinase (Src). Here, we showed that this effect of light on HAM is mediated by ROS-dependent activation of the epidermal growth factor receptor (EGFR). Interestingly, ROS-mediated HAM even when the EGFR was activated by EGF, the physiological ligand of EGFR. Light irradiation stimulated ROS-dependent actin polymerization, and this effect was abrogated by PBP10, a peptide which activates the actin-severing protein, gelsolin, and causes actin-depolymerization in human sperm. Light-stimulated tyrosine phosphorylation of Src-dependent gelsolin, resulting in enhanced HAM. Thus, light irradiation stimulates HAM through a mechanism involving Src-mediated actin polymerization. Light-stimulated HAM and in vitro-fertilization (IVF) rate in mouse sperm, and these effects were mediated by ROS and EGFR. In conclusion, we show here that irradiation of sperm with visible light, enhances their fertilization capacity via a mechanism requiring ROS, EGFR and HAM. © 2014 The American Society of Photobiology.

  5. Divergent epidermal growth factor receptor mutation patterns between smokers and non-smokers with lung adenocarcinoma.

    PubMed

    Tseng, Jeng-Sen; Wang, Chih-Liang; Yang, Tsung-Ying; Chen, Chih-Yi; Yang, Cheng-Ta; Chen, Kun-Chieh; Hsu, Kuo-Hsuan; Tsai, Chi-Ren; Chang, Gee-Chen

    2015-12-01

    Smoking status is an important determinant of the prevalence of epidermal growth factor receptor (EGFR) mutations in lung cancer patients. However, it is unclear whether smoking status could also influence the spectrum of EGFR mutations. We enrolled patients with lung adenocarcinoma from three medical centers in Taiwan. EGFR mutations were assessed by Sanger direct sequencing. The objective of this study was to evaluate the influence of smoking status on both the frequency and patterns of EGFR mutations. From 2001 to 2013, a total of 1175 patients with lung adenocarcinoma were enrolled for EGFR mutation analysis. The overall EGFR mutation rate was 59.6%, which was significantly higher in females than males (69.1% vs. 49.8%) and in non-smokers than current/former smokers (73.8% vs. 29.8%) (both P<0.001). Among patients harboring EGFR mutations, smokers expressed L858R mutation less frequently (35.2% vs. 50.2%, P=0.005) and exon 19 deletions more frequently (52.8% vs 38.8%, P=0.008) than non-smokers. Smokers and non-smokers also had divergent exon 19 deletions subtypes (Del E746-A750 82.5% vs. 57.6%, respectively, P<0.001). Among subgroup patients harboring the L858R mutation, smokers were associated with a higher rate of complex mutations than non-smokers (34.2% vs. 8.4%, P<0.001). Our results suggested that smoking status could influence not only the frequency but also the spectrum of EGFR mutations. These findings provide a clue for further investigation of EGFR mutagenesis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. The International Association for the Study of Lung Cancer Consensus Statement on Optimizing Management of EGFR Mutation-Positive Non-Small Cell Lung Cancer: Status in 2016.

    PubMed

    Tan, Daniel S W; Yom, Sue S; Tsao, Ming S; Pass, Harvey I; Kelly, Karen; Peled, Nir; Yung, Rex C; Wistuba, Ignacio I; Yatabe, Yasushi; Unger, Michael; Mack, Philip C; Wynes, Murry W; Mitsudomi, Tetsuya; Weder, Walter; Yankelevitz, David; Herbst, Roy S; Gandara, David R; Carbone, David P; Bunn, Paul A; Mok, Tony S K; Hirsch, Fred R

    2016-07-01

    Mutations in the epidermal growth factor receptor gene (EGFR) represent one of the most frequent "actionable" alterations in non-small cell lung cancer (NSCLC). Typified by high response rates to targeted therapies, EGFR tyrosine kinase inhibitors (TKIs) are now established first-line treatment options and have transformed the treatment paradigm for NSCLC. With the recent breakthrough designation and approval of the third-generation EGFR TKI osimertinib, available systemic and local treatment options have expanded, requiring new clinical algorithms that take into account individual patient molecular and clinical profiles. In this International Association for the Study of Lung Cancer commissioned consensus statement, key pathologic, diagnostic, and therapeutic considerations, such as optimal choice of EGFR TKI and management of brain metastasis, are discussed. In addition, recommendations are made for clinical guidelines and research priorities, such as the role of repeat biopsies and use of circulating free DNA for molecular studies. With the rapid pace of progress in treating EGFR-mutant NSCLC, this statement provides a state-of-the-art review of the contemporary issues in managing this unique subgroup of patients. Copyright © 2016 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  7. Evaluation of pre-analytical conditions and comparison of the performance of several digital PCR assays for the detection of major EGFR mutations in circulating DNA from non-small cell lung cancers: the CIRCAN_0 study

    PubMed Central

    Garcia, Jessica; Dusserre, Eric; Cheynet, Valérie; Bringuier, Pierre Paul; Brengle-Pesce, Karen; Wozny, Anne-Sophie; Rodriguez-Lafrasse, Claire; Freyer, Gilles; Brevet, Marie; Payen, Léa; Couraud, Sébastien

    2017-01-01

    Non invasive somatic detection assays are suitable for repetitive tumor characterization or for detecting the appearance of somatic resistance during lung cancer. Molecular diagnosis based on circulating free DNA (cfDNA) offers the opportunity to track the genomic evolution of the tumor, and was chosen to assess the molecular profile of several EGFR alterations, including deletions in exon 19 (delEX19), the L858R substitution on exon 21 and the EGFR resistance mutation T790M on exon 20. Our study aimed at determining optimal pre-analytical conditions and EGFR mutation detection assays for analyzing cfDNA using the picoliter-droplet digital polymerase chain reaction (ddPCR) assay. Within the framework of the CIRCAN project set-up at the Lyon University Hospital, plasma samples were collected to establish a pre-analytical and analytical workflow of cfDNA analysis. We evaluated all of the steps from blood sampling to mutation detection output, including shipping conditions (4H versus 24H in EDTA tubes), the reproducibility of cfDNA extraction, the specificity/sensitivity of ddPCR (using external controls), and the comparison of different PCR assays for the detection of the three most important EGFR hotspots, which highlighted the increased sensitivity of our in-house primers/probes. Hence, we have described a new protocol facilitating the molecular detection of somatic mutations in cancer patients from liquid biopsies, improving their diagnosis and introducing a less traumatic monitoring system during tumor progression. PMID:29152135

  8. Uncovering the Origin of Skin Side Effects from EGFR-Targeted Therapies | Center for Cancer Research

    Cancer.gov

    The epidermal growth factor receptor (EGFR), a key regulator of cell proliferation, is often mutated or overexpressed in a variety of cancer types. EGFR-targeted therapies, including monoclonal antibodies and small molecule inhibitors, can effectively treat patients whose tumors depend on aberrant EGFR signaling. Within a few weeks of initiating therapy, however, patients

  9. Ligand-independent Dimer Formation of Epidermal Growth Factor Receptor (EGFR) Is a Step Separable from Ligand-induced EGFR Signaling

    PubMed Central

    Yu, Xiaochun; Sharma, Kailash D.; Takahashi, Tsuyoshi; Iwamoto, Ryo; Mekada, Eisuke

    2002-01-01

    Dimerization and phosphorylation of the epidermal growth factor (EGF) receptor (EGFR) are the initial and essential events of EGF-induced signal transduction. However, the mechanism by which EGFR ligands induce dimerization and phosphorylation is not fully understood. Here, we demonstrate that EGFRs can form dimers on the cell surface independent of ligand binding. However, a chimeric receptor, comprising the extracellular and transmembrane domains of EGFR and the cytoplasmic domain of the erythropoietin receptor (EpoR), did not form a dimer in the absence of ligands, suggesting that the cytoplasmic domain of EGFR is important for predimer formation. Analysis of deletion mutants of EGFR showed that the region between 835Ala and 918Asp of the EGFR cytoplasmic domain is required for EGFR predimer formation. In contrast to wild-type EGFR ligands, a mutant form of heparin-binding EGF-like growth factor (HB2) did not induce dimerization of the EGFR-EpoR chimeric receptor and therefore failed to activate the chimeric receptor. However, when the dimerization was induced by a monoclonal antibody to EGFR, HB2 could activate the chimeric receptor. These results indicate that EGFR can form a ligand-independent inactive dimer and that receptor dimerization and activation are mechanistically distinct and separable events. PMID:12134089

  10. 4-Hydroxynonenal activates Src through a non-canonical pathway that involves EGFR/PTP1B

    PubMed Central

    Zhang, Hongqiao; Forman, Henry Jay

    2015-01-01

    Src, a non-receptor protein tyrosine kinase involved in many biological processes, can be activated through both redox-dependent and independent mechanisms. 4-Hydroxy-2-nonenal (HNE) is a lipid peroxidation product that is increased in pathophysiological conditions associated with Src activation. This study examined how HNE activates human c-Src. In the canonical pathway Src activation is initiated by dephosphorylation of pTyr530 followed by conformational change that causes Src auto-phosphorylation at Tyr419 and its activation. HNE increased Src activation in both dose- and time-dependent manner, while it also increased Src phosphorylation at Tyr530 (pTyr530 Src), suggesting that HNE activated Src via a non-canonical mechanism. Protein tyrosine phosphatase 1B inhibitor (539741), at concentrations that increased basal pTyr530 Src, also increased basal Src activity and significantly reduced HNE-mediated Src activation. The EGFR inhibitor, AG1478, and EGFR silencing, abrogated HNE-mediated EGFR activation and inhibited basal and HNE-induced Src activity. In addition, AG1478 also eliminated the increase of basal Src activation by a PTP1B inhibitor. Taken together these data suggest that HNE can activate Src partly through a non-canonical pathway involving activation of EGFR and inhibition of PTP1B. PMID:26453921

  11. Discovery of Selective and Noncovalent Diaminopyrimidine-Based Inhibitors of Epidermal Growth Factor Receptor Containing the T790M Resistance Mutation

    PubMed Central

    2015-01-01

    Activating mutations within the epidermal growth factor receptor (EGFR) kinase domain, commonly L858R or deletions within exon 19, increase EGFR-driven cell proliferation and survival and are correlated with impressive responses to the EGFR inhibitors erlotinib and gefitinib in nonsmall cell lung cancer patients. Approximately 60% of acquired resistance to these agents is driven by a single secondary mutation within the EGFR kinase domain, specifically substitution of the gatekeeper residue threonine-790 with methionine (T790M). Due to dose-limiting toxicities associated with inhibition of wild-type EGFR (wtEGFR), we sought inhibitors of T790M-containing EGFR mutants with selectivity over wtEGFR. We describe the evolution of HTS hits derived from Jak2/Tyk2 inhibitors into selective EGFR inhibitors. X-ray crystal structures revealed two distinct binding modes and enabled the design of a selective series of novel diaminopyrimidine-based inhibitors with good potency against T790M-containing mutants of EGFR, high selectivity over wtEGFR, broad kinase selectivity, and desirable physicochemical properties. PMID:25383627

  12. Discovery of Selective and Noncovalent Diaminopyrimidine-Based Inhibitors of Epidermal Growth Factor Receptor Containing the T790M Resistance Mutation

    DOE PAGES

    Hanan, Emily J.; Eigenbrot, Charles; Bryan, Marian C.; ...

    2014-11-10

    Activating mutations within the epidermal growth factor receptor (EGFR) kinase domain, commonly L858R or deletions within exon 19, increase EGFR-driven cell proliferation and survival and are correlated with impressive responses to the EGFR inhibitors erlotinib and gefitinib in nonsmall cell lung cancer patients. Approximately 60% of acquired resistance to these agents is driven by a single secondary mutation within the EGFR kinase domain, specifically substitution of the gatekeeper residue threonine-790 with methionine (T790M). Due to dose-limiting toxicities associated with inhibition of wild-type EGFR (wtEGFR), we sought inhibitors of T790M-containing EGFR mutants with selectivity over wtEGFR. Here in this paper, wemore » describe the evolution of HTS hits derived from Jak2/Tyk2 inhibitors into selective EGFR inhibitors. X-ray crystal structures revealed two distinct binding modes and enabled the design of a selective series of novel diaminopyrimidine-based inhibitors with good potency against T790M-containing mutants of EGFR, high selectivity over wtEGFR, broad kinase selectivity, and desirable physicochemical properties.« less

  13. 6,7-Dimorpholinoalkoxy quinazoline derivatives as potent EGFR inhibitors with enhanced antiproliferative activities against tumor cells.

    PubMed

    Zhang, Yaling; Chen, Li; Xu, Hongjiang; Li, Xiabing; Zhao, Lijun; Wang, Wei; Li, Baolin; Zhang, Xiquan

    2018-03-10

    A series of novel 6,7-dimorpholinoalkoxy quinazoline derivatives was designed, synthesized and evaluated as potent EGFR inhibitors. Most of synthesized derivatives exhibited moderate to excellent antiproliferative activities against five human tumor cell lines. Compound 8d displayed the most remarkable inhibitory activities against tumor cells expressing wild type (A431, A549 and SW480 cells) or mutant (HCC827 and NCI-H1975 cells) epidermal growth factor receptor (EGFR) (with IC 50 values in the range of 0.37-4.87 μM), as well as more potent inhibitory effects against recombinant EGFR tyrosine kinase (EGFR-TK, wt or T790M) (with the IC 50 values of 7.0 and 9.3 nM, respectively). Molecular docking showed that 8d can form four hydrogen bonds with EGFR, and two of them were located in the Asp855-Phe856-Gly857 (DFG) motif of EGFR. Meanwhile, 8d can significantly block EGF-induced EGFR activation and the phosphorylation of its downstream proteins such as Akt and Erk1/2 in human NSCLC cells. Also, 8d mediated cell apoptosis and the prolongation of cell cycle progression in G0/G1-phase in A549 cells. The work would have remarkable implications for further design and development of more potent EGFR tyrosine kinase inhibitors (TKIs). Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  14. CpG island methylator phenotype is associated with the efficacy of sequential oxaliplatin- and irinotecan-based chemotherapy and EGFR-related gene mutation in Japanese patients with metastatic colorectal cancer.

    PubMed

    Zhang, Xiaofei; Shimodaira, Hideki; Soeda, Hiroshi; Komine, Keigo; Takahashi, Hidekazu; Ouchi, Kota; Inoue, Masahiro; Takahashi, Masanobu; Takahashi, Shin; Ishioka, Chikashi

    2016-12-01

    The CpG island methylator phenotype (CIMP) with multiple promoter methylated loci has been observed in a subset of human colorectal cancer (CRC) cases. CIMP status, which is closely associated with specific clinicopathological and molecular characteristics, is considered a potential predictive biomarker for efficacy of cancer treatment. However, the relationship between the effect of standard chemotherapy, including cytotoxic drugs and anti-epidermal growth factor receptor (EGFR) antibodies, and CIMP status has not been elucidated. In 125 metastatic colorectal cancer (mCRC) patients, we investigated how clinical outcome of chemotherapy was related to CIMP status as detected by methylation-specific PCR (MSP) and to genetic status in five EGFR-related genes (KRAS, BRAF, PIK3CA, NRAS, and AKT1) as detected by direct sequencing. CIMP-positive status was significantly associated with proximal tumor location and peritoneum metastasis (all P values <0.05). The progression-free survival of patients with CIMP-positive tumors receiving sequential therapy with FOLFOX as the first-line treatment followed by irinotecan-based therapy as the second-line treatment (median = 6.6 months) was inferior to that of such patients receiving the reverse sequence (median = 15.2 months; P = 0.043). Furthermore, CIMP-positive tumors showed higher mutation frequencies for the five EGFR-related genes (74.1 %) than the CIMP-negative tumors did (50.0 %). Among the KRAS wild-type tumors, CIMP-positive tumors were associated with a worse clinical outcome than CIMP-negative tumors following anti-EGFR antibody therapy. Sequential FOLFOX followed by an irinotecan-based regimen is unfavorable in patients with CIMP-positive tumors. High frequencies of mutation in EGFR-related genes in CIMP-positive tumors may cause the lower response to anti-EGFR antibody therapy seen in patients with wild-type KRAS and CIMP-positive tumors.

  15. Concurrent Oncogene Mutation Profile in Chinese Patients With Stage Ib Lung Adenocarcinoma

    PubMed Central

    Wen, Ying-Sheng; Cai, Ling; Zhang, Xue-wen; Zhu, Jian-fei; Zhang, Zi-chen; Shao, Jian-yong; Zhang, Lan-Jun

    2014-01-01

    Abstract Molecular characteristics in lung cancer are associated with carcinogenesis, response to targeted therapies, and prognosis. With concurrent oncogene mutations being reported more often, the adjustment of treatment based on the driver gene mutations would improve therapy. We proposed to investigate the distribution of concurrent oncogene mutations in stage Ib lung adenocarcinoma in a Chinese population and find out the correlation between survival outcome and the most frequently mutated genes in EGFR and KRAS in Chinese population. Simultaneously, we tried to validate the Sequenom method by real time fluoresce qualification reverse transcription polymerase chain reaction (RT-PCR) in oncogene detection. One hundred fifty-six patients who underwent complete surgical resection in our hospital between 1999 and 2007 were retrospectively investigated. Using time-of-flight mass spectrometry, 238 mutation hotspots in 19 oncogenes were examined. Genetic mutations occurred in 86 of 156 patients (55.13%). EGFR was most frequently gene contained driver mutations, with a rate of 44.23%, followed by KRAS (8.33%), PIK3CA (3.84%), KIT (3.20%), BRAF (2.56%), AKT (1.28%), MET (0.64%), NRAS (0.64%), HRAS (0.64%), and ERBB2 (0.64%). No mutations were found in the RET, PDGFRA, FGFR1, FGFR3, FLT3, ABL, CDK, or JAK2 oncogenes. Thirteen patients (8.3%) were detected in multiple gene mutations. Six patients had PIK3CA mutations in addition to mutations in EGFR and KRAS. EGFR mutations can coexist with mutations in NRAS, KIT, ERBB2, and BRAF. Only one case was found to have a KRAS mutation coexisting with the EGFR T790M mutation. Otherwise, mutations in EGFR and KRAS seem to be mutually exclusive. There is no survival benefit in favor of EGFR/KRAS mutation. Several concomitant driver gene mutations were observed in our study. None of EFGR/KRAS mutation was demonstrated as a prognostic factor. Polygenic mutation testing by time-of-flight mass spectrometry was validated by RT

  16. Drug Resistance to EGFR Inhibitors in Lung Cancer | Office of Cancer Genomics

    Cancer.gov

    The discovery of mutations in epidermal growth factor receptor (EGFR) has dramatically changed the treatment of patients with non-small-cell lung cancer (NSCLC), the leading cause of cancer deaths worldwide. EGFR-targeted therapies show considerable promise, but drug resistance has become a substantial issue. We reviewed the literature to provide an overview of the drug resistance to EGFR tyrosine kinase inhibitors (TKIs) in NSCLC. The mechanisms causing primary, acquired and persistent drug resistance to TKIs vary.

  17. MicroRNA-566 activates EGFR signaling and its inhibition sensitizes glioblastoma cells to nimotuzumab.

    PubMed

    Zhang, Kai-Liang; Zhou, Xuan; Han, Lei; Chen, Lu-Yue; Chen, Ling-Chao; Shi, Zhen-Dong; Yang, Ming; Ren, Yu; Yang, Jing-Xuan; Frank, Thomas S; Zhang, Chuan-Bao; Zhang, Jun-Xia; Pu, Pei-Yu; Zhang, Jian-Ning; Jiang, Tao; Wagner, Eric J; Li, Min; Kang, Chun-Sheng

    2014-03-20

    Epidermal growth factor receptor (EGFR) is amplified in 40% of human glioblastomas. However, most glioblastoma patients respond poorly to anti-EGFR therapy. MicroRNAs can function as either oncogenes or tumor suppressor genes, and have been shown to play an important role in cancer cell proliferation, invasion and apoptosis. Whether microRNAs can impact the therapeutic effects of EGFR inhibitors in glioblastoma is unknown. miR-566 expression levels were detected in glioma cell lines, using real-time quantitative RT-PCR (qRT-PCR). Luciferase reporter assays and Western blots were used to validate VHL as a direct target gene of miR-566. Cell proliferation, invasion, cell cycle distribution and apoptosis were also examined to confirm whether miR-566 inhibition could sensitize anti-EGFR therapy. In this study, we demonstrated that miR-566 is up-regulated in human glioma cell lines and inhibition of miR-566 decreased the activity of the EGFR pathway. Lentiviral mediated inhibition of miR-566 in glioblastoma cell lines significantly inhibited cell proliferation and invasion and led to cell cycle arrest in the G0/G1 phase. In addition, we identified von Hippel-Lindau (VHL) as a novel functional target of miR-566. VHL regulates the formation of the β-catenin/hypoxia-inducible factors-1α complex under miR-566 regulation. miR-566 activated EGFR signaling and its inhibition sensitized glioblastoma cells to anti-EGFR therapy.

  18. Autophagosome-mediated EGFR down-regulation induced by the CK2 inhibitor enhances the efficacy of EGFR-TKI on EGFR-mutant lung cancer cells with resistance by T790M.

    PubMed

    So, Kwang Sup; Kim, Cheol Hyeon; Rho, Jin Kyung; Kim, Sun Ye; Choi, Yun Jung; Song, Joon Seon; Kim, Woo Sung; Choi, Chang Min; Chun, Young Jin; Lee, Jae Cheol

    2014-01-01

    Protein kinase CK2 has diverse functions promoting and maintaining cancer phenotypes. We investigated the effect of CK2 inhibition in lung cancer cells with T790M-mediated resistance to the EGFR-TK inhibitor. Resistant sublines of PC-9 to gefitinib (PC-9/GR) and erlotinib (PC-9/ER) were established by previous study, and T790M secondary mutation was found in both resistant sublines. A decrease of EGFR by siRNA treatment effectively controlled the growth of resistant cells, thus suggesting that they still have EGFR-dependency. CX-4945, a potent and selective CK2 inhibitor, induced autophagy in PC-9/GR and PC-9/ER, and which was supported by the induction of autophagic vacuoles and microtubule-associated protein 1 light chain 3 (LC3) expression, and the increase of punctate fluorescent signals in resistant cells pre-transfected with green fluorescent protein (GFP)-tagged LC3. However, the withdrawal of CX-4945 led to the recovery of cancer cells with autophagy. We found that the induction of autophagy by CX-4945 in both resistant cells was CK2 dependent by using small interfering RNA against CK2. The treatment with CX-4945 alone induced a minimal growth inhibition in resistant cells. However, combined treatment of CX-4945 and EGFR-TKI effectively inhibited cancer-cell proliferation and induced apoptosis. CX-4945 increased the translocation of EGFR from the cell surface into the autophagosome, subsequently leading to the decrease of EGFR while inhibition of autophagy by 3MA or Atg7-targeted siRNA pretreatment reduced the decrease of EGFR by CX-4945. Accordingly, apoptosis by a combination of CX-4945 and EGFR-TKI was suppressed by 3MA or Atg7-targeted siRNA pretreatment, thus suggesting that autophagosome-mediated EGFR down-regulation would have an important role regarding apoptotic cell death by EGFR-TKI. Combined treatment of the CK2 inhibitor and EGFR-TKI may be a promising strategy for overcoming T790M-mediated resistance.

  19. Molecular heterogeneity assessment by next-generation sequencing and response to gefitinib of EGFR mutant advanced lung adenocarcinoma

    PubMed Central

    Amato, Eliana; Fassan, Matteo; Novello, Silvia; Peretti, Umberto; Vavalà, Tiziana; Kinspergher, Stefania; Righi, Luisella; Santo, Antonio; Brunelli, Matteo; Corbo, Vincenzo; Giglioli, Eliana; Sperduti, Isabella; Milella, Michele; Chilosi, Marco; Scarpa, Aldo; Tortora, Giampaolo

    2015-01-01

    Cancer molecular heterogeneity might explain the variable response of EGFR mutant lung adenocarcinomas to tyrosine kinase inhibitors (TKIs). We assessed the mutational status of 22 cancer genes by next-generation sequencing (NGS) in poor, intermediate or good responders to first-line gefitinib. Clinical outcome was correlated with Additional Coexisting Mutations (ACMs) and the EGFR Proportion of Mutated Alleles (PMA). Thirteen ACMs were found in 10/17 patients: TP53 (n=6), KRAS (n=2), CTNNB1 (n=2), PIK3CA, SMAD4 and MET (n=1 each). TP53 mutations were exclusive of poor/intermediate responders (66.7% versus 0, p=0.009). Presence of ACMs significantly affected both PFS (median 3.0 versus 12.3 months, p=0.03) and survival (3.6 months versus not reached, p=0.03). TP53 mutation was the strongest negative modifier (median PFS 4.0 versus 14.0 months). Higher EGFR PMA was present in good versus poor/intermediate responders. Median PFS and survival were longer in patients with EGFR PMA ≥0.36 (12.0 versus 4.0 months, p=0.31; not reached versus 18.0 months, p=0.59). Patients with an EGFR PMA ≥0.36 and no ACMs fared significantly better (p=0.03), with a trend towards increased survival (p=0.06). Our exploratory data suggest that a quantitative (PMA) and qualitative (ACMs) molecular heterogeneity assessment using NGS might be useful for a better selection of patients. PMID:25904052

  20. KRAS mutation detection in colorectal cancer by a commercially available gene chip array compares well with Sanger sequencing.

    PubMed

    French, Deborah; Smith, Andrew; Powers, Martin P; Wu, Alan H B

    2011-08-17

    Binding of a ligand to the epidermal growth factor receptor (EGFR) stimulates various intracellular signaling pathways resulting in cell cycle progression, proliferation, angiogenesis and apoptosis inhibition. KRAS is involved in signaling pathways including RAF/MAPK and PI3K and mutations in this gene result in constitutive activation of these pathways, independent of EGFR activation. Seven mutations in codons 12 and 13 of KRAS comprise around 95% of the observed human mutations, rendering monoclonal antibodies against EGFR (e.g. cetuximab and panitumumab) useless in treatment of colorectal cancer. KRAS mutation testing by two different methodologies was compared; Sanger sequencing and AutoGenomics INFINITI® assay, on DNA extracted from colorectal cancers. Out of 29 colorectal tumor samples tested, 28 were concordant between the two methodologies for the KRAS mutations that were detected in both assays with the INFINITI® assay detecting a mutation in one sample that was indeterminate by Sanger sequencing and a third methodology; single nucleotide primer extension. This study indicates the utility of the AutoGenomics INFINITI® methodology in a clinical laboratory setting where technical expertise or access to equipment for DNA sequencing does not exist. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Interaction of galectin-3 with MUC1 on cell surface promotes EGFR dimerization and activation in human epithelial cancer cells.

    PubMed

    Piyush, Tushar; Chacko, Anisha R; Sindrewicz, Paulina; Hilkens, John; Rhodes, Jonathan M; Yu, Lu-Gang

    2017-11-01

    Epidermal growth factor receptor (EGFR) is an important regulator of epithelial cell growth and survival in normal and cancerous tissues and is a principal therapeutic target for cancer treatment. EGFR is associated in epithelial cells with the heavily glycosylated transmembrane mucin protein MUC1, a natural ligand of galectin-3 that is overexpressed in cancer. This study reveals that the expression of cell surface MUC1 is a critical enhancer of EGF-induced EGFR activation in human breast and colon cancer cells. Both the MUC1 extracellular and intracellular domains are involved in EGFR activation but the predominant influence comes from its extracellular domain. Binding of galectin-3 to the MUC1 extracellular domain induces MUC1 cell surface polarization and increases MUC1-EGFR association. This leads to a rapid increase of EGFR homo-/hetero-dimerization and subsequently increased, and also prolonged, EGFR activation and signalling. This effect requires both the galectin-3 C-terminal carbohydrate recognition domain and its N-terminal ligand multi-merization domain. Thus, interaction of galectin-3 with MUC1 on cell surface promotes EGFR dimerization and activation in epithelial cancer cells. As MUC1 and galectin-3 are both commonly overexpressed in most types of epithelial cancers, their interaction and impact on EGFR activation likely makes important contribution to EGFR-associated tumorigenesis and cancer progression and may also influence the effectiveness of EGFR-targeted cancer therapy.

  2. PGE2/EP3/SRC signaling induces EGFR nuclear translocation and growth through EGFR ligands release in lung adenocarcinoma cells

    PubMed Central

    Bazzani, Lorenzo; Donnini, Sandra; Finetti, Federica; Christofori, Gerhard; Ziche, Marina

    2017-01-01

    Prostaglandin E2 (PGE2) interacts with tyrosine kinases receptor signaling in both tumor and stromal cells supporting tumor progression. Here we demonstrate that in non-small cell lung carcinoma (NSCLC) cells, A549 and GLC82, PGE2 promotes nuclear translocation of epidermal growth factor receptor (nEGFR), affects gene expression and induces cell growth. Indeed, cyclin D1, COX-2, iNOS and c-Myc mRNA levels are upregulated following PGE2 treatment. The nuclear localization sequence (NLS) of EGFR as well as its tyrosine kinase activity are required for the effect of PGE2 on nEGFR and downstream signaling activities. PGE2 binds its bona fide receptor EP3 which by activating SRC family kinases, induces ADAMs activation which, in turn, releases EGFR-ligands from the cell membrane and promotes nEGFR. Amphiregulin (AREG) and Epiregulin (EREG) appear to be involved in nEGFR promoted by the PGE2/EP3-SRC axis. Pharmacological inhibition or silencing of the PGE2/EP3/SRC-ADAMs signaling axis or EGFR ligands i.e. AREG and EREG expression abolishes nEGFR induced by PGE2. In conclusion, PGE2 induces NSCLC cell proliferation by EP3 receptor, SRC-ADAMs activation, EGFR ligands shedding and finally, phosphorylation and nEGFR. Since nuclear EGFR is a hallmark of cancer aggressiveness, our findings reveal a novel mechanism for the contribution of PGE2 to tumor progression. PMID:28415726

  3. First-line icotinib versus cisplatin/pemetrexed plus pemetrexed maintenance therapy for patients with advanced EGFR mutation-positive lung adenocarcinoma (CONVINCE): a phase 3, open-label, randomized study.

    PubMed

    Shi, Y K; Wang, L; Han, B H; Li, W; Yu, P; Liu, Y P; Ding, C M; Song, X; Ma, Z Y; Ren, X L; Feng, J F; Zhang, H L; Chen, G Y; Han, X H; Wu, N; Yao, C; Song, Y; Zhang, S C; Song, W; Liu, X Q; Zhao, S J; Lin, Y C; Ye, X Q; Li, K; Shu, Y Q; Ding, L M; Tan, F L; Sun, Y

    2017-10-01

    Icotinib has been previously shown to be non-inferior to gefitinib in non-selected advanced non-small-cell lung cancer patients when given as second- or further-line treatment. In this open-label, randomized, phase 3 CONVINCE trial, we assessed the efficacy and safety of first-line icotinib versus cisplatin/pemetrexed plus pemetrexed maintenance in lung adenocarcinoma patients with epidermal growth factor receptor (EGFR) mutation. Eligible participants were adults with stage IIIB/IV lung adenocarcinoma and exon 19/21 EGFR mutations. Participants were randomly allocated (1 : 1) to receive oral icotinib or 3-week cycle of cisplatin plus pemetrexed for up to four cycles; non-progressive patients after four cycles were maintained with pemetrexed until disease progression or intolerable toxicity. The primary end point was progression-free survival (PFS) assessed by independent response evaluation committee. Other end points included overall survival (OS) and safety. Between January 2013 and August 2014, 296 patients were randomized, and 285 patients were treated (148 to icotinib, 137 to chemotherapy). Independent response evaluation committee-assessed PFS was significantly longer in the icotinib group (11.2 versus 7.9 months; hazard ratio, 0.61, 95% confidence interval 0.43-0.87; P = 0.006). No significant difference for OS was observed between treatments in the overall population or in EGFR-mutated subgroups (exon 19 Del/21 L858R). The most common grade 3 or 4 adverse events (AEs) in the icotinib group were rash (14.8%) and diarrhea (7.4%), compared with nausea (45.9%), vomiting (29.2%), and neutropenia (10.9%) in the chemotherapy group. AEs (79.1% versus 94.2%; P < 0.001) and treatment-related AEs (54.1% versus 90.5%; P < 0.001) were significantly fewer in the icotinib group than in the chemotherapy group. First-line icotinib significantly improves PFS of advanced lung adenocarcinoma patients with EGFR mutation with a tolerable and manageable safety

  4. NF-κB-dependent transcriptional upregulation of cyclin D1 exerts cytoprotection against hypoxic injury upon EGFR activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Zhi-Dong; Xu, Liang; Tang, Kan-Kai

    Apoptosis of neural cells is one of the main pathological features in hypoxic/ischemic brain injury. Nuclear factor-κB (NF-κB) might be a potential therapeutic target for hypoxic/ischemic brain injury since NF-κB has been found to be inactivated after hypoxia exposure, yet the underlying molecular mechanisms of NF-κB inactivation are largely unknown. Here we report that epidermal growth factor receptor (EGFR) activation prevents neuron-like PC12 cells apoptosis in response to hypoxia via restoring NF-κB-dependent transcriptional upregulation of cyclin D1. Functionally, EGFR activation by EGF stimulation mitigates hypoxia-induced PC12 cells apoptosis in both dose- and time-dependent manner. Of note, EGFR activation elevates IKKβmore » phosphorylation, increases IκBα ubiquitination, promotes P65 nuclear translocation and recruitment at cyclin D1 gene promoter as well as upregulates cyclin D1 expression. EGFR activation also abrogates the decrease of IKKβ phosphorylation, reduction of IκBα ubiquitination, blockade of P65 nuclear translocation and recruitment at cyclin D1 gene promoter as well as downregulation of cyclin D1 expression induced by hypoxia. Furthermore, NF-κB-dependent upregulation of cyclin D1 is instrumental for the EGFR-mediated cytoprotection against hypoxic apoptosis. In addition, the dephosphorylation of EGFR induced by either EGF siRNA transfection or anti-HB-EGF neutralization antibody treatment enhances hypoxic cytotoxicity, which are attenuated by EGF administration. Our results highlight the essential role of NF-κB-dependent transcriptional upregulation of cyclin D1 in EGFR-mediated cytoprotective effects under hypoxic preconditioning and support further investigation of EGF in clinical trials of patients with hypoxic/ischemic brain injury. - Highlights: • EGFR activation significantly decreases hypoxia-induced PC12 cells injury. • EGFR activation abrogates the transcriptional repression of cyclin D1 induced by hypoxia in a

  5. Stress-specific p38 MAPK activation is sufficient to drive EGFR endocytosis but not its nuclear translocation.

    PubMed

    Tomas, Alejandra; Jones, Sylwia; Vaughan, Simon O; Hochhauser, Daniel; Futter, Clare E

    2017-08-01

    EGF receptor (EGFR) endocytosis is induced by stress in a manner dependent on the p38 MAPK family. Ligand and stresses such as X-rays, reportedly promote nuclear trafficking of endocytosed EGFR for regulation of gene transcription and DNA repair. We fail to detect EGFR endocytosis or nuclear transport following X-ray treatment of HeLa or head and neck cancer cells, despite extensive DNA damage induction. Apparent nuclear staining with EGFR extracellular domain antibody remained present despite reduced/absent EGFR expression, and so did not represent nuclear EGFR. UVB and UVC, but not X-ray or UVA, treatment induced p38 activation and EGFR endocytosis, although all of these stresses induced DNA damage, indicating that DNA damage alone is not sufficient to induce EGFR endocytosis. Increased reactive oxygen species (ROS) levels following UVB treatment, compared to that seen with X-rays, do not alone explain differences in p38 activation. UVB, like UVC, induced EGFR accumulation predominantly in perinuclear endosomes, rather than in the nucleus. Our morphological techniques identifying major changes in receptor distribution do not exclude the possibility that small but biologically relevant amounts of EGFR enter the nucleus. This study highlights the importance and limitations of morphological analyses of receptor distribution in understanding signaling outcome. © 2017. Published by The Company of Biologists Ltd.

  6. The USP8 mutational status may predict drug susceptibility in corticotroph adenomas of Cushing's disease.

    PubMed

    Hayashi, Kyohei; Inoshita, Naoko; Kawaguchi, Kohei; Ibrahim Ardisasmita, Arif; Suzuki, Hisanori; Fukuhara, Noriaki; Okada, Mitsuo; Nishioka, Hiroshi; Takeuchi, Yasuhiro; Komada, Masayuki; Takeshita, Akira; Yamada, Shozo

    2016-02-01

    Somatic mutations in the ubiquitin-specific peptidase USP8 gene were recently detected in one- to two-third(s) of corticotroph adenomas of Cushing's disease (CD). These mutations may lead to the deubiquitination of EGFR, thereby increasing EGFR signaling, which has been implicated in ACTH hypersecretion. Our objective was to determine the impact of USP8 mutations on the clinicopathological features of CD. USP8 mutations as well as clinicopathological characteristics were examined in 60 corticotroph adenomas including 15 Crooke's cell adenomas (CCAs), a rare histological variant presenting with generally aggressive behavior, using qRT-PCR and/or immunohistochemistry. USP8 mutations were exclusively detected in women, except for one case, with a prevalence of 42.2% in non-CCA and 13.3% in CCA (overall 35%). Clinically well-behaved presentations including microadenoma and curative resection were more common in mutated cases. The expression of EGFR was not associated with the mutation status. In contrast, mutated tumors expressed significantly higher levels of POMC, SSTR5, and MGMT. Microadenomas that strongly express POMC were common among mutated tumors, which may lead to the mechanisms by which very small adenomas secrete excess ACTH to present overt CD. While USP8 mutations were less likely to enhance tumorous ACTH hypersecretion via EGFR-mediated activation, the presence of USP8 mutations may predict favorable responses to the somatostatin analog pasireotide, which exhibits high affinity for SSTR5. In contrast, non-mutated aggressive tumors such as CCA may respond better to the alkylating agent temozolomide because of their significantly weak expression of MGMT. © 2016 European Society of Endocrinology.

  7. Targeting EGFR in lung cancer: Lessons learned and future perspectives

    PubMed Central

    Steuer, Conor E.; Ramalingam, Suresh S.

    2016-01-01

    The development of individualized therapies has become the focus of current oncology research. Precision medicine has demonstrated great potential for bringing safe and effective drugs to those patients stricken with cancer, and is becoming a reality as more oncogenic drivers of malignancy are discovered. The discovery of Epidermal Growth Factor Receptor (EGFR) mutations as a driving mutation in non-small cell lung cancer (NSCLC) and the subsequent success of the tyrosine kinase inhibitors (TKI) have led the way for NSCLC to be at the forefront of biomarker-based drug development. However, this direction was not always so clear, and this article describes the lessons learned in targeted therapy development from EGFR in NSCLC. PMID:26022942

  8. Broad Detection of Alterations Predicted to Confer Lack of Benefit From EGFR Antibodies or Sensitivity to Targeted Therapy in Advanced Colorectal Cancer.

    PubMed

    Rankin, Andrew; Klempner, Samuel J; Erlich, Rachel; Sun, James X; Grothey, Axel; Fakih, Marwan; George, Thomas J; Lee, Jeeyun; Ross, Jeffrey S; Stephens, Philip J; Miller, Vincent A; Ali, Siraj M; Schrock, Alexa B

    2016-09-28

    A KRAS mutation represented the first genomic biomarker to predict lack of benefit from anti-epidermal growth factor receptor (EGFR) antibody therapy in advanced colorectal cancer (CRC). Expanded RAS testing has further refined the treatment approach, but understanding of genomic alterations underlying primary and acquired resistance is limited and further study is needed. We prospectively analyzed 4,422 clinical samples from patients with advanced CRC, using hybrid-capture based comprehensive genomic profiling (CGP) at the request of the individual treating physicians. Comparison with prior molecular testing results, when available, was performed to assess concordance. We identified a RAS/RAF pathway mutation or amplification in 62% of cases, including samples harboring KRAS mutations outside of the codon 12/13 hotspot region in 6.4% of cases. Among cases with KRAS non-codon 12/13 alterations for which prior test results were available, 79 of 90 (88%) were not identified by focused testing. Of 1,644 RAS/RAF wild-type cases analyzed by CGP, 31% harbored a genomic alteration (GA) associated with resistance to anti-EGFR therapy in advanced CRC including mutations in PIK3CA, PTEN, EGFR, and ERBB2. We also identified other targetable GA, including novel kinase fusions, receptor tyrosine kinase amplification, activating point mutations, as well as microsatellite instability. Extended genomic profiling reliably detects alterations associated with lack of benefit to anti-EGFR therapy in advanced CRC, while simultaneously identifying alterations potentially important in guiding treatment. The use of CGP during the course of clinical care allows for the refined selection of appropriate targeted therapies and clinical trials, increasing the chance of clinical benefit and avoiding therapeutic futility. Comprehensive genomic profiling (CGP) detects diverse genomic alterations associated with lack of benefit to anti-epidermal growth factor receptor therapy in advanced

  9. Navigating into the binding pockets of the HER family protein kinases: discovery of novel EGFR inhibitor as antitumor agent.

    PubMed

    Liu, Wei; Ning, Jin-Feng; Meng, Qing-Wei; Hu, Jing; Zhao, Yan-Bin; Liu, Chao; Cai, Li

    2015-01-01

    The epidermal growth factor receptor (EGFR) family has been validated as a successful antitumor drug target for decades. Known EGFR inhibitors were exposed to distinct drug resistance against the various EGFR mutants within non-small-cell lung cancer (NSCLC), particularly the T790M mutation. Although so far a number of studies have been reported on the development of third-generation EGFR inhibitors for overcoming the resistance issue, the design procedure largely depends on the intuition of medicinal chemists. Here we retrospectively make a detailed analysis of the 42 EGFR family protein crystal complexes deposited in the Protein Data Bank (PDB). Based on the analysis of inhibitor binding modes in the kinase catalytic cleft, we identified a potent EGFR inhibitor (compound A-10) against drug-resistant EGFR through fragment-based drug design. This compound showed at least 30-fold more potency against EGFR T790M than the two control molecules erlotinib and gefitinib in vitro. Moreover, it could exhibit potent HER2 inhibitory activities as well as tumor growth inhibitory activity. Molecular docking studies revealed a structural basis for the increased potency and mutant selectivity of this compound. Compound A-10 may be selected as a promising candidate in further preclinical studies. In addition, our findings could provide a powerful strategy to identify novel selective kinase inhibitors on the basis of detailed kinase-ligand interaction space in the PDB.

  10. [Efficacy of chemotherapy after EGFR-TKIs resistance in 191 patients with Unknow EGFR gene mutation in advanced lung adenocarcinoma].

    PubMed

    He, Ping; Wang, Yan; Yang, Sheng; Yu, Shufei; Wang, Ziping; Li, Junling; Wang, Bin; Hao, Xuezhi; Wang, Hongyu; Hu, Xingsheng; Zhang, Xiangru; Shi, Yuankai

    2013-10-20

    Subsequent chemotherapy were needed in patients with advanced pulmonary adenocarcinoma experiencing disease progression after epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) treatment. The study is to explore factors potentially influencing efficacy of subsequent chemotherapy. One hundred and ninety-one patients with advanced lung adenocarcinoma, who were resistant from EGFR-TKIs and then received subsequent chemotherapy, were identified. Data of patient's characteristics, responses to chemotherapy and survival time were analyzed retrospectively. The overall response rate of the pemetrexed-based chemotherapy (9.3%) was higher than non-pemetrexed-based regimen (1.1%), P=0.011. Furthermore, the response in the second-line was more obvisous [objective response rate (ORR) 14.3% vs 3.7%, P=0.041]. The patients who achieved response of partial response (PR) showed longer progression-free survival (PFS) than those who achieved non-PR (PFS 10.1 months and 2.3 months, P=0.012). The patients treated with platinum-based chemotherapy had longer PFS and OS than those with non-platinum-based chemotherapy, therefore platinum-based regimen was independent prognosis factors for PFS and OS (PFS: RR=0.634, 95%CI: 0.466-0.832, P=0.004; OS: RR=0.666, 95%CI: 0.460-0.960, P=0.030), especially the pateients who were aquired EGFR-TKIs resistance and who got drmatic progression from EGFR-TKIs treatment might got more benefits from platinum-based chemotherapy. However there was no significant difference in ORR, PFS or OS between patients with TKIs primary resistance and acquired resistance, or between dramtic progression and gradual/local progression. The patients with advanced lung adenocarcinoma might get benefits from pemetrexed-based or platinum-based chemotherapy after they were EGFR-TKIs resistace.

  11. Activating KRAS mutations are characteristic of oncocytic sinonasal papilloma and associated sinonasal squamous cell carcinoma.

    PubMed

    Udager, Aaron M; McHugh, Jonathan B; Betz, Bryan L; Montone, Kathleen T; Livolsi, Virginia A; Seethala, Raja R; Yakirevich, Evgeny; Iwenofu, O Hans; Perez-Ordonez, Bayardo; DuRoss, Kathleen E; Weigelin, Helmut C; Lim, Megan S; Elenitoba-Johnson, Kojo Sj; Brown, Noah A

    2016-08-01

    Oncocytic sinonasal papillomas (OSPs) are benign tumours of the sinonasal tract, a subset of which are associated with synchronous or metachronous sinonasal squamous cell carcinoma (SNSCC). Activating EGFR mutations were recently identified in nearly 90% of inverted sinonasal papillomas (ISPs) - a related tumour with distinct morphology. EGFR mutations were, however, not found in OSP, suggesting that different molecular alterations drive the oncogenesis of these tumours. In this study, tissue from 51 cases of OSP and five cases of OSP-associated SNSCC was obtained retrospectively from six institutions. Tissue was also obtained from 50 cases of ISP, 22 cases of ISP-associated SNSCC, ten cases of exophytic sinonasal papilloma (ESP), and 19 cases of SNSCC with no known papilloma association. Using targeted next-generation and conventional Sanger sequencing, we identified KRAS mutations in 51/51 (100%) OSPs and 5/5 (100%) OSP-associated SNSCCs. The somatic nature of KRAS mutations was confirmed in a subset of cases with matched germline DNA, and four matched pairs of OSP and concurrent associated SNSCC had concordant KRAS genotypes. In contrast, KRAS mutations were present in only one (5%) SNSCC with no known papilloma association and none of the ISPs, ISP-associated SNSCCs, or ESPs. This is the first report of somatic KRAS mutations in OSP and OSP-associated SNSCC. The presence of identical mutations in OSP and concurrent associated SNSCC supports the putative role of OSP as a precursor to SNSCC, and the high frequency and specificity of KRAS mutations suggest that OSP and OSP-associated SNSCC are biologically distinct from other similar sinonasal tumours. The identification of KRAS mutations in all studied OSP cases represents an important development in our understanding of the pathogenesis of this disease and may have implications for diagnosis and therapy. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd

  12. Sequential treatment of icotinib after first-line pemetrexed in advanced lung adenocarcinoma with unknown EGFR gene status.

    PubMed

    Zheng, Yulong; Fang, Weijia; Deng, Jing; Zhao, Peng; Xu, Nong; Zhou, Jianying

    2014-07-01

    In non-small cell lung cancer (NSCLC), the well-developed epidermal growth factor receptor (EGFR) is an important therapeutic target. EGFR activating gene mutations have been proved strongly predictive of response to EGFR-tyrosine kinase inhibitors (TKI) in NSCLC. However, both in daily clinical practice and clinical trials, patients with unknown EGFR gene status (UN-EGFR-GS) are very common. In this study, we assessed efficacy and tolerability of sequential treatment of first-line pemetrexed followed by icotinib in Chinese advanced lung adenocarcinoma with UN-EGFR-GS. We analyzed 38 patients with advanced lung adenocarcinoma with UN-EGFR-GS treated with first-line pemetrexed-based chemotherapy followed by icotinib as maintenance or second-line therapy. The response rates to pemetrexed and icotinib were 21.1% and 42.1%, respectively. The median overall survival was 27.0 months (95% CI, 19.7-34.2 months). The 12-month overall survival probability was 68.4%. The most common toxicities observed in icotinib phase were rashes, diarrheas, and elevated aminotransferase. Subgroup analysis indicated that the overall survival is correlated with response to icotinib. The sequence of first-line pemetrexed-based chemotherapy followed by icotinib treatment is a promising option for advanced lung adenocarcinoma with UN-EGFR-GS in China.

  13. Acquired resistance to EGFR targeted therapy in non-small cell lung cancer: Mechanisms and therapeutic strategies.

    PubMed

    Lim, Sun Min; Syn, Nicholas L; Cho, Byoung Chul; Soo, Ross A

    2018-04-01

    The tyrosine kinase inhibitors (TKIs) directed at sensitizing mutations in the epidermal growth factor receptor (EGFR) gene represents a critical pillar in non-small cell lung cancer treatment. Despite the excellent disease control with initial EGFR TKI therapy, acquired resistance is ubiquitous and remains a key challenge. Investigations into the mechanisms which foster resistance to EGFR TKIs has led to the discovery of novel biomarkers and drug targets, and in turn has enabled the development of third-generation TKIs and proposals for rational therapeutic combinations. The threonine-to-methionine substitution mutation at position 790 (T790M) is clinically validated to engender refractoriness to first- and second-generation TKIs, and is a standard-of-care predictive biomarker used in therapeutic stratification. Clinical use of liquid biopsy approaches for assessment of T790M mutations continues to increase, with growing advocacy for serial monitoring of tumor evolution. For patients who are T790M-negative, cytotoxic chemotherapy or protracted EGFR TKI treatment are acceptable treatment standards after disease progression, although combinations of targeted therapies and checkpoint blockade immunotherapy may offer promising alternatives in the future. Among T790M-positive patients, the third-generation EGFR TKI, osimertinib, has shown superiority over both platinum-doublet chemotherapy and 1st generation EGFR TKI in randomized clinical trials, and exhibits enhanced in vitro selectivity for mutant EGFR receptors and pharmacokinetics compared to earlier-generation TKIs. This article appraises the key literature on the contemporary management of non-small cell lung cancer patients with acquired resistance to EGFR TKIs, and envisions future directions in translational and clinical research. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Targeted Therapies in NSCLC: Emerging oncogene targets following the success of EGFR

    PubMed Central

    Berge, Eamon M; Doebele, Robert C

    2014-01-01

    The diagnostic testing, treatment and prognosis of non-small cell lung cancer (NSCLC) has undergone a paradigm shift since the discovery of sensitizing mutations in the epidermal growth factor receptor (EGFR) gene in a subset of NSCLC patients. Several additional oncogenic mutations, including gene fusions and amplifications have since been discovered, with a number of drugs that target each specific oncogene. This review focuses on oncogenes in NSCLC other than EGFR and their companion ‘targeted therapies’. Particular emphasis is placed on the role of ALK, ROS1, RET, MET, BRAF, and HER2 in NSCLC. PMID:24565585

  15. Utility of Liquid Biopsy by Improved PNA-LNA PCR Clamp Method for Detecting EGFR Mutation at Initial Diagnosis of Non-Small-Cell Lung Cancer: Observational Study of 190 Consecutive Cases in Clinical Practice.

    PubMed

    Ito, Kentaro; Suzuki, Yuta; Saiki, Haruko; Sakaguchi, Tadashi; Hayashi, Kosuke; Nishii, Yoichi; Watanabe, Fumiaki; Hataji, Osamu

    2018-03-01

    The clinical benefit of liquid biopsy for unselected patients at initial diagnosis has thus far been unclear. We aimed to evaluate the utility of liquid biopsy at initial diagnosis, as well as the efficacy of epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) based on liquid biopsy results in clinical practice, using the improved peptide nucleic acid-locked nucleic acid (PNA-LNA) PCR clamp method. We routinely performed liquid biopsy using the improved PNA-LNA PCR clamp method for all patients diagnosed with non-small-cell lung cancer (NSCLC) between June 2015 and October 2016. We retrospectively evaluated the reliability of liquid biopsy based either on clinical stage or between sensitizing EGFR mutation and T790M mutation, and the clinical benefit of EGFR-TKI based on the liquid biopsy results in practice. A total of 244 patients underwent liquid biopsies, with 168 patients tested at diagnosis and 22 tested for T790M after pretreatment of EGFR-TKI. For detecting a sensitizing EGFR mutation, the sensitivity, specificity, positive predictive value, and negative predictive value were 72.7%, 100%, 100%, and 93.7% in the group with advanced-stage NSCLC and 0, 100%, not evaluable, and 70.5% in the group with early-stage NSCLC. The positive predictive value and negative predictive value for T790M were 33.3% and 55.6%, respectively. Fourteen patients in the liquid-positive group and 16 patients in the tissue-positive group received EGFR-TKI. The objective response rates of first- and second-generation EGFR-TKI for the liquid-positive and tissue-positive groups were 90.0% and 90.9%, respectively. There was no significant difference in median progression-free survival between the liquid-positive and tissue-positive groups (P = .839). Patients with early-stage NSCLC should not be candidates for this liquid biopsy method. We recommend tissue biopsy as the preferred initial method of molecular analysis, with the exception of patients who are T790M

  16. Lipidomic Profiling of Lung Pleural Effusion Identifies Unique Metabotype for EGFR Mutants in Non-Small Cell Lung Cancer.

    PubMed

    Ho, Ying Swan; Yip, Lian Yee; Basri, Nurhidayah; Chong, Vivian Su Hui; Teo, Chin Chye; Tan, Eddy; Lim, Kah Ling; Tan, Gek San; Yang, Xulei; Yeo, Si Yong; Koh, Mariko Si Yue; Devanand, Anantham; Takano, Angela; Tan, Eng Huat; Tan, Daniel Shao Weng; Lim, Tony Kiat Hon

    2016-10-14

    Cytology and histology forms the cornerstone for the diagnosis of non-small cell lung cancer (NSCLC) but obtaining sufficient tumour cells or tissue biopsies for these tests remains a challenge. We investigate the lipidome of lung pleural effusion (PE) for unique metabolic signatures to discriminate benign versus malignant PE and EGFR versus non-EGFR malignant subgroups to identify novel diagnostic markers that is independent of tumour cell availability. Using liquid chromatography mass spectrometry, we profiled the lipidomes of the PE of 30 benign and 41 malignant cases with or without EGFR mutation. Unsupervised principal component analysis revealed distinctive differences between the lipidomes of benign and malignant PE as well as between EGFR mutants and non-EGFR mutants. Docosapentaenoic acid and Docosahexaenoic acid gave superior sensitivity and specificity for detecting NSCLC when used singly. Additionally, several 20- and 22- carbon polyunsaturated fatty acids and phospholipid species were significantly elevated in the EGFR mutants compared to non-EGFR mutants. A 7-lipid panel showed great promise in the stratification of EGFR from non-EGFR malignant PE. Our data revealed novel lipid candidate markers in the non-cellular fraction of PE that holds potential to aid the diagnosis of benign, EGFR mutation positive and negative NSCLC.

  17. EGFR Activation Mediates Inhibition of Axon Regeneration by Myelin and Chondroitin Sulfate Proteoglycans

    NASA Astrophysics Data System (ADS)

    Koprivica, Vuk; Cho, Kin-Sang; Park, Jong Bae; Yiu, Glenn; Atwal, Jasvinder; Gore, Bryan; Kim, Jieun A.; Lin, Estelle; Tessier-Lavigne, Marc; Chen, Dong Feng; He, Zhigang

    2005-10-01

    Inhibitory molecules associated with myelin and the glial scar limit axon regeneration in the adult central nervous system (CNS), but the underlying signaling mechanisms of regeneration inhibition are not fully understood. Here, we show that suppressing the kinase function of the epidermal growth factor receptor (EGFR) blocks the activities of both myelin inhibitors and chondroitin sulfate proteoglycans in inhibiting neurite outgrowth. In addition, regeneration inhibitors trigger the phosphorylation of EGFR in a calcium-dependent manner. Local administration of EGFR inhibitors promotes significant regeneration of injured optic nerve fibers, pointing to a promising therapeutic avenue for enhancing axon regeneration after CNS injury.

  18. Comprehensive profiling and quantitation of oncogenic mutations in non small-cell lung carcinoma using single molecule amplification and re-sequencing technology

    PubMed Central

    Jiang, Hong; Wang, Limin; Xu, Rujun; Shi, Yanbin; Zhang, Jianguang; Xu, Mengnan; Cram, David S.; Ma, Shenglin

    2016-01-01

    Activating and resistance mutations in the tyrosine kinase domain of several oncogenes are frequently associated with non-small cell lung carcinoma (NSCLC). In this study we assessed the frequency, type and abundance of EGFR, KRAS, BRAF, TP53 and ALK mutations in tumour specimens from 184 patients with early and late stage disease using single molecule amplification and re-sequencing technology (SMART). Based on modelling of EGFR mutations, the detection sensitivity of the SMART assay was at least 0.1%. Benchmarking EGFR mutation detection against the gold standard ARMS-PCR assay, SMART assay had a sensitivity and specificity of 98.7% and 99.0%. Amongst the 184 samples, EGFR mutations were the most prevalent (59.9%), followed by KRAS (16.9%), TP53 (12.7%), EML4-ALK fusions (6.3%) and BRAF (4.2%) mutations. The abundance and types of mutations in tumour specimens were extremely heterogeneous, involving either monoclonal (51.6%) or polyclonal (12.6%) mutation events. At the clinical level, although the spectrum of tumour mutation(s) was unique to each patient, the overall patterns in early or advanced stage disease were relatively similar. Based on these findings, we propose that personalized profiling and quantitation of clinically significant oncogenic mutations will allow better classification of patients according to tumour characteristics and provide clinicians with important ancillary information for treatment decision-making. PMID:27409166

  19. Comprehensive profiling and quantitation of oncogenic mutations in non small-cell lung carcinoma using single molecule amplification and re-sequencing technology.

    PubMed

    Zhang, Shirong; Xia, Bing; Jiang, Hong; Wang, Limin; Xu, Rujun; Shi, Yanbin; Zhang, Jianguang; Xu, Mengnan; Cram, David S; Ma, Shenglin

    2016-08-02

    Activating and resistance mutations in the tyrosine kinase domain of several oncogenes are frequently associated with non-small cell lung carcinoma (NSCLC). In this study we assessed the frequency, type and abundance of EGFR, KRAS, BRAF, TP53 and ALK mutations in tumour specimens from 184 patients with early and late stage disease using single molecule amplification and re-sequencing technology (SMART). Based on modelling of EGFR mutations, the detection sensitivity of the SMART assay was at least 0.1%. Benchmarking EGFR mutation detection against the gold standard ARMS-PCR assay, SMART assay had a sensitivity and specificity of 98.7% and 99.0%. Amongst the 184 samples, EGFR mutations were the most prevalent (59.9%), followed by KRAS (16.9%), TP53 (12.7%), EML4-ALK fusions (6.3%) and BRAF (4.2%) mutations. The abundance and types of mutations in tumour specimens were extremely heterogeneous, involving either monoclonal (51.6%) or polyclonal (12.6%) mutation events. At the clinical level, although the spectrum of tumour mutation(s) was unique to each patient, the overall patterns in early or advanced stage disease were relatively similar. Based on these findings, we propose that personalized profiling and quantitation of clinically significant oncogenic mutations will allow better classification of patients according to tumour characteristics and provide clinicians with important ancillary information for treatment decision-making.

  20. Epidermal growth factor receptor mutations in non- small cell lung cancers in a multiethnic malaysian patient population.

    PubMed

    Liam, Chong-Kin; Leow, Hwong-Ruey; How, Soon-Hin; Pang, Yong-Kek; Chua, Keong-Tiong; Lim, Boon-Khaw; Lai, Nai-Lang; Kuan, Yeh-Chunn; Pailoor, Jayalakshmi; Rajadurai, Pathmanathan

    2014-01-01

    Mutations in the tyrosine kinase domain of the epidermal growth factor receptor (EGFR) in non- small cell lung cancer (NSCLC) are predictive of response to EGFR-targeted therapy in advanced stages of disease. This study aimed to determine the frequency of EGFR mutations in NSCLCs and to correlate their presence with clinical characteristics in multiethnic Malaysian patients. In this prospective study, EGFR mutations in exons 18, 19, 20 and 21 in formalin-fixed paraffin-embedded biopsy specimens of consecutive NSCLC patients were asessed by real-time polymerase chain reaction. EGFR mutations were detected in NSCLCs from 55 (36.4%) of a total of 151 patients, being significantly more common in females (62.5%) than in males (17.2%) [odds ratio (OR), 8.00; 95% confidence interval (CI), 3.77-16.98; p<0.001] and in never smokers (62.5%) than in ever smokers (12.7%) (OR, 11.50; 95%CI, 5.08-26.03; p<0.001). Mutations were more common in adenocarcinoma (39.4%) compared to non-adenocarcinoma NSCLCs (15.8%) (p=0.072). The mutation rates in patients of different ethnicities were not significantly different (p=0.08). Never smoking status was the only clinical feature that independently predicted the presence of EGFR mutations (adjusted OR, 5.94; 95%CI, 1.94- 18.17; p=0.002). In Malaysian patients with NSCLC, the EGFR mutation rate was similar to that in other Asian populations. EGFR mutations were significantly more common in female patients and in never smokers. Never smoking status was the only independent predictor for the presence of EGFR mutations.

  1. Predictive biomarkers for response to EGFR-directed monoclonal antibodies for advanced squamous cell lung cancer.

    PubMed

    Bonomi, P D; Gandara, D; Hirsch, F R; Kerr, K M; Obasaju, C; Paz-Ares, L; Bellomo, C; Bradley, J D; Bunn, P A; Culligan, M; Jett, J R; Kim, E S; Langer, C J; Natale, R B; Novello, S; Pérol, M; Ramalingam, S S; Reck, M; Reynolds, C H; Smit, E F; Socinski, M A; Spigel, D R; Vansteenkiste, J F; Wakelee, H; Thatcher, N

    2018-06-14

    Upregulated expression and aberrant activation of the epidermal growth-factor receptor (EGFR) are found in lung cancer, making EGFR a relevant target for non-small-cell lung cancer (NSCLC). Treatment with anti-EGFR monoclonal antibodies (mAbs) is associated with modest improvement in overall survival in patients with squamous cell lung cancer (SqCLC) who have a significant unmet need for effective treatment options. While there is evidence that using EGFR gene copy number, EGFR mutation, and EGFR protein expression as biomarkers can help select patients who respond to treatment, it is important to consider biomarkers for response in patients treated with combination therapies that include EGFR mAbs. Randomized trials of EGFR-directed mAbs cetuximab and necitumumab in combination with chemotherapy, immunotherapy, or anti-angiogenic therapy in patients with advanced NSCLC, including SqCLC, were searched in the literature. Results of associations of potential biomarkers and outcomes were summarized. Results. Data from phase III clinical trials indicate that patients with NSCLC, including SqCLC, whose tumors express high levels of EGFR protein (H-score of ≥ 200) and/or gene copy numbers of EGFR (e.g., ≥40% cells with ≥4 EGFR copies as detected by fluorescence in situ hybridization; gene amplification in ≥ 10% of analyzed cells) derive greater therapeutic benefits from EGFR-directed mAbs. Biomarker data are limited for EGFR mAbs used in combination with immunotherapy and are absent when used in combination with anti-angiogenic agents. Therapy with EGFR-directed mAbs in combination with chemotherapy is associated with greater clinical benefits in patients with NSCLC, including SqCLC, whose tumors express high levels of EGFR protein and/or have increased EGFR gene copy number. These data support validating the role of these as biomarkers to identify those patients who derive the greatest clinical benefit from EGFR mAb therapy. However, data on biomarkers

  2. Ion channel TRPV1-dependent activation of PTP1B suppresses EGFR-associated intestinal tumorigenesis

    PubMed Central

    de Jong, Petrus R.; Takahashi, Naoki; Harris, Alexandra R.; Lee, Jihyung; Bertin, Samuel; Jeffries, James; Jung, Michael; Duong, Jen; Triano, Amy I.; Lee, Jongdae; Niv, Yaron; Herdman, David S.; Taniguchi, Koji; Kim, Chang-Whan; Dong, Hui; Eckmann, Lars; Stanford, Stephanie M.; Bottini, Nunzio; Corr, Maripat; Raz, Eyal

    2014-01-01

    The intestinal epithelium has a high rate of turnover, and dysregulation of pathways that regulate regeneration can lead to tumor development; however, the negative regulators of oncogenic events in the intestinal epithelium are not fully understood. Here we identified a feedback loop between the epidermal growth factor receptor (EGFR), a known mediator of proliferation, and the transient receptor potential cation channel, subfamily V, member 1 (TRPV1), in intestinal epithelial cells (IECs). We found that TRPV1 was expressed by IECs and was intrinsically activated upon EGFR stimulation. Subsequently, TRPV1 activation inhibited EGFR-induced epithelial cell proliferation via activation of Ca2+/calpain and resulting activation of protein tyrosine phosphatase 1B (PTP1B). In a murine model of multiple intestinal neoplasia (ApcMin/+ mice), TRPV1 deficiency increased adenoma formation, and treatment of these animals with an EGFR kinase inhibitor reversed protumorigenic phenotypes, supporting a functional association between TRPV1 and EGFR signaling in IECs. Administration of a TRPV1 agonist suppressed intestinal tumorigenesis in ApcMin/+ mice, similar to — as well as in conjunction with — a cyclooxygenase-2 (COX-2) inhibitor, which suggests that targeting both TRPV1 and COX-2 has potential as a therapeutic approach for tumor prevention. Our findings implicate TRPV1 as a regulator of growth factor signaling in the intestinal epithelium through activation of PTP1B and subsequent suppression of intestinal tumorigenesis. PMID:25083990

  3. Naturally occurring phenolic acids modulate TPA-induced activation of EGFR, AP-1, and STATs in mouse epidermis.

    PubMed

    Cichocki, Michał; Dałek, Miłosz; Szamałek, Mateusz; Baer-Dubowska, Wanda

    2014-01-01

    Epidermal growth factor receptor (EGFR) plays an important role in epithelial carcinogenesis and appears to be involved in STATs activation. In this study we investigated the possible interference of naturally occurring phenolic acids with EGFR, activator protein-1 (AP-1), and signal transducers and activators of transcription (STATs) pathways activated by topical application of tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) in Balb/c mice epidermis. Pretreatment with tannic or chlorogenic acid resulted in a significant decrease in the phosphorylation of EGFR Y-1068 and Y-1173 tyrosine residues, which was accompanied by reduced activation of AP-1. Tannic acid decreased also the c-Jun AP-1 subunit level and binding to TPA response element (TRE) (3- and 2-fold in comparison with TPA-treated group respectively). Simultaneous reduction of JNK activity might be responsible for reduced activation of AP-1. In contrast to these more complex phenolics, protocatechuic acid increased the activity of JNK and was also the most efficient inhibitor of STATs activation. These results indicate that naturally occurring phenolic acids, by decreasing EGFR, AP-1, and STATs activation, may modulate other elements both upstream and downstream in these pathways and thus inhibit the tumor development. Although more complex phenolics affect mainly the EGFR/AP-1 pathway, STATs seem to be the most important targets for simple compounds, such as protocatechuic acid.

  4. Compounds identified by virtual docking to a tetrameric EGFR extracellular domain can modulate Grb2 internalization.

    PubMed

    Ramirez, Ursula D; Nikonova, Anna S; Liu, Hanqing; Pecherskaya, Anna; Lawrence, Sarah H; Serebriiskii, Ilya G; Zhou, Yan; Robinson, Matthew K; Einarson, Margret B; Golemis, Erica A; Jaffe, Eileen K

    2015-05-28

    Overexpression or mutation of the epidermal growth factor receptor (EGFR) potently enhances the growth of many solid tumors. Tumor cells frequently display resistance to mechanistically-distinct EGFR-directed therapeutic agents, making it valuable to develop therapeutics that work by additional mechanisms. Current EGFR-targeting therapeutics include antibodies targeting the extracellular domains, and small molecules inhibiting the intracellular kinase domain. Recent studies have identified a novel prone extracellular tetrameric EGFR configuration, which we identify as a potential target for drug discovery. Our focus is on the prone EGFR tetramer, which contains a novel protein-protein interface involving extracellular domain III. This EGFR tetramer is computationally targeted for stabilization by small molecule ligand binding. This study performed virtual screening of a Life Chemicals, Inc. small molecule library of 345,232 drug-like compounds against a molecular dynamics simulation of protein-protein interfaces distinct to the novel tetramer. One hundred nine chemically diverse candidate molecules were selected and evaluated using a cell-based high-content imaging screen that directly assessed induced internalization of the EGFR effector protein Grb2. Positive hits were further evaluated for influence on phosphorylation of EGFR and its effector ERK1/2. Fourteen hit compounds affected internalization of Grb2, an adaptor responsive to EGFR activation. Most hits had limited effect on cell viability, and minimally influenced EGFR and ERK1/2 phosphorylation. Docked hit compound poses generally include Arg270 or neighboring residues, which are also involved in binding the effective therapeutic cetuximab, guiding further chemical optimization. These data suggest that the EGFR tetrameric configuration offers a novel cancer drug target.

  5. Berberine inhibits EGFR signaling and enhances the antitumor effects of EGFR inhibitors in gastric cancer.

    PubMed

    Wang, Junxiong; Yang, Shuo; Cai, Xiqiang; Dong, Jiaqiang; Chen, Zhangqian; Wang, Rui; Zhang, Song; Cao, Haichao; Lu, Di; Jin, Tong; Nie, Yongzhan; Hao, Jianyu; Fan, Daiming

    2016-11-15

    Cetuximab plus chemotherapy for advanced gastric cancer (GC) shows an active result in phase 2 trials. Unfortunately, Combination of cetuximab does not provide enough benefit to chemotherapy alone in phase 3 trials. Studies have demonstrated that berberine can suppress the activation of EGFR in tumors. In this study, we evaluated whether berberine could enhance the effects of EGFR-TKIs in GC cell lines and xenograft models. Our data suggest that berberine could effectively enhance the activity of erlotinib and cetuximab in vitro and in vivo. Berberine was found to inhibit growth in GC cell lines and to induce apoptosis. These effects were linked to inhibition of EGFR signaling activation, including the phosphorylation of STAT3. The expressions of Bcl-xL and Cyclind1 proteins were decreased, whereas the levels of cleavage of poly-ADP ribose polymerase (PARP) were considerably increased in the cell lines in response to berberine treatment. These results suggest a potential role for berberine in the treatment of GC, particularly in combination with EGFR-TKIs therapy. Berberine may be a competent therapeutic agent in GC where it can enhance the effects of EGFR inhibitors.

  6. Berberine inhibits EGFR signaling and enhances the antitumor effects of EGFR inhibitors in gastric cancer

    PubMed Central

    Wang, Junxiong; Yang, Shuo; Cai, Xiqiang; Dong, Jiaqiang; Chen, Zhangqian; Wang, Rui; Zhang, Song; Cao, Haichao; Lu, Di; Jin, Tong; Nie, Yongzhan; Hao, Jianyu; Fan, Daiming

    2016-01-01

    Cetuximab plus chemotherapy for advanced gastric cancer (GC) shows an active result in phase 2 trials. Unfortunately, Combination of cetuximab does not provide enough benefit to chemotherapy alone in phase 3 trials. Studies have demonstrated that berberine can suppress the activation of EGFR in tumors. In this study, we evaluated whether berberine could enhance the effects of EGFR-TKIs in GC cell lines and xenograft models. Our data suggest that berberine could effectively enhance the activity of erlotinib and cetuximab in vitro and in vivo. Berberine was found to inhibit growth in GC cell lines and to induce apoptosis. These effects were linked to inhibition of EGFR signaling activation, including the phosphorylation of STAT3. The expressions of Bcl-xL and Cyclind1 proteins were decreased, whereas the levels of cleavage of poly-ADP ribose polymerase (PARP) were considerably increased in the cell lines in response to berberine treatment. These results suggest a potential role for berberine in the treatment of GC, particularly in combination with EGFR-TKIs therapy. Berberine may be a competent therapeutic agent in GC where it can enhance the effects of EGFR inhibitors. PMID:27738318

  7. Neurotensin (NTS) and its receptor (NTSR1) causes EGFR, HER2 and HER3 over-expression and their autocrine/paracrine activation in lung tumors, confirming responsiveness to erlotinib

    PubMed Central

    Lupo, Audrey Mansuet; Mourra, Najat; Takahashi, Takashi; Fléjou, Jean François; Trédaniel, Jean; Régnard, Jean François; Damotte, Diane; Alifano, Marco; Forgez, Patricia

    2014-01-01

    Alterations in the signaling pathways of epidermal growth factor receptors (HERs) are associated with tumor aggressiveness. Neurotensin (NTS) and its high affinity receptor (NTSR1) are up regulated in 60% of lung cancers. In a previous clinical study, NTSR1 overexpression was shown to predict a poor prognosis for 5 year overall survival in a selected population of stage I lung adenocarcinomas treated by surgery alone. In a second study, shown here, the frequent and high expression of NTSR1 was correlated with a pejorative prognosis in 389 patients with stage I to III lung adenocarcinoma, and was an independent prognosis marker. Interactions between NTS and NTSR1 induce pro-oncogenic biological effects associated with neoplastic processes and tumor progression. Here we highlight the cellular mechanisms activated by Neurotensin (NTS) and its high affinity receptor (NTSR1) contributing to lung cancer cell aggressiveness. We show that the NTS autocrine and/or paracrine regulation causes EGFR, HER2, and HER3 over-expression and activation in lung tumor cells. The EGFR and HER3 autocrine activation is mediated by MMP1 activation and EGF “like” ligands (HB-EGF, Neuregulin 1) release. By establishing autocrine and/or paracrine NTS regulation, we show that tumor growth is modulated according to NTS expression, with a low growth rate in those tumors that do not express NTS. Accordingly, xenografted tumors expressing NTS and NTSR1 showed a positive response to erlotinib, whereas tumors void of NTSR1 expression had no detectable response. This is consistent with the presence of a NTS autocrine loop, leading to the sustained activation of EGFR and responsible for cancer aggressiveness. We propose the use of NTS/NTSR1 tumor expression, as a biomarker for the use of EGFR tyrosine kinase inhibitors in patients lacking EGFR mutation. PMID:25249545

  8. Neurotensin (NTS) and its receptor (NTSR1) causes EGFR, HER2 and HER3 over-expression and their autocrine/paracrine activation in lung tumors, confirming responsiveness to erlotinib.

    PubMed

    Younes, Mohamad; Wu, Zherui; Dupouy, Sandra; Lupo, Audrey Mansuet; Mourra, Najat; Takahashi, Takashi; Fléjou, Jean François; Trédaniel, Jean; Régnard, Jean François; Damotte, Diane; Alifano, Marco; Forgez, Patricia

    2014-09-30

    Alterations in the signaling pathways of epidermal growth factor receptors (HERs) are associated with tumor aggressiveness. Neurotensin (NTS) and its high affinity receptor (NTSR1) are up regulated in 60% of lung cancers. In a previous clinical study, NTSR1 overexpression was shown to predict a poor prognosis for 5 year overall survival in a selected population of stage I lung adenocarcinomas treated by surgery alone. In a second study, shown here, the frequent and high expression of NTSR1 was correlated with a pejorative prognosis in 389 patients with stage I to III lung adenocarcinoma, and was an independent prognosis marker. Interactions between NTS and NTSR1 induce pro-oncogenic biological effects associated with neoplastic processes and tumor progression. Here we highlight the cellular mechanisms activated by Neurotensin (NTS) and its high affinity receptor (NTSR1) contributing to lung cancer cell aggressiveness. We show that the NTS autocrine and/or paracrine regulation causes EGFR, HER2, and HER3 over-expression and activation in lung tumor cells. The EGFR and HER3 autocrine activation is mediated by MMP1 activation and EGF "like" ligands (HB-EGF, Neuregulin 1) release. By establishing autocrine and/or paracrine NTS regulation, we show that tumor growth is modulated according to NTS expression, with a low growth rate in those tumors that do not express NTS. Accordingly, xenografted tumors expressing NTS and NTSR1 showed a positive response to erlotinib, whereas tumors void of NTSR1 expression had no detectable response. This is consistent with the presence of a NTS autocrine loop, leading to the sustained activation of EGFR and responsible for cancer aggressiveness. We propose the use of NTS/NTSR1 tumor expression, as a biomarker for the use of EGFR tyrosine kinase inhibitors in patients lacking EGFR mutation.

  9. Amplification of the EGFR gene can be maintained and modulated by variation of EGF concentrations in in vitro models of glioblastoma multiforme

    PubMed Central

    Mokri, Poroshista; Lamp, Nora; Linnebacher, Michael; Classen, Carl Friedrich; Erbersdobler, Andreas; Schneider, Björn

    2017-01-01

    Glioblastoma multiforme (GBM) is the most common and lethal brain tumor in adults. It is known that amplification of the epidermal growth factor receptor gene (EGFR) occurs in approximately 40% of GBM, leading to enhanced activation of the EGFR signaling pathway and promoting tumor growth. Although GBM mutations are stably maintained in GBM in vitro models, rapid loss of EGFR gene amplification is a common observation during cell culture. To maintain EGFR amplification in vitro, heterotopic GBM xenografts with elevated EGFR copy number were cultured under varying serum conditions and EGF concentrations. EGFR copy numbers were assessed over several passages by quantitative PCR and chromogenic in situ hybridization. As expected, in control assays with 10% FCS, cells lost EGFR amplification with increasing passage numbers. However, cells cultured under serum free conditions stably maintained elevated copy numbers. Furthermore, EGFR protein expression positively correlated with genomic amplification levels. Although elevated EGFR copy numbers could be maintained over several passages in vitro, levels of EGFR amplification were variable and dependent on the EGF concentration in the medium. In vitro cultures of GBM cells with elevated EGFR copy number and corresponding EGFR protein expression should prove valuable preclinical tools to gain a better understanding of EGFR driven glioblastoma and assist in the development of new improved therapies. PMID:28934307

  10. Molecular basis for multimerization in the activation of the epidermal growth factor receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yongjian; Bharill, Shashank; Karandur, Deepti

    The epidermal growth factor receptor (EGFR) is activated by dimerization, but activation also generates higher-order multimers, whose nature and function are poorly understood. We have characterized ligand-induced dimerization and multimerization of EGFR using single-molecule analysis, and show that multimerization can be blocked by mutations in a specific region of Domain IV of the extracellular module. These mutations reduce autophosphorylation of the C-terminal tail of EGFR and attenuate phosphorylation of phosphatidyl inositol 3-kinase, which is recruited by EGFR. The catalytic activity of EGFR is switched on through allosteric activation of one kinase domain by another, and we show that if thismore » is restricted to dimers, then sites in the tail that are proximal to the kinase domain are phosphorylated in only one subunit. We propose a structural model for EGFR multimerization through self-association of ligand-bound dimers, in which the majority of kinase domains are activated cooperatively, thereby boosting tail phosphorylation.« less

  11. Molecular basis for multimerization in the activation of the epidermal growth factor receptor

    DOE PAGES

    Huang, Yongjian; Bharill, Shashank; Karandur, Deepti; ...

    2016-03-28

    The epidermal growth factor receptor (EGFR) is activated by dimerization, but activation also generates higher-order multimers, whose nature and function are poorly understood. We have characterized ligand-induced dimerization and multimerization of EGFR using single-molecule analysis, and show that multimerization can be blocked by mutations in a specific region of Domain IV of the extracellular module. These mutations reduce autophosphorylation of the C-terminal tail of EGFR and attenuate phosphorylation of phosphatidyl inositol 3-kinase, which is recruited by EGFR. The catalytic activity of EGFR is switched on through allosteric activation of one kinase domain by another, and we show that if thismore » is restricted to dimers, then sites in the tail that are proximal to the kinase domain are phosphorylated in only one subunit. We propose a structural model for EGFR multimerization through self-association of ligand-bound dimers, in which the majority of kinase domains are activated cooperatively, thereby boosting tail phosphorylation.« less

  12. Urine circulating-tumor DNA (ctDNA) detection of acquired EGFR T790M mutation in non-small-cell lung cancer: An outcomes and total cost-of-care analysis.

    PubMed

    Sands, Jacob; Li, Qianyi; Hornberger, John

    2017-08-01

    Third-generation tyrosine kinase inhibitors (TKIs) have proven effective in patients with the acquired EGFR T790M resistance mutation who progress on prior EGFR TKI therapy. Median progression-free survival (PFS) on a 3rd-gen TKI was 9-10 months for T790M+ patients compared to 2.8 months for T790M- patients. PFS is similar regardless of the specimen used to assess T790M, such as tissue, plasma, or urine ctDNA. This study aimed to assess the total cost of care of a urine-testing strategy (UTS) versus a tissue-testing strategy (TTS) for T790M detection, in patients with EGFR-mutation positive lung adenocarcinoma and progression on prior TKI therapy. Long-term outcomes and economic implications were assessed from a US payer perspective. Endpoints were PFS, overall survival (OS), medical resource use and related costs. We included published randomized drug trials and Medicare fee schedules. A state-transition analysis and Markov model tracked patients from stable disease to progression and death. Univariate and multivariate sensitivity analyses were performed to assess the robustness of findings and identify factors that most influenced outcomes and costs. UTS increased the rate of detection of patients with T790M mutation eligible for treatment with 3rd generation TKI by 7% compared with TTS; urine ctDNA testing detected T790M mutation in some patients for whom biopsy could not be performed or when tissue testing yielded indeterminate results. Due to enhanced targeting of TKI therapy, UTS increased PFS and OS by 0.44 and 0.35 months, respectively. UTS yields a savings of $1243-$1680 per patient due to avoidance of biopsy, potential biopsy-associated complications, and tissue-based molecular testing in approximately 55.6% of patients. Probability of T790M detection by tissue and cost of biopsy procedure were the most influential factors. UTS prolonged PFS/OS due to increased detection of T790M mutation and decreased biopsies and complication-related costs. Copyright

  13. Comparison of plasma and tissue samples in epidermal growth factor receptor mutation by ARMS in advanced non-small cell lung cancer.

    PubMed

    Ma, MeiLi; Shi, ChunLei; Qian, JiaLin; Teng, JiaJun; Zhong, Hua; Han, BaoHui

    2016-10-10

    The aim of this study was to assess the effectiveness and accuracy of blood-based circulating-free tumor DNA on testing epidermal growth factor receptor (EGFR) gene mutations. In total, 219 non-small cell lung cancer patients in stages III-IV were enrolled into this study. All patients had tissue samples and matched plasma DNA samples. EGFR gene mutations were detected by the Amplification Refractory Mutation System (ARMS). We compared the mutations in tumor tissue samples with matched plasma samples and determined the correlation between EGFR mutation status and clinical pathologic characteristics. The overall concordance rate of EGFR mutation status between the 219 matched plasma and tissue samples was 82% (179/219). The sensitivity and specificity for the ARMS EGFR mutation test in the plasma compared with tumor tissue were 60% (54/90) and 97% (125/129), respectively. The positive predictive value was 93% (54/58) and the negative predictive value was 78% (125/161). The median overall survival was longer for those with EGFR mutations than for those without EGFR mutations both in tissue samples (23.98 vs. 12.16months; P<0.001) and in plasma (19.96 vs. 13.63months; P=0.009). For the 68 patients treated with EGFR- tyrosine kinase inhibitors (TKIs), the median progression-free survival (PFS) was significantly prolonged in the EGFR mutant group compared to the non-mutation group in tumor tissue samples (12.26months vs. 2.40months, P<0.001). In plasma samples, the PFS of the mutant group was longer than that of the non-mutant group. However, there was no significant difference between the two groups (10.88months vs. 9.89months, P=0.411). The detection of EGFR mutations in plasma using ARMS is relatively sensitive and highly specific. However, EGFR mutation status tested by ARMS in plasma cannot replace a tumor tissue biopsy. Positive EGFR mutation results detected in plasma are fairly reliable, but negative results are hampered by a high rate of false negatives

  14. Tyrosine dephosphorylation enhances the therapeutic target activity of epidermal growth factor receptor (EGFR) by disrupting its interaction with estrogen receptor (ER).

    PubMed

    Ma, Shao; Yin, Ning; Qi, Xiaomei; Pfister, Sandra L; Zhang, Mei-Jie; Ma, Rong; Chen, Guan

    2015-05-30

    Protein-protein interactions can increase or decrease its therapeutic target activity and the determining factors involved, however, are largely unknown. Here, we report that tyrosine-dephosphorylation of epidermal growth factor receptor (EGFR) increases its therapeutic target activity by disrupting its interaction with estrogen receptor (ER). Protein tyrosine phosphatase H1 (PTPH1) dephosphorylates the tyrosine kinase EGFR, disrupts its interaction with the nuclear receptor ER, and increases breast cancer sensitivity to small molecule tyrosine kinase inhibitors (TKIs). These effects require PTPH1 catalytic activity and its interaction with EGFR, suggesting that the phosphatase may increase the sensitivity by dephosphorylating EGFR leading to its dissociation with ER. Consistent with this notion, a nuclear-localization defective ER has a higher EGFR-binding activity and confers the resistance to TKI-induced growth inhibition. Additional analysis show that PTPH1 stabilizes EGFR, stimulates the membranous EGFR accumulation, and enhances the growth-inhibitory activity of a combination therapy of TKIs with an anti-estrogen. Since EGFR and ER both are substrates for PTPH1 in vitro and in intact cells, these results indicate that an inhibitory EGFR-ER protein complex can be switched off through a competitive enzyme-substrate binding. Our results would have important implications for the treatment of breast cancer with targeted therapeutics.

  15. Impact of whole brain radiation therapy on CSF penetration ability of Icotinib in EGFR-mutated non-small cell lung cancer patients with brain metastases: Results of phase I dose-escalation study.

    PubMed

    Zhou, Lin; He, Jiazhuo; Xiong, Weijie; Liu, Yongmei; Xiang, Jing; Yu, Qin; Liang, Maozhi; Zhou, Xiaojuan; Ding, Zhenyu; Huang, Meijuan; Ren, Li; Zhu, Jiang; Li, Lu; Hou, Mei; Ding, Lieming; Tan, Fenlai; Lu, You

    2016-06-01

    Whole-brain radiation therapy (WBRT) and epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are both treatment options for EGFR-mutated non-small cell lung cancer (NSCLC) patients with brain metastases. However, the dose-escalation toxicity and efficacy of combination therapy, and the effect of WBRT on cerebrospinal fluid (CSF) penetration of EGFR-TKIs are still unclear. EGFR-mutated NSCLC patients with brain metastases were enrolled in this study, and the cohorts were constructed with a 3+3 design. The patients received icotinib with escalating doses (125-625mg, tid), and the concurrent WBRT (37.5Gy/15f/3weeks) started a week later. The CSF penetration rates of icotinib were tested before, immediately after, and 4 weeks after WBRT, respectively. Potential toxicities and benefits from dose-escalation treatment were analyzed. Fifteen patients were included in this study, 3 at each dose level from 125mg-375mg and 6 at 500mg with 3 occurred dose-limiting toxicities. The maximal tolerated dose of icotinib was 375mg tid in this combination therapy. There was a significant correlation between icotinib concentration in the CSF and plasma (R(2)=0.599, P<0.001). The CSF penetration rate of icotinib, from 1.2% to 9.7%, reached a maximum at 375mg (median, 6.1%). There was no significant difference for CSF penetration rates among the three test points (median, 4.1% vs. 2.8% vs. 2.8%, P=0.16). The intracranial objective response rate and median intracranial progression free survival are 80% and 18.9 months. WBRT plus concurrent icotinib is well tolerated in EGFR-mutated NSCLC patients with brain metastases, up to an icotinib dose of 375mg tid. The icotinib CSF concentration seemed to have a potential ceiling effect with the dose escalation, and WBRT seemed to have no significant impact on CSF penetration of icotinib till 4 weeks after the treatment. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Real-World Data on Prognostic Factors for Overall Survival in EGFR Mutation-Positive Advanced Non-Small Cell Lung Cancer Patients Treated with First-Line Gefitinib.

    PubMed

    Yao, Zong-Han; Liao, Wei-Yu; Ho, Chao-Chi; Chen, Kuan-Yu; Shih, Jin-Yuan; Chen, Jin-Shing; Lin, Zhong-Zhe; Lin, Chia-Chi; Chih-Hsin Yang, James; Yu, Chong-Jen

    2017-09-01

    This study aimed to identify independent prognostic factors for overall survival (OS) of patients with advanced non-small cell lung cancer (NSCLC) harboring an activating epidermal growth factor receptor (EGFR) mutation and receiving gefitinib as first-line treatment in real-world practice. We enrolled 226 patients from June 2011 to May 2013. During this period, gefitinib was the only EGFR-tyrosine kinase inhibitor reimbursed by the Bureau of National Health Insurance of Taiwan. The median progression-free survival and median OS were 11.9 months (95% confidence interval [CI]: 9.7-14.2) and 26.9 months (21.2-32.5), respectively. The Cox proportional hazards regression model revealed that postoperative recurrence, performance status (Eastern Cooperative Oncology Grade [ECOG] ≥2), smoking index (≥20 pack-years), liver metastasis at initial diagnosis, and chronic hepatitis C virus (HCV) infection were independent prognostic factors for OS (hazard ratio [95% CI] 0.3 [0.11-0.83], p  = .02; 2.69 [1.60-4.51], p  < .001; 1.92 [1.24-2.97], p  = .003; 2.26 [1.34-3.82], p  = .002; 3.38 [1.85-7.78], p  < .001, respectively). However, brain metastasis (BM) at initial diagnosis or intracranial progression during gefitinib treatment had no impact on OS (1.266 [0.83-1.93], p  = .275 and 0.75 [0.48-1.19], p  = .211, respectively). HCV infection, performance status (ECOG ≥2), newly diagnosed advanced NSCLC without prior operation, and liver metastasis predicted poor OS in EGFR mutation-positive advanced NSCLC patients treated with first-line gefitinib; however, neither BM at initial diagnosis nor intracranial progression during gefitinib treatment had an impact on OS. The finding that chronic hepatitis C virus (HCV) infection might predict poor overall survival (OS) in epidermal growth factor receptor mutation-positive advanced non-small cell lung cancer (NSCLC) patients treated with first-line gefitinib may raise awareness of benefit from anti

  17. Clinical Significance of EML4-ALK Fusion Gene and Association with EGFR and KRAS Gene Mutations in 208 Chinese Patients with Non-Small Cell Lung Cancer

    PubMed Central

    Wei, Sen; Wang, Jing; Wang, Min; Wang, Yuli; Zhou, Qinghua; Liu, Hongyu; Chen, Jun

    2013-01-01

    The EML4-ALK fusion gene has been recently identified in a small subset of non-small cell lung cancer (NSCLC) patients who respond positively to ALK inhibitors. The characteristics of the EML4-ALK fusion gene in Chinese patients with NSCLC are poorly understood. Here, we report on the prevalence of EML4-ALK, EGFR status and KRAS mutations in 208 Chinese patients with NSCLC. EGFR mutations were found in 24.5% (51/208) of patients. In concordance with previous reports, these mutations were identified at high frequencies in females (47.5% vs 15.0% in males; P<0.05); never-smokers (42.3% vs 13.9% in smokers; P<0.05), and adenocarcinoma patients (44.2% vs 8.0% in non-adenocarcinoma patients; P<0.05). There were only 2.88% (6/208) patients with KRAS mutations in our study group. We identified 7 patients who harbored the EML4-ALK fusion gene (3.37%, 7/208), including 4 cases with variant 3 (57.1%), 2 with variant 1, and 1 with variant 2. All positive cases corresponded to female patients (11.5%, 7/61). Six of the positive cases were non-smokers (7.69%, 6/78). The incidence of EML4-ALK translocation in female, non-smoking adenocarcinoma patients was as high as 15.2% (5/33). No EGFR/KRAS mutations were detected among the EML4-ALK positive patients. Pathological analysis showed no difference between solid signet-ring cell pattern (4/7) and mucinous cribriform pattern (3/7) in ALK-positive patients. Immunostaining showed intratumor heterogeneity of ALK rearrangement in primary carcinomas and 50% (3/6) of metastatic tumors with ALK-negative staining. Meta-analysis demonstrated that EML4-ALK translocation occurred in 4.84% (125/2580) of unselected patients with NSCLC, and was also predominant in non-smoking patients with adenocarcinoma. Taken together, EML4-ALK translocations were infrequent in the entire NSCLC patient population, but were frequent in the NSCLC subgroup of female, non-smoker, adenocarcinoma patients. There was intratumor heterogeneity of ALK rearrangement in

  18. Dynamics of multiple resistance mechanisms in plasma DNA during EGFR-targeted therapies in non-small cell lung cancer.

    PubMed

    Tsui, Dana Wai Yi; Murtaza, Muhammed; Wong, Alvin Seng Cheong; Rueda, Oscar M; Smith, Christopher G; Chandrananda, Dineika; Soo, Ross A; Lim, Hong Liang; Goh, Boon Cher; Caldas, Carlos; Forshew, Tim; Gale, Davina; Liu, Wei; Morris, James; Marass, Francesco; Eisen, Tim; Chin, Tan Min; Rosenfeld, Nitzan

    2018-06-01

    Tumour heterogeneity leads to the development of multiple resistance mechanisms during targeted therapies. Identifying the dominant driver(s) is critical for treatment decision. We studied the relative dynamics of multiple oncogenic drivers in longitudinal plasma of 50 EGFR -mutant non-small-cell lung cancer patients receiving gefitinib and hydroxychloroquine. We performed digital PCR and targeted sequencing on samples from all patients and shallow whole-genome sequencing on samples from three patients who underwent histological transformation to small-cell lung cancer. In 43 patients with known EGFR mutations from tumour, we identified them accurately in plasma of 41 patients (95%, 41/43). We also found additional mutations, including EGFR T790M (31/50, 62%), TP53 (23/50, 46%), PIK3CA (7/50, 14%) and PTEN (4/50, 8%). Patients with both TP53 and EGFR mutations before treatment had worse overall survival than those with only EGFR Patients who progressed without T790M had worse PFS during TKI continuation and developed alternative alterations, including small-cell lung cancer-associated copy number changes and TP53 mutations, that tracked subsequent treatment responses. Longitudinal plasma analysis can help identify dominant resistance mechanisms, including non-druggable genetic information that may guide clinical management. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  19. Dynamic changes in quality of life after three first-line therapies for EGFR mutation-positive advanced non-small-cell lung cancer.

    PubMed

    Yang, Szu-Chun; Lin, Chien-Chung; Lai, Wu-Wei; Chang, Sheng-Mao; Hwang, Jing-Shiang; Su, Wu-Chou; Wang, Jung-Der

    2018-01-01

    Three different tyrosine kinase inhibitors have been approved as first-line therapies for epidermal growth factor receptor (EGFR) mutation-positive advanced non-small-cell lung cancer with similar overall survival. This study determined dynamic changes in quality of life (QoL) for patients using these therapies after controlling for potential confounders. From 2011 to 2016, we prospectively assessed the utility values and QoL scores of patients using the EuroQol five-dimension and World Health Organization Quality-of-Life - Brief questionnaires. QoL functions after initiation of treatment were estimated using a kernel-smoothing method. Dynamic changes in major determinants were repeatedly assessed for constructing mixed models. A total of 344 patients were enrolled, with 934 repeated assessments. After controlling for performance status, disease progression, EGFR mutation subtype and other confounders, the mixed models showed significantly lower QoL scores for afatinib versus gefitinib in the physical, psychological and social domains, and 10 facets. The differences seemed to appear 10 months after initiation of treatment. In contrast, there was no significant difference between erlotinib and gefitinib in the scores of all domains and facets. QoL in patients receiving afatinib seemed to be lower than in those receiving gefitinib. Since the sample sizes in this study were relatively small, more studies are warranted to corroborate these results.

  20. Correlations Between the EGFR Mutation Status and Clinicopathological Features of Clinical Stage I Lung Adenocarcinoma

    PubMed Central

    Isaka, Tetsuya; Yokose, Tomoyuki; Ito, Hiroyuki; Nagata, Masashi; Furumoto, Hideyuki; Nishii, Teppei; Katayama, Kayoko; Yamada, Kouzo; Nakayama, Haruhiko; Masuda, Munetaka

    2015-01-01

    Abstract Advanced lung cancers with epidermal growth factor receptor (EGFR) exon 19 deletions (Ex19s) and EGFR exon 21 L858R point mutations (Ex21s) exhibit different clinical behavior. However, these differences are unclear in resectable primary lung tumors. The clinicopathological features of 88 (20.9%) Ex19, 124 (29.4%) Ex21, and 198 (46.9%) EGFR wild-type (Wt) clinical stage I primary adenocarcinomas resected between January 1, 2012 and October 31, 2014 were compared by using Chi-square tests, residual error analysis, analysis of variance, and Tukey tests. Ex21 lesions occurred more frequently in women and never-smokers and had a higher tumor disappearance rate (TDR: 59.6% vs 43.9%; P < 0.001) and lower maximum standardized uptake value (maxSUV: 2.0 vs 3.5; P < 0.01) than Wt lesions; Ex19 lesions had intermediate values (52.8% and 2.6). There was a low frequency of vascular invasion in Ex21 lesions (12.1%; P < 0.05) and a high frequency in Wt lesions (22.7%; P < 0.05). Most Ex19 lesions were intermediate-grade adenocarcinoma (lepidic, acinar, and papillary predominant: 73.9%; P < 0.05). Wt and Ex21 lesions were predominately high-grade (micropapillary or solid predominant, mucinous variant) and low-grade (adenocarcinoma in situ and minimally invasive adenocarcinoma) adenocarcinoma, respectively. Wt lesions had smaller lepidic components (42.1% vs 56.3%; P < 0.001) and larger papillary and solid components (papillary: 15.5% vs 9.0%; P < 0.05; solid: 13.2% vs 3.2%; P < 0.001) than Ex21 lesions. Most Ex19 lesions had intermediate component rates. Most Ex21 lesions were low-grade adenocarcinoma with lepidic growth patterns. Wt high-grade adenocarcinomas included solid and papillary components with vascular invasion. Ex19 lesions were intermediate grade between Ex21 and Wt. PMID:26496308