Sample records for activation cytokine production

  1. Inflammatory cytokine production in chronic active Epstein-Barr virus infection.

    PubMed

    Onozawa, Erika; Shibayama, Haruna; Imadome, Ken-Ichi; Tsuzura, Akiho; Koyama, Takatoshi; Miura, Osamu; Arai, Ayako

    2017-01-01

    In order to clarify the mechanisms underlying the development of inflammation in chronic active Epstein-Barr virus infection (CABEV), we examined cytokine production using patient samples. Eleven patients were analyzed. The serum concentrations of IFN-γ, TNF-α, and IL-6 were significantly higher in patients than in healthy donors. The mRNAs of these cytokines in peripheral blood mononuclear cells were elevated in patients as compared with healthy donors. The mRNA of IFN-γ was significantly higher in patients than in healthy donors. We examined which fraction produced the cytokines in the CD4-, CD8-, and CD56-positive fractions of PBMCs. The mRNAs of IFN-γ, TNF-α, and IL-6 were highly expressed in EBV-infected cells, whereas expression was also observed in non-infected cells. We performed in vitro infection of EBV on a T-cell line, MOLT4. EBV infection enhanced the mRNA expressions of IFN-γ and TNF-α. These results suggest that the inflammatory cytokines in CAEBV are produced not only by EBV-infected but also non-infected cells. EBV itself may have roles in the cytokine production observed in infected cells.

  2. Whole Blood Activation Results in Altered T Cell and Monocyte Cytokine Production Profiles by Flow Cytometry

    NASA Technical Reports Server (NTRS)

    Crucian, Brian E.; Sams, Clarence F.

    2001-01-01

    An excellent monitor of the immune balance of peripheral circulating cells is to determine their cytokine production patterns in response to stimuli. Using flow cytometry, a positive identification of cytokine producing cells in a mixed culture may be achieved. Recently, the ability to assess cytokine production following a whole-blood activation culture has been described. In this study, whole blood activation was compared to traditional PBMC activation and the individual cytokine secretion patterns for both T cells, T cell subsets and monocytes was determined by flow cytometry. RESULTS: For T cell cytokine assessment (IFNg/IL-10 and IL-21/L-4) following PMA +ionomycin activation: (1) a Significantly greater percentages of T cells producing IFNgamma and IL-2 were observed following whole-blood culture and (2) altered T cell cytokine production kinetics were observed by varying whole blood culture times. Four-color analysiS was used to allow assessment of cytokine production by specific T cell subsets. It was found that IFNgamma production was significantly elevated in the CD3+/CD8+ T cell population as compared to the CD3+/CD8- population following five hours of whole blood activation. Conversely, IL-2 and IL-10 production were Significantly elevated in the CD3+/CD8- T cell population as compared to the CD3+/CD8+ population. Monocyte cytokine production was assessed in both culture systems following LPS activation for 24 hours. A three-color flow cytometric was used to assess two cytokines (IL-1a/IL-12 and TNFa/IL-10) in conjunction with CD14. Nearly all monocytes were stimulated to produce IL-1a, IL-12 and TNFa. equally well in both culture systems, however monocyte production of IL-10 was significantly elevated in whole blood culture as compared to PBMC culture. IL-12 producing monocytes appeared to be a distinct subpopulation of the IL-1a producing set, whereas IL-10 and TNFa producing monocytes were largely mutually exclusive. IL-10 and TNFa producing

  3. Viral Pseudo Enzymes Activate RIG-I via Deamidation to Evade Cytokine Production

    PubMed Central

    He, Shanping; Zhao, Jun; Song, Shanshan; He, Xiaojing; Minassian, Arlet; Zhou, Yu; Zhang, Junjie; Brulois, Kevin; Wang, Yuqi; Cabo, Jackson; Zandi, Ebrahim; Liang, Chengyu; Jung, Jae U; Zhang, Xuewu; Feng, Pinghui

    2015-01-01

    SUMMARY RIG-I is a pattern recognition receptor that senses viral RNA and is crucial for host innate immune defense. Here we describe a mechanism of RIG-I activation through amidotransferase-mediated deamidation. We show that viral homologues of phosphoribosylformyglycinamide synthase (PFAS), although lacking intrinsic enzyme activity, recruit cellular PFAS to deamidate and activate RIG-I. Accordingly, depletion and biochemical inhibition of PFAS impair RIG-I deamidation and concomitant activation. Purified PFAS and viral homologue thereof deamidate RIG-I in vitro. Ultimately, herpesvirus hijacks activated RIG-I to avoid antiviral cytokine production; loss of RIG-I or inhibition of RIG-I deamidation results in elevated cytokine production. Together, these findings demonstrate a surprising mechanism of RIG-I activation that is mediated by an enzyme. PMID:25752576

  4. Viral pseudo-enzymes activate RIG-I via deamidation to evade cytokine production.

    PubMed

    He, Shanping; Zhao, Jun; Song, Shanshan; He, Xiaojing; Minassian, Arlet; Zhou, Yu; Zhang, Junjie; Brulois, Kevin; Wang, Yuqi; Cabo, Jackson; Zandi, Ebrahim; Liang, Chengyu; Jung, Jae U; Zhang, Xuewu; Feng, Pinghui

    2015-04-02

    RIG-I is a pattern recognition receptor that senses viral RNA and is crucial for host innate immune defense. Here, we describe a mechanism of RIG-I activation through amidotransferase-mediated deamidation. We show that viral homologs of phosphoribosylformylglycinamidine synthetase (PFAS), although lacking intrinsic enzyme activity, recruit cellular PFAS to deamidate and activate RIG-I. Accordingly, depletion and biochemical inhibition of PFAS impair RIG-I deamidation and concomitant activation. Purified PFAS and viral homolog thereof deamidate RIG-I in vitro. Ultimately, herpesvirus hijacks activated RIG-I to avoid antiviral cytokine production; loss of RIG-I or inhibition of RIG-I deamidation results in elevated cytokine production. Together, these findings demonstrate a surprising mechanism of RIG-I activation that is mediated by an enzyme. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Whole Blood Activation Results in Enhanced Detection of T Cell and Monocyte Cytokine Production by Flow Cytometry

    NASA Technical Reports Server (NTRS)

    Sams, Clarence F.; Crucian, Brian E.

    2001-01-01

    An excellent monitor of the immune balance of peripheral circulating cells is to determine their cytokine production patterns in response to stimuli. Using flow cytometry a positive identification of cytokine producing cells in a mixed culture may be achieved. Recently, the ability to assess cytokine production following a wholeblood activation culture has been described. We compared whole blood culture to standard PBMC culture and determined the individual cytokine secretion patterns for both T cells and monocytes via flow cytometry. For T cells cytokine assessment following PMA +ionomycin activation: (1) a significantly greater percentages of T cells producing IFNgamma and IL-2 were observed following whole-blood culture; (2) altered T cell cytokine production kinetics were observed by varying whole blood culture times. In addition, a four-color cytometric analysis was used to allow accurate phenotyping and quantitation of cytokine producing lymphocyte populations. Using this technique we found IFNgamma production to be significantly elevated in the CD3+/CD8+ T cell population as compared to the CD3+/CD8- population following five hours of whole blood activation. Conversely, IL-2 and IL-10 production were significantly elevated in the CD3+/CD8- T cell population as compared to the CD3+/CD8+ population. Monocyte cytokine production was assessed in both culture systems following LPS activation for 24 hours. A three-color flow cytometric was used to assess two cytokines in conjunction with CD 14. The cytokine pairs used for analysis were IL-1a/IL-12, and IL-10ITNFa. Nearly all monocytes were stimulated to produce IL-1a, IL-12 and TNFalpha equally well in both culture systems. Monocyte production of IL-10 was significantly elevated following whole blood culture as compared to PBMC culture. IL-12 producing monocytes appeared to be a distinct subpopulation of the IL-1a producing set, whereas IL-10 and TNFa producing monocytes were largely mutually exclusive. IL-10 and

  6. Fisetin, a flavonol, inhibits TH2-type cytokine production by activated human basophils.

    PubMed

    Higa, Shinji; Hirano, Toru; Kotani, Mayumi; Matsumoto, Motonobu; Fujita, Akihito; Suemura, Masaki; Kawase, Ichiro; Tanaka, Toshio

    2003-06-01

    Activation of mast cells and basophils through allergen stimulation releases chemical mediators and synthesizes cytokines. Among these cytokines, IL-4, IL-13, and IL-5 have major roles in allergic inflammation. We sought to determine the potency of flavonoids (astragalin, fisetin, kaempferol, myricetin, quercetin, and rutin) for the inhibition of cytokine expression and synthesis by human basophils. The inhibitory effect of flavonoids on cytokine expression by stimulated KU812 cells, a human basophilic cell line, and freshly purified peripheral blood basophils was measured by means of semiquantitative RT-PCR and ELISA assays. The effects of flavonoids on transcriptional activation of the nuclear factor of activated T cells were assessed by means of electrophoretic mobility shift assays. Fisetin suppressed the induction of IL-4, IL-13, and IL-5 mRNA expression by A23187-stimulated KU812 cells and basophils in response to cross-linkage of the IgE receptor. Fisetin reduced IL-4, IL-13, and IL-5 synthesis (inhibitory concentration of 50% [IC(50)] = 19.4, 17.7, and 17.4 micromol/L, respectively) but not IL-6 and IL-8 production by KU812 cells. In addition, fisetin inhibited IL-4 and IL-13 synthesis by anti-IgE antibody-stimulated human basophils (IC(50) = 5.1 and 6.2 micromol/L, respectively) and IL-4 synthesis by allergen-stimulated basophils from allergic patients (IC(50) = 4.8 micromol/L). Among the flavonoids examined, kaempferol and quercetin showed substantial inhibitory activities in cytokine expression but less so than those of fisetin. Fisetin inhibited nuclear localization of nuclear factor of activated T cells c2 by A23187-stimulated KU812 cells. These results provide evidence of a novel activity of the flavonoid fisetin that suppresses the expression of T(H)2-type cytokines (IL-4, IL-13, and IL-5) by basophils.

  7. Inhibitory effects of methamphetamine on mast cell activation and cytokine/chemokine production stimulated by lipopolysaccharide in C57BL/6J mice.

    PubMed

    Xue, Li; Geng, Yan; Li, Ming; Jin, Yao-Feng; Ren, Hui-Xun; Li, Xia; Wu, Feng; Wang, Biao; Cheng, Wei-Ying; Chen, Teng; Chen, Yan-Jiong

    2018-04-01

    Previous studies have demonstrated that methamphetamine (MA) influences host immunity; however, the effect of MA on lipopolysaccharide (LPS)-induced immune responses remains unknown. Mast cells (MCs) are considered to serve an important role in the innate and acquired immune response, but it remains unknown whether MA modulates MC activation and LPS-stimulated cytokine production. The present study aimed to investigate the effect of MA on LPS-induced MC activation and the production of MC-derived cytokines in mice. Markers for MC activation, including cluster of differentiation 117 and the type I high affinity immunoglobulin E receptor, were assessed in mouse intestines. Levels of MC-derived cytokines in the lungs and thymus were also examined. The results demonstrated that cytokines were produced in the bone marrow-derived mast cells (BMMCs) of mice. The present study demonstrated that MA suppressed the LPS-mediated MC activation in mouse intestines. MA also altered the release of MC cytokines in the lung and thymus following LPS stimulation. In addition, LPS-stimulated cytokines were decreased in the BMMCs of mice following treatment with MA. The present study demonstrated that MA may regulate LPS-stimulated MC activation and cytokine production.

  8. Analgesic activity of piracetam: effect on cytokine production and oxidative stress.

    PubMed

    Navarro, Suelen A; Serafim, Karla G G; Mizokami, Sandra S; Hohmann, Miriam S N; Casagrande, Rubia; Verri, Waldiceu A

    2013-04-01

    Piracetam is a prototype of nootropic drugs used to improve cognitive impairment. However, recent studies suggest that piracetam can have analgesic and anti-inflammatory effects. Inflammatory pain is the result of a process that depends on neutrophil migration, cytokines and prostanoids release and oxidative stress. We analyze whether piracetam has anti-nociceptive effects and its mechanisms. Per oral pretreatment with piracetam reduced in a dose-dependent manner the overt pain-like behavior induced by acetic acid, phenyl-p-benzoquinone, formalin and complete Freund's adjuvant. Piracetam also diminished carrageenin-induced mechanical and thermal hyperalgesia, myeloperoxidase activity, and TNF-α-induced mechanical hyperalgesia. Piracetam presented analgesic effects as post-treatment and local paw treatment. The analgesic mechanisms of piracetam were related to inhibition of carrageenin- and TNF-α-induced production of IL-1β as well as prevention of carrageenin-induced decrease of reduced glutathione, ferric reducing ability and free radical scavenging ability in the paw. These results demonstrate that piracetam presents analgesic activity upon a variety of inflammatory stimuli by a mechanism dependent on inhibition of cytokine production and oxidative stress. Considering its safety and clinical use for cognitive function, it is possible that piracetam represents a novel perspective of analgesic. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Dysregulation of in vitro cytokine production by monocytes during sepsis.

    PubMed Central

    Munoz, C; Carlet, J; Fitting, C; Misset, B; Blériot, J P; Cavaillon, J M

    1991-01-01

    The production by monocytes of interleukin-1 alpha (IL-1 alpha), interleukin-1 beta (IL-1 beta), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF alpha) in intensive care unit (ICU) patients with sepsis syndrome (n = 23) or noninfectious shock (n = 6) is reported. Plasma cytokines, cell-associated cytokines within freshly isolated monocytes and LPS-induced in vitro cytokine production were assessed at admission and at regular intervals during ICU stay. TNF alpha and IL-6 were the most frequently detected circulating cytokines. Despite the fact that IL-1 alpha is the main cytokine found within monocytes upon in vitro activation of cells from healthy individuals, it was very rarely detected within freshly isolated monocytes from septic patients, and levels of cell-associated IL-1 beta were lower than those of TNF alpha. Cell-associated IL-1 beta and TNF alpha were not correlated with corresponding levels in plasma. Upon LPS stimulation, we observed a profound decrease of in vitro IL-1 alpha production by monocytes in all patients, and of IL-1 beta, IL-6, and TNF alpha in septic patients. This reduced LPS-induced production of cytokines was most pronounced in patients with gram-negative infections. Finally, monocytes from survival patients, but not from nonsurvival ones recovered their capacity to produce normal amounts of cytokines upon LPS stimulation. In conclusion, our data indicate an in vivo activation of circulating monocytes during sepsis as well as in noninfectious shock and suggest that complex regulatory mechanisms can downregulate the production of cytokines by monocytes during severe infections. Images PMID:1939659

  10. Effect of space flight on cytokine production

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, Gerald

    Space flight has been shown to alter many immunological responses. Among those affected are the production of cytokines, Cytokines are the messengers of the immune system that facilitate communication among cells that allow the interaction among cells leading to the development of immune responses. Included among the cytokines are the interferons, interleukins, and colony stimulating factors. Cytokines also facilitate communication between the immune system and other body systems, such as the neuroendocrine and musculoskeletal systems. Some cytokines also have direct protective effects on the host, such as interferon, which can inhibit the replication of viruses. Studies in both humans and animals indicate that models of space flight as well as actual space flight alter the production and action of cytokines. Included among these changes are altered interferon production, altered responsiveness of bone marrow cells to granulocyte/monocyte-colony stimulating factor, but no alteration in the production of interleukin-3. This suggests that there are selective effects of space flight on immune responses, i.e. not all cytokines are affected in the same fashion by space flight. Tissue culture studies also suggest that there may be direct effects of space flight on the cells responsible for cytokine production and action. The results of the above study indicate that the effects of space flight on cytokines may be a fundamental mechanism by which space flight not only affects immune responses, but also other biological systems of the human.

  11. Activity of Uncleaved Caspase-8 Controls Anti-bacterial Immune Defense and TLR-Induced Cytokine Production Independent of Cell Death.

    PubMed

    Philip, Naomi H; DeLaney, Alexandra; Peterson, Lance W; Santos-Marrero, Melanie; Grier, Jennifer T; Sun, Yan; Wynosky-Dolfi, Meghan A; Zwack, Erin E; Hu, Baofeng; Olsen, Tayla M; Rongvaux, Anthony; Pope, Scott D; López, Carolina B; Oberst, Andrew; Beiting, Daniel P; Henao-Mejia, Jorge; Brodsky, Igor E

    2016-10-01

    Caspases regulate cell death programs in response to environmental stresses, including infection and inflammation, and are therefore critical for the proper operation of the mammalian immune system. Caspase-8 is necessary for optimal production of inflammatory cytokines and host defense against infection by multiple pathogens including Yersinia, but whether this is due to death of infected cells or an intrinsic role of caspase-8 in TLR-induced gene expression is unknown. Caspase-8 activation at death signaling complexes results in its autoprocessing and subsequent cleavage and activation of its downstream apoptotic targets. Whether caspase-8 activity is also important for inflammatory gene expression during bacterial infection has not been investigated. Here, we report that caspase-8 plays an essential cell-intrinsic role in innate inflammatory cytokine production in vivo during Yersinia infection. Unexpectedly, we found that caspase-8 enzymatic activity regulates gene expression in response to bacterial infection as well as TLR signaling independently of apoptosis. Using newly-generated mice in which caspase-8 autoprocessing is ablated (Casp8DA/DA), we now demonstrate that caspase-8 enzymatic activity, but not autoprocessing, mediates induction of inflammatory cytokines by bacterial infection and a wide variety of TLR stimuli. Because unprocessed caspase-8 functions in an enzymatic complex with its homolog cFLIP, our findings implicate the caspase-8/cFLIP heterodimer in control of inflammatory cytokines during microbial infection, and provide new insight into regulation of antibacterial immune defense.

  12. Cytokine production by oral and peripheral blood neutrophils in adult periodontitis.

    PubMed

    Galbraith, G M; Hagan, C; Steed, R B; Sanders, J J; Javed, T

    1997-09-01

    Proinflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha) and interleukin 1 beta (IL-1 beta) also possess bone-resorptive properties, and are generally considered to play a role in the pathogenesis of periodontal disease. In the present study, TNF-alpha and IL-1 beta production by oral and peripheral blood polymorphonuclear leukocytes (PMN) was examined in 40 patients with adult periodontitis and 40 orally healthy matched controls. Oral PMN released considerable amounts of both cytokines in unstimulated culture, and there was no difference between patients and controls when the cytokine levels were corrected for cell number. However, when the effect of disease activity was examined, cytokine release by oral PMN was found to be greatest in patients with advanced periodontitis. Within the healthy control group, IL-1 beta production by oral PMN was significantly higher in males (Mann-Whitney test, P = 0.0008). Examination of IL-1 beta production by peripheral blood PMN exposed to recombinant human granulocyte-macrophage colony stimulating factor revealed no difference between the patient and control groups. In contrast, IL-1 beta production by peripheral blood PMN was significantly reduced in patients with advanced disease (Mann-Whitney test, P = 0.02), and peripheral PMN IL-1 beta synthesis was greater in female controls (Mann-Whitney test, P = 0.054). No effect of race on cytokine production could be discerned in patients or controls. These results indicate that several factors influence cytokine production in oral health and disease, and that a dichotomy in cytokine gene expression exists between oral and peripheral blood PMN in adult periodontitis.

  13. Regulatory T cell levels and cytokine production in active non-infectious uveitis: in-vitro effects of pharmacological treatment

    PubMed Central

    Molins, B; Mesquida, M; Lee, R W J; Llorenç, V; Pelegrín, L; Adán, A

    2015-01-01

    The aim of this study was to quantify the proportion of regulatory T cells (Treg) and cytokine expression by peripheral blood mononuclear cells (PBMCs) in patients with active non-infectious uveitis, and to evaluate the effect of in-vitro treatment with infliximab, dexamethasone and cyclosporin A on Treg levels and cytokine production in PBMCs from uveitis patients and healthy subjects. We included a group of 21 patients with active non-infectious uveitis and 18 age-matched healthy subjects. The proportion of forkhead box protein 3 (FoxP3)+ Treg cells and intracellular tumour necrosis factor (TNF)-α expression in CD4+ T cells was determined by flow cytometry. PBMCs were also either rested or activated with anti-CD3/anti-CD28 and cultured in the presence or absence of dexamethasone, cyclosporin A and infliximab. Supernatants of cultured PBMCs were collected and TNF-α, interleukin (IL)-10, IL-17 and interferon (IFN)-γ levels were measured by enzyme-linked immunosorbent assay (ELISA). No significant differences were observed in nTreg levels between uveitis patients and healthy subjects. However, PBMCs from uveitis patients produced significantly higher amounts of TNF-α and lower amounts of IL-10. Dexamethasone treatment in vitro significantly reduced FoxP3+ Treg levels in PBMCs from both healthy subjects and uveitis patients, and all tested drugs significantly reduced TNF-α production in PBMCs. Dexamethasone and cyclosporin A significantly reduced IL-17 and IFN-γ production in PBMCs and dexamethasone up-regulated IL-10 production in activated PBMCs from healthy subjects. Our results suggest that PBMCs from patients with uveitis express more TNF-α and less IL-10 than healthy subjects, and this is independent of FoxP3+ Treg levels. Treatment with infliximab, dexamethasone and cyclosporin A in vitro modulates cytokine production, but does not increase the proportion of FoxP3+ Treg cells. PMID:25354724

  14. Akt-Dependent Cytokine Production in Mast Cells

    PubMed Central

    Kitaura, Jiro; Asai, Koichi; Maeda-Yamamoto, Mari; Kawakami, Yuko; Kikkawa, Ushio; Kawakami, Toshiaki

    2000-01-01

    Cross-linking of FcεRI induces the activation of three protein tyrosine kinases, Lyn, Syk, and Bruton's tyrosine kinase (Btk), leading to the secretion of a panel of proinflammatory mediators from mast cells. This study showed phosphorylation at Ser-473 and enzymatic activation of Akt/protein kinase B, the crucial survival kinase, upon FcεRI stimulation in mouse mast cells. Phosphorylation of Akt is regulated positively by Btk and Syk and negatively by Lyn. Akt in turn can regulate positively the transcriptional activity of interleukin (IL)-2 and tumor necrosis factor (TNF)-α promoters. Transcription from the nuclear factor κB (NF-κB), nuclear factor of activated T cells (NF-AT), and activator protein 1 (AP-1) sites within these promoters is under the control of Akt activity. Accordingly, the signaling pathway involving IκB-α, a cytoplasmic protein that binds NF-κB and inhibits its nuclear translocation, appears to be regulated by Akt in mast cells. Catalytic activity of glycogen synthase kinase (GSK)-3β, a serine/threonine kinase that phosphorylates NF-AT and promotes its nuclear export, seems to be inhibited by Akt. Importantly, Akt regulates the production and secretion of IL-2 and TNF-α in FcεRI-stimulated mast cells. Altogether, these results revealed a novel function of Akt in transcriptional activation of cytokine genes via NF-κB, NF-AT, and AP-1 that contributes to the production of cytokines. PMID:10974038

  15. Activation of peroxisome proliferator-activated receptor beta/delta inhibits lipopolysaccharide-induced cytokine production in adipocytes by lowering nuclear factor-kappaB activity via extracellular signal-related kinase 1/2.

    PubMed

    Rodríguez-Calvo, Ricardo; Serrano, Lucía; Coll, Teresa; Moullan, Norman; Sánchez, Rosa M; Merlos, Manuel; Palomer, Xavier; Laguna, Juan C; Michalik, Liliane; Wahli, Walter; Vázquez-Carrera, Manuel

    2008-08-01

    Chronic activation of the nuclear factor-kappaB (NF-kappaB) in white adipose tissue leads to increased production of pro-inflammatory cytokines, which are involved in the development of insulin resistance. It is presently unknown whether peroxisome proliferator-activated receptor (PPAR) beta/delta activation prevents inflammation in adipocytes. First, we examined whether the PPARbeta/delta agonist GW501516 prevents lipopolysaccharide (LPS)-induced cytokine production in differentiated 3T3-L1 adipocytes. Treatment with GW501516 blocked LPS-induced IL-6 expression and secretion by adipocytes and the subsequent activation of the signal transducer and activator of transcription 3 (STAT3)-Suppressor of cytokine signaling 3 (SOCS3) pathway. This effect was associated with the capacity of GW501516 to impede LPS-induced NF-kappaB activation. Second, in in vivo studies, white adipose tissue from Zucker diabetic fatty (ZDF) rats, compared with that of lean rats, showed reduced PPARbeta/delta expression and PPAR DNA-binding activity, which was accompanied by enhanced IL-6 expression and NF-kappaB DNA-binding activity. Furthermore, IL-6 expression and NF-kappaB DNA-binding activity was higher in white adipose tissue from PPARbeta/delta-null mice than in wild-type mice. Because mitogen-activated protein kinase-extracellular signal-related kinase (ERK)1/2 (MEK1/2) is involved in LPS-induced NF-kappaB activation in adipocytes, we explored whether PPARbeta/delta prevented NF-kappaB activation by inhibiting this pathway. Interestingly, GW501516 prevented ERK1/2 phosphorylation by LPS. Furthermore, white adipose tissue from animal showing constitutively increased NF-kappaB activity, such as ZDF rats and PPARbeta/delta-null mice, also showed enhanced phospho-ERK1/2 levels. These findings indicate that activation of PPARbeta/delta inhibits enhanced cytokine production in adipocytes by preventing NF-kappaB activation via ERK1/2, an effect that may help prevent insulin resistance.

  16. Activation of Peroxisome Proliferator–Activated Receptor β/δ Inhibits Lipopolysaccharide-Induced Cytokine Production in Adipocytes by Lowering Nuclear Factor-κB Activity via Extracellular Signal–Related Kinase 1/2

    PubMed Central

    Rodríguez-Calvo, Ricardo; Serrano, Lucía; Coll, Teresa; Moullan, Norman; Sánchez, Rosa M.; Merlos, Manuel; Palomer, Xavier; Laguna, Juan C.; Michalik, Liliane; Wahli, Walter; Vázquez-Carrera, Manuel

    2008-01-01

    OBJECTIVE—Chronic activation of the nuclear factor-κB (NF-κB) in white adipose tissue leads to increased production of pro-inflammatory cytokines, which are involved in the development of insulin resistance. It is presently unknown whether peroxisome proliferator–activated receptor (PPAR) β/δ activation prevents inflammation in adipocytes. RESEARCH DESIGN AND METHODS AND RESULTS—First, we examined whether the PPARβ/δ agonist GW501516 prevents lipopolysaccharide (LPS)-induced cytokine production in differentiated 3T3-L1 adipocytes. Treatment with GW501516 blocked LPS-induced IL-6 expression and secretion by adipocytes and the subsequent activation of the signal transducer and activator of transcription 3 (STAT3)–Suppressor of cytokine signaling 3 (SOCS3) pathway. This effect was associated with the capacity of GW501516 to impede LPS-induced NF-κB activation. Second, in in vivo studies, white adipose tissue from Zucker diabetic fatty (ZDF) rats, compared with that of lean rats, showed reduced PPARβ/δ expression and PPAR DNA-binding activity, which was accompanied by enhanced IL-6 expression and NF-κB DNA-binding activity. Furthermore, IL-6 expression and NF-κB DNA-binding activity was higher in white adipose tissue from PPARβ/δ-null mice than in wild-type mice. Because mitogen-activated protein kinase–extracellular signal–related kinase (ERK)1/2 (MEK1/2) is involved in LPS-induced NF-κB activation in adipocytes, we explored whether PPARβ/δ prevented NF-κB activation by inhibiting this pathway. Interestingly, GW501516 prevented ERK1/2 phosphorylation by LPS. Furthermore, white adipose tissue from animal showing constitutively increased NF-κB activity, such as ZDF rats and PPARβ/δ-null mice, also showed enhanced phospho-ERK1/2 levels. CONCLUSIONS—These findings indicate that activation of PPARβ/δ inhibits enhanced cytokine production in adipocytes by preventing NF-κB activation via ERK1/2, an effect that may help prevent insulin

  17. Necroptosis promotes cell-autonomous activation of proinflammatory cytokine gene expression.

    PubMed

    Zhu, Kezhou; Liang, Wei; Ma, Zaijun; Xu, Daichao; Cao, Shuangyi; Lu, Xiaojuan; Liu, Nan; Shan, Bing; Qian, Lihui; Yuan, Junying

    2018-04-27

    Necroptosis, a form of regulated necrotic cell death, is mediated by receptor interacting protein 1 (RIPK1), RIPK3, and mixed lineage kinase domain-like protein (MLKL). However, the mechanism by which necroptosis promotes inflammation is still unclear. Here we report that the expression of cytokines is robustly upregulated in a cell-autonomous manner during necroptosis induced by tumor necrosis factor alpha (TNFα). We demonstrate that TNFα-induced necroptosis leads to two waves of cytokine production. The first wave, more transient and weaker than the second, is in response to TNFα alone; whereas the second wave depends upon the necroptotic signaling. We show that necroptosis promotes the transcription of TNFα-target genes in a cell-intrinsic manner. The activation of both NF-κB and p38 by the necroptotic machinery, RIPK1, RIPK3, and MLKL, is involved in mediating the robust induction of cytokine expression in the second wave. In contrast, necroptosis induced by direct oligomerization of MLKL promotes cytokine production at much lower levels than that of necroptosis induced with TNFα. Thus, we conclude that TNFα-induced necroptosis signaling events mediated by RIPK1 and RIPK3 activation, in addition to the MLKL oligomerization, promotes the expression of cytokines involving multiple intracellular signaling mechanisms including NF-κB pathway and p38. These findings reveal that the necroptotic cell death machinery mounts an immune response by promoting cell-autonomous production of cytokines. Our study provides insights into the mechanism by which necroptosis promotes inflammation in human diseases.

  18. Regulatory T cell levels and cytokine production in active non-infectious uveitis: in-vitro effects of pharmacological treatment.

    PubMed

    Molins, B; Mesquida, M; Lee, R W J; Llorenç, V; Pelegrín, L; Adán, A

    2015-03-01

    The aim of this study was to quantify the proportion of regulatory T cells (Treg ) and cytokine expression by peripheral blood mononuclear cells (PBMCs) in patients with active non-infectious uveitis, and to evaluate the effect of in-vitro treatment with infliximab, dexamethasone and cyclosporin A on Treg levels and cytokine production in PBMCs from uveitis patients and healthy subjects. We included a group of 21 patients with active non-infectious uveitis and 18 age-matched healthy subjects. The proportion of forkhead box protein 3 (FoxP3)(+) Treg cells and intracellular tumour necrosis factor (TNF)-α expression in CD4(+) T cells was determined by flow cytometry. PBMCs were also either rested or activated with anti-CD3/anti-CD28 and cultured in the presence or absence of dexamethasone, cyclosporin A and infliximab. Supernatants of cultured PBMCs were collected and TNF-α, interleukin (IL)-10, IL-17 and interferon (IFN)-γ levels were measured by enzyme-linked immunosorbent assay (ELISA). No significant differences were observed in nTreg levels between uveitis patients and healthy subjects. However, PBMCs from uveitis patients produced significantly higher amounts of TNF-α and lower amounts of IL-10. Dexamethasone treatment in vitro significantly reduced FoxP3(+) Treg levels in PBMCs from both healthy subjects and uveitis patients, and all tested drugs significantly reduced TNF-α production in PBMCs. Dexamethasone and cyclosporin A significantly reduced IL-17 and IFN-γ production in PBMCs and dexamethasone up-regulated IL-10 production in activated PBMCs from healthy subjects. Our results suggest that PBMCs from patients with uveitis express more TNF-α and less IL-10 than healthy subjects, and this is independent of FoxP3(+) Treg levels. Treatment with infliximab, dexamethasone and cyclosporin A in vitro modulates cytokine production, but does not increase the proportion of FoxP3(+) Treg cells. © 2014 British Society for Immunology.

  19. Th-17 regulatory cytokines IL-21, IL-23, and IL-6 enhance neutrophil production of IL-17 cytokines during asthma.

    PubMed

    Halwani, Rabih; Sultana, Asma; Vazquez-Tello, Alejandro; Jamhawi, Amer; Al-Masri, Abeer A; Al-Muhsen, Saleh

    2017-11-01

    In a subset of severe asthma patients, chronic airway inflammation is associated with infiltration of neutrophils, Th-17 cells and elevated expression of Th-17-derived cytokines (e.g., interleukin [IL]-17, IL-21, IL-22). Peripheral neutrophils from allergic asthmatics are known to express higher IL-17 cytokine levels than those from healthy subjects, but the regulatory mechanisms involved are not well understood. We hypothesize that Th-17 regulatory cytokines could modulate IL-17 expression in neutrophils. Peripheral blood neutrophils isolated from asthmatics were stimulated with IL-21, IL-23, and IL-6 cytokines and their ability to produce IL-17A and IL-17F was determined relative to healthy controls. Signal transducer and activator of transcription 3 (STAT3) phosphorylation levels were measured in stimulated neutrophil using flow cytometry. The requirement for STAT3 phosphorylation was determined by blocking its activation using a specific chemical inhibitor. Stimulating asthmatic neutrophils with IL-21, 23, and 6 enhanced the production of IL-17A and IL-17F at significantly higher levels comparatively to healthy controls. Stimulating neutrophils with IL-21, IL-23, and IL-6 cytokines enhanced STAT3 phosphorylation, in all cases. Interestingly, inhibiting STAT3 phosphorylation using a specific chemical inhibitor dramatically blocked the ability of neutrophils to produce IL-17, demonstrating that STAT3 activation is the major factor mediating IL-17 gene expression. These findings suggest that neutrophil infiltration in lungs of severe asthmatics may represent an important source of pro-inflammatory IL-17A and -F cytokines, a production enhanced by Th-17 regulatory cytokines, and thus providing a feedback mechanism that sustains inflammation. Our results suggest that STAT3 pathway could be a potential target for regulating neutrophilic inflammation during severe asthma.

  20. Pirfenidone Inhibits T Cell Activation, Proliferation, Cytokine and Chemokine Production, and Host Alloresponses

    PubMed Central

    Visner, Gary A.; Liu, Fengzhi; Bizargity, Peyman; Liu, Hanzhong; Liu, Kaifeng; Yang, Jun; Wang, Liqing; Hancock, Wayne W.

    2009-01-01

    Background We previously showed that pirfenidone, an anti-fibrotic agent, reduces lung allograft injury/rejection. In this study, we tested the hypothesis that pirfenidone has immune modulating activities and evaluated its effects on the function of T cell subsets, which play important roles in allograft rejection. Method We first evaluated whether pirfenidone alters T cell proliferation and cytokine release in response to T cell receptor (TCR) activation, and whether pirfenidone alters regulatory T cells (CD4+CD25+) suppressive effects using an in vitro assay. Additionally, pirfenidone effects on alloantigen-induced T cell proliferation in vivo were assessed by adoptive transfer of CFSE-labeled T cells across a parent->F1 MHC mismatch, as well as using a murine heterotopic cardiac allograft model (BALB/c->C57BL/6). Results Pirfenidone was found to inhibit the responder frequency of TCR-stimulated CD4+ cell total proliferation in vitro and in vivo, whereas both CD4 and CD8 proliferation index were reduced by pirfenidone. Additionally, pirfenidone inhibited TCR-induced production of multiple pro-inflammatory cytokines and chemokines. Interestingly, there was no change on TGF-β production by purified T cells, and pirfenidone had no effect on the suppressive properties of naturally occurring regulatory T cells. Pirfenidone alone showed a small but significant (p < 0.05) effect on the in vivo allogeneic response while the combination of pirfenidone and low dose rapamycin had more remarkable effect in reducing the alloantigen response with prolonged graft survival. Conclusion Pirfenidone may be an important new agent in transplantation, with particular relevance to combating chronic rejection by inhibiting both fibroproliferative and alloimmune responses. PMID:19667934

  1. DNA from Porphyromonas gingivalis and Tannerella forsythia induce cytokine production in human monocytic cell lines.

    PubMed

    Sahingur, S E; Xia, X-J; Alamgir, S; Honma, K; Sharma, A; Schenkein, H A

    2010-04-01

    Toll-like receptor 9 (TLR9) expression is increased in periodontally diseased tissues compared with healthy sites indicating a possible role of TLR9 and its ligand, bacterial DNA (bDNA), in periodontal disease pathology. Here, we determine the immunostimulatory effects of periodontal bDNA in human monocytic cells (THP-1). THP-1 cells were stimulated with DNA of two putative periodontal pathogens: Porphyromonas gingivalis and Tannerella forsythia. The role of TLR9 in periodontal bDNA-initiated cytokine production was determined either by blocking TLR9 signaling in THP-1 cells with chloroquine or by measuring IL-8 production and nuclear factor-kappaB (NF-kappaB) activation in HEK293 cells stably transfected with human TLR9. Cytokine production (IL-1beta, IL-6, and TNF-alpha) was increased significantly in bDNA-stimulated cells compared with controls. Chloroquine treatment of THP-1 cells decreased cytokine production, suggesting that TLR9-mediated signaling pathways are operant in the recognition of DNA from periodontal pathogens. Compared with native HEK293 cells, TLR9-transfected cells demonstrated significantly increased IL-8 production (P < 0.001) and NF-kappaB activation in response to bDNA, further confirming the role of TLR9 in periodontal bDNA recognition. The results of PCR arrays demonstrated upregulation of proinflammatory cytokine and NF-kappaB genes in response to periodontal bDNA in THP-1 cells, suggesting that cytokine induction is through NF-kappaB activation. Hence, immune responses triggered by periodontal bacterial nucleic acids may contribute to periodontal disease pathology by inducing proinflammatory cytokine production through the TLR9 signaling pathway.

  2. Sirtuin inhibition attenuates the production of inflammatory cytokines in lipopolysaccharide-stimulated macrophages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandes, Claudia A.; Fievez, Laurence; Neyrinck, Audrey M.

    Highlights: Black-Right-Pointing-Pointer Lipopolysaccharide-stimulated macrophages were treated with cambinol and sirtinol. Black-Right-Pointing-Pointer Cambinol and sirtinol decreased lipopolysaccharide-induced cytokines. Black-Right-Pointing-Pointer Cambinol decreased NF-{kappa}B activity but had no impact on p38 MAPK activation. Black-Right-Pointing-Pointer Sirtuins are an interesting target for the treatment of inflammatory diseases. -- Abstract: In several inflammatory conditions such as rheumatoid arthritis or sepsis, the regulatory mechanisms of inflammation are inefficient and the excessive inflammatory response leads to damage to the host. Sirtuins are class III histone deacetylases that modulate the activity of several transcription factors that are implicated in immune responses. In this study, we evaluated the impact ofmore » sirtuin inhibition on the activation of lipopolysaccharide (LPS)-stimulated J774 macrophages by assessing the production of inflammatory cytokines. The pharmacologic inhibition of sirtuins decreased the production of tumour necrosis factor-alpha (TNF-{alpha}) interleukin 6 (IL-6) and Rantes. The reduction of cytokine production was associated with decreased nuclear factor kappa B (NF-{kappa}B) activity and inhibitor kappa B alpha (I{kappa}B{alpha}) phosphorylation while no impact was observed on the phosphorylation status of p38 mitogen-activated kinase (p38 MAPK). This work shows that sirtuin pharmacologic inhibitors are a promising tool for the treatment of inflammatory conditions.« less

  3. Lactobacillus acidophilus Induces Cytokine and Chemokine Production via NF-κB and p38 Mitogen-Activated Protein Kinase Signaling Pathways in Intestinal Epithelial Cells

    PubMed Central

    Lü, Xuena; Man, Chaoxin; Han, Linlin; Shan, Yi; Qu, Xingguang; Liu, Ying; Yang, Shiqin; Xue, Yuqing; Zhang, Yinghua

    2012-01-01

    Intestinal epithelial cells can respond to certain bacteria by producing an array of cytokines and chemokines which are associated with host immune responses. Lactobacillus acidophilus NCFM is a characterized probiotic, originally isolated from human feces. This study aimed to test the ability of L. acidophilus NCFM to stimulate cytokine and chemokine production in intestinal epithelial cells and to elucidate the mechanisms involved in their upregulation. In experiments using intestinal epithelial cell lines and mouse models, we observed that L. acidophilus NCFM could rapidly but transiently upregulate a number of effector genes encoding cytokines and chemokines such as interleukin 1α (IL-1α), IL-1β, CCL2, and CCL20 and that cytokines showed lower expression levels with L. acidophilus NCFM treatment than chemokines. Moreover, L. acidophilus NCFM could activate a pathogen-associated molecular pattern receptor, Toll-like receptor 2 (TLR2), in intestinal epithelial cell lines. The phosphorylation of NF-κB p65 and p38 mitogen-activated protein kinase (MAPK) in intestinal epithelial cell lines was also enhanced by L. acidophilus NCFM. Furthermore, inhibitors of NF-κB (pyrrolidine dithiocarbamate [PDTC]) and p38 MAPK (SB203580) significantly reduced cytokine and chemokine production in the intestinal epithelial cell lines stimulated by L. acidophilus NCFM, suggesting that both NF-κB and p38 MAPK signaling pathways were important for the production of cytokines and chemokines induced by L. acidophilus NCFM. PMID:22357649

  4. Cytokine production as a putative biological mechanism underlying stress sensitization in high combat exposed soldiers.

    PubMed

    Smid, Geert E; van Zuiden, Mirjam; Geuze, Elbert; Kavelaars, Annemieke; Heijnen, Cobi J; Vermetten, Eric

    2015-01-01

    Combat stress exposed soldiers may respond to post-deployment stressful life events (SLE) with increases in symptoms of posttraumatic stress disorder (PTSD), consistent with a model of stress sensitization. Several lines of research point to sensitization as a model to describe the relations between exposure to traumatic events, subsequent SLE, and symptoms of PTSD. Based on previous findings we hypothesized that immune activation, measured as a high in vitro capacity of leukocytes to produce cytokines upon stimulation, underlies stress sensitization. We assessed mitogen-induced cytokine production at 1 month, SLE at 1 year, and PTSD symptoms from 1 month up to 2 years post-deployment in soldiers returned from deployment to Afghanistan (N=693). Exploratory structural equation modeling as well as latent growth models were applied. The data demonstrated significant three-way interaction effects of combat stress exposure, cytokine production, and post-deployment SLE on linear change in PTSD symptoms over the first 2 years following return from deployment. In soldiers reporting high combat stress exposure, both high mitogen-stimulated T-cell cytokine production and high innate cytokine production were associated with increases in PTSD symptoms in response to post-deployment SLE. In low combat stress exposed soldiers as well as those with low cytokine production, post-deployment SLE were not associated with increases in PTSD symptoms. High stimulated T-cell and innate cytokine production may contribute to stress sensitization in recently deployed, high combat stress exposed soldiers. These findings suggest that detecting and eventually normalizing immune activation may potentially complement future strategies to prevent progression of PTSD symptoms following return from deployment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Degalactosylated/Desialylated Bovine Colostrum Induces Macrophage Phagocytic Activity Independently of Inflammatory Cytokine Production.

    PubMed

    Uto, Yoshihiro; Kawai, Tomohito; Sasaki, Toshihide; Hamada, Ken; Yamada, Hisatsugu; Kuchiike, Daisuke; Kubo, Kentaro; Inui, Toshio; Mette, Martin; Tokunaga, Ken; Hayakawa, Akio; Go, Akiteru; Oosaki, Tomohiro

    2015-08-01

    Colostrum contains antibodies, such as immunoglobulin G (IgG), immunoglobulin A (IgA) and immunoglobulin M (IgM), and, therefore, has potent immunomodulating activity. In particular, IgA has an O-linked sugar chain similar to that in the group-specific component (Gc) protein, a precursor of the Gc protein-derived macrophage-activating factor (GcMAF). In the present study, we investigated the macrophage-activating effects of degalactosylated/desialylated bovine colostrum. We detected the positive band in degalactosylated/ desialylated bovine colostrum by western blotting using Helix pomatia agglutinin lectin. We also found that degalactosylated/ desialylated bovine colostrum could significantly enhance the phagocytic activity of mouse peritoneal macrophages in vitro and of intestinal macrophages in vivo. Besides, degalactosylated/desialylated bovine colostrum did not mediate the production of inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). Similar to the use of GcMAF, degalactosylated/desialylated bovine colostrum can be used as a potential macrophage activator for various immunotherapies. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  6. Paeonia japonica, Houttuynia cordata, and Aster scaber water extracts induce nitric oxide and cytokine production by lipopolysaccharide-activated macrophages.

    PubMed

    Kim, Jin; Park, Chang-Shin; Lim, Yunsook; Kim, Hyun-Sook

    2009-04-01

    Natural products are increasingly recognized as potential targets for drug discovery and development. We previously reported that Paeonia japonica, Houttuynia cordata, and Aster scaber enhanced macrophage activation both in vitro and in vivo. In the present study we investigated the immunomodulating effects of these plants on lipopolysacharide (LPS)-stimulated macrophages. An aqueous extract of each plant was administered to female BALB/c mice every other day for 4 weeks. Peritoneal macrophages were then collected and incubated to examine the immunoreactivity of macrophages against LPS at different time points. The expression levels of inducible nitric oxide (NO) synthetase (iNOS), cyclooxygenase (COX)-2, and inhibitory factor kappaB alpha (IkappaBalpha) proteins and the production of NO metabolite (nitrite), prostaglandin (PG) E(2), and the pro-inflammatory cytokines interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha were determined in the activated macrophages treated with extracts from each plant individually or combined. High levels of pro-inflammatory cytokines were produced by A. scaber-, P. japonica-, and H. cordata-treated macrophages following 24 hours of LPS stimulation. P. japonica, H. cordata, and A. scaber treatment also induced the production of nitrate by LPS-treated macrophages. Induction of iNOS mRNA and protein was also different in each group. PGE(2) secretion was up-regulated by all extract-treated macrophages at early time points; however, no significant differences were observed between the groups by 8 hours post-LPS stimulation. Treatment with A. scaber extract resulted in the highest levels of IkappaBalpha degradation. Our findings illustrate that the natural plant products P. japonica, H. cordata, and A. scaber may enhance immune function by modulating ex vivo pro-inflammatory cytokine and NO production as well as the expression of iNOS and COX-2.

  7. Diclofenac enhances proinflammatory cytokine-induced nitric oxide production through NF-{kappa}B signaling in cultured astrocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kakita, Hiroki; Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601; Department of Neonatology, Aichi Human Service Center Central Hospital, 713-8 Kamiya-Cho, Kasugai 480-0392

    2009-07-01

    Recently, the number of reports of encephalitis/encephalopathy associated with influenza virus has increased. In addition, the use of a non-steroidal anti-inflammatory drug, diclofenac sodium (DCF), is associated with a significant increase in the mortality rate of influenza-associated encephalopathy. Activated astrocytes are a source of nitric oxide (NO), which is largely produced by inducible NO synthase (iNOS) in response to proinflammatory cytokines. Therefore, we investigated whether DCF enhances nitric oxide production in astrocytes stimulated with proinflammatory cytokines. We stimulated cultured rat astrocytes with three cytokines, interleukin-1{beta}, tumor necrosis factor-{alpha} and interferon-{gamma}, and then treated the astrocytes with DCF or acetaminophen (N-acetyl-p-aminophenol:more » APAP). iNOS and NO production in astrocyte cultures were induced by proinflammatory cytokines. The addition of DCF augmented NO production, but the addition of APAP did not. NF-{kappa}B inhibitors SN50 and MG132 inhibited iNOS gene expression in cytokine-stimulated astrocytes with or without DCF. Similarly, NF-{kappa}B p65 Stealth small interfering RNA suppressed iNOS gene expression in cytokine-stimulated astrocytes with or without DCF. LDH activity and DAPI staining showed that DCF induces cell damage in cytokine-stimulated astrocytes. An iNOS inhibitor, L-NMMA, inhibited the cytokine- and DCF-induced cell damage. In conclusion, this study demonstrates that iNOS and NO are induced in astrocyte cultures by proinflammatory cytokines. Addition of DCF further augments NO production. This effect is mediated via NF-{kappa}B signaling and leads to cell damage. The enhancement of DCF on NO production may explain the significant increase in the mortality rate of influenza-associated encephalopathy in patients treated with DCF.« less

  8. Differential effect of Coriolus versicolor (Yunzhi) extract on cytokine production by murine lymphocytes in vitro.

    PubMed

    Ho, C Y; Lau, Clara B S; Kim, C F; Leung, K N; Fung, K P; Tse, T F; Chan, Helen H L; Chow, Moses S S

    2004-11-01

    Being one of the commonly used Chinese medicinal herbs, Coriolus versicolor (CV), also named as Yunzhi, was known to possess both anti-tumor and immunopotentiating activities. The present study aimed to investigate the in vitro immunomodulatory effect of a standardized ethanol-water extract prepared from CV on the proliferation of murine splenic lymphocytes using the MTT assay, and the production of six T helper (Th)-related cytokines using the enzyme-linked immunosorbent assay (ELISA) technique. The results showed that the CV extract significantly augmented the proliferation of murine splenic lymphocytes in a time- and dose-dependent manner, maximally by 2.4-fold. Moreover, the production of two Th1-related cytokines, including interleukin (IL)-2 and IL-12, in culture supernatants from the CV extract-activated lymphocytes was prominently upregulated at 48 and 72 h. Positive correlations were found between the levels of these two cytokines and the MTT-based proliferative response. In contrast, the production of two other Th1-related cytokines, including interferon (IFN)-gamma and IL-18, was significantly augmented only at 24 h, but not at 48 and 72 h. On the other hand, the levels of two Th2-related cytokines such as IL-4 and IL-6 were undetectable in the culture supernatants of lymphocytes treated with the CV extract. The CV extract was suggested to be a lymphocyte mitogen by differentially enhancing the production of Th1-related cytokines.

  9. Upregulated LINE-1 Activity in the Fanconi Anemia Cancer Susceptibility Syndrome Leads to Spontaneous Pro-inflammatory Cytokine Production.

    PubMed

    Brégnard, Christelle; Guerra, Jessica; Déjardin, Stéphanie; Passalacqua, Frank; Benkirane, Monsef; Laguette, Nadine

    2016-06-01

    Fanconi Anemia (FA) is a genetic disorder characterized by elevated cancer susceptibility and pro-inflammatory cytokine production. Using SLX4(FANCP) deficiency as a working model, we questioned the trigger for chronic inflammation in FA. We found that absence of SLX4 caused cytoplasmic DNA accumulation, including sequences deriving from active Long INterspersed Element-1 (LINE-1), triggering the cGAS-STING pathway to elicit interferon (IFN) expression. In agreement, absence of SLX4 leads to upregulated LINE-1 retrotransposition. Importantly, similar results were obtained with the FANCD2 upstream activator of SLX4. Furthermore, treatment of FA cells with the Tenofovir reverse transcriptase inhibitor (RTi), that prevents endogenous retrotransposition, decreased both accumulation of cytoplasmic DNA and pro-inflammatory signaling. Collectively, our data suggest a contribution of endogenous RT activities to the generation of immunogenic cytoplasmic nucleic acids responsible for inflammation in FA. The additional observation that RTi decreased pro-inflammatory cytokine production induced by DNA replication stress-inducing drugs further demonstrates the contribution of endogenous RTs to sustaining chronic inflammation. Altogether, our data open perspectives in the prevention of adverse effects of chronic inflammation in tumorigenesis. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Progesterone and estradiol exert an inhibitory effect on the production of anti-inflammatory cytokine IL-10 by activated MZ B cells.

    PubMed

    Bommer, I; Muzzio, D O; Zygmunt, M; Jensen, F

    2016-08-01

    The main message of this work is the fact that female sex hormones, progesterone and estradiol, whose levels significantly rise during pregnancy, inhibit the production of anti-inflammatory cytokine IL-10 with no apparent effect on pro-inflammatory cytokine TNF-α by activated MZ B cells. This is an important piece of information and helps to better understand how the maternal immune system controls the balance between immune tolerance and immune activation during pregnancy leading to the simultaneously acceptance of the semi-allogeneic fetus and the proper defense of the mother against pathogens during this critical period of time. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Oral administration of Saccharomyces boulardii alters duodenal morphology, enzymatic activity and cytokine production response in broiler chickens.

    PubMed

    Sun, Yajing; Rajput, Imran Rashid; Arain, Muhammad Asif; Li, Yanfei; Baloch, Dost Muhammad

    2017-08-01

    The present study evaluated the effects of Saccharomyces boulardii on duodenal digestive enzymes, morphology and cytokine induction response in broiler chicken. A total of 200 birds were allotted into two groups (n = 100) and each group divided into five replications (n = 20). The control group was fed basal diet in addition to antibiotic (virginiamycin 20 mg/kg), and treatment group received (1 × 10 8  colony-forming units/kg feed) S. boulardii in addition to basal diet lasting for 72 days. The results compared to control group revealed that adenosine triphosphatase, gamma glutamyl transpeptidase, lipase and trypsin activities were higher, while, no significant improvement was observed in amylase activities in the duodenum of the treatment group. Moreover, morphological findings showed that villus height, width and number of goblet cells markedly increased. Additionally, transmission electron microscopy visualized that villus height, width and structural condensation significantly increased in the treatment group. The immunohistological observations showed increased numbers of immunoglobulin A (IgA)-positive cells in the duodenum of the treatment group. Meanwhile, cytokine production levels of tumor necrosis factor-α, interleukin (IL)-10, transforming growth factor-β and secretory IgA markedly increased, and IL-6 statistically remained unchanged as compared to the control group. These findings illustrated that initial contact of S. boulardii to the duodenum has significant impact in improving enzymatic activity, intestinal morphology and cytokine response in broiler chicken. © 2016 Japanese Society of Animal Science.

  12. Inhibitory effects of diallyl disulfide on the production of inflammatory mediators and cytokines in lipopolysaccharide-activated BV2 microglia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Hye Young; Department of Pharmacy, Pusan National University, Busan 609-735; Kim, Nam Deuk

    2012-07-15

    Diallyl disulfide (DADS), a main organosulfur component responsible for the diverse biological effects of garlic, displays a wide variety of internal biological activities. However, the cellular and molecular mechanisms underlying DADS' anti-inflammatory activity remain poorly understood. In this study, therefore, the anti-inflammatory effects of DADS were studied to investigate its potential therapeutic effects in lipopolysaccharide (LPS)-stimulated BV2 microglia. We found that pretreatment with DADS prior to treatment with LPS significantly inhibited excessive production of nitric oxide (NO) and prostaglandin E{sub 2} (PGE{sub 2}) in a dose-dependent manner. The inhibition was associated with down-regulation of inducible nitric oxide synthase (iNOS) andmore » cyclooxygenase-2 (COX-2) expression. DADS also attenuated the production of pro-inflammatory cytokines and chemokines, including interleukin-1β (IL-1β), tumor necrosis factor (TNF)-α, and monocyte chemoattractant protein-1 (MCP-1) by suppressing the expression of mRNAs for these proteins. The mechanism underlying this protective effect might be related to the inhibition of nuclear factor-kappaB, Akt and mitogen-activated protein kinase signaling pathway activation in LPS-stimulated microglial cells. These findings indicated that DADS is potentially a novel therapeutic candidate for the treatment of various neurodegenerative diseases. -- Highlights: ► DADS attenuates production of NO and PGE2 in LPS-activated BV2 microglia. ► DADS downregulates levels of iNOS and COX-2. ► DADS inhibits production and expression of inflammatory cytokines and chemokine. ► DADS exhibits these effects by suppression of NF-κB, PI3K/Akt and MAPKs pathways.« less

  13. Fenoterol inhibits LPS-induced AMPK activation and inflammatory cytokine production through β-arrestin-2 in THP-1 cell line.

    PubMed

    Wang, Wei; Zhang, Yuan; Xu, Ming; Zhang, You-Yi; He, Bei

    2015-06-26

    The AMP-activated protein kinase (AMPK) pathway is involved in regulating inflammation in several cell lines. We reported that fenoterol, a β2-adrenergic receptor (β2-AR) agonist, had anti-inflammatory effects in THP-1 cells, a monocytic cell line. Whether the fenoterol anti-inflammatory effect involves the AMPK pathway is unknown. In this study, we explored the mechanism of β2-AR stimulation with fenoterol in a lipopolysaccharide (LPS)-induced inflammatory cytokine secretion in THP-1 cells. We studied whether fenoterol and β-arrestin-2 or AMPKα1 subunit knockdown could affect LPS-induced AMPK activation, nuclear factor-kappa B (NF-κB) activation and inflammatory cytokine secretion. LPS-induced AMPK activation and interleukin 1β (IL-1β) release were reduced with fenoterol pretreatment of THP-1 cells. SiRNA knockdown of β-arrestin-2 abolished the fenoterol inhibition of LPS-induced AMPK activation and interleukin 1β (IL-1β) release, thus β-arrestin-2 mediated the anti-inflammatory effects of fenoterol on LPS-treated THP-1 cells. In addition, siRNA knockdown of AMPKα1 significantly attenuated the LPS-induced NF-κB activation and IL-1β release, so AMPKα1 was a key signaling molecule involved in LPS-induced inflammatory cytokine production. These results suggested the β2-AR agonist fenoterol inhibited LPS-induced AMPK activation and IL-1β release via β-arrestin-2 in THP-1 cells. The exploration of these mechanisms may help optimize therapeutic agents targeting these pathways in inflammatory diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Cytokine activation induces human memory-like NK cells.

    PubMed

    Romee, Rizwan; Schneider, Stephanie E; Leong, Jeffrey W; Chase, Julie M; Keppel, Catherine R; Sullivan, Ryan P; Cooper, Megan A; Fehniger, Todd A

    2012-12-06

    Natural killer (NK) cells are lymphocytes that play an important role in the immune response to infection and malignancy. Recent studies in mice have shown that stimulation of NK cells with cytokines or in the context of a viral infection results in memory-like properties. We hypothesized that human NK cells exhibit such memory-like properties with an enhanced recall response after cytokine preactivation. In the present study, we show that human NK cells preactivated briefly with cytokine combinations including IL-12, IL-15, and IL-18 followed by a 7- to 21-day rest have enhanced IFN-γ production after restimulation with IL-12 + IL-15, IL-12 + IL-18, or K562 leukemia cells. This memory-like phenotype was retained in proliferating NK cells. In CD56(dim) NK cells, the memory-like IFN-γ response was correlated with the expression of CD94, NKG2A, NKG2C, and CD69 and a lack of CD57 and KIR. Therefore, human NK cells have functional memory-like properties after cytokine activation, which provides a novel rationale for integrating preactivation with combinations of IL-12, IL-15, and IL-18 into NK cell immunotherapy strategies.

  15. Sulfasalazine and Mesalamine Modulate Beryllium-Specific Lymphocyte Proliferation and Inflammatory Cytokine Production

    PubMed Central

    Dobis, Dave R.; Sawyer, Richard T.; Gillespie, May M.; Newman, Lee S.; Maier, Lisa A.; Day, Brian J.

    2010-01-01

    Occupational exposure to beryllium (Be) results in Be sensitization (BeS) that can progress to pulmonary granulomatous inflammation associated with chronic Be disease (CBD). Be-specific lymphocytes are present in the blood of patients with BeS and in the blood and lungs of patients with CBD. Sulfasalazine and its active metabolite, mesalamine, are clinically used to ameliorate chronic inflammation associated with inflammatory bowel disease. We tested whether sulfasalazine or mesalamine could decrease Be-stimulated peripheral blood mononuclear cell (PBMC) proliferation in subjects with CBD and BeS and Be-induced cytokine production in CBD bronchoalveolar lavage (BAL) cells. CBD (n = 25), BeS (n = 12) and healthy normal control (n = 6) subjects were enrolled and ex vivo proliferation and cytokine production were assessed in the presence of Be and sulfasalazine or mesalamine. Be-stimulated PBMC proliferation was inhibited by treatment with either sulfasalazine or mesalamine. Be-stimulated CBD BAL cell IFN-γ and TNF-α cytokine production was decreased by treatment with sulfasalazine or mesalamine. Our data suggest that both sulfasalazine and mesalamine interfere with Be-stimulated PBMC proliferation in CBD and BeS and dampens Be-stimulated CBD BAL cell proinflammatory cytokine production. These studies demonstrate that sulfasalazine and mesalamine can disrupt inflammatory pathways critical to the pathogenesis of chronic granulomatous inflammation in CBD, and may serve as novel therapy for human granulomatous lung diseases. PMID:19901345

  16. Sulfasalazine and mesalamine modulate beryllium-specific lymphocyte proliferation and inflammatory cytokine production.

    PubMed

    Dobis, Dave R; Sawyer, Richard T; Gillespie, May M; Newman, Lee S; Maier, Lisa A; Day, Brian J

    2010-10-01

    Occupational exposure to beryllium (Be) results in Be sensitization (BeS) that can progress to pulmonary granulomatous inflammation associated with chronic Be disease (CBD). Be-specific lymphocytes are present in the blood of patients with BeS and in the blood and lungs of patients with CBD. Sulfasalazine and its active metabolite, mesalamine, are clinically used to ameliorate chronic inflammation associated with inflammatory bowel disease. We tested whether sulfasalazine or mesalamine could decrease Be-stimulated peripheral blood mononuclear cell (PBMC) proliferation in subjects with CBD and BeS and Be-induced cytokine production in CBD bronchoalveolar lavage (BAL) cells. CBD (n = 25), BeS (n = 12) and healthy normal control (n = 6) subjects were enrolled and ex vivo proliferation and cytokine production were assessed in the presence of Be and sulfasalazine or mesalamine. Be-stimulated PBMC proliferation was inhibited by treatment with either sulfasalazine or mesalamine. Be-stimulated CBD BAL cell IFN-γ and TNF-α cytokine production was decreased by treatment with sulfasalazine or mesalamine. Our data suggest that both sulfasalazine and mesalamine interfere with Be-stimulated PBMC proliferation in CBD and BeS and dampens Be-stimulated CBD BAL cell proinflammatory cytokine production. These studies demonstrate that sulfasalazine and mesalamine can disrupt inflammatory pathways critical to the pathogenesis of chronic granulomatous inflammation in CBD, and may serve as novel therapy for human granulomatous lung diseases.

  17. Cytokine production in peripheral blood cells of patients with differentiated thyroid cancer: elevated Th2/Th9 cytokine production before and reduced Th2 cytokine production after radioactive iodine therapy.

    PubMed

    Simonovic, Snezana Zivancevic; Mihaljevic, Olgica; Majstorovic, Ivana; Djurdjevic, Predrag; Kostic, Irena; Djordjevic, Olivera Milosevic; Teodorovic, Ljiljana Mijatovic

    2015-01-01

    Cytokines play a key role in the regulation of cells of the immune system and also have been implicated in the pathogenesis of malignant diseases. The aim of this study was to evaluate cytokine profiles in patients with differentiated thyroid cancer (DTC) before and 7 days after radioactive iodine (131-I) therapy. Cytokine levels were determined in supernatants obtained from phytohemagglutinin-stimulated whole blood cultures of 13 patients with DTC and 13 control subjects. The concentrations of selected cytokines: Th1-interferon gamma (IFN-γ), interleukin 2 (IL-2) and tumor necrosis factor alpha (TNF-α); Th2-interleukin 4 (IL-4), interleukin 5 (IL-5), interleukin 13 (IL-13) and interleukin 10 (IL-10); Th9-interleukin-9 (IL-9); and Th17-interleukin 17 (IL-17A) were measured using multiplex cytokine detection systems for Human Th1/Th2/Th9/Th17/Th22. We have shown that peripheral blood cells of DTC patients produce significantly higher concentrations of Th2/Th9 cytokines (IL-5, IL-13 and IL-9) than control subjects. The 131-I therapy led to reduced secretion of Th2 cytokines (IL-4, IL-5 and IL-13). Despite this, the calculated cytokine ratios (Th1/Th2) in DTC patients before and 7 days after 131-I therapy were not different from those in healthy subjects. DTC patients have significantly higher concentrations of Th2/Th9 cytokines (IL-5, IL-13 and IL-9) than control subjects. There is no influence of hypothyroidism or stage of disease on cytokine production in DTC patients before 131-I therapy. The radioactive 131-I therapy leads to reduced secretion of Th2 cytokines (IL-4, IL-5 and IL-13). Additional studies are needed to determine the significance of these findings.

  18. T-cell immunity and cytokine production in cosmonauts after long-duration space flights

    NASA Astrophysics Data System (ADS)

    Morukov, B.; Rykova, M.; Antropova, E.; Berendeeva, T.; Ponomaryov, S.; Larina, I.

    2011-04-01

    Long-duration spaceflight effects on T-cell immunity and cytokine production were studied in 12 Russian cosmonauts flown onto the International Space Station. Specific assays were performed before launch and after landing and included analysis of peripheral leukocyte distribution, analysis of T-cell phenotype, expression of activation markers, apoptosis, proliferation of T cells in response to a mitogen, concentrations of cytokines in supernatants of cell cultures. Statistically significant increase was observed in leukocytes', lymphocytes', monocytes' and granulocytes' total number, increase in percentage and absolutely number of CD3 +CD4 +-cells, CD4 +CD45RA +-cells and CD4 +CD45RA +/CD4 +CD45RО + ratio, CD4 +CD25 +Bright regulatory cells ( p<0,05) in peripheral blood after landing. T-lymphocytes' capacity to present CD69 and CD25 on its own surfaces was increased for the majority of crewmembers. Analysis of T-cell response to PHA-stimulation in vitro revealed there were some trends toward reduced proliferation of stimulated T-lymphocytes. There was an apparent post flight decrease in secreted IFN-g for the majority of crewmembers and in most instances there was elevation in secreted IL-10. It revealed depression of IFN-g/IL-10 ratio after flight. Correlation analysis according to Spearman's rank correlation test established significant positive correlations ( p<0.05) between cytokine production and T-cell activation (CD25+, CD38+) and negative correlation ( p<0.05) between cytokine production and number of bulk memory CD4+T-cells (CD45RO+). Thus, these results suggest that T-cell dysfunction can be conditioned by cytokine dysbalance and could lead to development of disease after long-duration space flights.

  19. The PPE18 protein of Mycobacterium tuberculosis inhibits NF-κB/rel-mediated proinflammatory cytokine production by upregulating and phosphorylating suppressor of cytokine signaling 3 protein.

    PubMed

    Nair, Shiny; Pandey, Akhilesh Datt; Mukhopadhyay, Sangita

    2011-05-01

    Mycobacterium tuberculosis bacteria are known to suppress proinflammatory cytokines like IL-12 and TNF-α for a biased Th2 response that favors a successful infection and its subsequent intracellular survival. However, the signaling pathways targeted by the bacilli to inhibit production of these cytokines are not fully understood. In this study, we demonstrate that the PPE18 protein of M. tuberculosis inhibits LPS-induced IL-12 and TNF-α production by blocking nuclear translocation of p50, p65 NF-κB, and c-rel transcription factors. We found that PPE18 upregulates the expression as well as tyrosine phosphorylation of suppressor of cytokine signaling 3 (SOCS3), and the phosphorylated SOCS3 physically interacts with IκBα-NF-κB/rel complex, inhibiting phosphorylation of IκBα at the serine 32/36 residues by IκB kinase-β, and thereby prevents nuclear translocation of the NF-κB/rel subunits in LPS-activated macrophages. Specific knockdown of SOCS3 by small interfering RNA enhanced IκBα phosphorylation, leading to increased nuclear levels of NF-κB/rel transcription factors vis-a-vis IL-12 p40 and TNF-α production in macrophages cotreated with PPE18 and LPS. The PPE18 protein did not affect the IκB kinase-β activity. Our study describes a novel mechanism by which phosphorylated SOCS3 inhibits NF-κB activation by masking the phosphorylation site of IκBα. Also, this study highlights the possible mechanisms by which the M. tuberculosis suppresses production of proinflammatory cytokines using PPE18.

  20. Herbal medicine IMOD suppresses LPS-induced production of proinflammatory cytokines in human dendritic cells

    PubMed Central

    Mirzaee, Saeedeh; Drewniak, Agata; Sarrami-Forooshani, Ramin; Kaptein, Tanja M.; Gharibdoost, Farhad; Geijtenbeek, Teunis B. H.

    2015-01-01

    Traditional medicines that stimulate or modulate the immune system can be used as innovative approaches to treat immunological diseases. The herbal medicine IMOD has been shown to strongly modulate immune responses in several animal studies as well as in clinical trials. However, little is known about the mechanisms of IMOD to modulate immunity. Here we have investigated whether IMOD modulates the immunological function of human dendritic cells (DCs). IMOD alone did not induce DC maturation nor production of cytokines. Notably, IMOD decreased the production of pro-inflammatory cytokines IL-6, IL-12 p70, and TNFα by LPS-activated DCs at both mRNA and protein levels in a dose dependent manner. In contrast, treatment with IMOD did not affect LPS induced-production of the anti-inflammatory cytokine IL-10. Furthermore, IMOD inhibited T cell activation/proliferation by LPS-treated DCs and skewed T-cells responses toward the T helper type 2 polarization. These data strongly indicate that IMOD has a potent immunomodulatory ability that affects TLR signaling and thereby modulates DC function. Insight into the immunomodulatory effect of herbal medicine IMOD may provide innovative strategies to affect the immune system and to help combat various diseases. PMID:25870561

  1. [Activation of peripheral T lymphocytes in children with epilepsy and production of cytokines].

    PubMed

    Yang, Jie; Hu, Chongkang; Jiang, Xun

    2016-09-01

    Objective To study the state of peripheral T lymphocytes and cytokine levels in children with epilepsy. Methods Twenty children with epilepsy and 20 healthy age-matched children were recruited and their peripheral blood was collected. The activation of T lymphocytes was evaluated by detecting the expressions of CD25, CD69 and cytotoxic T lymphocyte-assicated antigen 4 (CTLA4). The function of T lymphocytes was evaluated by detecting the expressions of interferon γ (IFN-γ), tumor necrosis factor α (TNF-α), IL-17A and IL-6. The activation of regulatory T cells (Tregs) was evaluated by detecting the expression of IL-10. Results Children with epilepsy had higher expressions of CD25, CD69 and CTLA-4 in T lymphocytes than the controls did. The expressions of IFN-γ, TNF-α, IL-17A and IL-6 in T lymphocytes of children with epilepsy were higher than those of the controls. Frequency of Tregs producing IL-10 was higher in children with epilepsy as compared with the controls. Conclusion Peripheral T lymphocytes of children with epilepsy are activated and produce cytokines.

  2. Investigation of Macrophage Differentiation and Cytokine Production in an Undergraduate Immunology Laboratory

    ERIC Educational Resources Information Center

    Berkes, Charlotte; Chan, Leo Li-Ying

    2015-01-01

    We have developed a semester-long laboratory project for an undergraduate immunology course in which students study multiple aspects of macrophage biology including differentiation from progenitors in the bone marrow, activation upon stimulation with microbial ligands, expression of cell surface markers, and modulation of cytokine production. In…

  3. The role of JAK-3 in regulating TLR-mediated inflammatory cytokine production in innate immune cells.

    PubMed

    Wang, Huizhi; Brown, Jonathan; Gao, Shegan; Liang, Shuang; Jotwani, Ravi; Zhou, Huaxin; Suttles, Jill; Scott, David A; Lamont, Richard J

    2013-08-01

    The role of JAK-3 in TLR-mediated innate immune responses is poorly understood, although the suppressive function of JAK3 inhibition in adaptive immune response has been well studied. In this study, we found that JAK3 inhibition enhanced TLR-mediated immune responses by differentially regulating pro- and anti- inflammatory cytokine production in innate immune cells. Specifically, JAK3 inhibition by pharmacological inhibitors or specific small interfering RNA or JAK3 gene knockout resulted in an increase in TLR-mediated production of proinflammatory cytokines while concurrently decreasing the production of IL-10. Inhibition of JAK3 suppressed phosphorylation of PI3K downstream effectors including Akt, mammalian target of rapamycin complex 1, glycogen synthase kinase 3β (GSK3β), and CREB. Constitutive activation of Akt or inhibition of GSK3β abrogated the capability of JAK3 inhibition to enhance proinflammatory cytokines and suppress IL-10 production. In contrast, inhibition of PI3K enhanced this regulatory ability of JAK3 in LPS-stimulated monocytes. At the transcriptional level, JAK3 knockout lead to the increased phosphorylation of STATs that could be attenuated by neutralization of de novo inflammatory cytokines. JAK3 inhibition exhibited a GSK3 activity-dependent ability to enhance phosphorylation levels and DNA binding of NF-κB p65. Moreover, JAK3 inhibition correlated with an increased CD4(+) T cell response. Additionally, higher neutrophil infiltration, IL-17 expression, and intestinal epithelium erosion were observed in JAK3 knockout mice. These findings demonstrate the negative regulatory function of JAK3 and elucidate the signaling pathway by which JAK3 differentially regulates TLR-mediated inflammatory cytokine production in innate immune cells.

  4. Inhibition of early T cell cytokine production by arsenic trioxide occurs independently of Nrf2.

    PubMed

    VanDenBerg, Kelly R; Freeborn, Robert A; Liu, Sheng; Kennedy, Rebekah C; Zagorski, Joseph W; Rockwell, Cheryl E

    2017-01-01

    Nuclear factor erythroid 2-related factor 2 (Nrf2) is a stress-activated transcription factor that induces a variety of cytoprotective genes. Nrf2 also mediates immunosuppressive effects in multiple inflammatory models. Upon activation, Nrf2 dissociates from its repressor protein, Keap1, and translocates to the nucleus where it induces Nrf2 target genes. The Nrf2-Keap1 interaction is disrupted by the environmental toxicant and chemotherapeutic agent arsenic trioxide (ATO). The purpose of the present study was to determine the effects of ATO on early events of T cell activation and the role of Nrf2 in those effects. The Nrf2 target genes Hmox-1, Nqo-1, and Gclc were all upregulated by ATO (1-2 μM) in splenocytes derived from wild-type, but not Nrf2-null, mice, suggesting that Nrf2 is activated by ATO in splenocytes. ATO also inhibited IFNγ, IL-2, and GM-CSF mRNA and protein production in wild-type splenocytes activated with the T cell activator, anti-CD3/anti-CD28. However, ATO also decreased production of these cytokines in activated splenocytes from Nrf2-null mice, suggesting the inhibition is independent of Nrf2. Interestingly, ATO inhibited TNFα protein secretion, but not mRNA expression, in activated splenocytes suggesting the inhibition is due to post-transcriptional modification. In addition, c-Fos DNA binding was significantly diminished by ATO in wild-type and Nrf2-null splenocytes activated with anti-CD3/anti-CD28, consistent with the observed inhibition of cytokine production by ATO. Collectively, this study suggests that although ATO activates Nrf2 in splenocytes, inhibition of early T cell cytokine production by ATO occurs independently of Nrf2 and may instead be due to impaired AP-1 DNA binding.

  5. Cytokines and autoimmunity.

    PubMed Central

    Cavallo, M G; Pozzilli, P; Thorpe, R

    1994-01-01

    Although the immunopathology of most autoimmune diseases has been well defined, the mechanisms responsible for the breakdown of self-tolerance and which lead to the development of systemic and organ-specific autoaggression are still unclear. Evidence has accumulated which supports a role for a disregulated production of cytokines by leucocytes and possibly other cells in the pathogenesis of some autoimmune diseases. However, due to the complexity and heterogeneity of cytokine effects in the regulation of the immune response, it is difficult to determine whether abnormalities in the patterns of cytokine production are primary or secondary to the pathological process. Confusion is also caused by the fact that the biological activities of cytokines are multiple and often overlapping, and consequently it is difficult to focus on a unique effect of any one cytokine. Characterization of the potential and actual involvement of cytokines is important not only for a better understanding of the pathogenesis of autoimmune conditions, but particularly because of the implications for the development of immunotherapeutic strategies for the prevention and treatment of the diseases. PMID:8149655

  6. Early-shared Mycobacterium bovis bacillus Calmette-Guérin sub-strains induce Th1 cytokine production in vivo.

    PubMed

    Taniguchi, Keiichi; Miyatake, Yuuji; Hayashi, Daisuke; Takami, Atsuro; Itoh, Saotomo; Yamamoto, Saburo; Hida, Shigeaki; Onozaki, Kikuo; Takii, Takemasa

    2015-11-01

    Interleukin-12 is one of the cytokines that induce acquired immunity by progressing the differentiation of T cells. When antigens are presented by APCs, including macrophages and DCs, T cells are activated and produce the Th1 cytokines IL-2 and IFN-γ. We have previously reported greater IL-12 production from macrophages infected with early-shared BCG sub-strains (ex. BCG-Japan, -Sweden) than from those infected with late-shared BCG (ex. BCG-Pasteur and -Connaught) . In this study, we investigated the Th1 cytokine-inducing activity of splenocytes co-cultured with BCG-infected DCs. Early-shared BCG-infected DCs produced IL-12 and TNF-α⋅ Furthermore, when they were co-cultured with purified protein derivative-stimulated DCs, the splenocytes of mice immunized with BCG-Tokyo/Japan produced more Th1 cytokine than did those of mice immunized with BCG-Connaught. In conclusion, early-shared BCG sub-strains more strongly induce Th1 cytokine production in vivo. This study provides basic information to inform the selection of candidates for primary vaccination. © 2015 The Societies and Wiley Publishing Asia Pty Ltd.

  7. [EFFECT OF LACTOBACILLI EXOPOLYSACCHARIDES ON PHAGOCYTE AND CYTOKINE ACTIVITY IN VITRO AND IN ANIMAL ORGANISM DURING INFECTIOUS PROCESS MODELING].

    PubMed

    Gorelnikova, E A; Karpunina, L V

    2015-01-01

    Study the effect of lactobacilli exopolysaccharides (EPS)on cytokine and phagocyte activity in vitro and in mice organism during modelling of an infectious process. Lactobacillus delbrueckii subsp. delbrueckii B-1596 (laksaran 1596), L. delbrueckii B-1936 (laksaran 1936) and L. delbrueckii ssp. bulgaricus (laksaran Z) were used in the study. EPS were administered into white mice 1 hour after the Staphylococcus aureus 209-P infection. Index of phagocyte completion and index of killing activation (IKA) were calculated during phagocyte activity study. IL-1α, TNF-α, IFN-γ and IL-4 cytokine content was determined in blood sera and macrophage supernatants. Laksaran 1596, 1936 and Z had ambiguous effect on cytokine production. Laksaran: Z and 1936, 6 hours after mice infection increased IL-1 content in blood sera. Laksaran Z had the most pronounced effect on macrophages, resulting in an increase of active macrophages, facilitating increased digestion of S. aureus 209-P and IKA increase, stimulated cytokine production. The results obtained allow to speak about a possibility of using laksaran Z as a prophylaxis immune modulating preparation for correction of animal cytokine status.

  8. Escherichia coli K1 inhibits proinflammatory cytokine induction in monocytes by preventing NF-kappaB activation.

    PubMed

    Selvaraj, Suresh K; Prasadarao, Nemani V

    2005-08-01

    Phagocytes are well-known effectors of the innate immune system to produce proinflammatory cytokines and chemokines such as tumor necrosis factor alpha (TNF-alpha), interleukin (IL)-1beta, and IL-8 during infections. Here, we show that infection of monocytes with wild-type Escherichia coli K1, which causes meningitis in neonates, suppresses the production of cytokines and chemokines (TNF-alpha, regulated on activation, normal T expressed and secreted, macrophage-inflammatory protein-1beta, IL-1beta, and IL-8). In contrast, infection of monocytes with a mutant E. coli, which lacks outer membrane protein A (OmpA- E. coli) resulted in robust production of cytokines and chemokines. Wild-type E. coli K1 (OmpA+ E. coli) prevented the phosphorylation and its degradation of inhibitor of kappaB, thereby blocking the translocation of nuclear factor (NF)-kappaB to the nucleus. OmpA+ E. coli-infected cells, subsequently subjected to lipopolysaccharide challenge, were crippled severely in their ability to activate NF-kappaB to induce cytokine/chemokine production. Selective inhibitors of the extracellular signal-regulated kinase (ERK) 1/2 pathway and p38 mitogen-activated protein kinase (MAPK), but not Jun N-terminal kinase, significantly reduced the activation of NF-kappaB and the production of cytokines and chemokines induced by OmpA- E. coli, indicating a role for these kinases in the NF-kappaB/cytokine pathway. It is interesting that the phosphorylation of ERK 1/2 and p38 MAPK was notably reduced in monocytes infected with OmpA+ E. coli when compared with monocytes infected with OmpA- E. coli, suggesting that the modulation of upstream events common for NF-kappaB and MAPKs by the bacterium is possible. The ability of OmpA+ E. coli K1 to inhibit the macrophage response temporarily may enable bacterial survival and growth within the host for the onset of meningitis by E. coli K1.

  9. Propolis modulates miRNAs involved in TLR-4 pathway, NF-κB activation, cytokine production and in the bactericidal activity of human dendritic cells.

    PubMed

    Conti, Bruno J; Santiago, Karina B; Cardoso, Eliza O; Freire, Paula P; Carvalho, Robson F; Golim, Marjorie A; Sforcin, José M

    2016-12-01

    Dendritic cells (DCs) are antigen-presenting cells, essential for recognition and presentation of pathogens to T cells. Propolis, a resinous material produced by bees from various plants, exhibits numerous biological properties, highlighting its immunomodulatory action. Here, we assayed the effects of propolis on the maturation and function of human DCs. DCs were generated from human monocytes and incubated with propolis and LPS. NF-κB and cytokines production were determined by ELISA. microRNA's expression was analysed by RT-qPCR and cell markers detection by flow cytometry. Colony-forming units were obtained to assess the bactericidal activity of propolis-treated DCs. Propolis activated DCs in the presence of LPS, inducing NF-kB, TNF-α, IL-6 and IL-10 production. The inhibition of hsa-miR-148a and hsa-miR-148b abolished the inhibitory effects on HLA-DR and pro-inflammatory cytokines. The increased expression of hsa-miR-155 may be correlated to the increase in TLR-4 and CD86 expression, maintaining LPS-induced expression of HLA-DR and CD40. Such parameters may be involved in the increased bactericidal activity of DCs against Streptococcus mutans. Propolis modulated the maturation and function of DCs and may be useful in the initial steps of the immune response, providing a novel approach to the development of DC-based strategies and for the discovery of new immunomodulators. © 2016 Royal Pharmaceutical Society.

  10. Production and function of cytokines in natural and acquired immunity to Candida albicans infection.

    PubMed Central

    Ashman, R B; Papadimitriou, J M

    1995-01-01

    Host resistance against infections caused by the yeast Candida albicans is mediated predominantly by polymorphonuclear leukocytes and macrophages. Antigens of Candida stimulate lymphocyte proliferation and cytokine synthesis, and in both humans and mice, these cytokines enhance the candidacidal functions of the phagocytic cells. In systemic candidiasis in mice, cytokine production has been found to be a function of the CD4+ T helper (Th) cells. The Th1 subset of these cells, characterized by the production of gamma interferon and interleukin-2, is associated with macrophage activation and enhanced resistance against reinfection, whereas the Th2 subset, which produces interleukins-4, -6, and -10, is linked to the development of chronic disease. However, other models have generated divergent data. Mucosal infection generally elicits Th1-type cytokine responses and protection from systemic challenge, and identification of cytokine mRNA present in infected tissues of mice that develop mild or severe lesions does not show pure Th1- or Th2-type responses. Furthermore, antigens of C. albicans, mannan in particular, can induce suppressor cells that modulate both specific and nonspecific cellular and humoral immune responses, and there is an emerging body of evidence that molecular mimicry may affect the efficiency of anti-Candida responses within defined genetic contexts. PMID:8531890

  11. Linking the Human Gut Microbiome to Inflammatory Cytokine Production Capacity.

    PubMed

    Schirmer, Melanie; Smeekens, Sanne P; Vlamakis, Hera; Jaeger, Martin; Oosting, Marije; Franzosa, Eric A; Ter Horst, Rob; Jansen, Trees; Jacobs, Liesbeth; Bonder, Marc Jan; Kurilshikov, Alexander; Fu, Jingyuan; Joosten, Leo A B; Zhernakova, Alexandra; Huttenhower, Curtis; Wijmenga, Cisca; Netea, Mihai G; Xavier, Ramnik J

    2016-11-03

    Gut microbial dysbioses are linked to aberrant immune responses, which are often accompanied by abnormal production of inflammatory cytokines. As part of the Human Functional Genomics Project (HFGP), we investigate how differences in composition and function of gut microbial communities may contribute to inter-individual variation in cytokine responses to microbial stimulations in healthy humans. We observe microbiome-cytokine interaction patterns that are stimulus specific, cytokine specific, and cytokine and stimulus specific. Validation of two predicted host-microbial interactions reveal that TNFα and IFNγ production are associated with specific microbial metabolic pathways: palmitoleic acid metabolism and tryptophan degradation to tryptophol. Besides providing a resource of predicted microbially derived mediators that influence immune phenotypes in response to common microorganisms, these data can help to define principles for understanding disease susceptibility. The three HFGP studies presented in this issue lay the groundwork for further studies aimed at understanding the interplay between microbial, genetic, and environmental factors in the regulation of the immune response in humans. PAPERCLIP. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Hostile marital interactions, proinflammatory cytokine production, and wound healing.

    PubMed

    Kiecolt-Glaser, Janice K; Loving, Timothy J; Stowell, Jeffrey R; Malarkey, William B; Lemeshow, Stanley; Dickinson, Stephanie L; Glaser, Ronald

    2005-12-01

    A growing epidemiological literature has suggested that marital discord is a risk factor for morbidity and mortality. In addition, depression and stress are associated with enhanced production of proinflammatory cytokines that influence a spectrum of conditions associated with aging. To assess how hostile marital behaviors modulate wound healing, as well as local and systemic proinflammatory cytokine production. Couples were admitted twice to a hospital research unit for 24 hours in a crossover trial. Wound healing was assessed daily following research unit discharge. Volunteer sample of 42 healthy married couples, aged 22 to 77 years (mean [SD], 37.04 [13.05]), married a mean (SD) of 12.55 (11.01) years. During the first research unit admission, couples had a structured social support interaction, and during the second admission, they discussed a marital disagreement. Couples' interpersonal behavior, wound healing, and local and systemic changes in proinflammatory cytokine production were assessed during each research unit admission. Couples' blister wounds healed more slowly and local cytokine production (IL-6, tumor necrosis factor alpha, and IL-1beta) was lower at wound sites following marital conflicts than after social support interactions. Couples who demonstrated consistently higher levels of hostile behaviors across both their interactions healed at 60% of the rate of low-hostile couples. High-hostile couples also produced relatively larger increases in plasma IL-6 and tumor necrosis factor alpha values the morning after a conflict than after a social support interaction compared with low-hostile couples. These data provide further mechanistic evidence of the sensitivity of wound healing to everyday stressors. Moreover, more frequent and amplified increases in proinflammatory cytokine levels could accelerate a range of age-related diseases. Thus, these data also provide a window on the pathways through which hostile or abrasive relationships affect

  13. Toll-like receptor-mediated inhibition of Gas6 and ProS expression facilitates inflammatory cytokine production in mouse macrophages

    PubMed Central

    Deng, Tingting; Zhang, Yue; Chen, Qiaoyuan; Yan, Keqin; Han, Daishu

    2012-01-01

    Activation of Toll-like receptors (TLRs) triggers rapid inflammatory cytokine production in various cell types. The exogenous product of growth-arrest-specific gene 6 (Gas6) and Protein S (ProS) inhibit the TLR-triggered inflammatory responses through the activation of Tyro3, Axl and Mer (TAM) receptors. However, regulation of the Gas6/ProS-TAM system remains largely unknown. In the current study, mouse macrophages are shown to constitutively express Gas6 and ProS, which synergistically suppress the basal and TLR-triggered production of inflammatory cytokines, including those of tumour necrosis factor-α, interleukin-6 and interleukin-1β, by the macrophages in an autocrine manner. Notably, TLR signalling markedly decreases Gas6 and ProS expression in macrophages through the activation of the nuclear factor-κB. Further, the down-regulation of Gas6 and ProS by TLR signalling facilitates the TLR-mediated inflammatory cytokine production in mouse macrophages. These results describe a self-regulatory mechanism of TLR signalling through the suppression of Gas6 and ProS expression. PMID:22043818

  14. Cytokines and immune surveillance in humans

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    1994-01-01

    Evidence from both human and rodent studies has indicated that alterations in immunological parameters occur after space flight. Among the parameters shown, by us and others, to be affected is the production of interferons. Interferons are a family of cytokines that are antiviral and play a major role in regulating immune responses that control resistance to infection. Alterations in interferon and other cytokine production and activity could result in changes in immunity and a possible compromise of host defenses against both opportunistic and external infections. The purpose of the present study is to explore further the effects of space flight on cyotokines and cytokine-directed immunological function. Among the tests carried out are interferon-alpha production, interferon-gamma production, interleukin-1 and -2 production, signal transduction in neutrophils, signal transduction in monocytes, and monocyte phagocytic activity. The experiments will be performed using peripheral blood obtained from human subjects. It is our intent to eventually carry out these experiments using astronauts as subjects to determine the effects of space flight on cytokine production and activity. However, these subjects are not currently available. Until they become available, we will carry out these experiments using subjects maintained in the bed-rest model for microgravity.

  15. Vinpocetine inhibits amyloid-beta induced activation of NF-κB, NLRP3 inflammasome and cytokine production in retinal pigment epithelial cells

    PubMed Central

    Liu, Ruozhou Tom; Wang, Aikun; To, Eleanor; Gao, Jiangyuan; Cao, Sijia; Cui, Jing Z.; Matsubara, Joanne A.

    2015-01-01

    Chronic inflammation is a key pathogenic process in age-related macular degeneration (AMD). Amyloid-beta (Aβ) is a constituent of AMD drusen and promotes the activation of NLRP3 inflammasome which facilitates the production of cytokines. We investigated the role of transcription factor NF-κB in the activation of inflammasome in the RPE and the effect of vinpocetine, a dietary supplement with inhibitory effect on NF-κB. ARPE19/NF-κB-luciferase reporter cells treated with Aβ demonstrated enhanced NF-κB activation that was significantly suppressed by vinpocetine. Intraperitoneal injection of vinpocetine (15 mg/kg) inhibited NF-κB nuclear translocation and reduced the expression and activation of NLRP3, caspase-1, IL-1β, IL-18, and TNF-α in the RPE of adult rats that received intraocular Aβ, as measured by retinal immunohistochemistry and Western blot. Cytokine level in the vitreous was assayed using multiplex suspension arrays and revealed significantly lower concentration of MIP-3α, IL-6, IL-1α, IL-1β, IL-18, and TNF-α in vinpocetine treated animals. These results suggest that the NF-κB pathway is activated by Aβ in the RPE and signals the priming of NLRP3 inflammasome and the expression of pro-inflammatory cytokines including the inflammasome substrates IL-1β and IL-18. NF-κB inhibition may be an effective approach to stem the chronic inflammatory milieu that underlies the development of AMD. Vinpocetine is a potentially useful anti-inflammatory agent that is well-tolerated in long term use. PMID:25041941

  16. Galectin-3 Mediates Tumor Cell-Stroma Interactions by Activating Pancreatic Stellate Cells to Produce Cytokines via Integrin Signaling.

    PubMed

    Zhao, Wei; Ajani, Jaffer A; Sushovan, Guha; Ochi, Nobuo; Hwang, Rosa; Hafley, Margarete; Johnson, Randy L; Bresalier, Robert S; Logsdon, Craig D; Zhang, Zhiqian; Song, Shumei

    2018-04-01

    Pancreatic ductal adenocarcinoma (PDAC) is characterized by activated pancreatic stellate cells (PSCs), abundance of extracellular matrix (ECM), and production of cytokines and chemokines. Galectin 3 (GAL3), a β-galactoside-specific lectin, contributes to PDAC development but its effects on the stroma and cytokine production are unclear. The effect of recombinant human GAL3 (rGAL3) on activation of PSCs, production of cytokines, and ECM proteins was determined by proliferation, invasion, cytokine array, and quantitative polymerase chain reaction. We assessed co-cultures of PDAC cells with GAL3 genetic alterations with PSCs. Production of interleukin 8 (IL8) and activities of nuclear factor (NF)-κB were determined by enzyme-linked immunosorbent assay and luciferase reporter analyses. We studied the effects of inhibitors of NF-κB and integrin-linked kinase (ILK) on pathways activated by rGAL3. In analyses of the Gene Expression Omnibus database and our dataset, we observed higher levels of GAL3, IL8, and other cytokines in PDAC than in nontumor tissues. Production of IL8, granulocyte-macrophage colony-stimulating factor, chemokine ligand 1, and C-C motif chemokine ligand 2 increased in PSCs exposed to rGAL3 compared with controls. Culture of PSCs with PDAC cells that express different levels of GAL3 resulted in proliferation and invasion of PSCs that increased with level of GAL3. GAL3 stimulated transcription of IL8 through integrin subunit beta 1 (ITGB1) on PSCs, which activates NF-κB through ILK. Inhibitors of ILK or NF-κB or a neutralizing antibody against ITGB1 blocked transcription and production of IL8 from PSCs induced by rGAL3. The GAL3 inhibitor significantly reduced growth and metastases of orthotopic tumors that formed from PDAC and PSC cells co-implanted in mice. GAL3 activates PSC cells to produce inflammatory cytokines via ITGB1signaling to ILK and activation of NF-κB. Inhibition of this pathway reduced growth and metastases of pancreatic

  17. Interactions between rnacrophage cytokines and eicosanoids in expression of antitumour activity

    PubMed Central

    Ben-Efraim, Shlomo

    1992-01-01

    Cytokines and eicosanoid products of macrophages play an essential role in expression of antitumour activity of macrophages either in a cell-to-cell contact system between the effector and the target cell or as cell-free soluble products. In this review the relationship between three main monokines, namely TNF-α, IL-1 and IL-6 and the interrelationship between these monokines and eicosanoids (PGE2, PGI2, LTB4, LTC4) in their production and in expression of antitumour activity is discussed. Emphasis is given to the effect of tumour burden on production of the monokines and of the eicosanoids and on the production of these compounds by the tumour cells. Finally, the therapeutic implications drawn from animal studies and clinical trials is discussed. PMID:18475475

  18. Altered cytokine production by dendritic cells from infants with atopic dermatitis.

    PubMed

    Yao, Weiguo; Chang, JiHoon; Sehra, Sarita; Travers, Jeffrey B; Chang, Cheong-Hee; Tepper, Robert S; Kaplan, Mark H

    2010-12-01

    Dendritic cells (DC) are potent initiators of immune responses, compared to other professional antigen-presenting cells, based on their ability to capture antigen, express high amounts of MHC and co-stimulatory molecules, and to secrete immunostimulatory cytokines. Altered functions of DC in atopic individuals have been observed, though it is not clear if this is a cause or a result of the development of allergic disease. In this report we demonstrate altered cytokine production by DC isolated from infants with atopic dermatitis but without a diagnosis of asthma, compared to infants with non-atopic dermatitis. Increased production of IL-6, IL-10 and IFNα from DC isolated from atopic infants is less apparent when DC from infants were examined 1 year later. An increase in the same cytokines was observed in neonatal mice that are genetically predisposed towards allergic inflammation. These results suggest that an atopic environment promotes altered cytokine production by DC from infants. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Alpha-mangostin inhibits both dengue virus production and cytokine/chemokine expression.

    PubMed

    Tarasuk, Mayuri; Songprakhon, Pucharee; Chimma, Pattamawan; Sratongno, Panudda; Na-Bangchang, Kesara; Yenchitsomanus, Pa-Thai

    2017-08-15

    Since severe dengue virus (DENV) infection in humans associates with both high viral load and massive cytokine production - referred to as "cytokine storm", an ideal drug for treatment of DENV infection should efficiently inhibit both virus production and cytokine expression. In searching for such an ideal drug, we discovered that α-mangostin (α-MG), a major bioactive compound purified from the pericarp of the mangosteen fruit (Garcinia mangostana Linn), which has been used in traditional medicine for several conditions including trauma, diarrhea, wound infection, pain, fever, and convulsion, inhibits both DENV production in cultured hepatocellular carcinoma HepG2 and Huh-7 cells, and cytokine/chemokine expression in HepG2 cells. α-MG could also efficiently inhibit all four serotypes of DENV. Treatment of DENV-infected cells with α-MG (20μM) significantly reduced the infection rates of four DENV serotypes by 47-55%. α-MG completely inhibited production of DENV-1 and DENV-3, and markedly reduced production of DENV-2 and DENV-4 by 100 folds. Furthermore, it could markedly reduce cytokine (IL-6 and TNF-α) and chemokine (RANTES, MIP-1β, and IP-10) transcription. These actions of α-MG are more potent than those of antiviral agent (ribavirin) and anti-inflammatory drug (dexamethasone). Thus, α-MG is potential to be further developed as therapeutic agent for DENV infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Triggering Dectin-1-Pathway Alone Is Not Sufficient to Induce Cytokine Production by Murine Macrophages

    PubMed Central

    Walachowski, Sarah

    2016-01-01

    β-glucans (BG) are abundant polysaccharides of the Saccharomyces cerevisiae cell wall (Sc CW), an industry byproduct. They have immuno-stimulatory properties upon engagement of dectin-1 (Clec7a), their main receptor on particular immune cells, and they actually become of great interest because of their preventive or therapeutic potentials. Zymosan, a crude extract of Sc CW was studied as a prototypic BG, despite its miscellaneous PAMPs content. Here, we examined the response of murine wild type or Clec7a-/- bone marrow-derived macrophages (BMDM) to products with increasing BG content (15, 65 or 75%) and compared their effects with those of other dectin-1 ligands. The enrichment process removed TLR ligands while preserving dectin-1 activity. The most enriched extracts have very low NFκB activity and triggered low amounts of cytokine production in contrast with crude products like zymosan and BG15. Furthermore, MyD88-/- BMDM did not produce TNFα in response to crude Sc CW extracts, whereas their response to BG-enriched extracts was unaffected, suggesting that BG alone are not able to initiate cytokine secretion. Although Sc CW-derived BG stimulated the late and strong expression of Csf2 in a dectin-1-dependent manner, they remain poor inducers of chemokine and cytokine production in murine macrophages. PMID:26840954

  1. Multiple cytokine responses in discriminating between active tuberculosis and latent tuberculosis infection.

    PubMed

    Wu, Jing; Wang, Sen; Lu, Chanyi; Shao, Lingyun; Gao, Yan; Zhou, Zumo; Huang, Heqing; Zhang, Ying; Zhang, Wenhong

    2017-01-01

    Cytokines play an important role in cell-mediated immune responses against Mycobacterium tuberculosis (Mtb) infection. Cytokine profile specifically associated with active tuberculosis (ATB) patients, subjects with latent tuberculosis infection (LTBI) and non-infected individuals remains to be determined. We enrolled a total of 92 subjects including patients with ATB (n = 25), LTBI (n = 36) and healthy controls (HC, n = 31) to investigate the cytokine production by peripheral blood mononuclear cells after Mtb purified protein derivative (PPD) stimulation which was evaluated by a beads-based multiplex assay system. The production of IL-1β, IL-2, IL-6, IL-10, IL-17, G-CSF, IFN-γ, IP-10, MIP-1α and TNF-α was abundantly induced by PPD in all three groups. The levels of IL-2, IL-10, IFN-γ, IP-10 and TNF-α were significantly higher in LTBI group than in ATB group. The combination of PPD-stimulated IL-2 and IL-10 accurately identified 84.0% of ATB and 88.9% of LTBI. We validated the use of PPD-stimulated IL-2 and IL-10 test combined with T-SPOT.TB test in a cohort of 44 subjects with TB suspicion. The sensitivity and specificity of the combined test were 83.3% and 92.3%, respectively. The PPD-stimulated IL-2/IFN-γ ratio (p < 0.001) in LTBI subjects was significantly higher than in active TB patients. Our study identified cytokine patterns characteristic of ATB and LTBI. Cytokines such as IL-2 and IL-10 may serve as biomarkers for distinguishing ATB from LTBI and healthy control and may contribute to intervention and improvement in TB diagnosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Inhibitors of p38 suppress cytokine production in rheumatoid arthritis synovial membranes: does variable inhibition of interleukin-6 production limit effectiveness in vivo?

    PubMed

    Page, Theresa H; Brown, Anthony; Timms, Emma M; Foxwell, Brian M J; Ray, Keith P

    2010-11-01

    The activity of p38 MAPK regulates lipopolysaccharide (LPS)-stimulated production of key proinflammatory cytokines such as tumor necrosis factor α (TNFα). Consequently, p38 MAPK inhibitors have attracted considerable interest as potential treatments of rheumatoid arthritis (RA), and studies in murine models of arthritis have yielded promising results. However, the performance of several compounds in human clinical trials has been disappointing. At present, the reason for this poor performance is unclear. The aim of this study was to examine the effects of p38 inhibitors on both diseased and normal human tissue and cells, in order to test whether this kinase still plays a critical role in cytokine production under conditions of chronic inflammation. Proinflammatory and antiinflammatory cytokine production was monitored after treatment of primary human monocytes, macrophages, and RA synovial membrane cultures with p38 MAPK inhibitor compounds. The following 3 inhibitors were used in these studies: SB-203580 (inhibits the α and β isoforms), BIRB-796 (inhibits the α, β, γ, and δ isoforms), and a novel, structurally distinct p38 MAPK inhibitor, SB-731445 (inhibits the α and β isoforms). SB-731445 and SB-203580 produced profound inhibition of spontaneous production of proinflammatory cytokines (TNFα and interleukin-1 [IL-1]) in both RA membrane cultures and LPS-stimulated primary human monocytes. However, this and other p38 MAPK inhibitors produced a significant increase in IL-6 production by LPS-stimulated primary human macrophages and a decrease in IL-10 production by all cell types examined. The potentially proinflammatory consequences of these activities (decreased IL-10 production and increased IL-6 production) may offer some explanation for the inability of p38 MAPK inhibitors to provide the therapeutic benefit that had been hoped for in RA. Copyright © 2010 by the American College of Rheumatology.

  3. Effect of mineral trioxide aggregate on cytokine production by peritoneal macrophages.

    PubMed

    Rezende, T M B; Vargas, D L; Cardoso, F P; Sobrinho, A P R; Vieira, L Q

    2005-12-01

    To test the effect of two commercial brands of grey mineral trioxide aggregate (ProRoot and MTA-Angelus) on cytokine production by M1 and M2 inflammatory macrophages. M1 (from C57BL/6 mice) and M2 peritoneal inflammatory macrophages (from C57BL/6 IL12p40-/- mice) were obtained and cultured in vitro in the presence of MTA. The cellular viability and the production of tumour necrosis factor-alpha, interleukin (IL)-12 and IL-10 in response to stimulation with interferon-gamma and Fusobacterium nucleatum or Peptostreptococcus anaerobius were evaluated. Data were analysed by Mann-Whitney, Kruskal-Wallis and anova tests. The cements did not interfere with cellular viability or with cytokine production by either type of macrophage. However, M2 macrophages produced higher levels of IL-10 when stimulated with F. nucleatum than M1 macrophages (P < 0.05). The brands of MTA evaluated did not interfere in the cytokine response by M1 or M2 macrophages to the two bacteria tested. However, a difference in cytokine production between the two types of macrophages was found.

  4. The Staphyloccous aureus Eap protein activates expression of proinflammatory cytokines.

    PubMed

    Scriba, Thomas J; Sierro, Sophie; Brown, Eric L; Phillips, Rodney E; Sewell, Andrew K; Massey, Ruth C

    2008-05-01

    The extracellular adhesion protein (Eap) secreted by the major human pathogen Staphylococcus aureus is known to have several effects on human immunity. We have recently added to knowledge of these roles by demonstrating that Eap enhances interactions between major histocompatibility complex molecules and human leukocytes. Several studies have indicated that Eap can induce cytokine production by human peripheral blood mononuclear cells (PBMCs). To date, there has been no rigorous attempt to identify the breadth of cytokines produced by Eap stimulation or to identify the cell subsets that respond. Here, we demonstrate that Eap induces the secretion of the proinflammatory cytokines interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-alpha) by CD14(+) leukocytes (monocytes and macrophages) within direct ex vivo PBMC populations (note that granulocytes are also CD14(+) but are largely depleted from PBMC preparations). Anti-intercellular adhesion molecule 1 (CD54) antibodies inhibited this induction and implicated a role for this known Eap binding protein in cellular activation. IL-6 and TNF-alpha secretion by murine cells exposed to Eap was also observed. The activation of CD14(+) cells by Eap suggests that it could play a significant role in both septic shock and fever, two of the major pathological features of S. aureus infections.

  5. Photodynamic therapy induced production of cytokines by latent Epstein Barr virus infected epithelial tumor cells

    NASA Astrophysics Data System (ADS)

    Koon, H. K.; Lo, K. W.; Lung, M. L.; Chang, C. K. C.; Wong, R. N. S.; Mak, N. K.

    2007-02-01

    Photodynamic therapy (PDT) is a method to treat cancer or non-cancer diseases by activation of the light-sensitive photosensitizers. Epstein Barr virus (EBV) has been implicated in the development of certain cancers such as nasopharyngeal carcinoma and B cell lymphoma. This study aims to examine the effects of EBV infection on the production of pro-inflammatory cytokines and chemokines in cells after the photosensitizer Zn-BC-AM PDT treatment. Epithelial tumor cell lines HONE-1 and latent EBV-infected HONE-1 (EBV-HONE-1) cells were used in this study. Cells were treated with the photosensitizer Zn-BC-AM for 24 hours before light irradiation. RT-PCR and quantitative ELISA methods were used for the evaluation of mRNA expression and production of cytokines, respectively. Results show that Zn-BC-AM PDT increases the production of IL-1a and IL-1b in EBV-HONE-1. Over a 10-fold increase in the production of IL-6 was observed in the culture supernatant of Zn-BC-AM PDT-treated HONE-1 cells. PDT-induced IL-6 production was observed in HONE-1 cells. EBV-HONE-1 has a higher background level of IL-8 production than the HONE-1. The production of IL-8 was suppressed in EBV-HONE-1cells after Zn-BC-AM PDT. Our results indicate that the response of HONE-1 cells to Zn-BC-AM PDT depends on the presence of latent EBV infection. Since IL-8 is a cytokine with angiogenic activity, Zn-BC-AM PDT may exert an anti-angiogenic effect through the suppression of IL-8 production by the EBV-infected cells.

  6. Laquinimod dampens hyperactive cytokine production in Huntington's disease patient myeloid cells.

    PubMed

    Dobson, Lucianne; Träger, Ulrike; Farmer, Ruth; Hayardeny, Liat; Loupe, Pippa; Hayden, Michael R; Tabrizi, Sarah J

    2016-06-01

    Huntington's disease (HD) is a neurodegenerative condition characterized by pathology in the brain and peripheral tissues. Hyperactivity of the innate immune system, due in part to NFκB pathway dysregulation, is an early and active component of HD. Evidence suggests targeting immune disruption may slow disease progression. Laquinimod is an orally active immunomodulator that down-regulates proinflammatory cytokine production in peripheral blood mononuclear cells, and in the brain down-regulates astrocytic and microglial activation by modulating NFκB signalling. Laquinimod had beneficial effects on inflammation, brain atrophy and disease progression in multiple sclerosis (MS) in two phase III clinical trials. This study investigated the effects of laquinimod on hyperactive proinflammatory cytokine release and NFκB signalling in HD patient myeloid cell cultures. Monocytes from manifest (manHD) and pre-manifest (preHD) HD gene carriers and healthy volunteers (HV) were treated with laquinimod and stimulated with lipopolysaccharide. After 24 h pre-treatment with 5 μM laquinimod, manHD monocytes released lower levels of IL-1β, IL-5, IL-8, IL-10, IL-13 and TNFα in response to stimulation. PreHD monocytes released lower levels of IL-8, IL-10 and IL-13, with no reduction observed in HV monocytes. The effects of laquinimod on dysfunctional NFκB signalling in HD was assessed by inhibitor of kappa B (IκB) degradation kinetics, nuclear translocation of NFκB and interactions between IκB kinase (IKK) and HTT, in HD myeloid cells. No differences were observed between laquinimod-treated and untreated conditions. These results provide evidence that laquinimod dampens hyper-reactive cytokine release from manHD and preHD monocytes, with a much reduced effect on HV monocytes. Evidence suggests targeting CNS and peripheral immune disruption may slow Huntington's disease (HD) neurodegenerative processes. The effects of laquinimod, an orally active immunomodulator, on

  7. CXCR3-mediated opposite effects of CXCL10 and CXCL4 on TH1 or TH2 cytokine production.

    PubMed

    Romagnani, Paola; Maggi, Laura; Mazzinghi, Benedetta; Cosmi, Lorenzo; Lasagni, Laura; Liotta, Francesco; Lazzeri, Elena; Angeli, Roberta; Rotondi, Mario; Filì, Lucia; Parronchi, Paola; Serio, Mario; Maggi, Enrico; Romagnani, Sergio; Annunziato, Francesco

    2005-12-01

    Two variants of the CXCR3 receptor exist, one (CXCR3-A) reactive with CXCL9, CXCL10, and CXCL11 and the other (CXCR3-B) also reactive with CXCL4. Both variants are contemporarily expressed by human T cells. We sought to investigate the in vitro effects of CXCL10 and CXCL4 on the production of TH1 or TH2 cytokines. The cytokine profile of antigen-specific human CD4+ T-cell lines obtained in the absence or presence of CXCL10 or CXCL4 was evaluated by means of quantitative RT-PCR, flow cytometry, and ELISA. CXCL10 upregulated IFN-gamma and downregulated IL-4, IL-5, and IL-13 production, whereas CXCL4 downregulated IFN-gamma and upregulated TH2 cytokines. Similar effects were also observed on polyclonally activated pure naive CD4+ T cells. The opposite effects of CXCL10 and CXCL4 on TH1 and TH2 cytokine production were inhibited by an anti-CXCR3 antibody able to neutralize both CXCR3-A and CXCR3-B and were apparently related to the activation of distinct signal transduction pathways. Moreover, CXCL10 upregulated mRNA levels of T-box expressed in T cells and downregulated GATA-3 expression, whereas CXCL4 downregulated T-box expressed in T cells and upregulated GATA-3. Finally, CXCL4, but not CXCL10, induced direct activation of IL-5 and IL-13 promoters. CXCL10 and CXCL4 exert opposite effects on the production of human TH1 and TH2 cytokines, likely through their respective interaction with CXCR3-A or CXCR3-B and the consequent activation of different signal transduction pathways. This might represent an internal regulatory pathway of TH cell responses and might contribute to the modulation of chronic inflammatory reactions, including allergy.

  8. T-cell activation is enhanced by targeting IL-10 cytokine production in toll-like receptor-stimulated macrophages

    PubMed Central

    Walk, Ryan M; Elliott, Steven T; Blanco, Felix C; Snyder, Jason A; Jacobi, Ashley M; Rose, Scott D; Behlke, Mark A; Salem, Aliasger K; Vukmanovic, Stanislav; Sandler, Anthony D

    2012-01-01

    Toll-like receptor (TLR) agonists represent potentially useful cancer vaccine adjuvants in their ability to stimulate antigen-presenting cells (APCs) and subsequently amplify the cytotoxic T-cell response. The purpose of this study was to characterize APC responses to TLR activation and to determine the subsequent effect on lymphocyte activation. We exposed murine primary bone marrow-derived macrophages to increasing concentrations of agonists to TLRs 2, 3, 4, and 9. This resulted in a dose-dependent increase in production of not only tumor necrosis factor–alpha (TNF-α), a surrogate marker of the proinflammatory response, but also interleukin 10 (IL-10), a well-described inhibitory cytokine. Importantly, IL-10 secretion was not induced by low concentrations of TLR agonists that readily produced TNF-α. We subsequently stimulated lymphocytes with anti-CD3 antibody in the presence of media from macrophages activated with higher doses of TLR agonists and observed suppression of interferon gamma release. Use of both IL-10 knockout macrophages and IL-10 small-interfering RNA (siRNA) ablated this suppressive effect. Finally, IL-10 siRNA was successfully used to suppress CpG-induced IL-10 production in vivo. We conclude that TLR-mediated APC stimulation can induce a paradoxical inhibitory effect on T-cell activation mediated by IL-10. PMID:27471682

  9. Vinpocetine inhibits amyloid-beta induced activation of NF-κB, NLRP3 inflammasome and cytokine production in retinal pigment epithelial cells.

    PubMed

    Liu, Ruozhou Tom; Wang, Aikun; To, Eleanor; Gao, Jiangyuan; Cao, Sijia; Cui, Jing Z; Matsubara, Joanne A

    2014-10-01

    Chronic inflammation is a key pathogenic process in age-related macular degeneration (AMD). Amyloid-beta (Aβ) is a constituent of AMD drusen and promotes the activation of NLRP3 inflammasome which facilitates the production of cytokines. We investigated the role of transcription factor NF-κB in the activation of inflammasome in the RPE and the effect of vinpocetine, a dietary supplement with inhibitory effect on NF-κΒ. ARPE19/NF-κB-luciferase reporter cells treated with Aβ demonstrated enhanced NF-κB activation that was significantly suppressed by vinpocetine. Intraperitoneal injection of vinpocetine (15 mg/kg) inhibited NF-κB nuclear translocation and reduced the expression and activation of NLRP3, caspase-1, IL-1β, IL-18, and TNF-α in the RPE of adult rats that received intraocular Αβ, as measured by retinal immunohistochemistry and Western blot. Cytokine level in the vitreous was assayed using multiplex suspension arrays and revealed significantly lower concentration of MIP-3α, IL-6, IL-1α, IL-1β, IL-18, and TNF-α in vinpocetine treated animals. These results suggest that the NF-κB pathway is activated by Aβ in the RPE and signals the priming of NLRP3 inflammasome and the expression of pro-inflammatory cytokines including the inflammasome substrates IL-1β and IL-18. NF-κB inhibition may be an effective approach to stem the chronic inflammatory milieu that underlies the development of AMD. Vinpocetine is a potentially useful anti-inflammatory agent that is well-tolerated in long term use. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Impact of Antidepressants on Cytokine Production of Depressed Patients in Vitro

    PubMed Central

    Munzer, Alexander; Sack, Ulrich; Mergl, Roland; Schönherr, Jeremias; Petersein, Charlotte; Bartsch, Stefanie; Kirkby, Kenneth C.; Bauer, Katrin; Himmerich, Hubertus

    2013-01-01

    The interplay between immune and nervous systems plays a pivotal role in the pathophysiology of depression. In depressive episodes, patients show increased production of pro-inflammatory cytokines such as interleukin (IL)-1β and tumor necrosis factor (TNF)-α. There is limited information on the effect of antidepressant drugs on cytokines, most studies report on a limited sample of cytokines and none have reported effects on IL-22. We systematically investigated the effect of three antidepressant drugs, citalopram, escitalopram and mirtazapine, on secretion of cytokines IL-1β, IL-2, IL-4, IL-6, IL-17, IL-22 and TNF-α in a whole blood assay in vitro, using murine anti-human CD3 monoclonal antibody OKT3, and 5C3 monoclonal antibody against CD40, to stimulate T and B cells respectively. Citalopram increased production of IL-1β, IL-6, TNF-α and IL-22. Mirtazapine increased IL-1β, TNF-α and IL-22. Escitalopram decreased IL-17 levels. The influence of antidepressants on IL-2 and IL-4 levels was not significant for all three drugs. Compared to escitalopram, citalopram led to higher levels of IL-1β, IL-6, IL-17 and IL-22; and mirtazapine to higher levels of IL-1β, IL-17, IL-22 and TNF-α. Mirtazapine and citalopram increased IL-22 production. The differing profile of cytokine production may relate to differences in therapeutic effects, risk of relapse and side effects. PMID:24257035

  11. Human mesenchymal stromal cells transiently increase cytokine production by activated T cells before suppressing T-cell proliferation: effect of interferon-γ and tumor necrosis factor-α stimulation.

    PubMed

    Cuerquis, Jessica; Romieu-Mourez, Raphaëlle; François, Moïra; Routy, Jean-Pierre; Young, Yoon Kow; Zhao, Jing; Eliopoulos, Nicoletta

    2014-02-01

    Mesenchymal stromal cells (MSCs) suppress T-cell proliferation, especially after activation with inflammatory cytokines. We compared the dynamic action of unprimed and interferon (IFN)-γ plus tumor necrosis factor (TNF)-α-pretreated human bone marrow-derived MSCs on resting or activated T cells. MSCs were co-cultured with allogeneic peripheral blood mononuclear cells (PBMCs) at high MSC-to-PBMC ratios in the absence or presence of concomitant CD3/CD28-induced T-cell activation. The kinetic effects of MSCs on cytokine production and T-cell proliferation, cell cycle and apoptosis were assessed. Unprimed MSCs increased the early production of IFN-γ and interleukin (IL)-2 by CD3/CD28-activated PBMCs before suppressing T-cell proliferation. In non-activated PBMC co-cultures, low levels of IL-2 and IL-10 synthesis were observed with MSCs in addition to low levels of CD69 expression by T cells and no T-cell proliferation. MSCs also decreased apoptosis in resting and activated T cells and inhibited the transition of these cells into the sub-G0/G1 and the S phases. With inhibition of indoleamine 2,3 dioxygenase, MSCs increased CD3/CD28-induced T-cell proliferation. After priming with IFN-γ plus TNF-α, MSCs were less potent at increasing cytokine production by CD3/CD28-activated PBMCs and more effective at inhibiting T-cell proliferation but had preserved anti-apoptotic functions. Unprimed MSCs induce a transient increase in IFN-γ and IL-2 synthesis by activated T cells. Pre-treatment of MSCs with IFN-γ plus TNF-α may increase their effectiveness and safety in vivo. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  12. Production of inflammatory cytokines by peripheral blood monocytes in chronic alcoholism: relationship with ethanol intake and liver disease.

    PubMed

    Laso, Francisco Javier; Vaquero, José Miguel; Almeida, Julia; Marcos, Miguel; Orfao, Alberto

    2007-09-01

    Controversial results have been reported about the effects of alcoholism on the functionality of monocytes. In the present study we analyze the effects of chronic alcoholism on the intracellular production of inflammatory cytokines by peripheral blood (PB) monocytes. Spontaneous and in vitro-stimulated production of interleukin (IL) 1alpha (TNFalpha) by PB monocytes was analyzed at the single level by flow cytometry in chronic alcoholics without liver disease and active ethanol (EtOH) intake (AWLD group), as well as in patients with alcohol liver cirrhosis (ALC group), who were either actively drinking (ALCET group) or with alcohol withdrawal (ALCAW group). A significantly increased spontaneous production of IL1beta, IL6, IL12, and TNFalpha was observed on PB monocytes among AWLD individuals. Conversely, circulating monocytes form ALCET patients showed an abnormally low spontaneous and stimulated production of inflammatory cytokines. No significant changes were observed in ALCAW group as regards production of IL1beta, IL6, IL12, and TNFalpha. Our results show an altered pattern of production of inflammatory cytokines in PB monocytes from chronic alcoholic patients, the exact abnormalities observed depending on both the status of EtOH intake and the existence of alcoholic liver disease. Copyright 2007 Clinical Cytometry Society.

  13. Lemongrass and citral effect on cytokines production by murine macrophages.

    PubMed

    Bachiega, Tatiana Fernanda; Sforcin, José Maurício

    2011-09-01

    Cymbopogon citratus (DC) Stapf (Poaceae-Gramineae), an herb commonly known as lemongrass (LG), is an important source of ethnomedicines as well as citral, the major constituent of Cymbopogon citratus, used in perfumery, cosmetic and pharmaceutical industries for controlling pathogens. Thus, the goal of this work was to analyze the effect of LG and citral on cytokines production (IL-1β, IL-6 and IL-10) in vitro, as well as before or after LPS incubation. Peritoneal macrophages from BALB/c mice were treated with LG or citral in different concentrations for 24h. The concentrations that inhibited cytokines production were tested before or after macrophages challenge with LPS, in order to evaluate a possible anti-inflammatory action. Supernatants of cell cultures were used for cytokines determination by ELISA. As to IL-1β, only citral inhibited its release, exerting an efficient action before LPS challenge. LG and citral inhibited IL-6 release. Cymbopogon citratus showed inhibitory effects only after LPS challenge, whereas citral prevented efficiently LPS effects before and after LPS addition. Citral inhibited IL-10 production and although LG did not inhibit its production, the concentration of 100 μg/well was tested in the LPS-challenge protocol, because it inhibited IL-6 production. LG inhibited LPS action after macrophages incubation with LPS, while citral counteracted LPS action when added before or after LPS incubation. LG exerted an anti-inflammatory action and citral may be involved in its inhibitory effects on cytokines production. We suggest that a possible mechanism involved in such results could be the inhibition of the transcription factor NF-κB. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  14. Cytokines and immune surveillance in humans

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    1993-01-01

    Evidence from both human and rodent studies has indicated that alterations in immunological parameters occur after space flight. Among the parameters shown, by us and others, to be affected is the production of interferons. Interferons are a family of cytokines that are antiviral and play a major role in regulating immune responses that control resistance to infection. Alterations in interferon and other cytokine production and activity could result in changes in immunity and a possible compromise of host defenses against both opportunistic and external infections. The purpose of the present study is to further explore the effects of space flight on cytokines and cytokine-directed immunological function.

  15. Docosahexaenoic diet supplementation, exercise and temperature affect cytokine production by lipopolysaccharide-stimulated mononuclear cells.

    PubMed

    Capó, Xavier; Martorell, Miquel; Sureda, Antoni; Batle, Juan Miguel; Tur, Josep Antoni; Pons, Antoni

    2016-09-01

    Acute exercise induces changes in peripheral mononuclear cells' (PBMCs) capabilities to produce cytokines. The aim was to investigate the effect of docosahexaenoic acid (DHA) diet supplementation on cytokine production, by lipopolysaccharide (LPS)-stimulated PBMCs after exercise, and the in vitro influence of temperature. Fifteen male soccer players were randomly assigned to a placebo or an experimental group. The experimental group consumed an almond-based beverage enriched with DHA (1.16 g DHA/day) for 8 weeks, whereas the placebo group consumed a similar non-enriched beverage. Blood samples were taken before and after the nutritional intervention in basal conditions and 2 h after acute exercise. Nutritional intervention significantly increased the DHA content in erythrocytes only in experimental group (from 34 ± 3.6 to 43 ± 3.6 nmols DHA/10(9) erythrocytes). Exercise significantly increased Toll-like receptor 4 (TLR4) in PBMCs but only in the placebo group (203 %). Exercise also significantly increased IL6, IL8, VEGF, INFγ, TNFα, IL1α, IL1β, MCP1, and EGG production rates by LPS-stimulated PBMCs, and this response was attenuated by DHA supplementation. Temperature but not DHA also affected the pattern of cytokine production increasing IL6, IL8, IL1β, and MCP1 synthesis. The higher change was evidenced in IL1β increasing the production rate at 39.5 °C from 3.19 ± 0.77 to 22.4 ± 6.1 pg/h 10(6) PBMC in placebo and from 2.36 ± 0.11 to 10.6 ± 0.38 pg/h 10(6) PBMC in the supplemented group. The profile of affected cytokines differs between temperature and exercise, suggesting a different PBMC activation pathway. DHA diet supplementation only attenuated cytokine production after exercise and not that induced by temperature.

  16. Involvement of major components from Sporothrix schenckii cell wall in the caspase-1 activation, nitric oxide and cytokines production during experimental sporotrichosis.

    PubMed

    Gonçalves, Amanda Costa; Maia, Danielle Cardoso Geraldo; Ferreira, Lucas Souza; Monnazzi, Luis Gustavo Silva; Alegranci, Pâmela; Placeres, Marisa Campos Polesi; Batista-Duharte, Alexander; Carlos, Iracilda Zeppone

    2015-02-01

    Sporotrichosis is a chronic infection caused by the dimorphic fungus Sporothrix schenckii, involving all layers of skin and the subcutaneous tissue. The role of innate immune toll-like receptors 2 and 4 in the defense against this fungus has been reported, but so far, there were no studies on the effect of cell wall major components over the cytosolic oligo-merization domain (NOD)-like receptors, important regulators of inflammation and responsible for the maturation of IL-1β and IL-18, whose functions are dependents of the caspase-1 activation, that can participate of inflammasome. It was evaluated the percentage of activation of caspase-1, the production of IL-1β, IL-18, IL-17, IFN-γ and nitric oxide in a Balb/c model of S. schenckii infection. It was observed a decreased activity of caspase-1 during the fourth and sixth weeks of infection accompanied by reduced secretion of the cytokines IL-1β, IL-18 and IL-17 and high production of nitric oxide. IFN-γ levels were elevated during the entire time course of infection. This temporal reduction in caspase-1 activity coincides exactly with the reported period of fungal burden associated with a transitory immunosuppression induced by this fungus and detected in similar infection models. These results indicate the importance of interaction between caspase-1, cytokines IL-1β and IL-18 in the host defense against S. schenckii infection, suggesting a participation the inflammasome in this response.

  17. Skin rejuvenation using cosmetic products containing growth factors, cytokines, and matrikines: a review of the literature

    PubMed Central

    Aldag, Caroline; Nogueira Teixeira, Diana; Leventhal, Phillip S

    2016-01-01

    Skin aging is primarily due to alterations in the dermal extracellular matrix, especially a decrease in collagen I content, fragmentation of collagen fibrils, and accumulation of amorphous elastin material, also known as elastosis. Growth factors and cytokines are included in several cosmetic products intended for skin rejuvenation because of their ability to promote collagen synthesis. Matrikines and matrikine-like peptides offer the advantage of growth factor-like activities but better skin penetration due to their much smaller molecular size. In this review, we summarize the commercially available products containing growth factors, cytokines, and matrikines for which there is evidence that they promote skin rejuvenation. PMID:27877059

  18. Amide Analogues of CD1d Agonists Modulate iNKT-Cell-Mediated Cytokine Production

    PubMed Central

    2012-01-01

    Invariant natural killer T (iNKT) cells are restricted by the non-polymorphic MHC class I-like protein, CD1d, and activated following presentation of lipid antigens bound to CD1d molecules. The prototypical iNKT cell agonist is α-galactosyl ceramide (α-GalCer). CD1d-mediated activation of iNKT cells by this molecule results in the rapid secretion of a range of pro-inflammatory (Th1) and regulatory (Th2) cytokines. Polarization of the cytokine response can be achieved by modifying the structure of the glycolipid, which opens up the possibility of using CD1d agonists as therapeutic agents for a range of diseases. Analysis of crystal structures of the T-cell receptor−α-GalCer–CD1d complex led us to postulate that amide isosteres of known CD1d agonists should modulate the cytokine response profile upon iNKT-cell activation. To this end, we describe the synthesis and biological activity of amide analogues of α-GalCer and its non-glycosidic analogue threitol ceramide (ThrCer). All of the analogues were found to stimulate murine and human iNKT cells by CD1d-mediated presentation to varying degrees; however, the thioamide and carbamate analogues of ThrCer were of particular interest in that they elicited a strongly polarized cytokine response (more interferon-gamma (IFN-γ), no interleukin-4 (IL-4)) in mice. While the ThrCer-carbamate analogue was shown to transactivate natural killer (NK) cells, a mechanism that has been used to account for the preferential production of IFN-γ by other CD1d agonists, this pathway does not account for the polarized cytokine response observed for the thioamide analogue. PMID:22324848

  19. Oncogenic Ras induces inflammatory cytokine production by up-regulating the squamous cell carcinoma antigens SerpinB3/B4

    PubMed Central

    Pan, Ji-An; Sun, Yu; Shi, Chanjuan; Li, Jinyu; Powers, R. Scott; Crawford, Howard C.; Zong, Wei-Xing

    2014-01-01

    Mounting evidence indicates that oncogenic Ras can modulate cell autonomous inflammatory cytokine production, although the underlying mechanism remains unclear. Here we show that squamous cell carcinoma antigens 1 and 2 (SCCA1/2), members of the Serpin family of serine/cysteine protease inhibitors, are transcriptionally up-regulated by oncogenic Ras via MAPK and the ETS family transcription factor PEA3. Increased SCCA expression leads to inhibition of protein turnover, unfolded protein response, activation of NF-κB, and is essential for Ras-mediated cytokine production and tumor growth. Analysis of human colorectal and pancreatic tumor samples reveals a positive correlation between Ras mutation, enhanced SCCA expression, and IL-6 expression. These results indicate that SCCA is a Ras-responsive factor that has a role in Ras-associated cytokine production and tumorigenesis. PMID:24759783

  20. Leukemia inhibitory factor: a novel bone-active cytokine.

    PubMed

    Reid, L R; Lowe, C; Cornish, J; Skinner, S J; Hilton, D J; Willson, T A; Gearing, D P; Martin, T J

    1990-03-01

    A number of cytokines have been found to be potent regulators of bone resorption and to share the properties originally attributed to osteoclast-activating factor. One such activity, differentiation-inducing factor (DIF, D-factor) from mouse spleen cells, shares a number of biological and biochemical properties with the recently characterized and cloned leukemia inhibitory factor (LIF). We have assessed the effects of recombinant LIF on bone resorption and other parameters in neonatal mouse calvaria. Both recombinant murine and human (h) LIFs stimulated 45Ca release from prelabeled calvaria in a dose-dependent manner. The increase in bone resorption was associated with an increase in the number of osteoclasts per mm2 bone. The osteolytic effect of hLIF were blocked by 10(-7) M indomethacin. hLIF also stimulated incorporation of [3H] thymidine into calvaria, but the dose-response relationship was distinct from that for bone resorption, and this effect was not blocked by indomethacin. Similarly, hLIF increased [3H]phenylalanine incorporation into calvaria, and this was also not inhibited by indomethacin. It is concluded that LIF stimulates bone resorption by a mechanism involving prostaglandin production, but that a distinct mechanism is responsible for its stimulation of DNA and protein synthesis. The primary structure of LIF differs from that of other fully characterized, bone-active cytokines, and it, thus, represents a novel factor which may be involved in the normal regulation of bone cell function.

  1. Subgingival Microbiome Colonization and Cytokine Production during Early Dental Implant Healing.

    PubMed

    Payne, Jeffrey B; Johnson, Paul G; Kok, Car Reen; Gomes-Neto, João C; Ramer-Tait, Amanda E; Schmid, Marian J; Hutkins, Robert W

    2017-01-01

    Little is known about longitudinal development of the peri-implant subgingival microbiome and cytokine production as a new sulcus forms after dental implant placement. Therefore, the purpose of this observational study was to evaluate simultaneous longitudinal changes in the oral microbiome and cytokine production in the developing peri-implant sulcus compared to control natural teeth. Four and 12 weeks after implant placement and abutment connection, a dental implant and a natural tooth were sampled in 25 patients for subgingival plaque and gingival crevicular fluid (GCF [around teeth] and peri-implant crevicular fluid [PICF] around implants). DNA from plaque samples was extracted and sequenced using Illumina-based 16S rRNA sequencing. GCF and PICF samples were analyzed using a customized Milliplex human cytokine and chemokine magnetic bead panel. Beta diversity analysis revealed that natural teeth and implants had similar subgingival microbiomes, while teeth had greater alpha diversity than implants. At the genus level, however, few differences were noted between teeth and dental implants over 12 weeks. Specifically, Actinomyces and Selenomonas were significantly elevated around teeth versus dental implants at both 4 weeks and 12 weeks, while Corynebacterium and Campylobacter were significantly elevated only at 4 weeks around teeth. The only difference between PICF and GCF biomarkers was significantly elevated granulocyte-macrophage colony-stimulating factor levels around teeth versus dental implants at the 4-week visit. The subgingival microbiome and cytokine production were similar between teeth and implants during early healing, suggesting that these profiles are driven by the patient following dental implant placement and are not determined by anatomical niche. IMPORTANCE Dental implants are a common treatment option offered to patients for tooth replacement. However, little is known regarding initial colonization of the subgingival microbiome and

  2. Administration of PDE4 Inhibitors Suppressed the Pannus-Like Inflammation by Inhibition of Cytokine Production by Macrophages and Synovial Fibroblast Proliferation

    PubMed Central

    Kobayashi, Katsuya; Suda, Toshio; Manabe, Haruhiko; Miki, Ichiro

    2007-01-01

    A marked proliferation of synovial fibroblasts in joints leads to pannus formation in rheumatoid arthritis (RA). Various kinds of cytokines are produced in the pannus. The purpose of this study is to elucidate the effects of phosphodiesterase 4 (PDE4) inhibitors in a new animal model for the evaluation of pannus formation and cytokine production in the pannus. Mice sensitized with methylated bovine serum albumin (mBSA) were challenged by subcutaneous implantation of a membrane filter soaked in mBSA solution in the back of the mice. Drugs were orally administered for 10 days. The granuloma formed around the filter was collected on day 11. It was chopped into pieces and cultured in vitro for 24 hr. The cytokines were measured in the supernatants. The type of cytokines produced in the granuloma was quite similar to those produced in pannus in RA. Both PDE4 inhibitors, KF66490 and SB207499, suppressed the production of IL-1β, TNF-α, and IL-12, and the increase in myeloperoxidase activity, a marker enzyme for neutrophils and hydroxyproline content. Compared to leflunomide, PDE4 inhibitors more strongly suppressed IL-12 production and the increase in myeloperoxidase activity. PDE4 inhibitors also inhibited lipopolysaccharide-induced TNF-α and IL-12 production from thioglycolate-induced murine peritoneal macrophages and the proliferation of rat synovial fibroblasts. These results indicate this model makes it easy to evaluate the effect of drugs on various cytokine productions in a granuloma without any purification step and may be a relevant model for evaluating novel antirheumatic drugs on pannus formation in RA. PDE4 inhibitors could have therapeutic effects on pannus formation in RA by inhibition of cytokine production by macrophages and synovial fibroblast proliferation. PMID:18274640

  3. Administration of PDE4 inhibitors suppressed the pannus-like inflammation by inhibition of cytokine production by macrophages and synovial fibroblast proliferation.

    PubMed

    Kobayashi, Katsuya; Suda, Toshio; Manabe, Haruhiko; Miki, Ichiro

    2007-01-01

    A marked proliferation of synovial fibroblasts in joints leads to pannus formation in rheumatoid arthritis (RA). Various kinds of cytokines are produced in the pannus. The purpose of this study is to elucidate the effects of phosphodiesterase 4 (PDE4) inhibitors in a new animal model for the evaluation of pannus formation and cytokine production in the pannus. Mice sensitized with methylated bovine serum albumin (mBSA) were challenged by subcutaneous implantation of a membrane filter soaked in mBSA solution in the back of the mice. Drugs were orally administered for 10 days. The granuloma formed around the filter was collected on day 11. It was chopped into pieces and cultured in vitro for 24 hr. The cytokines were measured in the supernatants. The type of cytokines produced in the granuloma was quite similar to those produced in pannus in RA. Both PDE4 inhibitors, KF66490 and SB207499, suppressed the production of IL-1beta, TNF-alpha, and IL-12, and the increase in myeloperoxidase activity, a marker enzyme for neutrophils and hydroxyproline content. Compared to leflunomide, PDE4 inhibitors more strongly suppressed IL-12 production and the increase in myeloperoxidase activity. PDE4 inhibitors also inhibited lipopolysaccharide-induced TNF-alpha and IL-12 production from thioglycolate-induced murine peritoneal macrophages and the proliferation of rat synovial fibroblasts. These results indicate this model makes it easy to evaluate the effect of drugs on various cytokine productions in a granuloma without any purification step and may be a relevant model for evaluating novel antirheumatic drugs on pannus formation in RA. PDE4 inhibitors could have therapeutic effects on pannus formation in RA by inhibition of cytokine production by macrophages and synovial fibroblast proliferation.

  4. Immunomodulatory action of Copaifera spp oleoresins on cytokine production by human monocytes.

    PubMed

    Santiago, Karina Basso; Conti, Bruno José; Murbach Teles Andrade, Bruna Fernanda; Mangabeira da Silva, Jonas Joaquim; Rogez, Hervé Louis Ghislain; Crevelin, Eduardo José; Beraldo de Moraes, Luiz Alberto; Veneziani, Rodrigo; Ambrósio, Sérgio Ricardo; Bastos, Jairo Kenupp; Sforcin, José Maurício

    2015-03-01

    Copaifera spp oleoresins have been used in folk medicine for centuries; nevertheless, its immunomodulatory action has not been investigated. Thus, the goal of this study was to characterize different oleoresins and to verify their action on human monocytes regarding pro- and anti-inflammatory cytokine production (TNF-α and IL-10, respectively). The chemical composition of Brazilian Copaifera reticulata, Copaifera duckey and Copaifera multijuga oleoresins was analyzed by HPLC-MS. Cell viability was assessed by MTT method after incubation of cells with Copaifera spp. Noncytotoxic concentrations of oleoresins were incubated with human monocytes from healthy donors, and cytokine production was determined by ELISA. HPLC-MS analysis for terpenes allowed the identification of six diterpene acids and one sesquiterpene acid. Oleoresins exerted no cytotoxic effects on human monocytes. All oleoresins had a similar profile: LPS-induced TNF-α production was maintained by oleoresins, while a significant inhibitory action on IL-10 production was seen. Copaifera oleoresins seemed to exert an activator profile on human monocytes without affecting cell viability. Such effect may be due to the presence of either diterpene or sesquiterpene acids; however, further studies are necessary to determine the involvement of such compounds in Copaifera immunomodulatory effects. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  5. Necroptosis suppresses inflammation via termination of TNF- or LPS-induced cytokine and chemokine production.

    PubMed

    Kearney, C J; Cullen, S P; Tynan, G A; Henry, C M; Clancy, D; Lavelle, E C; Martin, S J

    2015-08-01

    TNF promotes a regulated form of necrosis, called necroptosis, upon inhibition of caspase activity in cells expressing RIPK3. Because necrosis is generally more pro-inflammatory than apoptosis, it is widely presumed that TNF-induced necroptosis may be detrimental in vivo due to excessive inflammation. However, because TNF is intrinsically highly pro-inflammatory, due to its ability to trigger the production of multiple cytokines and chemokines, rapid cell death via necroptosis may blunt rather than enhance TNF-induced inflammation. Here we show that TNF-induced necroptosis potently suppressed the production of multiple TNF-induced pro-inflammatory factors due to RIPK3-dependent cell death. Similarly, necroptosis also suppressed LPS-induced pro-inflammatory cytokine production. Consistent with these observations, supernatants from TNF-stimulated cells were more pro-inflammatory than those from TNF-induced necroptotic cells in vivo. Thus necroptosis attenuates TNF- and LPS-driven inflammation, which may benefit intracellular pathogens that evoke this mode of cell death by suppressing host immune responses.

  6. Necroptosis suppresses inflammation via termination of TNF- or LPS-induced cytokine and chemokine production

    PubMed Central

    Kearney, C J; Cullen, S P; Tynan, G A; Henry, C M; Clancy, D; Lavelle, E C; Martin, S J

    2015-01-01

    TNF promotes a regulated form of necrosis, called necroptosis, upon inhibition of caspase activity in cells expressing RIPK3. Because necrosis is generally more pro-inflammatory than apoptosis, it is widely presumed that TNF-induced necroptosis may be detrimental in vivo due to excessive inflammation. However, because TNF is intrinsically highly pro-inflammatory, due to its ability to trigger the production of multiple cytokines and chemokines, rapid cell death via necroptosis may blunt rather than enhance TNF-induced inflammation. Here we show that TNF-induced necroptosis potently suppressed the production of multiple TNF-induced pro-inflammatory factors due to RIPK3-dependent cell death. Similarly, necroptosis also suppressed LPS-induced pro-inflammatory cytokine production. Consistent with these observations, supernatants from TNF-stimulated cells were more pro-inflammatory than those from TNF-induced necroptotic cells in vivo. Thus necroptosis attenuates TNF- and LPS-driven inflammation, which may benefit intracellular pathogens that evoke this mode of cell death by suppressing host immune responses. PMID:25613374

  7. Lactic acid bacteria inhibit TH2 cytokine production by mononuclear cells from allergic patients.

    PubMed

    Pochard, Pierre; Gosset, Philippe; Grangette, Corinne; Andre, Claude; Tonnel, André-Bernard; Pestel, Joël; Mercenier, Annick

    2002-10-01

    Among factors potentially involved in the increased prevalence of allergic diseases, modification of the intestinal bacteria flora or lack of bacterial stimulation during childhood has been proposed. Lactic acid bacteria (LAB) present in fermented foods or belonging to the natural intestinal microflora were shown to exert beneficial effects on human health. Recent reports have indicated their capacity to reduce allergic symptoms. The purpose of this investigation was to determine the effect of LAB on the production of type 2 cytokines, which characterize allergic diseases. PBMCs from patients allergic to house dust mite versus those from healthy donors were stimulated for 48 hours with the related Dermatophagoides pteronyssinus allergen or with a staphylococcal superantigen. The effect of LAB preincubation was assessed by measuring the type 2 cytokine production by means of specific ELISA. The tested gram-positive LAB were shown to inhibit the secretion of T(H)2 cytokines (IL-4 and IL-5). This effect was dose dependent and was observed irrespective of the LAB strain used. No significant inhibition was induced by the control, gram-negative Escherichia coli TG1. Interestingly, LAB reduced the T(H)2 cytokine production from allergic PBMCs specifically restimulated with the related allergen. The inhibition mechanism was shown to be dependent on antigen-presenting cells (ie, monocytes) and on the involvement of IL-12 and IFN-gamma. The tested LAB strains were demonstrated to exhibit an anti-T(H)2 activity, and thus different strains of this family might be useful in the prevention of allergic diseases.

  8. Velutin reduces lipopolysaccharide-induced proinflammatory cytokine TNFa and IL-6 production by inhibiting NF-Kappa B activation

    USDA-ARS?s Scientific Manuscript database

    Recent studies have shown that some flavonoids are modulators of proinflammatory cytokine expression. Velutin, an uncommon flavone isolated from acai (Euterpe oleraceas) berry, was tested for the effects in reducing LPS-induced TNFa and IL-6 production in RAW 264.7 peripheral macrophages and periton...

  9. Effects of trans-stilbene and terphenyl compounds on different strains of Leishmania and on cytokines production from infected macrophages.

    PubMed

    Bruno, Federica; Castelli, Germano; Vitale, Fabrizio; Giacomini, Elisa; Roberti, Marinella; Colomba, Claudia; Cascio, Antonio; Tolomeo, Manlio

    2018-01-01

    Most of the antileishmanial modern therapies are not satisfactory due to high toxicity or emergence of resistance and high cost of treatment. Previously, we observed that two compounds of a small library of trans-stilbene and terphenyl derivatives, ST18 and TR4, presented the best activity and safety profiles against Leishmania infantum promastigotes and amastigotes. In the present study we evaluated the effects of ST18 and the TR4 in 6 different species of Leishmania and the modifications induced by these two compounds in the production of 8 different cytokines from infected macrophages. We observed that TR4 was potently active in all Leishmania species tested in the study showing a leishmanicidal activity higher than that of ST18 and meglumine antimoniate in the most of the species. Moreover, TR4 was able to decrease the levels of IL-10, a cytokine able to render the host macrophage inactive allowing the persistence of parasites inside its phagolysosome, and increase the levels of IL-1β, a cytokine important for host resistance to Leishmania infection by inducible iNOS-mediated production of NO, and IL-18, a cytokine implicated in the development of Th1-type immune response. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Ceftiofur impairs pro-inflammatory cytokine secretion through the inhibition of the activation of NF-{kappa}B and MAPK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ci Xinxin; Song Yu; Zeng Fanqin

    2008-07-18

    Ceftiofur is a new broad-spectrum, third-generation cephalosporin antibiotic for veterinary use. Immunopharmacological studies can provide new information on the immunomodulatory activities of some drugs, including their effect on cytokine productions. For this reason, we investigated the effect of ceftiofur on cytokine productions in vitro. We found that ceftiofur can downregulate tumor necrosis factor-{alpha} (TNF-{alpha}), interleukin-1{beta} (IL-1{beta}), and interleukin-6 (IL-6), but did not affect interleukin-10 (IL-10) production. We further investigated signal transduction mechanisms to determine how ceftiofur affects. RAW 264.7 cells were pretreated with 1, 5, or 10 mg/L of ceftiofur 1 h prior to treatment with 1 mg/L of LPS.more » Thirty minutes later, cells were harvested and mitogen activated protein kinases (MAPKs) activation was measured by Western blot. Alternatively, cells were fixed and nuclear factor-{kappa}B (NF-{kappa}B) activation was measured using immunocytochemical analysis. Signal transduction studies showed that ceftiofur significantly inhibited extracellular signal-regulated kinase (ERK), p38, and c-jun NH{sub 2}-terminal kinase (JNK) phosphorylation protein expression. Ceftiofur also inhibited p65-NF-{kappa}B translocation into the nucleus. Therefore, ceftiofur may inhibit LPS-induced production of inflammatory cytokines by blocking NF-{kappa}B and MAPKs signaling in RAW264.7 cells.« less

  11. Production of cytokines and stimulation of resistance to viral infection in human leukocytes by Scutellaria baicalensis flavones.

    PubMed

    Błach-Olszewska, Zofia; Jatczak, Bogna; Rak, Anna; Lorenc, Maria; Gulanowski, Bogdan; Drobna, Agnieszka; Lamer-Zarawska, Eliza

    2008-09-01

    Extracts of Scutellaria baicalensis display a wide spectrum of antiviral activity. It was of great interest to check the effect of baicalein and wogonin preparations on two important mechanisms of innate immunity: the secretion of cytokines and the natural resistance of human leukocytes to viral infection. To study the effect of S. baicalensis extracts on interferons (IFNs), tumor necrosis factor alpha (TNF-alpha), and interleukin (IL) production and virus replication, uninfected and vesicular stomatitis virus (VSV)-infected human peripheral blood leukocytes (PBLs) were used. Four pulverized preparations obtained from roots of Scutellaria and a Sigma-Aldrich preparation of purified baicalein were used in the study. RPMI extracts containing different amounts of baicalein and wogonin were used to study the effect on VSV replication in PBLs. PBLs express ex vivo individually differentiated cytokine-dependent resistance/innate immunity to viral infections. The degree of resistance was estimated on the basis of VSV replication in PBLs. The results obtained indicate that baicalein- and wogonin-containing extracts modulate cytokine production, that is inhibit IFN-alpha and IFN-gamma and stimulate TNF-alpha and IL (IL-12, IL-10) production. They also augment the resistance of PBLs to VSV. Extract from S. baicalensis containing baicalein and wogonin regulates the innate antiviral immunity by modulation of cytokine production and stimulation of human leukocyte resistance.

  12. Cytokine production of the neutrophils and macrophages in time of phagocytosis under influence of infrared low-level laser irradiation

    NASA Astrophysics Data System (ADS)

    Rudik, Dmitry V.; Tikhomirova, Elena I.; Tuchina, Elena S.

    2006-08-01

    Influence of infrared low-level laser irradiation (LLLI) on induction of synthesis of some cytokines such as interleykin-1 (Il-1), tumor necrosis factor-α (TNF-α), interferon-γ (INF-γ), interleykin-8 (Il-8) and interleykin-4 (Il-4) by the neutrophils and macrophages in time of bacterial cells phagocytosis that was searched. As the object of analysis we used peritoneal macrophages from white mice and neutrophils from peripheral blood of healthy donors. We used the laser diod with spectrum maximum of 850 nm with doses 300, 900 and 1500 mJ (exposition -60, 180 and 300 s respectively; capacity - 5 mW). We carried out the Enzyme-Linked Immunospot Assay (ELISA) to determine cytokine content during phagocytosis after 3 h and 6 h. We found dynamics in production of the cytokines, which was different for the neutrophils and macrophages. We showed that the infrared LLLI has significant stimulating activity on the proinflammatory cytokines production by neutrophils and macrophages. Moreover we revealed dynamics changing in the Il-8 and Il-4 production.

  13. Suppression of lipopolysaccharide-stimulated cytokine/chemokine production in skin cells by sandalwood oils and purified α-santalol and β-santalol.

    PubMed

    Sharma, M; Levenson, C; Bell, R H; Anderson, S A; Hudson, J B; Collins, C C; Cox, M E

    2014-06-01

    Medicinally, sandalwood oil (SO) has been attributed with antiinflammatory properties; however, mechanism(s) for this activity have not been elucidated. To examine how SOs affect inflammation, cytokine antibody arrays and enzyme-linked immunosorbent assays were used to assess changes in production of cytokines and chemokines by co-cultured human dermal fibroblasts and neo-epidermal keratinocytes exposed to lipopolysaccharides and SOs from Western Australian and East Indian sandalwood trees or to the primary SO components, α-santalol and β-santalol. Lipopolysaccharides stimulated the release of 26 cytokines and chemokines, 20 of which were substantially suppressed by simultaneous exposure to either of the two sandalwood essential oils and to ibuprofen. The increased activity of East Indian SO correlated with increased santalol concentrations. Purified α-santalol and β-santalol equivalently suppressed production of five indicator cytokines/chemokines at concentrations proportional to the santalol concentrations of the oils. Purified α-santalol and β-santalol also suppressed lipopolysaccharide-induced production of the arachidonic acid metabolites, prostaglandin E2, and thromboxane B2, by the skin cell co-cultures. The ability of SOs to mimic ibuprofen non-steroidal antiinflammatory drugs that act by inhibiting cyclooxygenases suggests a possible mechanism for the observed antiinflammatory properties of topically applied SOs and provides a rationale for use in products requiring antiinflammatory effects. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Cytokines and pulmonary fibrosis.

    PubMed Central

    Gauldie, J.; Jordana, M.; Cox, G.

    1993-01-01

    Chronically inflamed and fibrotic tissue of the respiratory tract can be shown to actively express the genes and products of a number of powerful growth and differentiating factors. The initial activation of lung inflammatory cells, including alveolar macrophages, is presumed to result in the release of early acting cytokines such as IL-1 and TNF. Subsequent activation and possible phenotype alteration of the structural cells results in release of other growth factors and accumulation of blood derived inflammatory cells. These cells, once they have entered the tissue and become further activated, may begin to release their own autocrine factors and "feed back" some of the similar signals to the tissue cells in a paracrine manner, further inducing differentiation and phenotype change. These internal tissue cell and cytokine cascades could account for the chronic nature of the inflammation. Therapeutic intervention must therefore take into account the inflammatory component as well as the nature of the cytokines and structural cells involved in the propagation of the disease. PMID:8236078

  15. Cytokine production capacity in depression and anxiety.

    PubMed

    Vogelzangs, N; de Jonge, P; Smit, J H; Bahn, S; Penninx, B W

    2016-05-31

    Recent studies have suggested that immune function may be dysregulated in persons with depressive and anxiety disorders. Few studies examined the expression of cytokines in response to ex vivo stimulation of blood by lipopolysaccharide (LPS) to study the innate production capacity of cytokines in depression and anxiety. To investigate this, baseline data from the Netherlands Study of Depression and Anxiety (NESDA) were used, including persons (18-65 years; 66% women) with current (that is, past month; N=591) or remitted (N=354) DSM-IV depressive or anxiety disorders and healthy controls (N=297). Depressive and anxiety symptoms were measured by means of the Inventory of Depressive Symptomatology (IDS) and the Beck Anxiety Inventory (BAI). Using Multi-Analyte Profiling technology, plasma levels of 13 cytokines were assayed after whole blood stimulation by addition of LPS. Basal plasma levels of C-reactive protein, interleukin-6 and tumor necrosis factor-α were also available. A basal and a LPS summary index were created. Results show that LPS-stimulated inflammation was associated with increased odds of current depressive/anxiety disorders (odds ratio (OR)=1.28, P=0.009), as was the case for basal inflammation (OR=1.28, P=0.001). These associations were no longer significant after adjustment for lifestyle and health (OR=1.13, P=0.21; OR=1.07, P=0.45, respectively). After adjustment for lifestyle and health, interleukin-8 was associated with both remitted (OR=1.25, P=0.02) and current (OR=1.28, P=0.005) disorders. In addition, LPS-stimulated inflammation was associated with more severe depressive (β=0.129, P<0.001) and anxiety (β=0.165, P<0.001) symptoms, as was basal inflammation. Unlike basal inflammation, LPS-stimulated inflammation was still associated with (anxiety) symptom severity after adjustment for lifestyle and health (IDS: interleukin (IL)-8, MCP-1, MMP2; BAI: LPS index, IL-6, IL-8, IL-10, IL-18, MCP-1, MMP2, TNF-β). To conclude, lifestyle and health

  16. Cytokine production capacity in depression and anxiety

    PubMed Central

    Vogelzangs, N; de Jonge, P; Smit, J H; Bahn, S; Penninx, B W

    2016-01-01

    Recent studies have suggested that immune function may be dysregulated in persons with depressive and anxiety disorders. Few studies examined the expression of cytokines in response to ex vivo stimulation of blood by lipopolysaccharide (LPS) to study the innate production capacity of cytokines in depression and anxiety. To investigate this, baseline data from the Netherlands Study of Depression and Anxiety (NESDA) were used, including persons (18–65 years; 66% women) with current (that is, past month; N=591) or remitted (N=354) DSM-IV depressive or anxiety disorders and healthy controls (N=297). Depressive and anxiety symptoms were measured by means of the Inventory of Depressive Symptomatology (IDS) and the Beck Anxiety Inventory (BAI). Using Multi-Analyte Profiling technology, plasma levels of 13 cytokines were assayed after whole blood stimulation by addition of LPS. Basal plasma levels of C-reactive protein, interleukin-6 and tumor necrosis factor-α were also available. A basal and a LPS summary index were created. Results show that LPS-stimulated inflammation was associated with increased odds of current depressive/anxiety disorders (odds ratio (OR)=1.28, P=0.009), as was the case for basal inflammation (OR=1.28, P=0.001). These associations were no longer significant after adjustment for lifestyle and health (OR=1.13, P=0.21; OR=1.07, P=0.45, respectively). After adjustment for lifestyle and health, interleukin-8 was associated with both remitted (OR=1.25, P=0.02) and current (OR=1.28, P=0.005) disorders. In addition, LPS-stimulated inflammation was associated with more severe depressive (β=0.129, P<0.001) and anxiety (β=0.165, P<0.001) symptoms, as was basal inflammation. Unlike basal inflammation, LPS-stimulated inflammation was still associated with (anxiety) symptom severity after adjustment for lifestyle and health (IDS: IL-8, MCP-1, MMP2; BAI: LPS index, IL-6, IL-8, IL-10, IL-18, MCP-1, MMP2, TNF-β). To conclude, lifestyle and health factors may

  17. Changes in cytokine production associated with acquired immunity to Plasmodium falciparum malaria

    PubMed Central

    Rhee, M S M; Akanmori, B D; Waterfall, M; Riley, E M

    2001-01-01

    Individuals living in malaria-endemic areas eventually develop clinical immunity to Plasmodium falciparum. That is, they are able to limit blood parasite densities to extremely low levels and fail to show symptoms of infection. As the clinical symptoms of malaria infection are mediated in part by pro-inflammatory cytokines it is not clear whether the acquisition of clinical immunity is due simply to the development of antiparasitic mechanisms or whether the ability to regulate inflammatory cytokine production is also involved. We hypothesize that there is a correlation between risk of developing clinical malaria and the tendency to produce high levels of proinflammatory cytokines in response to malaria infection. In order to test this hypothesis, we have compared the ability of peripheral blood mononuclear cells from malaria-naive and malaria-exposed adult donors to proliferate and to secrete IFN-γ in response to P. falciparum schizont extract (PfSE). In order to determine how PfSE-induced IFN-γ production is regulated, we have also measured production of IL-12p40 and IL-10 from PfSE-stimulated PBMC and investigated the role of neutralizing antibody to IL-12 in modulating IFN-γ production. We find that cells from naive donors produce moderate amounts of IFN-γ in response to PfSE and that IFN-γ production is strongly IL-12 dependent. Cells from malaria-exposed donors living in an area of low malaria endemicity produce much higher levels of IFN-γ and this response is also at least partially IL-12 dependent. In complete contrast, cells from donors living in an area of very high endemicity produce minimal amounts of IFN-γ. No significant differences were detected between the groups in IL-10 production, suggesting that this cytokine does not play a major role in regulating malaria-induced IFN-γ production. The data from this study thus strongly support the hypothesis that down-regulation of inflammatory cytokine production may be a component of acquired clinical

  18. Cytokines in chronically critically ill patients after activity and rest.

    PubMed

    Winkelman, Chris; Higgins, Patricia A; Chen, Yea Jyh Kathy; Levine, Alan D

    2007-04-01

    Inflammation, a common problem for patients in the intensive care unit (ICU), frequently is associated with serious and prolonged critical illnesses. To date, no study has examined whether physical activity influences inflammatory factors in critically ill adults. The objectives of this study were to (a) examine the relationships between type and duration of physical activity and serum levels of interleukin 6 (IL-6), a proinflammatory cytokine; IL-10, an anti-inflammatory cytokine; and their ratio and (b) determine if there are associations between cytokines or their ratio and activity or outcomes. This descriptive feasibility study investigated the approaches to measuring levels of physical activity and its relationship to serum levels of IL-6 and IL-10 and the ratio between them in patients with prolonged mechanical ventilation during periods of activity and rest. Measurements included serum IL-6 and IL-10 levels, direct observation and actigraphy, and prospective chart review. Ten critically ill patients who were mechanically ventilated for an average of 10 days in a large, urban, teaching hospital were enrolled. The average ratio of IL-6 to IL-10 improved after an average of 14.7 min of passive physical activity, typically multiple in-bed turns associated with hygiene. IL-6, IL-10, and their ratio were not associated with patient outcomes of weaning success or length of stay. High levels of IL-6 were associated with mortality. Cytokine balance may be improved by low levels of activity among patients with prolonged critical illness. The pattern of cytokines produced after activity may improve patients' recovery from prolonged critical illness and mechanical ventilation.

  19. Cytokine modulation by glucocorticoids: mechanisms and actions in cellular studies.

    PubMed

    Brattsand, R; Linden, M

    1996-01-01

    Glucocorticoids inhibit the expression and action of most cytokines. This is part of the in vivo feed-back system between inflammation-derived cytokines and CNS-adrenal produced corticosteroids with the probable physiological relevance to balance parts of the host defence and anti-inflammatory systems of the body. Glucocorticoids modulate cytokine expression by a combination of genomic mechanisms. The activated glucocorticoid-receptor complex can (i) bind to and inactivate key proinflammatory transcription factors (e.g. AP-1, NF kappa B). This takes place at the promotor responsive elements of these factors, but has also been reported without the presence of DNA; (ii) via glucocorticoid responsive elements (GRE), upregulate the expression of cytokine inhibitory proteins, e.g. I kappa B, which inactivates the transcription factor NF kappa B and thereby the secondary expression of a series of cytokines; (iii) reduce the half-life time and utility of cytokine mRNAs. In studies with triggered human blood mononuclear cells in culture, glucocorticoids strongly diminish the production of the 'initial phase' cytokines IL-1 beta and TNF-alpha and the 'immunomodulatory' cytokines IL-2, IL-3, IL-4, IL-5, IL-10, IL-12 and IFN-gamma, as well as of IL-6, IL-8 and the growth factor GM-CSF. While steroid treatment broadly attenuates cytokine production, it cannot modulate it selectively, e.g. just the TH0, the TH1 or the TH2 pathways. The production of the 'anti-inflammatory' IL-10 is also inhibited. The exceptions of steroid down-regulatory activity on cytokine expression seem to affect 'repair phase' cytokines like TGF-beta and PDGF. These are even reported to be upregulated, which may explain the rather weak steroid dampening action on healing and fibrotic processes. Some growth factors, e.g. G-CSF and M-CSF, are only weakly affected. In addition to diminishing the production of a cytokine, steroids can also often inhibit its subsequent actions. Because cytokines work in

  20. Differential cytokine production in clonal macrophage and T-cell lines cultured with bifidobacteria.

    PubMed

    Marin, M L; Lee, J H; Murtha, J; Ustunol, Z; Pestka, J J

    1997-11-01

    When used in commercial fermented dairy products, bifidobacteria may enhance immunity by stimulating cytokine secretion by leukocytes. To assess whether interaction between bifidobacteria and leukocytes promote cytokine production, we cultured RAW 264.7 cells (macrophage model) and EL-4.IL-2 thymoma cells (helper T-cell model) in the presence of 14 representative strains of heat-killed bifidobacteria. In unstimulated RAW 264.7 cells, all bifidobacteria induced pronounced increases (up to several hundred-fold) in the production of tumor necrosis factor-alpha compared with that of controls. Interleukin-6 production by unstimulated cells also increased significantly, but less than did tumor necrosis factor-alpha. Upon concurrent stimulation of RAW 264.7 cells with lipopolysaccharide, production of tumor necrosis factor-alpha and interleukin-6 were both enhanced between 1.5- to 5.8-fold and 4.7- to 7.9-fold, respectively, when cultured with 10(8) bifidobacteria/ml. In unstimulated EL-4.IL-2 cells, bifidobacteria had no effect on the production of interleukin-2 or interleukin-5. Upon stimulation of EL-4.IL-2 with phorbol-12-myristate-13-acetate, there were variable increases in interleukin-2 secretion (up to 2.4-fold for 10(6) Bifidobacterium Bf-1/ml) and interleukin-5 secretion (up to 4.6-fold for 10(8) B. adolescentis M101-4). The results indicated that, even when variations among strains were considered, direct interaction of most bifidobacteria with macrophages enhanced cytokine production, but the effects on cytokine production by the T-cell model were less marked. Interestingly, the 4 bifidobacteria strains used commercially for diary foods showed the greatest capacity for cytokine stimulation. The in vitro approaches employed here should be useful in future characterization of the effects of bifidobacteria on gastrointestinal and systemic immunity.

  1. Exosomes from HIV-1-infected Cells Stimulate Production of Pro-inflammatory Cytokines through Trans-activating Response (TAR) RNA*

    PubMed Central

    Sampey, Gavin C.; Saifuddin, Mohammed; Schwab, Angela; Barclay, Robert; Punya, Shreya; Chung, Myung-Chul; Hakami, Ramin M.; Asad Zadeh, Mohammad; Lepene, Benjamin; Klase, Zachary A.; El-Hage, Nazira; Young, Mary; Iordanskiy, Sergey; Kashanchi, Fatah

    2016-01-01

    HIV-1 infection results in a chronic illness because long-term highly active antiretroviral therapy can lower viral titers to an undetectable level. However, discontinuation of therapy rapidly increases virus burden. Moreover, patients under highly active antiretroviral therapy frequently develop various metabolic disorders, neurocognitive abnormalities, and cardiovascular diseases. We have previously shown that exosomes containing trans-activating response (TAR) element RNA enhance susceptibility of undifferentiated naive cells to HIV-1 infection. This study indicates that exosomes from HIV-1-infected primary cells are highly abundant with TAR RNA as detected by RT-real time PCR. Interestingly, up to a million copies of TAR RNA/μl were also detected in the serum from HIV-1-infected humanized mice suggesting that TAR RNA may be stable in vivo. Incubation of exosomes from HIV-1-infected cells with primary macrophages resulted in a dramatic increase of proinflammatory cytokines, IL-6 and TNF-β, indicating that exosomes containing TAR RNA could play a direct role in control of cytokine gene expression. The intact TAR molecule was able to bind to PKR and TLR3 effectively, whereas the 5′ and 3′ stems (TAR microRNAs) bound best to TLR7 and -8 and none to PKR. Binding of TAR to PKR did not result in its phosphorylation, and therefore, TAR may be a dominant negative decoy molecule in cells. The TLR binding through either TAR RNA or TAR microRNA potentially can activate the NF-κB pathway and regulate cytokine expression. Collectively, these results imply that exosomes containing TAR RNA could directly affect the proinflammatory cytokine gene expression and may explain a possible mechanism of inflammation observed in HIV-1-infected patients under cART. PMID:26553869

  2. G-CSF suppresses allergic pulmonary inflammation, downmodulating cytokine, chemokine and eosinophil production.

    PubMed

    Queto, Túlio; Vasconcelos, Zilton F M; Luz, Ricardo Alves; Anselmo, Carina; Guiné, Ana Amélia A; e Silva, Patricia Machado R; Farache, Júlia; Cunha, José Marcos T; Bonomo, Adriana C; Gaspar-Elsas, Maria Ignez C; Xavier-Elsas, Pedro

    2011-05-09

    Granulocyte Colony-Stimulating Factor (G-CSF), which mobilizes hemopoietic stem cells (HSC), is believed to protect HSC graft recipients from graft-versus-host disease by enhancing Th2 cytokine secretion. Accordingly, G-CSF should aggravate Th2-dependent allergic pulmonary inflammation and the associated eosinophilia. We evaluated the effects of G-CSF in a model of allergic pulmonary inflammation. Allergic pulmonary inflammation was induced by repeated aerosol allergen challenge in ovalbumin-sensitized C57BL/6J mice. The effects of allergen challenge and of G-CSF pretreatment were evaluated by monitoring: a) eosinophilia and cytokine/chemokine content of bronchoalveolar lavage fluid, pulmonary interstitium, and blood; b) changes in airway resistance; and c) changes in bone-marrow eosinophil production. Contrary to expectations, G-CSF pretreatment neither induced nor enhanced allergic pulmonary inflammation. Instead, G-CSF: a) suppressed accumulation of infiltrating eosinophils in bronchoalveolar, peribronchial and perivascular spaces of challenged lungs; and b) prevented ovalbumin challenge-induced rises in airway resistance. G-CSF had multiple regulatory effects on cytokine and chemokine production: in bronchoalveolar lavage fluid, levels of IL-1 and IL-12 (p40), eotaxin and MIP-1a were decreased; in plasma, KC, a neutrophil chemoattractant, was increased, while IL-5 was decreased and eotaxin was unaffected. In bone-marrow, G-CSF: a) prevented the increase in bone-marrow eosinophil production induced by ovalbumin challenge of sensitized mice; and b) selectively stimulated neutrophil colony formation. These observations challenge the view that G-CSF deviates cytokine production towards a Th2 profile in vivo, and suggest that this neutrophil-selective hemopoietin affects eosinophilic inflammation by a combination of effects on lung cytokine production and bone-marrow hemopoiesis. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. In vitro activation of cord blood mononuclear cells and cytokine production in a remote coastal population exposed to organochlorines and methyl mercury.

    PubMed Central

    Bilrha, Houda; Roy, Raynald; Moreau, Brigitte; Belles-Isles, Marthe; Dewailly, Eric; Ayotte, Pierre

    2003-01-01

    Remote coastal populations that rely on seafood for subsistence often receive unusually high doses of organochlorines and methyl mercury. Immunosuppression resulting from prenatal exposure to organochlorines has been reported in wildlife species and humans. In this study, we assessed lymphocyte activation and associated cytokine secretion in 47 newborns from a remote maritime population living on the Mid and Lower North Shore regions of the St. Lawrence River (Québec, Canada; subsistence fishing group) and 65 newborns from nearby urban settings (reference group). Cord blood samples were collected for organochlorine and mercury analyses and also to isolate cord blood mononuclear cells (CBMCs) for the in vitro assessment of cytokine production and expression of surface markers after mitogenic stimulation (CD4(+)CD45RO(+), CD8(+)CD45RO(+), CD3(+)CD25(+), and CD8(+)HLA-DR(+)). Blood mercury and plasma concentrations of polychlorinated biphenyls (PCBs), 1,1-dichloro-2,2-bis(4-chlorophenyl)ethylene (p,p'-DDE), and hexachlorobenzene (HCB) were significantly higher in the subsistence fishing group than in the reference group (p < 0.001). No difference was observed between the two groups regarding subsets of lymphocytes showing markers of activation. In vitro secretion of cytokines by CBMCs after mitogenic stimulation was lower in the subsistence fishing group than in the reference group (p < 0.05). Moreover, we found an inverse correlation between tumor necrosis factor-alpha (TNF-alpha) secretion and plasma PCB, p,p'-DDE, and HCB concentrations (p < 0.05). Our data support a negative association between TNF-alpha secretion by CBMCs and prenatal organochlorine exposure. If the relationship between organochlorine and TNF-alpha secretion is causal, it would suggest a role for this important proinflammatory cytokine in mediating organochlorine-induced immunotoxicity in infants developmentally exposed to these compounds. PMID:14644672

  4. Desialylation of glycoconjugates on the surface of monocytes activates the extracellular signal-related kinases ERK 1/2 and results in enhanced production of specific cytokines.

    PubMed

    Stamatos, Nicholas M; Curreli, Sabrina; Zella, Davide; Cross, Alan S

    2004-02-01

    Modulation of the sialic acid content of cell-surface glycoproteins and glycolipids influences the functional capacity of cells of the immune system. The role of sialidase(s) and the consequent desialylation of cell surface glycoconjugates in the activation of monocytes have not been established. In this study, we show that desialylation of glycoconjugates on the surface of purified monocytes using exogenous neuraminidase (NANase) activated extracellular signal-regulated kinase 1/2 (ERK 1/2), an intermediate in intracellular signaling pathways. Elevated levels of phosphorylated ERK 1/2 were detected in desialylated monocytes after 2 h of NANase treatment, and increased amounts persisted for at least 2 additional hours. Desialylation of cell surface glycoconjugates also led to increased production of interleukin (IL)-6, macrophage inflammatory protein (MIP)-1alpha, and MIP-1beta by NANase-treated monocytes that were maintained in culture. Neither increased levels of phosphorylated ERK 1/2 nor enhanced production of cytokines were detected when NANase was heat-inactivated before use, demonstrating the specificity of NANase action. Treatment of monocytes with gram-negative bacterial lipopolysaccharide (LPS) also led to enhanced production of IL-6, MIP-1alpha, and MIP-1beta. The amount of each of these cytokines that was produced was markedly increased when monocytes were desialylated with NANase before exposure to LPS. These results suggest that changes in the sialic acid content of surface glycoconjugates influence the activation of monocytes.

  5. trans-Chalcone, a flavonoid precursor, inhibits UV-induced skin inflammation and oxidative stress in mice by targeting NADPH oxidase and cytokine production.

    PubMed

    Martinez, Renata M; Pinho-Ribeiro, Felipe A; Steffen, Vinicius S; Caviglione, Carla V; Fattori, Victor; Bussmann, Allan J C; Bottura, Carolina; Fonseca, Maria J V; Vignoli, Josiane A; Baracat, Marcela M; Georgetti, Sandra R; Verri, Waldiceu A; Casagrande, Rubia

    2017-07-01

    trans-Chalcone is a plant flavonoid precursor, which lacks broad investigation on its biological activity in inflammatory processes. In the present study, anti-inflammatory and antioxidant mechanisms of systemic administration with trans-chalcone, a flavonoid precursor, on ultraviolet (UV) irradiation-induced skin inflammation and oxidative stress in hairless mice were investigated by the following parameters: skin edema, myeloperoxidase activity (neutrophil marker), matrix metalloproteinase-9 activity, reduced glutathione levels, catalase activity, lipid peroxidation products, superoxide anion production, gp 91phox (NADPH oxidase subunit) mRNA expression by quantitative PCR and cytokine production by ELISA. Systemic treatment with trans-chalcone inhibited skin inflammation by reducing skin edema and neutrophil recruitment, and also inhibited matrix metalloproteinase-9 activity. trans-Chalcone also inhibited oxidative stress, gp 91phox mRNA expression, and the production of a wide range of pro-inflammatory cytokines, while it did not affect anti-inflammatory cytokines induced by UV irradiation. However, trans-chalcone did not prevent oxidative stress in vitro, suggesting that its in vivo effect is more related to anti-inflammatory properties rather than a direct antioxidant effect. In conclusion, treatment with trans-chalcone inhibited UV-induced skin inflammation resulting in oxidative stress inhibition in vivo. Therefore, systemic supplementation with this compound may represent an important therapeutic approach in inflammatory skin diseases induced by UV irradiation.

  6. INDUCTION OF CYTOKINE PRODUCTION IN CHEETAH (ACINONYX JUBATUS) PERIPHERAL BLOOD MONONUCLEAR CELLS AND VALIDATION OF FELINE-SPECIFIC CYTOKINE ASSAYS FOR ANALYSIS OF CHEETAH SERUM.

    PubMed

    Franklin, Ashley D; Crosier, Adrienne E; Vansandt, Lindsey M; Mattson, Elliot; Xiao, Zhengguo

    2015-06-01

    Peripheral blood mononuclear cells (PBMCs) were isolated from the whole blood of cheetahs (Acinonyx jubatus ; n=3) and stimulated with lipopolysaccharides (LPS) to induce the production of proinflammatory cytokines TNF-α, IL-1β, and IL-6 for establishment of cross-reactivity between these cheetah cytokines and feline-specific cytokine antibodies provided in commercially available Feline DuoSet® ELISA kits (R&D Systems, Inc., Minneapolis, Minnesota 55413, USA). This study found that feline-specific cytokine antibodies bind specifically to cheetah proinflammatory cytokines TNF-α, IL-1β, and IL-6 from cell culture supernatants. The assays also revealed that cheetah PBMCs produce a measurable, cell concentration-dependent increase in proinflammatory cytokine production after LPS stimulation. To enable the use of these kits, which are designed for cell culture supernatants for analyzing cytokine concentrations in cheetah serum, percent recovery and parallelism of feline cytokine standards in cheetah serum were also evaluated. Cytokine concentrations in cheetah serum were approximated based on the use of domestic cat standards in the absence of cheetah standard material. In all cases (for cytokines TNF-α, IL-1β, and IL-6), percent recovery increased as the serum sample dilution increased, though percent recovery varied between cytokines at a given dilution factor. A 1:2 dilution of serum resulted in approximately 45, 82, and 7% recovery of TNF-α, IL-1β, and IL-6 standards, respectively. Adequate parallelism was observed across a large range of cytokine concentrations for TNF-α and IL-1β; however, a significant departure from parallelism was observed between the IL-6 standard and the serum samples (P=0.004). Therefore, based on our results, the Feline DuoSet ELISA (R&D Systems, Inc.) kits are valid assays for the measurement of TNF-α and IL-1β in cheetah serum but should not be used for accurate measurement of IL-6.

  7. Combination CTLA-4 Blockade and 4-1BB Activation Enhances Tumor Rejection by Increasing T-Cell Infiltration, Proliferation, and Cytokine Production

    PubMed Central

    Curran, Michael A.; Kim, Myoungjoo; Montalvo, Welby; Al-Shamkhani, Aymen; Allison, James P.

    2011-01-01

    Background The co-inhibitory receptor Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4) attenuates immune responses and prevent autoimmunity, however, tumors exploit this pathway to evade the host T-cell response. The T-cell co-stimulatory receptor 4-1BB is transiently upregulated on T-cells following activation and increases their proliferation and inflammatory cytokine production when engaged. Antibodies which block CTLA-4 or which activate 4-1BB can promote the rejection of some murine tumors, but fail to cure poorly immunogenic tumors like B16 melanoma as single agents. Methodology/Principal Findings We find that combining αCTLA-4 and α4-1BB antibodies in the context of a Flt3-ligand, but not a GM-CSF, based B16 melanoma vaccine promoted synergistic levels of tumor rejection. 4-1BB activation elicited strong infiltration of CD8+ T-cells into the tumor and drove the proliferation of these cells, while CTLA-4 blockade did the same for CD4+ effector T-cells. Anti-4-1BB also depressed regulatory T-cell infiltration of tumors. 4-1BB activation strongly stimulated inflammatory cytokine production in the vaccine and tumor draining lymph nodes and in the tumor itself. The addition of CTLA-4 blockade further increased IFN-γ production from CD4+ effector T-cells in the vaccine draining node and the tumor. Anti 4-1BB treatment, with or without CTLA-4 blockade, induced approximately 75% of CD8+ and 45% of CD4+ effector T-cells in the tumor to express the killer cell lectin-like receptor G1 (KLRG1). Tumors treated with combination antibody therapy showed 1.7-fold greater infiltration by these KLRG1+CD4+ effector T-cells than did those treated with α4-1BB alone. Conclusions/Significance This study shows that combining T-cell co-inhibitory blockade with αCTLA-4 and active co-stimulation with α4-1BB promotes rejection of B16 melanoma in the context of a suitable vaccine. In addition, we identify KLRG1 as a useful marker for monitoring the anti-tumor immune response elicited by

  8. Basal protein phosphatase 2A activity restrains cytokine expression: role for MAPKs and tristetraprolin.

    PubMed

    Rahman, Md Mostafizur; Rumzhum, Nowshin N; Morris, Jonathan C; Clark, Andrew R; Verrills, Nicole M; Ammit, Alaina J

    2015-05-18

    PP2A is a master controller of multiple inflammatory signaling pathways. It is a target in asthma; however the molecular mechanisms by which PP2A controls inflammation warrant further investigation. In A549 lung epithelial cells in vitro we show that inhibition of basal PP2A activity by okadaic acid (OA) releases restraint on MAPKs and thereby increases MAPK-mediated pro-asthmatic cytokines, including IL-6 and IL-8. Notably, PP2A inhibition also impacts on the anti-inflammatory protein - tristetraprolin (TTP), a destabilizing RNA binding protein regulated at multiple levels by p38 MAPK. Although PP2A inhibition increases TTP mRNA expression, resultant TTP protein builds up in the hyperphosphorylated inactive form. Thus, when PP2A activity is repressed, pro-inflammatory cytokines increase and anti-inflammatory proteins are rendered inactive. Importantly, these effects can be reversed by the PP2A activators FTY720 and AAL(s), or more specifically by overexpression of the PP2A catalytic subunit (PP2A-C). Moreover, PP2A plays an important role in cytokine expression in cells stimulated with TNFα; as inhibition of PP2A with OA or PP2A-C siRNA results in significant increases in cytokine production. Collectively, these data reveal the molecular mechanisms of PP2A regulation and highlight the potential of boosting the power of endogenous phosphatases as novel anti-inflammatory strategies to combat asthmatic inflammation.

  9. [Effects of traditional tibetan medicine, Fructus Lonicerae microphyllae on phagecytosis and cytokines production of murine macrophages].

    PubMed

    Wang, Ju-Le; Sun, Yang; Zhou, Hui-Ying; Xu, Qiang; Dun, Zhu

    2006-01-01

    To explore the effects of traditional Tibetan medicine, Fructus Lonicerae microphyllae (FLM) on phagecytosis and cytokines production of murine macrophages. The phagecytosis of murine macrophages was analyzed by neutral red phagecytosis assay. The activities of IL-1 and TNF-alpha were measured by biological methods. The mRNA of TNF-alpha and INF-gamma expressed by macrophages was detected by RT-PCR. The phagecytosis of murine macrophages was significantly enhanced by FLM at a concentration from 1 microg x mL(-1) to 100 microg x mL(-1) and the secretions of IL-1, and TNF-alpha from macrophages were markedly induced by FLM. Meanwhile, FLM also increased the expression of TNF-alpha mRNA and INF-gamma mRHA from macrophages in vitro. FLM could promote phagecytosis and cytokines production of murine macrophages.

  10. Gram-negative periodontal bacteria induce the activation of Toll-like receptors 2 and 4, and cytokine production in human periodontal ligament cells.

    PubMed

    Sun, Ying; Shu, Rong; Li, Chao-Lun; Zhang, Ming-Zhu

    2010-10-01

    Periodontitis is a bacterially induced chronic inflammatory disease. Toll-like receptors (TLRs), which could recognize microbial pathogens, are important components in the innate and adaptive immune systems. Both qualitatively and quantitatively distinct immune responses might result from different bacteria stimulation and the triggering of different TLRs. This study explores the interaction of Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum, and Aggregatibacter actinomycetemcomitans (previously Actinobacillus actinomycetemcomitans) with TLR2 and TLR4. We studied the gene expression changes of TLR2 and TLR4 and cytokine production (interleukin-1β, -6, -8, -10, and tumor necrosis factor-alpha) in human periodontal ligament cells (HPDLCs) stimulated with heat-killed bacteria or P. gingivalis lipopolysaccharide (LPS) in the presence or absence of monoclonal antibodies to TLR2 or TLR4 (anti-TLR2/4 mAb). Both test bacteria and 10 microg/ml P. gingivalis LPS treatment increased the gene expression of TLR2 and TLR4 and cytokine production in HPDLCs. In addition, these upregulations could be blocked by anti-TLR2/4 mAb. However, the expression of TLR4 mRNA in HPDLCs stimulated with 1 microg/ml P. gingivalis LPS was not increased. No differences were found in the cytokine production caused by 1 microg/ml P. gingivalis LPS treatment in the presence or absence of anti-TLR4 mAb. These patterns of gene expression and cytokine production indicate that Gram-negative periodontal bacteria or their LPS might play a role in triggering TLR2 and/or TLR4, and be of importance for the immune responses in periodontitis.

  11. Low level exposure to monomethyl arsonous acid-induced the over-production of inflammation-related cytokines and the activation of cell signals associated with tumor progression in a urothelial cell model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escudero-Lourdes, C., E-mail: cescuder@uaslp.m; Medeiros, M.K.; Cardenas-Gonzalez, M.C.

    2010-04-15

    Human bladder cancer has been associated with chronic exposure to arsenic. Chronic exposure of an immortalized non-tumorigenic urothelial cell line (UROtsa cells) to arsenicals has transformed these cells to a malignant phenotype, but the involved mechanisms are not fully understood. Chronic inflammation has been linked with cancer development mainly because many pro-inflammatory cytokines, growth factors as well as angiogenic chemokines have been found in tumors. In this study the chronology of inflammatory cytokines production was profiled in UROtsa cells chronically exposed to the toxic arsenic metabolite, monomethylarsonous acid [50 nM MMA(III)] to know the role of inflammation in cell transformation.more » Acute 50 nM MMA(III) exposure induced over-production of many pro-inflammatory cytokines as soon as 12 h after acute exposure. The same cytokines remain over-regulated after chronic exposure to 50 nM MMA(III), especially after 3 mo exposure. At 3 mo exposure the sustained production of cytokines like IL-1, IL-6, IL-8 and TNF is coincident with the appearance of characteristics associated with cell transformation seen in other arsenic-UROtsa studies. The sustained and increased activation of NFkappaB and c-Jun is also present along the transformation process and the phosphorylated proteins p38 MAPK and ERK 1/2 are increased also through the time line. Taken together these results support the notion that chronic inflammation is associated within MMA(III)-induced cell transformation and may act as a promoting factor in UROtsa cell transformation.« less

  12. Aloe vera downregulates LPS-induced inflammatory cytokine production and expression of NLRP3 inflammasome in human macrophages.

    PubMed

    Budai, Marietta M; Varga, Aliz; Milesz, Sándor; Tőzsér, József; Benkő, Szilvia

    2013-12-01

    Aloe vera has been used in traditional herbal medicine as an immunomodulatory agent inducing anti-inflammatory effects. However, its role on the IL-1β inflammatory cytokine production has not been studied. IL-1β production is strictly regulated both at transcriptional and posttranslational levels through the activity of Nlrp3 inflammasome. In this study we aimed to determine the effect of Aloe vera on the molecular mechanisms of Nlrp3 inflammasome-mediated IL-1β production in LPS-activated human THP-1 cells and monocyte-derived macrophages. Our results show that Aloe vera significantly reduced IL-8, TNFα, IL-6 and IL-1β cytokine production in a dose dependent manner. The inhibitory effect was substantially more pronounced in the primary cells. We found that Aloe vera inhibited the expression of pro-IL-1β, Nlrp3, caspase-1 as well as that of the P2X7 receptor in the LPS-induced primary macrophages. Furthermore, LPS-induced activation of signaling pathways like NF-κB, p38, JNK and ERK were inhibited by Aloe vera in these cells. Altogether, we show for the first time that Aloe vera-mediated strong reduction of IL-1β appears to be the consequence of the reduced expression of both pro-IL-1β as well as Nlrp3 inflammasome components via suppressing specific signal transduction pathways. Furthermore, we show that the expression of the ATP sensor P2X7 receptor is also downregulated by Aloe vera that could also contribute to the attenuated IL-1β cytokine secretion. These results may provide a new therapeutic approach to regulate inflammasome-mediated responses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. 4-Hydroxy-17-methylincisterol from Agaricus blazei Decreased Cytokine Production and Cell Proliferation in Human Peripheral Blood Mononuclear Cells via Inhibition of NF-AT and NF-κB Activation

    PubMed Central

    Tsai, Wei-Jern; Yang, Shih-Chien; Huang, Yu-Ling; Chen, Chien-Chih; Chuang, Kai-An; Kuo, Yuh-Chi

    2013-01-01

    Agaricus blazei Murill is an edible and medicinal mushroom. In the previous study, we have proved that extracts of A. blazei inhibit human peripheral blood mononuclear cell (PBMC) proliferation activated with phytohemagglutinin (PHA). Currently, we purified 4-hydroxy-17-methylincisterol (4-HM; C21H33O3) from A. blazei investigated its regulatory effects on cytokine productions and cell proliferation of PBMC induced by PHA. The results indicated that 4-HM suppressed, in activated PBMC, the production and mRNA expression of interleukin-2 (IL-2), IL-4, tumor necrosis factor-α, and interferon-γ in a concentration-dependent manner. This inhibition was not related to cell viability. While 4-HM did not affect ERK phosphorylation and its downstream c-fos gene expression in PBMC induced by PHA, it decreased both NF-AT and NF-κB activation. The upstream signaling of NF-AT and NF-κB, intracellular calcium concentrations ([Ca2+]i), and protein kinase C theta (PKC θ) activation in PHA-treated PBMC were reduced by 4-HM. The data demonstrated that the suppressant effects of 4-HM on cell proliferation in PBMC activated by PHA appeared to be mediated, at least in part, through inhibition of Ca2+ mobilization and PKC θ activation, NF-AT and NF-κB activation, and cytokine transcripts and productions of PBMC. We suggested that A. blazei contained a potential immunomodulator 4-HM. PMID:23533483

  14. Influence of metals on cytokines production in connection with successful implantation therapy in dentistry.

    PubMed

    Podzimek, Stepan; Tomka, Milan; Nemeth, Tibor; Himmlova, Lucie; Matucha, Petr; Prochazkova, Jarmila

    2010-01-01

    In most of patients in need of implantation treatment in the oral cavity, implants heal well, nevertheless, there are some individuals, in whom titanium implants fail for reasons, which remain unclear. The aim of our study was to determine if there is a difference between metal influenced IL-1β, IL-4, IL-6, TNF-α and IFN-γ cytokines production in patients with successfully healed implants compared to those, whose implant therapy was unsuccessful. The two study groups included 12 patients with failed dental titanium implants and 9 patients with successfully healed implants. In the subjects, cytokine production was established after lymphocyte cultivation with mercury, nickel and titanium antigens. IL-1β levels were significantly increased in all patients after stimulation with titanium and in patients with accepted implants compared to patients with failed implants after the stimulation with mercury and titanium. Titanium caused significantly increased IL-6 production in all patients. TNF-α and IFN-γ levels were also significantly increased after the stimulation with titanium. Significantly increased TNF-α levels were found in patients with accepted implants as compared to patients with failed implants. Increased production of IL-1β a IL-6 cytokines in reaction to titanium and increased production of TNF-α and IFN-γ cytokines in reaction to mercury, which is very often present in the form of amalgam in the oral cavity of persons in need of implant therapy, can play an important role in immune reactions during implant healing process. In patients with failed titanium implants, decreased production of these cytokines may participate in implant failure.

  15. Vinpocetine reduces diclofenac-induced acute kidney injury through inhibition of oxidative stress, apoptosis, cytokine production, and NF-κB activation in mice.

    PubMed

    Fattori, Victor; Borghi, Sergio M; Guazelli, Carla F S; Giroldo, Andressa C; Crespigio, Jefferson; Bussmann, Allan J C; Coelho-Silva, Letícia; Ludwig, Natasha G; Mazzuco, Tânia L; Casagrande, Rubia; Verri, Waldiceu A

    2017-06-01

    Acute kidney injury (AKI) represents a complex clinical condition associated with significant morbidity and mortality. Approximately, 19-33% AKI episodes in hospitalized patients are related to drug-induced nephrotoxicity. Although, considered safe, non-steroidal anti-inflammatory drugs such as diclofenac have received special attention in the past years due to the potential risk of renal damage. Vinpocetine is a nootropic drug known to have anti-inflammatory properties. In this study, we investigated the effect and mechanisms of vinpocetine in a model of diclofenac-induced AKI. We observed that diclofenac increased proteinuria and blood urea, creatinine, and oxidative stress levels 24h after its administration. In renal tissue, diclofenac also increased oxidative stress and induced morphological changes consistent with renal damage. Moreover, diclofenac induced kidney cells apoptosis, up-regulated proinflammatory cytokines, and induced the activation of NF-κB in renal tissue. On the other hand, vinpocetine reduced diclofenac-induced blood urea and creatinine. In the kidneys, vinpocetine inhibited diclofenac-induced oxidative stress, morphological changes, apoptosis, cytokine production, and NF-κB activation. To our knowledge, this is the first study demonstrating that diclofenac-induced AKI increases NF-κB activation, and that vinpocetine reduces the nephrotoxic effects of diclofenac. Therefore, vinpocetine is a promising molecule for the treatment of diclofenac-induced AKI. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Soluble antigens from group B streptococci induce cytokine production in human blood cultures.

    PubMed Central

    von Hunolstein, C; Totolian, A; Alfarone, G; Mancuso, G; Cusumano, V; Teti, G; Orefici, G

    1997-01-01

    Group B streptococcal antigens stimulated tumor necrosis factor alpha (TNF-alpha), interleukin-1 (IL-1), and IL-6 production in human blood cultures in a concentration- and time-dependent fashion. The minimal concentrations of type-specific polysaccharides, lipoteichoic acid, and group-specific polysaccharide required to produce these effects were, respectively, 0.01, 1, and 10 microg/ml. Cell separation experiments indicated that monocytes were the cell type mainly responsible for cytokine production. Time course studies indicated that TNF-alpha was released before the other cytokines. TNF-alpha, however, did not appear to directly induce IL-1beta, as shown by blockade experiments with anti-TNF-alpha antibodies. IL-6 levels were moderately but significantly decreased by anti-TNF-alpha. These data indicate that several products from group B streptococci are able to directly stimulate human monocytes to release TNF-alpha, IL-1beta, and IL-6. These findings may be clinically relevant, since proinflammatory cytokines can mediate pathophysiologic changes during sepsis. PMID:9317001

  17. Selective suppression of endothelial cytokine production by progesterone receptor.

    PubMed

    Goddard, Lauren M; Ton, Amy N; Org, Tõnis; Mikkola, Hanna K A; Iruela-Arispe, M Luisa

    2013-01-01

    Steroid hormones are well-recognized suppressors of the inflammatory response, however, their cell- and tissue-specific effects in the regulation of inflammation are far less understood, particularly for the sex-related steroids. To determine the contribution of progesterone in the endothelium, we have characterized and validated an in vitro culture system in which human umbilical vein endothelial cells constitutively express human progesterone receptor (PR). Using next generation RNA-sequencing, we identified a selective group of cytokines that are suppressed by progesterone both under physiological conditions and during pathological activation by lipopolysaccharide. In particular, IL-6, IL-8, CXCL2/3, and CXCL1 were found to be direct targets of PR, as determined by ChIP-sequencing. Regulation of these cytokines by progesterone was also confirmed by bead-based multiplex cytokine assays and quantitative PCR. These findings provide a novel role for PR in the direct regulation of cytokine levels secreted by the endothelium. They also suggest that progesterone-PR signaling in the endothelium directly impacts leukocyte trafficking in PR-expressing tissues. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Lowered serum dipeptidyl peptidase IV activity is associated with depressive symptoms and cytokine production in cancer patients receiving interleukin-2-based immunotherapy.

    PubMed

    Maes, M; Capuron, L; Ravaud, A; Gualde, N; Bosmans, E; Egyed, B; Dantzer, R; Neveu, P J

    2001-02-01

    There is some evidence that treatment with interleukin-2 (IL-2) and interferon-alpha (IFNalpha) frequently induces depressive symptoms and activation of the inflammatory response system (IRS). There is evidence that major depression is accompanied by lowered serum activity of dipeptidyl peptidase IV (DPP IV; EC 3.4.14.5), a membrane-bound serine protease which catalyses the cleavage of some cytokines and neuro-active peptides and which modulates T cell activation and the production of cytokines, such as IL-2. This study was carried out to examine the effects of immunochemotherapy with IL-2 and IFNalpha, alone and together, in cancer patients on serum DPP IV activity in relation to changes in depressive symptoms and the IRS. The Montgomery and Asberg Rating Scale (MADRS), serum DPP IV activity, and the serum IL-6, and IL-2 receptor (IL-2R) concentrations were measured in 26 patients with metastatic cancers before and three and five days after treatment with IL-2 and IFNalpha, alone or together. Treatment with IL-2 with or without IFNalpha significantly suppressed serum DPP IV activity. The MADRS scores were significantly elevated by treatment with IL-2 with or without IFNalpha, but not IFNalpha alone. The immunochemotherapy-induced decreases in serum DPP IV were significantly and inversely correlated with the increases in the MADRS. Treatment with IL-2 alone or combined with IFNalpha also elevated serum IL-6 and IL-2R. There were significant and inverse correlations between the immuchemotherapy-induced decreases in serum DPP IV and the elevations in serum IL-6 or IL-2R. In conclusion, treatment with IL-2/IFNalpha decreases serum DPP IV activity within 3-5 days and the immunochemotherapy-induced decreases in serum DPP IV activity are significantly and inversely related to treatment-induced increases in severity of depression and signs of activation of the IRS.

  19. In vitro and in vivo effects of clove on pro-inflammatory cytokines production by macrophages.

    PubMed

    Rodrigues, T G; Fernandes, A; Sousa, J P B; Bastos, J K; Sforcin, J M

    2009-01-01

    Biological properties of clove have been reported, but little is known about its effect on the immune system. This work was aimed to investigate the effect in vivo of a water-soluble part of hydroalcoholic extract of clove on pro-inflammatory cytokines (IL-1beta and IL-6) production by macrophages of BALB/c mice. The action of the essential oil of clove on the production of these cytokines macrophages was also investigated in vitro. The chemical compositions of the extract and of the oil were also investigated. Treatment of mice with water extract of clove was found to inhibit macrophages to produce both IL-1beta and IL-6. The essential oil of clove also inhibited the production of these cytokines in vitro. Eugenol was found to be the major component of the clove extract and essential oil, and probably is the causative agent of cytokine inhibition. Taken together, these data suggest an anti-inflammatory action of this spice.

  20. Morinda citrifolia lipid transfer protein 1 exhibits anti-inflammatory activity by modulation of pro- and anti-inflammatory cytokines.

    PubMed

    Campos, Dyély C O; Costa, Andrea S; Luz, Patrícia B; Soares, Pedro M G; Alencar, Nylane M N; Oliveira, Hermógenes D

    2017-10-01

    Previous reports have demonstrated that a thermostable lipid transfer protein isolated from noni seeds (McLTP 1 ; 9.4kDa) displays anti-nociceptive and anti-inflammatory activities. This work aimed to investigate the underlying mechanisms of the anti-inflammatory activity of McLTP 1 in mice. The protein was solubilised in sterile saline (0.9% NaCl) immediately before the treatment of mice by oral or intraperitoneal routes at doses of 8mg/kg. Given orally or intraperitoneally, McLTP 1 significantly inhibited (p<0.05) cell migration in experimental models of carrageenan-induced peritonitis and the formation of paw oedema induced by carrageenan and dextran. Additionally, McLTP 1 demonstrated the ability to significantly inhibit the production of the cytokines IL-1β, IL-6, and TNF-α (p<0.05) and to promote an increase in the production of the anti-inflammatory cytokine IL-10. The treatment of mice with McLTP 1 by the oral or i.p route reduced pancreatic injury and activities of amylase, lipase, and pancreatitis-associated lung injury. This study suggested that the observed anti-inflammatory effects of McLTP 1 can be related to modulation of pro- and anti-inflammatory cytokine levels. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Chemically Modified N-Acylated Hyaluronan Fragments Modulate Proinflammatory Cytokine Production by Stimulated Human Macrophages*

    PubMed Central

    Babasola, Oladunni; Rees-Milton, Karen J.; Bebe, Siziwe; Wang, Jiaxi; Anastassiades, Tassos P.

    2014-01-01

    Low molecular mass hyaluronans are known to induce inflammation. To determine the role of the acetyl groups of low molecular mass hyaluronan in stimulating the production of proinflammatory cytokines, partial N-deacetylation was carried out by hydrazinolysis. This resulted in 19.7 ± 3.5% free NH2 functional groups, which were then acylated by reacting with an acyl anhydride, including acetic anhydride. Hydrazinolysis resulted in bond cleavage of the hyaluronan chain causing a reduction of the molecular mass to 30–214 kDa. The total NH2 and N-acetyl moieties in the reacetylated hyaluronan were 0% and 98.7 ± 1.5% respectively, whereas for butyrylated hyaluronan, the total NH2, N-acetyl, and N-butyryl moieties were 0, 82.2 ± 4.6, and 22.7 ± 3.8%, respectively, based on 1H NMR. We studied the effect of these polymers on cytokine production by cultured human macrophages (THP-1 cells). The reacetylated hyaluronan stimulated proinflammatory cytokine production to levels similar to LPS, whereas partially deacetylated hyaluronan had no stimulatory effect, indicating the critical role of the N-acetyl groups in the stimulation of proinflammatory cytokine production. Butyrylated hyaluronan significantly reduced the stimulatory effect on cytokine production by the reacetylated hyaluronan or LPS but had no stimulatory effect of its own. The other partially N-acylated hyaluronan derivatives tested showed smaller stimulatory effects than reacetylated hyaluronan. Antibody and antagonist experiments suggest that the acetylated and partially butyrylated lower molecular mass hyaluronans exert their effects through the TLR-4 receptor system. Selectively N-butyrylated lower molecular mass hyaluronan shows promise as an example of a novel semisynthetic anti-inflammatory molecule. PMID:25053413

  2. Split2 Protein-Ligation Generates Active IL-6-Type Hyper-Cytokines from Inactive Precursors.

    PubMed

    Moll, Jens M; Wehmöller, Melanie; Frank, Nils C; Homey, Lisa; Baran, Paul; Garbers, Christoph; Lamertz, Larissa; Axelrod, Jonathan H; Galun, Eithan; Mootz, Henning D; Scheller, Jürgen

    2017-12-15

    Trans-signaling of the major pro- and anti-inflammatory cytokines Interleukin (IL)-6 and IL-11 has the unique feature to virtually activate all cells of the body and is critically involved in chronic inflammation and regeneration. Hyper-IL-6 and Hyper-IL-11 are single chain designer trans-signaling cytokines, in which the cytokine and soluble receptor units are trapped in one complex via a flexible peptide linker. Albeit, Hyper-cytokines are essential tools to study trans-signaling in vitro and in vivo, the superior potency of these designer cytokines are accompanied by undesirable stress responses. To enable tailor-made generation of Hyper-cytokines, we developed inactive split-cytokine-precursors adapted for posttranslational reassembly by split-intein mediated protein trans-splicing (PTS). We identified cutting sites within IL-6 (E 134 /S 135 ) and IL-11 (G 116 /S 117 ) and obtained inactive split-Hyper-IL-6 and split-Hyper-IL-11 cytokine precursors. After fusion with split-inteins, PTS resulted in reconstitution of active Hyper-cytokines, which were efficiently secreted from transfected cells. Our strategy comprises the development of a background-free cytokine signaling system from reversibly inactivated precursor cytokines.

  3. Effect of Coriolus versicolor glucan on the stimulation of cytokine production in sarcoma-180-bearing mice

    PubMed Central

    Awadasseid, Annoor; Eugene, Kuugbee; Jamal, Mayada; Hou, Jie; Musa Hago, Ahmed; Gamallat, Yaser; Meyiah, Abdo; Bamba, Djibril; Gift, Chiwala; Abdalla, Mohnad; Ma, Yufang; Xin, Yi

    2017-01-01

    Coriolus versicolor (CV) contains high levels of bioactive compounds, including the glucan (1→6)-α-D-glucopyranosyl. However, there is a lack of data regarding the potential effect of this CV glucan (CVG) on the stimulation of cytokine production. The present study evaluated the effect of CVG on the stimulation of cytokine production in sarcoma-180-bearing mice. Mice were treated with three doses of CVG (40, 100 or 200 mg/kg body weight) for nine days, after which serum levels of cytokines, namely interleukin (IL)-2, −4, −6, −10, −17A and interferon (IFN)-α and -γ, were investigated by ELISA. CVG significantly promoted the secretion of IL-2, −4, −6, −10, −17A and IFN-α and -γ at the doses of 100 (P<0.05) and 200 (P<0.01) mg/kg, but not at 40 mg/kg (P>0.05), when compared with cyclophosphamide treatment, as a positive control. Additionally, cytokine production associated with T helper (Th)2 and Th17 cells was enhanced compared with that of Th1 cytokines, and the immunomodulatory function of CVG appeared to be IL-10-dependent. These results demonstrate that CVG may stimulate the production of cytokines and serve as a Th2/IL-10-dependent immunomodulator, and thus has promise in supporting cancer therapies. PMID:29188061

  4. Effect of Coriolus versicolor glucan on the stimulation of cytokine production in sarcoma-180-bearing mice.

    PubMed

    Awadasseid, Annoor; Eugene, Kuugbee; Jamal, Mayada; Hou, Jie; Musa Hago, Ahmed; Gamallat, Yaser; Meyiah, Abdo; Bamba, Djibril; Gift, Chiwala; Abdalla, Mohnad; Ma, Yufang; Xin, Yi

    2017-12-01

    Coriolus versicolor (CV) contains high levels of bioactive compounds, including the glucan (1→6)-α-D-glucopyranosyl. However, there is a lack of data regarding the potential effect of this CV glucan (CVG) on the stimulation of cytokine production. The present study evaluated the effect of CVG on the stimulation of cytokine production in sarcoma-180-bearing mice. Mice were treated with three doses of CVG (40, 100 or 200 mg/kg body weight) for nine days, after which serum levels of cytokines, namely interleukin (IL)-2, -4, -6, -10, -17A and interferon (IFN)-α and -γ, were investigated by ELISA. CVG significantly promoted the secretion of IL-2, -4, -6, -10, -17A and IFN-α and -γ at the doses of 100 (P<0.05) and 200 (P<0.01) mg/kg, but not at 40 mg/kg (P>0.05), when compared with cyclophosphamide treatment, as a positive control. Additionally, cytokine production associated with T helper (Th)2 and Th17 cells was enhanced compared with that of Th1 cytokines, and the immunomodulatory function of CVG appeared to be IL-10-dependent. These results demonstrate that CVG may stimulate the production of cytokines and serve as a Th2/IL-10-dependent immunomodulator, and thus has promise in supporting cancer therapies.

  5. Cytokine Production by Leukocytes of Military Personnel with Depressive Symptoms after Deployment to a Combat-Zone: A Prospective, Longitudinal Study

    PubMed Central

    van Zuiden, Mirjam; Heijnen, Cobi J.; van de Schoot, Rens; Amarouchi, Karima; Maas, Mirjam; Vermetten, Eric; Geuze, Elbert; Kavelaars, Annemieke

    2011-01-01

    Major depressive disorder (MDD) is frequently diagnosed in military personnel returning from deployment. Literature suggests that MDD is associated with a pro-inflammatory state. To the best of our knowledge, no prospective, longitudinal studies on the association between development of depressive symptomatology and cytokine production by peripheral blood leukocytes have been published. The aim of this study was to investigate whether the presence of depressive symptomatology six months after military deployment is associated with the capacity to produce cytokines, as assessed before and after deployment. 1023 military personnel were included before deployment. Depressive symptoms and LPS- and T-cell mitogen-induced production of 16 cytokines and chemokines in whole blood cultures were measured before (T0), 1 (T1), and 6 (T2) months after return from deployment. Exploratory structural equation modeling (ESEM) was used for data reduction into cytokine patterns. Multiple group latent growth modeling was used to investigate differences in the longitudinal course of cytokine production between individuals with (n = 68) and without (n = 665) depressive symptoms at T2. Individuals with depressive symptoms after deployment showed higher T-cell cytokine production before deployment. Moreover, pre-deployment T-cell cytokine production significantly predicted the presence of depressive symptomatology 6 months after return. There was an increase in T-cell cytokine production over time, but this increase was significantly smaller in individuals developing depressive symptoms. T-cell chemokine and LPS-induced innate cytokine production decreased over time and were not associated with depressive symptoms. These results indicate that increased T-cell mitogen-induced cytokine production before deployment may be a vulnerability factor for development of depressive symptomatology in response to deployment to a combat-zone. In addition, deployment to a combat-zone affects the

  6. Autophagy Inhibition Contributes to ROS-Producing NLRP3-Dependent Inflammasome Activation and Cytokine Secretion in High Glucose-Induced Macrophages.

    PubMed

    Dai, Jiezhi; Zhang, Xiaotian; Li, Li; Chen, Hua; Chai, Yimin

    2017-01-01

    Type 2 diabetes is a persistent inflammatory response that impairs the healing process. We hypothesized that stimulation with high glucose following a pro-inflammatory signal would lead to autophagy inhibition, reactive oxygen species (ROS) production and eventually to the activation of the Nod-like receptor protein (NLRP) -3. Macrophages were isolated from human diabetic wound. We measured the expression of NLRP3, caspase1 and interleukin-1 beta (IL-1β) by western blot and real-time PCR, and the surface markers on cells by flow cytometry. THP-1-derived macrophages exposed to high glucose were applied to study the link between autophagy, ROS and NLRP3 activation. LC3-II, P62, NLRP3 inflammation and IL-1β expression were measured by western blot and real-time PCR. ROS production was measured with a Cellular Reactive Oxygen Species Detection Assay Kit. Macrophages isolated from diabetic wounds exhibited a pro-inflammatory phenotype, including sustained NLRP3 inflammasome activity associated with IL-1β secretion. Our data showed that high glucose inhibited autophagy, induced ROS production, and activated NLRP3 inflammasome and cytokine secretion in THP-1-derived macrophages. To study high glucose-induced NLRP3 inflammasome signalling, we performed studies using an autophagy inducer, a ROS inhibitor and a NLRP3 inhibitor and found that all reduced the NLRP3 inflammasome activation and cytokine secretion. Sustained NLRP3 inflammasome activity in wound-derived macrophages contributes to the hyper-inflammation in human diabetic wounds. Autophagy inhibition and ROS generation play an essential role in high glucose-induced NLRP3 inflammasome activation and cytokine secretion in macrophages. © 2017 The Author(s). Published by S. Karger AG, Basel.

  7. Myeloid-derived NF-κB negative regulation of PU.1 and cEBPβ-driven pro-inflammatory cytokine production restrains LPS-induced Shock

    PubMed Central

    Vanoni, Simone; Tsai, Yi Ting; Waddell, Amanda; Waggoner, Lisa; Klarquist, Jared; Divanovic, Senad; Hoebe, Kasper; Steinbrecher, Kris A.; Hogan, Simon P.

    2017-01-01

    Sepsis is a life-threatening event predominantly caused by gram-negative bacteria. Bacterial infection causes a pronounced macrophage (MΦ) and dendritic cell (DC) activation that leads to excessive pro-inflammatory cytokine interleukin (IL)-1β, IL-6, and Tumor necrosis factor (TNF)-α production (cytokine storm), resulting in endotoxic shock. Previous experimental studies have revealed that inhibiting Nuclear Factor kappa Beta (NF-κB) signaling ameliorates disease symptoms; however, the contribution of myeloid p65 in endotoxic shock remains elusive. In this study, we demonstrate increased mortality in mice lacking p65 in the myeloid lineage (p65Δmye) compared to wild type (WT) mice upon ultra-pure LPS (U-LPS) challenge. We show that increased susceptibility to Lipopolysaccharide (LPS)-induced shock was associated with elevated serum level of IL-1β and IL-6. Mechanistic analyses revealed that LPS-induced pro-inflammatory cytokine production was ameliorated in p65-deficient bone marrow–derived macrophages (BMDMs); however, p65-deficient “activated” peritoneal macrophages (MΦs) exhibited elevated IL-1β and IL-6. We show that the elevated pro-inflammatory cytokine secretion was due in part to increased accumulation of IL-1β mRNA and protein in activated inflammatory MΦs. The increased IL-1β was linked with heightened binding of PU.1 and CCAAT/Enhancer Binding Protein Beta (cEBPβ to Il1b and Il6 promoters in activated inflammatory MΦs. Our data provides insight into a role for NF-κB in the negative regulation of pro-inflammatory cytokines in myeloid cells. PMID:27932520

  8. Sodium chloride-enriched Diet Enhanced Inflammatory Cytokine Production and Exacerbated Experimental Colitis in Mice.

    PubMed

    Monteleone, Ivan; Marafini, Irene; Dinallo, Vincenzo; Di Fusco, Davide; Troncone, Edoardo; Zorzi, Francesca; Laudisi, Federica; Monteleone, Giovanni

    2017-02-01

    Environmental factors are supposed to play a decisive role in the pathogenesis of inflammatory bowel diseases [IBDs]. Increased dietary salt intake has been linked with the development of autoimmune diseases, but the impact of a salt-enriched diet on the course of IBD remains unknown. In this study, we examined whether high salt intake alters mucosal cytokine production and exacerbates colitis. Normal intestinal lamina propria mononuclear cells [LPMCs] were activated with anti-CD3/CD28 in the presence or absence of increasing concentrations of sodium chloride [NaCl] and/or SB202190, a specific inhibitor of p38/MAP Kinase. For in vivo experiments, a high dose of NaCl was administered to mice 15 days before induction of trinitrobenzene-sulfonic acid [TNBS]-colitis or dextran sulfate sodium [DSS]-colitis. In parallel, mice were given SB202190 before induction of TNBS-colitis. Transcription factors and effector cytokines were evaluated by flow-cytometry and real-time PCR. IL-17A, IL-23R, TNF-α, and Ror-γT were significantly increased in human LPMCs following NaCl exposure, while there was no significant change in IFN-γ, T-bet or Foxp3. Pharmacologic inhibition of p38/MAPK abrogated the NaCl-inducing effect on LPMC-derived cytokines. Mice receiving the high-salt diet developed a more severe colitis than control mice, and this effect was preventable by SB202190. Our data indicated that exposure of intestinal mononuclear cells to a high-NaCl diet enhanced effector cytokine production and contributed to the exacerbation of experimental colitis in mice. Copyright © 2016 European Crohn’s and Colitis Organisation (ECCO). Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Activation of PPARγ inhibits pro-inflammatory cytokines production by upregulation of miR-124 in vitro and in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dan; Shi, Liuyan; Xin, Wei

    Peroxisome proliferator-activated receptor gamma (PPARγ) and miR-124 have been reported to play important roles in regulation of inflammation. However, the underlying anti-inflammatory mechanisms remain not well understood. In the present study, we demonstrated that the expression level of PPARγ is positively correlated with that of miR-124 in patients with sepsis. Activation of PPARγ upregulates miR-124 and in turn inhibits miR-124 target gene. PPARγ bound directly to PPRE in the miR-124 promoter region, and enhanced the promoter transcriptional activity. PPARγ-induced miR-124 is involved in the suppression of pro-inflammatory cytokine in vitro and in vivo. These results suggest that PPARγ-induced miR-124 inhibits the productionmore » of pro-inflammatory cytokines is a novel PPARγ anti-inflammatory mechanism and also indicate that miR-124 may be a potential therapeutic target for the treatment of inflammatory diseases. - Highlights: • The expression level of PPARγ is positively correlated with that of miR-124 in patients with sepsis. • PPARγ upregulates miR-124 and in turn inhibits miR-124 target gene. • PPARγ promotes miR-124 transcription through binding to miR-124 promoter region. • Inhibition of miR-124 attenuates the PPARγ-mediated suppression of proinflammatory cytokines in vitro. • PPARγ-induced miR-124 is involved in the suppression of pro-inflammatory cytokine in vivo.« less

  10. Modulation of nitric oxide, hydrogen peroxide and cytokine production in a clonal macrophage model by the trichothecene vomitoxin (deoxynivalenol).

    PubMed

    Ji, G E; Park, S Y; Wong, S S; Pestka, J J

    1998-02-06

    Characterization of how vomitoxin (VT) and other trichothecenes affect macrophage regulatory and effector function may contribute to improved understanding of mechanisms by which these mycotoxins impact the immune system. The RAW 264.7 murine cell line was used as a macrophage model to assess effects of the VT on proliferation and the production of nitric oxide (NO), hydrogen peroxide (H2O2) and cytokines. Using the MTT cleavage assay, VT at concentrations of 50 ng/ml or higher was found to significantly decrease proliferation and viability of RAW 264.7 cells without stimulation or with stimulation by lipopolysaccharide (LPS) or interferon (IFN)-gamma. In the absence of an activation agent, VT (25-250 ng/ml) had negligible effects on the production of NO, H2O2, and cytokines. Upon activation with LPS at concentrations of 10 to 100 ng/ml, VT at 25-100 ng/ml markedly enhanced production of H2O2 but was inhibitory at 250 ng/ml. VT enhancement of H2O2 production was observed as early as 12 h after LPS stimulation. When IFN-gamma was used as the stimulant, VT (25-250 ng/ml) delayed peak H2O2 production. VT (25-250 ng/ml) also markedly decreased NO production in cells activated with LPS or IFN-gamma. Interestingly, VT superinduced TNF-alpha and IL-6 production in LPS-stimulated cells and also elevated TNF-alpha in IFN-gamma stimulated cells. These results suggest that VT can selectively and concurrently upregulate or downregulate critical functions associated with activated macrophages.

  11. Inhibition of Neddylation Represses Lipopolysaccharide-induced Proinflammatory Cytokine Production in Macrophage Cells

    PubMed Central

    Chang, Fang-Mei; Reyna, Sara M.; Granados, Jose C.; Wei, Sung-Jen; Innis-Whitehouse, Wendy; Maffi, Shivani K.; Rodriguez, Edward; Slaga, Thomas J.; Short, John D.

    2012-01-01

    Cullin-RING E3 ligases (CRLs) are a class of ubiquitin ligases that control the proteasomal degradation of numerous target proteins, including IκB, and the activity of these CRLs are positively regulated by conjugation of a Nedd8 polypeptide onto Cullin proteins in a process called neddylation. CRL-mediated degradation of IκB, which normally interacts with and retains NF-κB in the cytoplasm, permits nuclear translocation and transactivation of the NF-κB transcription factor. Neddylation occurs through a multistep enzymatic process involving Nedd8 activating enzymes, and recent studies have shown that the pharmacological agent, MLN4924, can potently inhibit Nedd8 activating enzymes, thereby preventing neddylation of Cullin proteins and preventing the degradation of CRL target proteins. In macrophages, regulation of NF-κB signaling functions as a primary pathway by which infectious agents such as lipopolysaccharides (LPSs) cause the up-regulation of proinflammatory cytokines. Here we have analyzed the effects of MLN4924, and compared the effects of MLN4924 with a known anti-inflammatory agent (dexamethasone), on certain proinflammatory cytokines (TNF-α and IL-6) and the NF-κB signaling pathway in LPS-stimulated macrophages. We also used siRNA to block neddylation to assess the role of this molecular process during LPS-induced cytokine responsiveness. Our results demonstrate that blocking neddylation, either pharmacologically or using siRNA, abrogates the increase in certain proinflammatory cytokines secreted from macrophages in response to LPS. In addition, we have shown that MLN4924 and dexamethasone inhibit LPS-induced cytokine up-regulation at the transcriptional level, albeit through different molecular mechanisms. Thus, neddylation represents a novel molecular process in macrophages that can be targeted to prevent and/or treat the LPS-induced up-regulation of proinflammatory cytokines and the disease processes associated with their up-regulation. PMID

  12. MRG1, the product of a melanocyte-specific gene related gene, is a cytokine-inducible transcription factor with transformation activity

    PubMed Central

    Sun, Hui Bin; Zhu, Yuan Xiao; Yin, Tinggui; Sledge, George; Yang, Yu-Chung

    1998-01-01

    Identification of cytokine-inducible genes is imperative for determining the mechanisms of cytokine action. A cytokine-inducible gene, mrg1 [melanocyte-specific gene (msg1) related gene], was identified through mRNA differential display of interleukin (IL) 9-stimulated and unstimulated mouse helper T cells. In addition to IL-9, mrg1 can be induced by other cytokines and biological stimuli, including IL-1α, -2, -4, -6, and -11, granulocyte/macrophage colony-stimulating factor, interferon γ, platelet-derived growth factor, insulin, serum, and lipopolysaccharide in diverse cell types. The induction of mrg1 by these stimuli appears to be transient, with induction kinetics similar to other primary response genes, implicating its role in diverse biological processes. Deletion or point mutations of either the Box1 motif (binds Janus kinase 1) or the signal transducer and activator of transcription 3 binding site-containing region within the intracellular domain of the IL-9 receptor ligand binding subunit abolished or greatly reduced mrg1 induction by IL-9, suggesting that the Janus kinase/signal transducer and activator of transcription signaling pathway is required for mrg1 induction, at least in response to IL-9. Transfection of mrg1 cDNA into TS1, an IL-9-dependent mouse T cell line, converted these cells to IL-9-independent growth through a nonautocrine mechanism. Overexpression of mrg1 in Rat1 cells resulted in loss of cell contact inhibition, anchorage-independent growth in soft agar, and tumor formation in nude mice, demonstrating that mrg1 is a transforming gene. MRG1 is a transcriptional activator and may represent a founding member of an additional family of transcription factors. PMID:9811838

  13. [Effects of several inhibitors of intracellular signaling on production of cytokines and signal proteins in RAW 264.7 cells cultivated with low dose ammonium].

    PubMed

    Novoselova, E G; Parfeniuk, S B; Glushkova, O V; Khrenov, M O; Novoselova, T V; Lunin, S M; Fesenko, E E

    2012-01-01

    Effects of four inhibitors of NF-kappaB, SAPK/JNK and TLR4 signaling, namely, inhibitor XII, SP600125, CLI-095 and Oxpapc on a macrophage response to low dose ammonium were studied in RAW 264.7 cells. Low dose ammonium induced pro-inflammatory response in cells as judged from enhanced production of TNF-alpha, IF-gamma, and IL-6, and by activation of signal cascades. The increase in production of cytokines, namely TNF, IFN, and IL-6, demonstrated that low-dose ammonium induced a pro-inflammatory cellular response. In addition, an activation of NF-kappaB and SAPK/JNK cascades, as well as enhancement of TLR4 expression was shown. Each of used inhibitors reduced to a variable degree the pro-inflammatory response of RAW 264.7 cells on chemical toxin by decreasing cytokine production. The inhibitor of NF-kappaB cascade, IKK Inhibitor XII, was more effective, and not only prevented the development of pro-inflammatory response induced by ammonium, but also decreased cytokine production below control values. The inhibitor of extra cellular domains of TLR2 and TLR4 (OxPAPC) had almost the same anti-inflammatory effect, and an addition of the inhibitor of JNK cascade (SP600125) to cell culture practically neutralized effect of ammonium ions by decreasing cytokine production to control level. Inhibitory analysis showed that activation of RAW 264.7 cells induced by chemical toxin coincide incompletely with intracellular signaling pathways that were early determined regarding macrophage's response to toxin from gram-negative bacteria. Nevertheless, application of the inhibitors defended RAW 264.7 from toxic effect of the low dose ammonium.

  14. Modulation of cytokine-induced prostaglandin E₂ production in cultures of articular chondrocytes obtained from carpal joints of camels (Camelus dromedarius).

    PubMed

    Frondoza, Carmelita G; Heinecke, Lowella F; Grzanna, Mark W; Au, Angela Y; Ownby, Stacy L

    2011-01-01

    To determine whether camel articular chondrocytes can be maintained in tissue culture without phenotype loss and whether the response to cytokine stimulation can be modulated. Cartilage from 4 carpal joints of healthy adult dromedary camels (Camelus dromedarius). Chondrocytes were evaluated for type II collagen and aggrecan production They were incubated with control media or with 2 test mixtures (alone and then in combination) that have anti-inflammatory activity (avocado-soybean unsaponifiables, glucosamine, and chondroitin sulfate [ie, ASU + GLU + CS] and pentosan polysulfate and N-acetyl glucosamine [ie, PPS + NG]). Cells were then stimulated with interleukin-1β and tumor necrosis factor-α to determine prostaglandin (PG) E₂ production and nuclear factor (NF)-κB activation. Chondrocytes proliferated in media used for propagating equine chondrocytes; they produced type II collagen and aggrecan. Cytokine stimulation induced PGE₂ production and translocation of NF-κB. Incubation with each test mixture significantly inhibited PGE₂ production. The combination of ASU + GLU + CS and PPS + NG significantly potentiated PGE₂ inhibition and disrupted NF-κB translocation, compared with effects for either mixture alone. Chondrocytes proliferated without loss of the cartilage phenotype. Responses to cytokines were significantly inhibited by the mixtures of ASU + GLU + CS and PPS + NG, which indicated that this response can be modulated. This culture technique can be used to study the functional properties of camel chondrocytes and identify agents that may potentially be used to treat and manage joint inflammation.

  15. Regulation of Cytokine Production by the Unfolded Protein Response; Implications for Infection and Autoimmunity

    PubMed Central

    Smith, Judith A.

    2018-01-01

    Protein folding in the endoplasmic reticulum (ER) is an essential cell function. To safeguard this process in the face of environmental threats and internal stressors, cells mount an evolutionarily conserved response known as the unfolded protein response (UPR). Invading pathogens induce cellular stress that impacts protein folding, thus the UPR is well situated to sense danger and contribute to immune responses. Cytokines (inflammatory cytokines and interferons) critically mediate host defense against pathogens, but when aberrantly produced, may also drive pathologic inflammation. The UPR influences cytokine production on multiple levels, from stimulation of pattern recognition receptors, to modulation of inflammatory signaling pathways, and the regulation of cytokine transcription factors. This review will focus on the mechanisms underlying cytokine regulation by the UPR, and the repercussions of this relationship for infection and autoimmune/autoinflammatory diseases. Interrogation of viral and bacterial infections has revealed increasing numbers of examples where pathogens induce or modulate the UPR and implicated UPR-modulated cytokines in host response. The flip side of this coin, the UPR/ER stress responses have been increasingly recognized in a variety of autoimmune and inflammatory diseases. Examples include monogenic disorders of ER function, diseases linked to misfolding protein (HLA-B27 and spondyloarthritis), diseases directly implicating UPR and autophagy genes (inflammatory bowel disease), and autoimmune diseases targeting highly secretory cells (e.g., diabetes). Given the burgeoning interest in pharmacologically targeting the UPR, greater discernment is needed regarding how the UPR regulates cytokine production during specific infections and autoimmune processes, and the relative place of this interaction in pathogenesis. PMID:29556237

  16. Effects of 1,25(OH)2 vitamin D3 on cytokine production by endometrial cells of women with recurrent spontaneous abortion.

    PubMed

    Tavakoli, Maryam; Jeddi-Tehrani, Mahmood; Salek-Moghaddam, Alireza; Rajaei, Samira; Mohammadzadeh, Afsaneh; Sheikhhasani, Shahrzad; Kazemi-Sefat, Golnaz-Ensieh; Zarnani, Amir Hassan

    2011-09-01

    To investigate immunomodulatory effect of 1,25(OH)2 vitamin D3 (1,25(OH)2D3) on cytokine production by endometrial cells of women with unexplained recurrent spontaneous abortion (URSA). In vitro study. Academic research center. Patients with URSA and healthy controls. Treatment with 1,25(OH)2D3. Production of interferon γ (IFN-γ), interleukin-10 (IL-10), transforming growth factor β (TGF-β), IL-17, IL-6, and IL-8 by whole endometrial cells (WECs) and endometrial stromal cells in the presence and absence of 1,25(OH)2D3 and 1α-hydroxylase activity of these cell populations were measured in patients with URSA and healthy controls. 1,25(OH)2D3 interfered with production of cytokines by WECs of the control and URSA groups, except IL-8 which was increased in URSA group. In endometrial stromal cells, 1,25(OH)2D3 down-regulated cytokine production as well with stimulatory effect on the production of TGF-β in patients with URSA. Cytokine profile of WECs from patients with URSA skewed toward TH2 phenotype after treatment with 1,25(OH)2D3. Endometrial cells of both groups had comparable capacity to produce 1,25(OH)2D3. Considering the complex network of immunoregulation at the fetomaternal interface, potential beneficial effects of vitamin D3 in patients with URSA need to be investigated in clinical practice. Comparable levels of 1,25(OH)2D3 production and similar trend of cytokine expression by WECs of URSA and control groups after vitamin D3 treatment reflect the same local metabolic machinery of this hormone. Copyright © 2011 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  17. Sulforaphane-stimulated phase II enzyme induction inhibits cytokine production by airway epithelial cells stimulated with diesel extract.

    PubMed

    Ritz, Stacey A; Wan, Junxiang; Diaz-Sanchez, David

    2007-01-01

    Airborne particulate pollutants, such as diesel exhaust particles, are thought to exacerbate lung and cardiovascular diseases through induction of oxidative stress. Sulforaphane, derived from cruciferous vegetables, is the most potent known inducer of phase II enzymes involved in the detoxification of xenobiotics. We postulated that sulforaphane may be able to ameliorate the adverse effects of pollutants by upregulating expression of endogenous antioxidant enzymes. Stimulation of bronchial epithelial cells with the chemical constituents of diesel particles result in the production of proinflammatory cytokines. We first demonstrated a role for phase II enzymes in regulating diesel effects by transfecting the airway epithelial cell line (BEAS-2B) with the sentinel phase II enzyme NAD(P)H: quinine oxidoreductase 1 (NQO1). IL-8 production in response to diesel extract was significantly reduced in these compared with untransfected cells. We then examined whether sulforaphane would stimulate phase II induction and whether this would thereby ablate the effect of diesel extracts on cytokine production. We verified that sulforaphane significantly augmented expression of the phase II enzyme genes GSTM1 and NQO1 and confirmed that sulforaphane treatment increased glutathione S-transferase activity in epithelial cells without inducing cell death or apoptosis. Sulforaphane pretreatment inhibited IL-8 production by BEAS-2B cells upon stimulation with diesel extract. Similarly, whereas diesel extract stimulated production of IL-8, granulocyte-macrophage colony-stimulating factor, and IL-1beta from primary human bronchial epithelial cells, sulforaphane pretreatment inhibited diesel-induced production of all of these cytokines. Our studies show that sulforaphane can mitigate the effect of diesel in respiratory epithelial cells and demonstrate the chemopreventative potential of phase II enzyme enhancement.

  18. The Activity of Immunoglobulin Y Anti-Mycobacterium tuberculosis on Proliferation and Cytokine Expression of Rat Peripheral Blood Mononuclear Cells.

    PubMed

    Sudjarwo, Sri Agus; Eraiko, Koerniasari; Sudjarwo, Giftania Wardani; Koerniasari

    2017-12-01

    It has long been known that chickens, like mammals, are capable of producing antigen-specific immunoglobulin Y (IgY), which functions similar to IgG. The present study was performed to investigate the activity of IgY anti- Mycobacterium tuberculosis on proliferation, interleukin (IL)-2, and interferon (IFN)-γ expression of rat peripheral blood mononuclear cells (PBMCs). The activity of IgY anti- M. tuberculosis in different doses (25, 50, and 100 μg/ml) on rat PBMCs proliferation was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. The production of IL-2 and IFN-γ in the PBMC supernatant was determined using enzyme-linked immunosorbent assay. Investigation was performed on mRNA expression of IL-2 and IFN-γ by reverse transcription-polymerase chain reaction (RT-PCR). IgY anti- M. tuberculosis significantly increased the proliferation of rat PBMC. Furthermore, IgY anti-M. tuberculosis dose dependently increased IL-2 and IFN-γ production in PBMC, suggesting that pharmacological activities of IgY anti- M. tuberculosis in PBMC may be mediated by regulating the production of cytokines. In the RT-PCR, expression of cytokines such as IL-2 and IFN-γ in PBMC cultures was increased by IgY anti- M. tuberculosis . We concluded that increasing IL-2 and IFN-γ productions in PBMC was related to IgY anti- M. tuberculosis , stimulating the mRNA transcription (gene expression) of these cytokines which can induce proliferation of PBMC. Lohman laying hens immunized intramuscularly with antigens of M. tuberculosis can produce specific IgY anti- Mycobacterium tuberculosis complexIgY anti- M. tuberculosis significantly increased the proliferation of rat peripheral blood mononuclear cell (PBMC)IgY anti- M. tuberculosis dose dependently increased interleukin 2 (IL-2) and interferon (IFN)-γ production in PBMCIn the reverse transcription-polymerase chain reaction, expression of cytokines such as IL-2 and IFN-γ in PBMC cultures was increased by Ig

  19. Toward a new generation of vaccines: the anti-cytokine therapeutic vaccines.

    PubMed

    Zagury, D; Burny, A; Gallo, R C

    2001-07-03

    Pathological conditions, such as cancers, viral infections, and autoimmune diseases, are associated with abnormal cytokine production, and the morbidity associated with many medical disorders is often directly a result of cytokine production. Because of the absence of negative feedback control occurring in some pathophysiologic situations, a given cytokine may flood and accumulate in the extracellular compartment of tissues or tumors thereby impairing the cytokine network homeostasis and contributing to local pathogenesis. To evaluate whether the rise of anti-cytokine Abs by vaccination is an effective way to treat these pathological conditions without being harmful to the organism, we have analyzed each step of the cytokine process (involving cytokine production, target response, and feedback regulation) and have considered them in the local context of effector--target cell microenvironment and in the overall context of the macroenvironment of the immune system of the organism. In pathologic tissues, Abs of high affinity, as raised by anti-cytokine vaccination, should neutralize the pool of cytokines ectopically accumulated in the extracellular compartment, thus counteracting their pathogenic effects. In contrast, the same Abs should not interfere with cytokine processes occurring in normal tissues, because under physiologic conditions cytokine production by effector cells (induced by activation but controlled by negative feedback regulation) does not accumulate in the extracellular compartment. These concepts are consistent with results showing that following animal and human anti-cytokine vaccination, induction of high-affinity Abs has proven to be safe and effective and encourages this approach as a pioneering avenue of therapy.

  20. Discovery of novel and potent small-molecule inhibitors of NO and cytokine production as antisepsis agents: synthesis and biological activity of alkyl 6-(N-substituted sulfamoyl)cyclohex-1-ene-1-carboxylate.

    PubMed

    Yamada, Masami; Ichikawa, Takashi; Ii, Masayuki; Sunamoto, Mie; Itoh, Katsumi; Tamura, Norikazu; Kitazaki, Tomoyuki

    2005-11-17

    To develop a new therapeutic agent for sepsis, screening of the Takeda chemical library was carried out using mouse macrophages stimulated with lipopolysaccharide (LPS) to identify a new class of small-molecule inhibitors of inflammatory mediator production. The lead compound 5a was discovered, from which a series of novel cyclohexene derivatives I bearing a sulfamoyl and ester group were designed, synthesized and tested for their inhibitory activity against nitric oxide (NO) production. Derivatives I were synthesized by the coupling of sulfonyl chlorides and anilines with concomitant double bond migration in the presence of triethylamine, and phenyl ring substitution and modification of the ester and cyclohexene moieties were carried out. Among the compounds synthesized, ethyl (6R)-6-[N-(2-chloro-4-fluorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate [(R)-(+)-5n, TAK-242] was found to exhibit the most potent suppressive activity for the production of not only NO but also inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) induced by LPS-stimulated mouse macrophages with IC50 values of 1.8, 1.9 and 1.3 nM, respectively. It shows marked beneficial effects in vivo also. Intravenous administration of (R)-(+)-5n at doses of 0.1 mg/kg or more suppressed the production of NO and various cytokines [TNF-alpha, IL-6 and IL-1beta] in the mouse endotoxin shock model. Furthermore, it protected mice from death dose-dependently and all mice survived at a dose of 3 mg/kg. The minimum effective dose to protect mice from lethality in this model was 0.3 mg/kg, which was consistent with those for inhibitory effects on the production of NO and cytokines. Compound (R)-(+)-5n is currently undergoing clinical trials for the treatment of sepsis.

  1. The Type II Heat-Labile Enterotoxins LT-IIa and LT-IIb and Their Respective B Pentamers Differentially Induce and Regulate Cytokine Production in Human Monocytic Cells

    PubMed Central

    Hajishengallis, George; Nawar, Hesham; Tapping, Richard I.; Russell, Michael W.; Connell, Terry D.

    2004-01-01

    The type II heat-labile enterotoxins, LT-IIa and LT-IIb, exhibit potent adjuvant properties. However, little is known about their immunomodulatory activities upon interaction with innate immune cells, unlike the widely studied type I enterotoxins that include cholera toxin (CT). We therefore investigated interactions of LT-IIa and LT-IIb with human monocytic THP-1 cells. We found that LT-II enterotoxins were inactive in stimulating cytokine release, whereas CT induced low levels of interleukin-1β (IL-1β) and IL-8. However, all three enterotoxins potently regulated cytokine induction in cells activated by bacterial lipopolysaccharide or fimbriae. Induction of proinflammatory (tumor necrosis factor α [TNF-α]) or chemotactic (IL-8) cytokines was downregulated, whereas induction of cytokines with anti-inflammatory (IL-10) or mucosal adjuvant properties (IL-1β) was upregulated by the enterotoxins. These effects appeared to depend on their A subunits, because isolated B-pentameric subunits lacked regulatory activity. Enterotoxin-mediated inhibition of proinflammatory cytokine induction in activated cells was partially attributable to synergism for endogenous production of IL-10 and to an IL-10-independent inhibition of nuclear factor κB (NF-κB) activation. In sharp contrast to the holotoxins, the B pentamers (LT-IIaB and, to a greater extent, LT-IIbB) stimulated cytokine production, suggesting a link between the absence of the A subunit and increased proinflammatory properties. In this regard, the ability of LT-IIbB to activate NF-κB and induce TNF-α and IL-8 was antagonized by the LT-IIb holotoxin. These findings support distinct immunomodulatory roles for the LT-II holotoxins and their respective B pentamers. Moreover, the anti-inflammatory properties of the holotoxins may serve to suppress innate immunity and promote the survival of the pathogen. PMID:15501764

  2. Impaired cytokine responses in patients with cryopyrin-associated periodic syndrome (CAPS)

    PubMed Central

    Haverkamp, M H; van de Vosse, E; Goldbach-Mansky, R; Holland, S M

    2014-01-01

    Cryopyrin-associated periodic syndrome (CAPS) is characterized by dysregulated inflammation with excessive interleukin (IL)-1β activation and secretion. Neonatal-onset multi-system inflammatory disease (NOMID) is the most severe form. We explored cytokine responses in 32 CAPS patients before and after IL-1β blocking therapy. We measured cytokines produced by activated peripheral blood monuclear cells (PBMCs) from treated and untreated CAPS patients after stimulation for 48 h with phytohaemagglutinin (PHA), PHA plus IL-12, lipopolysaccharide (LPS) or LPS plus interferon (IFN)-γ. We measured IL-1β, IL-6, IL-10, tumour necrosis factor (TNF), IL-12p70 and IFN-γ in the supernatants. PBMCs from three untreated CAPS patients were cultured in the presence of the IL-1β blocker Anakinra. Fifty healthy individuals served as controls. CAPS patients had high spontaneous production of IL-1β, IL-6, TNF and IFN-γ by unstimulated cells. However, stimulation indexes (SIs, ratio of stimulated to unstimulated production) of these cytokines to PHA and LPS were low in NOMID patients compared to controls. Unstimulated IL-10 and IL-12p70 production was normal, but up-regulation after PHA and LPS was also low. LPS plus IFN-γ inadequately up-regulated the production of IL-1β, IL-6, TNF and IL-10 in CAPS patients. In-vitro but not in-vivo treatment with Anakinra improved SIs by lowering spontaneous cytokine production. However, in-vitro treatment did not improve the low stimulated cytokine levels. Activating mutations in NLRP3 in CAPS are correlated with poor SIs to PHA, LPS and IFN-γ. The impairment in stimulated cytokine responses in spite of IL-1β blocking therapy suggests a broader intrinsic defect in CAPS patients, which is not corrected by targeting IL-1β. PMID:24773462

  3. Impaired cytokine responses in patients with cryopyrin-associated periodic syndrome (CAPS).

    PubMed

    Haverkamp, M H; van de Vosse, E; Goldbach-Mansky, R; Holland, S M

    2014-09-01

    Cryopyrin-associated periodic syndrome (CAPS) is characterized by dysregulated inflammation with excessive interleukin (IL)-1β activation and secretion. Neonatal-onset multi-system inflammatory disease (NOMID) is the most severe form. We explored cytokine responses in 32 CAPS patients before and after IL-1β blocking therapy. We measured cytokines produced by activated peripheral blood monuclear cells (PBMCs) from treated and untreated CAPS patients after stimulation for 48 h with phytohaemagglutinin (PHA), PHA plus IL-12, lipopolysaccharide (LPS) or LPS plus interferon (IFN)-γ. We measured IL-1β, IL-6, IL-10, tumour necrosis factor (TNF), IL-12p70 and IFN-γ in the supernatants. PBMCs from three untreated CAPS patients were cultured in the presence of the IL-1β blocker Anakinra. Fifty healthy individuals served as controls. CAPS patients had high spontaneous production of IL-1β, IL-6, TNF and IFN-γ by unstimulated cells. However, stimulation indexes (SIs, ratio of stimulated to unstimulated production) of these cytokines to PHA and LPS were low in NOMID patients compared to controls. Unstimulated IL-10 and IL-12p70 production was normal, but up-regulation after PHA and LPS was also low. LPS plus IFN-γ inadequately up-regulated the production of IL-1β, IL-6, TNF and IL-10 in CAPS patients. In-vitro but not in-vivo treatment with Anakinra improved SIs by lowering spontaneous cytokine production. However, in-vitro treatment did not improve the low stimulated cytokine levels. Activating mutations in NLRP3 in CAPS are correlated with poor SIs to PHA, LPS and IFN-γ. The impairment in stimulated cytokine responses in spite of IL-1β blocking therapy suggests a broader intrinsic defect in CAPS patients, which is not corrected by targeting IL-1β. © 2014 British Society for Immunology.

  4. Up-regulation of T lymphocyte and antibody production by inflammatory cytokines released by macrophage exposure to multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Grecco, Ana Carolina P.; Paula, Rosemeire F. O.; Mizutani, Erica; Sartorelli, Juliana C.; Milani, Ana M.; Longhini, Ana Leda F.; Oliveira, Elaine C.; Pradella, Fernando; Silva, Vania D. R.; Moraes, Adriel S.; Peterlevitz, Alfredo C.; Farias, Alessandro S.; Ceragioli, Helder J.; Santos, Leonilda M. B.; Baranauskas, Vitor

    2011-07-01

    Our data demonstrate that multi-walled carbon nanotubes (MWCNTs) are internalized by macrophages, subsequently activating them to produce interleukin (IL)-12 (IL-12). This cytokine induced the proliferative response of T lymphocytes to a nonspecific mitogen and to ovalbumin (OVA). This increase in the proliferative response was accompanied by an increase in the expression of pro-inflammatory cytokines, such as interferon-gamma (IFNγ), tumor necrosis factor-alpha (TNFα) and IL-6, in mice inoculated with MWCNTs, whether or not they had been immunized with OVA. A decrease in the expression of transforming growth factor-beta (TGFβ) was observed in the mice treated with MWCNTs, whereas the suppression of the expression of both TGFβ and IL-10 was observed in mice that had been both treated and immunized. The activation of the T lymphocyte response by the pro-inflammatory cytokines leads to an increase in antibody production to OVA, suggesting the important immunostimulatory effect of carbon nanotubes.

  5. Up-regulation of T lymphocyte and antibody production by inflammatory cytokines released by macrophage exposure to multi-walled carbon nanotubes.

    PubMed

    Grecco, Ana Carolina P; Paula, Rosemeire F O; Mizutani, Erica; Sartorelli, Juliana C; Milani, Ana M; Longhini, Ana Leda F; Oliveira, Elaine C; Pradella, Fernando; Silva, Vania D R; Moraes, Adriel S; Peterlevitz, Alfredo C; Farias, Alessandro S; Ceragioli, Helder J; Santos, Leonilda M B; Baranauskas, Vitor

    2011-07-01

    Our data demonstrate that multi-walled carbon nanotubes (MWCNTs) are internalized by macrophages, subsequently activating them to produce interleukin (IL)-12 (IL-12). This cytokine induced the proliferative response of T lymphocytes to a nonspecific mitogen and to ovalbumin (OVA). This increase in the proliferative response was accompanied by an increase in the expression of pro-inflammatory cytokines, such as interferon-gamma (IFNγ), tumor necrosis factor-alpha (TNFα) and IL-6, in mice inoculated with MWCNTs, whether or not they had been immunized with OVA. A decrease in the expression of transforming growth factor-beta (TGFβ) was observed in the mice treated with MWCNTs, whereas the suppression of the expression of both TGFβ and IL-10 was observed in mice that had been both treated and immunized. The activation of the T lymphocyte response by the pro-inflammatory cytokines leads to an increase in antibody production to OVA, suggesting the important immunostimulatory effect of carbon nanotubes.

  6. Oral administration of soluble β-glucan preparation from the cauliflower mushroom, Sparassis crispa (Higher Basidiomycetes) modulated cytokine production in mice.

    PubMed

    Hida, Toshie H; Kawaminami, Hiromi; Ishibashi, Ken-Ichi; Miura, Noriko N; Adachi, Yoshiyuki; Ohno, Naohito

    2013-01-01

    Soluble β-glucan preparation from the cold NaOH extract of Sparassis crispa (SCG) is a six-branched 1,3-β-D-glucan that is a major cell-wall structural component in fungi. Leukocytes from DBA/2 mice are highly sensitive to SCG, producing cytokines in vitro. We previously reported that the intraperitoneal (i.p.) administration of β-glucan decreased cytokine induction by SCG in vitro in DBA/2 mice. In this study, we examined the effects of the oral (p.o.) administration of polysaccharide fractions extracted from S. crispa, using hot water (SCHWE), a β-glucan from S. crispa, to DBA/2 mice on cytokine induction by SCG in the spleen in vitro. The level of induction of IFN-γ and GM-CSF by SCG was significantly increased in SCHWE-treated mice. This activity was more clearly observed when chlorpromazine was administered as a pretreatment in SCHWE-treated mice. The production of GM-CSF, IFN-γ, and IL-6 by immune cells in Peyer's patches was higher in SCHWE-treated mice than in control mice. These results suggest that orally administered β-glucan may modulate cytokine induction by SCG in the spleen through the activation of Peyer's patches.

  7. Phagocytosis of Apoptotic Trophoblast Cells by Human Endometrial Endothelial Cells Induces Proinflammatory Cytokine Production

    PubMed Central

    Peng, Bing; Koga, Kaori; Cardenas, Ingrid; Aldo, Paulomi; Mor, Gil

    2011-01-01

    Problem Apoptosis is a normal constituent of trophoblast turnover in the placenta; however in some cases, this process is related to pregnancy complications such as preeclampsia. Recognition and engulfment of these apoptotic trophoblast cells is important for clearance of dying cells. The aim of this study was to show the cross talk between human endometrial endothelial cells (HEECs) and apoptotic trophoblast cells in an in vitro coculture model and its effect on cytokine production by HEECs. Method of study Fluorescent-labeled HEECs were cocultured with fluorescent-labeled apoptotic human trophoblast cells. Confocal microscopy and flowcytometry were used to show the interaction between these two types of cells. Cytokine profiles were determined using multiplex analysis. Results HEECs are capable to phagocytose apoptotic trophoblasts. This activity is inhibited by the phagocytosis inhibitor cytochalasin B. Phagocytosis of apoptotic trophoblast cells induced the secretion of the proinflammatory cytokines interleukin-6 and monocyte chemoattractant protein-1 by HEECs. Conclusion This study provides the first evidence that HEECs have an ability to phagocytose apoptotic trophoblasts. Furthermore, we demonstrated an inflammatory response of HEECs after phagocytosing the apoptotic trophoblast cells. This event may contribute to the inflammatory response in both normal pregnancy and pathologic pregnancy such as preeclampsia. PMID:20219062

  8. Increased serum APRIL differentially correlates with distinct cytokine profiles and disease activity in systemic lupus erythematosus patients.

    PubMed

    Boghdadi, Ghada; Elewa, Enass A

    2014-09-01

    Cytokines play an important role in the pathogenesis of systemic lupus erythematosus (SLE). Among the cytokines that regulate B cell homeostasis is a proliferation-inducing ligand (APRIL). This study aimed to determine whether serum levels of APRIL are raised in patients with SLE and correlate with disease activity or proinflammatory cytokines production, or both. Serum APRIL, interleukin-17 (IL-17), IL-4 and interferon gamma (IFN-γ) levels were measured in forty patients with SLE and 30 healthy controls. Disease activity was assessed by SLE disease activity index (SLEDAI), and results were correlated with serum APRIL levels. Serum APRIL levels were significantly higher in patients with SLE than in healthy controls. Positive correlation was found between serum APRIL levels and total SLEDAI score and anti-dsDNA antibody titers. Moreover, serum APRIL levels was significantly higher in patients with arthritis, mucocutaneous manifestations and proteinuria. APRIL is increased in patients with active SLE accompanying the increase of IL-17 and IFN-γ. Significant positive correlations between serum levels of APRIL and IL-17 and IFN-γ and a negative correlation between serum levels of APRIL and IL-4 were found. The results suggest that APRIL may be an important marker of disease activity in patients with SLE. We provide the analyses of APRIL levels in patients with SLE, suggesting new tools for the diagnosis, prognosis and possible therapeutic management of SLE.

  9. Activity of inflammatory bowel disease influences the expression of cytokines in gingival tissue.

    PubMed

    Figueredo, C M; Martins, A P; Lira-Junior, R; Menegat, J B; Carvalho, A T; Fischer, R G; Gustafsson, A

    2017-07-01

    This study assessed the cytokine expression in gingival and intestinal tissues from periodontitis patients with inflammatory bowel disease (IBD) and evaluated if IBD activity is a covariate to the amount of gingival cytokines. Paired gingival and intestinal tissues were collected from 21 patients and homogenised using a cell disruptor. Cytokine expression (IL-1β, IL-4, IL-6, IL-10, IL-21, IL-22, IL-23, IL-25, IL-31, IL-33, IL-17A, IL-17F, IFN-γ, sCD40L, and TNF-α) was evaluated using bead-based multiplex technology. An inflammation score was developed using the intestinal cytokines that showed good accuracy to discriminate IBD active patients from those in remission and then a similar score was applied to gingival tissue. IL-4, IL-10 and IL-21 expressions were significantly increased in gingival tissue from patients with an active disease as compared to those with a disease in remission. The inflammation score (mean value of IL-1β, IL-6, IL-21, and sCD40L) was significantly higher in gingival tissue from patients with IBD activity. There was a significant correlation between gingival and intestinal inflammation scores (rho=0.548; P=0.01). Significantly higher IL-23 and IFN-γ levels and lower IL-31 and TNF-α levels were observed in gingival tissues than in intestinal ones. Activity of inflammatory bowel disease influenced the cytokine expression in gingival tissue. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Virulent Type A Francisella tularensis actively suppresses cytokine responses in human monocytes

    PubMed Central

    Gillette, Devyn D.; Curry, Heather M.; Cremer, Thomas; Ravneberg, David; Fatehchand, Kavin; Shah, Prexy A.; Wewers, Mark D.; Schlesinger, Larry S.; Butchar, Jonathan P.; Tridandapani, Susheela; Gavrilin, Mikhail A.

    2014-01-01

    Background: Human monocyte inflammatory responses differ between virulent and attenuated Francisella infection. Results: A mixed infection model showed that the virulent F. tularensis Schu S4 can attenuate inflammatory cytokine responses to the less virulent F. novicida in human monocytes. Conclusion: F. tularensis dampens inflammatory response by an active process. Significance: This suppression may contribute to enhanced pathogenicity of F. tularensis. Francisella tularensis is a Gram-negative facultative bacterium that can cause the disease tularemia, even upon exposure to low numbers of bacteria. One critical characteristic of Francisella is its ability to dampen or subvert the host immune response. Previous work has shown that monocytes infected with highly virulent F. tularensis subsp. tularensis strain Schu S4 responded with a general pattern of quantitatively reduced pro-inflammatory signaling pathway genes and cytokine production in comparison to those infected with the less virulent related F. novicida. However, it has been unclear whether the virulent Schu S4 was merely evading or actively suppressing monocyte responses. By using mixed infection assays with F. tularensis and F. novicida, we show that F. tularensis actively suppresses monocyte pro-inflammatory responses. Additional experiments show that this suppression occurs in a dose-dependent manner and is dependent upon the viability of F. tularensis. Importantly, F. tularensis was able to suppress pro-inflammatory responses to earlier infections with F. novicida. These results lend support that F. tularensis actively dampens human monocyte responses and this likely contributes to its enhanced pathogenicity. PMID:24783062

  11. Cytokine overproduction and crosslinker hypersensitivity are unlinked in Fanconi anemia macrophages.

    PubMed

    Garbati, Michael R; Hays, Laura E; Rathbun, R Keaney; Jillette, Nathaniel; Chin, Kathy; Al-Dhalimy, Muhsen; Agarwal, Anupriya; Newell, Amy E Hanlon; Olson, Susan B; Bagby, Grover C

    2016-03-01

    The Fanconi anemia proteins participate in a canonical pathway that repairs cross-linking agent-induced DNA damage. Cells with inactivated Fanconi anemia genes are universally hypersensitive to such agents. Fanconi anemia-deficient hematopoietic stem cells are also hypersensitive to inflammatory cytokines, and, as importantly, Fanconi anemia macrophages overproduce such cytokines in response to TLR4 and TLR7/8 agonists. We questioned whether TLR-induced DNA damage is the primary cause of aberrantly regulated cytokine production in Fanconi anemia macrophages by quantifying TLR agonist-induced TNF-α production, DNA strand breaks, crosslinker-induced chromosomal breakage, and Fanconi anemia core complex function in Fanconi anemia complementation group C-deficient human and murine macrophages. Although both M1 and M2 polarized Fanconi anemia cells were predictably hypersensitive to mitomycin C, only M1 macrophages overproduced TNF-α in response to TLR-activating signals. DNA damaging agents alone did not induce TNF-α production in the absence of TLR agonists in wild-type or Fanconi anemia macrophages, and mitomycin C did not enhance TLR responses in either normal or Fanconi anemia cells. TLR4 and TLR7/8 activation induced cytokine overproduction in Fanconi anemia macrophages. Also, although TLR4 activation was associated with induced double strand breaks, TLR7/8 activation was not. That DNA strand breaks and chromosome breaks are neither necessary nor sufficient to account for the overproduction of inflammatory cytokines by Fanconi anemia cells suggests that noncanonical anti-inflammatory functions of Fanconi anemia complementation group C contribute to the aberrant macrophage phenotype and suggests that suppression of macrophage/TLR hyperreactivity might prevent cytokine-induced stem cell attrition in Fanconi anemia. © Society for Leukocyte Biology.

  12. Cytokine Production in Mixed Cultures of Mesenchymal Stromal Cells from Wharton's Jelly and Peripheral Blood Lymphocytes.

    PubMed

    Poltavtsev, A M; Poltavtseva, R A; Yushina, M N; Volgina, N E; Svirshchevskaya, E V

    2017-05-01

    We compared the production of 19 humoral factors in mixed cultures of mesenchymal stromal cells from Wharton's jelly and allogenic peripheral blood lymphocytes. For evaluation of the specificity of immunosuppressive activity of mesenchymal stromal cells, comparative analysis of the production of these humoral factors in mixed cultures of lymphocytes and epithelial BxPC-3 cells was conducted. The production of soluble factors in both mono- and mixed cultures significantly correlated (p<0.05). The maximum production was found for proinflammatory chemokine IP-10 and IFN-γ and anti-inflammatory cytokine IL-10. The major difference of mesenchymal stromal cells from epithelial BxPC-3 cells was 7-fold higher production of IL-10, which can explain the immunosuppressive effect of mesenchymal stromal cells.

  13. HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine.

    PubMed

    Asea, A; Kraeft, S K; Kurt-Jones, E A; Stevenson, M A; Chen, L B; Finberg, R W; Koo, G C; Calderwood, S K

    2000-04-01

    Here, we demonstrate a previously unknown function for the 70-kDa heat-shock protein (HSP70) as a cytokine. HSP70 bound with high affinity to the plasma membrane, elicited a rapid intracellular calcium flux, activated nuclear factor (NF)-kappaB and upregulated the expression of pro-inflammatory cytokines tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta and IL-6 in human monocytes. Furthermore, two different signal transduction pathways were activated by exogenous HSP70: one dependent on CD14 and intracellular calcium, which resulted in increased IL-1beta, IL-6 and TNF-alpha; and the other independent of CD14 but dependent on intracellular calcium, which resulted in an increase in TNF-alpha but not IL-1beta or IL-6. These findings indicate that CD14 is a co-receptor for HSP70-mediated signaling in human monocytes and are indicative of an previously unrecognized function for HSP70 as an extracellular protein with regulatory effects on human monocytes, having a dual role as chaperone and cytokine.

  14. Dimethyl fumarate blocks pro-inflammatory cytokine production via inhibition of TLR induced M1 and K63 ubiquitin chain formation.

    PubMed

    McGuire, Victoria A; Ruiz-Zorrilla Diez, Tamara; Emmerich, Christoph H; Strickson, Sam; Ritorto, Maria Stella; Sutavani, Ruhcha V; Weiβ, Anne; Houslay, Kirsty F; Knebel, Axel; Meakin, Paul J; Phair, Iain R; Ashford, Michael L J; Trost, Matthias; Arthur, J Simon C

    2016-08-08

    Dimethyl fumarate (DMF) possesses anti-inflammatory properties and is approved for the treatment of psoriasis and multiple sclerosis. While clinically effective, its molecular target has remained elusive - although it is known to activate anti-oxidant pathways. We find that DMF inhibits pro-inflammatory cytokine production in response to TLR agonists independently of the Nrf2-Keap1 anti-oxidant pathway. Instead we show that DMF can inhibit the E2 conjugating enzymes involved in K63 and M1 polyubiquitin chain formation both in vitro and in cells. The formation of K63 and M1 chains is required to link TLR activation to downstream signaling, and consistent with the block in K63 and/or M1 chain formation, DMF inhibits NFκB and ERK1/2 activation, resulting in a loss of pro-inflammatory cytokine production. Together these results reveal a new molecular target for DMF and show that a clinically approved drug inhibits M1 and K63 chain formation in TLR induced signaling complexes. Selective targeting of E2s may therefore be a viable strategy for autoimmunity.

  15. Contribution of vascular cell-derived cytokines to innate and inflammatory pathways in atherogenesis

    PubMed Central

    Loppnow, Harald; Buerke, Michael; Werdan, Karl; Rose-John, Stefan

    2011-01-01

    Abstract Inflammation is a central element of atherogenesis. Innate pathways contribute to vascular inflammation. However, the initial molecular process(es) starting atherogenesis remain elusive. The various risk factors, represented by particular compounds (activators), may cause altered cellular functions in the endothelium (e.g. vascular endothelial cell activation or -dysfunction), in invading cells (e.g. inflammatory mediator production) or in local vessel wall cells (e.g. inflammatory mediators, migration), thereby triggering the innate inflammatory process. The cellular components of innate immunology include granulocytes, natural killer cells and monocytes. Among the molecular innate constituents are innate molecules, such as the toll-like receptors or innate cytokines. Interleukin-1 (IL-1) and IL-6 are among the innate cytokines. Cytokines are potent activators of a great number of cellular functions relevant to maintain or commove homeostasis of the vessel wall. Within the vessel wall, vascular smooth muscle cells (SMCs) can significantly contribute to the cytokine-dependent inflammatory network by: (i) production of cytokines, (ii) response to cytokines and (iii) cytokine-mediated interaction with invading leucocytes. The cytokines IL-1 and IL-6 are involved in SMC-leucocyte interaction. The IL-6 effects are proposed to be mediated by trans-signalling. Dysregulated cellular functions resulting from dysregulated cytokine production may be the cause of cell accumulation, subsequent low-density lipoprotein accumulation and deposition of extracellular matrix (ECM). The deposition of ECM, increased accumulation of leucocytes and altered levels of inflammatory mediators may constitute an ‘innate-immunovascular-memory’ resulting in an ever-growing response to anew invasion. Thus, SMC-fostered inflammation, promoted by invading innate cells, may be a potent component for development and acceleration of atherosclerosis. PMID:21199323

  16. Modulation of Female Genital Tract-Derived Dendritic Cell Migration and Activation in Response to Inflammatory Cytokines and Toll-Like Receptor Agonists.

    PubMed

    Shey, Muki S; Maharaj, Niren; Archary, Derseree; Ngcapu, Sinaye; Garrett, Nigel; Abdool Karim, Salim; Passmore, Jo-Ann S

    2016-01-01

    HIV transmission across the genital mucosa is a major mode of new HIV infections in women. The probability of infection may be influenced by several factors including recruitment and activation of HIV target cells, such as dendritic cells (DCs) and cytokine production, associated with genital inflammation. We evaluated the role of inflammatory cytokines and TLR signaling in migration and activation of genital tract DCs in the human cervical explant model. Hysterectomy tissues from 10 HIV-negative and 7 HIV-positive donor women were separated into ecto- and endocervical explants, and incubated with inflammatory cytokines (TNF-α, IL-1β, IL-8, MIP-1β) or agonists for TLR4 (LPS), TLR2/1 (PAM3) and TLR7/8 (R848). Migration (frequency) and activation (HLA-DR expression) of myeloid and plasmacytoid DCs and Langerhans cells were measured by flow cytometry. We observed that cytokines, LPS and PAM3 induced activation of migrating myeloid and plasmacytoid DCs. LPS induced a 3.6 fold lower levels of migration of plasmacytoid DCs from HIV-infected women compared with HIV-uninfected women (median activation indices of 2.932 vs 0.833). There was however a 4.5 fold increase in migration of Langerhans cells in HIV-infected compared with HIV-uninfected women in response to cytokines (median activation indices of 3.539 vs 0.77). Only TLR agonists induced migration and activation of DCs from endocervical explants. Hormonal contraception use was associated with an increase in activation of DC subsets in the endo and ectocervical explants. We conclude that inflammatory signals in the female genital tract induced DC migration and activation, with possible important implications for HIV susceptibility of cervical tissues.

  17. Hemozoin Differentially Regulates Proinflammatory Cytokine Production in Human Immunodeficiency Virus-Seropositive and -Seronegative Women with Placental Malaria

    PubMed Central

    Moore, Julie M.; Chaisavaneeyakorn, Sujittra; Perkins, Douglas J.; Othoro, Caroline; Otieno, Juliana; Nahlen, Bernard L.; Shi, Ya Ping; Udhayakumar, Venkatachalam

    2004-01-01

    Pregnant women are at an increased risk for malarial infection. Plasmodium falciparum accumulates in the placenta and is associated with dysregulated immune function and poor birth outcomes. Malarial pigment (hemozoin) also accumulates in the placenta and may modulate local immune function. In this study, the impact of hemozoin on cytokine production by intervillous blood mononuclear cells from malaria-infected placentas was investigated. There was a dose-dependent, suppressive effect of hemozoin on production of gamma interferon (IFN-γ), with less of an effect on tumor necrosis factor alpha (TNF-α) and interleukin-10, in human immunodeficiency virus-seronegative (HIV−) women. In contrast, IFN-γ and TNF-α production tended to increase in HIV-seropositive women with increasing hemozoin levels. Production patterns of cytokines, especially IFN-γ in HIV− women, followed different trends as a function of parasite density and hemozoin level. The findings suggest that the influences of hemozoin accumulation and high-density parasitemia on placental cytokine production are not equivalent and may involve different mechanisms, all of which may operate differently in the context of HIV infection. Cytokine production dysregulated by accumulation of hemozoin or high-density parasitemia may induce pathology and impair protective immunity in HIV-infected and -uninfected women. PMID:15557625

  18. Understanding Cytokine and Growth Factor Receptor Activation Mechanisms

    PubMed Central

    Atanasova, Mariya; Whitty, Adrian

    2012-01-01

    Our understanding of the detailed mechanism of action of cytokine and growth factor receptors – and particularly our quantitative understanding of the link between structure, mechanism and function – lags significantly behind our knowledge of comparable functional protein classes such as enzymes, G protein-coupled receptors, and ion channels. In particular, it remains controversial whether such receptors are activated by a mechanism of ligand-induced oligomerization, versus a mechanism in which the ligand binds to a pre-associated receptor dimer or oligomer that becomes activated through subsequent conformational rearrangement. A major limitation to progress has been the relative paucity of methods for performing quantitative mechanistic experiments on unmodified receptors expressed at endogenous levels on live cells. In this article we review the current state of knowledge on the activation mechanisms of cytokine and growth factor receptors, critically evaluate the evidence for and against the different proposed mechanisms, and highlight other key questions that remain unanswered. New approaches and techniques have led to rapid recent progress in this area, and the field is poised for major advances in the coming years, which promises to revolutionize our understanding of this large and biologically and medically important class of receptors. PMID:23046381

  19. Gastroesophageal reflux disease-associated esophagitis induces endogenous cytokine production leading to motor abnormalities.

    PubMed

    Rieder, Florian; Cheng, Ling; Harnett, Karen M; Chak, Amitabh; Cooper, Gregory S; Isenberg, Gerard; Ray, Monica; Katz, Jeffry A; Catanzaro, Andrew; O'Shea, Robert; Post, Anthony B; Wong, Richard; Sivak, Michael V; McCormick, Thomas; Phillips, Manijeh; West, Gail A; Willis, Joseph E; Biancani, Piero; Fiocchi, Claudio

    2007-01-01

    Gastroesophageal reflux disease is a condition frequently associated with esophagitis and motor abnormalities. Recent evidence suggests that proinflammatory cytokines, such as interleukin (IL)-1beta and IL-6, may be implicated because they reduce esophageal muscle contractility, but these results derive from in vitro or animal models of esophagitis. This study used human esophageal cells and tissues to identify the cellular source of cytokines in human esophagitis investigate whether cytokines can be induced by gastric refluxate, and examine whether esophageal tissue- or cell-derived mediators affect muscle contractility. Endoscopic mucosal biopsy specimens were obtained from patients with and without esophagitis, organ-cultured, and undernatants were assessed for cytokine content. The cytokine profile of esophageal epithelial, fibroblast, and muscle cells was analyzed, and esophageal mucosa and cell products were tested in an esophageal circular muscle contraction assay. The mucosa of esophagitis patients produced significantly greater amounts of IL-1beta and IL-6 compared with those of control patients. Cultured esophageal epithelial cells produced IL-6, as did fibroblasts and muscle cells. Epithelial cells exposed to buffered, but not denatured, gastric juice produced IL-6. Undernatants of mucosal biopsy cultures from esophagitis patients reduced esophageal muscle contraction, as did supernatants from esophageal epithelial cell cultures. The human esophagus produces cytokines capable of reducing contractility of esophageal muscle cells. Exposure to gastric juice is sufficient to stimulate esophageal epithelial cells to produce IL-6, a cytokine able to alter esophageal contractility. These results indicate that classic cytokines are important mediators of the motor disturbances associated with human esophageal inflammation.

  20. Analysis of intracellular cytokines using flowcytometry.

    PubMed

    Arora, Sunil K

    2002-01-01

    Characterization of T-cell clones and identification of functional subsets of the helper T-cells with polarized cytokine production is based on testing of cytokine expression. Several methods have been developed that allow cytokine expression to be measured like ELISA, RT-PCR, ELISPOT, ISH and flowcytometry. Among all these methods, monitoring of cytokine production using flowcytometric analysis has its own advantages and disadvantages. Multi-parametric characterization of cytokine production on single cell basis, without long-term culture and cloning along with high throughput of samples is main feature attached to flowcytometric analysis. The interpretation may be difficult at times due to change in the phenotype of the cells. Cells with similar surface phenotype but synthesizing different cytokines and having different functional characteristics can be analyzed with this technique.

  1. Recombinant guinea pig CCL5 (RANTES) differentially modulates cytokine production in alveolar and peritoneal macrophages.

    PubMed

    Skwor, Troy A; Cho, Hyosun; Cassidy, Craig; Yoshimura, Teizo; McMurray, David N

    2004-12-01

    The CC chemokine ligand 5 (CCL5; regulated on activation, normal T expressed and secreted) is known to recruit and activate leukocytes; however, its role in altering the responses of host cells to a subsequent encounter with a microbial pathogen has rarely been studied. Recombinant guinea pig (rgp)CCL5 was prepared, and its influence on peritoneal and alveolar macrophage activation was examined by measuring cytokine and chemokine mRNA expression in cells stimulated with rgpCCL5 alone or exposed to rgpCCL5 prior to lipopolysaccharide (LPS) stimulation. Levels of mRNA for guinea pig tumor necrosis factor alpha (TNF-alpha), interleukin (IL)-1beta, CCL2 (monocyte chemoattractant protein-1), and CXC chemokine ligand 8 (IL-8) were analyzed by reverse transcription followed by real-time polymerase chain reaction analysis using SYBR Green. Bioactive TNF-alpha protein concentration was measured using the L929 bioassay. Both macrophage populations displayed significant enhancement of all the genes and TNF-alpha protein levels when stimulated with rgpCCL5, except for CCL2 in alveolar macrophages. When peritoneal or alveolar macrophages were pretreated with rgpCCL5 for 2 h and then exposed to low concentrations of LPS, diminished cytokine and chemokine mRNA levels were apparent at 6 h compared with LPS alone. At the protein level, there was a reduction in TNF-alpha protein at 6 h in the CCL5-pretreated cells compared with LPS alone. These results further support a role for CCL5 in macrophage activation in addition to chemotactic properties and suggest a role in regulating the inflammatory response to LPS in the guinea pig by modulating the production of proinflammatory cytokines by macrophages.

  2. Modulation of cytokine expression in human macrophages by endocrine-disrupting chemical Bisphenol-A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yanzhen; Mei, Chenfang; Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070

    Highlights: • Effects of BPA on the cytokines expression of human macrophages were investigated. • BPA increased pro-inflammation cytokines TNF-α and IL-6 production. • BPA decreased anti-inflammation IL-10 and TGF-β production. • ERα/β/ERK/NF-κB signaling involved in BPA-mediated cytokines expression. - Abstract: Exposure to environmental endocrine-disrupting chemical Bisphenol-A (BPA) is often associated with dysregulated immune homeostasis, but the mechanisms remain unclear. In the present study, the effects of BPA on the cytokines responses of human macrophages were investigated. Treatment with BPA increased pro-inflammation cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) production, but decreased anti-inflammation cytokines interleukin-10 (IL-10) and transforming growthmore » factor-β (TGF-β) production in THP1 macrophages, as well as in primary human macrophages. BPA effected cytokines expression through estrogen receptor α/β (ERα/β)-dependent mechanism with the evidence of ERα/β antagonist reversed the expression of cytokines. We also identified that activation of extracellular regulated protein kinases (ERK)/nuclear factor κB (NF-κB) signal cascade marked the effects of BPA on cytokines expression. Our results indicated that BPA effected inflammatory responses of macrophages via modulating of cytokines expression, and provided a new insight into the link between exposure to BPA and human health.« less

  3. Fatty acid binding protein 4 enhances prostate cancer progression by upregulating matrix metalloproteinases and stromal cell cytokine production

    PubMed Central

    Huang, Mingguo; Narita, Shintaro; Inoue, Takamitsu; Koizumi, Atsushi; Saito, Mitsuru; Tsuruta, Hiroshi; Numakura, Kazuyuki; Satoh, Shigeru; Nanjo, Hiroshi; Sasaki, Takehiko; Habuchi, Tomonori

    2017-01-01

    Fatty acid binding protein 4 (FABP4) is an abundant protein in adipocytes, and its production is influenced by high-fat diet (HFD) or obesity. The prostate stromal microenvironment induces proinflammatory cytokine production, which is key for the development and progression of prostate cancer (PCa). Here, we show that high FABP4 expression and its secretion by PCa cells directly stimulated PCa cell invasiveness by upregulating matrix metalloproteinases through phosphatidylinositol 3-kinase and mitogen-activated protein kinase signaling pathways. In addition, prostate stromal cells augmented PCa cell invasiveness by secreting interleukin-8 and -6 in response to FABP4. This was abrogated by the FABP4 specific inhibitor, BMS309403. Furthermore, a mouse xenograft experiment showed HFD enhanced PCa metastasis and invasiveness by the upregulation of FABP4 and interleukin-8. Clinically, the serum level of FABP4 was significantly associated with an aggressive type of PCa rather than obesity. Taken together, FABP4 may enhance PCa progression and invasiveness by upregulating matrix metalloproteinases and cytokine production in the PCa stromal microenvironment, especially under HFD or obesity. PMID:29340091

  4. The Activity of Immunoglobulin Y Anti-Mycobacterium tuberculosis on Proliferation and Cytokine Expression of Rat Peripheral Blood Mononuclear Cells

    PubMed Central

    Sudjarwo, Sri Agus; Eraiko, Koerniasari; Sudjarwo, Giftania Wardani; Koerniasari

    2017-01-01

    Objective: It has long been known that chickens, like mammals, are capable of producing antigen-specific immunoglobulin Y (IgY), which functions similar to IgG. The present study was performed to investigate the activity of IgY anti-Mycobacterium tuberculosis on proliferation, interleukin (IL)-2, and interferon (IFN)-γ expression of rat peripheral blood mononuclear cells (PBMCs). Materials and Methods: The activity of IgY anti-M. tuberculosis in different doses (25, 50, and 100 μg/ml) on rat PBMCs proliferation was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. The production of IL-2 and IFN-γ in the PBMC supernatant was determined using enzyme-linked immunosorbent assay. Investigation was performed on mRNA expression of IL-2 and IFN-γ by reverse transcription-polymerase chain reaction (RT-PCR). Results: IgY anti-M. tuberculosis significantly increased the proliferation of rat PBMC. Furthermore, IgY anti-M. tuberculosis dose dependently increased IL-2 and IFN-γ production in PBMC, suggesting that pharmacological activities of IgY anti-M. tuberculosis in PBMC may be mediated by regulating the production of cytokines. In the RT-PCR, expression of cytokines such as IL-2 and IFN-γ in PBMC cultures was increased by IgY anti-M. tuberculosis. Conclusions: We concluded that increasing IL-2 and IFN-γ productions in PBMC was related to IgY anti-M. tuberculosis, stimulating the mRNA transcription (gene expression) of these cytokines which can induce proliferation of PBMC. SUMMARY Lohman laying hens immunized intramuscularly with antigens of M. tuberculosis can produce specific IgY anti-Mycobacterium tuberculosis complexIgY anti-M. tuberculosis significantly increased the proliferation of rat peripheral blood mononuclear cell (PBMC)IgY anti-M. tuberculosis dose dependently increased interleukin 2 (IL-2) and interferon (IFN)-γ production in PBMCIn the reverse transcription-polymerase chain reaction, expression of cytokines such as IL

  5. Effects of a Spirulina-based dietary supplement on cytokine production from allergic rhinitis patients.

    PubMed

    Mao, T K; Van de Water, J; Gershwin, M E

    2005-01-01

    Spirulina represents a blue-green alga that is widely produced and commercialized as a dietary supplement for modulating immune functions, as well as ameliorating a variety of diseases. We have previously shown that the in vitro culture of Spirulina with human peripheral blood mononuclear cells (PBMCs) modulated the production of cytokines. In the present study, we evaluated the impact of a Spirulina-based dietary supplement (Earthrise Nutritionals, Inc., Irvine, CA) on patients with allergic rhinitis by assessing the production of cytokines [interleukin (IL)-4, interferon (IFN)-gamma, and IL-2] critical in regulating immunoglobulin E-mediated allergy. In a randomized double-blinded crossover study versus placebo, allergic individuals were fed daily with either placebo or Spirulina, at 1,000 mg or 2,000 mg, for 12 weeks. PBMCs isolated before and after the Spirulina feeding were stimulated with phytohemagglutinin (PHA) prior to determining the levels of cytokine from cell culture supernatants. Although Spirulina seemed to be ineffective at modulating the secretion of Th1 cytokines (IFN-gamma and IL-2), we discovered that Spirulina, administered at 2,000 mg/day, significantly reduced IL-4 levels by 32% from PHA-stimulated cells. These results indicate that Spirulina can modulate the Th profile in patients with allergic rhinitis by suppressing the differentiation of Th2 cells mediated, in part, by inhibiting the production of IL-4. To our knowledge, this is the first human feeding study that demonstrates the protective effects of Spirulina towards allergic rhinitis.

  6. Beneficial effects of cytokine induced hyperlipidemia.

    PubMed

    Feingold, K R; Hardardóttir, I; Grunfeld, C

    1998-01-01

    Infection, inflammation and trauma induce marked changes in the plasma levels of a wide variety of proteins (acute phase response), and these changes are mediated by cytokines. The acute phase response is thought to be beneficial to the host. The host's response to injury also results in dramatic alterations in lipid metabolism and circulating lipoprotein levels which are mediated by cytokines. A large number of cytokines including TNF, the interleukins, and the interferons increase serum triglyceride levels. This rapid increase (1-2 h) is predominantly due to an increase in hepatic VLDL secretion while the late increase may be due to a variety of factors including increased hepatic production of VLDL or delayed clearance secondary to a decrease in lipoprotein lipase activity and/or apolipoprotein E levels on VLDL. In animals other than primates, cytokines also increase serum cholesterol levels, most likely by increasing hepatic cholesterol. Cytokines increase hepatic cholesterol synthesis by stimulating HMG CoA reductase gene expression and decrease hepatic cholesterol catabolism by inhibiting cholesterol 7 alpha-hydroxylase, the key enzyme in bile acid synthesis. Injury and/or cytokines also decrease HDL cholesterol levels and induce alterations in the composition of HDL. The content of SAA and apolipoprotein J increase, apolipoprotein A1 may decrease, and the cholesterol ester content decreases while free cholesterol increases. Additionally, key proteins involved in HDL metabolism are altered by cytokines; LCAT activity, hepatic lipase activity, and CETP levels decrease. These changes in lipid and lipoprotein metabolism may be beneficial in a number of ways including: lipoproteins competing with viruses for cellular receptors, apolipoproteins neutralizing viruses, lipoproteins binding and targeting parasites for destruction, apolipoproteins lysing parasites, redistribution of nutrients to cells involved in the immune response and/or tissue repair, and

  7. Rebamipide suppresses PolyI:C-stimulated cytokine production in human conjunctival epithelial cells.

    PubMed

    Ueta, Mayumi; Sotozono, Chie; Yokoi, Norihiko; Kinoshita, Shigeru

    2013-09-01

    We previously documented that ocular surface epithelial cells could regulate ocular surface inflammation and suggested that, while Toll-like receptor 3 upregulates, EP3, one of the prostaglandin E2 receptors, downregulates ocular surface inflammation. Others reported that rebamipide, a gastroprotective drug, could not only increase the gastric mucus production, but also suppressed gastric mucosal inflammation and that it was dominantly distributed in mucosal tissues. The eyedrop form of rebamipide, approved in Japan for use in the treatment of dry eye diseases, upregulates mucin secretion and production, thereby suppressing superficial punctate keratopathy on the ocular surface of patients with this disease. In the current study, we investigated whether rebamipide has anti- inflammatory effects on the ocular surface. To examine the effects of rebamipide on polyI:C-induced cytokine expression by primary human conjunctival epithelial cells, we used enzyme-linked immunosorbent assay and quantitative reverse transcription-polymerase chain reaction assay. We studied the effects of rebamipide on ocular surface inflammation in our murine experimental allergic conjunctivitis (EAC) model. Rebamipide could suppress polyI:C-induced cytokine production and the expression of mRNAs for CXCL10, CXCL11, RANTES, MCP-1, and IL-6 in human conjunctival epithelial cells. In our EAC model, the topical administration of rebamipide suppressed conjunctival allergic eosinophil infiltration. The topical application of rebamipide on the ocular surface might suppress ocular surface inflammation by suppressing the production of cytokines by ocular surface epithelial cells.

  8. Activation of Human Peripheral Blood Eosinophils by Cytokines in a Comparative Time-Course Proteomic/Phosphoproteomic Study.

    PubMed

    Soman, Kizhake V; Stafford, Susan J; Pazdrak, Konrad; Wu, Zheng; Luo, Xuemei; White, Wendy I; Wiktorowicz, John E; Calhoun, William J; Kurosky, Alexander

    2017-08-04

    Activated eosinophils contribute to airway dysfunction and tissue remodeling in asthma and thus are considered to be important factors in asthma pathology. We report here comparative proteomic and phosphoproteomic changes upon activation of eosinophils using eight cytokines individually and in selected cytokine combinations in time-course reactions. Differential protein and phosphoprotein expressions were determined by mass spectrometry after 2-dimensional gel electrophoresis (2DGE) and by LC-MS/MS. We found that each cytokine-stimulation produced significantly different changes in the eosinophil proteome and phosphoproteome, with phosphoproteomic changes being more pronounced and having an earlier onset. Furthermore, we observed that IL-5, GM-CSF, and IL-3 showed the greatest change in protein expression and phosphorylation, and this expression differed markedly from those of the other five cytokines evaluated. Comprehensive univariate and multivariate statistical analyses were employed to evaluate the comparative results. We also monitored eosinophil activation using flow cytometry (FC) analysis of CD69. In agreement with our proteomic studies, FC indicated that IL-5, GM-CSF, and IL-3 were more effective than the other five cytokines studied in stimulating a cell surface CD69 increase indicative of eosinophil activation. Moreover, selected combinations of cytokines revealed proteomic patterns with many proteins in common with single cytokine expression patterns but also showed a greater effect of the two cytokines employed, indicating a more complex signaling pathway that was reflective of a more typical inflammatory pathology.

  9. 6-Mercaptopurine reduces cytokine and Muc5ac expression involving inhibition of NFκB activation in airway epithelial cells.

    PubMed

    Kurakula, Kondababu; Hamers, Anouk A; van Loenen, Pieter; de Vries, Carlie J M

    2015-06-19

    Mucus hypersecretion and excessive cytokine synthesis is associated with many of the pathologic features of chronic airway diseases such as asthma. 6-Mercaptopurine (6-MP) is an immunosuppressive drug that is widely used in several inflammatory disorders. Although 6-MP has been used to treat asthma, its function and mechanism of action in airway epithelial cells is unknown. Confluent NCI-H292 and MLE-12 epithelial cells were pretreated with 6-MP followed by stimulation with TNFα or PMA. mRNA levels of cytokines and mucins were measured by RT-PCR. Western blot analysis was performed to assess the phosphorylation of IκBα and luciferase assays were performed using an NFκB reporter plasmid to determine NFκB activity. Periodic Acid Schiff staining was used to assess the production of mucus. 6-MP displayed no effect on cell viability up to a concentration of 15 μM. RT-PCR analysis showed that 6-MP significantly reduces TNFα- and PMA-induced expression of several proinflammatory cytokines in NCI-H292 and MLE-12 cells. Consistent with this, we demonstrated that 6-MP strongly inhibits TNFα-induced phosphorylation of IκBα and thus attenuates NFκB luciferase reporter activity. In addition, 6-MP decreases Rac1 activity in MLE-12 cells. 6-MP down-regulates gene expression of the mucin Muc5ac, but not Muc2, through inhibition of activation of the NFκB pathway. Furthermore, PMA- and TNFα-induced mucus production, as visualized by Periodic Acid Schiff (PAS) staining, is decreased by 6-MP. Our data demonstrate that 6-MP inhibits Muc5ac gene expression and mucus production in airway epithelial cells through inhibition of the NFκB pathway, and 6-MP may represent a novel therapeutic target for mucus hypersecretion in airway diseases.

  10. Gefitinib and pyrrolidine dithiocarbamate decrease viral replication and cytokine production in dengue virus infected human monocyte cultures.

    PubMed

    Duran, Anyelo; Valero, Nereida; Mosquera, Jesús; Fuenmayor, Edgard; Alvarez-Mon, Melchor

    2017-12-15

    The epidermal growth factor receptor (EGFR) and nucleotide-binding and oligomerization-domain containing 2 (NOD2) are important in cancer and in microbial recognition, respectively. These molecules trigger intracellular signaling pathways inducing the expression of inflammatory genes by NF-kB translocation. Gefitinib (GBTC) and pyrrolidine dithiocarbamate (PDTC) are capable of inhibiting EGFR/NOD2 and NF-kB, respectively. In earlier stages of dengue virus (DENV) infection, monocytes are capable of sustaining viral replication and increasing cytokine production, suggesting that monocyte/macrophages play an important role in early DENV replication. GBTC and PDTC have not been used to modify the pathogenesis of DENV in infected cells. This study was aimed to determine the effect of GBTC and PDTC on viral replication and cytokine production in DENV serotype 2 (DENV2)-infected human monocyte cultures. GBTC and PDTC were used to inhibit EGFR/NOD2 and NF-kB, respectively. Cytokine production was measured by ELISA and viral replication by plaque forming unit assay. Increased DENV2 replication and anti-viral cytokine production (IFN-α/β, TNF-α, IL-12 and IL-18) in infected cultures were found. These parameters were decreased after EGFR/NOD2 or NF-kB inhibitions. The inhibitory effects of GBTC and PDTC on viral replication and cytokine production can be beneficial in the treatment of patients infected by dengue and suggest a possible role of EGFR/NOD2 receptors and NF-kB in dengue pathogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Clove and eugenol in noncytotoxic concentrations exert immunomodulatory/anti-inflammatory action on cytokine production by murine macrophages.

    PubMed

    Bachiega, Tatiana Fernanda; de Sousa, João Paulo Barreto; Bastos, Jairo Kenupp; Sforcin, José Maurício

    2012-04-01

    The extract and essential oil of clove (Syzygium aromaticum) are widely used because of their medicinal properties. Eugenol is the most important component of clove, showing several biological properties. Herein we have analysed the immunomodulatory/anti-inflammatory effect of clove and eugenol on cytokine production (interleukin (IL)-1β, IL-6 and IL-10) in vitro. Macrophages were incubated with clove or eugenol (5, 10, 25, 50 or 100µg/well) for 24h. Concentrations that inhibited the production of cytokines were used before or after incubation with lipopolysaccharide (LPS), to verify a preventive or therapeutic effect. Culture supernatants were harvested for measurement of cytokines by enzyme-linked immunosorbent assay. Clove (100µg/well) inhibited IL-1β, IL-6 and IL-10 production and exerted an efficient action either before or after LPS challenge for all cytokines. Eugenol did not affect IL-1β production but inhibited IL-6 and IL-10 production. The action of eugenol (50 or 100µg/well) on IL-6 production prevented efficiently effects of LPS either before or after its addition, whereas on IL-10 production it counteracted significantly LPS action when added after LPS incubation. Clove exerted immunomodulatory/anti-inflammatory effects by inhibiting LPS action. A possible mechanism of action probably involved the suppression of the nuclear factor-κB pathway by eugenol, since it was the major compound found in clove extract. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.

  12. Altered cytokine production by specific human peripheral blood cell subsets immediately following space flight

    NASA Technical Reports Server (NTRS)

    Crucian, B. E.; Cubbage, M. L.; Sams, C. F.

    2000-01-01

    In this study, flow cytometry was used to positively identify the specific lymphocyte subsets exhibiting space flight-induced alterations in cytokine production. Whole blood samples were collected from 27 astronauts at three points (one preflight, two postflight) surrounding four space shuttle missions. Assays performed included serum/urine stress hormones, white blood cell (WBC) phenotyping, and intracellular cytokine production following mitogenic stimulation. Absolute levels of peripheral granulocytes were significantly elevated following space flight, but the levels of circulating lymphocytes and monocytes were unchanged. Lymphocyte subset analysis demonstrated a decreased percentage of T cells, whereas percentages of B cells and natural killer (NK) cells remained unchanged after flight. Nearly all the astronauts exhibited an increased CD4/CD8 T cell ratio. Assessment of naive (CD45RA+) vs. memory (CD45RO+) CD4+ T cell subsets was ambiguous, and subjects tended to group within specific missions. Although no significant trend was seen in absolute monocyte levels, a significant decrease in the percentage of the CD14+ CD16+ monocytes was seen following space flight in all subjects tested. T cell (CD3+) production of interleukin-2 (IL-2) was significantly decreased after space flight, as was IL-2 production by both CD4+ and CD8+ T cell subsets. Production of interferon-gamma (IFN-gamma) was not altered by space flight for the CD8+ cell subset, but there was a significant decrease in IFN-gamma production for the CD4+ T cell subset. Serum and urine stress hormone analysis indicated significant physiologic stresses in astronauts following space flight. Altered peripheral leukocyte subsets, altered serum and urine stress hormone levels, and altered T cell cytokine secretion profiles were all observed postflight. In addition, there appeared to be differential susceptibility to space flight regarding cytokine secretion by T cell subsets. These alterations may be the

  13. High dilutions of antimony modulate cytokines production and macrophage - Leishmania (L.) amazonensis interaction in vitro.

    PubMed

    de Santana, Fabiana Rodrigues; Dalboni, Luciane C; Nascimento, Kátia F; Konno, Fabiana Toshie; Alvares-Saraiva, Anuska M; Correia, Michelle S F; Bomfim, Maristela Dutra Correa; Casarin, Renato C V; Perez, Elizabeth C; Lallo, Maria Anete; Peres, Giovani B; Laurenti, Márcia Dalastra; Benites, Nilson R; Buchi, Dorly F; Bonamin, Leoni Villano

    2017-04-01

    In previous results mice treated with high dilutions of antimony presented reduction of monocyte migration to the site of infection with increase in B lymphocytes population in the local lymph node. To know the mechanisms involved, a series of in vitro studies was done, using co-cultures of macrophages (RAW 264.7) and Leishmania (L.) amazonensis treated with different dilutions of antimony (Antimonium crudum or AC), in different times. Spreading, phagocytosis, the oxidative activity of macrophages, the viability of free promastigotes and the cytokines/chemokines concentration in the supernatant were evaluated. The assays were performed in quadruplicate. Cells treated with AC 30cH (10 -58 M) and AC 200cH (10 -398 M) presented a temporary reduction of the spreading after 02h of incubation, followed by increase after 48h, being the most significant increase observed after the AC 200cH treatment. However, the percentage of internalized parasites at 48, 96 and 120h of incubation was also higher in cells treated with AC 200cH. It is suggested that the AC 200cH improves the ability of phagocytes to internalize the parasites, but not to digest them. The cytokines-chemokines panel corroborated these results. Both dilutions potentiated the parasite-induced reduction of cytokines production, especially IL-6, IL 12 p40 and γ-IFN, after 48h of incubation. In addition, the production of MIP-1 beta (CCL4), a chemokine involved in chronic inflammation, was also reduced after 120h. A specific effect of AC 30cH was seen by the inhibition of two peaks of CCL2 (MCP-1) observed in infected macrophages, at 24 and 120h. Since this cytokine is an important chemokine for monocytes, it explains the results obtained formerly in vivo. The morphology of macrophages after acridine orange staining revealed that the treatment with AC 30cH reduced substantially the acid vacuoles in the cytoplasm, indicating a certain inability of these cells to digest the parasites. On the other hand, a large

  14. Innate and cytokine-driven signals, rather than microbial antigens, dominate in natural killer T cell activation during microbial infection.

    PubMed

    Brigl, Manfred; Tatituri, Raju V V; Watts, Gerald F M; Bhowruth, Veemal; Leadbetter, Elizabeth A; Barton, Nathaniel; Cohen, Nadia R; Hsu, Fong-Fu; Besra, Gurdyal S; Brenner, Michael B

    2011-06-06

    Invariant natural killer T cells (iNKT cells) are critical for host defense against a variety of microbial pathogens. However, the central question of how iNKT cells are activated by microbes has not been fully explained. The example of adaptive MHC-restricted T cells, studies using synthetic pharmacological α-galactosylceramides, and the recent discovery of microbial iNKT cell ligands have all suggested that recognition of foreign lipid antigens is the main driver for iNKT cell activation during infection. However, when we compared the role of microbial antigens versus innate cytokine-driven mechanisms, we found that iNKT cell interferon-γ production after in vitro stimulation or infection with diverse bacteria overwhelmingly depended on toll-like receptor-driven IL-12. Importantly, activation of iNKT cells in vivo during infection with Sphingomonas yanoikuyae or Streptococcus pneumoniae, pathogens which are known to express iNKT cell antigens and which require iNKT cells for effective protection, also predominantly depended on IL-12. Constitutive expression of high levels of IL-12 receptor by iNKT cells enabled instant IL-12-induced STAT4 activation, demonstrating that among T cells, iNKT cells are uniquely equipped for immediate, cytokine-driven activation. These findings reveal that innate and cytokine-driven signals, rather than cognate microbial antigen, dominate in iNKT cell activation during microbial infections.

  15. Allergen-induced cytokine production, atopic disease, IgE, and wheeze in children.

    PubMed

    Contreras, J Paola; Ly, Ngoc P; Gold, Diane R; He, Hongzhen; Wand, Mathew; Weiss, Scott T; Perkins, David L; Platts-Mills, Thomas A E; Finn, Patricia W

    2003-12-01

    The early childhood allergen-induced immune responses associated with atopic disease and IgE production in early life are not well understood. We assessed the relationship of allergen-induced cytokine production by PBMCs to both atopic disease and to IgE increase in a cohort of children with a parental history of allergy or asthma (n = 112) at a median of 2 years of age. We examined cockroach (Bla g 1)-induced, house dust mite (Der f 1)-induced, and cat (Fel d 1)-induced cytokine secretion, including secretion of IFN-gamma, IL-13, IL-10, and TNF-alpha. We investigated whether distinct cytokine patterns associated with atopic disease can be detected in immune responses of children. PBMCs were isolated, and allergen-induced cytokine secretion was analyzed by means of ELISA. Atopic disease was defined as physician- or nurse-diagnosed eczema or hay fever. Increased IgE was defined as an IgE level of greater than 35 U/mL to dust mite, cockroach, cat, and egg white or a total IgE level of 60 U/mL or greater. Compared with children without atopic disease, children with atopic disease had lower Der f 1 (P =.005) and Bla g 2 (P =.03) allergen-induced IFN-gamma levels. Compared with children without increased IgE (n = 95), those with increased IgE (n = 16) had higher Der f 1-induced (P =.006) and Fel d 1-induced (P =.005) IL-13 levels and lower Bla g 2-induced (P =.03) IFN-gamma levels. Compared with children with neither atopic disease nor repeated wheeze, children with both atopic disease and repeated wheeze had lower levels of allergen-induced IFN-gamma (P =.01 for Der f 1 and P =.02 for Bla g 2) cytokine secretion. In young children at risk for asthma or allergy, decreased allergen-induced IFN-gamma secretion is associated with atopic disease and, in some cases, with increased IgE levels. Increased allergen-induced IL-13 secretion is most strongly associated with early life increase of IgE.

  16. Trichomonas vaginalis Induces Production of Proinflammatory Cytokines in Mouse Macrophages Through Activation of MAPK and NF-κB Pathways Partially Mediated by TLR2

    PubMed Central

    Li, Ling; Li, Xin; Gong, Pengtao; Zhang, Xichen; Yang, Zhengtao; Yang, Ju; Li, Jianhua

    2018-01-01

    Trichomoniasis, caused by Trichomonas vaginalis infection, is the most prevalent sexually transmitted disease in female and male globally. However, the mechanisms by innate immunity against T. vaginalis infection have not been fully elucidated. Toll-like receptor2 (TLR2) has been shown to be involved in pathogen recognition, innate immunity activation, and inflammatory response to the pathogens. Nonetheless, the function of TLR2 against T. vaginalis remains unclear. In the present study, we investigated the role of TLR2 in mouse macrophages against T. vaginalis. RT-qPCR analysis revealed that T. vaginalis stimulation increased the gene expression of TLR2 in wild-type (WT) mouse macrophages. T. vaginalis also induced the secretion of IL-6, TNF-α, and IFN-γ in WT mouse macrophages, and the expression of these cytokines significantly decreased in TLR2-/- mouse macrophages and in WT mouse macrophages pretreated with MAPK inhibitors SB203580 (p38) and PD98059 (ERK). Western blot analysis demonstrated that T. vaginalis stimulation induced the activation of p38, ERK, and p65 NF-κB signal pathways in WT mouse macrophages, and the phosphorylation of p38, ERK, and p65 NF-κB significantly decreased in TLR2-/- mouse macrophages. Taken together, our data suggested that T. vaginalis may regulates proinflammatory cytokines production by activation of p38, ERK, and NF-κB p65 signal pathways via TLR2 in mouse macrophages. TLR2 might be involved in the defense and elimination of T. vaginalis infection. PMID:29692771

  17. Trichomonas vaginalis Induces Production of Proinflammatory Cytokines in Mouse Macrophages Through Activation of MAPK and NF-κB Pathways Partially Mediated by TLR2.

    PubMed

    Li, Ling; Li, Xin; Gong, Pengtao; Zhang, Xichen; Yang, Zhengtao; Yang, Ju; Li, Jianhua

    2018-01-01

    Trichomoniasis, caused by Trichomonas vaginalis infection, is the most prevalent sexually transmitted disease in female and male globally. However, the mechanisms by innate immunity against T. vaginalis infection have not been fully elucidated. Toll-like receptor2 (TLR2) has been shown to be involved in pathogen recognition, innate immunity activation, and inflammatory response to the pathogens. Nonetheless, the function of TLR2 against T. vaginalis remains unclear. In the present study, we investigated the role of TLR2 in mouse macrophages against T. vaginalis . RT-qPCR analysis revealed that T. vaginalis stimulation increased the gene expression of TLR2 in wild-type (WT) mouse macrophages. T. vaginalis also induced the secretion of IL-6, TNF-α, and IFN-γ in WT mouse macrophages, and the expression of these cytokines significantly decreased in TLR 2-/- mouse macrophages and in WT mouse macrophages pretreated with MAPK inhibitors SB203580 (p38) and PD98059 (ERK). Western blot analysis demonstrated that T. vaginalis stimulation induced the activation of p38, ERK, and p65 NF-κB signal pathways in WT mouse macrophages, and the phosphorylation of p38, ERK, and p65 NF-κB significantly decreased in TLR2 -/- mouse macrophages. Taken together, our data suggested that T. vaginalis may regulates proinflammatory cytokines production by activation of p38, ERK, and NF-κB p65 signal pathways via TLR2 in mouse macrophages. TLR2 might be involved in the defense and elimination of T. vaginalis infection.

  18. Intensive cytokine induction in pandemic H1N1 influenza virus infection accompanied by robust production of IL-10 and IL-6.

    PubMed

    Yu, Xuelian; Zhang, Xi; Zhao, Baihui; Wang, Jiayu; Zhu, Zhaokui; Teng, Zheng; Shao, Junjie; Shen, Jiaren; Gao, Ye; Yuan, Zhengan; Wu, Fan

    2011-01-01

    The innate immune system is the first line of defense against viruses by inducing expression of cytokines and chemokines. Many pandemic influenza H1N1 virus [P(H1N1)] infected severe cases occur in young adults under 18 years old who were rarely seriously affected by seasonal influenza. Results regarding host cytokine profiles of P(H1N1) are ambivalent. In the present study we investigated host cytokine profiles in P(H1N1) patients and identified cytokines related to disease severity. We retrieved 77, 59, 26 and 26 sera samples from P(H1N1) and non-flu influenza like illness (non-ILIs) cases with mild symptoms (mild patients), P(H1N1) vaccinees and healthy individuals, respectively. Nine and 16 sera were from hospitalized P(H1N1) and non-ILIs patients with severe symptoms (severe patients). Cytokines of IL-1, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12, IFN-γ and TNF-α were assayed by cytokine bead array, IL-17 and IL-23 measured with ELISA. Mild P(H1N1) patients produced significantly elevated IL-2, IL-12, IFN-γ, IL-6, TNF-α, IL-5, IL-10, IL-17 and IL-23 versus to healthy controls. While an overwhelming IL-6 and IL-10 production were observed in severe P(H1N1) patients. Higher IL-10 secretion in P(H1N1) vaccinees confirmed our observation that highly increased level of sera IL-6 and IL-10 in P(H1N1) patients may lead to disease progression. A comprehensive innate immune response was activated at the early stage of P(H1N1) infection with a combine Th1/Th2/Th3 cytokines production. As disease progression, a systemic production of IL-6 and IL-10 were observed in severe P(H1N1) patients. Further analysis found a strong correlation between IL-6 and IL-10 production in the severe P(H1N1) patients. IL-6 may be served as a mediator to induce IL-10 production. Highly elevated level of sera IL-6 and IL-10 in P(H1N1) patients may lead to disease progression, but the underlying mechanism awaits further detailed investigations.

  19. Intensive Cytokine induction in Pandemic H1N1 Influenza Virus Infection Accompanied by Robust Production of IL-10 and IL-6

    PubMed Central

    Yu, Xuelian; Zhang, Xi; Zhao, Baihui; Wang, Jiayu; Zhu, Zhaokui; Teng, Zheng; Shao, Junjie; Shen, Jiaren; Gao, Ye; Yuan, Zhengan; Wu, Fan

    2011-01-01

    Background The innate immune system is the first line of defense against viruses by inducing expression of cytokines and chemokines. Many pandemic influenza H1N1 virus [P(H1N1)] infected severe cases occur in young adults under 18 years old who were rarely seriously affected by seasonal influenza. Results regarding host cytokine profiles of P(H1N1) are ambivalent. In the present study we investigated host cytokine profiles in P(H1N1) patients and identified cytokines related to disease severity. Methods and Principal Findings We retrieved 77, 59, 26 and 26 sera samples from P(H1N1) and non-flu influenza like illness (non-ILIs) cases with mild symptoms (mild patients), P(H1N1) vaccinees and healthy individuals, respectively. Nine and 16 sera were from hospitalized P(H1N1) and non-ILIs patients with severe symptoms (severe patients). Cytokines of IL-1, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12, IFN-γ and TNF-α were assayed by cytokine bead array, IL-17 and IL-23 measured with ELISA. Mild P(H1N1) patients produced significantly elevated IL-2, IL-12, IFN-γ, IL-6, TNF-α, IL-5, IL-10, IL-17 and IL-23 versus to healthy controls. While an overwhelming IL-6 and IL-10 production were observed in severe P(H1N1) patients. Higher IL-10 secretion in P(H1N1) vaccinees confirmed our observation that highly increased level of sera IL-6 and IL-10 in P(H1N1) patients may lead to disease progression. Conclusion and Significance A comprehensive innate immune response was activated at the early stage of P(H1N1) infection with a combine Th1/Th2/Th3 cytokines production. As disease progression, a systemic production of IL-6 and IL-10 were observed in severe P(H1N1) patients. Further analysis found a strong correlation between IL-6 and IL-10 production in the severe P(H1N1) patients. IL-6 may be served as a mediator to induce IL-10 production. Highly elevated level of sera IL-6 and IL-10 in P(H1N1) patients may lead to disease progression, but the underlying mechanism awaits further

  20. Lipoteichoic Acid Isolated from Weissella cibaria Increases Cytokine Production in Human Monocyte-Like THP-1 Cells and Mouse Splenocytes.

    PubMed

    Hong, Yi-Fan; Lee, Yoon-Doo; Park, Jae-Yeon; Kim, Seongjae; Lee, Youn-Woo; Jeon, Boram; Jagdish, Deepa; Kim, Hangeun; Chung, Dae Kyun

    2016-07-28

    Lactic acid bacteria (LAB) have beneficial effects on intestinal health and skin diseases. Lipoteichoic acid (LTA), a cell wall component of gram-positive bacteria, is known to induce the production of several cytokines such as TNF-α, IL-1β, and IL-8 and affect the intestinal microflora, anti-aging, sepsis, and cholesterol level. In this study, Weissella cibaria was isolated from Indian dairy products, and we examined its immune-enhancing effects. Live and heatkilled W. cibaria did not induce the secretion of immune-related cytokines, whereas LTA isolated from W. cibaria (cLTA) significantly increased the secretion of TNF-α, IL-1β, and IL-6 in a dose-dependent manner. cLTA increased the phosphorylation of nuclear factor kappalight-chain-enhancer of activated B cells, p38 mitogen-activated protein kinases, and c-Jun N-terminal kinases in THP-1 cells. The secretion of TNF-α and IL-6 was also increased in the cLTA-treated mouse splenocytes. These results suggest that cLTA, but not W. cibaria whole cells, has immune-boosting potential and can be used to treat immunosuppression diseases.

  1. Blueberries inhibit proinflammatory cytokine TNF-alpha and IL-6 production in macrophages

    USDA-ARS?s Scientific Manuscript database

    Blueberries (BB) have been reported to attenuate atherosclerosis in apoE deficient (ApoE-/-) mice. However, the underlying mechanisms are not fully understood. In this study, the effect of BB on proinflammatory cytokine production in macrophages was investigated. ApoE-/- mice were fed AIN-93G diet (...

  2. Prospective crossover trial of the influence of vitamin E-coated dialyzer membranes on T-cell activation and cytokine induction.

    PubMed

    Girndt, M; Lengler, S; Kaul, H; Sester, U; Sester, M; Köhler, H

    2000-01-01

    Cytokine induction by dialyzer membranes has been related to several acute and chronic side effects of hemodialysis treatment, among them being immune dysfunction and progressive atherosclerosis. Surface modification of cuprophane dialyzers with the antioxidant vitamin E is a new approach to enhance biocompatibility and improve cytokine levels, as well as immune function. Twenty-one patients undergoing treatment with hemophane (HE) dialyzers were enrolled onto a crossover study with a vitamin E-coated (VE) dialyzer or a synthetic polyamide (PA) dialyzer. In vitro assays of lymphocyte activation and measurements of cytokine induction were performed to evaluate biocompatibility. Four weeks of treatment with either VE or PA dialyzers enhanced in vitro proliferation of peripheral blood leukocytes in comparison to treatment with HE membranes used before study entry. Enhancement of lymphocyte function was independent of dialysis efficiency, which was kept constant during the study. In the interdialytic interval, preactivation of monocytes for the production of interleukin-6 (IL-6) did not differ between VE or PA dialysis. In contrast, the VE membrane reduced acute production of IL-6 during a dialysis treatment, whereas the PA membrane did not. Unlike IL-6, the regulatory cytokine IL-10 is not inhibited by either membrane. This is important because IL-10 is believed to have a beneficial effect on immune function in dialysis patients. The VE membrane, despite being based on a cuprophane backbone, is similar to the highly biocompatible PA dialyzer in terms of its effect on lymphocyte function, whereas it exerts an additional suppressive effect on the overproduction of proinflammatory cytokines.

  3. [Cytokines and their role in reproductive system].

    PubMed

    Ianchiĭ, R I; Voznesens'ka, T Iu; Shepel', O A

    2007-01-01

    In this review we analyze the involvement of cytokines in regulation of ovarian function. A growing body of evidence suggests that the ovary is a site of inflammatory reactions. Immune-competent cells present within the ovary may constitute potential in-situ modulators of ovarian function that act through local secretion of regulatory soluble factors cytokines. In addition many over cell in the ovary also produce cytokines independently of the presence of leukocytes, thus ovaries are sites of cytokine action and production. There are many evidences that cytokines are involved in the ovarian control of follicular development and are surveyed as the important regulators of steroidogenesis and gamete production. It is established that cytokines generally inhibit gonadotropin-stimulated production of steroids. However ovarian steroids, in turn, reduce the cytokine production by immunecompetent cells. There are some data about participation of cytokines in regulating the proliferation and differentiation of granulose cells. Most cytokines appear in mammalian follicles only a short time before ovulation and play the important role in process of ovulation and luteinization. Thus a variety of clinical situations may be due to cytokine action in the gonads, and therapeutic manipulation of the immune system may affect reproductive function. Moreover the findings about the expression of some cytokines by oocytes and their presence in follicular fluid provide further evidence and substantiate the physiologic role for their in ovarian function, and may lead to clinical applications in programs of in vitro fertilization and in diagnosis and treatment of infertility in women, especially in cases attributed to ovarian dysfunction.

  4. Ebola Virus Binding to Tim-1 on T Lymphocytes Induces a Cytokine Storm.

    PubMed

    Younan, Patrick; Iampietro, Mathieu; Nishida, Andrew; Ramanathan, Palaniappan; Santos, Rodrigo I; Dutta, Mukta; Lubaki, Ndongala Michel; Koup, Richard A; Katze, Michael G; Bukreyev, Alexander

    2017-09-26

    Ebola virus (EBOV) disease (EVD) results from an exacerbated immunological response that is highlighted by a burst in the production of inflammatory mediators known as a "cytokine storm." Previous reports have suggested that nonspecific activation of T lymphocytes may play a central role in this phenomenon. T-cell immunoglobulin and mucin domain-containing protein 1 (Tim-1) has recently been shown to interact with virion-associated phosphatidylserine to promote infection. Here, we demonstrate the central role of Tim-1 in EBOV pathogenesis, as Tim-1 -/- mice exhibited increased survival rates and reduced disease severity; surprisingly, only a limited decrease in viremia was detected. Tim-1 -/- mice exhibited a modified inflammatory response as evidenced by changes in serum cytokines and activation of T helper subsets. A series of in vitro assays based on the Tim-1 expression profile on T cells demonstrated that despite the apparent absence of detectable viral replication in T lymphocytes, EBOV directly binds to isolated T lymphocytes in a phosphatidylserine-Tim-1-dependent manner. Exposure to EBOV resulted in the rapid development of a CD4 Hi CD3 Low population, non-antigen-specific activation, and cytokine production. Transcriptome and Western blot analysis of EBOV-stimulated CD4 + T cells confirmed the induction of the Tim-1 signaling pathway. Furthermore, comparative analysis of transcriptome data and cytokine/chemokine analysis of supernatants highlight the similarities associated with EBOV-stimulated T cells and the onset of a cytokine storm. Flow cytometry revealed virtually exclusive binding and activation of central memory CD4 + T cells. These findings provide evidence for the role of Tim-1 in the induction of a cytokine storm phenomenon and the pathogenesis of EVD. IMPORTANCE Ebola virus infection is characterized by a massive release of inflammatory mediators, which has come to be known as a cytokine storm. The severity of the cytokine storm is

  5. Cysteinyl leukotriene E4 activates human group 2 innate lymphoid cells and enhances the effect of prostaglandin D2 and epithelial cytokines.

    PubMed

    Salimi, Maryam; Stöger, Linda; Liu, Wei; Go, Simei; Pavord, Ian; Klenerman, Paul; Ogg, Graham; Xue, Luzheng

    2017-10-01

    Group 2 innate lymphoid cells (ILC2s) are a potential innate source of type 2 cytokines in the pathogenesis of allergic conditions. Epithelial cytokines (IL-33, IL-25, and thymic stromal lymphopoietin [TSLP]) and mast cell mediators (prostaglandin D 2 [PGD 2 ]) are critical activators of ILC2s. Cysteinyl leukotrienes (cysLTs), including leukotriene (LT) C 4 , LTD 4 , and LTE 4 , are metabolites of arachidonic acid and mediate inflammatory responses. Their role in human ILC2s is still poorly understood. We sought to determine the role of cysLTs and their relationship with other ILC2 stimulators in the activation of human ILC2s. For ex vivo studies, fresh blood from patients with atopic dermatitis and healthy control subjects was analyzed with flow cytometry. For in vitro studies, ILC2s were isolated and cultured. The effects of cysLTs, PGD 2 , IL-33, IL-25, TSLP, and IL-2 alone or in combination on ILC2s were defined by using chemotaxis, apoptosis, ELISA, Luminex, quantitative RT-PCR, and flow cytometric assays. The effect of endogenous cysLTs was assessed by using human mast cell supernatants. Human ILC2s expressed the LT receptor CysLT 1 , levels of which were increased in atopic subjects. CysLTs, particularly LTE 4 , induced migration, reduced apoptosis, and promoted cytokine production in human ILC2s in vitro. LTE 4 enhanced the effect of PGD 2 , IL-25, IL-33, and TSLP, resulting in increased production of type 2 and other proinflammatory cytokines. The effect of LTE 4 was inhibited by montelukast, a CysLT 1 antagonist. Interestingly, addition of IL-2 to LTE 4 and epithelial cytokines significantly amplified ILC2 activation and upregulated expression of the receptors for IL-33 and IL-25. CysLTs, particularly LTE 4 , are important contributors to the triggering of human ILC2s in inflammatory responses, particularly when combined with other ILC2 activators. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Indomethacin Treatment of Mice with Premalignant Oral Lesions Sustains Cytokine Production and Slows Progression to Cancer.

    PubMed

    Johnson, Sara D; Young, M Rita I

    2016-01-01

    Current treatment options for head and neck squamous cell carcinoma (HNSCC) patients are often ineffective due to tumor-localized and systemic immunosuppression. Using the 4-NQO mouse model of oral carcinogenesis, this study showed that premalignant oral lesion cells produce higher levels of the immune modulator, PGE 2 , compared to HNSCC cells. Inhibiting prostaglandin production of premalignant lesion cells with the pan-cyclooxygenase inhibitor indomethacin stimulated their induction of spleen cell cytokine production. In contrast, inhibiting HNSCC prostaglandin production did not stimulate their induction of spleen cell cytokine production. Treatment of mice bearing premalignant oral lesions with indomethacin slowed progression of premalignant oral lesions to HNSCC. Flow cytometric analysis of T cells in the regional lymph nodes of lesion-bearing mice receiving indomethacin treatment showed an increase in lymph node cellularity and in the absolute number of CD8 + T cells expressing IFN-γ compared to levels in lesion-bearing mice receiving diluent control treatment. The cytokine-stimulatory effect of indomethacin treatment was not localized to regional lymph nodes but was also seen in the spleen of mice with premalignant oral lesions. Together, these data suggest that inhibiting prostaglandin production at the premalignant lesion stage boosts immune capability and improves clinical outcomes.

  7. Up-regulation of brain cytokines and chemokines mediates neurotoxicity in early acute liver failure by a mechanism independent of microglial activation.

    PubMed

    Faleiros, Bruno E; Miranda, Aline S; Campos, Alline C; Gomides, Lindisley F; Kangussu, Lucas M; Guatimosim, Cristina; Camargos, Elizabeth R S; Menezes, Gustavo B; Rachid, Milene A; Teixeira, Antônio L

    2014-08-26

    The neurological involvement in acute liver failure (ALF) is characterized by arousal impairment with progression to coma. There is a growing body of evidence that neuroinflammatory mechanisms play a role in this process, including production of inflammatory cytokines and microglial activation. However, it is still uncertain whether brain-derived cytokines and glial cells are crucial to the pathophysiology of ALF at the early stage, before coma development. Here, we investigated the influence of cytokines and microglia in ALF-induced encephalopathy in mice as soon as neurological symptoms were identifiable. Behavior was assessed at 12, 24, 36 and 48 h post-injection of thioacetamide, a hepatotoxic drug, through locomotor activity by an open field test. Brain concentration of cytokines (TNF-α and IL-1β) and chemokines (CXCL1, CCL2, CCL3 and CCL5) were assessed by ELISA. Microglial activation in brain sections was investigated through immunohistochemistry, and cellular ultrastructural changes were observed by transmission electron microscopy. We found that ALF-induced animals presented a significant decrease in locomotor activity at 24 h, which was accompanied by an increase in IL-1β, CXCL1, CCL2, CCL3 and CCL5 in the brain. TNF-α level was significantly increased only at 36 h. Despite marked morphological changes in astrocytes and brain endothelial cells, no microglial activation was observed. These findings suggest an involvement of brain-derived chemokines and IL-1β in early pathophysiology of ALF by a mechanism independent of microglial activation. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Activated macrophage-like THP-1 cells modulate anulus fibrosus cell production of inflammatory mediators in response to cytokines.

    PubMed

    Kim, Joo Han; Studer, Rebecca K; Sowa, Gwendolyn A; Vo, Nam Viet; Kang, James D

    2008-10-01

    Anulus fibrosus (AF) cells obtained from patients undergoing surgery were cocultured with macrophage-like cells and production of inflammatory mediators was analyzed by quantitative assay. To investigate the role of macrophages in AF cell production of inflammatory mediators by cytokines stimulation. Discogenic pain caused by anular disruption is an important cause of low back pain and recent studies show the presence of macrophages in symptomatic discs but not in normal and aging discs. We hypothesize that macrophages play a major role in development of symptomatic disc. Human AF cells were cocultured with phorbol myristate acetate stimulated macrophage-like THP-1 cells. The conditioned medium from cells cultured alone or in coculture was assayed for cytokines by Enzyme-linked immunosorbent assay and nitric oxide (NO) by the Greiss method. Using the same outcome measures, comparisons of cell response to cytokines were made among macrophage-like cells, naïve AF cells, and macrophage exposed AF cells. RESULTS.: Tumor necrosis factor (TNF)-alpha, interleukin (IL)-8, IL-6, and NO (TNF-alpha: 1.45 +/- 0.29 ng/mL, IL-8: 97.02 +/- 7.94 ng/mL, IL-6: 33.40 +/- 3.55 ng/mL, NO: 8.42 +/- 0.78 micromol/L) were secreted in much greater amounts by cells maintained in coculture compared to macrophages (TNF-alpha: 0.78 +/- 0.12 ng/mL, IL-8: 58.04 +/- 4.44 ng/mL, IL-6: 0.14 +/- 0.03 ng/mL, NO: 0.30 +/- 0.08 micromol/L) or AF cells cultured alone. In addition, IL-6 secretion from AF cells in response to TNF-alpha was up-regulated by coculture, however, IL-6 secretion in response to IL-1 beta was downregulated in a dose-dependent manner. Coculture with macrophages also up-regulated AF cell secretion of IL-8 dose-dependently and downregulated NO to TNF-alpha or IL-1beta stimulation. We conclude that exposure to macrophages, as can be expected after anular injury, can result in enhanced response to local inflammation. Although changes were observed in all inflammatory mediators after

  9. Jellyfish collagen stimulates production of TNF-α and IL-6 by J774.1 cells through activation of NF-κB and JNK via TLR4 signaling pathway.

    PubMed

    Putra, Agus Budiawan Naro; Nishi, Kosuke; Shiraishi, Ryusuke; Doi, Mikiharu; Sugahara, Takuya

    2014-03-01

    We previously reported that jellyfish collagen stimulates both the acquired and innate immune responses. In the acquired immune response, jellyfish collagen enhanced immunoglobulin production by lymphocytes in vitro and in vivo. Meanwhile, in the innate immune response jellyfish collagen promoted cytokine production and phagocytotic activity of macrophages. The facts that jellyfish collagen plays several potential roles in stimulating cytokine production by macrophages have further attracted us to uncover its mechanisms. We herein describe that the cytokine production-stimulating activity of jellyfish collagen was canceled by a Toll-like receptor 4 (TLR4) inhibitor. Moreover, jellyfish collagen stimulated phosphorylation of inhibitor of κBα (IκBα), promoted the translocation of nucleus factor-κB (NF-κB), and activated c-Jun N-terminal kinase (JNK). A JNK inhibitor also abrogated the cytokine production-stimulating activity of jellyfish collagen. These results suggest that jellyfish collagen may facilitate cytokine production by macrophages through activation of NF-κB and JNK via the TLR4 signaling pathways. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Artesunate protects pancreatic beta cells against cytokine-induced damage via SIRT1 inhibiting NF-κB activation.

    PubMed

    Yu, L; Chen, J F; Shuai, X; Xu, Y; Ding, Y; Zhang, J; Yang, W; Liang, X; Su, D; Yan, C

    2016-01-01

    Artesunate (ART) has been known as the most effective and safe reagents to treat malaria for many years. In this study, we explored whether ART could protect pancreatic beta-cell against cytokine-induced damage. The production of nitrite (NO) was detected with the Griess Assay Kit. SIRT1 and inducible nitric oxide synthase (iNOS) expression were determined with Western blot. The transcriptional activity of NF-κB was evaluated by luciferase reporter assay. The expression of Sirt1 was silenced by RNA interference. Glucose-stimulated insulin secretion (GSIS) and potassium-stimulated insulin secretion (KSIS) assays were performed to measure the effect of ART on pancreatic beta-cells' function. The effect of ART on beta-cells apoptosis was evaluated by using Hochest/PI staining and TUNEL assay. ART enhanced GSIS (KSIS) and reduced apoptosis of pancreatic beta-cells induced by IL-1β. Further study showed that ART inhibited IL-1β-induced increase of NF-κB activity, iNOS expression, and NO production. Moreover, ART up-regulated SIRT1 expression in INS-1 cells and islets exposed to IL-1β. Inhibition of SIRT1 expression could partially abolished the inhibitory effect of ART on NF-κB activity in IL-1β-treated beta-cells. More importantly, the protective effect of ART on cytokine-induced damage was reversed by silencing SIRT1 expression. ART can elicit a protective effect on beta-cells exposed to IL-1β by stimulating SIRT1 expression, which resulted in the decrease of NF-κB activity, iNOS expression, and NO production. Hence, ART might be an effective drug for diabetes.

  11. WntD and Diedel: Two immunomodulatory cytokines in Drosophila immunity.

    PubMed

    Lamiable, Olivier; Meignin, Carine; Imler, Jean-Luc

    2016-10-01

    Remarkable progress has been made on the understanding of the basic mechanisms of innate immunity in flies, from sensing infection to production of effector molecules. However, how the immune response is orchestrated at the level of the organism remains poorly understood. While cytokines activating immune responses, such as Spaetzle or Unpaired-3, have been identified and characterized in Drosophila, much less is known regarding immunosuppressor cytokines. In a recent publication, we reported the identification of a novel cytokine, Diedel, which acts as systemic negative regulator of the IMD pathway. Here, we discuss the similarities between Diedel and WntD, another immunomodulatory cytokine and present evidence that the 2 molecules act independently from one another.

  12. Current status and challenges of cytokine pharmacology

    PubMed Central

    Zídek, Z; Anzenbacher, P; Kmoníčková, E

    2009-01-01

    The major concern of pharmacology about cytokines has originated from plentiful data showing association between gross changes in their production and pathophysiological processes. Despite the enigmatic role of cytokines in diseases, a number of them have become a subject of cytokine and anti-cytokine immunotherapies. Production of cytokines can be influenced by many endogenous and exogenous stimuli including drugs. Cells of the immune system, such as macrophages and lymphocytes, are richly endowed with receptors for the mediators of physiological functions, such as biogenic amines, adenosine, prostanoids, steroids, etc. Drugs, agonists or antagonists of these receptors can directly or indirectly up- and down-regulate secretion of cytokines and expression of cytokine receptors. Vice versa, cytokines interfere with drug pharmacokinetics and pharmacodynamics through the interactions with cytochrome P450 and multiple drug resistance proteins. The aim of the review is to encourage more intensive studies in these fields of cytokine pharmacology. It also outlines major areas of searching promising candidates for immunotherapeutic interventions. PMID:19371342

  13. Altered Cytokine Production By Specific Human Peripheral Blood Cell Subsets Immediately Following Spaceflight

    NASA Technical Reports Server (NTRS)

    Crucian, Brian E.; Cubbage, Michael L.; Sams, Clarence F.

    1999-01-01

    In this study, we have attempted to combine standard immunological assays with the cellular resolving power of the flow cytometer to positively identify the specific cell types involved in spaceflight-induced immune alterations. We have obtained whole blood samples from 27 astronauts collected at three timepoints (L-10, R+0 and R+3) surrounding four recent space shuttle missions. The duration of these missions ranged from 10 to 18 days. Assays performed included serum/urine cortisol, comprehensive subset phenotyping, assessment of cellular activation markers and intracellular cytokine production following mitogenic stimulation. Absolute levels of peripheral granulocytes were significantly elevated following spaceflight, but the levels of circulating lymphocytes and monocytes were unchanged. Lymphocyte subset analysis demonstrated trends towards a decreased percentage of T cells and an increased percentage of B cells. Nearly all of the astronauts exhibited an increased CD4:CD8 ratio, which was dramatic in some individuals. Assessment of memory (CD45RA+) vs. naive (CD45RO+) CD4+ T cell subsets was more ambiguous, with subjects tending to group more as a flight crew. All subjects from one mission demonstrated an increased CD45RA:CD45RO ratio, while all subjects from another Mission demonstrated a decreased ratio. While no significant trend was seen in the monocyte population as defined by scatter, a decreased percentage of the CD14+ CD16+ monocyte subset was seen following spaceflight in all subjects tested. In general, most of the cellular changes described above which were assessed at R+O and compared to L-10 trended to pre-flight levels by R+3. Although no significant differences were seen in the expression of the cellular activation markers CD69 and CD25 following exposure to microgravity, significant alterations were seen in cytokine production in response to mitogenic activation for specific subsets. T cell (CD3+) production of IL-2 was significantly decreased

  14. DMSO Represses Inflammatory Cytokine Production from Human Blood Cells and Reduces Autoimmune Arthritis

    PubMed Central

    Elisia, Ingrid; Nakamura, Hisae; Lam, Vivian; Hofs, Elyse; Cederberg, Rachel; Cait, Jessica; Hughes, Michael R.; Lee, Leora; Jia, William; Adomat, Hans H.; Guns, Emma S.; McNagny, Kelly M.; Samudio, Ismael; Krystal, Gerald

    2016-01-01

    Dimethyl sulfoxide (DMSO) is currently used as an alternative treatment for various inflammatory conditions as well as for cancer. Despite its widespread use, there is a paucity of data regarding its safety and efficacy as well as its mechanism of action in human cells. Herein, we demonstrate that DMSO has ex-vivo anti-inflammatory activity using Escherichia coli- (E. coli) and herpes simplex virus-1 (HSV-1)-stimulated whole human blood. Specifically, we found that between 0.5%– 2%, DMSO significantly suppressed the expression of many pro-inflammatory cytokines/chemokines and prostaglandin E2 (PGE2). However, a significant reduction in monocyte viability was also observed at 2% DMSO, suggesting a narrow window of efficacy. Anti-inflammatory concentrations of DMSO suppressed E. coli-induced ERK1/2, p38, JNK and Akt phosphorylation, suggesting DMSO acts on these signaling pathways to suppress inflammatory cytokine/chemokine production. Although DMSO induces the differentiation of B16/F10 melanoma cells in vitro, topical administration of DMSO to mice subcutaneously implanted with B16 melanoma cells was ineffective at reducing tumor growth, DMSO was also found to block mouse macrophages from polarizing to either an M1- or an M2-phenotype, which may contribute to its inability to slow tumor growth. Topical administration of DMSO, however, significantly mitigated K/BxN serum-induced arthritis in mice, and this was associated with reduced levels of pro-inflammatory cytokines in the joints and white blood cell levels in the blood. Thus, while we cannot confirm the efficacy of DMSO as an anti-cancer agent, the use of DMSO in arthritis warrants further investigation to ascertain its therapeutic potential. PMID:27031833

  15. Tissue specific distribution of iNKT cells impacts their cytokine response

    PubMed Central

    Lee, You Jeong; Wang, Haiguang; Starrett, Gabriel J.; Phuong, Vanessa; Jameson, Stephen C.; Hogquist, Kristin A.

    2015-01-01

    Summary Three subsets of invariant natural killer T (iNKT) cells have been identified, NKT1, NKT2 and NKT17, which produce distinct cytokines when stimulated, but little is known about their localization. Here, we have defined the anatomic localization and systemic distribution of these subsets and measured their cytokine production. Thymic NKT2 cells that produced interleukin-4 (IL-4) at steady state were located in the medulla and conditioned medullary thymocytes. NKT2 cells were abundant in the mesenteric lymph node (LN) of BALB/c mice and produced IL-4 in the T cell zone that conditioned other lymphocytes. Intravenous injection of α-galactosylceramide activated NKT1 cells with vascular access, but not LN or thymic NKT cells, resulting in systemic interferon-γ and IL-4 production, while oral α-galactosylceramide activated NKT2 cells in the mesenteric LN, resulting in local IL-4 release. These finding indicate that the localization of iNKT cells governs their cytokine response both at steady state and upon activation. PMID:26362265

  16. Ozone effect on respiratory syncytial virus infectivity and cytokine production by human alveolar macrophages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soukup, J.; Koren, H.S.; Becker, S.

    1993-02-01

    This study was performed to evaluate the effect of ozone (O3) exposure at 1 ppm for 2 hr on the susceptibility/resistance of adult human alveolar macrophages (AM) to infection with respiratory syncytial virus (RSV) in vitro and on RSV-induced cytokine production by the AM. AM were first exposed to O3 or to filtered air and then infected with RSV at multiplicities of infection (m.o.i.) of 0.1, 1.0, and 10. The percentage RSV-infected AM and the amount of infectious virus released by the cells were determined at Days 2 and 4 after infection. Interleukin (IL)-1, IL-6, and tumor necrosis factor (TNF)more » levels in the supernatants were determined on Day 2. No difference in the percentage infected AM or in the amount of infectious RSV produced was found between control and O3-exposed cultures. However, O3-exposed AM infected with RSV at m.o.i. 1 produced less IL-1 in response to RSV infection than control AM: 63.6 pg/ml compared with 98.5 pg/ml. No difference in IL-1 was seen with m.o.i. 10. IL-6 levels were also decreased, but only after infection with m.o.i. 0.1. At this level of infection 830 pg/ml was produced by control AM as compared to 468.2 pg/ml by O3-exposed AM. TNF production was unaffected by O3 at all multiplicities of infection. Statistical analysis of the O3 effect on AM cytokine production induced by the different multiplicities, however, revealed no significant effect of O3. Based on these observations it appears unlikely that O3 alters susceptibility of AM to infection with RSV, nor does O3 dramatically alter cytokine production in response to RSV since effects on IL-1 and IL-6 secretion were only found with the lowest levels of infection which induced cytokine release.« less

  17. Cytokine Expression and Production by Purified Helicobacter pylori Urease in Human Gastric Epithelial Cells

    PubMed Central

    Tanahashi, Toshihito; Kita, Masakazu; Kodama, Tadashi; Yamaoka, Yoshio; Sawai, Naoki; Ohno, Tomoyuki; Mitsufuji, Shoji; Wei, Ya-Ping; Kashima, Kei; Imanishi, Jiro

    2000-01-01

    Cytokines have been proposed to play an important role in Helicobacter pylori-associated gastroduodenal diseases, but the exact mechanism of the cytokine induction remains unclear. H. pylori urease, a major component of the soluble proteins extracted from bacterial cells, is considered to be one of the virulence factors for the inflammation in the gastric mucosa that is produced in H. pylori infection. However, the response of human gastric epithelial cells to the stimulation of urease has not been investigated. In the present study, we used human gastric epithelial cells in a primary culture system and examined whether H. pylori urease stimulates the gastric epithelial cells to induce proinflammatory cytokines by reverse transcription-PCR and enzyme-linked immunosorbent assay. First, by using peripheral blood mononuclear cells (PBMC) and a gastric cancer cell line (MKN-45 cells), we confirmed the ability of purified H. pylori urease to induce the production of proinflammatory cytokines. Furthermore, we demonstrated that the human gastric epithelial cells produced interleukin-6 (IL-6) and tumor necrosis factor alpha, but not IL-8, following stimulation with purified urease. The patterns of cytokine induction differed among human PBMC, MKN-45 cells, and human gastric epithelial cells. These results suggest that the human gastric epithelial cells contribute to the induction of proinflammatory cytokines by the stimulation of H. pylori urease, indicating that the epithelial cells were involved in the mucosal inflammation that accompanied H. pylori infection. PMID:10639431

  18. Effects of mannan oligosaccharide on cytokine secretions by porcine alveolar macrophages and serum cytokine concentrations in nursery pigs.

    PubMed

    Che, T M; Johnson, R W; Kelley, K W; Dawson, K A; Moran, C A; Pettigrew, J E

    2012-02-01

    This study explored the hypothesis that mannan oligosaccharide (MOS) acts to reduce systemic inflammation in pigs by evaluating cytokine production of alveolar macrophages (AM) and serum cytokine concentrations. A total of 160 pigs were fed diets containing 0.2 or 0.4% MOS for 2 or 4 wk postweaning compared with control diets without MOS. Dietary MOS did not affect the serum concentration of tumor necrosis factor (TNF)-α and tended (P = 0.081) to increase that of IL-10. These cytokine concentrations also changed over time (P < 0.001). After 2-wk feeding of the control or MOS diets, AM were collected and stimulated ex vivo with lipopolysaccharide (LPS) or polyinosinic:polycytidylic acid (PLIC) as infection models. The LPS-stimulated AM from MOS-fed pigs (n = 12) secreted less TNF-α (P < 0.001) and more IL-10 (P = 0.026) than those from control-fed pigs (n = 6). However, dietary MOS had less effect on ex vivo TNF-α and IL-10 production by PLIC-stimulated AM (P = 0.091 and P > 0.10, respectively. Further, effects of MOS were examined in 4 in vitro experiments. In Exp. 1 (n = 4 pigs), MOS and mannan-rich fraction (MRF), when added to AM cultures, were able to increase TNF-α production. This direct effect of MOS was not due to endotoxin contamination as verified in Exp. 2 (n = 6 pigs) using polymyxin B, an inhibitor of LPS activation of toll-like receptor 4. Polymyxin B inhibited production of TNF-α by AM after treatment with LPS (P < 0.001), but not after treatment with MOS in the absence of LPS (P > 0.70). In Exp. 3 (n = 6 pigs), when MOS was directly applied in vitro, the pattern of cytokine production by LPS-activated AM was similar to that observed ex vivo, as MOS suppressed LPS-induced TNF-α (P < 0.001) and enhanced LPS-induced IL-10 (P = 0.028). In Exp. 4 (n = 6 pigs), when MRF replaced MOS, AM-produced TNF-α induced by LPS or PLIC was suppressed by MRF (P = 0.015 or P < 0.001, respectively). These data establish that MOS and MRF suppress LPS-induced TNF

  19. Social role conflict predicts stimulated cytokine production among men, not women.

    PubMed

    Schreier, Hannah M C; Hoffer, Lauren C; Chen, Edith

    2016-11-01

    To assess whether perceived role conflict is associated with stimulated pro-inflammatory cytokine production and glucocorticoid sensitivity, and whether these associations are moderated by sex. 153 healthy adults (aged 45.8±5.5years, 78% female) listed their 3 main social roles and indicated the amount of role conflict they perceived between each pair of social roles. Subsequently, participants underwent blood draws and leukocyte response to microbial challenge and glucocorticoid sensitivity were assessed by incubating whole blood with lipopolysaccharide (LPS) in the presence or absence of hydrocortisone. Stimulated levels of Interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor alpha (TNFα) were measured. Multiple regression analyses controlling for sociodemographics revealed significant sex×role conflict interactions for LPS-stimulated production of IL-1β, IL-6, and TNFα (all interaction ps<0.05), and a marginal interaction on LPS-stimulated IL-8 production (interaction p<0.10). Greater perceived role conflict was associated with greater pro-inflammatory cytokine production in response to microbial stimulation only among men, not women. There also were significant sex×role conflict interactions with respect to glucocorticoid sensitivity for IL-1β, IL-6, and TNFα production (all interaction ps<0.05) and a marginal interaction for IL-8 (interaction p<0.10). Greater perceived role conflict was unrelated to glucocorticoid sensitivity among women, but associated with less sensitivity to glucocorticoid signaling among men. Perceived social role conflict, indicating greater perceived demand across multiple social roles, may take a greater toll on the regulation of inflammatory processes among men compared to women. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Ultrafiltered pig leukocyte extract (IMUNOR) decreases nitric oxide formation and hematopoiesis-stimulating cytokine production in lipopolysaccharide-stimulated RAW 264.7 macrophages.

    PubMed

    Hofer, Michal; Vacek, Antonín; Lojek, Antonín; Holá, Jirina; Streitová, Denisa

    2007-10-01

    A low-molecular-weight (<12 kDa) ultrafiltered pig leukocyte extract, IMUNOR, was tested in experiments in vitro on non-stimulated and lipopolysaccharide (LPS)-stimulated murine RAW 264.7 macrophages in order to assess modulation of nitric oxide (NO) production (measured indirectly as the concentration of nitrites), hematopoiesis-stimulating activity of the supernatant of the macrophage cells (ascertained by counting cell colonies growing from progenitor cells for granulocytes and macrophages (GM-CFC) in vitro), and the release of hematopoiesis-stimulating cytokines. No hematopoiesis-stimulating activity and cytokine or NO production were found in the supernatant of non-stimulated macrophages. It was found that IMUNOR does not influence this status. Supernatant of LPS-stimulated macrophages was characterized by hematopoiesis-stimulating activity, as well as by the presence of nitrites, interleukin-6 (IL-6), and granulocyte colony-stimulating factor (G-CSF). A key role in the hematopoiesis-stimulating activity of the supernatant of LPS-stimulated macrophages could be ascribed to G-CSF since the formation of the colonies could be abrogated nearly completely by monoclonal antibodies against G-CSF. IMUNOR was found to suppress all the mentioned manifestations of the LPS-activated macrophages. When considering these results together with those from our previous in vivo study revealing stimulatory effects of IMUNOR on radiation-suppressed hematopoiesis, a hypothesis may be formulated which postulates a homeostatic role of IMUNOR, consisting in stimulation of impaired immune and hematopoietic systems but also in cutting back the production of proinflammatory mediators in cases of overstimulation which threats with undesirable consequences.

  1. Invasion of human aortic endothelial cells by oral viridans group streptococci and induction of inflammatory cytokine production.

    PubMed

    Nagata, E; de Toledo, A; Oho, T

    2011-02-01

    Oral viridans group streptococci are the major commensal bacteria of the supragingival oral biofilm and have been detected in human atheromatous plaque. Atherosclerosis involves an ongoing inflammatory response, reportedly involving chronic infection caused by multiple pathogens. The aim of this study was to examine the invasion of human aortic endothelial cells (HAECs) by oral viridans group streptococci and the subsequent cytokine production by viable invaded HAECs. The invasion of HAECs by bacteria was examined using antibiotic protection assays and was visualized by confocal scanning laser microscopy. The inhibitory effects of catalase and cytochalasin D on the invasion of HAECs were also examined. The production of cytokines by invaded or infected HAECs was determined using enzyme-linked immunosorbent assays, and a real-time polymerase chain reaction method was used to evaluate the expression of cytokine messenger RNA. The oral streptococci tested were capable of invading HAECs. The number of invasive bacteria increased with the length of the co-culture period. After a certain co-culture period, some organisms were cytotoxic to the HAECs. Catalase and cytochalasin D inhibited the invasion of HAECs by the organism. HAECs invaded by Streptococcus mutans Xc, Streptococcus gordonii DL1 (Challis), Streptococcus gordonii ATCC 10558 and Streptococcus salivarius ATCC 13419 produced more cytokine(s) (interleukin-6, interleukin-8, monocyte chemoattractant protein-1) than non-invaded HAECs. The HAECs invaded by S. mutans Xc produced the largest amounts of cytokines, and the messenger RNA expression of cytokines by invaded HAECs increased markedly compared with that by non-invaded HAECs. These results suggest that oral streptococci may participate in the pathogenesis of atherosclerosis. © 2010 John Wiley & Sons A/S.

  2. CD49a promotes T-cell-mediated hepatitis by driving T helper 1 cytokine and interleukin-17 production

    PubMed Central

    Chen, Yonglin; Peng, Hui; Chen, Yongyan; Wei, Haiming; Sun, Rui; Tian, Zhigang

    2014-01-01

    It is becoming increasingly clear that the T-cell-mediated immune response is important in many diseases. In this study, we used concanavalin A (Con A) -induced hepatitis to investigate the role of CD49a in the molecular and cellular mechanism of the T-cell-mediated immune response. We found that CD49a−/− mice had significantly reduced levels of serum alanine aminotransferase and were protected from Con A-induced hepatitis. CD49a deficiency led to decreased production of interferon-γ (IFN-γ) and interleukin-17A (IL-17A) after Con A injection. Furthermore, we found that hepatic CD4+ T cells and invariant natural killer T cells up-regulated CD49a expression, along with enhanced activation after Con A injection, leading to production of inflammatory cytokines by these T cells. Blockade of CD49a in vivo ameliorated Con A-induced hepatitis with reduced production of IFN-γ and IL-17A. Hence, CD49a promoted Con A-induced hepatitis through enhancing inflammatory cytokine production (IFN-γ and IL-17A) by CD4+ T and invariant natural killer T cells. The protective effect of CD49a blockade antibody suggested a new target therapeutic molecule for intervention of T-cell-mediated liver injury. PMID:24164540

  3. Interleukin 10 inhibits pro-inflammatory cytokine responses and killing of Burkholderia pseudomallei.

    PubMed

    Kessler, Bianca; Rinchai, Darawan; Kewcharoenwong, Chidchamai; Nithichanon, Arnone; Biggart, Rachael; Hawrylowicz, Catherine M; Bancroft, Gregory J; Lertmemongkolchai, Ganjana

    2017-02-20

    Melioidosis, caused by Burkholderia pseudomallei, is endemic in northeastern Thailand and Northern Australia. Severe septicemic melioidosis is associated with high levels of pro-inflammatory cytokines and is correlated with poor clinical outcomes. IL-10 is an immunoregulatory cytokine, which in other infections can control the expression of pro-inflammatory cytokines, but its role in melioidosis has not been addressed. Here, whole blood of healthy seropositive individuals (n = 75), living in N. E. Thailand was co-cultured with B. pseudomallei and production of IL-10 and IFN-γ detected and the cellular sources identified. CD3 - CD14 + monocytes were the main source of IL-10. Neutralization of IL-10 increased IFN-γ, IL-6 and TNF-α production and improved bacteria killing. IFN-γ production and microbicidal activity were impaired in individuals with diabetes mellitus (DM). In contrast, IL-10 production was unimpaired in individuals with DM, resulting in an IL-10 dominant cytokine balance. Neutralization of IL-10 restored the IFN-γ response of individuals with DM to similar levels observed in healthy individuals and improved killing of B. pseudomallei in vitro. These results demonstrate that monocyte derived IL-10 acts to inhibit potentially protective cell mediated immune responses against B. pseudomallei, but may also moderate the pathological effects of excessive cytokine production during sepsis.

  4. Fatty acid-binding protein 4 (FABP4) and FABP5 modulate cytokine production in the mouse thymic epithelial cells.

    PubMed

    Adachi, Yasuhiro; Hiramatsu, Sumie; Tokuda, Nobuko; Sharifi, Kazem; Ebrahimi, Majid; Islam, Ariful; Kagawa, Yoshiteru; Koshy Vaidyan, Linda; Sawada, Tomoo; Hamano, Kimikazu; Owada, Yuji

    2012-09-01

    Thymic stromal cells, including cortical thymic epithelial cells (cTEC) produce many humoral factors, such as cytokines and eicosanoids to modulate thymocyte homeostasis, thereby regulating the peripheral immune responses. In this study, we identified fatty acid-binding protein (FABP4), an intracellular fatty acid chaperone, in the mouse thymus, and examined its role in the control of cytokine production in comparison with FABP5. By immunofluorescent staining, FABP4(+) cells enclosing the thymocytes were scattered throughout the thymic cortex with a spatial difference from the FABP5(+) cell that were distributed widely throughout the cTEC. The FABP4(+) cells were immunopositive for MHC class II, NLDC145 and cytokeratin 8, and were identified as part of cTEC. The FABP4(+) cells were identified as thymic nurse cells (TNC), a subpopulation of cTEC, by their active phagocytosis of apoptotic thymocytes. Furthermore, FABP4 expression was confirmed in the isolated TNC at the gene and protein levels. To explore the function of FABP in TNC, TSt-4/DLL1 cells stably expressing either FABP4 or FABP5 were established and the gene expressions of various cytokines were examined. The gene expression of interleukin (IL)-7 and IL-18 was increased both in FABP4 and FABP5 over-expressing cells compared with controls, and moreover, the increase in their expressions by adding of stearic acids was significantly enhanced in the FABP4 over-expressing cells. These data suggest that both FABPs are involved in the maintenance of T lymphocyte homeostasis through the modulation of cytokine production, which is possibly regulated by cellular fatty acid-mediated signaling in TEC, including TNC.

  5. Vinpocetine reduces lipopolysaccharide-induced inflammatory pain and neutrophil recruitment in mice by targeting oxidative stress, cytokines and NF-κB.

    PubMed

    Ruiz-Miyazawa, Kenji W; Pinho-Ribeiro, Felipe A; Zarpelon, Ana C; Staurengo-Ferrari, Larissa; Silva, Rangel L; Alves-Filho, Jose C; Cunha, Thiago M; Cunha, Fernando Q; Casagrande, Rubia; Verri, Waldiceu A

    2015-07-25

    In response to lipopolysaccharide (LPS), tissue resident macrophages and recruited neutrophils produce inflammatory mediators through activation of Toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) signaling pathway. These mediators include inflammatory cytokines and reactive oxygen species that, in turn, sensitize nociceptors and lead to inflammatory pain. Vinpocetine is a nootropic drug widely used to treat cognitive and neurovascular disorders, and more recently its anti-inflammatory properties through inhibition of NF-κB activation have been described. In the present study, we used the intraplantar and intraperitoneal LPS stimulus in mice to investigate the effects of vinpocetine pre-treatment (3, 10, or 30mg/kg by gavage) in hyperalgesia, leukocyte recruitment, oxidative stress, and pro-inflammatory cytokine production (TNF-α, IL-1β, and IL-33). LPS-induced NF-κB activation and cytokine production were investigated using RAW 264.7 macrophage cell in vitro. Vinpocetine (30mg/kg) significantly reduces hyperalgesia to mechanical and thermal stimuli, and myeloperoxidase (MPO) activity (a neutrophil marker) in the plantar paw skin, and also inhibits neutrophil and mononuclear cell recruitment, superoxide anion and nitric oxide production, oxidative stress, and cytokine production (TNF-α, IL-1β and IL-33) in the peritoneal cavity. At least in part, these effects seem to be mediated by direct effects of vinpocetine on macrophages, since it inhibited the production of the same cytokines (TNF-α, IL-1β and IL-33) and the NF-κB activation in LPS-stimulated RAW 264.7 macrophages. Our results suggest that vinpocetine represents an important therapeutic approach to treat inflammation and pain induced by a gram-negative bacterial component by targeting NF-κB activation and NF-κB-related cytokine production in macrophages. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Effect of calcitriol on in vitro whole blood cytokine production in critically ill dogs.

    PubMed

    Jaffey, J A; Amorim, J; DeClue, A E

    2018-06-01

    Hypovitaminosis D has been identified as a predictor of mortality in human beings, dogs, cats and foals. However, the immunomodulatory effects of vitamin D in critically ill dogs has not been evaluated. The aim of this study was to evaluate the effect of calcitriol on cytokine production from whole blood collected from critically ill dogs in vitro. Twelve critically ill dogs admitted to a veterinary intensive care unit (ICU) were enrolled in a prospective cohort study. Whole blood from these dogs was incubated with calcitriol (2×10 -7 M) or ethanol (control) for 24h. Subsequent to this incubation, lipopolysaccharide (LPS)-stimulated whole blood production of tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-10 were measured using a canine-specific multiplex assay. Calcitriol significantly increased LPS-stimulated whole blood production of IL-10 and decreased TNF-α production without significantly altering IL-6 production. There was no significant difference in whole blood cytokine production capacity between survivors and non-survivors at the time of discharge from the ICU or 30days after discharge. These data suggests that calcitriol induces an anti-inflammatory phenotype in vitro in whole blood from critically ill dogs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Determination of the Absolute Number of Cytokine mRNA Molecules within Individual Activated Human T Cells

    NASA Technical Reports Server (NTRS)

    Karr, Laurel J.; Marshall, Gwen; Hockett, Richard D.; Bucy, R. Pat; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    A primary function of activated T cells is the expression and subsequent secretion of cytokines, which orchestrate the differentiation of other lymphocytes, modulate antigen presenting cell activity, and alter vascular endothelium to mediate an immune response. Since many features of immune regulation probably result from modest alterations of endogenous rates of multiple interacting processes, quantitative analysis of the frequency and specific activity of individual T cells is critically important. Using a coordinated set of quantitative methods, the absolute number of molecules of several key cytokine mRNA species in individual T cells has been determined. The frequency of human blood T cells activated in vitro by mitogens and recall protein antigens was determined by intracellular cytokine protein staining, in situ hybridization for cytokine mRNA, and by limiting dilution analysis for cytokine mRNA+ cells. The absolute number of mRNA molecules was simultaneously determined in both homogenates of the entire population of cells and in individual cells obtained by limiting dilution, using a quantitative, competitive RT-PCR assay. The absolute numbers of mRNA molecules in a population of cells divided by the frequency of individual positive cells, yielded essentially the same number of mRNA molecules per cell as direct analysis of individual cells by limiting dilution analysis. Mean numbers of mRNA per positive cell from both mitogen and antigen activated T cells, using these stimulation conditions, were 6000 for IL-2, 6300 for IFN-gamma, and 1600 for IL-4.

  8. TNFR1 signaling resistance associated with female stem cell cytokine production is independent of TNFR2-mediated pathways

    PubMed Central

    Markel, Troy A.; Crisostomo, Paul R.; Wang, Meijing; Wang, Yue; Lahm, Tim; Novotny, Nathan M.; Tan, Jiangning; Meldrum, Daniel R.

    2008-01-01

    End-organ ischemia is a common source of patient morbidity and mortality. Stem cell therapy represents a novel treatment modality for ischemic diseases and may aid injured tissues through the release of beneficial paracrine mediators. Female bone marrow mesenchymal stem cells (MSCs) have demonstrated a relative resistance to detrimental TNF receptor 1 (TNFR1) signaling and are thought to be superior to male stem cells in limiting inflammation. However, it is not known whether sex differences exist in TNF receptor 2 (TNFR2)-ablated MSCs. Therefore, we hypothesized that 1) sex differences would be observed in wild-type (WT) and TNFR2-ablated MSC cytokine signaling, and 2) the production of IL-6, VEGF, and IGF-1 in males, but not females, would be mediated through TNFR2. MSCs were harvested from male and female WT and TNFR2 knockout (TNFR2KO) mice and were subsequently exposed to TNF (50 ng/ml) or LPS (100 ng/ml). After 24 h, supernatants were collected and measured for cytokines. TNF and LPS stimulated WT stem cells to produce cytokines, but sex differences were only seen in IL-6 and IGF-1 after TNF stimulation. Ablation of TNFR2 increased VEGF and IGF-1 production in males compared with wild-type, but no difference was observed in females. Female MSCs from TNFR2KOs produced significantly lower levels of VEGF and IGF-1 compared with male TNFR2KOs. The absence of TNFR2 signaling appears to play a greater role in male MSC cytokine production. As a result, male, but not female stem cell cytokine production may be mediated through TNFR2 signaling cascades. PMID:18685063

  9. Agmatine Reverses Sub-chronic Stress induced Nod-like Receptor Protein 3 (NLRP3) Activation and Cytokine Response in Rats.

    PubMed

    Sahin, Ceren; Albayrak, Ozgur; Akdeniz, Tuğba F; Akbulut, Zeynep; Yanikkaya Demirel, Gulderen; Aricioglu, Feyza

    2016-10-01

    The activation of Nod-like receptor protein 3 (NLRP3) has lately been implicated in stress and depression as an initiator mechanism required for the production of interleukin (IL)-1β and IL-18. Agmatine, an endogenous polyamine widely distributed in mammalian brain, is a novel neurotransmitter/neuromodulator, with antistress, anxiolytic and antidepressant-like effects. In this study, we examined the effect of exogenously administered agmatine on NLRP3 inflammasome pathway/cytokine responses in rats exposed to restraint stress for 7 days. The rats were divided into three groups: stress, stress+agmatine (40 mg/kg; i.p.) and control groups. Agmatine significantly down-regulated the gene expressions of all stress-induced NLRP3 inflammasome components (NLRP3, NF-κB, PYCARD, caspase-1, IL-1β and IL-18) in the hippocampus and prefrontal cortex (PFC) and reduced pro-inflammatory cytokine levels not only in both brain regions, but also in serum. Stress-reduced levels of IL-4 and IL-10, two major anti-inflammatory cytokines, were restored back to normal by agmatine treatment in the PFC. The findings of the present study suggest that stress-activated NLRP3 inflammasome and cytokine responses are reversed by an acute administration of agmatine. Whether antidepressant-like effect of agmatine can somehow, at least partially, be mediated by the inhibition of NLRP3 inflammasome cascade and relevant inflammatory responses requires further studies in animal models of depression. © 2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  10. Neonatal Plasma Polarizes TLR4-Mediated Cytokine Responses towards Low IL-12p70 and High IL-10 Production via Distinct Factors

    PubMed Central

    Belderbos, Mirjam E.; Levy, Ofer; Stalpers, Femke; Kimpen, Jan L.; Meyaard, Linde; Bont, Louis

    2012-01-01

    Human neonates are highly susceptible to infection, which may be due in part to impaired innate immune function. Neonatal Toll-like receptor (TLR) responses are biased against the generation of pro-inflammatory/Th1-polarizing cytokines, yet the underlying mechanisms are incompletely defined. Here, we demonstrate that neonatal plasma polarizes TLR4-mediated cytokine production. When exposed to cord blood plasma, mononuclear cells (MCs) produced significantly lower TLR4-mediated IL-12p70 and higher IL-10 compared to MC exposed to adult plasma. Suppression by neonatal plasma of TLR4-mediated IL-12p70 production, but not induction of TLR4-mediated IL-10 production, was maintained up to the age of 1 month. Cord blood plasma conferred a similar pattern of MC cytokine responses to TLR3 and TLR8 agonists, demonstrating activity towards both MyD88-dependent and MyD88-independent agonists. The factor causing increased TLR4-mediated IL-10 production by cord blood plasma was heat-labile, lost after protein depletion and independent of lipoprotein binding protein (LBP) or soluble CD14 (sCD14). The factor causing inhibition of TLR4-mediated IL-12p70 production by cord blood plasma was resistant to heat inactivation or protein depletion and was independent of IL-10, vitamin D and prostaglandin E2. In conclusion, human neonatal plasma contains at least two distinct factors that suppress TLR4-mediated IL-12p70 production or induce IL-10 or production. Further identification of these factors will provide insight into the ontogeny of innate immune development and might identify novel targets for the prevention and treatment of neonatal infection. PMID:22442690

  11. Primary Murine CD4+ T Cells Fail to Acquire the Ability to Produce Effector Cytokines When Active Ras Is Present during Th1/Th2 Differentiation

    PubMed Central

    Janardhan, Sujit V.; Marks, Reinhard; Gajewski, Thomas F.

    2014-01-01

    Constitutive Ras signaling has been shown to augment IL-2 production, reverse anergy, and functionally replace many aspects of CD28 co-stimulation in CD4+ T cells. These data raise the possibility that introduction of active Ras into primary T cells might result in improved functionality in pathologic situations of T cell dysfunction, such as cancer or chronic viral infection. To test the biologic effects of active Ras in primary T cells, CD4+ T cells from Coxsackie-Adenovirus Receptor Transgenic mice were transduced with an adenovirus encoding active Ras. As expected, active Ras augmented IL-2 production in naive CD4+ T cells. However, when cells were cultured for 4 days under conditions to promote effector cell differentiation, active Ras inhibited the ability of CD4+ T cells to acquire a Th1 or Th2 effector cytokine profile. This differentiation defect was not due to deficient STAT4 or STAT6 activation by IL-12 or IL-4, respectively, nor was it associated with deficient induction of T-bet and GATA-3 expression. Impaired effector cytokine production in active Ras-transduced cells was associated with deficient demethylation of the IL-4 gene locus. Our results indicate that, despite augmenting acute activation of naïve T cells, constitutive Ras signaling inhibits the ability of CD4+ T cells to properly differentiate into Th1/Th2 effector cytokine-producing cells, in part by interfering with epigenetic modification of effector gene loci. Alternative strategies to potentiate Ras pathway signaling in T cells in a more regulated fashion should be considered as a therapeutic approach to improve immune responses in vivo. PMID:25397617

  12. Cytokines and their association with insulin resistance in obese pregnant women with different levels of physical activity.

    PubMed

    Nayak, Minakshi; Eekhoff, Marelise E W; Peinhaupt, Miriam; Heinemann, Akos; Desoye, Gernot; van Poppel, Mireille N M

    2016-01-01

    Cytokines contribute to insulin resistance in pregnancy, but the role of distinct cytokines is not fully understood. To study whether cytokines produced by tissues other than skeletal muscle are associated with glucose and insulin metabolism activity in overweight and obese women and to study whether these associations can be modified by physical activity. A longitudinal study with 44 overweight and obese pregnant women was conducted. Changes in cytokines levels (IFN-γ, IP-10, IL1-α, MIP1-α, adiponectin and leptin) and ICAM1 from early (15wk) to late (32wk) pregnancy were determined. Physical activity was measured objectively with accelerometers. In linear regression models, the associations between (changes in) cytokine levels and fasting glucose, fasting insulin and HOMA-IR were studied. Both IFN-γ and IP-10 levels increased from early to late pregnancy, and adiponectin levels decreased. IFN-γ and IP-10 were positively associated with fasting glucose, whereas IL-1α, ICAM1 and adiponectin were inversely associated with insulin and insulin resistance. The association of IL-1α with insulin and insulin resistance was only found in women with low levels of physical activity. IFN-γ, IP-10, IL1-α, ICAM1, and adiponectin may play a role in glucose and insulin metabolism in pregnancy. The relationship of IL-1α with insulin and insulin resistance might be moderated by levels of physical activity. Further studies are required to confirm the role of these cytokines in glucose and insulin metabolism in obese pregnant women. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. The effect of garlic consumption on Th1/Th2 cytokines in phytohemagglutinin (PHA) activated rat spleen lymphocytes.

    PubMed

    Zamani, Alireza; Vahidinia, Aliasghar; Ghannad, Masoud Sabouri

    2009-04-01

    The balance and regulation of T helper 1 (Th1) and Th2-type cytokines are important in the effective immune response to different diseases. To clarify the effect of garlic (Allium sativum L.) consumption on the Th1/Th2 balance, the secretion of gamma interferon (IFN-gamma) and interleukin-4 (IL-4), as two prototypes of Th1/Th2 cytokines, were compared in serum and supernatant of in vitro phytohemagglutinin activated rat spleen lymphocytes. Thirty male rats were divided equally into two groups. The treatment group received garlic solution in water (600 mg/kg/4 mL) and controls received distilled water by gavage. After 1 month, serum and supernatant of PHA activated spleen lymphocytes were analysed for IFN-gamma and IL-4 by the enzyme-linked immunosorbent assay test and thymus and spleen weights were measured. The garlic treatment group showed significantly decreased production of IFN-gamma from 101.73 +/- 4.62 to 74.64 +/- 4.64 pg/mL and significantly increased IL-4 production from 26.75 +/- 3.35 to 83.92 +/- 6.56 pg/mL (p < 0.001) in the supernatant of PHA induced spleen lymphocytes. The serum level of these cytokines was undetectable. The mean weight of thymuses in the garlic fed animals was significantly reduced from 0.456 +/- 0.016 to 0.368 +/- 0.023 g compared with the control group (p < 0.005). There were no significant differences between the spleen weights in the two groups. In conclusion, oral garlic treatment may favor a Th2 or humoral immune response. (c) 2008 John Wiley & Sons, Ltd.

  14. Pancreatic stellate cells are activated by proinflammatory cytokines: implications for pancreatic fibrogenesis.

    PubMed

    Apte, M V; Haber, P S; Darby, S J; Rodgers, S C; McCaughan, G W; Korsten, M A; Pirola, R C; Wilson, J S

    1999-04-01

    The pathogenesis of pancreatic fibrosis is unknown. In the liver, stellate cells play a major role in fibrogenesis by synthesising increased amounts of collagen and other extracellular matrix (ECM) proteins when activated by profibrogenic mediators such as cytokines and oxidant stress. To determine whether cultured rat pancreatic stellate cells produce collagen and other ECM proteins, and exhibit signs of activation when exposed to the cytokines platelet derived growth factor (PDGF) or transforming growth factor beta (TGF-beta). Cultured pancreatic stellate cells were immunostained for the ECM proteins procollagen III, collagen I, laminin, and fibronectin using specific polyclonal antibodies. For cytokine studies, triplicate wells of cells were incubated with increasing concentrations of PDGF or TGF-beta. Cultured pancreatic stellate cells stained strongly positive for all ECM proteins tested. Incubation of cells with 1, 5, and 10 ng/ml PDGF led to a significant dose related increase in cell counts as well as in the incorporation of 3H-thymidine into DNA. Stellate cells exposed to 0.25, 0.5, and 1 ng/ml TGF-beta showed a dose dependent increase in alpha smooth muscle actin expression and increased collagen synthesis. In addition, TGF-beta increased the expression of PDGF receptors on stellate cells. Pancreatic stellate cells produce collagen and other extracellular matrix proteins, and respond to the cytokines PDGF and TGF-beta by increased proliferation and increased collagen synthesis. These results suggest an important role for stellate cells in pancreatic fibrogenesis.

  15. Decreased interferon-α production in response to CpG DNA dysregulates cytokine responses in patients with multiple sclerosis.

    PubMed

    Hirotani, Makoto; Niino, Masaaki; Fukazawa, Toshiyuki; Yaguchi, Hiroaki; Nakamura, Masakazu; Kikuchi, Seiji; Sasaki, Hidenao

    2012-05-01

    Type I interferons (IFNs), represented by IFN-α and β, activate immune effector cells belonging to the innate and adaptive immune systems. Plasmacytoid dendritic cells (pDCs) produce IFN-α in response to CpG DNA. We aimed to examine the impact of pDC-produced IFN-α on the adaptive immune system in Multiple Sclerosis (MS). Our results demonstrated that CpG DNA-induced IFN-α production was significantly decreased in PBMCs from MS patients. Decreased levels of IL-12 p70, IFN-γ, and IL-17 and increased level of IL-10 were found in CpG DNA-treated PBMCs of healthy subjects unlike in those from MS patients. In samples pre-treated with IFN-α and IFN-β, decreased levels of IL-12 p70, IFN-γ, and IL-17 and increased level of IL-10 were detected in PBMCs from MS patients. These results suggest that CpG DNA-induced decreased IFN-α production causes pro-inflammatory cytokine secretion, and either IFN-α or IFN-β induces anti-inflammatory cytokine secretion in the adaptive immune system in MS. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Keyhole limpet hemocyanin augmented the killing activity, cytokine production and proliferation of NK cells, and inhibited the proliferation of Meth A sarcoma cells in vitro.

    PubMed

    Sarker, Md Moklesur Rahman; Zhong, Ming

    2014-01-01

    Keyhole limpet hemocyanin (KLH) is a popular tumor vaccine carrier protein and an immunostimulant. The present study aimed to investigate the immunoregulatory activity of KLH on cytotoxicity, cytokines production, and proliferation of natural killer (NK) cells. Moreover, antiproliferative activity of KLH on Meth A sarcoma cells was studied. Cytotoxicity was determined with killing ability of NK cells against yeast artificial chromosome (YAC)-1 cells. Interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α) productions by NK cells were measured by enzyme-linked immunosorbent assay (ELISA). Proliferations of NK and Meth A cells were determined by [(3)H]thymidine incorporated proliferation and 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) methods, respectively. KLH at 6.25, 12.5, and 25 μg/well augmented cytotoxicity of NK cells against YAC-1 cells by 2.5, three, and five-times, respectively. KLH at 25 μg/well enhanced IFN-γ and TNF-α productions by 17- and 23-folds, respectively. The proliferation of NK cells was three times stimulated by KLH. The proliferation of Meth A cells was markedly inhibited by all the doses; the highest (4-folds higher) inhibition was observed at a dose of KLH (25 μg/well). The study demonstrated the anticancer activity of KLH acting through the induction of NK cells and inhibition of cancer cells. KLH, therefore, may be a good candidate for an anticancer agent alone or in combination with other chemotherapeutic agents.

  17. The suppression of inflammatory macrophage-mediated cytotoxicity and proinflammatory cytokine production by transgenic expression of HLA-E.

    PubMed

    Maeda, Akira; Kawamura, Takuji; Ueno, Takehisa; Usui, Noriaki; Eguchi, Hiroshi; Miyagawa, Shuji

    2013-12-01

    Macrophages participate in xenogenic rejection and represent a major biological obstacle to successful xenotransplantation. The signal inhibitory regulatory protein α (SIRPα) receptor was reported to be a negative regulator of macrophage phagocytic activity via interaction with CD47, its ligand. Because a majority of human macrophages express the inhibitory receptor CD94/NKG2A, which binds specifically to the human leukocyte antigen (HLA)-E and contains immunoreceptor tyrosine-based inhibition motifs (ITIMs), the inhibitory function of HLA class I molecules, HLA-E, on macrophage-mediated cytolysis was examined. The suppressive effect against proinflammatory cytokine production by macrophages was also examined. Complementary DNA (cDNA) of HLA-E, and CD47 were prepared and transfected into swine endothelial cells (SEC). The expression of the modified genes was evaluated by flow cytometry and macrophage-mediated cytolysis was assessed using in vitro generated macrophages. Transgenic expression of HLA-E significantly suppressed the macrophage-mediated cytotoxicity. HLA-E transgenic expression demonstrated a significant suppression equivalent to CD47 transgenic expression. Furthermore, transgenic HLA-E suppressed the production of pro-inflammatory cytokines by inflammatory macrophages. These results indicate that generating transgenic HLA-E pigs might protect porcine grafts from, not only NK cytotoxicity, but also macrophage-mediated cytotoxicity. © 2013 Elsevier B.V. All rights reserved.

  18. Cytokine adsorbing columns.

    PubMed

    Taniguchi, Takumi

    2010-01-01

    Sepsis induces the activation of complement and the release of inflammatory cytokines such as TNF-alpha and IL-1beta. The inflammatory cytokines and nitric oxide induced by sepsis can decrease systemic vascular resistance, resulting in profound hypotension. The combination of hypotension and microvascular occlusion results in tissue ischemia and ultimately leads to multiple organ failure. Recently, several experimental and clinical studies have reported that treatment for adsorption of cytokines is beneficial during endotoxemia and sepsis. Therefore, the present article discusses cytokine adsorbing columns. These columns, such as CytoSorb, CYT-860-DHP, Lixelle, CTR-001 and MPCF-X, the structures of which vary significantly, have excellent adsorption rates for inflammatory cytokines such as TNF-alpha, IL-1beta, IL-6 and IL8. Many studies have demonstrated that treatment with cytokine adsorbing columns has beneficial effects on the survival rate and inflammatory responses in animal septic models. Moreover, several cases have been reported in which treatment with cytokine adsorbing columns is very effective in hemodynamics and organ failures in critically ill patients. Although further investigations and clinical trials are needed, in the future treatment with cytokine adsorbing columns may play a major role in the treatment of hypercytokinemia such as multiple organ failure and acute respiratory distress syndrome. Copyright 2010 S. Karger AG, Basel.

  19. Multiple effects of TRAIL in human carcinoma cells: Induction of apoptosis, senescence, proliferation, and cytokine production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levina, Vera; Marrangoni, Adele M.; DeMarco, Richard

    TRAIL is a death ligand that induces apoptosis in malignant but not normal cells. Recently the ability of TRAIL to induce proliferation in apoptosis-resistant normal and malignant cells was reported. In this study, we analyzed TRAIL effects in apoptosis sensitive MCF7, OVCAR3 and H460 human tumor cell lines. TRAIL at low concentrations preferentially induced cell proliferation. At 100 ng/ml, apoptotic death was readily observed, however surviving cells acquired higher proliferative capacity. TRAIL-stimulated production of several cytokines, IL-8, RANTES, MCP-1 and bFGF, and activation of caspases 1 and 8 was essential for this effect. Antibodies to IL-8, RANTES, and bFGF blockedmore » TRAIL-induced cell proliferation and further stimulated apoptosis. For the first time, we report that high TRAIL concentrations induced cell senescence as determined by the altered morphology and expression of several senescence markers: SA-{beta}-gal, p21{sup Waf1/Cip1}, p16{sup INK4a}, and HMGA. Caspase 9 inhibition protected TRAIL-treated cells from senescence, whereas inhibition of caspases 1 and 8 increased the yield of SLP cells. In conclusion, in cultured human carcinoma cells, TRAIL therapy results in three functional outcomes, apoptosis, proliferation and senescence. TRAIL-induced proapoptotic and prosurvival responses correlate with the strength of signaling. TRAIL-induced cytokine production is responsible for its proliferative and prosurvival effects.« less

  20. Comparison of the potency of a variety of β-glucans to induce cytokine production in human whole blood

    PubMed Central

    Noss, Ilka; Doekes, Gert; Thorne, Peter S; Heederik, Dick J.J.; Wouters, Inge M.

    2014-01-01

    Beta-glucans are components of fungal cell walls and potent stimulants of innate immunity. The majority of research on biological activities of glucans has focused on β-(1,3)-glucans, which have been implicated in relation with fungal exposure-associated respiratory symptoms, and as important stimulatory agents in anti-fungal immune responses. Fungi - and bacteria and plants - produce a wide variety of glucans with vast differences in proportion and arrangement of their 1,3-, 1,4-, and 1,6-β-glycosidic linkages. Thus far the proinflammatory potential of different β-glucans has not been studied within the same experimental model. Therefore, we compared the potency of 13 different glucan preparations to induce in vitro production of IL1β, IL6, IL8 and TNF-α in human whole blood cultures. The strongest inducers of all cytokines were pustulan (β-(1,6)-glucan), lichenan (β-(1,3)-(1,4)-glucan), xyloglucan (β-(1,4)-glucan), and pullulan (α-(1,4)-(1,6)-glucan). Moderate to strong cytokine production was observed for curdlan (β-(1,3)-glucan), baker’s yeast glucan (β-(1,3)-(1,6)-glucan), and barley glucan (β-(1,3)-(1,4)-glucan), while all other glucan preparations induced only low or no detectable levels of cytokines. We therefore conclude that innate immunity reactions are not exclusively induced by β-(1,3)-glucans, but also by β-(1,6)- and β-(1,4)-structures. Thus, not only β-(1,3)-glucan, but also other β-glucans and particularly β-(1,6)-glucans should be considered in future research. PMID:22653750

  1. Neutrophil-Derived Proteases Escalate Inflammation through Activation of IL-36 Family Cytokines.

    PubMed

    Henry, Conor M; Sullivan, Graeme P; Clancy, Danielle M; Afonina, Inna S; Kulms, Dagmar; Martin, Seamus J

    2016-02-02

    Recent evidence has strongly implicated the IL-1 family cytokines IL-36α, IL-36β, and IL-36γ as key initiators of skin inflammation. Similar to the other members of the IL-1 family, IL-36 cytokines are expressed as inactive precursors and require proteolytic processing for activation; however, the responsible proteases are unknown. Here, we show that IL-36α, IL-36β, and IL-36γ are activated differentially by the neutrophil granule-derived proteases cathepsin G, elastase, and proteinase-3, increasing their biological activity ~500-fold. Active IL-36 promoted a strong pro-inflammatory signature in primary keratinocytes and was sufficient to perturb skin differentiation in a reconstituted 3D human skin model, producing features resembling psoriasis. Furthermore, skin eluates from psoriasis patients displayed significantly elevated cathepsin G-like activity that was sufficient to activate IL-36β. These data identify neutrophil granule proteases as potent IL-36-activating enzymes, adding to our understanding of how neutrophils escalate inflammatory reactions. Inhibition of neutrophil-derived proteases may therefore have therapeutic benefits in psoriasis. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Anti-inflammatory properties of clovamide and Theobroma cacao phenolic extracts in human monocytes: evaluation of respiratory burst, cytokine release, NF-κB activation, and PPARγ modulation.

    PubMed

    Zeng, Huawu; Locatelli, Monica; Bardelli, Claudio; Amoruso, Angela; Coisson, Jean Daniel; Travaglia, Fabiano; Arlorio, Marco; Brunelleschi, Sandra

    2011-05-25

    There is a great interest in the potential health benefits of biologically active phenolic compounds in cocoa (Theobroma cacao) and dark chocolate. We investigated the anti-inflammatory potential of clovamide (a N-phenylpropenoyl-L-amino acid amide present in cocoa beans) and two phenolic extracts from unroasted and roasted cocoa beans, by evaluating superoxide anion (O(2)(-)) production, cytokine release, and NF-κB activation in human monocytes stimulated by phorbol 12-myristate 13-acetate (PMA). The effects of rosmarinic acid are shown for comparison. Clovamide and rosmarinic acid inhibited PMA-induced O(2)(-) production and cytokine release (with a bell-shaped curve and maximal inhibition at 10-100 nM), as well as PMA-induced NF-κB activation; the two cocoa extracts were less effective. In all tests, clovamide was the most potent compound and also enhanced peroxisome proliferator-activated receptor-γ (PPARγ) activity, which may exert anti-inflammatory effects. These findings indicate clovamide as a possible bioactive compound with anti-inflammatory activity in human cells.

  3. Increased cytokine production by monocytes from human subjects who consumed grape powder was not mediated by differences in dietary intake patterns.

    PubMed

    Zunino, Susan J; Keim, Nancy L; Kelley, Darshan S; Bonnel, Ellen L; Souza, Elaine C; Peerson, Janet M

    2017-04-01

    Recently, in a randomized, double-blind crossover study, we reported that consumption of grape powder by obese human subjects increased the production of the proinflammatory cytokines interleukin (IL)-1β and IL-6 by peripheral blood monocytes after ex vivo stimulation with bacterial lipopolysaccharide compared with the placebo treatment. We hypothesized that dietary grape powder increased the production of these cytokines by stimulated monocytes. To test this hypothesis, we used 24-hour dietary recall data to determine if differences in dietary patterns played a role in increased cytokine production. No differences in total energy, protein, carbohydrates, or fat intake in the diets were observed between the grape powder and placebo intervention periods. There were no differences observed in consumption of meats and poultry, eggs, fish, vegetables, grains, total dairy, or nuts and seeds by the participants between the 2 intervention periods. When participants received the grape powder, the recall data showed decreased intakes of butyric and capric acids (P<.05), and a possible trend toward decreased intake of cheese and total fruit (P<.1). Positive associations between the intakes of margaric acid, butter, total dairy, or whole grain and IL-6 production were observed (P<.05). However, path analysis showed that total energy, protein, carbohydrates, and fats, and individual fatty acids did not influence the production of cytokines by monocytes. The path analysis indicated that the increased cytokine production by lipopolysaccharide-stimulated monocytes from obese human subjects was caused by the grape powder and not mediated by differences in dietary intake. Published by Elsevier Inc.

  4. FcγR-induced production of superoxide and inflammatory cytokines is differentially regulated by SHIP through its influence on PI3K and/or Ras/Erk pathways

    PubMed Central

    Ganesan, Latha P.; Joshi, Trupti; Fang, Huiqing; Kutala, Vijay Kumar; Roda, Julie; Trotta, Rossana; Lehman, Amy; Kuppusamy, Periannan; Byrd, John C.; Carson, William E.; Caligiuri, Michael A.; Tridandapani, Susheela

    2006-01-01

    Phagocytosis of IgG-coated particles via FcγR is accompanied by the generation of superoxide and inflammatory cytokines, which can cause collateral tissue damage in the absence of regulation. Molecular mechanisms regulating these phagocytosis-associated events are not known. SHIP is an inositol phosphatase that downregulates PI3K-mediated activation events. Here, we have examined the role of SHIP in FcγR-induced production of superoxide and inflammatory cytokines. We report that primary SHIP-deficient bone marrow macrophages produce elevated levels of superoxide upon FcγR clustering. Analysis of the molecular mechanism revealed that SHIP regulates upstream Rac-GTP binding, an obligatory event for superoxide production. Likewise, SHIP-deficient macrophages displayed enhanced IL-1β and IL-6 production in response to FcγR clustering. Interestingly, whereas IL-6 production required activation of both PI3K and Ras/Erk pathways, IL-1β production was dependent only on Ras/Erk activation, suggesting that SHIP may also regulate the Ras/Erk pathway in macrophages. Consistently, SHIP-deficient macrophages displayed enhanced activation of Erk upon FcγR clustering. Inhibition of Ras/Erk or PI3K suppressed the enhanced production of IL-6 in SHIP-deficient macrophages. In contrast, inhibition of Ras/Erk, but not PI3K, suppressed IL-1β production in these cells. Together, these data demonstrate that SHIP regulates phagocytosis-associated events through the inhibition of PI3K and Ras/Erk pathways. PMID:16543474

  5. [Low-molecular-weight regulators of biogenic polyamine metabolism affect cytokine production and expression of hepatitis С virus proteins in Huh7.5 human hepatocarcinoma cells].

    PubMed

    Masalova, O V; Lesnova, E I; Samokhvalov, E I; Permyakova, K Yu; Ivanov, A V; Kochetkov, S N; Kushch, A A

    2017-01-01

    Hepatitis C virus (HCV) induces the expression of the genes of proinflammatory cytokines, the excessive production of which may cause cell death, and contribute to development of liver fibrosis and hepatocarcinoma. The relationship between cytokine production and metabolic disorders in HCV-infected cells remains obscure. The levels of biogenic polyamines, spermine, spermidine, and their precursor putrescine, may be a potential regulator of these processes. The purpose of the present work was to study the effects of the compounds which modulate biogenic polyamines metabolism on cytokine production and HCV proteins expression. Human hepatocarcinoma Huh7.5 cells have been transfected with the plasmids that encode HCV proteins and further incubated with the following low-molecular compounds that affect different stages of polyamine metabolism: (1) difluoromethylornithine (DFMO), the inhibitor of ornithine decarboxylase, the enzyme that catalyzes the biosynthesis of polyamines; (2) N,N'-bis(2,3-butane dienyl)-1,4-diaminobutane (MDL72.527), the inhibitor of proteins involved in polyamine degradation; and (3) synthetic polyamine analog N^(I),N^(II)-diethylnorspermine (DENSpm), an inducer of polyamine degradation enzyme. The intracellular accumulation and secretion of cytokines (IL-6, IL-1β, TNF-α, and TGF-β) was assessed by immunocytochemistry and in the immunoenzyme assay, while the cytokine gene expression was studied using reverse transcription and PCR. The effects of the compounds under analysis on the expression of HCV proteins were analyzed using the indirect immunofluorescence with anti-HCV monoclonal antibodies. It has been demonstrated that, in cells transfected with HCV genes, DFMO reduces the production of three out of four tested cytokines, namely, TNF-α and TGF-β in cells that express HCV core, Е1Е2, NS3, NS5A, and NS5B proteins, and IL-1β in the cells that express HCV core, Е1Е2, and NS3 proteins. MDL72527 and DENSpm decreased cytokine production

  6. Cytokines and bullous pemphigoid.

    PubMed

    D'Auria, L; Cordiali Fei, P; Ameglio, F

    1999-06-01

    This report reviews the data presented in the literature concerning the presence and levels of different cytokines in sera, lesional tissue or blister fluids of patients with bullous pemphigoid. The list of cytokines analysed includes 21 molecules: interleukins (IL)-1 => 8, IL-10 => 13, IL-15, granulocyte-monocyte-colony stimulating factor (GM-CSF), interferon-gamma (IFN-gamma), oncostatin-M (OSM), regulated upon activation normal T cell expressed and presumably secreted (RANTES), transforming growth factor-beta 1 (TGF-beta 1), tumor necrosis factor-alpha (TNF-alpha) and vascular endothelial growth factor (VEGF). Basic information regarding the functions of these cytokines and their possible involvement in the pathogenetic steps of the disease, such as autoantigen expression, autoantibody induction, complement activation, local cell recruitment and stimulation, resident cell activation, release of various effector molecules and tissue damage are also reported. A specific function for each cytokine in bullous pemphigoid induction cannot be still defined, however, the literature attributes a major role to IL-1, IL-4, IL-5, IL-6, IL-8 and IFN-gamma. On the basis of significant (direct or inverse) correlations found between disease intensity and the blister fluid/serum levels, the following cytokines IL-7, IL-15, RANTES, VEGF and TNF-alpha, besides those previously mentioned, may also be involved in this disease.

  7. Blueberries reduce pro-inflammatory cytokine TNF-alpha and IL-6 production in mouse macrophages by inhibiting NF Kappa B activation and the MAPK pathway

    USDA-ARS?s Scientific Manuscript database

    Blueberries (BB) have been reported to attenuate atherosclerosis in apoE deficient (ApoE-/-) mice. The aim of this study was to evaluate the effects of BB in reducing pro-inflammatory cytokine production in mouse macrophages. ApoE-/- mice were fed AIN-93G diet (CD) or CD formulated to contain 1% fre...

  8. Early induction of cytokines/cytokine receptors and Cox2, and activation of NF-κB in 4-nitroquinoline 1-oxide-induced murine oral cancer model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yu-Ching; Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan; Ho, Heng-Chien

    2012-07-15

    The purpose of this study was to identify the genes induced early in murine oral carcinogenesis. Murine tongue tumors induced by the carcinogen, 4-nitroquinoline 1-oxide (4-NQO), and paired non-tumor tissues were subjected to microarray analysis. Hierarchical clustering of upregulated genes in the tumor tissues revealed an association of induced genes with inflammation. Cytokines/cytokine receptors induced early were subsequently identified, clearly indicating their involvement in oral carcinogenesis. Hierarchical clustering also showed that cytokine-mediated inflammation was possibly linked with Mapk6. Cox2 exhibited the greatest extent (9–18 fold) of induction in the microarray data, and its early induction was observed in a 2more » h painting experiment by RT-PCR. MetaCore analysis showed that overexpressed Cox2 may interact with p53 and transcriptionally inhibit expression of several downstream genes. A painting experiment in transgenic mice also demonstrated that NF-κB activates early independently of Cox2 induction. MetaCore analysis revealed the most striking metabolic alterations in tumor tissues, especially in lipid metabolism resulting from the reduction of Pparα and Rxrg. Reduced expression of Mapk12 was noted, and MetaCore analysis established its relationship with decreased efficiency of Pparα phosphorylation. In conclusion, in addition to cytokines/cytokine receptors, the early induction of Cox2 and NF-κB activation is involved in murine oral carcinogenesis.« less

  9. Dysregulation of Suppressor of Cytokine Signaling 3 in Keratinocytes Causes Skin Inflammation Mediated by Interleukin-20 Receptor-Related Cytokines

    PubMed Central

    Uto-Konomi, Ayako; Miyauchi, Kosuke; Ozaki, Naoko; Motomura, Yasutaka; Suzuki, Yoshie; Yoshimura, Akihiko; Suzuki, Shinobu; Cua, Daniel; Kubo, Masato

    2012-01-01

    Homeostatic regulation of epidermal keratinocytes is controlled by the local cytokine milieu. However, a role for suppressor of cytokine signaling (SOCS), a negative feedback regulator of cytokine networks, in skin homeostasis remains unclear. Keratinocyte specific deletion of Socs3 (Socs3 cKO) caused severe skin inflammation with hyper-production of IgE, epidermal hyperplasia, and S100A8/9 expression, although Socs1 deletion caused no inflammation. The inflamed skin showed constitutive STAT3 activation and up-regulation of IL-6 and IL-20 receptor (IL-20R) related cytokines, IL-19, IL-20 and IL-24. Disease development was rescued by deletion of the Il6 gene, but not by the deletion of Il23, Il4r, or Rag1 genes. The expression of IL-6 in Socs3 cKO keratinocytes increased expression of IL-20R-related cytokines that further facilitated STAT3 hyperactivation, epidermal hyperplasia and neutrophilia. These results demonstrate that skin homeostasis is strictly regulated by the IL-6-STAT3-SOCS3 axis. Moreover, the SOCS3-mediated negative feedback loop in keratinocytes has a critical mechanistic role in the prevention of skin inflammation caused by hyperactivation of STAT3. PMID:22792286

  10. Characterization of synthetic lung surfactant activity against proinflammatory cytokines in human monocytes.

    PubMed

    Otsubo, Eiji; Irimajiri, Kiyohiro; Takei, Tsunetomo; Nomura, Masato

    2002-03-01

    Our previous study demonstrated that the smallest synthetic peptide with the sequence CPVHLKRLLLLLLLLLLLLLLLL, SP-CL16(6-28), admixed with phospholipid (synthetic lung surfactant, SLS) showed strong surface activity. In this study, we attempted to develop a dual-type surfactant with both anti inflammatory and surface activities. SP-CL16(6-28) was first chemically synthesized and then purified for use by centrifugal partition chromatography. A mixture of SP-CL16(6-28) and phospholipid complex was tested for anti inflammatory activity using the human monocyte cell line THP-1. Whether the suppression of tumor necrosis factor-alpha (TNF-a), interleukin (IL)-8, IL-6, IL-1beta, and macrophage migration inhibitory factor (MIF) was reduced by lipopolysaccharide (LPS) in monocytes was examined. Levels of these cytokines were measured by enzyme-linked immunosorbent assay. It was found that SLS significantly and dose dependently inhibited the secretion of TNF-alpha by THP-1 cells following stimulation with LPS. Dipalmitoylphosphatidylcoline did not inhibit the release of cytokines. These findings suggest that SLS has anti inflammatory activity. Therefore it should be possible to develop a SLS with both anti inflammatory activity and surface activity.

  11. Inhibitory effects of devil's claw (secondary root of Harpagophytum procumbens) extract and harpagoside on cytokine production in mouse macrophages.

    PubMed

    Inaba, Kazunori; Murata, Kazuya; Naruto, Shunsuke; Matsuda, Hideaki

    2010-04-01

    Successive oral administration (50 mg/kg) of a 50% ethanolic extract (HP-ext) of devil's claw, the secondary root of Harpagophytum procumbens, showed a significant anti-inflammatory effect in the rat adjuvant-induced chronic arthritis model. HP-ext dose-dependently suppressed the lipopolysaccharide (LPS)-induced production of inflammatory cytokines [interleukin-1beta (IL-1beta), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-alpha)] in mouse macrophage cells (RAW 264.7). Harpagoside, a major iridoid glycoside present in devil's claw, was found to be one of the active agents in HP-ext and inhibited the production of IL-1beta, IL-6, and TNF-alpha by RAW 264.7.

  12. Identification of cytokine-specific sensory neural signals by decoding murine vagus nerve activity.

    PubMed

    Zanos, Theodoros P; Silverman, Harold A; Levy, Todd; Tsaava, Tea; Battinelli, Emily; Lorraine, Peter W; Ashe, Jeffrey M; Chavan, Sangeeta S; Tracey, Kevin J; Bouton, Chad E

    2018-05-22

    The nervous system maintains physiological homeostasis through reflex pathways that modulate organ function. This process begins when changes in the internal milieu (e.g., blood pressure, temperature, or pH) activate visceral sensory neurons that transmit action potentials along the vagus nerve to the brainstem. IL-1β and TNF, inflammatory cytokines produced by immune cells during infection and injury, and other inflammatory mediators have been implicated in activating sensory action potentials in the vagus nerve. However, it remains unclear whether neural responses encode cytokine-specific information. Here we develop methods to isolate and decode specific neural signals to discriminate between two different cytokines. Nerve impulses recorded from the vagus nerve of mice exposed to IL-1β and TNF were sorted into groups based on their shape and amplitude, and their respective firing rates were computed. This revealed sensory neural groups responding specifically to TNF and IL-1β in a dose-dependent manner. These cytokine-mediated responses were subsequently decoded using a Naive Bayes algorithm that discriminated between no exposure and exposures to IL-1β and TNF (mean successful identification rate 82.9 ± 17.8%, chance level 33%). Recordings obtained in IL-1 receptor-KO mice were devoid of IL-1β-related signals but retained their responses to TNF. Genetic ablation of TRPV1 neurons attenuated the vagus neural signals mediated by IL-1β, and distal lidocaine nerve block attenuated all vagus neural signals recorded. The results obtained in this study using the methodological framework suggest that cytokine-specific information is present in sensory neural signals within the vagus nerve. Copyright © 2018 the Author(s). Published by PNAS.

  13. Ebola Virus Binding to Tim-1 on T Lymphocytes Induces a Cytokine Storm

    PubMed Central

    Younan, Patrick; Iampietro, Mathieu; Nishida, Andrew; Ramanathan, Palaniappan; Santos, Rodrigo I.; Dutta, Mukta; Lubaki, Ndongala Michel; Koup, Richard A.; Katze, Michael G.

    2017-01-01

    ABSTRACT Ebola virus (EBOV) disease (EVD) results from an exacerbated immunological response that is highlighted by a burst in the production of inflammatory mediators known as a “cytokine storm.” Previous reports have suggested that nonspecific activation of T lymphocytes may play a central role in this phenomenon. T-cell immunoglobulin and mucin domain-containing protein 1 (Tim-1) has recently been shown to interact with virion-associated phosphatidylserine to promote infection. Here, we demonstrate the central role of Tim-1 in EBOV pathogenesis, as Tim-1−/− mice exhibited increased survival rates and reduced disease severity; surprisingly, only a limited decrease in viremia was detected. Tim-1−/− mice exhibited a modified inflammatory response as evidenced by changes in serum cytokines and activation of T helper subsets. A series of in vitro assays based on the Tim-1 expression profile on T cells demonstrated that despite the apparent absence of detectable viral replication in T lymphocytes, EBOV directly binds to isolated T lymphocytes in a phosphatidylserine–Tim-1-dependent manner. Exposure to EBOV resulted in the rapid development of a CD4Hi CD3Low population, non-antigen-specific activation, and cytokine production. Transcriptome and Western blot analysis of EBOV-stimulated CD4+ T cells confirmed the induction of the Tim-1 signaling pathway. Furthermore, comparative analysis of transcriptome data and cytokine/chemokine analysis of supernatants highlight the similarities associated with EBOV-stimulated T cells and the onset of a cytokine storm. Flow cytometry revealed virtually exclusive binding and activation of central memory CD4+ T cells. These findings provide evidence for the role of Tim-1 in the induction of a cytokine storm phenomenon and the pathogenesis of EVD. PMID:28951472

  14. Trichuris suis ova therapy for allergic rhinitis does not affect allergen-specific cytokine responses despite a parasite-specific cytokine response.

    PubMed

    Bourke, C D; Mutapi, F; Nausch, N; Photiou, D M F; Poulsen, L K; Kristensen, B; Arnved, J; Rønborg, S; Roepstorff, A; Thamsborg, S; Kapel, C; Melbye, M; Bager, P

    2012-11-01

    Parasitic helminths have been shown to reduce inflammation in most experimental models of allergic disease, and this effect is mediated via cytokine responses. However, in humans, the effects of controlled helminth infection on cytokine responses during allergy have not been studied. The aim was to investigate whether infection with the nematode parasite Trichuris suis alters systemic cytokine levels, cellular cytokine responses to parasite antigens and pollen allergens and/or the cytokine profile of allergic individuals. In a randomized double-blinded placebo-controlled clinical trial (UMIN trial registry, Registration no. R000001298, Trial ID UMIN000001070, URL: http://www.umin.ac.jp/map/english), adults with grass pollen-induced allergic rhinitis received three weekly doses of 2500 Trichuris suis ova (n = 45) or placebo (n = 44) over 6 months. IFN-γ, TNF-α, IL-4, IL-5, IL-10 and IL-13 were quantified via cytometric bead array in plasma. Cytokines, including active TGF-β, were also quantified in supernatants from peripheral blood mononuclear cells cultured with parasite antigens or pollen allergens before, during and after the grass pollen season for a sub-cohort of randomized participants (T. suis ova-treated, n = 12, Placebo-treated, n = 10). Helminth infection induced a Th2-polarized cytokine response comprising elevated plasma IL-5 and parasite-specific IL-4, IL-5 and IL-13, and a global shift in the profile of systemic cytokine responses. Infection also elicited high levels of the regulatory cytokine IL-10 in response to T. suis antigens. Despite increased production of T. suis-specific cytokines in T. suis ova-treated participants, allergen-specific cytokine responses during the grass pollen season and the global profile of PBMC cytokine responses were not affected by T. suis ova treatment. This study suggests that cytokines induced by Trichuris suis ova treatment do not alter allergic reactivity to pollen during the peak of allergic rhinitis

  15. Alternative pathway regulation by factor H modulates Streptococcus pneumoniae induced proinflammatory cytokine responses by decreasing C5a receptor crosstalk.

    PubMed

    van der Maten, Erika; de Bont, Cynthia M; de Groot, Ronald; de Jonge, Marien I; Langereis, Jeroen D; van der Flier, Michiel

    2016-12-01

    Bacterial pathogens not only stimulate innate immune receptors, but also activate the complement system. Crosstalk between complement C5a receptor (C5aR) and other innate immune receptors is known to enhance the proinflammatory cytokine response. An important determinant of the magnitude of complement activation is the activity of the alternative pathway, which serves as an amplification mechanism for complement activation. Both alternative pathway activity as well as plasma levels of factor H, a key inhibitor of the alternative pathway, show large variation within the human population. Here, we studied the effect of factor H-mediated regulation of the alternative pathway on bacterial-induced proinflammatory cytokine responses. We used the human pathogen Streptococcus pneumoniae as a model stimulus to induce proinflammatory cytokine responses in human peripheral blood mononuclear cells. Serum containing active complement enhanced pneumococcal induced proinflammatory cytokine production through C5a release and C5aR crosstalk. We found that inhibition of the alternative pathway by factor H, with a concentration equivalent to a high physiological level, strongly reduced C5a levels and decreased proinflammatory cytokine production in human peripheral blood mononuclear cells. This suggests that variation in alternative pathway activity due to variation in factor H plasma levels affects individual cytokine responses during infection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. In vivo production of cytokines and beta (C-C) chemokines in human recurrent herpes simplex lesions--do herpes simplex virus-infected keratinocytes contribute to their production?

    PubMed

    Mikloska, Z; Danis, V A; Adams, S; Lloyd, A R; Adrian, D L; Cunningham, A L

    1998-04-01

    Recurrent human herpes simplex lesions are infiltrated by macrophages and CD4 and CD8 lymphocytes, which secrete cytokines and chemokines. Vesicle fluid was examined by ELISA for the presence of cytokines and beta (C-C) chemokines. On the first day of the lesion, high concentrations of interleukin (IL)-1beta, and IL-6, moderate concentrations of IL-1alpha and IL-10, and low concentrations of IL-12 and beta chemokines were found; levels of macrophage inflammatory protein (MIP)-1beta were significantly higher than levels of MIP-1alpha and RANTES. At day 3, the concentrations of IL-1beta, IL-6, and MIP-1beta were lower, whereas the levels of IL-10, IL-12, and MIP-1alpha remained similar, and the level of tumor necrosis factor-alpha was now detectable. Herpes simplex virus infection of keratinocytes in vitro stimulated production of beta chemokines followed by IL-12 and then IL-10, IL-1alpha, IL-1beta, and IL-6, indicating a potential role for these events in early recruitment, activation, and interferon-gamma production of CD4 cells in herpetic lesions.

  17. Anti-cytokine therapy for prevention of atherosclerosis.

    PubMed

    Kirichenko, Tatiana V; Sobenin, Igor A; Nikolic, Dragana; Rizzo, Manfredi; Orekhov, Alexander N

    2016-10-15

    Currently a chronic inflammation is considered to be the one of the most important reasons of the atherosclerosis progression. A huge amount of researches over the past few decades are devoted to study the various mechanisms of inflammation in the development of atherosclerotic lesions. To review current capabilities of anti-inflammatory therapy for the prevention and treatment of atherosclerosis and its clinical manifestations. Appropriate articles on inflammatory cytokines in atherosclerosis and anti-inflammatory prevention of atherosclerosis were searched in PubMed Database from their respective inceptions until October 2015. "The role of inflammatory cytokines in the development of atherosclerotic lesions" describes available data on the possible inflammatory mechanisms of the atherogenesis with a special attention to the role of cytokines. "Modern experience of anti-inflammatory therapy for the treatment of atherosclerosis" describes modern anti-inflammatory preparations with anti-atherosclerotic effect including natural preparations. In "the development of anti-inflammatory herbal preparation for atherosclerosis prevention" an algorithm is demonstrated that includes screening of anti-cytokine activity of different natural products, the development of the most effective combination and estimation of its effect in cell culture model, in animal model of the acute aseptic inflammation and in a pilot clinical trial. A natural preparation "Inflaminat" based on black elder berries (Sambucus nigra L.), violet tricolor herb (Viola tricolor L.) and calendula flowers (Calendula officinalis L.) possessing anti-cytokine activity was developed using the designed algorithm. The results of the following 2-year double blind placebo-controlled clinical study show that "Inflaminat" reduces carotid IMT progression, i.e. has anti-atherosclerotic effect. Anti-cytokine therapy may be a promising direction in moderation of atherogenesis, especially when it begins on the early stages

  18. An evaluation of serum soluble CD30 levels and serum CD26 (DPPIV) enzyme activity as markers of type 2 and type 1 cytokines in HIV patients receiving highly active antiretroviral therapy

    PubMed Central

    Keane, N M; Price, P; Lee, S; Stone, S F; French, M A

    2001-01-01

    This study evaluates serum CD26 (dipeptidyl peptidase IV, DPPIV) enzyme activity and serum levels of soluble CD30 as markers of T1 and T2 cytokine environments in HIV patients who achieved immune reconstitution after highly active antiretroviral therapy (HAART). Patients who had experienced inflammatory disease associated with pre-existent opportunistic infections after HAART (immune restoration diseases, IRD) were considered separately. Serum sCD30 levels and CD26 (DPPIV) enzyme activity were compared with IFN-γ production by PBMC cultured with cytomegalovirus (CMV) antigen in controls and patient groups. High sCD30 levels were associated with low IFN-γ production after antigenic stimulation in control subjects and, to a lesser extent, in immune reconstituted HIV patients. There was no association between serum CD26 (DPPIV) enzyme activity and IFN-γ production or sCD30 levels. Serum sCD30 levels and CD26 (DPPIV) enzyme activity were significantly increased in immune reconstituted patients with high HIV viral loads. Patients who had experienced CMV retinitis as an IRD had significantly higher sCD30 levels than all other patient groups. Hence, high sCD30 levels may be a marker of a T2 cytokine environment in HIV patients with immune reconstitution and are associated with higher HIV viral loads and a history of CMV associated IRD. PMID:11678906

  19. Cellular level models as tools for cytokine design.

    PubMed

    Radhakrishnan, Mala L; Tidor, Bruce

    2010-01-01

    Cytokines and growth factors are critical regulators that connect intracellular and extracellular environments through binding to specific cell-surface receptors. They regulate a wide variety of immunological, growth, and inflammatory response processes. The overall signal initiated by a population of cytokine molecules over long time periods is controlled by the subtle interplay of binding, signaling, and trafficking kinetics. Building on the work of others, we abstract a simple kinetic model that captures relevant features from cytokine systems as well as related growth factor systems. We explore a large range of potential biochemical behaviors, through systematic examination of the model's parameter space. Different rates for the same reaction topology lead to a dramatic range of biochemical network properties and outcomes. Evolution might productively explore varied and different portions of parameter space to create beneficial behaviors, and effective human therapeutic intervention might be achieved through altering network kinetic properties. Quantitative analysis of the results reveals the basis for tensions among a number of different network characteristics. For example, strong binding of cytokine to receptor can increase short-term receptor activation and signal initiation but decrease long-term signaling due to internalization and degradation. Further analysis reveals the role of specific biochemical processes in modulating such tensions. For instance, the kinetics of cytokine binding and receptor activation modulate whether ligand-receptor dissociation can generally occur before signal initiation or receptor internalization. Beyond analysis, the same models and model behaviors provide an important basis for the design of more potent cytokine therapeutics by providing insight into how binding kinetics affect ligand potency. (c) 2010 American Institute of Chemical Engineers

  20. Preparation of Cytokine-activated NK Cells for Use in Adoptive Cell Therapy in Cancer Patients: Protocol Optimization and Therapeutic Potential.

    PubMed

    van Ostaijen-ten Dam, Monique M; Prins, Henk-Jan; Boerman, Gerharda H; Vervat, Carly; Pende, Daniela; Putter, Hein; Lankester, Arjan; van Tol, Maarten J D; Zwaginga, Jaap J; Schilham, Marco W

    2016-01-01

    Cell-based immunotherapy using donor-derived natural killer (NK) cells after allogeneic hematopoietic stem cell transplantation may be an attractive treatment of residual leukemia. This study aimed to optimize clinical grade production of a cytokine-activated NK-cell product. NK cells were isolated either by double depletion (CD3(-), CD19(-)) or by sequential depletion and enrichment (CD3(-,) CD56(+)) via CliniMACS from leukapheresis material and cultured in vitro with interleukin (IL)-2 or IL-15. Both NK cell isolation procedures yielded comparable recovery of NK cells and levels of T-cell contamination. After culture with cytokines, the CD3(-)CD56(+) procedure resulted in NK cells of higher purity, that is, less T cells and monocytes, higher viability, and a slightly higher yield than the CD3(-)CD19- procedure. CD69, NKp44, and NKG2A expression were higher on CD3(-)CD56(+) products, whereas lysis of Daudi cells was comparable. Five days of culture led to higher expression of CD69, NKp44, and NKp30 and lysis of K562 and Daudi cell lines. Although CD69 expression and lysis of Daudi cells were slightly higher in cultures with IL-2, T-cell contamination was lower with IL-15. Therefore, further experiments were performed with CD3(-)CD56(+) products cultured with IL-15. Cryopreservation of IL-15-activated NK cells resulted in a loss of cytotoxicity (>92%), whereas thawing of isolated, uncultured NK cells followed by culture with IL-15 yielded cells with about 43% of the original lytic activity. Five-day IL-15-activated NK cells lysed tumor target cell lines and primary leukemic blasts, providing the basis for NK cell–based immunotherapeutic strategies in a clinical setting.

  1. The cytokine storm of severe influenza and development of immunomodulatory therapy.

    PubMed

    Liu, Qiang; Zhou, Yuan-hong; Yang, Zhan-qiu

    2016-01-01

    Severe influenza remains unusual in its virulence for humans. Complications or ultimately death arising from these infections are often associated with hyperinduction of proinflammatory cytokine production, which is also known as 'cytokine storm'. For this disease, it has been proposed that immunomodulatory therapy may improve the outcome, with or without the combination of antiviral agents. Here, we review the current literature on how various effectors of the immune system initiate the cytokine storm and exacerbate pathological damage in hosts. We also review some of the current immunomodulatory strategies for the treatment of cytokine storms in severe influenza, including corticosteroids, peroxisome proliferator-activated receptor agonists, sphingosine-1-phosphate receptor 1 agonists, cyclooxygenase-2 inhibitors, antioxidants, anti-tumour-necrosis factor therapy, intravenous immunoglobulin therapy, statins, arbidol, herbs, and other potential therapeutic strategies.

  2. Pentoxifylline, dexamethasone and azithromycin demonstrate distinct age-dependent and synergistic inhibition of TLR- and inflammasome-mediated cytokine production in human newborn and adult blood in vitro

    PubMed Central

    Dowling, David J.; Xu, Jianjin; Ozog, Lukasz S.; Mathew, Jaime A.; Chander, Avinash; Yin, Donglei; Levy, Ofer

    2018-01-01

    Introduction Neonatal inflammation, mediated in part through Toll-like receptor (TLR) and inflammasome signaling, contributes to adverse outcomes including organ injury. Pentoxifylline (PTX), a phosphodiesterase inhibitor which potently suppresses cytokine production in newborn cord blood, is a candidate neonatal anti-inflammatory agent. We hypothesized that combinations of PTX with other anti-inflammatory agents, the steroid dexamethasone (DEX) or the macrolide azithromycin (AZI), may exert broader, more profound and/or synergistic anti-inflammatory activity towards neonatal TLR- and inflammasome-mediated cytokine production. Methods Whole newborn and adult blood was treated with PTX (50–200 μM), DEX (10−10–10−7 M), or AZI (2.5–20 μM), alone or combined, and cultured with lipopolysaccharide (LPS) (TLR4 agonist), R848 (TLR7/8 agonist) or LPS/adenosine triphosphate (ATP) (inflammasome induction). Supernatant and intracellular cytokines, signaling molecules and mRNA were measured by multiplex assay, flow cytometry and real-time PCR. Drug interactions were assessed based on Loewe's additivity. Results PTX, DEX and AZI inhibited TLR- and/or inflammasome-mediated cytokine production in newborn and adult blood, whether added before, simultaneously or after TLR stimulation. PTX preferentially inhibited pro-inflammatory cytokines especially TNF. DEX inhibited IL-10 in newborn, and TNF, IL-1β, IL-6 and interferon-α in newborn and adult blood. AZI inhibited R848-induced TNF, IL-1β, IL-6 and IL-10, and LPS-induced IL-1β and IL-10. (PTX+DEX) synergistically decreased LPS- and LPS/ATP-induced TNF, IL-1β, and IL-6, and R848-induced IL-1β and interferon-α, while (PTX+AZI) synergistically decreased induction of TNF, IL-1β, and IL-6. Synergistic inhibition of TNF production by (PTX+DEX) was especially pronounced in newborn vs. adult blood and was accompanied by reduction of TNF mRNA and enhancement of IL10 mRNA. Conclusions Age, agent, and specific drug

  3. Shiga Toxins Activate the NLRP3 Inflammasome Pathway To Promote Both Production of the Proinflammatory Cytokine Interleukin-1β and Apoptotic Cell Death

    PubMed Central

    Lee, Moo-Seung; Kwon, Haenaem; Lee, Eun-Young; Kim, Dong-Jae; Park, Jong-Hwan; Tesh, Vernon L.; Oh, Tae-Kwang

    2015-01-01

    Shiga toxin (Stx)-mediated immune responses, including the production of the proinflammatory cytokines tumor necrosis-α (TNF-α) and interleukin-1β (IL-1β), may exacerbate vascular damage and accelerate lethality. However, the immune signaling pathway activated in response to Stx is not well understood. Here, we demonstrate that enzymatically active Stx, which leads to ribotoxic stress, triggers NLRP3 inflammasome-dependent caspase-1 activation and IL-1β secretion in differentiated macrophage-like THP-1 (D-THP-1) cells. The treatment of cells with a chemical inhibitor of glycosphingolipid biosynthesis, which suppresses the expression of the Stx receptor globotriaosylceramide and subsequent endocytosis of the toxin, substantially blocked activation of the NLRP3 inflammasome and processing of caspase-1 and IL-1β. Processing and release of both caspase-1 and IL-1β were significantly reduced or abolished in Stx-intoxicated D-THP-1 cells in which the expression of NLRP3 or ASC was stably knocked down. Furthermore, Stx mediated the activation of caspases involved in apoptosis in an NLRP3- or ASC-dependent manner. In Stx-intoxicated cells, the NLRP3 inflammasome triggered the activation of caspase-8/3, leading to the initiation of apoptosis, in addition to caspase-1-dependent pyroptotic cell death. Taken together, these results suggest that Stxs trigger the NLRP3 inflammasome pathway to release proinflammatory IL-1β as well as to promote apoptotic cell death. PMID:26502906

  4. Dietary Fructo-Oligosaccharides Attenuate Early Activation of CD4+ T Cells Which Produce both Th1 and Th2 Cytokines in the Intestinal Lymphoid Tissues of a Murine Food Allergy Model.

    PubMed

    Tsuda, Masato; Arakawa, Haruka; Ishii, Narumi; Ubukata, Chihiro; Michimori, Mana; Noda, Masanari; Takahashi, Kyoko; Kaminogawa, Shuichi; Hosono, Akira

    2017-01-01

    Fructo-oligosaccharides (FOS) are prebiotic agents with immunomodulatory effects involving improvement of the intestinal microbiota and metabolome. In this study, we investigated the cellular mechanisms through which FOS modulate intestinal antigen-specific CD4+ T cell responses in food allergy, using OVA23-3 mice. OVA23-3 mice were fed an experimental diet containing either ovalbumin (OVA) or OVA and FOS for 1 week. Body weight and mucosal mast cell protease 1 in the serum were measured as the indicator of intestinal inflammation. Single-cell suspensions were prepared from intestinal and systemic lymphoid tissues for cellular analysis. Cytokine production was measured by ELISA. Activation markers and intracellular cytokines in CD4+ T cells were analyzed by flow cytometry. Activated CD4+ T cells were purified to examine cytokine production. Dietary intake of FOS provided moderate protection from the intestinal inflammation induced by the OVA-containing diet. FOS significantly reduced food allergy-induced Th2 cytokine responses in intestinal tissues but not in systemic tissues. FOS decreased OVA diet-induced IFN-γ+IL-4+ double-positive CD4+ T cells and early-activated CD45RBhighCD69+CD4+ T cells in the mesenteric lymph nodes. Furthermore, we confirmed that these CD45RBhighCD69+CD4+ T cells are able to produce high levels of IFN-γ and moderate level of IL-4, IL-10, and IL-13. Dietary intake of FOS during the development of food allergy attenuates the induction of intestinal Th2 cytokine responses by regulating early activation of naïve CD4+ T cells, which produce both Th1 and Th2 cytokines. Our results suggest FOS might be a potential food agent for the prevention of food allergy by modulating oral sensitization to food antigens. © 2017 S. Karger AG, Basel.

  5. Cytokine-induced activation of glial cells in the mouse brain is enhanced at an advanced age.

    PubMed

    Deng, X-H; Bertini, G; Xu, Y-Z; Yan, Z; Bentivoglio, M

    2006-08-25

    Numerous neurological diseases which include neuroinflammatory components exhibit an age-related prevalence. The aging process is characterized by an increase of inflammatory mediators both systemically and in the brain, which may prime glial cells. However, little information is available on age-related changes in the glial response of the healthy aging brain to an inflammatory challenge. This problem was here examined using a mixture of the proinflammatory cytokines interferon-gamma and tumor necrosis factor-alpha, which was injected intracerebroventricularly in young (2-3.5 months), middle-aged (10-11 months) and aged (18-21 months) mice. Vehicle (phosphate-buffered saline) was used as control. After a survival of 1 or 2 days (all age groups) or 4 days (young and middle-aged animals), immunohistochemically labeled astrocytes and microglia were investigated both qualitatively and quantitatively. In all age groups, astrocytes were markedly activated in periventricular as well as in deeper brain regions 2 days following cytokine treatment, whereas microglia activation was already evident at 24 h. Interestingly, cytokine-induced activation of both astrocytes and microglia was significantly more marked in the brain of aged animals, in which it included numerous ameboid microglia, than of younger age groups. Moderate astrocytic activation was also seen in the hippocampal CA1 field of vehicle-treated aged mice. FluoroJade B histochemistry and the terminal deoxynucleotidyl transferase-mediated UTP nick-end labeling technique, performed at 2 days after cytokine administration, did not reveal ongoing cell death phenomena in young or aged animals. This indicated that glial cell changes were not secondary to neuronal death. Altogether, the findings demonstrate for the first time enhanced activation of glial cells in the old brain, compared with young and middle-aged subjects, in response to cytokine exposure. Interestingly, the results also suggest that such enhancement

  6. Fasting metabolism modulates the interleukin-12/interleukin-10 cytokine axis

    PubMed Central

    Kernbauer, Elisabeth; Hölzl, Markus A.; Hofer, Johannes; Gualdoni, Guido A.; Schmetterer, Klaus G.; Miftari, Fitore; Sobanov, Yury; Meshcheryakova, Anastasia; Mechtcheriakova, Diana; Witzeneder, Nadine; Greiner, Georg; Ohradanova-Repic, Anna; Waidhofer-Söllner, Petra; Säemann, Marcus D.; Decker, Thomas

    2017-01-01

    A crucial role of cell metabolism in immune cell differentiation and function has been recently established. Growing evidence indicates that metabolic processes impact both, innate and adaptive immunity. Since a down-stream integrator of metabolic alterations, mammalian target of rapamycin (mTOR), is responsible for controlling the balance between pro-inflammatory interleukin (IL)-12 and anti-inflammatory IL-10, we investigated the effect of upstream interference using metabolic modulators on the production of pro- and anti-inflammatory cytokines. Cytokine release and protein expression in human and murine myeloid cells was assessed after toll-like receptor (TLR)-activation and glucose-deprivation or co-treatment with 5′-adenosine monophosphate (AMP)-activated protein kinase (AMPK) activators. Additionally, the impact of metabolic interference was analysed in an in-vivo mouse model. Glucose-deprivation by 2-deoxy-D-glucose (2-DG) increased the production of IL-12p40 and IL-23p19 in monocytes, but dose-dependently inhibited the release of anti-inflammatory IL-10. Similar effects have been observed using pharmacological AMPK activation. Consistently, an inhibition of the tuberous sclerosis complex-mTOR pathway was observed. In line with our in vitro observations, glycolysis inhibition with 2-DG showed significantly reduced bacterial burden in a Th2-prone Listeria monocytogenes mouse infection model. In conclusion, we showed that fasting metabolism modulates the IL-12/IL-10 cytokine balance, establishing novel targets for metabolism-based immune-modulation. PMID:28742108

  7. Epigenetic changes in T-cell and monocyte signatures and production of neurotoxic cytokines in ALS patients.

    PubMed

    Lam, Larry; Chin, Lydia; Halder, Ramesh C; Sagong, Bien; Famenini, Sam; Sayre, James; Montoya, Dennis; Rubbi, Liudmilla; Pellegrini, Matteo; Fiala, Milan

    2016-10-01

    We have investigated transcriptional and epigenetic differences in peripheral blood mononuclear cells (PBMCs) of monozygotic female twins discordant in the diagnosis of amyotrophic lateral sclerosis (ALS). Exploring DNA methylation differences by reduced representation bisulfite sequencing (RRBS), we determined that, over time, the ALS twin developed higher abundances of the CD14 macrophages and lower abundances of T cells compared to the non-ALS twin. Higher macrophage signature in the ALS twin was also shown by RNA sequencing (RNA-seq). Moreover, the twins differed in the methylome at loci near several genes, including EGFR and TNFRSF11A, and in the pathways related to the tretinoin and H3K27me3 markers. We also tested cytokine production by PBMCs. The ALS twin's PBMCs spontaneously produced IL-6 and TNF-α, whereas PBMCs of the healthy twin produced these cytokines only when stimulated by superoxide dismutase (SOD)-1. These results and flow cytometric detection of CD45 and CD127 suggest the presence of memory T cells in both twins, but effector T cells only in the ALS twin. The ALS twin's PBMC supernatants, but not the healthy twin's, were toxic to rat cortical neurons, and this toxicity was strongly inhibited by an IL-6 receptor antibody (tocilizumab) and less well by TNF-α and IL-1β antibodies. The putative neurotoxicity of IL-6 and TNF-α is in agreement with a high expression of these cytokines on infiltrating macrophages in the ALS spinal cord. We hypothesize that higher macrophage abundance and increased neurotoxic cytokines have a fundamental role in the phenotype and treatment of certain individuals with ALS.-Lam, L., Chin, L., Halder, R. C., Sagong, B., Famenini, S., Sayre, J., Montoya, D., Rubbi L., Pellegrini, M., Fiala, M. Epigenetic changes in T-cell and monocyte signatures and production of neurotoxic cytokines in ALS patients. © FASEB.

  8. Granulocyte colony-stimulating-factor-induced psoriasiform dermatitis resembles psoriasis with regard to abnormal cytokine expression and epidermal activation.

    PubMed

    Mössner, R; Beckmann, I; Hallermann, C; Neumann, C; Reich, K

    2004-06-01

    Psoriasis is a chronic inflammatory skin disorder characterized by accumulation of Th1-type T cells and neutrophils, regenerative keratinocyte proliferation and differentiation, and enhanced epidermal production of antimicrobial peptides. The underlying cause is unknown, but there are some similarities with the immunologic defense program against bacteria. Development of psoriasiform skin lesions has been reported after administration of granulocyte colony-stimulating factor (G-CSF), a cytokine induced in monocytes by bacterial antigens. To further investigate the relation between this type of cytokine-induced dermatitis and psoriasis, we analyzed the cutaneous cytokine profile [tumor necrosis factor-alpha (TNF-alpha), interferon-gamma, transforming growth factor-beta1 (TGF-beta1), interleukin-10 (IL-10), IL-12p35 and p40, and IL-8] and expression of markers of epidermal activation [Ki-67, cytokeratin-16, major histocompatibility complex (MHC) class II, intercellular adhesion molecule-1 (ICAM-1)] in a patient who developed G-CSF-induced psoriasiform dermatitis by using quantitative real-time reverse transcriptase-polymerase chain reaction and immunohistology. The histologic picture resembled psoriasis with regard to epidermal hyperparakeratosis and the accumulation of lymphocytes in the upper corium. CD8(+) T cells were found to infiltrate the epidermis which was associated with an aberrant expression of Ki-67, cytokeratin-16, MHC class II, and ICAM-1 on adjacent keratinocytes. As compared to normal skin (n = 7), there was an increased expression of TNF-alpha, IL-12p40, and IL-8, a decreased expression of TGF-beta1, and a lack of IL-10, similar to the findings in active psoriasis (n = 8). Therefore, G-CSF may cause a lymphocytic dermatitis that, similar to psoriasis, is characterized by a pro-inflammatory Th1-type cytokine milieu and an epidermal phenotype indicative of aberrant maturation and acquisition of non-professional immune functions.

  9. [Effect of Hepatitis C virus proteins on the production of proinflammatory and profibrotic cytokines in Huh7.5 human hepatoma cells].

    PubMed

    Masalova, O V; Lesnova, E I; Permyakova, K Yu; Samokhvalov, E I; Ivanov, A V; Kochetkov, S N; Kushch, A A

    2016-01-01

    Hepatitis C virus (HCV) is a widespread dangerous human pathogen. Up to 80% of HCV-infected individuals develop chronic infection, which is often accompanied by liver inflammation and fibrosis and, at terminal stages, liver cirrhosis and cancer. Treatment of patients with end-stage liver disease is often ineffective, and even patients with suppressed HCV replication have higher risk of death as compared with noninfected subjects. Therefore, investigating the mechanisms that underlie HCV pathogenesis and developing treatments for virus-associated liver dysfunction remain an important goal. The effect of individual HCV proteins on the production of proinflammatory and profibrotic cytokines in hepatocellular carcinoma Huh7.5 cells was analyzed in a systematic manner. Cells were transfected with plasmids encoding HCV proteins. Cytokine production and secretion was accessed by immunocytochemistry and ELISA of the culture medium, and transcription of the cytokine genes was assessed using reverse transcription and PCR. HCV proteins proved to differ in effect on cytokine production. Downregulation of interleukin 6 (IL-6) production was observed in cells expressing the HCV core, NS3, and NS5A proteins. Production of transforming growth factor β1 (TGF-β1) was lower in cells expressing the core proteins, NS3, or E1/E2 glycoproteins. A pronounced increase in production and secretion of tumor necrosis factor α (TNF-α) was observed in response to expression of the HCV E1/E2 glycoproteins. A higher biosynthesis, but a lower level in the cell culture medium, was detected for interleukin 1β (IL-1β) in cells harboring NS4 and IL-6 in cells expressing NS5В. The finding was possibly explained by protein-specific retention and consequent accumulation of the respective cytokines in the cell.

  10. NOS1-derived nitric oxide promotes NF-κB transcriptional activity through inhibition of suppressor of cytokine signaling-1

    PubMed Central

    Baig, Mirza Saqib; Zaichick, Sofia V.; Mao, Mao; de Abreu, Andre L.; Bakhshi, Farnaz R.; Hart, Peter C.; Saqib, Uzma; Deng, Jing; Chatterjee, Saurabh; Block, Michelle L.; Vogel, Stephen M.; Malik, Asrar B.; Consolaro, Marcia E.L.; Christman, John W.; Minshall, Richard D.

    2015-01-01

    The NF-κB pathway is central to the regulation of inflammation. Here, we demonstrate that the low-output nitric oxide (NO) synthase 1 (NOS1 or nNOS) plays a critical role in the inflammatory response by promoting the activity of NF-κB. Specifically, NOS1-derived NO production in macrophages leads to proteolysis of suppressor of cytokine signaling 1 (SOCS1), alleviating its repression of NF-κB transcriptional activity. As a result, NOS1−/− mice demonstrate reduced cytokine production, lung injury, and mortality when subjected to two different models of sepsis. Isolated NOS1−/− macrophages demonstrate similar defects in proinflammatory transcription on challenge with Gram-negative bacterial LPS. Consistently, we found that activated NOS1−/− macrophages contain increased SOCS1 protein and decreased levels of p65 protein compared with wild-type cells. NOS1-dependent S-nitrosation of SOCS1 impairs its binding to p65 and targets SOCS1 for proteolysis. Treatment of NOS1−/− cells with exogenous NO rescues both SOCS1 degradation and stabilization of p65 protein. Point mutation analysis demonstrated that both Cys147 and Cys179 on SOCS1 are required for its NO-dependent degradation. These findings demonstrate a fundamental role for NOS1-derived NO in regulating TLR4-mediated inflammatory gene transcription, as well as the intensity and duration of the resulting host immune response. PMID:26324446

  11. Green and black tea inhibit cytokine-induced IL-8 production and secretion in AGS gastric cancer cells via inhibition of NF-κB activity.

    PubMed

    Gutierrez-Orozco, Fabiola; Stephens, Brian R; Neilson, Andrew P; Green, Rodney; Ferruzzi, Mario G; Bomser, Joshua A

    2010-10-01

    Consumption of tea is associated with a reduced risk for several gastrointestinal cancers. Inflammatory processes, such as secretion of IL-8 from the gastric epithelium in response to chronic chemokine or antigen exposure, serve both as a chemoattractant for white blood cells and a prerequisite for gastric carcinogenesis. In this study, the gastric adenocarcinoma cell line AGS was used to investigate the effect of green tea extract, black tea extract, and epigallocatechin gallate (EGCG), the most abundant catechin in tea, on cytokine-induced inflammation. AGS cells were stimulated with interleukin-1β (IL-1β) to initiate inflammation, followed by exposure to either tea extracts or EGCG. We found that both green and black tea extracts at concentrations of 20 and 2 µM total catechins, respectively, significantly (p < 0.05) inhibited IL-1β-induced IL-8 production and secretion to a similar extent. Treatment of AGS cells with EGCG (8 µM) produced similar reductions in IL-1β-induced IL-8 production and secretion. Inhibition of NF-κB activity was found to be responsible, in part, for these observed effects. Our findings demonstrate that both green and black tea extracts with distinctly different catechin profiles, are capable of disrupting the molecular link between inflammation and carcinogenesis via inhibition of NF-κB activity in AGS cells. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Rotenone and Paraquat do not Directly Activate Microglia or Induce Inflammatory Cytokine Release

    PubMed Central

    Klintworth, Heather; Garden, Gwenn; Xia, Zhengui

    2009-01-01

    Both epidemiological and pathological data suggest an inflammatory response including microglia activation and neuro-inflammation in the Parkinsonian brain. Treatments with lipopolysacchride (LPS), rotenone and paraquat have been used as models for Parkinson’s disease, as they cause dopaminergic neuron degeneration in culture and in animals. Recent studies have suggested that rotenone and paraquat induce neuro-inflammation, however, it is not known if they can directly activate microglia. Here, we use primary cultured microglia to address this question. Microglia activation was analyzed by morphological changes and release of nitric oxide and inflammatory cytokines. Treatment with LPS was used as a positive control. While LPS induced morphological changes characteristic of microglial activation and release of nitric oxide and inflammatory cytokines, rotenone and paraquat did not. Our results suggest that paraquat and rotenone do not act directly on microglia and that neuro-inflammation and microglial activation in animals treated with these agents is likely non-cell autonomous, and may occur as a result of dopaminergic neuron damage or factors released by neurons and other cells. PMID:19559752

  13. Serotonin decreases the production of Th1/Th17 cytokines and elevates the frequency of regulatory CD4+ T cell subsets in multiple sclerosis patients.

    PubMed

    Sacramento, Priscila M; Monteiro, Clarice; Dias, Aleida S O; Kasahara, Taissa M; Ferreira, Thaís B; Hygino, Joana; Wing, Ana Cristina; Andrade, Regis M; Rueda, Fernanda; Sales, Marisa C; Vasconcelos, Claudia Cristina; Bento, Cleonice A M

    2018-05-02

    Excessive levels of pro-inflammatory cytokines in the central nervous system (CNS) are associated with reduced serotonin (5-HT) synthesis, a neurotransmitter with diverse immune effects. In this study, we evaluated the ability of exogenous 5-HT to modulate the T-cell behavior of patients with multiple sclerosis (MS), a demyelinating autoimmune disease mediated by Th1 and Th17 cytokines. Here, 5-HT attenuated, in vitro, T-cell proliferation and Th1 and Th17 cytokines production in cell cultures from MS patients. Additionally, 5-HT reduced IFN-γ and IL-17 release by CD8 + T-cells. By contrast, 5-HT increased IL-10 production by CD4 + T-cells from MS patients. A more accurate analysis of these IL-10-secreting CD4 + T-cells revealed that 5-HT favors the expansion of FoxP3 + CD39 + regulatory T cells (Tregs) and type 1 regulatory T cells. Notably, this neurotransmitter also elevated the frequency of Treg17 cells, a novel regulatory T-cell subset. The effect of 5-HT in up-regulating CD39 + Treg and Treg17 cells was inversely correlated with the number of active brain lesions. Finally, in addition to directly reducing cytokine production by purified Th1 and Th17 cells, 5-HT enhanced in vitro Treg function. In summary, our data suggest that serotonin may play a protective role in the pathogenesis of MS. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. Dimethyl Sulfoxide (DMSO) Decreases Cell Proliferation and TNF-α, IFN-γ, and IL-2 Cytokines Production in Cultures of Peripheral Blood Lymphocytes.

    PubMed

    de Abreu Costa, Lucas; Henrique Fernandes Ottoni, Marcelo; Dos Santos, Michaelle Geralda; Meireles, Agnes Batista; Gomes de Almeida, Valéria; de Fátima Pereira, Wagner; Alves de Avelar-Freitas, Bethânia; Eustáquio Alvim Brito-Melo, Gustavo

    2017-11-10

    Dimethylsulfoxide (DMSO) is an amphipathic molecule composed of a polar domain characterized by the sulfinyl and two nonpolar methyl groups, for this reason it is able to solubilize polar and nonpolar substances and transpose hydrophobic barriers. DMSO is widely used to solubilize drugs of therapeutic applications and studies indicated that 10% v/v concentration did not modify culture viability when used to treat human peripheral blood mononuclear cells (PBMC). However, some DMSO concentrations could influence lymphocyte activation and present anti-inflammatory effects. Therefore, the objective of this study was to evaluate the effect of DMSO on lymphocyte activation parameters. Cell viability analysis, proliferation, and cytokine production were performed on PBMC from six healthy subjects by flow cytometry. The results indicated that 2.5% v/v DMSO concentrations did not modify lymphocytes viability. DMSO at 1% and 2% v/v concentrations reduced the relative proliferation index of lymphocytes and at 5% and 10% v/v concentrations reduced the percentage of total lymphocytes, cluster of differentiation 4⁺ (CD4⁺) T lymphocytes and CD8⁺ T lymphocytes interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α) and interleukin-2 (IL-2) producers. Thus, it was concluded that DMSO has an in vitro anti-inflammatory effect by reducing lymphocyte activation demonstrated with proliferation reduction and the decrease of cytokine production.

  15. Houttuynia cordata Thunb inhibits the production of pro-inflammatory cytokines through inhibition of the NFκB signaling pathway in HMC-1 human mast cells.

    PubMed

    Lee, Hee Joe; Seo, Hye-Sook; Kim, Gyung-Jun; Jeon, Chan Yong; Park, Jong Hyeong; Jang, Bo-Hyoung; Park, Sun-Ju; Shin, Yong-Cheol; Ko, Seong-Gyu

    2013-09-01

    Houttuynia cordata Thunb (HCT) is widely used in oriental medicine as a remedy for inflammation. However, at present there is no explanation for the mechanism by which HCT affects the production of inflammatory cytokines. The current study aimed to determine the effect of an essence extracted from HCT on mast cell-mediated inflammatory responses. Inflammatory cytokine production induced by phorbol myristate acetate (PMA) plus a calcium ionophore, A23187, was measured in the human mast cell line, HMC-1, incubated with various concentrations of HCT. TNF-α, IL-6 and IL-8 secreted protein levels were measured using an ELISA assay. TNF-α, IL-6 and IL-8 mRNA levels were measured using RT-PCR analysis. Nuclear and cytoplasmic proteins were examined by western blot analysis. The NF-κB promoter activity was examined by luciferase assay. It was observed that HCT inhibited PMA plus A23187-induced TNF-α and IL-6 secretion and reduced the mRNA levels of TNF-α, IL-6 and IL-8. It was also noted that HCT suppressed the induction of NF-κB activity, inhibited nuclear translocation of NF-κB and blocked the phosphorylation of IκBα in stimulated HMC-1 cells. It was concluded that HCT is an inhibitor of NF-κB and cytokines blocking mast cell-mediated inflammatory responses. These results indicate that HCT may be used for the treatment of mast cell-derived allergic inflammatory diseases.

  16. Houttuynia cordata Thunb inhibits the production of pro-inflammatory cytokines through inhibition of the NFκB signaling pathway in HMC-1 human mast cells

    PubMed Central

    LEE, HEE JOE; SEO, HYE-SOOK; KIM, GYUNG-JUN; JEON, CHAN YONG; PARK, JONG HYEONG; JANG, BO-HYOUNG; PARK, SUN-JU; SHIN, YONG-CHEOL; KO, SEONG-GYU

    2013-01-01

    Houttuynia cordata Thunb (HCT) is widely used in oriental medicine as a remedy for inflammation. However, at present there is no explanation for the mechanism by which HCT affects the production of inflammatory cytokines. The current study aimed to determine the effect of an essence extracted from HCT on mast cell-mediated inflammatory responses. Inflammatory cytokine production induced by phorbol myristate acetate (PMA) plus a calcium ionophore, A23187, was measured in the human mast cell line, HMC-1, incubated with various concentrations of HCT. TNF-α, IL-6 and IL-8 secreted protein levels were measured using an ELISA assay. TNF-α, IL-6 and IL-8 mRNA levels were measured using RT-PCR analysis. Nuclear and cytoplasmic proteins were examined by western blot analysis. The NF-κB promoter activity was examined by luciferase assay. It was observed that HCT inhibited PMA plus A23187-induced TNF-α and IL-6 secretion and reduced the mRNA levels of TNF-α, IL-6 and IL-8. It was also noted that HCT suppressed the induction of NF-κB activity, inhibited nuclear translocation of NF-κB and blocked the phosphorylation of IκBα in stimulated HMC-1 cells. It was concluded that HCT is an inhibitor of NF-κB and cytokines blocking mast cell-mediated inflammatory responses. These results indicate that HCT may be used for the treatment of mast cell-derived allergic inflammatory diseases. PMID:23846481

  17. Human MAIT-cell responses to Escherichia coli: activation, cytokine production, proliferation, and cytotoxicity.

    PubMed

    Dias, Joana; Sobkowiak, Michał J; Sandberg, Johan K; Leeansyah, Edwin

    2016-07-01

    Mucosa-associated invariant T cells are a large and relatively recently described innate-like antimicrobial T-cell subset in humans. These cells recognize riboflavin metabolites from a range of microbes presented by evolutionarily conserved major histocompatibility complex, class I-related molecules. Given the innate-like characteristics of mucosa-associated invariant T cells and the novel type of antigens they recognize, new methodology must be developed and existing methods refined to allow comprehensive studies of their role in human immune defense against microbial infection. In this study, we established protocols to examine a range of mucosa-associated invariant T-cell functions as they respond to antigen produced by Escherichia coli These improved and dose- and time-optimized experimental protocols allow detailed studies of MR1-dependent mucosa-associated invariant T-cell responses to Escherichia coli pulsed antigen-presenting cells, as assessed by expression of activation markers and cytokines, by proliferation, and by induction of apoptosis and death in major histocompatibility complex, class I-related-expressing target cells. The novel and optimized protocols establish a framework of methods and open new possibilities to study mucosa-associated invariant T-cell immunobiology, using Escherichia coli as a model antigen. Furthermore, we propose that these robust experimental systems can also be adapted to study mucosa-associated invariant T-cell responses to other microbes and types of antigen-presenting cells. © The Author(s).

  18. Cytokine profiling reveals decreased serum levels of CCL2 in active ocular toxoplasmosis.

    PubMed

    Rey, Amanda; Molins, Blanca; Llorenç, Victor; Pelegrín, Laura; Mesquida, Marina; Adán, Alfredo

    2013-10-01

    Toxoplasma gondii infection is an important cause of ocular disease. Although parasite-mediated host cell lysis is probably the principal cause of tissue destruction in immunodeficiency states, hypersensitivity and inflammatory responses may underlie severe disease in otherwise immunocompetent individuals. The purpose of the current investigation was to study the cytokine profiles in serum from patients with ocular toxoplasmosis and to compare them with those obtained from healthy control subjects. Using a multiplex assay, we determined the serum concentration of granulocyte colony-stimulating factor (GCSF), interferon γ (IFNγ), interleukin (IL)-1β, IL-2, IL-6, IL-8, IL-10, chemokine (C-C motif) ligand 2 (CCL2) and tumour necrosis factor α (TNFα) in patients with inactive ocular toxoplasmosis (n=48), active ocular toxoplasmosis (n=21), and an age-matched and sex-matched healthy control group (n=25). In a subgroup of 17 patients with active disease, a second serum sample was obtained when the disease was inactive. Cytokine profiles were correlated with disease activity, severity and visual outcome. Levels of CCL2 were significantly reduced in patients with active ocular toxoplasmosis compared to the control group (564 ± 42 pg/mL vs 455 ± 35 pg/mL, p<0.05). Moreover, CCL2 levels were significantly lower during active ocular toxoplasmosis compared to inactive disease (569 ± 32 pg/mL vs 433 ± 32 pg/mL, p<0.01). GCSF and TNFα were elevated in patients with toxoplasmosis with poor visual outcome. No significant correlations were found with specific cytokine profiles and disease severity. Decreased serum levels of CCL2 may be associated with active ocular toxoplasmosis and could therefore serve as a marker of disease activity.

  19. Potentially probiotic Lactobacillus strains with anti-proliferative activity induce cytokine/chemokine production and neutrophil recruitment in mice.

    PubMed

    Saxami, G; Karapetsas, A; Chondrou, P; Vasiliadis, S; Lamprianidou, E; Kotsianidis, I; Ypsilantis, P; Botaitis, S; Simopoulos, C; Galanis, A

    2017-08-24

    Lactobacillus pentosus B281 and Lactobacillus plantarum B282 are two Lactobacillus strains previously isolated from fermented table olives. Both strains were found to possess probiotic properties and displayed desirable technological characteristics for application as starters in novel functional food production. In the present study the anti-proliferative and immunostimulatory activities of the two strains were investigated. Firstly, we demonstrated that live L. pentosus B281 and L. plantarum B282 significantly inhibited the growth of human colon cancer cells (Caco-2) in a time- and dose-dependent manner. By employing the air pouch system in mice, we showed that administration of both strains led to a rapid and statistically significant infiltration of leukocytes in the air pouch exudates. The phenotypical characterisation of the recruited immune cells was performed by flow cytometry analysis. We demonstrated that the majority of the infiltrated leukocytes were neutrophils. Finally by using the Mouse Cytokine Array Panel A Detection Antibody cocktail, we showed that both strains induced the expression of granulocyte-colony stimulating factor, interleukin (IL)-1α, IL-1β, IL-6, chemokine (C-X-C motif) ligand (CXCL)-1, chemokine (C-C motif) ligand (CCL)-3, CCL-4, and CXCL-2 and diminished the expression levels of soluble intercellular adhesion molecule, macrophage colony-stimulating factor and metallopeptidase inhibitor 1. Our results showed that both strains display anti-proliferative and immunostimulatory properties equal or even better in some cases than those of established and commonly used probiotic strains. These findings further support the probiotic character of the two strains.

  20. Measurement of Circulating Cytokines and Immune-Activation Markers by Multiplex Technology in the Clinical Setting: What Are We Really Measuring?

    PubMed

    Aziz, Najib

    2015-01-01

    Measurement of circulating cytokine levels can provide important information in the study of the pathogenesis of disease. John L. Fahey was a pioneer in the measurement of circulating cytokines and immune-activation markers and a leader in the quality assessment/control of assays for measurement of circulating cytokines. Insights into the measurement of circulating cytokines, including consideration of multiplex assays, are presented here.

  1. Expanding Diversity in Molecular Structures and Functions of the IL-6/IL-12 Heterodimeric Cytokine Family

    PubMed Central

    Hasegawa, Hideaki; Mizoguchi, Izuru; Chiba, Yukino; Ohashi, Mio; Xu, Mingli; Yoshimoto, Takayuki

    2016-01-01

    The interleukin (IL)-6/IL-12 family cytokines have pleiotropic functions and play critical roles in multiple immune responses. This cytokine family has very unique characteristics in that they comprise two distinct subunits forming a heterodimer and each cytokine and receptor subunit shares with each other. The members of this cytokine family are increasing; currently, there are more than six cytokines, including the tentatively named cytokines IL-Y (p28/p40), IL-12 (p35/p40), IL-23 (p19/p40), IL-27 [p28/Epstein–Barr virus-induced protein 3 (EBI3)], IL-35 (p35/EBI3), and IL-39 (p19/EBI3). This family of cytokines covers a very broad range of immune responses, including pro-inflammatory responses, such as helper T (Th)1, Th2, and Th17, to anti-inflammatory responses, such as regulatory T (Treg) cells and IL-10-producing Treg cells. IL-12 is the first member of this family, and IL-12, IL-23, and IL-27 are mainly produced by activated antigen-presenting cells, such as dendritic cells and macrophages. IL-12 plays a critical role in the promotion of Th1 immune responses by inducing interferon-γ production to combat pathogens and malignant tumors. IL-23 induces IL-17 production and is necessary to maintain pathogenic Th17 cells that cause inflammatory and autoimmune diseases. IL-27 was initially reported to play a critical role in promotion of Th1 differentiation; however, subsequent studies revealed that IL-27 has broader stimulatory and inhibitory roles by inducing IL-10-producing Treg cells. IL-35 is produced by forkhead box P3+ Treg cells and activated B cells and has immunosuppressive functions to maintain immune tolerance. The most recently identified cytokine, IL-39, is produced by activated B cells and has pro-inflammatory functions. The cytokine tentatively named IL-Y seems to have anti-inflammatory functions by inhibiting Th1 and Th17 differentiation. In addition, individual cytokine subunits were also shown to have self-standing activities. Thus

  2. CD73-derived adenosine and tenascin-C control cytokine production by epicardium-derived cells formed after myocardial infarction.

    PubMed

    Hesse, Julia; Leberling, Stella; Boden, Elisabeth; Friebe, Daniela; Schmidt, Timo; Ding, Zhaoping; Dieterich, Peter; Deussen, Andreas; Roderigo, Claudia; Rose, Christine R; Floss, Doreen M; Scheller, Jürgen; Schrader, Jürgen

    2017-07-01

    Epicardium-derived cells (EPDCs) play a fundamental role in embryonic cardiac development and are reactivated in the adult heart in response to myocardial infarction (MI). In this study, EPDCs from post-MI rat hearts highly expressed the ectoenzyme CD73 and secreted the profibrotic matricellular protein tenascin-C (TNC). CD73 on EPDCs extensively generated adenosine from both extracellular ATP and NAD. This in turn stimulated the release of additional nucleotides from a Brefeldin A-sensitive intracellular pool via adenosine-A 2B R signaling, forming a positive-feedback loop. A 2B R activation, in addition, strongly promoted the release of major regulatory cytokines, such as IL-6, IL-11, and VEGF. TNC was found to stimulate EPDC migration and, together with ATP-P2X 7 R signaling, to activate inflammasomes in EPDCs via TLR4. Our results demonstrate that EPDCs are an important source of various proinflammatory factors in the post-MI heart controlled by purinergic and TNC signaling.-Hesse, J., Leberling, S., Boden, E., Friebe, D., Schmidt, T., Ding, Z., Dieterich, P., Deussen, A., Roderigo, C., Rose, C. R., Floss, D. M., Scheller, J., Schrader, J. CD73-derived adenosine and tenascin-C control cytokine production by epicardium-derived cells formed after myocardial infarction. © FASEB.

  3. Effect of sesamin against cytokine production from influenza type A H1N1-induced peripheral blood mononuclear cells: computational and experimental studies.

    PubMed

    Fanhchaksai, Kanda; Kodchakorn, Kanchanok; Pothacharoen, Peraphan; Kongtawelert, Prachya

    2016-01-01

    In 2009, swine flu (H1N1) had spread significantly to levels that threatened pandemic influenza. There have been many treatments that have arisen for patients since the WHO first reported the disease. Although some progress in controlling influenza has taken place during the last few years, the disease is not yet under control. The development of new and less expensive anti-influenza drugs is still needed. Here, we show that sesamin from the seeds of the Thai medicinal plant Sesamum indicum has anti-inflammatory cytokines in human peripheral blood mononuclear cells (PBMCs) induced by 2009 influenza virus type A H1N1. In this study, the combinatorial screening method combined with the computational approach was applied to investigate the new molecular binding structures of sesamin against the 2009 influenza virus type A H1N1 (p09N1) crystallized structure. Experimental methods were applied to propose the mechanisms of sesamin against cytokine production from H1N1-induced human PBMC model. The molecular dynamics simulation of sesamin binding with the p09N1 crystallized structure showed new molecular binding structures at ARG118, ILE222, ARG224, and TYR406, and it has been proposed that sesamin could potentially be used to produce anti-H1N1 compounds. Furthermore, the mechanisms of sesamin against cytokine production from influenza type A H1N1-induced PBMCs by ELISA and signaling transduction showed that sesamin exhibits the ability to inhibit proinflammatory cytokines, IL-1β and TNF-α, and to enhance the activity of the immune cell cytokine IL-2 via downregulating the phosphorylated JNK, p38, and ERK1/2 MAPK signaling pathways. This information might very well be useful in the prevention and treatment of immune-induced inflammatory disorders.

  4. Maternal immune activation causes age- and region-specific changes in brain cytokines in offspring throughout development

    PubMed Central

    Garay, Paula A.; Hsiao, Elaine Y.; Patterson, Paul H.; McAllister, A. Kimberley

    2012-01-01

    Maternal infection is a risk factor for autism spectrum disorder (ASD) and schizophrenia (SZ). Indeed, modeling this risk factor in mice through maternal immune activation (MIA) causes ASD- and SZ-like neuropathologies and behaviors in the offspring. Although MIA upregulates pro-inflammatory cytokines in the fetal brain, whether MIA leads to long-lasting changes in brain cytokines during postnatal development remains unknown. Here, we tested this possibility by measuring protein levels of 23 cytokines in the blood and three brain regions from offspring of poly(I:C)- and saline-injected mice at five postnatal ages using multiplex arrays. Most cytokines examined are present in sera and brains throughout development. MIA induces changes in the levels of many cytokines in the brains and sera of offspring in a region- and age-specific manner. These MIA-induced changes follow a few, unexpected and distinct patterns. In frontal and cingulate cortices, several, mostly pro-inflammatory, cytokines are elevated at birth, followed by decreases during periods of synaptogenesis and plasticity, and increases again in the adult. Cytokines are also altered in postnatal hippocampus, but in a pattern distinct from the other regions. The MIA-induced changes in brain cytokines do not correlate with changes in serum cytokines from the same animals. Finally, these MIA-induced cytokine changes are not accompanied by breaches in the blood-brain barrier, immune cell infiltration or increases in microglial density. Together, these data indicate that MIA leads to long-lasting, region-specific changes in brain cytokines in offspring—similar to those reported for ASD and SZ—that may alter CNS development and behavior. PMID:22841693

  5. Mycobacteria-specific cytokine responses as correlates of treatment response in active and latent tuberculosis.

    PubMed

    Clifford, Vanessa; Tebruegge, Marc; Zufferey, Christel; Germano, Susie; Forbes, Ben; Cosentino, Lucy; McBryde, Emma; Eisen, Damon; Robins-Browne, Roy; Street, Alan; Denholm, Justin; Curtis, Nigel

    2017-08-01

    A biomarker indicating successful tuberculosis (TB) therapy would assist in determining appropriate length of treatment. This study aimed to determine changes in mycobacteria-specific antigen-induced cytokine biomarkers in patients receiving therapy for latent or active TB, to identify biomarkers potentially correlating with treatment success. A total of 33 adults with active TB and 36 with latent TB were followed longitudinally over therapy. Whole blood stimulation assays using mycobacteria-specific antigens (CFP-10, ESAT-6, PPD) were done on samples obtained at 0, 1, 3, 6 and 9 months. Cytokine responses (IFN-γ, IL-1ra, IL-2, IL-10, IL-13, IP-10, MIP-1β, and TNF-α) in supernatants were measured by Luminex xMAP immunoassay. In active TB cases, median IL-1ra (with CFP-10 and with PPD stimulation), IP-10 (CFP-10, ESAT-6), MIP-1β (ESAT-6, PPD), and TNF-α (ESAT-6) responses declined significantly over the course of therapy. In latent TB cases, median IL-1ra (CFP-10, ESAT-6, PPD), IL-2 (CFP-10, ESAT-6), and IP-10 (CFP-10, ESAT-6) responses declined significantly. Mycobacteria-specific cytokine responses change significantly over the course of therapy, and their kinetics in active TB differ from those observed in latent TB. In particular, mycobacteria-specific IL-1ra responses are potential correlates of successful therapy in both active and latent TB. Copyright © 2017 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  6. Environmental Alkylphenols Modulate Cytokine Expression in Plasmacytoid Dendritic Cells

    PubMed Central

    Hung, Chih-Hsing; Yang, San-Nan; Wang, Ya-Fang; Liao, Wei-Ting; Kuo, Po-Lin; Tsai, Eing-Mei; Lee, Chin-Lai; Chao, Yu-Shen; Yu, Hsin-Su; Huang, Shau-Ku; Suen, Jau-Ling

    2013-01-01

    Background Alkylphenols, such as nonylphenol (NP) and 4-octylphenol (4-OP), have the potential to disturb immune system due to their weak estrogen-like activity, an effect with potential serious public health impact due to the worldwide distribution of these substances. Plasmacytoid dendritic cells (PDCs) can secrete large amounts of type I IFNs and are critical in immune regulation. However, there has been limited study about the influence of alkylphenols on the function of pDCs. Objective The aim of this study was to examine the effect of alkylphenols on pDC functions in vitro and in vivo and then further explored the involved signaling pathways and epigenetic changes. Methods Circulating pDCs from human peripheral blood mononuclear cells were treated with alkylphenols with or without CpG stimulation. Alkylphenol-associated cytokine responses, signaling events, histone modifications and viral activity were further examined. In NP-exposed mice, the effect of NP on splenic pDC function and allergic lung inflammation were also assessed. Results The results showed that NP increased the expression of TNF-α, but suppressed IL-10 production in the range of physiological doses, concomitant with activation of the MKK3/6-p38 signaling pathway and enhanced levels of acetylated histone 3 as well as histone 4 at the TNFA gene locus. Further, in CpG-stimulated pDCs, NP suppressed type I IFNs production, associated with down-regulation of IRF-7 and MKK1/2-ERK-Elk-1 pathways and led to the impaired anti-enterovirus 71 activity in vitro. Additionally, splenic pDCs from NP-exposed mice showed similar cytokine changes upon CpG stimulation under conditions relevant to route and level of exposure in humans. NP treatment also enhanced allergic lung inflammation in vivo. Conclusion Alkylphenols may influence pDCs’ functions via their abilities to induce expression of a pro-inflammatory cytokine, TNF-α, and to suppress regulatory cytokines, including IL-10, IFN-α and IFN

  7. Environmental alkylphenols modulate cytokine expression in plasmacytoid dendritic cells.

    PubMed

    Hung, Chih-Hsing; Yang, San-Nan; Wang, Ya-Fang; Liao, Wei-Ting; Kuo, Po-Lin; Tsai, Eing-Mei; Lee, Chin-Lai; Chao, Yu-Shen; Yu, Hsin-Su; Huang, Shau-Ku; Suen, Jau-Ling

    2013-01-01

    Alkylphenols, such as nonylphenol (NP) and 4-octylphenol (4-OP), have the potential to disturb immune system due to their weak estrogen-like activity, an effect with potential serious public health impact due to the worldwide distribution of these substances. Plasmacytoid dendritic cells (PDCs) can secrete large amounts of type I IFNs and are critical in immune regulation. However, there has been limited study about the influence of alkylphenols on the function of pDCs. The aim of this study was to examine the effect of alkylphenols on pDC functions in vitro and in vivo and then further explored the involved signaling pathways and epigenetic changes. Circulating pDCs from human peripheral blood mononuclear cells were treated with alkylphenols with or without CpG stimulation. Alkylphenol-associated cytokine responses, signaling events, histone modifications and viral activity were further examined. In NP-exposed mice, the effect of NP on splenic pDC function and allergic lung inflammation were also assessed. The results showed that NP increased the expression of TNF-α, but suppressed IL-10 production in the range of physiological doses, concomitant with activation of the MKK3/6-p38 signaling pathway and enhanced levels of acetylated histone 3 as well as histone 4 at the TNFA gene locus. Further, in CpG-stimulated pDCs, NP suppressed type I IFNs production, associated with down-regulation of IRF-7 and MKK1/2-ERK-Elk-1 pathways and led to the impaired anti-enterovirus 71 activity in vitro. Additionally, splenic pDCs from NP-exposed mice showed similar cytokine changes upon CpG stimulation under conditions relevant to route and level of exposure in humans. NP treatment also enhanced allergic lung inflammation in vivo. Alkylphenols may influence pDCs' functions via their abilities to induce expression of a pro-inflammatory cytokine, TNF-α, and to suppress regulatory cytokines, including IL-10, IFN-α and IFN-β, suggesting the potential impact of endocrine disrupting

  8. Gallic Acid Decreases Inflammatory Cytokine Secretion Through Histone Acetyltransferase/Histone Deacetylase Regulation in High Glucose-Induced Human Monocytes.

    PubMed

    Lee, Wooje; Lee, Sang Yeol; Son, Young-Jin; Yun, Jung-Mi

    2015-07-01

    Hyperglycemia contributes to diabetes and several diabetes-related complications. Gallic acid is a polyhydroxy phenolic compound found in various natural products. In this study, we investigated the effects and mechanism of gallic acid on proinflammatory cytokine secretion in high glucose-induced human monocytes (THP-1 cells). THP-1 cells were cultured under normoglycemic or hyperglycemic conditions, in the absence or presence of gallic acid. Hyperglycemic conditions significantly induced histone acetylation, nuclear factor-κB (NF-κB) activation, and proinflammatory cytokine release from THP-1 cells, whereas gallic acid suppressed NF-κB activity and cytokine release. It also significantly reduced CREB-binding protein/p300 (CBP/p300, a NF-κB coactivator) gene expression, acetylation levels, and CBP/p300 histone acetyltransferase (HAT) activity. In addition, histone deacetylase 2 (HDAC2) expression was significantly induced. These results suggest that gallic acid inhibits hyperglycemic-induced cytokine production in monocytes through epigenetic changes involving NF-κB. Therefore, gallic acid may have potential for the treatment and prevention of diabetes and its complications.

  9. JAK1/STAT3 Activation through a Proinflammatory Cytokine Pathway Leads to Resistance to Molecularly Targeted Therapy in Non-Small Cell Lung Cancer.

    PubMed

    Shien, Kazuhiko; Papadimitrakopoulou, Vassiliki A; Ruder, Dennis; Behrens, Carmen; Shen, Li; Kalhor, Neda; Song, Juhee; Lee, J Jack; Wang, Jing; Tang, Ximing; Herbst, Roy S; Toyooka, Shinichi; Girard, Luc; Minna, John D; Kurie, Jonathan M; Wistuba, Ignacio I; Izzo, Julie G

    2017-10-01

    Molecularly targeted drugs have yielded significant therapeutic advances in oncogene-driven non-small cell lung cancer (NSCLC), but a majority of patients eventually develop acquired resistance. Recently, the relation between proinflammatory cytokine IL6 and resistance to targeted drugs has been reported. We investigated the functional contribution of IL6 and the other members of IL6 family proinflammatory cytokine pathway to resistance to targeted drugs in NSCLC cells. In addition, we examined the production of these cytokines by cancer cells and cancer-associated fibroblasts (CAF). We also analyzed the prognostic significance of these molecule expressions in clinical NSCLC samples. In NSCLC cells with acquired resistance to targeted drugs, we observed activation of the IL6-cytokine pathway and STAT3 along with epithelial-to-mesenchymal transition (EMT) features. In particular, IL6 family cytokine oncostatin-M (OSM) induced a switch to the EMT phenotype and protected cells from targeted drug-induced apoptosis in OSM receptors (OSMRs)/JAK1/STAT3-dependent manner. The cross-talk between NSCLC cells and CAFs also preferentially activated the OSM/STAT3 pathway via a paracrine mechanism and decreased sensitivity to targeted drugs. The selective JAK1 inhibitor filgotinib effectively suppressed STAT3 activation and OSMR expression, and cotargeting inhibition of the oncogenic pathway and JAK1 reversed resistance to targeted drugs. In the analysis of clinical samples, OSMR gene expression appeared to be associated with worse prognosis in patients with surgically resected lung adenocarcinoma. Our data suggest that the OSMRs/JAK1/STAT3 axis contributes to resistance to targeted drugs in oncogene-driven NSCLC cells, implying that this pathway could be a therapeutic target. Mol Cancer Ther; 16(10); 2234-45. ©2017 AACR . ©2017 American Association for Cancer Research.

  10. Interleukin-2 and other cytokines in candidiasis: expression, clinical significance, and future therapeutic targets.

    PubMed

    Rodríguez-Cerdeira, Carmen; Carnero-Gregorio, Miguel; López-Barcenas, Adriana; Fabbrocini, Gabriella; Sanchez-Blanco, Elena; Alba-Menendez, Alfonso; Guzmán, Roberto Arenas

    2018-06-01

    Susceptibility to Candida spp. infection is largely determined by the status of host immunity, whether immunocompromised/immunodeficient or immunocompetent. Interleukin-2 (IL-2), a potent lymphoid cell growth factor, is a four-α-helix bundle cytokine induced by activated T cells with two important roles: the activation and maintenance of immune responses, and lymphocyte production and differentiation. We reviewed the roles of cytokines as immune stimulators and suppressors of Candida spp. infections as an update on this continuously evolving field. We performed a comprehensive search of the Cochrane Central Register of Controlled Trials, Medline (PubMed), and Embase databases for articles published from March 2010 to March 2016 using the following search terms: interleukins, interleukin-2, Candida spp., and immunosuppression. Data from our own studies were also reviewed. Here, we provide an overview focusing on the ability of IL-2 to induce a large panel of trafficking receptors in skin inflammation and control T helper (Th)2 cytokine production in response to contact with Candida spp. Immunocompromised patients have reduced capacity to secrete Th1-related cytokines such as IL-2. The ability to secrete the Th1-related cytokine IL-2 is low in immunocompromised patients. This prevents an efficient Th1 immune response to Candida spp. antigens, making immunocompromised patients more susceptible to candidal infections.

  11. Characterization of histamine-releasing activity: role of cytokines and IgE heterogeneity.

    PubMed

    Liao, T N; Hsieh, K H

    1992-07-01

    Histamine-releasing factors (HRFs) are a group of cytokines that cause histamine release (HR) from basophils and mast cells. The concept of the priming effect of cytokines and the heterogeneity of IgE involved in the HRF-induced HR have been emphasized in recent years. In this study, we performed a series of experiments to elucidate the above-mentioned hypotheses. The stock HRF were obtained by stimulating mononuclear cells (MNC) with phytohemagglutinin (PHA). Maximal activity was observed 36 hr after culture. By gel filtration, HRF was eluted with a peak activity ranging from 12 to 18 KD. A large portion (75%) of HRF activity could be neutralized by a combination of antibodies against interleukin 1 (IL-1), IL-3, IL-8, granulocyte-macrophage colony-stimulating factor (GM-CSF), and tumor necrosis factor-alpha (TNF-alpha). The stimulation of basophils with 100 ng/ml each of IL-3, IL-6, IL-7, GM-CSF, or TNF-alpha alone caused 10% HR; however, when the cells were pretreated with 10 ng/ml of either IL-3, IL-6, IL-7, IL-8, TNF-alpha, or GM-CSF and then stimulated with anti-IgE, a marked increase in HR was regularly observed. The combination of 100 ng/ml each of IL-1, IL-3, IL-8, GM-CSF, and TNF-alpha could induce only about 20% HR; furthermore, such combinations did not have an additive or synergistic priming effect on anti-IgE-induced HR compared to the effect of single cytokines. Stripping of surface-bound IgE with lactic acid markedly reduced the capacity of basophils to release histamine in response to MNC-HRF and anti-IgE. Passive sensitization of IgE-stripped basophils with high-HRF responders' serum could restore their responsiveness to both MNC-HRF and anti-IgE, but passive sensitization with low-HRF responders' serum could restore responsiveness to anti-IgE only. Moreover, passage of MNC-HRF through high-, but not low-HRF, responders' IgE-Sepharose columns significantly reduced the HR activity of MNC-HRF. Finally, although the eluant could induce only 10% HR

  12. Chronic Ethanol consumption modulates growth factor release, mucosal cytokine production and microRNA expression in nonhuman primates

    PubMed Central

    Asquith, Mark; Pasala, Sumana; Engelmann, Flora; Haberthur, Kristen; Meyer, Christine; Park, Byung; Grant, Kathleen A.; Messaoudi, Ilhem

    2013-01-01

    BACKGROUND Chronic alcohol consumption has been associated with enhanced susceptibility to both systemic and mucosal infections. However, the exact mechanisms underlying this enhanced susceptibility remain incompletely understood. METHODS Using a nonhuman primate model of ethanol self-administration, we examined the impact of chronic alcohol exposure on immune homeostasis, cytokine and growth factor production in peripheral blood, lung and intestinal mucosa following twelve months of chronic ethanol exposure. RESULTS Ethanol exposure inhibited activation-induced production of growth factors HGF, G-CSF and VEGF by peripheral blood mononuclear cells (PBMC). Moreover, ethanol significantly reduced the frequency of colonic Th1 and Th17 cells in a dose-dependent manner. In contrast, we did not observe differences in lymphocyte frequency or soluble factor production in the lung of ethanol-consuming animals. To uncover mechanisms underlying reduced growth factor and Th1/Th17 cytokine production, we compared expression levels of microRNAs in PBMC and intestinal mucosa. Our analysis revealed ethanol-dependent upregulation of distinct microRNAs in affected tissues (miR-181a and miR-221 in PBMC; miR-155 in colon). Moreover, we were able to detect reduced expression of the transcription factors STAT3 and ARNT, which regulate expression of VEGF, G-CSF and HGF and contain targets for these microRNAs. To confirm and extend these observations, PBMC were transfected with either mimics or antagomirs of miR181 and 221and protein levels of the transcription factors and growth factors were determined. Transfection of microRNA mimics led to a reduction in both STAT-3/ARNT as well as VEGF/HGF/G-CSF levels. The opposite outcome was observed when microRNA antagomirs were transfected CONCLUSION Chronic ethanol consumption significantly disrupts both peripheral and mucosal immune homeostasis, and this dysregulation may be mediated by changes in microRNA expression. PMID:24329418

  13. [Production of recombinant human interleukin-38 and its inhibitory effect on the expression of proinflammatory cytokines in THP-1 cells].

    PubMed

    Yuan, X L; Li, Y; Pan, X H; Zhou, M; Gao, Q Y; Li, M C

    2016-01-01

    Interleukin (IL)-38 is the latest member of the IL-1 cytokine family. However, as a result of lacking efficient method to generate relatively large quantity of IL-38, its precise functions are poorly understood. In the present study, the cloning, expression, purification, and activity analysis of recombinant human IL-38 was described. Human IL-38 cDNA was cloned into the prokaryotic expression vector pET-44. The recombinant IL-38 containing a C-hexahistidine tag was expressed in Escherichia coli BL21 (DE3) which induced by isopropyl-β-D-thiogalactoside. The expressed fusion protein was purified by Ni-NTA affinity chromatography. IL-38 protein was largely found in the soluble fraction. The purified IL-38 appeared a single band on SDS-PAGE, the yield of IL-38 was 4 mg from 1 L of bacterial culture, and the purity was more than 98% with low endotoxin level (<0.1 EU/μg). Western blotting confirmed the identity of the purified protein. Activity analysis showed that IL-38 can inhibit effectively the expression of proinflammatory cytokines, such as tumor necrosis factor-α, IL-1β, IL-17, and monocyte chemoattractant protein-1 in lipopolysaccharide-activated THP-1 cells. The production and characterization of biologically active IL-38 will be beneficial for its potential role in clinical applications.

  14. Associations of postpartum sleep, stress, and depressive symptoms with LPS-stimulated cytokine production among African American and White women.

    PubMed

    Christian, Lisa M; Kowalsky, Jennifer M; Mitchell, Amanda M; Porter, Kyle

    2018-03-15

    Postpartum is a period of unique psychosocial stress characterized by sleep disturbance, risk for depressed mood, and heightened parenting stress. However, data on effects of these exposures on inflammatory immune function are limited. This study examined associations among sleep, psychosocial stress (i.e., parenting stress, general perceived stress), mood (i.e., depressive symptoms), serum cytokine levels, and LPS-stimulated proinflammatory cytokine production among 69 women (32 African American, 37 White) assessed at 7-10weeks postpartum. No associations between behavioral measures and serum cytokine levels were observed among women of either race. In African American women, but not Whites, poorer sleep quality, greater parenting stress, and greater depressive symptoms were associated with greater LPS-stimulated IL-6 and IL-8 production (ps≤0.05). Also in African Americans, greater general perceived stress was associated with greater IL-8 production, and greater depressive symptoms with greater stimulated TNF-α production (ps≤0.05). Simple mediation models highlighted the bidirectional relationship between stress and sleep in relation to inflammation among African American women. Significant effects of both stress/distress and poor sleep quality on proinflammatory cytokine production during postpartum were observed uniquely among African American women. These data are consistent with an allostatic load model which predicts that conditions of chronic stress impart vulnerability to dysregulated responses to novel stressor exposures. The bidirectional nature of the stress-sleep relationship has clinical relevance. Studies examining whether interventions focused on one or both of these psychological factors during postpartum is beneficial for inflammatory profiles would be informative. In addition, examination of these models in relation to maternal health at postpartum, including delivery related wounds and other infections, is warranted. Copyright © 2018

  15. Cloning and expression of recombinant equine interleukin-3 and its effect on sulfidoleukotriene and cytokine production by equine peripheral blood leukocytes.

    PubMed

    Janda, Jozef; Lehmann, Melissa; Luttmann, Werner; Marti, Eliane

    2015-02-15

    Interleukin-3 is a growth and differentiation factor for various hematopoietic cells. IL-3 also enhances stimulus-dependent release of mediators and cytokine production by mature basophils. Function of IL-3 has not been studied in horses because of lack of horse-specific reagents. Our aim was to produce recombinant equine IL-3 and test its effect on sulfidoleukotriene and cytokine production by equine peripheral blood leukocytes (PBL). Equine IL-3 was cloned, expressed in E. coli and purified. PBL of 19 healthy and 20 insect bite hypersensitivity (IBH)-affected horses were stimulated with Culicoides nubeculosus extract with or without IL-3. Sulfidoleukotriene (sLT) production was measured in supernatants by ELISA and mRNA expression of IL-4, IL-13 and thymic stromal lymphopoietin (TSLP) assessed in cell lysate by quantitative real-time PCR. Recombinant equine IL-3 (req-IL-3) had a dose dependent effect on sLT production by stimulated equine PBL and significantly increased IL-4, IL-13 and TSLP expression compared to non-primed cells. IL-3 priming significantly increased Culicoides-induced sLT production in IBH-affected but not in non-affected horses and was particularly effective in young IBH-affected horses (≤ 3 years). A functionally active recombinant equine IL-3 has been produced which will be useful for future immunological studies in horses. It will also allow improving the sensitivity of cellular in vitro tests for allergy diagnosis in horses. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Characteristic cytokine generation patterns in cancer cells and infiltrating lymphocytes in oral squamous cell carcinomas and the influence of chemoradiation combined with immunotherapy on these patterns.

    PubMed

    Yamamoto, Tetsuya; Kimura, Tsuyoshi; Ueta, Eisaku; Tatemoto, Yukihiro; Osaki, Tokio

    2003-01-01

    Cytokines produced by tumor cells and tumor-infiltrating lymphocytes (TIL) appear to regulate tumor cell growth and the cytotoxic activity of TIL. The objectives of the present study were to investigate cytokine generation patterns in tumor cells and TIL and to examine the influence of cancer therapy on this cytokine production and the cytotoxic activity of TIL. We determined the levels of cytokines produced by tumor cells and TIL in vitro and measured the cytotoxic activity of TIL against Daudi cells in patients with oral squamous cell carcinoma (OSC) before and 1 week after the start of concomitant chemo-radio-immunotherapy. Before the therapy, OSC cells generated higher levels of granulocyte-macrophage colony-stimulating factor, tumor necrosis factor-alpha (TNF-alpha) and transforming growth factor-beta (TGF-beta) than did oral keratinocytes isolated from the noninflamed gingivae of healthy individuals, but both kinds of cells generated similar levels of interleukin (IL)-1beta and IL-6. Compared with peripheral blood mononuclear cells (PBMC) of the patients, TIL produced higher levels of IL-1beta, IL-6, IL-10, TNF-alpha and TGF-beta, whereas their production of IL-12 and interferon-gamma (IFN-gamma) was only slightly higher than that in PBMC. After 1 week of therapy, the cytokine production by OSC cells had largely decreased, while the production of TNF-alpha, IFN-gamma, TGF-beta and IL-12 by TIL had increased greatly, although other cytokine levels were almost constant during the investigations. The cytotoxic activity of TIL was higher than that of PBMC before the therapy, and this activity was strongly increased by 1 week of therapy. These results suggest that the cytokine productivities of TIL and tumor cells differ from those of PBMC and normal keratinocytes, respectively, and that chemo-radio-immunotherapy modulates in situ cytokine generation, which is advantageous for inhibition of tumor cell growth and activation of TIL. Copyright 2003 S. Karger AG

  17. Suppression of inflammatory reactions by terpinen-4-ol, a main constituent of tea tree oil, in a murine model of oral candidiasis and its suppressive activity to cytokine production of macrophages in vitro.

    PubMed

    Ninomiya, Kentaro; Hayama, Kazumi; Ishijima, Sanae A; Maruyama, Naho; Irie, Hiroshi; Kurihara, Junichi; Abe, Shigeru

    2013-01-01

    The onset of oral candidiasis is accompanied by inflammatory symptoms such as pain in the tongue, edema or tissue damage and lowers the quality of life (QOL) of the patient. In a murine oral candidiasis model, the effects were studied of terpinen-4-ol (T-4-ol), one of the main constituents of tea tree oil, Melaleuca alternifolia, on inflammatory reactions. When immunosuppressed mice were orally infected with Candida albicans, their tongues showed inflammatory symptoms within 24 h after the infection, which was monitored by an increase of myeloperoxidase activity and macrophage inflammatory protein-2 in their tongue homogenates. Oral treatment with 50 µL of 40 mg/mL terpinen-4-ol 3h after the Candida infection clearly suppressed the increase of these inflammatory parameters. In vitro analysis of the effects of terpinen-4-ol on cytokine secretion of macrophages indicated that 800 µg/mL of this substance significantly inhibited the cytokine production of the macrophages cultured in the presence of heat-killed C. albicans cells. Based on these findings, the role of the anti-inflammatory action of T-4-ol in its therapeutic activity against oral candidiasis was discussed.

  18. Echinacea purpurea (L.) Moench modulates human T-cell cytokine response☆

    PubMed Central

    Fonseca, Fabiana N.; Papanicolaou, Genovefa; Lin, Hong; Lau, Clara B.S.; Kennelly, Edward J.; Cassileth, Barrie R.; Cunningham-Rundles, Susanna

    2014-01-01

    The study objective was to evaluate the composition of a neutral and weakly acidic water-soluble extract from Echinacea purpurea (L.) Moench (EchNWA) previously shown to modify murine influenza infection, and to assess immunomodulatory effects on human T-cells. EchNWA extract from fresh aerial parts was extracted with water, ethanolic precipitation, and size-exclusion chromatography. The chemical profile of EchNWA was characterized by chromatography (size-exclusion, HPLC, GC–MS), and small molecule finger-print analysis performed by HPLC–PDA. Jurkat T-cells at high and low cell density were pretreated or not with doses of EchNWA, followed by activation with phorbol 12-myristate 13-acetate plus ionomycin (PMA+I). Interleukin-2 (IL-2) and interferon gamma (IFNg) cytokine secretions were measured by multi-cytokine luminex technology. Results showed that EchNWA contains 80% polysaccharides, predominantly a 10 kDa entity; phenolic compounds, cynarin, cichoric and caftaric acids, but no detectable alkylamides. Cytokine production required stimulation and was lower after PMA+I activation in high-density compared to low-density conditions. EchNWA mediated a strong dose-dependent enhancement of high-density T-cell production of IL-2 and IFNg response to PMA+I. EchNWA alone did not stimulate T-cells. EchNWA enhanced mean fluorescence intensity of IL-2 in Jurkat T-cells activated by PMA+1 or ionomycin alone. Conversely EchNWA mediated modest but significant suppression of IFNg response and reduced the percentage of CD25+ T-cells under low-density conditions. Conclusions are that EchNWA polysaccharides, but not phenolic compounds have dose-related adjuvant effects on human T-cell cytokine responses characterized by enhancing and suppressive effects that are regulated by T-cell density. PMID:24434371

  19. Anesthesiologists at work: an increase in pro-inflammatory and Th2 cytokine production, and alterations in proliferative immune responses.

    PubMed

    Beilin, B; Greenfeld, K; Abiri, N; Yardeni, I Z; Bessler, H; Ben-Eliyahu, S

    2006-11-01

    Anesthesiologists are a population at high risk of alcohol and drug abuse, depression, suicide, and psychiatric hospitalization. The impact of their working milieu on specific immune indices has scarcely been studied, and it is assumed that immune perturbations may contribute to some of the above risks. This study took advantage of an unplanned, 3-month long strike of anesthesiologists, and explored its relations to specific immune measures. We assessed induced cytokine production and lymphocytes proliferative responses in blood samples taken from 10 anesthesiologists just before the strike and at its end, after a long period of markedly reduced workload. The results indicated that the proliferative responses to phytohemagglutinin (PHA) and concanavalin A (Con A) were significantly lower at the end of the strike. At this time point, we observed a significant decrease in the production of interleukin-6 (IL-6), IL-10 and IL1ra levels, and a significant increase in IL-2 production. A strong trend towards a decline in tumor necrosis factor-alpha (TNF-alpha) levels was evident, while levels of IL-1beta were unchanged. These findings suggest that the working conditions of anesthesiologists are associated with specific immune alterations, including a shift towards a Th2 cytokines' dominance, and an elevated pro-inflammatory cytokine response. A reduced Th1 profile has been related to increased susceptibility to infections, and high pro-inflammatory cytokine levels were recently proposed as etiological factors in cardiovascular diseases and in depression.

  20. Cytokines and the neurodevelopmental basis of mental illness

    PubMed Central

    Ratnayake, Udani; Quinn, Tracey; Walker, David W.; Dickinson, Hayley

    2013-01-01

    Epidemiological studies suggest that prenatal exposure to different types of viral or bacterial infections may be associated with similar outcomes; i.e., an increased risk of mental illness disorders in the offspring. Infections arising from various causes have similar debilitating effects in later life, suggesting that the exact pathogen may not be the critical factor in determining the neurological and cognitive outcome in the offspring. Instead, it is thought that response of the innate immune system, specifically the increased production of inflammatory cytokines, may be the critical mediator in altering fetal brain development pre-disposing the offspring to mental illness disorders later in life. Inflammatory cytokines are essential for normal brain development. Factors such as the site of cytokine production, a change in balance between anti- and pro- inflammatory cytokines, placental transfer of cytokines, the effects of cytokines on glial cells, and the effects of glucocorticoids are important when evaluating the impact of maternal infection on fetal brain development. Although it is clear that cytokines are altered in the fetal brain following maternal infection, further evidence is required to determine if cytokines are the critical factor that alters the trajectory of brain development, subsequently leading to postnatal behavioral and neurological abnormalities. PMID:24146637

  1. Organic UV filters exposure induces the production of inflammatory cytokines in human macrophages.

    PubMed

    Ao, Junjie; Yuan, Tao; Gao, Li; Yu, Xiaodan; Zhao, Xiaodong; Tian, Ying; Ding, Wenjin; Ma, Yuning; Shen, Zhemin

    2018-09-01

    Organic ultraviolet (UV) filters, found in many personal care products, are considered emerging contaminants due to growing concerns about potential long-term deleterious effects. We investigated the immunomodulatory effects of four commonly used organic UV filters (2-hydroxy-4-methoxybenzophenone, BP-3; 4-methylbenzylidene camphor, 4-MBC; 2-ethylhexyl 4-methoxycinnamate, EHMC; and butyl-methoxydibenzoylmethane, BDM) on human macrophages. Our results indicated that exposure to these four UV filters significantly increased the production of various inflammatory cytokines in macrophages, particular tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). After exposure to the UV filters, a significant 1.1-1.5 fold increase were found in TNF-α and IL-6 mRNA expression. In addition, both the p38 MAPK and the NF-κB signaling pathways were enhanced 2 to 10 times in terms of phosphorylation after exposure to the UV filters, suggesting that these pathways are involved in the release of TNF-α and IL-6. Molecular docking analysis predicted that all four UV filter molecules would efficiently bind transforming growth factor beta-activated kinase 1 (TAK1), which is responsible for the activation of the p38 MAPK and NF-κB pathways. Our results therefore demonstrate that exposure to the four organic UV filters investigated may alter human immune system function. It provides new clue for the development of asthma or allergic diseases in terms of the environmental pollutants. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Effects of vitamin K3 and K5 on proliferation, cytokine production, and regulatory T cell-frequency in human peripheral-blood mononuclear cells.

    PubMed

    Hatanaka, Hiroshige; Ishizawa, Hitomi; Nakamura, Yurie; Tadokoro, Hiroko; Tanaka, Sachiko; Onda, Kenji; Sugiyama, Kentaro; Hirano, Toshihiko

    2014-03-18

    The effects of vitamin K (VK) derivatives VK3 and VK5 on human immune cells have not been extensively investigated. We examined the effects of VK3 and VK5 on proliferation, apoptosis, cytokine production, and CD4+CD25+Foxp3+ regulatory T (Treg) cell-frequency in human peripheral blood mononuclear cells (PBMCs) activated by T cell mitogen in vitro. Anti-proliferative effects of VK3 and VK5 on T-cell mitogen activated PBMCs were assessed by WST assay procedures. Apoptotic cells were determined as Annexin V positive/propidium iodide (PI) negative cells. Cytokine concentrations in the supernatant of the culture medium were measured with bead-array procedures followed by analysis with flow cytometry. The CD4+CD25+Foxp3+Treg cells in mitogen-activated PBMCs were stained with fluorescence-labeled specific antibodies followed by flow cytometry. VK3 and VK5 suppressed the mitogen-activated proliferation of PBMCs significantly at 10-100μM (p<0.05). The data also suggest that VK3 and VK5 promote apoptosis in the mitogen-activated T cells. VK3 and VK5 significantly inhibited the production of tumor necrosis factor (TNF) α, interleukin (IL)-4, -6, and -10 from the activated PBMCs at 10-100μM (p<0.05). In contrast, VK3 and VK5 significantly increased Treg cell-frequency in the activated PBMCs at concentrations more than 10μM (p<0.001). Our data suggest that VK3 and VK5 attenuate T cell mediated immunity by inhibiting the proliferative response and inducing apoptosis in activated T cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Alteration of serum inflammatory cytokines in active pulmonary tuberculosis following anti-tuberculosis drug therapy.

    PubMed

    Chowdhury, Imran Hussain; Ahmed, Albin Mostaque; Choudhuri, Subhadip; Sen, Aditi; Hazra, Avijit; Pal, Nishith Kumar; Bhattacharya, Basudev; Bahar, Bojlul

    2014-11-01

    Active pulmonary tuberculosis (APTB) is associated with a failure of the host immune system to control the invading Mycobacterium tuberculosis (Mtb). The objective of this study was to quantify and assess the role of serum inflammatory cytokines in active pulmonary tuberculosis patients following anti-tuberculosis drug (ATD) therapy. Blood samples were collected from APTB patients and normal healthy subjects (NHS) (total n=204) at baseline and 2, 4 and 6 months post-therapy and the abundance of serum inflammatory cytokines were measured by cytokine specific ELISA. Compared to NHS, APTB patients at baseline had higher levels of serum pro-inflammatory cytokines IL-12p40 (P<0.001), IFN-γ (P<0.001), TNF-α (P<0.01), IL-1β (P<0.001) and IL-6 (P<0.001) and anti-inflammatory cytokines IL-10 (P<0.001) and TGF-β1 (P<0.001) while there was no change in the level of IL-4. In APTB patients, the serum levels of IFN-γ, TNF-α, IL-6 and TGF-β1 directly relate to the bacterial load while the TNF-α, IL-1β, IL-6 and TGF-β1 relate to radiological severity. At baseline, the IL-6 level in NHS and APTB patients differed most and following ATD therapy, this level rapidly decreased and stabilized by 4-month in APTB patients. It is concluded that a subtle reduction in the serum level of IL-6 of the APTB patients following ATD therapy might play a vital role in immune-protection of the host against Mtb infection and hence the serum IL-6 level can be a useful marker to diagnose the effectiveness of therapy in the patients. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Kinetics of tumor necrosis factor production by photodynamic-therapy-activated macrophages

    NASA Astrophysics Data System (ADS)

    Pass, Harvey I.; Evans, Steven; Perry, Roger; Matthews, Wilbert

    1990-07-01

    The ability of photodynamic therapy (PDT) to activate macrophages and produce cytokines, specifically tumor necrosis factor (TNF), is unknown. Three day thioglycolate elicited macrophages were incubated with 25 ug/mi Photofrin II (P11) for 2 hour, after which they were subjected to 630 nm light with fluences of 0-1800 J/m. The amount of TNF produced in the system as well as macrophage viability was measured 1, 3, 6, and 18 hours after POT. The level of TNF produced by the macrophages was significantly elevated over control levels 6 hours after POT and the absolute level of tumor necrosis factor production was influenced by the treatment energy and the resulting macrophage cytotoxicity. These data suggest that POT therapy induced cytotoxicity in vivo may be amplified by macrophage stimulation to secrete cytokines and these cytokines may also participate in other direct/indirect photodynamic therapy effects, i.e. immunosuppression, vascular effects.

  5. High levels of interleukin-8, soluble CD4 and soluble CD8 in bullous pemphigoid blister fluid. The relationship between local cytokine production and lesional T-cell activities.

    PubMed

    Sun, C C; Wu, J; Wong, T T; Wang, L F; Chuan, M T

    2000-12-01

    Bullous pemphigoid (BP) is an inflammatory subepidermal blistering disease associated with autoantibodies that recognize hemidesmosomal proteins. In addition to autoantibodies, the cell-mediated immune reaction is considered to play an important part in blister formation. Objectives To investigate some T-cell activation markers and inflammatory cytokines in the blister fluid and sera of patients with BP. We measured soluble CD4 (sCD4) and soluble CD8 (sCD8), which have been, respectively, associated with CD4 and CD8 T-cell activation. Enzyme-linked immunosorbent assays were also used to quantify the production of the leucocyte chemoattractant interleukin (IL) -8 and of the cytokines IL-1alpha, IL-1beta, IL-6, IL-10 and tumour necrosis factor-alpha in the blister fluid and sera of 11 patients with BP. The mean +/- SD level of sCD4 in patients' blisters (42.4 +/- 25.0 units mL-1) was significantly elevated (P < 0.005) compared with that in their sera (11.2 +/- 8.9) and that in the suction blisters of 10 healthy people (11.4 +/- 5.4; P < 0.005). Mean +/- SD IL-8 concentrations in BP blisters (4683.6 +/- 3878.1 pg mL-1) were much higher than those in their sera (17.1 +/- 18.9; P < 0.001), and were very significantly elevated (P < 0.005) in comparison with those in suction blisters of healthy persons (512 +/- 292). sCD4 levels in BP blisters were inversely related to IL-10 levels (P = 0. 03, r2 = 0.85), IL-8 levels were positively related to sCD8 levels (P = 0.01, r2 = 0.54), and IL-1beta levels were positively related to sCD8 concentrations (P < 0.005, r2 = 0.65). The correlations suggest that there is a delicately orchestrated network of cytokines and cell-mediated immunity operating in BP blisters.

  6. Epigenetic changes in T-cell and monocyte signatures and production of neurotoxic cytokines in ALS patients

    PubMed Central

    Lam, Larry; Chin, Lydia; Halder, Ramesh C.; Sagong, Bien; Famenini, Sam; Sayre, James; Montoya, Dennis; Rubbi, Liudmilla; Pellegrini, Matteo; Fiala, Milan

    2016-01-01

    We have investigated transcriptional and epigenetic differences in peripheral blood mononuclear cells (PBMCs) of monozygotic female twins discordant in the diagnosis of amyotrophic lateral sclerosis (ALS). Exploring DNA methylation differences by reduced representation bisulfite sequencing (RRBS), we determined that, over time, the ALS twin developed higher abundances of the CD14 macrophages and lower abundances of T cells compared to the non-ALS twin. Higher macrophage signature in the ALS twin was also shown by RNA sequencing (RNA-seq). Moreover, the twins differed in the methylome at loci near several genes, including EGFR and TNFRSF11A, and in the pathways related to the tretinoin and H3K27me3 markers. We also tested cytokine production by PBMCs. The ALS twin’s PBMCs spontaneously produced IL-6 and TNF-α, whereas PBMCs of the healthy twin produced these cytokines only when stimulated by superoxide dismutase (SOD)-1. These results and flow cytometric detection of CD45 and CD127 suggest the presence of memory T cells in both twins, but effector T cells only in the ALS twin. The ALS twin’s PBMC supernatants, but not the healthy twin’s, were toxic to rat cortical neurons, and this toxicity was strongly inhibited by an IL-6 receptor antibody (tocilizumab) and less well by TNF-α and IL-1β antibodies. The putative neurotoxicity of IL-6 and TNF-α is in agreement with a high expression of these cytokines on infiltrating macrophages in the ALS spinal cord. We hypothesize that higher macrophage abundance and increased neurotoxic cytokines have a fundamental role in the phenotype and treatment of certain individuals with ALS.—Lam, L., Chin, L., Halder, R. C., Sagong, B., Famenini, S., Sayre, J., Montoya, D., Rubbi L., Pellegrini, M., Fiala, M. Epigenetic changes in T-cell and monocyte signatures and production of neurotoxic cytokines in ALS patients. PMID:27368295

  7. Cytokines and their STATs in cutaneous and visceral leishmaniasis.

    PubMed

    Cummings, Hannah E; Tuladhar, Rashmi; Satoskar, Abhay R

    2010-01-01

    Cytokines play a critical role in shaping the host immune response to Leishmania infection and directing the development of protective and non-protective immunities during infection. Cytokines exert their biological activities through the activation and translocation of transcription factors into the nucleus whether they drive the expression of specific cytokine-responsive genes. Signal transducer and activator of transcription (STATs) are transcription factors which play a critical role in mediating signaling downstream of cytokine receptors and are important for shaping the host immune response during Leishmania infection. Here we discuss the signature cytokines and their associated STATs involved in the host immune response during cutaneous and visceral leishmaniasis.

  8. Differentiated THP-1 Cells Exposed to Pathogenic and Nonpathogenic Borrelia Species Demonstrate Minimal Differences in Production of Four Inflammatory Cytokines.

    PubMed

    Stokes, John V; Moraru, Gail M; McIntosh, Chelsea; Kummari, Evangel; Rausch, Keiko; Varela-Stokes, Andrea S

    2016-11-01

    Tick-borne borreliae include Lyme disease and relapsing fever agents, and they are transmitted primarily by ixodid (hard) and argasid (soft) tick vectors, respectively. Tick-host interactions during feeding are complex, with host immune responses influenced by biological differences in tick feeding and individual differences within and between host species. One of the first encounters for spirochetes entering vertebrate host skin is with local antigen-presenting cells, regardless of whether the tick-associated Borrelia sp. is pathogenic. In this study, we performed a basic comparison of cytokine responses in THP-1-derived macrophages after exposure to selected borreliae, including a nonpathogen. By using THP-1 cells, differentiated to macrophages, we eliminated variations in host response and reduced the system to an in vitro model to evaluate the extent to which the Borrelia spp. influence cytokine production. Differentiated THP-1 cells were exposed to four Borrelia spp., Borrelia hermsii (DAH), Borrelia burgdorferi (B31), B. burgdorferi (NC-2), or Borrelia lonestari (LS-1), or lipopolysaccharides (LPS) (activated) or media (no treatment) controls. Intracellular and secreted interferon (IFN)-γ, interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α were measured using flow cytometric and Luminex-based assays, respectively, at 6, 24, and 48 h postexposure time points. Using a general linear model ANOVA for each cytokine, treatment (all Borrelia spp. and LPS compared to no treatment) had a significant effect on secreted TNF-α only. Time point had a significant effect on intracellular IFN-γ, TNF-α and IL-6. However, we did not see significant differences in selected cytokines among Borrelia spp. Thus, in this model, we were unable to distinguish pathogenic from nonpathogenic borreliae using the limited array of selected cytokines. While unique immune profiles may be detectable in an in vitro model and may reveal predictors for pathogenicity in borreliae

  9. Dynamic Changes in Pro- and Anti-Inflammatory Cytokine Profiles and Gamma Interferon Receptor Signaling Integrity Correlate with Tuberculosis Disease Activity and Response to Curative Treatment▿

    PubMed Central

    Sahiratmadja, Edhyana; Alisjahbana, Bachti; de Boer, Tjitske; Adnan, Iskandar; Maya, Anugrah; Danusantoso, Halim; Nelwan, Ronald H. H.; Marzuki, Sangkot; van der Meer, Jos W. M.; van Crevel, Reinout; van de Vosse, Esther; Ottenhoff, Tom H. M.

    2007-01-01

    Pro- and anti-inflammatory cytokines and their signaling pathways play key roles in protection from and pathogenesis of mycobacterial infection, and their balance and dynamic changes may control or predict clinical outcome. Peripheral blood cells' capacity to produce proinflammatory (tumor necrosis factor alpha [TNF-α], interleukin-12/23p40 [IL-12/23p40], and gamma interferon [IFN-γ]) and anti-inflammatory (IL-10) cytokines in response to Mycobacterium tuberculosis or unrelated stimuli (lipopolysaccharide, phytohemagglutinin) was studied in 93 pulmonary tuberculosis (TB) patients and 127 healthy controls from Indonesia. Their cells' ability to respond to IFN-γ was examined to investigate whether M. tuberculosis infection can also inhibit IFN-γ receptor (IFN-γR) signaling. Although there was interindividual variability in the observed responses, the overall results revealed that M. tuberculosis-induced TNF-α and IFN-γ levels showed opposite trends. Whereas TNF-α production was higher in active-TB patients than in controls, IFN-γ production was strongly depressed during active TB, correlated inversely with TB disease severity, and increased during therapy. By contrast, mitogen-induced IFN-γ production, although lower in patients than in controls, did not change during treatment, suggesting an M. tuberculosis-specific and reversible component in the depression of IFN-γ. Depressed IFN-γ production was not due to decreased IL-12/IL-23 production. Importantly, IFN-γ-inducible responses were also significantly depressed during active TB and normalized during treatment, revealing disease activity-related and reversible impairment in IFN-γR signaling in TB. Finally, IFN-γ/IL-10 ratios significantly correlated with TB cure. Taken together, these results show that M. tuberculosis-specific stimulation of IFN-γ (but not TNF-α) production and IFN-γR signaling are significantly depressed in active TB, correlate with TB disease severity and activity, and

  10. The innate defense antimicrobial peptides hBD3 and RNase7 are induced in human umbilical vein endothelial cells by classical inflammatory cytokines but not Th17 cytokines.

    PubMed

    Burgey, Christine; Kern, Winfried V; Römer, Winfried; Sakinc, Türkan; Rieg, Siegbert

    2015-05-01

    Antimicrobial peptides are multifunctional effector molecules of innate immunity. In this study we investigated whether endothelial cells actively contribute to innate defense mechanisms by expression of antimicrobial peptides. We therefore stimulated human umbilical vein endothelial cells (HUVEC) with inflammatory cytokines, Th17 cytokines, heat-inactivated bacteria, bacterial conditioned medium (BCM) of Staphylococcus aureus and Streptococcus sanguinis, and lipoteichoic acid (LTA). Stimulation with single cytokines induced discrete expression of human β-defensin 3 (hBD3) by IFN-γ or IL-1β and of ribonuclease 7 (RNase7) by TNF-α without any effects on LL-37 gene expression. Stronger hBD3 and RNase7 induction was observed after combined stimulation with IL-1β, TNF-α and IFN-γ and was confirmed by high hBD3 and RNase7 peptide levels in cell culture supernatants. In contrast, Th17 cytokines or stimulation with LTA did not result in AMP production. Moreover, only BCM of an invasive S. aureus bacteremia isolate induced hBD3 in HUVEC. We conclude that endothelial cells actively contribute to prevent dissemination of pathogens at the blood-tissue-barrier by production of AMPs that exhibit microbicidal and immunomodulatory functions. Further investigations should focus on tissue-specific AMP induction in different endothelial cell types, on pathogen-specific induction patterns and potentially involved pattern-recognition receptors of endothelial cells. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  11. Lactosucrose attenuates intestinal inflammation by promoting Th2 cytokine production and enhancing CD86 expression in colitic rats.

    PubMed

    Zhou, Yan; Ruan, Zheng; Zhou, Xiaoli; Huang, Xiaoliu; Li, Hua; Wang, Ling; Zhang, Cui; Deng, Zeyuan; Wu, Guoyao; Yin, Yulong

    2015-01-01

    Some oligosaccharides have immunoregulatory and anti-inflammatory functions in the intestine. This study investigated the immunoregulatory effect of lactosucrose (LS) on 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitic rats. Alkaline phosphatase activity was increased but myeloperoxidase activity was decreased in the LS-TNBS group, as compared with the TNBS group (colitis rats without receiving LS). LS supplementation stimulated IL-4 and IL-10 production, while up-regulating CD86 expression in dendritic cells. LS supplementation reduced the ratio of CD80/CD86 and the ratio of IFN-γ/IL-4 compared to the TNBS group. Moreover, IFN-γ was significantly correlated with CD80 (r = 0.764, p < 0.01), whereas IL-4 was significantly correlated with CD86 (r = 0.489, p < 0.05). These results indicated that LS attenuated colitis by promoting the production of Th2-type cytokines and rebalancing the ratio of Th1/Th2 and that enhanced IL-4 production is correlated with enhanced CD86 expression in the gut. Therefore, LS is a functional food for patients with inflammatory bowel disease.

  12. Expression of Myostatin in Intrauterine Growth Restriction and Preeclampsia Complicated Pregnancies and Alterations to Cytokine Production by First-Trimester Placental Explants Following Myostatin Treatment.

    PubMed

    Peiris, Hassendrini N; Georgiou, Harry; Lappas, Martha; Kaitu'u-Lino, Tu'uhevaha; Salomón, Carlos; Vaswani, Kanchan; Rice, Gregory E; Mitchell, Murray D

    2015-10-01

    Preeclampsia (PE) and intrauterine growth restriction (IUGR) are major obstetric health problems. Higher levels of T-helper (Th) 1 (proinflammatory) cytokines have been observed in pregnancies complicated with PE and IUGR; this is in contrast to the predominant Th2 (anti-inflammatory) cytokine environment found in uncomplicated pregnancies. Myostatin is best known as a negative regulator of muscle development and reportedly has a role in fat deposition, glucose metabolism, and cytokine modulation (outside the placenta). Myostatin concentrations in plasma and protein expression in placental tissue are significantly higher in women with PE. Expression of myostatin in IUGR and PE-IUGR and the effect of this protein on the cytokine production from the placenta is unknown. In the current study, significant differences were identified in the expression of myostatin in pregnancies complicated with IUGR, PE, and PE with IUGR. Furthermore, cytokine production by first-trimester placental tissues was altered following myostatin treatment. © The Author(s) 2015.

  13. Analysis of Th Cell-related Cytokine Production in Behçet Disease Patients with Uveitis Before and After Infliximab Treatment.

    PubMed

    Takeuchi, Masaru; Karasawa, Yoko; Harimoto, Kohzou; Tanaka, Atsushi; Shibata, Masaki; Sato, Tomohito; Caspi, Rachel R; Ito, Masataka

    2017-02-01

    To examine antigen-stimulated cytokine production by Behçet disease patients (BD) before and after infliximab infusion. PBMCs were obtained before and after infliximab infusion in BD patients with or without recurrent uveitis during at least 1 year of infliximab therapy, and from healthy subjects. PBMCs were cultured with IRBP, and Th-related cytokines in cultures were measured. Levels of IL-4, IL-6, IL-10 IL-17A, IL-17F, IL-31, IFN-γ, and TNFα were higher in BD before infliximab infusion than in healthy subjects, and these levels were the highest in BD with recurrent uveitis. After infliximab infusion, these cytokine levels were reduced to a greater extent in BD without recurrent uveitis than in BD with recurrence. Th-related cytokines produced by IRBP-stimulated PBMCs were elevated in BD, and infliximab infusion suppressed these cytokines to a greater extent in BD without recurrent uveitis than in those with recurrence.

  14. Antibody-cytokine fusion proteins for treatment of cancer: engineering cytokines for improved efficacy and safety.

    PubMed

    Young, Patricia A; Morrison, Sherie L; Timmerman, John M

    2014-10-01

    The true potential of cytokine therapies in cancer treatment is limited by the inability to deliver optimal concentrations into tumor sites due to dose-limiting systemic toxicities. To maximize the efficacy of cytokine therapy, recombinant antibody-cytokine fusion proteins have been constructed by a number of groups to harness the tumor-targeting ability of monoclonal antibodies. The aim is to guide cytokines specifically to tumor sites where they might stimulate more optimal anti-tumor immune responses while avoiding the systemic toxicities of free cytokine therapy. Antibody-cytokine fusion proteins containing interleukin (IL)-2, IL-12, IL-21, tumor necrosis factor (TNF)α, and interferons (IFNs) α, β, and γ have been constructed and have shown anti-tumor activity in preclinical and early-phase clinical studies. Future priorities for development of this technology include optimization of tumor targeting, bioactivity of the fused cytokine, and choice of appropriate agents for combination therapies. This review is intended to serve as a framework for engineering an ideal antibody-cytokine fusion protein, focusing on previously developed constructs and their clinical trial results. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Immunostimulatory Activity of the Cytokine-Based Biologic, IRX-2, on Human Papillomavirus-Exposed Langerhans Cells

    PubMed Central

    Da Silva, Diane M.; Woodham, Andrew W.; Naylor, Paul H.; Egan, James E.; Berinstein, Neil L.

    2016-01-01

    Langerhans cells (LCs) are the antigen-presenting cells of the epithelial layer and are responsible for initiating immune responses against skin and mucosa-invading viruses. Human papillomavirus (HPV)-mediated suppression of LC function is a crucial mechanism of HPV immune evasion, which can lead to persistent infection and development of several human cancers, including cervical, anal, and head and neck cancers. The cell-derived cytokine-based biologic, IRX-2, consists of multiple well-defined cytokines and is broadly active on various immune cell subsets. In this study, we investigated primary human LC activation after exposure to HPV16, followed by treatment with IRX-2 in vitro, and evaluated their subsequent ability to induce HPV16-specific T cells. In contrast to its activity on dendritic cells, HPV16 alone is not sufficient to induce phenotypic and functional activation of LCs. However, IRX-2 induces a significant upregulation of antigen presentation and costimulatory molecules, T helper 1 (Th1)-associated cytokine release, and chemokine-directed migration of LCs pre-exposed to HPV16. Furthermore, LCs treated with IRX-2 after HPV16 exposure induced CD8+ T-cell responses against specific HLA-A*0201-binding HPV16 T-cell epitopes. The present study suggests that IRX-2 is an attractive immunomodulator for assisting the immune response in eradication of HPV-infected cells, thereby potentially preventing HPV-induced cancers. PMID:26653678

  16. Immunostimulatory Activity of the Cytokine-Based Biologic, IRX-2, on Human Papillomavirus-Exposed Langerhans Cells.

    PubMed

    Da Silva, Diane M; Woodham, Andrew W; Naylor, Paul H; Egan, James E; Berinstein, Neil L; Kast, W Martin

    2016-05-01

    Langerhans cells (LCs) are the antigen-presenting cells of the epithelial layer and are responsible for initiating immune responses against skin and mucosa-invading viruses. Human papillomavirus (HPV)-mediated suppression of LC function is a crucial mechanism of HPV immune evasion, which can lead to persistent infection and development of several human cancers, including cervical, anal, and head and neck cancers. The cell-derived cytokine-based biologic, IRX-2, consists of multiple well-defined cytokines and is broadly active on various immune cell subsets. In this study, we investigated primary human LC activation after exposure to HPV16, followed by treatment with IRX-2 in vitro, and evaluated their subsequent ability to induce HPV16-specific T cells. In contrast to its activity on dendritic cells, HPV16 alone is not sufficient to induce phenotypic and functional activation of LCs. However, IRX-2 induces a significant upregulation of antigen presentation and costimulatory molecules, T helper 1 (Th1)-associated cytokine release, and chemokine-directed migration of LCs pre-exposed to HPV16. Furthermore, LCs treated with IRX-2 after HPV16 exposure induced CD8(+) T-cell responses against specific HLA-A*0201-binding HPV16 T-cell epitopes. The present study suggests that IRX-2 is an attractive immunomodulator for assisting the immune response in eradication of HPV-infected cells, thereby potentially preventing HPV-induced cancers.

  17. Identification of stimulating and inhibitory epitopes within the heat shock protein 70 molecule that modulate cytokine production and maturation of dendritic cells.

    PubMed

    Wang, Yufei; Whittall, Trevor; McGowan, Edward; Younson, Justine; Kelly, Charles; Bergmeier, Lesley A; Singh, Mahavir; Lehner, Thomas

    2005-03-15

    The 70-kDa microbial heat shock protein (mHSP70) has a profound effect on the immune system, interacting with the CD40 receptor on DC and monocytes to produce cytokines and chemokines. The mHSP70 also induces maturation of dendritic cells (DC) and thus acts as an alternative ligand to CD40L on T cells. In this investigation, we have identified a cytokine-stimulating epitope (peptide 407-426), by activating DC with overlapping synthetic peptides (20-mers) derived from the sequence of mHSP70. This peptide also significantly enhances maturation of DC stimulated by mHSP70 or CD40L. The epitope is located at the base of the peptide-binding groove of HSP70 and has five critical residues. Furthermore, an inhibitory epitope (p457-496) was identified downstream from the peptide-binding groove that inhibits cytokine production and maturation of DC stimulated by HSP70 or CD40L. The p38 MAP kinase phosphorylation is critical in the alternative CD40-HSP70 pathway and is inhibited by p457-496 but enhanced by p407-426.

  18. Prebiotic oligosaccharides reduce proinflammatory cytokines in intestinal Caco-2 cells via activation of PPARγ and peptidoglycan recognition protein 3.

    PubMed

    Zenhom, Marwa; Hyder, Ayman; de Vrese, Michael; Heller, Knut J; Roeder, Thomas; Schrezenmeir, Jürgen

    2011-05-01

    Prebiotic oligosaccharides modulate the intestinal microbiota and beneficially affect the human body by reducing intestinal inflammation. This immunomodulatory effect was assumed to be bacterial in origin. However, some observations suggest that oligosaccharides may exert an antiinflammatory effect per se. We hypothesized that oligosaccharides affect the intestinal immunity via activation of peptidoglycan recognition protein 3 (PGlyRP3), which reduces the expression of proinflammatory cytokines. Caco-2 cells were treated with the oligosaccharides, α3-sialyllactose, or fructooligosaccharides (Raftilose p95), and the effects of these treatments on PGlyRP3 and PPARγ expression, the release and expression of some proinflammatory cytokines, and NF-κB translocation were tested. Both oligosaccharides had antiinflammatory activity; they significantly reduced IL-12 secretion in Caco-2 cells and gene expression of IL-12p35, IL-8, and TNFα. They also reduced the gene expression and nuclear translocation of NF-κB. Both oligosaccharides dose and time dependently induced the production of PGlyRP3, the silencing of which by transfection of Caco-2 cells with specific small interfering RNA targeting PGlyRP3 abolished the antiinflammatory role of both oligosaccharides. Incubation of Caco-2 cells with both oligosaccharides induced PPARγ. Antagonizing PPARγ by culturing the cells with GW9662 for 24 h inhibited the oligosaccharide-induced PGlyRP3 production and the antiinflammatory effect of the oligosaccharides. We conclude that oligosaccharides may exert an antiinflammatory effect by inducing the nuclear receptor PPARγ, which regulates the antiinflammatory PGlyRP3.

  19. A cytokine axis regulates elastin formation and degradation

    PubMed Central

    Sproul, Erin P.; Argraves, W. Scott

    2013-01-01

    Underlying the dynamic regulation of tropoelastin expression and elastin formation in development and disease are transcriptional and post-transcriptional mechanisms that have been the focus of much research. Of particular importance is the cytokine–governed elastin regulatory axis in which the pro-elastogenic activities of transforming growth factor β-1 (TGFβ1) and insulin-like growth factor-I (IGF-I) are opposed by anti-elastogenic activities of basic fibroblast growth factor (bFGF/FGF-2), heparin-binding epidermal growth factor-like growth factor (HB-EGF), EGF, PDGF-BB, TGFα, tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β and noncanonical TGFβ1 signaling. A key mechanistic feature of the regulatory axis is that cytokines influence elastin formation through effects on the cell cycle involving control of cyclin–cyclin dependent kinase complexes and activation of the Ras/MEK/ERK signaling pathway. In this article we provide an overview of the major cytokines/growth factors that modulate elastogenesis and describe the underlying molecular mechanisms for their action on elastin production. PMID:23160093

  20. Microscale to Manufacturing Scale-up of Cell-Free Cytokine Production—A New Approach for Shortening Protein Production Development Timelines

    PubMed Central

    Zawada, James F; Yin, Gang; Steiner, Alexander R; Yang, Junhao; Naresh, Alpana; Roy, Sushmita M; Gold, Daniel S; Heinsohn, Henry G; Murray, Christopher J

    2011-01-01

    Engineering robust protein production and purification of correctly folded biotherapeutic proteins in cell-based systems is often challenging due to the requirements for maintaining complex cellular networks for cell viability and the need to develop associated downstream processes that reproducibly yield biopharmaceutical products with high product quality. Here, we present an alternative Escherichia coli-based open cell-free synthesis (OCFS) system that is optimized for predictable high-yield protein synthesis and folding at any scale with straightforward downstream purification processes. We describe how the linear scalability of OCFS allows rapid process optimization of parameters affecting extract activation, gene sequence optimization, and redox folding conditions for disulfide bond formation at microliter scales. Efficient and predictable high-level protein production can then be achieved using batch processes in standard bioreactors. We show how a fully bioactive protein produced by OCFS from optimized frozen extract can be purified directly using a streamlined purification process that yields a biologically active cytokine, human granulocyte-macrophage colony-stimulating factor, produced at titers of 700 mg/L in 10 h. These results represent a milestone for in vitro protein synthesis, with potential for the cGMP production of disulfide-bonded biotherapeutic proteins. Biotechnol. Bioeng. 2011; 108:1570–1578. © 2011 Wiley Periodicals, Inc. PMID:21337337

  1. Suppressed cytokine production in whole blood cultures is related to iron status and is partially corrected following weight reduction in morbidly obese pre-menopausal women

    USDA-ARS?s Scientific Manuscript database

    Assess ex vivo whole-blood cytokine production and its association with iron status in obese versus non-obese women. Determine the change in ex vivo whole-blood cytokine production six months after restrictive bariatric surgery in the obese group. Subjects were 17 obese (BMI: 46.6 ±7.9 kg/m2) and 1...

  2. Cytokines and major depression.

    PubMed

    Schiepers, Olga J G; Wichers, Marieke C; Maes, Michael

    2005-02-01

    In the research field of psychoneuroimmunology, accumulating evidence has indicated the existence of reciprocal communication pathways between nervous, endocrine and immune systems. In this respect, there has been increasing interest in the putative involvement of the immune system in psychiatric disorders. In the present review, the role of proinflammatory cytokines, such as interleukin (IL)-1, tumour necrosis factor (TNF)-alpha and interferon (IFN)-gamma, in the aetiology and pathophysiology of major depression, is discussed. The 'cytokine hypothesis of depression' implies that proinflammatory cytokines, acting as neuromodulators, represent the key factor in the (central) mediation of the behavioural, neuroendocrine and neurochemical features of depressive disorders. This view is supported by various findings. Several medical illnesses, which are characterised by chronic inflammatory responses, e.g. rheumatoid arthritis, have been reported to be accompanied by depression. In addition, administration of proinflammatory cytokines, e.g. in cancer or hepatitis C therapies, has been found to induce depressive symptomatology. Administration of proinflammatory cytokines in animals induces 'sickness behaviour', which is a pattern of behavioural alterations that is very similar to the behavioural symptoms of depression in humans. The central action of cytokines may also account for the hypothalamic-pituitary-adrenal (HPA) axis hyperactivity that is frequently observed in depressive disorders, as proinflammatory cytokines may cause HPA axis hyperactivity by disturbing the negative feedback inhibition of circulating corticosteroids (CSs) on the HPA axis. Concerning the deficiency in serotonergic (5-HT) neurotransmission that is concomitant with major depression, cytokines may reduce 5-HT levels by lowering the availability of its precursor tryptophan (TRP) through activation of the TRP-metabolising enzyme indoleamine-2,3-dioxygenase (IDO). Although the central effects of

  3. Cytokine-mediated inflammation, tumorigenesis, and disease-associated JAK/STAT/SOCS signaling circuits in the CNS.

    PubMed

    Campbell, Iain L

    2005-04-01

    Cytokines are plurifunctional mediators of cellular communication. The CNS biology of this family of molecules has been explored by transgenic approaches that targeted the expression of individual cytokine genes to specific cells in the CNS of mice. Such transgenic animals exhibit wide-ranging structural and functional alterations that are linked to the development of distinct neuroinflammatory responses and gene expression profiles specific for each cytokine. The unique actions of individual cytokines result from the activation of specific receptor-coupled cellular signal transduction pathways such as the JAK/STAT tyrosine kinase signaling cascade. The cerebral expression of various STATs, their activation, as well as that of the major physiological inhibitors of this pathway, SOCS1 and SOCS3, is highly regulated in a stimulus- and cell-specific fashion. The role of the key IFN signaling molecules STAT1 or STAT2 was studied in transgenic mice (termed GIFN) with astrocyte-production of IFN-alpha that were null or haploinsufficient for these STAT genes. Surprisingly, these animals developed either more severe and accelerated neurodegeneration with calcification and inflammation (GIFN/STAT1 deficient) or severe immunoinflammation and medulloblastoma (GIFN/STAT2 deficient). STAT dysregulation may result in a signal switch phenomenon in which one cytokine acquires the apparent function of an entirely different cytokine. Therefore, for cytokines such as the IFNs, the receptor-coupled signaling process is complex, involving the coexistence of multiple JAK/STAT as well as alternative pathways. The cellular compartmentalization and balance in the activity of these pathways ultimately determines the repertoire and nature of CNS cytokine actions.

  4. Olive Oil Phenolics Prevent Oxysterol‐Induced Proinflammatory Cytokine Secretion and Reactive Oxygen Species Production in Human Peripheral Blood Mononuclear Cells, Through Modulation of p38 and JNK Pathways

    PubMed Central

    Deiana, Monica; Spencer, Jeremy P. E.; Corona, Giulia

    2017-01-01

    Scope The aim of the present study was to investigate the ability of extra virgin olive oil (EVOO) polyphenols to counteract the proinflammatory effects induced by dietary and endogenous oxysterols in ex vivo immune cells. Methods and results Peripheral blood mononuclear cells (PBMCs), separated from the whole blood of healthy donors, were utilized and were stimulated with an oxysterols mixture, in the presence of physiologically relevant concentrations of the EVOO polyphenols, hydroxytyrosol, tyrosol, and homovanillic alcohol. Oxysterols significantly increased the production of proinflammatory cytokines, interleukin‐1β, regulated on activation, normal T‐cell expressed and secreted and macrophage migration inhibitory factor in ex vivo cultured PBMCs. Increased levels of reactive oxygen species (ROS) were also detected along with increased phosphorylation of the p38 and JNK. All phenolic compounds significantly reduced cytokine secretion induced by the oxysterols and inhibited ROS production and mitogen activated protein kinase phosphorylation. Conclusions These results suggest that extra virgin olive oil polyphenols modulate the immune response induced by dietary and endogenous cholesterol oxidation products in human immune cells and may hold benefit in controlling chronic immune and/or inflammatory processes. PMID:28815947

  5. Oral warfarin intake affects skin inflammatory cytokine responses in rats.

    PubMed

    Aleksandrov, Aleksandra Popov; Mirkov, Ivana; Zolotarevski, Lidija; Ninkov, Marina; Mileusnic, Dina; Kataranovski, Dragan; Kataranovski, Milena

    2017-09-01

    Warfarin is an anticoagulant used in prevention/prophylaxis of thromboembolism. Besides the effects on coagulation, non-hemorrhagic reactions have also been documented. Although cutaneous reactions were reported in some patients, the impact on skin immunity was not explored. In the present paper, the effect of 30-day oral warfarin intake on skin cytokine responses in rats was analyzed. Increased release of inflammatory cytokines (TNF, IL-1β and IL-10) was noted by skin explants from rats which received warfarin, but without effect on IL-6. No impact on epidermal cell cytokine secretion was seen, except a tendency of an increase of IL-6 response to stimulation with microbial product lipopolysaccharide (LPS). Topical application of contact allergen dinitrochlorobenzene (DNCB) resulted in slight (numerical solely) increase of TNF release by skin explants of warfarin-treated animals, while epidermal cells responded by increased secretion of all four cytokines examined. The data presented provide new information on the potential of oral warfarin to modulate skin innate immune activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. [Change in the production of key cytokines for regulation eosinophilic granulocytes in Opisthorchis felineus invasion].

    PubMed

    Novitskiĭ, V V; Riazantseva, N V; Litvinova, L S; Tkachenko, S B; Kolobovnikova, Iu V; Lepekhin, A V; Chernyshova, N P; Grigor'eva, E S; Suvorova, E V; Zima, A P

    2008-02-01

    Opisthorchis invasion is accompanied by the imbalanced lymphocytic subpopulational composition manifested itself as induction of the B-link and, on the contrary, depression of T-lymphocytic populations (CD4+, CD8+), with their weaker helper-suppressor association. The immunocompetent cells were ascertained to show a higher production of TH2 cytokines that had an eosinophil-stumulating effect.

  7. Mitochondrial translocation of signal transducer and activator of transcription 5 (STAT5) in leukemic T cells and cytokine-stimulated cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chueh, Fu-Yu; Leong, King-Fu; Yu, Chao-Lan, E-mail: chaolan.yu@rosalindfranklin.edu

    2010-11-26

    Research highlights: {yields} STAT5 interacts with a mitochondrial protein PDC-E2 in a leukemic T cell line LSTRA. {yields} Tyrosine-phosphorylated STAT5, but not STAT3, is present in LSTRA mitochondria. {yields} Cytokines induce mitochondrial translocation of STAT5, but not STAT1 or STAT3. {yields} Cytokine-induced mitochondrial translocation of tyrosine-phosphorylated STAT5 is transient. {yields} Mitochondrial STAT5 binds to a putative STAT5 site in the mitochondrial DNA in vitro. -- Abstract: Signal transducers and activators of transcription (STATs) were first identified as key signaling molecules in response to cytokines. Constitutive STAT activation also has been widely implicated in oncogenesis. We analyzed STAT5-associated proteins in amore » leukemic T cell line LSTRA, which exhibits constitutive tyrosine phosphorylation and activation of STAT5. A cellular protein was found to specifically interact with STAT5 in LSTRA cells by co-immunoprecipitation. Sequencing analysis and subsequent immunoblotting confirmed the identity of this STAT5-associated protein as the E2 component of mitochondrial pyruvate dehydrogenase complex (PDC-E2). Consistent with this interaction, both subcellular fractionation and immunofluorescence microscopy revealed mitochondrial localization of STAT5 in LSTRA cells. Mitochondrial localization of tyrosine-phosphorylated STAT5 also occurred in cytokine-stimulated cells. A time course experiment further demonstrated the transient kinetics of STAT5 mitochondrial translocation after cytokine stimulation. In contrast, cytokine-induced STAT1 and STAT3 activation did not result in their translocation into mitochondria. Furthermore, we showed that mitochondrial STAT5 bound to the D-loop regulatory region of mitochondrial DNA in vitro. It suggests a potential role of STAT5 in regulating the mitochondrial genome. Proliferative metabolism toward aerobic glycolysis is well known in cancer cells as the Warburg effect and is also observed in

  8. Beta-Glucan Activated Human B-Lymphocytes Participate in Innate Immune Responses by Releasing Pro-inflammatory Cytokines and Stimulating Neutrophil Chemotaxis

    PubMed Central

    Ali, Mohamed F.; Driscoll, Christopher B.; Walters, Paula R.; Limper, Andrew H.; Carmona, Eva M.

    2015-01-01

    B-lymphocytes play an essential regulatory role in the adaptive immune response through antibody production during infection. A less known function of B-lymphocytes is their ability to respond directly to infectious antigens through stimulation of pattern recognition receptors expressed on their surfaces. β-glucans are carbohydrates present in the cell wall of many pathogenic fungi that can be detected in the peripheral blood of patients during infection. They have been shown to participate in the innate inflammatory response as they can directly activate peripheral macrophages and dendritic cells. However, their effect as direct stimulators of B-lymphocytes has not been yet fully elucidated. The aim of this study was to examine the molecular mechanisms and cytokine profiles generated following β-glucan stimulation of B-lymphocytes, compared with the well-established TLR-9 agonist CpG-oligodeoxynucleotide (CpG) and study the participation of β-glucan stimulated B-cells in the innate immune response. Herein, we demonstrate that β-glucan activated B-lymphocytes upregulate pro-inflammatory cytokines (TNFα, IL-6 and IL-8). Interestingly, β-glucan, unlike CpG, had no effect on B-lymphocyte proliferation or IgM production. When compared with CpG (TLR9 agonist), β-glucan-activated cells secreted significantly higher levels of IL-8. Furthermore, IL-8 secretion was partially mediated by Dectin-1 and required SYK, MAPKs and the transcription factors NF-κB and AP-1. Moreover, we observed that conditioned media from β-glucan stimulated B-lymphocytes elicited neutrophil chemotaxis. These studies suggest that β-glucan activated B-lymphocytes have an important and novel role in fungal innate immune responses. PMID:26519534

  9. Major role of HSP70 as a paracrine inducer of cytokine production in human oxidized LDL treated macrophages.

    PubMed

    Svensson, Per-Arne; Asea, Alexzander; Englund, Mikael C O; Bausero, Maria A; Jernås, Margareta; Wiklund, Olov; Ohlsson, Bertil G; Carlsson, Lena M S; Carlsson, Björn

    2006-03-01

    Lipid accumulation and inflammation are key hallmarks of the atherosclerotic plaque and macrophage uptake of oxidized low-density lipoprotein (oxLDL) is believed to drive these processes. Initial experiments show that supernatants from oxLDL treated macrophages could induce IL-1beta production in naïve macrophages. To search for potential paracrine mediators that could mediate this effect a DNA microarray scan of oxLDL treated human macrophages was performed. This analysis revealed that oxLDL induced activation of heat shock protein (HSP) expression. HSPs have been implicated in the development of atherosclerosis, but the exact mechanisms for this is unclear. Extracellular heat shock protein 70 (HSP70) has been shown to elicit a pro-inflammatory cytokine response in monocytes and could therefore be a potential paracrine pro-inflammatory mediator. After 24 h of oxLDL treatment there was a significant increase of HSP70 concentrations in supernatants from oxLDL treated macrophages (oxLDLsup) compared to untreated controls (P<0.05). OxLDLsup could induce both interleukin (IL)-1beta and IL-12 secretion in naïve macrophages. We also demonstrate that the effect of oxLDLsup on cytokine production and release could be blocked by inhibition of HSP70 transcription or secretion or by the use of HSP70 neutralizing antibodies. This suggests that extracellular HSP70 can mediate pro-inflammatory changes in macrophages in response to oxLDL.

  10. Major role of HSP70 as a paracrine inducer of cytokine production in human oxidized LDL treated macrophages

    PubMed Central

    Svensson, Per-Arne; Asea, Alexzander; Englund, Mikael C.O.; Bausero, Maria A.; Jernås, Margareta; Wiklund, Olov; Ohlsson, Bertil G.; Carlsson, Lena M.S.; Carlsson, Björn

    2006-01-01

    Lipid accumulation and inflammation are key hallmarks of the atherosclerotic plaque and macrophage uptake of oxidized low-density lipoprotein (oxLDL) is believed to drive these processes. Initial experiments show that supernatants from oxLDL treated macrophages could induce IL-1β production in naïve macrophages. To search for potential paracrine mediators that could mediate this effect a DNA microarray scan of oxLDL treated human macrophages was performed. This analysis revealed that oxLDL induced activation of heat shock protein (HSP) expression. HSPs have been implicated in the development of atherosclerosis, but the exact mechanisms for this is unclear. Extracellular heat shock protein 70 (HSP70) has been shown to elicit a pro-inflammatory cytokine response in monocytes and could therefore be a potential paracrine pro-inflammatory mediator. After 24 h of oxLDL treatment there was a significant increase of HSP70 concentrations in supernatants from oxLDL treated macrophages (oxLDLsup) compared to untreated controls (P < 0.05). OxLDLsup could induce both interleukin (IL)-1β and IL-12 secretion in naïve macrophages. We also demonstrate that the effect of oxLDLsup on cytokine production and release could be blocked by inhibition of HSP70 transcription or secretion or by the use of HSP70 neutralizing antibodies. This suggests that extracellular HSP70 can mediate pro-inflammatory changes in macrophages in response to oxLDL. PMID:15993884

  11. IRF4 Deficiency Abrogates Lupus Nephritis Despite Enhancing Systemic Cytokine Production

    PubMed Central

    Lech, Maciej; Weidenbusch, Marc; Kulkarni, Onkar P.; Ryu, Mi; Darisipudi, Murthy Narayana; Susanti, Heni Eka; Mittruecker, Hans-Willi; Mak, Tak W.

    2011-01-01

    The IFN-regulatory factors IRF1, IRF3, IRF5, and IRF7 modulate processes involved in the pathogenesis of systemic lupus and lupus nephritis, but the contribution of IRF4, which has multiple roles in innate and adaptive immunity, is unknown. To determine a putative pathogenic role of IRF4 in lupus, we crossed Irf4-deficient mice with autoimmune C57BL/6-(Fas)lpr mice. IRF4 deficiency associated with increased activation of antigen-presenting cells in C57BL/6-(Fas)lpr mice, resulting in a massive increase in plasma levels of TNF and IL-12p40, suggesting that IRF4 suppresses cytokine release in these mice. Nevertheless, IRF4 deficiency completely protected these mice from glomerulonephritis and lung disease. The mice were hypogammaglobulinemic and lacked antinuclear and anti-dsDNA autoantibodies, revealing the requirement of IRF4 for the maturation of plasma cells. As a consequence, Irf4-deficient C57BL/6-(Fas)lpr mice neither developed immune complex disease nor glomerular activation of complement. In addition, lack of IRF4 impaired the maturation of Th17 effector T cells and reduced plasma levels of IL-17 and IL-21, which are cytokines known to contribute to autoimmune tissue injury. In summary, IRF4 deficiency enhances systemic inflammation and the activation of antigen-presenting cells but also prevents the maturation of plasma cells and effector T cells. Because these adaptive immune effectors are essential for the evolution of lupus nephritis, we conclude that IRF4 promotes the development of lupus nephritis despite suppressing antigen-presenting cells. PMID:21742731

  12. METEORIN-LIKE is a cytokine associated with barrier tissues and alternatively activated macrophages

    PubMed Central

    Ushach, Irina; Burkhardt, Amanda M.; Martinez, Cynthia; Hevezi, Peter A.; Gerber, Peter Arne; Buhren, Bettina Alexandra; Schrumpf, Holger; Valle-Rios, Ricardo; Vazquez, Monica I.; Homey, Bernhard; Zlotnik, Albert

    2014-01-01

    Cytokines are involved in many functions of the immune system including initiating, amplifying and resolving immune responses. Through bioinformatics analyses of a comprehensive database of gene expression (BIGE: Body Index of Gene Expression) we observed that a small secreted protein encoded by a poorly characterized gene called meteorin-like (METRNL), is highly expressed in mucosal tissues, skin and activated macrophages. Further studies indicate that Metrnl is produced by Alternatively Activated Macrophages (AAM) and M-CSF cultured bone marrow macrophages (M2-like macrophages). In the skin, METRNL is expressed by resting fibroblasts and IFNγ-treated keratinocytes. A screen of human skin-associated diseases showed significant over-expression of METRNL in psoriasis, prurigo nodularis, actinic keratosis and atopic dermatitis. METRNL is also up-regulated in synovial membranes of human rheumatoid arthritis. Taken together, these results indicate that Metrnl represents a novel cytokine, which is likely involved in both innate and acquired immune responses. PMID:25486603

  13. A novel cyclohexene derivative, ethyl (6R)-6-[N-(2-Chloro-4-fluorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate (TAK-242), selectively inhibits toll-like receptor 4-mediated cytokine production through suppression of intracellular signaling.

    PubMed

    Ii, Masayuki; Matsunaga, Naoko; Hazeki, Kaoru; Nakamura, Kazuyo; Takashima, Katsunori; Seya, Tsukasa; Hazeki, Osamu; Kitazaki, Tomoyuki; Iizawa, Yuji

    2006-04-01

    Proinflammatory mediators such as cytokines and NO play pivotal roles in various inflammatory diseases. To combat inflammatory diseases successfully, regulation of proinflammatory mediator production would be a critical process. In the present study, we investigated the in vitro effects of ethyl (6R)-6-[N-(2-chloro-4-fluorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate (TAK-242), a novel small molecule cytokine production inhibitor, and its mechanism of action. In RAW264.7 cells and mouse peritoneal macrophages, TAK-242 suppressed lipopolysaccharide (LPS)-induced production of NO, tumor necrosis factor-alpha (TNF-alpha), and interleukin (IL)-6, with 50% inhibitory concentration (IC50) of 1.1 to 11 nM. TAK-242 also suppressed the production of these cytokines from LPS-stimulated human peripheral blood mononuclear cells (PBMCs) at IC50 values from 11 to 33 nM. In addition, the inhibitory effects on the LPS-induced IL-6 and IL-12 production were similar in human PBMCs, monocytes, and macrophages. TAK-242 inhibited mRNA expression of IL-6 and TNF-alpha induced by LPS and interferon-gamma in RAW264.7 cells. The phosphorylation of mitogen-activated protein kinases induced by LPS was also inhibited in a concentration-dependent manner. However, TAK-242 did not antagonize the binding of LPS to the cells. It is noteworthy that TAK-242 suppressed the cytokine production induced by Toll-like receptor (TLR) 4 ligands, but not by ligands for TLR2, -3, and -9. In addition, IL-1beta-induced IL-8 production from human PBMCs was not markedly affected by TAK-242. These data suggest that TAK-242 suppresses the production of multiple cytokines by selectively inhibiting TLR4 intracellular signaling. Finally, TAK-242 is a novel small molecule TLR4 signaling inhibitor and could be a promising therapeutic agent for inflammatory diseases, whose pathogenesis involves TLR4.

  14. Anti-inflammatory activity of p-coumaryl alcohol-γ-O-methyl ether is mediated through modulation of interferon-γ production in Th cells

    PubMed Central

    Yu, E-S; Min, H-J; Lee, K; Lee, M-S; Nam, J-W; Seo, E-K; Hong, J-H; Hwang, E-S

    2009-01-01

    Background and purpose: p-Coumaryl alcohol-γ-O-methyl ether (CAME) was isolated from Alpinia galanga and shown to contain a phenylpropanoid structure similar to p-coumaryl diacetate (CDA). CDA is known to have antioxidant and anti-inflammatory activity, but the biochemical activities of CAME are unknown. Inflammation is mediated by inflammatory cytokine production, in particular, by CD4+ T helper cells (Th cells), but it is unclear whether phenylpropanoids affect cytokine production in Th cells. In this study, we decided to investigate the functions of CAME and CDA in CD4+ Th cells. Experimental approach: Mouse CD4+ Th cells were isolated from C57BL6 mice and stimulated with an antibody against T cell receptors in the presence of phenylpropanoids. Cytokine production was measured by elisa and intracellular cytokine staining. Gene knockout mice and tetracycline-inducible transgenic mice were used to examine the molecular mechanisms of phenylpropanoids on modulation of cytokine production. Key results: CAME potently reduced intracellular reactive oxygen species in Th cells, as does CDA. However, although CDA was cytotoxic, CAME selectively and potently suppresses interferon-γ (IFNγ) production in CD4+ Th cells, without toxicity. This effect was caused by attenuated expression of the transcription factor, T-box protein expressed in T cells (T-bet), and T-bet was essential for CAME to inhibit IFNγ production in CD4+ Th cells. Conclusions and implications: CAME selectively and substantially suppresses IFNγ production in CD4+ Th cells by decreasing T-bet expression. As increased IFNγ production by CD4+ Th cells can mediate inflammatory immune responses, a selective IFNγ suppressor, such as CAME may be an effective, naturally occurring, compound for modulating inflammatory immune disorders. PMID:19226286

  15. Pasteurella haemolytica leukotoxin and endotoxin induced cytokine gene expression in bovine alveolar macrophages requires NF-kappaB activation and calcium elevation.

    PubMed

    Hsuan, S L; Kannan, M S; Jeyaseelan, S; Prakash, Y S; Malazdrewich, C; Abrahamsen, M S; Sieck, G C; Maheswaran, S K

    1999-05-01

    In bovine alveolar macrophages (BAMs), exposure to leukotoxin (Lkt) and endotoxin (LPS) from Pasteurella haemolytica results in expression of inflammatory cytokine genes and intracellular calcium ([Ca2+]i) elevation. Leukotoxin from P. haemolytica interacts only with leukocytes and platelets from ruminant species. Upregulation of cytokine genes in different cells by LPS involves activation of the transcription factor NF-kappaB (NF-kappaB), resulting in its translocation from the cytoplasm to the nucleus. Using immunocytochemical staining and confocal imaging, we studied whether NF-kappaB activation represents a common mechanism for the expression of multiple cytokine genes in BAMs (Lkt-susceptible cells) stimulated with Lkt and LPS. Bovine pulmonary artery endothelial cells and porcine alveolar macrophages were used as nonsusceptible cells. The role of Ca2+ and tyrosine kinases in NF-kappaB activation and inflammatory cytokine gene expression was studied, since an inhibitor of tyrosine kinases attenuates LPS-induced [Ca2+]i elevation in BAMs. The results are summarized as follows: (a) Lkt induced NF-kappaB activation and [Ca2+]i elevation only in BAMs, while LPS effects were demonstrable in all cell types; (b) chelation of [Ca2+]i blocked NF-kappaB activation and IL-1beta, TNFalpha, and IL-8 mRNA expression; and (c) tyrosine kinase inhibitor herbimycin A blocked expression of all three cytokine genes in BAMs stimulated with Lkt, while only the expression of IL-1beta was blocked in BAMs stimulated with LPS. We conclude that cytokine gene expression in BAMs requires NF-kappaB activation and [Ca2+]i elevation, and Lkt effects exhibit cell type- and species specificity. Copyright 1999 Academic Press.

  16. Synergy between Common γ Chain Family Cytokines and IL-18 Potentiates Innate and Adaptive Pathways of NK Cell Activation

    PubMed Central

    Nielsen, Carolyn M.; Wolf, Asia-Sophia; Goodier, Martin R.; Riley, Eleanor M.

    2016-01-01

    Studies to develop cell-based therapies for cancer and other diseases have consistently shown that purified human natural killer (NK) cells secrete cytokines and kill target cells after in vitro culture with high concentrations of cytokines. However, these assays poorly reflect the conditions that are likely to prevail in vivo in the early stages of an infection and have been carried out in a wide variety of experimental systems, which has led to contradictions within the literature. We have conducted a detailed kinetic and dose–response analysis of human NK cell responses to low concentrations of IL-12, IL-15, IL-18, IL-21, and IFN-α, alone and in combination, and their potential to synergize with IL-2. We find that very low concentrations of both innate and adaptive common γ chain cytokines synergize with equally low concentrations of IL-18 to drive rapid and potent NK cell CD25 and IFN-γ expression; IL-18 and IL-2 reciprocally sustain CD25 and IL-18Rα expression in a positive feedback loop; and IL-18 synergizes with FcγRIII (CD16) signaling to augment antibody-dependent cellular cytotoxicity. These data indicate that NK cells can be rapidly activated by very low doses of innate cytokines and that the common γ chain cytokines have overlapping but distinct functions in combination with IL-18. Importantly, synergy between multiple signaling pathways leading to rapid NK cell activation at very low cytokine concentrations has been overlooked in prior studies focusing on single cytokines or simple combinations. Moreover, although the precise common γ chain cytokines available during primary and secondary infections may differ, their synergy with both IL-18 and antigen–antibody immune complexes underscores their contribution to NK cell activation during innate and adaptive responses. IL-18 signaling potentiates NK cell effector function during innate and adaptive immune responses by synergy with IL-2, IL-15, and IL-21 and immune complexes. PMID:27047490

  17. Molecular cloning of a Poria cocos protein that activates Th1 immune response and allays Th2 cytokine and IgE production in a murine atopic dermatitis model.

    PubMed

    Lu, Ya-Ting; Kuan, Yen-Chou; Chang, Hui-Hsin; Sheu, Fuu

    2014-04-02

    Edible fungus Poria cocos (Schw.) Wolf is a cooking material that has myriad health benefits. However, its active constituents have not been well-defined. We previously purified an immunomodulatory protein, PCP, from P. cocos and described its biochemical features and its ability to activate primary macrophage via TLR4. In this study, we cloned the gene of PCP and demonstrated its ability to activate Th1 response in cell cultures and in mice. The complete cDNA sequence of PCP consisted of 807 bp, which included a 579 bp coding sequence that encoded 194 amino acids. With the addition of co-stimulatory CD3/CD28 signals, PCP significantly increased the surface expression of CD44 and CD69 on effector T cells. PCP could also up-regulate T-bet and STAT4 expressions and IFN-γ and IL-2 secretions. Oral administration of PCP suppressed the production of both total and OVA-specific IgG1 in serum and enhanced the amounts of serum and OVA-specific IgG2a and Th1-related cytokine production in BALB/c splenocytes. In addition, oral administration of PCP significantly reduced IL-4 and IgE expressions in a murine model of atopic dermatitis. In conclusion, these results provide evidence that PCP could regulate mammalian immune cells and reveal their pharmaceutical potential in developing therapeutic strategies against Th2-mediated immune disorders.

  18. Elevated serum cytokines correlated with altered behavior, serum cortisol rhythm, and dampened 24-hour rest-activity patterns in patients with metastatic colorectal cancer.

    PubMed

    Rich, Tyvin; Innominato, Pasquale F; Boerner, Julie; Mormont, M Christine; Iacobelli, Stefano; Baron, Benoit; Jasmin, Claude; Lévi, Francis

    2005-03-01

    Incapacitating symptom burden in cancer patients contributes to poor quality of life (QOL) and can influence treatment outcomes because of poor tolerance to therapy. In this study, the role of circulating cytokines in the production symptoms in cancer patients is evaluated. Eighty patients with metastatic colorectal cancer with either normal (group I, n = 40) or dampened (group II, n = 40) 24-hour rest/activity patterns measured by actigraphy were identified. Actigraphy patterns were correlated with QOL indices, serum cortisol obtained at 8:00 a.m. and 4:00 p.m. and with serum levels of transforming growth factor-alpha, tumor necrosis factor-alpha, and interleukin 6 (IL-6) obtained at 8:00 a.m. and analyzed in duplicate by ELISA. Cytokine levels and survival were also correlated. Group II patients had significantly higher pre treatment levels of all three cytokines, displayed significantly poorer emotional and social functioning, had higher fatigue, more appetite loss, and poorer performance status compared with group I patients. Transforming growth factor-alpha (TGF-alpha) and IL-6 were significantly increased in the patients with WHO performance status >1 and in those with appetite loss. Fatigue was significantly associated with elevated TGF-alpha only. IL-6 was increased in those patients with extensive liver involvement and multiple organ replacement, and it was significantly correlated with dampened cortisol rhythm. In a multivariate analysis, IL-6 was correlated with poor treatment outcome. Significant correlations were found between serum levels of TGF-alpha and IL-6, circadian patterns in wrist activity and serum cortisol and tumor-related symptoms in patients with metastatic colorectal cancer. These data support the hypothesis that some cancer patient's symptoms of fatigue, poor QOL, and treatment outcome are related to tumor or host generated cytokines and could reflect cytokine effects on the circadian timing system. This interplay between cytokine

  19. Effect of zinc supplementation on E-ADA activity, seric zinc, and cytokines levels of Trypanosoma evansi infected Wistar rats.

    PubMed

    Bottari, Nathieli B; Baldissera, Matheus D; Oliveira, Camila B; Duarte, Thiago; Duarte, Marta M M F; Leal, Marta L R; Thomé, Gustavo R; Zanini, Daniela; Schetinger, Maria Rosa C; Nunes, Matheus A G; Dressler, Valderi L; Monteiro, Silvia G; Tonin, Alexandre A; Da Silva, Aleksandro S

    2014-09-01

    The aim of this study was to evaluate the effect of zinc supplementation on the ecto-adenosine deaminase activity (E-ADA), zinc seric levels and cytokines (TNF-α, IL-1, IL-6, and IL -10) on rats experimentally infected by Trypanosoma evansi. Four groups with 10 rats each were used as negative controls (groups A and B), while the animals from the groups C and D were infected intraperitoneally with 0.1 mL of cryopreserved blood containing 1.4 × 10(4) of trypanosomes. Animals of groups B and D received two doses of Zinc (Zn) at 5 mg kg(-1), subcutaneously, on the 2nd and 7th day post-infection (PI). Blood samples were collected on days 5 (n = 5) and 15 PI (n = 5). Zn supplementation was able to increase the rat's longevity and to reduce their parasitemia. It was observed that seric Zn levels were increased on infected animals under Zn supplementation. Animals that were infected and supplemented with Zn showed changes in E-ADA activity and in cytokine levels (P < 0.05). Zn supplementation of healthy animals (Group B), increased the E-ADA activity, as well as reduced the concentration of cytokines. Infected animals from groups C and D showed increased levels of cytokines. Finally, we observed that Zn supplementation led to a modulation on cytokine's level in rats infected by T. evansi, as well as in E-ADA activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Clinical associations of proinflammatory cytokines, oxidative biomarkers and vitamin D levels in systemic lupus erythematosus.

    PubMed

    Willis, R; Smikle, M; DeCeulaer, K; Romay-Penabad, Z; Papalardo, E; Jajoria, P; Harper, B; Murthy, V; Petri, M; Gonzalez, E B

    2017-12-01

    Background The abnormal biological activity of cytokines plays an important role in the pathophysiology of both systemic lupus erythematosus (SLE) and antiphospholipid syndrome (APS). Several studies have highlighted the association of vitamin D and certain pro-inflammatory cytokines with disease activity in SLE. However, there are limited data on the association of vitamin D and antiphospholipid antibodies (aPL) with various proinflammatory biomarkers in these patients and their relative impact on clinical outcomes. Methods The serum levels of several aPL, 25-hydroxy-vitamin D, pro-inflammatory cytokines including IFNα, IL-1β, IL-6, IL-8, IP10, sCD40L, TNFα and VEGF were measured in 312 SLE patients from the Jamaican ( n = 45) and Hopkins ( n = 267) lupus cohorts using commercial Milliplex and ELISA assays. Oxidized LDL/β2glycoprotein antigenic complexes (oxLβ2Ag) and their associated antibodies were also measured in the Jamaican cohort. Healthy controls for oxidative marker and cytokine testing were used. Results Abnormally low vitamin D levels were present in 61.4% and 73.3% of Hopkins and Jamaican SLE patients, respectively. Median concentrations of IP10, TNFα, sCD40L and VEGF were elevated in both cohorts, oxLβ2Ag and IL-6 were elevated in the Jamaican cohort, and IFNα, IL-1β and IL-8 were the same or lower in both cohorts compared to controls. IP10 and VEGF were independent predictors of disease activity, aPL, IP10 and IL-6 were independent predictors of thrombosis and IL-8, and low vitamin D were independent predictors of pregnancy morbidity despite there being no association of vitamin D with pro-inflammatory cytokines. Conclusions Our results indicate that aPL-mediated pro-inflammatory cytokine production is likely a major mechanism of thrombus development in SLE patients. We provide presumptive evidence of the role IL-8 and hypovitaminosis D play in obstetric pathology in SLE but further studies are required to characterize the subtle

  1. Chronic ethanol consumption modulates growth factor release, mucosal cytokine production, and microRNA expression in nonhuman primates.

    PubMed

    Asquith, Mark; Pasala, Sumana; Engelmann, Flora; Haberthur, Kristen; Meyer, Christine; Park, Byung; Grant, Kathleen A; Messaoudi, Ilhem

    2014-04-01

    Chronic alcohol consumption has been associated with enhanced susceptibility to both systemic and mucosal infections. However, the exact mechanisms underlying this enhanced susceptibility remain incompletely understood. Using a nonhuman primate model of ethanol (EtOH) self-administration, we examined the impact of chronic alcohol exposure on immune homeostasis, cytokine, and growth factor production in peripheral blood, lung, and intestinal mucosa following 12 months of chronic EtOH exposure. EtOH exposure inhibited activation-induced production of growth factors hepatocyte growth factor (HGF), granulocyte colony-stimulating factor (G-CSF), and vascular-endothelial growth factor (VEGF) by peripheral blood mononuclear cells (PBMC). Moreover, EtOH significantly reduced the frequency of colonic Th1 and Th17 cells in a dose-dependent manner. In contrast, we did not observe differences in lymphocyte frequency or soluble factor production in the lung of EtOH-consuming animals. To uncover mechanisms underlying reduced growth factor and Th1/Th17 cytokine production, we compared expression levels of microRNAs in PBMC and intestinal mucosa. Our analysis revealed EtOH-dependent up-regulation of distinct microRNAs in affected tissues (miR-181a and miR-221 in PBMC; miR-155 in colon). Moreover, we were able to detect reduced expression of the transcription factors STAT3 and ARNT, which regulate expression of VEGF, G-CSF, and HGF and contain targets for these microRNAs. To confirm and extend these observations, PBMC were transfected with either mimics or antagomirs of miR-181 and miR-221, and protein levels of the transcription factors and growth factors were determined. Transfection of microRNA mimics led to a reduction in both STAT3/ARNT as well as VEGF/HGF/G-CSF levels. The opposite outcome was observed when microRNA antagomirs were transfected. Chronic EtOH consumption significantly disrupts both peripheral and mucosal immune homeostasis, and this dysregulation may be

  2. TLR-mediated stimulation of APC: Distinct cytokine responses of B cells and dendritic cells

    PubMed Central

    Barr, Tom A; Brown, Sheila; Ryan, Gemma; Zhao, Jiexin; Gray, David

    2007-01-01

    In addition to their role in humoral immunity, B lymphocytes are important antigen-presenting cells (APC). In the same way as other APC, B cells make cytokines upon activation and have the potential to modulate T cell responses. In this study, we investigated which mouse B cell subsets are the most potent cytokine producers, and examined the role of Toll-like receptors (TLR) in the control of secretion of IL-6, IL-10, IL-12 and IFN-γ by B cells. Production of some cytokines was restricted to particular subsets. Marginal zone and B1 cells were the predominant source of B cell IL-10 in the spleen. Conversely, follicular B cells were found to express IFN-γ mRNA directly ex vivo. The nature of the activating stimulus dramatically influenced the cytokine made by B cells. Thus, in response to combined TLR stimulation, or via phorbol esters, IFN-γ was secreted. IL-10 was elicited by T-dependent activation or stimulation through TLR2, 4 or 9. This pattern of cytokine expression contrasts with that elicited from dendritic cells. QRT-PCR array data indicate that this may be due to differential expression of TLR signalling molecules, effectors and adaptors. Our data highlight the potentially unique nature of immune modulation when B cells act as APC. PMID:17918201

  3. Inter-individual variability and genetic influences on cytokine responses against bacterial and fungal pathogens

    PubMed Central

    Li, Yang; Oosting, Marije; Deelen, Patrick; Ricaño-Ponce, Isis; Smeekens, Sanne; Jaeger, Martin; Matzaraki, Vasiliki; Swertz, Morris A.; Xavier, Ramnik J.; Franke, Lude; Wijmenga, Cisca; Joosten, Leo A.B.; Kumar, Vinod; Netea, Mihai G.

    2016-01-01

    Little is known about the inter-individual variation of cytokine responses to different pathogens in healthy individuals. To systematically describe cytokine responses elicited by distinct pathogens, and to determine the impact of genetic variation on cytokine production, we profiled cytokines produced by peripheral blood mononuclear cells from 197 individuals of European origin from the 200 Functional Genomics (200FG) cohort within the Human Functional Genomics Study (www.humanfunctionalgenomics.org), obtained over three different years. By comparing bacteria- and fungi-induced cytokine profiles, we show that most cytokine responses are organized around a physiological response to specific pathogens, rather than around a particular immune pathway or cytokine. We then correlated genome-wide SNP genotypes with cytokine abundance and identified six cytokine QTLs. Among them, a cytokine QTL at NAA35-GOLM1 locus markedly modulates IL-6 production in response to multiple pathogens, and associated with susceptibility to candidemia. Furthermore, the cytokine QTLs we identified are enriched among SNPs previously associated with infectious diseases and heart diseases. These data reveal and begin to explain the variability in cytokine production by human immune cells in response to pathogens. PMID:27376574

  4. St. John's wort extract and hyperforin protect rat and human pancreatic islets against cytokine toxicity.

    PubMed

    Novelli, Michela; Beffy, Pascale; Menegazzi, Marta; De Tata, Vincenzo; Martino, Luisa; Sgarbossa, Anna; Porozov, Svetlana; Pippa, Anna; Masini, Matilde; Marchetti, Piero; Masiello, Pellegrino

    2014-02-01

    The extract of Hypericum perforatum (St. John's wort, SJW) and its component hyperforin (HPF) were previously shown to inhibit cytokine-induced activation of signal transducer and activator of transcription-1 and nuclear factor κB and prevent apoptosis in a cultured β-cell line. Objective of this study was to assess the protection exerted by SJW and HPF on isolated rat and human islets exposed to cytokines in vitro. Functional, ultrastructural, biomolecular and cell death evaluation studies were performed. In both rat and human islets, SJW and HPF counteracted cytokine-induced functional impairment and down-regulated mRNA expression of pro-inflammatory target genes, such as iNOS, CXCL9, CXCL10, COX2. Cytokine-induced NO production from cultured islets, evaluated by nitrites measurement in the medium, was significantly reduced in the presence of the vegetal compounds. Noteworthy, the increase in apoptosis and necrosis following 48-h exposure to cytokines was fully prevented by SJW and partially by HPF. Ultrastructural morphometric analysis in human islets exposed to cytokines for 20 h showed that SJW or HPF avoided early β-cell damage (e.g., mitochondrial alterations and loss of insulin granules). In conclusion, SJW compounds protect rat and human islets against cytokine effects by counteracting key mechanisms of cytokine-mediated β-cell injury and represent promising pharmacological tools for prevention or limitation of β-cell dysfunction and loss in type 1 diabetes.

  5. Mutually exclusive redox forms of HMGB1 promote cell recruitment or proinflammatory cytokine release

    PubMed Central

    Venereau, Emilie; Casalgrandi, Maura; Schiraldi, Milena; Antoine, Daniel J.; Cattaneo, Angela; De Marchis, Francesco; Liu, Jaron; Antonelli, Antonella; Preti, Alessandro; Raeli, Lorenzo; Shams, Sara Samadi; Yang, Huan; Varani, Luca; Andersson, Ulf; Tracey, Kevin J.; Bachi, Angela; Uguccioni, Mariagrazia

    2012-01-01

    Tissue damage causes inflammation, by recruiting leukocytes and activating them to release proinflammatory mediators. We show that high-mobility group box 1 protein (HMGB1) orchestrates both processes by switching among mutually exclusive redox states. Reduced cysteines make HMGB1 a chemoattractant, whereas a disulfide bond makes it a proinflammatory cytokine and further cysteine oxidation to sulfonates by reactive oxygen species abrogates both activities. We show that leukocyte recruitment and activation can be separated. A nonoxidizable HMGB1 mutant in which serines replace all cysteines (3S-HMGB1) does not promote cytokine production, but is more effective than wild-type HMGB1 in recruiting leukocytes in vivo. BoxA, a HMGB1 inhibitor, interferes with leukocyte recruitment but not with activation. We detected the different redox forms of HMGB1 ex vivo within injured muscle. HMGB1 is completely reduced at first and disulfide-bonded later. Thus, HMGB1 orchestrates both key events in sterile inflammation, leukocyte recruitment and their induction to secrete inflammatory cytokines, by adopting mutually exclusive redox states. PMID:22869893

  6. The interleukin (IL)-1 cytokine family--Balance between agonists and antagonists in inflammatory diseases.

    PubMed

    Palomo, Jennifer; Dietrich, Damien; Martin, Praxedis; Palmer, Gaby; Gabay, Cem

    2015-11-01

    The interleukin (IL)-1 family of cytokines comprises 11 members, including 7 pro-inflammatory agonists (IL-1α, IL-1β, IL-18, IL-33, IL-36α, IL-36β, IL-36γ) and 4 defined or putative antagonists (IL-1R antagonist (IL-1Ra), IL-36Ra, IL-37, and IL-38) exerting anti-inflammatory activities. Except for IL-1Ra, IL-1 cytokines do not possess a leader sequence and are secreted via an unconventional pathway. In addition, IL-1β and IL-18 are produced as biologically inert pro-peptides that require cleavage by caspase-1 in their N-terminal region to generate active proteins. N-terminal processing is also required for full activity of IL-36 cytokines. The IL-1 receptor (IL-1R) family comprises 10 members and includes cytokine-specific receptors, co-receptors and inhibitory receptors. The signaling IL-1Rs share a common structure with three extracellular immunoglobulin (Ig) domains and an intracellular Toll-like/IL-1R (TIR) domain. IL-1 cytokines bind to their specific receptor, which leads to the recruitment of a co-receptor and intracellular signaling. IL-1 cytokines induce potent inflammatory responses and their activity is tightly controlled at the level of production, protein processing and maturation, receptor binding and post-receptor signaling by naturally occurring inhibitors. Some of these inhibitors are IL-1 family antagonists, while others are IL-1R family members acting as membrane-bound or soluble decoy receptors. An imbalance between agonist and antagonist levels can lead to exaggerated inflammatory responses. Several genetic modifications or mutations associated with dysregulated IL-1 activity and autoinflammatory disorders were identified in mouse models and in patients. These findings paved the road to the successful use of IL-1 inhibitors in diseases that were previously considered as untreatable. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Serum amyloid A induction of cytokines in monocytes/macrophages and lymphocytes.

    PubMed

    Song, Changjie; Hsu, Kenneth; Yamen, Eric; Yan, Weixing; Fock, Jianyi; Witting, Paul K; Geczy, Carolyn L; Freedman, S Ben

    2009-12-01

    Serum amyloid A (SAA) is a biomarker of inflammation. Elevated blood levels in cardiovascular disease and local deposition in atheroma implies a role of SAA as a mediator rather than just a marker of inflammation. This study explored SAA-induced cytokine production and secretion by mononuclear cells. RT-PCR showed that SAA time-dependently induced cytokine mRNAs in peripheral blood mononuclear cells (PBMC) and THP-1 monocytoid cells, and dramatically increased IL-1beta, MCP-1, IL-6, IL-8, IL-10, GM-CSF, TNF, and MIP-1alpha secretion by PBMC to levels 28 to 25,000 fold above baseline, as measured with Bio-Plex kits; monocytes were the principle source. SAA induction of cytokines in monocyte-derived macrophages (MDM) was significantly higher than from monocytes from the same donors. SAA time-dependently induced transient and significant upregulation of NF-kappaB1 mRNA; inhibitor studies indicate that activation of NF-kappaB through the ERK1/2, p38 and JNK MAPKs and the PI3K pathway was involved. PBMC from 10 patients with coronary artery disease (CAD) spontaneously secreted higher levels of IL-6 and MIP-1alpha after 24h incubation than PBMC from normal controls, whereas SAA-induced levels of all cytokines were similar to controls. Aortic and coronary sinus sampling in 23 CAD patients indicated significant SAA release into the coronary circulation, not evident in 11 controls. SAA can increase monocyte and macrophage cytokine production, possibly at sites of atherosclerosis, thereby contributing to the pro-inflammatory state in coronary artery disease.

  8. Mechanism of interleukin-13 production by granulocyte-macrophage colony-stimulating factor-dependent macrophages via protease-activated receptor-2.

    PubMed

    Yamaguchi, Rui; Yamamoto, Takatoshi; Sakamoto, Arisa; Ishimaru, Yasuji; Narahara, Shinji; Sugiuchi, Hiroyuki; Hirose, Eiji; Yamaguchi, Yasuo

    2015-06-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) promotes classically activated M1 macrophages. GM-CSF upregulates protease-activated receptor-2 (PAR-2) protein expression and activation of PAR-2 by human neutrophil elastase (HNE) regulates cytokine production. This study investigated the mechanism of PAR-2-mediated interleukin (IL)-13 production by GM-CSF-dependent macrophages stimulated with HNE. Adherent macrophages were obtained from primary cultures of human mononuclear cells. After stimulation with HNE to activate the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling pathway, IL-13 mRNA and protein levels were assessed by the reverse transcriptase-polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. PAR-2 protein was detected in GM-CSF-dependent macrophages by Western blotting. Unexpectedly, PD98059 (an ERK1 inhibitor) increased IL-13 production, even at higher concentrations. Interestingly, U0126 (an ERK1/2 inhibitor) reduced IL-13 production in a concentration-dependent manner. Neither SB203580 (a p38alpha/p38beta inhibitor) nor BIRB796 (a p38gamma/p38delta inhibitor) affected IL-13 production, while TMB-8 (a calcium chelator) diminished IL-13 production. Stimulation with HNE promoted the production of IL-13 (a Th2 cytokine) by GM-CSF-dependent M1 macrophages. PAR-2-mediated IL-13 production may be dependent on the Ca(2+)/ERK2 signaling pathway. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Cytokine-induced (interleukins-3, -6 and -8 and tumour necrosis factor-beta) activation and deactivation of human neutrophils.

    PubMed Central

    Brom, J; König, W

    1992-01-01

    The effect of various cytokines [interleukin-3(IL-3), IL-6, IL-8, tumour necrosis factor-beta (TNF-beta)] on human neutrophils (PMN) was analysed with regard to the generation of leukotrienes and the involvement of guanosine triphosphate (GTP)-binding proteins (G proteins). Incubation of cytochalasin B-pretreated PMN with cytokines alone did not lead to a generation of leukotrienes. However, the cytokines affected the formyl-methionyl-leucyl-phenylalanine-(FMLP)-induced formation of leukotrienes in a time-dependent manner. Preincubation of the cells with the different cytokines for short periods (15 seconds at 37 degrees) enhanced the subsequent FMLP-induced leukotriene generation, whereas preincubation for prolonged times resulted in a reduced formation of leukotrienes. These results correlated with the respective G protein-associated guanosine triphosphatase (GTPase) activities within isolated membrane fractions. The present study indicates a modulation of the FMLP-induced leukotriene formation by diverse cytokines via interaction with the GTP-binding proteins. PMID:1312995

  10. The transforming growth factor-ss superfamily cytokine macrophage inhibitory cytokine-1 is present in high concentrations in the serum of pregnant women.

    PubMed

    Moore, A G; Brown, D A; Fairlie, W D; Bauskin, A R; Brown, P K; Munier, M L; Russell, P K; Salamonsen, L A; Wallace, E M; Breit, S N

    2000-12-01

    Macrophage inhibitory cytokine-1 (MIC-1) is a recently described divergent member of the transforming growth factor-ss superfamily. MIC-1 transcription up-regulation is associated with macrophage activation, and this observation led to its cloning. Northern blots indicate that MIC-1 is also present in human placenta. A sensitive sandwich enzyme-linked immunosorbent assay for the quantification of MIC-1 was developed and used to examine the role of this cytokine in pregnancy. High levels of MIC-1 are present in the sera of pregnant women. The level rises substantially with progress of gestation. MIC-1 can also be detected, in large amounts, in amniotic fluid and placental extracts. In addition, the BeWo placental trophoblastic cell line was found to constitutively express the MIC-1 transcript and secrete large amounts of MIC-1. These findings suggest that the placental trophoblast is a major source of the MIC-1 present in maternal serum and amniotic fluid. We suggest that MIC-1 may promote fetal survival by suppressing the production of maternally derived proinflammatory cytokines within the uterus.

  11. Cytokine-induced immune deviation as a therapy for inflammatory autoimmune disease.

    PubMed

    Racke, M K; Bonomo, A; Scott, D E; Cannella, B; Levine, A; Raine, C S; Shevach, E M; Röcken, M

    1994-11-01

    The properties and outcome of an immune response are best predicted by the lymphokine phenotype of the responding T cells. Cytokines produced by CD4+ T helper type 1 (Th1) T cells mediate delayed type hypersensitivity (DTH) and inflammatory responses, whereas cytokines produced by Th2 T cells mediate helper T cell functions for antibody production. To determine whether induction of Th2-like cells would modulate an inflammatory response, interleukin 4 (IL-4) was administered to animals with experimental allergic encephalomyelitis (EAE), a prototypic autoimmune disease produced by Th1-like T cells specific for myelin basic protein (MBP). IL-4 treatment resulted in amelioration of clinical disease, the induction of MBP-specific Th2 cells, diminished demyelination, and inhibition of the synthesis of inflammatory cytokines in the central nervous system (CNS). Modulation of an immune response from one dominated by excessive activity of Th1-like T cells to one dominated by the protective cytokines produced by Th2-like T cells may have applicability to the therapy of certain human autoimmune diseases.

  12. Th9 cytokines response and its possible implications in the immunopathogenesis of leprosy.

    PubMed

    de Sousa, Jorge Rodrigues; Pagliari, Carla; de Almeida, Dandara Simone Maia; Barros, Luiz Fernando Lima; Carneiro, Francisca Regina Oliveira; Dias, Leonidas Braga; de Souza Aarão, Tinara Leila; Quaresma, Juarez Antonio Simões

    2017-06-01

    Leprosy is an infectious-contagious disease whose clinical evolution depends on the interaction of the infectious agent with the immune response of the host, leading to a clinical spectrum that ranges from lepromatous leprosy (susceptibility, LL) to tuberculoid leprosy (resistance, TT). The immune response profile will depend on the pattern of cytokine production and on the activity of macrophages during infection. Classically, the clinical evolution of leprosy has been associated with Th1/Th2 cytokine profiles, but the role of new cytokine profiles such as T helper 9 (Th9) remains to be elucidated. To evaluate the tissue expression profile of these cytokines, a cross-sectional study was conducted using a sample of 30 leprosy skin lesion biopsies obtained from patients with leprosy, 16 TT and 14 lepromatous LL. Immunohistochemical analysis revealed a significant difference in interleukin (IL)-9, IL-4 transforming growth factor (TGF)-β and IL-10 levels between the two groups. IL-9 was more expressed in TT lesions compared with LL lesions. Higher expression of IL-4, IL-10 and TGF-β was observed in LL compared with TT. IL-4, IL-10 and TGF-β tended to be negatively correlated with the expression of IL-9, indicating a possible antagonistic activity in tissue. The results suggest that Th9 lymphocytes may be involved in the response to Mycobacterium leprae , positively or negatively regulating microbicidal activity of the local immune system in the disease. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  13. Effects of Varium and a pre-cursor formula on cytokine production in broiler chickens challenged with Eimeria maxima and Clostridium perfringens

    USDA-ARS?s Scientific Manuscript database

    Two studies were conducted to evaluate the ability of new products with toxin binding properties on cytokine production during a necrotic enteritis challenge. A precursor (PV) formula to the product Varium (V) was tested in experiment one, and PV and V formulas were included in the second experimen...

  14. Morphometric analysis of the location and activity of cytokines in the tissue implant response.

    PubMed

    Butler, Kenneth R; Benghuzzi, Hamed A; Tucci, Michelle A; Puckett, Aaron

    2014-01-01

    The objective of this investigation was to evaluate the location and activity of cytokines in the fibrous tissue surrounding tricalcium phosphate (TCP) implants loaded with androgenic hormones. Sixteen animals in four experimental groups (n = 4/group) were implanted with one TCP implant each: Group I (control), Group II (testosterone), Group III (dihydrotestosterone), and Group IV (androstenedione). At 90 days post-implantation, the fibrous tissue surrounding the implants were evaluated following staining with antibodies to IL-1ß, IL-2, IL-6, and TNF?. Data were collected on the presence and distribution of cytokines within the fibrous tissue surrounding all four groups. IL-1ß was primarily found intercellular and associated with fibroblasts and macrophages of Groups I-III. IL-2 was present in the extracellular matrix and was sporadically found on the surface of macrophages in Groups I-III. IL-6 was found primarily concentrated in the fibroblast and collagen rich portions of the fibrous tissue matrix in Groups I-III. TNF-? was present in the extracellular matrix of the fibrous tissue of all four groups and was strongly associated with fibroblast and macrophage rich areas. The results of this study confirm activity of cytokines on target cells and indicate their actions may vary in their effect within the fibrous tissue surrounding TCP implants loaded with androgens.

  15. The Ron Receptor Regulates Kupffer Cell-Dependent Cytokine Production and Hepatocyte Survival Following Endotoxin Exposure in Mice

    PubMed Central

    Stuart, William D.; Kulkarni, Rishikesh M.; Gray, Jerilyn K.; Vasiliauskas, Juozas; Leonis, Mike A.; Waltz, Susan E.

    2011-01-01

    Previous studies demonstrated that targeted deletion of the Ron receptor tyrosine kinase (TK) domain in mice leads to marked hepatocyte protection in a well-characterized model of lipopolysaccharide (LPS)-induced acute liver failure in D-galactosamine (GalN)-sensitized mice. Hepatocyte protection in TK−/− mice was observed despite paradoxically elevated serum levels of tumor necrosis factor alpha (TNFα). To understand the role of Ron in the liver, purified populations of Kupffer cells and hepatocytes from wild-type (TK+/+) and TK−/− mice were studied. Utilizing quantitative RT-PCR, we demonstrated that Ron is expressed in these cell-types. Moreover, we also recapitulated the protected hepatocyte phenotype and exaggerated cytokine production observed in the TK−/− mice in vivo through the use of purified cultured cells ex vivo. We show that isolated TK−/− Kupffer cells produce increased levels of TNFα and select cytokines compared to TK+/+ cells following LPS stimulation. We also show that conditioned media from LPS-treated TK−/− Kupffer cells was more toxic to hepatocytes than control media, suggesting the exaggerated levels of cytokines produced from the TK−/− Kupffer cells are detrimental to wild type hepatocytes. In addition, we observed that TK−/− hepatocytes were more resistant to cell death compared to TK+/+ hepatocytes, suggesting that Ron functions in both the epithelial and inflammatory cell compartments to regulate acute liver injury. These findings were confirmed in vivo in mice with hepatocyte and macrophage cell-type-specific conditional Ron deletions. Mice with Ron loss selectively in hepatocytes exhibited less liver damage and increased survival compared to mice with Ron loss in macrophages. In conclusion, we have dissected cell-type-specific roles for Ron such that this receptor modulates cytokine production from Kupffer cells and inhibits hepatocyte survival in response to injury. PMID:21520175

  16. Cytokines in Male Fertility and Reproductive Pathologies: Immunoregulation and Beyond

    PubMed Central

    Loveland, Kate L.; Klein, Britta; Pueschl, Dana; Indumathy, Sivanjah; Bergmann, Martin; Loveland, Bruce E.; Hedger, Mark P.; Schuppe, Hans-Christian

    2017-01-01

    Germline development in vivo is dependent on the environment formed by somatic cells and the differentiation cues they provide; hence, the impact of local factors is highly relevant to the production of sperm. Knowledge of how somatic and germline cells interact is central to achieving biomedical goals relating to restoring, preserving or restricting fertility in humans. This review discusses the growing understanding of how cytokines contribute to testicular function and maintenance of male reproductive health, and to the pathologies associated with their abnormal activity in this organ. Here we consider both cytokines that signal through JAKs and are regulated by SOCS, and those utilizing other pathways, such as the MAP kinases and SMADs. The importance of cytokines in the establishment and maintenance of the testis as an immune-privilege site are described. Current research relating to the involvement of immune cells in testis development and disease is highlighted. This includes new data relating to testicular cancer which reinforce the understanding that tumorigenic cells shape their microenvironment through cytokine actions. Clinical implications in pathologies relating to local inflammation and to immunotherapies are discussed. PMID:29250030

  17. Free radical-triggered hepatic injury of experimental obstructive jaundice of rats involves overproduction of proinflammatory cytokines and enhanced activation of nuclear factor kappaB.

    PubMed

    Liu, T Z; Lee, K T; Chern, C L; Cheng, J T; Stern, A; Tsai, L Y

    2001-10-01

    Excessive production of hydroxyl radicals in blood and liver has previously been demonstrated by us in rats with obstructive jaundice induced by common bile duct ligation (CBDL). In this study, we demonstrate overproduction of superoxide radicals in circulating blood of CBDL rats by the lucigenin-amplified chemiluminescence technique. To pinpoint the molecular agents that mediate these processes, we measured circulating proinflammatory cytokines, such as tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta ( IL-1beta), and interleukin-6 (IL-6) in controls and CBDL rats. Concentrations of these cytokines in blood of CBDL rats were markedly elevated when compared to the controls (TNF-alpha: 36.7 +/- 5.0 vs 13.8 +/- 0.5 pg/mL; IL-6: 2,814 +/- 1,740 vs 0 pg/mL; IL-1beta: 11.9 +/- 2.6 vs 0 pg/mL). The overproduction of free radicals triggered by elevated cytokines in CBDL rats was correlated with the activation of NF-kappaB in hepatic tissue. Using the TdT-mediated dUTP nick-end label staining technique, we showed that hepatic tissue sections from CBDL rats had an increase in the apoptotic index (AI). Based on these findings, we propose that the severe hepatic injury in CBDL rats is mediated by a cycle that involves the activation of NF-kappaB by combined action of proinflammatory cytokines and reactive oxygen species (ROS). NF-KB, in turn, initiates the transcription of cytokine genes (eg, IL-6, IL-8, TNF-alpha), which triggers hepatic injury, at least in part, by a free radical-mediated apoptotic mechanism. Elevated ROS may be as a positive-feedback signal that triggers NF-KB reactivation; the severe hepatic injury of CBDL rats may result from perpetuation of this vicious cycle.

  18. Inflammatory Cytokines in Depression: Neurobiological Mechanisms and Therapeutic Implications

    PubMed Central

    Felger, Jennifer C.; Lotrich, Francis E.

    2013-01-01

    Mounting evidence indicates that inflammatory cytokines contribute to the development of depression in both medically ill and medically healthy individuals. Cytokines are important for development and normal brain function, and have the ability to influence neurocircuitry and neurotransmitter systems to produce behavioral alterations. Acutely, inflammatory cytokine administration or activation of the innate immune system produces adaptive behavioral responses that promote conservation of energy to combat infection or recovery from injury. However, chronic exposure to elevated inflammatory cytokines and persistent alterations in neurotransmitter systems can lead to neuropsychiatric disorders and depression. Mechanisms of cytokine behavioral effects involve activation of inflammatory signaling pathways in the brain that results in changes in monoamine, glutamate, and neuropeptide systems, and decreases in growth factors, e.g. brain derived neurotrophic factor. Furthermore, inflammatory cytokines may serve as mediators of both environmental (e.g. childhood trauma, obesity, stress, and poor sleep) and genetic (functional gene polymorphisms) factors that contribute to depression’s development. This review explores the idea that specific gene polymorphisms and neurotransmitter systems can confer protection from or vulnerability to specific symptom dimensions of cytokine-related depression. Additionally, potential therapeutic strategies that target inflammatory cytokine signaling or the consequences of cytokines on neurotransmitter systems in the brain to prevent or reverse cytokine effects on behavior are discussed. PMID:23644052

  19. Cytokine production in patients with papillary thyroid cancer and associated autoimmune Hashimoto thyroiditis.

    PubMed

    Zivancevic-Simonovic, Snezana; Mihaljevic, Olgica; Majstorovic, Ivana; Popovic, Suzana; Markovic, Slavica; Milosevic-Djordjevic, Olivera; Jovanovic, Zorica; Mijatovic-Teodorovic, Ljiljana; Mihajlovic, Dusan; Colic, Miodrag

    2015-08-01

    Hashimoto thyroiditis (HT) is the most frequent thyroid autoimmune disease, while papillary thyroid cancer (PTC) is one of the most common endocrine malignancies. A few patients with HT also develop PTC. The aim of this study was to analyze cytokine profiles in patients with PTC accompanied with autoimmune HT in comparison with those in patients with PTC alone or HT alone and healthy subjects. Cytokine levels were determined in supernatants obtained from phytohemagglutinin (PHA)-stimulated whole blood cultures in vitro. The concentrations of selected cytokines: Th1-interferon gamma (IFN-γ); Th2-interleukin 4 (IL-4), interleukin 5 (IL-5), interleukin 6 (IL-6), interleukin 10 (IL-10) and interleukin 13 (IL-13); Th9-interleukin 9 (IL-9); and Th17-interleukin 17 (IL-17A) were measured using multiplex cytokine detection systems for human Th1/Th2/Th9/Th17/Th22. We found that PTC patients with HT produced significantly higher concentrations of IL-4, IL-6, IL-9, IL-13 and IFN-γ than PTC patients without HT. In conclusion, autoimmune HT affects the cytokine profile of patients with PTC by stimulating secretion of Th1/Th2/Th9 types of cytokines. Th1/Th2 cytokine ratios in PTC patients with associated autoimmune HT indicate a marked shift toward Th2 immunity.

  20. Isolation of intact RNA from murine CD4+ T cells after intracellular cytokine staining and fluorescence-activated cell sorting.

    PubMed

    Kunnath-Velayudhan, Shajo; Porcelli, Steven A

    2018-05-01

    Intracellular cytokine staining (ICS) is a powerful method for identifying functionally distinct lymphocyte subsets, and for isolating these by fluorescence activated cell sorting (FACS). Although transcriptomic analysis of cells sorted on the basis of ICS has many potential applications, this is rarely performed because of the difficulty in isolating intact RNA from cells processed using standard fixation and permeabilization buffers for ICS. To address this issue, we compared three buffers shown previously to preserve RNA in nonhematopoietic cells subjected to intracellular staining for their effects on RNA isolated from T lymphocytes processed for ICS. Our results showed that buffers containing the recombinant ribonuclease inhibitor RNasin or high molar concentrations of salt yielded intact RNA from fixed and permeabilized T cells. As proof of principle, we successfully used the buffer containing RNasin to isolate intact RNA from CD4 + T cells that were sorted by FACS on the basis of specific cytokine production, thus demonstrating the potential of this approach for coupling ICS with transcriptomic analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Differential regulation of innate immune cytokine production through pharmacological activation of Nuclear Factor-Erythroid-2-Related Factor 2 (NRF2) in burn patient immune cells and monocytes

    PubMed Central

    Stepp, Wesley; Sjeklocha, Lucas; Long, Clayton; Riley, Caitlin; Callahan, James; Sanchez, Yolanda; Gough, Peter; Knowlin, Laquanda; van Duin, David; Ortiz-Pujols, Shiara; Jones, Samuel; Maile, Robert; Hong, Zhi; Berger, Scott; Cairns, Bruce

    2017-01-01

    Burn patients suffer from immunological dysfunction for which there are currently no successful interventions. Similar to previous observations, we find that burn shock patients (≥15% Total Burn Surface Area (TBSA) injury) have elevated levels of the innate immune cytokines Interleukin-6 (IL-6) and Monocyte Chemoattractant Protein-1 (MCP-1)/CC-motif Chemokine Ligand 2(CCL2) early after hospital admission (0–48 Hours Post-hospital Admission (HPA). Functional immune assays with patient Peripheral Blood Mononuclear Cells (PBMCs) revealed that burn shock patients (≥15% TBSA) produced elevated levels of MCP-1/CCL2 after innate immune stimulation ex vivo relative to mild burn patients. Interestingly, treatment of patient PBMCs with the Nuclear Factor-Erythroid-2-Related Factor 2 (NRF2) agonist, CDDO-Me(bardoxolone methyl), reduced MCP-1 production but not IL-6 or Interleukin-10 (IL-10) secretion. In enriched monocytes from healthy donors, CDDO-Me(bardoxolone methyl) also reduced LPS-induced MCP1/CCL2 production but did not alter IL-6 or IL-10 secretion. Similar immunomodulatory effects were observed with Compound 7, which activates the NRF2 pathway through a different and non-covalent Mechanism Of Action (MOA). Hence, our findings with CDDO-Me(bardoxolone methyl) and Compound 7 are likely to reflect a generalizable aspect of NRF2 activation. These observed effects were not specific to LPS-induced immune responses, as NRF2 activation also reduced MCP-1/CCL2 production after stimulation with IL-6. Pharmacological NRF2 activation reduced Mcp-1/Ccl2 transcript accumulation without inhibiting either Il-6 or Il-10 transcript levels. Hence, we describe a novel aspect of NRF2 activation that may contribute to the beneficial effects of NRF2 agonists during disease. Our work also demonstrates that the NRF2 pathway is retained and can be modulated to regulate important immunomodulatory functions in burn patient immune cells. PMID:28886135

  2. Differential regulation of innate immune cytokine production through pharmacological activation of Nuclear Factor-Erythroid-2-Related Factor 2 (NRF2) in burn patient immune cells and monocytes.

    PubMed

    Eitas, Timothy K; Stepp, Wesley H; Sjeklocha, Lucas; Long, Clayton V; Riley, Caitlin; Callahan, James; Sanchez, Yolanda; Gough, Peter; Knowlin, Laquanda; van Duin, David; Ortiz-Pujols, Shiara; Jones, Samuel W; Maile, Robert; Hong, Zhi; Berger, Scott; Cairns, Bruce A

    2017-01-01

    Burn patients suffer from immunological dysfunction for which there are currently no successful interventions. Similar to previous observations, we find that burn shock patients (≥15% Total Burn Surface Area (TBSA) injury) have elevated levels of the innate immune cytokines Interleukin-6 (IL-6) and Monocyte Chemoattractant Protein-1 (MCP-1)/CC-motif Chemokine Ligand 2(CCL2) early after hospital admission (0-48 Hours Post-hospital Admission (HPA). Functional immune assays with patient Peripheral Blood Mononuclear Cells (PBMCs) revealed that burn shock patients (≥15% TBSA) produced elevated levels of MCP-1/CCL2 after innate immune stimulation ex vivo relative to mild burn patients. Interestingly, treatment of patient PBMCs with the Nuclear Factor-Erythroid-2-Related Factor 2 (NRF2) agonist, CDDO-Me(bardoxolone methyl), reduced MCP-1 production but not IL-6 or Interleukin-10 (IL-10) secretion. In enriched monocytes from healthy donors, CDDO-Me(bardoxolone methyl) also reduced LPS-induced MCP1/CCL2 production but did not alter IL-6 or IL-10 secretion. Similar immunomodulatory effects were observed with Compound 7, which activates the NRF2 pathway through a different and non-covalent Mechanism Of Action (MOA). Hence, our findings with CDDO-Me(bardoxolone methyl) and Compound 7 are likely to reflect a generalizable aspect of NRF2 activation. These observed effects were not specific to LPS-induced immune responses, as NRF2 activation also reduced MCP-1/CCL2 production after stimulation with IL-6. Pharmacological NRF2 activation reduced Mcp-1/Ccl2 transcript accumulation without inhibiting either Il-6 or Il-10 transcript levels. Hence, we describe a novel aspect of NRF2 activation that may contribute to the beneficial effects of NRF2 agonists during disease. Our work also demonstrates that the NRF2 pathway is retained and can be modulated to regulate important immunomodulatory functions in burn patient immune cells.

  3. Increased Th1 and Th2 allergen-induced cytokine responses in children with atopic disease.

    PubMed

    Smart, J M; Kemp, A S

    2002-05-01

    Polyclonal cytokine responses following stimulation of T cells with mitogens or superantigens provides information on cytokine production from a wide range of T cells. Alternatively allergen-induced T cell responses can provide information on cytokine production by allergen-reactive T cells. While there is evidence of increased Th2 and reduced Th1 cytokine production following T cell stimulation with non-specific mitogens and superantigens, the evidence that Th1 cytokine production to allergens is decreased in line with a postulated imbalance in Th1/Th2 responses is unclear, with studies finding decreased, no difference or increased IFN-gamma responses to allergens in atopic subjects. To examine childhood polyclonal and allergen-induced cytokine responses in parallel to evaluate cytokine imbalances in childhood atopic disease. PBMC cytokine responses were examined in response to a polyclonal stimulus, staphylococcal superantigen (SEB), in parallel with two inhalant allergens, house dust mite (HDM) and rye grass pollen (RYE), and an ingested allergen, ovalbumin (OVA), in (a) 35 healthy children (non-atopic) and (b) 36 children with atopic disease (asthma, eczema and/or rhinitis) (atopic). Atopic children had significantly reduced IFN-gamma and increased IL-4 and IL-5 but not IL13 production to SEB superantigen stimulation when compared with non-atopic children. HDM and RYE allergens stimulated significantly increased IFN-gamma, IL-5 and IL-13, while OVA stimulated significantly increased IFN-gamma production in atopic children. We show that a polyclonal stimulus induces a reduced Th1 (IFN-gamma) and increased Th2 (IL-4 and IL-5) cytokine pattern. In contrast, the allergen-induced cytokine responses in atopic children were associated with both increased Th1 (INF-gamma) and Th2 (IL-5 and IL-13) cytokine production. The increased Th1 response to allergen is likely to reflect prior sensitization and indicates that increases in both Th1 and Th2 cytokine production to

  4. In vivo significance of ITK-SLP-76 interaction in cytokine production.

    PubMed

    Grasis, Juris A; Guimond, David M; Cam, Nicholas R; Herman, Krystal; Magotti, Paola; Lambris, John D; Tsoukas, Constantine D

    2010-07-01

    In vitro data have suggested that activation of the inducible T-cell kinase (ITK) requires an interaction with the adaptor protein SLP-76. One means for this interaction involves binding of the ITK SH3 domain to the polyproline-rich (PR) region of SLP-76. However, the biological significance of this association in live cells and the consequences of its disruption have not been demonstrated. Here, we utilized a polyarginine-rich, cell-permeable peptide that represents the portion of the SLP-76 PR region that interacts with the ITK SH3 domain as a competitive inhibitor to disrupt the association between ITK and SLP-76 in live cells. We demonstrate that treatment of cells with this peptide, by either in vitro incubation or intraperitoneal injection of the peptide in mice, inhibits the T-cell receptor (TCR)-induced association between ITK and SLP-76, recruitment and transphosphorylation of ITK, actin polarization at the T-cell contact site, and expression of Th2 cytokines. The inhibition is specific, as indicated by lack of effects by the polyarginine vehicle alone or a scrambled sequence of the cargo peptide. In view of the role of ITK as a regulator of Th2 cytokine expression, the data underscore the significance of ITK as a target for pharmacological intervention.

  5. A case of unfulfilled expectations. Cytokines in idiopathic minimal lesion nephrotic syndrome.

    PubMed

    Araya, Carlos E; Wasserfall, Clive H; Brusko, Todd M; Mu, Wei; Segal, Mark S; Johnson, Richard J; Garin, Eduardo H

    2006-05-01

    Idiopathic minimal lesion nephrotic syndrome (IMLNS) was proposed to be a disorder of T-cell dysfunction by Shalhoub in 1974. The mechanisms by which T-cells increase glomerular permeability have remained elusive (and unproven). There is evidence that IMLNS may be due to a circulating factor released from activated T-cells. In recent years, efforts have been made to identify this pathogenetic cytokine as well as to understand the mechanism(s) for the increased release of this factor. This review attempts to critically analyze the available published data. Using different methodologies, investigators have focused on the production of cytokines in patients with IMLNS during relapse and remission. This has resulted in a plethora of data without definitive conclusions. The pathogenetic cytokine has not been identified, and it is questionable whether there is a Th2 dominance in IMLNS. The review of the available data illustrates the difficulties encountered when one is studying the cytokine secretory pattern in patients with IMLNS. Differences in patient population, type of cells studies, sample preservation, and methodology used to measure cytokines are some of the factors that could account for the disparity of observed results.

  6. Analyzing cell fate control by cytokines through continuous single cell biochemistry.

    PubMed

    Rieger, Michael A; Schroeder, Timm

    2009-10-01

    Cytokines are important regulators of cell fates with high clinical and commercial relevance. However, despite decades of intense academic and industrial research, it proved surprisingly difficult to describe the biological functions of cytokines in a precise and comprehensive manner. The exact analysis of cytokine biology is complicated by the fact that individual cytokines control many different cell fates and activate a multitude of intracellular signaling pathways. Moreover, although activating different molecular programs, different cytokines can be redundant in their biological effects. In addition, cytokines with different biological effects can activate overlapping signaling pathways. This prospect article will outline the necessity of continuous single cell biochemistry to unravel the biological functions of molecular cytokine signaling. It focuses on potentials and limitations of recent technical developments in fluorescent time-lapse imaging and single cell tracking allowing constant long-term observation of molecules and behavior of single cells. (c) 2009 Wiley-Liss, Inc.

  7. Immunostimulatory activity of snake fruit (Salacca edulis Reinw.) cultivar Pondoh Hitam extract on the activation of macrophages in vitro

    NASA Astrophysics Data System (ADS)

    Wijanarti, Sri; Putra, Agus Budiawan Naro; Nishi, Kosuke; Harmayani, Eni; Sugahara, Takuya

    2017-05-01

    Snake fruit (Salacca edulis Reinw) cultivar Pondoh Hitam is a tropical fruit produced in Indonesia. It is consumed freshly or processed and believed as the most delicious snake fruit cultivar. Snake fruit flesh contains high polisaccharides such as pectin and dietary fiber. Therefore, snake fruit is a potential immunostimulator candidates but the immunological effect of snake fruit flesh has not been reported. In the present study, immunostimulatory activity of snake fruit flesh extract (SFFE) on macrophages activation was evaluated. SFFE was prepared by extracting from snake fruit flesh with water, methanol 70%, and ethanol 70% for 15 h at 4°C. Then obtained SFFE was used to stimulated cytokine production in vitro using J774.1 cell line. The extract giving strongest stimulation was sellected for in vivo assay to stimulate cytokines production and gene expression using peritoneal macrophage (P-mac) of BALB/c mice. The results showed that SFFE exhibited immunostimulatory activities. Immunostimulatory activity could be indicated by macrophages activation characteristics such as cytokines production. Water extract of SFFE gave strongest stimulation on cytokines production in vitro and sellected for in vivo assay. In vivo assay showed that SFFE stimulated cytokines production as well as their gene expression levels. The optimum stimulation was demonstrated by SFFE 16.7 mg/g. Overall findings suggest that SFFE has a potent beneficial effects to promote the body health through activating macrophages.

  8. T cell-replacing factor for glucocorticosteroid-induced immunoglobulin production. A unique steroid-dependent cytokine

    PubMed Central

    1983-01-01

    , heating to 56 degrees C, freezing, lyophilization, and storage at 4 degrees C for greater than 3 wk. Its molecular weight is probably 10,000 daltons or more, since TRF-S activity is not rapidly dialyzable. These experiments indicate that GCS-induced Ig production by human B cells does not require the presence of intact T cells in the cultures and therefore the steroids are not exerting their influence directly on T suppressor or T helper cells. Furthermore, they demonstrate a previously unrecognized cytokine that induces the differentiation of human B cells to Ig production in the presence of GCS. PMID:6605406

  9. Cytokines and cytokine networks target neurons to modulate long-term potentiation

    PubMed Central

    Prieto, G. Aleph; Cotman, Carl W.

    2017-01-01

    Cytokines play crucial roles in the communication between brain cells including neurons and glia, as well as in the brain-periphery interactions. In the brain, cytokines modulate long-term potentiation (LTP), a cellular correlate of memory. Whether cytokines regulate LTP by direct effects on neurons or by indirect mechanisms mediated by non-neuronal cells is poorly understood. Elucidating neuron-specific effects of cytokines has been challenging because most brain cells express cytokine receptors. Moreover, cytokines commonly increase the expression of multiple cytokines in their target cells, thus increasing the complexity of brain cytokine networks even after single-cytokine challenges. Here, we review evidence on both direct and indirect-mediated modulation of LTP by cytokines. We also describe novel approaches based on neuron- and synaptosome-enriched systems to identify cytokines able to directly modulate LTP, by targeting neurons and synapses. These approaches can test multiple samples in parallel, thus allowing the study of multiple cytokines simultaneously. Hence, a cytokine networks perspective coupled with neuron-specific analysis may contribute to delineation of maps of the modulation of LTP by cytokines. PMID:28377062

  10. T helper 2 and regulatory T-cell cytokine production by mast cells: a key factor in the pathogenesis of IgG4-related disease.

    PubMed

    Takeuchi, Mai; Sato, Yasuharu; Ohno, Kyotaro; Tanaka, Satoshi; Takata, Katsuyoshi; Gion, Yuka; Orita, Yorihisa; Ito, Toshihiro; Tachibana, Tomoyasu; Yoshino, Tadashi

    2014-08-01

    IgG4-related disease is a systemic disorder with unique clinicopathological features and uncertain etiological features and is frequently related to allergic disease. T helper 2 and regulatory T-cell cytokines have been reported to be upregulated in the affected tissues; thus, the production of these cytokines by T helper 2 and regulatory T cells has been suggested as an important factor in the pathogenesis of IgG4-related disease. However, it is not yet clear which cells produce these cytokines in IgG4-related disease, and some aspects of the disorder cannot be completely explained by T-cell-related processes. To address this, we analyzed paraffin-embedded sections of tissues from nine cases of IgG4-related submandibular gland disease, five cases of submandibular sialolithiasis, and six cases of normal submandibular gland in order to identify potential key players in the pathogenesis of IgG4-related disease. Real-time polymerase chain reaction analysis confirmed the significant upregulation of interleukin (IL)4, IL10, and transforming growth factor beta 1 (TGFβ1) in IgG4-related disease. Interestingly, immunohistochemical studies indicated the presence of mast cells expressing these cytokines in diseased tissues. In addition, dual immunofluorescence assays identified cells that were double-positive for each cytokine and for KIT, which is expressed by mast cells. In contrast, the distribution of T cells did not correlate with cytokine distribution in affected tissues. We also found that the mast cells were strongly positive for IgE. This observation supports the hypothesis that mast cells are involved in IgG4-related disease, as mast cells are known to be closely related to allergic reactions and are activated in the presence of elevated non-specific IgE levels. In conclusion, our results indicate that mast cells produce T helper 2 and regulatory T-cell cytokines in tissues affected by IgG4-related disease and possibly have an important role in disease

  11. The Structure of the GM-CSF Receptor Complex Reveals a Distinct Mode of Cytokine Receptor Activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Guido; Hercus, Timothy R.; McClure, Barbara J.

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine that controls the production and function of blood cells, is deregulated in clinical conditions such as rheumatoid arthritis and leukemia, yet offers therapeutic value for other diseases. Its receptors are heterodimers consisting of a ligand-specific {alpha} subunit and a {beta}c subunit that is shared with the interleukin (IL)-3 and IL-5 receptors. How signaling is initiated remains an enigma. We report here the crystal structure of the human GM-CSF/GM-CSF receptor ternary complex and its assembly into an unexpected dodecamer or higher-order complex. Importantly, mutagenesis of the GM-CSF receptor at the dodecamer interface andmore » functional studies reveal that dodecamer formation is required for receptor activation and signaling. This unusual form of receptor assembly likely applies also to IL-3 and IL-5 receptors, providing a structural basis for understanding their mechanism of activation and for the development of therapeutics.« less

  12. Antitumor activity of a dual cytokine/single-chain antibody fusion protein for simultaneous delivery of GM-CSF and IL-2 to Ep-CAM expressing tumor cells.

    PubMed

    Schanzer, Juergen M; Fichtner, Iduna; Baeuerle, Patrick A; Kufer, Peter

    2006-01-01

    Cytokine targeting to tumor-associated antigens via antibody cytokine fusion proteins has demonstrated potent antitumor activity in numerous animal models and has led to the clinical development of 2 antibody-interleukin-2 (IL-2) fusion proteins. We previously reported on the construction and in vitro properties of a "dual" cytokine fusion protein for simultaneous targeted delivery of human granulocyte macrophage-colony stimulating factor (GM-CSF) and IL-2 to human tumors. The fusion protein is based on a heterodimerized core structure formed by human CH1 and Ckappa domains (heterominibody) with C-terminally fused human cytokines and N-terminally fused single-chain antibody fragments specific for the tumor-associated surface antigen epithelial cell adhesion molecule (Ep-CAM). For testing the antitumor activity in syngeneic mouse xenograft models, we developed "dual cytokine heterominibodies" with murine cytokines (mDCH). mDCH fusion proteins and, as controls, "single cytokine heterominibodies" (SCH) carrying either murine GM-CSF (mGM-CSF) or murine IL-2 (mIL-2) were constructed, of which all retained the specific activities of cytokines and binding to the Ep-CAM antigen on human Ep-CAM transfected mouse colon carcinoma CT26-KSA cells. Over a 5-day treatment course, DCH fusion proteins induced significant inhibition of established pulmonary CT26-KSA metastases in immune-competent Balb/c mice at low daily doses of 1 mug of fusion protein per mouse. However, with the tested dosing schemes, antitumor activity of mDCH was largely independent of cytokine targeting to tumors as demonstrated by a control protein with mutated Ep-CAM binding sites. Single cytokine fusion proteins mSCH-GM-CSF and mSCH-IL-2 showed similar antitumor activity as the dual cytokine fusion protein mDCH, indicating that GM-CSF and IL-2 in one molecule did not significantly synergize in tumor rejection under our experimental conditions. Our results seem to contradict the notion that IL-2 and GM

  13. Methamphetamine Administration Modifies Leukocyte Proliferation and Cytokine Production in Murine Tissues

    PubMed Central

    Peerzada, Habibullah; Ghandi, Jay A.; Guimaraes, Allan J.; Nosanchuk, Joshua D.; Martinez, Luis R.

    2013-01-01

    Methamphetamine (METH) is a potent and highly addictive central nervous system (CNS) stimulant. Additionally, METH adversely impacts immunological responses, which might contribute to the higher rate and more rapid progression of certain infections in drug abusers. However no studies have shown the impact of METH on inflammation within specific organs, cellular participation and cytokine production. Using a murine model of METH administration, we demonstrated that METH modifies, with variable degrees, leukocyte recruitment and alters cellular mediators in the lungs, liver, spleen and kidneys of mice. Our findings demonstrate the pleotropic effects of METH on the immune response within diverse tissues. These alterations have profound implications on tissue homeostasis and the capacity of the host to respond to diverse insults, including invading pathogens. PMID:23518444

  14. Depletion of H2S during obesity enhances store-operated Ca2+ entry in adipose tissue macrophages to increase cytokine production.

    PubMed

    Velmurugan, Gopal V; Huang, Huiya; Sun, Hongbin; Candela, Joseph; Jaiswal, Mukesh K; Beaman, Kenneth D; Yamashita, Megumi; Prakriya, Murali; White, Carl

    2015-12-15

    The increased production of proinflammatory cytokines by adipose tissue macrophages (ATMs) contributes to chronic, low-level inflammation during obesity. We found that obesity in mice reduced the bioavailability of the gaseous signaling molecule hydrogen sulfide (H2S). Steady-state, intracellular concentrations of H2S were lower in ATMs isolated from mice with diet-induced obesity than in ATMs from lean mice. In addition, the intracellular concentration of H2S in the macrophage cell line RAW264.7 was reduced during an acute inflammatory response evoked by the microbial product lipopolysaccharide (LPS). Reduced intracellular concentrations of H2S led to increased Ca(2+) influx through the store-operated Ca(2+) entry (SOCE) pathway, which was prevented by the exogenous H2S donor GYY4137. Furthermore, GYY4137 inhibited the Orai3 channel, a key component of the SOCE machinery. The enhanced production of proinflammatory cytokines by RAW264.7 cells and ATMs from obese mice was reduced by exogenous H2S or by inhibition of SOCE. Together, these data suggest that the depletion of macrophage H2S that occurs during acute (LPS-induced) or chronic (obesity) inflammation increases SOCE through disinhibition of Orai3 and promotes the production of proinflammatory cytokines. Copyright © 2015, American Association for the Advancement of Science.

  15. Cytokine, chemokine and secretory IgA levels in human milk in relation to atopic disease and IgA production in infants.

    PubMed

    Böttcher, Malin F; Jenmalm, Maria C; Björkstén, Bengt

    2003-02-01

    The relationship between breast-feeding, IgA production and development of atopic disease in children is a matter of controversy. Some of this controversy might be due to individual differences in the composition of breast milk. The aim of this study was to relate the levels of cytokines, chemokines and secretory (S)-IgA antibodies in breast milk to the development of atopic manifestation and salivary IgA production in infants. Cytokine, chemokine and SIgA levels, as measured with enzyme-linked immunosorbent assay (ELISA), in colostrum and mature milk were analyzed in relation to the development of positive skin-prick tests (SPT), allergic symptoms and salivary IgA antibody production during the first 2 years of life in 53 infants. There was no association between levels of IL-4, -5, -6, -8, -10, -13, -16, IFN-gamma, TGF-beta1, -beta2, RANTES, eotaxin or SIgA levels in the breast milk with either SPT-positivity, development of allergic symptoms or salivary IgA levels during the first 2 years of life in the infants. Thus, differences in the composition of cytokines, chemokines and SIgA in breast milk did not, to any major degree, affect the development of a positive SPT, atopic symptoms, nor salivary IgA antibody production during the first 2 years of life.

  16. Serial measurement of serum cytokines, cytokine receptors and neopterin in leprosy patients with reversal reactions.

    PubMed

    Faber, W R; Iyer, A M; Fajardo, T T; Dekker, T; Villahermosa, L G; Abalos, R M; Das, P K

    2004-09-01

    Serum levels of cytokines (IL-4, IL-5, IFN-gamma, TNF-alpha), cytokine receptors (TNFR I and II) and one monokine (neopterin) were estimated in seven leprosy patients to establish disease associated markers for reversal reactions (RR). Sera were collected at diagnosis of leprosy, at the onset of reversal reaction and at different time points during and at the end of prednisone treatment of reactions. It was expected that the serum cytokine and monokine profile before and at different time points during reactions would provide guidelines for the diagnosis and monitoring of reversal reactions in leprosy. The cytokines and cytokine receptors were measured by ELISA, whereas a radioimmunoassay was used for neopterin measurement. Six of the seven patients showed increased levels of neopterin either at the onset of RR or 1 month thereafter, and levels declined on prednisone treatment to that seen at the time of diagnosis without reactions. No consistent disease associated cytokine profile was observed in these patients. Interestingly, serum TNF-alpha levels were increased in the same patients even after completion of prednisone treatment, indicating ongoing immune activity. In conclusion, this study demonstrates that despite cytokines levels in leprosy serum being inconsistent in relation to reversal reactions, serum neopterin measurement appears to be an useful biomarker in monitoring RR patients during corticosteroid therapy.

  17. Peripheral blood cytokine and chemokine profiles in juvenile localized scleroderma: T-helper cell-associated cytokine profiles.

    PubMed

    Torok, Kathryn S; Kurzinski, Katherine; Kelsey, Christina; Yabes, Jonathan; Magee, Kelsey; Vallejo, Abbe N; Medsger, Thomas; Feghali-Bostwick, Carol A

    2015-12-01

    To evaluate peripheral blood T-helper (TH) cell-associated cytokine and chemokine profiles in localized scleroderma (LS), and correlate them with clinical disease features, including disease activity parameters. A 29-plex Luminex platform was used to analyze the humoral profile of plasma samples from 69 pediatric LS patients and 71 healthy pediatric controls. Cytokine/chemokine levels were compared between these two groups and within LS patients, focusing on validated clinical outcome measures of disease activity and damage in LS. Plasma levels of IP-10, MCP-1, IL-17a, IL-12p70, GM-CSF, PDGF-bb, IFN-α2, and IFN-γ were significantly higher in LS subjects compared to healthy controls. Analysis within the LS group demonstrated IP-10, TNF-α, and GM-CSF correlated with clinical measures of disease activity. Several cytokines/chemokines correlated with anti-histone antibody, while only a few correlated with positive ANA and single-stranded DNA antibody. This is the first time that multiple cytokines and chemokines have been examined simultaneously in LS. In general, a TH1 (IFN-γ) and TH17 (IL-17a) predominance was demonstrated in LS compared to healthy controls. There is also an IFN-γ signature with elevated IP-10, MCP-1, and IFN-γ, which has been previously demonstrated in systemic sclerosis, suggesting a shared pathophysiology. Within the LS patients, those with active disease demonstrated IP-10, TNF-α, and GM-CSF, which may potentially serve as biomarkers of disease activity in the clinical setting. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. IFNα enhances the production of IL-6 by human neutrophils activated via TLR8.

    PubMed

    Zimmermann, Maili; Arruda-Silva, Fabio; Bianchetto-Aguilera, Francisco; Finotti, Giulia; Calzetti, Federica; Scapini, Patrizia; Lunardi, Claudio; Cassatella, Marco A; Tamassia, Nicola

    2016-01-21

    Recently, we reported that human neutrophils produce biologically active amounts of IL-6 when incubated with agonists activating TLR8, a receptor recognizing viral single strand RNA. In this study, we demonstrate that IFNα, a cytokine that modulates the early innate immune responses toward viral and bacterial infections, potently enhances the production of IL-6 in neutrophils stimulated with R848, a TLR8 agonist. We also show that such an effect is not caused by an IFNα-dependent induction of TLR7 and its consequent co-activation with TLR8 in response to R848, but, rather, it is substantially mediated by an increased production and release of endogenous TNFα. The latter cytokine, in an autocrine manner, leads to an augmented synthesis of the IkBζ co-activator and an enhanced recruitment of the C/EBPβ transcription factor to the IL-6 promoter. Moreover, we show that neutrophils from SLE patients with active disease state, hence displaying an IFN-induced gene expression signature, produce increased amounts of both IL-6 and TNFα in response to R848 as compared to healthy donors. Altogether, data uncover novel effects that type I IFN exerts in TLR8-activated neutrophils, which therefore enlarge our knowledge on the various biological actions which type I IFN orchestrates during infectious and autoimmune diseases.

  19. Cytokines and cytokine networks target neurons to modulate long-term potentiation.

    PubMed

    Prieto, G Aleph; Cotman, Carl W

    2017-04-01

    Cytokines play crucial roles in the communication between brain cells including neurons and glia, as well as in the brain-periphery interactions. In the brain, cytokines modulate long-term potentiation (LTP), a cellular correlate of memory. Whether cytokines regulate LTP by direct effects on neurons or by indirect mechanisms mediated by non-neuronal cells is poorly understood. Elucidating neuron-specific effects of cytokines has been challenging because most brain cells express cytokine receptors. Moreover, cytokines commonly increase the expression of multiple cytokines in their target cells, thus increasing the complexity of brain cytokine networks even after single-cytokine challenges. Here, we review evidence on both direct and indirect-mediated modulation of LTP by cytokines. We also describe novel approaches based on neuron- and synaptosome-enriched systems to identify cytokines able to directly modulate LTP, by targeting neurons and synapses. These approaches can test multiple samples in parallel, thus allowing the study of multiple cytokines simultaneously. Hence, a cytokine networks perspective coupled with neuron-specific analysis may contribute to delineation of maps of the modulation of LTP by cytokines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Differential regulation by Seogak Jihwang-Tang on cytokines production in peripheral blood mononuclear cells from the cerebral infarction patients presenting with altered consciousness.

    PubMed

    Jeong, Hyun-Ja; Chung, Hwan-Suck; Kim, Yo-Han; Moon, Byung-Soon; Sung, Kang-Keyng; Bai, Sun-Joon; Cho, Kwang-Ho; Kim, Yun-Kyung; Hong, Seung-Heon; Shin, Taekyun; Kim, Hyung-Min

    2004-10-01

    Seogak Jihwang-Tang (SJT) has been widely used to treat patients suffering from cerebral infarction. However, very little scientific investigation has been carried out. We investigated the effect of SJT on the production of various cytokines using peripheral blood mononuclear cells from the cerebral infarction patients presenting with altered consciousness. The cytokines production was determined by enzyme-linked immunosorbent assay. The amount of IL-4, IL-10 and TGF-beta1 in culture supernatant significantly increased in the SJT, lipopolysaccharide (LPS) or PHA-treated cells compared to unstimulated cells (P < 0.05). We also showed that increased IL-4 and IL-10 levels by LPS or phytohaemagglutinin (PHA) were significantly inhibited by SJT in a dose-dependent manner. Maximal inhibition rate of IL-4 and IL-10 production by SJT was 45.6 +/- 3.3% and 61 +/- 4.7% for LPS-stimulated cells and 27.3 +/- 1.2% and 83.6 +/- 2% for PHA-stimulated cells, respectively (P < 0.05). On the other hand, SJT significantly increased the LPS or PHA-induced TGF-beta1 production (P < 0.05). These data suggest that SJT has a regulatory effect on the cytokines production, which might explain its beneficial effect in the treatment of cerebral infarction.

  1. Chamomile Flower, Myrrh, and Coffee Charcoal, Components of a Traditional Herbal Medicinal Product, Diminish Proinflammatory Activation in Human Macrophages.

    PubMed

    Vissiennon, Cica; Hammoud, Dima; Rodewald, Steffen; Fester, Karin; Goos, Karl-Heinz; Nieber, Karen; Arnhold, Jürgen

    2017-07-01

    A traditional herbal medicinal product, containing myrrh, chamomile flower, and coffee charcoal, has been used in Germany for the relief of gastrointestinal complaints for decades. Clinical studies suggest its use in the maintenance therapy of inflammatory bowel disease. However, the pharmacological mechanisms underlying the clinical effects are not yet fully understood.The present study aims to elucidate immunopharmacological activities of myrrh, chamomile flower, and coffee charcoal by studying the influence of each plant extract on gene expression and protein release of activated human macrophages.The plant extracts effect on gene and protein expression of activated human monocyte-derived macrophages was investigated by microarray gene expression analysis and assessment of the release of pro- and anti-inflammatory mediators (TNF α , chemokine CXCL13, and interleukin-10) using an ELISA test system.The extracts of myrrh, chamomile flower, and coffee charcoal influenced gene expression of activated human macrophages within the cytokine/chemokine signaling pathway. Particularly, chemokine gene expression was suppressed. Subsequently, the production of CXCL13 and, to a minor extent, cytokine TNF α was inhibited by all herbal extracts. Chamomile flower and coffee charcoal extracts enhanced interleukin-10 release from activated macrophages. The observed effects on protein release were comparable to the effect of budesonide, which decreased TNF α and CXCL13 and enhanced interleukin-10 release.The components of the herbal medicinal product influence the activity of activated human macrophages on both gene and protein level. The induced alterations within chemokine/cytokine signaling could contribute to a positive effect on the immunological homeostasis, which is disturbed in patients with chronic intestinal inflammation. Georg Thieme Verlag KG Stuttgart · New York.

  2. Overexpression of SIRT1 Protects Pancreatic β-Cells Against Cytokine Toxicity by Suppressing the Nuclear Factor-κB Signaling Pathway

    PubMed Central

    Lee, Ji-Hyun; Song, Mi-Young; Song, Eun-Kyung; Kim, Eun-Kyung; Moon, Woo Sung; Han, Myung-Kwan; Park, Jin-Woo; Kwon, Kang-Beom; Park, Byung-Hyun

    2009-01-01

    OBJECTIVE—SIRT1, a class III histone/protein deacetylase, is known to interfere with the nuclear factor-κB (NF-κB) signaling pathway and thereby has an anti-inflammatory function. Because of the central role of NF-κB in cytokine-mediated pancreatic β-cell damage, we postulated that SIRT1 might work in pancreatic β-cell damage models. RESEARCH DESIGN AND METHODS—RINm5F (RIN) cells or isolated rat islets were treated with interleukin-1β and interferon-γ. SIRT1 was activated by resveratrol, a pharmacological activator, or ectopic overexpression. The underlying mechanisms of SIRT1 against cytokine toxicity were further explored. RESULTS—Treatment of RIN cells with cytokines induced cell damage, and this damage was well correlated with the expression of the inducible form of nitric oxide (NO) synthase (iNOS) and NO production. However, SIRT1 overexpression completely prevented cytokine-mediated cytotoxicity, NO production, and iNOS expression. The molecular mechanism by which SIRT1 inhibits iNOS expression appeared to involve the inhibition of the NF-κB signaling pathway through deacetylation of p65. In addition, SIRT1 activation by either resveratrol or adenoviral-directed overexpression of SIRT1 could prevent cytokine toxicity and maintain normal insulin-secreting responses to glucose in isolated rat islets. CONCLUSIONS—This study will provide valuable information not only into the mechanisms underlying β-cell destruction but also into the regulation of SIRT1 as a possible target to attenuate cytokine-induced β-cell damage. PMID:19008341

  3. Proinflammatory cytokines oppose opioid induced acute and chronic analgesia

    PubMed Central

    Hutchinson, Mark R.; Coats, Benjamen D.; Lewis, Susannah S.; Zhang, Yingning; Sprunger, David B.; Rezvani, Niloofar; Baker, Eric M.; Jekich, Brian M.; Wieseler, Julie L.; Somogyi, Andrew A.; Martin, David; Poole, Stephen; Judd, Charles M.; Maier, Steven F.; Watkins, Linda R.

    2008-01-01

    Spinal proinflammatory cytokines are powerful pain-enhancing signals that contribute to pain following peripheral nerve injury (neuropathic pain). Recently, one proinflammatory cytokine, interleukin-1, was also implicated in the loss of analgesia upon repeated morphine exposure (tolerance). In contrast to prior literature, we demonstrate that the action of several spinal proinflammatory cytokines oppose systemic and intrathecal opioid analgesia, causing reduced pain suppression. In vitro morphine exposure of lumbar dorsal spinal cord caused significant increases in proinflammatory cytokine and chemokine release. Opposition of analgesia by proinflammatory cytokines is rapid, occurring ≤5 minutes after intrathecal (perispinal) opioid administration. We document that opposition of analgesia by proinflammatory cytokines cannot be accounted for by an alteration in spinal morphine concentrations. The acute anti-analgesic effects of proinflammatory cytokines occur in a p38 mitogen-activated protein kinase and nitric oxide dependent fashion. Chronic intrathecal morphine or methadone significantly increased spinal glial activation (toll-like receptor 4 mRNA and protein) and the expression of multiple chemokines and cytokines, combined with development of analgesic tolerance and pain enhancement (hyperalgesia, allodynia). Statistical analysis demonstrated that a cluster of cytokines and chemokines was linked with pain-related behavioral changes. Moreover, blockade of spinal proinflammatory cytokines during a stringent morphine regimen previously associated with altered neuronal function also attenuated enhanced pain, supportive that proinflammatory cytokines are importantly involved in tolerance induced by such regimens. These data implicate multiple opioid-induced spinal proinflammatory cytokines in opposing both acute and chronic opioid analgesia, and provide a novel mechanism for the opposition of acute opioid analgesia. PMID:18599265

  4. TNFα-senescence initiates a STAT-dependent positive feedback loop, leading to a sustained interferon signature, DNA damage, and cytokine secretion

    PubMed Central

    Kandhaya-Pillai, Renuka; Miro-Mur, Francesc; Alijotas-Reig, Jaume; Tchkonia, Tamara; Kirkland, James L.; Schwartz, Simo

    2017-01-01

    Cellular senescence is a cell fate program that entails essentially irreversible proliferative arrest in response to damage signals. Tumor necrosis factor-alpha (TNFα), an important pro-inflammatory cytokine secreted by some types of senescent cells, can induce senescence in mouse and human cells. However, downstream signaling pathways linking TNFα-related inflammation to senescence are not fully characterized. Using human umbilical vein endothelial cells (HUVECs) as a model, we show that TNFα induces permanent growth arrest and increases p21CIP1, p16INK4A, and SA-β-gal, accompanied by persistent DNA damage and ROS production. By gene expression profiling, we identified the crucial involvement of inflammatory and JAK/STAT pathways in TNFα-mediated senescence. We found that TNFα activates a STAT-dependent autocrine loop that sustains cytokine secretion and an interferon signature to lock cells into senescence. Furthermore, we show STAT1/3 activation is necessary for cytokine and ROS production during TNFα-induced senescence. However, inhibition of STAT1/3 did not rescue cells from proliferative arrest, but rather suppressed cell cycle regulatory genes and altered TNFα-induced senescence. Our findings suggest a positive feedback mechanism via the STAT pathway that sustains cytokine production and reveal a reciprocal regulatory role of JAK/STAT in TNFα-mediated senescence. PMID:29176033

  5. Th1 cytokine-induced syndecan-4 shedding by airway smooth muscle cells is dependent on mitogen-activated protein kinases.

    PubMed

    Tan, Xiahui; Khalil, Najwa; Tesarik, Candice; Vanapalli, Karunasri; Yaputra, Viki; Alkhouri, Hatem; Oliver, Brian G G; Armour, Carol L; Hughes, J Margaret

    2012-04-01

    In asthma, airway smooth muscle (ASM) chemokine secretion can induce mast cell recruitment into the airways. The functions of the mast cell chemoattractant CXCL10, and other chemokines, are regulated by binding to heparan sulphates such as syndecan-4. This study is the first demonstration that airway smooth muscle cells (ASMC) from people with and without asthma express and shed syndecan-4 under basal conditions. Syndecan-4 shedding was enhanced by stimulation for 24 h with the Th1 cytokines interleukin-1β (IL-1β) or tumor necrosis factor-α (TNF-α), but not interferon-γ (IFNγ), nor the Th2 cytokines IL-4 and IL-13. ASMC stimulation with IL-1β, TNF-α, and IFNγ (cytomix) induced the highest level of syndecan-4 shedding. Nonasthmatic and asthmatic ASM cell-associated syndecan-4 protein expression was also increased by TNF-α or cytomix at 4-8 h, with the highest levels detected in cytomix-stimulated asthmatic cells. Cell-associated syndecan-4 levels were decreased by 24 h, whereas shedding remained elevated at 24 h, consistent with newly synthesized syndecan-4 being shed. Inhibition of ASMC matrix metalloproteinase-2 did not prevent syndecan-4 shedding, whereas inhibition of ERK MAPK activation reduced shedding from cytomix-stimulated ASMC. Although ERK inhibition had no effect on syndecan-4 mRNA levels stimulated by cytomix, it did cause an increase in cell-associated syndecan-4 levels, consistent with the shedding being inhibited. In conclusion, ASMC produce and shed syndecan-4 and although this is increased by the Th1 cytokines, the MAPK ERK only regulates shedding. ASMC syndecan-4 production during Th1 inflammatory conditions may regulate chemokine activity and mast cell recruitment to the ASM in asthma.

  6. EGFR ligands drive multipotential stromal cells to produce multiple growth factors and cytokines via early growth response-1.

    PubMed

    Kerpedjieva, Svetoslava S; Kim, Duk Soo; Barbeau, Dominique J; Tamama, Kenichi

    2012-09-01

    Cell therapy with adult bone marrow multipotential stromal cells/mesenchymal stem cells (MSCs) presents a promising approach to promote wound healing and tissue regeneration. The strong paracrine capability of various growth factors and cytokines is a key mechanism of MSC-mediated wound healing and tissue regeneration, and the goal of this study is to understand the underlying mechanism that supports the strong paracrine machineries in MSCs. Microarray database analyses revealed that early growth response-1 (EGR1) is highly expressed in MSCs. Our previous studies showed that epidermal growth factor (EGF) treatment induces growth factor production in MSCs in vitro. Since EGF strongly upregulates EGR1, we hypothesized that EGF receptor (EGFR)-EGR1 signaling plays a pivotal role in MSC paracrine activity. EGF treatment upregulated the gene expression of growth factors and cytokines, including EGFR ligands in a protein kinase C (PKC)- and/or mitogen-activated protein kinase-extracellular-signal-regulated kinase-dependent manner, and it was reversed by shRNA against EGR1. PKC activator phorbol 12-myristate 13-acetate enhanced EGFR tyrosyl phosphorylation and upregulated the gene expression of growth factors and cytokines in a heparin-binding EGF-like growth factor (HBEGF) inhibitor CRM197 sensitive manner, indicating an involvement of autocrined HBEGF in the downstream of PKC signaling. Moreover, stimulation with growth factors and cytokines induced the expression of EGFR ligands, presumably via EGR1 upregulation. These data indicate EGR1 as a convergence point of multiple signaling pathways, which in turn augments the production of multiple growth factors and cytokines by enhancing the autocrine signaling with EGFR ligands.

  7. The Effective Regulation of Pro- and Anti-inflammatory Cytokines Induced by Combination of PA-MSHA and BPIFB1 in Initiation of Innate Immune Responses.

    PubMed

    Zhou, Weiqiang; Duan, Zhiwen; Yang, Biao; Xiao, Chunling

    2017-01-01

    PA-MSHA and BPIFB1 play especially important roles in triggering innate immune responses by inducing production of pro- or anti-inflammatory cytokines in the oral cavity and upper airway. We found that PA-MSHA had a strong ability to activate pro-inflammatory cytokines such as IL-1β, IL-6 and TNF-α. However, BPIFB1 alone did not express a directly inductive effect. With incubation of PA-MSHA and BPIFB1, the combination can activate the CD14/TLR4/MyD88 complex and induce secretion of subsequent downstream cytokines. We used a proteome profiler antibody array to evaluate the phosphokinases status with PA-MSHA and BPIFB1 treatment. The results showed that the activation of MAPK, STAT, and PI-3K pathways is involved in PA-MSHA-BPIFB1 treatment, and that the related pathways control the secretion of targeting cytokines in the downstream. When we assessed the content changes of cytokines, we found that PA-MSHA-BPIFB1 treatment increased the production of pro-inflammatory cytokines in the early phase of treatment and induced the increase of IL-4 in the late phase. Our observations suggest that PA-MSHA-BPIFB1 stimulates the release of pro-inflammatory cytokines, and thereby initiates the innate immune system against inflammation. Meanwhile, the gradual release of anti-inflammatory cytokine IL-4 by PA-MSHA-BPIFB1 can also regulate the degree of inflammatory response; thus the host can effectively resist the environmental risks, but also manipulate inflammatory response in an appropriate and adjustable manner.

  8. Suppression of wear particle induced pro-inflammatory cytokine and chemokine production in macrophages via NF-κB decoy oligodeoxynucleotide: A preliminary report

    PubMed Central

    Lin, Tzu-hua; Yao, Zhenyu; Sato, Taishi; Keeney, Michael; Li, Chenguang; Pajarinen, Jukka; Yang, Fan; Egashira, Kensuke; Goodman, Stuart B.

    2014-01-01

    Total joint replacement (TJR) is a very cost-effective surgery for end-stage arthritis. One important goal is to decrease the revision rate especially because TJR has been extended to younger patients. Continuous production of ultra-high molecular weight polyethylene (UHMWPE) wear particles induces macrophage infiltration and chronic inflammation, which can lead to peri-prosthetic osteolysis. Targeting individual pro-inflammatory cytokines directly has not reversed the osteolytic process in clinical trials, due to compensatory upregulation of other pro-inflammatory factors. We hypothesized that targeting the important transcription factor NF-κB could mitigate the inflammatory response to wear particles, potentially diminishing osteolysis. In the current study, we suppressed NF-κB activity in mouse RAW264.7 and human THP1 macrophage cell lines, as well as primary mouse and human macrophages, via competitive binding with double strand decoy oligodeoxynucleotide (ODN) containing an NF-κB binding element. We found that macrophage exposure to UHMWPE particles induced multiple pro-inflammatory cytokine and chemokine expression including TNF-α, MCP1, MIP1α and others. Importantly, the decoy ODN significantly suppressed the induced cytokine and chemokine expression in both murine and human macrophages, and resulted in suppression of macrophage recruitment. The strategic use of decoy NF-κB ODN, delivered locally, could potentially diminish particle-induced peri-prosthetic osteolysis. PMID:24814879

  9. Effects of Omega-3-Rich Harp Seal Oil on the Production of Pro-Inflammatory Cytokines in Mouse Peritoneal Macrophages.

    PubMed

    Choi, Myungwon; Ju, Jaehyun; Suh, Jae Soo; Park, Kun-Young; Kim, Kwang Hyuk

    2015-06-01

    Omega-3, a polyunsaturated fatty acid, is an essential fatty acid necessary for human health, and it protects against cardiovascular disease, inflammation, autoimmune diseases, and cancer. In the present study, we investigated the effects of omega-3-rich harp seal oil (HSO) on the production of nitric oxide (NO) and cytokines, such as tumor necrosis factor (TNF)-α, interleukin-(IL)-1β, IL-6, and IL-12/IL-23 (p40) in peritoneal macrophages of mice. The culture supernatants of murine macrophages exposed to lipopolysaccharide (LPS), HSO, or HSO+LPS were harvested to assay IL-1β, TNF-α, IL-6, and IL-12/IL-23 (p40) cytokines and NO. TNF-α, IL-1 β, and IL-12/IL-23 (p40) levels, except IL-6, were lower in the culture supernatants of mouse peritoneal macrophages exposed to LPS plus HSO than those of the groups exposed to LPS alone. These observations demonstrate that omega-3-rich harp seal oil downregulates the production of the pro-inflammatory cytokines such as IL-1β, TNF-α, and IL-12/IL-23 (p40). These results suggest that HSO could be potentially used as a preventive agent or as an adjunct in anti-inflammatory therapy, if more research results were accumulated.

  10. Concurrent detection of secreted products from human lymphocytes by microengraving: cytokines and antigen-reactive antibodies

    PubMed Central

    Bradshaw, Elizabeth M.; Kent, Sally C.; Tripuraneni, Vinay; Orban, Tihamer; Ploegh, Hidde L.; Hafler, David A.; Love, J. Christopher

    2008-01-01

    Cell surface determinants, cytokines and antibodies secreted by hematopoietic cells are used to classify their lineage and function. Currently available techniques are unable to elucidate multiple secreted proteins while also assigning phenotypic surface-displayed markers to the individual living cells. Here, a soft lithographic method, microengraving, was adapted for the multiplexed interrogation of populations of individual human peripheral blood mononuclear cells for secreted cytokines (IFN-γ and IL-6), antigen-specific antibodies, and lineage-specific surface-expressed markers. Application of the method to a clinical sample from a recent onset Type 1 diabetic subject with a positive titer of anti-insulin antibodies showed that ~0.58% of circulating CD19+ B cells secreted proinsulin-reactive antibodies of the IgG isotype and 2–3% of circulating cells secreted IL-6. These data demonstrate the utility of microengraving for interrogating multiple phenotypes of single human cells concurrently and for detecting rare populations of cells by their secreted products. PMID:18675591

  11. HIV-1 gp120 envelope glycoprotein determinants for cytokine burst in human monocytes

    PubMed Central

    Coutu, Mathieu; Prévost, Jérémie; Brassard, Nathalie; Peres, Adam; Stegen, Camille; Madrenas, Joaquín; Kaufmann, Daniel E.; Finzi, Andrés

    2017-01-01

    The first step of HIV infection involves the interaction of the gp120 envelope glycoprotein to its receptor CD4, mainly expressed on CD4+ T cells. Besides its role on HIV-1 entry, the gp120 has been shown to be involved in the production of IL-1, IL-6, CCL20 and other innate response cytokines by bystander, uninfected CD4+ T cells and monocytes. However, the gp120 determinants involved in these functions are not completely understood. Whether signalling leading to cytokine production is due to CD4 or other receptors is still unclear. Enhanced chemokine receptor binding and subsequent clustering receptors may lead to cytokine production. By using a comprehensive panel of gp120 mutants, here we show that CD4 binding is mandatory for cytokine outburst in monocytes. Our data suggest that targeting monocytes in HIV-infected patients might decrease systemic inflammation and the potential tissue injury associated with the production of inflammatory cytokines. Understanding how gp120 mediates a cytokine burst in monocytes might help develop new approaches to improve the chronic inflammation that persists in these patients despite effective suppression of viremia by antiretroviral therapy. PMID:28346521

  12. Effect of TNF-α production inhibitors on the production of pro-inflammatory cytokines by peripheral blood mononuclear cells from HTLV-1-infected individuals.

    PubMed

    Luna, T; Santos, S B; Nascimento, M; Porto, M A F; Muniz, A L; Carvalho, E M; Jesus, A R

    2011-11-01

    Human T lymphotropic virus type 1 (HTLV-1) is the causal agent of myelopathy/tropical spastic paraparesis (HAM/TSP), a disease mediated by the immune response. HTLV-1 induces a spontaneous proliferation and production of pro-inflammatory cytokines by T cells, and increasing interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) levels are potentially involved in tissue damage in diseases related to HTLV-1. This exaggerated immune response is also due to an inability of the natural regulatory mechanisms to down-modulate the immune response in this group of patients. TNF-α inhibitors reduce inflammation and have been shown to improve chronic inflammatory diseases in clinical trials. The aim of this study was to evaluate the ability of pentoxifylline, forskolin, rolipram, and thalidomide to decrease in vitro production of TNF-α and IFN-γ in cells of HTLV-1-infected subjects. Participants of the study included 19 patients with HAM/TSP (mean age, 53 ± 11; male:female ratio, 1:1) and 18 HTLV-1 carriers (mean age, 47 ± 11; male:female ratio, 1:2.6). Cytokines were determined by ELISA in supernatants of mononuclear cell cultures. Pentoxifylline inhibited TNF-α and IFN-γ synthesis with the minimum dose used (50 µM). The results with forskolin were similar to those observed with pentoxifylline. The doses of rolipram used were 0.01-1 µM and the best inhibition of TNF-α production was achieved with 1 µM and for IFN-γ production it was 0.01 µM. The minimum dose of thalidomide used (1 µM) inhibited TNF-α production but thalidomide did not inhibit IFN-γ production even when the maximum dose (50 µM) was used. All drugs had an in vitro inhibitory effect on TNF-α production and, with the exception of thalidomide, all of them also decreased IFN-γ production.

  13. Treatment of mice with fenbendazole attenuates allergic airways inflammation and Th2 cytokine production in a model of asthma.

    PubMed

    Cai, Yeping; Zhou, Jiansheng; Webb, Dianne C

    2009-01-01

    Mouse models have provided a significant insight into the role of T-helper (Th) 2 cytokines such as IL-5 and IL-13 in regulating eosinophilia and other key features of asthma. However, the validity of these models can be compromised by inadvertent infection of experimental mouse colonies with pathogens such as oxyurid parasites (pinworms). While the benzimidazole derivative, fenbendazole (FBZ), is commonly used to treat such outbreaks, the effects of FBZ on mouse models of Th2 disease are largely unknown. In this investigation, we show that mice fed FBZ-supplemented food during the in utero and post-weaning period developed attenuated lung eosinophilia, antigen-specific IgG1 and Th2 cytokine responses in a model of asthma. Treatment of the mediastinal lymph node cells from allergic mice with FBZ in vitro attenuated cell proliferation, IL-5 and IL-13 production and expression of the early lymphocyte activation marker, CD69 on CD4(+) T cells and CD19(+) B cells. In addition, eosinophilia and Th2 responses remained attenuated after a 4-week withholding period in allergic mice treated preweaning with FBZ. Thus, FBZ modulates the amplitude of Th2 responses both in vivo and in vitro.

  14. The role of adipose-derived inflammatory cytokines in type 1 diabetes

    PubMed Central

    Shao, Lan; Feng, Boya; Zhang, Yuying; Zhou, Huanjiao; Ji, Weidong; Min, Wang

    2016-01-01

    ABSTRACT Adipose tissue dysfunction correlates with the development of diabetes. Mice with an adipocyte-specific deletion of the SUMO-specific protease SENP1 develop symptoms of type-1 diabetes mellitus (T1DM). Peri-pancreatic adipocytes (PATs) exert both systemic and paracrine effects on pancreases function. Our recent studies report that PATs of SENP1-deficient mice have increased proinflammatory cytokine production compared with other adipose depots. Proinflammatory cytokines produced from PATs not only have direct cytotoxic effects on pancreatic islets, but also increase CCL5 expression in adjacent pancreatic islets, which induces persistent inflammation in pancreases by acquisition of Th1 and Th17 effector T cell subsets. Small ubiquitin-like modifier (SUMO) can post-translationally conjugate to cellular proteins (SUMOylation) and modulate their biological functions. Several components in SUMOylation associate with T1DM susceptibility. We find that SUMOylation of NF-κB essential molecule NEMO augments NF-κB activity, NF-κB-dependent cytokine production and pancreatic inflammation. NF-κB inhibitor should provide therapeutic approach to block PAT inflammation and ameliorate the T1DM phenotype. We further propose that adipocytes in PATs may play a primary role in establishing pancreatic immune regulation at onset of diabetes, providing new insights into the molecular pathogenesis of type 1 diabetes. PMID:27617172

  15. Vinpocetine Reduces Carrageenan-Induced Inflammatory Hyperalgesia in Mice by Inhibiting Oxidative Stress, Cytokine Production and NF-κB Activation in the Paw and Spinal Cord

    PubMed Central

    Ruiz-Miyazawa, Kenji W.; Zarpelon, Ana C.; Pinho-Ribeiro, Felipe A.; Pavão-de-Souza, Gabriela F.; Casagrande, Rubia; Verri, Waldiceu A.

    2015-01-01

    Vinpocetine is a safe nootropic agent used for neurological and cerebrovascular diseases. The anti-inflammatory activity of vinpocetine has been shown in cell based assays and animal models, leading to suggestions as to its utility in analgesia. However, the mechanisms regarding its efficacy in inflammatory pain treatment are still not completely understood. Herein, the analgesic effect of vinpocetine and its anti-inflammatory and antioxidant mechanisms were addressed in murine inflammatory pain models. Firstly, we investigated the protective effects of vinpocetine in overt pain-like behavior induced by acetic acid, phenyl-p-benzoquinone (PBQ) and formalin. The intraplantar injection of carrageenan was then used to induce inflammatory hyperalgesia. Mechanical and thermal hyperalgesia were evaluated using the electronic von Frey and the hot plate tests, respectively, with neutrophil recruitment to the paw assessed by a myeloperoxidase activity assay. A number of factors were assessed, both peripherally and in the spinal cord, including: antioxidant capacity, reduced glutathione (GSH) levels, superoxide anion, tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β) levels, as well as nuclear factor kappa B (NF-κB) activation. Vinpocetine inhibited the overt pain-like behavior induced by acetic acid, PBQ and formalin (at both phases), as well as the carrageenan-induced mechanical and thermal hyperalgesia and associated neutrophil recruitment. Both peripherally and in the spinal cord, vinpocetine also inhibited: antioxidant capacity and GSH depletion; increased superoxide anion; IL-1β and TNF-α levels; and NF-κB activation. As such, vinpocetine significantly reduces inflammatory pain by targeting oxidative stress, cytokine production and NF-κB activation at both peripheral and spinal cord levels. PMID:25822523

  16. Vinpocetine reduces carrageenan-induced inflammatory hyperalgesia in mice by inhibiting oxidative stress, cytokine production and NF-κB activation in the paw and spinal cord.

    PubMed

    Ruiz-Miyazawa, Kenji W; Zarpelon, Ana C; Pinho-Ribeiro, Felipe A; Pavão-de-Souza, Gabriela F; Casagrande, Rubia; Verri, Waldiceu A

    2015-01-01

    Vinpocetine is a safe nootropic agent used for neurological and cerebrovascular diseases. The anti-inflammatory activity of vinpocetine has been shown in cell based assays and animal models, leading to suggestions as to its utility in analgesia. However, the mechanisms regarding its efficacy in inflammatory pain treatment are still not completely understood. Herein, the analgesic effect of vinpocetine and its anti-inflammatory and antioxidant mechanisms were addressed in murine inflammatory pain models. Firstly, we investigated the protective effects of vinpocetine in overt pain-like behavior induced by acetic acid, phenyl-p-benzoquinone (PBQ) and formalin. The intraplantar injection of carrageenan was then used to induce inflammatory hyperalgesia. Mechanical and thermal hyperalgesia were evaluated using the electronic von Frey and the hot plate tests, respectively, with neutrophil recruitment to the paw assessed by a myeloperoxidase activity assay. A number of factors were assessed, both peripherally and in the spinal cord, including: antioxidant capacity, reduced glutathione (GSH) levels, superoxide anion, tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β) levels, as well as nuclear factor kappa B (NF-κB) activation. Vinpocetine inhibited the overt pain-like behavior induced by acetic acid, PBQ and formalin (at both phases), as well as the carrageenan-induced mechanical and thermal hyperalgesia and associated neutrophil recruitment. Both peripherally and in the spinal cord, vinpocetine also inhibited: antioxidant capacity and GSH depletion; increased superoxide anion; IL-1β and TNF-α levels; and NF-κB activation. As such, vinpocetine significantly reduces inflammatory pain by targeting oxidative stress, cytokine production and NF-κB activation at both peripheral and spinal cord levels.

  17. Pre-activation with IL-12, IL-15, and IL-18 induces CD25 and a functional high affinity IL-2 receptor on human cytokine-induced memory-like NK cells

    PubMed Central

    Leong, Jeffrey W.; Chase, Julie M.; Romee, Rizwan; Schneider, Stephanie E.; Sullivan, Ryan P.; Cooper, Megan A.; Fehniger, Todd A.

    2014-01-01

    NK cells are effector lymphocytes that are under clinical investigation for the adoptive immunotherapy of hematologic malignancies, especially acute myeloid leukemia. Recent work in mice has identified innate memory-like properties of NK cells. Human NK cells also exhibit memory-like properties, and cytokine-induced memory-like (CIML) NK cells are generated via brief pre-activation with IL-12, IL-15, and IL-18, which later exhibit enhanced functionality upon restimulation. However, investigation of the optimal cytokine receptors and signals for maintenance of enhanced function and homeostasis following pre-activation remains unclear. Here, we show that IL-12, IL-15, and IL-18 pre-activation induces a rapid and prolonged expression of CD25, resulting in a functional high affinity IL-2 receptor (IL-2Rαβγ) that confers responsiveness to picomolar concentrations of IL-2. The expression of CD25 correlated with STAT5 phosphorylation in response to picomolar concentrations of IL-2, indicating the presence of a signal-competent IL-2Rαβγ. Furthermore, picomolar concentrations of IL-2 acted synergistically with IL-12 to co-stimulate IFN-γ production by pre-activated NK cells, an effect that was CD25-dependent. Picomolar concentrations of IL-2 also enhanced NK cell proliferation and cytotoxicity via the IL-2Rαβγ. Further, following adoptive transfer into immunodeficient NOD-SCID-γc−/− mice, human cytokine pre-activated NK cells expand preferentially in response to exogenous IL-2. Collectively, these data demonstrate that human CIML NK cells respond to IL-2 via IL-2Rαβγ with enhanced survival and functionality, and provide additional rationale for immunotherapeutic strategies that include brief cytokine pre-activation prior to adoptive NK cell transfer, followed by low dose IL-2 therapy. PMID:24434782

  18. Th-1, Th-2 Cytokines Profile among Madurella mycetomatis Eumycetoma Patients.

    PubMed

    Nasr, Amre; Abushouk, Amir; Hamza, Anhar; Siddig, Emmanuel; Fahal, Ahmed H

    2016-07-01

    Eumycetoma is a progressive and destructive chronic granulomatous subcutaneous inflammatory disease caused by certain fungi, the most common being Madurella mycetomatis. The host defence mechanisms against fungi usually range from an early non-specific immune response to activation and induction of specific adaptive immune responses by the production of Th-1 and Th-2 cytokines. The aim of this study is to determine the levels of Th-1 and Th-2 cytokines in patients infected with Madurella mycetomatis, and the association between their levels and disease prognosis. This is a descriptive cross-sectional study conducted at the Mycetoma Research Centre, University of Khartoum, Sudan, where 70 patients with confirmed M. mycetomatis eumycetoma were enrolled; 35 with, and 35 without surgical excision. 70 healthy individuals from mycetoma endemic areas were selected as controls. The levels of serum cytokines were determined by cytometric bead array technique. Significantly higher levels of the Th-1 cytokines (IFN-γ, TNF-α, IL-1β and IL-2) were recorded in patients treated with surgical excision, compared to those treated without surgical excision. In contrast, the Th-2 cytokines (IL-4, IL-5, IL-6 and IL-10) were significantly lower in patients treated with surgical excision compared to those treated without surgical excision. In conclusion, the results of this study suggest that cell-mediated immunity can have a role to play in the pathogenesis of eumycetoma.

  19. Flavonoids inhibit cytokine-induced endothelial cell adhesion protein gene expression.

    PubMed Central

    Gerritsen, M. E.; Carley, W. W.; Ranges, G. E.; Shen, C. P.; Phan, S. A.; Ligon, G. F.; Perry, C. A.

    1995-01-01

    Treatment of human endothelial cells with cytokines such as interleukin-1, tumor necrosis factor-alpha (TNF-alpha) or interferon-gamma induces the expression of specific leukocyte adhesion molecules on the endothelial cell surface. Interfering with either leukocyte adhesion or adhesion protein upregulation is an important therapeutic target as evidenced by the potent anti-inflammatory actions of neutralizing antibodies to these ligands in various animal models and in patients. In the present study we report that cotreatment of human endothelial cells with certain hydroxyflavones and flavanols blocks cytokine-induced ICAM-1, VCAM-1, and E-selectin expression on human endothelial cells. One of the most potent flavones, apigenin, exhibited a dose- and time-dependent, reversible effect on adhesion protein expression as well as inhibiting adhesion protein upregulation at the transcriptional level. Apigenin also inhibited IL-1 alpha-induced prostaglandin synthesis and TNF-alpha-induced IL-6 and IL-8 production, suggesting that the hydroxyflavones may act as general inhibitors of cytokine-induced gene expression. Although apigenin did not inhibit TNF-alpha-induced nuclear translocation of NF-kappa B(p50(NFKB1)/p65(RelA)) we found this flavonoid did inhibit TNF-alpha induced beta-galactosidase activity in SW480 cells stably transfected with a beta-galactosidase reporter construct driven by four NF-kappa B elements, suggesting an action on NF-kappa B transcriptional activation. Adhesion of leukocytes to cytokine-treated endothelial cells was blocked in endothelial cells cotreated with apigenin. Finally, apigenin demonstrated potent anti-inflammatory activity in carrageenan induced rat paw edema and delayed type hypersensitivity in the mouse. We conclude that flavonoids offer important therapeutic potential for the treatment of a variety of inflammatory diseases involving an increase in leukocyte adhesion and trafficking. Images Figure 7 Figure 8 Figure 11 PMID:7543732

  20. Comparison of phage pVIII and KLH as vector in inducing the production of cytokines in C57BL/6J mice.

    PubMed

    Su, Quan-Ping; Wen, De-Zhong; Yang, Qiong; Zhang, Yan-Hui; Liu, Chong; Wang, Li

    2007-01-22

    We have demonstrated that phage display Candida albicans (C. albicans) LKVIRK epitope was protective in systemically infected C57BL/6J mice. The different development from precursor Ths, Th1 or Th2, will result in a protective or nonprotective immune response. To compare the types of cytokines induced by biologically and chemically synthesized vectors, C57BL/6J mice were immunized with hybrid phage displaying the epitope of LKVIRK and by synthesized peptide epitope LKVIRKNIVKKMIE conjugated through cysteine to keyhole limpet haemocyanin (KLH). The production of cytokines in spleens of immunized mice and in splenocytes culture supernatants stimulated by homologous immunogen in vitro was studied by RT-PCR and quantitative sandwich ELISA. The results showed that, compared to Tris-EDTA buffer (TE, 1 mM Tris, 0.1 mM EDTA, pH 8.0) injected mice, the expressions of Th1 type cytokine IFN-gamma, IL-2 and IL-12 were increased in hybrid phage, KLH-C, and wild phage immunized mice, and there were no differences between mice immunized with hybrid phage and KLH-C. While the expression of Th2 type cytokine IL-10 was similar in all mice, IL-4 was not detected. We obtained the same results in mRNA and protein level. These findings indicated that as carriers, phage and KLH were similar in inducing the Th1 type cytokines expression. Comparing to peptide synthesis couple with a carrier protein for injection, phage may be an inexpensive and simple route to the production of effective vaccines.

  1. The potential role of the osteoblast in the development of periprosthetic osteolysis: review of in vitro osteoblast responses to wear debris, corrosion products, and cytokines and growth factors.

    PubMed

    Vermes, C; Glant, T T; Hallab, N J; Fritz, E A; Roebuck, K A; Jacobs, J J

    2001-12-01

    Limited information is available on the responses of osteoblasts to wear debris, corrosion products, and cytokines and on the roles of altered osteoblast functions in the development of periprosthetic bone loss. Wear debris-challenged osteoblasts exhibit altered functions resulting in the loss of their capacity to produce bone matrix and to replace the resorbed bone. Also, osteoblasts may secrete cytokines, which act in a paracrine fashion to recruit inflammatory cells into the periprosthetic space and to stimulate osteoclastic bone resorption. These effects may be mediated in part by ionic metal dissolution products. We review the mechanisms by which altered osteoblast functions, in response to particulate wear debris, corrosion products, and cytokines and growth factors, may contribute to the development and the progression of periprosthetic osteolysis.

  2. Mycoplasma fermentans and TNF-β interact to amplify immune-modulating cytokines in human lung fibroblasts

    PubMed Central

    Fabisiak, James P.; Gao, Fei; Thomson, Robyn G.; Strieter, Robert M.; Watkins, Simon C.; Dauber, James H.

    2010-01-01

    Mycoplasma can establish latent infections and are associated with arthritis, leukemia, and chronic lung disease. We developed an experimental model in which lung cells are deliberately infected with Mycoplasma fermentans. Human lung fibroblasts (HLF) were exposed to live M. fermentans and immune-modulating cytokine release was assessed with and without known inducers of cytokine production. M. fermentans increased IL-6, IL-8/CXCL8, MCP-1/CCL2, and Gro-α/CXCL1 production. M. fermentans interacted with TNF-β to release more IL-6, CXCL8, and CXCL1 than predicted by the responses to either stimulus alone. The effects of live infection were recapitulated by exposure to M. fermentans-derived macrophage-activating lipopeptide-2 (MALP-2), a Toll-like receptor-2- and receptor-6-specific ligand. The synergistic effect of combined stimuli was more pronounced with prolonged incubations. Preexposure to TNF-β sensitized the cells to subsequent MALP-2 challenge, but preexposure to MALP-2 did not alter the IL-6 response to TNF-β. Exposure to M. fermentans or MALP-2 did not enhance nuclear localization, DNA binding, or transcriptional activity of NF-κB and did not modulate early NF-κB activation in response to TNF-β. Application of specific inhibitors of various MAPKs suggested that p38 and JNK/stress-activated protein kinase were involved in early IL-6 release after exposure to TNF-β and M. fermentans, respectively. The combined response to M. fermentans and TNF-β, however, was uniquely sensitive to delayed application of SP-600125, suggesting that JNK/stress-activated protein kinase contributes to the amplification of IL-6 release. Thus M. fermentans interacts with stimuli such as TNF-β to amplify lung cell production of immune-modulating cytokines. The mechanisms accounting for this interaction can now be dissected with the use of this in vitro model. PMID:16751226

  3. PPAR-γ activation by Tityus serrulatus venom regulates lipid body formation and lipid mediator production.

    PubMed

    Zoccal, Karina Furlani; Paula-Silva, Francisco Wanderley Garcia; Bitencourt, Claudia da Silva; Sorgi, Carlos Artério; Bordon, Karla de Castro Figueiredo; Arantes, Eliane Candiani; Faccioli, Lúcia Helena

    2015-01-01

    Tityus serrulatus venom (TsV) consists of numerous peptides with different physiological and pharmacological activities. Studies have shown that scorpion venom increases pro-inflammatory cytokine production, contributing to immunological imbalance, multiple organ dysfunction, and patient death. We have previously demonstrated that TsV is a venom-associated molecular pattern (VAMP) recognized by TLRs inducing intense inflammatory reaction through the production of pro-inflammatory cytokines and arachidonic acid-derived lipid mediators prostaglandin (PG)E2 and leukotriene (LT)B4. Lipid bodies (LBs) are potential sites for eicosanoid production by inflammatory cells. Moreover, recent studies have shown that the peroxisome proliferator-activated receptor gamma (PPAR-γ) is implicated in LB formation and acts as an important modulator of lipid metabolism during inflammation. In this study, we used murine macrophages to evaluate whether the LB formation induced by TsV after TLR recognition correlates with lipid mediator generation by macrophages and if it occurs through PPAR-γ activation. We demonstrate that TsV acts through TLR2 and TLR4 stimulation and PPAR-γ activation to induce LB formation and generation of PGE2 and LTB4. Our data also show that PPAR-γ negatively regulates the pro-inflammatory NF-κB transcription factor. Based on these results, we suggest that during envenomation, LBs constitute functional organelles for lipid mediator production through signaling pathways that depend on cell surface and nuclear receptors. These findings point to the inflammatory mechanisms that might also be triggered during human envenomation by TsV. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Cytokine networking of innate immunity cells: a potential target of therapy.

    PubMed

    Striz, Ilja; Brabcova, Eva; Kolesar, Libor; Sekerkova, Alena

    2014-05-01

    Innate immune cells, particularly macrophages and epithelial cells, play a key role in multiple layers of immune responses. Alarmins and pro-inflammatory cytokines from the IL (interleukin)-1 and TNF (tumour necrosis factor) families initiate the cascade of events by inducing chemokine release from bystander cells and by the up-regulation of adhesion molecules required for transendothelial trafficking of immune cells. Furthermore, innate cytokines produced by dendritic cells, macrophages, epithelial cells and innate lymphoid cells seem to play a critical role in polarization of helper T-cell cytokine profiles into specific subsets of Th1/Th2/Th17 effector cells or regulatory T-cells. Lastly, the innate immune system down-regulates effector mechanisms and restores homoeostasis in injured tissue via cytokines from the IL-10 and TGF (transforming growth factor) families mainly released from macrophages, preferentially the M2 subset, which have a capacity to induce regulatory T-cells, inhibit the production of pro-inflammatory cytokines and induce healing of the tissue by regulating extracellular matrix protein deposition and angiogenesis. Cytokines produced by innate immune cells represent an attractive target for therapeutic intervention, and multiple molecules are currently being tested clinically in patients with inflammatory bowel disease, rheumatoid arthritis, systemic diseases, autoinflammatory syndromes, fibrosing processes or malignancies. In addition to the already widely used blockers of TNFα and the tested inhibitors of IL-1 and IL-6, multiple therapeutic molecules are currently in clinical trials targeting TNF-related molecules [APRIL (a proliferation-inducing ligand) and BAFF (B-cell-activating factor belonging to the TNF family)], chemokine receptors, IL-17, TGFβ and other cytokines.

  5. Pro-inflammatory cytokines and leukocyte oxidative burst in chronic kidney disease: culprits or innocent bystanders?

    PubMed

    Neirynck, Nathalie; Glorieux, Griet; Schepers, Eva; Dhondt, Annemieke; Verbeke, Francis; Vanholder, Raymond

    2015-06-01

    Pro-inflammatory cytokines are elevated in chronic kidney disease (CKD), a condition characterized by microinflammation with oxidative stress as key feature. However, their role in the inflammatory response at uraemic concentrations has not yet been defined. In this study, the contribution of cytokines on induction of leukocyte oxidative stress was investigated. Whole blood from healthy donors was incubated with 20-1400 pg/mL TNFα, 5-102.8 pg/mL IL-6, 20-400 pg/mL IL-1β and 75-1200 pg/mL IL-18 separately or in combination. Oxidative burst was measured, at baseline and after stimulation with fMLP (Phagoburst™). The effect of the TNFα blocker, adalimumab (Ada), was evaluated on TNFα-induced ROS production. Finally, the association between TNFα and the composite end point all-cause mortality or first cardiovascular event was analysed in a CKD population stage 4-5 (n = 121). While interleukin (IL)-6, IL-1β and IL-18 alone induced no ROS activation of normal leukocytes, irrespective of concentrations, TNFα induced ROS activation at baseline (P < 0.01) and after fMLP stimulation (P < 0.05), but only at uraemic concentrations in the high range (400 and 1400 pg/mL). A similar pattern was observed with all cytokines in combination, but already at intermediate uraemic concentrations (all P < 0.05, except for monocytes after fMLP stimulation: n.s.), suggesting synergism between cytokines. ROS production induced by TNFα (400 pg/mL) and the cytokine combination was blocked with Ada. Uraemia-related oxidative stress in leukocytes of haemodialysis patients was however not blocked by Ada. In patients, TNFα was not associated to adverse events (HR: 1.52, 95% CI 0.81-2.85, P = 0.13). Among several pro-inflammatory cytokines, TNFα alone was pro-oxidative but only at high-range uraemic concentrations. Adding a TNFα blocker, Ada, blocked this ROS production, but not the oxidative stress in blood samples from haemodialysis patients, suggesting that other uraemic toxins than

  6. Cytokines in the management of rotavirus infection: A systematic review of in vivo studies.

    PubMed

    Gandhi, Gopalsamy Rajiv; Santos, Victor Santana; Denadai, Marina; da Silva Calisto, Valdete Kaliane; de Souza Siqueira Quintans, Jullyana; de Oliveira E Silva, Ana Mara; de Souza Araújo, Adriano Antunes; Narain, Narendra; Cuevas, Luis Eduardo; Júnior, Lucindo José Quintans; Gurgel, Ricardo Queiroz

    2017-08-01

    Rotavirus is a leading cause of childhood diarrhoea. Rotavirus vaccines are effective against severe rotavirus gastroenteritis, but have lower efficacy in low income countries in Africa. Anti-rotavirus treatment is not available. This study reviews the literature of animal studies evaluating whether cytokine mediated pathways of immune activation could improve rotavirus therapy. We performed a systematic review of articles in English published from 2010 to 2016 reporting agents with in vivo antirotavirus activity for the management of rotavirus infection. The search was carried in PubMed, EMBASE, Scopus and Web of Science. Animal experiments where cytokines were investigated to assess the outcome of rotavirus therapy were included. A total of 869 publications were identified. Of these, 19 pertained the objectives of the review, and 11 articles described the effect of probiotics/commensals on rotavirus infection and immune responses in animals. Eight further in vivo studies evaluated the immunomodulating effects of herbs, secondary metabolites and food-derived products on cytokine responses of rotavirus-infected animals. Studies extensively reported the regulatory roles for T-helper (Th)1 (interferon gamma (IFN-γ), interleukin (IL)-2, IL-12) and Th2 (IL-4, IL-6, IL-10) cytokines responses to rotavirus pathogenesis and immunity, inhibiting rotavirus infection through suppression of inflammation by viral inhibition. Th1 and Th2 cytokines stimulate the immune system, inhibiting rotavirus binding and/or replication in animal models. Th1/Th2 cytokine responses have optimal immunomodulating effects to reduce rotavirus diarrhoea and enhance immune responses in experimental rotavirus infection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Glibenclamide reduces pro-inflammatory cytokine production by neutrophils of diabetes patients in response to bacterial infection

    NASA Astrophysics Data System (ADS)

    Kewcharoenwong, Chidchamai; Rinchai, Darawan; Utispan, Kusumawadee; Suwannasaen, Duangchan; Bancroft, Gregory J.; Ato, Manabu; Lertmemongkolchai, Ganjana

    2013-11-01

    Type 2 diabetes mellitus is a major risk factor for melioidosis, which is caused by Burkholderia pseudomallei. Our previous study has shown that polymorphonuclear neutrophils (PMNs) from diabetic subjects exhibited decreased functions in response to B. pseudomallei. Here we investigated the mechanisms regulating cytokine secretion of PMNs from diabetic patients which might contribute to patient susceptibility to bacterial infections. Purified PMNs from diabetic patients who had been treated with glibenclamide (an ATP-sensitive potassium channel blocker for anti-diabetes therapy), showed reduction of interleukin (IL)-1β and IL-8 secretion when exposed to B. pseudomallei. Additionally, reduction of these pro-inflammatory cytokines occurred when PMNs from diabetic patients were treated in vitro with glibenclamide. These findings suggest that glibenclamide might be responsible for the increased susceptibility of diabetic patients, with poor glycemic control, to bacterial infections as a result of its effect on reducing IL-1β production by PMNs.

  8. Hv1 proton channel facilitates production of ROS and pro-inflammatory cytokines in microglia and enhances oligodendrocyte progenitor cells damage from oxygen-glucose deprivation in vitro.

    PubMed

    Yu, Ying; Yu, Zhiyuan; Xie, Minjie; Wang, Wei; Luo, Xiang

    2018-03-25

    The contribution of microglial activation to oligodendrocyte precursor cell (OPC) damage in the brain is considered to be a principal pathophysiological feature of periventricular leukomalacia (PVL). Nicotinamide adenine dinucleotide phosphate oxidase (NOX)-dependent reactive oxygen species (ROS) produced in microglia has been shown to be significantly toxic to OPCs. The voltage-gated proton channel Hv1 is selectively expressed in microglia and is essential for NOX-dependent ROS production in the central nervous system. This study aimed to investigate the effects of microglial Hv1 deficiency on the protection of OPCs from oxygen-glucose deprivation (OGD)-induced injury in vitro. In the present study, the levels of OGD-induced ROS and pro-inflammatory cytokine production were dramatically lower in Hv1-deficient microglia (Hv1 -/- ) than in wild-type (WT) microglia. Following OGD, OPCs co-cultured with WT microglia had increased apoptosis and decreased proliferation and maturation, while those co-cultured with Hv1 -/- microglia had attenuated apoptosis and greater proliferation and differentiation. Furthermore, the attenuated damage and enhanced regeneration of OPCs were associated with decreases in extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase phosphorylation. These results indicate that the protective effects of Hv1 deficiency on OPCs are due to the suppression of ROS and pro-inflammatory cytokine production in microglia. We thus suggest that the microglial proton channel Hv1 may be a potential therapeutic target in PVL. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Cytokine-mediated activation of human ex vivo-expanded Vγ9Vδ2 T cells

    PubMed Central

    Domae, Eisuke; Hirai, Yuya; Ikeo, Takashi; Goda, Seiji; Shimizu, Yoji

    2017-01-01

    Vγ9Vδ2 T cells, the major subset of the human peripheral blood γδ T-cell, respond to microbial infection and stressed cells through the recognition of phosphoantigens. In contrast to the growing knowledge of antigen-mediated activation mechanisms, the antigen-independent and cytokine-mediated activation mechanisms of Vγ9Vδ2 T cells are poorly understood. Here, we show that interleukin (IL) -12 and IL-18 synergize to activate human ex vivo-expanded Vγ9Vδ2 T cells. Vγ9Vδ2 T cells treated with IL-12 and IL-18 enhanced effector functions, including the expression of IFN-γ and granzyme B, and cytotoxicity. These enhanced effector responses following IL-12 and IL-18 treatment were associated with homotypic aggregation, enhanced expression of ICAM-1 and decreased expression of the B- and T-lymphocyte attenuator (BTLA), a co-inhibitory receptor. IL-12 and IL-18 also induced the antigen-independent proliferation of Vγ9Vδ2 T cells. Increased expression of IκBζ, IL-12Rβ2 and IL-18Rα following IL-12 and IL-18 stimulation resulted in sustained activation of STAT4 and NF-κB. The enhanced production of IFN-γ and cytotoxic activity are critical for cancer immunotherapy using Vγ9Vδ2 T cells. Thus, the combined treatment of ex vivo-expanded Vγ9Vδ2 T cells with IL-12 and IL-18 may serve as a new strategy for the therapeutic activation of these cells. PMID:28521284

  10. EGFR Ligands Drive Multipotential Stromal Cells to Produce Multiple Growth Factors and Cytokines via Early Growth Response-1

    PubMed Central

    Kerpedjieva, Svetoslava S.; Kim, Duk Soo; Barbeau, Dominique J.

    2012-01-01

    Cell therapy with adult bone marrow multipotential stromal cells/mesenchymal stem cells (MSCs) presents a promising approach to promote wound healing and tissue regeneration. The strong paracrine capability of various growth factors and cytokines is a key mechanism of MSC-mediated wound healing and tissue regeneration, and the goal of this study is to understand the underlying mechanism that supports the strong paracrine machineries in MSCs. Microarray database analyses revealed that early growth response-1 (EGR1) is highly expressed in MSCs. Our previous studies showed that epidermal growth factor (EGF) treatment induces growth factor production in MSCs in vitro. Since EGF strongly upregulates EGR1, we hypothesized that EGF receptor (EGFR)–EGR1 signaling plays a pivotal role in MSC paracrine activity. EGF treatment upregulated the gene expression of growth factors and cytokines, including EGFR ligands in a protein kinase C (PKC)- and/or mitogen-activated protein kinase–extracellular-signal-regulated kinase-dependent manner, and it was reversed by shRNA against EGR1. PKC activator phorbol 12-myristate 13-acetate enhanced EGFR tyrosyl phosphorylation and upregulated the gene expression of growth factors and cytokines in a heparin-binding EGF-like growth factor (HBEGF) inhibitor CRM197 sensitive manner, indicating an involvement of autocrined HBEGF in the downstream of PKC signaling. Moreover, stimulation with growth factors and cytokines induced the expression of EGFR ligands, presumably via EGR1 upregulation. These data indicate EGR1 as a convergence point of multiple signaling pathways, which in turn augments the production of multiple growth factors and cytokines by enhancing the autocrine signaling with EGFR ligands. PMID:22316125

  11. Infant milk formulas differ regarding their allergenic activity and induction of T-cell and cytokine responses.

    PubMed

    Hochwallner, H; Schulmeister, U; Swoboda, I; Focke-Tejkl, M; Reininger, R; Civaj, V; Campana, R; Thalhamer, J; Scheiblhofer, S; Balic, N; Horak, F; Ollert, M; Papadopoulos, N G; Quirce, S; Szepfalusi, Z; Herz, U; van Tol, E A F; Spitzauer, S; Valenta, R

    2017-03-01

    Several hydrolyzed cow's milk (CM) formulas are available for avoidance of allergic reactions in CM-allergic children and for prevention of allergy development in high-risk infants. Our aim was to compare CM formulas regarding the presence of immunoreactive CM components, IgE reactivity, allergenic activity, ability to induce T-cell proliferation, and cytokine secretion. A blinded analysis of eight CM formulas, one nonhydrolyzed, two partially hydrolyzed (PH), four extensively hydrolyzed (EH), and one amino acid formula, using biochemical techniques and specific antibody probes was conducted. IgE reactivity and allergenic activity of the formulas were tested with sera from CM-allergic patients (n = 26) in RAST-based assays and with rat basophils transfected with the human FcεRI, respectively. The induction of T-cell proliferation and the secretion of cytokines in Peripheral blood mononuclear cell (PBMC) culture from CM allergic patients and nonallergic individuals were assessed. Immune-reactive α-lactalbumin and β-lactoglobulin were found in the two PH formulas and casein components in one of the EH formulas. One PH formula and the EH formula containing casein components showed remaining IgE reactivity, whereas the other hydrolyzed formulas lacked IgE reactivity. Only two EH formulas and the amino acid formula did not induce T-cell proliferation and proinflammatory cytokine release. The remaining formulas varied regarding the induction of Th2, Th1, and proinflammatory cytokines. Our results show that certain CM formulas without allergenic and low proinflammatory properties can be identified and they may also explain different outcomes obtained in clinical studies using CM formulas. © 2016 The Authors. Allergy Published by John Wiley & Sons Ltd.

  12. No effect of preoperative selective gut decontamination on endotoxemia and cytokine activation during cardiopulmonary bypass: a randomized, placebo-controlled study.

    PubMed

    Bouter, Hens; Schippers, Emile F; Luelmo, Saskia A C; Versteegh, Michael I M; Ros, Peter; Guiot, Henri F L; Frölich, Marijke; van Dissel, Jaap T

    2002-01-01

    Cardiopulmonary bypass predisposes the splanchnic region to inadequate perfusion and increases in gut permeability. Related to these changes, circulating endotoxin has been shown to rise during cardiac surgery, and may contribute to cytokine activation, high oxygen consumption, and fever ("postperfusion syndrome"). To a large extent, free endotoxin in the gut is a product of the proliferation of aerobic gram-negative bacteria and may be reduced by nonabsorbable antibiotics. To evaluate the effect of preoperative selective gut decontamination (SGD) on the incidence of endotoxemia and cytokine activation in patients undergoing open heart surgery. Prospective, randomized, placebo-controlled double-blind trial. Tertiary-care university teaching hospital. Preoperative administration for 5 to 7 days of oral nonabsorbable antibiotics (polymyxin B and neomycin) vs. placebo. The efficacy of SGD was assessed by culture of rectal swabs. Forty-four patients (median age 65 yrs, 29 males) were included in a pilot study to establish the sampling points of perioperative measurements. Seventy-eight consecutive patients (median age 65 yrs, 55 males) were enrolled for the prospective study; of these, 51 were randomly allocated to take SGD (n = 24) or placebo (n = 27); 27 were included in a control group (no medication). SGD but not placebo effectively reduced the number of rectal swabs that grew aerobic gram-negative bacteria (27% vs. 93%, respectively; p < .001). SGD did not affect the occurrence of perioperative endotoxemia, nor did it reduce the tumor necrosis factor-alpha, interleukin-10, or interleukin-6 concentrations (p > .20), as determined before surgery, upon aorta declamping, 30 mins into reperfusion, or 2 hrs after surgery. Also, SGD did not alter the incidence of postoperative fever or clinical outcome measures such as duration of artificial ventilation and intensive care unit and hospital stay. SGD effectively reduces the aerobic gram-negative bowel flora in cardiac

  13. Redox Modification of Cysteine Residues Regulates the Cytokine Activity of High Mobility Group Box-1 (HMGB1)

    PubMed Central

    Yang, Huan; Lundbäck, Peter; Ottosson, Lars; Erlandsson-Harris, Helena; Venereau, Emilie; Bianchi, Marco E; Al-Abed, Yousef; Andersson, Ulf; Tracey, Kevin J; Antoine, Daniel J

    2012-01-01

    High mobility group box 1 (HMGB1) is a nuclear protein with extracellular inflammatory cytokine activity. It is released passively during cell injury and necrosis, and secreted actively by immune cells. HMGB1 contains three conserved redox-sensitive cysteine residues: C23 and C45 can form an intramolecular disulfide bond, whereas C106 is unpaired and is essential for the interaction with Toll-Like Receptor (TLR) 4. However, a comprehensive characterization of the dynamic redox states of each cysteine residue and of their impacts on innate immune responses is lacking. Using tandem mass spectrometric analysis, we now have established that the C106 thiol and the C23–C45 disulfide bond are required for HMGB1 to induce nuclear NF-κB translocation and tumor necrosis factor (TNF) production in macrophages. Both irreversible oxidation to sulphonates and complete reduction to thiols of these cysteines inhibited TNF production markedly. In a proof of concept murine model of hepatic necrosis induced by acetaminophen, during inflammation, the predominant form of serum HMGB1 is the active one, containing a C106 thiol group and a disulfide bond between C23 and C45, whereas the inactive form of HMGB1, containing terminally oxidized cysteines, accumulates during inflammation resolution and hepatic regeneration. These results reveal critical posttranslational redox mechanisms that control the proinflammatory activity of HMGB1 and its inactivation during pathogenesis. PMID:22105604

  14. Cytokine Profile of Patients with Allergic Rhinitis Caused by Pollen, Mite, and Microbial Allergen Sensitization.

    PubMed

    Tyurin, Yury A; Lissovskaya, Svetlana A; Fassahov, Rustem S; Mustafin, Ilshat G; Shamsutdinov, Anton F; Shilova, Marina A; Rizvanov, Albert A

    2017-01-01

    Allergic rhinitis (AR) is especially prevalent among the population of large cities. Immunologically, the airway epithelium is a region where the population of allergen-presenting cells concentrates. These cells actively express a group of receptors of the innate immune system. A specific cytokine profile is its representation. The study was aimed at evaluating the cytokine profile in patients with seasonal and perennial allergic rhinitis. The cytokine profile of nasal secretion and blood serum of 44 patients with AR was studied. 24 of them had seasonal allergic rhinitis (SAR), and 20 patients suffered from perennial allergic rhinitis (PAR). The patients' age ranged from 4 to 60 years. It was determined in our study that the activation of the GM-CSF production retained in patients with PAR sensitized to mite allergen components ( Dermatophagoides pteronyssinus ). There was a higher production profile of TNF- α and TSLP in nasal secretion in the patients with perennial allergic rhinitis and additional high sensitization to SEs. Sensitization to mold fungal allergen components significantly increases in patients with seasonal allergic rhinitis. They demonstrated high level of sensitization to the Aspergillus fumigatus component m3. Thus, along with other clinical trials, the study performed would clarify some aspects of molecular pathogenesis of human allergic rhinitis.

  15. Regulation of Mouse NK Cell Development and Function by Cytokines

    PubMed Central

    Marçais, Antoine; Viel, Sébastien; Grau, Morgan; Henry, Thomas; Marvel, Jacqueline; Walzer, Thierry

    2013-01-01

    Natural Killer (NK) cells are innate lymphocytes with an important role in the early defense against intracellular pathogens and against tumors. Like other immune cells, almost every aspects of their biology are regulated by cytokines. Interleukin (IL)-15 is pivotal for their development, homeostasis, and activation. Moreover, numerous other activating or inhibitory cytokines such as IL-2, IL-4, IL-7, IL-10, IL-12, IL-18, IL-21, Transforming growth factor-β (TGFβ) and type I interferons regulate their activation and their effector functions at different stages of the immune response. In this review we summarize the current understanding on the effect of these different cytokines on NK cell development, homeostasis, and functions during steady-state or upon infection by different pathogens. We try to delineate the cellular sources of these cytokines, the intracellular pathways they trigger and the transcription factors they regulate. We describe the known synergies or antagonisms between different cytokines and highlight outstanding questions in this field of investigation. Finally, we discuss how a better knowledge of cytokine action on NK cells could help improve strategies to manipulate NK cells in different clinical situations. PMID:24376448

  16. Cell-free extracts of Propionibacterium acnes stimulate cytokine production through activation of p38 MAPK and Toll-like receptor in SZ95 sebocytes.

    PubMed

    Huang, Yu-Chun; Yang, Chao-Hsun; Li, Ting-Ting; Zouboulis, Christos C; Hsu, Han-Chi

    2015-10-15

    Propionibacterium acnes has been considered to influence the acne lesions. The present study intended to elucidate the underlying signaling pathways of P. acnes in human sebaceous gland cells relative to the generation of proinflammatory cytokines. Cell-free extracts of P. acnes under stationary growth phase were co-incubated with human immortalized SZ95 sebocytes. Then, cell-free P. acnes extracts-induced cytokine expression was evaluated by measuring mRNA and protein levels using quantitative RT-PCR and ELISA. Changes of phosphorylated cell signaling proteins and transcription factors were measured by Western blots and Milliplex assay. The interactive molecular mechanisms of P. acnes and sebocytes were examined through use of shRNA and the specific inhibitors of signaling pathways. Cell-free extracts of P. acnes significantly stimulated secretion of interleukin (IL)-8 and IL-6 in SZ95 sebocytes. The degradation of IκB-α and increased phosphorylation of IκB-α, p38 mitogen activated protein kinase (MAPK), CREB, and STAT3 were demonstrated. Quantitative RT-PCR measurements revealed that gene expression of IL-8 and Toll-like receptor 2 (TLR2) was enhanced by cell-free extracts of P. acnes. In addition, the NF-κB inhibitor BMS345541, p38 MAPK inhibitor SB203580, or anti-TLR2 neutralizing antibody prevented cell-free P. acnes extracts-induced secretion of IL-8. Knockdown of TLR2 using shRNA exerted similar inhibitory effects on IL-8 expression. Moreover, inhibition of STAT3 activity by STA-21 enhanced P. acnes-mediated secretion of IL-8. Cell-free extracts of P. acnes are capable to activate NF-κB and p38 MAPK pathways and up-regulate secretion of IL-8 through TLR2-dependent signaling in human SZ95 sebocytes. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Differential cytokine modulation and T cell activation by two distinct classes of thalidomide analogues that are potent inhibitors of TNF-alpha.

    PubMed

    Corral, L G; Haslett, P A; Muller, G W; Chen, R; Wong, L M; Ocampo, C J; Patterson, R T; Stirling, D I; Kaplan, G

    1999-07-01

    TNF-alpha mediates both protective and detrimental manifestations of the host immune response. Our previous work has shown thalidomide to be a relatively selective inhibitor of TNF-alpha production in vivo and in vitro. Additionally, we have recently reported that thalidomide exerts a costimulatory effect on T cell responses. To develop thalidomide analogues with increased anti-TNF-alpha activity and reduced or absent toxicities, novel TNF-alpha inhibitors were designed and synthesized. When a selected group of these compounds was examined for their immunomodulatory activities, different patterns of cytokine modulation were revealed. The tested compounds segregated into two distinct classes: one class of compounds, shown to be potent phosphodiesterase 4 inhibitors, inhibited TNF-alpha production, increased IL-10 production by LPS-induced PBMC, and had little effect on T cell activation; the other class of compounds, similar to thalidomide, were not phosphodiesterase 4 inhibitors and markedly stimulated T cell proliferation and IL-2 and IFN-gamma production. These compounds inhibited TNF-alpha, IL-1beta, and IL-6 and greatly increased IL-10 production by LPS-induced PBMC. Similar to thalidomide, the effect of these agents on IL-12 production was dichotomous; IL-12 was inhibited when PBMC were stimulated with LPS but increased when cells were stimulated by cross-linking the TCR. The latter effect was associated with increased T cell CD40 ligand expression. The distinct immunomodulatory activities of these classes of thalidomide analogues may potentially allow them to be used in the clinic for the treatment of different immunopathological disorders.

  18. Cytokines and STATs in Liver Fibrosis.

    PubMed

    Kong, Xiaoni; Horiguchi, Norio; Mori, Masatomo; Gao, Bin

    2012-01-01

    Liver fibrosis, or cirrhosis, is a common end-stage condition of many chronic liver diseases after incomplete recovery from hepatocyte damage. During fibrosis progression, hepatocellular damage and inflammation trigger complex cellular events that result in collagen deposition and the disruption of the normal liver architecture. Hepatic stellate cell activation and transdifferentiation into myofibroblasts are key events in liver fibrogenesis. Research findings from cell culture and animal models have revealed that the Janus kinase-signal transducer and activator of transcription (Jak-STAT) signaling pathway, which can be activated by many cytokines, growth factors, and hormones, plays a critical role in hepatic fibrogenesis. This review summarizes the biological significance of diverse cytokines and their downstream signaling protein STATs in hepatic fibrogenesis.

  19. Natural killer cell activity, lymphocyte proliferation, and cytokine profile in tumor-bearing mice treated with MAPA, a magnesium aggregated polymer from Aspergillus oryzae.

    PubMed

    Justo, G Z; Durán, N; Queiroz, M L S

    2003-08-01

    The present study examined the effects of MAPA, an antitumor aggregated polymer of protein magnesium ammonium phospholinoleate-palmitoleate anhydride, isolated from Aspergillus oryzae, on concanavalin A (Con A)-induced spleen cell proliferation, cytokine production and on natural killer (NK) cell activity in Ehrlich ascites tumor-bearing mice. The Ehrlich ascites tumor (EAT) growth led to diminished mitogen-induced expansion of spleen cell populations and total NK activity. This was accompanied by striking spleen enlargement, with a marked increase in total cell counts. Moreover, a substantial enhancement in IL-10 levels, paralleled by a significant decrease in IL-2 was observed, while production of IL-4 and interferon-gamma (IFN-gamma) was not altered. Treatment of mice with 5 mg/kg MAPA for 7 days promoted spleen cell proliferation, IL-2 production and NK cell activity regardless of tumor outgrowth. In addition, MAPA treatment markedly enhanced IFN-gamma levels and reduced IL-10 production relative to EAT mice. A 35% reduction in splenomegaly with normal number of nucleated cells was also found. Altogether, our results suggest that MAPA directly and/or indirectly modulates immune cell activity, and probably disengages tumor-induced suppression of these responses. Clearly, MAPA has an impact and may delay tumor outgrowth through immunotherapeutic mechanisms.

  20. Cytokine induction of sol–gel-derived TiO2 and SiO2 coatings on metallic substrates after implantation to rat femur

    PubMed Central

    Urbanski, Wiktor; Marycz, Krzysztof; Krzak, Justyna; Pezowicz, Celina; Dragan, Szymon Feliks

    2017-01-01

    Material surface is a key determinant of host response on implanted biomaterial. Therefore, modification of the implant surface may optimize implant–tissue reactions. Inflammatory reaction is inevitable after biomaterial implantation, but prolonged inflammation may lead to adverse reactions and subsequent implant failure. Proinflammatory activities of cytokines like interleukin (IL)-1, IL-6, and tumor necrosis factor-alpha (TNF-α) are attractive indicators of these processes and ultimately characterize biocompatibility. The objective of the study was to evaluate local cytokine production after implantation of stainless steel 316L (SS) and titanium alloy (Ti6Al4V) biomaterials coated with titanium dioxide (TiO2) and silica (SiO2) coatings prepared by sol–gel method. Biomaterials were implanted into rat femur and after 12 weeks, bones were harvested. Bone–implant tissue interface was evaluated; immunohistochemical staining was performed to identify IL-6, TNF-α, and Caspase-1. Histomorphometry (AxioVision Rel. 4.6.3 software) of tissue samples was performed in order to quantify the cytokine levels. Both the oxide coatings on SS and Ti6Al4V significantly reduced cytokine production. However, the lowest cytokine levels were observed in TiO2 groups. Cytokine content in uncoated groups was lower in Ti6Al4V than in SS, although coating of either metal reduced cytokine production to similar levels. Sol–gel TiO2 or SiO2 coatings reduced significantly the production of proinflammatory cytokines by local tissues, irrespective of the material used as a substrate, that is, either Ti6Al4V or SS. This suggests lower inflammatory response, which directly points out improvement of materials’ biocompatibility. PMID:28280331

  1. Anticancer compound ABT-263 accelerates apoptosis in virus-infected cells and imbalances cytokine production and lowers survival rates of infected mice.

    PubMed

    Kakkola, L; Denisova, O V; Tynell, J; Viiliäinen, J; Ysenbaert, T; Matos, R C; Nagaraj, A; Ohman, T; Kuivanen, S; Paavilainen, H; Feng, L; Yadav, B; Julkunen, I; Vapalahti, O; Hukkanen, V; Stenman, J; Aittokallio, T; Verschuren, E W; Ojala, P M; Nyman, T; Saelens, X; Dzeyk, K; Kainov, D E

    2013-07-25

    ABT-263 and its structural analogues ABT-199 and ABT-737 inhibit B-cell lymphoma 2 (Bcl-2), BCL2L1 long isoform (Bcl-xL) and BCL2L2 (Bcl-w) proteins and promote cancer cell death. Here, we show that at non-cytotoxic concentrations, these small molecules accelerate the deaths of non-cancerous cells infected with influenza A virus (IAV) or other viruses. In particular, we demonstrate that ABT-263 altered Bcl-xL interactions with Bcl-2 antagonist of cell death (Bad), Bcl-2-associated X protein (Bax), uveal autoantigen with coiled-coil domains and ankyrin repeats protein (UACA). ABT-263 thereby activated the caspase-9-mediated mitochondria-initiated apoptosis pathway, which, together with the IAV-initiated caspase-8-mediated apoptosis pathway, triggered the deaths of IAV-infected cells. Our results also indicate that Bcl-xL, Bcl-2 and Bcl-w interact with pattern recognition receptors (PRRs) that sense virus constituents to regulate cellular apoptosis. Importantly, premature killing of IAV-infected cells by ABT-263 attenuated the production of key pro-inflammatory and antiviral cytokines. The imbalance in cytokine production was also observed in ABT-263-treated IAV-infected mice, which resulted in an inability of the immune system to clear the virus and eventually lowered the survival rates of infected animals. Thus, the results suggest that the chemical inhibition of Bcl-xL, Bcl-2 and Bcl-w could potentially be hazardous for cancer patients with viral infections.

  2. The role of cytokines in immune changes induced by spaceflight

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, G.; Miller, E. S.

    1993-01-01

    It has become apparent that spaceflight alters many immune responses. Among the regulatory components of the immune response that have been shown to be affected by spaceflight is the cytokine network. Spaceflight, as well as model systems of spaceflight, have been shown to affect the production and action of various cytokines including interferons, interleukins, colony stimulating factors, and tumor necrosis factors. These changes have been shown not to involve a general shutdown of the cytokine network but, rather, to involve selective alterations of specific cytokine functions by spaceflight. The full breadth of changes in cytokines induced by spaceflight, as well as mechanisms, duration, adaptation, reversibility, and significance to resistance to infection and neoplastic diseases, remains to be established.

  3. The impact of disease activity and tumour necrosis factor-α inhibitor therapy on cytokine levels in juvenile idiopathic arthritis.

    PubMed

    Walters, H M; Pan, N; Lehman, T J A; Adams, A; Kalliolias, G D; Zhu, Y S; Santiago, F; Nguyen, J; Sitaras, L; Cunningham-Rundles, S; Walsh, T J; Toussi, S S

    2016-06-01

    The aim of this study was to evaluate prospectively cytokine levels and disease activity in juvenile idiopathic arthritis (JIA) patients treated with and without tumour necrosis factor (TNF)-α inhibitors. TNF-α inhibitor-naive JIA subjects were followed prospectively for 6 months. Cytokine levels of TNF-α, interleukin (IL)-1β, IL-6, IL-8, IL-10 and IL-17 were measured at baseline for JIA subjects and healthy controls (HCs). Cytokine levels were then measured at four time-points after initiation of TNF-α inhibition for anti-TNF-α-treated (anti-TNF) JIA subjects, and at two subsequent time-points for other JIA (non-TNF) subjects. JIA disease activity by Childhood Health Assessment Questionnaire (CHAQ) disability index/pain score and physician joint count/global assessment was recorded. Sixteen anti-TNF, 31 non-TNF and 16 HCs were analysed. Among JIA subjects, those with higher baseline disease activity (subsequent anti-TNFs) had higher baseline TNF-α, IL-6 and IL-8 than those with lower disease activity (non-TNFs) (P < 0·05). TNF-α and IL-10 increased, and IL-6 and IL-8 no longer remained significantly higher after TNF-α inhibitor initiation in anti-TNF subjects. Subgroup analysis of etanercept versus adalimumab-treated subjects showed that TNF-α and IL-17 increased significantly in etanercept but not adalimumab-treated subjects, despite clinical improvement in both groups of subjects. JIA subjects with increased disease activity at baseline had higher serum proinflammatory cytokines. TNF-α inhibition resulted in suppression of IL-6 and IL-8 in parallel with clinical improvement in all anti-TNF-treated subjects, but was also associated with elevated TNF-α and IL-17 in etanercept-treated subjects. © 2016 British Society for Immunology.

  4. Changes of Cytokines during a Spaceflight Analog - a 45-Day Head-Down Bed Rest

    PubMed Central

    Zhang, Shusong; Pang, Xuewen; Liu, Hongju; Li, Li; Sun, Xiuyuan; Zhang, Yu; Wu, Hounan; Chen, Xiaoping; Ge, Qing

    2013-01-01

    Spaceflight is associated with deregulation in the immune system. Head-down bed rest (HDBR) at -6° is believed to be the most practical model for examining multi-system responses to microgravity in humans during spaceflight. In the present study, a 45-day HDBR was performed to investigate the alterations in human immune cell distributions and their functions in response to various stimuli. The effect of countermeasure, Rhodiola rosea (RR) treatment, was also examined. A significant decrease of interferon-γ (IFN-γ) and interleukin-17 (IL-17) productions by activated T cells, increase of IL-1β and IL-18 by activated B and myeloid cells were observed during HDBR. The upregulation of serum cortisol was correlated with the changes of IL-1 family cytokines. In addition, a significant increase of memory T and B cell and regulatory T cells (Treg) were also detected. The uptake of RR further decreased IFN-γ level and slowed down the upregulation of IL-1 family cytokines. These data suggest that for prolonged HDBR and spaceflight, the decreased protective T cell immunity and enhanced proinflammatory cytokines should be closely monitored. The treatment with RR may play an important role in suppressing proinflammatory cytokines but not in boosting protective T cell immunity. PMID:24143230

  5. The cytomegalovirus homolog of interleukin-10 requires phosphatidylinositol 3-kinase activity for inhibition of cytokine synthesis in monocytes.

    PubMed

    Spencer, Juliet V

    2007-02-01

    Human cytomegalovirus (CMV) has evolved numerous strategies for evading host immune defenses, including piracy of cellular cytokines. A viral homolog of interleukin-10, designated cmvIL-10, binds to the cellular IL-10 receptor and effects potent immune suppression. The signaling pathways employed by cmvIL-10 were investigated, and the classic IL-10R/JAK1/Stat3 pathway was found to be activated in monocytes. However, inhibition of JAK1 had little effect on cmvIL-10-mediated suppression of tumor necrosis factor alpha (TNF-alpha) production. Inhibition of the phosphatidylinositol 3-kinase/Akt pathway had a more significant impact on TNF-alpha levels but did not completely relieve the immune suppression, demonstrating that cmvIL-10 stimulates multiple signaling pathways to modulate cell function.

  6. Phagocytosis, bacterial killing, and cytokine activation of circulating blood neutrophils in horses with severe equine asthma and control horses.

    PubMed

    Vanderstock, Johanne M; Lecours, Marie-Pier; Lavoie-Lamoureux, Annouck; Gottschalk, Marcelo; Segura, Mariela; Lavoie, Jean-Pierre; Jean, Daniel

    2018-04-01

    OBJECTIVE To evaluate in vitro phagocytosis and bactericidal activity of circulating blood neutrophils in horses with severe equine asthma and control horses and to determine whether circulating blood neutrophils in horses with severe equine asthma have an increase in expression of the proinflammatory cytokine tumor necrosis factor (TNF)-α and the chemokine interleukin (IL)-8 and a decrease in expression of the anti-inflammatory cytokine IL-10 in response to bacteria. ANIMALS 6 horses with severe equine asthma and 6 control horses. PROCEDURES Circulating blood neutrophils were isolated from horses with severe equine asthma and control horses. Phagocytosis was evaluated by use of flow cytometry. Bactericidal activity of circulating blood neutrophils was assessed by use of Streptococcus equi and Streptococcus zooepidemicus as targets, whereas the cytokine mRNA response was assessed by use of a quantitative PCR assay. RESULTS Circulating blood neutrophils from horses with severe equine asthma had significantly lower bactericidal activity toward S zooepidemicus but not toward S equi, compared with results for control horses. Phagocytosis and mRNA expression of TNF-α, IL-8, and IL-10 were not different between groups. CONCLUSIONS AND CLINCAL RELEVANCE Impairment of bactericidal activity of circulating blood neutrophils in horses with severe equine asthma could contribute to an increased susceptibility to infections.

  7. Sickle cell anemia induces changes in peripheral lymphocytes E-NTPDase/E-ADA activities and cytokines secretion in patients under treatment.

    PubMed

    Castilhos, Lívia G; Doleski, Pedro H; Bertoldo, Tatiana M D; Passos, Daniela F; Bertoncheli, Claudia de M; Rezer, João F P; Schlemmer, Josiane B; Leal, Daniela B R

    2015-07-01

    Sickle cell anemia (SCA) is characterized by hemoglobin polymerization that results in sickle-shaped red blood cells. The vascular obstruction by sickle erythrocytes is often inflammatory, and purinergic system ecto-enzymes play an important role in modulating the inflammatory and immune response. This study aimed to evaluate the E-NTPDase and E-ADA activities in lymphocytes of SCA treated patients, as well as verify the cytokine profile in this population. Fifteen SCA treated patients and 30 health subjects (control group) were selected. The peripheral lymphocytes were isolated and E-NTPDase and E-ADA activities were determined. Serum was separated from clot formation for the cytokines quantification. E-NTPDase (ATP and ADP as substrate) and E-ADA (adenosine as substrate) activities were increased in lymphocytes from SCA patients (P<0.001). The TNF-α and IL-6 serum cytokines showed decreased on SCA patients comparing to control (P<0.001). The regulation of extracellular nucleotides released in response to hypoxia and inflammation through E-NTPDase and E-ADA enzymes represent an important control of purine-mediated in the SCA disease, avoiding elevated adenosine levels in the extracellular medium and consequent organ injuries in these patients. The pro-inflammatory cytokines decreased levels by use of hydroxyurea occur in attempt to reduce the pro-inflammatory response and prevent vaso-oclusive crisis. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  8. Profiling the human immune response to Mycobacterium tuberculosis by human cytokine array.

    PubMed

    Chen, Tao; Li, Zhenyan; Yu, Li; Li, Haicheng; Lin, Jinfei; Guo, Huixin; Wang, Wei; Chen, Liang; Zhang, Xianen; Wang, Yunxia; Chen, Yuhui; Liao, Qinghua; Tan, Yaoju; Shu, Yang; Huang, Wenyan; Cai, Changhui; Zhou, Zhongjing; Yu, Meiling; Li, Guozhou; Zhou, Lin; Zhong, Qiu; Bi, Lijun; Zhao, Meigui; Guo, Lina; Zhou, Jie

    2016-03-01

    Tuberculosis (TB) continues to be one of the most serious infectious diseases in the world, however, no effective biomarkers can be used for rapid screening of latent tuberculosis infection (LTBI) and active TB. In this study, serum cytokines were screened and tested as potential biomarker for TB diagnosis. Cytokine array was used to track the cytokine profile and its dynamic change after TB infection. The different expressions of cytokines were confirmed by ELISA assay. ROC curve analyses were used to evaluate the efficacy of a cytokine or cytokine combination for diagnosis. Eotaxin-2, ICAM-1, MCSF, IL-12p70, and IL-11 were significantly higher in the LTBI individuals. I-309, MIG, Eotaxin-2, IL-8, ICAM-1, IL-6sR, and Eotaxin were significantly higher in active TB patients. ROC curve analyses gave AUCs of 0.843, 0.898, and 0.888 for I-309, MIG, and IL-8, respectively, and 0.894 for the combination panel in active TB diagnosis. IFN-γ/IL-4 and IL-2/TNF-α ratios exhibit dynamic changes in the healthy control and LTBI to different stages of active TB. Serum cytokines, including I-309 and MIG, IL-8, Extoxin-2, ICAM-1 and combinations of cytokines, including IFN-γ/IL-4 and IL-2/TNF-α, can be used as serum biomarkers for LTBI and active TB screening, thus indicating prospective clinical applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. On-chip immune cell activation and subsequent time-resolved magnetic bead-based cytokine detection.

    PubMed

    Kongsuphol, Patthara; Liu, Yunxiao; Ramadan, Qasem

    2016-10-01

    Cytokine profiling and immunophenotyping offer great potential for understanding many disease mechanisms, personalized diagnosis, and immunotherapy. Here, we demonstrate a time-resolved detection of cytokine from a single cell cluster using an in situ magnetic immune assay. An array of triple-layered microfluidic chambers was fabricated to enable simultaneous cell culture under perfusion flow and detection of the induced cytokines at multiple time-points. Each culture chamber comprises three fluidic compartments which are dedicated to, cell culture, perfusion and immunoassay. The three compartments are separated by porous membranes, which allow the diffusion of fresh nutrient from the perfusion compartment into the cell culture compartment and cytokines secretion from the cell culture compartment into the immune assay compartment. This structure hence enables capturing the released cytokines without disturbing the cell culture and without minimizing benefit gain from perfusion. Functionalized magnetic beads were used as a solid phase carrier for cytokine capturing and quantification. The cytokines released from differential stimuli were quantified in situ in non-differentiated U937 monocytes and differentiated macrophages.

  10. Molecular farming of human cytokines and blood products from plants: challenges in biosynthesis and detection of plant-produced recombinant proteins.

    PubMed

    da Cunha, Nicolau B; Vianna, Giovanni R; da Almeida Lima, Thaina; Rech, Elíbio

    2014-01-01

    Plants have emerged as an attractive alternative to the traditional mammalian cell cultures or microbial cell-based systems system for the production of valuable recombinant proteins. Through recombinant DNA technology, plants can be engineered to produce large quantities of pharmaceuticals and industrial proteins of high quality at low costs. The recombinant production, by transgenic plants, of therapeutic proteins normally present in human plasma, such as cytokines, coagulation factors, anticoagulants, and immunoglobulins, represents a response to the ongoing challenges in meeting the demand for therapeutic proteins to treat serious inherited or acquired bleeding and immunological diseases. As the clinical utilization of fractionated plasma molecules is limited by high production costs, using recombinant biopharmaceuticals derived from plants represents a feasible alternative to provide efficient treatment. Plant-derived pharmaceuticals also reduce the potential risks to patients of infection with pathogens or unwanted immune responses due to immunogenic antigens. In this review, we summarize the recent advances in molecular farming of cytokines. We also examine the technological basis, upcoming challenges, and perspectives for the biosynthesis and detection of these molecules in different plant production platforms. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. IL-17s adopt a cystine knot fold: structure and activity of a novel cytokine, IL-17F, and implications for receptor binding

    PubMed Central

    Hymowitz, Sarah G.; Filvaroff, Ellen H.; Yin, JianPing; Lee, James; Cai, Liping; Risser, Philip; Maruoka, Miko; Mao, Weiguang; Foster, Jessica; Kelley, Robert F.; Pan, Guohua; Gurney, Austin L.; de Vos, Abraham M.; Starovasnik, Melissa A.

    2001-01-01

    The proinflammatory cytokine interleukin 17 (IL-17) is the founding member of a family of secreted proteins that elicit potent cellular responses. We report a novel human IL-17 homolog, IL-17F, and show that it is expressed by activated T cells, can stimulate production of other cytokines such as IL-6, IL-8 and granulocyte colony-stimulating factor, and can regulate cartilage matrix turnover. Unexpectedly, the crystal structure of IL-17F reveals that IL-17 family members adopt a monomer fold typical of cystine knot growth factors, despite lacking the disulfide responsible for defining the canonical ‘knot’ structure. IL-17F dimerizes in a parallel manner like neurotrophins, and features an unusually large cavity on its surface. Remarkably, this cavity is located in precisely the same position where nerve growth factor binds its high affinity receptor, TrkA, suggesting further parallels between IL-17s and neurotrophins with respect to receptor recognition. PMID:11574464

  12. Virus detection and cytokine profile in relation to age among acute exacerbations of childhood asthma.

    PubMed

    Kato, Masahiko; Suzuki, Kazuo; Yamada, Yoshiyuki; Maruyama, Kenichi; Hayashi, Yasuhide; Mochizuki, Hiroyuki

    2015-09-01

    Little information is available regarding eosinophil activation and cytokine profiles in relation to age in virus-induced bronchial asthma. We therefore explored the association between age, respiratory viruses, serum eosinophil cationic protein (ECP), and cytokines/chemokines in acute exacerbations of childhood asthma. We investigated viruses in nasal secretions from 88 patients with acute exacerbation of childhood asthma by using antigen detection kits and/or RT-PCR, followed by direct DNA sequencing analysis. We also measured peripheral eosinophil counts, and the serum levels of ECP and 27 types of cytokines/chemokines in 71 virus-induced acute asthma cases and 13 controls. Viruses were detected in 71(80.7%) of the 88 samples. The three major viruses detected were rhinoviruses, RS viruses, and enteroviruses; enteroviruses were found to be dominant in patients aged ≥3 years. There was no change in the levels of rhinoviruses and RS viruses between the two age groups, defined as children aged <3 years and children aged ≥3 years. Serum concentrations of ECP, IL-5, and IP-10 were significantly elevated in virus-induced acute asthma cases compared with controls. Serum ECP values were significantly higher in patients with virus-induced asthma at age ≥3 years compared with those aged <3 years. Among the 27 cytokines/chemokines, serum IP-10 was significantly higher in virus-induced asthma in patients <3 years than in those ≥3 years. Serum ECP and IL-5 production correlated significantly with age, whereas serum IP-10 showed an inverse correlation with age. Age-related differences in cytokine profiles and eosinophil activation may be related to virus-induced acute exacerbations of childhood asthma. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  13. Targeting CD22 with the monoclonal antibody epratuzumab modulates human B-cell maturation and cytokine production in response to Toll-like receptor 7 (TLR7) and B-cell receptor (BCR) signaling.

    PubMed

    Giltiay, Natalia V; Shu, Geraldine L; Shock, Anthony; Clark, Edward A

    2017-05-15

    Abnormal B-cell activation is implicated in the pathogenesis of autoimmune diseases, including systemic lupus erythematosus (SLE). The B-cell surface molecule CD22, which regulates activation through the B-cell receptor (BCR), is a potential target for inhibiting pathogenic B cells; however, the regulatory functions of CD22 remain poorly understood. In this study, we determined how targeting of CD22 with epratuzumab (Emab), a humanized anti-CD22 IgG1 monoclonal antibody, affects the activation of human B-cell subsets in response to Toll-like receptor 7 (TLR7) and BCR engagement. B-cell subsets were isolated from human tonsils and stimulated with F(ab') 2 anti-human IgM and/or the TLR7 agonist R848 in the presence of Emab or a human IgG1 isotype control. Changes in mRNA levels of genes associated with B-cell activation and differentiation were analyzed by quantitative PCR. Cytokine production was measured by ELISA. Cell proliferation, survival, and differentiation were assessed by flow cytometry. Pretreatment of phenotypically naïve CD19 + CD10 - CD27 - cells with Emab led to a significant increase in IL-10 expression, and in some but not all patient samples to a reduction of IL-6 production in response to TLR7 stimulation alone or in combination with anti-IgM. Emab selectively inhibited the expression of PRDM1, the gene encoding B-lymphocyte-induced maturation protein 1 (Blimp-1) in activated CD10 - CD27 - B cells. CD10 - CD27 - IgD - cells were highly responsive to stimulation through TLR7 as evidenced by the appearance of blasting CD27 hi CD38 hi cells. Emab significantly inhibited the activation and differentiation of CD10 - CD27 - IgD - B cells into plasma cells. Emab can both regulate cytokine expression and block Blimp1-dependent B-cell differentiation, although the effects of Emab may depend on the stage of B-cell development or activation. In addition, Emab inhibits the activation of CD27 - IgD - tonsillar cells, which correspond to so-called double

  14. Modulation of Cytokine-Induced Cyclooxygenase 2 Expression by PPARG Ligands Through NFκB Signal Disruption in Human WISH and Amnion Cells1

    PubMed Central

    Ackerman, William E.; Zhang, Xiaolan L.; Rovin, Brad H.; Kniss, Douglas A.

    2006-01-01

    Cyclooxygenase (COX) activity increases in the human amnion in the settings of term and idiopathic preterm labor, contributing to the generation of uterotonic prostaglandins (PGs) known to participate in mammalian parturition. Augmented COX activity is highly correlated with increased COX2 (also known as prostaglandin-endoperoxide synthase 2, PTGS2) gene expression. We and others have demonstrated an essential role for nuclear factor κB (NFκB) in cytokine-driven COX2 expression. Peroxisome proliferator-activated receptor gamma (PPARG), a member of the nuclear hormone receptor superfamily, has been shown to antagonize NFκB activation and inflammatory gene expression, including COX2. We hypothesized that PPARG activation might suppress COX2 expression during pregnancy. Using primary amnion and WISH cells, we evaluated the effects of pharmacological (thiazolidinediones) and putative endogenous (15-deoxy-Δ12,14-prostaglandin J2, 15d-PGJ2) PPARG ligands on cytokine-induced NFκB activation, COX2 expression, and PGE2 production. We observed that COX2 expression and PGE2 production induced by tumor necrosis factor alpha (TNF) were significantly abrogated by 15d-PGJ2. The thiazolidinediones rosiglitazone (ROSI) and troglitazone (TRO) had relatively little effect on cytokine-induced COX2 expression except at high concentrations, at which these agents tended to increase COX2 abundance relative to cells treated with TNF alone. Interestingly, treatment with ROSI, but not TRO, led to augmentation of TNF-stimulated PGE2 production. Mechanistically, we observed that 15d-PGJ2 markedly diminished cytokine-induced activity of the NFκB transcription factor, whereas thiazolidinediones had no discernable effect on this system. Our data suggest that pharmacological and endogenous PPARG ligands use both receptor-dependent and -independent mechanisms to influence COX2 expression. PMID:15843495

  15. Combined immunomodulator and antimicrobial therapy eliminates polymicrobial sepsis and modulates cytokine production in combined injured mice

    PubMed Central

    Elliott, Thomas B.; Bolduc, David L.; Ledney, G. David; Kiang, Juliann G.; Fatanmi, Oluseyi O.; Wise, Stephen Y.; Romaine, Patricia L. P.; Newman, Victoria L.; Singh, Vijay K.

    2015-01-01

    Purpose: A combination therapy for combined injury (CI) using a non-specific immunomodulator, synthetic trehalose dicorynomycolate and monophosphoryl lipid A (STDCM-MPL), was evaluated to augment oral antimicrobial agents, levofloxacin (LVX) and amoxicillin (AMX), to eliminate endogenous sepsis and modulate cytokine production. Materials and methods: Female B6D2F1/J mice received 9.75 Gy cobalt-60 gamma-radiation and wound. Bacteria were isolated and identified in three tissues. Incidence of bacteria and cytokines were compared between treatment groups. Results: Results demonstrated that the lethal dose for 50% at 30 days (LD50/30) of B6D2F1/J mice was 9.42 Gy. Antimicrobial therapy increased survival in radiation-injured (RI) mice. Combination therapy increased survival after RI and extended survival time but did not increase survival after CI. Sepsis began five days earlier in CI mice than RI mice with Gram-negative species predominating early and Gram-positive species increasing later. LVX plus AMX eliminated sepsis in CI and RI mice. STDCM-MPL eliminated Gram-positive bacteria in CI and most RI mice but not Gram-negative. Treatments significantly modulated 12 cytokines tested, which pertain to wound healing or elimination of infection. Conclusions: Combination therapy eliminates infection and prolongs survival time but does not assure CI mouse survival, suggesting that additional treatment for proliferative-cell recovery is required. PMID:25994812

  16. Combined immunomodulator and antimicrobial therapy eliminates polymicrobial sepsis and modulates cytokine production in combined injured mice.

    PubMed

    Elliott, Thomas B; Bolduc, David L; Ledney, G David; Kiang, Juliann G; Fatanmi, Oluseyi O; Wise, Stephen Y; Romaine, Patricia L P; Newman, Victoria L; Singh, Vijay K

    2015-01-01

    A combination therapy for combined injury (CI) using a non-specific immunomodulator, synthetic trehalose dicorynomycolate and monophosphoryl lipid A (STDCM-MPL), was evaluated to augment oral antimicrobial agents, levofloxacin (LVX) and amoxicillin (AMX), to eliminate endogenous sepsis and modulate cytokine production. Female B6D2F(1)/J mice received 9.75 Gy cobalt-60 gamma-radiation and wound. Bacteria were isolated and identified in three tissues. Incidence of bacteria and cytokines were compared between treatment groups. Results demonstrated that the lethal dose for 50% at 30 days (LD(50/30)) of B6D2F(1)/J mice was 9.42 Gy. Antimicrobial therapy increased survival in radiation-injured (RI) mice. Combination therapy increased survival after RI and extended survival time but did not increase survival after CI. Sepsis began five days earlier in CI mice than RI mice with Gram-negative species predominating early and Gram-positive species increasing later. LVX plus AMX eliminated sepsis in CI and RI mice. STDCM-MPL eliminated Gram-positive bacteria in CI and most RI mice but not Gram-negative. Treatments significantly modulated 12 cytokines tested, which pertain to wound healing or elimination of infection. Combination therapy eliminates infection and prolongs survival time but does not assure CI mouse survival, suggesting that additional treatment for proliferative-cell recovery is required.

  17. Ts6 and Ts2 from Tityus serrulatus venom induce inflammation by mechanisms dependent on lipid mediators and cytokine production.

    PubMed

    Zoccal, Karina Furlani; Bitencourt, Claudia da Silva; Sorgi, Carlos Artério; Bordon, Karla de Castro Figueiredo; Sampaio, Suely Vilela; Arantes, Eliane Candiani; Faccioli, Lúcia Helena

    2013-01-01

    Inflammatory mediators are thought to be involved in the systemic and local immune response induced by the Tityus serrulatus scorpion envenomation. New functional aspects of lipid mediators have recently been described. Here, we examine the unreported role of lipid mediators in cell recruitment to the peritoneal cavity after an injection with Ts2 or Ts6 toxins isolated from the T. serrulatus scorpion venom. In this report, we demonstrate that following a single intraperitoneal (i.p.) injection of Ts2 or Ts6 (250 μg/kg) in mice, there was an induction of leukocytosis with a predominance of neutrophils observed at 4, 24, 48 and 96 h. Moreover, total protein, leukotriene (LT)B(4), prostaglandin (PG)E(2) and pro-inflammatory cytokine levels were increased. We also observed an increase of regulatory cytokines, including interleukin (IL)-10, after the Ts2 injection. Finally, we observed that Ts2 or Ts6 injection in 5-lipoxygenase (LO) deficient mice and in wild type (WT) 129sv mice pre-treated with LTs and PGs inhibitors (MK-886 and celecoxib, respectively) a reduction the influx of leukocytes occurs in comparison to WT. The recruitment of these cells demonstrated a phenotype characteristic of neutrophils, macrophages, CD4 and CD8 lymphocytes expressing GR1+, F4/80+, CD3+/CD4+ and CD3+/CD8+, respectively. In conclusion, our data demonstrate that Ts2 and Ts6 induce inflammation by mechanisms dependent on lipid mediators and cytokine production. Ts2 may play a regulatory role whereas Ts6 exhibits pro-inflammatory activity exclusively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Marked potentiation of cell swelling by cytokines in ammonia-sensitized cultured astrocytes

    PubMed Central

    2010-01-01

    Background Brain edema leading to high intracranial pressure is a lethal complication of acute liver failure (ALF), which is believed to be cytotoxic due to swelling of astrocytes. In addition to the traditional view that elevated levels of blood and brain ammonia are involved in the mechanism of brain edema in ALF, emerging evidence suggests that inflammatory cytokines also contribute to this process. We earlier reported that treatment of astrocyte cultures with a pathophysiological concentration of ammonia (5 mM NH4Cl) resulted in the activation of nuclear factor-kappaB (NF-κB) and that inhibition of such activation diminished astrocyte swelling, suggesting a key role of NF-κB in the mechanism of ammonia-induced astrocyte swelling. Since cytokines are also well-known to activate NF-κB, this study examined for additive/synergistic effects of ammonia and cytokines in the activation of NF-κB and their role in astrocyte swelling. Methods Primary cultures of astrocytes were treated with ammonia and cytokines (TNF-α, IL-1, IL-6, IFN-γ, each at 10 ng/ml), individually or in combination, and cell volume was determined by the [3H]-O-methylglucose equilibration method. The effect of ammonia and cytokines on the activation of NF-κB was determined by immunoblots. Results Cell swelling was increased by ammonia (43%) and by cytokines (37%) at 24 h. Simultaneous co-treatment with cytokines and ammonia showed no additional swelling. By contrast, cultures pretreated with ammonia for 24 h and then exposed to cytokines for an additional 24 h, showed a marked increase in astrocyte swelling (129%). Treatment of cultures with ammonia or cytokines alone also activated NF-κB (80-130%), while co-treatment had no additive effect. However, in cultures pre-treated with ammonia for 24 h, cytokines induced a marked activation of NF-κB (428%). BAY 11-7082, an inhibitor of NF-κB, completely blocked the astrocyte swelling in cultures pre-treated with ammonia and followed by the

  19. Pneumolysin activates the NLRP3 inflammasome and promotes proinflammatory cytokines independently of TLR4.

    PubMed

    McNeela, Edel A; Burke, Aine; Neill, Daniel R; Baxter, Cathy; Fernandes, Vitor E; Ferreira, Daniela; Smeaton, Sarah; El-Rachkidy, Rana; McLoughlin, Rachel M; Mori, Andres; Moran, Barry; Fitzgerald, Katherine A; Tschopp, Jurg; Pétrilli, Virginie; Andrew, Peter W; Kadioglu, Aras; Lavelle, Ed C

    2010-11-11

    Pneumolysin (PLY) is a key Streptococcus pneumoniae virulence factor and potential candidate for inclusion in pneumococcal subunit vaccines. Dendritic cells (DC) play a key role in the initiation and instruction of adaptive immunity, but the effects of PLY on DC have not been widely investigated. Endotoxin-free PLY enhanced costimulatory molecule expression on DC but did not induce cytokine secretion. These effects have functional significance as adoptive transfer of DC exposed to PLY and antigen resulted in stronger antigen-specific T cell proliferation than transfer of DC exposed to antigen alone. PLY synergized with TLR agonists to enhance secretion of the proinflammatory cytokines IL-12, IL-23, IL-6, IL-1β, IL-1α and TNF-α by DC and enhanced cytokines including IL-17A and IFN-γ by splenocytes. PLY-induced DC maturation and cytokine secretion by DC and splenocytes was TLR4-independent. Both IL-17A and IFN-γ are required for protective immunity to pneumococcal infection and intranasal infection of mice with PLY-deficient pneumococci induced significantly less IFN-γ and IL-17A in the lungs compared to infection with wild-type bacteria. IL-1β plays a key role in promoting IL-17A and was previously shown to mediate protection against pneumococcal infection. The enhancement of IL-1β secretion by whole live S. pneumoniae and by PLY in DC required NLRP3, identifying PLY as a novel NLRP3 inflammasome activator. Furthermore, NLRP3 was required for protective immunity against respiratory infection with S. pneumoniae. These results add significantly to our understanding of the interactions between PLY and the immune system.

  20. Differential General Anesthetic Effects on Microglial Cytokine Expression

    PubMed Central

    Ye, Xuefei; Lian, Qingquan; Eckenhoff, Maryellen F.; Eckenhoff, Roderic G.; Pan, Jonathan Z.

    2013-01-01

    Post-operative cognitive dysfunction has been widely observed, especially in older patients. An association of post-operative cognitive dysfunction with the neurodegenerative diseases, such as Alzheimer's disease, has been suggested. Neuroinflammation contributes to Alzheimer pathology, through elevated pro-inflammatory cytokines and microglial activation in the CNS leading to neuronal damage, synaptic disruption and ultimately cognitive dysfunction. We compare the effects of three different, clinically-used, anesthetics on microglial activation with, and without, the prototypical inflammatory trigger, lipopolysaccharide (LPS). Microglial BV-2 cell cultures were first exposed to isoflurane, sevoflurane (each at 2 concentrations) or propofol for 6 h, and cytokine levels measured in lysates and media. The same experiments were repeated after 1 h LPS pre-treatment. We found; 1) anesthetics alone have either no or only a small effect on cytokine expression; 2) LPS provoked a large increase in microglia cytokine expression; 3) the inhaled anesthetics either had no effect on LPS-evoked responses or enhanced it; 4) propofol nearly eliminated the LPS pro-inflammatory cytokine response and improved cell survival as reflected by lactate dehydrogenase release. These data suggest that propofol may be a preferred anesthetic when it is desirable to minimize neuroinflammation. PMID:23382826

  1. Invasive Streptococcus mutans induces inflammatory cytokine production in human aortic endothelial cells via regulation of intracellular toll-like receptor 2 and nucleotide-binding oligomerization domain 2.

    PubMed

    Nagata, E; Oho, T

    2017-04-01

    Streptococcus mutans, the primary etiologic agent of dental caries, can gain access to the bloodstream and has been associated with cardiovascular disease. However, the roles of S. mutans in inflammation in cardiovascular disease remain unclear. The aim of this study was to examine cytokine production induced by S. mutans in human aortic endothelial cells (HAECs) and to evaluate the participation of toll-like receptors (TLRs) and cytoplasmic nucleotide-binding oligomerization domain (NOD) -like receptors in HAECs. Cytokine production by HAECs was determined using enzyme-linked immunosorbent assays, and the expression of TLRs and NOD-like receptors was evaluated by real-time polymerase chain reaction, flow cytometry and immunocytochemistry. The involvement of TLR2 and NOD2 in cytokine production by invaded HAECs was examined using RNA interference. The invasion efficiencies of S. mutans strains were evaluated by means of antibiotic protection assays. Five of six strains of S. mutans of various serotypes induced interleukin-6, interleukin-8 and monocyte chemoattractant protein-1 production by HAECs. All S. mutans strains upregulated TLR2 and NOD2 mRNA levels in HAECs. Streptococcus mutans Xc upregulated the intracellular TLR2 and NOD2 protein levels in HAECs. Silencing of the TLR2 and NOD2 genes in HAECs invaded by S. mutans Xc led to a reduction in interleukin-6, interleukin-8 and monocyte chemoattractant protein-1 production. Cytokine production induced by invasive S. mutans via intracellular TLR2 and NOD2 in HAECs may be associated with inflammation in cardiovascular disease. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Effect of IFN-γ, IL-12 and IL-10 cytokine production and mRNA expression in tuberculosis patients with diabetes mellitus and their household contacts.

    PubMed

    Meenakshi, Ponnana; Ramya, Sivangala; Lavanya, Joshi; Vijayalakshmi, Valluri; Sumanlatha, Gaddam

    2016-05-01

    The study was carried out to understand the influence of IFN-γ, IL-12 and IL-10 cytokine production and expression in tuberculosis patients with diabetes mellitus (TBDM) and their household contacts (HHC). The study involved a total of 300 subjects, 50 in each category of TBDM, TBDM HHC, pulmonary tuberculosis patients (PTB), PTB HHC, DM and healthy controls (HC). TBDM, PTB and their HHC, 25 each were followed at different intervals to determine their immune responses in Ag85A stimulated culture supernatants by Enzyme Linked Immunosorbent Assay (ELISA). mRNA expression by TRIZOL method in 5 cases of each category and follow-up studies were performed. IFN-γ and IL-12 cytokine production markedly decreased and that of IL-10 increased after Ag85A M.tb stimulation, however anti TB treatment reconstituted the response in TBDM and PTB patients. The household contacts revealed cytokine gene expression similar to that of patients and two of them developed the disease during follow-up. Cytokine responses of the patients retained after treatment highlighting the antigen importance, hence further studies with recombinant cytokines may help in coming up with a biomarker. Analogous immune responses of household contacts with the TBDM and PTB patients may assist in recognizing the high risk individuals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Cytokine filtration modulates pulmonary metabolism and edema formation during ex vivo lung perfusion.

    PubMed

    Iskender, Ilker; Cosgun, Tugba; Arni, Stephan; Trinkwitz, Michael; Fehlings, Stefan; Yamada, Yoshito; Cesarovic, Nikola; Yu, Keke; Frauenfelder, Thomas; Jungraithmayr, Wolfgang; Weder, Walter; Inci, Ilhan

    2017-05-20

    Ex vivo lung perfusion (EVLP) has improved the process of donor lung management. Cytokine accumulation during EVLP has been shown to correlate with worse outcome after lung transplantation. Our objective in this study was to test the safety and efficacy of cytokine filtration during EVLP in a large animal model. Pig donor lungs were preserved for 24 hours at 4°C, followed by 12 hours of EVLP, according to the Toronto protocol. The perfusate was continuously run through an absorbent device (CytoSorb) via a veno-venous shunt from the reservoir in the filter group. EVLP was performed according to the standard protocol in the control group (n = 5 each). EVLP physiology, lung X-ray, perfusate biochemistry, inflammatory response and microscopic injury were assessed. Cytokine filtration significantly improved airway pressure and dynamic compliance during the 12-hour perfusion period. Lung X-rays acquired at the end of perfusion showed increased consolidation in the control group. Electrolyte imbalance, determined by increased hydrogen, potassium and calcium ion concentrations in the perfusate, was markedly worsened in the control group. Glucose consumption and lactate production were markedly reduced, along with the lactate/pyruvate ratio in the filter group. Cytokine expression profile, tissue myeloperoxidase activity and microscopic lung injury were significantly reduced in the filter group. Continuous perfusate filtration through sorbent beads is effective and safe during prolonged EVLP. Cytokine removal decreased the development of pulmonary edema and electrolyte imbalance through the suppression of anaerobic glycolysis and neutrophil activation in this setting. Further studies are needed to test the beneficial effect of cytokine filtration on post-transplant lung function. Copyright © 2017 International Society for the Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  4. Cytokines and STATs in Liver Fibrosis

    PubMed Central

    Kong, Xiaoni; Horiguchi, Norio; Mori, Masatomo; Gao, Bin

    2012-01-01

    Liver fibrosis, or cirrhosis, is a common end-stage condition of many chronic liver diseases after incomplete recovery from hepatocyte damage. During fibrosis progression, hepatocellular damage and inflammation trigger complex cellular events that result in collagen deposition and the disruption of the normal liver architecture. Hepatic stellate cell activation and transdifferentiation into myofibroblasts are key events in liver fibrogenesis. Research findings from cell culture and animal models have revealed that the Janus kinase-signal transducer and activator of transcription (Jak-STAT) signaling pathway, which can be activated by many cytokines, growth factors, and hormones, plays a critical role in hepatic fibrogenesis. This review summarizes the biological significance of diverse cytokines and their downstream signaling protein STATs in hepatic fibrogenesis. PMID:22493582

  5. Maternal cytokine profiles during pregnancy predict asthma in children of nonasthmatic mothers.

    PubMed

    Rothers, Janet; Stern, Debra A; Lohman, I Carla; Spangenberg, Amber; Wright, Anne L; DeVries, Avery; Vercelli, Donata; Halonen, Marilyn

    2018-06-04

    Little is known about whether maternal immune status during pregnancy influences asthma development in the child. We measured cytokine production in supernatants from mitogen-stimulated peripheral blood immune cells collected during and after pregnancy from the mothers of children enrolled in the Tucson Infant Immune Study, a non-selected birth cohort. Physician-diagnosed active asthma in children through age 9 and a history of asthma in their mothers were assessed through questionnaires. Maternal production of each of the cytokines IL-13, IL-4, IL-5, IFN-γ, IL-10, and IL-17 during pregnancy was unrelated to childhood asthma. However, IFN-γ/IL-13 and IFN-γ/IL-4 ratios during pregnancy were associated with decreased in risk of childhood asthma (N=381; OR=0.33; 95%CI=0.17-0.66, p=0.002 and N=368; OR=0.36; 95%CI=0.18-0.71, p=0.003, respectively). The inverse relations of these two ratios with childhood asthma were only evident in nonasthmatic mothers ( N=309; OR=0.18; 95% CI=0.08-0.42, p=0.00007 and N=299; OR=0.17; 95% CI=0.07-0.39, p=0.00003, respectively) and not in asthmatic mother (N=72 and 69, respectively; p for interaction by maternal asthma=0.036 and 0.002, respectively). Paternal cytokine ratios were unrelated to childhood asthma. Maternal cytokine ratios in nonasthmatic mothers were unrelated to the child's skin test reactivity, total IgE, physician-confirmed allergic rhinitis at age 5, or eczema in infancy. To our knowledge this study provides the first evidence that cytokine profiles in pregnant nonasthmatic mothers relate to risk for childhood asthma but not allergy and suggests a process of asthma development that begins in utero and is independent of allergy.

  6. Differential induction of pro- and anti-inflammatory cytokines in whole blood by bacteria: effects of antibiotic treatment.

    PubMed

    Frieling, J T; Mulder, J A; Hendriks, T; Curfs, J H; van der Linden, C J; Sauerwein, R W

    1997-07-01

    The in vitro production of interleukin-1beta (IL-1beta), IL-6, and the IL-1 receptor antagonist (IL-1ra) in whole blood upon stimulation with different bacterial strains was measured to study the possible relationship between disease severity and the cytokine-inducing capacities of these strains. Escherichia coli, Neisseria meningitidis, Neisseria gonorrhoeae, Bacteroides fragilis, Capnocytophaga canimorsus, Staphylococcus aureus, Enterococcus faecalis, Streptococcus pneumoniae, and Streptococcus pyogenes induced the cytokines IL-1beta, IL-6, and IL-1ra. Gram-negative bacteria induced significantly higher levels of proinflammatory cytokine production than gram-positive bacteria. These differences were less pronounced for the anti-inflammatory cytokine IL-1ra. In addition, blood was stimulated with E. coli killed by different antibiotics to study the effect of the antibiotics on the cytokine-inducing capacity of the bacterial culture. E. coli treated with cefuroxime and gentamicin induced higher levels of IL-1beta and IL-6 production but levels of IL-1ra production similar to that of heat-killed E. coli. In contrast, ciprofloxacin- and imipenem-cilastatin-mediated killing showed a decreased or similar level of induction of cytokine production as compared to that by heat-killed E. coli; polymyxin B decreased the level of production of the cytokines.

  7. Technical advance: autofluorescence-based sorting: rapid and nonperturbing isolation of ultrapure neutrophils to determine cytokine production.

    PubMed

    Dorward, David A; Lucas, Christopher D; Alessandri, Ana L; Marwick, John A; Rossi, Fiona; Dransfield, Ian; Haslett, Christopher; Dhaliwal, Kevin; Rossi, Adriano G

    2013-07-01

    The technical limitations of isolating neutrophils without contaminating leukocytes, while concurrently minimizing neutrophil activation, is a barrier to determining specific neutrophil functions. We aimed to assess the use of FACS for generating highly pure quiescent neutrophil populations in an antibody-free environment. Peripheral blood human granulocytes and murine bone marrow-derived neutrophils were isolated by discontinuous Percoll gradient and flow-sorted using FSC/SSC profiles and differences in autofluorescence. Postsort purity was assessed by morphological analysis and flow cytometry. Neutrophil activation was measured in unstimulated-unsorted and sorted cells and in response to fMLF, LTB4, and PAF by measuring shape change, CD62L, and CD11b expression; intracellular calcium flux; and chemotaxis. Cytokine production by human neutrophils was also determined. Postsort human neutrophil purity was 99.95% (sem=0.03; n=11; morphological analysis), and 99.68% were CD16(+ve) (sem=0.06; n=11), with similar results achieved for murine neutrophils. Flow sorting did not alter neutrophil activation or chemotaxis, relative to presorted cells, and no differences in response to agonists were observed. Stimulated neutrophils produced IL-1β, although to a lesser degree than CXCL8/IL-8. The exploitation of the difference in autofluorescence between neutrophils and eosinophils by FACS is a quick and effective method for generating highly purified populations for subsequent in vitro study.

  8. In vitro effect of 4-pentylphenol and 3-methyl-4-nitrophenol on murine splenic lymphocyte populations and cytokine/granzyme production.

    PubMed

    Yang, Lubing; Ma, Sihui; Wan, Yifang; Duan, Shuqi; Ye, Siyan; Du, Shengjie; Ruan, Xinwei; Sheng, Xia; Weng, Qiang; Taya, Kazuyoshi; Xu, Meiyu

    2016-07-01

    Gasoline exhaust particles (GEP) and diesel exhaust particles (DEP) are considered to be some of the most important air pollutants. Among the many constituents in these pollutant particles, 4-pentylphenol (PP) and 3-methyl-4-nitrophenol (PNMC) are considered important phenolics in GEP and DEP, respectively. The aim of this study was to investigate the effect of in vitro exposure to commercially-supplied PP and PNMC on populations of, and production of interleukin (IL)-2, IL-4 and granzyme-B by, mouse splenic lymphocytes. After in vitro exposure to PP or PNMC for 48 h, splenocyte viability was measured, cell phenotypes, e.g. B-cell (CD19), T-cells (CD3), T-cell subsets (CD4 and CD8), were quantified by flow cytometry and production of IL-2, IL-4 and granzyme-B was assessed via ELISA. The oxidative toxicity of PP and PNMC toward the splenocytes was also evaluated using measures of hydroxyl radical and malondiadehyde production and changes in glutathione peroxidase and superoxide dismutase activities. Results showed that in vitro exposure to PP and PNMC inhibited splenic cell parameters in a dose-related manner. Exposure to PP and PNMC decreased splenic T-lymphocyte populations and splenocyte production of cytokines and granzyme B, as well as induced oxidative stress in the splenocytes. The results also showed that the percentages of CD3(+) T-cells overall and of CD4(+) and CD8(+) T-cells therein, among exposed splenocytes, were reduced; neither compound appeared to affect levels of CD19(+) B-cells. Overall, the suppressive effects of PP were stronger than PNMC. The data here provide support for the proposal that PP-/PNMC-induced toxicity in splenocytes may be due at least in part to oxidative damage and that PP and PNMC - as components of GEP and DEP - might significantly impact on splenic T-cell formation/release of cytokines/granzymes in situ.

  9. Cytokine/Antibody complexes: an emerging class of immunostimulants.

    PubMed

    Mostböck, Sven

    2009-01-01

    In recent years, complexes formed from a cytokine and antibodies against that respective cytokine (cytokine/Ab complex) have been shown to induce remarkable powerful changes in the immune system. Strong interest exists especially for complexes formed with Interleukin (IL)-2 and anti-IL-2-antibody (IL-2/Ab complex). IL-2/Ab complex activates maturation and proliferation in CD8(+) T cells and natural killer (NK) cells to a much higher degree than conventional IL-2 therapy. In addition, IL-2/Ab complex does not stimulate regulatory T cells as much as IL-2 alone. This suggests the possibility to replace the conventional IL-2 therapy with a therapy using low-dose IL-2/Ab complex. Further synthetic cytokine/Ab complexes are studied currently, including IL-3/Ab complex for its effects on the mast cell population, and IL-4/Ab complex and IL-7/Ab complex for inducing B and T cell expansion and maturation. Cytokine complexes can also be made from a cytokine and its soluble receptor. Pre-association of IL-15 with soluble IL-15 receptor alpha produces a complex with strong agonistic functions that lead to an expansion of CD8(+) T cells and NK cells. However, cytokine/Ab complexes also occur naturally in humans. A multitude of auto-antibodies to cytokines are found in human sera, and many of these auto-antibodies build cytokine/Ab complexes. This review presents naturally occurring auto-antibodies to cytokines and cytokine/Ab complexes in health and disease. It further summarizes recent research on synthetic cytokine/Ab complexes with a focus on the basic mechanisms behind the function of cytokine/Ab complexes.

  10. The implication of pro-inflammatory cytokines in the impaired production of gonadal androgens by patients with pulmonary tuberculosis.

    PubMed

    Bini, Estela Isabel; D'Attilio, Luciano; Marquina-Castillo, Brenda; Mata-Espinosa, Dulce; Díaz, Ariana; Marquez-Velasco, Ricardo; Ramos-Espinosa, Octavio; Gamboa-Domínguez, Armando; Bay, Maria Luisa; Hernández-Pando, Rogelio; Bottasso, Oscar

    2015-12-01

    The chronic nature of tuberculosis and the protracted immuno-inflammatory reactions are implied in a series of metabolic and immune-endocrine changes accompanying the disease. We explored components from the hypothalamous-pituitary-gonadal axis and their relationship with cytokines involved in disease immunopathology, in male TB patients. Plasma samples from 36 active untreated pulmonary TB male patients were used to determine TNF-α, IFN-γ, TGF-β, IL-6, cortisol, dehydroepiandrosterone, testosterone, progesterone, estradiol, luteinizing hormone (LH) and follicle-stimulating hormone (FSH) by ELISA. Healthy controls corresponded to 21 volunteers without contact with TB patients and similar age (40 ± 16,8 years). Testicular histological samples from necropsies of patients dying from TB were immune-stained for IL-1β, TNF-α, IL-6 and IFN-γ. The TM3 mouse Leydig cell line was incubated with recombinants TNF-α, IFN-γ and TGF-β, supernatants were collected and used to measure testosterone by ELISA. Patients showed decreased levels of testosterone in presence of high amounts of LH, together with augmented IFN-γ, IL-6 and TGF-β levels. Testicular histological sections showed abundant presence of IL-1β, TNF-α, IL-6 and IFN-γ in interstitial macrophages, Sertoli cells and some spermatogonia. In vitro treatment of Leydig cells with these cytokines led to a remarkable reduction of testosterone production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Suppressor of Cytokine Signaling 2 Negatively Regulates NK Cell Differentiation by Inhibiting JAK2 Activity

    PubMed Central

    Kim, Won Sam; Kim, Mi Jeong; Kim, Dong Oh; Byun, Jae-Eun; Huy, Hangsak; Song, Hae Young; Park, Young-Jun; Kim, Tae-Don; Yoon, Suk Ran; Choi, Eun-Ji; Jung, Haiyoung; Choi, Inpyo

    2017-01-01

    Suppressor of cytokine signaling (SOCS) proteins are negative regulators of cytokine responses. Although recent reports have shown regulatory roles for SOCS proteins in innate and adaptive immunity, their roles in natural killer (NK) cell development are largely unknown. Here, we show that SOCS2 is involved in NK cell development. SOCS2−/− mice showed a high frequency of NK cells in the bone marrow and spleen. Knockdown of SOCS2 was associated with enhanced differentiation of NK cells in vitro, and the transplantation of hematopoietic stem cells (HSCs) into congenic mice resulted in enhanced differentiation in SOCS2−/− HSCs. We found that SOCS2 could inhibit Janus kinase 2 (JAK2) activity and JAK2-STAT5 signaling pathways via direct interaction with JAK2. Furthermore, SOCS2−/− mice showed a reduction in lung metastases and an increase in survival following melanoma challenge. Overall, our findings suggest that SOCS2 negatively regulates the development of NK cells by inhibiting JAK2 activity via direct interaction. PMID:28383049

  12. The effect of non-steroidal anti-inflammatory agents on behavioural changes and cytokine production following systemic inflammation: Implications for a role of COX-1

    PubMed Central

    Teeling, J.L.; Cunningham, C.; Newman, T.A.; Perry, V.H.

    2010-01-01

    Systemic inflammation gives rise to metabolic and behavioural changes, largely mediated by pro-inflammatory cytokines and prostaglandin production (PGE2) at the blood–brain barrier. Despite numerous studies, the exact biological pathways that give rise to these changes remains elusive. This study investigated the mechanisms underlying immune-to-brain communication following systemic inflammation using various anti-inflammatory agents. Mice were pre-treated with selective cyclo-oxygenase (COX) inhibitors, thromboxane synthase inhibitors or dexamethasone, followed by intra-peritoneal injection of lipopolysaccharide (LPS). Changes in body temperature, open-field activity, and burrowing were assessed and mRNA and/or protein levels of inflammatory mediators measured in serum and brain. LPS-induced systemic inflammation resulted in behavioural changes and increased production of IL-6, IL-1β and TNF-α, as well as PGE2 in serum and brain. Indomethacin and ibuprofen reversed the effect of LPS on behaviour without changing peripheral or central IL-6, IL-1β and TNF-α mRNA levels. In contrast, dexamethasone did not alter LPS-induced behavioural changes, despite complete inhibition of cytokine production. A selective COX-1 inhibitor, piroxicam, but not the selective COX-2 inhibitor, nimesulide, reversed the LPS-induced behavioural changes without affecting IL-6, IL-1β and TNF-α protein expression levels in the periphery or mRNA levels in the hippocampus. Our results suggest that the acute LPS-induced changes in burrowing and open-field activity depend on COX-1. We further show that COX-1 is not responsible for the induction of brain IL-6, IL-1β and TNF-α synthesis or LPS-induced hypothermia. Our results may have implications for novel therapeutic strategies to treat or prevent neurological diseases with an inflammatory component. PMID:19931610

  13. Transforming growth factor-beta inhibits human antigen-specific CD4+ T cell proliferation without modulating the cytokine response.

    PubMed

    Tiemessen, Machteld M; Kunzmann, Steffen; Schmidt-Weber, Carsten B; Garssen, Johan; Bruijnzeel-Koomen, Carla A F M; Knol, Edward F; van Hoffen, Els

    2003-12-01

    Transforming growth factor (TGF)-beta has been demonstrated to play a key role in the regulation of the immune response, mainly by its suppressive function towards cells of the immune system. In humans, the effect of TGF-beta on antigen-specific established memory T cells has not been investigated yet. In this study antigen-specific CD4(+) T cell clones (TCC) were used to determine the effect of TGF-beta on antigen-specific proliferation, the activation status of the T cells and their cytokine production. This study demonstrates that TGF-beta is an adequate suppressor of antigen-specific T cell proliferation, by reducing the cell-cycle rate rather than induction of apoptosis. Addition of TGF-beta resulted in increased CD69 expression and decreased CD25 expression on T cells, indicating that TGF-beta is able to modulate the activation status of in vivo differentiated T cells. On the contrary, the antigen-specific cytokine production was not affected by TGF-beta. Although TGF-beta was suppressive towards the majority of the T cells, insensitivity of a few TCC towards TGF-beta was also observed. This could not be correlated to differential expression of TGF-beta signaling molecules such as Smad3, Smad7, SARA (Smad anchor for receptor activation) and Hgs (hepatocyte growth factor-regulated tyrosine kinase substrate). In summary, TGF-beta has a pronounced inhibitory effect on antigen-specific T cell proliferation without modulating their cytokine production.

  14. Role of Gab1 in Heart, Placenta, and Skin Development and Growth Factor- and Cytokine-Induced Extracellular Signal-Regulated Kinase Mitogen-Activated Protein Kinase Activation

    PubMed Central

    Itoh, Motoyuki; Yoshida, Yuichi; Nishida, Keigo; Narimatsu, Masahiro; Hibi, Masahiko; Hirano, Toshio

    2000-01-01

    Gab1 is a member of the Gab/DOS (Daughter of Sevenless) family of adapter molecules, which contain a pleckstrin homology (PH) domain and potential binding sites for SH2 and SH3 domains. Gab1 is tyrosine phosphorylated upon stimulation of various cytokines, growth factors, and antigen receptors in cell lines and interacts with signaling molecules, such as SHP-2 and phosphatidylinositol 3-kinase, although its biological roles have not yet been established. To reveal the functions of Gab1 in vivo, we generated mice lacking Gab1 by gene targeting. Gab1-deficient embryos died in utero and displayed developmental defects in the heart, placenta, and skin, which were similar to phenotypes observed in mice lacking signals of the hepatocyte growth factor/scatter factor, platelet-derived growth factor, and epidermal growth factor pathways. Consistent with these observations, extracellular signal-regulated kinase mitogen-activated protein (ERK MAP) kinases were activated at much lower levels in cells from Gab1-deficient embryos in response to these growth factors or to stimulation of the cytokine receptor gp130. These results indicate that Gab1 is a common player in a broad range of growth factor and cytokine signaling pathways linking ERK MAP kinase activation. PMID:10779359

  15. Stat6 activity-related Th2 cytokine profile and tumor growth advantage of human colorectal cancer cells in vitro and in vivo.

    PubMed

    Li, Ben Hui; Xu, Shuang Bing; Li, Feng; Zou, Xiao Guang; Saimaiti, Abudukeyoumu; Simayi, Dilixia; Wang, Ying Hong; Zhang, Yan; Yuan, Jia; Zhang, Wen Jie

    2012-03-01

    Signal transducer and activator of transcription 6 (Stat6) is critical in Th2 polarization of immune cells and active Stat6 activity has been suggested in anti-tumor immunity in animal models. The present study aims at investigating the impact of natural Stat6 activity on tumor microenvironment in human colorectal cancer cells in vitro and in vivo. Using colorectal cancer cell lines HT-29 and Caco-2 whose IL-4/Stat6 activities were known and nude mice as a model, we examined correlative relationships between Stat6 activities and gene expression profiles together with cellular behaviors in vitro and in vivo. HT-29 cells carrying active Stat6 signaling displayed spontaneous expression profiles favoring Th2 cytokines, cell cycle promotion, anti-apoptosis and pro-metastasis with increased mRNA levels of IL-4, IL-13, GATA-3, CDK4, CD44v6 and S100A4 using RT-PCR. In contrast, Caco-2 cells carrying defective Stat6 signaling exhibited spontaneous expression profiles favoring Th1 and Th17 cytokines, cell cycle inhibition, pro-apoptosis and anti-metastasis with elevated mRNA expression of IFNγ, TNFα, IL-12A, IL-17, IL-23, T-bet, CDKN1A, CDKNIB, CDKN2A and NM23-H1. Xenograft tumors of Stat6-active HT-29 cells showed a growth advantage over those of Stat6-defective Caco-2 cells. Furthermore, mice bearing HT-29 tumors expressed increased levels of Th2 cytokines IL-4 and IL-5 in the blood and pro-growth and/or pro-metastasis proteins CDK4 and CD44v6 in the tumor. To the contrary, mice bearing Caco-2 tumors expressed heightened levels of Th1 cytokines IFNγ and TNF in the blood and pro-apoptosis and anti-metastatic proteins p53 and p27(kip1) in the tumor. Colorectal cancer cells carrying active Stat6 signaling may create a microenvironment favoring Th2 cytokines and promoting expression of genes related to pro-growth, pro-metastasis and anti-apoptosis, which leads to a tumor growth advantage in vivo. These findings may imply why Stat6 pathway is constitutively activated in a

  16. Immunosuppressants: tools to investigate the physiological role of cytokines.

    PubMed

    Quesniaux, V F

    1993-11-01

    The cyclic peptide Cyclosporine A (CsA) is best known as the immunosuppressive drug which has revolutionized organ transplantation. It selectively suppresses T cell activation by blocking the transcription of cytokine genes such as IL-2 at the level of transcription factor modulation. The structurally unrelated immunosuppressant FK 506 acts on the same pathway and blocks cytokine gene expression. In contrast, rapamycin, a structural analogue of FK 506, interferes with the immune response at a different level, by blocking the response induced by cytokines such as IL-2. Although these drugs have been most studied for their immunosuppressive activities, it is clear that their effects on cytokine pathways extend far beyond the sole IL-2-mediated responses involved in the immune response. For instance, CsA and FK 506 inhibit the transcription of IL-3, IL-4, IFN gamma, TNF alpha or GM-CSF by activated T cells, and rapamycin has been shown to block the response to various growth factors such as IL-3, IL-4 or IL-6. Here, we recap what is known about the effects of CsA, FK 506 and rapamycin on hematopoiesis in vitro and in vivo and extrapolate on what these drugs can teach us about the physiological role of cytokines for hematopoiesis.

  17. Adjuvant-carrying synthetic vaccine particles augment the immune response to encapsulated antigen and exhibit strong local immune activation without inducing systemic cytokine release

    PubMed Central

    Ilyinskii, Petr O.; Roy, Christopher J.; O’Neil, Conlin P.; Browning, Erica A.; Pittet, Lynnelle A.; Altreuter, David H.; Alexis, Frank; Tonti, Elena; Shi, Jinjun; Basto, Pamela A.; Iannacone, Matteo; Radovic-Moreno, Aleksandar F.; Langer, Robert S.; Farokhzad, Omid C.; von Andrian, Ulrich H.; Johnston, Lloyd P.M.; Kishimoto, Takashi Kei

    2014-01-01

    Augmentation of immunogenicity can be achieved by particulate delivery of an antigen and by its co-administration with an adjuvant. However, many adjuvants initiate strong systemic inflammatory reactions in vivo, leading to potential adverse events and safety concerns. We have developed a synthetic vaccine particle (SVP) technology that enables co-encapsulation of antigen with potent adjuvants. We demonstrate that co-delivery of an antigen with a TLR7/8 or TLR9 agonist in synthetic polymer nanoparticles results in a strong augmentation of humoral and cellular immune responses with minimal systemic production of inflammatory cytokines. In contrast, antigen encapsulated into nanoparticles and admixed with free TLR7/8 agonist leads to lower immunogenicity and rapid induction of high levels of inflammatory cytokines in the serum (e.g., TNF-α and IL-6 levels are 50- to 200-fold higher upon injection of free resiquimod (R848) than of nanoparticle-encapsulated R848). Conversely, local immune stimulation as evidenced by cellular infiltration of draining lymph nodes and by intranodal cytokine production was more pronounced and persisted longer when SVP-encapsulated TLR agonists were used. The strong local immune activation achieved using a modular self-assembling nanoparticle platform markedly enhanced immunogenicity and was equally effective whether antigen and adjuvant were co-encapsulated in a single nanoparticle formulation or co-delivered in two separate nanoparticles. Moreover, particle encapsulation enabled the utilization of CpG oligonucleotides with the natural phosphodiester backbone, which are otherwise rapidly hydrolyzed by nucleases in vivo. The use of SVP may enable clinical use of potent TLR agonists as vaccine adjuvants for indications where cellular immunity or robust humoral responses are required. PMID:24593999

  18. Extracorporeal membrane oxygenation and cytokine adsorption

    PubMed Central

    Träger, Karl

    2018-01-01

    Extracorporeal membrane oxygenation (ECMO) is an increasingly used technology for mechanical support of respiratory and cardio-circulatory failure. Excessive systemic inflammatory response is observed during sepsis and after cardiopulmonary bypass (CPB) with similar clinical features. The overwhelming inflammatory response is characterized by highly elevated pro- and anti-inflammatory cytokine levels. The excessive cytokine release during the overwhelming inflammatory response may result in multiple organ damage and failure. During ECMO therapy activation of complement and contact systems occur which may be followed by cytokine release. Controlling excessively increased cytokines may be considered as a valuable treatment option. Hemoadsorption therapy may be used to decrease cytokine levels in case of excessive inflammatory response and due to its unspecific adsorptive characteristics also substances like myoglobin, free hemoglobin or bilirubin. Controlling pro-inflammatory response with hemoadsorption may have positive impact on the endothelial glycocalix and also may be advantageous for maintenance of the vascular barrier function which plays a pivotal role in the development of tissue edema and oxygen mismatch. Hemoadsorption therapy seems to offer a promising new option for the treatment of patients with overwhelming inflammatory response leading to faster hemodynamic and metabolic stabilization finally resulting in preserved organ functions. PMID:29732183

  19. Extracorporeal membrane oxygenation and cytokine adsorption.

    PubMed

    Datzmann, Thomas; Träger, Karl

    2018-03-01

    Extracorporeal membrane oxygenation (ECMO) is an increasingly used technology for mechanical support of respiratory and cardio-circulatory failure. Excessive systemic inflammatory response is observed during sepsis and after cardiopulmonary bypass (CPB) with similar clinical features. The overwhelming inflammatory response is characterized by highly elevated pro- and anti-inflammatory cytokine levels. The excessive cytokine release during the overwhelming inflammatory response may result in multiple organ damage and failure. During ECMO therapy activation of complement and contact systems occur which may be followed by cytokine release. Controlling excessively increased cytokines may be considered as a valuable treatment option. Hemoadsorption therapy may be used to decrease cytokine levels in case of excessive inflammatory response and due to its unspecific adsorptive characteristics also substances like myoglobin, free hemoglobin or bilirubin. Controlling pro-inflammatory response with hemoadsorption may have positive impact on the endothelial glycocalix and also may be advantageous for maintenance of the vascular barrier function which plays a pivotal role in the development of tissue edema and oxygen mismatch. Hemoadsorption therapy seems to offer a promising new option for the treatment of patients with overwhelming inflammatory response leading to faster hemodynamic and metabolic stabilization finally resulting in preserved organ functions.

  20. Cytokine Expression, Natural Killer Cell Activation, and Phenotypic Changes in Lymphoid Cells from Rhesus Macaques during Acute Infection with Pathogenic Simian Immunodeficiency Virus

    PubMed Central

    Giavedoni, Luis D.; Velasquillo, M. Cristina; Parodi, Laura M.; Hubbard, Gene B.; Hodara, Vida L.

    2000-01-01

    We studied the innate and adaptive immune system of rhesus macaques infected with the virulent simian immunodeficiency virus isolate SIVmac251 by evaluating natural killer (NK) cell activity, cytokine levels in plasma, humoral and virological parameters, and changes in the activation markers CD25 (interleukin 2R [IL-2R] α chain), CD69 (early activation marker), and CD154 (CD40 ligand) in lymphoid cells. We found that infection with SIVmac251 induced the sequential production of interferon-α/β (IFN-α/β), IL-18, and IL-12. IFN-γ, IL-4, and granulocyte-macrophage colony-stimulating factor were undetected in plasma by the assays used. NK cell activity peaked at 1 to 2 weeks postinfection and paralleled changes in viral loads. Maximum expression of CD69 on CD3−CD16+ lymphocytes correlated with NK cytotoxicity during this period. CD25 expression, which is associated with proliferation, was static or slightly down-regulated in CD4+ T cells from both peripheral blood (PB) and lymph nodes (LN). CD69, which is normally present in LN CD4+ T cells and absent in peripheral blood leukocyte (PBL) CD4+ T cells, was down-regulated in LN CD4+ T cells and up-regulated in PBL CD4+ T cells immediately after infection. CD8+ T cells increased CD69 but not CD25 expression, indicating the activation of this cellular subset in PB and LN. Finally, CD154 was transiently up-regulated in PBL CD4+ T cells but not in LN CD4+ T cells. Levels of antibodies to SIV Gag and Env did not correlate with the level of activation of CD154, a critical costimulatory molecule for T-cell-dependent immunity. In summary, we present the first documented evidence that the innate immune system of rhesus macaques recognizes SIV infection by sequential production of proinflammatory cytokines and transient activation of NK cytotoxic activity. Additionally, pathogenic SIV induces drastic changes in the level of activation markers on T cells from different anatomic compartments. These changes involve activation

  1. Detoxified pneumolysin derivative Plym2 directly protects against pneumococcal infection via induction of inflammatory cytokines.

    PubMed

    Lu, Jingcai; Sun, Tianxu; Hou, Hongjia; Xu, Man; Gu, Tiejun; Dong, Yunliang; Wang, Dandan; Chen, Pinxu; Wu, Chunlai; Liang, Chunshu; Sun, Shiyang; Jiang, Chunlai; Kong, Wei; Wu, Yongge

    2014-01-01

    Streptococcus pneumoniae is a major cause of infectious disease and complications worldwide, such as pneumonia, otitis media, bacteremia and meningitis. New generation protein-based pneumococcal vaccines are recognized as alternative vaccine candidates. Pneumolysin (Ply) is a cholesterol-dependent cytolysin produced by all clinical isolates of S. pneumoniae. Our research group previously developed a highly detoxified Ply mutant designated Plym2 by replacement of two animo acids (C428G and W433F). Exhibiting undetectable levels of cytotoxicity, Plym2 could still elicit high titer neutralizing antibodies against the native toxin. However, evaluation of the active immunoprotective effects of Plym2 by subcutaneous immunization and lethal challenge with S. pneumoniae in mice did not yield favorable results. In the present work, we confirmed the previous observations by using passive immunization and systemic challenge. Results of the passive immunization were consistent with those of active immunization. Further experiments were conducted to explain the inability of high titer neutralizing antibodies against Ply to protect mice from S. pneumoniae challenge. Pneumococcal Ply is known to be the major factor responsible for the induction of inflammation that benefits the host. Proinflammatory cytokines facilitate the clearance of invaders by the recruitment and activation of leukocytes at the early infection stage. We demonstrated that Plym2 could induce proinflammatory cytokines similarly to wild-type Ply. A systemic infection model was used to clarify that Plym2 lacking cytolytic activity could protect mice from intraperitoneal challenge directly, while antibodies to the mutant had no effect. Therefore, the protective function of Plym2 may be due to its induction of proinflammatory cytokines. When used in the systemic infection model, Plym2 antibodies may block the induction of proinflammatory cytokines by Ply. These findings demonstrate that a Ply-based vaccine would

  2. Impact of ingestion of rice bran and shitake mushroom extract on lymphocyte function and cytokine production in healthy rats.

    PubMed

    Giese, Scott; Sabell, George Richard; Coussons-Read, Mary

    2008-01-01

    This article provides a controlled evaluation of the ability of dietary supplementation with a commercially available rice bran extract modified with shitake mushroom extract (MGN-3) to support the immune function by assessing the ability of immunocytes to proliferate and produce cytokines in response to a mitogenic challenge. Twenty-four male Lewis rats were fed a control diet (Maypo sweetened oatmeal) or Maypo containing the recommended daily dose of MGN-3 for 2 weeks. This treatment modestly enhanced mitogen enhanced proliferation of splenocytes and interferon-gamma (IFN-g) production, and significantly increased proliferation of splenocytes to the superantigen toxic shock syndrome toxin-1 (TSST-1) as well as natural killer (NK) cell activity and production of interleukin-2 (IL-2) by stimulated lymphocytes. These data support the contention that ingestion of MGN-3 can support immune cell function. These data add to a growing body of data showing that ingestion of MGN-3 improves the ability of immune cells to proliferate the lyse tumor cells, suggesting that it may have utility as a dietary aid to support the immune system.

  3. An overview of cytokines and cytokine antagonists as therapeutic agents.

    PubMed

    Donnelly, Raymond P; Young, Howard A; Rosenberg, Amy S

    2009-12-01

    Cytokine-based therapies have the potential to provide novel treatments for cancer, autoimmune diseases, and many types of infectious disease. However, to date, the full clinical potential of cytokines as drugs has been limited by a number of factors. To discuss these limitations and explore ways to overcome them, the FDA partnered with the New York Academy of Sciences in March 2009 to host a two-day forum to discuss more effective ways to harness the clinical potential of cytokines and cytokine antagonists as therapeutic agents. The first day was focused primarily on the use of recombinant cytokines as therapeutic agents for treatment of human diseases. The second day focused largely on the use of cytokine antagonists as therapeutic agents for treatment of human diseases. This issue of the Annals includes more than a dozen papers that summarize much of the information that was presented during this very informative two-day conference.

  4. IL-2 activation of STAT5 enhances production of IL-10 from human cytotoxic regulatory T cells, HOZOT.

    PubMed

    Tsuji-Takayama, Kazue; Suzuki, Motoyuki; Yamamoto, Mayuko; Harashima, Akira; Okochi, Ayumi; Otani, Takeshi; Inoue, Toshiya; Sugimoto, Akira; Motoda, Ryuichi; Yamasaki, Fumiyuki; Nakamura, Shuji; Kibata, Masayoshi

    2008-02-01

    Interleukin (IL)-10 is an immunosuppressive cytokine produced by many cell types, including T cells. We previously reported that a novel type of regulatory T (Treg) cells, termed HOZOT, which possesses a FOXP3+CD4+CD8+CD25+ phenotype and dual suppressor/cytotoxic activities, produced high levels of IL-10. In this study, we examined the mechanisms of high IL-10 production by HOZOT, focusing on Janus activating kinase (JAK)/signal transducers and activators of transcription (STAT) signaling pathway. We prepared five different types of T cells, including HOZOT from human umbilical cord blood. Cytokine productions of IL-10, interferon-gamma (IFN-gamma), and tumor necrosis factor-alpha (TNF-alpha) were compared among these T cells after anti-CD3/CD28 antibody stimulation in the presence or absence of IL-2. Specific inhibitors for JAK/STAT, nuclear factor-kappaB (NF-kappaB), and nuclear factor for activated T cell (NFAT) were used to analyze signal transduction mechanisms. IL-10 production by HOZOTs was greatly enhanced by the addition of IL-2. Little or no enhancement of IFN-gamma and TNF-alpha production was observed under the same conditions. The enhancing effect of IL-2 was specific for both HOZOT and IL-10-secreting Treg cells. T helper type 2 cells, whose IL-10 production mechanisms involve GATA-3, failed to show IL-2-mediated enhancement of IL-10. Similar enhancing effects of IL-15 and IFN-alpha suggested a major role of JAK/STAT activation pathway for high IL-10 production. Further inhibitor experiments demonstrated that STAT5 rather than STAT3 was critically involved in this mechanism. Our results demonstrated that IL-2 selectively enhanced production of IL-10 in HOZOT primarily through activation of STAT5, which synergistically acts with NF-kappaB/NFAT activation, implying a novel regulatory mechanism of IL-10 production in Treg cells.

  5. The natural product chitosan enhances the anti-tumor activity of natural killer cells by activating dendritic cells.

    PubMed

    Li, Xinxin; Dong, Wenjuan; Nalin, Ansel P; Wang, Yufeng; Pan, Pan; Xu, Bo; Zhang, Yibo; Tun, Steven; Zhang, Jianying; Wang, Li-Shu; He, Xiaoming; Caligiuri, Michael A; Yu, Jianhua

    2018-01-01

    Natural products comprise an important class of biologically active molecules. Many of these compounds derived from natural sources exhibit specific physiologic or biochemical effects. An example of a natural product is chitosan, which is enriched in the shells of certain seafood that are frequently consumed worldwide. Like other natural products, chitosan has the potential for applications in clinical medicine and perhaps in cancer therapy. Toward this end, the immunomodulatory or anti-cancer properties of chitosan have yet to be reported. In this study, we discovered that chitosan enhanced the anti-tumor activity of natural killer (NK) cells by activating dendritic cells (DCs). In the presence of DCs, chitosan augmented IFN-γ production by human NK cells. Mechanistically, chitosan activated DCs to express pro-inflammatory cytokines such as interleukin (IL)-12 and IL-15, which in turn activated the STAT4 and NF-κB signaling pathways, respectively, in NK cells. Moreover, chitosan promoted NK cell survival, and also enhanced NK cell cytotoxicity against leukemia cells. Finally, a related in vivo study demonstrated that chitosan activated NK cells against B16F10 tumor cells in an immunocompetent syngeneic murine melanoma model. This effect was accompanied by in vivo upregulation of IL-12 and IL-15 in DCs, as well as increased IFN-γ production and cytolytic degranulation in NK cells. Collectively, our results demonstrate that chitosan activates DCs leading to enhanced capacity for immune surveillance by NK cells. We believe that our study has future clinical applications for chitosan in the prevention or treatment of cancer and infectious diseases.

  6. The modulatory role of cytokines IL-4 and IL-17 in the functional activity of phagocytes in diabetic pregnant women.

    PubMed

    Fagundes, Danny L G; França, Eduardo L; Gonzatti, Michelangelo B; Rugde, Marilza V C; Calderon, Iracema M P; Honorio-França, Adenilda C

    2018-01-01

    The study investigated the role of cytokines IL-4 and IL-17 in the modulation of the functional activity of mononuclear phagocytes in diabetic pregnant women with hyperglycemia. Sixty pregnant women were assigned to the following groups: nondiabetic (ND), mild gestational hyperglycemia (MGH), gestational diabetes mellitus (GDM), or type 2 diabetes mellitus (DM2). The functional activity of phagocytes from maternal blood, cord blood, and colostrum was assessed by determining their superoxide release, phagocytosis, microbicidal activity, and intracellular Ca 2+ release. Irrespective of glycemic status, colostrum and blood cells treated with IL-4 and IL-17 increased superoxide release in the presence of enteropathogenic Escherichia coli (EPEC). The highest phagocytosis rate was observed in cells from the DM2 group treated with IL-4. In all the groups, phagocytes from colostrum, maternal blood, and cord blood exhibited higher microbicidal activity against EPEC when treated with cytokines. IL-17 increased intracellular Ca 2+ release by colostrum phagocytes in diabetic groups. The results indicate that the IL-4 and IL-17 modulate the functional activity of phagocytes in the maternal blood, cord blood, and colostrum of diabetic mother. The natural immunity resulting from the interaction between the cells and cytokines tested may be an alternative procedure to improve the prognosis of maternal and newborn infections. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  7. Cross-linked fibrin degradation products (D-dimer), plasma cytokines, and cognitive decline in community-dwelling elderly persons.

    PubMed

    Wilson, Craig J; Cohen, Harvey Jay; Pieper, Carl F

    2003-10-01

    To investigate the effect of coagulation and inflammatory pathway activation on future cognitive decline in older persons. Prospective cohort study. Rural and urban communities in North Carolina. Community-dwelling older people enrolled in the Duke Established Populations for Epidemiologic Studies of the Elderly in 1986. In 1992, blood was drawn for assay of D-dimer (1,723 subjects), Interleukin-6 (1,726 subjects), and other cytokines (1,551 subjects). Cognitive and functional assessments were performed in 1986, 1989, 1992, and 1996. Cognition was measured using the Short Portable Mental Status Questionnaire. Cognitive decline over a 4-year period was significantly correlated (P<.001) with D-dimer, age, race, and physical performance status as measured using the Rosow-Breslau and Nagi instruments. After controlling for demographics, functional status, and comorbidities, D-dimer remained predictive of cognitive decline. Proinflammatory cytokines were not associated with current cognitive status in cross-sectional analyses or with incident cognitive decline in prospective analyses. In a large sample of community-dwelling elders, higher levels of D-dimer were predictive of cognitive decline over a 4-year period. No clinically significant associations were found between age-related peripheral cytokine dysregulation and cognition.

  8. Cytokines in human milk.

    PubMed

    Garofalo, Roberto

    2010-02-01

    Epidemiologic studies conducted in the past 30 years to investigate the protective functions of human milk strongly support the notion that breastfeeding prevents infantile infections, particularly those affecting the gastrointestinal and respiratory tracts. However, more recent clinical and experimental observations also suggest that human milk not only provides passive protection, but also can directly modulate the immunological development of the recipient infant. The study of this remarkable defense system in human milk has been difficult because of its biochemical complexity, the small concentration of certain bioactive components, the compartmentalization of some of these agents, the dynamic quantitative and qualitative changes of milk during lactation, and the lack of specific reagents to quantify these agents. However, a host of bioactive substances, including hormones, growth factors, and immunological factors such as cytokines, have been identified in human milk. Cytokines are pluripotent polypeptides that act in autocrine/paracrine fashions by binding to specific cellular receptors. They operate in networks and orchestrate the development and functions of immune system. Several different cytokines and chemokines have been discovered in human milk in the past years, and the list is growing very rapidly. This article will review the current knowledge about the increasingly complex network of chemoattractants, activators, and anti-inflammatory cytokines present in human milk and their potential role in compensating for the developmental delay of the neonate immune system. Copyright 2010. Published by Mosby, Inc.

  9. Cytokine Signatures Associated With Early Onset, Active Lesions and Late Cicatricial Events of Retinochoroidal Commitment in Infants With Congenital Toxoplasmosis.

    PubMed

    Carneiro, Ana Carolina Aguiar Vasconcelos; Machado, Anderson Silva; Béla, Samantha Ribeiro; Costa, Julia Gatti Ladeia; Andrade, Gláucia Manzan Queiroz; Vasconcelos-Santos, Daniel Vitor; Januário, José Nélio; Coelho-Dos-Reis, Jordana Grazziela; Ferro, Eloisa Amália Vieira; Teixeira-Carvalho, Andréa; Vitor, Ricardo Wagner Almeida; Martins-Filho, Olindo Assis

    2016-06-15

    Ocular toxoplasmosis is a prominent and severe condition of high incidence in Brazil. The current study provides new insights into the immunological events that can be associated with retinochoroiditis in the setting of congenital toxoplasmosis in human infants. Flow cytometry of intracytoplasmic cytokines in leukocyte subsets following in vitro short-term antigenic recall in infants with congenital T. gondii infection. Our data demonstrates that whereas neutrophils and monocytes from T. gondii-infected infants display a combination of proinflammatory and regulatory cytokine profiles, natural killer cells showed a predominantly proinflammatory profile upon in vitro T. gondii stimulation. The proinflammatory response of CD4(+) and CD8(+) T cells, characterized by the production of interferon γ (IFN-γ) and interleukin 17 in patients with an active retinochoroidal lesion, revealed the presence of IFN-γ and tumor necrosis factor α during early and late immunological events. This specific proinflammatory pattern is associated with early events and active retinochoroidal lesion, whereas a robust monocyte-derived interleukin 10-mediated profile is observed in children with cicatricial ocular lesions. These findings support the existence of a progressive immunological environment concomitant with the initial, apical, and cicatricial phases in the process of retinochoroidal lesion formation in infants with congenital toxoplasmosis that may be relevant in the establishment of stage-specific clinical management. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  10. Key role of regulated upon activation normal T-cell expressed and secreted, nonstructural protein1 and myeloperoxidase in cytokine storm induced by influenza virus PR-8 (A/H1N1) infection in A549 bronchial epithelial cells.

    PubMed

    Phung, Thuy Thi Bich; Sugamata, Ryuichi; Uno, Kazuko; Aratani, Yasuaki; Ozato, Keiko; Kawachi, Shoji; Thanh Nguyen, Liem; Nakayama, Toshinori; Suzuki, Kazuo

    2011-12-01

    Influenza virus infection causes severe respiratory disease such as that due to avian influenza (H5N1). Influenza A viruses proliferate in human epithelial cells, which produce inflammatory cytokines/chemokines as a "cytokine storm" attenuated with the viral nonstructural protein 1 (NS1). Cytokine/chemokine production in A549 epithelial cells infected with influenza A/H1N1 virus (PR-8) or nonstructural protein 1 (NS1) plasmid was examined in vitro. Because tumor necrosis factor-α (TNF-α) and regulated upon activation normal T-cell expressed and secreted (RANTES) are predominantly produced from cells infected with PR-8 virus, the effects of mRNA knockdown of these cytokines were investigated. Small interfering (si)TNF-α down-regulated RANTES expression and secretion of RANTES, interleukin (IL)-8, and monocyte chemotactic protein-1 (MCP-1). In addition, siRANTES suppressed interferon (IFN)-γ expression and secretion of RANTES, IL-8, and MCP-1, suggesting that TNF-α stimulates production of RANTES, IL-8, MCP-1, and IFN-γ, and RANTES also increased IL-8, MCP-1, and IFN-γ. Furthermore, administration of TNF-α promoted increased secretion of RANTES, IL-8, and MCP-1. Administration of RANTES enhanced IL-6, IL-8, and MCP-1 production without PR-8 infection. These results strongly suggest that, as an initial step, TNF-α regulates RANTES production, followed by increase of IL-6, IL-8, and MCP-1 and IFNs concentrations. At a later stage, cells transfected with viral NS1 plasmid showed production of a large amount of IL-8 and MCP-1 in the presence of the H(2)O(2)-myeloperoxidse (MPO) system, suggesting that NS1 of PR-8 may induce a "cytokine storm" from epithelial cells in the presence of an H(2)O(2)-MPO system. © 2011 The Societies and Blackwell Publishing Asia Pty Ltd.

  11. Recreational music-making modulates natural killer cell activity, cytokines, and mood states in corporate employees.

    PubMed

    Wachi, Masatada; Koyama, Masahiro; Utsuyama, Masanori; Bittman, Barry B; Kitagawa, Masanobu; Hirokawa, Katsuiku

    2007-02-01

    With growing evidence linking job stress to illness, finding an effective means of stress management has become a challenging international endeavor. Although music therapy has attracted the attention of various fields as a promising method for alleviating stress, lack of standardization and paucity of data have served as impediments to widespread utilization. The effects of a Recreational Music-Making (RMM) group drumming protocol was evaluated on Japanese male corporate employees. A total of 20 volunteers participated in a one-hour RMM session while 20 volunteers engaged in leisurely reading for one hour (controls). After a six-month interval, the groups switched activities and underwent one session each. Pre- and post-intervention data were collected using mood state questionnaires and blood samples. Individual and group mean values for natural killer (NK) cell activity, NK cell percentage, and cytokine gene expression were analyzed. NK cell activity in the RMM group increased among individuals with low pre-intervention levels, and decreased among those with high pre-intervention levels. A significant correlation was established between changes in NK cell activity and the changes in the level of gene expressions for interferon-gamma and interleukin-10. The RMM group demonstrated enhanced mood, lower gene expression levels of the stress-induced cytokine interleukin-10, and higher NK cell activity when compared to the control. Based upon documented changes in NK cell activity, coupled with gene expression changes for interferon-gamma, interleukin-10, and improved mood, this RMM protocol has significant potential for utilization in the corporate wellness environment.

  12. Side effects of cytokines approved for therapy.

    PubMed

    Baldo, Brian A

    2014-11-01

    Cytokines, currently known to be more than 130 in number, are small MW (<30 kDa) key signaling proteins that modulate cellular activities in immunity, infection, inflammation and malignancy. Key to understanding their function is recognition of their pleiotropism and often overlapping and functional redundancies. Classified here into 9 main families, most of the 20 approved cytokine preparations (18 different cytokines; 3 pegylated), all in recombinant human (rh) form, are grouped in the hematopoietic growth factor, interferon, platelet-derived growth factor (PDGF) and transforming growth factor β (TGFβ) families. In the hematopoietin family, approved cytokines are aldesleukin (rhIL-2), oprelvekin (rhIL-11), filgrastim and tbo-filgrastim (rhG-CSF), sargramostim (rhGM-CSF), metreleptin (rh-leptin) and the rh-erythropoietins, epoetin and darbepoietin alfa. Anakinra, a recombinant receptor antagonist for IL-1, is in the IL-1 family; recombinant interferons alfa-1, alfa-2, beta-1 and gamma-1 make up the interferon family; palifermin (rhKGF) and becaplermin (rhPDGF) are in the PDGF family; and rhBMP-2 and rhBMP-7 represent the TGFβ family. The main physicochemical features, FDA-approved indications, modes of action and side effects of these approved cytokines are presented. Underlying each adverse events profile is their pleiotropism, potency and capacity to release other cytokines producing cytokine 'cocktails'. Side effects, some serious, occur despite cytokines being endogenous proteins, and this therefore demands caution in attempts to introduce individual members into the clinic. This caution is reflected in the relatively small number of cytokines currently approved by regulatory agencies and by the fact that 14 of the FDA-approved preparations carry warnings, with 10 being black box warnings.

  13. The Role of Cytokine PF4 in the Antiviral Immune Response of Shrimp

    PubMed Central

    Chen, Yulei; Cao, Jiao; Zhang, Xiaobo

    2016-01-01

    During viral infection in vertebrates, cytokines play important roles in the host defense against the virus. However, the function of cytokines in invertebrates has not been well characterized. In this study, shrimp cytokines involved in viral infection were screened using a cytokine antibody microarray. The results showed that three cytokines, the Fas receptor (Fas), platelet factor 4 (PF4) and interleukin-22 (IL-22), were significantly upregulated in the white spot syndrome virus (WSSV)-challenged shrimp, suggesting that these cytokines played positive regulatory roles in the immune response of shrimp against the virus. Further experiments revealed that PF4 had positive effects on the antiviral immunity of shrimp by enhancing the shrimp phagocytic activity and inhibiting the apoptotic activity of virus-infected hemocytes. Therefore, our study presented a novel mechanism of cytokines in the innate immunity of invertebrates. PMID:27631372

  14. Complement activation by carbon nanotubes and its influence on the phagocytosis and cytokine response by macrophages.

    PubMed

    Pondman, Kirsten M; Sobik, Martin; Nayak, Annapurna; Tsolaki, Anthony G; Jäkel, Anne; Flahaut, Emmanuel; Hampel, Silke; Ten Haken, Bennie; Sim, Robert B; Kishore, Uday

    2014-08-01

    Carbon nanotubes (CNTs) have promised a range of applications in biomedicine. Although influenced by the dispersants used, CNTs are recognized by the innate immune system, predominantly by the classical pathway of the complement system. Here, we confirm that complement activation by the CNT used continues up to C3 and C5, indicating that the entire complement system is activated including the formation of membrane-attack complexes. Using recombinant forms of the globular regions of human C1q (gC1q) as inhibitors of CNT-mediated classical pathway activation, we show that C1q, the first recognition subcomponent of the classical pathway, binds CNTs via the gC1q domain. Complement opsonisation of CNTs significantly enhances their uptake by U937 cells, with concomitant downregulation of pro-inflammatory cytokines and up-regulation of anti-inflammatory cytokines in both U937 cells and human monocytes. We propose that CNT-mediated complement activation may cause recruitment of cellular infiltration, followed by phagocytosis without inducing a pro-inflammatory immune response. This study highlights the importance of the complement system in response to carbon nanontube administration, suggesting that the ensuing complement activation may cause recruitment of cellular infiltration, followed by phagocytosis without inducing a pro-inflammatory immune response. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Impact of dialyzer membrane on apoptosis and function of polymorphonuclear cells and cytokine synthesis by peripheral blood mononuclear cells in hemodialysis patients.

    PubMed

    Andreoli, Maria C C; Dalboni, Maria A; Watanabe, Renato; Manfredi, Silvia R; Canziani, Maria E F; Kallás, Esper G; Sesso, Ricardo C; Draibe, Sergio A; Balakrishnan, Vaidyanathapuram S; Jaber, Bertrand L; Liangos, Orfeas; Cendoroglo, Miguel

    2007-12-01

    In an in vivo crossover trial, we compared a cellulosic with a synthetic dialyzer with respect to polymorphonuclear cells (PMN) function and apoptosis, cytokine serum levels and synthesis by peripheral blood mononuclear cells (PBMC), and complement activation. Twenty hemodialysis (HD) patients were assigned in alternate order to HD with cellulose acetate (CA) or polysulfone (PS) dialyzer. After 2 weeks, patients were crossed over to the second dialyzer and treated for another 2 weeks. Apoptosis was assessed by flow cytometry in freshly isolated PMN. Phagocytosis and production of peroxide by PMN were studied by flow cytometry in whole blood. PBMC were isolated from blood samples and incubated for 24 h with or without lipopolysaccharide (LPS). There was no impact of dialyzer biocompatibility on PMN apoptosis and function, cytokine synthesis by PBMC or on their serum levels, serum levels of C3a, and terminal complement complex (TCC). Nevertheless, after HD, serum levels of complement correlated negatively with PMN phagocytosis and peroxide production, and positively with PMN apoptosis and cytokine production by PBMC. Although the results did not show a dialyzer advantage on the immunologic parameters, complement activation may have modulated cell function and apoptosis after HD.

  16. Cytokine-mediated FOXO3a phosphorylation suppresses FasL expression in hemopoietic cell lines: investigations of the role of Fas in apoptosis due to cytokine starvation.

    PubMed

    Behzad, Hayedeh; Jamil, Sarwat; Denny, Trisha A; Duronio, Vincent

    2007-05-01

    We have investigated phosphatidylinositol 3-kinase (PI3K)-dependent survival signalling pathways using several cytokines in three different hemopoietic cell lines, MC/9, FDC-P1, and TF-1. Cytokines caused PI3K- and PKB-dependent phosphorylation of FOXO3a (previously known as FKHRL1) at three distinct sites. Following cytokine withdrawal or PI3K inhibition, both of which are known to lead to apoptosis, there was a loss of FOXO3a phosphorylation, and a resulting increase in forkhead transcriptional activity, along with increased expression of Fas Ligand (FasL), which could be detected at the cell surface. Concurrently, an increase in cell surface expression of Fas was also detected. Despite the presence of both FasL and Fas, there was no detectable evidence that activation of Fas-mediated apoptotic events was contributing to apoptosis resulting from cytokine starvation or inhibition of PI3K activity. Thus, inhibition of FOXO3a activity is mediated by the PI3K-PKB pathway, but regulation of FasL is not the primary means by which cell survival is regulated in cytokine-dependent hemopoietic cells. We were also able to confirm increased expression of known FOXO3a targets, Bim and p27kip1. Together, these results support the conclusion that mitochondrial-mediated signals play the major role in apoptosis of hemopoietic cells due to loss of cytokine signalling.

  17. Withaferin A Associated Differential Regulation of Inflammatory Cytokines.

    PubMed

    Dubey, Seema; Yoon, Hyunho; Cohen, Mark Steven; Nagarkatti, Prakash; Nagarkatti, Mitzi; Karan, Dev

    2018-01-01

    A role of inflammation-associated cytokines/chemokines has been implicated in a wide variety of human diseases. Here, we investigated the regulation of inflammatory cytokines released by monocyte-derived THP-1 cells following treatment with the dietary agent withaferin A (WFA). Membrane-based cytokine array profiling of the culture supernatant from adenosine triphosphate-stimulated WFA-treated THP-1 cells showed differential regulation of multiple cytokines/chemokines. A selected group of cytokines/chemokines [interleukin-1 beta (IL-1β), CCL2/MCP-1, granulocyte-macrophage colony stimulating factor, PDGF-AA, PTX3, cystatin-3, relaxin-2, TNFRSF8/CD30, and ACRP30] was validated at the transcription level using qPCR. In silico analysis for transcriptional binding factors revealed the presence of nuclear factor-kappa B (NF-κB) in a group of downregulated cytokine gene promoters. WFA treatment of THP-1 cells blocks the nuclear translocation of NF-kB and corresponds with the reduced levels of cytokine secretion. To further understand the differential expression of cytokines/chemokines, we showed that WFA alters the nigericin-induced co-localization of NLRP3 and ASC proteins, thereby inhibiting caspase-1 activation, which is responsible for the cleavage and maturation of pro-inflammatory cytokines IL-1β and IL-18. These data suggest that dietary agent WFA concurrently targets NF-κB and the inflammasome complex, leading to inhibition of IL-1β and IL-18, respectively, in addition to differential expression of multiple cytokines/chemokines. Taken together, these results provide a rationale for using WFA to further explore the anti-inflammatory mechanism of cytokines/chemokines associated with inflammatory diseases.

  18. Withaferin A Associated Differential Regulation of Inflammatory Cytokines

    PubMed Central

    Dubey, Seema; Yoon, Hyunho; Cohen, Mark Steven; Nagarkatti, Prakash; Nagarkatti, Mitzi; Karan, Dev

    2018-01-01

    A role of inflammation-associated cytokines/chemokines has been implicated in a wide variety of human diseases. Here, we investigated the regulation of inflammatory cytokines released by monocyte-derived THP-1 cells following treatment with the dietary agent withaferin A (WFA). Membrane-based cytokine array profiling of the culture supernatant from adenosine triphosphate-stimulated WFA-treated THP-1 cells showed differential regulation of multiple cytokines/chemokines. A selected group of cytokines/chemokines [interleukin-1 beta (IL-1β), CCL2/MCP-1, granulocyte-macrophage colony stimulating factor, PDGF-AA, PTX3, cystatin-3, relaxin-2, TNFRSF8/CD30, and ACRP30] was validated at the transcription level using qPCR. In silico analysis for transcriptional binding factors revealed the presence of nuclear factor-kappa B (NF-κB) in a group of downregulated cytokine gene promoters. WFA treatment of THP-1 cells blocks the nuclear translocation of NF-kB and corresponds with the reduced levels of cytokine secretion. To further understand the differential expression of cytokines/chemokines, we showed that WFA alters the nigericin-induced co-localization of NLRP3 and ASC proteins, thereby inhibiting caspase-1 activation, which is responsible for the cleavage and maturation of pro-inflammatory cytokines IL-1β and IL-18. These data suggest that dietary agent WFA concurrently targets NF-κB and the inflammasome complex, leading to inhibition of IL-1β and IL-18, respectively, in addition to differential expression of multiple cytokines/chemokines. Taken together, these results provide a rationale for using WFA to further explore the anti-inflammatory mechanism of cytokines/chemokines associated with inflammatory diseases. PMID:29479354

  19. Performance evaluation of FlowCytomix assays to quantify cytokines in patients with rheumatoid arthritis

    PubMed Central

    Wang, Xuefeng; Dong, Liyang; Liang, Yong; Ni, Hongchang; Tang, Jun; Xu, Chengcheng; Zhou, Yuepeng; Su, Yuting; Wang, Jun; Chen, Deyu; Mao, Chaoming

    2015-01-01

    Objectives: To compare the cytokine profile in RA patients and healthy control by using two methods-FlowCytomix assay and traditional ELISA. Methods: Cytokine levels were evaluated by FlowCytomix assay and ELISA in serum and supernatants of peripheral blood mononuclear cells (PBMC) cultures with and without stimulation by phytohaemagglutinin (PHA). Results: The levels of IL-6, IL-1β, and TNF-α were significantly higher in sera of RA patients than those of healthy controls. The levels of IL-22, IL-6, IL-1β, TNF-α, and IL-10 were higher in unstimulated PBMC culture supernatant of RA patients than those of healthy controls. PHA stimulation significantly increased the production of proinflammatory cytokines from PBMC with RA patients. Compared with detectable cytokine levels in sera, cytokine concentration in the supernatant of PBMCs was remarkably higher. FlowCytomix and ELISA showed significant correlation in detecting cytokines. However, the FlowCytomix assay detected more cytokines than ELISA. Conclusion: The supernatant of PBMCs provide a fine condition for the study of cytokine production because of the lack of interference factors in sera. The FlowCytomix assay is more sensitive than ELISA in detecting cytokines from RA patients. Multiple cytokine signatures using FlowCytomix assay may represent a more realistic approach in the future of personalized medicine in RA. PMID:26629129

  20. Flavonoids inhibit histamine release and expression of proinflammatory cytokines in mast cells.

    PubMed

    Park, Hyo-Hyun; Lee, Soyoung; Son, Hee-Young; Park, Seung-Bin; Kim, Mi-Sun; Choi, Eun-Ju; Singh, Thoudam S K; Ha, Jeoung-Hee; Lee, Maan-Gee; Kim, Jung-Eun; Hyun, Myung Chul; Kwon, Taeg Kyu; Kim, Yeo Hyang; Kim, Sang-Hyun

    2008-10-01

    Mast cells participate in allergy and inflammation by secreting inflammatory mediators such as histamine and proinflammatory cytokines. Flavonoids are naturally occurring molecules with antioxidant, cytoprotective, and antiinflammatory actions. However, effect of flavonoids on the release of histamine and proinflammatory mediator, and their comparative mechanism of action in mast cells were not well defined. Here, we compared the effect of six flavonoids (astragalin, fisetin, kaempferol, myricetin, quercetin, and rutin) on the mast cell-mediated allergic inflammation. Fisetin, kaempferol, myricetin, quercetin, and rutin inhibited IgE or phorbol-12-myristate 13-acetate and calcium ionophore A23187 (PMACI)-mediated histamine release in RBL-2H3 cells. These five flavonoids also inhibited elevation of intracellular calcium. Gene expressions and secretion of proinflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha), interleukin (IL)-1beta, IL-6, and IL-8 were assessed in PMACI-stimulated human mast cells (HMC-1). Fisetin, quercetin, and rutin decreased gene expression and production of all the proinflammatory cytokines after PMACI stimulation. Myricetin attenuated TNF-alpha and IL-6 but not IL-1beta and IL-8. Fisetin, myricetin, and rutin suppressed activation of NF-kappaB indicated by inhibition of nuclear translocation of NF-kappaB, NF-kappaB/DNA binding, and NF-kappaB-dependent gene reporter assay. The pharmacological actions of these flavonoids suggest their potential activity for treatment of allergic inflammatory diseases through the down-regulation of mast cell activation.

  1. Type 1 and type 2 cytokines in HIV infection -- a possible role in apoptosis and disease progression.

    PubMed

    Clerici, M; Fusi, M L; Ruzzante, S; Piconi, S; Biasin, M; Arienti, D; Trabattoni, D; Villa, M L

    1997-06-01

    The progression of HIV-infected subjects to AIDS was recently postulated to be controlled by the balance between type 1 cytokines (mainly enhancing cell-mediated immunity) and type 2 cytokines (mainly augmenting antibody production). Thus, progression of HIV infection was suggested to be accompanied by a decline of in vitro production of interleukin-2 (IL-2), IL-12 and interferon gamma (IFN-gamma) (type 1 cytokines) and an increase in the production of IL-4, IL-5, IL-6 and IL-10 (type 2 cytokines) by peripheral blood mononuclear cells of HIV-seropositive patients. According to this hypothesis, clinical markers of progression would be considered the loss of the ability to elicit a delayed-type hypersensitivity reaction to ubiquitous antigens (secondary to defective IL-2 production), hyper-IgE (secondary to increased IL-4 production) and hypereosynophilia (secondary to increased IL-5 production). The type 1 to type 2 shift was suggested to be predictive for the following events: (i) reduction in CD4 counts; (ii) time to AIDS diagnosis; (iii) time to death. Support for this hypothesis stems from the recent observation that a strong type 1/weak type 2 cytokine production profile was observed in HIV-seropositive patients with delayed or absent disease progression, whereas progression of HIV infection was characterized by a weak type 1/strong type 2 cytokine production profile. PBMC of HIV-seropositive individuals are susceptible to antigen-induced cell death (AICD) after antigen recognition via T-cell receptor (TcR). While TcR-induced AICD is seen in CD4+ and CD8+ cells programmed cell death induced by recall antigens is preferentially observed in CD4+ cells, a situation more closely resembling the CD4 depletion of HIV infection. Because type 1 cytokines reduce, whereas type 2 cytokines augment T-lymphocyte AICD, an increase in the concentration of type 2 cytokines could result in the decline in CD4+ cells seen in HIV infection.

  2. Intravitreal invading cells contribute to vitreal cytokine milieu in proliferative vitreoretinopathy

    PubMed Central

    El-Ghrably, I; Dua, H.; Orr, G.; Fischer, D.; Tighe, P.

    2001-01-01

    AIM—To examine the contribution of infiltrating cells in the local production of cytokines within the vitreous of patients with proliferative vitreoretinopathy (PVR).
METHODS—The presence of mRNA coding for IL-6, IL-8, IL-1β, IL-1α, TNFα, IFNγ, IL-12, and HPRT was investigated in 25 vitreous samples from patients with PVR, 11 vitreous samples from patients with retinal detachment (RD) not complicated by PVR, and 10 vitreous samples from patients with macular hole (MH). A quantitative reverse transcriptase polymerase chain reaction (RT-PCR) using an internal competitor was used to investigate these samples. From these samples, 15 PVR, 8 RD, and 8 MH were analysed for the protein levels of the same cytokines using enzyme linked immunosorbent assay (ELISA). Spearman correlation was used to test any association between mRNA and cytokine protein levels, as an indicator of the contribution these cells make to the intravitreal cytokine milieu.
RESULTS—A strong correlation was found between mRNA and their respective cytokine levels (protein products) for IL-6, IL-8, IL-1β, IL-1α, TNFα, IFNγ (Spearman r = 0.83, 0.73, 0.67, 0.91, 0.73, and 0.73 respectively), but not for IL-12. The median levels of IL-6, IL-8, IL-1β, and IFNγ mRNA and their respective cytokines were significantly higher (p <0.05) in patients with PVR than in those with macular hole. There was no statistically significant difference in the median levels of IL-1α mRNA between PVR and MH but the cytokine IL-1α was detected at a significantly higher level in PVR compared with MH patients. Between PVR and RD patients, there was no statistically significant difference in mRNA levels for all the investigated cytokines (p >0.05) except for IL-6 where there was a statistical significance (p= 0.038). In contrast, the median levels of IL-6, IL-8, and IL-1β cytokines were significantly higher (p <0.05) in patients with PVR than in those with RD, whereas for IL-1α and IFNγ no

  3. Systemic treatment with n-6 polyunsaturated fatty acids attenuates EL4 thymoma growth and metastasis through enhancing specific and non-specific anti-tumor cytolytic activities and production of TH1 cytokines.

    PubMed

    Salem, Mohamed Labib

    2005-06-01

    Recently, there has been a great interest in the effects of different types of n-6 polyunsaturated acids (n-6 PUFAs) upon the immune system and cancer development. However, the effects of n-6 PUFAs are still controversial and as yet undefined. The present study aimed to investigate the anti-tumor effects of n-6 PUFAs against EL4 thymoma and the associated immune mechanisms. To this, sesame oil, a vegetable oil enriched with n-6 PUFAs, or free linoleic acid (LA) were administered intraperitoneally into C57BL/6 mice before and after challenge with EL4 lymphoma cells. Treatment with either sesame oil or LA attenuated the growth and metastasis of EL4 lymphoma. The anti-tumor effect of LA was superior to that of sesame oil, and associated with an increase in the survival rate of the tumor-bearing mice. In addition, both sesame oil and LA showed dose-dependent anti-lymphoma growth in vitro. Treatment with LA generated significant increases in the anti-lymphoma cytolytic and cytostatic activities of T cells and macrophages, respectively, and enhanced production of IL-2 and IFN-gamma while decreased production of IL-4, IL-6 and IL-10. In summation, the results suggest that n-6 PUFAs, represented by LA, can attenuate EL4 lymphoma growth and metastasis through enhancing the specific and non-specific anti-tumor cytolytic activities and production of TH1 cytokines. These findings might be of great importance for a proper design of systemic nourishment with PUFAs emulsions for cancer patients.

  4. Increased cytokine production by monocytes from human subjects who consumed grape powder was not mediated by differences in dietary intake patterns

    USDA-ARS?s Scientific Manuscript database

    Recently, in a randomized, double-blind cross-over study, we reported that consumption of grape powder by obese human subjects increased the production of the pro-inflammatory cytokines interleukin-1' and interleukin-6 by ex vivo-derived peripheral blood monocytes after exposure to bacterial lipopol...

  5. Gab1 Acts as an Adapter Molecule Linking the Cytokine Receptor gp130 to ERK Mitogen-Activated Protein Kinase

    PubMed Central

    Takahashi-Tezuka, Mariko; Yoshida, Yuichi; Fukada, Toshiyuki; Ohtani, Takuya; Yamanaka, Yojiro; Nishida, Keigo; Nakajima, Koichi; Hibi, Masahiko; Hirano, Toshio

    1998-01-01

    Gab1 has structural similarities with Drosophila DOS (daughter of sevenless), which is a substrate of the protein tyrosine phosphatase Corkscrew. Both Gab1 and DOS have a pleckstrin homology domain and tyrosine residues, potential binding sites for various SH2 domain-containing adapter molecules when they are phosphorylated. We found that Gab1 was tyrosine phosphorylated in response to various cytokines, such as interleukin-6 (IL-6), IL-3, alpha interferon (IFN-α), and IFN-γ. Upon the stimulation of IL-6 or IL-3, Gab1 was found to form a complex with phosphatidylinositol (PI)-3 kinase and SHP-2, a homolog of Corkscrew. Mutational analysis of gp130, the common subunit of IL-6 family cytokine receptors, revealed that neither tyrosine residues of gp130 nor its carboxy terminus was required for tyrosine phosphorylation of Gab1. Expression of Gab1 enhanced gp130-dependent mitogen-activated protein (MAP) kinase ERK2 activation. A mutation of tyrosine 759, the SHP-2 binding site of gp130, abrogated the interactions of Gab1 with SHP-2 and PI-3 kinase as well as ERK2 activation. Furthermore, ERK2 activation was inhibited by a dominant negative p85 PI-3 kinase, wortmannin, or a dominant negative Ras. These observations suggest that Gab1 acts as an adapter molecule in transmitting signals to ERK MAP kinase for the cytokine receptor gp130 and that SHP-2, PI-3 kinase, and Ras are involved in Gab1-mediated ERK activation. PMID:9632795

  6. Effect of different ventilatory strategies on local and systemic cytokine production in intact swine lungs in vivo.

    PubMed

    Myrianthefs, P; Boutzouka, E; Venetsanou, K; Papalois, A; Kouloukousa, M; Kittas, C; Baltopoulos, G

    2006-05-01

    The purpose of the study was to investigate the effect of different ventilatory strategies on local and systemic cytokine production in swine with intact lungs in vivo after 4 h of mechanical ventilation. Twenty-five swine were anesthetized and then randomized into five groups (n = 5): (1) low tidal volume zero PEEP (LVZP); (2) medium tidal volume zero PEEP (MVZP); (3) high tidal volume zero PEEP (HVZP); (4) low tidal volume PEEP (LVP); (4) high tidal volume PEEP (HVP). Respiratory rate was adjusted to maintain normocapnia and fraction of inspired oxygen (FiO2) was 1.0. TNF-alpha and IL-10 were measured in BALF and serum at baseline, 2 h, and 4 h of MV. One animal in LVZP (2 h) and two in HVP (3 h) group died before the end of the experiment. TNF-alpha level in BALF was significantly higher in LVZP and LVP at 4 h compared to baseline and the other groups. IL-10 level in BALF was significantly higher in LVP at 4h compared to baseline and the other groups. There was a statistically significant increase in serum TNF-alpha levels at 4 h in LVP group compared to baseline and the other groups at 4 h. There was statistically significant increase in serum IL-10 levels in HVZP and LVP groups at 2 and 4 h which was significantly higher compared to the other groups at 4 h. Our results show that a) low volume MV may induce local and systemic pro- and anti-inflammatory cytokine increase b) in the presence of pro-inflammatory cytokine response there is also an anti-inflammatory response in the same compartment (lungs, circulation). c) There maybe loss of alveolar-to-systemic cytokine compartmentalization.

  7. Protease-activated receptor 2 activation of myeloid dendritic cells regulates allergic airway inflammation

    PubMed Central

    2011-01-01

    Background A common characteristic of allergens is that they contain proteases that can activate protease-activated receptor (PAR-2); however the mechanism by which PAR-2 regulates allergic airway inflammation is unclear. Methods Mice (wild type and PAR-2-deficient) were sensitized using German cockroach (GC) feces (frass), the isolated protease from GC frass, or through adoptive transfer of GC frass-treated bone marrow-derived dendritic cells (BMDC) and measurements of airway inflammation (cellular infiltration, cytokine expression, and mucin production), serum IgE levels and airway hyperresponsiveness (AHR) were assessed. BMDC were cultured, treated with GC frass and assessed for cytokine production. PAR-2 expression on pulmonary mDCs was determined by flow cytometry. Results Exposure to GC frass induced AHR and airway inflammation in wild type mice; however PAR-2-deficient mice had significantly attenuated responses. To directly investigate the role of the protease, we isolated the protease from GC frass and administered the endotoxin-free protease into the airways of mice in the presence of OVA. GC frass proteases were sufficient to promote the development of AHR, serum IgE, and Th2 cytokine production. PAR-2 expression on mDC was upregulated following GC frass exposure, but the presence of a functional PAR-2 did not alter antigen uptake. To determine if PAR-2 activation led to differential cytokine production, we cultured BMDC in the presence of GM-CSF and treated these cells ex vivo with GC frass. PAR-2-deficient BMDC released significantly less IL-6, IL-23 and TNFα compared to BMDC from wild type mice, suggesting PAR-2 activation was important in Th2/Th17 skewing cytokine production. To determine the role for PAR-2 on mDCs on the initiation of allergic airway inflammation, BMDCs from wild type and PAR-2-deficient mice were treated in the presence or absence of GC frass and then adoptively transferred into the airway of wild type mice. Importantly, GC frass

  8. Protective effects of St. John's wort extract and its component hyperforin against cytokine-induced cytotoxicity in a pancreatic beta-cell line.

    PubMed

    Menegazzi, Marta; Novelli, Michela; Beffy, Pascale; D'Aleo, Valentina; Tedeschi, Elisa; Lupi, Roberto; Zoratti, Elisa; Marchetti, Piero; Suzuki, Hisanori; Masiello, Pellegrino

    2008-01-01

    In both type 1 and type 2 diabetes, increased production of cytokines on autoimmune or metabolic basis is supposed to trigger an inflammatory process leading to dysfunction and death of pancreatic beta-cells. Therefore, anti-inflammatory pharmacological approaches aimed at blocking cytokine signalling pathways and consequent cytotoxicity in beta-cells are highly advisable. Based on previous evidence of cytokine antagonistic effects in other cell types, we explored the protective action of Hypericum perforatum (St-John's-wort) extract and its component hyperforin against cytokine-induced functional impairment and apoptosis in the INS-1E beta-cell line, searching for the underlying mechanisms. The results showed that either St-John's-wort extract or hyperforin (at 1-3 microM) prevented cytokine-induced impairment in glucose-stimulated insulin secretion and protected cells against apoptosis in a dose-dependent fashion. Inducible-NO-synthase expression was also potently hindered by the vegetal compounds. Interestingly, cytokine-induced activations of the signal-transducer-and-activator-of-transcription-1 (STAT-1) and the nuclear-factor-kappaB (NF-kappaB) were both down-regulated by SJW extract or HPF (range 0.5-5 microM) when evaluated by electrophoretic-mobility-shift-assay. Other transcription factors (CBF-1, SP-1) were unaffected. Components of SJW extract other than HPF were much less effective in down-regulating cytokine signalling. Significantly, inhibition of cytokine-elicited STAT-1 and NF-kappaB activation was confirmed in isolated rat and human islets incubated in the presence of these vegetal compounds. In conclusion, St-John's-wort extract and hyperforin are non-peptidyl compounds which, at low concentrations, target key mechanisms of cytokine-induced beta-cell injury, thereby improving beta-cell function and survival. Thus, they are potentially valuable for the prevention or limitation of beta-cell loss in diabetes.

  9. Significance of expression of suppressor of cytokine signaling proteins: Suppressor of cytokine signaling-1, suppressor of cytokine signaling-2, and suppressor of cytokine signaling-3 in papillary thyroid cancer.

    PubMed

    Kobawala, Toral Pundrik; Trivedi, Trupti I; Gajjar, Kinjal Kevin; Patel, Girish H; Ghosh, Nandita R

    2017-01-01

    Uncontrolled cytokine signal transduction largely associated with oncogene activation, can have disastrous biological consequences. The suppressor of cytokine signaling (SOCS) proteins represent one of the mechanisms by which this rampant signaling can be dissipated. Thus, we aimed to study the expression of SOCS-1, SOCS-2, and SOCS-3 in patients having benign thyroid disease and papillary thyroid cancer. SOCS protein expression was studied in 45 patients with benign thyroid disease and in 83 papillary thyroid cancer patients by immunohistochemistry and their association with clinicopathological characteristics and overall survival in cancer patients were analyzed using SPSS software. Expressions of SOCS proteins were significantly higher in papillary thyroid cancer than in patients having benign disease. SOCS-1 expression was predominantly higher in males (P = 0.004), unilateral tumors (P = 0.030), and noninflammatory conditions (P = 0.028). SOCS-1 expression was also able to predict poor overall survival in subgroup of papillary thyroid cancer patients having larger tumor size (P = 0.013) and advanced stage disease (P = 0.033). Expression of SOCS-2 significantly correlated with tumor size (P = 0.017), extrathyroidal extension (P = 0.000), residual disease (P = 0.043), and treatment (P = 0.007), while preponderance of SOCS-3 expression was observed in males (P = 0.030) and in patients having extrathyroidal extension (P = 0.011) and absence of metastasis (P = 0.032). Expression of the studied SOCS proteins may be a consequence of activation of Janus kinase-signal transducers and activators of transcription and other pathways supporting growth and survival of cancer cells that are sustained by several cytokines. Thus, SOCS-1, SOCS-2, and SOCS-3 proteins may directly or indirectly, have important roles in development and pathogenesis of papillary thyroid cancer.

  10. Different cytokine response of primary colonic epithelial cells to commensal bacteria.

    PubMed

    Lan, Jing-Gang; Cruickshank, Sheena-Margaret; Singh, Joy-Carmelina-Indira; Farrar, Mark; Lodge, James-Peter-Alan; Felsburg, Peter-John; Carding, Simon-Richard

    2005-06-14

    To determine if primary murine colonic epithelial cells (CEC) respond to commensal bacteria and discriminate between different types of bacteria. A novel CEC: bacteria co-culture system was used to compare the ability of the colonic commensal bacteria, Bacteroides ovatus, E. coli (SLF) and Lactobacillus rhamnosus (LGG) to modulate production of different cytokines (n = 15) by primary CEC. Antibody staining and flow cytometry were used to investigate Toll-like receptor (TLR) expression by CEC directly ex vivo and TLR responsiveness was determined by examining the ability of TLR ligands to influence CEC cytokine production. Primary CEC constitutively expressed functional TLR2 and TLR4. Cultured in complete medium alone, CEC secreted IL-6, MCP-1 and IP-10 the levels of which were significantly increased upon addition of the TLR ligands peptidoglycan (PGN) and lipopolysaccharide (LPS). Exposure to the commensal bacteria induced or up-regulated different patterns of cytokine production and secretion. E. coli induced production of MIP-1alpha/beta and betadefensin3 whereas B. ovatus and L. rhamnosus exclusively induced MCP-1 and MIP-2alpha expression, respectively. TNFalpha, RANTES and MEC were induced or up-regulated in response to some but not all of the bacteria whereas ENA78 and IP-10 were up-regulated in response to all bacteria. Evidence of bacterial interference and suppression of cytokine production was obtained from mixed bacterial: CEC co-cultures. Probiotic LGG suppressed E. coli- and B. ovatus-induced cytokine mRNA accumulation and protein secretion. These observations demonstrate the ability of primary CEC to respond to and discriminate between different strains of commensal bacteria and identify a mechanism by which probiotic bacteria (LGG) may exert anti-inflammatory effects in vivo.

  11. Different cytokine response of primary colonic epithelial cells to commensal bacteria

    PubMed Central

    Lan, Jing-Gang; Cruickshank, Sheena Margaret; Singh, Joy Carmelina Indira; Farrar, Mark; Lodge, James Peter Alan; Felsburg, Peter John; Carding, Simon Richard

    2005-01-01

    AIM: To determine if primary murine colonic epithelial cells (CEC) respond to commensal bacteria and discriminate between different types of bacteria. METHODS: A novel CEC: bacteria co-culture system was used to compare the ability of the colonic commensal bacteria, Bacteroides ovatus, E. coli (SLF) and Lactobacillus rhamnosus (LGG) to modulate production of different cytokines (n = 15) by primary CEC. Antibody staining and flow cytometry were used to investigate Toll-like receptor (TLR) expression by CEC directly ex vivo and TLR responsiveness was determined by examining the ability of TLR ligands to influence CEC cytokine production. RESULTS: Primary CEC constitutively expressed functional TLR2 and TLR4. Cultured in complete medium alone, CEC secreted IL-6, MCP-1 and IP-10 the levels of which were significantly increased upon addition of the TLR ligands peptidoglycan (PGN) and lipopolysaccharide (LPS). Exposure to the commensal bacteria induced or up-regulated different patterns of cytokine production and secretion. E. coli induced production of MIP-1α/β and β defensin3 whereas B. ovatus and L. rhamnosus exclusively induced MCP-1 and MIP-2α expression, respectively. TNFα, RANTES and MEC were induced or up-regulated in response to some but not all of the bacteria whereas ENA78 and IP-10 were up-regulated in response to all bacteria. Evidence of bacterial interference and suppression of cytokine production was obtained from mixed bacterial: CEC co-cultures. Probiotic LGG suppressed E. coli- and B. ovatus-induced cytokine mRNA accumulation and protein secretion. CONCLUSION: These observations demonstrate the ability of primary CEC to respond to and discriminate between different strains of commensal bacteria and identify a mechanism by which probiotic bacteria (LGG) may exert anti-inflammatory effects in vivo. PMID:15948242

  12. Cytokines in Drosophila immunity.

    PubMed

    Vanha-Aho, Leena-Maija; Valanne, Susanna; Rämet, Mika

    2016-02-01

    Cytokines are a large and diverse group of small proteins that can affect many biological processes, but most commonly cytokines are known as mediators of the immune response. In the event of an infection, cytokines are produced in response to an immune stimulus, and they function as key regulators of the immune response. Cytokines come in many shapes and sizes, and although they vary greatly in structure, their functions have been well conserved in evolution. The immune signaling pathways that respond to cytokines are remarkably conserved from fly to man. Therefore, Drosophila melanogaster, provides an excellent platform for studying the biology and function of cytokines. In this review, we will describe the cytokines and cytokine-like molecules found in the fly and discuss their roles in host immunity. Copyright © 2015 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  13. Cytokine-targeting biologics for allergic diseases.

    PubMed

    Lawrence, Monica G; Steinke, John W; Borish, Larry

    2018-04-01

    Asthma and allergic diseases continue to increase in prevalence, creating a financial burden on the health care system and affecting the quality of life for those who have these diseases. Many intrinsic and extrinsic factors are involved in the initiation and maintenance of the allergic response. Cytokines are proteins with growth, differentiation, and activation functions that regulate and direct the nature of immune responses. clinicaltrials.gov and PubMed. Relevant clinical trials and recent basic science studies were chosen for discussion. Many cytokines have been implicated in the development and perpetuation of the allergic response. Biologics have been and are continuing to be developed that target these molecules for use in patients with asthma and atopic dermatitis where standard treatment options fail. The current state of cytokine-targeting therapies is discussed. This review focused on cytokines involved in the allergic response with an emphasis on those for which therapies are being or have been developed. Copyright © 2018 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  14. Crosstalk between monocytes and myometrial smooth muscle in culture generates synergistic pro-inflammatory cytokine production and enhances myocyte contraction, with effects opposed by progesterone.

    PubMed

    Rajagopal, S P; Hutchinson, J L; Dorward, D A; Rossi, A G; Norman, J E

    2015-08-01

    Both term and preterm parturition are characterized by an influx of macrophages and neutrophils into the myometrium and cervix, with co-incident increased peripheral blood monocyte activation. Infection and inflammation are strongly implicated in the pathology of preterm labour (PTL), with progesterone considered a promising candidate for its prevention or treatment. In this study, we investigated the effect of monocytes on myometrial smooth muscle cell inflammatory cytokine production both alone and in response to LPS, a TLR4 agonist used to trigger PTL in vivo. We also investigated the effect of monocytes on myocyte contraction. Monocytes, isolated from peripheral blood samples from term pregnant women, were cultured alone, or co-cultured with PHM1-41 myometrial smooth muscle cells, for 24 h. In a third set of experiments, PHM1-41 myocytes were cultured for 24 h in isolation. Cytokine secretion was determined by ELISA or multiplex assays. Co-culture of monocytes and myocytes led to synergistic secretion of pro-inflammatory cytokines and chemokines including IL-6, IL-8 and MCP-1, with the secretion being further enhanced by LPS (100 ng/ml). The synergistic secretion of IL-6 and IL-8 from co-cultures was mediated in part by direct cell-cell contact, and by TNF. Conditioned media from co-cultures stimulated contraction of PHM1-41 myocytes, and the effect was inhibited by progesterone. Both progesterone and IL-10 inhibited LPS-stimulated IL-6 and IL-8 secretion from co-cultures, while progesterone also inhibited chemokine secretion. These data suggest that monocytes infiltrating the myometrium at labour participate in crosstalk that potentiates pro-inflammatory cytokine secretion, an effect that is enhanced by LPS, and can augment myocyte contraction. These effects are all partially inhibited by progesterone. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology.

  15. Immune cell activation and cytokine release after stimulation of whole blood with pneumococcal C-polysaccharide and capsular polysaccharides.

    PubMed

    Sundberg-Kövamees, Marianne; Grunewald, Johan; Wahlström, Jan

    2016-11-01

    Streptococcus pneumonia is a major cause of morbidity and mortality in children and adults worldwide. Lack of fully effective pneumococcal vaccines is a problem. Streptococcus pneumoniae exposes on its surface C-polysaccharide (cell wall polysaccharide, CWPS) and serospecific capsular polysaccharides, used in pneumococcal vaccines. We investigated the effect of CWPS and individual capsular polysaccharides, with regard to activation of subsets of immune cells of healthy controls. Three different capsular polysaccharides, CWPS and LPS were used for in vitro stimulation of whole blood. Cell activation (CD69 expression) was assessed in CD4+ and CD4- T cells, NK-like T cells, NK cells and monocytes by flow cytometry. Cytokine levels in supernatants were quantified by Cytometric Bead Array (CBA). CWPS and the capsules activated immune cell subsets, but to different degrees. NK cells and NK-like T cells showed the strongest activation, followed by monocytes. Among the three capsules, capsule type 23 induced the strongest activation and cytokine release, followed by type 9 and type 3. This study increases the understanding of how the human immune system reacts to pneumococcal vaccine components. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  16. LAP degradation product reflects plasma kallikrein-dependent TGF-β activation in patients with hepatic fibrosis.

    PubMed

    Hara, Mitsuko; Kirita, Akiko; Kondo, Wakako; Matsuura, Tomokazu; Nagatsuma, Keisuke; Dohmae, Naoshi; Ogawa, Shinji; Imajoh-Ohmi, Shinobu; Friedman, Scott L; Rifkin, Daniel B; Kojima, Soichi

    2014-01-01

    Byproducts of cytokine activation are sometimes useful as surrogate biomarkers for monitoring cytokine generation in patients. Transforming growth factor (TGF)-β plays a pivotal role in pathogenesis of hepatic fibrosis. TGF-β is produced as part of an inactive latent complex, in which the cytokine is trapped by its propeptide, the latency-associated protein (LAP). Therefore, to exert its biological activity, TGF-β must be released from the latent complex. Several proteases activate latent TGF-β by cutting LAP. We previously reported that Camostat Mesilate, a broad spectrum protease inhibitor, which is especially potent at inhibiting plasma kallikrein (PLK), prevented liver fibrosis in the porcine serum-induced liver fibrosis model in rats. We suggested that PLK may work as an activator of latent TGF-β during the pathogenesis of liver diseases in the animal models. However, it remained to be elucidated whether this activation mechanism also functions in fibrotic liver in patients. Here, we report that PLK cleaves LAP between R(58) and L(59) residues. We have produced monoclonal antibodies against two degradation products of LAP (LAP-DP) by PLK, and we have used these specific antibodies to immunostain LAP-DP in liver tissues from both fibrotic animals and patients. The N-terminal side LAP-DP ending at R(58) (R(58) LAP-DP) was detected in liver tissues, while the C-terminal side LAP-DP beginning at L(59) (L(59) LAP-DP) was not detectable. The R(58) LAP-DP was seen mostly in α-smooth muscle actin-positive activated stellate cells. These data suggest for the first time that the occurrence of a PLK-dependent TGF-β activation reaction in patients and indicates that the LAP-DP may be useful as a surrogate marker reflecting PLK-dependent TGF-β activation in fibrotic liver both in animal models and in patients.

  17. Tamm-Horsfall Protein Regulates Circulating and Renal Cytokines by Affecting Glomerular Filtration Rate and Acting as a Urinary Cytokine Trap*

    PubMed Central

    Liu, Yan; El-Achkar, Tarek M.; Wu, Xue-Ru

    2012-01-01

    Although few organ systems play a more important role than the kidneys in cytokine catabolism, the mechanism(s) regulating this pivotal physiological function and how its deficiency affects systemic cytokine homeostasis remain unclear. Here we show that elimination of Tamm-Horsfall protein (THP) expression from mouse kidneys caused a marked elevation of circulating IFN-γ, IL1α, TNF-α, IL6, CXCL1, and IL13. Accompanying this were enlarged spleens with prominent white-pulp macrophage infiltration. Lipopolysaccharide (LPS) exacerbated the increase of serum cytokines without a corresponding increase in their urinary excretion in THP knock-out (KO) mice. This, along with the rise of serum cystatin C and the reduced inulin and creatinine clearance from the circulation, suggested that diminished glomerular filtration may contribute to reduced cytokine clearance in THP KO mice both at the baseline and under stress. Unlike wild-type mice where renal and urinary cytokines formed specific in vivo complexes with THP, this “trapping” effect was absent in THP KO mice, thus explaining why cytokine signaling pathways were activated in renal epithelial cells in such mice. Our study provides new evidence implicating an important role of THP in influencing cytokine clearance and acting as a decoy receptor for urinary cytokines. Based on these and other data, we present a unifying model that underscores the role of THP as a major regulator of renal and systemic immunity. PMID:22451664

  18. Differential S1P Receptor Profiles on M1- and M2-Polarized Macrophages Affect Macrophage Cytokine Production and Migration.

    PubMed

    Müller, Jan; von Bernstorff, Wolfram; Heidecke, Claus-Dieter; Schulze, Tobias

    2017-01-01

    Introduction . Macrophages are key players in complex biological processes. In response to environmental signals, macrophages undergo polarization towards a proinflammatory (M1) or anti-inflammatory (M2) phenotype. Sphingosine 1-phosphate (S1P) is a bioactive lysophospholipid that acts via 5 G-protein coupled receptors (S1P 1-5 ) in order to influence a broad spectrum of biological processes. This study assesses S1P receptor expression on macrophages before and after M1 and M2 polarization and performs a comparative analysis of S1P signalling in the two activational states of macrophages. Methods . Bone marrow derived macrophages (BMDM) from C57 BL/6 mice were cultured under either M1- or M2-polarizing conditions. S1P-receptor expression was determined by quantitative RT-PCR. Influence of S1P on macrophage activation, migration, phagocytosis, and cytokine secretion was assessed in vitro. Results . All 5 S1P receptor subclasses were expressed in macrophages. Culture under both M1- and M2-polarizing conditions led to significant downregulation of S1P 1 . In contrast, M1-polarized macrophages significantly downregulated S1P 4 . The expression of the remaining three S1P receptors did not change. S1P increased expression of iNOS under M2-polarizing conditions. Furthermore, S1P induced chemotaxis in M1 macrophages and changed cytokine production in M2 macrophages. Phagocytosis was not affected by S1P-signalling. Discussion . The expression of different specific S1P receptor profiles may provide a possibility to selectively influence M1- or M2-polarized macrophages.

  19. Cytokine profiling of docetaxel-resistant castration-resistant prostate cancer.

    PubMed

    Mahon, K L; Lin, H-M; Castillo, L; Lee, B Y; Lee-Ng, M; Chatfield, M D; Chiam, K; Breit, S N; Brown, D A; Molloy, M P; Marx, G M; Pavlakis, N; Boyer, M J; Stockler, M R; Daly, R J; Henshall, S M; Horvath, L G

    2015-04-14

    Docetaxel improves symptoms and survival in metastatic castration-resistant prostate cancer (CRPC). However, ∼50% of patients are chemoresistant. This study examined whether changes in cytokine levels predict for docetaxel resistance in vitro and in a clinical cohort. PC3 cells or their docetaxel-resistant subline (PC3Rx) were co-cultured with U937 monocytes, with and without docetaxel treatment, and cytokine levels were measured. The circulating levels of 28 cytokines were measured pre-/post cycle 1 of docetaxel from 55 men with CRPC, and compared with prostate-specific antigen (PSA) response. PC3Rx-U937 co-culture expressed more cytokines, chiefly markers of alternative macrophage differentiation, compared with PC3-U937 co-culture. Docetaxel treatment enhanced cytokine production by PC3Rx-U937 co-culture, while reducing cytokine levels in PC3-U937. In patients, changes in the levels of seven circulating cytokines (macrophage inhibitory cytokine 1 (MIC1), interleukin (IL)-1ra, IL-1β, IL-4, IL-6, IL-12 and IFNγ) after cycle 1 of docetaxel were associated with progressive disease (all P<0.05). The combination of changes in MIC1, IL-4 and IL-6 most strongly predicted PSA response (P=0.002). In vitro studies suggest docetaxel resistance is mediated, at least in part, by cytokines induced by the interaction between the docetaxel-resistant tumour cells and macrophages. Early changes in circulating cytokine levels were associated with docetaxel resistance in CRPC patients. When considered together, these data suggest a significant role for the inflammatory response and macrophages in the development of docetaxel resistance in CRPC.

  20. Cytokine and Lipid Mediator Regulation of Group 2 Innate Lymphoid Cells (ILC2s) in Human Allergic Airway Disease.

    PubMed

    Cavagnero, Kellen; Doherty, Taylor A

    2017-08-01

    The recent discovery of group 2 innate lymphoid cells (ILC2s) has caused a paradigm shift in the understanding of allergic airway disease pathogenesis. Prior to the discovery of ILC2s, Th2 cells were largely thought to be the primary source of type 2 cytokines; however, activated ILC2s have since been shown to contribute significantly, and in some cases, dominantly to type 2 cytokine production. Since the discovery of ILC2s in 2010, many mediators have been shown to regulate their effector functions. Initial studies identified the epithelial derived cytokines IL-25, IL-33, and TSLP as activators of ILC2s, and recent studies have identified many additional cytokine and lipid mediators that are involved in ILC2 regulation. ILC2s and their mediators represent novel therapeutic targets for allergic airway diseases and intensive investigation is underway to better understand ILC2 biology and upstream and downstream pathways that lead to ILC2-driven airway pathology. In this review, we will focus on the cytokine and lipid mediators that regulate ILC2s in human allergic airway disease, as well as highlight newly discovered mediators of mouse ILC2s that may eventually translate to humans.

  1. Reduced maximal oxygen consumption and overproduction of proinflammatory cytokines in athletes.

    PubMed

    Vaisberg, Mauro; de Mello, Marco Tulio; Seelaender, Marília Cerqueira Leite; dos Santos, Ronaldo Vagner Thomatieli; Costa Rosa, Luis Fernando Bicudo Pereira

    2007-01-01

    It was the aim of this study to evaluate whether chronic pain in athletes is related to performance, measured by the maximum oxygen consumption and production of hormones and cytokines. Fifty-five athletes with a mean age of 31.9 +/- 4.2 years engaged in regular competition and showing no symptoms of acute inflammation, particularly fever, were studied. They were divided into 2 subgroups according to the occurrence of pain. Plasma concentrations of adrenaline, noradrenaline, cortisol, prolactin, growth hormone and dopamine were measured by radioimmunoassay, and the production of the cytokines interleukin (IL)-1, IL-2, IL-4, IL-6, tumor necrosis factor-alpha, interferon-alpha and prostaglandin E(2) by whole-blood culture. Maximal oxygen consumption was determined during an incremental treadmill test. There was no change in the concentration of stress hormones, but the athletes with chronic pain showed a reduction in maximum oxygen consumption (22%) and total consumption at the anaerobic threshold (25%), as well as increased cytokine production. Increases of 2.7-, 8.1-, 1.7- and 3.7-fold were observed for IL-1, IL-2, tumor necrosis factor-alpha and interferon-alpha, respectively. Our data show that athletes with chronic pain have enhanced production of proinflammatory cytokines and lipid mediators and reduced performance in the ergospirometric test. (c) 2008 S. Karger AG, Basel.

  2. Macrophage activation induced by Brucella DNA suppresses bacterial intracellular replication via enhancing NO production.

    PubMed

    Liu, Ning; Wang, Lin; Sun, Changjiang; Yang, Li; Tang, Bin; Sun, Wanchun; Peng, Qisheng

    2015-12-01

    Brucella DNA can be sensed by TLR9 on endosomal membrane and by cytosolic AIM2-inflammasome to induce proinflammatory cytokine production that contributes to partially activate innate immunity. Additionally, Brucella DNA has been identified to be able to act as a major bacterial component to induce type I IFN. However, the role of Brucella DNA in Brucella intracellular growth remains unknown. Here, we showed that stimulation with Brucella DNA promote macrophage activation in TLR9-dependent manner. Activated macrophages can suppresses wild type Brucella intracellular replication at early stage of infection via enhancing NO production. We also reported that activated macrophage promotes bactericidal function of macrophages infected with VirB-deficient Brucella at the early or late stage of infection. This study uncovers a novel function of Brucella DNA, which can help us further elucidate the mechanism of Brucella intracellular survival. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. A putative role for cytokines in the impaired appetite in depression.

    PubMed

    Andréasson, Anna; Arborelius, Lotta; Erlanson-Albertsson, Charlotte; Lekander, Mats

    2007-02-01

    Impaired appetite and weight changes are commonly seen in patients with depression, but the pathophysiology behind this imbalance between energy intake and energy expenditure remains largely unknown. The aim of this paper is to review the literature regarding a possible role for cytokines in the regulation of appetite and body weight, with special emphasis on depression. There now exists a substantial amount of evidence that depressed patients show signs of immune activation including increased levels of proinflammatory cytokines. Cytokines, which by themselves have anorectic properties, stimulate the release of the cytokine-like anorexogenic peptide leptin. In addition to their anorectic properties, both proinflammatory cytokines and leptin interact with the hypothalamic-pituitary-adrenal (HPA) axis, the sympathetic nervous system (SNS) and the immune system. In turn, these systems regulate energy balance as well as they are dysfunctional in depression. Furthermore, both proinflammatory cytokines and leptin can induce anhedonia, one of the cardinal symptoms of depression. In view of the different effects on appetite and/or body weight observed in melancholic versus atypical depression, we suggest that cytokines are differentially altered in these subtypes of depression, and that this may explain some of the inconsistency in the reported findings of cytokine as well as leptin levels in depressed patients. Finally, we propose that the immune system uses the interoceptive pathway projecting to the insular cortex, a brain region where cytokine-induced changes in appetite could be partly mediated, and that this pathway is activated in depression.

  4. Andes Hantavirus-Infection of a 3D Human Lung Tissue Model Reveals a Late Peak in Progeny Virus Production Followed by Increased Levels of Proinflammatory Cytokines and VEGF-A

    PubMed Central

    Sundström, Karin B.; Nguyen Hoang, Anh Thu; Gupta, Shawon; Ahlm, Clas; Svensson, Mattias; Klingström, Jonas

    2016-01-01

    Andes virus (ANDV) causes hantavirus pulmonary syndrome (HPS), a severe acute disease with a 40% case fatality rate. Humans are infected via inhalation, and the lungs are severely affected during HPS, but little is known regarding the effects of ANDV-infection of the lung. Using a 3-dimensional air-exposed organotypic human lung tissue model, we analyzed progeny virus production and cytokine-responses after ANDV-infection. After a 7–10 day period of low progeny virus production, a sudden peak in progeny virus levels was observed during approximately one week. This peak in ANDV-production coincided in time with activation of innate immune responses, as shown by induction of type I and III interferons and ISG56. After the peak in ANDV production a low, but stable, level of ANDV progeny was observed until 39 days after infection. Compared to uninfected models, ANDV caused long-term elevated levels of eotaxin-1, IL-6, IL-8, IP-10, and VEGF-A that peaked 20–25 days after infection, i.e., after the observed peak in progeny virus production. Notably, eotaxin-1 was only detected in supernatants from infected models. In conclusion, these findings suggest that ANDV replication in lung tissue elicits a late proinflammatory immune response with possible long-term effects on the local lung cytokine milieu. The change from an innate to a proinflammatory response might be important for the transition from initial asymptomatic infection to severe clinical disease, HPS. PMID:26907493

  5. Andes Hantavirus-Infection of a 3D Human Lung Tissue Model Reveals a Late Peak in Progeny Virus Production Followed by Increased Levels of Proinflammatory Cytokines and VEGF-A.

    PubMed

    Sundström, Karin B; Nguyen Hoang, Anh Thu; Gupta, Shawon; Ahlm, Clas; Svensson, Mattias; Klingström, Jonas

    2016-01-01

    Andes virus (ANDV) causes hantavirus pulmonary syndrome (HPS), a severe acute disease with a 40% case fatality rate. Humans are infected via inhalation, and the lungs are severely affected during HPS, but little is known regarding the effects of ANDV-infection of the lung. Using a 3-dimensional air-exposed organotypic human lung tissue model, we analyzed progeny virus production and cytokine-responses after ANDV-infection. After a 7-10 day period of low progeny virus production, a sudden peak in progeny virus levels was observed during approximately one week. This peak in ANDV-production coincided in time with activation of innate immune responses, as shown by induction of type I and III interferons and ISG56. After the peak in ANDV production a low, but stable, level of ANDV progeny was observed until 39 days after infection. Compared to uninfected models, ANDV caused long-term elevated levels of eotaxin-1, IL-6, IL-8, IP-10, and VEGF-A that peaked 20-25 days after infection, i.e., after the observed peak in progeny virus production. Notably, eotaxin-1 was only detected in supernatants from infected models. In conclusion, these findings suggest that ANDV replication in lung tissue elicits a late proinflammatory immune response with possible long-term effects on the local lung cytokine milieu. The change from an innate to a proinflammatory response might be important for the transition from initial asymptomatic infection to severe clinical disease, HPS.

  6. Immunotherapeutic implications of IL-6 blockade for cytokine storm.

    PubMed

    Tanaka, Toshio; Narazaki, Masashi; Kishimoto, Tadamitsu

    2016-07-01

    IL-6 contributes to host defense against infections and tissue injuries. However, exaggerated, excessive synthesis of IL-6 while fighting environmental stress leads to an acute severe systemic inflammatory response known as 'cytokine storm', since high levels of IL-6 can activate the coagulation pathway and vascular endothelial cells but inhibit myocardial function. Remarkable beneficial effects of IL-6 blockade therapy using a humanized anti-IL-6 receptor antibody, tocilizumab were recently observed in patients with cytokine release syndrome complicated by T-cell engaged therapy. In this review we propose the possibility that IL-6 blockade may constitute a novel therapeutic strategy for other types of cytokine storm, such as the systemic inflammatory response syndrome including sepsis, macrophage activation syndrome and hemophagocytic lymphohistiocytosis.

  7. Characterization of Adsorbents for Cytokine Removal from Blood in an In Vitro Model.

    PubMed

    Harm, Stephan; Gabor, Franz; Hartmann, Jens

    2015-01-01

    Cytokines are basic targets that have to be removed effectively in order to improve the patient's health status in treating severe inflammation, sepsis, and septic shock. Although there are different adsorbents commercially available, the success of their clinical use is limited. Here, we tested different adsorbents for their effective removal of cytokines from plasma and the resulting effect on endothelial cell activation. The three polystyrene divinylbenzene (PS-DVB) based adsorbents Amberchrom CG161c and CG300m and a clinically approved haemoperfusion adsorbent (HAC) were studied with regard to cytokine removal in human blood. To induce cytokine release from leucocytes, human blood cells were stimulated with 1 ng/ml LPS for 4 hours. Plasma was separated and adsorption experiments in a dynamic model were performed. The effect of cytokine removal on endothelial cell activation was evaluated using a HUVEC-based cell culture model. The beneficial outcome was assessed by measuring ICAM-1, E-selectin, and secreted cytokines IL-8 and IL-6. Additionally the threshold concentration for HUVEC activation by TNF-α and IL-1β was determined using this cell culture model. CG161c showed promising results in removing the investigated cytokines. Due to its pore size the adsorbent efficiently removed the key factor TNF-α, outperforming the commercially available adsorbents. The CG161c treatment reduced cytokine secretion and expression of cell adhesion molecules by HUVEC which underlines the importance of effective removal of TNF-α in inflammatory diseases. These results confirm the hypothesis that cytokine removal from the blood should approach physiological levels in order to reduce endothelial cell activation.

  8. Characterization of Adsorbents for Cytokine Removal from Blood in an In Vitro Model

    PubMed Central

    Gabor, Franz; Hartmann, Jens

    2015-01-01

    Introduction. Cytokines are basic targets that have to be removed effectively in order to improve the patient's health status in treating severe inflammation, sepsis, and septic shock. Although there are different adsorbents commercially available, the success of their clinical use is limited. Here, we tested different adsorbents for their effective removal of cytokines from plasma and the resulting effect on endothelial cell activation. Methods. The three polystyrene divinylbenzene (PS-DVB) based adsorbents Amberchrom CG161c and CG300m and a clinically approved haemoperfusion adsorbent (HAC) were studied with regard to cytokine removal in human blood. To induce cytokine release from leucocytes, human blood cells were stimulated with 1 ng/ml LPS for 4 hours. Plasma was separated and adsorption experiments in a dynamic model were performed. The effect of cytokine removal on endothelial cell activation was evaluated using a HUVEC-based cell culture model. The beneficial outcome was assessed by measuring ICAM-1, E-selectin, and secreted cytokines IL-8 and IL-6. Additionally the threshold concentration for HUVEC activation by TNF-α and IL-1β was determined using this cell culture model. Results. CG161c showed promising results in removing the investigated cytokines. Due to its pore size the adsorbent efficiently removed the key factor TNF-α, outperforming the commercially available adsorbents. The CG161c treatment reduced cytokine secretion and expression of cell adhesion molecules by HUVEC which underlines the importance of effective removal of TNF-α in inflammatory diseases. Conclusion. These results confirm the hypothesis that cytokine removal from the blood should approach physiological levels in order to reduce endothelial cell activation. PMID:26770992

  9. Melatonin mitigates thioacetamide-induced hepatic fibrosis via antioxidant activity and modulation of proinflammatory cytokines and fibrogenic genes.

    PubMed

    Lebda, Mohamed A; Sadek, Kadry M; Abouzed, Tarek K; Tohamy, Hossam G; El-Sayed, Yasser S

    2018-01-01

    The potential antifibrotic effects of melatonin against induced hepatic fibrosis were explored. Rats were allocated into four groups: placebo; thioacetamide (TAA) (200mg/kg bwt, i.p twice weekly for two months); melatonin (5mg/kgbwt, i.p daily for a week before TAA and continued for an additional two months); and melatonin plus TAA. Hepatic fibrotic changes were evaluated biochemically and histopathologically. Hepatic oxidative/antioxidative indices were assessed. The expression of hepatic proinflammatory cytokines (tumor necrosis factor-α, and interleukin-1β), fibrogenic-related genes (transforming growth factor-1β, collagen I, collagen, III, laminin, and autotaxin) and an antioxidant-related gene (thioredoxin-1) were detected by qRT-PCR. In fibrotic rats, melatonin lowered serum aspartate aminotransferase, alanine aminotransferase, and autotaxin activities, bilirubin, hepatic hydroxyproline and plasma ammonia levels. Melatonin displayed hepatoprotective and antifibrotic potential as indicated by mild hydropic degeneration of some hepatocytes and mild fibroplasia. In addition, TAA induced the depletion of glutathione, glutathione s-transferase, glutathione peroxidase, superoxide dismutase, catalase, and paraoxonase-1 (PON-1), while inducing the accumulation of malondialdehyde, protein carbonyl (C=O) and nitric oxide (NO), and DNA fragmentation. These effects were restored by melatonin pretreatment. Furthermore, melatonin markedly attenuated the expression of proinflammatory cytokines and fibrogenic genes via the upregulation of thioredoxin-1 mRNA transcripts. Melatonin exhibits potent anti-inflammatory, antioxidant and fibrosuppressive activities against TAA-induced hepatic fibrogenesis via the suppression of oxidative stress, DNA damage, proinflammatory cytokines and fibrogenic gene transcripts. In addition, we demonstrate that the antifibrotic activity of melatonin is mediated by the induction of thioredoxin-1 with attenuation of autotaxin expressions

  10. Novel thalidomide analogues from diamines inhibit pro-inflammatory cytokine production and CD80 expression while enhancing IL-10.

    PubMed

    Mazzoccoli, Luciano; Cadoso, Silvia H; Amarante, Giovanni W; de Souza, Marcus V N; Domingues, Robert; Machado, Marco A; de Almeida, Mauro V; Teixeira, Henrique C

    2012-07-01

    Thalidomide is used to treat a variety of diseases including erythema nodosum leprosum, an inflammatory complication of leprosy. However, this drug has severe teratogenic activity and novel thalidomide analogues might be used to treat diseases without this severe side effect. A series of diamine compounds containing two hydrolyzed phthalimide units were chosen as analogues of thalidomide and evaluated regarding their capacity to regulate the production of molecules involved in inflammatory responses. TNF-α, IL-12 and IL-10 production, and the expression of CD80 and CD86 were investigated in LPS plus IFN-γ-stimulated J774A.1 cells by ELISA and flow cytometry, respectively. The expression of TNF-α and IL-10 mRNA was analyzed by real time RT-PCR. TNF-α, IL-6, IFN-γ, CXCL9 and CXCL10 production by human peripheral blood mononuclear cells (PBMC) were evaluated by flow cytometry. Compounds 3, 6 and 9 greatly inhibited TNF-α and IL-12 production while enhancing IL-10. In addition, CD80 expression was inhibited, but not CD86. The compounds inhibited TNF-α production by PBMC more than thalidomide and also had an inhibitory effect on the production of IL-6, IFN-γ, CXCL9 and CXCL10. Levels of mRNA for TNF-α were reduced after treatment with the compounds, suggesting post- transcriptional effects. The compounds had no effect on cell viability. Our results indicate that the novel diamine compounds 3, 6 and 9 inhibit critical pro-inflammatory cytokines and stimulate IL-10, which make them attractive candidate drugs for the treatment of certain inflammatory conditions and cancer. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  11. Reduced Activated T Lymphocytes (CD4+CD25+) and Plasma Levels of Cytokines in Parkinson's Disease.

    PubMed

    Rocha, Natalia Pessoa; Assis, Frankcinéia; Scalzo, Paula Luciana; Vieira, Érica Leandro Marciano; Barbosa, Izabela Guimarães; de Souza, Mariana Soares; Christo, Paulo Pereira; Reis, Helton José; Teixeira, Antonio Lucio

    2018-02-01

    Parkinson's disease (PD) is the second most common neurodegenerative disease. The cause of neurodegeneration in PD is not completely understood, and evidence has shown that inflammatory/immune changes may be involved in PD pathophysiology. Herein, we aimed to determine the profile of the peripheral immune system in patients with PD in comparison with controls. Forty patients with PD and 25 age- and gender-matched controls were enrolled in this study. From these, 23 PD patients and 21 controls were included in the immunophenotyping analyses. Peripheral blood was drawn on the same day of the clinical assessment and submitted to plasma separation for enzyme-linked immunosorbent assay or cytometric bead array. Immunophenotyping analyses of the peripheral blood were performed by flow cytometry. We found that patients with PD presented peripheral immune changes evidenced by decreased percentage of T lymphocytes (CD3+ cells), especially activated T lymphocytes (CD4+CD25+ cells), when compared with controls. In line with these results, we also found decreased plasma levels of the cytokines IL-4, IL-6, IL-10, TNF, IFN-γ, and IL-17A in the PD group. In vitro experiments demonstrated that the production of cytokines by peripheral blood mononuclear cells harvested from healthy young donors was reduced after exposure to the anti-parkinsonian drugs levodopa and pramipexole. Our data corroborate the hypothesis that immunological mechanisms are involved in PD. It is not clear whether the differences that we have found are due to adaptive mechanisms or to changes associated with PD, including pharmacological treatment, or even directly related to the disease pathophysiology. Future studies are needed in this regard.

  12. Controlling Nuclear Jaks and Stats for Specific Gene Activation by Ifn γ and Other Cytokines: A Possible Steroid-like Connection

    PubMed Central

    Johnson, Howard M.; Noon-Song, Ezra; Ahmed, Chulbul M.

    2011-01-01

    The mechanism of specific gene activation by cytokines that use JAK/STAT signalling pathway is unknown. There are four different types of JAKs and seven different types of STATs. In the classical model of signaling, ligand interacts solely with the receptor extracellular domain, which triggers JAK activation at the receptor cytoplasmic domain. Activated STATs are then said to carry out nuclear events of specific gene activation, including associated epigenetic changes that cause heterochromatin destabilization. Ligand, receptor, and JAKs play no further role in the classical model. Given the limited number of STATs and the activation of the same STATs by cytokines with different functions, the mechanism of the specificity of their signalling is not obvious. Focusing on gamma interferon (IFNγ), we have shown that ligand, receptor, and activated JAKs are involved in nuclear events that are associated with specific gene activation. In this model, receptor subunit IFNGR1 functions as a transcription/cotranscription factor and the JAKs are involved in key epigenetic events that are required for specific gene activation. The model has implications for gene activation in cancer as well as stem cell differentiation. PMID:22924155

  13. Controlling Nuclear Jaks and Stats for Specific Gene Activation by Ifn γ and Other Cytokines: A Possible Steroid-like Connection.

    PubMed

    Johnson, Howard M; Noon-Song, Ezra; Ahmed, Chulbul M

    2011-09-03

    The mechanism of specific gene activation by cytokines that use JAK/STAT signalling pathway is unknown. There are four different types of JAKs and seven different types of STATs. In the classical model of signaling, ligand interacts solely with the receptor extracellular domain, which triggers JAK activation at the receptor cytoplasmic domain. Activated STATs are then said to carry out nuclear events of specific gene activation, including associated epigenetic changes that cause heterochromatin destabilization. Ligand, receptor, and JAKs play no further role in the classical model. Given the limited number of STATs and the activation of the same STATs by cytokines with different functions, the mechanism of the specificity of their signalling is not obvious. Focusing on gamma interferon (IFNγ), we have shown that ligand, receptor, and activated JAKs are involved in nuclear events that are associated with specific gene activation. In this model, receptor subunit IFNGR1 functions as a transcription/cotranscription factor and the JAKs are involved in key epigenetic events that are required for specific gene activation. The model has implications for gene activation in cancer as well as stem cell differentiation.

  14. Enteric pathogens and gut function: Role of cytokines and STATs.

    PubMed

    Shea-Donohue, Terez; Fasano, Alessio; Smith, Allen; Zhao, Aiping

    2010-09-01

    The gut harbors the largest immune system in the body. The mucosa is considered to be the initial site of interaction with commensal and pathogenic organisms; therefore, it is the first line of defense against the pathogens. In response to the invasion of various pathogens, naïve CD4(+) cells differentiate into subsets of T helper (Th) cells that are characterized by different cytokine profiles. Cytokines bind to cell surface receptors on both immune and non-immune cells leading to activation of JAK-STAT signaling pathway and influence gut function by upregulating the expression of specific target genes. This review considers the roles of cytokines and receptor-mediated activation of STATs on pathogen-induced changes in gut function. The focus on STAT4 and STAT6 is because of their requirement for the full development of Th1 and Th2 cytokine profiles.

  15. Enteric pathogens and gut function: Role of cytokines and STATs

    PubMed Central

    Fasano, Alessio; Smith, Allen; Zhao, Aiping

    2010-01-01

    The gut harbors the largest immune system in the body. The mucosa is considered to be the initial site of interaction with commensal and pathogenic organisms; therefore, it is the first line of defense against the pathogens. In response to the invasion of various pathogens, naïve CD4+ cells differentiate into subsets of T helper (Th) cells that are characterized by different cytokine profiles. Cytokines bind to cell surface receptors on both immune and non-immune cells leading to activation of JAK-STAT signaling pathway and influence gut function by upregulating the expression of specific target genes. This review considers the roles of cytokines and receptor-mediated activation of STATs on pathogen-induced changes in gut function. The focus on STAT4 and STAT6 is because of their requirement for the full development of Th1 and Th2 cytokine profiles. PMID:21327040

  16. Inhibitory effects of the methylene chloride fraction of JP05 on the production of inflammatory mediators in LPS-activated BV2 microglia.

    PubMed

    Jung, Hyo Won; Oh, Tae Woo; Jung, Jin Ki; Lee, Je-Hyun; Shin, Gil Jo; Park, Yong-Ki

    2012-02-01

    Excessive production of inflammatory mediators such as nitric oxide (NO) and proinflammatory cytokines from activated microglia in the central nervous system contributes to uncontrolled inflammation in neurodegenerative disorders. In this study, we investigated the anti-inflammatory activities of the methylene chloride fraction of JP05 (JP05-MC) on the production of inflammatory mediators in lipopolysaccharide (LPS)-stimulated BV2 mouse microglial cells, and its mechanism of action. JP05-MC significantly inhibited LPS-induced production of NO and the proinflammatory cytokines, TNF-α and IL-6, in BV2 cells. JP05-MC also attenuated the mRNA expression and protein levels of inducible nitric oxide synthase in LPS-induced BV2 cells. JP05-MC significantly attenuated LPS-elicited phosphorylation of the mitogen-activated protein kinase (MAPK), extracellular-signal-regulated kinase 1/2, and nuclear factor-κB (NF-κB) nuclear translocation in BV2 cells. Our results indicate that JP05-MC exerts anti-inflammatory properties via downregulation of inflammatory mediator gene transcription by suppressing the MAPK and NF-κB pathways, suggesting that JP05-MC may have therapeutic potential as an anti-inflammatory agent in neurodegenerative diseases.

  17. IL-23 Blockade for Crohn s disease: next generation of anti-cytokine therapy.

    PubMed

    Furfaro, Federica; Gilardi, Daniela; Allocca, Mariangela; Cicerone, Clelia; Correale, Carmen; Fiorino, Gionata; Danese, Silvio

    2017-05-01

    Adaptive immunity in intestinal inflammation may play a key role in the pathogenesis of Crohn's disease. In particular, interleukin (IL)-23 may be a key mediator in chronic intestinal inflammation by inducing the differentiation of naïve CD4 + T cells into Th17, with the production of several pro-inflammatory cytokines. Furthermore, IL-23 induces interferon-γ (IFN- γ) production from activated T cells, a critical cytokine in innate and adaptive immunity against infections. Areas covered: We aim to review the available data from literature regarding the role of IL-23, with a more specific focus on the recent progresses in the therapeutic modulation of this cytokine. Expert commentary: Increased knowledge regarding the role of IL-23 has allowed for the development of effective therapeutic progresses by blocking the IL-23 mediated pathways. Primary or secondary loss of response to anti-TNF therapies in Crohn's disease patients during the first year is widely described in literature: the development of new drugs, with alternative mechanisms of action, is thus a key point to consider for the optimal management of these subjects. Drugs blocking the IL-12/23 pathway showed a good efficacy and safety profile in immune-mediated diseases Further studies are necessary regarding the role of the single blockade of IL-23.

  18. Protective effects of myricitrin against osteoporosis via reducing reactive oxygen species and bone-resorbing cytokines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Qiang; Gao, Bo; Wang, Long

    Oxidative stress is a crucial pathogenic factor in the development of osteoporosis. Myricitrin, isolated from Myrica cerifera, is a potent antioxidant. We hypothesized that myricitrin possessed protective effects against osteoporosis by partially reducing reactive oxygen species (ROS) and bone-resorbing cytokines in osteoblastic MC3T3-E1 cells and human bone marrow stromal cells (hBMSCs). We investigated myricitrin on osteogenic differentiation under oxidative stress. Hydrogen peroxide (H{sub 2}O{sub 2}) was used to establish an oxidative cell injury model. Our results revealed that myricitrin significantly improved some osteogenic markers in these cells. Myricitrin decreased lipid production and reduced peroxisome proliferator-activated receptor gamma-2 (PPARγ2) expression inmore » hBMSCs. Moreover, myricitrin reduced the expression of receptor activator of nuclear factor kappa-B ligand (RANKL) and IL-6 and partially suppressed ROS production. In vivo, we established a murine ovariectomized (OVX) osteoporosis model. Our results demonstrated that myricitrin supplementation reduced serum malondialdehyde (MDA) activity and increased reduced glutathione (GSH) activity. Importantly, it ameliorated the micro-architecture of trabecular bones in the 4th lumbar vertebrae (L4) and distal femur. Taken together, these results indicated that the protective effects of myricitrin against osteoporosis are linked to a reduction in ROS and bone-resorbing cytokines, suggesting that myricitrin may be useful in bone metabolism diseases, particularly osteoporosis. - Highlights: • Myricitrin protects MC3T3-E1 cells and hBMSCs from oxidative stress. • It is accompanied by a decrease in oxidative stress and bone-resorbing cytokines. • Myricitrin decreases serum reactive oxygen species to some degree. • Myricitrin partly reverses ovariectomy effects in vivo. • Myricitrin may represent a beneficial anti-osteoporosis treatment method.« less

  19. Extensive characterization of the immunophenotype and pattern of cytokine production by distinct subpopulations of normal human peripheral blood MHC II+/lineage− cells

    PubMed Central

    Almeida, J; Bueno, C; Alguero, M C; Sanchez, M L; Cañizo, M C; Fernandez, M E; Vaquero, J M; Laso, F J; Escribano, L; San Miguel, J F; Orfao, A

    1999-01-01

    Dendritic cells (DC) represent the most powerful professional antigen-presenting cells (APC) in the immune system. The aim of the present study was to analyse, on a single-cell basis by multiparametric flow cytometry with simultaneous four-colour staining and a two-step acquisition procedure, the immunophenotypic profile and cytokine production of DC from 67 normal whole peripheral blood (PB) samples. Two clearly different subsets of HLA-II+/lineage− were identified on the basis of their distinct phenotypic characteristics: one DC subset was CD33strong+ and CD123dim+ (0.16 ± 0.06% of the PB nucleated cells and 55.9 ± 11.9% of all PB DC) and the other, CD33dim+ and CD123strong+ (0.12 ± 0.04% of PB nucleated cells and 44.53 ± 11.5% of all PB DC). Moreover, the former DC subpopulation clearly showed higher expression of the CD13 myeloid-associated antigen, the CD29 and CD58 adhesion molecules, the CD2, CD5 and CD86 costimulatory molecules, the CD32 IgG receptor and the CD11c complement receptor. In addition, these cells showed stronger HLA-DR and HLA-DQ expression and a higher reactivity for the IL-6 receptor α-chain (CD126) and for CD38. In contrast, the CD123strong+/CD33dim+ DC showed a stronger reactivity for the CD4 and CD45RA molecules, whereas they did not express the CD58, CD5, CD11c and CD13 antigens. Regarding cytokine production, our results show that while the CD33strong+/CD123dim+ DC are able to produce significant amounts of inflammatory cytokines, such as IL-1β (97 ± 5% of positive cells), IL-6 (96 ± 1.1% of positive cells), IL-12 (81.5 ± 15.5% of positive cells) and tumour necrosis factor-alpha (TNF-α) (84 ± 22.1% of positive cells) as well as chemokines such as IL-8 (99 ± 1% of positive cells), the functional ability of the CD123strong+/CD33dim+ DC subset to produce cytokines under the same conditions was almost null. Our results therefore clearly show the presence of two distinct subsets of DC in normal human PB, which differ not only in

  20. Uroepithelial cells are part of a mucosal cytokine network.

    PubMed Central

    Hedges, S; Agace, W; Svensson, M; Sjögren, A C; Ceska, M; Svanborg, C

    1994-01-01

    This study compared the cytokine production of uroepithelial cell lines in response to gram-negative bacteria and inflammatory cytokines. Human kidney (A498) and bladder (J82) epithelial cell lines were stimulated with either Escherichia coli Hu734, interleukin 1 alpha (IL-1 alpha), or tumor necrosis factor alpha (TNF-alpha). Supernatant samples were removed, and the RNA was extracted from cells at 0, 2, 6, and 24 h. The secreted cytokine levels were determined by bioassay or immunoassay; mRNA was examined by reverse transcription-PCR. The two cell lines secreted IL-6 and IL-8 constitutively. IL-6 and IL-8 mRNA were constitutively produced in both cell lines; IL-1 beta mRNA was detected in J82 cells. IL-1 alpha induced significantly higher levels of IL-6 secretion than did E. coli Hu734 or TNF-alpha. IL-1 alpha and TNF-alpha induced significantly higher levels of IL-8 secretion than did E. coli Hu734. Secreted IL-1 beta was not detected; IL-1 alpha and TNF-alpha were not detected above the levels used for stimulation. IL-1 alpha, IL-1 beta, IL-6, and IL-8 mRNAs were detected in both cell lines after exposure to the stimulants. TNF-alpha mRNA was occasionally detected in the J82 cell line after TNF-alpha stimulation. Cytokine (IL-6 and IL-8) and control (glyceraldehyde 3-phosphate dehydrogenase [G3PDH] and beta-actin) mRNA concentrations were quantitated with internal PCR standards. Cytokine mRNA levels relative to beta-actin mRNA levels were the highest in E. coli-stimulated cells. In comparison, the cytokine mRNA levels relative to G3PDH mRNA levels were the highest in IL-1 alpha-stimulated cells. beta-Actin mRNA levels decreased after bacterial stimulation but not after cytokine stimulation, while G3PDH mRNA levels increased in response to all of the stimulants tested. These results suggested that E. coli Hu734 lowered the beta-actin mRNA levels in uroepithelial cells, thus distorting the IL-6 and IL-8 mRNA levels relative to this control. In summary, E. coli IL