Sample records for activation greatly enhanced

  1. Jupiter's Great Red Spot (Enhanced Color)

    NASA Image and Video Library

    2017-07-12

    This enhanced-color image of Jupiter's Great Red Spot was created by citizen scientist Jason Major using data from the JunoCam imager on NASA's Juno spacecraft. The image was taken on July 10, 2017 at 07:10 p.m. PDT (10:10 p.m. EDT), as the Juno spacecraft performed its 7th close flyby of Jupiter. At the time the image was taken, the spacecraft was about 8,648 miles (13,917 kilometers) from the tops of the clouds of the planet. https://photojournal.jpl.nasa.gov/catalog/PIA21772

  2. Great Lakes Shipping. Earth Systems - Education Activities for Great Lakes Schools (ES-EAGLS).

    ERIC Educational Resources Information Center

    Fortner, Rosanne W., Ed.

    This activity book is part of a series designed to take a concept or idea from the existing school curriculum and develop it in the context of the Great Lakes using teaching approaches and materials appropriate for students in middle and high school. The theme of this book is Great Lakes shipping. Students learn about the connections between the…

  3. Anticancer and enhanced antimicrobial activity of biosynthesizd silver nanoparticles against clinical pathogens

    NASA Astrophysics Data System (ADS)

    Rajeshkumar, Shanmugam; Malarkodi, Chelladurai; Vanaja, Mahendran; Annadurai, Gurusamy

    2016-07-01

    The present investigation shows the biosynthesis of eco-friendly silver nanoparticles using culture supernatant of Enterococcus sp. and study the effect of enhanced antimicrobial activity, anticancer activity against pathogenic bacteria, fungi and cancer cell lines. Silver nanoparticles was synthesized by adding 1 mM silver nitrate into the 100 ml of 24 h freshly prepared culture supernatant of Enterococcus sp. and were characterized by UV-vis spectroscopy, X-ray diffraction (XRD), Transmission Electron Microscope (TEM), Selected Area Diffraction X-Ray (SAED), Energy Dispersive X Ray (EDX) and Fourier Transform Infra red Spectroscopy (FT-IR). The synthesized silver nanoparticles were impregnated with commercial antibiotics for evaluation of enhanced antimicrobial activity. Further these synthesized silver nanoparticles were assessed for its anticancer activity against cancer cell lines. In this study crystalline structured nanoparticles with spherical in the size ranges from 10 to 80 nm and it shows excellent enhanced antimicrobial activity than the commercial antibiotics. The in vitro assay of silver nanoparticles on anticancer have great potential to inhibit the cell viability. Amide linkages and carboxylate groups of proteins from Enterococcus sp. may bind with silver ions and convert into nanoparticles. The activities of commercial antibiotics were enhanced by coating silver nanoparticles shows significant improved antimicrobial activity. Silver nanoparticles have the great potential to inhibit the cell viability of liver cancer cells lines (HepG2) and lung cancer cell lines (A549).

  4. Dreissenid mussels from the Great Lakes contain elevated thiaminase activity

    USGS Publications Warehouse

    Tillitt, D.E.; Riley, S.C.; Evans, A.N.; Nichols, S.J.; Zajicek, J.L.; Rinchard, J.; Richter, C.A.; Krueger, C.C.

    2009-01-01

    We examined thiaminase activity in dreissenid mussels collected at different depths and seasons, and from various locations in Lakes Michigan, Ontario, and Huron. Here we present evidence that two dreissenid mussel species (Dreissena bugensis and D. polymorpha) contain thiaminase activity that is 5-100 fold greater than observed in Great Lakes fishes. Thiaminase activity in zebra mussels ranged from 10,600 to 47,900??pmol g- 1??min- 1 and activities in quagga mussels ranged from 19,500 to 223,800??pmol g- 1??min- 1. Activity in the mussels was greatest in spring, less in summer, and least in fall. Additionally, we observed greater thiaminase activity in dreissenid mussels collected at shallow depths compared to mussels collected at deeper depths. Dreissenids constitute a significant and previously unknown pool of thiaminase in the Great Lakes food web compared to other known sources of this thiamine (vitamin B1)-degrading enzyme. Thiaminase in forage fish of the Great Lakes has been causally linked to thiamine deficiency in salmonines. We currently do not know whether linkages exist between thiaminase activities observed in dreissenids and the thiaminase activities in higher trophic levels of the Great Lakes food web. However, the extreme thiaminase activities observed in dreissenids from the Great Lakes may represent a serious unanticipated negative effect of these exotic species on Great Lakes ecosystems.

  5. Enhancement of hypoxia-activated prodrug TH-302 anti-tumor activity by Chk1 inhibition.

    PubMed

    Meng, Fanying; Bhupathi, Deepthi; Sun, Jessica D; Liu, Qian; Ahluwalia, Dharmendra; Wang, Yan; Matteucci, Mark D; Hart, Charles P

    2015-05-21

    The hypoxia-activated prodrug TH-302 is reduced at its nitroimidazole group and selectively under hypoxic conditions releases the DNA cross-linker bromo-isophosphoramide mustard (Br-IPM). Here, we have explored the effect of Chk1 inhibition on TH-302-mediated pharmacological activities. We employed in vitro cell viability, DNA damage, cellular signaling assays and the in vivo HT29 human tumor xenograft model to study the effect of Chk1inhibition on TH-302 antitumor activities. TH-302 cytotoxicity is greatly enhanced by Chk1 inhibition in p53-deficient but not in p53-proficient human cancer cell lines. Chk1 inhibitors reduced TH-302-induced cell cycle arrest via blocking TH-302-induced decrease of phosphorylation of histone H3 and increasing Cdc2-Y15 phosphorylation. Employing the single-cell gel electrophoresis (comet) assay, we observed a potentiation of the TH-302 dependent tail moment. TH-302 induced γH2AX and apoptosis were also increased upon the addition of Chk1 inhibitor. Potentiation of TH-302 cytotoxicity by Chk1 inhibitor was only observed in cell lines proficient in, but not deficient in homology-directed DNA repair. We also show that combination treatment led to lowering of Rad51 expression levels as compared to either agent alone. In vivo data demonstrate that Chk1 inhibitor enhances TH-302 anti-tumor activity in p53 mutant HT-29 human tumor xenografts, supporting the hypothesis that these in vitro results can translate to enhanced in vivo efficacy of the combination. TH-302-mediated in vitro and in vivo anti-tumor activities were greatly enhanced by the addition of Chk1 inhibitors. The preclinical data presented in this study support a new approach for the treatment of p53-deficient hypoxic cancers by combining Chk1 inhibitors with the hypoxia-activated prodrug TH-302.

  6. Palladium–platinum core-shell icosahedra with substantially enhanced activity and durability towards oxygen reduction

    DOE PAGES

    Wang, Xue; Choi, Sang-Il; Roling, Luke T.; ...

    2015-07-02

    Conformal deposition of platinum as ultrathin shells on facet-controlled palladium nanocrystals offers a great opportunity to enhance the catalytic performance while reducing its loading. Here we report such a system based on palladium icosahedra. Owing to lateral confinement imposed by twin boundaries and thus vertical relaxation only, the platinum overlayers evolve into a corrugated structure under compressive strain. For the core-shell nanocrystals with an average of 2.7 platinum overlayers, their specific and platinum mass activities towards oxygen reduction are enhanced by eight- and sevenfold, respectively, relative to a commercial catalyst. Density functional theory calculations indicate that the enhancement can bemore » attributed to the weakened binding of hydroxyl to the compressed platinum surface supported on palladium. After 10,000 testing cycles, the mass activity of the core-shell nanocrystals is still four times higher than the commercial catalyst. Ultimately, these results demonstrate an effective approach to the development of electrocatalysts with greatly enhanced activity and durability.« less

  7. New Chronologies of Dune Activation Extracted from the Central Great Plains

    NASA Astrophysics Data System (ADS)

    Johnson, W. C.; Halfen, A. F.

    2011-12-01

    Recent investigations of dunefield activation histories in the Great Plains of North America have documented many long-duration, spatially-extensive, Holocene droughts. These "megadroughts" have been documented mostly in the larger dunefields of the Great Plains, e.g., the Nebraska Sand Hills, making it difficult for researchers to characterize these events region-wide. Several studies being conducted by the authors aim to extract a better spatial and temporal representation of megadroughts across the region by investigating smaller, less known dunefields of the Central Great Plains. Thus far, these studies have yielded new activation histories from three dunefields, the Kansas River, Hutchinson, and Arkansas Valley dunefields, which together span the precipitation gradient from eastern Kansas to eastern Colorado. While each of these dunefields have a unique history, collectively their activation chronologies yield new and important information on Holocene megadrought activity in the Great Plains, which may have been more spatially diverse and complex than previously thought. The Kansas River dunefield mantles a remnant high terrace of the lower Kansas River valley in the east-Central Great Plains and is one of the most easterly dunefields in the Great Plains. Optically stimulated luminescence (OSL) ages indicate dune activation last occurred ~36-31 ka, i.e., during MIS 3 between Heinrich Events 4 and 3 and was coincidental with loess deposition (Gillman Canyon Formation). The Kansas River dunefield also shows some evidence of minor activation during the middle Holocene, however this activity was likely limited to erosion of the dune surface and not full activation. About 200 km southwest of the Kansas River dunefield is the Hutchinson dunefield (HD), located immediately northeast of the Big Bend of the Arkansas River. OSL ages document dunefield-wide activity in the HD between ~1200 and 120 years ago, with peaks of activity centered after the Medieval Climatic

  8. Life in the Great Lakes. Earth Systems - Education Activities for Great Lakes Schools (ES-EAGLS).

    ERIC Educational Resources Information Center

    Sheaffer, Amy L., Ed.

    This activity book is part of a series designed to take a concept or idea from the existing school curriculum and develop it in the context of the Great Lakes using teaching approaches and materials appropriate for students in middle and high school. The theme of this book is life in the Great Lakes. Students learn about shorebird adaptations,…

  9. Enhanced Photocatalytic Activity of La3+-Doped TiO2 Nanotubes with Full Wave-Band Absorption

    NASA Astrophysics Data System (ADS)

    Xia, Minghao; Huang, Lingling; Zhang, Yubo; Wang, Yongqian

    2018-06-01

    TiO2 nanotubes doped with La3+ were synthesized by anodic oxidation method and the photocatalytic activity was detected by photodegrading methylene blue. As-prepared samples improved the absorption of both ultraviolet light and visible light and have a great enhancement on the photocatalytic activity while contrasting with the pristine TiO2 nanotubes. A tentative mechanism for the enhancement of photocatalytic activity with full wave-band absorption is proposed.

  10. Thin stillage supplementation greatly enhances bacterial cellulose production by Gluconacetobacter xylinus.

    PubMed

    Wu, Jyh-Ming; Liu, Ren-Han

    2012-09-01

    Thin stillage (TS), a wastewater from rice wine distillery can well sustain the growth of Gluconacetobacter xylinus for production of bacterial cellulose (BC). When used as a supplement to the traditional BC production medium (Hestrin and Schramm medium), the enhancement of BC production increased with the amount of TS supplemented in a static culture of G. xylinus. When TS was employed to replace distilled water for preparing HS medium (100%TS-HS medium), the BC production in this 100%TS-HS medium was enhanced 2.5-fold to a concentration of 10.38 g/l with sugar to BC conversion yield of 57% after 7 days cultivation. The cost-free TS as a supplement in BC production medium not only can greatly enhance the BC production, but also can effectively dispose the nuisance wastewater of rice wine distillery. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Great Lakes Climate and Water Movement. Earth Systems - Education Activities for Great Lakes Schools (ES-EAGLS).

    ERIC Educational Resources Information Center

    Miller, Heidi, Ed.; Sheaffer, Amy L., Ed.

    This activity book is part of a series designed to take a concept or idea from the existing school curriculum and develop it in the context of the Great Lakes using teaching approaches and materials appropriate for students in middle and high school. The theme of this book is Great Lakes climate and water movement. Students learn about land-sea…

  12. Thermal regime of the Great Basin and its implications for enhanced geothermal systems and off-grid power

    USGS Publications Warehouse

    Sass, John H.; Walters, Mark A.

    1999-01-01

    The Basin and Range Province of the Western United States covers most of Nevada and parts of adjoining states. It was formed by east-west tectonic extension that occurred mostly between 50 and 10 Ma, but which still is active in some areas. The northern Basin and Range, also known as the Great Basin, is higher in elevation, has higher regional heat flow and is more tectonically active than the southern Basin and Range which encompasses the Mojave and Sonoran Deserts. The Great Basin terrane contains the largest number of geothermal power plants in the United States, although most electrical production is at The Geysers and in the Salton Trough. Installed capacities of electrical power plants in the Great Basin vary from 1 to 260 MWe. Productivity is limited largely by permeability, relatively small productive reservoir volumes, available water, market conditions and the availability of transmission lines. Accessible, in-place heat is not a limiting condition for geothermal systems in the Great Basin. In many areas, economic temperatures (>120°C) can be found at economically drillable depths making it an appropriate region for implementation of the concept of "Enhanced Geothermal Systems" (EGS). An incremental approach to EGS would involve increasing the productivity and longevity of existing hydrothermal systems. Those geothermal projects that have an existing power plant and transmission facilities are the most attractive EGS candidates. Sites that were not developed owing to marginal size, lack of intrinsic permeability, and distance to existing electrical grid lines are also worthy of consideration for off-grid power production in geographically isolated markets such as ranches, farms, mines, and smelters.

  13. Functional assessment of human enhancer activities using whole-genome STARR-sequencing.

    PubMed

    Liu, Yuwen; Yu, Shan; Dhiman, Vineet K; Brunetti, Tonya; Eckart, Heather; White, Kevin P

    2017-11-20

    Genome-wide quantification of enhancer activity in the human genome has proven to be a challenging problem. Recent efforts have led to the development of powerful tools for enhancer quantification. However, because of genome size and complexity, these tools have yet to be applied to the whole human genome.  In the current study, we use a human prostate cancer cell line, LNCaP as a model to perform whole human genome STARR-seq (WHG-STARR-seq) to reliably obtain an assessment of enhancer activity. This approach builds upon previously developed STARR-seq in the fly genome and CapSTARR-seq techniques in targeted human genomic regions. With an improved library preparation strategy, our approach greatly increases the library complexity per unit of starting material, which makes it feasible and cost-effective to explore the landscape of regulatory activity in the much larger human genome. In addition to our ability to identify active, accessible enhancers located in open chromatin regions, we can also detect sequences with the potential for enhancer activity that are located in inaccessible, closed chromatin regions. When treated with the histone deacetylase inhibitor, Trichostatin A, genes nearby this latter class of enhancers are up-regulated, demonstrating the potential for endogenous functionality of these regulatory elements. WHG-STARR-seq provides an improved approach to current pipelines for analysis of high complexity genomes to gain a better understanding of the intricacies of transcriptional regulation.

  14. Land & Water Interactions in the Great Lakes. Earth Systems - Education Activities for Great Lakes Schools (ES-EAGLS).

    ERIC Educational Resources Information Center

    Sheaffer, Amy L., Ed.

    This activity book is part of a series designed to take a concept or idea from the existing school curriculum and develop it in the context of the Great Lakes using teaching approaches and materials appropriate for students in middle and high school. The subject of this book is land and water interactions. Students examine how the Great Lakes were…

  15. Phylogenetic and ecological characteristics associated with thiaminase activity in Laurentian Great Lakes fishes

    USGS Publications Warehouse

    Riley, S.C.; Evans, A.N.

    2008-01-01

    Thiamine deficiency complex (TDC) causes mortality and sublethal effects in Great Lakes salmonines and results from low concentrations of egg thiamine that are thought to be caused by thiaminolytic enzymes (i.e., thiaminase) present in the diet. This complex has the potential to undermine efforts to restore lake trout Salvelinus namaycush and severely restrict salmonid production in the Great Lakes. Although thiaminase has been found in a variety of Great Lakes fishes, the ultimate source of thiaminase in Great Lakes fishes is currently unknown. We used logistic regression analysis to investigate relationships between thiaminase activity and phylogenetic or ecological characteristics of 39 Great Lakes fish species. The taxonomically more ancestral species were more likely to show thiaminase activity than the more derived species. Species that feed at lower trophic levels and occupy benthic habitats also appeared to be more likely to show thiaminase activity; these variables were correlated with taxonomy, which was the most important predictor of thiaminase activity. Further analyses of the relationship between quantitative measures of thiaminase activity and ecological characteristics of Great Lakes fish species would provide greater insight into potential sources and pathways of thiaminase in Great Lakes food webs. ?? Copyright by the American Fisheries Society 2008.

  16. Neutral-Line Magnetic Shear and Enhanced Coronal Heating in Solar Active Regions

    NASA Technical Reports Server (NTRS)

    Falconer, D. A.; Moore, R. L.; Porter, J. G.; Gary, G. A.; Shimizu, T.

    1997-01-01

    By examining the magnetic structure at sites in the bright coronal interiors of active regions that are not flaring but exhibit persistent strong coronal heating, we establish some new characteristics of the magnetic origins of this heating. We have examined the magnetic structure of these sites in five active regions, each of which was well observed by both the Yohkoh SXT and the Marshall Space Flight Center Vector Magnetograph and showed strong shear in its magnetic field along part of at least one neutral line (polarity inversion). Thus, we can assess whether this form of nonpotential field structure in active regions is a characteristic of the enhanced coronal heating and vice versa. From 27 orbits' worth of Yohkoh SXT images of the five active regions, we have obtained a sample of 94 persistently bright coronal features (bright in all images from a given orbit), 40 long (greater than or approximately equals 20,000 km) neutral-line segments having strong magnetic shear throughout (shear angle greater than 45 deg), and 39 long neutral-line segments having weak magnetic shear throughout (shear angle less than 45 deg). From this sample, we find that: (1) all of our persistently bright coronal features are rooted in magnetic fields that are stronger than 150 G; (2) nearly all (95%) of these enhanced coronal features are rooted near neutral lines (closer than 10,000 km); (3) a great majority (80%) of the bright features are rooted near strong-shear portions of neutral lines; (4) a great majority (85%) of long strong-shear segments of neutral lines have persistently bright coronal features rooted near them; (5) a large minority (40%) of long weak-shear segments of neutral lines have persistently bright coronal features rooted near them; and (6) the brightness of a persistently bright Coronal feature often changes greatly over a few hours. From these results, we conclude that most persistent enhanced heating of coronal loops in active regions: (1) requires the

  17. Enhancement of bismuth antibacterial activity with lipophilic thiol chelators.

    PubMed Central

    Domenico, P; Salo, R J; Novick, S G; Schoch, P E; Van Horn, K; Cunha, B A

    1997-01-01

    The antibacterial properties of bismuth are greatly enhanced when bismuth is combined with certain lipophilic thiol compounds. Antibacterial activity was enhanced from 25- to 300-fold by the following seven different thiols, in order of decreasing synergy: 1,3-propanedithiol, dimercaprol (BAL), dithiothreitol, 3-mercapto-2-butanol, beta-mercaptoethanol, 1-monothioglycerol, and mercaptoethylamine. The dithiols produced the greatest synergy with bismuth at optimum bismuth-thiol molar ratios of from 3:1 to 1:1. The monothiols were generally not as synergistic and required molar ratios of from 1:1 to 1:4 for optimum antibacterial activity. The most-active mono- or dithiols were also the most soluble in butanol. The intensity of the yellow formed by bismuth-thiol complexes reflected the degree of chelation and correlated with antibacterial potency at high molar ratios. The bismuth-BAL compound (BisBAL) was active against most bacteria, as assessed by broth dilution, agar diffusion, and agar dilution analyses. Staphylococci (MIC, 5 to 7 microM Bi3+) and Helicobacter pylori (MIC, 2.2 microM) were among the most sensitive bacteria. Gram-negative bacteria were sensitive (MIC, < 17 microM). Enterococci were relatively resistant (MIC, 63 microM Bi3+). The MIC range for anaerobes was 15 to 100 microM Bi3+, except for Clostridium difficile (MIC, 7.5 microM). Bactericidal activity averaged 29% above the MIC. Bactericidal activity increased with increasing pH and/or increasing temperature. Bismuth-thiol solubility, stability, and antibacterial activity depended on pH and the bismuth-thiol molar ratio. BisBAL was stable but ineffective against Escherichia coli at pH 4. Activity and instability (reactivity) increased with increasing alkalinity. BisBAL was acid soluble at a molar ratio of greater than 3:2 and alkaline soluble at a molar ratio of less than 2:3. In conclusion, certain lipophilic thiol compounds enhanced bismuth antibacterial activity against a broad spectrum of

  18. Great Thermal Conductivity Enhancement of Silicone Composite with Ultra-Long Copper Nanowires.

    PubMed

    Zhang, Liye; Yin, Junshan; Yu, Wei; Wang, Mingzhu; Xie, Huaqing

    2017-12-01

    In this paper, ultra-long copper nanowires (CuNWs) were successfully synthesized at a large scale by hydrothermal reduction of divalent copper ion using oleylamine and oleic acid as dual ligands. The characteristic of CuNWs is hard and linear, which is clearly different from graphene nanoplatelets (GNPs) and multi-wall carbon nanotubes (MWCNTs). The thermal properties and models of silicone composites with three nanomaterials have been mainly researched. The maximum of thermal conductivity enhancement is up to 215% with only 1.0 vol.% CuNW loading, which is much higher than GNPs and MWCNTs. It is due to the ultra-long CuNWs with a length of more than 100 μm, which facilitates the formation of effective thermal-conductive networks, resulting in great enhancement of thermal conductivity.

  19. Great Thermal Conductivity Enhancement of Silicone Composite with Ultra-Long Copper Nanowires

    NASA Astrophysics Data System (ADS)

    Zhang, Liye; Yin, Junshan; Yu, Wei; Wang, Mingzhu; Xie, Huaqing

    2017-07-01

    In this paper, ultra-long copper nanowires (CuNWs) were successfully synthesized at a large scale by hydrothermal reduction of divalent copper ion using oleylamine and oleic acid as dual ligands. The characteristic of CuNWs is hard and linear, which is clearly different from graphene nanoplatelets (GNPs) and multi-wall carbon nanotubes (MWCNTs). The thermal properties and models of silicone composites with three nanomaterials have been mainly researched. The maximum of thermal conductivity enhancement is up to 215% with only 1.0 vol.% CuNW loading, which is much higher than GNPs and MWCNTs. It is due to the ultra-long CuNWs with a length of more than 100 μm, which facilitates the formation of effective thermal-conductive networks, resulting in great enhancement of thermal conductivity.

  20. Use of benzo anologs to enhance antimycotic activity of kresoxim methyl for control of aflatoxigenic fungal pathogens

    USDA-ARS?s Scientific Manuscript database

    Potentiation of the conventional fungicide, strobilurin, was achieved by octylgallate-mediated chemosensitization. Octylgallate exhibited considerably higher antifungal activity compared to veratraldehyde. Octylgallate in concert with the fungicide, strobilurin (kresoxim methyl), greatly enhanced se...

  1. Tea enhances insulin activity.

    PubMed

    Anderson, Richard A; Polansky, Marilyn M

    2002-11-20

    The most widely known health benefits of tea relate to the polyphenols as the principal active ingredients in protection against oxidative damage and in antibacterial, antiviral, anticarcinogenic, and antimutagenic activities, but polyphenols in tea may also increase insulin activity. The objective of this study was to determine the insulin-enhancing properties of tea and its components. Tea, as normally consumed, was shown to increase insulin activity >15-fold in vitro in an epididymal fat cell assay. Black, green, and oolong teas but not herbal teas, which are not teas in the traditional sense because they do not contain leaves of Camellia senensis, were all shown to increase insulin activity. High-performance liquid chromatography fractionation of tea extracts utilizing a Waters SymmetryPrep C18 column showed that the majority of the insulin-potentiating activity for green and oolong teas was due to epigallocatechin gallate. For black tea, the activity was present in several regions of the chromatogram corresponding to, in addition to epigallocatechin gallate, tannins, theaflavins, and other undefined compounds. Several known compounds found in tea were shown to enhance insulin with the greatest activity due to epigallocatechin gallate followed by epicatechin gallate, tannins, and theaflavins. Caffeine, catechin, and epicatechin displayed insignificant insulin-enhancing activities. Addition of lemon to the tea did not affect the insulin-potentiating activity. Addition of 5 g of 2% milk per cup decreased the insulin-potentiating activity one-third, and addition of 50 g of milk per cup decreased the insulin-potentiating activity approximately 90%. Nondairy creamers and soy milk also decreased the insulin-enhancing activity. These data demonstrate that tea contains in vitro insulin-enhancing activity and the predominant active ingredient is epigallocatechin gallate.

  2. Salt-induced enhancement of antifreeze protein activity: a salting-out effect.

    PubMed

    Kristiansen, Erlend; Pedersen, Sindre Andre; Zachariassen, Karl Erik

    2008-10-01

    Antifreeze proteins are a structurally diverse group of proteins characterized by their unique ability to cause a separation of the melting- and growth-temperatures of ice. These proteins have evolved independently in different kinds of cold-adapted ectothermic animals, including insects and fish, where they protect against lethal freezing of the body fluids. There is a great variability in the capacity of different kinds of antifreeze proteins to evoke the antifreeze effect, but the basis of these differences is not well understood. This study reports on salt-induced enhancement of the antifreeze activity of an antifreeze protein from the longhorn beetle Rhagium inquisitor (L.). The results imply that antifreeze activity is predetermined by a steady-state distribution of the antifreeze protein between the solution and the ice surface region. The observed salt-induced enhancement of the antifreeze activity compares qualitatively and quantitatively with salt-induced lowering of protein solubility. Thus, salts apparently enhance antifreeze activity by evoking a solubility-induced shift in the distribution pattern of the antifreeze proteins in favour of the ice. These results indicate that the solubility of antifreeze proteins in the solution surrounding the ice crystal is a fundamental physiochemical property in relation to their antifreeze potency.

  3. Pretreatment of Parsley (Petroselinum crispum L.) Suspension Cultures with Methyl Jasmonate Enhances Elicitation of Activated Oxygen Species.

    PubMed Central

    Kauss, H.; Jeblick, W.; Ziegler, J.; Krabler, W.

    1994-01-01

    Suspension-cultured cells of parsley (Petroselinum crispum L.) were used to demonstrate an influence of jasmonic acid methyl ester (JAME) on the elicitation of activated oxygen species. Preincubation of the cell cultures for 1 d with JAME greatly enhanced the subsequent induction by an elicitor preparation from cell walls of Phytophtora megasperma f. sp. glycinea (Pmg elicitor) and by the polycation chitosan. Shorter preincubation times with JAME were less efficient, and the effect was saturated at about 5 [mu]M JAME. Treatment of the crude Pmg elicitor with trypsin abolished induction of activated oxygen species, an effect similar to that seen with elicitation of coumarin secretion. These results suggest that JAME conditioned the parsley suspension cells in a time-dependent manner to become more responsive to elicitation, reminiscent of developmental effects caused by JAME in whole plants. It is interesting that pretreatment of the parsley cultures with 2,6-dichloroisonicotinic and 5-chlorosalicylic acid only slightly enhanced the elicitation of activated oxygen species, whereas these substances greatly enhanced the elicitation of coumarin secretion. Therefore, these presumed inducers of systemic acquired resistance exhibit a specificity different from JAME. PMID:12232189

  4. Niobium pentoxide: a promising surface-enhanced Raman scattering active semiconductor substrate

    NASA Astrophysics Data System (ADS)

    Shan, Yufeng; Zheng, Zhihui; Liu, Jianjun; Yang, Yong; Li, Zhiyuan; Huang, Zhengren; Jiang, Dongliang

    2017-03-01

    Surface-enhanced Raman scattering technique, as a powerful tool to identify the molecular species, has been severely restricted to the noble metals. The surface-enhanced Raman scattering substrates based on semiconductors would overcome the shortcomings of metal substrates and promote development of surface-enhanced Raman scattering technique in surface science, spectroscopy, and biomedicine studies. However, the detection sensitivity and enhancement effects of semiconductor substrates are suffering from their weak activities. In this work, a semiconductor based on Nb2O5 is reported as a new candidate for highly sensitive surface-enhanced Raman scattering detection of dye molecules. The largest enhancement factor value greater than 107 was observed with the laser excitation at 633 and 780 nm for methylene blue detection. As far as literature review shows, this is in the rank of the highest sensitivity among semiconductor materials; even comparable to the metal nanostructure substrates with "hot spots". The impressive surface-enhanced Raman scattering activities can be attributed to the chemical enhancement dominated by the photo-induced charge transfer, as well as the electromagnetic enhancement, which have been supported by the density-functional-theory and finite element method calculation results. The chemisorption of dye on Nb2O5 creates a new highest occupied molecular orbital and lowest unoccupied molecular orbital contributed by both fragments in the molecule-Nb2O5 system, which makes the charge transfer more feasible with longer excitation wavelength. In addition, the electromagnetic enhancement mechanism also accounts for two orders of magnitude enhancement in the overall enhancement factor value. This work has revealed Nb2O5 nanoparticles as a new semiconductor surface-enhanced Raman scattering substrate that is able to replace noble metals and shows great potentials applied in the fields of biology related.

  5. Tectonic and Structural Controls of Geothermal Activity in the Great Basin Region, Western USA

    NASA Astrophysics Data System (ADS)

    Faulds, J. E.; Hinz, N.; Kreemer, C. W.

    2012-12-01

    We are conducting a thorough inventory of structural settings of geothermal systems (>400 total) in the extensional to transtensional Great Basin region of the western USA. Most of the geothermal systems in this region are not related to upper crustal magmatism and thus regional tectonic and local structural controls are the most critical factors controlling the locations of the geothermal activity. A system of NW-striking dextral faults known as the Walker Lane accommodates ~20% of the North American-Pacific plate motion in the western Great Basin and is intimately linked to N- to NNE-striking normal fault systems throughout the region. Overall, geothermal systems are concentrated in areas with the highest strain rates within or proximal to the eastern and western margins of the Great Basin, with the high temperature systems clustering in transtensional areas of highest strain rate in the northwestern Great Basin. Enhanced extension in the northwestern Great Basin probably results from the northwestward termination of the Walker Lane and the concomitant transfer of dextral shear into west-northwest directed extension, thus producing a broad transtensional region. The capacity of geothermal power plants also correlates with strain rates, with the largest (hundreds of megawatts) along the Walker Lane or San Andreas fault system, where strain rates range from 10-100 nanostrain/yr to 1,000 nanostrain/yr, respectively. Lesser systems (tens of megawatts) reside in the Basin and Range (outside the Walker Lane), where local strain rates are typically < 10 nanostrain/yr. Of the 250+ geothermal fields catalogued, step-overs or relay ramps in normal fault zones serve as the most favorable setting, hosting ~32% of the systems. Such areas have multiple, overlapping fault strands, increased fracture density, and thus enhanced permeability. Other common settings include a) intersections between normal faults and strike-slip or oblique-slip faults (27%), where multiple minor

  6. Facile synthesis of polyaniline-modified CuS with enhanced adsorbtion and photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Wang, Xiufang; Chen, Shaohua; Shuai, Ying

    2016-10-01

    Novel hierarchical polyaniline-modified CuS (PANI-CuS) has been synthesized by simple assembling PANI on the surface of flower-like CuS spheres. The PANI modification enhances the adsorption properties of flower-like CuS. The prepared PANI-CuS composites exhibit higher visible-light-driven photocatalytic activities in degradation of rhodamine B (RhB) than that of neat CuS. The unusual photocatalytic activity could be attributed to the great adsorptivity of dyes, the extended photoresponse range, and the high migration efficiency of photoinduced electrons, which may effectively suppress the charge recombination. This work not only provides a simple strategy for fabricating highly efficient and stable CuS-based composites, but also proves that these unique structures are excellent platforms for significantly improving their visible- light-driven photoactivities, holding great promise for their applications in the field of purifying polluted water resources.

  7. Surface enhanced Raman scattering, antibacterial and antifungal active triangular gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Smitha, S. L.; Gopchandran, K. G.

    2013-02-01

    Shape controlled syntheses of gold nanoparticles have attracted a great deal of attention as their optical, electronic, magnetic and biological properties are strongly dependent on the size and shape of the particles. Here is a report on the surface enhanced Raman scattering (SERS) activity of Cinnamomum zeylanicum leaf broth reduced gold nanoparticles consisting of triangular and spherical like particles, using 2-aminothiophenol (2-ATP) and crystal violet (CV) as probe molecules. Nanoparticles prepared with a minimum leaf broth concentration, having a greater number of triangular like particles exhibit a SERS activity of the order of 107. The synthesized nanoparticles exhibit efficient antibacterial activity against the tested gram negative bacterium Escherichia coli and gram positive bacterium Staphylococcus aureus. Investigations on the antifungal activity of the synthesized nanoparticles against Aspergillus niger and Fusarium oxysporum positive is also discussed.

  8. Nanocoating covalent organic frameworks on nickel nanowires for greatly enhanced-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Han, Yang; Hu, Nantao; Liu, Shuai; Hou, Zhongyu; Liu, Jiaqiang; Hua, Xiaolin; Yang, Zhi; Wei, Liangming; Wang, Lin; Wei, Hao

    2017-08-01

    Nanocoatings of covalent organic frameworks (COFs) on nickel nanowires (NiNWs) have been designed and successfully fabricated for the first time, which showed greatly enhanced electrochemical performances for supercapacitors. The specific capacitance of electrodes based on as-fabricated COFs nanocoatings reached up to 314 F g-1 at 50 A g-1, which retained 74% of the specific capacitance under the current density of 2 A g-1. The ultrahigh current density makes the charge-discharge process extremely rapid. The outstanding electrochemical performances of COFs nanocoating on NiNWs make it an ideal candidate for supercapacitors. And the nanocoating-design can also give a guidance for application of COFs in high-performance energy storages.

  9. Nanoparticle Delivery Enhancement With Acoustically Activated Microbubbles

    PubMed Central

    Mullin, Lee B; Phillips, Linsey C; Dayton, Paul A

    2013-01-01

    The application of microbubbles and ultrasound to deliver nanoparticle carriers for drug and gene delivery is an area that has expanded greatly in recent years. Under ultrasound exposure, microbubbles can enhance nanoparticle delivery by increasing cellular and vascular permeability. In this review, the underlying mechanisms of enhanced nanoparticle delivery with ultrasound and microbubbles and various proposed delivery techniques are discussed. Additionally, types of nanoparticles currently being investigated in preclinical studies, as well as the general limitations and benefits of a microbubble-based approach to nanoparticle delivery are reviewed. PMID:23287914

  10. Multiple autophosphorylations significantly enhance the endoribonuclease activity of human inositol requiring enzyme 1α

    PubMed Central

    2014-01-01

    Background Endoplasmic reticulum stress, caused by the presence of misfolded proteins, activates the stress sensor inositol-requiring enzyme 1α (IRE1α). The resulting increase in IRE1α RNase activity causes sequence-specific cleavage of X-box binding protein 1 (XBP1) mRNA, resulting in upregulation of the unfolded protein response and cellular adaptation to stress. The precise mechanism of human IRE1α activation is currently unclear. The role of IRE1α kinase activity is disputed, as results from the generation of various kinase-inactivating mutations in either yeast or human cells are discordant. Kinase activity can also be made redundant by small molecules which bind the ATP binding site. We set out to uncover a role for IRE1α kinase activity using wild-type cytosolic protein constructs. Results We show that concentration-dependent oligomerisation is sufficient to cause IRE1α cytosolic domain RNase activity in vitro. We demonstrate a role for the kinase activity by showing that autophosphorylation enhances RNase activity. Inclusion of the IRE1α linker domain in protein constructs allows hyperphosphorylation and further enhancement of RNase activity, highlighting the importance of kinase activity. We show that IRE1α phosphorylation status correlates with an increased propensity to form oligomeric complexes and that forced dimerisation causes great enhancement in RNase activity. In addition we demonstrate that even when IRE1α is forced to dimerise, by a GST-tag, phospho-enhancement of activity is still observed. Conclusions Taken together these experiments support the hypothesis that phosphorylation is important in modulating IRE1α RNase activity which is achieved by increasing the propensity of IRE1α to dimerise. This work supports the development of IRE1α kinase inhibitors for use in the treatment of secretory cancers. PMID:24524643

  11. Cytokinin oxidase from Phaseolus vulgaris callus tissues. Enhanced in vitro activity of the enzyme in the presence of copper-imidazole complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatfield, J.M.; Armstrong, D.J.

    1987-07-01

    The effects of metal ions on cytokinin oxidase activity extracted from callus tissues of Phaseolus vulgaris L. cv Great Northern have been examined using an assay based on the oxidation of N/sup 6/-(..delta../sup 2/-isopentenyl)-adenine-2,8-/sup 3/H (i/sup 6/ Ade) to adenine (Ade). The addition of cupric ions to reaction mixtures containing imidazole buffer markedly enhanced cytokinin oxidase activity. In the presence of optimal concentrations of copper and imidazole, cytokinin oxidase activity was stimulated more than 20-fold. The effect was enzyme dependent, specific for copper, and observed only in the presence of imidazole. The substrate specificity of the copper-imidazole enhanced reaction, asmore » judged by substrate competition tests, was the same as that observed in the absence of copper and imidazole. Similarly, in tests involving DEAE-cellulose chromatography, elution profiles of cytokinin oxidase activity determined using a copper-imidazole enhanced assay were identical to those obtained using an assay without copper and imidazole. On the basis of these results, the addition of copper and imidazole to reaction mixtures used to assay for cytokinin oxidase activity is judged to provide a reliable and specific assay of greatly enhanced sensitivity for the enzyme. The mechanism by which copper and imidazole enhance cytokinin oxidase activity is not certain, but the reaction catalyzed by the enzyme was not inhibited by anaerobic conditions when these reagents were present. This observation suggests that copper-imidazole complexes are substituting for oxygen in the reaction mechanism by which cytokinin oxidase effects cleavage of the N/sup 6/-side chain of i/sup 6/ Ade.« less

  12. The great 2012 Arctic Ocean summer cyclone enhanced biological productivity on the shelves

    PubMed Central

    Zhang, Jinlun; Ashjian, Carin; Campbell, Robert; Hill, Victoria; Spitz, Yvette H; Steele, Michael

    2014-01-01

    [1] A coupled biophysical model is used to examine the impact of the great Arctic cyclone of early August 2012 on the marine planktonic ecosystem in the Pacific sector of the Arctic Ocean (PSA). Model results indicate that the cyclone influences the marine planktonic ecosystem by enhancing productivity on the shelves of the Chukchi, East Siberian, and Laptev seas during the storm. Although the cyclone's passage in the PSA lasted only a few days, the simulated biological effects on the shelves last 1 month or longer. At some locations on the shelves, primary productivity (PP) increases by up to 90% and phytoplankton biomass by up to 40% in the wake of the cyclone. The increase in zooplankton biomass is up to 18% on 31 August and remains 10% on 15 September, more than 1 month after the storm. In the central PSA, however, model simulations indicate a decrease in PP and plankton biomass. The biological gain on the shelves and loss in the central PSA are linked to two factors. (1) The cyclone enhances mixing in the upper ocean, which increases nutrient availability in the surface waters of the shelves; enhanced mixing in the central PSA does not increase productivity because nutrients there are mostly depleted through summer draw down by the time of the cyclone's passage. (2) The cyclone also induces divergence, resulting from the cyclone's low-pressure system that drives cyclonic sea ice and upper ocean circulation, which transports more plankton biomass onto the shelves from the central PSA. The simulated biological gain on the shelves is greater than the loss in the central PSA, and therefore, the production on average over the entire PSA is increased by the cyclone. Because the gain on the shelves is offset by the loss in the central PSA, the average increase over the entire PSA is moderate and lasts only about 10 days. The generally positive impact of cyclones on the marine ecosystem in the Arctic, particularly on the shelves, is likely to grow with increasing

  13. The great 2012 Arctic Ocean summer cyclone enhanced biological productivity on the shelves.

    PubMed

    Zhang, Jinlun; Ashjian, Carin; Campbell, Robert; Hill, Victoria; Spitz, Yvette H; Steele, Michael

    2014-01-01

    [1] A coupled biophysical model is used to examine the impact of the great Arctic cyclone of early August 2012 on the marine planktonic ecosystem in the Pacific sector of the Arctic Ocean (PSA). Model results indicate that the cyclone influences the marine planktonic ecosystem by enhancing productivity on the shelves of the Chukchi, East Siberian, and Laptev seas during the storm. Although the cyclone's passage in the PSA lasted only a few days, the simulated biological effects on the shelves last 1 month or longer. At some locations on the shelves, primary productivity (PP) increases by up to 90% and phytoplankton biomass by up to 40% in the wake of the cyclone. The increase in zooplankton biomass is up to 18% on 31 August and remains 10% on 15 September, more than 1 month after the storm. In the central PSA, however, model simulations indicate a decrease in PP and plankton biomass. The biological gain on the shelves and loss in the central PSA are linked to two factors. (1) The cyclone enhances mixing in the upper ocean, which increases nutrient availability in the surface waters of the shelves; enhanced mixing in the central PSA does not increase productivity because nutrients there are mostly depleted through summer draw down by the time of the cyclone's passage. (2) The cyclone also induces divergence, resulting from the cyclone's low-pressure system that drives cyclonic sea ice and upper ocean circulation, which transports more plankton biomass onto the shelves from the central PSA. The simulated biological gain on the shelves is greater than the loss in the central PSA, and therefore, the production on average over the entire PSA is increased by the cyclone. Because the gain on the shelves is offset by the loss in the central PSA, the average increase over the entire PSA is moderate and lasts only about 10 days. The generally positive impact of cyclones on the marine ecosystem in the Arctic, particularly on the shelves, is likely to grow with increasing

  14. Cellular cooperation in lymphocyte activation. III. B-cell helper effect in the enhancement of T-cell response.

    PubMed

    Kasahara, T; Kin, K; Itoh, Y; Kawai, T; Kano, Y; Shioiri-Nakano, K

    1979-01-01

    T and B cells were purified from human tonsil and peripheral blood by the removal of phagocytic cells, followed by filtration through a nylon fiber column (NC) and E-rosette formation. Purified T and B cells contained less than 1% of other cell types. The responses of T cells to concanavalin A (Con A) and soluble protein A were greatly enhanced in the presence of autologous B cells. Participation of B cells in T-cell enhancement was confirmed by the following observations: (a) purified B copulation, which was separated further from adherent B cells, retained its enhancing activity. (b) Another adherent cell-free B-cell preparation, which was purified from the NC-passed fraction, and (c) no T lymphoid but some B lymphoid cell lines, elicited strong T-cell enhancement. It was also found that the enhancing capacity of B cells required no metabolic activity, but rather an intact cell form and direct cell-to-cell contact with responding cells. The stimulatory determinants on B cells were resistant to trypsin and neuraminidase treatment. In this paper a hypothesis will be presented that at least two signals are prerequisite for the effective activation of T cells.

  15. Both Enhanced Biocompatibility and Antibacterial Activity in Ag-Decorated TiO2 Nanotubes

    PubMed Central

    Lan, Ming-Ying; Liu, Chia-Pei; Huang, Her-Hsiung; Lee, Sheng-Wei

    2013-01-01

    In this study, Ag is electron-beam evaporated to modify the topography of anodic TiO2 nanotubes of different diameters to obtain an implant with enhanced antibacterial activity and biocompatibility. We found that highly hydrophilic as-grown TiO2 nanotubes became poorly hydrophilic with Ag incorporation; however they could effectively recover their wettability to some extent under ultraviolet light irradiation. The results obtained from antibacterial tests suggested that the Ag-decorated TiO2 nanotubes could greatly inhibit the growth of Staphylococcus aureus. In vitro biocompatibility evaluation indicated that fibroblast cells exhibited an obvious diameter-dependent behavior on both as-grown and Ag-decorated TiO2 nanotubes. Most importantly, of all samples, the smallest diameter (25-nm-diameter) Ag-decorated nanotubes exhibited the most obvious biological activity in promoting adhesion and proliferation of human fibroblasts, and this activity could be attributed to the highly irregular topography on a nanometric scale of the Ag-decorated nanotube surface. These experimental results demonstrate that by properly controlling the structural parameters of Ag-decorated TiO2 nanotubes, an implant surface can be produced that enhances biocompatibility and simultaneously boosts antibacterial activity. PMID:24124484

  16. A Sourcebook of Marine Activities Developed in the Milwaukee Great Lakes Summer Education Program, 1977 and 1978.

    ERIC Educational Resources Information Center

    Haney, Richard E., Ed.

    Twenty-seven activities dealing with the marine environment of the Great Lakes are presented. Designed for junior and senior high school students, these activities develop awareness of the biological, physical, social, economical, and aesthetic dimensions of the Great Lakes. Field trips, films, discussion, and hands-on activities are used to teach…

  17. Sport: A Leap into Learning? A Study of Participation in Sport and Fitness Activities in Great Britain.

    ERIC Educational Resources Information Center

    Aldridge, Fiona

    Participation in sport or fitness activities in Great Britain was examined through a survey of more than 6,000 adults throughout Great Britain. As of April 2001, 35% of adults surveyed were currently participating in sport or fitness activities. Those most likely to participate in sport or fitness activities were male, young, in high social…

  18. HIV enhancing activity of semen impairs the antiviral efficacy of microbicides

    PubMed Central

    Zirafi, Onofrio; Kim, Kyeong-Ae; Roan, Nadia R.; Kluge, Silvia F.; Müller, Janis A.; Jiang, Shibo; Mayer, Benjamin; Greene, Warner C.; Kirchhoff, Frank; Münch, Jan

    2015-01-01

    Topically applied microbicides potently inhibit HIV in vitro but have largely failed to exert protective effects in clinical trials. One possible reason for this discrepancy is that the preclinical testing of microbicides does not faithfully reflect the conditions of HIV sexual transmission. Here, we report that candidate microbicides that target HIV components show greatly reduced antiviral efficacy in the presence of semen, the main vector for HIV transmission. This diminished antiviral activity was dependent on the ability of amyloid fibrils in semen to enhance the infectivity of HIV. Thus, the anti-HIV efficacy of microbicides determined in the absence of semen greatly underestimated the drug concentrations needed to block semen-exposed virus. One notable exception was Maraviroc. This HIV entry inhibitor targets the host cell CCR5 coreceptor and was highly active against both untreated and semen-exposed HIV. These data help explain why microbicides have failed to protect against HIV in clinical trials and suggest that antiviral compounds targeting host factors hold promise for further development. These findings also suggest that the in vitro efficacy of candidate microbicides should be determined in the presence of semen to identify the best candidates for the prevention of HIV sexual transmission. PMID:25391483

  19. Multivalent Porous Silicon Nanoparticles Enhance the Immune Activation Potency of Agonistic CD40 Antibody

    PubMed Central

    Gu, Luo; Ruff, Laura E.; Qin, Zhengtao; Corr, Maripat P.; Hedrick, Stephen M.; Sailor, Michael J.

    2012-01-01

    One of the fundamental paradigms in the use of nanoparticles to treat disease is to evade or suppress the immune system in order to minimize systemic side effects and deliver sufficient nanoparticle quantities to the intended tissues. However, the immune system is the body's most important and effective defense against diseases. It protects the host by identifying and eliminating foreign pathogens as well as selfmalignancies. Here we report a nanoparticle engineered to work with the immune system, enhancing the intended activation of antigen presenting cells (APCs). We show that luminescent porous silicon nanoparticles (LPSiNPs), each containing multiple copies of an agonistic antibody (FGK45) to the APC receptor CD40, greatly enhance activation of B cells. The cellular response to the nanoparticle-based stimulators is equivalent to a 30–40 fold larger concentration of free FGK45. The intrinsic near-infrared photoluminescence of LPSiNPs is used to monitor degradation and track the nanoparticles inside APCs. PMID:22689074

  20. Transcription through enhancers suppresses their activity in Drosophila

    PubMed Central

    2013-01-01

    Background Enhancer elements determine the level of target gene transcription in a tissue-specific manner, providing for individual patterns of gene expression in different cells. Knowledge of the mechanisms controlling enhancer action is crucial for understanding global regulation of transcription. In particular, enhancers are often localized within transcribed regions of the genome. A number of experiments suggest that transcription can have both positive and negative effects on regulatory elements. In this study, we performed direct tests for the effect of transcription on enhancer activity. Results Using a transgenic reporter system, we investigated the relationship between the presence of pass-through transcription and the activity of Drosophila enhancers controlling the expression of the white and yellow genes. The results show that transcription from different promoters affects the activity of enhancers, counteracting their ability to activate the target genes. As expected, the presence of a transcriptional terminator between the inhibiting promoter and the affected enhancer strongly reduces the suppression. Moreover, transcription leads to dislodging of the Zeste protein that is responsible for the enhancer-dependent regulation of the white gene, suggesting a 'transcription interference’ mechanism for this regulation. Conclusions Our findings suggest a role for pass-through transcription in negative regulation of enhancer activity. PMID:24279291

  1. Temporal and spatial patterns of Holocene dune activity on the Great Plains of North America: megadroughts and climate links

    NASA Astrophysics Data System (ADS)

    Forman, Steven L.; Oglesby, Robert; Webb, Robert S.

    2001-05-01

    The Holocene record of eolian sand and loess deposition is reviewed for numerous presently stabilized dune fields on the Great Plains of North America. Dune field activity reflects decade-to-century-scale dominance of drought that exceeded historic conditions, with a growing season deficit of precipitation >25%. The largest dune fields, the Nebraska Sand Hills and ergs in eastern Colorado, Kansas and the Southern High Plains showed peak activity sometime between ca. 7 and 5 cal. ka. Loess deposition between ca. 10 and 4 cal. ka also signifies widespread aridity. Most dune fields exhibit evidence for one or more reactivation events sometime in the past 2 cal. ka; a number of localities register two events post 1 cal. ka, the latest potentially after 1400 AD. However, there is not a clear association of the latest dune remobilization events with up to 13 droughts in the past 2 cal. ka identified in dendroclimatic and lacustrine records. Periods of persistent drought are associated with a La Niña-dominated climate state, with cooling of sea surface temperatures in the tropical Pacific Ocean and later of the tropical Atlantic Ocean and the Gulf of Mexico that significantly weakens cyclogenesis over central North America. As drought proceeds, reduced soil moisture and vegetation cover would lessen evaporative cooling and increase surface temperatures. These surface changes strengthen the eastward expansion of a high-pressure ridge aloft and shift the jet stream northward, further enhancing continent-wide drought. Uncertainty persists if dune fields will reactivate in the future at a scale similar to the Holocene because of widespread irrigation, the lack of migratory bison herds, and the suppression of prairie fires, all of which enhance stabilization of dune fields in the Great Plains.

  2. Activities Contributing a Great Deal to the Students' Interactive Skills in Foreign Language Classes

    ERIC Educational Resources Information Center

    Asatryan, Susanna

    2016-01-01

    While teaching speaking it is desired to provide a rich environment in class for meaningful communication to take place. With this aim, various speaking activities can contribute a great deal to students in developing their interactive skills necessary for life. These activities make students active in the learning process and at the same time…

  3. Synergistic retention strategy of RGD active targeting and radiofrequency-enhanced permeability for intensified RF & chemotherapy synergistic tumor treatment.

    PubMed

    Zhang, Kun; Li, Pei; He, Yaping; Bo, Xiaowan; Li, Xiaolong; Li, Dandan; Chen, Hangrong; Xu, Huixiong

    2016-08-01

    Despite gaining increasing attention, chelation of multiple active targeting ligands greatly increase the formation probability of protein corona, disabling active targeting. To overcome it, a synergistic retention strategy of RGD-mediated active targeting and radiofrequency (RF) electromagnetic field-enhanced permeability has been proposed here. It is validated that such a special synergistic retention strategy can promote more poly lactic-co-glycolic acid (PLGA)-based capsules encapsulating camptothecin (CPT) and solid DL-menthol (DLM) to enter and retain in tumor in vitro and in vivo upon exposure to RF irradiation, receiving an above 8 fold enhancement in HeLa retention. Moreover, the PLGA-based capsules can respond RF field to trigger the entrapped DLM to generate solid-liquid-gas (SLG) tri-phase transformation for enhancing RF ablation and CPT release. Therefore, depending on the enhanced RF ablation and released CPT and the validated synergistic retention effect, the inhibitory outcome for tumor growth has gained an over 10-fold improvement, realizing RF ablation & chemotherapy synergistic treatment against HeLa solid tumor, which indicates a significant promise in clinical RF ablation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Enhanced oxidation of naphthalene using plasma activation of TiO2/diatomite catalyst.

    PubMed

    Wu, Zuliang; Zhu, Zhoubin; Hao, Xiaodong; Zhou, Weili; Han, Jingyi; Tang, Xiujuan; Yao, Shuiliang; Zhang, Xuming

    2018-04-05

    Non-thermal plasma technology has great potential in reducing polycyclic aromatic hydrocarbons (PAHs) emission. But in plasma-alone process, various undesired by-products are produced, which causes secondary pollutions. Here, a dielectric barrier discharge (DBD) reactor has been developed for the oxidation of naphthalene over a TiO 2 /diatomite catalyst at low temperature. In comparison to plasma-alone process, the combination of plasma and TiO 2 /diatomite catalyst significantly enhanced naphthalene conversion (up to 40%) and CO x selectivity (up to 92%), and substantially reduced the formation of aerosol (up to 90%) and secondary volatile organic compounds (up to near 100%). The mechanistic study suggested that the presence of the TiO 2 /diatomite catalyst intensified the electron energy in the DBD. Meantime, the energized electrons generated in the discharge activated TiO 2 , while the presence of ozone enhanced the activity of the TiO 2 /diatomite catalyst. This plasma-catalyst interaction led to the synergetic effect resulting from the combination of plasma and TiO 2 /diatomite catalyst, consequently enhanced the oxidation of naphthalene. Importantly, we have demonstrated the effectiveness of plasma to activate the photocatalyst for the deep oxidation of PAH without external heating, which is potentially valuable in the development of cost-effective gas cleaning process for the removal of PAHs in vehicle applications during cold start conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Method for enhancing amidohydrolase activity of fatty acid amide hydrolase

    DOEpatents

    John, George; Nagarajan, Subbiah; Chapman, Kent; Faure, Lionel; Koulen, Peter

    2016-10-25

    A method for enhancing amidohydrolase activity of Fatty Acid Amide Hydrolase (FAAH) is disclosed. The method comprising administering a phenoxyacylethanolamide that causes the enhanced activity. The enhanced activity can have numerous effects on biological organisms including, for example, enhancing the growth of certain seedlings. The subject matter disclosed herein relates to enhancers of amidohydrolase activity.

  6. Late Pleistocene dune activity in the central Great Plains, USA

    USGS Publications Warehouse

    Mason, J.A.; Swinehart, J.B.; Hanson, P.R.; Loope, D.B.; Goble, R.J.; Miao, X.; Schmeisser, R.L.

    2011-01-01

    Stabilized dunes of the central Great Plains, especially the megabarchans and large barchanoid ridges of the Nebraska Sand Hills, provide dramatic evidence of late Quaternary environmental change. Episodic Holocene dune activity in this region is now well-documented, but Late Pleistocene dune mobility has remained poorly documented, despite early interpretations of the Sand Hills dunes as Pleistocene relicts. New optically stimulated luminescence (OSL) ages from drill cores and outcrops provide evidence of Late Pleistocene dune activity at sites distributed across the central Great Plains. In addition, Late Pleistocene eolian sands deposited at 20-25 ka are interbedded with loess south of the Sand Hills. Several of the large dunes sampled in the Sand Hills clearly contain a substantial core of Late Pleistocene sand; thus, they had developed by the Late Pleistocene and were fully mobile at that time, although substantial sand deposition and extensive longitudinal dune construction occurred during the Holocene. Many of the Late Pleistocene OSL ages fall between 17 and 14 ka, but it is likely that these ages represent only the later part of a longer period of dune construction and migration. At several sites, significant Late Pleistocene or Holocene large-dune migration also probably occurred after the time represented by the Pleistocene OSL ages. Sedimentary structures in Late Pleistocene eolian sand and the forms of large dunes potentially constructed in the Late Pleistocene both indicate sand transport dominated by northerly to westerly winds, consistent with Late Pleistocene loess transport directions. Numerical modeling of the climate of the Last Glacial Maximum has often yielded mean monthly surface winds southwest of the Laurentide Ice Sheet that are consistent with this geologic evidence, despite strengthened anticyclonic circulation over the ice sheet. Mobility of large dunes during the Late Pleistocene on the central Great Plains may have been the result of

  7. Widespread Enhancer Activity from Core Promoters.

    PubMed

    Medina-Rivera, Alejandra; Santiago-Algarra, David; Puthier, Denis; Spicuglia, Salvatore

    2018-06-01

    Gene expression in higher eukaryotes is precisely regulated in time and space through the interplay between promoters and gene-distal regulatory regions, known as enhancers. The original definition of enhancers implies the ability to activate gene expression remotely, while promoters entail the capability to locally induce gene expression. Despite the conventional distinction between them, promoters and enhancers share many genomic and epigenomic features. One intriguing finding in the gene regulation field comes from the observation that many core promoter regions display enhancer activity. Recent high-throughput reporter assays along with clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-related approaches have indicated that this phenomenon is common and might have a strong impact on our global understanding of genome organisation and gene expression regulation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Enhanced multimaterial 4D printing with active hinges

    NASA Astrophysics Data System (ADS)

    Akbari, Saeed; Hosein Sakhaei, Amir; Kowsari, Kavin; Yang, Bill; Serjouei, Ahmad; Yuanfang, Zhang; Ge, Qi

    2018-06-01

    Despite great progress in four-dimensional (4D) printing, i.e. three-dimensional (3D) printing of active (stimuli-responsive) materials, the relatively low actuation force of the 4D printed structures often impedes their engineering applications. In this study, we use multimaterial inkjet 3D printing technology to fabricate shape memory structures, including a morphing wing flap and a deployable structure, which consist of active and flexible hinges joining rigid (non-active) parts. The active hinges, printed from a shape memory polymer (SMP), lock the structure into a second temporary shape during a thermomechanical programming process, while the flexible hinges, printed from an elastomer, effectively increase the actuation force and the load-bearing capacity of the printed structure as reflected in the recovery ratio. A broad range of mechanical properties such as modulus and failure strain can be achieved for both active and flexible hinges by varying the composition of the two base materials, i.e. the SMP and the elastomer, to accommodate large deformation induced during programming step, and enhance the recovery in the actuating step. To find the important design parameters, including local deformation, shape fixity and recovery ratio, we conduct high fidelity finite element simulations, which are able to accurately predict the nonlinear deformation of the printed structures. In addition, a coupled thermal-electrical finite element analysis was performed to model the heat transfer within the active hinges during the localized Joule heating process. The model predictions showed good agreement with the measured temperature data and were used to find the major parameters affecting temperature distribution including the applied voltage and the convection rate.

  9. Great Lakes: Chemical Monitoring

    ERIC Educational Resources Information Center

    Delfino, Joseph J.

    1976-01-01

    The Tenth Great Lakes Regional Meeting of the American Chemical Society met to assess current Chemical Research activity in the Great Lakes Basin, and addressed to the various aspects of the theme, Chemistry of the Great Lakes. Research areas reviewed included watershed studies, atmospheric and aquatic studies, and sediment studies. (BT)

  10. A PLAN FOR EVALUATING MAJOR ACTIVITIES IN GREAT CITIES SCHOOL IMPROVEMENT PROGRAM.

    ERIC Educational Resources Information Center

    MARBURGER, CARL L.; RASSCHAERT, WILLIAM M.

    THE GUIDE IS INTENDED TO ASSIST PROJECT DIRECTORS IN THEIR EFFORTS TO DEVELOP MORE SYSTEMATIC AND THOROUGH EVALUATION DESIGNS FOR THE GREAT CITIES SCHOOL IMPROVEMENT PROGRAM. MAJOR DIMENSIONS OF TEACHING-LEARNING, SCHOOL-COMMUNITY, AND PUPIL-PARENT-TEACHER ACTIVITIES ARE LISTED. MAJOR EVALUATION AREAS ARE IN PUPIL ACHIEVEMENT, IMPLEMENTED BY GROUP…

  11. Method for enhancing amidohydrolase activity of fatty acid amide hydrolase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John, George; Nagarajan, Subbiah; Chapman, Kent

    A method for enhancing amidohydrolase activity of Fatty Acid Amide Hydrolase (FAAH) is disclosed. The method comprising administering a phenoxyacyl-ethanolamide that causes the enhanced activity. The enhanced activity can have numerous effects on biological organisms including, for example, enhancing the growth of certain seedlings.

  12. 2D double-layer-tube-shaped structure Bi2S3/ZnS heterojunction with enhanced photocatalytic activities

    NASA Astrophysics Data System (ADS)

    Gao, Xiaoming; Wang, Zihang; Fu, Feng; Li, Xiang; Li, Wenhong

    2015-10-01

    Bi2S3/ZnS heterojunction with 2D double-layer-tube-shaped structures was prepared by the facile synthesis method. The corresponding relationship was obtained among loaded content to phase, morphology, and optical absorption property of Bi2S3/ZnS composite. The results shown that Bi2S3 loaded could evidently change the crystallinity of ZnS, enhance the optical absorption ability for visible light of ZnS, and improve the morphologies and microstructure of ZnS. The photocatalytic activities of the Bi2S3/ZnS sample were evaluated for the photodegradation of phenol and desulfurization of thiophene under visible light irradiation. The results showed that Bi2S3 loaded greatly improved the photocatalytic activity of ZnS, and the content of loaded Bi2S3 had an impact on the catalytic activity of ZnS. Moreover, the mechanism of enhanced photocatalytic activity was also investigated by analysis of relative band positions of Bi2S3 and ZnS, and photo-generated hole was main active radicals during photocatalytic oxidation process.

  13. Profiles of Ionospheric Storm-enhanced Density during the 17 March 2015 Great Storm

    NASA Astrophysics Data System (ADS)

    Liu, J.; Wang, W.; Burns, A. G.; Yue, X.; Zhang, S.; Zhang, Y.

    2015-12-01

    Ionospheric F2 region peak densities (NmF2) are expected to show a positive phase correlation with total electron content (TEC), and electron density is expected to have an anti-correlation with electron temperature near the ionospheric F2 peak. However, we show that, during the 17 March 2015 great storm, TEC and F2 region electron density peak height (hmF2) over Millstone Hill increased, but the F2 region electron density peak (NmF2) decreased significantly during the storm-enhanced density (SED) phase of the storm compared with the quiet-time ionosphere. This SED occurred where there was a negative ionospheric storm near the F2 peak and below it. The weak ionosphere below the F2 peak resulted in much reduced downward heat conduction for the electrons, trapping the heat in the topside. This, in turn, increased the topside scale height, so that, even though electron densities at the F2 peak were depleted, TEC increased in the SED. The depletion in NmF2 was probably caused by an increase in the density of the molecular neutrals, resulting in enhanced recombination. In addition, the storm-time topside ionospheric electron density profile was much closer to diffusive equilibrium than non-storm time profile because of less daytime plasma flow from the ionosphere to the plasmasphere.

  14. Enhanced activation of the left hemisphere promotes normative decision making.

    PubMed

    Corser, Ryan; Jasper, John D

    2014-01-01

    Previous studies have reported that enhanced activation of the left cerebral hemisphere reduces risky-choice, attribute, and goal-framing effects relative to enhanced activation of the right cerebral hemisphere. The present study sought to extend these findings and show that enhanced activation of the left hemisphere also reduces violations of other normative principles, besides the invariance principle. Participants completed ratio bias (Experiment 1, N = 296) and base rate neglect problems (Experiment 2, N = 145) under normal (control) viewing or with the right or left hemisphere primarily activated by imposing a unidirectional gaze. In Experiment 1 we found that enhanced left hemispheric activation reduced the ratio bias relative to normal viewing and a group experiencing enhanced right hemispheric activation. In Experiment 2 enhanced left hemispheric activation resulted in using base rates more than normal viewing, but not significantly more than enhanced right hemispheric activation. Results suggest that hemispheric asymmetries can affect higher-order cognitive processes, such as decision-making biases. Possible theoretical accounts are discussed as well as implications for dual-process theories.

  15. Hotspots of aberrant enhancer activity punctuate the colorectal cancer epigenome

    PubMed Central

    Cohen, Andrea J.; Saiakhova, Alina; Corradin, Olivia; Luppino, Jennifer M.; Lovrenert, Katreya; Bartels, Cynthia F.; Morrow, James J.; Mack, Stephen C.; Dhillon, Gursimran; Beard, Lydia; Myeroff, Lois; Kalady, Matthew F.; Willis, Joseph; Bradner, James E.; Keri, Ruth A.; Berger, Nathan A.; Pruett-Miller, Shondra M.; Markowitz, Sanford D.; Scacheri, Peter C.

    2017-01-01

    In addition to mutations in genes, aberrant enhancer element activity at non-coding regions of the genome is a key driver of tumorigenesis. Here, we perform epigenomic enhancer profiling of a cohort of more than forty genetically diverse human colorectal cancer (CRC) specimens. Using normal colonic crypt epithelium as a comparator, we identify enhancers with recurrently gained or lost activity across CRC specimens. Of the enhancers highly recurrently activated in CRC, most are constituents of super enhancers, are occupied by AP-1 and cohesin complex members, and originate from primed chromatin. Many activate known oncogenes, and CRC growth can be mitigated through pharmacologic inhibition or genome editing of these loci. Nearly half of all GWAS CRC risk loci co-localize to recurrently activated enhancers. These findings indicate that the CRC epigenome is defined by highly recurrent epigenetic alterations at enhancers which activate a common, aberrant transcriptional programme critical for CRC growth and survival. PMID:28169291

  16. Microbial Consortium with High Cellulolytic Activity (MCHCA) for Enhanced Biogas Production

    PubMed Central

    Poszytek, Krzysztof; Ciezkowska, Martyna; Sklodowska, Aleksandra; Drewniak, Lukasz

    2016-01-01

    The use of lignocellulosic biomass as a substrate in agricultural biogas plants is very popular and yields good results. However, the efficiency of anaerobic digestion, and thus biogas production, is not always satisfactory due to the slow or incomplete degradation (hydrolysis) of plant matter. To enhance the solubilization of the lignocellulosic biomass various physical, chemical and biological pretreatment methods are used. The aim of this study was to select and characterize cellulose-degrading bacteria, and to construct a microbial consortium, dedicated for degradation of maize silage and enhancing biogas production from this substrate. Over 100 strains of cellulose-degrading bacteria were isolated from: sewage sludge, hydrolyzer from an agricultural biogas plant, cattle slurry and manure. After physiological characterization of the isolates, 16 strains (representatives of Bacillus, Providencia, and Ochrobactrum genera) were chosen for the construction of a Microbial Consortium with High Cellulolytic Activity, called MCHCA. The selected strains had a high endoglucanase activity (exceeding 0.21 IU/mL CMCase activity) and a wide range of tolerance to various physical and chemical conditions. Lab-scale simulation of biogas production using the selected strains for degradation of maize silage was carried out in a two-bioreactor system, similar to those used in agricultural biogas plants. The obtained results showed that the constructed MCHCA consortium is capable of efficient hydrolysis of maize silage, and increases biogas production by even 38%, depending on the inoculum used for methane fermentation. The results in this work indicate that the mesophilic MCHCA has a great potential for application on industrial scale in agricultural biogas plants. PMID:27014244

  17. Megadroughts and late Holocene dune activation at the eastern margin of the Great Plains, north-central Kansas, USA

    NASA Astrophysics Data System (ADS)

    Hanson, P. R.; Arbogast, A. F.; Johnson, W. C.; Joeckel, R. M.; Young, A. R.

    2010-01-01

    Optical and radiocarbon dating indicates that alluvium underlying dunes near Abilene was deposited at or before ˜45 ka, and that the overlying dunes were active at ˜1.1-0.5 ka. Geochemical data indicate that the Abilene dune sand is immature and was derived from the underlying Pleistocene alluvium, and not from Holocene age Smoky Hill River deposits. These findings suggest that dune activation was a response to increased aridity and local reduction in vegetation cover as opposed to changes in sediment availability from nearby rivers. The time interval of dune activation at Abilene overlaps Medieval Warm Period megadroughts, similar to the larger and more westerly dune fields on the Great Plains, including the Nebraska Sand Hills and the Great Bend Sand Prairie. The activation of smaller dune fields such as the Abilene dunes near the more humid eastern margin of the Great Plains shows the geographic extent and severity of paleodrought events. Unlike the Duncan dunes, another plains-marginal dune field, however, the Abilene dunes show no evidence for multiple drought events during the Holocene. This difference in dune activity, if it is not a result of sampling or preservation bias, indicates variations in the extent and severity of older drought events at the eastern margin of the Great Plains.

  18. The role of the Bureau of Sport Fisheries and Wildlife in the Great Lakes

    USGS Publications Warehouse

    Hester, F. Eugene

    1973-01-01

    Ecological blunders of man, such as timber exploitation, draining of wetlands, construction of canals and dams, and pollution have been mainly responsible for serious environmental degradation and catastrophic losses of fish and wildlife values in the Great Lakes Basin. Consequently, the major emphasis of the Bureau of Sport Fisheries and Wildlife must be on the protection and enhancement of the Great Lakes habitat -- primarily as a single large ecosystem, rather than as a number of political units separated by ecologically meaningless boundaries. By authority of Congress, the Bureau has long been concerned in the Great Lakes region with such diverse activities as establishing refuges for migratory waterfowl, conducting fishery research, evaluating the effects of federally sponsored water resource development projects on fish and wildlife, rearing and stocking of game fish, and assisting the states in fish and wildlife management by giving technical advice and financial assistance. Thus, the Bureau shares a strong common interest with other federal administrative units, as well as with state, interstate, and international agencies, in protecting, enhancing, and ensuring the wise use of fish and wildlife in the Great Lakes Basin.

  19. Discovery of stimulation-responsive immune enhancers with CRISPR activation

    PubMed Central

    Simeonov, Dimitre R.; Gowen, Benjamin G.; Boontanrart, Mandy; Roth, Theodore L.; Gagnon, John D.; Mumbach, Maxwell R.; Satpathy, Ansuman T.; Lee, Youjin; Bray, Nicolas L.; Chan, Alice Y.; Lituiev, Dmytro S.; Nguyen, Michelle L.; Gate, Rachel E.; Subramaniam, Meena; Li, Zhongmei; Woo, Jonathan M.; Mitros, Therese; Ray, Graham J.; Curie, Gemma L.; Naddaf, Nicki; Chu, Julia S.; Ma, Hong; Boyer, Eric; Van Gool, Frederic; Huang, Hailiang; Liu, Ruize; Tobin, Victoria R.; Schumann, Kathrin; Daly, Mark J.; Farh, Kyle K; Ansel, K. Mark; Ye, Chun J.; Greenleaf, William J.; Anderson, Mark S.; Bluestone, Jeffrey A.; Chang, Howard Y.; Corn, Jacob E.; Marson, Alexander

    2017-01-01

    The majority of genetic variants associated with common human diseases map to enhancers, non-coding elements that shape cell-type-specific transcriptional programs and responses to extracellular cues1–3. Systematic mapping of functional enhancers and their biological contexts is required to understand the mechanisms by which variation in non-coding genetic sequences contributes to disease. Functional enhancers can be mapped by genomic sequence disruption4–6, but this approach is limited to the subset of enhancers that are necessary in the particular cellular context being studied. We hypothesized that recruitment of a strong transcriptional activator to an enhancer would be sufficient to drive target gene expression, even if that enhancer was not currently active in the assayed cells. Here we describe a discovery platform that can identify stimulus-responsive enhancers for a target gene independent of stimulus exposure. We used tiled CRISPR activation (CRISPRa)7 to synthetically recruit a transcriptional activator to sites across large genomic regions (more than 100 kilobases) surrounding two key autoimmunity risk loci, CD69 and IL2RA. We identified several CRISPRa-responsive elements with chromatin features of stimulus-responsive enhancers, including an IL2RA enhancer that harbours an autoimmunity risk variant. Using engineered mouse models, we found that sequence perturbation of the disease-associated Il2ra enhancer did not entirely block Il2ra expression, but rather delayed the timing of gene activation in response to specific extracellular signals. Enhancer deletion skewed polarization of naive T cells towards a pro-inflammatory T helper (TH17) cell state and away from a regulatory T cell state. This integrated approach identifies functional enhancers and reveals how non-coding variation associated with human immune dysfunction alters context-specific gene programs. PMID:28854172

  20. Discovery of stimulation-responsive immune enhancers with CRISPR activation.

    PubMed

    Simeonov, Dimitre R; Gowen, Benjamin G; Boontanrart, Mandy; Roth, Theodore L; Gagnon, John D; Mumbach, Maxwell R; Satpathy, Ansuman T; Lee, Youjin; Bray, Nicolas L; Chan, Alice Y; Lituiev, Dmytro S; Nguyen, Michelle L; Gate, Rachel E; Subramaniam, Meena; Li, Zhongmei; Woo, Jonathan M; Mitros, Therese; Ray, Graham J; Curie, Gemma L; Naddaf, Nicki; Chu, Julia S; Ma, Hong; Boyer, Eric; Van Gool, Frederic; Huang, Hailiang; Liu, Ruize; Tobin, Victoria R; Schumann, Kathrin; Daly, Mark J; Farh, Kyle K; Ansel, K Mark; Ye, Chun J; Greenleaf, William J; Anderson, Mark S; Bluestone, Jeffrey A; Chang, Howard Y; Corn, Jacob E; Marson, Alexander

    2017-09-07

    The majority of genetic variants associated with common human diseases map to enhancers, non-coding elements that shape cell-type-specific transcriptional programs and responses to extracellular cues. Systematic mapping of functional enhancers and their biological contexts is required to understand the mechanisms by which variation in non-coding genetic sequences contributes to disease. Functional enhancers can be mapped by genomic sequence disruption, but this approach is limited to the subset of enhancers that are necessary in the particular cellular context being studied. We hypothesized that recruitment of a strong transcriptional activator to an enhancer would be sufficient to drive target gene expression, even if that enhancer was not currently active in the assayed cells. Here we describe a discovery platform that can identify stimulus-responsive enhancers for a target gene independent of stimulus exposure. We used tiled CRISPR activation (CRISPRa) to synthetically recruit a transcriptional activator to sites across large genomic regions (more than 100 kilobases) surrounding two key autoimmunity risk loci, CD69 and IL2RA. We identified several CRISPRa-responsive elements with chromatin features of stimulus-responsive enhancers, including an IL2RA enhancer that harbours an autoimmunity risk variant. Using engineered mouse models, we found that sequence perturbation of the disease-associated Il2ra enhancer did not entirely block Il2ra expression, but rather delayed the timing of gene activation in response to specific extracellular signals. Enhancer deletion skewed polarization of naive T cells towards a pro-inflammatory T helper (T H 17) cell state and away from a regulatory T cell state. This integrated approach identifies functional enhancers and reveals how non-coding variation associated with human immune dysfunction alters context-specific gene programs.

  1. Discovery of stimulation-responsive immune enhancers with CRISPR activation

    NASA Astrophysics Data System (ADS)

    Simeonov, Dimitre R.; Gowen, Benjamin G.; Boontanrart, Mandy; Roth, Theodore L.; Gagnon, John D.; Mumbach, Maxwell R.; Satpathy, Ansuman T.; Lee, Youjin; Bray, Nicolas L.; Chan, Alice Y.; Lituiev, Dmytro S.; Nguyen, Michelle L.; Gate, Rachel E.; Subramaniam, Meena; Li, Zhongmei; Woo, Jonathan M.; Mitros, Therese; Ray, Graham J.; Curie, Gemma L.; Naddaf, Nicki; Chu, Julia S.; Ma, Hong; Boyer, Eric; van Gool, Frederic; Huang, Hailiang; Liu, Ruize; Tobin, Victoria R.; Schumann, Kathrin; Daly, Mark J.; Farh, Kyle K.; Ansel, K. Mark; Ye, Chun J.; Greenleaf, William J.; Anderson, Mark S.; Bluestone, Jeffrey A.; Chang, Howard Y.; Corn, Jacob E.; Marson, Alexander

    2017-09-01

    The majority of genetic variants associated with common human diseases map to enhancers, non-coding elements that shape cell-type-specific transcriptional programs and responses to extracellular cues. Systematic mapping of functional enhancers and their biological contexts is required to understand the mechanisms by which variation in non-coding genetic sequences contributes to disease. Functional enhancers can be mapped by genomic sequence disruption, but this approach is limited to the subset of enhancers that are necessary in the particular cellular context being studied. We hypothesized that recruitment of a strong transcriptional activator to an enhancer would be sufficient to drive target gene expression, even if that enhancer was not currently active in the assayed cells. Here we describe a discovery platform that can identify stimulus-responsive enhancers for a target gene independent of stimulus exposure. We used tiled CRISPR activation (CRISPRa) to synthetically recruit a transcriptional activator to sites across large genomic regions (more than 100 kilobases) surrounding two key autoimmunity risk loci, CD69 and IL2RA. We identified several CRISPRa-responsive elements with chromatin features of stimulus-responsive enhancers, including an IL2RA enhancer that harbours an autoimmunity risk variant. Using engineered mouse models, we found that sequence perturbation of the disease-associated Il2ra enhancer did not entirely block Il2ra expression, but rather delayed the timing of gene activation in response to specific extracellular signals. Enhancer deletion skewed polarization of naive T cells towards a pro-inflammatory T helper (TH17) cell state and away from a regulatory T cell state. This integrated approach identifies functional enhancers and reveals how non-coding variation associated with human immune dysfunction alters context-specific gene programs.

  2. IL-2 activation of STAT5 enhances production of IL-10 from human cytotoxic regulatory T cells, HOZOT.

    PubMed

    Tsuji-Takayama, Kazue; Suzuki, Motoyuki; Yamamoto, Mayuko; Harashima, Akira; Okochi, Ayumi; Otani, Takeshi; Inoue, Toshiya; Sugimoto, Akira; Motoda, Ryuichi; Yamasaki, Fumiyuki; Nakamura, Shuji; Kibata, Masayoshi

    2008-02-01

    Interleukin (IL)-10 is an immunosuppressive cytokine produced by many cell types, including T cells. We previously reported that a novel type of regulatory T (Treg) cells, termed HOZOT, which possesses a FOXP3+CD4+CD8+CD25+ phenotype and dual suppressor/cytotoxic activities, produced high levels of IL-10. In this study, we examined the mechanisms of high IL-10 production by HOZOT, focusing on Janus activating kinase (JAK)/signal transducers and activators of transcription (STAT) signaling pathway. We prepared five different types of T cells, including HOZOT from human umbilical cord blood. Cytokine productions of IL-10, interferon-gamma (IFN-gamma), and tumor necrosis factor-alpha (TNF-alpha) were compared among these T cells after anti-CD3/CD28 antibody stimulation in the presence or absence of IL-2. Specific inhibitors for JAK/STAT, nuclear factor-kappaB (NF-kappaB), and nuclear factor for activated T cell (NFAT) were used to analyze signal transduction mechanisms. IL-10 production by HOZOTs was greatly enhanced by the addition of IL-2. Little or no enhancement of IFN-gamma and TNF-alpha production was observed under the same conditions. The enhancing effect of IL-2 was specific for both HOZOT and IL-10-secreting Treg cells. T helper type 2 cells, whose IL-10 production mechanisms involve GATA-3, failed to show IL-2-mediated enhancement of IL-10. Similar enhancing effects of IL-15 and IFN-alpha suggested a major role of JAK/STAT activation pathway for high IL-10 production. Further inhibitor experiments demonstrated that STAT5 rather than STAT3 was critically involved in this mechanism. Our results demonstrated that IL-2 selectively enhanced production of IL-10 in HOZOT primarily through activation of STAT5, which synergistically acts with NF-kappaB/NFAT activation, implying a novel regulatory mechanism of IL-10 production in Treg cells.

  3. One-pot template-free synthesis of porous CdMoO4 microspheres and their enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Madhusudan, Puttaswamy; Zhang, Jinfeng; Yu, Jiaguo; Cheng, Bei; Xu, Difa; Zhang, Jun

    2016-11-01

    The optical and catalytic performances of materials strongly depend on their size, morphology, dimensionality and structure. Herein, we demonstrate a facile one-pot template free synthesis of hierarchical CdMoO4 porous microspheres via a simple low temperature oil bath method. The photoactivity of the as-prepared samples was evaluated by photocatalytic decolorization of Methyl Orange (MO) and Methylene Blue (MB) mixed dye aqueous solutions at ambient temperature under full solar spectrum. The results indicated that the concentration of ammonium molybdate and reaction time greatly influence the diameter, average crystallite size, specific surface area, pore structure and photocatalytic activity of the prepared samples. Especially, under the suitable conditions the prepared hierarchical CdMoO porous microspheres exhibited enhanced photocatalytic activity and high stability. Furthermore, it is found that the photocatalytic activity and formation rate of hydroxyl radicals greatly depend on the particle sizes and morphology of as-prepared samples. This work not only demonstrates a simple way to fabricate the hierarchical CdMoO4 porous microspheres but also shows a possibility for utilization of CdMoO4 porous microspheres for the photocatalytic treatment of waste water pollutants.

  4. Greatly enhanced binding of a cationic porphyrin towards bovine serum albumin by cucurbit[8]uril.

    PubMed

    Lei, Wanhua; Jiang, Guoyu; Zhou, Qianxiong; Zhang, Baowen; Wang, Xuesong

    2010-10-28

    Binding affinity towards serum albumin and intracellular proteins is of importance for a photodynamic therapy (PDT) sensitizer to selectively localize in tumours and efficiently induce cell death. In this paper, it was found that cucurbit[8]uril (CB8) can greatly improve the binding affinity of 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin tetra(p-toluenesulfonate) (TMPyP), a promising PDT photosensitizer, towards bovine serum albumin (BSA). Absorption, fluorescence emission, (1)H NMR, dynamic light scattering, atomic force microscope, as well as protein photocleavage measurements suggest that the binding enhancement originates from the formation of a ternary complex of CB8·TMPyP·tryptophan residues. This finding opens up a new approach for the development of more efficient PDT agents.

  5. The active enhancer network operated by liganded RXR supports angiogenic activity in macrophages

    PubMed Central

    Daniel, Bence; Hah, Nasun; Horvath, Attila; Czimmerer, Zsolt; Poliska, Szilard; Gyuris, Tibor; Keirsse, Jiri; Gysemans, Conny; Van Ginderachter, Jo A.; Balint, Balint L.; Evans, Ronald M.; Barta, Endre; Nagy, Laszlo

    2014-01-01

    RXR signaling is predicted to have a major impact in macrophages, but neither the biological consequence nor the genomic basis of its ligand activation is known. Comprehensive genome-wide studies were carried out to map liganded RXR-mediated transcriptional changes, active binding sites, and cistromic interactions in the context of the macrophage genome architecture. The macrophage RXR cistrome has 5200 genomic binding sites, which are not impacted by ligand. Active enhancers are characterized by PU.1 binding, an increase of enhancer RNA, and P300 recruitment. Using these features, 387 liganded RXR-bound enhancers were linked to 226 genes, which predominantly reside in CTCF/cohesin-limited functional domains. These findings were molecularly validated using chromosome conformation capture (3C) and 3C combined with sequencing (3C-seq), and we show that selected long-range enhancers communicate with promoters via stable or RXR-induced loops and that some of the enhancers interact with each other, forming an interchromosomal network. A set of angiogenic genes, including Vegfa, has liganded RXR-controlled enhancers and provides the macrophage with a novel inducible program. PMID:25030696

  6. Largely enhanced photocatalytic activity of Au/XS2/Au (X = Re, Mo) antenna-reactor hybrids: charge and energy transfer.

    PubMed

    Chen, Kai; Ding, Si-Jing; Luo, Zhi-Jun; Pan, Gui-Ming; Wang, Jia-Hong; Liu, Jia; Zhou, Li; Wang, Qu-Quan

    2018-02-22

    An antenna-reactor hybrid coupling plasmonic antenna with catalytic nanoparticles is a new strategy to optimize photocatalytic activity. Herein, we have rationally proposed a Au/XS 2 /Au (X = Re, Mo) antenna reactor, which has a large Au core as the antenna and small satellite Au nanoparticles as the reactor separated by an ultrathin two-dimensional transition-metal dichalcogenide XS 2 shell (∼2.6 nm). Due to efficient charge transfer across the XS 2 shell as well as energy transfer via coupling of the Au antenna and Au reactor, the photocatalytic activity has been largely enhanced: Au/ReS 2 /Au exhibits a 3.59-fold enhancement, whereas Au/MoS 2 /Au exhibits a 2.66-fold enhancement as compared to that of the sum of the three individual components. The different enhancement in the Au/ReS 2 /Au and Au/MoS 2 /Au antenna-reactor hybrid is related to the competition and cooperation of charge and energy transfer. These results indicate the great potential of the Au/XS 2 /Au antenna-reactor hybrid for the development of highly efficient plasmonic photocatalysts.

  7. Enhanced NIF neutron activation diagnostics.

    PubMed

    Yeamans, C B; Bleuel, D L; Bernstein, L A

    2012-10-01

    The NIF neutron activation diagnostic suite relies on removable activation samples, leading to operational inefficiencies and a fundamental lower limit on the half-life of the activated product that can be observed. A neutron diagnostic system measuring activation of permanently installed samples could remove these limitations and significantly enhance overall neutron diagnostic capabilities. The physics and engineering aspects of two proposed systems are considered: one measuring the (89)Zr/(89 m)Zr isomer ratio in the existing Zr activation medium and the other using potassium zirconate as the activation medium. Both proposed systems could improve the signal-to-noise ratio of the current system by at least a factor of 5 and would allow independent measurement of fusion core velocity and fuel areal density.

  8. Enhanced rice production but greatly reduced carbon emission following biochar amendment in a metal-polluted rice paddy.

    PubMed

    Zhang, Afeng; Bian, Rongjun; Li, Lianqing; Wang, Xudong; Zhao, Ying; Hussain, Qaiser; Pan, Genxing

    2015-12-01

    Soil amendment of biochar (BSA) had been shown effective for mitigating greenhouse gas (GHG) emission and alleviating metal stress to plants and microbes in soil. It has not yet been addressed if biochar exerts synergy effects on crop production, GHG emission, and microbial activity in metal-polluted soils. In a field experiment, biochar was amended at sequential rates at 0, 10, 20, and 40 t ha(-1), respectively, in a cadmium- and lead-contaminated rice paddy from the Tai lake Plain, China, before rice cropping in 2010. Fluxes of soil carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) were monitored using a static chamber method during the whole rice growing season (WRGS) of 2011. BSA significantly reduced soil CaCl2 extractable pool of Cd, and DTPA extractable pool of Cd and Pb. As compared to control, soil CO2 emission under BSA was observed to have no change at 10 t ha(-1) but decreased by 16-24% at 20 and 40 t ha(-1). In a similar trend, BSA at 20 and 40 t ha(-1) increased rice yield by 25-26% and thus enhanced ecosystem CO2 sequestration by 47-55% over the control. Seasonal total N2O emission was reduced by 7.1, 30.7, and 48.6% under BSA at 10, 20, and 40 t ha(-1), respectively. Overall, a net reduction in greenhouse gas balance (NGHGB) by 53.9-62.8% and in greenhouse gas intensity (GHGI) by 14.3-28.6% was observed following BSA at 20 and 40 t ha(-1). The present study suggested a great potential of biochar to enhancing grain yield while reducing carbon emission in metal-polluted rice paddies.

  9. Evidence of Active Dune Sand on the Great Plains in the 19th Century from Accounts of Early Explorers

    NASA Astrophysics Data System (ADS)

    Muhs, Daniel R.; Holliday, Vance T.

    1995-03-01

    Eolian sand is extensive over the Great Plains of North America, but is at present mostly stabilized by vegetation. Accounts published by early explorers, however, indicate that at least parts of dune fields in Nebraska, Colorado, Kansas, New Mexico, and Texas were active in the 19th century. Based on an index of dune mobility and a regional tree-ring record, the probable causes for these periods of greater eolian activity are droughts, accompanied by higher temperatures, which greatly lowered the precipitation-to-evapotranspiration ratio and diminished the cover of stabilizing vegetation. In addition, observations by several explorers, and previous historical studies, indicate that rivers upwind of Great Plains dune fields had shallow, braided, sandy channels, as well as intermittent flow in the 19th century. Wide, braided, sandy rivers that were frequently dry would have increased sand supplies to active dune fields. We conclude that dune fields in the Great Plains are extremely sensitive to climate change and that the potential for reactivation of stabilized dunes in the future is high, with or without greenhouse warming.

  10. Enhanced cellulase production in Trichoderma reesei RUT C30 via constitution of minimal transcriptional activators.

    PubMed

    Zhang, Jiajia; Zhang, Guoxiu; Wang, Wei; Wang, Wei; Wei, Dongzhi

    2018-05-17

    Cellulase can convert lignocellulosic feedstocks into fermentable sugars, which can be used for the industrial production of biofuels and chemicals. The high cost of cellulase production remains a challenge for lignocellulose breakdown. Trichoderma reesei RUT C30 serves as a well-known industrial workhorse for cellulase production. Therefore, the enhancement of cellulase production by T. reesei RUT C30 is of great importance. Two sets of novel minimal transcriptional activators (DBD ace2 -VP16 and DBD cre1 -VP16) were designed and expressed in T. reesei RUT C30. Expression of DBD ace2 -VP16 and DBD cre1 -VP16 improved cellulase production under induction (avicel or lactose) and repression (glucose) conditions, respectively. The strain T MTA66 under avicel and T MTA139 under glucose with the highest cellulase activities outperformed other transformants and the parental strain under the corresponding conditions. For T MTA66 strains, the highest FPase activity was approximately 1.3-fold greater than that of the parental strain RUT C30 at 120 h of cultivation in a shake flask using avicel as the sole carbon source. The FPase activity (U/mg biomass) in T MTA139 strains was approximately 26.5-fold higher than that of the parental strain RUT C30 at 72 h of cultivation in a shake flask using glucose as the sole carbon source. Furthermore, the crude enzymes produced in the 7-L fermenter from T MTA66 and T MTA139 supplemented with commercial β-glucosidase hydrolyzed pretreated corn stover effectively. These results show that replacing natural transcription factors with minimal transcriptional activators is a powerful strategy to enhance cellulase production in T. reesei. Our current study also offers an alternative genetic engineering strategy for the enhanced production of industrial products by other fungi.

  11. Black TiO2 synthesized via magnesiothermic reduction for enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Wang, Xiangdong; Fu, Rong; Yin, Qianqian; Wu, Han; Guo, Xiaoling; Xu, Ruohan; Zhong, Qianyun

    2018-04-01

    Utilizing solar energy for hydrogen evolution is a great challenge for its insufficient visible-light power conversion. In this paper, we report a facile magnesiothermic reduction of commercial TiO2 nanoparticles under Ar atmosphere and at 550 °C followed by acid treatment to synthesize reduced black TiO2 powders, which possesses a unique crystalline core-amorphous shell structure composed of disordered surface and oxygen vacancies and shows significantly improved optical absorption in the visible region. The unique core-shell structure and high absorption enable the reduced black TiO2 powders to exhibit enhanced photocatalytic activity, including splitting of water in the presence of Pt as a cocatalyst and degradation of methyl blue (MB) under visible light irradiation. Photocatalytic evaluations indicate that the oxygen vacancies play key roles in the catalytic process. The maximum hydrogen production rates are 16.1 and 163 μmol h-1 g-1 under the full solar wavelength range of light and visible light, respectively. This facile and versatile method could be potentially used for large scale production of colored TiO2 with remarkable enhancement in the visible light absorption and solar-driven hydrogen production.

  12. STATs shape the active enhancer landscape of T cell populations.

    PubMed

    Vahedi, Golnaz; Takahashi, Hayato; Nakayamada, Shingo; Sun, Hong-Wei; Sartorelli, Vittorio; Kanno, Yuka; O'Shea, John J

    2012-11-21

    Signaling pathways are intimately involved in cellular differentiation, allowing cells to respond to their environment by regulating gene expression. Although enhancers are recognized as key elements that regulate selective gene expression, the interplay between signaling pathways and actively used enhancer elements is not clear. Here, we use CD4(+) T cells as a model of differentiation, mapping the activity of cell-type-specific enhancer elements in T helper 1 (Th1) and Th2 cells. Our data establish that STAT proteins have a major impact on the activation of lineage-specific enhancers and the suppression of enhancers associated with alternative cell fates. Transcriptome analysis further supports a functional role for enhancers regulated by STATs. Importantly, expression of lineage-defining master regulators in STAT-deficient cells fails to fully recover the chromatin signature of STAT-dependent enhancers. Thus, these findings point to a critical role of STATs as environmental sensors in dynamically molding the specialized enhancer architecture of differentiating cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Astrocytic Activation Generates De Novo Neuronal Potentiation and Memory Enhancement.

    PubMed

    Adamsky, Adar; Kol, Adi; Kreisel, Tirzah; Doron, Adi; Ozeri-Engelhard, Nofar; Melcer, Talia; Refaeli, Ron; Horn, Henrike; Regev, Limor; Groysman, Maya; London, Michael; Goshen, Inbal

    2018-05-18

    Astrocytes respond to neuronal activity and were shown to be necessary for plasticity and memory. To test whether astrocytic activity is also sufficient to generate synaptic potentiation and enhance memory, we expressed the Gq-coupled receptor hM3Dq in CA1 astrocytes, allowing their activation by a designer drug. We discovered that astrocytic activation is not only necessary for synaptic plasticity, but also sufficient to induce NMDA-dependent de novo long-term potentiation in the hippocampus that persisted after astrocytic activation ceased. In vivo, astrocytic activation enhanced memory allocation; i.e., it increased neuronal activity in a task-specific way only when coupled with learning, but not in home-caged mice. Furthermore, astrocytic activation using either a chemogenetic or an optogenetic tool during acquisition resulted in memory recall enhancement on the following day. Conversely, directly increasing neuronal activity resulted in dramatic memory impairment. Our findings that astrocytes induce plasticity and enhance memory may have important clinical implications for cognitive augmentation treatments. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Enhanced kappa-Cygnid activity 2014

    NASA Astrophysics Data System (ADS)

    Rendtel, Jürgen; Molau, Sirko

    2015-04-01

    The κ-Cygnid (012 KCG) meteor shower produced about 3-4 times the average visual rate and video flux in August 2014 for about four days. We are able to trace the increased activity to one component of the Cygnid complex proposed by Koseki recently. Video data indicate that the population index of all shower components is lower than that of the sporadic meteors, probably r≈ 2.6. Our analysis supports the suggested 7-year periodicity in activity enhancement of the κ-Cygnids

  15. Enhanced photocatalytic activity of BiOCl by C70 modification and mechanism insight

    NASA Astrophysics Data System (ADS)

    Ma, Dongmei; Zhong, Junbo; Li, Jianzhang; Wang, Li; Peng, Rufang

    2018-06-01

    As an excellent photocatalyst which can compete with TiO2, BiOCl has triggered increasing attention. However, the practical application of BiOCl has been significantly limited by the fast recombination of the photoinduced electron-hole charge pairs. In this study, to further enhance the separation efficiency of photoinduced electron-hole charge pairs of BiOCl, a series of efficient BiOCl photocatalysts were prepared by C70 surface modification. The trapping experiments reveal that the main active species were determined to be superoxide radicals (O2rad -) and holes (h+) under simulated sunlight irradiation. The surface photovoltage spectroscopy (SPS) demonstrates that separation of the photoinduced electron-hole pairs has been significantly promoted, forming more radOH, proven by terephthalic acid photoluminescence probing technique. The photocatalytic evaluation results display that the C70/BiOCl photocatalysts exhibit much higher photocatalytic activity in decolorization of rhodamine B (RhB) than that of the bare BiOCl under the simulated sunlight irradiation. The excellent electron acceptability of C70 is conducive to the separation of the photogenerated carriers and results in efficient formation of O2rad -, proven by the results of SPS and electron spin-resonance (ESR), therefore the photocatalytic performance of C70/BiOCl has been greatly improved. Based on all these observations, an enhancement mechanism in photocatalytic performance of C70/BiOCl was proposed.

  16. An atlas of active enhancers across human cell types and tissues

    NASA Astrophysics Data System (ADS)

    Andersson, Robin; Gebhard, Claudia; Miguel-Escalada, Irene; Hoof, Ilka; Bornholdt, Jette; Boyd, Mette; Chen, Yun; Zhao, Xiaobei; Schmidl, Christian; Suzuki, Takahiro; Ntini, Evgenia; Arner, Erik; Valen, Eivind; Li, Kang; Schwarzfischer, Lucia; Glatz, Dagmar; Raithel, Johanna; Lilje, Berit; Rapin, Nicolas; Bagger, Frederik Otzen; Jørgensen, Mette; Andersen, Peter Refsing; Bertin, Nicolas; Rackham, Owen; Burroughs, A. Maxwell; Baillie, J. Kenneth; Ishizu, Yuri; Shimizu, Yuri; Furuhata, Erina; Maeda, Shiori; Negishi, Yutaka; Mungall, Christopher J.; Meehan, Terrence F.; Lassmann, Timo; Itoh, Masayoshi; Kawaji, Hideya; Kondo, Naoto; Kawai, Jun; Lennartsson, Andreas; Daub, Carsten O.; Heutink, Peter; Hume, David A.; Jensen, Torben Heick; Suzuki, Harukazu; Hayashizaki, Yoshihide; Müller, Ferenc; Consortium, The Fantom; Forrest, Alistair R. R.; Carninci, Piero; Rehli, Michael; Sandelin, Albin

    2014-03-01

    Enhancers control the correct temporal and cell-type-specific activation of gene expression in multicellular eukaryotes. Knowing their properties, regulatory activity and targets is crucial to understand the regulation of differentiation and homeostasis. Here we use the FANTOM5 panel of samples, covering the majority of human tissues and cell types, to produce an atlas of active, in vivo-transcribed enhancers. We show that enhancers share properties with CpG-poor messenger RNA promoters but produce bidirectional, exosome-sensitive, relatively short unspliced RNAs, the generation of which is strongly related to enhancer activity. The atlas is used to compare regulatory programs between different cells at unprecedented depth, to identify disease-associated regulatory single nucleotide polymorphisms, and to classify cell-type-specific and ubiquitous enhancers. We further explore the utility of enhancer redundancy, which explains gene expression strength rather than expression patterns. The online FANTOM5 enhancer atlas represents a unique resource for studies on cell-type-specific enhancers and gene regulation.

  17. The discovery and mechanism of sweet taste enhancers.

    PubMed

    Li, Xiaodong; Servant, Guy; Tachdjian, Catherine

    2011-08-01

    Excess sugar intake posts several health problems. Artificial sweeteners have been used for years to reduce dietary sugar content, but they are not ideal substitutes for sugar owing to their off-taste. A new strategy focused on allosteric modulation of the sweet taste receptor led to identification of sweet taste 'enhancers' for the first time. The enhancer molecules do not taste sweet, but greatly potentiate the sweet taste of sucrose and sucralose selectively. Following a similar mechanism as the natural umami taste enhancers, the sweet enhancer molecules cooperatively bind with the sweeteners to the Venus flytrap domain of the human sweet taste receptor and stabilize the active conformation. Now that the approach has proven successful, enhancers for other sweeteners and details of the molecular mechanism for the enhancement are being actively pursued.

  18. Enhancement of the photocatalytic activity of TiO(2) by doping it with calcium ions.

    PubMed

    Akpan, U G; Hameed, B H

    2011-05-01

    Titanium dioxide (TiO(2)) with an enhanced photocatalytic activity was developed by doping it with calcium ions through a sol-gel method. The developed photocatalysts were characterized by Fourier transform infrared (FTIR) spectroscopy, N(2) physisorption, X-ray photoelectron spectroscopy (XPS), and X-ray diffraction. Their surface morphologies were studied using surface scanning electron microscopy (SEM). The XPS analyses confirmed the presence of Ti, O, Ca, and C in the Ca-doped TiO(2) sample. The activities of the catalysts were evaluated by photocatalytic degradation of an azo dye, acid red 1 (AR1), using UV light irradiation. The results of the investigations revealed that the samples calcined at 300 °C for 3.6h in a cyclic (2 cycles) mode had the best performance. Lower percentage dopant, 0.3-1.0 wt.%, enhanced the photocatalytic activity of TiO(2), with the best at 0.5 wt.% Ca-TiO(2). The performance of 0.5 wt.% Ca-TiO(2) in the degradation of AR1 was far superior to that of a commercial anatase TiO(2) Sigma product CAS No. 1317-70-0. The effect of pH on the degradation of AR1 was studied, and the pH of the dye solution exerted a great influence on the degradation of the dye. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Theophylline-assisted, eco-friendly synthesis of PtAu nanospheres at reduced graphene oxide with enhanced catalytic activity towards Cr(VI) reduction.

    PubMed

    Hu, Ling-Ya; Chen, Li-Xian; Liu, Meng-Ting; Wang, Ai-Jun; Wu, Lan-Ju; Feng, Jiu-Ju

    2017-05-01

    Theophylline as a naturally alkaloid is commonly employed to treat asthma and chronic obstructive pulmonary disorder. Herein, a facile theophylline-assisted green approach was firstly developed for synthesis of PtAu nanospheres/reduced graphene oxide (PtAu NSs/rGO), without any surfactant, polymer, or seed involved. The obtained nanocomposites were applied for the catalytic reduction and removal of highly toxic chromium (VI) using formic acid as a model reductant at 50°C, showing the significantly enhanced catalytic activity and improved recyclability when compared with commercial Pt/C (50%) and home-made Au nanocrystals supported rGO (Au NCs/rGO). It demonstrates great potential applications of the catalyst in wastewater treatment and environmental protection. The eco-friendly route provides a new platform to fabricate other catalysts with enhanced catalytic activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Great Minds? Great Lakes!

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Chicago, IL. Great Lakes National Program Office.

    This book contains lesson plans that provide an integrated approach to incorporating Great Lakes environmental issues into elementary subjects. The book is divided into three subject areas: (1) History, which includes the origins of the Great Lakes, Great Lakes people, and shipwrecks; (2) Social Studies, which covers government, acid rain as a…

  1. Environmental Education Activities to Enhance Decision-Making.

    ERIC Educational Resources Information Center

    Yambert, Paul A.; And Others

    This document contains a set of 10 activities that teachers may use with students (ages 10 to adult) to enhance environmental knowledge and environmentally responsible behavior. Sample worksheets are included when applicable. The activities focus on: renewable and nonrenewable resources; recycling; population growth; wildlife; recycling in a…

  2. Engineering a highly active thermophilic β-glucosidase to enhance its pH stability and saccharification performance.

    PubMed

    Xia, Wei; Xu, Xinxin; Qian, Lichun; Shi, Pengjun; Bai, Yingguo; Luo, Huiying; Ma, Rui; Yao, Bin

    2016-01-01

    β-Glucosidase is an important member of the biomass-degrading enzyme system, and plays vital roles in enzymatic saccharification for biofuels production. Candidates with high activity and great stability over high temperature and varied pHs are always preferred in industrial practice. To achieve cost-effective biomass conversion, exploring natural enzymes, developing high level expression systems and engineering superior mutants are effective approaches commonly used. A newly identified β-glucosidase of GH3, Bgl3A, from Talaromyces leycettanus JCM12802, was overexpressed in yeast strain Pichia pastoris GS115, yielding a crude enzyme activity of 6000 U/ml in a 3 L fermentation tank. The purified enzyme exhibited outstanding enzymatic properties, including favorable temperature and pH optima (75 °C and pH 4.5), good thermostability (maintaining stable at 60 °C), and high catalytic performance (with a specific activity and catalytic efficiency of 905 U/mg and 9096/s/mM on pNPG, respectively). However, the narrow stability of Bgl3A at pH 4.0-5.0 would limit its industrial applications. Further site-directed mutagenesis indicated the role of excessive O-glycosylation in pH liability. By removing the potential O-glycosylation sites, two mutants showed improved pH stability over a broader pH range (3.0-10.0). Besides, with better stability under pH 5.0 and 50 °C compared with wild type Bgl3A, saccharification efficiency of mutant M1 was improved substantially cooperating with cellulase Celluclast 1.5L. And mutant M1 reached approximately equivalent saccharification performance to commercial β-glucosidase Novozyme 188 with identical β-glucosidase activity, suggesting its great prospect in biofuels production. In this study, we overexpressed a novel β-glucosidase Bgl3A with high specific activity and high catalytic efficiency in P. pastoris. We further proved the negative effect of excessive O-glycosylation on the pH stability of Bgl3A, and enhanced the p

  3. The Great Lakes Hydrography Dataset: Consistent, binational ...

    EPA Pesticide Factsheets

    Ecosystem-based management of the Laurentian Great Lakes, which spans both the United States and Canada, is hampered by the lack of consistent binational watersheds for the entire Basin. Using comparable data sources and consistent methods we developed spatially equivalent watershed boundaries for the binational extent of the Basin to create the Great Lakes Hydrography Dataset (GLHD). The GLHD consists of 5,589 watersheds for the entire Basin, covering a total area of approximately 547,967 km2, or about twice the 247,003 km2 surface water area of the Great Lakes. The GLHD improves upon existing watershed efforts by delineating watersheds for the entire Basin using consistent methods; enhancing the precision of watershed delineation by using recently developed flow direction grids that have been hydrologically enforced and vetted by provincial and federal water resource agencies; and increasing the accuracy of watershed boundaries by enforcing embayments, delineating watersheds on islands, and delineating watersheds for all tributaries draining to connecting channels. In addition, the GLHD is packaged in a publically available geodatabase that includes synthetic stream networks, reach catchments, watershed boundaries, a broad set of attribute data for each tributary, and metadata documenting methodology. The GLHD provides a common set of watersheds and associated hydrography data for the Basin that will enhance binational efforts to protect and restore the Great

  4. Plasma-deposited tetraglyme surfaces greatly reduce total blood protein adsorption, contact activation, platelet adhesion, platelet procoagulant activity, and in vitro thrombus deposition.

    PubMed

    Cao, Lan; Chang, Mark; Lee, Chi-Ying; Castner, David G; Sukavaneshvar, Sivaprasad; Ratner, Buddy D; Horbett, Thomas A

    2007-06-15

    The ability of tetraethylene glycol dimethyl ether (tetraglyme) plasma deposited coatings exhibiting ultralow fibrinogen adsorption to reduce blood activation was studied with six in vitro methods, namely fibrinogen and von Willebrand's factor adsorption, total protein adsorption, clotting time in recalcified plasma, platelet adhesion and procoagulant activity, and whole blood thrombosis in a disturbed flow catheter model. Surface plasmon resonance results showed that tetraglyme surfaces strongly resisted the adsorption of all proteins from human plasma. The clotting time in the presence of tetraglyme surfaces was lengthened compared with controls, indicating a lower activation of the intrinsic coagulation cascade. Platelet adhesion and thrombin generation by adherent platelets were greatly reduced on tetraglyme-coated materials, compared with uncoated and Biospan-coated glass slides. In the in vitro disturbed blood flow model, tetraglyme plasma coated catheters had 50% less thrombus than did the uncoated catheters. Tetraglyme-coated materials thus had greatly reduced blood interactions as measured with all six methods. The improved blood compatibility of plasma-deposited tetraglyme is thus not only due to their reduced platelet adhesion and activation, but also to a generalized reduction in blood interactions. (c) 2007 Wiley Periodicals, Inc.

  5. Enhancement of dissolution rate of poorly-soluble active ingredients by supercritical fluid processes. Part I: Micronization of neat particles.

    PubMed

    Perrut, M; Jung, J; Leboeuf, F

    2005-01-06

    In this first of two articles, we discuss some issues surrounding the dissolution rate enhancement of poorly-soluble active ingredients micronized into nano-particles using several supercritical fluid particle design processes including rapid expansion of supercritical solutions (RESS), supercritical anti-solvent (SAS) and particles from gas-saturated solutions/suspensions (PGSS). Experimental results confirm that dissolution rates do not only depend on the surface area and particle size of the processed powder, but are greatly affected by other physico-chemical characteristics such as crystal morphology and wettability that may reduce the benefit of micronization.

  6. Brg1 modulates enhancer activation in mesoderm lineage commitment

    DOE PAGES

    Alexander, Jeffrey M.; Hota, Swetansu K.; He, Daniel; ...

    2015-03-26

    The interplay between different levels of gene regulation in modulating developmental transcriptional programs, such as histone modifications and chromatin remodeling, is not well understood. Here, we show that the chromatin remodeling factor Brg1 is required for enhancer activation in mesoderm induction. In an embryonic stem cell-based directed differentiation assay, the absence of Brg1 results in a failure of cardiomyocyte differentiation and broad deregulation of lineage-specific gene expression during mesoderm induction. We find that Brg1 co-localizes with H3K27ac at distal enhancers and is required for robust H3K27 acetylation at distal enhancers that are activated during mesoderm induction. Brg1 is also requiredmore » to maintain Polycomb-mediated repression of non-mesodermal developmental regulators, suggesting cooperativity between Brg1 and Polycomb complexes. Thus, Brg1 is essential for modulating active and repressive chromatin states during mesoderm lineage commitment, in particular the activation of developmentally important enhancers. In conclusion, these findings demonstrate interplay between chromatin remodeling complexes and histone modifications that, together, ensure robust and broad gene regulation during crucial lineage commitment decisions.« less

  7. The Running Wheel Enhances Food Anticipatory Activity: An Exploratory Study

    PubMed Central

    Flôres, Danilo E. F. L.; Bettilyon, Crystal N.; Jia, Lori; Yamazaki, Shin

    2016-01-01

    Rodents anticipate rewarding stimuli such as daily meals, mates, and stimulant drugs. When a single meal is provided daily at a fixed time of day, an increase in activity, known as food anticipatory activity (FAA), occurs several hours before feeding time. The factors affecting the expression of FAA have not been well-studied. Understanding these factors may provide clues to the undiscovered anatomical substrates of food entrainment. In this study we determined whether wheel-running activity, which is also rewarding to rodents, modulated the robustness of FAA. We found that access to a freely rotating wheel enhanced the robustness of FAA. This enhancement was lost when the wheel was removed. In addition, while prior exposure to a running wheel alone did not enhance FAA, the presence of a locked wheel did enhance FAA as long as mice had previously run in the wheel. Together, these data suggest that FAA, like wheel-running activity, is influenced by reward signaling. PMID:27458354

  8. The Running Wheel Enhances Food Anticipatory Activity: An Exploratory Study.

    PubMed

    Flôres, Danilo E F L; Bettilyon, Crystal N; Jia, Lori; Yamazaki, Shin

    2016-01-01

    Rodents anticipate rewarding stimuli such as daily meals, mates, and stimulant drugs. When a single meal is provided daily at a fixed time of day, an increase in activity, known as food anticipatory activity (FAA), occurs several hours before feeding time. The factors affecting the expression of FAA have not been well-studied. Understanding these factors may provide clues to the undiscovered anatomical substrates of food entrainment. In this study we determined whether wheel-running activity, which is also rewarding to rodents, modulated the robustness of FAA. We found that access to a freely rotating wheel enhanced the robustness of FAA. This enhancement was lost when the wheel was removed. In addition, while prior exposure to a running wheel alone did not enhance FAA, the presence of a locked wheel did enhance FAA as long as mice had previously run in the wheel. Together, these data suggest that FAA, like wheel-running activity, is influenced by reward signaling.

  9. Engineering enhanced cellobiohydrolase activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Larry E.; Knott, Brandon C.; Baker, John O.

    Glycoside Hydrolase Family 7 cellobiohydrolases (GH7 CBHs) catalyze cellulose depolymerization in cellulolytic eukaryotes, making them key discovery and engineering targets. However, there remains a lack of robust structure–activity relationships for these industrially important cellulases. Here, we compare CBHs from Trichoderma reesei (TrCel7A) and Penicillium funiculosum (PfCel7A), which exhibit a multi-modular architecture consisting of catalytic domain (CD), carbohydrate-binding module, and linker. We show that PfCel7A exhibits 60% greater performance on biomass than TrCel7A. To understand the contribution of each domain to this improvement, we measure enzymatic activity for a library of CBH chimeras with swapped subdomains, demonstrating that the enhancement ismore » mainly caused by PfCel7A CD. We solve the crystal structure of PfCel7A CD and use this information to create a second library of TrCel7A CD mutants, identifying a TrCel7A double mutant with near-equivalent activity to wild-type PfCel7A. Overall, these results reveal CBH regions that enable targeted activity improvements.« less

  10. Engineering enhanced cellobiohydrolase activity

    DOE PAGES

    Taylor, Larry E.; Knott, Brandon C.; Baker, John O.; ...

    2018-03-22

    Glycoside Hydrolase Family 7 cellobiohydrolases (GH7 CBHs) catalyze cellulose depolymerization in cellulolytic eukaryotes, making them key discovery and engineering targets. However, there remains a lack of robust structure–activity relationships for these industrially important cellulases. Here, we compare CBHs from Trichoderma reesei (TrCel7A) and Penicillium funiculosum (PfCel7A), which exhibit a multi-modular architecture consisting of catalytic domain (CD), carbohydrate-binding module, and linker. We show that PfCel7A exhibits 60% greater performance on biomass than TrCel7A. To understand the contribution of each domain to this improvement, we measure enzymatic activity for a library of CBH chimeras with swapped subdomains, demonstrating that the enhancement ismore » mainly caused by PfCel7A CD. We solve the crystal structure of PfCel7A CD and use this information to create a second library of TrCel7A CD mutants, identifying a TrCel7A double mutant with near-equivalent activity to wild-type PfCel7A. Overall, these results reveal CBH regions that enable targeted activity improvements.« less

  11. Bioengineered nisin derivatives with enhanced activity in complex matrices

    PubMed Central

    Rouse, Susan; Field, Des; Daly, Karen M.; O'Connor, Paula M.; Cotter, Paul D.; Hill, Colin; Ross, R. Paul

    2012-01-01

    Summary Nisin A is the best known and most extensively characterized lantibiotic. As it is ribosomally synthesized, bioengineering‐based strategies can be used to generate variants. We have previously demonstrated that bioengineering of the hinge region of nisin A can result in the generation of variants with enhanced anti‐microbial activity against Gram‐positive pathogens. Here we created a larger bank of hinge variant producers and screened for producers that exhibit enhanced bioactivity as assessed by agar‐based assays against a selection of target strains. Further analysis of 12 ‘lead’ variants reveals that in many cases enhanced bioactivity is not attributable to enhanced specific activity but is instead as a consequence of an enhanced ability to diffuse through complex polymers. In the case of two variants, which contain the residues SVA and NAK, respectively, within the hinge region, we demonstrate that this enhanced trait enables the peptides to dramatically outperform nisin A with respect to controlling Listeria monocytogenes in commercially produced chocolate milk that contains carrageenan as a stabilizer. PMID:22260415

  12. Detection of thiopurine methyltransferase activity in lysed red blood cells by means of lab-on-a-chip surface enhanced Raman spectroscopy (LOC-SERS).

    PubMed

    März, Anne; Mönch, Bettina; Rösch, Petra; Kiehntopf, Michael; Henkel, Thomas; Popp, Jürgen

    2011-07-01

    In this contribution, the great potential of surface enhanced Raman spectroscopy (SERS) in a lab-on-a-chip (LOC) device for the detection of analyte molecules in a complex environment is demonstrated. Using LOC-SERS, the enzyme activity of thiopurine S-methyltransferase (TPMT) is analysed and identified in lysed red blood cells. The conversion of 6-mercaptopurine to 6-methylmercaptopurine catalysed by TPMT is observed as it gives evidence for the enzyme activity. Being able to determine the TPMT activity before starting a treatment using 6-mercaptopurine, an optimized dosage can be applied to each patient and serious toxicity appearing within thiopurine treatment will be prevented.

  13. Effect of Vibrio cholerae neuraminidase on the mitogen response of T lymphocytes. I. Enhancement of macrophage T-lymphocyte cooperation in concanavalin-A-induced lymphocyte activation.

    PubMed

    Knop, J

    1980-12-01

    Vibrio cholerae neuraminidase (VCN) enhances the immune response of lymphocytes in various systems, such as antigen- and mitogen-induced blastogenesis, mixed lymphocyte culture (MLC) and tumor-cell response. We used macrophage-depleted and reconstituted murine lymph-node T-cells to investigate the effect of VCN on macrophage-T-lymphocyte co-operation in Con-A-induced lymphocyte activation. In unfractionated lymph-node cells VCN enhanced the Con-A-induced lymphocyte activation as measured by 3H-thymidine (3H-dThd) incorporation. Removing macrophages from the cells resulted in a significantly diminished response. In addition the enhancing effect of VCN was greatly reduced. Reconstitution of the lymphocyte cultures with macrophages in increasing numbers and from various sources rstored the lymphocyte response and the enhancing effect of VCN. VCN proved to be most efficient in cultures reconstituted with normal peritoneal macrophages. Some effect was also observed using bone-marrow-derived (BM) macrophages. However, higher numbers of normal PE macrophages in the presence of VCN inhibited lymphocyte activation, and inhibition by thioglycollate-broth-induced macrophages was considerably increased by VCN. These results suggest that VCN acts by increasing the efficiency of macrophage-T lymphocyte interaction.

  14. ChIP-seq Accurately Predicts Tissue-Specific Activity of Enhancers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Visel, Axel; Blow, Matthew J.; Li, Zirong

    2009-02-01

    A major yet unresolved quest in decoding the human genome is the identification of the regulatory sequences that control the spatial and temporal expression of genes. Distant-acting transcriptional enhancers are particularly challenging to uncover since they are scattered amongst the vast non-coding portion of the genome. Evolutionary sequence constraint can facilitate the discovery of enhancers, but fails to predict when and where they are active in vivo. Here, we performed chromatin immunoprecipitation with the enhancer-associated protein p300, followed by massively-parallel sequencing, to map several thousand in vivo binding sites of p300 in mouse embryonic forebrain, midbrain, and limb tissue. Wemore » tested 86 of these sequences in a transgenic mouse assay, which in nearly all cases revealed reproducible enhancer activity in those tissues predicted by p300 binding. Our results indicate that in vivo mapping of p300 binding is a highly accurate means for identifying enhancers and their associated activities and suggest that such datasets will be useful to study the role of tissue-specific enhancers in human biology and disease on a genome-wide scale.« less

  15. Mechanism of salt-induced activity enhancement of a marine-derived laccase, Lac15.

    PubMed

    Li, Jie; Xie, Yanan; Wang, Rui; Fang, Zemin; Fang, Wei; Zhang, Xuecheng; Xiao, Yazhong

    2018-04-01

    Laccase (benzenediol: oxygen oxidoreductases, EC1.10.3.2) is a multi-copper oxidase capable of oxidizing a variety of phenolic and other aromatic organic compounds. The catalytic power of laccase makes it an attractive candidate for potential applications in many areas of industry including biodegradation of organic pollutants and synthesis of novel drugs. Most laccases are vulnerable to high salt and have limited applications. However, some laccases are not only tolerant to but also activated by certain concentrations of salt and thus have great application potential. The mechanisms of salt-induced activity enhancement of laccases are unclear as yet. In this study, we used dynamic light scattering, size exclusion chromatography, analytical ultracentrifugation, intrinsic fluorescence emission, circular dichroism, ultraviolet-visible light absorption, and an enzymatic assay to investigate the potential correlation between the structure and activity of the marine-derived laccase, Lac15, whose activity is promoted by low concentrations of NaCl. The results showed that low concentrations of NaCl exert little influence on the protein structure, which was partially folded in the absence of the salt; moreover, the partially folded rather than the fully folded state seemed to be favorable for enzyme activity, and this partially folded state was distinctive from the so-called 'molten globule' occasionally observed in active enzymes. More data indicated that salt might promote laccase activity through mechanisms involving perturbation of specific local sites rather than a change in global structure. Potential binding sites for chloride ions and their roles in enzyme activity promotion are proposed.

  16. Brain cholinesterase activity of nestling great egrets, snowy egrets, and black-crowned night-herons

    USGS Publications Warehouse

    Custer, T.W.; Ohlendorf, H.M.

    1989-01-01

    Inhibition of brain cholinesterase (ChE) activity in birds is often used to diagnose exposure or death from organophosphorus or carbmate pesticides. Brain ChE activity in the young of altricial species increase with age; however, this relationship has only been demonstrated in the European starling (Sturnus vulgaris). Brain ChE activity of nestling great egrets (Casmerodius albus) collected from a colony in Texas increased significantly with age and did not differ among individuals from different nests. Brain ChE activity of nestling snowy egrets (Egretta thula) and black-crowned night -herons (Nycticorax nycticorax) collected in one colony each from Rhode Island, Texas, and California also increased significantly with age and did not differ among individuals from different nests or colonies. This study further demonstrates that age must be considered when evaluating exposure of nestling altricial birds to ChE inhibitors.

  17. Brain cholinesterase activity of nestling great egrets snowy egrets and black-crowned night-herons

    USGS Publications Warehouse

    Custer, T.W.; Ohlendorf, H.M.

    1989-01-01

    Inhibition of brain cholinesterase (ChE) activity in birds is often used to diagnose exposure or death from organophosphorus or carbamate pesticides. Brain ChE activity in the young of altricial species increases with age; however, this relationship has only been demonstrated in the European starling (Sturnus vulgaris). Brain ChE activity of nestling great egrets (Casmerodius albus) collected from a colony in Texas (USA) increased significantly with age and did not differ among individuals from different nests. Brain ChE activity of nestling snowy egrets (Egretta thula) and black-crowned night-herons (Nycticorax nycticorax) collected in one colony each from Rhode Island, Texas and California (USA) also increased significantly with age and did not differ among individuals from different nests or colonies. This study further demonstrates that age must be considered when evaluating exposure of nestling altricial birds to ChE inhibitors.

  18. C-H functionalization: thoroughly tuning ligands at a metal ion, a chemist can greatly enhance catalyst's activity and selectivity.

    PubMed

    Shul'pin, Georgiy B

    2013-09-28

    This brief essay consists of a few "exciting stories" devoted to relations within a metal-complex catalyst between a metal ion and a coordinated ligand. When, as in the case of a human couple, the rapport of the partners is cordial and a love cements these relations, a chemist finds an ideal married couple, in other words he obtains a catalyst of choice which allows him to functionalize C-H bonds very efficiently and selectively. Examples of such lucky marriages in the catalytic world of ions and ligands are discussed here. Activity of the catalyst is characterized by turnover number (TON) or turnover frequency (TOF) as well as by yield of a target product. Introducing a chelating N,N- or N,O-ligand to the catalyst molecule (this can be an iron or manganese derivative) sharply enhances its activity. However, the activity of vanadium derivatives (with additionally added to the solution pyrazinecarboxylic acid, PCA) as well as of various osmium complexes does not dramatically depend on the nature of ligands surrounding metal ions. Complexes of these metals are very efficient catalysts in oxidations with H2O2. Osmium derivatives are record-holders exhibiting extremely high TONs whereas vanadium complexes are on the second position. Finally, elegant examples of alkane functionalization on the ions of non-transition metals (aluminium, gallium etc.) are described when one ligand within the metal complex (namely, hydroperoxyl ligand HOO(-)) helps other ligand of this complex (H2O2 molecule coordinated to the metal) to disintegrate into two species, generating very reactive hydroxyl radical. Hydrogen peroxide molecule, even ligated to the metal ion, is perfectly stable without the assistance of the neighboring HOO(-) ligand. This ligand can be easily oxidized donating an electron to its partner ligand (H2O2). In an analogous case, when the central ion in the catalyst is a transition metal, this ion changing its oxidation state can donate an electron to the coordinated H2O2

  19. Enhanced Multistatic Active Sonar via Innovative Signal Processing

    DTIC Science & Technology

    2015-09-30

    3. DATES COVERED (From - To) Oct. 01, 2014-Sept. 30, 2015 4. TITLE AND SUBTITLE Enhanced Multistatic Active Sonar via Innovative Signal...active sonar (CAS) in the presence of strong direct blast is studied for the Doppler-tolerant linear frequency modulation waveform. A receiver design...beamformer variants is examined. 15. SUBJECT TERMS Pulsed active sonar (PAS), continuous active sonar (CAS), strong delay and Doppler-spread direct blast

  20. Irrigation to enhance native seed production for Great Basin restoration

    Treesearch

    Clinton C. Shock; Erik B. G. Feibert; Nancy L. Shaw; Myrtle P. Shock; Lamont D. Saunders

    2015-01-01

    Native shrublands and their associated grasses and forbs have been disappearing from the Great Basin as a result of grazing practices, exotic weed invasions, altered fire regimes, climate change and other human impacts. Native forb seed is needed to restore these areas. The irrigation requirements for maximum seed production of four key native forb species (Eriogonum...

  1. Enhancing dewaterability of waste activated sludge by combined oxidative conditioning process with zero-valent iron and peroxymonosulfate.

    PubMed

    Zhou, Xu; Jin, Wenbiao; Chen, Hongyi; Chen, Chuan; Han, Songfang; Tu, Renjie; Wei, Wei; Gao, Shu-Hong; Xie, Guo-Jun; Wang, Qilin

    2017-11-01

    The enhancement of sludge dewaterability is of great importance for facilitating the sludge disposal during the operation of wastewater treatment plants. In this study, a novel oxidative conditioning approach was applied to enhance the dewaterability of waste activated sludge by the combination of zero-valent iron (ZVI) and peroxymonosulfate (PMS). It was found that the dewaterability of sludge was significantly improved after the addition of ZVI (0-4 g/g TSS) (TSS: total suspended solids) and PMS (0-1 g/g TSS). The optimal addition amount of ZVI and PMS was 0.25 g/g TSS and 0.1 g/g TSS, respectively, under which the capillary suction time of the sludge was reduced by approximately 50%. The decomposition of sludge flocs could contribute to the improved sludge dewaterability. Economic analysis demonstrated that the proposed conditioning process with ZVI and PMS was more economical than the ZVI + peroxydisulfate and the traditional Fenton conditioning processes.

  2. Lipid-enhancement of activated sludges obtained from conventional activated sludge and oxidation ditch processes.

    PubMed

    Revellame, Emmanuel D; Hernandez, Rafael; French, W Todd; Holmes, William E; Forks, Allison; Callahan, Robert

    2013-11-01

    Lipid-enhancement of activated sludges was conducted to increase the amount of saponifiable lipids in the sludges. The sludges were obtained from a conventional activated sludge (CAS) and an oxidation ditch process (ODP). Results showed 59-222% and 150-250% increase in saponifiable lipid content of the sludges from CAS and ODP, respectively. The fatty acid methyl ester (FAMEs) obtained from triacylglycerides was 57-67% (of total FAMEs) for enhanced CAS and 55-73% for enhanced ODP, a very significant improvement from 6% to 10% (CAS) and 4% to 8% (ODP). Regardless of the source, the enhancement resulted in sludges with similar fatty acid profile indicating homogenization of the lipids in the sludges. This study provides a potential strategy to utilize existing wastewater treatment facilities as source of significant amount of lipids for biofuel applications. Published by Elsevier Ltd.

  3. Local activation of p53 in the tumor microenvironment overcomes immune suppression and enhances antitumor immunity

    PubMed Central

    Guo, Gang; Yu, Miao; Xiao, Wei; Celis, Esteban; Cui, Yan

    2017-01-01

    Mutations in tumor suppressor p53 remain a vital mechanism of tumor escape from apoptosis and senescence. Emerging evidence suggests that p53 dysfunction also fuels inflammation and supports tumor immune evasion, thereby serving as an immunological driver of tumorigenesis. Therefore, targeting p53 in the tumor microenvironment (TME) also represents an immunologically desirable strategy for reversing immunosuppression and enhancing antitumor immunity. Using a pharmacological p53 activator nutlin-3a, we show that local p53 activation in TME comprising overt tumor infiltrating leukocytes (TILeus) induces systemic antitumor immunity and tumor regression, but not in TME with scarce TILeus, such as B16 melanoma. Maneuvers that recruit leukocytes to TME, such as TLR3 ligand in B16 tumors, greatly enhanced nutlin-induced antitumor immunity and tumor control. Mechanistically, nutlin-3a-induced antitumor immunity was contingent on two non-redundant but immunologically synergistic p53-dependent processes: reversal of immunosuppression in TME and induction of tumor immunogenic cell death (ICD), leading to activation and expansion of polyfunctional CD8 CTLs and tumor regression. Our study demonstrates that unlike conventional tumoricidal therapies, which rely on effective p53 targeting in each tumor cell and often associate with systemic toxicity, this immune-based strategy requires only limited local p53 activation to alter the immune landscape of TME and subsequently amplify immune response to systemic antitumor immunity. Hence, targeting the p53 pathway in TME can be exploited to reverse immunosuppression and augment therapeutic benefits beyond tumoricidal effects to harness tumor-specific, durable, and systemic antitumor immunity with minimal toxicity. PMID:28280037

  4. Template-free fabrication of hierarchically flower-like tungsten trioxide assemblies with enhanced visible-light-driven photocatalytic activity.

    PubMed

    Yu, Jiaguo; Qi, Lifang

    2009-09-30

    Hierarchically flower-like tungsten trioxide assemblies were fabricated on a large scale by a simple hydrothermal treatment of sodium tungstate in aqueous solution of nitric acid. The as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy and N(2) adsorption-desorption measurements. The photocatalytic activity was evaluated by photocatalytic decolorization of rhodamine B aqueous solution under visible-light irradiation. It was found that the three-dimensional tungsten trioxide assemblies were constructed from two-dimensional layers, which were further composed of a large number of interconnected lathy nanoplates with different sizes. Such flower-like assemblies exhibited hierarchically porous structure and higher visible-light photocatalytic activity than the samples without such hierarchical structures due to their specific hierarchical pores that served as the transport paths for light and reactants. After five recycles for the photodegradation of RhB, the catalyst did not exhibit any great loss in activity, confirming hierarchically flower-like tungsten trioxide was stability and not photocorroded. This study may provide new insight into environmentally benign preparation and design of novel photocatalytic materials and enhancement of photocatalytic activity.

  5. Reduced graphene oxide wrapped Ag nanostructures for enhanced SERS activity

    NASA Astrophysics Data System (ADS)

    Nair, Anju K.; Kala, M. S.; Thomas, Sabu; Kalarikkal, Nandakumar

    2018-04-01

    Graphene - metal nanoparticle hybrids have received great attention due to their unique electronic properties, large specific surface area, very high conductivity and more charge transfer. Thus, it is extremely advantages to develop a simple and efficient process to disperse metal nanostructures over the surface of graphene sheets. Herein, we report a hydrothermal assisted strategy for developing reduced graphene oxide /Ag nanomorphotypes (cube, wire) for surface enhanced Raman scattering (SERS) applications, considering the advantages of synergistic effect of graphene and plasmonic properties of Ag nanomorphotypes.

  6. Enhancer Activation Requires Trans-Recruitment of a Mega Transcription Factor Complex

    PubMed Central

    Liu, Zhijie; Merkurjev, Daria; Yang, Feng; Li, Wenbo; Oh, Soohwan; Friedman, Meyer J.; Song, Xiaoyuan; Zhang, Feng; Ma, Qi; Ohgi, Kenneth; Krones, Anna; Rosenfeld, Michael G.

    2014-01-01

    Summary Enhancers provide critical information directing cell-type specific transcriptional programs, regulated by binding of signal-dependent transcription factors and their associated cofactors. Here we report that the most strongly activated estrogen (E2)-responsive enhancers are characterized by trans-recruitment and in situ assembly of a large 1-2 MDa complex of diverse DNA-binding transcription factors by ERα at ERE-containing enhancers. We refer to enhancers recruiting these factors as mega transcription factor-bound in trans (MegaTrans) enhancers. The MegaTrans complex is a signature of the most potent functional enhancers and is required for activation of enhancer RNA transcription and recruitment of coactivators, including p300 and Med1. The MegaTrans complex functions, in part, by recruiting specific enzymatic machinery, exemplified by DNA-dependent protein kinase. Thus, MegaTrans-containing enhancers represent a cohort of functional enhancers that mediate a broad and important transcriptional program and provide a molecular explanation for transcription factor clustering and hotspots noted in the genome. PMID:25303530

  7. Unraveling the enhanced photocatalytic activity and phototoxicity of ZnO/metal hybrid nanostructures from generation of reactive oxygen species and charge carriers.

    PubMed

    He, Weiwei; Wu, Haohao; Wamer, Wayne G; Kim, Hyun-Kyung; Zheng, Jiwen; Jia, Huimin; Zheng, Zhi; Yin, Jun-Jie

    2014-09-10

    An effective way for promoting photocatalytic activity of a semiconductor is deposition of noble metal nanoparticles (NPs) onto it. In this paper, we deposited Ag and Pd onto ZnO NPs to form ZnO/Ag and ZnO/Pd hybrid nanostructures. It was found that both Ag and Pd nanocomponents can greatly enhance the photocatalytic activity and phototoxicity of ZnO toward human skin cells. Using electron spin resonance spectroscopy with spin trapping and spin labeling techniques, we observed that either deposition of Ag or Pd resulted in a significant increase in photogenerated electrons and holes and production of reactive oxygen species including hydroxyl radicals, superoxide, and singlet oxygen. We compared the enhancing effects of Ag and Pd and found that Pd is more effective than Ag in promoting the generation of hydroxyl radicals and holes and the photocatalytic activity of ZnO. Conversely, Ag is more effective than Pd in enhancing electron transfer and the generation of superoxide and singlet oxygen. The mechanism underlying the differences in the effects of Ag and Pd may be related to differences in Fermi levels for Ag and Pd and band bending accompanied by effects on Schottky barriers. The results of these studies provide information valuable for designing hybrid nanomaterials having photocatalytic and photobiological activities useful for applications such as water purification and formulation of antibacterial products.

  8. Great Lakes: Great Gardening.

    ERIC Educational Resources Information Center

    New York Sea Grant Inst., Albany, NY.

    This folder contains 12 fact sheets designed to improve the quality of gardens near the Great Lakes. The titles are: (1) "Your Garden and the Great Lakes"; (2) "Organic Gardening"; (3) "Fruit and Vegetable Gardening"; (4) "Composting Yard Wastes"; (5) "Herbicides and Water Quality"; (6)…

  9. Techniques for restoration of disturbed coastal wetlands of the Great Lakes

    USGS Publications Warehouse

    Wilcox, Douglas A.; Whillans, Thomas H.

    1999-01-01

    A long history of human-induced degradation of Great Lakes wetlands has made restoration a necessity, but the practice of wetland restoration is relatively new, especially in large lake systems. Therefore, we compiled tested methods and developed additional potential methods based on scientific understanding of Great Lakes wetland ecosytems to providc an overview of approaches for restoration. We addressed this challenge by focusing on four general fields of science: hydrology, sedimentology, chemistry, and biology. Hydrologic remediation methods include restoring hydrologic connections between diked and hydrologically altered wetlands and the lakes, restoring water tables lowered by ditching, and restoring natural variation in lake levels of regulated lakes Superior and Ontario. Sedimentological remediation methods include management of sediment input from uplands, removal or proper management of dams on tributary rivers, and restoration of protective barrier beaches and sand spits. Chemical remediation methods include reducing or eliminating inputs of contaminants from point and non-pont sources, natural sediment remediation by biodegradation and chemical degradation, and active sediment remediation by removal or byin situ treatment Biological remediation methods include control of non-target organisms, enhancing populations of target organisms, and enhancing habitat for target organisms. Some of these method were used in three major restoration projects (Metzger Marsh on Lake Erie and Cootes Paradise and Oshawa Second Marsh on Lake Ontario), which are described as case studies to show practical applications of wetland restoration in the Great Lakes. Successful restoration techniques that do not require continued manipulation must be founded in the basic tenets of ecology and should mimic natural processes. Success is demonstrated by the sustainability, productivity, nutrient-retention ability, invasibility, and biotic interactions within a restored wetland.

  10. Solid state fermentation of Trichoderma viride for enhancement phenolic content, antioxidant and antimicrobial activities in ginger.

    PubMed

    Saleh, Rashad M; Kabli, Saleh A; Al-Garni, Saleh M; Al-Ghamdi, Maryam A; Abdel-Aty, Azza M; Mohamed, Saleh A

    2018-05-04

    The phenolic content of methanolic and water extracts of ginger fermented by Trichoderma spp. during solid state fermentation (SSF) was detected as compared with unfermented ginger. The total phenolic content of fermented ginger increased several times. The highest phenolic content of ginger was detected after SSF by T. viride. The optimal physiological conditions for the maximum production of the phenolic content and β-glucosidase activity of fermented ginger by T. viride were detected at day 7 incubation, pH 6.0, 30°C and 30% moisture. There are consistent between the maximum production of β-glucosidase and phenolic content. The SSF of ginger by T. viride greatly enhanced the antioxidant potency of phenolic compounds by using DPPH and ABTS assays. Potent antibacterial activity was appeared by phenolic compounds of fermented ginger against all the tested human-pathogenic bacteria. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  11. Dexamethasone potently enhances phorbol ester-induced IL-1beta gene expression and nuclear factor NF-kappaB activation.

    PubMed

    Wang, Y; Zhang, J J; Dai, W; Lei, K Y; Pike, J W

    1997-07-15

    The synthetic glucocorticoid dexamethasone, an immunosuppressive and anti-inflammatory agent, was investigated for its effect on PMA-mediated expression of the inflammatory cytokine IL-1beta in the human monocytic leukemic cell line THP-1. PMA alone induced the production of low levels of IL-1beta in THP-1 cells, whereas dexamethasone alone had no effect. However, dexamethasone potently enhanced PMA-mediated IL-1beta production. Using a selective and potent inhibitor of protein kinase C, we found that synergistic interaction between PMA and dexamethasone requires protein kinase C activation. PMA has been known to activate nuclear factor NF-kappaB in THP-1 cells. Using an oligonucleotide probe corresponding to an NF-kappaB DNA-binding motif of the IL-1beta gene promoter in gel electrophoresis mobility shift assays, we demonstrated that PMA-induced NF-kappaB activation was greatly potentiated by dexamethasone. Our results indicate that glucocorticoids can be positive regulators of inflammatory cytokine gene expression during monocytic cell differentiation.

  12. Integrating AgI/AgBr biphasic heterostructures encased by few layer h-BN with enhanced catalytic activity and stability.

    PubMed

    Wu, Wen; Lv, Xiaomeng; Wang, Jiaxi; Xie, Jimin

    2017-06-15

    Using freshly prepared water-soluble KBr crystal as facile, low-cost sacrificial template, AgBr nanocubes were synthesized through one-pot precipitation method, then navy bean shaped AgI/AgBr biphasic heterostructures were synthesized through anion-exchange reaction and encased within few-layer h-BN to obtain final product. The obtained heterostructured AgI/AgBr/h-BN composite without plasmonic noble metal nanoparticles was used as stable and high active photocatalyst for dye degradation under visible light irradiation, comparing both with self-prepared normal AgBr, AgBr cubes, AgI/AgBr navy beans and other related catalysts reported in the literature. The significant boosting of activity was attributed to the formation of AgI/AgBr interface and the coupling of few-layer h-BN, the latter of which not only effectively suppresses the reduction of silver ions but greatly enhance the charge separation. Furthermore, it was suggested that the photogenerated holes and superoxide radical were the main active species according to photoelectron chemical measurements, electron spin resonance spin-trap analysis and radical trapping experiments. Finally, the possible mechanism of enhanced photocatalytic activity and stability was discussed and proposed. The work demonstrates that engineering Ag-based semiconductor coupling with h-BN would profit the design strategy for low-cost, solar-driven photocatalysts. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Fabrication of NiS modified CdS nanorod p-n junction photocatalysts with enhanced visible-light photocatalytic H2-production activity.

    PubMed

    Zhang, Jun; Qiao, Shi Zhang; Qi, Lifang; Yu, Jiaguo

    2013-08-07

    Production of hydrogen from photocatalytic water splitting has become an attractive research area due to the possibility of converting solar energy into green chemical energy. In this study, novel NiS nanoparticle (NP) modified CdS nanorod (NR) p-n junction photocatalysts were prepared by a simple two-step hydrothermal method. Even without the Pt co-catalyst, the as-prepared NiS NP-CdS NR samples exhibited enhanced visible-light photocatalytic activity and good stability for H2-production. The optimal NiS loading content was determined to be 5 mol%, and the corresponding H2-production rate reached 1131 μmol h(-1) g(-1), which is even higher than that of the optimized Pt-CdS NRs. It is believed that the assembly of p-type NiS NPs on the surface of n-type CdS NRs could form a large number of p-n junctions, which could effectively reduce the recombination rates of electrons and holes, thus greatly enhancing the photocatalytic activity. This work not only shows a possibility for the utilization of low cost NiS nanoparticles as a substitute for noble metals (such as Pt) in the photocatalytic H2-production but also provides a new insight into the design and fabrication of other new p-n junction photocatalysts for enhancing H2-production activity.

  14. Enhanced Photoelectrocatalytic Activity of BiOI Nanoplate-Zinc Oxide Nanorod p-n Heterojunction.

    PubMed

    Kuang, Pan-Yong; Ran, Jing-Run; Liu, Zhao-Qing; Wang, Hong-Juan; Li, Nan; Su, Yu-Zhi; Jin, Yong-Gang; Qiao, Shi-Zhang

    2015-10-19

    The development of highly efficient and robust photocatalysts has attracted great attention for solving the global energy crisis and environmental problems. Herein, we describe the synthesis of a p-n heterostructured photocatalyst, consisting of ZnO nanorod arrays (NRAs) decorated with BiOI nanoplates (NPs), by a facile solvothermal method. The product thus obtained shows high photoelectrochemical water splitting performance and enhanced photoelectrocatalytic activity for pollutant degradation under visible light irradiation. The p-type BiOI NPs, with a narrow band gap, not only act as a sensitizer to absorb visible light and promote electron transfer to the n-type ZnO NRAs, but also increase the contact area with organic pollutants. Meanwhile, ZnO NRAs provide a fast electron-transfer channel, thus resulting in efficient separation of photoinduced electron-hole pairs. Such a p-n heterojunction nanocomposite could serve as a novel and promising catalyst in energy and environmental applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Xenobiotics enhance laccase activity in alkali-tolerant γ-proteobacterium JB.

    PubMed

    Singh, Gursharan; Batish, Mona; Sharma, Prince; Capalash, Neena

    2009-01-01

    Various genotoxic textile dyes, xenobiotics, substrates (10 µM) and agrochemicals (100 µg/ml) were tested for enhancement of alkalophilic laccase activity in γ-proteobacterium JB. Neutral Red, Indigo Carmine, Naphthol Base Bordears and Sulphast Ruby dyes increased the activity by 3.7, 2.7, 2.6 and 2.3 fold respectively. Xenobiotics/substrates like p-toluidine, 8-hydroxyquinoline and anthracine increased it by 3.4, 2.8 and 2.3 fold respectively. Atrazine and trycyclozole pesticides enhanced the activity by 1.95 and 1.5 fold respectively.

  16. Xenobiotics enhance laccase activity in alkali-tolerant γ-proteobacterium JB

    PubMed Central

    Singh, Gursharan; Batish, Mona; Sharma, Prince; Capalash, Neena

    2009-01-01

    Various genotoxic textile dyes, xenobiotics, substrates (10 µM) and agrochemicals (100 µg/ml) were tested for enhancement of alkalophilic laccase activity in γ-proteobacterium JB. Neutral Red, Indigo Carmine, Naphthol Base Bordears and Sulphast Ruby dyes increased the activity by 3.7, 2.7, 2.6 and 2.3 fold respectively. Xenobiotics/substrates like p-toluidine, 8-hydroxyquinoline and anthracine increased it by 3.4, 2.8 and 2.3 fold respectively. Atrazine and trycyclozole pesticides enhanced the activity by 1.95 and 1.5 fold respectively. PMID:24031313

  17. Chemical modification of capuramycins to enhance antibacterial activity

    PubMed Central

    Bogatcheva, Elena; Dubuisson, Tia; Protopopova, Marina; Einck, Leo; Nacy, Carol A.; Reddy, Venkata M.

    2011-01-01

    Objectives To extend capuramycin spectrum of activity beyond mycobacteria and improve intracellular drug activity. Methods Three capuramycin analogues (SQ997, SQ922 and SQ641) were conjugated with different natural and unnatural amino acids or decanoic acid (DEC) through an ester bond at one or more available hydroxyl groups. In vitro activity of the modified compounds was determined against Mycobacterium spp. and representative Gram-positive and Gram-negative bacteria. Intracellular activity was evaluated in J774A.1 mouse macrophages infected with Mycobacterium tuberculosis (H37Rv). Results Acylation of SQ997 and SQ641 with amino undecanoic acid (AUA) improved in vitro activity against most of the bacteria tested. Conjugation of SQ922 with DEC, but not AUA, improved its activity against Gram-positive bacteria. In the presence of efflux pump inhibitor phenylalanine arginine β-naphthyl amide, MICs of SQ997-AUA, SQ641-AUA and SQ922-DEC compounds improved even further against drug-susceptible and drug-resistant Staphylococcus aureus. In Gram-negative bacteria, EDTA-mediated permeabilization caused 4- to 16-fold enhancement of the activity of AUA-conjugated SQ997, SQ922 and SQ641. Conjugation of all three capuramycin analogues with AUA improved intracellular killing of H37Rv in murine macrophages. Conclusions Conjugation of capuramycin analogues with AUA or DEC enhanced in vitro activity, extended the spectrum of activity in Gram-positive bacteria and increased intracellular activity against H37Rv. PMID:21186194

  18. EPA Research Strengthens Great Lakes Restoration Initiative

    EPA Science Inventory

    As the largest group of freshwater lakes on Earth, the Great Lakes (Lakes Erie, Huron, Michigan, Ontario and Superior) are a source of economic prosperity, recreation and raw materials. Human activity, however, has resulted in pollution and other stressors. The Great Lakes curren...

  19. Design of New Antibacterial Enhancers Based on AcrB's Structure and the Evaluation of Their Antibacterial Enhancement Activity.

    PubMed

    Song, Yi; Qin, Rongxin; Pan, Xichun; Ouyang, Qin; Liu, Tianyu; Zhai, Zhaoxia; Chen, Yingchun; Li, Bin; Zhou, Hong

    2016-11-18

    Previously, artesunate (AS) and dihydroartemisinine 7 (DHA7) were found to have antibacterial enhancement activity against Escherichia coli via inhibition of the efflux pump AcrB. However, they were only effective against E. coli standard strains. This study aimed to develop effective antibacterial enhancers based on the previous work. Our results demonstrate that 86 new antibacterial enhancers were designed via 3D-SAR and molecular docking. Among them, DHA27 had the best antibacterial enhancement activity. It could potentiate the antibacterial effects of ampicillin against not only E. coli standard strain but also clinical strains, and of β-lactam antibiotics, not non-β-lactamantibiotics. DHA27 could increase the accumulation of daunomycin and nile red within E. coli ATCC 35218, but did not increase the bacterial membrane permeability. DHA27 reduced acrB 's mRNA expression of E. coli ATCC 35218 in a dose-dependent manner, and its antibacterial enhancement activity is related to the degree of acrB mRNA expression in E. coli clinical strains. The polypeptides from AcrB were obtained via molecular docking assay; the pre-incubated polypeptides could inhibit the activity of DHA27. Importantly, DHA27 had no cytotoxicity on cell proliferation. In conclusion, among newly designed antibacterial enhancers, DHA27 had favorable physical and pharmacological properties with no significant cytotoxicity at effective concentrations, and might serve as a potential efflux pump inhibitor in the future.

  20. Defying the activity-stability trade-off in enzymes: taking advantage of entropy to enhance activity and thermostability.

    PubMed

    Siddiqui, Khawar Sohail

    2017-05-01

    The biotechnological applications of enzymes are limited due to the activity-stability trade-off, which implies that an increase in activity is accompanied by a concomitant decrease in protein stability. This premise is based on thermally adapted homologous enzymes where cold-adapted enzymes show high intrinsic activity linked to enhanced thermolability. In contrast, thermophilic enzymes show low activity around ambient temperatures. Nevertheless, genetically and chemically modified enzymes are beginning to show that the activity-stability trade-off can be overcome. In this review, the origin of the activity-stability trade-off, the thermodynamic basis for enhanced activity and stability, and various approaches for escaping the activity-stability trade-off are discussed. The role of entropy in enhancing both the activity and the stability of enzymes is highlighted with a special emphasis placed on the involvement of solvent water molecules. This review is concluded with suggestions for further research, which underscores the implications of these findings in the context of productivity curves, the Daniel-Danson equilibrium model, catalytic antibodies, and life on cold planets.

  1. Mechanisms of morphine enhancement of spontaneous seizure activity.

    PubMed

    Saboory, Ehsan; Derchansky, Miron; Ismaili, Mohammed; Jahromi, Shokrollah S; Brull, Richard; Carlen, Peter L; El Beheiry, Hossam

    2007-12-01

    High-dose opioid therapy can precipitate seizures; however, the mechanism of such a dangerous adverse effect remains poorly understood. The aim of our study was to determine whether the neuroexcitatory activity of high-dose morphine is mediated by selective stimulation of opioid receptors. Mice hippocampi were resected intact and bathed in low magnesium artificial cerebrospinal fluid to induce spontaneous seizure-like events recorded from CA1 neurons. Application of morphine had a biphasic effect on the recorded spontaneous seizure-like events. In a low concentration (10 microM), morphine depressed electrographic seizure activity. Higher morphine concentrations (30 and 100 microM) enhanced seizure activity in an apparent dose-dependent manner. Naloxone, a nonselective opiate antagonist blocked the proconvulsant action of morphine. Selective mu and kappa opiate receptor agonists and antagonists enhanced and suppressed the spontaneous seizure activity, respectively. On the contrary, delta opioid receptor ligands did not have an effect. The proseizure effect of morphine is mediated through selective stimulation of mu and kappa opiate receptors but not the activation of the delta receptor system. The observed dose-dependent mechanism of morphine neuroexcitation underscores careful adjustment and individualized opioid dosing in the clinical setting.

  2. The Great Lakes Information Network: the region's Internet information service.

    PubMed

    Ratza, C A

    1996-01-01

    Communication is the cornerstone of ecosystem protection and sustainable development efforts in the binational Great Lakes region of North America. Great Lakes environmental protection, remediation, and pollution prevention efforts bring together individuals from across the public sector, business and industry, citizens groups, and academia. The region is now working to enhance communications between these groups and the rest of the world, through the Internet-based Great Lakes Information Network (GLIN). Diverse regional data, information, and human resources located at key agencies and organizations are accessible via GLIN. These online resources span environmental quality, human health effects and other research, resource management, transportation, demographic, and economic data, as well as other resources in the Great Lakes region of the United States and Canada. Federal, state, provincial, and regional agencies and a range of citizen, business, and research organizations are cooperating with the lead agency, the Great Lakes Commission, in developing GLIN into the region's shared Internet resource. GLIN resources are accessible to users of ubiquitous Internet research tools including World Wide Web and Gopher. Statistical information on usage and the region's response to ongoing efforts to build the GLIN system and solicit contributions of data and information indicate that we can continue to build GLIN into a truly regional resource which enhances communication among researchers, policy makers, students, and the general public.

  3. Active Sampling State Dynamically Enhances Olfactory Bulb Odor Representation.

    PubMed

    Jordan, Rebecca; Fukunaga, Izumi; Kollo, Mihaly; Schaefer, Andreas T

    2018-06-27

    The olfactory bulb (OB) is the first site of synaptic odor information processing, yet a wealth of contextual and learned information has been described in its activity. To investigate the mechanistic basis of contextual modulation, we use whole-cell recordings to measure odor responses across rapid learning episodes in identified mitral/tufted cells (MTCs). Across these learning episodes, diverse response changes occur already during the first sniff cycle. Motivated mice develop active sniffing strategies across learning that robustly correspond to the odor response changes, resulting in enhanced odor representation. Evoking fast sniffing in different behavioral states demonstrates that response changes during active sampling exceed those predicted from feedforward input alone. Finally, response changes are highly correlated in tufted cells, but not mitral cells, indicating there are cell-type-specific effects on odor representation during active sampling. Altogether, we show that active sampling is strongly associated with enhanced OB responsiveness on rapid timescales. Copyright © 2018 The Francis Crick Institute. Published by Elsevier Inc. All rights reserved.

  4. Root endophyte Piriformospora indica DSM 11827 alters plant morphology, enhances biomass and antioxidant activity of medicinal plant Bacopa monniera.

    PubMed

    Prasad, Ram; Kamal, Shwet; Sharma, Pradeep K; Oelmüller, Ralf; Varma, Ajit

    2013-12-01

    Unorganized collections and over exploitation of naturally occurring medicinal plant Bacopa monniera is leading to rapid depletion of germplasm and is posing a great threat to its survival in natural habitats. The species has already been listed in the list of highly threatened plants of India. This calls for micropropagation based multiplication of potential accessions and understanding of their mycorrhizal associations for obtaining plants with enhanced secondary metabolite contents. The co-cultivation of B. monniera with axenically cultivated root endophyte Piriformospora indica resulted in growth promotion, increase in bacoside content, antioxidant activity and nuclear hypertrophy of this medicinal plant. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Positive mood enhances reward-related neural activity

    PubMed Central

    Nusslock, Robin

    2016-01-01

    Although behavioral research has shown that positive mood leads to desired outcomes in nearly every major life domain, no studies have directly examined the effects of positive mood on the neural processes underlying reward-related affect and goal-directed behavior. To address this gap, participants in the present fMRI study experienced either a positive (n = 20) or neutral (n = 20) mood induction and subsequently completed a monetary incentive delay task that assessed reward and loss processing. Consistent with prediction, positive mood elevated activity specifically during reward anticipation in corticostriatal neural regions that have been implicated in reward processing and goal-directed behavior, including the nucleus accumbens, caudate, lateral orbitofrontal cortex and putamen, as well as related paralimbic regions, including the anterior insula and ventromedial prefrontal cortex. These effects were not observed during reward outcome, loss anticipation or loss outcome. Critically, this is the first study to report that positive mood enhances reward-related neural activity. Our findings have implications for uncovering the neural mechanisms by which positive mood enhances goal-directed behavior, understanding the malleability of reward-related neural activity, and developing targeted treatments for psychiatric disorders characterized by deficits in reward processing. PMID:26833919

  6. THE ENHANCEMENT OF CHLOROFORM-INDUCED PLASMA PROTEOLYTIC ACTIVITY BY EPSILON AMINOCAPROIC ACID

    PubMed Central

    Donaldson, Virginia H.; Ratnoff, Oscar D.

    1962-01-01

    The proteolytic activity in chloroform-treated plasma euglobulins has been attributed to plasmin. Plasmin can digest both casein and fibrin. Epsilon aminocaproic acid, which inhibits the activation of plasminogen, the precursor of plasmin, by streptokinase, urokinase, and tissue activators enhanced the development of casein hydrolytic activity in a mixture of chloroform and plasma euglobulins. Fibrinolytic activity was also enhanced, but this was evident only if the epsilon aminocaproic acid was removed from the chloroform-treated euglobulins prior to assay. The reasons for the paradoxical enhancement of chloroform-induced casein hydrolysis by euglobulins containing epsilon aminocaproic acid are unclear. However, studies of optimal pH, heat stability, and the effect of ionic strength on the activation of the precursor of this proteolytic enzyme do not differentiate it from plasminogen. PMID:13887179

  7. Nanosilver-based surface-enhanced Raman spectroscopic determination of DNA methyltransferase activity through real-time hybridization chain reaction.

    PubMed

    Hu, Ping Ping; Liu, Hui; Zhen, Shu Jun; Li, Chun Mei; Huang, Cheng Zhi

    2015-11-15

    In this manuscript, a nanosilver enhanced SERS strategy was successfully constructed for the determination of DNA methyltransferase activity in soulution combined with hybridization chain reaction (HCR). The proposed method was mainly on the basis of excellent separation ability of magnetic microparticles (MMPs), HCR as signal amplification unit and assembled AgNPs as enhancement substrate. In the presence of M. SssI MTase, the duplex sequence (5'-CCGG-3') tethered to MMPs was methylated, which cannot be cleaved by HpaII endonuclease. The resulted DNA skeleton captured on MMPs then triggered the HCR reaction, generated a polymerized and extended symmetrical sequence, in which more biotin terminal was available for the conjugation of AgNPs-SA, leading to significantly amplified SERS response. When it was used to analyze M. SssI activity, a linear equation ∆ISERS=1215.32+446.80 cM.SssI was obtained with the M. SssI activity ranged from 0.1 to 10.0 U with the correlation coefficient (r(2)) of 0.97. The most important advantage of this method is the combination of SERS and HCR in solution for the first time and its good selectivity, which enabled the detection of even one-base mismatched sequence. The new assay method holds great promising application to be a versatile platform for sensitive, high-throughput detection, and the screening of new anticancer drugs on DNA MTase. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Peculiarities of Future Technology Teachers' Training in Poland and Great Britain

    ERIC Educational Resources Information Center

    Androshchuk, Iryna; Androshchuk, Ihor

    2017-01-01

    The importance of studying foreign experience to enhance the efficiency of teacher training in higher education institutions has been justified. Peculiarities of future technology teachers' training in Poland and Great Britain have been considered. Special attention has been paid to revealing the ways of enhancing the level of teachers'…

  9. Enhanced Catalytic Activities of NiPt Truncated Octahedral Nanoparticles toward Ethylene Glycol Oxidation and Oxygen Reduction in Alkaline Electrolyte.

    PubMed

    Xia, Tianyu; Liu, Jialong; Wang, Shouguo; Wang, Chao; Sun, Young; Gu, Lin; Wang, Rongming

    2016-05-04

    The high cost and poor durability of Pt nanoparticles (NPs) are great limits for the proton exchange membrane fuel cells (PEMFCs) from being scaled-up for commercial applications. Pt-based bimetallic NPs together with a uniform distribution can effectively reduce the usage of expensive Pt while increasing poison resistance of intermediates. In this work, a simple one-pot method was used to successfully synthesize ultrafine (about 7.5 nm) uniform NiPt truncated octahedral nanoparticles (TONPs) in dimethylformamid (DMF) without any seeds or templates. The as-prepared NiPt TONPs with Pt-rich surfaces exhibit greatly improved catalytic activities together with good tolerance and better stability for ethylene glycol oxidation reaction (EGOR) and oxygen reduction reaction (ORR) in comparison with NiPt NPs and commercial Pt/C catalysts in alkaline electrolyte. For example, the value of mass and specific activities for EGOR are 23.2 and 17.6 times higher comparing with those of commercial Pt/C, respectively. Our results demonstrate that the dramatic enhancement is mainly attributed to Pt-rich surface, larger specific surface area, together with coupling between Ni and Pt atoms. This developed method provides a promising pathway for simple preparation of highly efficient electrocatalysts for PEMFCs in the near future.

  10. Toward Enhancing the Enzymatic Activity of a Novel Fungal Polygalacturonase for Food Industry: Optimization and Biochemical Analyses.

    PubMed

    Shetaia, Yousseria M H; El-Baz, Ashraf F; ElMekawy, Ahmed M

    2017-08-11

    The review of literature and patents shows that enhancing the PG production and activity are still required to fulfill the increasing demands. A dual optimization process, which involved Plackett-Burman design (PBD), with seven factors, and response surface methodology, was applied to optimize the production of extracellular polygalacturonase (PG) enzyme produced by a novel strain of Aspergillus flavus isolated from rotten orange fruit. The fungal PG was purified and biochemically characterized. Three variables (harvesting time, pH and orange pomace concentration), that were verified to be significant by the PBD analysis, were comprehensively optimized via Box-Behnken design. According to this optimization, the highest PG activity (4073 U/mL) was obtained under pH 7 after 48 h using 40 g/L orange pomace as a substrate, with enhancement in PG activity by 51% compared to the first PBD optimization step. The specific activity of the purified PG was 1608 U/mg with polygalacturonic acid and its molecular weight was 55 kDa. The optimum pH was 5 with relative thermal stability (80%) at 50˚C after 30 min. The PG activity improved in the presence of Cu2+ and Ca2+, while Ba2+, Fe2+ and Zn2+ greatly inhibited the enzyme activity. The obvious Km and Vmax values were 0.8 mg/mL and 2000 µmol/min, respectively. This study is a starting point for initial research in the field of optimization and characterization of A. flavus PG. The statistical optimization of A. flavus PG and its biochemical characterization clearly revealed that this fungal strain can be a potential producer of PG which has a wide range of industrial applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Enhancing Science Instruction through Student-Created PowerPoint Presentations

    ERIC Educational Resources Information Center

    Gerido, Leona; Curran, Mary Carla

    2014-01-01

    Technology use in science classes can enhance lessons and reinforce scientific content. The creation of multimedia projects is a great way to engage students in lessons about estuarine ecosystems. In this activity, students can learn about estuarine organisms and use their creativity to write a story, create artwork, and develop a multimedia…

  12. Enhanced biocontrol activity of Rhodotorula mucilaginosa cultured in media containing chitosan against postharvest diseases in strawberries: possible mechanisms underlying the effect.

    PubMed

    Zhang, Hongyin; Ge, Lingling; Chen, Keping; Zhao, Lina; Zhang, Xiaoyun

    2014-05-07

    The effect of Rhodotorula mucilaginosa cultured in media containing chitosan on its antogonistic activity against postharvest diseases of strawberries and the possible mechanisms involved are discussed. Two-dimensional gel electrophoresis were applied in the analysis of the proteins of R. mucilaginosa in response to chitosan. Compared with the application of R. mucilaginosa alone, the biocontrol efficacy of the yeast combined with 0.5% chitosan was enhanced greatly, with significant increase in chitinase activity of antagonistic yeast, polyphenoloxidase, peroxidase, phenylalanine ammonia lyase, chitinase and β-1,3-glucanase activity, and with an inhibition of lipid peroxidation of strawberries. The population of R. mucilaginosa harvested from NYDB amended with chitosan at 0.5% increased rapidly in strawberry wounds compared with those harvested from NYDB without chitosan. In the cellular proteome, several differentially expressed proteins were identified, most of which were related to basic metabolism.

  13. BIOLOGICALLY ENHANCED OXYGEN TRANSFER IN THE ACTIVATED SLUDGE PROCESS (JOURNAL)

    EPA Science Inventory

    Biologically enhanced oxgyen transfer has been a hypothesis to explain observed oxygen transfer rates in activated sludge systems that were well above that predicted from aerator clean-water testing. The enhanced oxygen transfer rates were based on tests using BOD bottle oxygen ...

  14. Development of a heat-processing method for koji to enhance its antioxidant activity.

    PubMed

    Okutsu, Kayu; Yoshizaki, Yumiko; Takamine, Kazunori; Tamaki, Hisanori; Ito, Kiyoshi; Sameshima, Yoshihiro

    2012-03-01

    We developed a heat-processing method to enhance the antioxidant activity of koji. The superoxide anion scavenging activity (SOSA) and oxygen radical absorbance capacity (ORAC) of heat-processed koji (HP-koji) at 55 °C for 7 days were 4.9 times and 4.2 times, respectively, those of unheated koji. These results showed that heat processing effectively enhances the antioxidant activity of koji. Analysis of the antioxidant activities of koji subjected to a range of temperatures (45-75 °C) revealed that the SOSA is enhanced by heating at higher temperatures, which might be catalyzed by Maillard reaction, whereas the ORAC was enhanced by heating at lower temperatures, which might be catalyzed by an enzymatic reaction. Assuming these enhancements in antioxidant activities are contributed by both Maillard and enzyme reactions, we hypothesized that the antioxidant activity of HP-koji could be more effectively amplified by heating at a higher temperature after the progression of the enzymatic reaction at a moderate temperature. Therefore, we evaluated the effect of heating of koji in a stepwise manner, first at 55 °C for 2 days and then at 75 °C for 5days. The antioxidant activities of stepwise-heated HP-koji were higher than those of koji heated at either 55 °C or 75 °C. The SOSA and ORAC of stepwise-heated HP-koji were 94 times and 6 times, respectively, those of unheated koji. This result suggests that enzymatic reaction followed by Maillard reaction can effectively enhance the antioxidant activity of HP-koji. Thus, we developed a novel heat-processing method to enhance the antioxidant activity of koji. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. Degradation kinetics and mechanism of trace nitrobenzene by granular activated carbon enhanced microwave/hydrogen peroxide system.

    PubMed

    Tan, Dina; Zeng, Honghu; Liu, Jie; Yu, Xiaozhang; Liang, Yanpeng; Lu, Lanjing

    2013-07-01

    The kinetics of the degradation of trace nitrobenzene (NB) by a granular activated carbon (GAC) enhanced microwave (MW)/hydrogen peroxide (H202) system was studied. Effects of pH, NB initial concentration and tert-butyl alcohol on the removal efficiency were examined. It was found that the reaction rate fits well to first-order reaction kinetics in the MW/GAC/H202 process. Moreover, GAC greatly enhanced the degradation rate of NB in water. Under a given condition (MW power 300 W, H202 dosage 10 mg/L, pH 6.85 and temperature (60 +/- 5)degrees C), the degradation rate of NB was 0.05214 min-1when 4 g/L GAC was added. In general, alkaline pH was better for NB degradation; however, the optimum pH was 8.0 in the tested pH value range of 4.0-12.0. At H202 dosage of 10 mg/L and GAC dosage of 4 g/L, the removal of NB was decreased with increasing initial concentrations of NB, indicating that a low initial concentration was beneficial for the degradation of NB. These results indicated that the MW/GAC/H202 process was effective for trace NB degradation in water. Gas chromatography-mass spectrometry analysis indicated that a hydroxyl radical addition reaction and dehydrogenation reaction enhanced NB degradation.

  16. Enhanced Stellar Activity for Slow Antisolar Differential Rotation?

    NASA Astrophysics Data System (ADS)

    Brandenburg, Axel; Giampapa, Mark S.

    2018-03-01

    High-precision photometry of solar-like members of the open cluster M67 with Kepler/K2 data has recently revealed enhanced activity for stars with a large Rossby number, which is the ratio of rotation period to the convective turnover time. Contrary to the well established behavior for shorter rotation periods and smaller Rossby numbers, the chromospheric activity of the more slowly rotating stars of M67 was found to increase with increasing Rossby number. Such behavior has never been reported before, although it was theoretically predicted to emerge as a consequence of antisolar differential rotation (DR) for stars with Rossby numbers larger than that of the Sun, because in those models the absolute value of the DR was found to exceed that for solar-like DR. Using gyrochronological relations and an approximate age of 4 Gyr for the members of M67, we compare with computed rotation rates using just the B ‑ V color. The resulting rotation–activity relation is found to be compatible with that obtained by employing the measured rotation rate. This provides additional support for the unconventional enhancement of activity at comparatively low rotation rates and the possible presence of antisolar differential rotation.

  17. Active Dendrites Enhance Neuronal Dynamic Range

    PubMed Central

    Gollo, Leonardo L.; Kinouchi, Osame; Copelli, Mauro

    2009-01-01

    Since the first experimental evidences of active conductances in dendrites, most neurons have been shown to exhibit dendritic excitability through the expression of a variety of voltage-gated ion channels. However, despite experimental and theoretical efforts undertaken in the past decades, the role of this excitability for some kind of dendritic computation has remained elusive. Here we show that, owing to very general properties of excitable media, the average output of a model of an active dendritic tree is a highly non-linear function of its afferent rate, attaining extremely large dynamic ranges (above 50 dB). Moreover, the model yields double-sigmoid response functions as experimentally observed in retinal ganglion cells. We claim that enhancement of dynamic range is the primary functional role of active dendritic conductances. We predict that neurons with larger dendritic trees should have larger dynamic range and that blocking of active conductances should lead to a decrease in dynamic range. PMID:19521531

  18. Alkyl polyglucose enhancing propionic acid enriched short-chain fatty acids production during anaerobic treatment of waste activated sludge and mechanisms.

    PubMed

    Luo, Jingyang; Feng, Leiyu; Chen, Yinguang; Sun, Han; Shen, Qiuting; Li, Xiang; Chen, Hong

    2015-04-15

    Adding alkyl polyglucose (APG) into an anaerobic treatment system of waste activated sludge (WAS) was reported to remarkably improve the production of short-chain fatty acids (SCFAs), especially propionic acid via simultaneously accelerating solubilization and hydrolysis, enhancing acidification, inhibiting methanogenesis and balancing carbon to nitrogen (C/N) ratio of substrate. Not only the production of SCFAs, especially propionic acid, was significantly improved by APG, but also the feasible operation time was shortened. The SCFAs yield at 0.3 g APG per gram of total suspended solids (TSS) within 4 d was 2988 ± 60 mg chemical oxygen demand (COD) per liter, much higher than that those from sole WAS or sole WAS plus sole APG. The corresponding yield of propionic acid was 1312 ± 25 mg COD/L, 7.9-fold of sole WAS. Mechanism investigation showed that during anaerobic treatment of WAS in the presence of APG both the solubilization and hydrolysis were accelerated and the acidification was enhanced, while the methanogenesis was inhibited. Moreover, the activities of key enzymes involved in WAS hydrolysis and acidification were improved through the adjustment of C/N ratio of substrates with APG. The abundance of microorganisms responsible for organic compounds hydrolysis and SCFAs production was also observed to be greatly enhanced with APG via 454 high-throughput pyrosequencing analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion

    NASA Astrophysics Data System (ADS)

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W.; Liu, Yan; Walter, Nils G.; Yan, Hao

    2016-02-01

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology.

  20. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion

    PubMed Central

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W.; Liu, Yan; Walter, Nils G.; Yan, Hao

    2016-01-01

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology. PMID:26861509

  1. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion.

    PubMed

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W; Liu, Yan; Walter, Nils G; Yan, Hao

    2016-02-10

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology.

  2. Active and Inactive Enhancers Cooperate to Exert Localized and Long-Range Control of Gene Regulation.

    PubMed

    Proudhon, Charlotte; Snetkova, Valentina; Raviram, Ramya; Lobry, Camille; Badri, Sana; Jiang, Tingting; Hao, Bingtao; Trimarchi, Thomas; Kluger, Yuval; Aifantis, Iannis; Bonneau, Richard; Skok, Jane A

    2016-06-07

    V(D)J recombination relies on the presence of proximal enhancers that activate the antigen receptor (AgR) loci in a lineage- and stage-specific manner. Unexpectedly, we find that both active and inactive AgR enhancers cooperate to disseminate their effects in a localized and long-range manner. Here, we demonstrate the importance of short-range contacts between active enhancers that constitute an Igk super-enhancer in B cells. Deletion of one element reduces the interaction frequency between other enhancers in the hub, which compromises the transcriptional output of each component. Furthermore, we establish that, in T cells, long-range contact and cooperation between the inactive Igk enhancer MiEκ and the active Tcrb enhancer Eβ alters enrichment of CBFβ binding in a manner that impacts Tcrb recombination. These findings underline the complexities of enhancer regulation and point to a role for localized and long-range enhancer-sharing between active and inactive elements in lineage- and stage-specific control. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. M-shaped grating by nanoimprinting: a replicable, large-area, highly active plasmonic surface-enhanced Raman scattering substrate with nanogaps.

    PubMed

    Zhu, Zhendong; Bai, Benfeng; Duan, Huigao; Zhang, Haosu; Zhang, Mingqian; You, Oubo; Li, Qunqing; Tan, Qiaofeng; Wang, Jia; Fan, Shoushan; Jin, Guofan

    2014-04-24

    Plasmonic nanostructures separated by nanogaps enable strong electromagnetic-field confinement on the nanoscale for enhancing light-matter interactions, which are in great demand in many applications such as surface-enhanced Raman scattering (SERS). A simple M-shaped nanograting with narrow V-shaped grooves is proposed. Both theoretical and experimental studies reveal that the electromagnetic field on the surface of the M grating can be pronouncedly enhanced over that of a grating without such grooves, due to field localization in the nanogaps formed by the narrow V grooves. A technique based on room-temperature nanoimprinting lithography and anisotropic reactive-ion etching is developed to fabricate this device, which is cost-effective, reliable, and suitable for fabricating large-area nanostructures. As a demonstration of the potential application of this device, the M grating is used as a SERS substrate for probing Rhodamine 6G molecules. Experimentally, an average SERS enhancement factor as high as 5×10⁸ has been achieved, which verifies the greatly enhanced light-matter interaction on the surface of the M grating over that of traditional SERS surfaces. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Regulation of hepatitis B virus ENI enhancer activity by hepatocyte-enriched transcription factor HNF3.

    PubMed

    Chen, M; Hieng, S; Qian, X; Costa, R; Ou, J H

    1994-11-15

    Hepatitis B virus (HBV) ENI enhancer can activate the expression of HBV and non-HBV genes in a liver-specific manner. By performing the electrophoretic mobility-shift assays, we demonstrated that the three related, liver-enriched, transcription factors, HNF3 alpha, HNF3 beta, and HNF3 gamma could all bind to the 2c site of HBV ENI enhancer. Mutations introduced in the 2c site to abolish the binding by HNF3 reduced the enhancer activity approximately 15-fold. Moreover, expression of HNF3 antisense sequences to suppress the expression of HNF3 in Huh-7 hepatoma cells led to reduction of the ENI enhancer activity. These results indicate that HNF3 positively regulates the ENI enhancer activity and this regulation is most likely mediated through the 2c site. The requirement of HNF3 for the ENI enhancer activity could explain the liver specificity of this enhancer element.

  5. Ultrasound enhanced activation of peroxydisulfate by activated carbon fiber for decolorization of azo dye.

    PubMed

    Huang, Tianyin; Zhang, Ke; Qian, Yajie; Fang, Cong; Chen, Jiabin

    2018-02-20

    Activated carbon fiber (ACF) has become an emerging activator for peroxydisulfate (PDS) to generate sulfate radical (SO 4 •- ). However, the relative low activation efficiency and poor contaminant mineralization limited its widespread application. Herein, ultrasound (US) was introduced to the ACF activated PDS system, and the synergistic effect of US and ACF in PDS activation and the enhancement of contaminant mineralization were investigated. The synergistic effect of US and ACF was observed in the PDS activation to decolorize orange G (OG). The decolorization efficiency increased with increasing ACF loading and US power, and PDS/OG ratio from 1 to 40. The activation energy was determined to be 24.065 kJ/mol. The radical-induced decolorization of OG took place on the surface of ACF, and both SO 4 •- and hydroxyl radical ( • OH) contributed to OG decolorization. The azo bond and naphthalene ring on OG were destructed to other aromatic intermediates and finally mineralized to CO 2 and H 2 O. The introduction of US in the ACF/PDS system significantly enhanced the mineralization of OG. The combination of US and PDS was highly efficient to activate PDS to decolorize azo dyes. Moreover, the introduction of US remarkably improved the contaminant mineralization.

  6. Great Lakes rivermouth ecosystems: scientific synthesis and management implications

    EPA Science Inventory

    Rivermouth ecosystems contribute to both the ecological dynamics and the human social networks that surround and depend on the Laurentian Great Lakes. However, understanding and management of these systems would be enhanced by viewing them with a new, holistic focus. Here, focu...

  7. Sodium ions activated phosphofructokinase leading to enhanced D-lactic acid production by Sporolactobacillus inulinus using sodium hydroxide as a neutralizing agent.

    PubMed

    Zheng, Lu; Liu, Mingqing; Sun, Jiaduo; Wu, Bin; He, Bingfang

    2017-05-01

    Sporolactobacillus inulinus is a superior D-lactic acid-producing bacterium and proposed species for industrial production. The major pathway for D-lactic acid biosynthesis, glycolysis, is mainly regulated via the two irreversible steps catalyzed by the allosteric enzymes, phosphofructokinase (PFK) and pyruvate kinase. The activity level of PFK was significantly consistent with the cell growth and D-lactic acid production, indicating its vital role in control and regulation of glycolysis. In this study, the ATP-dependent PFK from S. inulinus was expressed in Escherichia coli and purified to homogeneity. The PFK was allosterically activated by both GDP and ADP and inhibited by phosphoenolpyruvate; the addition of activators could partly relieve the inhibition by phosphoenolpyruvate. Furthermore, monovalent cations could enhance the activity, and Na + was the most efficient one. Considering this kind activation, NaOH was investigated as the neutralizer instead of the traditional neutralizer CaCO 3 . In the early growth stage, the significant accelerated glucose consumption was achieved in the NaOH case probably for the enhanced activity of Na + -activated PFK. Using NaOH as the neutralizer at pH 6.5, the fermentation time was greatly shortened about 22 h; simultaneously, the glucose consumption rate and the D-lactic acid productivity were increased by 34 and 17%, respectively. This probably contributed to the increased pH and Na + -promoted activity of PFK. Thus, fermentations by S. inulinus using the NaOH neutralizer provide a green and highly efficient D-lactic acid production with easy subsequent purification.

  8. Gramicidin D enhances the antibacterial activity of fluoride.

    PubMed

    Nelson, James W; Zhou, Zhiyuan; Breaker, Ronald R

    2014-07-01

    Fluoride is a toxic anion found in many natural environments. One of the major bacterial defenses against fluoride is the cell envelope, which limits passage of the membrane-impermeant fluoride anion. Accordingly, compounds that enhance the permeability of bacterial membranes to fluoride should also enhance fluoride toxicity. In this study, we demonstrate that the pore-forming antibiotic gramicidin D increases fluoride uptake in Bacillus subtilis and that the antibacterial activity of this compound is potentiated by fluoride. Polymyxin B, another membrane-targeting antibiotic with a different mechanism of action, shows no such improvement. These results, along with previous findings, indicate that certain compounds that destabilize bacterial cell envelopes can enhance the toxicity of fluoride. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Developing design-based STEM education learning activities to enhance students' creative thinking

    NASA Astrophysics Data System (ADS)

    Pinasa, Siwa; Siripun, Kulpatsorn; Yuenyong, Chokchai

    2018-01-01

    Creative thinking on applying science and mathematics knowledge is required by the future STEM career. The STEM education should be provided for the required skills of future STEM career. This paper aimed to clarify the developing STEM education learning activities to enhance students' creative thinking. The learning activities were developed for Grade 10 students who will study in the subject of independent study (IS) of Khon Kaen Wittayayon School, Khon Kaen, Thailand. The developing STEM education learning activities for enhancing students' creative thinking was developed regarding on 6 steps including (1) providing of understanding of fundamental STEM education concept, (2) generating creative thinking from prototype, (4) revised ideas, (5) engineering ability, and (6) presentation and discussion. The paper will clarify the 18 weeks activities that will be provided based these 6 steps of developing learning activities. Then, these STEM learning activities will be discussed to provide the chance of enhancing students' creative thinking. The paper may have implication for STEM education in school setting.

  10. Serine deprivation enhances antineoplastic activity of biguanides.

    PubMed

    Gravel, Simon-Pierre; Hulea, Laura; Toban, Nader; Birman, Elena; Blouin, Marie-José; Zakikhani, Mahvash; Zhao, Yunhua; Topisirovic, Ivan; St-Pierre, Julie; Pollak, Michael

    2014-12-15

    Metformin, a biguanide widely used in the treatment of type II diabetes, clearly exhibits antineoplastic activity in experimental models and has been reported to reduce cancer incidence in diabetics. There are ongoing clinical trials to evaluate its antitumor properties, which may relate to its fundamental activity as an inhibitor of oxidative phosphorylation. Here, we show that serine withdrawal increases the antineoplastic effects of phenformin (a potent biguanide structurally related to metformin). Serine synthesis was not inhibited by biguanides. Instead, metabolic studies indicated a requirement for serine to allow cells to compensate for biguanide-induced decrease in oxidative phosphorylation by upregulating glycolysis. Furthermore, serine deprivation modified the impact of metformin on the relative abundance of metabolites within the citric acid cycle. In mice, a serine-deficient diet reduced serine levels in tumors and significantly enhanced the tumor growth-inhibitory actions of biguanide treatment. Our results define a dietary manipulation that can enhance the efficacy of biguanides as antineoplastic agents that target cancer cell energy metabolism. ©2014 American Association for Cancer Research.

  11. Role of edge activators and surface charge in developing ultradeformable vesicles with enhanced skin delivery.

    PubMed

    El Zaafarany, Ghada M; Awad, Gehanne A S; Holayel, Samar M; Mortada, Nahed D

    2010-09-15

    Transfersomes are highly efficient edge activator (EA)-based ultraflexible vesicles capable of, non-invasively, trespassing skin by virtue of their high, self-optimizing deformability. This investigation presents different approaches for the optimization of Transfersomes for enhanced transepidermal delivery of Diclofenac sodium (DS). Different methods of preparation, drug and lipid concentrations and vesicle compositions were employed, resulting in ultraflexible vesicles with diverse membrane characteristics. Evaluation of Transfersomes was implemented in terms of their shapes, sizes, entrapment efficiencies (EE%), relative deformabilities and in vitro skin permeation. Transfersomes prepared with 95:5% (w/w) (PC:EA) ratio showed highest EE% (Span 85>Span 80>Na cholate>Na deoxycholate>Tween 80). Whereas, those prepared using 85:15% (w/w) ratio showed highest deformability (Tween 80 was superior to bile salts and spans). Transfersomes were proved significantly superior in terms of, the amount of drug deposited in the skin and the amount permeated, with an enhancement ratio of 2.45, when compared to a marketed product. The study proved that the type and concentration of EA, as well as, the method of preparation had great influences on the properties of Transfersomes. Hence, optimized Transfersomes can significantly increase transepidermal flux and prolong the release of DS, when applied non-occlusively. Copyright 2010 Elsevier B.V. All rights reserved.

  12. Enhancing antimicrobial activity of TiO2/Ti by torularhodin bioinspired surface modification.

    PubMed

    Ungureanu, Camelia; Dumitriu, Cristina; Popescu, Simona; Enculescu, Monica; Tofan, Vlad; Popescu, Marian; Pirvu, Cristian

    2016-02-01

    Implant-associated infections are a major cause of morbidity and mortality. This study was performed using titanium samples coated by anodization with a titanium dioxide (TiO2) shielded nanotube layer. TiO2/Ti surface was modified by simple immersion in torularhodin solution and by using a mussel-inspired method based on polydopamine as bio adhesive for torularhodin immobilization. SEM analysis revealed tubular microstructures of torularhodin and the PDA ability to function as a catchy anchor between torularhodin and TiO2 surface. Corrosion resistance was associated with TiO2 barrier oxide layer and nano-organized oxide layer and the torularhodin surface modification does not bring significant changes in resistance of the oxide layer. Our results demonstrated that the torularhodin modified TiO2/Ti surface could effectively prevent adhesion and proliferation of Escherichia coli, Staphylococcus aureus, Enterococcus faecalis, Bacillus subtilis, and Pseudomonas aeruginosa. The new modified titanium surface showed good biocompatibility and well-behaved haemocompatibility. This biomaterial with enhanced antimicrobial activity holds great potential for future biomedical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Jupiter's Great Red Spot Revealed

    NASA Image and Video Library

    2017-07-12

    This enhanced-color image of Jupiter's Great Red Spot was created by citizen scientist Kevin Gill using data from the JunoCam imager on NASA's Juno spacecraft. The image was taken on July 10, 2017 at 07:07 p.m. PDT (10:07 p.m. EDT), as the Juno spacecraft performed its 7th close flyby of Jupiter. At the time the image was taken, the spacecraft was about 6,130 miles (9,866 kilometers) from the tops of the clouds of the planet. https://photojournal.jpl.nasa.gov/catalog/PIA21395

  14. Online Discovery and Mapping of Great Lakes Climate Change Education and Scientific Research Activities: Building an Online Collaborative Learning Community of Scientists and Educators

    NASA Astrophysics Data System (ADS)

    Tuddenham, P.; Bishop, K.; Walters, H.; Carley, S.

    2011-12-01

    The Great Lakes Climate Change Science and Education Systemic Network (GLCCSESN) project is an NSF-funded CCEP program awarded to Eastern Michigan University in 2010. The College of Exploration is one of the project partners and has conducted a series of online surveys, workshop and focus group to identify a wide range of organizations, individuals, resources and needs related to climate change education and research activities in and about the Great Lakes Region and to provide information about climate change science to the education community. One of the first steps taken to build this community was to build a web site that features a dynamic online map of individuals and organizations concerned about climate change as well as interested in resources and activities specific to the Great Lakes. Individuals and organizations have been, and are still, invited to put themselves on the map at http://greatlakesclimate.org This map of the Great Lakes region provides both a visual representation of activities and resources as well as a database of climate change activities. This map will grow over time as more people and organizations put themselves on the map. The use of online technologies has helped broaden the participation and representation in the GLCCSESN from all states/provinces in the Great Lakes region, encouraging diverse audiences and stakeholders, including scientists, educators, and journalists, etc.to engage with the project. In the fall of 2011 a combined online professional development workshop and focus group is planned. Educators and scientists working on climate change studies and issues related to the Great Lakes will be sharing their work and expertise in an online workshop and focus group. Following the professional development activity a focus group will be conducted online using a model developed as part of a NSF funded COSEE project. The focus group purpose is to review current educational resources and to identify gaps and needs for further

  15. Two M-T hook residues greatly improve the antiviral activity and resistance profile of the HIV-1 fusion inhibitor SC29EK

    PubMed Central

    2014-01-01

    Background Peptides derived from the C-terminal heptad repeat (CHR) of HIV-1 gp41 such as T20 (Enfuvirtide) and C34 are potent viral fusion inhibitors. We have recently found that two N-terminal residues (Met115 and Thr116) of CHR peptides form a unique M-T hook structure that can greatly enhance the binding and anti-HIV activity of inhibitors. Here, we applied two M-T hook residues to optimize SC29EK, an electrostatically constrained peptide inhibitor with a potent anti-HIV activity. Results The resulting peptide MT-SC29EK showed a dramatically increased binding affinity and could block the six-helical bundle (6-HB) formation more efficiently. As expected, MT-SC29EK potently inhibited HIV-1 entry and infection, especially against those T20- and SC29EK-resistant HIV-1 variants. More importantly, MT-SC29EK and its short form (MT-SC22EK) suffered from the difficulty to induce HIV-1 resistance during the in vitro selection, suggesting their high genetic barriers to the development of resistance. Conclusions Our studies have verified the M-T hook structure as a vital strategy to design novel HIV-1 fusion inhibitors and offered an ideal candidate for clinical development. PMID:24884671

  16. GABAergic Neural Activity Involved in Salicylate-Induced Auditory Cortex Gain Enhancement

    PubMed Central

    Lu, Jianzhong; Lobarinas, Edward; Deng, Anchun; Goodey, Ronald; Stolzberg, Daniel; Salvi, Richard J.; Sun, Wei

    2011-01-01

    Although high doses of sodium salicylate impair cochlear function, it paradoxically enhances sound-evoked activity in the auditory cortex (AC) and augments acoustic startle reflex responses, neural and behavioral metrics associated with hyperexcitability and hyperacusis. To explore the neural mechanisms underlying salicylate-induced hyperexcitability and “increased central gain”, we examined the effects of γ-aminobutyric acid (GABA) receptor agonists and antagonists on salicylate-induced hyperexcitability in the AC and startle reflex responses. Consistent with our previous findings, local or systemic application of salicylate significantly increased the amplitude of sound-evoked AC neural activity, but generally reduced spontaneous activity in the AC. Systemic injection of salicylate also significantly increased the acoustic startle reflex. S-baclofen or R-baclofen, GABA-B agonists, which suppressed sound-evoked AC neural firing rate and local field potentials, also suppressed the salicylate-induced enhancement of the AC field potential and the acoustic startle reflex. Local application of vigabatrin, which enhances GABA concentration in the brain, suppressed the salicylate-induced enhancement of AC firing rate. Systemic injection of vigabatrin also reduced the salicylate-induced enhancement of acoustic startle reflex. Collectively, these results suggest that the sound-evoked behavioral and neural hyperactivity induced by salicylate may arise from a salicylate-induced suppression GABAergic inhibition in the AC. PMID:21664433

  17. AMP-activated protein kinase enhances the phagocytic ability of macrophages and neutrophils

    PubMed Central

    Bae, Hong-Beom; Zmijewski, Jaroslaw W.; Deshane, Jessy S.; Tadie, Jean-Marc; Chaplin, David D.; Takashima, Seiji; Abraham, Edward

    2011-01-01

    Although AMPK plays well-established roles in the modulation of energy balance, recent studies have shown that AMPK activation has potent anti-inflammatory effects. In the present experiments, we examined the role of AMPK in phagocytosis. We found that ingestion of Escherichia coli or apoptotic cells by macrophages increased AMPK activity. AMPK activation increased the ability of neutrophils or macrophages to ingest bacteria (by 46±7.8 or 85±26%, respectively, compared to control, P<0.05) and the ability of macrophages to ingest apoptotic cells (by 21±1.4%, P<0.05 compared to control). AMPK activation resulted in cytoskeletal reorganization, including enhanced formation of actin and microtubule networks. Activation of PAK1/2 and WAVE2, which are downstream effectors of Rac1, accompanied AMPK activation. AMPK activation also induced phosphorylation of CLIP-170, a protein that participates in microtubule synthesis. The increase in phagocytosis was reversible by the specific AMPK inhibitor compound C, siRNA to AMPKα1, Rac1 inhibitors, or agents that disrupt actin or microtubule networks. In vivo, AMPK activation resulted in enhanced phagocytosis of bacteria in the lungs by 75 ± 5% vs. control (P<0.05). These results demonstrate a novel function for AMPK in enhancing the phagocytic activity of neutrophils and macrophages.—Bae, H. -B., Zmijewski, J. W., Deshane, J. S., Tadie, J. -M., Chaplin, D. D., Takashima, S., Abraham, E. AMP-activated protein kinase enhances the phagocytic ability of macrophages and neutrophils. PMID:21885655

  18. GREAT: a gradient-based color-sampling scheme for Retinex.

    PubMed

    Lecca, Michela; Rizzi, Alessandro; Serapioni, Raul Paolo

    2017-04-01

    Modeling the local color spatial distribution is a crucial step for the algorithms of the Milano Retinex family. Here we present GREAT, a novel, noise-free Milano Retinex implementation based on an image-aware spatial color sampling. For each channel of a color input image, GREAT computes a 2D set of edges whose magnitude exceeds a pre-defined threshold. Then GREAT re-scales the channel intensity of each image pixel, called target, by the average of the intensities of the selected edges weighted by a function of their positions, gradient magnitudes, and intensities relative to the target. In this way, GREAT enhances the input image, adjusting its brightness, contrast and dynamic range. The use of the edges as pixels relevant to color filtering is justified by the importance that edges play in human color sensation. The name GREAT comes from the expression "Gradient RElevAnce for ReTinex," which refers to the threshold-based definition of a gradient relevance map for edge selection and thus for image color filtering.

  19. Metal-chelating active packaging film enhances lysozyme inhibition of Listeria monocytogenes.

    PubMed

    Roman, Maxine J; Decker, Eric A; Goddard, Julie M

    2014-07-01

    Several studies have demonstrated that metal chelators enhance the antimicrobial activity of lysozyme. This study examined the effect of metal-chelating active packaging film on the antimicrobial activity of lysozyme against Listeria monocytogenes. Polypropylene films were surface modified by photoinitiated graft polymerization of acrylic acid (PP-g-PAA) from the food contact surface of the films to impart chelating activity based on electrostatic interactions. PP-g-PAA exhibited a carboxylic acid density of 113 ± 5.4 nmol cm(-2) and an iron chelating activity of 53.7 ± 9.8 nmol cm(-2). The antimicrobial interaction of lysozyme and PP-g-PAA depended on growth media composition. PP-g-PAA hindered lysozyme activity at low ionic strength (2.48-log increase at 64.4 mM total ionic strength) and enhanced lysozyme activity at moderate ionic strength (5.22-log reduction at 120 mM total ionic strength). These data support the hypothesis that at neutral pH, synergy between carboxylate metal-chelating films (pKa(bulk) 6.45) and lysozyme (pI 11.35) is optimal in solutions of moderate to high ionic strength to minimize undesirable charge interactions, such as lysozyme absorption onto film. These findings suggest that active packaging, which chelates metal ions based on ligand-specific interactions, in contrast to electrostatic interactions, may improve antimicrobial synergy. This work demonstrates the potential application of metal-chelating active packaging films to enhance the antimicrobial activity of membrane-disrupting antimicrobials, such as lysozyme.

  20. Active and inactive enhancers co-operate to exert localized and long-range control of gene regulation

    PubMed Central

    Proudhon, Charlotte; Snetkova, Valentina; Raviram, Ramya; Lobry, Camille; Badri, Sana; Jiang, Tingting; Hao, Bingtao; Trimarchi, Thomas; Kluger, Yuval; Aifantis, Iannis; Bonneau, Richard; Skok, Jane A

    2016-01-01

    V(D)J recombination relies on the presence of proximal enhancers that activate the antigen receptor (AgR) loci in a lineage and stage specific manner. Unexpectedly we find that both active and inactive AgR enhancers co-operate to disseminate their effects in a localized and long-range manner. Here we demonstrate the importance of short-range contacts between active enhancers that constitute an Igk super-enhancer in B cells. Deletion of one element reduces the interaction frequency between other enhancers in the hub, which compromises the transcriptional output of each component. We further establish that in T cells long-range contact and co-operation between the inactive Igk enhancer, MiEκ and the active Tcrb enhancer, Eβ, alters enrichment of CBFβ binding in a manner that impacts Tcrb recombination. These findings underline the complexities of enhancer regulation and point to a role for localized and long-range enhancer-sharing between active and inactive elements in lineage and stage specific control. PMID:27239026

  1. Enhancement of amphotericin B activity against Candida albicans by superoxide radical.

    PubMed

    Okamoto, Yuichi; Aoki, Shigeji; Mataga, Izumi

    2004-07-01

    This study aimed to examine the involvement of oxidative damage in amphotericin B (AmB) activity against Candida albicans using the superoxide (O2-) generator paraquat (PQ). The effects of PQ on AmB activities against growth, viability, membrane permeability and respiration were examined in a wild-type parent strain (K) and a respiration-deficient mutant (KRD-19) since PQ-induced superoxide generation depends on respiration. In the parent strain, the minimal inhibitory concentration (MIC) of AmB, 0.25 microg/ml, tested with a liquid culture was lowered to 0.025 microg/ml by 1 mM PQ. Such a PQ-induced decrease in the MIC value of AmB was minimal in the mutant. Similar PQ-induced enhancement of AmB activity toward the parent strain was also observed with growth on an agar medium. In viability tests, when candidal cells were exposed to AmB (0.1 microg/ml) for I h, the lethality of AmB was enhanced by 1 mM PQ only in the parent strain. Exogenous superoxide dismutase and catalase failed to diminish the enhancing effect of PQ on the growth inhibitory activity of AmB in the parent strain, suggesting an interaction between superoxide and AmB in candidal cells. The enhancement of AmB activity by PQ, observed preferentially in the wild-type strain, can be explained by extensive superoxide generation depending on respiration. These results suggest that oxidative damage induced by superoxide is involved in AmB activity against C. albicans.

  2. Redox-Active Hydrogel Polymer Electrolytes with Different pH Values for Enhancing the Energy Density of the Hybrid Solid-State Supercapacitor.

    PubMed

    Tang, Xiaohui; Lui, Yu Hui; Merhi, Abdul Rahman; Chen, Bolin; Ding, Shaowei; Zhang, Bowei; Hu, Shan

    2017-12-27

    To enhance the energy density of solid-state supercapacitors, a novel solid-state cell, made of redox-active poly(vinyl alcohol) (PVA) hydrogel electrolytes and functionalized carbon nanotube-coated cellulose paper electrodes, was investigated in this work. Briefly, acidic PVA-[BMIM]Cl-lactic acid-LiBr and neutral PVA-[BMIM]Cl-sodium acetate-LiBr hydrogel polymer electrolytes are used as catholyte and anolyte, respectively. The acidic condition of the catholyte contributes to suppression of the undesired irreversible reaction of Br - and extension of the oxygen evolution reaction potential to a higher value than that of the redox potential of Br - /Br 3 - reaction. The observed Br - /Br 3 - redox activity at the cathode contributes to enhance the cathode capacitance. The neutral condition of the anolyte helps extend the operating voltage window of the supercapacitor by introducing hydrogen evolution reaction overpotential to the anode. The electrosorption of nascent H on the negative electrode also increases the anode capacitance. As a result, the prepared solid-state hybrid supercapacitor shows a broad voltage window of 1.6 V, with a high Coulombic efficiency of 97.6% and the highest energy density of 16.3 Wh/kg with power density of 932.6 W/kg at 2 A/g obtained. After 10 000 cycles of galvanostatic charge and discharge tests at the current density of 10 A/g, it exhibits great cyclic stability with 93.4% retention of the initial capacitance. In addition, a robust capacitive performance can also be observed from the solid-state supercapacitor at different bending angles, indicating its great potential as a flexible energy storage device.

  3. Commensal Microbiota Enhance Both Osteoclast and Osteoblast Activities.

    PubMed

    Uchida, Yoko; Irie, Koichiro; Fukuhara, Daiki; Kataoka, Kota; Hattori, Takako; Ono, Mitsuaki; Ekuni, Daisuke; Kubota, Satoshi; Morita, Manabu

    2018-06-23

    Recent studies suggest that the commensal microbiota affects not only host energy metabolism and development of immunity but also bone remodeling by positive regulation of osteoclast activity. However, the mechanism of regulation of bone cells by the commensal microbiota has not been elucidated. In this study, 8-week-old specific pathogen-free (SPF) and germ-free (GF) mice were compared in terms of alveolar bones and primary osteoblasts isolated from calvarias. Micro-CT analysis showed that SPF mice had larger body size associated with lower bone mineral density and bone volume fraction in alveolar bones compared with GF mice. Greater numbers of osteoclasts in alveolar bone and higher serum levels of tartrate-resistant acid phosphatase 5b were observed in SPF mice. Tissue extracts from SPF alveolar bone showed higher levels of cathepsin K, indicating higher osteoclast activity. SPF alveolar extracts also showed elevated levels of γ-carboxylated glutamic acid⁻osteocalcin as a marker of mature osteoblasts compared with GF mice. Polymerase chain reaction (PCR) array analysis of RNA directly isolated from alveolar bone showed that in SPF mice, expression of mRNA of osteocalcin , which also acts as an inhibitor of bone mineralization, was strongly enhanced compared with GF mice. Cultured calvarial osteoblasts from SPF mice showed reduced mineralization but significantly enhanced expression of mRNAs of osteocalcin, alkaline phosphatase, insulin-like growth factor-I/II , and decreased ratio of osteoprotegerin/receptor activator of nuclear factor-kappa B ligand compared with GF mice. Furthermore, PCR array analyses of transcription factors in cultured calvarial osteoblasts showed strongly upregulated expression of Forkhead box g1 . In contrast, Gata-binding protein 3 was strongly downregulated in SPF osteoblasts. These results suggest that the commensal microbiota prevents excessive mineralization possibly by stimulating osteocalcin expression in osteoblasts, and

  4. Restoring the Great Lakes: DOI stories of success and partnership in implementing the Great Lakes Restoration Initiative

    USGS Publications Warehouse

    ,; ,; ,; ,; ,

    2013-01-01

    The Great Lakes are a monumentally unique national treasure containing nearly ninety-five percent of the United States' fresh surface water. Formed by receding glaciers, the Great Lakes support a thriving, resilient ecosystem rich with fish, wildlife, and abundant natural resources. The Great Lakes also support an array of commercial uses, including shipping, and provide a source of recreation, drinking water, and other critical services that drive the economy of the region and the Nation. Regrettably, activities such as clear cutting of mature forests, over-harvesting of fish populations, industrial pollution, invasive species, and agricultural runoffs have degraded these treasured lakes over the decades creating long-term impacts to the surrounding watershed. Fortunately, the people who live, work, and recreate in the region recognize the critical importance of a healthy Great Lakes ecosystem, and have come together to support comprehensive restoration. To stimulate and promote the goal of a healthy Great Lakes region, President Obama and Congress created the Great Lakes Restoration Initiative (GLRI) in 2009. This program provides the seed money to clean up legacy pollution, restore habitats, protect wildlife, combat invasive species, and address agricultural runoff in the Great Lakes watershed. At the same time GLRI promotes public outreach, education, accountability, and partnerships.

  5. STATs Shape the Active Enhancer Landscape of T Cell Populations

    PubMed Central

    Vahedi, Golnaz; Takahashi, Hayato; Nakayamada, Shingo; Sun, Hong-wei; Sartorelli, Vittorio; Kanno, Yuka; O’Shea, John J.

    2012-01-01

    SUMMARY Signaling pathways are intimately involved in cellular differentiation, allowing cells to respond to their environment by regulating gene expression. While enhancers are recognized as key elements that regulate selective gene expression, the interplay between signaling pathways and actively used enhancer elements is not clear. Here, we use CD4+ T cells as a model of differentiation, mapping the acquisition of cell-type-specific enhancer elements in T-helper 1 (Th1) and Th2 cells. Our data establish that STAT proteins have a major impact on the acquisition of lineage-specific enhancers and the suppression of enhancers associated with alternative cell fates. Transcriptome analysis further supports a functional role for enhancers regulated by STATs. Importantly, expression of lineage-defining master regulators in STAT-deficient cells fails to fully recover the chromatin signature of STAT-dependent enhancers. Thus, these findings point to a critical role of STATs as environmental sensors in dynamically molding the specialized enhancer architecture of differentiating cells. PMID:23178119

  6. Repression by Jun of the Polyoma-virus enhancer overrides activation in a cell specific manner.

    PubMed Central

    Schneikert, J; Imler, J L; Wasylyk, B

    1991-01-01

    The activities of promoters and enhancers are generated by the combinatorial effects of the factors which interact with them. The Polyoma virus (Py) enhancer contains sequences that are positively regulated by the proto-oncogene Jun. Surprisingly, Jun has an additional and overriding repressing effect on enhancer activity, which is cell specific. Thus overall enhancer activity cannot be simply deduced from the properties of individual elements. We present evidence that repression is indirect. Images PMID:1850124

  7. Making Boundaries Great Again: Essentialism and Support for Boundary-Enhancing Initiatives.

    PubMed

    Roberts, Steven O; Ho, Arnold K; Rhodes, Marjorie; Gelman, Susan A

    2017-12-01

    Psychological essentialism entails a focus on category boundaries (e.g., categorizing people as men or women) and an increase in the conceptual distance between those boundaries (e.g., accentuating the differences between men and women). Across eight studies, we demonstrate that essentialism additionally entails an increase in support for boundary-enhancing legislation, policies, and social services, and that it does so under conditions that disadvantage social groups, as well as conditions that benefit them. First, individual differences in essentialism were associated with support for legislation mandating that transgender people use restrooms corresponding with their biological sex, and with support for the boundary-enhancing policies of the 2016 then-presumptive Republican presidential nominee (i.e., Donald Trump). Second, essentialism was associated with support for same-gender classrooms designed to promote student learning, as well as support for services designed to benefit LGBTQ (lesbian, gay, bisexual, transgender, queer) individuals. These findings demonstrate the boundary-enhancing implications of essentialism and their social significance.

  8. Sulforaphane activates heat shock response and enhances proteasome activity through up-regulation of Hsp27.

    PubMed

    Gan, Nanqin; Wu, Yu-Chieh; Brunet, Mathilde; Garrido, Carmen; Chung, Fung-Lung; Dai, Chengkai; Mi, Lixin

    2010-11-12

    It is conceivable that stimulating proteasome activity for rapid removal of misfolded and oxidized proteins is a promising strategy to prevent and alleviate aging-related diseases. Sulforaphane (SFN), an effective cancer preventive agent derived from cruciferous vegetables, has been shown to enhance proteasome activities in mammalian cells and to reduce the level of oxidized proteins and amyloid β-induced cytotoxicity. Here, we report that SFN activates heat shock transcription factor 1-mediated heat shock response. Specifically, SFN-induced expression of heat shock protein 27 (Hsp27) underlies SFN-stimulated proteasome activity. SFN-induced proteasome activity was significantly enhanced in Hsp27-overexpressing cells but absent in Hsp27-silenced cells. The role of Hsp27 in regulating proteasome activity was further confirmed in isogenic REG cells, in which SFN-induced proteasome activation was only observed in cells stably overexpressing Hsp27, but not in the Hsp27-free parental cells. Finally, we demonstrated that phosphorylation of Hsp27 is irrelevant to SFN-induced proteasome activation. This study provides a novel mechanism underlying SFN-induced proteasome activity. This is the first report to show that heat shock response by SFN, in addition to the antioxidant response mediated by the Keap1-Nrf2 pathway, may contribute to cytoprotection.

  9. Doxycycline exerted neuroprotective activity by enhancing the activation of neuropeptide GPCR PAC1.

    PubMed

    Yu, Rongjie; Zheng, Lijun; Cui, Yue; Zhang, Huahua; Ye, Heng

    2016-04-01

    Doxycycline has significant neuroprotective effect with anti-inflammatory and anti-apoptotic activity. We found for the first time that doxycycline specially promoted the proliferation of Chinese hamster ovary (CHO) cells with high expression of neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) preferring G protein-coupled receptor (GPCR), PACAP receptor 1(PAC1) and induced the internalization of PAC1 tagged with yellow fluorescent protein (YFP) indicating doxycycline interacted with PAC1. The homology modeling of PAC1 and molecular docking of doxycycline with PAC1 showed the theoretical binding of doxycycline to PAC1 at the site where PACAP(30-37) recognized. The competition binding assay and PAC1 site-specific mutation of Asp116, which formed two hydrogen bonds with Dox, confirmed the binding of doxycycline to PAC1 imitating PACAP(30-37). Doxycycline (100 ng/mL) significantly promoted the proliferative activities of vasoactive intestinal polypeptide (VIP) and oligopeptide HSDGIF responsible for the activation of PAC1 in PAC1-CHO cells, indicating that doxycycline facilitated the binding and the activation of PAC1 imitating PACAP(28-38). In Neuro2a cells with endogenous expression of PAC1 and its ligands, doxycycline not only promoted the proliferation of Neuro2a cells but also protected the cells from scopolamine induced apoptosis, which was inhibited by cAMP-PKA signal pathway inhibitor H-89, PAC1 shRNA or PACAP antagonist PACAP(6-38). The in vivo study showed long-term treatment with doxycycline (100ug/kg) had significant effect against scopolamine induced amnesia, and the synergetic anti-apoptotic, anti-oxidative and neuroprotective effect of doxycycline with VIP was more efficient than doxycycline alone or VIP alone, indicating doxycycline enhanced the activation of PAC1 in vivo effectively. Furthermore, doxycycline analogue minocycline also had similar theoretically binding site on PAC1 to doxycycline and displayed corresponding

  10. Applying GPS to enhance understanding of transport-related physical activity.

    PubMed

    Duncan, Mitch J; Badland, Hannah M; Mummery, W Kerry

    2009-09-01

    The purpose of the paper is to review the utility of the global positioning system (GPS) in the study of health-related physical activity. The paper draws from existing literature to outline the current work performed using GPS to examine transport-related physical activity, with a focus on the relative utility of the approach when combined with geographic information system (GIS) and other data sources including accelerometers. The paper argues that GPS, especially when used in combination with GIS and accelerometery, offers great promise in objectively measuring and studying the relationship of numerous environmental attributes to human behaviour in terms of physical activity and transport-related activity. Limitations to the use of GPS for the purpose of monitoring health-related physical activity are presented, and recommendations for future avenues of research are discussed.

  11. Active Enhancement of Slow Light Based on Plasmon-Induced Transparency with Gain Materials.

    PubMed

    Zhang, Zhaojian; Yang, Junbo; He, Xin; Han, Yunxin; Zhang, Jingjing; Huang, Jie; Chen, Dingbo; Xu, Siyu

    2018-06-03

    As a plasmonic analogue of electromagnetically induced transparency (EIT), plasmon-induced transparency (PIT) has drawn more attention due to its potential of realizing on-chip sensing, slow light and nonlinear effect enhancement. However, the performance of a plasmonic system is always limited by the metal ohmic loss. Here, we numerically report a PIT system with gain materials based on plasmonic metal-insulator-metal waveguide. The corresponding phenomenon can be theoretically analyzed by coupled mode theory (CMT). After filling gain material into a disk cavity, the system intrinsic loss can be compensated by external pump beam, and the PIT can be greatly fueled to achieve a dramatic enhancement of slow light performance. Finally, a double-channel enhanced slow light is introduced by adding a second gain disk cavity. This work paves way for a potential new high-performance slow light device, which can have significant applications for high-compact plasmonic circuits and optical communication.

  12. Quantifying cambial activity of high-elevation conifers in the Great Basin, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Ziaco, E.; Biondi, F.; Rossi, S.; Deslauriers, A.

    2013-12-01

    Understanding the physiological mechanisms that control the formation of tree rings provides the necessary biological basis for developing dendroclimatic reconstructions and dendroecological histories. Studies of wood formation in the Great Basin are now being conducted in connection with the Nevada Climate-ecohydrological Assessment Network (NevCAN), a recently established transect of valley-to-mountaintop instrumented stations in the Snake and Sheep Ranges of the Great Basin. Automated sensors record meteorological, soil, and vegetational variables at these sites, providing unique opportunities for ecosystem science, and are being used to investigate the ecological implications of xylogenesis. We present here an initial study based on microcores collected during summer 2013 from mountain and subalpine conifers (including Great Basin bristlecone pine, Pinus longaeva) growing on the west slope of Mt. Washington. Samples were taken from the mountain west (SM; 2810 m elevation) and the subalpine west (SS, 3355 m elevation) NevCAN sites on June 16th and 27th, 2013. The SS site was further subdivided in a high (SSH) and a low (SSL) group of trees, separated by about 10 m in elevation. Microscopic analyses showed the effect of elevation on cambial activity, as annual ring formation was more advanced at the lower (mountain) site compared to the higher (subalpine) one. At all sites cambium size showed little variations between the two sampling dates. The number of xylem cells in the radial enlargement phase decreased between the two sampling dates at the mountain site but increased at the subalpine site, confirming a delayed formation of wood at the higher elevations. Despite relatively high within-site variability, a general trend of increasing number of cells in the lignification phase was found at all sites. Mature cells were present only at the mountain site on June 27th. Spatial differences in the xylem formation process emerged at the species level and, within

  13. Enhancing the laccase production and laccase gene expression in the white-rot fungus Trametes velutina 5930 with great potential for biotechnological applications by different metal ions and aromatic compounds.

    PubMed

    Yang, Yang; Wei, Fuxiang; Zhuo, Rui; Fan, Fangfang; Liu, Huahua; Zhang, Chen; Ma, Li; Jiang, Mulan; Zhang, Xiaoyu

    2013-01-01

    Laccase is useful for various biotechnological and industrial applications. The white-rot fungus Trametes velutina 5930 and its laccase, isolated from the Shennongjia Nature Reserve in China by our laboratory, has great potential for practical application in environmental biotechnology. However, the original level of laccase produced by Trametes velutina 5930 was relatively low in the absence of any inducer. Therefore, in order to enhance the laccase production by Trametes velutina 5930 and make better use of this fungus in the field of environmental biotechnology, the regulation of laccase production and laccase gene expression in Trametes velutina 5930 were investigated in this study. Different metal ions such as Cu(2+) and Fe(2+) could stimulate the laccase synthesis and laccase gene transcription in Trametes velutina 5930. Some aromatic compounds structurally related to lignin, such as tannic acid, syringic acid, cinnamic acid, gallic acid and guaiacol, could also enhance the level of laccase activity and laccase gene transcription. We also found that there existed a positive synergistic effect of aromatic compound and metal ion on the laccase production and laccase gene transcription in Trametes velutina 5930. Taken together, our study may contribute to the improvement of laccase productivity by Trametes velutina 5930.

  14. Resveratrol Enhances Antitumor Activity of TRAIL in Prostate Cancer Xenografts through Activation of FOXO Transcription Factor

    PubMed Central

    Ganapathy, Suthakar; Chen, Qinghe; Singh, Karan P.; Shankar, Sharmila; Srivastava, Rakesh K.

    2010-01-01

    Background Resveratrol (3, 4′, 5 tri-hydroxystilbene), a naturally occurring polyphenol, exhibits anti-inflammatory, antioxidant, cardioprotective and antitumor activities. We have recently shown that resveratrol can enhance the apoptosis-inducing potential of TRAIL in prostate cancer cells through multiple mechanisms in vitro. Therefore, the present study was designed to validate whether resveratrol can enhance the apoptosis-inducing potential of TRAIL in a xenograft model of prostate cancer. Methodology/Principal Findings Resveratrol and TRAIL alone inhibited growth of PC-3 xenografts in nude mice by inhibiting tumor cell proliferation (PCNA and Ki67 staining) and inducing apoptosis (TUNEL staining). The combination of resveratrol and TRAIL was more effective in inhibiting tumor growth than single agent alone. In xenografted tumors, resveratrol upregulated the expressions of TRAIL-R1/DR4, TRAIL-R2/DR5, Bax and p27/K IP1, and inhibited the expression of Bcl-2 and cyclin D1. Treatment of mice with resveratrol and TRAIL alone inhibited angiogenesis (as demonstrated by reduced number of blood vessels, and VEGF and VEGFR2 positive cells) and markers of metastasis (MMP-2 and MMP-9). The combination of resveratrol with TRAIL further inhibited number of blood vessels in tumors, and circulating endothelial growth factor receptor 2-positive endothelial cells than single agent alone. Furthermore, resveratrol inhibited the cytoplasmic phosphorylation of FKHRL1 resulting in its enhanced activation as demonstrated by increased DNA binding activity. Conclusions/Significance These data suggest that resveratrol can enhance the apoptosis-inducing potential of TRAIL by activating FKHRL1 and its target genes. The ability of resveratrol to inhibit tumor growth, metastasis and angiogenesis, and enhance the therapeutic potential of TRAIL suggests that resveratrol alone or in combination with TRAIL can be used for the management of prostate cancer. PMID:21209944

  15. Educating Students for a Lifetime of Physical Activity: Enhancing Mindfulness, Motivation, and Meaning

    ERIC Educational Resources Information Center

    Ennis, Catherine D.

    2017-01-01

    For many years, pedagogical scholars and physical education (PE) teachers have worked to enhance effective teaching and learning environments. Yet for some children, youth, and young adults, many of the benefits associated with a physically active lifestyle remain elusive. Enhancing programming and performance to meet physical activity goals may…

  16. Electrohydrodynamic fibrillation governed enhanced thermal transport in dielectric colloids under a field stimulus.

    PubMed

    Dhar, Purbarun; Maganti, Lakshmi Sirisha; Harikrishnan, A R

    2018-05-30

    Electrorheological (ER) fluids are known to exhibit enhanced viscous effects under an electric field stimulus. The present article reports the hitherto unreported phenomenon of greatly enhanced thermal conductivity in such electro-active colloidal dispersions in the presence of an externally applied electric field. Typical ER fluids are synthesized employing dielectric fluids and nanoparticles and experiments are performed employing an in-house designed setup. Greatly augmented thermal conductivity under a field's influence was observed. Enhanced thermal conduction along the fibril structures under the field effect is theorized as the crux of the mechanism. The formation of fibril structures has also been experimentally verified employing microscopy. Based on classical models for ER fluids, a mathematical formalism has been developed to predict the propensity of chain formation and statistically feasible chain dynamics at given Mason numbers. Further, a thermal resistance network model is employed to computationally predict the enhanced thermal conduction across the fibrillary colloid microstructure. Good agreement between the mathematical model and the experimental observations is achieved. The domineering role of thermal conductivity over relative permittivity has been shown by proposing a modified Hashin-Shtrikman (HS) formalism. The findings have implications towards better physical understanding and design of ER fluids from both 'smart' viscoelastic as well as thermally active materials points of view.

  17. Hydrogen Peroxide Activated Quinone Methide Precursors with Enhanced DNA Cross-Linking Capability and Cytotoxicity towards Cancer Cells

    PubMed Central

    Wang, Yibin; Fan, Heli; Balakrishnan, Kumudha; Lin, Zechao; Cao, Sheng; Chen, Wenbing; Fan, Yukai; Guthrie, Quibria A.; Sun, Huabing; Teske, Kelly A.; Gandhi, Varsha; Arnold, Leggy A.; Peng, Xiaohua

    2017-01-01

    Quinone methide (QM) formation induced by endogenously generated H2O2 is attractive for biological and biomedical applications. To overcome current limitations due to low biological activity of H2O2-activated QM precursors, we are introducing herein several new arylboronates with electron donating substituents at different positions of benzene ring and/or different neutral leaving groups. The reaction rate of the arylboronate esters with H2O2 and subsequent bisquinone methides formation and DNA cross-linking was accelerated with the application of Br as a leaving group instead of acetoxy groups. Additionally, a donating group placed meta to the nascent exo-methylene group of the quinone methide greatly improves H2O2-induced DNA interstrand cross-link formation as well as enhances the cellular activity. Multiple donating groups decrease the stability and DNA cross-linking capability, which lead to low cellular activity. A cell-based screen demonstrated that compounds 2a and 5a with a OMe or OH group dramatically inhibited the growth of various tissue-derived cancer cells while normal cells were less affected. Induction of H2AX phosphorylation by these compounds in CLL lymphocytes provide evidence for a correlation between cell death and DNA damage. The compounds presented herein showed potent anticancer activities and selectivity, which represent a novel scaffold for anticancer drug development. PMID:28388522

  18. Potassium ferrate addition as an alternative pre-treatment to enhance short-chain fatty acids production from waste activated sludge.

    PubMed

    He, Zhang-Wei; Liu, Wen-Zong; Gao, Qin; Tang, Cong-Cong; Wang, Ling; Guo, Ze-Chong; Zhou, Ai-Juan; Wang, Ai-Jie

    2018-01-01

    A potentially practical technology based on ferrate (VI), i.e. potassium ferrate (PF), pretreatment integrated into waste activated sludge (WAS) anaerobic fermentation has been presented to greatly enhance short-chain fatty acids (SCFAs) production with a shortened fermentation time. The maximum production of SCFAs, 343mg chemical oxygen demand/g volatile suspended solid with acetic acid proportion of 48.2%, was obtained with PF dosage of 56mg Fe(VI)/g total suspended solid within 5days, which was increased to 5.72times compared to that of control. The mechanism study showed that PF accelerated the release rate of both intracellular and extracellular constituents. And the activities of key hydrolytic enzymes were much improved with PF addition. Moreover, PF positively enriched the abundance of microorganisms responsible for WAS hydrolysis and SCFAs production, especially acetic acid-forming characteristic genera such as Petrimonas, Fusibacter and Acetoanaerobium. Besides, the incubation time of acidogenesis and methanogenesis were separated by PF. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Enhanced oxidation resistance of active nanostructures via dynamic size effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yun; Yang, Fan; Zhang, Yi

    A major challenge limiting the practical applications of nanomaterials is that the activities of nanostructures (NSs) increase with reduced size, often sacrificing their stability in the chemical environment. Under oxidative conditions, NSs with smaller sizes and higher defect densities are commonly expected to oxidize more easily, since high-concentration defects can facilitate oxidation by enhancing the reactivity with O 2 and providing a fast channel for oxygen incorporation. Here, using FeO NSs as an example, we show to the contrary, that reducing the size of active NSs can drastically increase their oxidation resistance. A maximum oxidation resistance is found for FeOmore » NSs with dimensions below 3.2 nm. Rather than being determined by the structure or electronic properties of active sites, the enhanced oxidation resistance originates from the size-dependent structural dynamics of FeO NSs in O 2. We find this dynamic size effect to govern the chemical properties of active NSs.« less

  20. Enhanced oxidation resistance of active nanostructures via dynamic size effect

    DOE PAGES

    Liu, Yun; Yang, Fan; Zhang, Yi; ...

    2017-02-22

    A major challenge limiting the practical applications of nanomaterials is that the activities of nanostructures (NSs) increase with reduced size, often sacrificing their stability in the chemical environment. Under oxidative conditions, NSs with smaller sizes and higher defect densities are commonly expected to oxidize more easily, since high-concentration defects can facilitate oxidation by enhancing the reactivity with O 2 and providing a fast channel for oxygen incorporation. Here, using FeO NSs as an example, we show to the contrary, that reducing the size of active NSs can drastically increase their oxidation resistance. A maximum oxidation resistance is found for FeOmore » NSs with dimensions below 3.2 nm. Rather than being determined by the structure or electronic properties of active sites, the enhanced oxidation resistance originates from the size-dependent structural dynamics of FeO NSs in O 2. We find this dynamic size effect to govern the chemical properties of active NSs.« less

  1. Dramatic enhancement of enzymatic activity in organic solvents by lyoprotectants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dabulis, K.; Klibanov, A.M.

    1993-03-05

    When seven different hydrolytic enzymes (four proteases and three lipases) were lyophilized from aqueous solution containing a ligand, N-Ac-L-Phe-NH[sub 2], their catalytic activity in anhydrous solvents was far greater (one to two orders of magnitude) than that of the enzymes lyophilized without the ligand. This ligand-induced activation was expressed regardless of whether the substrate employed in organic solvents structurally resembled the ligand. Furthermore, nonligand lyoprotectants [sorbitol, other sugars, and poly(ethylene glycol)] also dramatically enhanced enzymatic activity in anhydrous solvents when present in enzyme aqueous solution prior to lyophilization. The effects of the ligand and of the lyoprotectants were nonadditive, suggestingmore » the same mechanism of action. Excipient-activated and nonactivated enzymes exhibited identical activities in water. Also, addition of the excipients directly to suspensions of nonactivated enzymes in organic solvents had no appreciable effect on catalytic activity. These observations indicate that the mechanism of the excipient-induced activation is based on the ability of the excipients to alleviate reversible denaturation of enzymes upon lyophilization. Activity enhancement induced by the excipients is displayed even after their removal by washing enzymes with anhydrous solvents. Subtilisin Carlsberg, lyophilized with sorbitol, was found to be a much more efficient practical catalyst than its regular' counterpart.« less

  2. Great Lakes

    USGS Publications Warehouse

    Edsall, Thomas A.; Mac, Michael J.; Opler, Paul A.; Puckett Haecker, Catherine E.; Doran, Peter D.

    1998-01-01

    The Great Lakes region, as defined here, includes the Great Lakes and their drainage basins in Minnesota, Wisconsin, Illinois, Indiana, Ohio, Pennsylvania, and New York. The region also includes the portions of Minnesota, Wisconsin, and the 21 northernmost counties of Illinois that lie in the Mississippi River drainage basin, outside the floodplain of the river. The region spans about 9º of latitude and 20º of longitude and lies roughly halfway between the equator and the North Pole in a lowland corridor that extends from the Gulf of Mexico to the Arctic Ocean.The Great Lakes are the most prominent natural feature of the region (Fig. 1). They have a combined surface area of about 245,000 square kilometers and are among the largest, deepest lakes in the world. They are the largest single aggregation of fresh water on the planet (excluding the polar ice caps) and are the only glacial feature on Earth visible from the surface of the moon (The Nature Conservancy 1994a).The Great Lakes moderate the region’s climate, which presently ranges from subarctic in the north to humid continental warm in the south (Fig. 2), reflecting the movement of major weather masses from the north and south (U.S. Department of the Interior 1970; Eichenlaub 1979). The lakes act as heat sinks in summer and heat sources in winter and are major reservoirs that help humidify much of the region. They also create local precipitation belts in areas where air masses are pushed across the lakes by prevailing winds, pick up moisture from the lake surface, and then drop that moisture over land on the other side of the lake. The mean annual frost-free period—a general measure of the growing-season length for plants and some cold-blooded animals—varies from 60 days at higher elevations in the north to 160 days in lakeshore areas in the south. The climate influences the general distribution of wild plants and animals in the region and also influences the activities and distribution of the human

  3. Facile Synthesis of Nanoporous Pt-Y alloy with Enhanced Electrocatalytic Activity and Durability

    NASA Astrophysics Data System (ADS)

    Cui, Rongjing; Mei, Ling; Han, Guangjie; Chen, Jiyun; Zhang, Genhua; Quan, Ying; Gu, Ning; Zhang, Lei; Fang, Yong; Qian, Bin; Jiang, Xuefan; Han, Zhida

    2017-02-01

    Recently, Pt-Y alloy has displayed an excellent electrocatalytic activity for oxygen reduction reaction (ORR), and is regarded as a promising cathode catalyst for fuel cells. However, the bulk production of nanoscaled Pt-Y alloy with outstanding catalytic performance remains a great challenge. Here, we address the challenge through a simple dealloying method to synthesize nanoporous Pt-Y alloy (NP-PtY) with a typical ligament size of ~5 nm. By combining the intrinsic superior electrocatalytic activity of Pt-Y alloy with the special nanoporous structure, the NP-PtY bimetallic catalyst presents higher activity for ORR and ethanol oxidation reaction, and better electrocatalytic stability than the commercial Pt/C catalyst and nanoporous Pt alloy. The as-made NP-PtY holds great application potential as a promising electrocatalyst in proton exchange membrane fuel cells due to the advantages of facile preparation and excellent catalytic performance.

  4. Delta spots and great flares

    NASA Technical Reports Server (NTRS)

    Zirin, Harold; Liggett, Margaret A.

    1987-01-01

    The development of delta spots and the great flares they produce are reviewed based on 18 years of observations. Delta groups are found to develop in three ways: (1) by the eruption of a single complex active region formed below the surface; (2) by the eruption of large satellite spots near a large older spot; and (3) by the collision of spots of opposite polarity from different dipoles. It is shown that the present sample of 21 delta spots never separate once they lock together, and that the driving force for the shear is spot motion. Indicators for the prediction of the occurrence of great flares are identified.

  5. Room temperature Zinc-metallation of cationic porphyrin at graphene surface and enhanced photoelectrocatalytic activity

    NASA Astrophysics Data System (ADS)

    Zeng, Rongjin; Chen, Guoliang; Xiong, Chungang; Li, Gengxian; Zheng, Yinzhi; Chen, Jian; Long, Yunfei; Chen, Shu

    2018-03-01

    A stable zincporphyrin functionalized graphene nanocomposite was prepared by using positively charged cationic porphyrin (5,10,15,20-tetra(4-propyl pyridinio) porphyrin, TPPyP) and successive reduced graphene oxide (rGO) with tuned negative charge. The nanocomposite preparation was accompanied first by distinct electrostatic interactions and π-π stacking between TPPyP and rGO, and followed by fast Zinc-metallation at room temperature. In contrast to free TPPyP with Zn2+, the incorporation reaction is very slow at room temperature and heating or reflux conditions are required to increase the metallation rate. While at the surface of rGO nanosheet, the Zinc-metallation of TPPyP was greatly accelerated to 30 min at 25 °C in aqueous solution. The interaction process and composites formation were fully revealed by significant variations in UV-vis absorption spectra, X-ray photoelectron spectra (XPS) measurements, atomic force microscope (AFM) images, and fluorescence spectra. Furthermore, photoelectrochemical activity of resultant rGO/TPPyP-Zn nanocomposites was evaluated under visible-light irradiation, and enhancement of the photoelectrocatalytic reduction of CO2 was achieved.

  6. Magnetic Field-Induced T Cell Receptor Clustering by Nanoparticles Enhances T Cell Activation and Stimulates Antitumor Activity

    PubMed Central

    2015-01-01

    Iron–dextran nanoparticles functionalized with T cell activating proteins have been used to study T cell receptor (TCR) signaling. However, nanoparticle triggering of membrane receptors is poorly understood and may be sensitive to physiologically regulated changes in TCR clustering that occur after T cell activation. Nano-aAPC bound 2-fold more TCR on activated T cells, which have clustered TCR, than on naive T cells, resulting in a lower threshold for activation. To enhance T cell activation, a magnetic field was used to drive aggregation of paramagnetic nano-aAPC, resulting in a doubling of TCR cluster size and increased T cell expansion in vitro and after adoptive transfer in vivo. T cells activated by nano-aAPC in a magnetic field inhibited growth of B16 melanoma, showing that this novel approach, using magnetic field-enhanced nano-aAPC stimulation, can generate large numbers of activated antigen-specific T cells and has clinically relevant applications for adoptive immunotherapy. PMID:24564881

  7. The transcription factor Grainy head primes epithelial enhancers for spatiotemporal activation by displacing nucleosomes.

    PubMed

    Jacobs, Jelle; Atkins, Mardelle; Davie, Kristofer; Imrichova, Hana; Romanelli, Lucia; Christiaens, Valerie; Hulselmans, Gert; Potier, Delphine; Wouters, Jasper; Taskiran, Ibrahim I; Paciello, Giulia; González-Blas, Carmen B; Koldere, Duygu; Aibar, Sara; Halder, Georg; Aerts, Stein

    2018-06-04

    Transcriptional enhancers function as docking platforms for combinations of transcription factors (TFs) to control gene expression. How enhancer sequences determine nucleosome occupancy, TF recruitment and transcriptional activation in vivo remains unclear. Using ATAC-seq across a panel of Drosophila inbred strains, we found that SNPs affecting binding sites of the TF Grainy head (Grh) causally determine the accessibility of epithelial enhancers. We show that deletion and ectopic expression of Grh cause loss and gain of DNA accessibility, respectively. However, although Grh binding is necessary for enhancer accessibility, it is insufficient to activate enhancers. Finally, we show that human Grh homologs-GRHL1, GRHL2 and GRHL3-function similarly. We conclude that Grh binding is necessary and sufficient for the opening of epithelial enhancers but not for their activation. Our data support a model positing that complex spatiotemporal expression patterns are controlled by regulatory hierarchies in which pioneer factors, such as Grh, establish tissue-specific accessible chromatin landscapes upon which other factors can act.

  8. Carbon nanotube-lipase hybrid nanoflowers with enhanced enzyme activity and enantioselectivity.

    PubMed

    Li, Kai; Wang, Jianhua; He, Yaojia; Abdulrazaq, Miaad Adnan; Yan, Yunjun

    2018-06-19

    Various nanoflowers are synthesized as supports for different methods of enzyme immobilization; however, the activities of these immobilized enzymes are limited because of their confinement in the nanoflowers. In order to increase the performance of nanoflowers, in this study, different protein-phosphate hybrid nanostructures were successfully synthesized and further enhanced by carbon nanotubes (CNTs) under the same conditions. Only Cu 3 (PO 4 ) 2 complex nanostructures exhibited flower-like structures and showed excellent results after enhancement with CNTs in this framework. An esterification reaction between lauric acid and 1-dodecanol was used to test enzyme activity during immobilization, revealing that the Cu 3 (PO 4 ) 2 /CNT/protein complex exhibited 68-fold higher activity relative to free lipase and 51-fold higher than that of Cu 3 (PO 4 ) 2 /Burkholderia cepacia lipase hybrid nanoflowers in the absence of CNTs. All three hybrid nanostructures showed good performance and exhibited excellent reusability in resolution reactions between 1-phenylethanol and vinyl acetate. Additionally, the substrate enantiomeric excess (ee s ) reached 98% in only 10 min, and the corresponding Cu 3 (PO 4 ) 2 /CNT/protein complex could be recycled eight times without obvious loss of activity. This approach involving nanoflowers enhanced with CNTs will be highly beneficial for decreasing mass-transfer resistance and providing enhanced enzyme loading along with promising potential for industrial application. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Zhang, Yu; Duan, Junxin; Tang, Lan; Wu, Wenping

    2015-06-09

    Provided are isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. Also provided are nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  10. Telmisartan enhances mitochondrial activity and alters cellular functions in human coronary artery endothelial cells via AMP-activated protein kinase pathway.

    PubMed

    Kurokawa, Hirofumi; Sugiyama, Seigo; Nozaki, Toshimitsu; Sugamura, Koichi; Toyama, Kensuke; Matsubara, Junichi; Fujisue, Koichiro; Ohba, Keisuke; Maeda, Hirofumi; Konishi, Masaaki; Akiyama, Eiichi; Sumida, Hitoshi; Izumiya, Yasuhiro; Yasuda, Osamu; Kim-Mitsuyama, Shokei; Ogawa, Hisao

    2015-04-01

    Mitochondrial dysfunction plays an important role in cellular senescence and impaired function of vascular endothelium, resulted in cardiovascular diseases. Telmisartan is a unique angiotensin II type I receptor blocker that has been shown to prevent cardiovascular events in high risk patients. AMP-activated protein kinase (AMPK) plays a critical role in mitochondrial biogenesis and endothelial function. This study assessed whether telmisartan enhances mitochondrial function and alters cellular functions via AMPK in human coronary artery endothelial cells (HCAECs). In cultured HCAECs, telmisartan significantly enhanced mitochondrial activity assessed by mitochondrial reductase activity and intracellular ATP production and increased the expression of mitochondria related genes. Telmisartan prevented cellular senescence and exhibited the anti-apoptotic and pro-angiogenic properties. The expression of genes related anti-oxidant and pro-angiogenic properties were increased by telmisartan. Telmisartan increased endothelial NO synthase and AMPK phosphorylation. Peroxisome proliferator-activated receptor gamma signaling was not involved in telmisartan-induced improvement of mitochondrial function. All of these effects were abolished by inhibition of AMPK. Telmisartan enhanced mitochondrial activity and exhibited anti-senescence effects and improving endothelial function through AMPK in HCAECs. Telmisartan could provide beneficial effects on vascular diseases via enhancement of mitochondrial activity and modulating endothelial function through AMPK activation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Hydrolysis and volatile fatty acids accumulation of waste activated sludge enhanced by the combined use of nitrite and alkaline pH.

    PubMed

    Huang, Cheng; Liu, Congcong; Sun, Xiuyun; Sun, Yinglu; Li, Rui; Li, Jiansheng; Shen, Jinyou; Han, Weiqing; Liu, Xiaodong; Wang, Lianjun

    2015-12-01

    Volatile fatty acids (VFAs) production from anaerobic digestion of waste activated sludge (WAS) is often limited by the slow hydrolysis and/or poor substrate availability. Increased attention has been given to enhance the hydrolysis and acidification of WAS recently. This study presented an efficient and green strategy based on the combined use of nitrite pretreatment and alkaline pH to stimulate hydrolysis and VFA accumulation from WAS. Results showed that both proteins and polysaccharides increased in the presence of nitrite, indicating the enhancement of sludge solubilization and hydrolysis processes. Mechanism investigations showed that nitrite pretreatment could disintegrate the sludge particle and disperse extracellular polymeric substances (EPS). Then, anaerobic digestion tests demonstrated VFA production increased with nitrite treatment. The maximal VFA accumulation was achieved with 0.1 g N/L nitrite dosage and pH 10.0 at a sludge retention time (SRT) of 7 days, which was much higher VFA production in comparison with the blank, sole nitrite pretreatment, or sole pH 10. The potential analysis suggested that the combined nitrite pretreatment and alkaline pH is capable of enhancing WAS digestion with a great benefit for biological nutrient removal (BNR).

  12. Black Hydroxylated Titanium Dioxide Prepared via Ultrasonication with Enhanced Photocatalytic Activity

    PubMed Central

    Fan, Chenyao; Chen, Chao; Wang, Jia; Fu, Xinxin; Ren, Zhimin; Qian, Guodong; Wang, Zhiyu

    2015-01-01

    The amorphous TiO2 derived from hydroxylation has become an effective approach for the enhancement of photocatalytic activity of TiO2 since a kind of special black TiO2 was prepared by engineering disordered layers on TiO2 nanocrystals via hydrogenation. In this contribution, we prepared totally amorphous TiO2 with various degrees of blackness by introducing hydroxyls via ultrasonic irradiation, through which can we remarkably enhance the photocatalytic activity of TiO2 with improved light harvesting and narrowed band gap. PMID:26133789

  13. Mechanism of Growth Enhancement of Plants Induced by Active Species in Plasmas

    NASA Astrophysics Data System (ADS)

    Watanabe, Satoshi; Ono, Reoto; Hayashi, Nobuya

    2015-09-01

    Plant growth enhances when seeds are irradiated by plasma. However the mechanism of the growth enhancement by plasma has not been clarified. In this study, growth enhancement of plants using various active species and variation of plant cells are investigated. RF plasma is generated under conditions where pressure is 60 Pa and input electrical power is 60 W. Irradiation period varies from 0 (control) to 75 min. Air plasma shows maximum growth of plants with irradiation period of 60 min on the other hand, oxygen plasma shows the maximum growth with irradiation period of 15 min. From change of gaseous species and pressure dependence, growth enhancing factor is expected to be active oxygen species produced in plasma. According to gene expression analysis of Arabidopsis, there are two speculated mechanism of plant growth enhancement. The first is acceleration of cell cycle by gene expressions of photosynthesis and glycolytic pathway, and the second is increase of cell size via plant hormone production.

  14. Teaching Group Work with "The Great Debaters"

    ERIC Educational Resources Information Center

    Moe, Jeffry; Autry, Linda; Olson, Joann S.; Johnson, Kaprea F.

    2014-01-01

    An experiential learning activity, based on the film "The Great Debaters" (Washington, D., 2007), was used during a group work class. Description and preliminary evaluation of the activity is provided, including analysis of participant scores on the group leader self-efficacy instrument at multiple points. Implications and future…

  15. Developing of a novel antibacterial agent by functionalization of graphene oxide with guanidine polymer with enhanced antibacterial activity

    NASA Astrophysics Data System (ADS)

    Li, Ping; Sun, Shiyu; Dong, Alideertu; Hao, Yanping; Shi, Shuangqiang; Sun, Zijia; Gao, Ge; Chen, Yuxin

    2015-11-01

    New materials with excellent antibacterial activity attract numerous research interests. Herein, a facile synthetic method of polyethylene glycol (PEG) and polyhexamethylene guanidine hydrochloride (PHGC) dual-polymer-functionalized graphene oxide (GO) (GO-PEG-PHGC), a novel antibacterial material, was reported. The as-prepared products were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), X-ray pattern (XRD) and elemental analysis. The antibacterial effect on the bacterial strain was investigated by incubating both Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus). The results show that GO-PEG-PHGC has enhanced antibacterial activity when compared to GO, GO-PEG or GO-PHGC alone. The improved antibacterial activity was described to be related to a better dispersion of GO-PEG-PHGC in the presence of PEG. This better dispersion leads to a greater contact between the bacteria membrane and nanomaterials, therefore leading to greater cell damage. Not only Gram-negative bacteria but also Gram-positive bacteria are greatly inhibited by this antibacterial agent. With the powerful antibacterial activity as well as its low cost and facile preparation, the GO-PEG-PHGC as a novel antibacterial agent can find potential application in the areas of healthcare and environmental engineering.

  16. Great Basin geoscience data base

    USGS Publications Warehouse

    Raines, Gary L.; Sawatzky, Don L.; Connors, Katherine A.

    1996-01-01

    This CD-ROM serves as the archive for 73 digital GIS data set for the Great Basin. The data sets cover Nevada, eastern California, southeastern Oregon, southern Idaho, and western Utah. Some of the data sets are incomplete for the total area. On the CD-ROM, the data are provided in three formats, a prototype Federal Data Exchange standard format, the ESRI PC ARCVIEW1 format for viewing the data, and the ESRI ARC/INFO export format. Extensive documentation is provided to describe the data, the sources, and data enhancements. The following data are provided. One group of coverages comes primarily from 1:2,000,000-scale National Atlas data and can be assembled for use as base maps. These various forms of topographic information. In addition, public land system data sets are provided from the 1:2,500,000-scale Geologic Map of the United States and 1:500,000-scale geologic maps of Nevada, Oregon, and Utah. Geochemical data from the National Uranium Resource Evaluation (NURE) program are provided for most of the Great Basin. Geophysical data are provided for most of the Great Basin, typically gridded data with a spacing of 1 km. The geophysical data sets include aeromagnetics, gravity, radiometric data, and several derivative products. The thematic data sets include geochronology, calderas, pluvial lakes, tectonic extension domains, distribution of pre-Cenozoic terranes, limonite anomalies, Landsat linear features, mineral sites, and Bureau of Land Management exploration and mining permits.

  17. The 2009 Samoa-Tonga great earthquake triggered doublet.

    PubMed

    Lay, Thorne; Ammon, Charles J; Kanamori, Hiroo; Rivera, Luis; Koper, Keith D; Hutko, Alexander R

    2010-08-19

    Great earthquakes (having seismic magnitudes of at least 8) usually involve abrupt sliding of rock masses at a boundary between tectonic plates. Such interplate ruptures produce dynamic and static stress changes that can activate nearby intraplate aftershocks, as is commonly observed in the trench-slope region seaward of a great subduction zone thrust event. The earthquake sequence addressed here involves a rare instance in which a great trench-slope intraplate earthquake triggered extensive interplate faulting, reversing the typical pattern and broadly expanding the seismic and tsunami hazard. On 29 September 2009, within two minutes of the initiation of a normal faulting event with moment magnitude 8.1 in the outer trench-slope at the northern end of the Tonga subduction zone, two major interplate underthrusting subevents (both with moment magnitude 7.8), with total moment equal to a second great earthquake of moment magnitude 8.0, ruptured the nearby subduction zone megathrust. The collective faulting produced tsunami waves with localized regions of about 12 metres run-up that claimed 192 lives in Samoa, American Samoa and Tonga. Overlap of the seismic signals obscured the fact that distinct faults separated by more than 50 km had ruptured with different geometries, with the triggered thrust faulting only being revealed by detailed seismic wave analyses. Extensive interplate and intraplate aftershock activity was activated over a large region of the northern Tonga subduction zone.

  18. Sucrose fed-batch strategy enhanced biomass, polysaccharide, and ganoderic acids production in fermentation of Ganoderma lucidum 5.26.

    PubMed

    Wei, Zhen-hua; Liu, Lianliang; Guo, Xiao-feng; Li, Yan-jun; Hou, Bao-chao; Fan, Qiu-ling; Wang, Kai-xiang; Luo, Yingdi; Zhong, Jian-jiang

    2016-01-01

    Ganoderma, as a Chinese traditional medicine, has multiple bioactivities. However, industrial production was limited due to low yield during Ganoderma fermentation. In this work, sucrose was found to greatly enhance intracellular polysaccharide (IPS) content and specific extracellular polysaccharide (EPS) production rate. The mechanism was studied by analyzing the activities of enzymes related to polysaccharide biosynthesis. The results revealed that sucrose regulated the activities of phosphoglucomutase and phosphoglucose isomerase. When glucose and sucrose mixture was used as carbon source, biomass, polysaccharide and ganoderic acids (GAs) production was greatly enhanced. A sucrose fed-batch strategy was developed in 10-L bioreactor, and was scaled up to 300-L bioreactor. The biomass, EPS and IPS production was 25.5, 2.9 and 4.8 g/L, respectively, which was the highest biomass and IPS production in pilot scale. This study provides information for further understanding the regulation mechanism of Ganoderma polysaccharide biosynthesis. It demonstrates that sucrose fed-batch is a useful strategy for enhancing Ganoderma biomass, polysaccharide and GAs production.

  19. Enhanced enzyme kinetic stability by increasing rigidity within the active site.

    PubMed

    Xie, Yuan; An, Jiao; Yang, Guangyu; Wu, Geng; Zhang, Yong; Cui, Li; Feng, Yan

    2014-03-14

    Enzyme stability is an important issue for protein engineers. Understanding how rigidity in the active site affects protein kinetic stability will provide new insight into enzyme stabilization. In this study, we demonstrated enhanced kinetic stability of Candida antarctica lipase B (CalB) by mutating the structurally flexible residues within the active site. Six residues within 10 Å of the catalytic Ser(105) residue with a high B factor were selected for iterative saturation mutagenesis. After screening 2200 colonies, we obtained the D223G/L278M mutant, which exhibited a 13-fold increase in half-life at 48 °C and a 12 °C higher T50(15), the temperature at which enzyme activity is reduced to 50% after a 15-min heat treatment. Further characterization showed that global unfolding resistance against both thermal and chemical denaturation also improved. Analysis of the crystal structures of wild-type CalB and the D223G/L278M mutant revealed that the latter formed an extra main chain hydrogen bond network with seven structurally coupled residues within the flexible α10 helix that are primarily involved in forming the active site. Further investigation of the relative B factor profile and molecular dynamics simulation confirmed that the enhanced rigidity decreased fluctuation of the active site residues at high temperature. These results indicate that enhancing the rigidity of the flexible segment within the active site may provide an efficient method for improving enzyme kinetic stability.

  20. Driving of Dramatic Geomagnetic Activity by Enhancement of Meso-Scale Polar-cap Flows

    NASA Astrophysics Data System (ADS)

    Lyons, L. R.; Gallardo-Lacourt, B.; Zou, Y.; Nishimura, Y.; Anderson, P. C.; Angelopoulos, V.; Ruohoniemi, J. M.; Mitchell, E. J.; Paxton, L. J.; Nishitani, N.

    2017-12-01

    Recent studies have shown that mesoscale flows are common within the polar cap ionosphere. They often cross the magnetic separatrix, and become are critical to the driving of geomagnetic activity. They lead, for example, to plasma sheet flow bursts, auroral poleward boundary intensifications, auroral streamers, substorms, auroral omega bands, and poleward motion of the polar cap boundary from reconnection. We have found large enhancements of these meso-scale ionospheric polar cap flows heading towards the nightside separatrix. These enhancements are common immediately after the impact of CME shocks under southward IMF, but can also occur in other situations, including without substantial change in the solar wind or IMF. These meso-scale flow enhancements, which must extent outward along magnetospheric field lines from the ionosphere, are seen to drive an almost immediate strong auroral, ionospheric and field-aligned current, and reconnection activity. The resulting activity is particularly dramatic during the initiation of CME storms, but may reflect a more generally occurring phenomenon of mesoscale flow enhancements leading to similar oval responses without a shock impact, including during and following the expansion phase some substorms. If this phenomenon is indeed common, it could lead to possibly fundamental questions, such as when do polar cap convection enhancements lead to a substorm growth phase versus leading directly to strong poleward expansion of, and strong activity within, the auroral oval field line region? Another critical question would be what leads to and causes the enhancements in meso-scale polar cap flows?

  1. Constructing a MoS₂ QDs/CdS Core/Shell Flowerlike Nanosphere Hierarchical Heterostructure for the Enhanced Stability and Photocatalytic Activity.

    PubMed

    Liang, Shijing; Zhou, Zhouming; Wu, Xiuqin; Zhu, Shuying; Bi, Jinhong; Zhou, Limin; Liu, Minghua; Wu, Ling

    2016-02-15

    MoS₂ quantum dots (QDs)/CdS core/shell nanospheres with a hierarchical heterostructure have been prepared by a simple microwave hydrothermal method. The as-prepared samples are characterized by XRD, TEM, SEM, UV-VIS diffuse reflectance spectra (DRS) and N₂-sorption in detail. The photocatalytic activities of the samples are evaluated by water splitting into hydrogen. Results show that the as-prepared MoS₂ QDs/CdS core/shell nanospheres with a diameter of about 300 nm are composed of the shell of CdS nanorods and the core of MoS₂ QDs. For the photocatalytic reaction, the samples exhibit a high stability of the photocatalytic activity and a much higher hydrogen evolution rate than the pure CdS, the composite prepared by a physical mixture, and the Pt-loaded CdS sample. In addition, the stability of CdS has also been greatly enhanced. The effect of the reaction time on the formations of nanospheres, the photoelectric properties and the photocatalytic activities of the samples has been investigated. Finally, a possible photocatalytic reaction process has also been proposed.

  2. Silver nanowires as infrared-active materials for surface-enhanced Raman scattering.

    PubMed

    Becucci, Maurizio; Bracciali, Monica; Ghini, Giacomo; Lofrumento, Cristiana; Pietraperzia, Giangaetano; Ricci, Marilena; Tognaccini, Lorenzo; Trigari, Silvana; Gellini, Cristina; Feis, Alessandro

    2018-05-17

    Surface-enhanced Raman scattering (SERS) is increasing in significance as a bioanalytical tool. Novel nanostructured metal substrates are required to improve performances and versatility of SERS spectroscopy. In particular, as biological tissues are relatively transparent in the infrared wavelength range, SERS-active materials suitable for infrared laser excitation are needed. Nanowires appear interesting in this respect as they show a very broad localized surface plasmon resonance band, ranging from near UV to near infrared wavelengths. The SERS activity of silver nanowires has been tested at three wavelengths and a fair enhancement at 1064 and 514 nm has been observed, whereas a very weak enhancement was present when exciting close to the nanowire extinction maximum. These experimentally measured optical properties have been contrasted with finite element method simulations. Furthermore, laser-induced optoacoustic spectroscopy measurements have shown that the extinction at 1064 nm is completely due to scattering. This result has an important implication that no heating occurs when silver nanowires are utilized as SERS-active substrates, thereby preventing possible thermal damage.

  3. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Zhang, Yu; Tang, Lan; Henriksen, Svend Hostgaard Bang

    2016-05-17

    The present invention provides isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also provides nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  4. Akt activation enhances ribosomal RNA synthesis through casein kinase II and TIF-IA.

    PubMed

    Nguyen, Le Xuan Truong; Mitchell, Beverly S

    2013-12-17

    Transcription initiation factor I (TIF-IA) plays an essential role in regulating ribosomal RNA (rRNA) synthesis by tethering RNA polymerase I (Pol I) to the rDNA promoter. We have found that activated Akt enhances rRNA synthesis through the phosphorylation of casein kinase IIα (CK2α) on a threonine residue near its N terminus. CK2 in turn phosphorylates TIF-IA, thereby increasing rDNA transcription. Activated Akt also stabilizes TIF-IA, induces its translocation to the nucleolus, and enhances its interaction with Pol I. Treatment with AZD8055, an inhibitor of both Akt and mammalian target of rapamycin phosphorylation, but not with rapamycin, disrupts Akt-mediated TIF-IA stability, translocation, and activity. These data support a model in which activated Akt enhances rRNA synthesis both by preventing TIF-IA degradation and phosphorylating CK2α, which in turn phosphorylates TIF-IA. This model provides an explanation for the ability of activated Akt to promote cell proliferation and, potentially, transformation.

  5. In situ study of the antibacterial activity and mechanism of action of silver nanoparticles by surface-enhanced Raman spectroscopy.

    PubMed

    Cui, Li; Chen, Pengyu; Chen, Shaode; Yuan, Zhihua; Yu, Changping; Ren, Bin; Zhang, Kaisong

    2013-06-04

    Silver nanoparticles (Ag NPs) are extensively used as an antibacterial additive in commercial products and their release has caused environmental risk. However, conventional methods for the toxicity detection of Ag NPs are very time consuming and the mechanisms of action are not clear. We developed a new, in situ, rapid, and sensitive fingerprinting approach, using surface-enhanced Raman spectroscopy (SERS), to study the antibacterial activity and mechanism of Ag NPs of 80 and 18 nm (Ag80 and Ag18, respectively), by using the strong electromagnetic enhancement generated by Ag NPs. Sensitive spectra changes representing various biomolecules in bacteria were observed with increasing concentrations of Ag NPs. They not only allowed SERS to monitor the antibacterial activity of Ag NPs of different sizes in different water media but also to study the antibacterial mechanism at the molecular level. Ag18 were found to be more toxic than Ag80 in water, but their toxicity declined to a similar level in the PBS medium. The antibacterial mechanism was proposed on the basis of a careful identification of the chemical origins by comparing the SERS spectra with model compounds. The dramatic change in protein, hypoxanthine, adenosine, and guanosine bands suggested that Ag NPs have a significant impact on the protein and metabolic processes of purine. Finally, by adding nontoxic and SERS active Au NPs, SERS was successfully utilized to study the action mode of the NPs unable to produce an observable SERS signal. This work opens a window for the future extensive SERS studies of the antibacterial mechanism of a great variety of non-SERS-active NPs.

  6. Enhanced photo-stability and photocatalytic activity of Ag3PO4 via modification with BiPO4 and polypyrrole

    NASA Astrophysics Data System (ADS)

    Cai, Li; Jiang, Hui; Wang, Luxi

    2017-10-01

    Ag3PO4 photocatalysts modified with BiPO4 and polypyrrole (PPy) were successfully synthesized via a combination of co-precipitation hydrothermal technique and oxidative polymerization method. Their morphologies, structures and optical and electronic properties were characterized by means of scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscope (TEM), Brunauer-Emmett-Teller (BET) surface areas, X-ray diffraction (XRD), fourier transform infrared spectra (FT-IR), X-ray photo-electron spectroscopy (XPS), UV-vis diffuse reflection spectra (UV-vis DRS), photocurrent technique and electrochemical impedance spectra (EIS). The typical triphenylmethane dye (malachite green) was chosen as a target organic contaminants to estimate the photocatalytic activities and photo-stabilities of Ag3PO4-BiPO4-PPy heterostructures under visible light irradiation. The results indicated that the existence of BiPO4 and PPy not only showed great influences on the photocatalytic activity, but also significantly enhanced photo-stability of Ag3PO4 in repeated and long-term applications. The degradation conversion of Ag3PO4-BiPO4-PPy heterostructures (ABP-3) was 1.58 times of that of pure Ag3PO4. The photo-corrosion phenomenon of Ag3PO4 was effectively avoided. The photocatalytic activity of up to 87% in the Ag3PO4-BiPO4-PPy heterostructures (ABP-3) can be remained after five repeated cycles, while only about 33% of the degradation efficiency can be reserved in pure Ag3PO4. The possible mechanism of enhanced photo-stability and photocatalytic activity of Ag3PO4-BiPO4-PPy heterostructures was also discussed in this work.

  7. What great managers do.

    PubMed

    Buckingham, Marcus

    2005-03-01

    Much has been written about the qualities that make a great manager, but most of the literature overlooks a fundamental question: What does a great manager actually do? While there are countless management styles, one thing underpins the behavior of all great managers. Above all, an exceptional manager comes to know and value the particular quirks and abilities of her employees. She figures out how to capitalize on her staffers' strengths and tweaks her environment to meet her larger goals. Such a specialized approach may seem like a lot of work. But in fact, capitalizing on each person's uniqueness can save time. Rather than encourage employees to conform to strict job descriptions that may include tasks they don't enjoy and aren't good at, a manager who develops positions for his staff members based on their unique abilities will be rewarded with behaviors that are far more efficient and effective than they would be otherwise. This focus on individuals also makes employees more accountable. Because staffers are evaluated on their particular strengths and weaknesses, they are challenged to take responsibility for their abilities and to hone them. Capitalizing on a person's uniqueness also builds a stronger sense of team. By taking the time to understand what makes each employee tick, a great manager shows that he sees his people for who they are. This personal investment not only motivates individuals but also galvanizes the entire team. Finally, this approach shakes up existing hierarchies, which leads to more creative thinking. To take great managing from theory to practice, the author says, you must know three things about a person: her strengths, the triggers that activate those strengths, and how she learns. By asking the right questions, squeezing the right triggers, and becoming aware of your employees' learning styles, you will discover what motivates each person to excel.

  8. Great Lakes rivermouths: a primer for managers

    USGS Publications Warehouse

    Pebbles, Victoria; Larson, James; Seelbach, Paul; Pebbles, Victoria; Larson, James; Seelbach, Paul

    2013-01-01

    Between the North American Great Lakes and their tributaries are the places where the confluence of river and lake waters creates a distinct ecosystem: the rivermouth ecosystem. Human development has often centered around these rivermouths, in part, because they provide a rich array of ecosystem services. Not surprisingly, centuries of intense human activity have led to substantial pressures on, and alterations to, these ecosystems, often diminishing or degrading their ecological functions and associated ecological services. Many Great Lakes rivermouths are the focus of intense restoration efforts. For example, 36 of the active Great Lakes Areas of Concern (AOCs) are rivermouths or areas that include one or more rivermouths. Historically, research of rivermouth ecosystems has been piecemeal, focused on the Great Lakes proper or on the upper reaches of tributaries, with little direct study of the rivermouth itself. Researchers have been divided among disciplines, agencies and institutions; and they often work independently and use disparate venues to communicate their work. Management has also been fragmented with a focus on smaller, localized, sub-habitat units and socio-political or economic elements, rather than system-level consideration. This Primer presents the case for a more holistic approach to rivermouth science and management that can enable restoration of ecosystem services with multiple benefits to humans and the Great Lakes ecosystem. A conceptual model is presented with supporting text that describes the structures and processes common to all rivermouths, substantiating the case for treating these ecosystems as an identifiable class.1 Ecological services provided by rivermouths and changes in how humans value those services over time are illustrated through case studies of two Great Lakes rivermouths—the St. Louis River and the Maumee River. Specific ecosystem services are identified in italics throughout this Primer and follow definitions described

  9. Enhanced supercapacitance of activated vertical graphene nanosheets in hybrid electrolyte

    NASA Astrophysics Data System (ADS)

    Ghosh, Subrata; Sahoo, Gopinath; Polaki, S. R.; Krishna, Nanda Gopala; Kamruddin, M.; Mathews, Tom

    2017-12-01

    Supercapacitors are becoming the workhorse for emerging energy storage applications due to their higher power density and superior cycle life compared to conventional batteries. The performance of supercapacitors depends on the electrode material, type of electrolyte, and interaction between them. Owing to the beneficial interconnected porous structure with multiple conducting channels, vertical graphene nanosheets (VGN) have proved to be leading supercapacitor electrode materials. Herein, we demonstrate a novel approach based on the combination of surface activation and a new organo-aqueous hybrid electrolyte, tetraethylammonium tetrafluoroborate in H2SO4, to achieve significant enhancement in supercapacitor performance of VGN. As-synthesized VGN exhibits an excellent supercapacitance of 0.64 mF/cm2 in H2SO4. However, identification of a novel electrolyte for performance enhancement is the subject of current research. The present manuscript demonstrates the potential of the hybrid electrolyte in enhancing the areal capacitance (1.99 mF/cm2) with excellent retention (only 5.4% loss after 5000 cycles) and Coulombic efficiency (93.1%). In addition, a five-fold enhancement in the capacitance of VGNs (0.64 to 3.31 mF/cm2) with a reduced internal resistance is achieved by the combination of KOH activation and the hybrid electrolyte.

  10. Transdermal absorption of memantin--effect of chemical enhancers, iontophoresis, and role of enhancer lipophilicity.

    PubMed

    del Rio-Sancho, S; Serna-Jiménez, C E; Calatayud-Pascual, M A; Balaguer-Fernández, C; Femenía-Font, A; Merino, V; López-Castellano, A

    2012-09-01

    The transdermal administration of memantine may have advantages with respect to oral therapy when treating advanced stages of Alzheimer's disease. With the ultimate objective of administrating memantine through a transdermal patch, the absorption of the drug across skin was evaluated by means of in vitro permeation studies. The effect of several chemical enhancers was studied in order to enhance percutaneous absorption of the memantine. The iontophoretic transdermal transport of memantine hydrochloride using a current density of 0.5 mA/cm(2) was also investigated. Results demonstrated that pre-treatment of the skin with R-(+)-limonene, laurocapram, decenoic acid, or oleic acid produced a statistically significant increment in the transdermal flux of memantine hydrochloride with respect to the control. Iontophoresis exhibited the greatest ability to enhance the flux of drug with respect to the control; nevertheless, the results obtained with R-(+)-limonene indicate that this compound could be of great use as a percutaneous enhancer in a memantine transdermal delivery system. In this study, the relationship between enhancement activity and lipophilicity was also studied. Satisfactory correlations have been obtained between the optimum lipophilicity of the enhancer and n-octanol/water partition coefficients of drugs. This relationship is a very useful tool that could allow to reduce time and to optimize the selection of appropriate enhancers for transdermal formulations. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. The Great Lakes Triangle. Student Guide and Teacher Guide. OEAGLS Investigation 11.

    ERIC Educational Resources Information Center

    Fortner, Rosanne; Jax, Daniel W.

    The disappearance of planes and ships in the Great Lakes area is the focus of the three activities in this unit. Activity A involves studying the locations of missing craft and personnel. Activity B, which treats the loss of the freighter Edmund Fitzgerald as an example of a Great Lakes tragedy, consists of plotting bathymetric contours,…

  12. Artificial reefs and reef restoration in the Laurentian Great Lakes

    USGS Publications Warehouse

    McLean, Matthew W.; Roseman, Edward; Pritt, Jeremy J.; Kennedy, Gregory W.; Manny, Bruce A.

    2015-01-01

    We reviewed the published literature to provide an inventory of Laurentian Great Lakes artificial reef projects and their purposes. We also sought to characterize physical and biological monitoring for artificial reef projects in the Great Lakes and determine the success of artificial reefs in meeting project objectives. We found records of 6 artificial reefs in Lake Erie, 8 in Lake Michigan, 3 in Lakes Huron and Ontario, and 2 in Lake Superior. We found 9 reefs in Great Lakes connecting channels and 6 reefs in Great Lakes tributaries. Objectives of artificial reef creation have included reducing impacts of currents and waves, providing safe harbors, improving sport-fishing opportunities, and enhancing/restoring fish spawning habitats. Most reefs in the lakes themselves were incidental (not created purposely for fish habitat) or built to improve local sport fishing, whereas reefs in tributaries and connecting channels were more frequently built to benefit fish spawning. Levels of assessment of reef performance varied; but long-term monitoring was uncommon as was assessment of physical attributes. Artificial reefs were often successful at attracting recreational species and spawning fish; however, population-level benefits of artificial reefs are unclear. Stressors such as sedimentation and bio-fouling can limit the effectiveness of artificial reefs as spawning enhancement tools. Our investigation underscores the need to develop standard protocols for monitoring the biological and physical attributes of artificial structures. Further, long-term monitoring is needed to assess the benefits of artificial reefs to fish populations and inform future artificial reef projects.

  13. [Enhancement of laccase activity by combining white rot fungal strains].

    PubMed

    He, Rong-yu; Liu, Xiao-feng; Yan, Zhi-ying; Yuan, Yue-xiang; Liao, Yin-zhang; Li, Xu-dong

    2010-02-01

    The method of combining white rot fungal strains was used to enhance laccase activity, and the interaction mechanism between strains was also studied. The laccase activity of combined fungi of strain 55 (Trametes trogii) and strain m-6 (Trametes versicolor) were 24.13 and 4.07-fold higher than that of strain 55 and strain m-6, respectively. No inhibitory effect was observed when the two strains were co-cultivated. On plate cultivation, there was hyphal interference in the contact area, where laccase activity was the highest followed by brown pigmentation. In liquid cultivation, strain m-6 played much more important role on enhancement of laccase activity, and the laccase activity of strain 55 by adding strain m-6 was 7.03-fold higher than that of strain m-6 by adding strain 55, furthermore, filter sterilized- and high temperature autoclaved-extracellular substances of strain m-6 could also stimulate strain 55 to excrete more laccase, which led to 6.79-fold and 4. 60-fold increase in laccase activity by adding 20 mL, respectively. The native staining results of Native-PAGE showed that the types of laccase isozymes were not changed when strains were co-cultured, but the concentration of three types increased.

  14. Highly reproducible surface-enhanced Raman scattering-active Au nanostructures prepared by simple electrodeposition: origin of surface-enhanced Raman scattering activity and applications as electrochemical substrates.

    PubMed

    Choi, Suhee; Ahn, Miri; Kim, Jongwon

    2013-05-24

    The fabrication of effective surface-enhanced Raman scattering (SERS) substrates has been the subject of intensive research because of their useful applications. In this paper, dendritic gold (Au) rod (DAR) structures prepared by simple one-step electrodeposition in a short time were examined as an effective SERS-active substrate. The SERS activity of the DAR surfaces was compared to that of other nanostructured Au surfaces with different morphologies, and its dependence on the structural variation of DAR structures was examined. These comparisonal investigations revealed that highly faceted sharp edge sites present on the DAR surfaces play a critical role in inducing a high SERS activity. The SERS enhancement factor was estimated to be greater than 10(5), and the detection limit of rhodamine 6G at DAR surfaces was 10(-8)M. The DAR surfaces exhibit excellent spot-to-spot and substrate-to-substrate SERS enhancement reproducibility, and their long-term stability is very good. It was also demonstrated that the DAR surfaces can be effectively utilized in electrochemical SERS systems, wherein a reversible SERS behavior was obtained during the cycling to cathodic potential regions. Considering the straightforward preparation of DAR substrates and the clean nature of SERS-active Au surfaces prepared in the absence of additives, we expect that DAR surfaces can be used as cost-effective SERS substrates in analytical and electrochemical applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schnorr, Kirk; Kramer, Randall

    2017-08-08

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  16. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Lan; Liu, Ye; Duan, Junxin

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  17. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Lopez de Leon, Alfredo [Davis, CA; Ding, Hanshu [Davis, CA; Brown, Kimberly [Elk Grove, CA

    2011-10-25

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  18. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Zhang, Yu; Duan, Junxin; Tang, Lan; Wu, Wenping

    2016-06-14

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  19. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Zhang, Yu; Duan, Junxin; Tang, Lan; Wu, Wenping

    2016-11-22

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  20. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Tang, Lan [Beijing, CN; Liu, Ye [Beijing, CN; Duan, Junxin [Beijing, CN; Zhang, Yu [Beijing, CN; Jorgensen, Christian Isak [Bagsvaerd, DK; Kramer, Randall [Lincoln, CA

    2012-04-03

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  1. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Duan, Junxin [Beijing, CN; Liu, Ye [Beijing, CN; Tang, Lan [Beijing, CN; Wu, Wenping [Beijing, CN; Quinlan, Jason [Albany, CA; Kramer, Randall [Lincoln, CA

    2012-03-27

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  2. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Tang, Lan; Liu, Ye; Duan, Junxin; Zhang, Yu; Joergensen, Christian; Kramer, Randall

    2016-11-29

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  3. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Tang, Lan; Liu, Ye; Duan, Junxin; Zhang, Yu; Joergensen, Christian; Kramer, Randall

    2014-09-16

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  4. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Tang, Lan; Liu, Ye; Duan, Junxin; Wu, Wenping; Kramer, Randall

    2014-10-21

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  5. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Maiyuran, Suchindra; Kramer, Randall; Harris, Paul

    2013-10-29

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  6. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Tang, Lan; Liu, Ye; Duan, Junxin; Zhang, Yu; Jorgensen, Christian Isak; Kramer, Randall

    2013-04-16

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  7. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Duan, Junxin; Tang, Lan; Liu, Ye; Wu, Wenping; Quinlan, Jason; Kramer, Randall

    2013-06-18

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  8. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Schnorr, Kirk; Kramer, Randall

    2016-08-09

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  9. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Schnorr, Kirk; Kramer, Randall

    2016-04-05

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  10. Enhanced p62 expression through impaired proteasomal degradation is involved in caspase-1 activation in monosodium urate crystal-induced interleukin-1b expression.

    PubMed

    Choe, Jung-Yoon; Jung, Hyun-Young; Park, Ki-Yeun; Kim, Seong-Kyu

    2014-06-01

    Evidence for the role of autophagy in the regulation of inflammation, especially IL-1b expression in response to monosodium urate (MSU) crystals, is presented. This study investigated the role of p62, a selective autophagy receptor in autophagy, in IL-1b production in MSU crystal-induced inflammation. IL-1b, TNF-a and IL-6 mRNA expression was measured by quantitative real-time PCR (qRTPCR). Autophagy-related molecules such as p62, Cullin-3, microtubule-associated protein 1 light-chain 3 (LC3) I/II, ubiquitin, caspase-1 and mitogen-activated protein kinase (MAPK)-related proteins were measured by immunoblotting. Small interfering RNAs (siRNAs) for Atg16L1, IL-1b and p62 were used to silence each target gene. MSU crystals accelerate the process of autophagosome formation and also induce impairment of proteasomal degradation, resulting in p62 accumulation in autophagy. Enhanced p62 accumulation by MSU crystals leads to IL-1b expression through activation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), but not p38, of the MAPK pathway and is also involved in activation of caspase-1 in inflammasomes. Impaired autophagosome formation by Atg16L1 siRNA significantly amplified p62 levels, thereby producing enhanced inflammatory responses, including overexpression of IL-1b under stimulation of MSU crystals. IL-1b also induces p62 protein, and blocking IL-1b under stimulation of MSU crystals greatly reduced p62 levels. This study demonstrates that enhanced p62 expression through impaired proteasomal degradation by MSU crystals plays a crucial role in caspase-1 activation in MSU crystal-induced IL-1b production. p62 is required for activation of inflammasomes during acute inflammation in gout.

  11. Structure-activity relationship of chemical penetration enhancers in transdermal drug delivery.

    PubMed

    Kanikkannan, N; Kandimalla, K; Lamba, S S; Singh, M

    2000-06-01

    Transdermal drug delivery (TDD) is the administration of therapeutic agents through intact skin for systemic effect. TDD offers several advantages over the conventional dosage forms such as tablets, capsules and injections. Currently there are about eight drugs marketed as transdermal patches. Examples of such products include nitroglycerin (angina pectoris), clonidine (hypertension), scopolamine (motion sickness), nicotine (smoking cessation), fentanil (pain) and estradiol (estrogen deficiency). Since skin is an excellent barrier for drug transport, only potent drugs with appropriate physicochemical properties (low molecular weight, adequate solubility in aqueous and non-aqueous solvents, etc) are suitable candidates for transdermal delivery. Penetration enhancement technology is a challenging development that would increase significantly the number of drugs available for transdermal administration. The permeation of drugs through skin can be enhanced by physical methods such as iontophoresis (application of low level electric current) and phonophoresis (use of ultra sound energy) and by chemical penetration enhancers (CPE). In this review, we have discussed about the CPE which have been investigated for TDD. CPE are compounds that enhance the permeation of drugs across the skin. The CPE increase skin permeability by reversibly altering the physicochemical nature of the stratum corneum, the outer most layer of skin, to reduce its diffusional resistance. These compounds increase skin permeability also by increasing the partition coefficient of the drug into the skin and by increasing the thermodynamic activity of the drug in the vehicle. This review compiles the various CPE used for the enhancement of TDD, the mechanism of action of different chemical enhancers and the structure-activity relationship of selected and extensively studied enhancers such as fatty acids, fatty alcohols and terpenes. Based on the chemical structure of penetration enhancers (such as chain

  12. Lessons learned from the aeromedical disaster relief activities following the great East Japan earthquake.

    PubMed

    Matsumoto, Hisashi; Motomura, Tomokazu; Hara, Yoshiaki; Masuda, Yukiko; Mashiko, Kunihiro; Yokota, Hiroyuki; Koido, Yuichi

    2013-04-01

    Since 2001, a Japanese national project has developed a helicopter emergency medical service (HEMS) system ("doctor-helicopter") and a central Disaster Medical Assistance Team (DMAT) composed of mobile and trained medical teams for rapid deployment during the response phase of a disaster. In Japan, the DMAT Research Group has focused on command and control of doctor-helicopters in future disasters. The objective of this study was to investigate the effectiveness of such planning, as well as the problems encountered in deploying the doctor-helicopter fleet with DMAT members following the March 11, 2011 Great East Japan Earthquake. This study was undertaken to examine the effectiveness of aeromedical disaster relief activities following the Great East Japan Earthquake and to evaluate the assembly and operations of 15 doctor-helicopter teams dispatched for patient evacuation with medical support. Fifteen DMATs from across Japan were deployed from March 11th through March 13th to work out of two doctor-helicopter base hospitals. The dispatch center at each base hospital directed its own doctor-helicopter fleet under the command of DMAT headquarters to transport seriously injured or ill patients out of hospitals located in the disaster area. Disaster Medical Assistance Teams transported 149 patients using the doctor-helicopters during the first five days after the earthquake. The experiences and problems encountered point to the need for DMATs to maintain direct control over 1) communication between DMAT headquarters and dispatch centers; 2) information management concerning patient transportation; and 3) operation of the doctor-helicopter fleet during relief activities. As there is no rule of prioritization for doctor-helicopters to refuel ahead of other rotorcraft, many doctor-helicopters had to wait in line to refuel. The "doctor-helicopter fleet" concept was vital to Japan's disaster medical assistance and rescue activities. The smooth and immediate dispatch of the

  13. The Role of Therapeutic Mentoring in Enhancing Outcomes for Youth in Foster Care

    ERIC Educational Resources Information Center

    Johnson, Sara B.; Pryce, Julia M.; Martinovich, Zoran

    2011-01-01

    Effective service interventions greatly enhance the well-being of foster youth. A study of 262 foster youth examined one such intervention, therapeutic mentoring. Results showed that mentored youth improved significantly in the areas of family and social functioning, school behavior, and recreational activities, as well as in the reduction of…

  14. Construction of RGO/CdIn2S4/g-C3N4 ternary hybrid with enhanced photocatalytic activity for the degradation of tetracycline hydrochloride

    NASA Astrophysics Data System (ADS)

    Xiao, Peng; Jiang, Deli; Ju, Lixin; Jing, Junjie; Chen, Min

    2018-03-01

    Although RGO shows great advantage in promoting charge separation and transfer of semiconductor, construction of an efficient RGO-incorporated photocatalyst is still challenging. Herein, RGO was employed to construct novel RGO/CdIn2S4/g-C3N4 (donated as RGO/CIS/CN) ternary photocatalyst by a facile hydrothermal method for the degradation of tetracycline hydrochloride (TC). The RGO/CIS/CN ternary photocatalyst showed significantly enhanced photocatalytic activity towards the degradation of TC as compared to the binary CIS/CN, CIS/CN, and CN/RGO. The photoluminescence and photocurrent response results indicate that this enhanced photocatalytic activity can be mainly ascribed to the improved charge separation and transfer efficiency. Based on the radical trapping and electron spin resonance results, the superoxide radicals and holes are proposed to play an important role in the degradation of TC over RGO/CIS/CN ternary photocatalyst. This work paves new opportunities for the synthesis of RGO-incorporated ternary photocatalyst as an efficient photocatalyst for the degradation of organic contaminant.

  15. Synthesis and Characterization of Pt–Ag Alloy Nanocages with Enhanced Activity and Durability toward Oxygen Reduction

    DOE PAGES

    Yang, Xuan; Roling, Luke T.; Vara, Madeline; ...

    2016-09-23

    Engineering the elemental composition of metal nanocrystals offers an effective strategy for the development of catalysts or electrocatalysts with greatly enhanced activity. Herein, we report the synthesis of Pt–Ag alloy nanocages with an outer edge length of 18 nm and a wall thickness of about 3 nm. Such nanocages with a composition of Pt 19Ag 81 could be readily prepared in one step through the galvanic replacement reaction between Ag nanocubes and a Pt(II) precursor. Here, after 10 000 cycles of potential cycling in the range of 0.60–1.0 V as in an accelerated durability test, the composition of the nanocagesmore » changed to Pt 56Ag 44, together with a specific activity of 1.23 mA cm –2 toward oxygen reduction, which was 3.3 times that of a state-of-the-art commercial Pt/C catalyst (0.37 mA cm –2) prior to durability testing. Density functional theory calculations attributed the increased activity to the stabilization of the transition state for breaking the O–O bond in molecular oxygen. Even after 30 000 cycles of potential cycling, the mass activity of the nanocages only dropped from 0.64 to 0.33 A mg –1 Pt, which was still about two times that of the pristine Pt/C catalyst (0.19 A mg –1 Pt).« less

  16. Synthesis and Characterization of Pt–Ag Alloy Nanocages with Enhanced Activity and Durability toward Oxygen Reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xuan; Roling, Luke T.; Vara, Madeline

    Engineering the elemental composition of metal nanocrystals offers an effective strategy for the development of catalysts or electrocatalysts with greatly enhanced activity. Herein, we report the synthesis of Pt–Ag alloy nanocages with an outer edge length of 18 nm and a wall thickness of about 3 nm. Such nanocages with a composition of Pt 19Ag 81 could be readily prepared in one step through the galvanic replacement reaction between Ag nanocubes and a Pt(II) precursor. Here, after 10 000 cycles of potential cycling in the range of 0.60–1.0 V as in an accelerated durability test, the composition of the nanocagesmore » changed to Pt 56Ag 44, together with a specific activity of 1.23 mA cm –2 toward oxygen reduction, which was 3.3 times that of a state-of-the-art commercial Pt/C catalyst (0.37 mA cm –2) prior to durability testing. Density functional theory calculations attributed the increased activity to the stabilization of the transition state for breaking the O–O bond in molecular oxygen. Even after 30 000 cycles of potential cycling, the mass activity of the nanocages only dropped from 0.64 to 0.33 A mg –1 Pt, which was still about two times that of the pristine Pt/C catalyst (0.19 A mg –1 Pt).« less

  17. ZnT-1 enhances the activity and surface expression of T-type calcium channels through activation of Ras-ERK signaling.

    PubMed

    Mor, Merav; Beharier, Ofer; Levy, Shiri; Kahn, Joy; Dror, Shani; Blumenthal, Daniel; Gheber, Levi A; Peretz, Asher; Katz, Amos; Moran, Arie; Etzion, Yoram

    2012-07-15

    Zinc transporter-1 (ZnT-1) is a putative zinc transporter that confers cellular resistance from zinc toxicity. In addition, ZnT-1 has important regulatory functions, including inhibition of L-type calcium channels and activation of Raf-1 kinase. Here we studied the effects of ZnT-1 on the expression and function of T-type calcium channels. In Xenopus oocytes expressing voltage-gated calcium channel (CaV) 3.1 or CaV3.2, ZnT-1 enhanced the low-threshold calcium currents (I(caT)) to 182 ± 15 and 167.95 ± 9.27% of control, respectively (P < 0.005 for both channels). As expected, ZnT-1 also enhanced ERK phosphorylation. Coexpression of ZnT-1 and nonactive Raf-1 blocked the ZnT-1-mediated ERK phosphorylation and abolished the ZnT-1-induced augmentation of I(caT). In mammalian cells (Chinese hamster ovary), coexpression of CaV3.1 and ZnT-1 increased the I(caT) to 166.37 ± 6.37% compared with cells expressing CaV3.1 alone (P < 0.01). Interestingly, surface expression measurements using biotinylation or total internal reflection fluorescence microscopy indicated marked ZnT-1-induced enhancement of CaV3.1 surface expression. The MEK inhibitor PD-98059 abolished the ZnT-1-induced augmentation of surface expression of CaV3.1. In cultured murine cardiomyocytes (HL-1 cells), transient exposure to zinc, leading to enhanced ZnT-1 expression, also enhanced the surface expression of endogenous CaV3.1 channels. Consistently, in these cells, endothelin-1, a potent activator of Ras-ERK signaling, enhanced the surface expression of CaV3.1 channels in a PD-98059-sensitive manner. Our findings indicate that ZnT-1 enhances the activity of CaV3.1 and CaV3.2 through activation of Ras-ERK signaling. The augmentation of CaV3.1 currents by Ras-ERK activation is associated with enhanced trafficking of the channel to the plasma membrane.

  18. Great Lakes Construction/John Robichaud Information Sheet

    EPA Pesticide Factsheets

    R5 Great Lakes Construction/John Robichaud (the Company) is located in Monroe, Michigan. The settlement involves renovation activities conducted at property constructed prior to 1978, located in Monroe, Michigan.

  19. The natural product chitosan enhances the anti-tumor activity of natural killer cells by activating dendritic cells.

    PubMed

    Li, Xinxin; Dong, Wenjuan; Nalin, Ansel P; Wang, Yufeng; Pan, Pan; Xu, Bo; Zhang, Yibo; Tun, Steven; Zhang, Jianying; Wang, Li-Shu; He, Xiaoming; Caligiuri, Michael A; Yu, Jianhua

    2018-01-01

    Natural products comprise an important class of biologically active molecules. Many of these compounds derived from natural sources exhibit specific physiologic or biochemical effects. An example of a natural product is chitosan, which is enriched in the shells of certain seafood that are frequently consumed worldwide. Like other natural products, chitosan has the potential for applications in clinical medicine and perhaps in cancer therapy. Toward this end, the immunomodulatory or anti-cancer properties of chitosan have yet to be reported. In this study, we discovered that chitosan enhanced the anti-tumor activity of natural killer (NK) cells by activating dendritic cells (DCs). In the presence of DCs, chitosan augmented IFN-γ production by human NK cells. Mechanistically, chitosan activated DCs to express pro-inflammatory cytokines such as interleukin (IL)-12 and IL-15, which in turn activated the STAT4 and NF-κB signaling pathways, respectively, in NK cells. Moreover, chitosan promoted NK cell survival, and also enhanced NK cell cytotoxicity against leukemia cells. Finally, a related in vivo study demonstrated that chitosan activated NK cells against B16F10 tumor cells in an immunocompetent syngeneic murine melanoma model. This effect was accompanied by in vivo upregulation of IL-12 and IL-15 in DCs, as well as increased IFN-γ production and cytolytic degranulation in NK cells. Collectively, our results demonstrate that chitosan activates DCs leading to enhanced capacity for immune surveillance by NK cells. We believe that our study has future clinical applications for chitosan in the prevention or treatment of cancer and infectious diseases.

  20. Surface-enhanced Raman scattering on periodic metal nanotips with tunable sharpness.

    PubMed

    Linn, Nicholas C; Sun, Chih-Hung; Arya, Ajay; Jiang, Peng; Jiang, Bin

    2009-06-03

    This paper reports on a scalable bottom-up technology for producing periodic gold nanotips with tunable sharpness as surface-enhanced Raman scattering (SERS) substrates. Inverted silicon pyramidal pits, which are templated from non-close-packed colloidal crystals prepared by a spin-coating technology, are used as structural templates to replicate arrays of polymer nanopyramids with nanoscale sharp tips. The deposition of a thin layer of gold on the polymer nanopyramids leads to the formation of SERS-active substrates with a high enhancement factor (up to 10(8)). The thickness of the deposited metal determines the sharpness of the nanotips and the resulting Raman enhancement factor. Finite-element electromagnetic modeling shows that the nanotips can significantly enhance the local electromagnetic field and the sharpness of nanotips greatly affects the SERS enhancement.

  1. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOEpatents

    Dotson, William D.; Greenier, Jennifer; Ding, Hanshu

    2007-09-18

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated nucleic acids encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the nucleic acids as well as methods for producing and using the polypeptides.

  2. Aquatic Trash Prevention National Great Practices Compendium

    EPA Pesticide Factsheets

    The National Great Practice Compendium highlights outstanding activities, technologies, and programs that prevent trash from entering the aquatic environment and/or that reduce the overall volume of trash that is generated.

  3. Thrombopoietin contributes to enhanced platelet activation in cigarette smokers.

    PubMed

    Lupia, Enrico; Bosco, Ornella; Goffi, Alberto; Poletto, Cesare; Locatelli, Stefania; Spatola, Tiziana; Cuccurullo, Alessandra; Montrucchio, Giuseppe

    2010-05-01

    Thrombopoietin (TPO) is a humoral growth factor that primes platelet activation in response to several agonists. We recently showed that TPO enhances platelet activation in unstable angina and sepsis. Aim of this study was to investigate the role of TPO in platelet function abnormalities described in cigarette smokers. In a case-control study we enrolled 20 healthy cigarette smokers and 20 nonsmokers, and measured TPO and C-reactive protein (CRP), as well as platelet-leukocyte binding and P-selectin expression. In vitro we evaluated the priming activity of smoker or control plasma on platelet activation, and the role of TPO in this effect. We then studied the effects of acute smoking and smoking cessation on TPO levels and platelet activation indices. Chronic cigarette smokers had higher circulating TPO levels than nonsmoking controls, as well as increased platelet-leukocyte binding, P-selectin expression, and CRP levels. Serum cotinine concentrations correlated with TPO concentrations, platelet-monocyte aggregates and P-selectin expression. In addition, TPO levels significantly correlated with ex vivo platelet-monocyte aggregation and P-selectin expression. In vitro, the plasma from cigarette smokers, but not from nonsmoking controls, primed platelet-monocyte binding, which was reduced when an inhibitor of TPO was used. We also found that acute smoking slightly increased TPO levels, but did not affect platelet-leukocyte binding, whereas smoking cessation induced a significant decrease in both circulating TPO and platelet-leukocyte aggregation. Elevated TPO contributes to enhance platelet activation and platelet-monocyte cross-talk in cigarette smokers. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  4. A Report on Nursing Information During Volunteer Activities Conducted by Nursing Faculty Members and Students After the Great East Japan Earthquake.

    PubMed

    Tomizawa, Yayoi; Ichinose, Makino; Onogi, Hiroshi; Suzuki, Chiaki; Nakamura, Reiko; Misawa, Sumi

    2016-01-01

    A survey was conducted about nursing information in volunteer activities of nursing faculty members and students after the Great East Japan Earthquake. Results indicated that it was important to attempt collecting information in every possible way and to always be prepared. During activities, it is important to record information, to share information with individuals other than nursing professionals and to make good use of it.

  5. The 2009 Samoa-Tonga great earthquake triggered doublet

    USGS Publications Warehouse

    Lay, T.; Ammon, C.J.; Kanamori, H.; Rivera, L.; Koper, K.D.; Hutko, Alexander R.

    2010-01-01

    Great earthquakes (having seismic magnitudes of at least 8) usually involve abrupt sliding of rock masses at a boundary between tectonic plates. Such interplate ruptures produce dynamic and static stress changes that can activate nearby intraplate aftershocks, as is commonly observed in the trench-slope region seaward of a great subduction zone thrust event1-4. The earthquake sequence addressed here involves a rare instance in which a great trench-slope intraplate earthquake triggered extensive interplate faulting, reversing the typical pattern and broadly expanding the seismic and tsunami hazard. On 29 September 2009, within two minutes of the initiation of a normal faulting event with moment magnitude 8.1 in the outer trench-slope at the northern end of the Tonga subduction zone, two major interplate underthrusting subevents (both with moment magnitude 7.8), with total moment equal to a second great earthquake of moment magnitude 8.0, ruptured the nearby subduction zone megathrust. The collective faulting produced tsunami waves with localized regions of about 12metres run-up that claimed 192 lives in Samoa, American Samoa and Tonga. Overlap of the seismic signals obscured the fact that distinct faults separated by more than 50km had ruptured with different geometries, with the triggered thrust faulting only being revealed by detailed seismic wave analyses. Extensive interplate and intraplate aftershock activity was activated over a large region of the northern Tonga subduction zone. ?? 2010 Macmillan Publishers Limited. All rights reserved.

  6. An allosteric disulfide bond is involved in enhanced activation of factor XI by protein disulfide isomerase.

    PubMed

    Zucker, M; Seligsohn, U; Yeheskel, A; Mor-Cohen, R

    2016-11-01

    Essentials Reduction of three disulfide bonds in factor (F) XI enhances chromogenic substrate cleavage. We measured FXI activity upon reduction and identified a bond involved in the enhanced activity. Reduction of FXI augments FIX cleavage, probably by faster conversion of FXI to FXIa. The Cys362-Cys482 disulfide bond is responsible for FXI enhanced activation upon its reduction. Background Reduction of factor (F) XI by protein disulfide isomerase (PDI) has been shown to enhance the ability of FXI to cleave its chromogenic substrate. Three disulfide bonds in FXI (Cys118-Cys147, Cys362-Cys482, and Cys321-Cys321) are involved in this augmented activation. Objectives To characterize the mechanisms by which PDI enhances FXI activity. Methods FXI activity was measured following PDI reduction. Thiols that were exposed in FXI after PDI reduction were labeled with 3-(N-maleimidopropionyl)-biocytin (MPB) and detected with avidin. The rate of conversion of FXI to activated FXI (FXIa) following thrombin activation was assessed with western blotting. FXI molecules harboring mutations that disrupt the three disulfide bonds (C147S, C321S, and C482S) were expressed in cells. The antigenicity of secreted FXI was measured with ELISA, and its activity was assessed by the use of a chromogenic substrate. The effect of disulfide bond reduction was analyzed by the use of molecular dynamics. Results Reduction of FXI by PDI enhanced cleavage of both its chromogenic substrate, S2366, and its physiologic substrate, FIX, and resulted in opening of the Cys362-Cys482 bond. The rate of conversion of FXI to FXIa was increased following its reduction by PDI. C482S-FXI showed enhanced activity as compared with both wild-type FXI and C321S-FXI. MD showed that disruption of the Cys362-Cys482 bond leads to a broader thrombin-binding site in FXI. Conclusions Reduction of FXI by PDI enhances its ability to cleave FIX, probably by causing faster conversion of FXI to FXIa. The Cys362-Cys482 disulfide

  7. The Great Gatsby. [Lesson Plan].

    ERIC Educational Resources Information Center

    Zelasko, Ken

    Based on F. Scott Fitzgerald's novel "The Great Gatsby," this lesson plan presents activities designed to help students understand that adapting part of a novel into a dramatic reading makes students more intimate with the author's intentions and craft; and that a part of a novel may lend itself to various oral interpretations. The main activity…

  8. Indian Activism, the Great Society, Indian Self-Determination, and the Drive for an Indian College or University, 1964-71

    ERIC Educational Resources Information Center

    Crum, Steven J.

    2007-01-01

    In the 1960s an increasing number of Native Americans began to express the need for an Indian college or university. Three major developments of the decade inspired them. The first was the rise of Indian activism in the 1960s. The second major development was the package of socioeconomic reforms of the Great Society, inaugurated by President…

  9. Early Holocene Great Salt Lake

    USGS Publications Warehouse

    Oviatt, Charles G.; Madsen, David B.; Miller, David; Thompson, Robert S.; McGeehin, John P.

    2015-01-01

    Shorelines and surficial deposits (including buried forest-floor mats and organic-rich wetland sediments) show that Great Salt Lake did not rise higher than modern lake levels during the earliest Holocene (11.5–10.2 cal ka BP; 10–9 14C ka BP). During that period, finely laminated, organic-rich muds (sapropel) containing brine-shrimp cysts and pellets and interbedded sodium-sulfate salts were deposited on the lake floor. Sapropel deposition was probably caused by stratification of the water column — a freshwater cap possibly was formed by groundwater, which had been stored in upland aquifers during the immediately preceding late-Pleistocene deep-lake cycle (Lake Bonneville), and was actively discharging on the basin floor. A climate characterized by low precipitation and runoff, combined with local areas of groundwater discharge in piedmont settings, could explain the apparent conflict between evidence for a shallow lake (a dry climate) and previously published interpretations for a moist climate in the Great Salt Lake basin of the eastern Great Basin.

  10. Enhancement of antidandruff activity of shampoo by biosynthesized silver nanoparticles from Solanum trilobatum plant leaf

    NASA Astrophysics Data System (ADS)

    Pant, Gaurav; Nayak, Nitesh; Gyana Prasuna, R.

    2013-10-01

    The present investigation describes simple and effective method for synthesis of silver nanoparticles via green route. Solanum trilobatum Linn extract were prepared by both conventional and homogenization method. We optimized the production of silver nanoparticles under sunlight, microwave and room temperature. The best results were obtained with sunlight irradiation, exhibiting 15-20 nm silver nanoparticles having cubic and hexagonal shape. Biosynthesized nanoparticles were highly toxic to various bacterial strains tested. In this study we report antibacterial activity against various Gram negative ( Klebsiella pneumoniae, Vibrio cholerae and Salmonella typhi) and Gram positive ( Staphylococcus aureus, Bacillus cereus and Micrococcus luteus) bacterial strains. Screening was also performed for any antifungal properties of the nanoparticles against human pathogenic fungal strains ( Candida albicans and Candida parapsilosis). We also demonstrated that these nanoparticles when mixed with shampoo enhance the anti-dandruff effect against dandruff causing fungal pathogens ( Pityrosporum ovale and Pityrosporum folliculitis). The present study showed a simple, rapid and economical route to synthesize silver nanoparticles and their applications hence has a great potential in biomedical field.

  11. Identification of activated enhancers and linked transcription factors in breast, prostate, and kidney tumors by tracing enhancer networks using epigenetic traits.

    PubMed

    Rhie, Suhn Kyong; Guo, Yu; Tak, Yu Gyoung; Yao, Lijing; Shen, Hui; Coetzee, Gerhard A; Laird, Peter W; Farnham, Peggy J

    2016-01-01

    Although technological advances now allow increased tumor profiling, a detailed understanding of the mechanisms leading to the development of different cancers remains elusive. Our approach toward understanding the molecular events that lead to cancer is to characterize changes in transcriptional regulatory networks between normal and tumor tissue. Because enhancer activity is thought to be critical in regulating cell fate decisions, we have focused our studies on distal regulatory elements and transcription factors that bind to these elements. Using DNA methylation data, we identified more than 25,000 enhancers that are differentially activated in breast, prostate, and kidney tumor tissues, as compared to normal tissues. We then developed an analytical approach called Tracing Enhancer Networks using Epigenetic Traits that correlates DNA methylation levels at enhancers with gene expression to identify more than 800,000 genome-wide links from enhancers to genes and from genes to enhancers. We found more than 1200 transcription factors to be involved in these tumor-specific enhancer networks. We further characterized several transcription factors linked to a large number of enhancers in each tumor type, including GATA3 in non-basal breast tumors, HOXC6 and DLX1 in prostate tumors, and ZNF395 in kidney tumors. We showed that HOXC6 and DLX1 are associated with different clusters of prostate tumor-specific enhancers and confer distinct transcriptomic changes upon knockdown in C42B prostate cancer cells. We also discovered de novo motifs enriched in enhancers linked to ZNF395 in kidney tumors. Our studies characterized tumor-specific enhancers and revealed key transcription factors involved in enhancer networks for specific tumor types and subgroups. Our findings, which include a large set of identified enhancers and transcription factors linked to those enhancers in breast, prostate, and kidney cancers, will facilitate understanding of enhancer networks and mechanisms

  12. Levamisole enhances the rewarding and locomotor-activating effects of cocaine in rats.

    PubMed

    Tallarida, Christopher S; Tallarida, Ronald J; Rawls, Scott M

    2015-04-01

    The Drug Enforcement Agency estimates that 80% of cocaine seized in the United States contains the veterinary pharmaceutical levamisole (LVM). One problem with LVM is that it is producing life-threatening neutropenia in an alarming number of cocaine abusers. The neuropharmacological profile of LVM is also suggestive of an agent with modest reinforcing and stimulant effects that could enhance cocaine's addictive effects. We tested the hypothesis that LVM (ip) enhances the rewarding and locomotor stimulant effects of cocaine (ip) using rat conditioned place preference (CPP) and locomotor assays. Effects of LVM by itself were also tested. LVM (0-10 mg/kg) produced CPP at 1mg/kg (P<0.05) and locomotor activation at 5mg/kg (P < 0.05). For CPP combination experiments, a statistically inactive dose of LVM (0.1 mg/kg) was administered with a low dose of cocaine (2.5 mg/kg). Neither agent produced CPP compared to saline (P > 0.05); however, the combination of LVM and cocaine produced enhanced CPP compared to saline or either drug by itself (P < 0.01). For locomotor experiments, the same inactive dose of LVM (0.1mg/kg, ip) was administered with low (10 mg/kg) and high doses (30 mg/kg) of cocaine. LVM (0.1 mg/kg) enhanced locomotor activation produced by 10mg/kg of cocaine (P < 0.05) but not by 30 mg/kg (P>0.05). LVM can enhance rewarding and locomotor-activating effects of low doses of cocaine in rats while possessing modest activity of its own. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Does the Room Matter? Active Learning in Traditional and Enhanced Lecture Spaces

    PubMed Central

    Stoltzfus, Jon R.; Libarkin, Julie

    2016-01-01

    SCALE-UP–type classrooms, originating with the Student-Centered Active Learning Environment with Upside-down Pedagogies project, are designed to facilitate active learning by maximizing opportunities for interactions between students and embedding technology in the classroom. Positive impacts when active learning replaces lecture are well documented, both in traditional lecture halls and SCALE-UP–type classrooms. However, few studies have carefully analyzed student outcomes when comparable active learning–based instruction takes place in a traditional lecture hall and a SCALE-UP–type classroom. Using a quasi-experimental design, we compared student perceptions and performance between sections of a nonmajors biology course, one taught in a traditional lecture hall and one taught in a SCALE-UP–type classroom. Instruction in both sections followed a flipped model that relied heavily on cooperative learning and was as identical as possible given the infrastructure differences between classrooms. Results showed that students in both sections thought that SCALE-UP infrastructure would enhance performance. However, measures of actual student performance showed no difference between the two sections. We conclude that, while SCALE-UP–type classrooms may facilitate implementation of active learning, it is the active learning and not the SCALE-UP infrastructure that enhances student performance. As a consequence, we suggest that institutions can modify existing classrooms to enhance student engagement without incorporating expensive technology. PMID:27909018

  14. Active medulloblastoma enhancers reveal subgroup-specific cellular origins

    PubMed Central

    Lin, Charles Y.; Erkek, Serap; Tong, Yiai; Yin, Linlin; Federation, Alexander J.; Zapatka, Marc; Haldipur, Parthiv; Kawauchi, Daisuke; Risch, Thomas; Warnatz, Hans-Jörg; Worst, Barbara C.; Ju, Bensheng; Orr, Brent A.; Zeid, Rhamy; Polaski, Donald R.; Segura-Wang, Maia; Waszak, Sebastian M.; Jones, David T.W.; Kool, Marcel; Hovestadt, Volker; Buchhalter, Ivo; Sieber, Laura; Johann, Pascal; Chavez, Lukas; Gröschel, Stefan; Ryzhova, Marina; Korshunov, Andrey; Chen, Wenbiao; Chizhikov, Victor V.; Millen, Kathleen J.; Amstislavskiy, Vyacheslav; Lehrach, Hans; Yaspo, Marie-Laure; Eils, Roland; Lichter, Peter; Korbel, Jan O.; Pfister, Stefan M.; Bradner, James E.; Northcott, Paul A.

    2016-01-01

    Summary Medulloblastoma is a highly malignant paediatric brain tumour, often inflicting devastating consequences on the developing child. Genomic studies have revealed four distinct molecular subgroups with divergent biology and clinical behaviour. An understanding of the regulatory circuitry governing the transcriptional landscapes of medulloblastoma subgroups, and how this relates to their respective developmental origins, is lacking. Using H3K27ac and BRD4 ChIP-Seq, coupled with tissue-matched DNA methylation and transcriptome data, we describe the active cis-regulatory landscape across 28 primary medulloblastoma specimens. Analysis of differentially regulated enhancers and super-enhancers reinforced inter-subgroup heterogeneity and revealed novel, clinically relevant insights into medulloblastoma biology. Computational reconstruction of core regulatory circuitry identified a master set of transcription factors, validated by ChIP-Seq, that are responsible for subgroup divergence and implicate candidate cells-of-origin for Group 4. Our integrated analysis of enhancer elements in a large series of primary tumour samples reveals insights into cis-regulatory architecture, unrecognized dependencies, and cellular origins. PMID:26814967

  15. Associations between health-enhancing physical activity and country of birth among women.

    PubMed

    Södergren, Marita; Sundquist, Kristina; Johansson, Sven-Erik; Sundquist, Jan; Hagströmer, Maria

    2010-09-01

    The purpose of this study was to examine the association between total self-reported health-enhancing physical activity and country of birth among women living in Sweden. Women (age 18 to 65 years) born in Sweden, Finland, Chile, and Iraq were recruited for this cross-sectional study. Data were collected by means of a postal questionnaire including the International Physical Activity Questionnaire (IPAQ-long version). Self-reported physical activity data were converted to MET-minutes per week and analyzed as continuous or categorical scores. A total of 2649 women were included in the analyses. The association between physical activity and country of birth was explored using ordinal logistic regression assuming proportional odds. The total physical activity differed significantly between the countries of birth (P < .001). Women from Finland had significant higher odds and women from Iraq had significantly lower odds for reporting higher levels of physical activity, compared with Swedish-born women. The direction of the associations between self-reported total health-enhancing physical activity varied by country of birth, which underlines the need to examine physical activity in each minority group separately.

  16. Our Great Lakes Connection. A Curriculum Guide for Grades Kindergarten through Eight.

    ERIC Educational Resources Information Center

    Entine, Lynn; Fisher, Ellen, Ed.

    Presented are 24 activities which focus on various topics related to the Great Lakes. These activities, suitable for students in kindergarten through grade 8, are designed to fit into existing geography, science, language arts, drama, history, social studies, and economics curricula. In addition to providing information about the Great Lakes, the…

  17. Membrane penetrating peptides greatly enhance baculovirus transduction efficiency into mammalian cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Hong-Zhang; Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan, ROC; Wu, Carol P.

    2011-02-11

    Research highlights: {yields} Ligation of CTP with GP64 enhances baculovirus transduction into mammalian cells. {yields} Fusion of PTD with VP39 enhances baculovirus transduction into mammalian cells. {yields} CTP and PTD-carrying viruses improve the transduction of co-transduced baculoviruses. {yields} Virus entry and gene expression can be separate events in different cell types. -- Abstract: The baculovirus group of insect viruses is widely used for foreign gene introduction into mammalian cells for gene expression and protein production; however, the efficiency of baculovirus entry into mammalian cells is in general still low. In this study, two recombinant baculoviruses were engineered and their abilitymore » to improve viral entry was examined: (1) cytoplasmic transduction peptide (CTP) was fused with baculovirus envelope protein, GP64, to produce a cytoplasmic membrane penetrating baculovirus (vE-CTP); and (2) the protein transduction domain (PTD) of HIV TAT protein was fused with the baculovirus capsid protein VP39 to form a nuclear membrane penetrating baculovirus (vE-PTD). Transduction experiments showed that both viruses had better transduction efficiency than vE, a control virus that only expresses EGFP in mammalian cells. Interestingly, vE-CTP and vE-PTD were also able to improve the transduction efficiency of a co-transduced baculovirus, resulting in higher levels of gene expression. Our results have described new routes to further enhance the development of baculovirus as a tool for gene delivery into mammalian cells.« less

  18. Enhanced photocatalytic hydrogen evolution activity of CuInS{sub 2} loaded TiO{sub 2} under solar light irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Changjiang; Xi, Zhenhao; Fang, Wenzhang

    2015-03-15

    In this paper, p–n type CuInS{sub 2}/TiO{sub 2} particles were prepared in ethylenediamine by the solvothermal method. The microstructural properties of the synthesized p–n type catalysts were characterized by X-ray diffraction (XRD) in order to confirm the existence of crystalline CuInS{sub 2} on the surface of TiO{sub 2}, which was also confirmed by X-ray photoelectron spectroscopy (XPS). Transmission electron microscopy (TEM) images provided the detailed morphological properties about the CuInS{sub 2}/TiO{sub 2} heterostructure. UV–vis diffuse reflectance spectroscopy (UV–vis DRS) was used to investigate the optical properties of the CuInS{sub 2}/TiO{sub 2} particles. The DRS results indicated that both the p–nmore » type structure and CuInS{sub 2} acting as a sensitizer can enhance significantly the absorption of UV and visible light. The photocatalytic activities of the CuInS{sub 2}/TiO{sub 2} particles were evaluated by hydrogen evolution reactions using Xe-lamp irradiation as a simulated solar light source. The greatly enhanced photocatalytic activity of hydrogen evolution under simulated solar light is about ~7 fold higher than that of pure commercial TiO{sub 2} (Degussa P25). - Graphical abstract: The heterojunction structure of CuInS{sub 2}/TiO{sub 2} promoted the efficiency of photoinduced charge carrier transfer and highly inherited the recombination of activated electrons and holes. - Highlight: • CuInS{sub 2}/TiO{sub 2} was prepared by a one-step solvothermal method. • 2.5% CuInS{sub 2}/TiO{sub 2} has the highest activity and keeps the activity stable. • Heterojunction structure of sample promoted the separation of electrons and holes.« less

  19. Bicarbonate enhances the in vitro antibiotic activity of kanamycin in Escherichia coli.

    PubMed

    Gutiérrez-Huante, M; Martínez, H; Bustamante, V H; Puente, J L; Sánchez, J

    2015-05-01

    Growth of enteropathogenic Escherichia coli E2348/69 was inhibited by bicarbonate in a dose-dependent manner, showing approximately 5% growth reduction at 5 mmol l(-1) while kanamycin at 3·12 μg ml(-1) inhibited growth by 15%, yet when kanamycin and bicarbonate were combined at these concentrations, inhibition increased to 80%. Unexpectedly, at bicarbonate concentrations >20 mmol l(-1) enhancement of the antibiotic activity virtually disappeared, i.e. there was a paradoxical Eagle-like effect. How bicarbonate acts is unclear, but neutral or alkaline pH also enhanced the activity of kanamycin. However, several differences indicated a separate effect of bicarbonate. First, bicarbonate inhibited growth more than the corresponding increments in pH. Second, at low concentration, the antibiotic enhancing effect of bicarbonate was stronger than the effect of pH alone. Third, 5 mmol l(-1) bicarbonate significantly enhanced the activity of kanamycin while the corresponding pH had no effect. Fourth, the Eagle-like effect was exclusive of bicarbonate because changes in pH did not induce an analogous behaviour. Notwithstanding the mechanism, the enhancing effect of bicarbonate was indubitable. Consequently, it seems worthwhile to explore further its potential to improve the efficacy of aminoglycosides and maybe even other antibiotics. Bicarbonate at a low concentration enhanced the in vitro antibiotic activity of kanamycin and gentamicin. Even though the action mechanism of bicarbonate is hitherto unknown, it seems worthwhile to explore further its capacity to improve the efficacy of aminoglycosides. Clearly, the well-known harmful side-effects of aminoglycosides are a concern. However, it has recently been shown in a fish model that bicarbonate may protect ciliary cells against the damage caused by aminoglycosides. So, it seems possible that bicarbonate could help reduce aminoglycoside dosage at the same time that it might help lessen the damage to auditory ciliary cells in

  20. Enhanced performance of Zn(II)-doped lead-acid batteries with electrochemical active carbon in negative mass

    NASA Astrophysics Data System (ADS)

    Xiang, Jiayuan; Hu, Chen; Chen, Liying; Zhang, Dong; Ding, Ping; Chen, Dong; Liu, Hao; Chen, Jian; Wu, Xianzhang; Lai, Xiaokang

    2016-10-01

    The effect and mechanism of Zn(II) on improving the performances of lead-acid cell with electrochemical active carbon (EAC) in negative mass is investigated. The hydrogen evolution of the cell is significantly reduced due to the deposition of Zn on carbon surface and the increased porosity of negative mass. Zn(II) additives can also improve the low-temperature and high-rate capacities of the cell with EAC in negative mass, which ascribes to the formation of Zn on lead and carbon surface that constructs a conductive bridge among the active mass. Under the co-contribution of EAC and Zn(II), the partial-state-of-charge cycle life is greatly prolonged. EAC optimizes the NAM structure and porosity to enhance the charge acceptance and retard the lead sulfate accumulation. Zn(II) additive reduces the hydrogen evolution during charge process and improves the electric conductivity of the negative electrode. The cell with 0.6 wt% EAC and 0.006 wt% ZnO in negative mass exhibits 90% reversible capacity of the initial capacity after 2100 cycles. In contrast, the cell with 0.6 wt% EAC exhibits 84% reversible capacity after 2100 cycles and the control cell with no EAC and Zn(II) exhibits less than 80% reversible capacity after 1350 cycles.

  1. Performance enhancement in a semi-autonomous confined microsociety

    NASA Technical Reports Server (NTRS)

    Brady, J. V.; Bernstein, D. J.; Foltin, R. W.; Nellis, M. J.

    1988-01-01

    Research in a continuously programmed human experimental laboratory has been directed toward identifying, defining, and expanding generalized knowledge concerning motivational factors within the structure of human behavioral repertoires that maintain and enhance performance. Participants (in groups of three) engaged in a series of repetitive work activities (e.g., word sorting and rug-hooking) for extended periods each day, while living continuously in a residential laboratory. Other parts of the day were spent either interacting socially with other participants or engaging in individual recreational activities. The percentage of time devoted to the various work tasks provided the basis for selecting one activity that occurred with high frequency and one with low frequency. Performance of the low-frequency activity was then required in order to gain access to the high-frequency activity. Under such contingencies, time devoted to the original low-frequency activity increased greatly, and the participants consistently did more than the required amount of the low-frequency work than was necessary to restore access to the restricted work activity. The theoretical significance of these findings resides in the clear demonstration that a time-based model of value applies as well to the enhancement of work-like performance as it does to voluntarily selected or preferred recreational activities.

  2. Ethanol acts as an enhancer of steroid anesthetic activity in mouse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bukusoglu, C.; Mok, W.M.; Krieger, N.R.

    1992-02-26

    Ethanol and the steroid 3{alpha}-hydroxy-5{alpha}-pregnan-20-one (3{alpha}) are each potent general anesthetics that bring about the rapid loss of the righting response (LRR) in mice. Ethanol is known to enhance the actions of a range of sedative and anesthetic agents. However the effects of ethanol on steroid anesthesia have not previously been described. When ethanol was co-injected with 3{alpha} as compared to 3{alpha} injected alone, the percentage of mice that lost the righting response was substantially increased; the time to LRR was shortened; and 3{alpha} brain levels were increased. The interactions between the two agents were analyzed with the aid ofmore » an isobologram and they were found to be consistent with a hypothesis of additivity. The authors speculate that the role of ethanol as an enhancer of administered 3{alpha} activity described here may extend to the enhancement of endogenous 3{alpha} activity.« less

  3. Enhancing learning in geosciences and water engineering via lab activities

    NASA Astrophysics Data System (ADS)

    Valyrakis, Manousos; Cheng, Ming

    2016-04-01

    This study focuses on the utilisation of lab based activities to enhance the learning experience of engineering students studying Water Engineering and Geosciences. In particular, the use of modern highly visual and tangible presentation techniques within an appropriate laboratory based space are used to introduce undergraduate students to advanced engineering concepts. A specific lab activity, namely "Flood-City", is presented as a case study to enhance the active engagement rate, improve the learning experience of the students and better achieve the intended learning objectives of the course within a broad context of the engineering and geosciences curriculum. Such activities, have been used over the last few years from the Water Engineering group @ Glasgow, with success for outreach purposes (e.g. Glasgow Science Festival and demos at the Glasgow Science Centre and Kelvingrove museum). The activity involves a specific setup of the demonstration flume in a sand-box configuration, with elements and activities designed so as to gamely the overall learning activity. Social media platforms can also be used effectively to the same goals, particularly in cases were the students already engage in these online media. To assess the effectiveness of this activity a purpose designed questionnaire is offered to the students. Specifically, the questionnaire covers several aspects that may affect student learning, performance and satisfaction, such as students' motivation, factors to effective learning (also assessed by follow-up quizzes), and methods of communication and assessment. The results, analysed to assess the effectiveness of the learning activity as the students perceive it, offer a promising potential for the use of such activities in outreach and learning.

  4. Anti-Fas Antibody Conjugated Nanoparticles Enhancing the Antitumor Effect of Camptothecin by Activating the Fas-FasL Apoptotic Pathway.

    PubMed

    Yu, Hongliang; He, Jian; Lu, Qian; Huo, Da; Yuan, Shanmei; Zhou, Zhengyang; Xu, Peipei; Hu, Yong

    2016-11-09

    Emerging evidence suggest that the introduction of Fas ligand (FasL) can enhance the Fas-dependent apoptosis and induce durable immune responses against tumor. However, selective triggering of apoptosis in tumor cells while sparing normal cells remains a great challenge for the application of FasL-based therapeutic strategies. Herein, smart nanoparticles (NPs) with a sandwich structure were fabricated. These NPs consist of a matrix metalloproteinase (MMP) cleavable PEG outer layer, an anti-Fas antibody middle layer, and a camptothecin (CPT)-loaded inner core. They could accumulate at a tumor site by the enhanced permeability and retention (EPR) effect. The removable PEG layer protects the cytotoxic anti-Fas antibody from premature contact with normal tissues, thus avoiding the unexpected lethal side effect before they reach the tumor site. Due to the high level of MMP expressed by tumor cells inside the tumor tissue, these NPs would shed their PEG layers, resulting in the exposure of anti-Fas antibody to bind the Fas receptor and triggering the apoptosis of tumor cells. Results of Western blot confirmed that these NPs could mimic the function of activated cytotoxic lymphocyte (CTL) to activate the Fas-FasL apoptosis pathway of tumor cells. With the aid of CPT payload, these anti-Fas antibody conjugated NPs achieved a high tumor inhibition in the B16 allograft tumor animal model. The design of these NPs provides a method for delivering cytotoxic ligand to targeting tissue, which may be valuable in cancer therapy.

  5. Enhanced UV-Visible Light Photocatalytic Activity by Constructing Appropriate Heterostructures between Mesopore TiO₂ Nanospheres and Sn₃O₄ Nanoparticles.

    PubMed

    Hu, Jianling; Tu, Jianhai; Li, Xingyang; Wang, Ziya; Li, Yan; Li, Quanshui; Wang, Fengping

    2017-10-19

    Novel TiO₂/Sn₃O₄ heterostructure photocatalysts were ingeniously synthesized via a scalable two-step method. The impressive photocatalytic abilities of the TiO₂/Sn₃O₄ sphere nanocomposites were validated by the degradation test of methyl orange and •OH trapping photoluminescence experiments under ultraviolet (UV) and visible light irradiation, respectively. Especially under the visible light, the TiO₂/Sn₃O₄ nanocomposites demonstrated a superb photocatalytic activity, with 81.2% of methyl orange (MO) decomposed at 30 min after irradiation, which greatly exceeded that of the P25 (13.4%), TiO₂ (0.5%) and pure Sn₃O₄ (59.1%) nanostructures. This enhanced photocatalytic performance could be attributed to the mesopore induced by the monodispersed TiO₂ cores that supply sufficient surface areas and accessibility to reactant molecules. This exquisite hetero-architecture facilitates extended UV-visible absorption and efficient photoexcited charge carrier separation.

  6. A highly efficient g-C3N4/SiO2 heterojunction: the role of SiO2 in the enhancement of visible light photocatalytic activity.

    PubMed

    Hao, Qiang; Niu, Xiuxiu; Nie, Changshun; Hao, Simeng; Zou, Wei; Ge, Jiangman; Chen, Daimei; Yao, Wenqing

    2016-11-23

    SiO 2 , an insulator, hardly has any photocatalytic acitivity due to its intrinsic property, and it is generally used as a hard template to increase the surface area of catalysts. However, in this work, we found that the surface state of the insulator SiO 2 can promote the migration of photogenerated charge carriers, leading to the enhancement of the photooxidation ability of graphitic carbon nitride (g-C 3 N 4 ). A one-pot calcination method was employed to prepare g-C 3 N 4 /SiO 2 composites using melamine and SiO 2 as precursors. The composites present considerably high photocatalytic degradation activities for 2,4-dichlorophenol (2,4-DCP) and rhodamine B (RhB) under visible light (λ > 420 nm) irradiation, which are about 1.53 and 4.18 times as high as those of bulk g-C 3 N 4 , respectively. The enhancement of the photocatalytic activity is due to the fact that the introduction of the insulator SiO 2 in g-C 3 N 4 /SiO 2 composites can greatly improve the specific surface area of the composites; more importantly, the impurity energy level of SiO 2 can help accelerate the separation and transfer of electron-hole pairs of g-C 3 N 4 . Electron paramagnetic resonance (EPR) spectroscopy and trapping experiments with different radical scavengers show that the main active species of g-C 3 N 4 are superoxide radicals, while holes also play a role in photodegradation. For g-C 3 N 4 /SiO 2 -5, besides superoxide radicals and holes, the effect of hydroxyl radicals was greatly improved. Finally, a possible mechanism for the photogenerated charge carrier migration of the g-C 3 N 4 /SiO 2 photocatalyst was proposed.

  7. Activity Enhancement of G-Quadruplex/Hemin DNAzyme by Flanking d(CCC).

    PubMed

    Chang, Tianjun; Gong, Hongmei; Ding, Pi; Liu, Xiangjun; Li, Weiguo; Bing, Tao; Cao, Zehui; Shangguan, Dihua

    2016-03-14

    G-quadruplex (G4)/hemin DNAzymes have been extensively applied in bioanalysis and molecular devices. However, their catalytic activity is still much lower than that of proteinous enzymes. The G4/hemin DNAzyme activity is correlated with the G4 conformations and the solution conditions. However, little is known about the effect of the flanking sequences on the activity, though they are important parts of G4s. Here, we report sequences containing d(CCC), flanked on both ends of the G4-core sequences remarkably enhance their DNAzyme activity. By using circular dichroism and UV-visible spectroscopy, the d(CCC) flanking sequences were demonstrated to improve the hemin binding affinity to G4s instead of increasing the parallel G4 formation, which might explain the enhanced DNAzyme activity. Meanwhile, the increased hemin binding ability promoted the degradation of hemin within the DNAzyme by H2O2. Furthermore, the DNAzyme with d(CCC) flanking sequences showed strong tolerance to pH value changes, which makes it more suitable for applications requiring wide pH conditions. The results highlight the influence of the flanking sequences on the DNAzyme activity and provide insightful information for the design of highly active DNAzymes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A novel mode of enhancer evolution: The Tal1 stem cell enhancer recruited a MIR element to specifically boost its activity

    PubMed Central

    Smith, Aileen M.; Sanchez, Maria-Jose; Follows, George A.; Kinston, Sarah; Donaldson, Ian J.; Green, Anthony R.; Göttgens, Berthold

    2008-01-01

    Altered cis-regulation is thought to underpin much of metazoan evolution, yet the underlying mechanisms remain largely obscure. The stem cell leukemia TAL1 (also known as SCL) transcription factor is essential for the normal development of blood stem cells and we have previously shown that the Tal1 +19 enhancer directs expression to hematopoietic stem cells, hematopoietic progenitors, and to endothelium. Here we demonstrate that an adjacent region 1 kb upstream (+18 element) is in an open chromatin configuration and carries active histone marks but does not function as an enhancer in transgenic mice. Instead, it boosts activity of the +19 enhancer both in stable transfection assays and during differentiation of embryonic stem (ES) cells carrying single-copy reporter constructs targeted to the Hprt locus. The +18 element contains a mammalian interspersed repeat (MIR) which is essential for the +18 function and which was transposed to the Tal1 locus ∼160 million years ago at the time of the mammalian/marsupial branchpoint. Our data demonstrate a previously unrecognized mechanism whereby enhancer activity is modulated by a transposon exerting a “booster” function which would go undetected by conventional transgenic approaches. PMID:18687876

  9. Contrast-enhanced ultrasound imaging of active bleeding associated with hepatic and splenic trauma.

    PubMed

    Lv, F; Tang, J; Luo, Y; Li, Z; Meng, X; Zhu, Z; Li, T

    2011-10-01

    The aim of this study was to evaluate contrast-enhanced ultrasound (CEUS) imaging of active bleeding from hepatic and splenic trauma. Three hundred and ninety-two patients with liver or/and spleen trauma (179 liver and 217 spleen injuries), who underwent CEUS examinations following contrast-enhanced computed tomography (CT), were enrolled in this retrospective study over a period of >4 years. CEUS detected contrast medium extravasation or pooling in 16% (63/396) of liver or spleen lesions in 61 patients, which was confirmed by contrast-enhanced CT. Special attention was paid to observing the presence, location, and characteristics of the extravasated or pooled contrast medium. The CEUS detection rate for active bleeding was not different from that of contrast-enhanced CT (p=0.333). Information from surgery, minimally invasive treatment and conservative treatment was used as reference standard, and the sensitivities of the two techniques were not different (p=0.122). Of 63 lesions in 61 patients, CEUS showed that 74.6% (47/63) (21 liver lesions and 26 spleen lesions) presented contrast medium extravasation or pooling, both in the organ and out the capsule, in 14.3% (9/63) and only outside the capsule in 11.1% (7/63). CEUS imaging of active bleeding from hepatic and splenic trauma presented various characteristics, and the sizes and shapes of the active bleeding due to contrast medium extravasation or pooling were variable. CEUS can show the active bleeding associated with hepatic and splenic trauma with various imaging characteristics, thus making it possible to diagnose active bleeding using CEUS.

  10. Leading Good Schools to Greatness: Mastering What Great Principals Do Well

    ERIC Educational Resources Information Center

    Gray, Susan Penny; Streshly, William A.

    2010-01-01

    Great leaders are made, not born. Written by the authors of "From Good Schools to Great Schools," this sequel shows how great school leaders can be developed and how leaders can acquire the powerful personal leadership characteristics that the best administrators use to lead their schools to greatness. Based on sound strategies and the work of Jim…

  11. Syndecan-4 enhances PDGF-BB activity in diabetic wound healing.

    PubMed

    Das, Subhamoy; Majid, Marjan; Baker, Aaron B

    2016-09-15

    Non-healing ulcers are a common consequence of long-term diabetes and severe peripheral vascular disease. These non-healing wounds are a major source of morbidity in patients with diabetes and place a heavy financial burden on the healthcare system. Growth factor therapies are an attractive strategy for enhancing wound closure in non-healing wounds but have only achieved mixed results in clinical trials. Platelet derived growth factor-BB (PDGF-BB) is the only currently approved growth factor therapy for non-healing wounds. However, PDGF-BB therapy is not effective in many patients and requires high doses that increase the potential for side effects. In this work, we demonstrate that syndecan-4 delivered in a proteoliposomal formulation enhances PDGF-BB activity in diabetic wound healing. In particular, syndecan-4 proteoliposomes enhance the migration of keratinocytes derived from patients with diabetes. In addition, syndecan-4 proteoliposomes sensitize keratinocytes to PDGF-BB stimulation, enhancing the intracellular signaling response to PDGF-BB. We further demonstrated that co-therapy with syndecan-4 proteoliposomes enhanced wound closure in diabetic, hyperlipidemic ob/ob mice. Wounds treated with both syndecan-4 proteoliposomes and PDGF-BB had increased re-epithelization and angiogenesis in comparison to wounds treated with PDGF-BB alone. Moreover, the wounds treated with syndecan-4 proteoliposomes and PDGF-BB also had increased M2 macrophages and reduced M1 macrophages, suggesting syndecan-4 delivery induces immunomodulation within the healing wounds. Together our findings support that syndecan-4 proteoliposomes markedly improve PDGF-BB efficacy for wound healing and may be useful in enhancing treatments for non-healing wounds. Non-healing wounds are major healthcare issue for patients with diabetes and peripheral vascular disease. Growth factor therapies have potential for healing chronic wounds but have not been effective for many patients. PDGF-BB is

  12. Plant compounds enhance the assay sensitivity for detection of active Bacillus cereus toxin.

    PubMed

    Rasooly, Reuven; Hernlem, Bradley; He, Xiaohua; Friedman, Mendel

    2015-03-11

    Bacillus cereus is an important food pathogen, producing emetic and diarrheal syndromes, the latter mediated by enterotoxins. The ability to sensitively trace and identify this active toxin is important for food safety. This study evaluated a nonradioactive, sensitive, in vitro cell-based assay, based on B. cereus toxin inhibition of green fluorescent protein (GFP) synthesis in transduced monkey kidney Vero cells, combined with plant extracts or plant compounds that reduce viable count of B. cereus in food. The assay exhibited a dose dependent GFP inhibition response with ~25% inhibition at 50 ng/mL toxin evaluated in culture media or soy milk, rice milk or infant formula, products associated with food poisonings outbreak. The plant extracts of green tea or bitter almond and the plant compounds epicatechin or carvacrol were found to amplify the assay response to ~90% inhibition at the 50 ng/mL toxin concentration greatly increasing the sensitivity of this assay. Additional studies showed that the test formulations also inhibited the growth of the B. cereus bacteria, likely through cell membrane disruption. The results suggest that the improved highly sensitive assay for the toxin and the rapid inactivation of the pathogen producing the toxin have the potential to enhance food safety.

  13. Surface enhanced Raman optical activity of molecules on orientationally averaged substrates: theory of electromagnetic effects.

    PubMed

    Janesko, Benjamin G; Scuseria, Gustavo E

    2006-09-28

    We present a model for electromagnetic enhancements in surface enhanced Raman optical activity (SEROA) spectroscopy. The model extends previous treatments of SEROA to substrates, such as metal nanoparticles in solution, that are orientationally averaged with respect to the laboratory frame. Our theoretical treatment combines analytical expressions for unenhanced Raman optical activity with molecular polarizability tensors that are dressed by the substrate's electromagnetic enhancements. We evaluate enhancements from model substrates to determine preliminary scaling laws and selection rules for SEROA. We find that dipolar substrates enhance Raman optical activity (ROA) scattering less than Raman scattering. Evanescent gradient contributions to orientationally averaged ROA scale to first or higher orders in the gradient of the incident plane-wave field. These evanescent gradient contributions may be large for substrates with quadrupolar responses to the plane-wave field gradient. Some substrates may also show a ROA contribution that depends only on the molecular electric dipole-electric dipole polarizability. These conclusions are illustrated via numerical calculations of surface enhanced Raman and ROA spectra from (R)-(-)-bromochlorofluoromethane on various model substrates.

  14. Compassion meditation enhances empathic accuracy and related neural activity

    PubMed Central

    Mascaro, Jennifer S.; Rilling, James K.; Tenzin Negi, Lobsang; Raison, Charles L.

    2013-01-01

    The ability to accurately infer others’ mental states from facial expressions is important for optimal social functioning and is fundamentally impaired in social cognitive disorders such as autism. While pharmacologic interventions have shown promise for enhancing empathic accuracy, little is known about the effects of behavioral interventions on empathic accuracy and related brain activity. This study employed a randomized, controlled and longitudinal design to investigate the effect of a secularized analytical compassion meditation program, cognitive-based compassion training (CBCT), on empathic accuracy. Twenty-one healthy participants received functional MRI scans while completing an empathic accuracy task, the Reading the Mind in the Eyes Test (RMET), both prior to and after completion of either CBCT or a health discussion control group. Upon completion of the study interventions, participants randomized to CBCT and were significantly more likely than control subjects to have increased scores on the RMET and increased neural activity in the inferior frontal gyrus (IFG) and dorsomedial prefrontal cortex (dmPFC). Moreover, changes in dmPFC and IFG activity from baseline to the post-intervention assessment were associated with changes in empathic accuracy. These findings suggest that CBCT may hold promise as a behavioral intervention for enhancing empathic accuracy and the neurobiology supporting it. PMID:22956676

  15. Optimization of selenylation modification for garlic polysaccharide based on immune-enhancing activity.

    PubMed

    Gao, Zhenzhen; Chen, Jin; Qiu, Shulei; Li, Youying; Wang, Deyun; Liu, Cui; Li, Xiuping; Hou, Ranran; Yue, Chanjuan; Liu, Jie; Li, Hongquan; Hu, Yuanliang

    2016-01-20

    Garlic polysaccharide (GPS) was modified in selenylation respectively by nitric acid-sodium selenite (NA-SS), glacial acetic acid-selenous acid (GA-SA), glacial acetic acid-sodium selenite (GA-SS) and selenium oxychloride (SOC) methods each under nine modification conditions of L9(3(4)) orthogonal design and each to obtain nine selenizing GPSs (sGPSs). Their structures were identified, yields and selenium contents were determined, selenium yields were calculated, and the immune-enhancing activities of four sGPSs with higher selenium yields were compared taking unmodified GPS as control. The results showed that among four methods the selenylation efficiency of NA-SS method were the highest, the activity of sGPS5 was the strongest and significantly stronger than that of unmodified GPS. This indicates that selenylation modification can significantly enhance the immune-enhancing activity of GPS, NA-SS method is the best method and the optimal conditions are 0.8:1 weight ratio of sodium selenite to GPS, reaction temperature of 70 °C and reaction time of 10h. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Women's Health-Enhancing Physical Activity and Eudaimonic Well Being

    ERIC Educational Resources Information Center

    Ferguson, Leah J.; Kowalski, Kent C.; Mack, Diane E.; Wilson, Philip M.; Crocker, Peter R. E.

    2012-01-01

    In this study, we explored the role of health-enhancing physical activity (HEPA; Miilunpalo, 2001) in women's eudaimonic well being (i.e., psychological flourishing at one's maximal potential; Ryff, 1989). We used a quantitative approach (N = 349) to explore the relationship between HEPA and eudaimonic well being. While HEPA was not related to…

  17. Indoor radon activity concentration measurements in the great historical museums of University of Naples, Italy.

    PubMed

    Quarto, Maria; Pugliese, Mariagabriella; Loffredo, Filomena; La Verde, Giuseppe; Roca, Vincenzo

    2016-01-01

    Indoor radon activity concentrations were measured in seven Museums of University of Naples, very old buildings of great historical value. The measurements were performed using a time-integrated technique based on LR-115 solid-state nuclear track detectors. The annual average concentrations were found to range from 40 up to 1935 Bq m(-3) and in 26 % of measurement sites, the values were higher than 500 Bq m(-3) which is the limit value of Italian legislation for workplace. Moreover, we analysed the seasonal variations of radon concentrations observing the highest average in cold weather than in warm. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. FT-Raman spectroscopic analysis of enhanced activity of supercritical carbon dioxide treated bacterial alpha-amylase.

    PubMed

    Paul, Kaninika; Dutta, Sayantani; Bhattacharjee, Paramita

    2017-09-01

    Our previous investigation on high pressure supercritical carbon dioxide treatment of a bacterial α-amylase had revealed enhanced activity of the same. 1 H NMR analysis of the activity enhanced enzyme led the authors to hypothesize that the enhancement was possibly owing to alterations in the active site of the enzyme. In the present study, the changes in the active site of the treated enzyme was analysed by Fourier-transform Raman (FT-Raman) spectroscopy. The spectra obtained revealed shifting of bands in the active site of α-amylase indicating a nudging effect of the bonds in this region consequent to high pressure treatment. Also, shifts in bands in the OH stretching vibration of water were observed in the enzyme spectra. These variations in the spectra confirmed changes in the active site as well as in the water associated with the same that perhaps had a concerted effect on the increased activity of α-amylase. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Aminoglycosylation Can Enhance the G-Quadruplex Binding Activity of Epigallocatechin

    PubMed Central

    Bai, Li-Ping; Ho, Hing-Man; Ma, Dik-Lung; Yang, Hui; Fu, Wai-Chung; Jiang, Zhi-Hong

    2013-01-01

    With the aim of enhancing G-quadruplex binding activity, two new glucosaminosides (16, 18) of penta-methylated epigallocatechin were synthesized by chemical glycosylation. Subsequent ESI-TOF-MS analysis demonstrated that these two glucosaminoside derivatives exhibit much stronger binding activity to human telomeric DNA and RNA G-quadruplexes than their parent structure (i.e., methylated EGC) (14) as well as natural epigallocatechin (EGC, 6). The DNA G-quadruplex binding activity of 16 and 18 is even more potent than strong G-quadruplex binder quercetin, which has a more planar structure. These two synthetic compounds also showed a higher binding strength to human telomeric RNA G-quadruplex than its DNA counterpart. Analysis of the structure-activity relationship revealed that the more basic compound, 16, has a higher binding capacity with DNA and RNA G-quadruplexes than its N-acetyl derivative, 18, suggesting the importance of the basicity of the aminoglycoside for G-quadruplex binding activity. Molecular docking simulation predicted that the aromatic ring of 16 π-stacks with the aromatic ring of guanine nucleotides, with the glucosamine moiety residing in the groove of G-quadruplex. This research indicates that glycosylation of natural products with aminosugar can significantly enhance their G-quadruplex binding activities, thus is an effective way to generate small molecules targeting G-quadruplexes in nucleic acids. In addition, this is the first report that green tea catechin can bind to nucleic acid G-quadruplex structures. PMID:23335983

  20. Capacitance enhancement of polyaniline coated curved-graphene supercapacitors in a redox-active electrolyte

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Rakhi, R. B.; Alshareef, H. N.

    2013-05-01

    We show, for the first time, a redox-active electrolyte in combination with a polyaniline-coated curved graphene active material to achieve significant enhancement in the capacitance (36-92% increase) compared to supercapacitors that lack the redox-active contribution from the electrolyte. The supercapacitors based on the redox-active electrolyte also exhibit excellent rate capability and very long cycling performance (>50 000 cycles).We show, for the first time, a redox-active electrolyte in combination with a polyaniline-coated curved graphene active material to achieve significant enhancement in the capacitance (36-92% increase) compared to supercapacitors that lack the redox-active contribution from the electrolyte. The supercapacitors based on the redox-active electrolyte also exhibit excellent rate capability and very long cycling performance (>50 000 cycles). Electronic supplementary information (ESI) available: Experimental section, supporting figures including SEM, TEM, XPS, BET, CV and CD curves and a summary table of capacitance. See DOI: 10.1039/c3nr00773a

  1. Close-up of Jupiter's Great Red Spot

    NASA Image and Video Library

    2017-07-12

    This enhanced-color image of Jupiter's Great Red Spot was created by citizen scientist Jason Major using data from the JunoCam imager on NASA's Juno spacecraft. The image was taken on July 10, 2017 at 07:10 p.m. PDT (10:10 p.m. EDT), as the Juno spacecraft performed its 7th close flyby of Jupiter. At the time the image was taken, the spacecraft was about 8,648 miles (13,917 kilometers) from the tops of the clouds of the planet. https://photojournal.jpl.nasa.gov/catalog/PIA21772

  2. Enhanced treatment of waste frying oil in an activated sludge system by addition of crude rhamnolipid solution.

    PubMed

    Zhang, Hongzi; Xiang, Hai; Zhang, Guoliang; Cao, Xia; Meng, Qing

    2009-08-15

    The presence of high-strength oil and grease (O&G) in wastewater poses serious challenges for environment. Addition of surfactant into the activated sludge bioreactor is feasible in reducing high concentrations of O&G via enhancing its bioavailability. In this paper, an aqueous biosurfactant solution of rhamnolipid as a cell-free culture broth of Pseudomonas aeruginosa zju.um1 was added into a batch of aerobic activated sludge system for treatment of the waste frying oil. This treatment was conducted on both bench and pilot-scales, whereas the removal efficiency of frying oil was determined by analyzing the residue concentration of O&G and chemical oxygen demand (COD). In the presence of varying concentrations of rhamnolipid from 22.5 mg/L to 90 mg/L, aerobic treatment for 30 h was enough to remove over 93% of O&G while this biodegradability was only 10% in the control system with the absence of rhamnolipids. The equivalent biodegradability was similarly obtained on COD under addition of rhamnolipid. Compared with bench studies, a higher treatment efficiency with the presence of rhamnolipids was achieved on a pilot-scale of activated sludge system, in which a short time of 12h was required for removing approximately 95% of O&G while the control treatment attained a low efficiency of 17%. Finally, foaming and biodegradability of rhamnolipids in activated sludge system were further examined in the whole treatment process. It seems that the addition of rhamnolipid-containing culture broth showed great potential for treatment of oily wastewater by activated sludge.

  3. Enhanced photocatalytic activity for H2 evolution under irradiation of UV-vis light by Au-modified nitrogen-doped TiO2.

    PubMed

    Zhao, Weirong; Ai, Zhuyu; Dai, Jiusong; Zhang, Meng

    2014-01-01

    Photocatalytic water splitting for hydrogen evolution is a potential way to solve many energy and environmental issues. Developing visible-light-active photocatalysts to efficiently utilize sunlight and finding proper ways to improve photocatalytic activity for H2 evolution have always been hot topics for research. This study attempts to expand the use of sunlight and to enhance the photocatalytic activity of TiO2 by N doping and Au loading. Au/N-doped TiO2 photocatalysts were synthesized and successfully used for photocatalytic water splitting for H2 evolution under irradiation of UV and UV-vis light, respectively. The samples were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS), photoluminescence spectroscopy (PL), and photoelectrochemical characterizations. DRS displayed an extension of light absorption into the visible region by doping of N and depositing with Au, respectively. PL analysis indicated electron-hole recombination due to N doping and an efficient inhibition of electron-hole recombination due to the loaded Au particles. Under the irradiation of UV light, the photocatalytic hydrogen production rate of the as-synthesized samples followed the order Au/TiO2 > Au/N-doped TiO2 > TiO2 > N-doped TiO2. While under irradiation of UV-vis light, the N-TiO2 and Au/N-TiO2 samples show higher H2 evolution than their corresponding nitrogen-free samples (TiO2 and Au/TiO2). This inconsistent result could be attributed to the doping of N and the surface plasmonic resonance (SPR) effect of Au particles extending the visible light absorption. The photoelectrochemical characterizations further indicated the enhancement of the visible light response of Au/N-doped TiO2. Comparative studies have shown that a combination of nitrogen doping and Au loading enhanced the visible light response of TiO2 and increased the utilization of solar energy, greatly

  4. Enhancement of collaboration activities utilizing 21st century learning design rubric

    NASA Astrophysics Data System (ADS)

    Cubero, Dave D.; Gargar, Clare V., Lady; Nallano, Gerlett Grace D.; Magsayo, Joy R.; Guarin, Rica Mae B.; Lahoylahoy, Myrna E.

    2018-01-01

    Twenty first century learners have incredibly diverse learning interests, needs, and aspirations. Engaging middle school students and sculpting successful, confident, and creative learners is a constant endeavor for educators [4]. In the 21st century classroom environments in which students can develop the skills they need in workplace. Collaboration occurs when students work together to create, discuss challenge and develop deeper critical thinking. In today's workplace, collaboration is essential as only few tasks are completed alone (Calgary and Park, 2016). The collaborative project-based curriculum used in this classroom develops the higher order thinking skills, effective communication skills, and knowledge of technology that students will need in the 21st century workplace. The study therefore aims to promote collaboration skills among learners as it is deemed as one of the top 21st century skills. Collaborative learning unleashes a unique intellectual and social synergy. This study aims to enhance the collaborative skills of students through conducting collaboration activities in learning the Ecosystem. This research utilizes pretest-posttest and employs descriptive research designs. It uses modified activities about the lesson on Ecosystem and utilizes a Collaboration Rubric to rate the modified activities. The activities were rated by ten In-Service teachers and there are 105 students who participated in doing the activities. The paired t-test is then used to analyze the data. The In-Service teachers evaluated the 1st and 2nd adapted activity and are rated as fair. Thus, the modified activities were enhanced since the ratings of each activity did not meet the criterion of the collaboration rubric. As for the 3rd adapted activity is rated as excellent and is ready for implementation. The evaluators provided comments and suggestions such as producing colored pictures on the activities, omitting some questions, and making the words simpler to enhance the

  5. Adjacent DNA sequences modulate Sox9 transcriptional activation at paired Sox sites in three chondrocyte-specific enhancer elements

    PubMed Central

    Bridgewater, Laura C.; Walker, Marlan D.; Miller, Gwen C.; Ellison, Trevor A.; Holsinger, L. Daniel; Potter, Jennifer L.; Jackson, Todd L.; Chen, Reuben K.; Winkel, Vicki L.; Zhang, Zhaoping; McKinney, Sandra; de Crombrugghe, Benoit

    2003-01-01

    Expression of the type XI collagen gene Col11a2 is directed to cartilage by at least three chondrocyte-specific enhancer elements, two in the 5′ region and one in the first intron of the gene. The three enhancers each contain two heptameric sites with homology to the Sox protein-binding consensus sequence. The two sites are separated by 3 or 4 bp and arranged in opposite orientation to each other. Targeted mutational analyses of these three enhancers showed that in the intronic enhancer, as in the other two enhancers, both Sox sites in a pair are essential for enhancer activity. The transcription factor Sox9 binds as a dimer at the paired sites, and the introduction of insertion mutations between the sites demonstrated that physical interactions between the adjacently bound proteins are essential for enhancer activity. Additional mutational analyses demonstrated that although Sox9 binding at the paired Sox sites is necessary for enhancer activity, it alone is not sufficient. Adjacent DNA sequences in each enhancer are also required, and mutation of those sequences can eliminate enhancer activity without preventing Sox9 binding. The data suggest a new model in which adjacently bound proteins affect the DNA bend angle produced by Sox9, which in turn determines whether an active transcriptional enhancer complex is assembled. PMID:12595563

  6. Handling and safety enhancement of race cars using active aerodynamic systems

    NASA Astrophysics Data System (ADS)

    Diba, Fereydoon; Barari, Ahmad; Esmailzadeh, Ebrahim

    2014-09-01

    A methodology is presented in this work that employs the active inverted wings to enhance the road holding by increasing the downward force on the tyres. In the proposed active system, the angles of attack of the vehicle's wings are adjusted by using a real-time controller to increase the road holding and hence improve the vehicle handling. The handling of the race car and safety of the driver are two important concerns in the design of race cars. The handling of a vehicle depends on the dynamic capabilities of the vehicle and also the pneumatic tyres' limitations. The vehicle side-slip angle, as a measure of the vehicle dynamic safety, should be narrowed into an acceptable range. This paper demonstrates that active inverted wings can provide noteworthy dynamic capabilities and enhance the safety features of race cars. Detailed analytical study and formulations of the race car nonlinear model with the airfoils are presented. Computer simulations are carried out to evaluate the performance of the proposed active aerodynamic system.

  7. Detecting insider activity using enhanced directory virtualization.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Dongwan; Claycomb, William R.

    2010-07-01

    Insider threats often target authentication and access control systems, which are frequently based on directory services. Detecting these threats is challenging, because malicious users with the technical ability to modify these structures often have sufficient knowledge and expertise to conceal unauthorized activity. The use of directory virtualization to monitor various systems across an enterprise can be a valuable tool for detecting insider activity. The addition of a policy engine to directory virtualization services enhances monitoring capabilities by allowing greater flexibility in analyzing changes for malicious intent. The resulting architecture is a system-based approach, where the relationships and dependencies between datamore » sources and directory services are used to detect an insider threat, rather than simply relying on point solutions. This paper presents such an architecture in detail, including a description of implementation results.« less

  8. What is the optimal type of physical activity to enhance health?

    PubMed Central

    Shephard, R J

    1997-01-01

    This review examines the potential of active daily living as a means of gaining the cardiovascular and health rewards previously sought through vigorous aerobic fitness programmes. Cross-sectional studies of occupational and leisure activity show encouraging associations between such activity and good health; in workers, the gross intensity of effort needed for health benefits has seemed to be 20 kJ/min. There has been less unanimity on the threshold intensity needed in leisure activities, but various recent "position statements" have decreased the recommendation to 50% of an individual's maximal oxygen intake, sustained for one hour three to five times per week. Life-style activities such as walking seem likely to reach this intensity in older individuals, but are unlikely to do so in young adults. A growing number of controlled longitudinal studies of walking programmes have demonstrated gains in aerobic fitness, modest reductions in blood pressure, improvements in lipid profile, increased bone density, and enhanced mood state, with less consistent reductions of body fat. However, gains have been greatest in the elderly, sedentary, and obese populations. The main component of active living, fast walking, seems likely to enhance health in such populations, but it is unlikely to be effective in young adults who are in good initial health. PMID:9429004

  9. Atlas of Great Comets

    NASA Astrophysics Data System (ADS)

    Stoyan, Ronald; Dunlop, Storm

    2015-01-01

    Foreword; Using this book; Part I. Introduction: Cometary beliefs and fears; Comets in art; Comets in literature and poetry; Comets in science; Cometary science today; Great comets in antiquity; Great comets of the Middle Ages; Part II. The 30 Greatest Comets of Modern Times: The Great Comet of 1471; Comet Halley 1531; The Great Comet of 1556; The Great Comet of 1577; Comet Halley, 1607; The Great Comet of 1618; The Great Comet of 1664; Comet Kirch, 1680; Comet Halley, 1682; The Great Comet of 1744; Comet Halley, 1759; Comet Messier, 1769; Comet Flaugergues, 1811; Comet Halley, 1835; The Great March Comet of 1843; Comet Donati, 1858; Comet Tebbutt, 1861; The Great September Comet of 1882; The Great January Comet of 1910; Comet Halley, 1910; Comet Arend-Roland, 1956; Comet Ikeya-Seki, 1965; Comet Bennett, 1970; Comet Kohoutek, 1973-4; Comet West, 1976; Comet Halley, 1986; Comet Shoemaker-Levy 9, 1994; Comet Hyakutake, 1996; Comet Hale-Bopp, 1997; Comet McNaught, 2007; Part III. Appendices; Table of comet data; Glossary; References; Photo credits; Index.

  10. Great Minds? Great Lakes!

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Chicago, IL. Great Lakes National Program Office.

    This booklet introduces an environmental curriculum for use in a variety of elementary subjects. The lesson plans provide an integrated approach to incorporating Great Lakes environmental issues into the subjects of history, social studies, and environmental sciences. Each of these sections contains background information, discussion points, and a…

  11. The Dynamics of Laurentian Great Lakes Surface Energy Budgets

    NASA Astrophysics Data System (ADS)

    Spence, C.; Blanken, P.; Lenters, J. D.; Gronewold, A.; Kerkez, B.; Xue, P.; Froelich, N.

    2015-12-01

    The Laurentian Great Lakes constitute the largest freshwater surface in the world and are a valuable North American natural and socio-economic resource. In response to calls for improved monitoring and research on the energy and water budgets of the lakes, there has been a growing ensemble of in situ measurements - including offshore eddy flux towers, buoy-based sensors, and vessel-based platforms -deployed through an ongoing, bi-national collaboration known as the Great Lakes Evaporation Network (GLEN). The objective of GLEN is to reduce uncertainty in Great Lakes seasonal and 6-month water level forecasts, as well as climate change projections of the surface energy balance and water level fluctuations. Although It remains challenging to quantify and scale energy budgets and fluxes over such large water bodies, this presentation will report on recent successes in three areas: First, in estimating evaporation rates over each of the Great Lakes; Second, defining evaporation variability among the lakes, especially in winter and; Third, explaining the interaction between ice cover, water temperature, and evaporation across a variety of temporal and spatial scales. Research gaps remain, particularly those related to spatial variability and scaling of turbulent fluxes, so the presentation will also describe how this will be addressed with enhanced instrument and platform arrays.

  12. Practitioners' views of science needs for the Great Lakes coastal ecosystem

    USGS Publications Warehouse

    Pebbles, Victoria; Lillard, Elizabath C.; Seelbach, Paul W.; Fogarty, Lisa Reynolds

    2015-01-01

    In 2014, the U.S. Geological Survey Great Lake Science Center (USGS-GLSC) and the USGS-Michigan Water Science Center partnered with the Great Lakes Commission (GLC) to conduct a series of four workshops with coastal practitioners and managers across the Great Lakes basin to highlight the need for, and get input on, a Great Lakes regional coastal science strategy. To this end, this report is intended to help guide USGS coastal and nearshore science priorities, but may also help guide other science agencies. The USGS-GLSC partnership on this effort was part of a broader five-year Memorandum of Understanding between the USGS-GLSC and the GLC to enhance communications between coastal science and management communities within the Great Lakes region. This report presents a summary and analysis of participant feedback from the four workshops held in 2014. Participant feedback included participant worksheets as well as interactive drawing sessions, individual notes and group flip chart notes from each workshop. The results are presented as a series of findings that can be used to guide USGS coastal/nearshore science priorities in support of management needs at local, state and regional scales.

  13. Chronic alcohol consumption enhances iNKT cell maturation and activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hui, E-mail: hzhang@wsu.edu; Zhang, Faya; Zhu, Zhaohui

    Alcohol consumption exhibits diverse effects on different types of immune cells. NKT cells are a unique T cell population and play important immunoregulatory roles in different types of immune responses. The effects of chronic alcohol consumption on NKT cells remain to be elucidated. Using a mouse model of chronic alcohol consumption, we found that alcohol increases the percentage of NKT cells, especially iNKT cells in the thymus and liver, but not in the spleen or blood. Alcohol consumption decreases the percentage of NK1.1{sup −} iNKT cells in the total iNKT cell population in all of the tissues and organs examined.more » In the thymus, alcohol consumption increases the number of NK1.1{sup +}CD44{sup hi} mature iNKT cells but does not alter the number of NK1.1{sup −} immature iNKT cells. A BrdU incorporation assay shows that alcohol consumption increases the proliferation of thymic NK1.1{sup −} iNKT cells, especially the NK1.1{sup −}CD44{sup lo} Stage I iNKT cells. The percentage of NKG2A{sup +} iNKT cells increases in all of the tissues and organs examined; whereas CXCR3{sup +} iNKT cells only increases in the thymus of alcohol-consuming mice. Chronic alcohol consumption increases the percentage of IFN-γ-producing iNKT cells and increases the blood concentration of IFN-γ and IL-12 after in vivo α-galactosylceramide (αGalCer) stimulation. Consistent with the increased cytokine production, the in vivo activation of iNKT cells also enhances the activation of dendritic cells (DC) and NK, B, and T cells in the alcohol-consuming mice. Taken together the data indicate that chronic alcohol consumption enhances iNKT cell maturation and activation, which favors the Th1 immune response. - Highlights: • Chronic alcohol consumption increases iNKT cells in the thymus and liver • Chronic alcohol consumption enhances thymic Stage I iNKT cell proliferation • Chronic alcohol consumption enhances iNKT cell maturation in thymus and periphery • Chronic alcohol

  14. Mast cells enhance T cell activation: Importance of mast cell-derived TNF

    NASA Astrophysics Data System (ADS)

    Nakae, Susumu; Suto, Hajime; Kakurai, Maki; Sedgwick, Jonathon D.; Tsai, Mindy; Galli, Stephen J.

    2005-05-01

    Mast cells are not only important effector cells in immediate hypersensitivity reactions and immune responses to pathogens but also can contribute to T cell-mediated disorders. However, the mechanisms by which mast cells might influence T cells in such settings are not fully understood. We find that mast cells can enhance proliferation and cytokine production in multiple T cell subsets. Mast cell-dependent enhancement of T cell activation can be promoted by FcRI-dependent mast cell activation, TNF production by both mast cells and T cells, and mast cell-T cell contact. However, at high concentrations of cells, mast cells can promote T cell activation independent of IgE or TNF. Finally, mast cells also can promote T cell activation by means of soluble factors. These findings identify multiple mechanisms by which mast cells can influence T cell proliferation and cytokine production. allergy | asthma | autoimmunity | cytokines | immune response

  15. Combination of inverted pyramidal nanovoid with silver nanoparticles to obtain further enhancement and its detection for ricin

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Wang, Bin; Wu, Shixuan; Guo, Tingke; Li, Haoyu; Guo, Zhaoqing; Wu, Junhua; Jia, Peiyuan; Wang, Yuxia; Xu, Xiaoxuan; Wang, Yufang; Zhang, Cunzhou

    2015-02-01

    We have obtained the surface-enhanced Raman scattering substrate by depositing silver nanoparticles on the surface of the inverted pyramidal nanovoid in order to improve the enhance effects. Experimental results showed that the combined substrate exhibited greater enhancement than the nanovoid substrate or nanoparticles. In order to test the SERS activity of the combined substrates, Rh6G and ricin toxin were used as Raman probes. Finite element method was employed to simulate electric field and induced charge distribution of the substrates, which have been used to explore the interaction between nanoparticles and nanovoid as well as mechanism of the great enhancement.

  16. Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same

    DOEpatents

    Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo

    2012-10-16

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  17. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding the same

    DOEpatents

    Tang, Lan; Liu, Ye; Duan, Junxin; Wu, Wenping; Kramer, Randall

    2013-11-19

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  18. Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same

    DOEpatents

    Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo

    2014-09-30

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  19. Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same

    DOEpatents

    Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo

    2017-09-05

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  20. Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same

    DOEpatents

    Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo

    2010-06-22

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  1. Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same

    DOEpatents

    Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo

    2016-08-09

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  2. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding the same

    DOEpatents

    Tang, Lan; Liu, Ye; Duan, Junxin; Zhang, Yu; Jorgensen, Christian Isak; Kramer, Randall

    2013-12-24

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  3. Preliminary volcano-hazard assessment for Great Sitkin Volcano, Alaska

    USGS Publications Warehouse

    Waythomas, Christopher F.; Miller, Thomas P.; Nye, Christopher J.

    2003-01-01

    Great Sitkin Volcano is a composite andesitic stratovolcano on Great Sitkin Island (51°05’ N latitude, 176°25’ W longitude), a small (14 x 16 km), circular volcanic island in the western Aleutian Islands of Alaska. Great Sitkin Island is located about 35 kilometers northeast of the community of Adak on Adak Island and 130 kilometers west of the community of Atka on Atka Island. Great Sitkin Volcano is an active volcano and has erupted at least eight times in the past 250 years (Miller and others, 1998). The most recent eruption in 1974 caused minor ash fall on the flanks of the volcano and resulted in the emplacement of a lava dome in the summit crater. The summit of the composite cone of Great Sitkin Volcano is 1,740 meters above sea level. The active crater is somewhat lower than the summit, and the highest point along its rim is about 1,460 meters above sea level. The crater is about 1,000 meters in diameter and is almost entirely filled by a lava dome emplaced in 1974. An area of active fumaroles, hot springs, and bubbling hot mud is present on the south flank of the volcano at the head of Big Fox Creek (see the map), and smaller ephemeral fumaroles and steam vents are present in the crater and around the crater rim. The flanking slopes of the volcano are gradual to steep and consist of variously weathered and vegetated blocky lava flows that formed during Pleistocene and Holocene eruptions. The modern edifice occupies a caldera structure that truncates an older sequence of lava flows and minor pyroclastic rocks on the east side of the volcano. The eastern sector of the volcano includes the remains of an ancestral volcano that was partially destroyed by a northwest-directed flank collapse. In winter, Great Sitkin Volcano is typically completely snow covered. Should explosive pyroclastic eruptions occur at this time, the snow would be a source of water for volcanic mudflows or lahars. In summer, much of the snowpack melts, leaving only a patchy

  4. Unsaturated fatty acids lactose esters: cytotoxicity, permeability enhancement and antimicrobial activity.

    PubMed

    Lucarini, Simone; Fagioli, Laura; Campana, Raffaella; Cole, Hannah; Duranti, Andrea; Baffone, Wally; Vllasaliu, Driton; Casettari, Luca

    2016-10-01

    Sugar based surfactants conjugated with fatty acid chains are an emerging broad group of highly biocompatible and biodegradable compounds with established and potential future applications in the pharmaceutical, cosmetic and food industries. In this work, we investigated absorption enhancing and antimicrobial properties of disaccharide lactose, monoesterified with unsaturated fatty acids through an enzymatic synthetic approach. After chemical and cytotoxicity characterizations, their permeability enhancing activity was demonstrated using intestinal Caco-2 monolayers through transepithelial electrical resistance (TEER) and permeability studies. The synthesized compounds, namely lactose palmitoleate (URB1076) and lactose nervonate (URB1077), were shown to exhibit antimicrobial activity versus eight pathogenic species belonging to Gram-positive, Gram-negative microorganisms and fungi. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Space-confined fabrication of silver nanodendrites and their enhanced SERS activity

    NASA Astrophysics Data System (ADS)

    Wang, Shuqi; Xu, Li-Ping; Wen, Yongqiang; Du, Hongwu; Wang, Shutao; Zhang, Xueji

    2013-05-01

    Here we report a controllable method based on electrodeposition to fabricate Ag nanodendrites (NDs) on a microwell patterned electrode. The microwell patterns on the ITO electrode are fabricated via the microcontact printing technique. By varying the microwell size and electrodeposition time, the morphology of metal deposits on the microwell patterned ITO electrode can be tuned from boulders to dendrites. At the edge of the microwells, the current density was strengthened, which incurs rapid nucleation. The nucleus develops into dendrites because of Mullins-Sekerka instability. However, only boulders were observed at the center of microwells. By reducing the size of the microwells, only NDs were fabricated due to the edge effect. On the basis of understanding the underlying mechanism for dendritic growth in a confined space, our method is used for fabricating other noble metal (Au, Pt) nanodendrites. The controllable synthesis of Au and Pt NDs indicates the universality of this method. Compared with Ag film obtained from electron beam evaporation, the as-prepared Ag NDs exhibit highly enhanced surface-enhanced Raman scattering (SERS) sensitivity when they are used to detect rhodamine 6G (R6G). This approach provides a very controllable, reliable and general way for space-confined fabricating the noble metal nanodendrite arrays which show great promise in catalysis, sensing, biomedicine, electronic and magnetic devices.Here we report a controllable method based on electrodeposition to fabricate Ag nanodendrites (NDs) on a microwell patterned electrode. The microwell patterns on the ITO electrode are fabricated via the microcontact printing technique. By varying the microwell size and electrodeposition time, the morphology of metal deposits on the microwell patterned ITO electrode can be tuned from boulders to dendrites. At the edge of the microwells, the current density was strengthened, which incurs rapid nucleation. The nucleus develops into dendrites because of

  6. Enhanced venous thrombus resolution in plasminogen activator inhibitor type-2 deficient mice.

    PubMed

    Siefert, S A; Chabasse, C; Mukhopadhyay, S; Hoofnagle, M H; Strickland, D K; Sarkar, R; Antalis, T M

    2014-10-01

    The resolution of deep vein thrombosis requires an inflammatory response and mobilization of proteases, such as urokinase-type plasminogen activator (uPA) and matrix metalloproteinases (MMPs), to degrade the thrombus and remodel the injured vein wall. Plasminogen activator inhibitor type 2 (PAI-2) is a serine protease inhibitor (serpin) with unique immunosuppressive and cell survival properties that was originally identified as an inhibitor of uPA. To investigate the role of PAI-2 in venous thrombus formation and resolution. Venous thrombus resolution was compared in wild-type C57BL/6, PAI-2(-/-) , and PAI-1(-/-) mice using the stasis model of deep vein thrombosis. Formed thrombi were harvested, thrombus weights were recorded, and tissue was analyzed for uPA and MMP activities, PAI-1 expression, and the nature of inflammatory cell infiltration. We found that the absence of PAI-2 enhanced venous thrombus resolution, while thrombus formation was unaffected. Enhanced venous thrombus resolution in PAI-2(-/-) mice was associated with increased uPA activity and reduced levels of PAI-1, with no significant effect on MMP-2 and -9 activities. PAI-1 deficiency resulted in an increase in thrombus resolution similar to PAI-2 deficiency, but additionally reduced venous thrombus formation and altered MMP activity. PAI-2-deficient thrombi had increased levels of the neutrophil chemoattractant CXCL2, which was associated with early enhanced neutrophil recruitment. These data identify PAI-2 as a novel regulator of venous thrombus resolution, which modulates several pathways involving both inflammatory and uPA activity mechanisms, distinct from PAI-1. Further examination of these pathways may lead to potential therapeutic prospects in accelerating thrombus resolution. © 2014 International Society on Thrombosis and Haemostasis.

  7. Enhanced Somatosensory Feedback Reduces Prefrontal Cortical Activity During Walking in Older Adults

    PubMed Central

    Christou, Evangelos A.; Ring, Sarah A.; Williamson, John B.; Doty, Leilani

    2014-01-01

    Background. The coordination of steady state walking is relatively automatic in healthy humans, such that active attention to the details of task execution and performance (controlled processing) is low. Somatosensation is a crucial input to the spinal and brainstem circuits that facilitate this automaticity. Impaired somatosensation in older adults may reduce automaticity and increase controlled processing, thereby contributing to deficits in walking function. The primary objective of this study was to determine if enhancing somatosensory feedback can reduce controlled processing during walking, as assessed by prefrontal cortical activation. Methods. Fourteen older adults (age 77.1±5.56 years) with mild mobility deficits and mild somatosensory deficits participated in this study. Functional near-infrared spectroscopy was used to quantify metabolic activity (tissue oxygenation index, TOI) in the prefrontal cortex. Prefrontal activity and gait spatiotemporal data were measured during treadmill walking and overground walking while participants wore normal shoes and under two conditions of enhanced somatosensation: wearing textured insoles and no shoes. Results. Relative to walking with normal shoes, textured insoles yielded a bilateral reduction of prefrontal cortical activity for treadmill walking (ΔTOI = −0.85 and −1.19 for left and right hemispheres, respectively) and for overground walking (ΔTOI = −0.51 and −0.66 for left and right hemispheres, respectively). Relative to walking with normal shoes, no shoes yielded lower prefrontal cortical activity for treadmill walking (ΔTOI = −0.69 and −1.13 for left and right hemispheres, respectively), but not overground walking. Conclusions. Enhanced somatosensation reduces prefrontal activity during walking in older adults. This suggests a less intensive utilization of controlled processing during walking. PMID:25112494

  8. Humanized theta-defensins (retrocyclins) enhance macrophage performance and protect mice from experimental anthrax infections.

    PubMed

    Welkos, S; Cote, C K; Hahn, U; Shastak, O; Jedermann, J; Bozue, J; Jung, G; Ruchala, P; Pratikhya, P; Tang, T; Lehrer, R I; Beyer, W

    2011-09-01

    Retrocyclins are humanized versions of the -defensin peptides expressed by the leukocytes of several nonhuman primates. Previous studies, performed in serum-free media, determined that retrocyclins 1 (RC1) and RC2 could prevent successful germination of Bacillus anthracis spores, kill vegetative B. anthracis cells, and inactivate anthrax lethal factor. We now report that retrocyclins are extensively bound by components of native mouse, human, and fetal calf sera, that heat-inactivated sera show greatly enhanced retrocyclin binding, and that native and (especially) heat-inactivated sera greatly reduce the direct activities of retrocyclins against spores and vegetative cells of B. anthracis. Nevertheless, we also found that retrocyclins protected mice challenged in vivo by subcutaneous, intraperitoneal, or intranasal instillation of B. anthracis spores. Retrocyclin 1 bound extensively to B. anthracis spores and enhanced their phagocytosis and killing by murine RAW264.7 cells. Based on the assumption that spore-bound RC1 enters phagosomes by "piggyback phagocytosis," model calculations showed that the intraphagosomal concentration of RC1 would greatly exceed its extracellular concentration. Murine alveolar macrophages took up fluorescently labeled retrocyclin, suggesting that macrophages may also acquire extracellular RC1 directly. Overall, these data demonstrate that retrocyclins are effective in vivo against experimental murine anthrax infections and suggest that enhanced macrophage function contributes to this property.

  9. Great Apes

    USGS Publications Warehouse

    Sleeman, Jonathan M.; Cerveny, Shannon

    2014-01-01

    Anesthesia of great apes is often necessary to conduct diagnostic analysis, provide therapeutics, facilitate surgical procedures, and enable transport and translocation for conservation purposes. Due to the stress of remote delivery injection of anesthetic agents, recent studies have focused on oral delivery and/or transmucosal absorption of preanesthetic and anesthetic agents. Maintenance of the airway and provision of oxygen is an important aspect of anesthesia in great ape species. The provision of analgesia is an important aspect of the anesthesia protocol for any procedure involving painful stimuli. Opioids and nonsteroidal anti-inflammatory drugs (NSAIDs) are often administered alone, or in combination to provide multi-modal analgesia. There is increasing conservation management of in situ great ape populations, which has resulted in the development of field anesthesia techniques for free-living great apes for the purposes of translocation, reintroduction into the wild, and clinical interventions.

  10. On the Enhanced Antibacterial Activity of Antibiotics Mixed with Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Burygin, G. L.; Khlebtsov, B. N.; Shantrokha, A. N.; Dykman, L. A.; Bogatyrev, V. A.; Khlebtsov, N. G.

    2009-08-01

    The bacterial action of gentamicin and that of a mixture of gentamicin and 15-nm colloidal-gold particles on Escherichia coli K12 was examined by the agar-well-diffusion method, enumeration of colony-forming units, and turbidimetry. Addition of gentamicin to colloidal gold changed the gold color and extinction spectrum. Within the experimental errors, there were no significant differences in antibacterial activity between pure gentamicin and its mixture with gold nanoparticles (NPs). Atomic absorption spectroscopy showed that upon application of the gentamicin-particle mixture, there were no gold NPs in the zone of bacterial-growth suppression in agar. Yet, free NPs diffused into the agar. These facts are in conflict with the earlier findings indicating an enhancement of the bacterial activity of similar gentamicin-gold nanoparticle mixtures. The possible causes for these discrepancies are discussed, and the suggestion is made that a necessary condition for enhancement of antibacterial activity is the preparation of stable conjugates of NPs coated with the antibiotic molecules.

  11. Psychosocial Pain Management Moderation: The Limit, Activate, and Enhance Model.

    PubMed

    Day, Melissa A; Ehde, Dawn M; Jensen, Mark P

    2015-10-01

    There is a growing emphasis in the pain literature on understanding the following second-order research questions: Why do psychosocial pain treatments work? For whom do various treatments work? This critical review summarizes research that addresses the latter question and proposes a moderation model to help guide future research. A theoretical moderation framework for matching individuals to specific psychosocial pain interventions has been lacking. However, several such frameworks have been proposed in the broad psychotherapy and implementation science literature. Drawing on these theories and adapting them specifically for psychosocial pain treatment, here we propose a Limit, Activate, and Enhance model of pain treatment moderation. This model is unique in that it includes algorithms not only for matching treatments on the basis of patient weaknesses but also for directing patients to interventions that build on their strengths. Critically, this model provides a basis for specific a priori hypothesis generation, and a selection of the possible hypotheses drawn from the model are proposed and discussed. Future research considerations are presented that could refine and expand the model based on theoretically driven empirical evidence. The Limit, Activate, and Enhance model presented here is a theoretically derived framework that provides an a priori basis for hypothesis generation regarding psychosocial pain treatment moderators. The model will advance moderation research via its unique focus on matching patients to specific treatments that (1) limit maladaptive responses, (2) activate adaptive responses, and (3) enhance treatment outcomes based on patient strengths and resources. Copyright © 2015 American Pain Society. Published by Elsevier Inc. All rights reserved.

  12. Vortical ciliary flows actively enhance mass transport in reef corals.

    PubMed

    Shapiro, Orr H; Fernandez, Vicente I; Garren, Melissa; Guasto, Jeffrey S; Debaillon-Vesque, François P; Kramarsky-Winter, Esti; Vardi, Assaf; Stocker, Roman

    2014-09-16

    The exchange of nutrients and dissolved gasses between corals and their environment is a critical determinant of the growth of coral colonies and the productivity of coral reefs. To date, this exchange has been assumed to be limited by molecular diffusion through an unstirred boundary layer extending 1-2 mm from the coral surface, with corals relying solely on external flow to overcome this limitation. Here, we present direct microscopic evidence that, instead, corals can actively enhance mass transport through strong vortical flows driven by motile epidermal cilia covering their entire surface. Ciliary beating produces quasi-steady arrays of counterrotating vortices that vigorously stir a layer of water extending up to 2 mm from the coral surface. We show that, under low ambient flow velocities, these vortices, rather than molecular diffusion, control the exchange of nutrients and oxygen between the coral and its environment, enhancing mass transfer rates by up to 400%. This ability of corals to stir their boundary layer changes the way that we perceive the microenvironment of coral surfaces, revealing an active mechanism complementing the passive enhancement of transport by ambient flow. These findings extend our understanding of mass transport processes in reef corals and may shed new light on the evolutionary success of corals and coral reefs.

  13. Simultaneous activation of p53 and inhibition of XIAP enhance the activation of apoptosis signaling pathways in AML

    PubMed Central

    Carter, Bing Z.; Mak, Duncan H.; Schober, Wendy D.; Koller, Erich; Pinilla, Clemencia; Vassilev, Lyubomir T.; Reed, John C.

    2010-01-01

    Activation of p53 by murine double minute (MDM2) antagonist nutlin-3a or inhibition of X-linked inhibitor of apoptosis (XIAP) induces apoptosis in acute myeloid leukemia (AML) cells. We demonstrate that concomitant inhibition of MDM2 by nutlin-3a and of XIAP by small molecule antagonists synergistically induced apoptosis in p53 wild-type OCI-AML3 and Molm13 cells. Knockdown of p53 by shRNA blunted the synergy, and down-regulation of XIAP by antisense oligonucleotide (ASO) enhanced nutlin-3a–induced apoptosis, suggesting that the synergy was mediated by p53 activation and XIAP inhibition. This is supported by data showing that inhibition of both MDM2 and XIAP by their respective ASOs induced significantly more cell death than either ASO alone. Importantly, p53 activation and XIAP inhibition enhanced apoptosis in blasts from patients with primary AML, even when the cells were protected by stromal cells. Mechanistic studies demonstrated that XIAP inhibition potentiates p53-induced apoptosis by decreasing p53-induced p21 and that p53 activation enhances XIAP inhibition-induced cell death by promoting mitochondrial release of second mitochondria-derived activator of caspases (SMAC) and by inducing the expression of caspase-6. Because both XIAP and p53 are presently being targeted in ongoing clinical trials in leukemia, the combination strategy holds promise for expedited translation into the clinic. PMID:19897582

  14. Enterokinase Enhances Influenza A Virus Infection by Activating Trypsinogen in Human Cell Lines

    PubMed Central

    Hayashi, Hideki; Kubo, Yoshinao; Izumida, Mai; Takahashi, Etsuhisa; Kido, Hiroshi; Sato, Ko; Yamaya, Mutsuo; Nishimura, Hidekazu; Nakayama, Kou; Matsuyama, Toshifumi

    2018-01-01

    Cleavage and activation of hemagglutinin (HA) by trypsin-like proteases in influenza A virus (IAV) are essential prerequisites for its successful infection and spread. In host cells, some transmembrane serine proteases such as TMPRSS2, TMPRSS4 and HAT, along with plasmin in the bloodstream, have been reported to cleave the HA precursor (HA0) molecule into its active forms, HA1 and HA2. Some trypsinogens can also enhance IAV proliferation in some cell types (e.g., rat cardiomyoblasts). However, the precise activation mechanism for this process is unclear, because the expression level of the physiological activator of the trypsinogens, the TMPRSS15 enterokinase, is expected to be very low in such cells, with the exception of duodenal cells. Here, we show that at least two variant enterokinases are expressed in various human cell lines, including A549 lung-derived cells. The exogenous expression of these enterokinases was able to enhance the proliferation of IAV in 293T human kidney cells, but the proliferation was reduced by knocking down the endogenous enterokinase in A549 cells. The enterokinase was able to enhance HA processing in the cells, which activated trypsinogen in vitro and in the IAV-infected cells also. Therefore, we conclude that enterokinase plays a role in IAV infection and proliferation by activating trypsinogen to process viral HA in human cell lines. PMID:29629340

  15. Enhancing methane production from waste activated sludge using a novel indigenous iron activated peroxidation pre-treatment process.

    PubMed

    Zhou, Xu; Wang, Qilin; Jiang, Guangming

    2015-04-01

    Methane production from anaerobic digestion of waste activated sludge (WAS) is limited by the slow hydrolysis rate and/or poor methane potential of WAS. This study presents a novel pre-treatment strategy based on indigenous iron (in WAS) activated peroxidation to enhance methane production from WAS. Pre-treatment of WAS for 30 min at 50mg H2O2/g total solids (dry weight) and pH 2.0 (iron concentration in WAS was 7 mg/g TS) substantially enhanced WAS solubilization. Biochemical methane potential tests demonstrated that methane production was improved by 10% at a digestion time of 16d after incorporating the indigenous iron activated peroxidation pre-treatment. Model-based analysis indicated that indigenous iron activated peroxidation pre-treatment improved the methane potential by 13%, whereas the hydrolysis rate was not significantly affected. The economic analysis showed that the proposed pre-treatment method can save the cost by $112,000 per year in a treatment plant with a population equivalent of 300,000. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Ultrathin hexagonal MgO nanoflakes coated medical textiles and their enhanced antibacterial activity

    NASA Astrophysics Data System (ADS)

    Veeran Ponnuvelu, Dinesh; Selvaraj, Aravind; Prema Suriyaraj, Shanmugam; Selvakumar, Rajendran; Pulithadathail, Biji

    2016-10-01

    A facile hydrothermal method for development of ultrathin MgO nanoplates from different precursors and their enhanced antibacterial activity after coating onto medical textiles is reported. Ultrathin MgO nanoplates having hexagonal structure were characterized using UV-visible spectroscopy, atomic force microscopy, field emission scanning electron microscopy, x-ray diffraction and high resolution transmission electron microscopy. The formation of MgO nanoplates was found to exhibit profound anionic effect leading to ultrathin, planar structures with exposed MgO [111] facets, which may be responsible for enhanced antimicrobial activity. Medical fabrics (bleached 100% cotton) were coated with MgO nanoplates using pad-dry-cure method. The antibacterial activity of these fabrics was tested against Bacillus subtilis and Escherichia coli. The MgO nanoplates coated onto the fabric were found to have good adherence properties owing to their two-dimensional structure and were durable even after repeated washings without substantial reduction in the antimicrobial activity. The enhanced antibacterial activity may be attributed to the presence of oxygen vacancies, surface oxygen anions and hydroxyl groups on the surface of MgO nanoplates. This cost-effective functional finish (anti-microbial) to cotton fabric using MgO nanoplates may be suitable for many prospective medical applications and can serve as an alternative to the costlier silver based antimicrobial textiles.

  17. Chimeric polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wogulis, Mark; Sweeney, Matthew; Heu, Tia

    The present invention relates to chimeric GH61 polypeptides having cellulolytic enhancing activity. The present invention also relates to polynucleotides encoding the chimeric GH61 polypeptides; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the chimeric GH61 polypeptides.

  18. Spontaneous interfacial reaction between metallic copper and PBS to form cupric phosphate nanoflower and its enzyme hybrid with enhanced activity.

    PubMed

    He, Guangli; Hu, Weihua; Li, Chang Ming

    2015-11-01

    We herein report the spontaneous interfacial reaction between copper foil with 0.01 M phosphate buffered saline (PBS) to form free-standing cupric phosphate (Cu3(PO4)2) nanoflowers at ambient temperature. The underlying chemistry was thoroughly investigated and it is found that the formation of nanoflower is synergistically caused by dissolved oxygen, chlorine ions and phosphate ions. Enzyme-Cu3(PO4)2 hybrid nanoflower was further prepared successfully by using an enzyme-dissolving PBS solution and the enzymes in the hybrid exhibit enhanced biological activity. This work provides a facile route for large-scale synthesis of hierarchical inorganic and functional protein-inorganic hybrid architectures via a simple one-step solution-immersion reaction without using either template or surfactant, thus offering great potential for biosensing application among others. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Enhanced Photoelectrochemical Activity by Autologous Cd/CdO/CdS Heterojunction Photoanodes with High Conductivity and Separation Efficiency.

    PubMed

    Xie, Shilei; Zhang, Peng; Zhang, Min; Liu, Peng; Li, Wei; Lu, Xihong; Cheng, Faliang; Tong, Yexiang

    2017-07-18

    The development for hydrogen from solar energy has attracted great attention due to the global demand for clean, environmentally friendly energy. Herein, autologous Cd/CdO/CdS heterojunctions were prepared in a carefully controlled process with metallic Cd as the inner layer and CdO as the interlayer. Further research revealed that the transportation and separation of photogenerated pairs were enhanced due to low resistance of the Cd inner layer and the type II CdO/CdS heterojunction. As a result, the optimized Cd/CdO/CdS heterojunction photoanode showed outstanding and long-term photoelectrochemical activity for water splitting, with a current density of 3.52 mA cm -2 , or a benchmark specific hydrogen production rate of 1.65 μmol cm -2  min -1 at -0.3 V versus Ag/AgCl, by using the environmental pollutants of sulfide and sulfite as sacrificial agents. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The Effect of the Activities Enhanced Concerning Time Concept on Time Concept Acquisition of Children

    ERIC Educational Resources Information Center

    Birgül, Arzu Ergisi; Zeteroglu, Elvan Sahin; Derman, Meral Taner

    2017-01-01

    The aim of this study is to examine the effect of the activities enhanced concerning time concept on time concept acquisition of children. The research is a quantitative study in experimental model with pretest-posttest control group aiming to examine the effect of the activities enhanced concerning time concept on time concept acquisition of…

  1. On Great Teachers

    ERIC Educational Resources Information Center

    Murphy, Tonia Hap

    2015-01-01

    In this article, the author lists key elements of greatness in a professor, and offers comments based on her experiences with great professors she has known. The first virtue mentioned is "he or she leaves students with valuable lessons they will remember throughout their careers." The "great" professor fosters broader lessons…

  2. Radiofrequency treatment enhances the catalytic function of an immobilized nanobiohybrid catalyst

    NASA Astrophysics Data System (ADS)

    San, Boi Hoa; Ha, Eun-Ju; Paik, Hyun-Jong; Kim, Kyeong Kyu

    2014-05-01

    Biocatalysis, the use of enzymes in chemical transformation, has undergone intensive development for a wide range of applications. As such, maximizing the functionality of enzymes for biocatalysis is a major priority to enable industrial use. To date, many innovative technologies have been developed to address the future demand of enzymes for these purposes, but maximizing the catalytic activity of enzymes remains a challenge. In this study, we demonstrated that the functionality of a nanobiocatalyst could be enhanced by combining immobilization and radiofrequency (RF) treatment. Aminopeptidase PepA-encapsulating 2 nm platinum nanoparticles (PepA-PtNPs) with the catalytic activities of hydrolysis and hydrogenation were employed as multifunctional nanobiocatalysts. Immobilizing the nanobiocatalysts in a hydrogel using metal chelation significantly enhanced their functionalities, including catalytic power, thermal-stability, pH tolerance, organic solvent tolerance, and reusability. Most importantly, RF treatment of the hydrogel-immobilized PepA-PtNPs increased their catalytic power by 2.5 fold greater than the immobilized PepA. Our findings indicate that the catalytic activities and functionalities of PepA-PtNPs are greatly enhanced by the combination of hydrogel-immobilization and RF treatment. Based on our findings, we propose that RF treatment of nanobiohybrid catalysts immobilized on the bulk hydrogel represents a new strategy for achieving efficient biocatalysis.Biocatalysis, the use of enzymes in chemical transformation, has undergone intensive development for a wide range of applications. As such, maximizing the functionality of enzymes for biocatalysis is a major priority to enable industrial use. To date, many innovative technologies have been developed to address the future demand of enzymes for these purposes, but maximizing the catalytic activity of enzymes remains a challenge. In this study, we demonstrated that the functionality of a nanobiocatalyst

  3. Biomaterials and Nanotherapeutics for Enhancing Skin Wound Healing

    PubMed Central

    Das, Subhamoy; Baker, Aaron B.

    2016-01-01

    Wound healing is an intricate process that requires complex coordination between many cell types and an appropriate extracellular microenvironment. Chronic wounds often suffer from high protease activity, persistent infection, excess inflammation, and hypoxia. While there has been intense investigation to find new methods to improve cutaneous wound care, the management of chronic wounds, burns, and skin wound infection remain challenging clinical problems. Ideally, advanced wound dressings can provide enhanced healing and bridge the gaps in the healing processes that prevent chronic wounds from healing. These technologies have great potential for improving outcomes in patients with poorly healing wounds but face significant barriers in addressing the heterogeneity and clinical complexity of chronic or severe wounds. Active wound dressings aim to enhance the natural healing process and work to counter many aspects that plague poorly healing wounds, including excessive inflammation, ischemia, scarring, and wound infection. This review paper discusses recent advances in the development of biomaterials and nanoparticle therapeutics to enhance wound healing. In particular, this review focuses on the novel cutaneous wound treatments that have undergone significant preclinical development or are currently used in clinical practice. PMID:27843895

  4. PERSPECTIVE: Electrical activity enhances neuronal survival and regeneration

    NASA Astrophysics Data System (ADS)

    Corredor, Raul G.; Goldberg, Jeffrey L.

    2009-10-01

    The failure of regeneration in the central nervous system (CNS) remains an enormous scientific and clinical challenge. After injury or in degenerative diseases, neurons in the adult mammalian CNS fail to regrow their axons and reconnect with their normal targets, and furthermore the neurons frequently die and are not normally replaced. While significant progress has been made in understanding the molecular basis for this lack of regenerative ability, a second approach has gained momentum: replacing lost neurons or lost connections with artificial electrical circuits that interface with the nervous system. In the visual system, gene therapy-based 'optogenetics' prostheses represent a competing technology. Now, the two approaches are converging, as recent data suggest that electrical activity itself, via the molecular signaling pathways such activity stimulates, is sufficient to induce neuronal survival and regeneration, particularly in retinal ganglion cells. Here, we review these data, discuss the effects of electrical activity on neurons' molecular signaling pathways and propose specific mechanisms by which exogenous electrical activity may be acting to enhance survival and regeneration.

  5. Phosphomimics destabilize Hsp27 oligomeric assemblies and enhance chaperone activity.

    PubMed

    Jovcevski, Blagojce; Kelly, Megan A; Rote, Anthea P; Berg, Tracey; Gastall, Heidi Y; Benesch, Justin L P; Aquilina, J Andrew; Ecroyd, Heath

    2015-02-19

    Serine phosphorylation of the mammalian small heat-shock protein Hsp27 at residues 15, 78, and 82 is thought to regulate its structure and chaperone function; however, the site-specific impact has not been established. We used mass spectrometry to assess the combinatorial effect of mutations that mimic phosphorylation upon the oligomeric state of Hsp27. Comprehensive dimerization yielded a relatively uncrowded spectrum, composed solely of even-sized oligomers. Modification at one or two serines decreased the average oligomeric size, while the triple mutant was predominantly a dimer. These changes were reflected in a greater propensity for oligomers to dissociate upon increased modification. The ability of Hsp27 to prevent amorphous or fibrillar aggregation of target proteins was enhanced and correlated with the amount of dissociated species present. We propose that, in vivo, phosphorylation promotes oligomer dissociation, thereby enhancing chaperone activity. Our data support a model in which dimers are the chaperone-active component of Hsp27. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Thermal-inertial ratchet effects: negative mobility, resonant activation, noise-enhanced stability, and noise-weakened stability.

    PubMed

    Li, Jing-hui; Łuczka, Jerzy

    2010-10-01

    Transport properties of a Brownian particle in thermal-inertial ratchets subject to an external time-oscillatory drive and a constant bias force are investigated. Since the phenomena of negative mobility, resonant activation and noise-enhance stability were reported before, in the present paper, we report some additional aspects of negative mobility, resonant activation and noise-enhance stability, such as the ingredients for the appearances of these phenomena, multiple resonant activation peaks, current reversals, noise-weakened stability, and so on.

  7. Earth-Heart Astronomy: Astronomy-Related Activities to Enhance Education for Sustainable Development

    ERIC Educational Resources Information Center

    Townsend, Christopher

    2010-01-01

    This article outlines a range of engaging outdoor daytime activities to enhance astronomical understanding and our place in the universe. They are practical activities with "soul" which engender environmental and social responsibility on a local (yet planetary) scale. They link astronomical and global considerations with a notion of…

  8. Native or Proteolytically Activated NanI Sialidase Enhances the Binding and Cytotoxic Activity of Clostridium perfringens Enterotoxin and Beta Toxin.

    PubMed

    Theoret, James R; Li, Jihong; Navarro, Mauricio A; Garcia, Jorge P; Uzal, Francisco A; McClane, Bruce A

    2018-01-01

    Many Clostridium perfringens strains produce NanI as their major sialidase. Previous studies showed that NanI could potentiate C. perfringens epsilon toxin cytotoxicity by enhancing the binding of this toxin to host cells. The present study first determined that NanI exerts similar cytotoxicity-enhancing effects on C. perfringens enterotoxin and beta toxin, which are also important toxins for C. perfringens diseases (enteritis and enterotoxemia) originating in the gastrointestinal (GI) tract. Building upon previous work demonstrating that purified trypsin can activate NanI activity, this study next determined that purified chymotrypsin or mouse intestinal fluids can also activate NanI activity. Amino acid sequencing then showed that this effect involves the N-terminal processing of the NanI protein. Recombinant NanI (rNanI) species corresponding to major chymotrypsin- or small intestinal fluid-generated NanI fragments possessed more sialidase activity than did full-length rNanI, further supporting the proteolytic activation of NanI activity. rNanI species corresponding to proteolysis products also promoted the cytotoxic activity and binding of enterotoxin and beta toxin more strongly than did full-length rNanI. Since enterotoxin and beta toxin are produced in the intestines during human and animal disease, these findings suggest that intestinal proteases may enhance NanI activity, which in turn could further potentiate the activity of intestinally active toxins during disease. Coupling these new results with previous findings demonstrating that NanI is important for the adherence of C. perfringens to enterocyte-like cells, NanI sialidase is now emerging as a potential auxiliary virulence factor for C. perfringens enteritis and enterotoxemia. Copyright © 2017 American Society for Microbiology.

  9. Enhanced Venous Thrombus Resolution in Plasminogen Activator Inhibitor Type-2 Deficient Mice

    PubMed Central

    Siefert, Suzanne A; Chabasse, Christine; Mukhopadhyay, Subhradip; Hoofnagle, Mark H; Strickland, Dudley K; Sarkar, Rajabrata; Antalis, Toni M

    2014-01-01

    Background The resolution of deep vein thrombosis (DVT) requires an inflammatory response and mobilization of proteases, such as urokinase-type plasminogen activator (uPA) and matrix metalloproteinases (MMPs), to degrade the thrombus and remodel the injured vein wall. PAI-2 is a serine protease inhibitor (serpin) with unique immunosuppressive and cell survival properties that was originally identified as an inhibitor of uPA. Objective To investigate the role of PAI-2 in venous thrombus formation and resolution. Methods Venous thrombus resolution was compared in wild type C57BL/6, PAI-2 -/- and PAI-1 -/- mice using the stasis model of DVT. Formed thrombi were harvested, thrombus weights were recorded, and tissue was analyzed for uPA, and MMP activities, PAI-1 expression, and the nature of inflammatory cell infiltration. Results We found that absence of PAI-2 enhanced venous thrombus resolution, while thrombus formation was unaffected. Enhanced venous thrombus resolution in PAI-2 -/- mice was associated with increased uPA activity and reduced levels of PAI-1, with no significant effect on MMP-2 and -9 activities. PAI-1 deficiency resulted in an increase in thrombus resolution similar to PAI-2 deficiency, but additionally reduced venous thrombus formation and altered MMP activity. PAI-2 deficient thrombi had increased levels of the neutrophil chemoattractant, CXCL2, which was associated with early enhanced neutrophil recruitment. Conclusions These data identify PAI-2 as a novel regulator of venous thrombus resolution, which modulates several pathways involving both inflammatory and uPA activity mechanisms, distinct from PAI-1. Further examination of these pathways may lead to potential therapeutic prospects in accelerating thrombus resolution. PMID:25041188

  10. Twin defects engineered Pd cocatalyst on C3N4 nanosheets for enhanced photocatalytic performance in CO2 reduction reaction

    NASA Astrophysics Data System (ADS)

    Lang, Qingqing; Hu, Wenli; Zhou, Penghui; Huang, Tianlong; Zhong, Shuxian; Yang, Lining; Chen, Jianrong; Bai, Song

    2017-12-01

    Photocatalytic conversion of CO2 to value-added chemicals, a potential route to addressing the depletion of fossil fuels and anthropogenic climate change, is greatly limited by the low-efficient semiconductor photocatalyst. The integration of cocatalyst with light-harvesting semiconductor is a promising approach to enhancing the photocatalytic performance in CO2 reduction reaction. The enhancement is greatly determined by the catalytic active sites on the surface of cocatalyst. Herein, we demonstrate that the photocatalytic performance in the CO2 reduction reaction is greatly promoted by twin defects engineered Pd cocatalyst. In this work, Pd nanoicosahedrons with twin defects were in situ grown on C3N4 nanosheets, which effectively improve the photocatalytic performance in reduction of CO2 to CO and CH4 in comparison with Pd nanotetrahedrons without twin defects. It is proposed that the twin boundary (TB) terminations on the surface of Pd cocatalysts are highly catalytic active sites for CO2 reduction reaction. Based on the proposed mechanism, the photocatalytic activity and selectivity in CO2 reduction were further advanced through reducing the size of Pd icosahedral cocatalyst resulted from the increased surface density of TB terminations. The defect engineering on the surface of cocatalyst represents a novel route in realizing high-performance photocatalytic applications.

  11. Twin defects engineered Pd cocatalyst on C3N4 nanosheets for enhanced photocatalytic performance in CO2 reduction reaction.

    PubMed

    Lang, Qingqing; Hu, Wenli; Zhou, Penghui; Huang, Tianlong; Zhong, Shuxian; Yang, Lining; Chen, Jianrong; Bai, Song

    2017-12-01

    Photocatalytic conversion of CO 2 to value-added chemicals, a potential route to addressing the depletion of fossil fuels and anthropogenic climate change, is greatly limited by the low-efficient semiconductor photocatalyst. The integration of cocatalyst with light-harvesting semiconductor is a promising approach to enhancing the photocatalytic performance in CO 2 reduction reaction. The enhancement is greatly determined by the catalytic active sites on the surface of cocatalyst. Herein, we demonstrate that the photocatalytic performance in the CO 2 reduction reaction is greatly promoted by twin defects engineered Pd cocatalyst. In this work, Pd nanoicosahedrons with twin defects were in situ grown on C 3 N 4 nanosheets, which effectively improve the photocatalytic performance in reduction of CO 2 to CO and CH 4 in comparison with Pd nanotetrahedrons without twin defects. It is proposed that the twin boundary (TB) terminations on the surface of Pd cocatalysts are highly catalytic active sites for CO 2 reduction reaction. Based on the proposed mechanism, the photocatalytic activity and selectivity in CO 2 reduction were further advanced through reducing the size of Pd icosahedral cocatalyst resulted from the increased surface density of TB terminations. The defect engineering on the surface of cocatalyst represents a novel route in realizing high-performance photocatalytic applications.

  12. Treatment of great auricular neuralgia with real-time ultrasound-guided great auricular nerve block

    PubMed Central

    Jeon, Younghoon; Kim, Saeyoung

    2017-01-01

    Abstract Rationale: The great auricular nerve can be damaged by the neck surgery, tumor, and long-time pressure on the neck. But, great auricular neuralgia is very rare condition. It was managed by several medication and landmark-based great auricular nerve block with poor prognosis. Patient concerns: A 25-year-old man presented with a pain in the left lateral neck and auricle. Diagnosis: He was diagnosed with great auricular neuralgia. Interventions: His pain was not reduced by medication. Therefore, the great auricular nerve block with local anesthetics and steroid was performed under ultrasound guidance. Outcomes: Ultrasound guided great auricular nerve block alleviated great auricular neuralgia. Lessons: This medication-resistant great auricular neuralgia was treated by the ultrasound guided great auricular nerve block with local anesthetic agent and steroid. Therefore, great auricular nerve block can be a good treatment option of medication resistant great auricular neuralgia. PMID:28328811

  13. P-selectin ligation induces platelet activation and enhances microaggregate and thrombus formation.

    PubMed

    Théorêt, Jean-François; Yacoub, Daniel; Hachem, Ahmed; Gillis, Marc-Antoine; Merhi, Yahye

    2011-09-01

    Platelet P-selectin is a thrombo-inflammatory molecule involved in platelet activation and aggregation. This may occur via the adhesive function of P-selectin and its potential capacity to trigger intracellular signaling. However, its impact on platelet function remains elusive. This study was therefore designed to investigate the relationship between the signaling potential of platelet P-selectin and its function in platelet physiology. Human and mouse platelets were freshly isolated from whole blood. Platelet activation was assessed using flow cytometry and western blot analysis, while platelet physiological responses were evaluated through aggregation, microaggregate formation and in a thrombosis model in wild-type and P-selectin-deficient (CD62P(-/-)) mice. Interaction of P-selectin with its high-affinity ligand, a recombinant soluble form of P-Selectin Glycoprotein Ligand-1 (rPSGL-1), enhances platelet activation, adhesion and microaggregate formation. This augmented platelet microaggregates requires an intact cytoskeleton, but occurs independently of platelet α(IIb)β(3). Thrombus formation and microaggregate were both enhanced by rPSGL-1 in wild-type, but not in CD62P(-/-) mice. In addition, CD62P(-/-) mice exhibited thrombosis abnormalities without an α(IIb)β(3) activation defect. This study demonstrates that the role of platelet P-selectin is not solely adhesive; its binding to PSGL-1 induces platelet activation that enhances platelet aggregation and thrombus formation. Therefore, targeting platelet P-selectin or its ligand PSGL-1 could provide a potential therapeutic approach in the management of thrombotic disorders. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Decreased diacylglycerol metabolism enhances ERK activation and augments CD8+ T cell functional responses.

    PubMed

    Riese, Matthew J; Grewal, Jashanpreet; Das, Jayajit; Zou, Tao; Patil, Vineet; Chakraborty, Arup K; Koretzky, Gary A

    2011-02-18

    Modulation of T cell receptor signal transduction in CD8(+) T cells represents a novel strategy toward enhancing the immune response to tumor. Recently, levels of guanine exchange factors, RasGRP and SOS, within T cells have been shown to represent a key determinant in the regulation of the analog to the digital activation threshold of Ras. One important for regulating activation levels of RasGRP is diacylglycerol (DAG), and its levels are influenced by diacylglycerol kinase-ζ (DGKζ), which metabolizes DAG into phosphatidic acid, terminating DAG-mediated Ras signaling. We sought to determine whether DGKζ-deficient CD8(+) T cells demonstrated enhanced in vitro responses in a manner predicted by the current model of Ras activation and to evaluate whether targeting this threshold confers enhanced CD8(+) T cell responsiveness to tumor. We observed that DGKζ-deficient CD8(+) T cells conform to most predictions of the current model of how RasGRP levels influence Ras activation. But our results differ in that the EC(50) value of stimulation is not altered for any T cell receptor stimulus, a finding that suggests a further degree of complexity to how DGKζ deficiency affects signals important for Ras and ERK activation. Additionally, we found that DGKζ-deficient CD8(+) T cells demonstrate enhanced responsiveness in a subcutaneous lymphoma model, implicating the analog to a digital conversion threshold as a novel target for potential therapeutic manipulation.

  15. Professor Witold Nowicki - a greatly spirited pathologist.

    PubMed

    Wincewicz, A; Szepietowska, A; Sulkowski, S

    2016-06-01

    This paper presents a complete overview of the scientific, professional and social activity of a great Polish pathologist, Witold Nowicki (1878-1941), from mainly Polish-written, original sources with a major impact on mostly his own publications. The biographical commemoration of this eminent professor is not only due to the fact that he provided a profound microscopic characterization of pneumatosis cystoides in 1909 and 1924. Nowicki greatly influenced the development of anatomical pathology in Poland, having authored over 82 publications, with special reference to tuberculosis, lung cancer, sarcomatous carcinomas, scleroma and others. However, the first of all his merits for the readership of Polish pathologists was his textbook titled Anatomical Pathology, which was a basic pathology manual in pre-war Poland. Witold Nowicki - as the head of the academic pathological anatomy department and former dean of the medical faculty - was shot with other professors by Nazi Germans in the Wuleckie hills in Lvov during World War Two. Professor Nowicki was described as being "small in size but great in spirit" by one of his associates, and remains an outstanding example of a meticulous pathologist, a patient tutor and a great social activist to follow.

  16. Genotype-dependent activation or repression of HBV enhancer II by transcription factor COUP-TF1

    PubMed Central

    Fischer, Silke F; Schmidt, Katja; Fiedler, Nicola; Glebe, Dieter; Schüttler, Christian; Sun, Jianguang; Gerlich, Wolfram H; Repp, Reinald; Schaefer, Stephan

    2006-01-01

    AIM: To study the expression of HBV enhancer II by transcription factor COUP-TF1. METHODS: In order to study the regulation of HBV variants in the vicinity of the NRRE we cloned luciferase constructs containing the HBV enhancer II from variants and from HBV genotypes A and D and cotransfected them together with expression vectors for COUP-TF1 into HepG2 cells. RESULTS: Our findings show that enhancer II of HBV genotype A is also repressed by COUP-TF1. In contrast, two different enhancer II constructs of HBV genotype D were activated by COUP-TF1. The activation was independent of the NRRE because a natural variant with a deletion of nt 1763-1770 was still activated by COUP-TF1. CONCLUSION: Regulation of transcription of the HBV genome seems to differ among HBV genomes derived from different genotypes. These differences in transcriptional control among HBV genotypes may be the molecular basis for differences in the clinical course among HBV genotypes. PMID:17009409

  17. Genotype-dependent activation or repression of HBV enhancer II by transcription factor COUP-TF1.

    PubMed

    Fischer, Silke F; Schmidt, Katja; Fiedler, Nicola; Glebe, Dieter; Schüttler, Christian; Sun, Jianguang; Gerlich, Wolfram H; Repp, Reinald; Schaefer, Stephan

    2006-10-07

    To study the expression of HBV enhancer II by transcription factor COUP-TF1. In order to study the regulation of HBV variants in the vicinity of the NRRE we cloned luciferase constructs containing the HBV enhancer II from variants and from HBV genotypes A and D and cotransfected them together with expression vectors for COUP-TF1 into HepG2 cells. Our findings show that enhancer II of HBV genotype A is also repressed by COUP-TF1. In contrast, two different enhancer II constructs of HBV genotype D were activated by COUP-TF1. The activation was independent of the NRRE because a natural variant with a deletion of nt 1763-1770 was still activated by COUP-TF1. Regulation of transcription of the HBV genome seems to differ among HBV genomes derived from different genotypes. These differences in transcriptional control among HBV genotypes may be the molecular basis for differences in the clinical course among HBV genotypes.

  18. A calpain-2 selective inhibitor enhances learning & memory by prolonging ERK activation.

    PubMed

    Liu, Yan; Wang, Yubin; Zhu, Guoqi; Sun, Jiandong; Bi, Xiaoning; Baudry, Michel

    2016-06-01

    While calpain-1 activation is required for LTP induction by theta burst stimulation (TBS), calpain-2 activation limits its magnitude during the consolidation period. A selective calpain-2 inhibitor applied either before or shortly after TBS enhanced the degree of potentiation. In the present study, we tested whether the selective calpain-2 inhibitor, Z-Leu-Abu-CONH-CH2-C6H3 (3, 5-(OMe)2 (C2I), could enhance learning and memory in wild-type (WT) and calpain-1 knock-out (C1KO) mice. We first showed that C2I could reestablish TBS-LTP in hippocampal slices from C1KO mice, and this effect was blocked by PD98059, an inhibitor of ERK. TBS resulted in PTEN degradation in hippocampal slices from both WT and C1KO mice, and C2I treatment blocked this effect in both mouse genotypes. Systemic injection of C2I 30 min before training in the fear-conditioning paradigm resulted in a biphasic dose-response curve, with low doses enhancing and high doses inhibiting freezing behavior. The difference between the doses needed to enhance and inhibit learning matches the difference in concentrations producing inhibition of calpain-2 and calpain-1. A low dose of C2I also restored normal learning in a novel object recognition task in C1KO mice. Levels of SCOP, a ERK phosphatase known to be cleaved by calpain-1, were decreased in dorsal hippocampus early but not late following training in WT mice; C2I treatment did not affect the early decrease in SCOP levels but prevented its recovery at the later time-point and prolonged ERK activation. The results indicate that calpain-2 activation limits the extent of learning, an effect possibly due to temporal limitation of ERK activation, as a result of SCOP synthesis induced by calpain-2-mediated PTEN degradation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Capacitance enhancement of polyaniline coated curved-graphene supercapacitors in a redox-active electrolyte.

    PubMed

    Chen, Wei; Rakhi, R B; Alshareef, H N

    2013-05-21

    We show, for the first time, a redox-active electrolyte in combination with a polyaniline-coated curved graphene active material to achieve significant enhancement in the capacitance (36-92% increase) compared to supercapacitors that lack the redox-active contribution from the electrolyte. The supercapacitors based on the redox-active electrolyte also exhibit excellent rate capability and very long cycling performance (>50,000 cycles).

  20. Enhanced neural activation with blueberry supplementation in mild cognitive impairment.

    PubMed

    Boespflug, Erin L; Eliassen, James C; Dudley, Jonathan A; Shidler, Marcelle D; Kalt, Wilhelmina; Summer, Suzanne S; Stein, Amanda L; Stover, Amanda N; Krikorian, Robert

    2018-05-01

    Preclinical studies have shown that blueberry supplementation can improve cognitive performance and neural function in aged animals and have identified associations between anthocyanins and such benefits. Preliminary human trials also suggest cognitive improvement in older adults, although direct evidence of enhancement of brain function has not been demonstrated. In this study, we investigated the effect of blueberry supplementation on regional brain activation in older adults at risk for dementia. In a randomized, double-blind, placebo-controlled trial we performed pre- and post-intervention functional magnetic resonance imaging during a working memory (WM) task to assess the effect of blueberry supplementation on blood oxygen level-dependent (BOLD) signal in older adults with mild cognitive impairment, a risk condition for dementia. Following daily supplementation for 16 weeks, blueberry-treated participants exhibited increased BOLD activation in the left pre-central gyrus, left middle frontal gyrus, and left inferior parietal lobe during WM load conditions (corrected P < 0.01). There was no clear indication of WM enhancement associated with blueberry supplementation. Diet records indicated no between-group difference in anthocyanin consumption external to the intervention. These data demonstrate, for the first time, enhanced neural response during WM challenge in blueberry-treated older adults with cognitive decline and are consistent with prior trials showing neurocognitive benefit with blueberry supplementation in this at-risk population.

  1. Variants of polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweeney, Matt; Wogulis, Mark

    The present invention relates to polypeptide having cellulolytic enhancing activity variants. The present invention also relates to polynucleotides encoding the variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the variants.

  2. Bioavailability enhancement of curcumin by complexation with phosphatidyl choline.

    PubMed

    Gupta, Nishant Kumar; Dixit, Vinod Kumar

    2011-05-01

    Curcumin is a major constituent of rhizomes of Curcuma longa. Pharmacokinetic studies of curcumin reveal its poor absorption through intestine. Objective of the present study was to enhance bioavailability of curcumin by its complexation with phosphatidyl choline (PC). Complex of curcumin was prepared with PC and characterized on the basis of solubility, melting point, differential scanning calorimetry, thin layer chromatography, and infrared spectroscopic analysis. Everted intestine sac technique was used to study ex vivo drug absorption of curcumin-PC (CU-PC) complex and plain curcumin. Pharmacokinetic studies were performed in rats, and hepatoprotective activity of CU-PC complex was also compared with curcumin and CU-PC physical mixture in isolated rat hepatocytes. Analytical reports along with spectroscopic data revealed the formation of complex. The results of ex vivo study show that CU-PC complex has significantly increased absorption compared with curcumin, when given in equimolar doses. Complex showed enhanced bioavailability, improved pharmacokinetics, and increased hepatoprotective activity as compared with curcumin or CU-PC physical mixture. Enhanced bioavailability of CU-PC complex may be due to the amphiphilic nature of the complex, which greatly enhance the water and lipid solubility of the curcumin. The present study clearly indicates the superiority of complex over curcumin, in terms of better absorption, enhanced bioavailability, and improved pharmacokinetics. Copyright © 2010 Wiley-Liss, Inc.

  3. Bioengineered Nisin A Derivatives with Enhanced Activity against Both Gram Positive and Gram Negative Pathogens

    PubMed Central

    Field, Des; Begley, Maire; O’Connor, Paula M.; Daly, Karen M.; Hugenholtz, Floor; Cotter, Paul D.; Hill, Colin; Ross, R. Paul

    2012-01-01

    Nisin is a bacteriocin widely utilized in more than 50 countries as a safe and natural antibacterial food preservative. It is the most extensively studied bacteriocin, having undergone decades of bioengineering with a view to improving function and physicochemical properties. The discovery of novel nisin variants with enhanced activity against clinical and foodborne pathogens has recently been described. We screened a randomized bank of nisin A producers and identified a variant with a serine to glycine change at position 29 (S29G), with enhanced efficacy against S. aureus SA113. Using a site-saturation mutagenesis approach we generated three more derivatives (S29A, S29D and S29E) with enhanced activity against a range of Gram positive drug resistant clinical, veterinary and food pathogens. In addition, a number of the nisin S29 derivatives displayed superior antimicrobial activity to nisin A when assessed against a range of Gram negative food-associated pathogens, including E. coli, Salmonella enterica serovar Typhimurium and Cronobacter sakazakii. This is the first report of derivatives of nisin, or indeed any lantibiotic, with enhanced antimicrobial activity against both Gram positive and Gram negative bacteria. PMID:23056510

  4. Enhanced Bifunctional Oxygen Catalysis in Strained LaNiO 3 Perovskites

    DOE PAGES

    Petrie, Jonathan R.; Cooper, Valentino R.; Freeland, John W.; ...

    2016-02-11

    Strain is known to greatly influence low-temperature oxygen electrocatalysis on noble metal films, leading to significant enhancements in bifunctional activity essential for fuel cells and metal-air batteries. Still, its catalytic impact on transition-metal oxide thin films, such as perovskites, is not widely understood. Here, we epitaxially strain the conducting perovskite LaNiO 3 to systematically determine its influence on both the oxygen reduction and oxygen evolution reaction. Uniquely, we found that compressive strain could significantly enhance both reactions, yielding a bifunctional catalyst that surpasses the performance of noble metals such as Pt. We attribute the improved bifunctionality to strain-induced splitting ofmore » the e g orbitals, which can customize orbital asymmetry at the surface. Lastly, analogous to strain-induced shifts in the d-band center of noble metals relative to the Fermi level, such splitting can dramatically affect catalytic activity in this perovskite and other potentially more active oxides.« less

  5. How Soluble GARP Enhances TGFβ Activation.

    PubMed

    Fridrich, Sven; Hahn, Susanne A; Linzmaier, Marion; Felten, Matthias; Zwarg, Jenny; Lennerz, Volker; Tuettenberg, Andrea; Stöcker, Walter

    2016-01-01

    GARP (glycoprotein A repetitions predominant) is a cell surface receptor on regulatory T-lymphocytes, platelets, hepatic stellate cells and certain cancer cells. Its described function is the binding and accommodation of latent TGFβ (transforming growth factor), before the activation and release of the mature cytokine. For regulatory T cells it was shown that a knockdown of GARP or a treatment with blocking antibodies dramatically decreases their immune suppressive capacity. This confirms a fundamental role of GARP in the basic function of regulatory T cells. Prerequisites postulated for physiological GARP function include membrane anchorage of GARP, disulfide bridges between the propeptide of TGFβ and GARP and connection of this propeptide to αvβ6 or αvβ8 integrins of target cells during mechanical TGFβ release. Other studies indicate the existence of soluble GARP complexes and a functionality of soluble GARP alone. In order to clarify the underlying molecular mechanism, we expressed and purified recombinant TGFβ and a soluble variant of GARP. Surprisingly, soluble GARP and TGFβ formed stable non-covalent complexes in addition to disulfide-coupled complexes, depending on the redox conditions of the microenvironment. We also show that soluble GARP alone and the two variants of complexes mediate different levels of TGFβ activity. TGFβ activation is enhanced by the non-covalent GARP-TGFβ complex already at low (nanomolar) concentrations, at which GARP alone does not show any effect. This supports the idea of soluble GARP acting as immune modulator in vivo.

  6. Variations of thiaminase I activity pH dependencies among typical Great Lakes forage fish and Paenibacillus thiaminolyticus.

    USGS Publications Warehouse

    Zajicek, J.L.; Brown, L.; Brown, S.B.; Honeyfield, D.C.; Fitzsimons, J.D.; Tillitt, D.E.

    2009-01-01

    The source of thiaminase in the Great Lakes food web remains unknown. Biochemical characterization of the thiaminase I activities observed in forage fish was undertaken to provide insights into potential thiaminase sources and to optimize catalytic assay conditions. We measured the thiaminase I activities of crude extracts from five forage fish species and one strain of Paenibacillus thiaminolyticus over a range of pH values. The clupeids, alewife Alosa pseudoharengus and gizzard shad Dorosoma cepedianum, had very similar thiaminase I pH dependencies, with optimal activity ranges (> or = 90% of maximum activity) between pH 4.6 and 5.5. Rainbow smelt Osmerus mordax and spottail shiner Notropis hudsonius had optimal activity ranges between pH 5.5-6.6. The thiaminase I activity pH dependence profile of P. thiaminolyticus had an optimal activity range between pH 5.4 and 6.3, which was similar to the optimal range for rainbow smelt and spottail shiners. Incubation of P. thiaminolyticus extracts with extracts from bloater Coregonus hoyi (normally, bloaters have little or no detectable thiaminase I activity) did not significantly alter the pH dependence profile of P. thiaminolyticus-derived thiaminase I, such that it continued to resemble that of the rainbow smelt and spottail shiner, with an apparent optimal activity range between pH 5.7 and 6.6. These data are consistent with the hypothesis of a bacterial source for thiaminase I in the nonclupeid species of forage fish; however, the data also suggest different sources of thiaminase I enzymes in the clupeid species.

  7. Educating Students for a Lifetime of Physical Activity: Enhancing Mindfulness, Motivation, and Meaning.

    PubMed

    Ennis, Catherine D

    2017-09-01

    For many years, pedagogical scholars and physical education (PE) teachers have worked to enhance effective teaching and learning environments. Yet for some children, youth, and young adults, many of the benefits associated with a physically active lifestyle remain elusive. Enhancing programming and performance to meet physical activity goals may require moving programs beyond "effective." It will require teachers and program leaders to focus programmatic attention on strategies to actually increase students' out-of-class physical activity behavior. Transformative PE provides physical activity content within a nurturing and motivating environment that can change students' lives. It focuses on PE students' role in cognitive decision making, self-motivation, and their search for personal meaning that can add connection and relevance to physical activities. In this SHAPE America - Society of Health and Physical Educators Research Quarterly for Exercise and Sport Lecture, I have synthesized the research on these topics to emphasize useful findings applicable to teachers' everyday planning and teaching. Using sport, physical activity, dance, and adventure activities as the means to an end for personal and social growth, we can meet our commitment to effective standards-based education while preparing students for a lifetime of physical activity.

  8. MWCNT/CdS hybrid nanocomposite for enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Chaudhary, Deepti; Khare, Neeraj; Vankar, V. D.

    2016-05-01

    Multi-walled carbon nanotubes (MWCNT)/CdS hybrid nanocomposite were synthesized by one step hydrothermal method. MWCNTs were used as a substrate for the growth of CdS nanoparticles. MWCNT/CdS nanocomposite and pure CdS were characterized by XRD, TEM, UV-vis and photoluminescence spectroscopy. HRTEM study confirms the intimate contact of CdS with MWCNT. The photocatalytic activity of nanocomposite was studied for the degradation of methylene blue dye under UV irradiation. The enhanced photocatalytic activity of MWCNT/CdS nanocomposite as compared to pure CdS has been attributed to reduced recombination of photogenerated charge carriers due to interfacial electron transfer from CdS to MWCNT.

  9. 77 FR 25188 - Extension of Agency Information Collection Activity Under OMB Review: Enhanced Security...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-27

    ... general aviation (GA) aircraft operators who wish to fly into and/or out of Ronald Reagan Washington.... Information Collection Requirement Title: Enhanced Security Procedures at Ronald Reagan Washington National...] Extension of Agency Information Collection Activity Under OMB Review: Enhanced Security Procedures at Ronald...

  10. PubMed enhancements: fulfilling the promise of a great product.

    PubMed

    Schott, Michael J

    2004-01-01

    There have been many recent changes to PubMed to enhance its usefulness. Those changes include: LinkOut Libraries (local holding field), PubMed Central (full-text articles archived by the National Library of Medicine), and LinkOut (access to full-text articles right from the PubMed citation). Medical librarians should be aware of how these features work to best assist their clients. These new features offer the possibility of true desktop access for library patrons. Not only will patrons appreciate these new features, but their use in libraries will literally change what we do, who does it, and how it is done.

  11. Ileal Crohn disease: mural microvascularity quantified with contrast-enhanced US correlates with disease activity.

    PubMed

    De Franco, Antonio; Di Veronica, Alessandra; Armuzzi, Alessandro; Roberto, Italia; Marzo, Manuela; De Pascalis, Barbara; De Vitis, Italo; Papa, Alfredo; Bock, Enrico; Danza, Francesco M; Bonomo, Lorenzo; Guidi, Luisa

    2012-02-01

    To quantitatively assess microvascular activation in the thickened ileal walls of patients with Crohn disease (CD) by using contrast-enhanced ultrasonography (US) and evaluate its correlation with widely used indexes of CD activity. This prospective study was approved by the ethics committee, and written informed consent was obtained from all patients. The authors examined 54 consecutively enrolled patients (mean age, 35.29 years; age range, 18-69 years; 39 men, 15 women) with endoscopically confirmed CD of the terminal ileum. Ileal wall segments thicker than 3 mm were examined with low-mechanical-index contrast-enhanced US and a second-generation US contrast agent. The authors analyzed software-plotted time-enhancement intensity curves to determine the maximum peak intensity (MPI) and wash-in slope coefficient (β) and evaluated their correlation with (a) the composite index of CD activity (CICDA), (b) the CD activity index (CDAI), and (c) the simplified endoscopic score for CD (SES-CD, evaluated in 37 patients) for the terminal ileum. Statistical analysis was performed with the Mann-Whitney test, Spearman rank test, and receiver operating characteristic (ROC) analysis. MPI and β coefficients were significantly increased in the 36 patients with a CICDA indicative of active disease (P<.0001 for both), the 33 patients with a CDAI of at least 150 (P<.032 and P<.0074, respectively), and the 26 patients with an SES-CD of at least 1 (P<.0001 and P<.002, respectively). ROC analysis revealed accurate identification (compared with CICDA) of active CD with an MPI threshold of 24 video intensity (VI) (sensitivity, 97%; specificity, 83%) and a β coefficient of 4.5 VI/sec (sensitivity, 86%; specificity, 83%). Contrast-enhanced US of the ileal wall is a promising method for objective, reproducible assessment of disease activity in patients with ileal CD. © RSNA, 2011

  12. Mechanism of enhanced nitrate reduction via micro-electrolysis at the powdered zero-valent iron/activated carbon interface.

    PubMed

    Luo, Jinghuan; Song, Guangyu; Liu, Jianyong; Qian, Guangren; Xu, Zhi Ping

    2014-12-01

    Nitrate reduction by zero-valent iron (Fe(0)) powder always works well only at controlled pH lower than 4 due to the formation of iron (hydr)oxides on its surface. Fe(0) powder combined with activated carbon (AC), i.e., Fe(0)/AC micro-electrolysis system, was first introduced to enhance nitrate reduction in aqueous solution. Comparative study was carried out to investigate nitrate reduction by Fe(0)/AC system and Fe(0) under near-neutral conditions, showing that the Fe(0)/AC system successfully reduced nitrate even at initial pH 6 with the reduction efficiency of up to 73%, whereas for Fe(0) only ∼10%. The effect of Fe(0) to AC mass ratio on nitrate reduction efficiency was examined. Easier nitrate reduction was achieved with more contact between Fe(0) and AC as the result of decreasing Fe(0) to AC mass ratio. Ferrous ion and oxidation-reduction potential were measured to understand the mechanism of enhanced nitrate reduction by Fe(0)/AC micro-electrolysis. The results suggest that a relative potential difference drives much more electrons from Fe(0) to AC, thus generating adsorbed atomic hydrogen which makes it possible for nitrate to be reduced at near-neural pH. Fe(0)/AC micro-electrolysis thus presents a great potential for practical application in nitrate wastewater treatment without excessive pH adjustment. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Does the Room Matter? Active Learning in Traditional and Enhanced Lecture Spaces.

    PubMed

    Stoltzfus, Jon R; Libarkin, Julie

    2016-01-01

    SCALE-UP-type classrooms, originating with the Student-Centered Active Learning Environment with Upside-down Pedagogies project, are designed to facilitate active learning by maximizing opportunities for interactions between students and embedding technology in the classroom. Positive impacts when active learning replaces lecture are well documented, both in traditional lecture halls and SCALE-UP-type classrooms. However, few studies have carefully analyzed student outcomes when comparable active learning-based instruction takes place in a traditional lecture hall and a SCALE-UP-type classroom. Using a quasi-experimental design, we compared student perceptions and performance between sections of a nonmajors biology course, one taught in a traditional lecture hall and one taught in a SCALE-UP-type classroom. Instruction in both sections followed a flipped model that relied heavily on cooperative learning and was as identical as possible given the infrastructure differences between classrooms. Results showed that students in both sections thought that SCALE-UP infrastructure would enhance performance. However, measures of actual student performance showed no difference between the two sections. We conclude that, while SCALE-UP-type classrooms may facilitate implementation of active learning, it is the active learning and not the SCALE-UP infrastructure that enhances student performance. As a consequence, we suggest that institutions can modify existing classrooms to enhance student engagement without incorporating expensive technology. © 2016 J. R. Stoltzfus and J. Libarkin. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  14. Relationships between environmental organochlorine contaminant residues, plasma corticosterone concentrations, and intermediary metabolic enzyme activities in Great Lakes herring gull embryos.

    PubMed Central

    Lorenzen, A; Moon, T W; Kennedy, S W; Glen, G A

    1999-01-01

    Experiments were conducted to survey and detect differences in plasma corticosterone concentrations and intermediary metabolic enzyme activities in herring gull (Larus argentatus) embryos environmentally exposed to organochlorine contaminants in ovo. Unincubated fertile herring gull eggs were collected from an Atlantic coast control site and various Great Lakes sites in 1997 and artificially incubated in the laboratory. Liver and/or kidney tissues from approximately half of the late-stage embryos were analyzed for the activities of various intermediary metabolic enzymes known to be regulated, at least in part, by corticosteroids. Basal plasma corticosterone concentrations were determined for the remaining embryos. Yolk sacs were collected from each embryo and a subset was analyzed for organochlorine contaminants. Regression analysis of individual yolk sac organochlorine residue concentrations, or 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents (TEQs), with individual basal plasma corticosterone concentrations indicated statistically significant inverse relationships for polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans (PCDDs/PCDFs), total polychlorinated biphenyls (PCBs), non-ortho PCBs, and TEQs. Similarly, inverse relationships were observed for the activities of two intermediary metabolic enzymes (phosphoenolpyruvate carboxykinase and malic enzyme) when regressed against PCDDs/PCDFs. Overall, these data suggest that current levels of organochlorine contamination may be affecting the hypothalamo-pituitary-adrenal axis and associated intermediary metabolic pathways in environmentally exposed herring gull embryos in the Great Lakes. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:10064546

  15. Berberine augments ATP-induced inflammasome activation in macrophages by enhancing AMPK signaling

    PubMed Central

    Xu, Li-Hui; Liang, Yi-Dan; Wei, Hong-Xia; Hu, Bo; Pan, Hao; Zha, Qing-Bing; Ouyang, Dong-Yun; He, Xian-Hui

    2017-01-01

    The isoquinoline alkaloid berberine possesses many pharmacological activities including antibacterial infection. Although the direct bactericidal effect of berberine has been documented, its influence on the antibacterial functions of macrophages is largely unknown. As inflammasome activation in macrophages is important for the defense against bacterial infection, we aimed to investigate the influence of berberine on inflammasome activation in murine macrophages. Our results showed that berberine significantly increased ATP-induced inflammasome activation as reflected by enhanced pyroptosis as well as increased release of caspase-1p10 and mature interleukin-1β (IL-1β) in macrophages. Such effects of berberine could be suppressed by AMP-activated protein kinase (AMPK) inhibitor compound C or by knockdown of AMPKα expression, indicating the involvement of AMPK signaling in this process. In line with increased IL-1β release, the ability of macrophages to kill engulfed bacteria was also intensified by berberine. This was corroborated by the in vivo finding that the peritoneal live bacterial load was decreased by berberine treatment. Moreover, berberine administration significantly improved survival of bacterial infected mice, concomitant with increased IL-1β levels and elevated neutrophil recruitment in the peritoneal cavity. Collectively, these data suggested that berberine could enhance bacterial killing by augmenting inflammasome activation in macrophages through AMPK signaling. PMID:27980220

  16. Berberine augments ATP-induced inflammasome activation in macrophages by enhancing AMPK signaling.

    PubMed

    Li, Chen-Guang; Yan, Liang; Jing, Yan-Yun; Xu, Li-Hui; Liang, Yi-Dan; Wei, Hong-Xia; Hu, Bo; Pan, Hao; Zha, Qing-Bing; Ouyang, Dong-Yun; He, Xian-Hui

    2017-01-03

    The isoquinoline alkaloid berberine possesses many pharmacological activities including antibacterial infection. Although the direct bactericidal effect of berberine has been documented, its influence on the antibacterial functions of macrophages is largely unknown. As inflammasome activation in macrophages is important for the defense against bacterial infection, we aimed to investigate the influence of berberine on inflammasome activation in murine macrophages. Our results showed that berberine significantly increased ATP-induced inflammasome activation as reflected by enhanced pyroptosis as well as increased release of caspase-1p10 and mature interleukin-1β (IL-1β) in macrophages. Such effects of berberine could be suppressed by AMP-activated protein kinase (AMPK) inhibitor compound C or by knockdown of AMPKα expression, indicating the involvement of AMPK signaling in this process. In line with increased IL-1β release, the ability of macrophages to kill engulfed bacteria was also intensified by berberine. This was corroborated by the in vivo finding that the peritoneal live bacterial load was decreased by berberine treatment. Moreover, berberine administration significantly improved survival of bacterial infected mice, concomitant with increased IL-1β levels and elevated neutrophil recruitment in the peritoneal cavity. Collectively, these data suggested that berberine could enhance bacterial killing by augmenting inflammasome activation in macrophages through AMPK signaling.

  17. Targeting PIM kinase enhances the activity of sunitinib in renal cell carcinoma.

    PubMed

    Mahalingam, D; Espitia, C M; Medina, E C; Esquivel, J A; Kelly, K R; Bearss, D; Choy, G; Taverna, P; Carew, J S; Giles, F J; Nawrocki, S T

    2011-11-08

    Upregulation of PIM kinase expression has been reported in many malignancies, suggesting that inhibition of PIM kinase activity may be an attractive therapeutic strategy. We hypothesised that inhibition of PIM kinase activity with SGI-1776, a novel small molecule inhibitor of PIM kinase activity, would reduce the viability of renal cell carcinoma (RCC) cells and enhance the activity of sunitinib. Immunoblotting, qRT-PCR, and gene expression arrays were carried out to identify genes modulated by SGI-1776 treatment. The anticancer activity of SGI-1776 and sunitinib was determined by viability and apoptosis assays and in tumour xenografts in vivo. Treatment with SGI-1776 led to a decrease in phosphorylated and total c-Myc levels, which resulted in the modulation of c-Myc target genes. SGI-1776 in combination with sunitinib induced a further reduction in c-Myc levels, which was associated with enhanced anticancer activity. siRNA-mediated knockdown of c-Myc demonstrated that its expression has a key role in regulating the sensitivity to the combination of SGI-1776 and sunitinib. Importantly, the combination significantly reduced tumour burden in two RCC xenograft models compared with single-agent therapy and was very well tolerated. These data indicate that targeting PIM kinase signalling is a promising treatment strategy for RCC. 2011 Cancer Research UK

  18. Enhanced Locomotor Activity Is Required to Exert Dietary Restriction-Dependent Increase of Stress Resistance in Drosophila.

    PubMed

    Ghimire, Saurav; Kim, Man Su

    2015-01-01

    Dietary restriction (DR) is known to be one of the most effective interventions to increase stress resistance, yet the mechanisms remain elusive. One of the most obvious DR-induced changes in phenotype is an increase in locomotor activity. Although it is conceptually perceivable that nutritional scarcity should prompt enhanced foraging behavior to garner additional dietary resources, the significance of enhanced movement activity has not been associated with the DR-dependent increase of stress resistance. In this study, we confirmed that flies raised on DR exhibited enhanced locomotive activity and increased stress resistance. Excision of fly wings minimized the DR-induced increase in locomotive activity, which resulted in attenuation of the DR-dependent increase of stress resistance. The possibility that wing clipping counteracts the DR by coercing flies to have more intake was ruled out since it did not induce any weight gain. Rather it was found that elimination of reactive oxygen species (ROS) that is enhanced by DR-induced upregulation of expression of antioxidant genes was significantly reduced by wing clipping. Collectively, our data suggests that DR increased stress resistance by increasing the locomotor activity, which upregulated expression of protective genes including, but not limited to, ROS scavenger system.

  19. Two different factors act separately or together to specify functionally distinct activities at a single transcriptional enhancer.

    PubMed Central

    DeFranco, D; Yamamoto, K R

    1986-01-01

    The expression of genes fused downstream of the Moloney murine sarcoma virus (MoMSV) long terminal repeat is stimulated by glucocorticoids. We mapped the glucocorticoid response element that conferred this hormonal regulation and found that it is a hormone-dependent transcriptional enhancer, designated Sg; it resides within DNA fragments that also carry a previously described enhancer element (B. Levinson, G. Khoury, G. Vande Woude, and P. Gruss, Nature [London] 295:568-572, 1982), here termed Sa, whose activity is independent of the hormone. Nuclease footprinting revealed that purified glucocorticoid receptor bound at multiple discrete sites within and at the borders of the tandemly repeated sequence motif that defines Sa. The Sa and Sg activities stimulated the apparent efficiency of cognate or heterologous promoter utilization, individually providing modest enhancement and in concert yielding higher levels of activity. A deletion mutant lacking most of the tandem repeat but retaining a single receptor footprint sequence lost Sa activity but still conferred Sg activity. The two enhancer components could also be distinguished physiologically: both were operative within cultured rat fibroblasts, but only Sg activity was detectable in rat exocrine pancreas cells. Therefore, the sequence determinants of Sa and Sg activity may be interdigitated, and when both components are active, the receptor and a putative Sa factor can apparently bind and act simultaneously. We concluded that MoMSV enhancer activity is effected by at least two distinct binding factors, suggesting that combinatorial regulation of promoter function can be mediated even from a single genetic element. Images PMID:3023887

  20. Enhancement of proteolytic enzyme activity excreted from Bacillus stearothermophilus for a thermophilic aerobic digestion process.

    PubMed

    Kim, Young-Kee; Bae, Jin-Hye; Oh, Byung-Keun; Lee, Won Hong; Choi, Jeong-Woo

    2002-04-01

    Proteolysis is one of the main enzymatic reactions involved in waste activated sludge (WAS) digestion. In this study, proteases excreted from Bacillus stearothermophilus (ATCC 31197) were classified, and an enhancement of protease activity was achieved using economical chemical additives for WAS digestion. Proteases excreted from B. stearothermophilus were classified into two families: serine and metallo-proteases. Various metal ions were investigated as additives which could potentially enhance protease activity. It was observed that Ca2+ and Fe2+ could markedly activate these enzymes. These results were applied to thermophilic aerobic digestion (TAD) of industrial WAS using B. stearothermophilus. The addition of these divalent ions enhanced the degradation performance of the TAD process in terms of reducing the total suspended solids (TSSs), the dissolved organic carbon (DOC) content, and the intracellular and extracellular protein concentrations. The best result, with respect to protein reduction in a digestion experiment, was obtained by the addition of 2 mM Ca2+. Therefore, a proposed TAD process activated by calcium addition can be successfully used for industrial and municipal WAS digestion to the upgrading of TAD process performance.

  1. Shell-Isolated Tip-Enhanced Raman and Fluorescence Spectroscopy.

    PubMed

    Huang, Ya-Ping; Huang, Sheng-Chao; Wang, Xiang-Jie; Bodappa, Nataraju; Li, Chao-Yu; Yin, Hao; Su, Hai-Sheng; Meng, Meng; Zhang, Hua; Ren, Bin; Yang, Zhi-Lin; Zenobi, Renato; Tian, Zhong-Qun; Li, Jian-Feng

    2018-06-18

    Tip-enhanced Raman spectroscopy can provide molecular fingerprint information with ultrahigh spatial resolution, but the tip will be easily contaminated, thus leading to artifacts. It also remains a great challenge to establish tip-enhanced fluorescence because of the quenching resulting from the proximity of the metal tip. Herein, we report shell-isolated tip-enhanced Raman and fluorescence spectroscopies by employing ultrathin shell-isolated tips fabricated by atomic layer deposition. Such shell-isolated tips not only show outstanding electromagnetic field enhancement in TERS but also exclude interference by contaminants, thus greatly promoting applications in solution. Tip-enhanced fluorescence has also been achieved using these shell-isolated tips, with enhancement factors of up to 1.7×10 3 , consistent with theoretical simulations. Furthermore, tip-enhanced Raman and fluorescence signals are acquired simultaneously, and their relative intensities can be manipulated by changing the shell thickness. This work opens a new avenue for ultrahigh resolution surface analysis using plasmon-enhanced spectroscopies. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Paediatric Active Enhanced Disease Surveillance inaugural annual report, 2014.

    PubMed

    Zurynski, Yvonne A; McRae, Jocelynne E; Quinn, Helen E; Wood, Nicholas J; Macartney, Kristine K

    2016-09-30

    The Paediatric Active Enhanced Disease Surveillance (PAEDS) network is a hospital-based active surveillance system employing prospective case ascertainment of selected uncommon vaccine preventable diseases and potential adverse events following immunisation (AEFI). PAEDS enhances other Australian surveillance systems by providing prospective detailed clinical and laboratory data for the same child. Specialist surveillance nurses screen hospital admissions, emergency department records, laboratory and other data, to prospectively identify hospitalised children aged under 15 years in 5 paediatric tertiary referral hospitals in New South Wales, Victoria, South Australia, Western Australia and Queensland. Standardised protocols and case definitions are used across all sites. Conditions under surveillance include vaccine preventable diseases: acute flaccid paralysis, varicella, pandemic and seasonal influenza and pertussis, and potential AEFIs: febrile seizures and intussusception. PAEDS also conducts surveillance for acute childhood encephalitis. Since August 2007, PAEDS has recruited a total of 6,227 hospitalised cases in total, for all conditions. From January to December 2014, there were 1,220 cases recruited across all conditions. Key outcomes include: enhanced acute flaccid paralysis surveillance to reach World Health Organization targets; supporting varicella and influenza vaccination in children; confirmation of a known low risk of febrile seizures following the 1st dose of measles-mumps-rubella vaccine but no increased risk of febrile seizures after measles-mumps-rubella-varicella vaccine, and a slightly increased risk of developing intussusception 1-7 days after rotavirus vaccination in infants aged less than 3 months. Acute childhood encephalitis data facilitated rapid investigation and response to the enterovirus 71 outbreak in 2013-2014. PAEDS provides unique policy-relevant data. This is the first of planned PAEDS annual reports to Communicable Diseases

  3. Design and synthesis of theranostic antibiotic nanodrugs that display enhanced antibacterial activity and luminescence

    PubMed Central

    Xie, Sheng; Manuguri, Sesha; Proietti, Giampiero; Romson, Joakim; Fu, Ying; Inge, A. Ken; Wu, Bin; Zhang, Yang; Häll, Daniel; Ramström, Olof; Yan, Mingdi

    2017-01-01

    We report the modular formulation of ciprofloxacin-based pure theranostic nanodrugs that display enhanced antibacterial activities, as well as aggregation-induced emission (AIE) enhancement that was successfully used to image bacteria. The drug derivatives, consisting of ciprofloxacin, a perfluoroaryl ring, and a phenyl ring linked by an amidine bond, were efficiently synthesized by a straightforward protocol from a perfluoroaryl azide, ciprofloxacin, and an aldehyde in acetone at room temperature. These compounds are propeller-shaped, and upon precipitation into water, readily assembled into stable nanoaggregates that transformed ciprofloxacin derivatives into AIE-active luminogens. The nanoaggregates displayed increased luminescence and were successfully used to image bacteria. In addition, these nanodrugs showed enhanced antibacterial activities, lowering the minimum inhibitory concentration (MIC) by more than one order of magnitude against both sensitive and resistant Escherichia coli. The study represents a strategy in the design and development of pure theranostic nanodrugs for combating drug-resistant bacterial infections. PMID:28743748

  4. Diversity and Activity of Diazotrophs in Great Barrier Reef Surface Waters.

    PubMed

    Messer, Lauren F; Brown, Mark V; Furnas, Miles J; Carney, Richard L; McKinnon, A D; Seymour, Justin R

    2017-01-01

    Discrepancies between bioavailable nitrogen (N) concentrations and phytoplankton growth rates in the oligotrophic waters of the Great Barrier Reef (GBR) suggest that undetermined N sources must play a significant role in supporting primary productivity. One such source could be biological dinitrogen (N 2 ) fixation through the activity of "diazotrophic" bacterioplankton. Here, we investigated N 2 fixation and diazotroph community composition over 10° S of latitude within GBR surface waters. Qualitative N 2 fixation rates were found to be variable across the GBR but were relatively high in coastal, inner and outer GBR waters, reaching 68 nmol L -1 d -1 . Diazotroph assemblages, identified by amplicon sequencing of the nifH gene, were dominated by the cyanobacterium Trichodesmium erythraeum , γ-proteobacteria from the Gamma A clade, and δ-proteobacterial phylotypes related to sulfate-reducing genera. However, diazotroph communities exhibited significant spatial heterogeneity, correlated with shifts in dissolved inorganic nutrient concentrations. Specifically, heterotrophic diazotrophs generally increased in relative abundance with increasing concentrations of phosphate and N, while Trichodesmium was proportionally more abundant when concentrations of these nutrients were low. This study provides the first in-depth characterization of diazotroph community composition and N 2 fixation dynamics within the oligotrophic, N-limited surface waters of the GBR. Our observations highlight the need to re-evaluate N cycling dynamics within oligotrophic coral reef systems, to include diverse N 2 fixing assemblages as a potentially significant source of dissolved N within the water column.

  5. Silver enhances antibiotic activity against gram-negative bacteria.

    PubMed

    Morones-Ramirez, J Ruben; Winkler, Jonathan A; Spina, Catherine S; Collins, James J

    2013-06-19

    A declining pipeline of clinically useful antibiotics has made it imperative to develop more effective antimicrobial therapies, particularly against difficult-to-treat Gram-negative pathogens. Silver has been used as an antimicrobial since antiquity, yet its mechanism of action remains unclear. We show that silver disrupts multiple bacterial cellular processes, including disulfide bond formation, metabolism, and iron homeostasis. These changes lead to increased production of reactive oxygen species and increased membrane permeability of Gram-negative bacteria that can potentiate the activity of a broad range of antibiotics against Gram-negative bacteria in different metabolic states, as well as restore antibiotic susceptibility to a resistant bacterial strain. We show both in vitro and in a mouse model of urinary tract infection that the ability of silver to induce oxidative stress can be harnessed to potentiate antibiotic activity. Additionally, we demonstrate in vitro and in two different mouse models of peritonitis that silver sensitizes Gram-negative bacteria to the Gram-positive-specific antibiotic vancomycin, thereby expanding the antibacterial spectrum of this drug. Finally, we used silver and antibiotic combinations in vitro to eradicate bacterial persister cells, and show both in vitro and in a mouse biofilm infection model that silver can enhance antibacterial action against bacteria that produce biofilms. This work shows that silver can be used to enhance the action of existing antibiotics against Gram-negative bacteria, thus strengthening the antibiotic arsenal for fighting bacterial infections.

  6. Sphingosine 1-phosphate receptor activation enhances BMP-2-induced osteoblast differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, Chieri; Iwasaki, Tsuyoshi, E-mail: tsuyo-i@huhs.ac.jp; Kitano, Sachie

    Highlights: Black-Right-Pointing-Pointer We investigated the role of S1P signaling for osteoblast differentiation. Black-Right-Pointing-Pointer Both S1P and FTY enhanced BMP-2-stimulated osteoblast differentiation by C2C12 cells. Black-Right-Pointing-Pointer S1P signaling enhanced BMP-2-stimulated Smad and ERK phosphorylation by C2C12 cells. Black-Right-Pointing-Pointer MEK/ERK signaling is a pathway underlying S1P signaling for osteoblast differentiation. -- Abstract: We previously demonstrated that sphingosine 1-phosphate (S1P) receptor-mediated signaling induced proliferation and prostaglandin productions by synovial cells from rheumatoid arthritis (RA) patients. In the present study we investigated the role of S1P receptor-mediated signaling for osteoblast differentiation. We investigated osteoblast differentiation using C2C12 myoblasts, a cell line derived from murinemore » satellite cells. Osteoblast differentiation was induced by the treatment of bone morphogenic protein (BMP)-2 in the presence or absence of either S1P or FTY720 (FTY), a high-affinity agonist of S1P receptors. Osteoblast differentiation was determined by osteoblast-specific transcription factor, Runx2 mRNA expression, alkaline phosphatase (ALP) activity and osteocalcin production by the cells. Smad1/5/8 and extracellular signal-regulated kinase (ERK) 1/2 phosphorylation was examined by Western blotting. Osteocalcin production by C2C12 cells were determined by ELISA. Runx2 expression and ALP activity by BMP-2-stimulated C2C12 cells were enhanced by addition of either S1P or FTY. Both S1P and FTY enhanced BMP-2-induced ERK1/2 and Smad1/5/8 phosphorylation. The effect of FTY was stronger than that of S1P. S1P receptor-mediated signaling on osteoblast differentiation was inhibited by addition of mitogen-activated protein kinase/ERK kinase (MEK) 1/2 inhibitor, indicating that the S1P receptor-mediated MEK1/2-ERK1/2 signaling pathway enhanced BMP-2-Smad signaling. These results indicate that S1P

  7. Making Good Instructors Great: USMC Cognitive Readiness and Instructor Professionalization Initiatives

    DTIC Science & Technology

    2012-01-01

    enhance their classes; these approaches are recom- mended in addition to (not in lieu of) other well-known military scenario-based training methods...Interservice/Industry Training , Simulation, and Education Conference (I/ITSEC) 2012 2012 Paper No. 12185 Making Good Instructors Great: USMC...and ambiguous environments. Each of the US Armed Services is addressing cognitive readiness training differently. The Marine Corps, for in- stance

  8. Gaming is related to enhanced working memory performance and task-related cortical activity.

    PubMed

    Moisala, M; Salmela, V; Hietajärvi, L; Carlson, S; Vuontela, V; Lonka, K; Hakkarainen, K; Salmela-Aro, K; Alho, K

    2017-01-15

    Gaming experience has been suggested to lead to performance enhancements in a wide variety of working memory tasks. Previous studies have, however, mostly focused on adult expert gamers and have not included measurements of both behavioral performance and brain activity. In the current study, 167 adolescents and young adults (aged 13-24 years) with different amounts of gaming experience performed an n-back working memory task with vowels, with the sensory modality of the vowel stream switching between audition and vision at random intervals. We studied the relationship between self-reported daily gaming activity, working memory (n-back) task performance and related brain activity measured using functional magnetic resonance imaging (fMRI). The results revealed that the extent of daily gaming activity was related to enhancements in both performance accuracy and speed during the most demanding (2-back) level of the working memory task. This improved working memory performance was accompanied by enhanced recruitment of a fronto-parietal cortical network, especially the dorsolateral prefrontal cortex. In contrast, during the less demanding (1-back) level of the task, gaming was associated with decreased activity in the same cortical regions. Our results suggest that a greater degree of daily gaming experience is associated with better working memory functioning and task difficulty-dependent modulation in fronto-parietal brain activity already in adolescence and even when non-expert gamers are studied. The direction of causality within this association cannot be inferred with certainty due to the correlational nature of the current study. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Hyperbaric Oxygen Environment Can Enhance Brain Activity and Multitasking Performance

    PubMed Central

    Vadas, Dor; Kalichman, Leonid; Hadanny, Amir; Efrati, Shai

    2017-01-01

    Background: The Brain uses 20% of the total oxygen supply consumed by the entire body. Even though, <10% of the brain is active at any given time, it utilizes almost all the oxygen delivered. In order to perform complex tasks or more than one task (multitasking), the oxygen supply is shifted from one brain region to another, via blood perfusion modulation. The aim of the present study was to evaluate whether a hyperbaric oxygen (HBO) environment, with increased oxygen supply to the brain, will enhance the performance of complex and/or multiple activities. Methods: A prospective, double-blind randomized control, crossover trial including 22 healthy volunteers. Participants were asked to perform a cognitive task, a motor task and a simultaneous cognitive-motor task (multitasking). Participants were randomized to perform the tasks in two environments: (a) normobaric air (1 ATA 21% oxygen) (b) HBO (2 ATA 100% oxygen). Two weeks later participants were crossed to the alternative environment. Blinding of the normobaric environment was achieved in the same chamber with masks on while hyperbaric sensation was simulated by increasing pressure in the first minute and gradually decreasing to normobaric environment prior to tasks performance. Results: Compared to the performance at normobaric conditions, both cognitive and motor single tasks scores were significantly enhanced by HBO environment (p < 0.001 for both). Multitasking performance was also significantly enhanced in HBO environment (p = 0.006 for the cognitive part and p = 0.02 for the motor part). Conclusions: The improvement in performance of both single and multi-tasking while in an HBO environment supports the hypothesis which according to, oxygen is indeed a rate limiting factor for brain activity. Hyperbaric oxygenation can serve as an environment for brain performance. Further studies are needed to evaluate the optimal oxygen levels for maximal brain performance. PMID:29021747

  10. Hyperbaric Oxygen Environment Can Enhance Brain Activity and Multitasking Performance.

    PubMed

    Vadas, Dor; Kalichman, Leonid; Hadanny, Amir; Efrati, Shai

    2017-01-01

    Background: The Brain uses 20% of the total oxygen supply consumed by the entire body. Even though, <10% of the brain is active at any given time, it utilizes almost all the oxygen delivered. In order to perform complex tasks or more than one task (multitasking), the oxygen supply is shifted from one brain region to another, via blood perfusion modulation. The aim of the present study was to evaluate whether a hyperbaric oxygen (HBO) environment, with increased oxygen supply to the brain, will enhance the performance of complex and/or multiple activities. Methods: A prospective, double-blind randomized control, crossover trial including 22 healthy volunteers. Participants were asked to perform a cognitive task, a motor task and a simultaneous cognitive-motor task (multitasking). Participants were randomized to perform the tasks in two environments: (a) normobaric air (1 ATA 21% oxygen) (b) HBO (2 ATA 100% oxygen). Two weeks later participants were crossed to the alternative environment. Blinding of the normobaric environment was achieved in the same chamber with masks on while hyperbaric sensation was simulated by increasing pressure in the first minute and gradually decreasing to normobaric environment prior to tasks performance. Results: Compared to the performance at normobaric conditions, both cognitive and motor single tasks scores were significantly enhanced by HBO environment ( p < 0.001 for both). Multitasking performance was also significantly enhanced in HBO environment ( p = 0.006 for the cognitive part and p = 0.02 for the motor part). Conclusions: The improvement in performance of both single and multi-tasking while in an HBO environment supports the hypothesis which according to, oxygen is indeed a rate limiting factor for brain activity. Hyperbaric oxygenation can serve as an environment for brain performance. Further studies are needed to evaluate the optimal oxygen levels for maximal brain performance.

  11. NanoCluster Beacons as reporter probes in rolling circle enhanced enzyme activity detection

    NASA Astrophysics Data System (ADS)

    Juul, Sissel; Obliosca, Judy M.; Liu, Cong; Liu, Yen-Liang; Chen, Yu-An; Imphean, Darren M.; Knudsen, Birgitta R.; Ho, Yi-Ping; Leong, Kam W.; Yeh, Hsin-Chih

    2015-04-01

    As a newly developed assay for the detection of endogenous enzyme activity at the single-catalytic-event level, Rolling Circle Enhanced Enzyme Activity Detection (REEAD) has been used to measure enzyme activity in both single human cells and malaria-causing parasites, Plasmodium sp. Current REEAD assays rely on organic dye-tagged linear DNA probes to report the rolling circle amplification products (RCPs), the cost of which may hinder the widespread use of REEAD. Here we show that a new class of activatable probes, NanoCluster Beacons (NCBs), can simplify the REEAD assays. Easily prepared without any need for purification and capable of large fluorescence enhancement upon hybridization, NCBs are cost-effective and sensitive. Compared to conventional fluorescent probes, NCBs are also more photostable. As demonstrated in reporting the human topoisomerases I (hTopI) cleavage-ligation reaction, the proposed NCBs suggest a read-out format attractive for future REEAD-based diagnostics.As a newly developed assay for the detection of endogenous enzyme activity at the single-catalytic-event level, Rolling Circle Enhanced Enzyme Activity Detection (REEAD) has been used to measure enzyme activity in both single human cells and malaria-causing parasites, Plasmodium sp. Current REEAD assays rely on organic dye-tagged linear DNA probes to report the rolling circle amplification products (RCPs), the cost of which may hinder the widespread use of REEAD. Here we show that a new class of activatable probes, NanoCluster Beacons (NCBs), can simplify the REEAD assays. Easily prepared without any need for purification and capable of large fluorescence enhancement upon hybridization, NCBs are cost-effective and sensitive. Compared to conventional fluorescent probes, NCBs are also more photostable. As demonstrated in reporting the human topoisomerases I (hTopI) cleavage-ligation reaction, the proposed NCBs suggest a read-out format attractive for future REEAD-based diagnostics. Electronic

  12. Cognitive emotion regulation enhances aversive prediction error activity while reducing emotional responses.

    PubMed

    Mulej Bratec, Satja; Xie, Xiyao; Schmid, Gabriele; Doll, Anselm; Schilbach, Leonhard; Zimmer, Claus; Wohlschläger, Afra; Riedl, Valentin; Sorg, Christian

    2015-12-01

    Cognitive emotion regulation is a powerful way of modulating emotional responses. However, despite the vital role of emotions in learning, it is unknown whether the effect of cognitive emotion regulation also extends to the modulation of learning. Computational models indicate prediction error activity, typically observed in the striatum and ventral tegmental area, as a critical neural mechanism involved in associative learning. We used model-based fMRI during aversive conditioning with and without cognitive emotion regulation to test the hypothesis that emotion regulation would affect prediction error-related neural activity in the striatum and ventral tegmental area, reflecting an emotion regulation-related modulation of learning. Our results show that cognitive emotion regulation reduced emotion-related brain activity, but increased prediction error-related activity in a network involving ventral tegmental area, hippocampus, insula and ventral striatum. While the reduction of response activity was related to behavioral measures of emotion regulation success, the enhancement of prediction error-related neural activity was related to learning performance. Furthermore, functional connectivity between the ventral tegmental area and ventrolateral prefrontal cortex, an area involved in regulation, was specifically increased during emotion regulation and likewise related to learning performance. Our data, therefore, provide first-time evidence that beyond reducing emotional responses, cognitive emotion regulation affects learning by enhancing prediction error-related activity, potentially via tegmental dopaminergic pathways. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Jupiter's Great Red Spot, Spotted

    NASA Image and Video Library

    2018-04-19

    This image of Jupiter's iconic Great Red Spot and surrounding turbulent zones was captured by NASA's Juno spacecraft. The color-enhanced image is a combination of three separate images taken on April 1 between 3:09 a.m. PDT (6:09 a.m. EDT) and 3:24 a.m. PDT (6:24 a.m. EDT), as Juno performed its 12th close flyby of Jupiter. At the time the images were taken, the spacecraft was 15,379 miles (24,749 kilometers) to 30,633 miles (49,299 kilometers) from the tops of the clouds of the planet at a southern latitude spanning 43.2 to 62.1 degrees. Citizen scientists Gerald Eichstädt and Seán Doran processed this image using data from the JunoCam imager. https://photojournal.jpl.nasa.gov/catalog/PIA21985

  14. Mapping ecosystem services in a Great Lakes estuary supports local decision-making

    EPA Science Inventory

    Estuaries of the Laurentian Great Lakes provide a concentrated supply of ecosystem goods and services from which humans benefit. As long-term centers of human activity, most estuaries of the Great Lakes and have a legacy of chemical contamination, degraded habitats, and non-point...

  15. Sensitivity-Enhanced Wearable Active Voiceprint Sensor Based on Cellular Polypropylene Piezoelectret.

    PubMed

    Li, Wenbo; Zhao, Sheng; Wu, Nan; Zhong, Junwen; Wang, Bo; Lin, Shizhe; Chen, Shuwen; Yuan, Fang; Jiang, Hulin; Xiao, Yongjun; Hu, Bin; Zhou, Jun

    2017-07-19

    Wearable active sensors have extensive applications in mobile biosensing and human-machine interaction but require good flexibility, high sensitivity, excellent stability, and self-powered feature. In this work, cellular polypropylene (PP) piezoelectret was chosen as the core material of a sensitivity-enhanced wearable active voiceprint sensor (SWAVS) to realize voiceprint recognition. By virtue of the dipole orientation control method, the air layers in the piezoelectret were efficiently utilized, and the current sensitivity was enhanced (from 1.98 pA/Hz to 5.81 pA/Hz at 115 dB). The SWAVS exhibited the superiorities of high sensitivity, accurate frequency response, and excellent stability. The voiceprint recognition system could make correct reactions to human voices by judging both the password and speaker. This study presented a voiceprint sensor with potential applications in noncontact biometric recognition and safety guarantee systems, promoting the progress of wearable sensor networks.

  16. Enhanced photocatalytic H2-production activity of graphene-modified titania nanosheets

    NASA Astrophysics Data System (ADS)

    Xiang, Quanjun; Yu, Jiaguo; Jaroniec, Mietek

    2011-09-01

    Graphene-modified TiO2 nanosheets with exposed (001) facets (graphene/TiO2) were prepared by microwave-hydrothermal treatment of graphene oxide (GO) and hydrothermally synthesized TiO2 nanosheets with exposed (001) facets in an ethanol-water solvent. These nanocomposite samples showed high photocatalytic H2-production activity in aqueous solutions containing methanol, as sacrificial reagent, even without Pt co-catalyst. The optimal graphene content was found to be ~1.0 wt%, giving a H2-production rate of 736 μmol h-1 g-1 with a quantum efficiency (QE) of 3.1%, which exceeded the rate observed on pure TiO2 nanosheets by more than 41 times. This high photocatalytic H2-production activity is due to the deposition of TiO2 nanosheets on graphene sheets, which act as an electron acceptor to efficiently separate the photogenerated charge carriers. The observed enhancement in the photocatalytic activity is due to the lower absolute potential of graphene/graphene z.rad- (-0.08 V vs. SHE, pH = 0) in comparison to the conduction band (-0.24 V) of anatase TiO2, meanwhile the aforementioned absolute value is higher than the reduction potential of H+ (0 V), which favors the electron transfer from the conduction band (CB) of TiO2 to graphene sheets and the reduction of H+, thus enhancing photocatalytic H2-production activity. The proposed mechanism for the observed photocatalytic performance of TiO2 nanosheets, modified with a small amount of graphene, was further confirmed by photoluminescence spectroscopy and transient photocurrent response. This work not only shows a possibility for the utilization of low cost graphene sheets as a substitute for noble metals (such as Pt) in the photocatalytic H2-production but also for the first time shows a significant enhancement in the H2-production activity by using metal-free carbon material as an effective co-catalyst.

  17. New approaches to enhance active steering system functionalities: preliminary results

    NASA Astrophysics Data System (ADS)

    Serarslan, Benan

    2014-09-01

    An important development of the steering systems in general is active steering systems like active front steering and steer-by-wire systems. In this paper the current functional possibilities in application of active steering systems are explored. A new approach and additional functionalities are presented that can be implemented to the active steering systems without additional hardware such as new sensors and electronic control units. Commercial active steering systems are controlling the steering angle depending on the driving situation only. This paper introduce methods for enhancing active steering system functionalities depending not only on the driving situation but also vehicle parameters like vehicle mass, tyre and road condition. In this regard, adaptation of the steering ratio as a function of above mentioned vehicle parameters is presented with examples. With some selected vehicle parameter changes, the reduction of the undesired influences on vehicle dynamics of these parameter changes has been demonstrated theoretically with simulations and with real-time driving measurements.

  18. Enhancement of UV-induced nucleotide excision repair activity upon forskolin treatment is cell growth-dependent.

    PubMed

    Lee, Jeong-Min; Park, Jeong-Min; Kang, Tae-Hong

    2016-10-01

    Forskolin (FSK), an adenylyl cyclase activator, has recently been shown to enhance nucleotide excision repair (NER) upon UV exposure. However, our study revealed that this effect was detected in human skin epithelial ARPE19 cells only in growing cells, but not in non-cycling cells. When the cells were grown at low density (70% confluence), FSK was capable of stimulating cAMP responsive element binding (CREB) phosphorylation, a marker for FSK-stimulated PKA activation, and resulted in a significant increase of NER activity compared to control treatment. However, cells grown under 100% confluent conditions showed neither FSK-induced CREB phosphorylation nor the resulting NER enhancement. These findings indicate that cellular growth is critical for FSK-induced NER enhancement and suggest that cellular growth conditions should be considered as a variable while evaluating a reagent's pharmacotherapeutic efficacy. [BMB Reports 2016; 49(10): 566-571].

  19. Unilateral muscle contractions enhance creative thinking.

    PubMed

    Goldstein, Abraham; Revivo, Ketty; Kreitler, Michal; Metuki, Nili

    2010-12-01

    Following the notion of relative importance of the right hemisphere (RH) in creative thinking, we explored the possibility of enhancing creative problem solving by artificially activating the RH ahead of time using unilateral hand contractions. Participants attempted to complete the Remote Associates Test after squeezing a ball with either their left or right hand. As predicted, participants who contracted their left hand (thus activating the RH) achieved higher scores than those who used their right hand and those who did not contract either hand. Our findings indicate that tilting the hemispheric balance toward the processing mode of one hemisphere by motor activation can greatly influence the outcome of thought processes. Regardless of the specific mechanism involved, this technique has the potential for acting as a therapeutic or remedial manipulation and could have wide applications in aiding individuals with language impairments or other disorders that are believed to be related to hemispheric imbalances.

  20. Potential Impacts of Climate Change in the Great Lakes Region

    NASA Astrophysics Data System (ADS)

    Winkler, J. A.

    2011-12-01

    Climate change is projected to have substantial impacts in the Great Lakes region of the United States. One intent of this presentation is to introduce the Great Lakes Integrated Sciences and Assessments Center (GLISA), a recently-funded NOAA RISA center. The goals and unique organizational structure of GLISA will be described along with core activities that support impact and assessment studies in the region. Additionally, observed trends in temperature, precipitation including lake effect snowfall, and lake temperatures and ice cover will be summarized for the Great Lakes region, and vulnerabilities to, and potential impacts of, climate change will be surveyed for critical natural and human systems. These include forest ecosystems, water resources, traditional and specialized agriculture, and tourism/recreation. Impacts and vulnerabilities unique to the Great Lakes region are emphasized.

  1. Kernel-Based Relevance Analysis with Enhanced Interpretability for Detection of Brain Activity Patterns

    PubMed Central

    Alvarez-Meza, Andres M.; Orozco-Gutierrez, Alvaro; Castellanos-Dominguez, German

    2017-01-01

    We introduce Enhanced Kernel-based Relevance Analysis (EKRA) that aims to support the automatic identification of brain activity patterns using electroencephalographic recordings. EKRA is a data-driven strategy that incorporates two kernel functions to take advantage of the available joint information, associating neural responses to a given stimulus condition. Regarding this, a Centered Kernel Alignment functional is adjusted to learning the linear projection that best discriminates the input feature set, optimizing the required free parameters automatically. Our approach is carried out in two scenarios: (i) feature selection by computing a relevance vector from extracted neural features to facilitating the physiological interpretation of a given brain activity task, and (ii) enhanced feature selection to perform an additional transformation of relevant features aiming to improve the overall identification accuracy. Accordingly, we provide an alternative feature relevance analysis strategy that allows improving the system performance while favoring the data interpretability. For the validation purpose, EKRA is tested in two well-known tasks of brain activity: motor imagery discrimination and epileptic seizure detection. The obtained results show that the EKRA approach estimates a relevant representation space extracted from the provided supervised information, emphasizing the salient input features. As a result, our proposal outperforms the state-of-the-art methods regarding brain activity discrimination accuracy with the benefit of enhanced physiological interpretation about the task at hand. PMID:29056897

  2. Great Lakes Literacy Principles

    NASA Astrophysics Data System (ADS)

    Fortner, Rosanne W.; Manzo, Lyndsey

    2011-03-01

    Lakes Superior, Huron, Michigan, Ontario, and Erie together form North America's Great Lakes, a region that contains 20% of the world's fresh surface water and is home to roughly one quarter of the U.S. population (Figure 1). Supporting a $4 billion sport fishing industry, plus $16 billion annually in boating, 1.5 million U.S. jobs, and $62 billion in annual wages directly, the Great Lakes form the backbone of a regional economy that is vital to the United States as a whole (see http://www.miseagrant.umich.edu/downloads/economy/11-708-Great-Lakes-Jobs.pdf). Yet the grandeur and importance of this freshwater resource are little understood, not only by people in the rest of the country but also by many in the region itself. To help address this lack of knowledge, the Centers for Ocean Sciences Education Excellence (COSEE) Great Lakes, supported by the U.S. National Science Foundation and the National Oceanic and Atmospheric Administration, developed literacy principles for the Great Lakes to serve as a guide for education of students and the public. These “Great Lakes Literacy Principles” represent an understanding of the Great Lakes' influences on society and society's influences on the Great Lakes.

  3. Space-confined fabrication of silver nanodendrites and their enhanced SERS activity.

    PubMed

    Wang, Shuqi; Xu, Li-Ping; Wen, Yongqiang; Du, Hongwu; Wang, Shutao; Zhang, Xueji

    2013-05-21

    Here we report a controllable method based on electrodeposition to fabricate Ag nanodendrites (NDs) on a microwell patterned electrode. The microwell patterns on the ITO electrode are fabricated via the microcontact printing technique. By varying the microwell size and electrodeposition time, the morphology of metal deposits on the microwell patterned ITO electrode can be tuned from boulders to dendrites. At the edge of the microwells, the current density was strengthened, which incurs rapid nucleation. The nucleus develops into dendrites because of Mullins-Sekerka instability. However, only boulders were observed at the center of microwells. By reducing the size of the microwells, only NDs were fabricated due to the edge effect. On the basis of understanding the underlying mechanism for dendritic growth in a confined space, our method is used for fabricating other noble metal (Au, Pt) nanodendrites. The controllable synthesis of Au and Pt NDs indicates the universality of this method. Compared with Ag film obtained from electron beam evaporation, the as-prepared Ag NDs exhibit highly enhanced surface-enhanced Raman scattering (SERS) sensitivity when they are used to detect rhodamine 6G (R6G). This approach provides a very controllable, reliable and general way for space-confined fabricating the noble metal nanodendrite arrays which show great promise in catalysis, sensing, biomedicine, electronic and magnetic devices.

  4. Wildlife associations in Rocky Mountain juniper in the northern Great Plains, South Dakota

    Treesearch

    Mark A. Rumble; John E. Gobeille

    1995-01-01

    Rocky Mountain juniper is an important habitat component in the northern Great Plains. These woodlands provide vertical and horizontal vegetative structure that enhances wildlife use. Ecological approaches to managing habitats require understanding relationships between wildlife species and succession in plant communities. We determined bird, small mammals and large...

  5. Enhanced Upconversion Luminescence in Yb3+/Tm3+-Codoped Fluoride Active Core/Active Shell/Inert Shell Nanoparticles through Directed Energy Migration

    PubMed Central

    Qiu, Hailong; Yang, Chunhui; Shao, Wei; Damasco, Jossana; Wang, Xianliang; Ågren, Hans; Prasad, Paras N.; Chen, Guanying

    2014-01-01

    The luminescence efficiency of lanthanide-doped upconversion nanoparticles is of particular importance for their embodiment in biophotonic and photonic applications. Here, we show that the upconversion luminescence of typically used NaYF4:Yb3+30%/Tm3+0.5% nanoparticles can be enhanced by ~240 times through a hierarchical active core/active shell/inert shell (NaYF4:Yb3+30%/Tm3+0.5%)/NaYbF4/NaYF4 design, which involves the use of directed energy migration in the second active shell layer. The resulting active core/active shell/inert shell nanoparticles are determined to be about 11 times brighter than that of well-investigated (NaYF4:Yb3+30%/Tm3+0.5%)/NaYF4 active core/inert shell nanoparticles when excited at ~980 nm. The strategy for enhanced upconversion in Yb3+/Tm3+-codoped NaYF4 nanoparticles through directed energy migration might have implications for other types of lanthanide-doped upconversion nanoparticles. PMID:28348285

  6. Enhanced Upconversion Luminescence in Yb3+/Tm3+-Codoped Fluoride Active Core/Active Shell/Inert Shell Nanoparticles through Directed Energy Migration.

    PubMed

    Qiu, Hailong; Yang, Chunhui; Shao, Wei; Damasco, Jossana; Wang, Xianliang; Ågren, Hans; Prasad, Paras N; Chen, Guanying

    2014-01-03

    The luminescence efficiency of lanthanide-doped upconversion nanoparticles is of particular importance for their embodiment in biophotonic and photonic applications. Here, we show that the upconversion luminescence of typically used NaYF₄:Yb 3+ 30%/Tm 3+ 0.5% nanoparticles can be enhanced by ~240 times through a hierarchical active core/active shell/inert shell (NaYF₄:Yb 3+ 30%/Tm 3+ 0.5%)/NaYbF₄/NaYF₄ design, which involves the use of directed energy migration in the second active shell layer. The resulting active core/active shell/inert shell nanoparticles are determined to be about 11 times brighter than that of well-investigated (NaYF₄:Yb 3+ 30%/Tm 3+ 0.5%)/NaYF₄ active core/inert shell nanoparticles when excited at ~980 nm. The strategy for enhanced upconversion in Yb 3+ /Tm 3+ -codoped NaYF₄ nanoparticles through directed energy migration might have implications for other types of lanthanide-doped upconversion nanoparticles.

  7. Enhanced Photocatalytic Activity of Diamond Thin Films Using Embedded Ag Nanoparticles.

    PubMed

    Li, Shuo; Bandy, Jason A; Hamers, Robert J

    2018-02-14

    Silver nanoparticles embedded into the diamond thin films enhance the optical absorption and the photocatalytic activity toward the solvated electron-initiated reduction of N 2 to NH 3 in water. Here, we demonstrate the formation of diamond films with embedded Ag nanoparticles <100 nm in diameter. Cross-sectional scanning electron microscopy (SEM), energy-dependent SEM, and energy-dispersive X-ray analysis demonstrate the formation of encapsulated nanoparticles. Optical absorption measurements in the visible and ultraviolet region show that the resulting films exhibit plasmonic resonances in the visible and near-ultraviolet region. Measurements of photocatalytic activity using supraband gap (λ < 225 nm) and sub-band gap (λ > 225 nm) excitation show significantly enhanced ability to convert N 2 to NH 3 . Incorporation of Ag nanoparticles induces a nearly 5-fold increase in activity using a sub-band gap excitation with λ > 225 nm. Our results suggest that internal photoemission, in which electrons are excited from Ag into diamond's conduction band, is an important process that extends the wavelength region beyond diamond's band gap. Other factors, including Ag-induced optical scattering and formation of graphitic impurities are also discussed.

  8. Enhanced Multisensory Integration and Motor Reactivation after Active Motor Learning of Audiovisual Associations

    ERIC Educational Resources Information Center

    Butler, Andrew J.; James, Thomas W.; James, Karin Harman

    2011-01-01

    Everyday experience affords us many opportunities to learn about objects through multiple senses using physical interaction. Previous work has shown that active motor learning of unisensory items enhances memory and leads to the involvement of motor systems during subsequent perception. However, the impact of active motor learning on subsequent…

  9. Targeting PIM kinase enhances the activity of sunitinib in renal cell carcinoma

    PubMed Central

    Mahalingam, D; Espitia, C M; Medina, E C; Esquivel, J A; Kelly, K R; Bearss, D; Choy, G; Taverna, P; Carew, J S; Giles, F J; Nawrocki, S T

    2011-01-01

    Background: Upregulation of PIM kinase expression has been reported in many malignancies, suggesting that inhibition of PIM kinase activity may be an attractive therapeutic strategy. We hypothesised that inhibition of PIM kinase activity with SGI-1776, a novel small molecule inhibitor of PIM kinase activity, would reduce the viability of renal cell carcinoma (RCC) cells and enhance the activity of sunitinib. Methods: Immunoblotting, qRT–PCR, and gene expression arrays were carried out to identify genes modulated by SGI-1776 treatment. The anticancer activity of SGI-1776 and sunitinib was determined by viability and apoptosis assays and in tumour xenografts in vivo. Results: Treatment with SGI-1776 led to a decrease in phosphorylated and total c-Myc levels, which resulted in the modulation of c-Myc target genes. SGI-1776 in combination with sunitinib induced a further reduction in c-Myc levels, which was associated with enhanced anticancer activity. siRNA-mediated knockdown of c-Myc demonstrated that its expression has a key role in regulating the sensitivity to the combination of SGI-1776 and sunitinib. Importantly, the combination significantly reduced tumour burden in two RCC xenograft models compared with single-agent therapy and was very well tolerated. Conclusion: These data indicate that targeting PIM kinase signalling is a promising treatment strategy for RCC. PMID:22015557

  10. Activated prostaglandin D2 receptors on macrophages enhance neutrophil recruitment into the lung

    PubMed Central

    Jandl, Katharina; Stacher, Elvira; Bálint, Zoltán; Sturm, Eva Maria; Maric, Jovana; Peinhaupt, Miriam; Luschnig, Petra; Aringer, Ida; Fauland, Alexander; Konya, Viktoria; Dahlen, Sven-Erik; Wheelock, Craig E.; Kratky, Dagmar; Olschewski, Andrea; Marsche, Gunther; Schuligoi, Rufina; Heinemann, Akos

    2016-01-01

    Background Prostaglandin (PG) D2 is an early-phase mediator in inflammation, but its action and the roles of the 2 D-type prostanoid receptors (DPs) DP1 and DP2 (also called chemoattractant receptor–homologous molecule expressed on TH2 cells) in regulating macrophages have not been elucidated to date. Objective We investigated the role of PGD2 receptors on primary human macrophages, as well as primary murine lung macrophages, and their ability to influence neutrophil action in vitro and in vivo. Methods In vitro studies, including migration, Ca2+ flux, and cytokine secretion, were conducted with primary human monocyte-derived macrophages and neutrophils and freshly isolated murine alveolar and pulmonary interstitial macrophages. In vivo pulmonary inflammation was assessed in male BALB/c mice. Results Activation of DP1, DP2, or both receptors on human macrophages induced strong intracellular Ca2+ flux, cytokine release, and migration of macrophages. In a murine model of LPS-induced pulmonary inflammation, activation of each PGD2 receptor resulted in aggravated airway neutrophilia, tissue myeloperoxidase activity, cytokine contents, and decreased lung compliance. Selective depletion of alveolar macrophages abolished the PGD2-enhanced inflammatory response. Activation of PGD2 receptors on human macrophages enhanced the migratory capacity and prolonged the survival of neutrophils in vitro. In human lung tissue specimens both DP1 and DP2 receptors were located on alveolar macrophages along with hematopoietic PGD synthase, the rate-limiting enzyme of PGD2 synthesis. Conclusion For the first time, our results show that PGD2 markedly augments disease activity through its ability to enhance the proinflammatory actions of macrophages and subsequent neutrophil activation. PMID:26792210

  11. Activated prostaglandin D2 receptors on macrophages enhance neutrophil recruitment into the lung.

    PubMed

    Jandl, Katharina; Stacher, Elvira; Bálint, Zoltán; Sturm, Eva Maria; Maric, Jovana; Peinhaupt, Miriam; Luschnig, Petra; Aringer, Ida; Fauland, Alexander; Konya, Viktoria; Dahlen, Sven-Erik; Wheelock, Craig E; Kratky, Dagmar; Olschewski, Andrea; Marsche, Gunther; Schuligoi, Rufina; Heinemann, Akos

    2016-03-01

    Prostaglandin (PG) D2 is an early-phase mediator in inflammation, but its action and the roles of the 2 D-type prostanoid receptors (DPs) DP1 and DP2 (also called chemoattractant receptor-homologous molecule expressed on T(H)2 cells) in regulating macrophages have not been elucidated to date. We investigated the role of PGD2 receptors on primary human macrophages, as well as primary murine lung macrophages, and their ability to influence neutrophil action in vitro and in vivo. In vitro studies, including migration, Ca(2+) flux, and cytokine secretion, were conducted with primary human monocyte-derived macrophages and neutrophils and freshly isolated murine alveolar and pulmonary interstitial macrophages. In vivo pulmonary inflammation was assessed in male BALB/c mice. Activation of DP1, DP2, or both receptors on human macrophages induced strong intracellular Ca(2+) flux, cytokine release, and migration of macrophages. In a murine model of LPS-induced pulmonary inflammation, activation of each PGD2 receptor resulted in aggravated airway neutrophilia, tissue myeloperoxidase activity, cytokine contents, and decreased lung compliance. Selective depletion of alveolar macrophages abolished the PGD2-enhanced inflammatory response. Activation of PGD2 receptors on human macrophages enhanced the migratory capacity and prolonged the survival of neutrophils in vitro. In human lung tissue specimens both DP1 and DP2 receptors were located on alveolar macrophages along with hematopoietic PGD synthase, the rate-limiting enzyme of PGD2 synthesis. For the first time, our results show that PGD2 markedly augments disease activity through its ability to enhance the proinflammatory actions of macrophages and subsequent neutrophil activation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Enhancement of Immune Activation Activities of Spirulina maxima Grown in Deep-Sea Water

    PubMed Central

    Choi, Woon Yong; Kang, Do Hyung; Lee, Hyeon Yong

    2013-01-01

    In this study, the immuno-modulatory and anticancer activities of marine algae, Spirulina maxima grown in deep-sea water (DSW), were investigated. It was found that the extract of S. maxima, cultured in DSW, effectively suppressed the expression of Bcl2 in A549 cells as well as inhibiting various human cancer cells with concentration dependency, which possibly implies that the extracts may play more important roles in controlling cancer cell growth. The secretion of cytokines IL-6 and TNF-α from human B cells was also greatly increased, compared to those of the extract grown in conventional sea-water. The growth of Human Natural Killer (NK) cells in the presence of the extracts from DSW was significantly higher (12.2 × 104 viable cells/mL) when compared to the control (1.1 × 104 viable cells/mL). Based on HPLC analysis, the increase in the biological activities of the extracts from DSW was caused by considerably high amounts of β-carotene and ascorbic acid because the DSW contained high concentrations and good ratios of several key minerals for biosynthesizing β-carotene and ascorbic acid, as well as maintaining high cell growth. PMID:23743830

  13. Enhancement of oxygen reduction reaction activities by Pt nanoclusters decorated on ordered mesoporous porphyrinic carbons

    DOE PAGES

    Sun-Mi Hwang; Choi, YongMan; Kim, Min Gyu; ...

    2016-03-08

    The high cost of Pt-based membrane electrode assemblies (MEAs) is a critical hurdle for the commercialization of polymer electrolyte fuel cells (PEFCs). Recently, non-precious metal-based catalysts (NPMCs) have demonstrated much enhanced activity but their oxygen reduction reaction (ORR) activity is still inferior to that of Pt-based catalysts resulting in a much thicker electrode in the MEA. For the reduction of mass transport and ohmic overpotential we adopted a new concept of catalyst that combines an ultra-low amount of Pt nanoclusters with metal–nitrogen (M–Nx) doped ordered mesoporous porphyrinic carbon (FeCo–OMPC(L)). The 5 wt% Pt/FeCo–OMPC(L) showed a 2-fold enhancement in activities comparedmore » to a higher loading of Pt. Our experimental results supported by first-principles calculations indicate that a trace amount of Pt nanoclusters on FeCo–OMPC(L) significantly enhances the ORR activity due to their electronic effect as well as geometric effect from the reduced active sites. Finally, in terms of fuel cell commercialization, this class of catalysts is a promising candidate due to the limited use of Pt in the MEA.« less

  14. Enhanced peroxidase activity and tumour tissue visualization by cobalt-doped magnetoferritin nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Tongwei; Cao, Changqian; Tang, Xu; Cai, Yao; Yang, Caiyun; Pan, Yongxin

    2017-01-01

    Magnetoferritin (M-HFn) is a biomimetic magnetic nanoparticle with a human heavy-chain ferritin (HFn) shell, trapping a magnetite (Fe3O4) core that has inherited peroxidase-like activity. In this study, cobalt-doped M-HFn nanoparticles (M-HFn-Co x Fe3-x O4) with different amounts of cobalt were successfully synthesized. Experimental results indicate that the controlled doping of a certain amount of cobalt into the magnetite cores of M-HFn nanoparticles enhances its peroxidase-like catalytic activity and efficacy for visualizing tumour tissues. For example, compared with sample Co0 (without cobalt doping), the peroxidase-like activity of the cobalt-doped nanoparticle sample Co60 (with a cobalt doping molar percentage of ˜34.2%) increases 1.7 times, and has the maximal reaction velocity (V max) values. Moreover, after a one-step incubation with Co60 nanoparticles, and using the peroxidase substrate 3,3‧-diaminobenzidine tetrahydrochloride (DAB) for colour development, the tumour tissues of breast, colorectal, stomach and pancreas tumours showed a deeper brown colour with clear boundaries between the healthy and tumourous cells. Therefore, this suggests that the cobalt-doped magnetoferritin nanoparticles enhance peroxidase activity and tumour tissue visualization.

  15. Enhanced peroxidase activity and tumour tissue visualization by cobalt-doped magnetoferritin nanoparticles.

    PubMed

    Zhang, Tongwei; Cao, Changqian; Tang, Xu; Cai, Yao; Yang, Caiyun; Pan, Yongxin

    2017-01-27

    Magnetoferritin (M-HFn) is a biomimetic magnetic nanoparticle with a human heavy-chain ferritin (HFn) shell, trapping a magnetite (Fe 3 O 4 ) core that has inherited peroxidase-like activity. In this study, cobalt-doped M-HFn nanoparticles (M-HFn-Co x Fe 3-x O 4 ) with different amounts of cobalt were successfully synthesized. Experimental results indicate that the controlled doping of a certain amount of cobalt into the magnetite cores of M-HFn nanoparticles enhances its peroxidase-like catalytic activity and efficacy for visualizing tumour tissues. For example, compared with sample Co0 (without cobalt doping), the peroxidase-like activity of the cobalt-doped nanoparticle sample Co60 (with a cobalt doping molar percentage of ∼34.2%) increases 1.7 times, and has the maximal reaction velocity (V max ) values. Moreover, after a one-step incubation with Co60 nanoparticles, and using the peroxidase substrate 3,3'-diaminobenzidine tetrahydrochloride (DAB) for colour development, the tumour tissues of breast, colorectal, stomach and pancreas tumours showed a deeper brown colour with clear boundaries between the healthy and tumourous cells. Therefore, this suggests that the cobalt-doped magnetoferritin nanoparticles enhance peroxidase activity and tumour tissue visualization.

  16. Enhancing blood donor skin disinfection using natural oils.

    PubMed

    Alabdullatif, Meshari; Boujezza, Imen; Mekni, Mohamed; Taha, Mariam; Kumaran, Dilini; Yi, Qi-Long; Landoulsi, Ahmed; Ramirez-Arcos, Sandra

    2017-12-01

    Effective donor skin disinfection is essential in preventing bacterial contamination of blood components with skin flora bacteria like Staphylococcus epidermidis. Cell aggregates of S. epidermidis (biofilms) are found on the skin and are resistant to the commonly used donor skin disinfectants chlorhexidine-gluconate and isopropyl alcohol. It has been demonstrated that essential oils synergistically enhance the antibacterial activity of chlorhexidine-gluconate. The objective of this study was to test plant-extracted essential oils in combination with chlorhexidine-gluconate or chlorhexidine-gluconate plus isopropyl alcohol for their ability to eliminate S. epidermidis biofilms. The composition of oils extracted from Artemisia herba-alba, Lavandula multifida, Origanum marjoram, Rosmarinus officinalis, and Thymus capitatus was analyzed using gas chromatography-mass spectrometry. A rabbit model was used to assess skin irritation caused by the oils. In addition, the anti-biofilm activity of the oils used alone or in combination with chlorhexidine-gluconate or chlorhexidine-gluconate plus isopropyl alcohol was tested against S. epidermidis biofilms. Essential oil concentrations 10%, 20%, and 30% were chosen for anti-biofilm assays, because skin irritation was observed at concentrations greater than 30%. All oils except for O. marjoram had anti-biofilm activity at these three concentrations. L. multifida synergistically enhanced the anti-biofilm activity of chlorhexidine-gluconate and resulted in the highest anti-biofilm activity observed when combined with chlorhexidine-gluconate plus isopropyl alcohol. Gas chromatography-mass spectrometry revealed that the main component contributing to the activity of L. multifida oil was a natural terpene alcohol called linalool. The anti-biofilm activity of chlorhexidine-gluconate plus isopropyl alcohol can be greatly enhanced by L. multifida oil or linalool. Therefore, these components could potentially be used to improve blood

  17. A case study of technology-enhanced active learning in introductory cellular biology

    NASA Astrophysics Data System (ADS)

    Chacon Diaz, Lucia Bernardette

    Science teaching and learning in higher education has been evolving over the years to encourage student retention in STEM fields and reduce student attrition. As novel pedagogical practices emerge in the college science classroom, research on the effectiveness of such approaches must be undertaken. The following research applied a case study research design in order to evaluate the experiences of college students in a TEAL classroom. This case study was conducted during the 2017 Summer Cellular and Organismal Biology course at a four-year Hispanic Serving Institution located in the Southwest region of the United States. The main components evaluated were students' exam performance, self-efficacy beliefs, and behaviors and interactions in the Technology-Enhanced Active Learning (TEAL) classroom. The findings suggest that students enrolled in a TEAL classroom are equally capable of answering high and low order thinking questions. Additionally, students are equally confident in answering high and low order thinking items related to cellular biology. In the TEAL classroom, student-student interactions are encouraged and collaborative behaviors are exhibited. Gender and ethnicity do not influence self-efficacy beliefs in students in the TEAL room, and the overall class average of self-efficacy beliefs tended to be higher compared to exam performance. Based on the findings of this case study, TEAL classrooms are greatly encouraged in science higher education in order to facilitate learning and class engagement for all students. Providing students with the opportunity to expand their academic talents in the science classroom accomplishes a crucial goal in STEM higher education.

  18. Surfaces of Fluorinated Pyridinium Block Copolymers with Enhanced Antibacterial Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan,S.; Ward, R.; Hexemer, A.

    2006-01-01

    Polystyrene-b-poly(4-vinylpyridine) copolymers were quaternized with 1-bromohexane and 6-perfluorooctyl-1-bromohexane. Surfaces prepared from these polymers were characterized by contact angle measurements, near-edge X-ray absorption fine structure spectroscopy and X-ray photoelectron spectroscopy. The fluorinated pyridinium surfaces showed enhanced antibacterial activity compared to their nonfluorinated counterparts. Even a polymer with a relatively low molecular weight pyridinium block showed high antimicrobial activity. The bactericidal effect was found to be related to the molecular composition and organization in the top 2-3 nm of the surface and increased with increasing hydrophilicity and pyridinium concentration of the surface.

  19. Re‐estimated effects of deep episodic slip on the occurrence and probability of great earthquakes in Cascadia

    USGS Publications Warehouse

    Beeler, Nicholas M.; Roeloffs, Evelyn A.; McCausland, Wendy

    2013-01-01

    Mazzotti and Adams (2004) estimated that rapid deep slip during typically two week long episodes beneath northern Washington and southern British Columbia increases the probability of a great Cascadia earthquake by 30–100 times relative to the probability during the ∼58 weeks between slip events. Because the corresponding absolute probability remains very low at ∼0.03% per week, their conclusion is that though it is more likely that a great earthquake will occur during a rapid slip event than during other times, a great earthquake is unlikely to occur during any particular rapid slip event. This previous estimate used a failure model in which great earthquakes initiate instantaneously at a stress threshold. We refine the estimate, assuming a delayed failure model that is based on laboratory‐observed earthquake initiation. Laboratory tests show that failure of intact rock in shear and the onset of rapid slip on pre‐existing faults do not occur at a threshold stress. Instead, slip onset is gradual and shows a damped response to stress and loading rate changes. The characteristic time of failure depends on loading rate and effective normal stress. Using this model, the probability enhancement during the period of rapid slip in Cascadia is negligible (<10%) for effective normal stresses of 10 MPa or more and only increases by 1.5 times for an effective normal stress of 1 MPa. We present arguments that the hypocentral effective normal stress exceeds 1 MPa. In addition, the probability enhancement due to rapid slip extends into the interevent period. With this delayed failure model for effective normal stresses greater than or equal to 50 kPa, it is more likely that a great earthquake will occur between the periods of rapid deep slip than during them. Our conclusion is that great earthquake occurrence is not significantly enhanced by episodic deep slip events.

  20. The Great Lakes

    EPA Pesticide Factsheets

    The Great Lakes form the largest surface freshwater system on Earth. The U.S. and Canada work together to restore and protect the environment in the Great Lakes Basin. Top issues include contaminated sediments, water quality and invasive species.

  1. Modafinil enhances thalamocortical activity by increasing neuronal electrotonic coupling

    PubMed Central

    Urbano, Francisco J.; Leznik, Elena; Llinás, Rodolfo R.

    2007-01-01

    Modafinil (Provigil, Modiodal), an antinarcoleptic and mood-enhancing drug, is shown here to sharpen thalamocortical activity and to increase electrical coupling between cortical interneurons and between nerve cells in the inferior olivary nucleus. After irreversible pharmacological block of connexin permeability (i.e., by using either 18β-glycyrrhetinic derivatives or mefloquine), modafinil restored electrotonic coupling within 30 min. It was further established that this restoration is implemented through a Ca2+/calmodulin protein kinase II-dependent step. PMID:17640897

  2. Combinatorial activation and concentration-dependent repression of the Drosophila even skipped stripe 3+7 enhancer

    PubMed Central

    Struffi, Paolo; Corado, Maria; Kaplan, Leah; Yu, Danyang; Rushlow, Christine; Small, Stephen

    2011-01-01

    Despite years of study, the precise mechanisms that control position-specific gene expression during development are not understood. Here, we analyze an enhancer element from the even skipped (eve) gene, which activates and positions two stripes of expression (stripes 3 and 7) in blastoderm stage Drosophila embryos. Previous genetic studies showed that the JAK-STAT pathway is required for full activation of the enhancer, whereas the gap genes hunchback (hb) and knirps (kni) are required for placement of the boundaries of both stripes. We show that the maternal zinc-finger protein Zelda (Zld) is absolutely required for activation, and present evidence that Zld binds to multiple non-canonical sites. We also use a combination of in vitro binding experiments and bioinformatics analysis to redefine the Kni-binding motif, and mutational analysis and in vivo tests to show that Kni and Hb are dedicated repressors that function by direct DNA binding. These experiments significantly extend our understanding of how the eve enhancer integrates positive and negative transcriptional activities to generate sharp boundaries in the early embryo. PMID:21865322

  3. Enhanced AMPA Receptor Activity Increases Operant Alcohol Self-administration and Cue-Induced Reinstatement

    PubMed Central

    Cannady, Reginald; Fisher, Kristen R.; Durant, Brandon; Besheer, Joyce; Hodge, Clyde W.

    2012-01-01

    Long-term alcohol exposure produces neuroadaptations that contribute to the progression of alcohol abuse disorders. Chronic alcohol consumption results in strengthened excitatory neurotransmission and increased AMPA receptor signaling in animal models. However, the mechanistic role of enhanced AMPA receptor activity in alcohol reinforcement and alcohol-seeking behavior remains unclear. This study examined the role of enhanced AMPA receptor function using the selective positive allosteric modulator, aniracetam, in modulating operant alcohol self-administration and cue-induced reinstatement. Male alcohol-preferring (P-) rats, trained to self-administer alcohol (15%, v/v) versus water were pretreated with aniracetam to assess effects on maintenance of alcohol self-administration. To determine reinforcer specificity, P-rats were trained to self-administer sucrose (0.8%, w/v) versus water, and effects of aniracetam were tested. The role of aniracetam in modulating relapse of alcohol-seeking was assessed using a response-contingent cue-induced reinstatement procedure in P-rats trained to self-administer 15% alcohol. Aniracetam pretreatment significantly increased alcohol-reinforced responses relative to vehicle treatment. This increase was not attributed to aniracetam-induced hyperactivity as aniracetam pretreatment did not alter locomotor activity. AMPA receptor involvement was confirmed because DNQX (AMPA receptor antagonist) blocked the aniracetam-induced increase in alcohol self-administration. Aniracetam did not alter sucrose-reinforced responses in sucrose-trained P-rats, suggesting that enhanced AMPA receptor activity is selective in modulating the reinforcing function of alcohol. Finally, aniracetam pretreatment potentiated cue-induced reinstatement of alcohol-seeking behavior versus vehicle treated-P-rats. These data suggest that enhanced glutamate activity at AMPA receptors may be key in facilitating alcohol consumption and seeking behavior which could

  4. Enhanced AMPA receptor activity increases operant alcohol self-administration and cue-induced reinstatement.

    PubMed

    Cannady, Reginald; Fisher, Kristen R; Durant, Brandon; Besheer, Joyce; Hodge, Clyde W

    2013-01-01

    Long-term alcohol exposure produces neuroadaptations that contribute to the progression of alcohol abuse disorders. Chronic alcohol consumption results in strengthened excitatory neurotransmission and increased α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptors (AMPA) receptor signaling in animal models. However, the mechanistic role of enhanced AMPA receptor activity in alcohol-reinforcement and alcohol-seeking behavior remains unclear. This study examined the role of enhanced AMPA receptor function using the selective positive allosteric modulator, aniracetam, in modulating operant alcohol self-administration and cue-induced reinstatement. Male alcohol-preferring (P-) rats, trained to self-administer alcohol (15%, v/v) versus water were pre-treated with aniracetam to assess effects on maintenance of alcohol self-administration. To determine reinforcer specificity, P-rats were trained to self-administer sucrose (0.8%, w/v) versus water, and effects of aniracetam were tested. The role of aniracetam in modulating relapse of alcohol-seeking was assessed using a response contingent cue-induced reinstatement procedure in P-rats trained to self-administer 15% alcohol. Aniracetam pre-treatment significantly increased alcohol-reinforced responses relative to vehicle treatment. This increase was not attributed to aniracetam-induced hyperactivity as aniracetam pre-treatment did not alter locomotor activity. AMPA receptor involvement was confirmed because 6,7-dinitroquinoxaline-2,3-dione (AMPA receptor antagonist) blocked the aniracetam-induced increase in alcohol self-administration. Aniracetam did not alter sucrose-reinforced responses in sucrose-trained P-rats, suggesting that enhanced AMPA receptor activity is selective in modulating the reinforcing function of alcohol. Finally, aniracetam pre-treatment potentiated cue-induced reinstatement of alcohol-seeking behavior versus vehicle-treated P-rats. These data suggest that enhanced glutamate activity at AMPA

  5. Enhanced multisensory integration and motor reactivation after active motor learning of audiovisual associations.

    PubMed

    Butler, Andrew J; James, Thomas W; James, Karin Harman

    2011-11-01

    Everyday experience affords us many opportunities to learn about objects through multiple senses using physical interaction. Previous work has shown that active motor learning of unisensory items enhances memory and leads to the involvement of motor systems during subsequent perception. However, the impact of active motor learning on subsequent perception and recognition of associations among multiple senses has not been investigated. Twenty participants were included in an fMRI study that explored the impact of active motor learning on subsequent processing of unisensory and multisensory stimuli. Participants were exposed to visuo-motor associations between novel objects and novel sounds either through self-generated actions on the objects or by observing an experimenter produce the actions. Immediately after exposure, accuracy, RT, and BOLD fMRI measures were collected with unisensory and multisensory stimuli in associative perception and recognition tasks. Response times during audiovisual associative and unisensory recognition were enhanced by active learning, as was accuracy during audiovisual associative recognition. The difference in motor cortex activation between old and new associations was greater for the active than the passive group. Furthermore, functional connectivity between visual and motor cortices was stronger after active learning than passive learning. Active learning also led to greater activation of the fusiform gyrus during subsequent unisensory visual perception. Finally, brain regions implicated in audiovisual integration (e.g., STS) showed greater multisensory gain after active learning than after passive learning. Overall, the results show that active motor learning modulates the processing of multisensory associations.

  6. Fundamentals of quantitative dynamic contrast-enhanced MR imaging.

    PubMed

    Paldino, Michael J; Barboriak, Daniel P

    2009-05-01

    Quantitative analysis of dynamic contrast-enhanced MR imaging (DCE-MR imaging) has the power to provide information regarding physiologic characteristics of the microvasculature and is, therefore, of great potential value to the practice of oncology. In particular, these techniques could have a significant impact on the development of novel anticancer therapies as a promising biomarker of drug activity. Standardization of DCE-MR imaging acquisition and analysis to provide more reproducible measures of tumor vessel physiology is of crucial importance to realize this potential. The purpose of this article is to review the pathophysiologic basis and technical aspects of DCE-MR imaging techniques.

  7. Display activity and seasonality of faecal sexual steroids in male great bustard (Otis tarda L.).

    PubMed

    Biczó, A; Péczely, P

    2007-03-01

    The non-invasive faecal sampling and RIA was used to measure faecal equivalents of testosterone (T), dehydroepiandrosterone (DHEA), oestradiol-17beta (E2) and progesterone (P4) in juvenile and adult great bustard males. Possible connections of diurnal and seasonal changes of sexual steroid levels and display activity were studied. Correlations were found between sexual steroid equivalent levels of faeces and display activity and agonistic behaviour in the different phases of annual cycle of adult males. In early display period increasing levels of androgens were measured, during main display period very high androgen dominance was observable against E2 and P4. During postnuptial moult strong T decrease and DHEA and P4 increase were detected. Elevation of E2 was measured during wintering. In juveniles level of DHEA was higher than level of T suggesting its importance in immature males. Decrease of T was detected between reproductive period and postnuptial moult and DHEA between reproduction and wintering, accompanying with E2 elevation. The inhibiting effect of inclement weather on gonad functions also was detected in our study. We suppose that the unexpected cold weather with strong wind depressed the levels of androgens both in juveniles and adults and the increase of faecal E2 was also detected.

  8. Young (<7 Ma) gold deposits and active geothermal systems of the Great Basin: Enigmas, questions, and exploration potential

    USGS Publications Warehouse

    Coolbaugh, Mark F.; Vikre, Peter G.; Faulds, James E.

    2011-01-01

    Young gold systems in the Great Basin (£ 7 Ma), though not as well studied as their older counterparts, comprise a rapidly growing and in some ways controversial group. The gold inventory for these systems has more than doubled in the last 5 years from roughly 370 tonnes (12 Moz) to 890 tonnes (29 Moz). Although these deposits are characterized by low grades, tonnages can be high and stripping ratios low, and they have been mined profitably, as exemplified by Florida Canyon and Hycroft. Active geothermal systems in the Great Basin also comprise a rapidly growing group, as evidenced by a number of recent discoveries of geothermal groundwater and a more than 50% increase in electricity production capacity from these systems in the last 5 years. Many young gold deposits are closely associated with active geothermal systems, suggesting that gold deposits may be forming today in the Great Basin. Measured or estimated geothermal reservoir temperatures commonly approach or exceed 200∞C, and other characteristics and processes (advanced argillic caps, hydrothermal eruption breccias) of these young deposits resemble those of nearby Tertiary precious metal deposits. Nonetheless, many young gold systems, especially in Nevada, are not associated with coeval igneous rocks. Similarly, almost all electricity-grade geothermal systems in Nevada are not associated with Quaternary silicic volcanic rocks, and have lower temperature gradients, lower 3He/4He ratios, and lower dissolved trace element concentrations than most magmatic-heated geothermal systems elsewhere in the world. The increasing economic significance of young gold deposits and active geothermal systems justifies more research to better understand their origins, particularly because in some aspects they remain enigmatic and controversial. Are young gold deposits in Nevada truly amagmatic, or have they received metal and fluid contributions from magmas deeper within the crust? Has gold in these deposits been

  9. Systemic treatment with n-6 polyunsaturated fatty acids attenuates EL4 thymoma growth and metastasis through enhancing specific and non-specific anti-tumor cytolytic activities and production of TH1 cytokines.

    PubMed

    Salem, Mohamed Labib

    2005-06-01

    Recently, there has been a great interest in the effects of different types of n-6 polyunsaturated acids (n-6 PUFAs) upon the immune system and cancer development. However, the effects of n-6 PUFAs are still controversial and as yet undefined. The present study aimed to investigate the anti-tumor effects of n-6 PUFAs against EL4 thymoma and the associated immune mechanisms. To this, sesame oil, a vegetable oil enriched with n-6 PUFAs, or free linoleic acid (LA) were administered intraperitoneally into C57BL/6 mice before and after challenge with EL4 lymphoma cells. Treatment with either sesame oil or LA attenuated the growth and metastasis of EL4 lymphoma. The anti-tumor effect of LA was superior to that of sesame oil, and associated with an increase in the survival rate of the tumor-bearing mice. In addition, both sesame oil and LA showed dose-dependent anti-lymphoma growth in vitro. Treatment with LA generated significant increases in the anti-lymphoma cytolytic and cytostatic activities of T cells and macrophages, respectively, and enhanced production of IL-2 and IFN-gamma while decreased production of IL-4, IL-6 and IL-10. In summation, the results suggest that n-6 PUFAs, represented by LA, can attenuate EL4 lymphoma growth and metastasis through enhancing the specific and non-specific anti-tumor cytolytic activities and production of TH1 cytokines. These findings might be of great importance for a proper design of systemic nourishment with PUFAs emulsions for cancer patients.

  10. Eicosapentaenoic and docosahexaenoic acid ethyl esters differentially enhance B-cell activity in murine obesity[S

    PubMed Central

    Teague, Heather; Harris, Mitchel; Fenton, Jenifer; Lallemand, Perrine; Shewchuk, Brian M.; Shaikh, Saame Raza

    2014-01-01

    EPA and DHA are not biologically equivalent; however, their individual activity on B cells is unknown. We previously reported fish oil enhanced murine B-cell activity in obesity. To distinguish between the effects of EPA and DHA, we studied the ethyl esters of EPA and DHA on murine B-cell function as a function of time. We first demonstrate that EPA and DHA maintained the obese phenotype, with no improvements in fat mass, adipose inflammatory cytokines, fasting insulin, or glucose clearance. We then tested the hypothesis that EPA and DHA would increase the frequency of splenic B cells. EPA and DHA differentially enhanced the frequency and/or percentage of select B-cell subsets, correlating with increased natural serum IgM and cecal IgA. We next determined the activities of EPA and DHA on ex vivo production of cytokines upon lipopolysaccharide stimulation of B cells. EPA and DHA, in a time-dependent manner, enhanced B-cell cytokines with DHA notably increasing IL-10. At the molecular level, EPA and DHA differentially enhanced the formation of ordered microdomains but had no effect on Toll-like receptor 4 mobility. Overall, the results establish differential effects of EPA and DHA in a time-dependent manner on B-cell activity in obesity, which has implications for future clinical studies. PMID:24837990

  11. The same enhancer regulates the earliest Emx2 expression in caudal forebrain primordium, subsequent expression in dorsal telencephalon and later expression in the cortical ventricular zone.

    PubMed

    Suda, Yoko; Kokura, Kenji; Kimura, Jun; Kajikawa, Eriko; Inoue, Fumitaka; Aizawa, Shinichi

    2010-09-01

    We have analyzed Emx2 enhancers to determine how Emx2 functions during forebrain development are regulated. The FB (forebrain) enhancer we identified immediately 3' downstream of the last coding exon is well conserved among tetrapods and unexpectedly directed all the Emx2 expression in forebrain: caudal forebrain primordium at E8.5, dorsal telencephalon at E9.5-E10.5 and the cortical ventricular zone after E12.5. Otx, Tcf, Smad and two unknown transcription factor binding sites were essential to all these activities. The mutant that lacked this enhancer demonstrated that Emx2 expression under the enhancer is solely responsible for diencephalon development. However, in telencephalon, the FB enhancer did not have activities in cortical hem or Cajal-Retzius cells, nor was its activity in the cortex graded. Emx2 expression was greatly reduced, but persisted in the telencephalon of the enhancer mutant, indicating that there exists another enhancer for Emx2 expression unique to mammalian telencephalon.

  12. Enhanced antibacterial activity through the controlled alignment of graphene oxide nanosheets.

    PubMed

    Lu, Xinglin; Feng, Xunda; Werber, Jay R; Chu, Chiheng; Zucker, Ines; Kim, Jae-Hong; Osuji, Chinedum O; Elimelech, Menachem

    2017-11-14

    The cytotoxicity of 2D graphene-based nanomaterials (GBNs) is highly important for engineered applications and environmental health. However, the isotropic orientation of GBNs, most notably graphene oxide (GO), in previous experimental studies obscured the interpretation of cytotoxic contributions of nanosheet edges. Here, we investigate the orientation-dependent interaction of GBNs with bacteria using GO composite films. To produce the films, GO nanosheets are aligned in a magnetic field, immobilized by cross-linking of the surrounding matrix, and exposed on the surface through oxidative etching. Characterization by small-angle X-ray scattering and atomic force microscopy confirms that GO nanosheets align progressively well with increasing magnetic field strength and that the alignment is effectively preserved by cross-linking. When contacted with the model bacterium Escherichia coli , GO nanosheets with vertical orientation exhibit enhanced antibacterial activity compared with random and horizontal orientations. Further characterization is performed to explain the enhanced antibacterial activity of the film with vertically aligned GO. Using phospholipid vesicles as a model system, we observe that GO nanosheets induce physical disruption of the lipid bilayer. Additionally, we find substantial GO-induced oxidation of glutathione, a model intracellular antioxidant, paired with limited generation of reactive oxygen species, suggesting that oxidation occurs through a direct electron-transfer mechanism. These physical and chemical mechanisms both require nanosheet penetration of the cell membrane, suggesting that the enhanced antibacterial activity of the film with vertically aligned GO stems from an increased density of edges with a preferential orientation for membrane disruption. The importance of nanosheet penetration for cytotoxicity has direct implications for the design of engineering surfaces using GBNs.

  13. Tagged Neutron Source for API Inspection Systems with Greatly Enhanced Spatial Resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2012-06-04

    We recently developed induced fission and transmission imaging methods with time- and directionally-tagged neutrons offer new capabilities for characterization of fissile material configurations and enhanced detection of special nuclear materials (SNM). An Advanced Associated Particle Imaging (API) generator with higher angular resolution and neutron yield than existing systems is needed to fully exploit these methods.

  14. Enhancement of the antifungal activity of antimicrobial drugs by Eugenia uniflora L.

    PubMed

    Santos, Karla K A; Matias, Edinardo F F; Tintino, Saulo R; Souza, Celestina E S; Braga, Maria F B M; Guedes, Gláucia M M; Costa, José G M; Menezes, Irwin R A; Coutinho, Henrique Douglas Melo

    2013-07-01

    Candidiasis is the most frequent infection by opportunistic fungi such as Candida albicans, Candida tropicalis, and Candida krusei. Ethanol extract from Eugenia uniflora was assayed, for its antifungal activity, either alone or combined with four selected chemotherapeutic antimicrobial agents, including anphotericin B, mebendazole, nistatin, and metronidazole against these strains. The obtained results indicated that the association of the extract of E. uniflora to metronidazole showed a potential antifungal activity against C. tropicalis. However, no synergistic activity against the other strains was observed, as observed when the extract was associated with the other, not enhancing their antifungal activity.

  15. Enhancement of the Antifungal Activity of Antimicrobial Drugs by Eugenia uniflora L.

    PubMed Central

    Santos, Karla K.A.; Matias, Edinardo F.F.; Tintino, Saulo R.; Souza, Celestina E.S.; Braga, Maria F.B.M.; Guedes, Gláucia M.M.; Costa, José G.M.; Menezes, Irwin R.A.

    2013-01-01

    Abstract Candidiasis is the most frequent infection by opportunistic fungi such as Candida albicans, Candida tropicalis, and Candida krusei. Ethanol extract from Eugenia uniflora was assayed, for its antifungal activity, either alone or combined with four selected chemotherapeutic antimicrobial agents, including anphotericin B, mebendazole, nistatin, and metronidazole against these strains. The obtained results indicated that the association of the extract of E. uniflora to metronidazole showed a potential antifungal activity against C. tropicalis. However, no synergistic activity against the other strains was observed, as observed when the extract was associated with the other, not enhancing their antifungal activity. PMID:23819641

  16. Lactic acid bacteria: promising supplements for enhancing the biological activities of kombucha.

    PubMed

    Nguyen, Nguyen Khoi; Dong, Ngan Thi Ngoc; Nguyen, Huong Thuy; Le, Phu Hong

    2015-01-01

    Kombucha is sweetened black tea that is fermented by a symbiosis of bacteria and yeast embedded within a cellulose membrane. It is considered a health drink in many countries because it is a rich source of vitamins and may have other health benefits. It has previously been reported that adding lactic acid bacteria (Lactobacillus) strains to kombucha can enhance its biological functions, but in that study only lactic acid bacteria isolated from kefir grains were tested. There are many other natural sources of lactic acid bacteria. In this study, we examined the effects of lactic acid bacteria from various fermented Vietnamese food sources (pickled cabbage, kefir and kombucha) on kombucha's three main biological functions: glucuronic acid production, antibacterial activity and antioxidant ability. Glucuronic acid production was determined by high-performance liquid chromatography-mass spectrometry, antibacterial activity was assessed by the agar-well diffusion method and antioxidant ability was evaluated by determining the 2,2-diphenyl-1-picrylhydrazyl radical scavenging capacity. Four strains of food-borne pathogenic bacteria were used in our antibacterial experiments: Listeria monocytogenes ATCC 19111, Escherichia coli ATCC 8739, Salmonella typhimurium ATCC 14028 and Bacillus cereus ATCC 11778. Our findings showed that lactic acid bacteria strains isolated from kefir are superior to those from other sources for improving glucuronic acid production and enhancing the antibacterial and antioxidant activities of kombucha. This study illustrates the potential of Lactobacillus casei and Lactobacillus plantarum isolated from kefir as biosupplements for enhancing the bioactivities of kombucha.

  17. Non-Hematopoietic MLKL Protects Against Salmonella Mucosal Infection by Enhancing Inflammasome Activation.

    PubMed

    Yu, Shui-Xing; Chen, Wei; Liu, Zhen-Zhen; Zhou, Feng-Hua; Yan, Shi-Qing; Hu, Gui-Qiu; Qin, Xiao-Xia; Zhang, Jie; Ma, Ke; Du, Chong-Tao; Gu, Jing-Min; Deng, Xu-Ming; Han, Wen-Yu; Yang, Yong-Jun

    2018-01-01

    The intestinal mucosal barrier is critical for host defense against pathogens infection. Here, we demonstrate that the mixed lineage kinase-like protein (MLKL), a necroptosis effector, promotes intestinal epithelial barrier function by enhancing inflammasome activation. MLKL -/- mice were more susceptible to Salmonella infection compared with wild-type counterparts, with higher mortality rates, increased body weight loss, exacerbated intestinal inflammation, more bacterial colonization, and severe epithelial barrier disruption. MLKL deficiency promoted early epithelial colonization of Salmonella prior to developing apparent intestinal pathology. Active MLKL was predominantly expressed in crypt epithelial cells, and experiments using bone marrow chimeras found that the protective effects of MLKL were dependent on its expression in non-hematopoietic cells. Intestinal mucosa of MLKL -/- mice had impaired caspase-1 and gasdermin D cleavages and decreased interleukin (IL)-18 release. Moreover, administration of exogenous recombinant IL-18 rescued the phenotype of increased bacterial colonization in MLKL -/- mice. Thus, our results uncover the role of MLKL in enhancing inflammasome activation in intestinal epithelial cells to inhibit early bacterial colonization.

  18. Non-Hematopoietic MLKL Protects Against Salmonella Mucosal Infection by Enhancing Inflammasome Activation

    PubMed Central

    Yu, Shui-Xing; Chen, Wei; Liu, Zhen-Zhen; Zhou, Feng-Hua; Yan, Shi-Qing; Hu, Gui-Qiu; Qin, Xiao-Xia; Zhang, Jie; Ma, Ke; Du, Chong-Tao; Gu, Jing-Min; Deng, Xu-Ming; Han, Wen-Yu; Yang, Yong-Jun

    2018-01-01

    The intestinal mucosal barrier is critical for host defense against pathogens infection. Here, we demonstrate that the mixed lineage kinase-like protein (MLKL), a necroptosis effector, promotes intestinal epithelial barrier function by enhancing inflammasome activation. MLKL−/− mice were more susceptible to Salmonella infection compared with wild-type counterparts, with higher mortality rates, increased body weight loss, exacerbated intestinal inflammation, more bacterial colonization, and severe epithelial barrier disruption. MLKL deficiency promoted early epithelial colonization of Salmonella prior to developing apparent intestinal pathology. Active MLKL was predominantly expressed in crypt epithelial cells, and experiments using bone marrow chimeras found that the protective effects of MLKL were dependent on its expression in non-hematopoietic cells. Intestinal mucosa of MLKL−/− mice had impaired caspase-1 and gasdermin D cleavages and decreased interleukin (IL)-18 release. Moreover, administration of exogenous recombinant IL-18 rescued the phenotype of increased bacterial colonization in MLKL−/− mice. Thus, our results uncover the role of MLKL in enhancing inflammasome activation in intestinal epithelial cells to inhibit early bacterial colonization. PMID:29456533

  19. DEVELOPMENT OF MICROORGANISMS WITH IMPROVED TRANSPORT AND BIOSURFACTANT ACTIVITY FOR ENHANCED OIL RECOVERY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M.J. McInerney; N. Youssef; T. Fincher

    2004-05-31

    Diverse microorganisms were screened for biosurfactant production and anaerobic growth at elevated salt concentrations to obtain candidates most suitable for microbial oil recovery. Seventy percent of the 205 strains tested, mostly strains of Bacillus mojavensis, Bacillus subtilis, Bacillus licheniformis, and Bacillus sonorensis, produced biosurfactants aerobically and 41% of the strains had biosurfactant activity greater than Bacillus mojavensis JF-2, the current candidate for oil recovery. Biosurfactant activity varied with the percentage of the 3-hydroxy-tetradecanoate isomers in the fatty acid portion of the biosurfactant. Changing the medium composition by incorporation of different precursors of 3-hydroxy tetradecanoate increased the activity of biosurfactant. Themore » surface tension and critical micelle concentration of 15 different, biosurfactant-producing Bacillus strains was determined individually and in combination with other biosurfactants. Some biosurfactant mixtures were found to have synergistic effect on surface tension (e.g. surface tension was lowered from 41 to 31 mN/m in some cases) while others had a synergistic effect on CMD-1 values. We compared the transport abilities of spores from three Bacillus strains using a model porous system to study spore recovery and transport. Sand-packed columns were used to select for spores or cells with the best transport abilities through brine-saturated sand. Spores of Bacillus mojavensis strains JF-2 and ROB-2 and a natural recombinant, strain C-9, transported through sand at very high efficiencies. The earliest cells/spores that emerged from the column were re-grown, allowed to sporulate, and applied to a second column. This procedure greatly enhanced the transport of strain C-9. Spores with enhanced transport abilities can be easily obtained and that the preparation of inocula for use in MEOR is feasible. Tertiary oil recovery experiments showed that 10 to 40 mg/l of JF-2 biosurfactant in the

  20. Dengue virus infection-enhancing antibody activities against Indonesian strains in inhabitants of central Thailand.

    PubMed

    Yamanaka, Atsushi; Oddgun, Duangjai; Chantawat, Nantarat; Okabayashi, Tamaki; Ramasoota, Pongrama; Churrotin, Siti; Kotaki, Tomohiro; Kameoka, Masanori; Soegijanto, Soegeng; Konishi, Eiji

    2016-04-01

    Dengue virus (DENV) infection-enhancing antibodies are a hypothetic factor to increase the dengue disease severity. In this study, we investigated the enhancing antibodies against Indonesian strains of DENV-1-4 in 50 healthy inhabitants of central Thailand (Bangkok and Uthai Thani). Indonesia and Thailand have seen the highest dengue incidence in Southeast Asia. The infection history of each subject was estimated by comparing his/her neutralizing antibody titers against prototype DENV-1-4 strains. To resolve the difficulty in obtaining foreign live viruses for use as assay antigens, we used a recombinant system to prepare single-round infectious dengue viral particles based on viral sequence information. Irrespective of the previously infecting serotype(s), most serum samples showed significantly higher enhancement titers against Indonesian DENV-2 strains than against Thai DENV-2 strains, whereas the opposite effect was observed for the DENV-3 strains. Equivalent enhancing activities were observed against both DENV-1 and DENV-4. These results suggest that the genotype has an impact on enhancing antibody activities against DENV-2 and DENV-3, because the predominant circulating genotypes of each serotype differ between Indonesia and Thailand. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  1. SPATIAL HETEROGENEITY OF PHOTOSYNTHETIC ACTIVITY WITHIN DISEASED CORALS FROM THE GREAT BARRIER REEF(1).

    PubMed

    Roff, George; Ulstrup, Karin E; Fine, Maoz; Ralph, Peter J; Hoegh-Guldberg, Ove

    2008-04-01

    Morphological diagnosis and descriptions of seven disease-like syndromes affecting scleractinian corals were characterized from the southern Great Barrier Reef (GBR). Chl a fluorescence of PSII was measured using an Imaging-PAM (pulse amplitude modulated) fluorometer, enabling visualization of the two-dimensional variability in the photophysiology of endosymbiotic dinoflagellates (zooxanthellae) by measuring rapid light curves. Three of four syndromes associated with active tissue loss (type a) were spatially homogenous (white syndrome, brown band, and skeletal eroding band), with no impact on the photochemical function of zooxanthellae populations at or behind the lesion borders. However, a decline in maximum quantum yield (Fv /Fm ) and elevated levels of maximum nonphotochemical quenching (NPQmax ) occurred in visually healthy tissue of black band disease adjacent to the lesion borders, possibly due to hypoxic conditions caused by the black band cyanobacterial mat. Two out of three syndromes associated with pathological change of intact tissue with no active tissue loss (type b) showed variable photophysiological responses (neoplasia and pigmentation response). Only the bleached foci associated with white patch syndrome appeared to impact primarily on the symbiotic dinoflagellates, as evidenced by declines in minimum fluorescence (F0 ) and maximum quantum yield (Fv /Fm ), with no indication of degeneration in the host tissues. Our results suggest that for the majority of coral syndromes from the GBR, pathogenesis occurs in the host tissue, while the impact on the zooxanthellae populations residing in affected corals is minimal. © 2008 Phycological Society of America.

  2. Enhancing anaerobic digestion of waste activated sludge by the combined use of NaOH and Mg(OH)2: Performance evaluation and mechanism study.

    PubMed

    Huang, Cheng; Lai, Jia; Sun, Xiuyun; Li, Jiansheng; Shen, Jinyou; Han, Weiqing; Wang, Lianjun

    2016-11-01

    In this study, the combination treatment of NaOH and Mg(OH)2 was applied to anaerobic digestion of waste activated sludge (WAS) for simultaneously enhancement of volatile fatty acids (VFAs) production, nutrients removal and sludge dewaterability. The maximum VFAs production (461mg COD/g VSS) was obtained at the NaOH/Mg(OH)2 ratio of 75:25, which was much higher than that of the blank or sole NaOH. Moreover, nutrients removal and sludge dewaterability were improved by the combined using of NaOH and Mg(OH)2. Mechanism investigations revealed that the presence of Mg(OH)2 could maintain alkaline environment, which contributed to inhibit the activity of methanogens. Also, the bridging between Mg(2+) and extracellular polymeric substances (EPS) plays an important role in the solubilization and dewatering of sludge. High-throughput sequencing analysis demonstrated that the abundance of bacteria involved in sludge hydrolysis and VFAs accumulation was greatly enriched with the mixtures of NaOH and Mg(OH)2. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Nutrients in the Great Lakes. Teacher's Guide and Student Workbook.

    ERIC Educational Resources Information Center

    Brothers, Chris; And Others

    This teacher guide and student workbook set presents two learning activities, designed for fifth through ninth grade students, that concentrate on nutrients in the Great Lakes. In activity A, students simulate aquatic habitats using lake water and goldfish in glass jars and observe the effects of nutrient loading and nutrient limitation on aquatic…

  4. [Association between evacuation condition and habitual physical activity in Great East Japan Earthquake evacuees: The Fukushima Health Management Survey].

    PubMed

    Nagai, Masato; Ohira, Tetsuya; Yasumura, Seiji; Takahashi, Hideto; Yuki, Michiko; Nakano, Hironori; Wen, Zhang; Yabe, Hirooki; Ohtsuru, Akira; Maeda, Masaharu; Takase, Kanae

    2016-01-01

    Objectives: Prevalence of life-style disease has increased dramatically in evacuees due to the Great East Japan Earthquake. One reason may be that physical activity level decreased from life environment changes due to evacuation. However, associations between evacuation condition and habitual physical activity have not been studied. We examined this association in Fukushima residents who participated in the Fukushima Health Management Survey. Methods: In this study, 37,843 evacuees from 13 municipal evacuation zones from the nuclear-power accident caused by the Great East Japan Earthquake, born before April 1, 1995, were included in the analysis. Evacuation condition was defined by disaster living place (13 zones), evacuation place (inside or outside the prefecture), and current living status (evacuation shelter or temporary housing, rental housing/ apartment, and relative's home or own home). Habitual physical activity was defined from self-administered questionnaires as participants who responded "almost every day" and "2-4 times/week" of regular exercise. In the analysis, habitual physical activity prevalence was aggregated by gender and variables (living place in the disaster, evacuation place, and current living status). Prevalence was adjusted for age, disaster living place, evacuation place, and current living status by standard analysis of covariance methods. Results: Adjusted prevalences of habitual physical activity were: men, 27.9-46.5%; women, 27.0-43.7% in each disaster living place. The differences were 18.6% point in men and 16.7% point in women. For evacuation place, physical activity outside the prefecture for men (37.7%) and inside the prefecture for women (32.1%) were higher, but those differences were only 2.2% point and 1.8% point in men and women, respectively. For current living status, physical activity of those in rental housing/ apartment was the lowest; evacuation shelter or temporary housing was the highest in both genders (men: 38

  5. Great Lakes in January

    NASA Image and Video Library

    2017-12-08

    This image taken on January 13, 2015 from the Suomi NPP satellite's VIIRS instrument shows the Great Lakes and surrounding areas. The latest Great Lakes Surface Environmental Analysis (GLSEA) from the NOAA Great Lakes Environmental Research Laboratory shows total ice cover of 29.3% as of January 13th. Credit: NOAA/NASA/NPP Via NOAA Environmental Visualization Laboratory

  6. Phospholipase D2 Enhances Epidermal Growth Factor-Induced Akt Activation in EL4 Lymphoma Cells.

    PubMed

    Chahal, Manpreet S; Brauner, Daniel J; Meier, Kathryn E

    2010-07-02

    Phospholipase D2 (PLD2) generates phosphatidic acid through hydrolysis of phosphatidylcholine. PLD2 has been shown to play a role in enhancing tumorigenesis. The epidermal growth factor receptor (EGFR) can both activate and interact with PLD2. Murine lymphoma EL4 cells lacking endogenous PLD2 present a unique model to elucidate the role of PLD2 in signal transduction. In the current study, we investigated effects of PLD2 on EGF response. Western blotting and RT-PCR were used to establish that both parental cells and PLD2 transfectants express endogenous EGFR. Levels of EGFR protein are increased in cells expressing active PLD2, as compared to parental cells or cells expressing inactive PLD2. EGF stimulates proliferation of EL4 cells transfected with active PLD2, but not parental cells or cells transfected with inactive PLD2. EGF-mediated proliferation in cells expressing active PLD2 is dependent on the activities of both the EGFR and the PI3K/Akt pathway, as demonstrated by studies using protein kinase inhibitors. EGF-induced invasion through a synthetic extracellular matrix is enhanced in cells expressing active PLD2, as compared to parental cells or cells expressing inactive PLD2. Taken together, the data suggest that PLD2 acts in concert with EGFR to enhance mitogenesis and invasion in lymphoma cells.

  7. Phospholipase D2 Enhances Epidermal Growth Factor-Induced Akt Activation in EL4 Lymphoma Cells

    PubMed Central

    Chahal, Manpreet S.; Brauner, Daniel J.; Meier, Kathryn E.

    2010-01-01

    Phospholipase D2 (PLD2) generates phosphatidic acid through hydrolysis of phosphatidylcholine. PLD2 has been shown to play a role in enhancing tumorigenesis. The epidermal growth factor receptor (EGFR) can both activate and interact with PLD2. Murine lymphoma EL4 cells lacking endogenous PLD2 present a unique model to elucidate the role of PLD2 in signal transduction. In the current study, we investigated effects of PLD2 on EGF response. Western blotting and RT-PCR were used to establish that both parental cells and PLD2 transfectants express endogenous EGFR. Levels of EGFR protein are increased in cells expressing active PLD2, as compared to parental cells or cells expressing inactive PLD2. EGF stimulates proliferation of EL4 cells transfected with active PLD2, but not parental cells or cells transfected with inactive PLD2. EGF-mediated proliferation in cells expressing active PLD2 is dependent on the activities of both the EGFR and the PI3K/Akt pathway, as demonstrated by studies using protein kinase inhibitors. EGF-induced invasion through a synthetic extracellular matrix is enhanced in cells expressing active PLD2, as compared to parental cells or cells expressing inactive PLD2. Taken together, the data suggest that PLD2 acts in concert with EGFR to enhance mitogenesis and invasion in lymphoma cells. PMID:27713341

  8. Occupancy by key transcription factors is a more accurate predictor of enhancer activity than histone modifications or chromatin accessibility

    DOE PAGES

    Dogan, Nergiz; Wu, Weisheng; Morrissey, Christapher S.; ...

    2015-04-23

    Regulated gene expression controls organismal development, and variation in regulatory patterns has been implicated in complex traits. Thus accurate prediction of enhancers is important for further understanding of these processes. Genome-wide measurement of epigenetic features, such as histone modifications and occupancy by transcription factors, is improving enhancer predictions, but the contribution of these features to prediction accuracy is not known. Given the importance of the hematopoietic transcription factor TAL1 for erythroid gene activation, we predicted candidate enhancers based on genomic occupancy by TAL1 and measured their activity. Contributions of multiple features to enhancer prediction were evaluated based on the resultsmore » of these and other studies. Results: TAL1-bound DNA segments were active enhancers at a high rate both in transient transfections of cultured cells (39 of 79, or 56%) and transgenic mice (43 of 66, or 65%). The level of binding signal for TAL1 or GATA1 did not help distinguish TAL1-bound DNA segments as active versus inactive enhancers, nor did the density of regulation-related histone modifications. A meta-analysis of results from this and other studies (273 tested predicted enhancers) showed that the presence of TAL1, GATA1, EP300, SMAD1, H3K4 methylation, H3K27ac, and CAGE tags at DNase hypersensitive sites gave the most accurate predictors of enhancer activity, with a success rate over 80% and a median threefold increase in activity. Chromatin accessibility assays and the histone modifications H3K4me1 and H3K27ac were sensitive for finding enhancers, but they have high false positive rates unless transcription factor occupancy is also included. Conclusions: Occupancy by key transcription factors such as TAL1, GATA1, SMAD1, and EP300, along with evidence of transcription, improves the accuracy of enhancer predictions based on epigenetic features.« less

  9. Dynamic Heights in the Great Lakes at Different Epochs

    NASA Astrophysics Data System (ADS)

    Roman, D. R.

    2016-12-01

    Vertical control in the Great Lakes region is currently defined by the International Great Lakes Datum of 1985 (IGLD 85) in the form of dynamic heights. Starting in 2025, dynamic heights will be defined through GNSS-derived geometric coordinates and a geopotential model. This paper explores the behavior of an existing geopotential model at different epochs when the Great Lakes were at significantly different (meter-level) geopotential surfaces. Water surfaces were examined in 2015 and 2010 at six sites on Lakes Superior and Lake Erie (three on each Lake). These sites have collocated a Continuously Operating Reference Station (CORS) and a Water Level Sensor (WLS). The offset between the antenna phase center for the CORS and the WLS datum are known at each site. The WLS then measures the distance from its datum to the Lake surface via an open well. Thus it is possible to determine the height above an ellipsoid datum at these sites as long as both the CORS and WLS are operational. The geometric coordinates are then used to estimate the geopotential value from the xGEOID16B model. This accomplished in two steps. To provide an improved reference model, EGM2008 was spectrally enhanced using observations from the GOCE satellite gravity mission and aerogravity from the Gravity for the Redefinition of the American Vertical Datum (GRAV-D) Project. This enhanced model, xGEOID16B_Ref, is still only a five arcminute resolution model (d/o 2160), but resolves dynamic heights at about 2 cm on Lake Superior for December 2015. The reference model was primarily developed to determine a one arcminute geoid height grid, xGEOID16B, available on the NGS website. This geoid height model was used to iteratively develop improved geopotential value for each of the site locations, which then improved comparisons to the cm-level. Comparisons were then made at the 2010 epoch for these same locations to determine if the performance of the geopotential model was consistent.

  10. Soil erosion and organic matter variations for central Great Plains cropping systems under residue removal

    USDA-ARS?s Scientific Manuscript database

    The diversity of geo-climatic land bases and potential feedstocks within the United States Central Great Plains (CGP) requires sustainable production that provides optimal resource utilization while maintaining or enhancing localized soil and environmental quality as much as possible. This study exa...

  11. Dataset: Soil erosion and organic matter for central Great Plains cropping systems under residue removal

    USDA-ARS?s Scientific Manuscript database

    The diversity of geo-climatic land bases and potential feedstocks within the United States Central Great Plains (CGP) requires sustainable production that provides optimal resource utilization while maintaining or enhancing localized soil and environmental quality as much as possible. This study exa...

  12. Health game interventions to enhance physical activity self-efficacy of children: a quantitative systematic review.

    PubMed

    Pakarinen, Anni; Parisod, Heidi; Smed, Jouni; Salanterä, Sanna

    2017-04-01

    To describe and explore health game interventions that enhance the physical activity self-efficacy of children and to evaluate the effectiveness of these interventions. Physical inactivity among children has increased globally. Self-efficacy is one of the key determinants of physical activity engagement in children. There is a need to explore new and innovative interventions to enhance physical activity self-efficacy that are also acceptable for today's children. Quantitative systematic review. MEDLINE (Ovid), CINAHL, PsychInfo, EMBASE and the Cochrane Library between 1996-2016. A review was conducted in accordance with the Cochrane Collaboration guidelines. A systematic search was done in June 2016 by two independent reviewers according to the eligibility criteria as follows: controlled trial, comparison of digital game intervention with no game intervention control condition, participants younger than 18 years of age and reported statistical analyses of a physical activity self-efficacy outcome measure. Altogether, five studies met the eligibility criteria. Four game interventions, employing three active games and one educational game, had positive effects on children's physical activity self-efficacy. An intervention, employing a game-themed mobile application, showed no intervention effects. The variation between intervention characteristics was significant and the quality of the studies was found to be at a medium level. Although health game interventions seemingly enhance the physical activity self-efficacy of children and have potential as a means of increasing physical activity, more rigorous research is needed to clarify how effective such interventions are in the longer run to contribute to the development of game-based interventions. © 2016 John Wiley & Sons Ltd.

  13. CCAAT/enhancer-binding protein beta promotes osteoblast differentiation by enhancing Runx2 activity with ATF4.

    PubMed

    Tominaga, Hiroyuki; Maeda, Shingo; Hayashi, Makoto; Takeda, Shu; Akira, Shizuo; Komiya, Setsuro; Nakamura, Takashi; Akiyama, Haruhiko; Imamura, Takeshi

    2008-12-01

    Although CCAAT/enhancer-binding protein beta (C/EBPbeta) is involved in osteocalcin gene expression in osteoblast in vitro, the physiological importance of and molecular mechanisms governing C/EBPbeta in bone formation remain to be elucidated. In particular, it remains unclear whether C/EBPbeta acts as a homodimer or a heterodimer with other proteins during osteoblast differentiation. Here, deletion of the C/EBPbeta gene from mice resulted in delayed bone formation with concurrent suppression of chondrocyte maturation and osteoblast differentiation. The expression of type X collagen as well as chondrocyte hypertrophy were suppressed in mutant bone, providing new insight into the possible roles of C/EBPbeta in chondrocyte maturation. In osteoblasts, luciferase reporter, gel shift, DNAP, and ChIP assays demonstrated that C/EBPbeta heterodimerized with activating transcription factor 4 (ATF4), another basic leucine zipper transcription factor crucial for osteoblast maturation. This complex interacted and transactivated osteocalcin-specific element 1 (OSE1) of the osteocalcin promoter. C/EBPbeta also enhanced the synergistic effect of ATF4 and Runx2 on osteocalcin promoter transactivation by enhancing their interaction. Thus, our results provide evidence that C/EBPbeta is a crucial cofactor in the promotion of osteoblast maturation by Runx2 and ATF4.

  14. Compatibility of Surfactants and Thermally Activated Persulfate for Enhanced Subsurface Remediation.

    PubMed

    Wang, Li; Peng, Libin; Xie, Liling; Deng, Peiyan; Deng, Dayi

    2017-06-20

    Limited aqueous availability of hydrophobic organic contaminants and nonaqueous phase liquids in subsurface environment may seriously impair the effectiveness of traditional in situ chemical oxidation (ISCO). To tackle the issue, a combination of surfactants and thermally activated persulfate was proposed to enhance the aqueous availability and consequent oxidation of organic contaminants. The compatibility of eight representative nonionic, monovalent anionic, and divalent anionic surfactants with persulfate at various temperatures was first studied, to identify suitable surfactants that have high aqueous stability and low oxidant demands to couple with thermally activated persulfate. C 12 -MADS (sodium dodecyl diphenyl ether disulfonate, a representative divalent anionic surfactant) stands out as the most compatible surfactant. Batch treatability study with coal tar, an example of challenging scenarios for traditional ISCO, was then conducted. The results show that C 12 -MADS can significantly enhance not only the oxidation of polyaromatic hydrocarbons contained in coal tar but also oxidant utilization efficiency, indicating the potential of the proposed coupling process for the treatment of organic contaminants with low aqueous availability.

  15. Operando investigation of Au-MnO x thin films with improved activity for the oxygen evolution reaction

    DOE PAGES

    Frydendal, Rasmus; Seitz, Linsey C.; Sokaras, Dimosthenis; ...

    2017-01-20

    The electrochemical splitting of water holds great potential as a method for producing clean fuels by storing electricity from intermittent energy sources. The efficiency of such a process would be greatly facilitated by incorporating more active catalysts based on abundant materials for the oxygen evolution reaction. Manganese oxides are promising as catalysts for this reaction. Recent reports show that their activity can be drastically enhanced when modified with gold. Herein, we investigate highly active mixed Au-MnO x thin films for the oxygen evolution reaction, which exhibit more than five times improvement over pure MnO x. These films are characterized withmore » operando X-ray Absorption Spectroscopy, which reveal that Mn assumes a higher oxidation state under reaction conditions when Au is present. As a result, the magnitude of the enhancement is correlated to the size of the Au domains, where larger domains are the more beneficial.« less

  16. Does modulation of selective attention to features reflect enhancement or suppression of neural activity?

    PubMed

    Daffner, Kirk R; Zhuravleva, Tatyana Y; Sun, Xue; Tarbi, Elise C; Haring, Anna E; Rentz, Dorene M; Holcomb, Phillip J

    2012-02-01

    Numerous studies have demonstrated that selective attention to color is associated with a larger neural response under attend than ignore conditions, but have not addressed whether this difference reflects enhanced activity under attend or suppressed activity under ignore. In this study, a color-neutral condition was included, which presented stimuli physically identical to those under attend and ignore conditions, but in which color was not task relevant. Attention to color did not modulate the early sensory-evoked P1 and N1 components. Traditional ERP markers of early selection (the anterior Selection Positivity and posterior Selection Negativity) did not differ between the attend and neutral conditions, arguing against a mechanism of enhanced activity. However, there were markedly reduced responses under the ignore relative to the neutral condition, consistent with the view that early selection mechanisms reflect suppression of neural activity under the ignore condition. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Select polyphenolic fractions from dried plum enhance osteoblast activity through BMP-2 signaling.

    PubMed

    Graef, Jennifer L; Rendina-Ruedy, Elizabeth; Crockett, Erica K; Ouyang, Ping; King, Jarrod B; Cichewicz, Robert H; Lucas, Edralin A; Smith, Brenda J

    2018-05-01

    Dried plum supplementation has been shown to enhance bone formation while suppressing bone resorption. Evidence from previous studies has demonstrated that these responses can be attributed in part to the fruit's polyphenolic compounds. The purpose of this study was to identify the most bioactive polyphenolic fractions of dried plum with a focus on their osteogenic activity and to investigate their mechanisms of action under normal and inflammatory conditions. Utilizing chromatographic techniques, six fractions of polyphenolic compounds were prepared from a crude extract of dried plum. Initial screening assays revealed that two fractions (DP-FrA and DP-FrB) had the greatest osteogenic potential. Subsequent experiments using primary bone-marrow-derived osteoblast cultures demonstrated these two fractions enhanced extracellular alkaline phosphatase (ALP), an indicator of osteoblast activity, and mineralized nodule formation under normal conditions. Both fractions enhanced bone morphogenetic protein (BMP) signaling, as indicated by increased Bmp2 and Runx2 gene expression and protein levels of phosphorylated Smad1/5. DP-FrB was most effective at up-regulating Tak1 and Smad1, as well as protein levels of phospho-p38. Under inflammatory conditions, TNF-α suppressed ALP and tended to decrease nodule formation (P=.0674). This response coincided with suppressed gene expression of Bmp2 and the up-regulation of Smad6, an inhibitor of BMP signaling. DP-FrA and DP-FrB partially normalized these responses. Our results show that certain fractions of polyphenolic compounds in dried plum up-regulate osteoblast activity by enhancing BMP signaling, and when this pathway is inhibited by TNF-α, the osteogenic response is attenuated. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Early mortality syndrome in Great Lakes salmonines

    USGS Publications Warehouse

    Honeyfield, Dale C.; Brown, Scott B.; Fitzsimons, John D.; Tillitt, Donald E.

    2005-01-01

    Early mortality syndrome (EMS) is the termused to describe an embryonic mortality affectingthe offspring of salmonines (coho salmonOnco-rhynchus kisutch, Chinook salmonOncorhynchustshawytscha, steelhead [anadromous rainbow troutOncorhynchus mykiss], brown troutSalmo trutta,and lake trout,Salvelinus namaycush) in LakesMichigan and Ontario and, to a lesser extent, LakesHuron and Erie (Marcquenski and Brown 1997).Clinical signs of EMS include loss of equilibrium,a spiral swimming pattern, lethargy, hyperexcit-ability, hemorrhage, and death between hatch andfirst feeding. Early mortality syndrome was ob-served as far back as the 1960s in Great Lakessalmonines (Marcquenski and Brown 1997; Fitz-simons et al. 1999) and is of concern because mor-tality has been high in recent years (Wolgamoodet al. 2005; all 2005 citations are this issue). Stocksof Atlantic salmonSalmo salarfrom the FingerLakes and the Baltic Sea also exhibit a similarearly life stage mortality, called Cayuga syndrome(Fisher et al. 1995) and M74 (Bo ̈ rjeson and Norr-gren 1997), respectively. Low egg thiamine levelsand enhanced survival following thiamine treat-ments are common characteristics of EMS, CayugaSyndrome, and M74 (Fitzsimons et al. 1999). Be-cause the deficiency does not appear to be the re-sult of inadequate dietary thiamine (Fitzsimons and Brown 1998), investigators have hypothesizedthat the presence of some thiaminolytic factors inthe diet may reduce the bioavailability of thiamine,either by destroying it or converting it to an in-active analog or thiamine antagonist (Fisher et al.1996; Fitzsimons et al. 1999).

  19. Mechanistic Understanding of the Plasmonic Enhancement for Solar Water Splitting.

    PubMed

    Zhang, Peng; Wang, Tuo; Gong, Jinlong

    2015-09-23

    H2 generation by solar water splitting is one of the most promising solutions to meet the increasing energy demands of the fast developing society. However, the efficiency of solar-water-splitting systems is still too low for practical applications, which requires further enhancement via different strategies such as doping, construction of heterojunctions, morphology control, and optimization of the crystal structure. Recently, integration of plasmonic metals to semiconductor photocatalysts has been proved to be an effective way to improve their photocatalytic activities. Thus, in-depth understanding of the enhancement mechanisms is of great importance for better utilization of the plasmonic effect. This review describes the relevant mechanisms from three aspects, including: i) light absorption and scattering; ii) hot-electron injection and iii) plasmon-induced resonance energy transfer (PIRET). Perspectives are also proposed to trigger further innovative thinking on plasmonic-enhanced solar water splitting. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Zero-valent iron enhanced methanogenic activity in anaerobic digestion of waste activated sludge after heat and alkali pretreatment.

    PubMed

    Zhang, Yaobin; Feng, Yinghong; Quan, Xie

    2015-04-01

    Heat or alkali pretreatment is the effective method to improve hydrolysis of waste sludge and then enhance anaerobic sludge digestion. However the pretreatment may inactivate the methanogens in the sludge. In the present work, zero-valent iron (ZVI) was used to enhance the methanogenic activity in anaerobic sludge digester under two methanogens-suppressing conditions, i.e. heat-pretreatment and alkali condition respectively. With the addition of ZVI, the lag time of methane production was shortened, and the methane yield increased by 91.5% compared to the control group. The consumption of VFA was accelerated by ZVI, especially for acetate, indicating that the acetoclastic methanogenesis was enhanced. In the alkali-condition experiment, the hydrogen produced decreased from 27.6 to 18.8 mL when increasing the ZVI dosage from 0 to 10 g/L. Correspondingly, the methane yield increased from 1.9 to 32.2 mL, which meant that the H2-utilizing methanogenes was enriched. These results suggested that the addition of ZVI into anaerobic digestion of sludge after pretreated by the heat or alkali process could efficiently recover the methanogenic activity and increase the methane production and sludge reduction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. The Great Observatories Origins Deep Survey

    NASA Astrophysics Data System (ADS)

    Dickinson, Mark

    2008-05-01

    Observing the formation and evolution of ordinary galaxies at early cosmic times requires data at many wavelengths in order to recognize, separate and analyze the many physical processes which shape galaxies' history, including the growth of large scale structure, gravitational interactions, star formation, and active nuclei. Extremely deep data, covering an adequately large volume, are needed to detect ordinary galaxies in sufficient numbers at such great distances. The Great Observatories Origins Deep Survey (GOODS) was designed for this purpose as an anthology of deep field observing programs that span the electromagnetic spectrum. GOODS targets two fields, one in each hemisphere. Some of the deepest and most extensive imaging and spectroscopic surveys have been carried out in the GOODS fields, using nearly every major space- and ground-based observatory. Many of these data have been taken as part of large, public surveys (including several Hubble Treasury, Spitzer Legacy, and ESO Large Programs), which have produced large data sets that are widely used by the astronomical community. I will review the history of the GOODS program, highlighting results on the formation and early growth of galaxies and their active nuclei. I will also describe new and upcoming observations, such as the GOODS Herschel Key Program, which will continue to fill out our portrait of galaxies in the young universe.

  2. Enhanced neutrophil chemotactic activity after bronchial challenge in subjects with grain dust-induced asthma.

    PubMed

    Park, H S; Jung, K S

    1998-03-01

    There have been few reports suggesting involvement of neutrophils in induction of bronchoconstriction after inhalation of grain dust. To understand the role of neutrophils in pathogenesis of grain dust-induced asthma. We observed serum neutrophil chemotactic activity during grain dust-bronchoprovocation tests in six asthmatic subjects with positive bronchial challenges (group I). They were compared with those of six symptomatic subjects from the same workplace with negative bronchial challenges (group II). After grain dust inhalation, serum neutrophil chemotactic activity significantly increased at 30 minutes (P = .028), and then decreased to baseline level at 240 minutes (P = .028) in five subjects of group I having isolated early asthmatic responses. Enhanced neutrophil chemotactic activity was persistent for up to 240 minutes in one asthmatic subject having both early and late asthmatic responses. There was, however, no significant change in serum neutrophil chemotactic activity during bronchial challenges in subjects of group II. Pre-incubation of sera with anti-interleukin-8 (IL-8) antibody did not affect the neutrophil chemotactic activity results of group I subjects. These results suggest that enhanced neutrophil chemotactic activity distinct from IL-8 may contribute to significant bronchoconstriction induced by grain dust.

  3. Open-mouthed hybrid microcapsules with elevated enzyme loading and enhanced catalytic activity.

    PubMed

    Shi, Jiafu; Zhang, Shaohua; Wang, Xiaoli; Jiang, Zhongyi

    2014-10-25

    Open-mouthed hybrid microcapsules (HMCs) are synthesized through a hard-templating method. When utilized for enzyme immobilization and enzymatic catalysis, the open-mouthed HMCs show high enzyme loading capability, enhanced catalytic activity and desirable recycling stability, due to their fully exposed outer and inner surfaces.

  4. LINKING HISTORICAL ORGANOCHLORINE EXPOSURES IN THE GREAT LAKES CAUSALLY TO MAJOR FISH POPULATION CHANGES

    EPA Science Inventory

    The Great Lakes of North America are large aquatic ecosystems that have been greatly impacted by human activities in the 20th century. Introduction of non-native species, both advertently and inadvertently; reduction in populations through commercial fishing; habitat alternation...

  5. Enhancement of knowledge construction activities utilizing 21st century learning design rubric

    NASA Astrophysics Data System (ADS)

    Pedoche, Margarette Anne U.; Taladua, Janica Mae M.; Panal, Geicky Pearl C.; Magsayo, Joy R.; Guarin, Rica Mae B.; Myrna, H. Lahoylahoy

    2018-01-01

    The main objective of the study was to enhance knowledge construction activities on its design particularly the objectives, support materials, student activities and assessment tools. Activities from the 2nd Quarter of Science Learners Material were the basis in the adaptation of activities. The adapted activities were evaluated by the In-service Science teachers and undergone modification by the researchers based on the teacher's comments and suggestions. It was then evaluated, revised, and validated, tried-out using the 21st CLD Rubric. Subjects of the study were 110 students from Grade 7-B, Grade 7-D, Grade 7-F in Geronima Cabrera National High School, Kolambugan, Lanao del Norte during the academic year 2016-2017, the study to determine their learning capabilities investigated by the use of Knowledge Construction Activities in the 21st Century Classroom, to investigate how the lessons were understood and appreciated by students, to stimulate interpretation, analysis, synthesizing, or evaluating ideas and develop critical thinking. Both quantitative and qualitative data were obtained from the students' scores in three activities. Results showed that there was a significant difference between the pretest and posttest scores of students. Mean scores between the pretest and posttest showed a mean difference of 3.35, thus the null hypothesis was rejected. It could be concluded with sufficient evidence to show that the students had basically low prior knowledge about the topic ecosystem. A significant difference was seen in the pretest and posttest, scores of the activities and Ecosystem model results after the implementation phase that a knowledge construction type of activity was better than the traditional one for it promoted meaningful learning and active engagement of students. Based on the results, it was clear that the use of knowledge construction activities had an effect on student's achievement in comparison to traditional teaching method. Thus, it was

  6. Activation of peroxydisulfate by gas-liquid pulsed discharge plasma to enhance the degradation of p-nitrophenol

    NASA Astrophysics Data System (ADS)

    Shang, Kefeng; Wang, Hao; Li, Jie; Lu, Na; Jiang, Nan; Wu, Yan

    2017-06-01

    Pulsed discharge in water and over water surfaces generates ultraviolet radiation, local high temperature, shock waves, and chemical reactive species, including hydroxyl radicals, hydrogen peroxide, and ozone. Pulsed discharge plasma (PDP) can oxidize and mineralize pollutants very efficiently, but high energy consumption restricts its application for industrial wastewater treatment. A novel method for improving the energy efficiency of wastewater treatment by PDP was proposed, in which peroxydisulfate (PDS) was added to wastewater and PDS was activated by PDP to produce more strong oxidizing radicals, including sulfate radicals and hydroxyl radicals, leading to a higher oxidation capacity for the PDP system. The experimental results show that the increase in solution conductivity slightly decreased the discharge power of the pulse discharge over the water surface. An increase in the discharge intensity improved the activation of PDS and therefore the degradation efficiency and energy efficiency of p-nitrophenol (PNP). An increase in the addition dosage of PDS greatly facilitated the degradation of PNP at a molar ratio of PDS to PNP of lower than 80:1, but the performance enhancement was no longer obvious at a dosage of more than 80:1. Under an applied voltage of 20 kV and a gas discharge gap of 2 mm, the degradation efficiency and energy efficiency of the PNP reached 90.7% and 45.0 mg kWh-1 for the plasma/PDS system, respectively, which was 34% and 18.0 mg kWh-1 higher than for the discharge plasma treatment alone. Analysis of the physical and chemical effects indicated that ozone and hydrogen peroxide were important for PNP degradation and UV irradiation and heat from the discharge plasma might be the main physical effects for the activation of PDS.

  7. Self-efficacy enhancing intervention increases light physical activity in people with chronic obstructive pulmonary disease.

    PubMed

    Larson, Janet L; Covey, Margaret K; Kapella, Mary C; Alex, Charles G; McAuley, Edward

    2014-01-01

    People with chronic obstructive pulmonary disease lead sedentary lives and could benefit from increasing their physical activity. The purpose of this study was to determine if an exercise-specific self-efficacy enhancing intervention could increase physical activity and functional performance when delivered in the context of 4 months of upper body resistance training with a 12-month follow-up. IN THIS RANDOMIZED CONTROLLED TRIAL, SUBJECTS WERE ASSIGNED TO: exercise-specific self-efficacy enhancing intervention with upper body resistance training (SE-UBR), health education with upper body resistance training (ED-UBR), or health education with gentle chair exercises (ED-Chair). Physical activity was measured with an accelerometer and functional performance was measured with the Functional Performance Inventory. Forty-nine people with moderate to severe chronic obstructive pulmonary disease completed 4 months of training and provided valid accelerometry data, and 34 also provided accelerometry data at 12 months of follow-up. The self-efficacy enhancing intervention emphasized meeting physical activity guidelines and increasing moderate-to-vigorous physical activity. Differences were observed in light physical activity (LPA) after 4 months of training, time by group interaction effect (P=0.045). The SE-UBR group increased time spent in LPA by +20.68±29.30 minutes/day and the other groups decreased time spent in LPA by -22.43±47.88 minutes/day and -25.73±51.76 minutes/day. Changes in LPA were not sustained at 12-month follow-up. There were no significant changes in moderate-to-vigorous physical activity, sedentary time, or functional performance. Subjects spent most of their waking hours sedentary: 72%±9% for SE-UBR, 68%±10% for ED-UBR, and 74%±9% for ED-Chair. The self-efficacy enhancing intervention produced a modest short-term increase in LPA. Further work is needed to increase the magnitude and duration of effect, possibly by targeting LPA.

  8. Fatty acid amide hydrolase (FAAH) inhibition enhances memory acquisition through activation of PPAR-α nuclear receptors

    PubMed Central

    Mazzola, Carmen; Medalie, Julie; Scherma, Maria; Panlilio, Leigh V.; Solinas, Marcello; Tanda, Gianluigi; Drago, Filippo; Cadet, Jean Lud; Goldberg, Steven R.; Yasar, Sevil

    2009-01-01

    Inhibitors of fatty acid amide hydrolase (FAAH) increase endogenous levels of anandamide (a cannabinoid CB1-receptor ligand) and oleoylethanolamide and palmitoylethanolamide (OEA and PEA, ligands for α-type peroxisome proliferator-activated nuclear receptors, PPAR-α) when and where they are naturally released in the brain. Using a passive-avoidance task in rats, we found that memory acquisition was enhanced by the FAAH inhibitor URB597 or by the PPAR-α agonist WY14643, and these enhancements were blocked by the PPAR-α antagonist MK886. These findings demonstrate novel mechanisms for memory enhancement by activation of PPAR-α, either directly by administering a PPAR-α agonist or indirectly by administering a FAAH inhibitor. PMID:19403796

  9. Enhancing Water Evaporation with Floating Synthetic Leaves

    NASA Astrophysics Data System (ADS)

    Boreyko, Jonathan; Vieitez, Joshua; Berrier, Austin; Roseveare, Matthew; Shi, Weiwei

    2017-11-01

    When a wetted nanoporous medium is exposed to a subsaturated ambient environment, the water menisci assume a concave curvature to achieve a negative pressure. This negative water pressure is required to balance the mismatch in water activity across the water-air interface to achieve local equilibrium. Here, we show that the diffusive evaporation rate of water can be greatly modulated by floating a nanoporous synthetic leaf at the water's free interface. For high ambient humidities, adding the leaf serves to enhance the evaporation rate, presumably by virtue of the menisci enhancing the effective liquid-vapor surface area. For low humidities, the menisci cannot achieve a local equilibrium and retreat partway into the leaf, which increases the local humidity directly above the menisci. In light of these two effects, we find the surprising result that leaves exposed to an ambient humidity of 90 percent can evaporate water at the same rate as leaves exposed to only 50 percent humidity. These findings have implications for using synthetic trees to enhance steam generation or water harvesting. This work was supported by the National Science Foundation (CBET-1653631).

  10. Enhancement of Buckling Load with the Use of Active Materials

    NASA Technical Reports Server (NTRS)

    Yuan, F. G.

    2002-01-01

    In this paper, active buckling control of a beam using piezoelectric materials is investigated. Under small deformation, mathematical models are developed to describe the behavior of the beams subjected to an axial compressive load with geometric imperfections and load eccentricities under piezoelectric force. Two types of supports, simply supported and clamped, of the beam with a partially bonded piezoelectric actuator are used to illustrate the concept. For the beam with load eccentricities and initial geometric imperfections, the load- carrying capacity can be significantly enhanced by counteracting moments from the piezoelectric actuator. For the single piezoelectric actuator, using static feedback closed-loop control, the first buckling load can be eliminated. In the case of initially straight beams, analytical solutions of the enhanced first critical buckling load due to the increase of bending stiffness by piezoelectric actuators are derived based on linearized buckling analysis.

  11. Follistatin-Like 3 Enhances the Function of Endothelial Cells Derived from Pluripotent Stem Cells by Facilitating β-Catenin Nuclear Translocation Through Inhibition of Glycogen Synthase Kinase-3β Activity.

    PubMed

    Kelaini, Sophia; Vilà-González, Marta; Caines, Rachel; Campbell, David; Eleftheriadou, Magdalini; Tsifaki, Marianna; Magee, Corey; Cochrane, Amy; O'neill, Karla; Yang, Chunbo; Stitt, Alan W; Zeng, Lingfang; Grieve, David J; Margariti, Andriana

    2018-03-23

    The fight against vascular disease requires functional endothelial cells (ECs) which could be provided by differentiation of induced Pluripotent Stem Cells (iPS Cells) in great numbers for use in the clinic. However, the great promise of the generated ECs (iPS-ECs) in therapy is often restricted due to the challenge in iPS-ECs preserving their phenotype and function. We identified that Follistatin-Like 3 (FSTL3) is highly expressed in iPS-ECs, and, as such, we sought to clarify its possible role in retaining and improving iPS-ECs function and phenotype, which are crucial in increasing the cells' potential as a therapeutic tool. We overexpressed FSTL3 in iPS-ECs and found that FSTL3 could induce and enhance endothelial features by facilitating β-catenin nuclear translocation through inhibition of glycogen synthase kinase-3β activity and induction of Endothelin-1. The angiogenic potential of FSTL3 was also confirmed both in vitro and in vivo. When iPS-ECs overexpressing FSTL3 were subcutaneously injected in in vivo angiogenic model or intramuscularly injected in a hind limb ischemia NOD.CB17-Prkdcscid/NcrCrl SCID mice model, FSTL3 significantly induced angiogenesis and blood flow recovery, respectively. This study, for the first time, demonstrates that FSTL3 can greatly enhance the function and maturity of iPS-ECs. It advances our understanding of iPS-ECs and identifies a novel pathway that can be applied in cell therapy. These findings could therefore help improve efficiency and generation of therapeutically relevant numbers of ECs for use in patient-specific cell-based therapies. In addition, it can be particularly useful toward the treatment of vascular diseases instigated by EC dysfunction. Stem Cells 2018. © 2018 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  12. Daily physical activity enhances resilient resources for symptom management in middle-aged women.

    PubMed

    Kishida, Moé; Elavsky, Steriani

    2015-07-01

    The aim of the present study was to evaluate the direct and indirect associations between physical activity and menopausal symptoms. Community-dwelling middle-aged women (N = 103; age range 40-60 years) completed daily Internet surveys at the end of the day and wore an accelerometer for the objective assessment of physical activity for 21-days. 1-1-1 multilevel mediation models were estimated to test whether resilient resources (i.e., positive affect and coping efficacy) mediated the association between physical activity and symptom burden at the between- and within-person level. Analyses demonstrated physical activity had an indirect effect (-0.16) on symptom burden through the enhancement of positive affect at the within-person level (p < .05; 95% confidence interval [CI] based on 20,000 Monte Carlo replications [-0.25, -0.08]). In models that tested coping efficacy as the mediator, it was found that the indirect effect of physical activity on symptom burden at the within-person level was -0.08 (p < .05; 95% CI based on 20,000 Monte Carlo replications [-0.14, -0.03]). These effects were nonsignificant at the between-person level, suggesting one route in which physical activity may help a woman to cope with her symptoms is through the enhancement of positive affect and coping efficacy on a day-to-day basis. (c) 2015 APA, all rights reserved.

  13. Liquefaction of Semen Generates and Later Degrades a Conserved Semenogelin Peptide That Enhances HIV Infection

    PubMed Central

    Liu, Haichuan; Usmani, Shariq M.; Neidleman, Jason; Müller, Janis A.; Avila-Herrera, Aram; Gawanbacht, Ali; Zirafi, Onofrio; Chu, Simon; Dong, Ming; Kumar, Senthil T.; Smith, James F.; Pollard, Katherine S.; Fändrich, Marcus; Kirchhoff, Frank; Münch, Jan; Witkowska, H. Ewa; Greene, Warner C.

    2014-01-01

    ABSTRACT Semen enhances HIV infection in vitro, but how long it retains this activity has not been carefully examined. Immediately postejaculation, semen exists as a semisolid coagulum, which then converts to a more liquid form in a process termed liquefaction. We demonstrate that early during liquefaction, semen exhibits maximal HIV-enhancing activity that gradually declines upon further incubation. The decline in HIV-enhancing activity parallels the degradation of peptide fragments derived from the semenogelins (SEMs), the major components of the coagulum that are cleaved in a site-specific and progressive manner upon initiation of liquefaction. Because amyloid fibrils generated from SEM fragments were recently demonstrated to enhance HIV infection, we set out to determine whether any of the liquefaction-generated SEM fragments associate with the presence of HIV-enhancing activity. We identify SEM1 from amino acids 86 to 107 [SEM1(86-107)] to be a short, cationic, amyloidogenic SEM peptide that is generated early in the process of liquefaction but that, conversely, is lost during prolonged liquefaction due to the activity of serine proteases. Synthetic SEM1(86-107) amyloids directly bind HIV-1 virions and are sufficient to enhance HIV infection of permissive cells. Furthermore, endogenous seminal levels of SEM1(86-107) correlate with donor-dependent variations in viral enhancement activity, and antibodies generated against SEM1(86-107) recognize endogenous amyloids in human semen. The amyloidogenic potential of SEM1(86-107) and its virus-enhancing properties are conserved among great apes, suggesting an evolutionarily conserved function. These studies identify SEM1(86-107) to be a key, HIV-enhancing amyloid species in human semen and underscore the dynamic nature of semen's HIV-enhancing activity. IMPORTANCE Semen, the most common vehicle for HIV transmission, enhances HIV infection in vitro, but how long it retains this activity has not been investigated. Semen

  14. Extraction optimization and nanoencapsulation of jujube pulp and seed for enhancing antioxidant activity.

    PubMed

    Han, Hye Jung; Lee, Ji-Soo; Park, Sun-Ah; Ahn, Jun-Bae; Lee, Hyeon Gyu

    2015-06-01

    The aim of this study was to optimize extraction conditions for jujube pulp and seed in order to obtain maximum active ingredient yield and antioxidant activity, as well as to prepare chitosan nanoparticles loaded with jujube pulp and seed extracts for enhancing stability. The extraction conditions, i.e. temperature, time, and ethanol concentration, were optimized at the following respective values: 61.2 °C, 38 h, and 60.4% for pulp, and 58 °C, 34 h, and 59.2% for seed. The jujube nanoparticle size significantly increased with a higher chitosan/sodium tripolyphosphate ratio and extract concentration. Entrapment efficiency was greater than 80% regardless of preparation conditions. The stabilities of jujube pulp and seed extract in terms of total phenolic content and antioxidant activity were effectively enhanced by nanoencapsulation. In conclusion, jujube pulp and seed extracts prepared using optimal conditions could be useful as a natural functional food ingredient with antioxidant activity, and nanoencapsulation can be used to improve the stability of jujube extract. Therefore, these results could be used to promote the utilization of not only jujube pulp but also seed, by product. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. A method for measuring total thiaminase activity in fish tissues

    USGS Publications Warehouse

    Zajicek, James L.; Tillitt, Donald E.; Honeyfield, Dale C.; Brown, Scott B.; Fitzsimons, John D.

    2005-01-01

    An accurate, quantitative, and rapid method for the measurement of thiaminase activity in fish samples is required to provide sufficient information to characterize the role of dietary thiaminase in the onset of thiamine deficiency in Great Lakes salmonines. A radiometric method that uses 14C-thiamine was optimized for substrate and co-substrate (nicotinic acid) concentrations, incubation time, and sample dilution. Total thiaminase activity was successfully determined in extracts of selected Great Lakes fishes and invertebrates. Samples included whole-body and selected tissues of forage fishes. Positive control material prepared from frozen alewives Alosa pseudoharengus collected in Lake Michigan enhanced the development and application of the method. The method allowed improved discrimination of thiaminolytic activity among forage fish species and their tissues. The temperature dependence of the thiaminase activity observed in crude extracts of Lake Michigan alewives followed a Q10 = 2 relationship for the 1-37??C temperature range, which is consistent with the bacterial-derived thiaminase I protein. ?? Copyright by the American Fisheries Society 2005.

  16. Enhancement of photocatalytic activity of combustion-synthesized CeO2/C3N4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Dong-Feng; Yang, Ke; Wang, Xiao-qin; Ma, Ya-Li; Huang, Gui-Fang; Huang, Wei-Qing

    2015-09-01

    Nanocrystalline CeO2/C3N4 was synthesized via a one-step solution combustion method using urea as fuel for the first time. The effects of the molar ratio of urea to cerium chloride on the photocatalytic activity of the synthesized samples were investigated. The synthesized nanocrystalline CeO2/C3N4 shows small size and large surface exposure area. Photocatalytic degradation of methylene blue demonstrates that the synthesized nanocrystalline CeO2/C3N4 possesses enhanced photocatalytic activity. It is proposed that the enhanced photocatalytic activity might be related to the favorable morphology and structure, and the effective charge separation between C3N4 and CeO2 in the photocatalytic process.

  17. Electricity forecasting on the individual household level enhanced based on activity patterns

    PubMed Central

    Gajowniczek, Krzysztof; Ząbkowski, Tomasz

    2017-01-01

    Leveraging smart metering solutions to support energy efficiency on the individual household level poses novel research challenges in monitoring usage and providing accurate load forecasting. Forecasting electricity usage is an especially important component that can provide intelligence to smart meters. In this paper, we propose an enhanced approach for load forecasting at the household level. The impacts of residents’ daily activities and appliance usages on the power consumption of the entire household are incorporated to improve the accuracy of the forecasting model. The contributions of this paper are threefold: (1) we addressed short-term electricity load forecasting for 24 hours ahead, not on the aggregate but on the individual household level, which fits into the Residential Power Load Forecasting (RPLF) methods; (2) for the forecasting, we utilized a household specific dataset of behaviors that influence power consumption, which was derived using segmentation and sequence mining algorithms; and (3) an extensive load forecasting study using different forecasting algorithms enhanced by the household activity patterns was undertaken. PMID:28423039

  18. Electricity forecasting on the individual household level enhanced based on activity patterns.

    PubMed

    Gajowniczek, Krzysztof; Ząbkowski, Tomasz

    2017-01-01

    Leveraging smart metering solutions to support energy efficiency on the individual household level poses novel research challenges in monitoring usage and providing accurate load forecasting. Forecasting electricity usage is an especially important component that can provide intelligence to smart meters. In this paper, we propose an enhanced approach for load forecasting at the household level. The impacts of residents' daily activities and appliance usages on the power consumption of the entire household are incorporated to improve the accuracy of the forecasting model. The contributions of this paper are threefold: (1) we addressed short-term electricity load forecasting for 24 hours ahead, not on the aggregate but on the individual household level, which fits into the Residential Power Load Forecasting (RPLF) methods; (2) for the forecasting, we utilized a household specific dataset of behaviors that influence power consumption, which was derived using segmentation and sequence mining algorithms; and (3) an extensive load forecasting study using different forecasting algorithms enhanced by the household activity patterns was undertaken.

  19. Social Capital Enhanced Disaster Preparedness and Health Consultations after the 2011 Great East Japan Earthquake and Nuclear Power Station Accident

    PubMed Central

    Hasegawa, Makoto; Murakami, Michio; Suzuki, Satoshi; Ohto, Hitoshi

    2018-01-01

    After the Great East Japan Earthquake and the subsequent Fukushima Daiichi Nuclear Power Station accident in 2011, there was a strong demand to promote disaster preparedness approaches and health checkups for the prevention of lifestyle diseases. This study examined the yearly change in the percentage of those who prepared for disasters and who utilized health checkups in Fukushima Prefecture, and identified the factors governing disaster preparedness and utilization of health checkups. We used the public opinion survey from 2011 to 2015 (n = 677–779 each year) on prefectural policies that is conducted every year by the Fukushima Prefecture government Public Consultation Unit. We found that the percentage of those who prepare for disasters decreased, while that for health checkups did not significantly change. With regard to disaster preparedness, experiences of disaster enhance disaster preparedness, while bonds with other local people help to maintain preparedness. For health checkups, familiarity with the welfare service was the most important factor governing such consultations. The findings suggest that social capital should be promoted in order to improve disaster preparedness. The findings also suggest that residents’ accessibility to medical and welfare services is also important in promoting the utilization of health checkups. PMID:29538320

  20. Foliar penetration enhanced by biosurfactant rhamnolipid.

    PubMed

    Liu, Haojing; Shao, Bing; Long, Xuwei; Yao, Yang; Meng, Qin

    2016-09-01

    With recent environmental and health concerns, biosurfactants have obtained increasing interest in replacing conventional surfactants for diverse applications. In agriculture, the use of surfactant in stimulating foliar uptake is mainly for wetting leaf surface, resisting deposition/evaporation, enhancing penetration across cuticular membrane (CM) and translocation. This paper aimed to address the improved foliar uptake by rhamnolipid (RL) in comparison with the currently used alkyl polyglucoside (APG). As found, compared with APG at 900mg/L (1×critical micellar concentration, CMC), RL at a much lower concentration of 50mg/L (1×CMC) showed much better wettability and surface activity, indicative of its high effectiveness as surfactants. Its performance on resistance to deposition and evaporation was at least as same as APG. Moreover, RL could significantly improve the penetration of herbicide glyphosate and other two small water-soluble molecules (phenol red and Fe(2+)) across CM at an equivalent efficiency as APG at 1×CMC. Finally, the greatly enhanced herbicidal actitivity of glyphosate on greenhouse plants confirmed that RL and APG could both enhance the foliar uptake including translocation. Overall, RL should be more applicable than APG in agriculture due to its more promising properties on health/environmental friendliness. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Using an Internet Activity to Enhance Students' Awareness of Age Bias in Social Perceptions

    ERIC Educational Resources Information Center

    VonDras, Dean D.; Lor-Vang, Mai Nou

    2004-01-01

    Seeking to extend curricula in a Psychology of Aging course, an online Internet test that assesses user's implicit attitudes was used as part of a learning activity to enhance students' awareness of age-bias in social perceptions. A pretest-posttest methodology examined the efficacy of this learning activity in three separate investigations.…

  2. Shared Enhancer Activity in the Limbs and Phallus and Functional Divergence of a Limb-Genital cis-Regulatory Element in Snakes.

    PubMed

    Infante, Carlos R; Mihala, Alexandra G; Park, Sungdae; Wang, Jialiang S; Johnson, Kenji K; Lauderdale, James D; Menke, Douglas B

    2015-10-12

    The amniote phallus and limbs differ dramatically in their morphologies but share patterns of signaling and gene expression in early development. Thus far, the extent to which genital and limb transcriptional networks also share cis-regulatory elements has remained unexplored. We show that many limb enhancers are retained in snake genomes, suggesting that these elements may function in non-limb tissues. Consistent with this, our analysis of cis-regulatory activity in mice and Anolis lizards reveals that patterns of enhancer activity in embryonic limbs and genitalia overlap heavily. In mice, deletion of HLEB, an enhancer of Tbx4, produces defects in hindlimbs and genitalia, establishing the importance of this limb-genital enhancer for development of these different appendages. Further analyses demonstrate that the HLEB of snakes has lost hindlimb enhancer function while retaining genital activity. Our findings identify roles for Tbx4 in genital development and highlight deep similarities in cis-regulatory activity between limbs and genitalia. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. GPS and InSAR Observations of Active Mountain Growth Across the Sierra Nevada/Great Basin Transition

    NASA Astrophysics Data System (ADS)

    Hammond, W. C.; Blewitt, G.; Li, Z.; Kreemer, C. W.; Plag, H.

    2010-12-01

    Topographic relief across the Sierra Nevada Mountains and Great Basin of the western United States is dominated by mountain ranges and valleys that are the product of active tectonic deformation. The contemporary rate of uplift of the Sierra Nevada via slip on range front faults and/or tilting of the Sierra Nevada/Great Valley microplate (SNGV) has been the subject of controversy. For example, geologic estimates of the age of the modern range topography vary by one order of magnitude, from 3 to 30 million years. With present elevations near 3 km, the more rapid of these implied rates is large enough to be detected by the most precise GPS measurements. We use GPS vertical and horizontal components, and InSAR time series analysis to address these long standing questions about the rates of Sierran uplift. The data are from western U.S. high precision GPS networks including the EarthScope Plate Boundary Observatory, its nucleus networks, the University of Nevada Mobile Array of GPS for Nevada Transtension, and from integrated InSAR+GPS time series analysis of ERS and ENVISAT scenes acquired between 1992 and 2010 from the GeoEarthScope and WinSAR data archives. GPS data are processed using the GIPSY OASIS II software, with ambiguities resolved, ocean tidal loading, latest GMF troposphere model and antenna calibrations applied. InSAR time series analysis results provide enhanced geographic resolution, improving our ability to locate the boundary of SNGV block-like behavior. Vertical velocities from long-running continuous stations in eastern Nevada are very similar to one another, averaging -0.1 mm/yr, with standard deviation of 0.27 mm/yr, placing an upper bound on the uncertainty in vertical rates. We find agreement between the results of InSAR time series analysis aligned to GPS and GPS line of site rates at the level of 0.35 mm/yr, placing an upper bound on the uncertainty of InSAR time series results. Because we seek to infer long-term uplift rates, applicable over

  4. Noninvasive evaluation of active lower gastrointestinal bleeding: comparison between contrast-enhanced MDCT and 99mTc-labeled RBC scintigraphy.

    PubMed

    Zink, Stephen I; Ohki, Stephen K; Stein, Barry; Zambuto, Domenic A; Rosenberg, Ronald J; Choi, Jenny J; Tubbs, Daniel S

    2008-10-01

    The purpose of our study was to compare contrast-enhanced MDCT and (99m)Tc-labeled RBC scanning for the evaluation of active lower gastrointestinal bleeding. Over 17 months, 55 patients (32 men, 23 women; age range, 21-92 years) were evaluated prospectively with contrast-enhanced MDCT using 100 mL of iopromide 300 mg I/mL. Technetium-99m-labeled RBC scans were obtained on 41 of 55 patients and select patients underwent angiography for attempted embolization. Each imaging technique was reviewed in a blinded fashion for sensitivity for detection of active bleeding as well as the active lower gastrointestinal bleeding location. Findings were positive on both examinations in eight patients and negative on both examinations in 20 patients. Findings were positive on contrast-enhanced MDCT and negative on (99m)Tc-labeled RBC in two patients; findings were negative on contrast-enhanced MDCT and positive on (99m)Tc-labeled RBC in 11 patients. Statistics showed significant disagreement, with simple agreement = 68.3%, kappa = 0.341, and p = 0.014. Sixteen of 60 (26.7%) contrast-enhanced MDCT scans were positive prospectively, with all accurately localizing the site of bleeding and identification of the underlying lesion in eight of 16 (50%). Nineteen of 41 (46.3%) (99m)Tc-labeled RBC scans were positive. Eighteen of 41 matched patients went on to angiography. In four of these 18 (22.2%) patients, the site of bleeding was confirmed by angiography, but in 14 of 18 (77.8%), the findings were negative. Contrast-enhanced MDCT and (99m)Tc-labeled RBC scanning show significant disagreement for evaluation of active lower gastrointestinal bleeding. Contrast-enhanced MDCT appears effective for detection and localization in cases of active lower gastrointestinal bleeding in which hemorrhage is active at the time of CT.

  5. Fishery research in the Great Lakes using a low-cost remotely operated vehicle

    USGS Publications Warehouse

    Kennedy, Gregory W.; Brown, Charles L.; Argyle, Ray L.

    1988-01-01

    We used a MiniROVER MK II remotely operated vehicle (ROV) to collect ground-truth information on fish and their habitat in the Great Lakes that have traditionally been collected by divers, or with static cameras, or submersibles. The ROV, powered by 4 thrusters and controlled by the pilot at the surface, was portable and efficient to operate throughout the Great Lakes in 1987, and collected a total of 30 h of video data recorded for later analysis. We collected 50% more substrate information per unit of effort with the ROV than with static cameras. Fish behavior ranged from no avoidance reaction in ambient light, to erratic responses in the vehicle lights. The ROV's field of view depended on the time of day, light levels, and density of zooplankton. Quantification of the data collected with the ROV (either physical samples or video image data) will serve to enhance the use of the ROV as a research tool to conduct fishery research on the Great Lakes.

  6. Untranslated regions of diverse plant viral RNAs vary greatly in translation enhancement efficiency

    PubMed Central

    2012-01-01

    Background Whole plants or plant cell cultures can serve as low cost bioreactors to produce massive amounts of a specific protein for pharmacological or industrial use. To maximize protein expression, translation of mRNA must be optimized. Many plant viral RNAs harbor extremely efficient translation enhancers. However, few of these different translation elements have been compared side-by-side. Thus, it is unclear which are the most efficient translation enhancers. Here, we compare the effects of untranslated regions (UTRs) containing translation elements from six plant viruses on translation in wheat germ extract and in monocotyledenous and dicotyledenous plant cells. Results The highest expressing uncapped mRNAs contained viral UTRs harboring Barley yellow dwarf virus (BYDV)-like cap-independent translation elements (BTEs). The BYDV BTE conferred the most efficient translation of a luciferase reporter in wheat germ extract and oat protoplasts, while uncapped mRNA containing the BTE from Tobacco necrosis virus-D translated most efficiently in tobacco cells. Capped mRNA containing the Tobacco mosaic virus omega sequence was the most efficient mRNA in tobacco cells. UTRs from Satellite tobacco necrosis virus, Tomato bushy stunt virus, and Crucifer-infecting tobamovirus (crTMV) did not stimulate translation efficiently. mRNA with the crTMV 5′ UTR was unstable in tobacco protoplasts. Conclusions BTEs confer the highest levels of translation of uncapped mRNAs in vitro and in vivo, while the capped omega sequence is most efficient in tobacco cells. These results provide a basis for understanding mechanisms of translation enhancement, and for maximizing protein synthesis in cell-free systems, transgenic plants, or in viral expression vectors. PMID:22559081

  7. Morinda citrifolia Leaf Extract Enhances Osteogenic Differentiation Through Activation of Wnt/β-Catenin Signaling.

    PubMed

    Gu, Hanna; Boonanantanasarn, Kanitsak; Kang, Moonkyu; Kim, Ikhwi; Woo, Kyung Mi; Ryoo, Hyun-Mo; Baek, Jeong-Hwa

    2018-01-01

    Morinda citrifolia (Noni) leaf is an herbal medicine with application in the domestic treatment of a broad range of conditions, including bone fracture and luxation. However, the basic mechanism underlying the stimulation of osteogenic differentiation by Noni leaf extract remains poorly understood. This study aimed to examine the effect of this extract on osteogenic differentiation and the mechanism by which Noni leaf extract enhances osteogenic differentiation. Aqueous extract of Noni leaves was prepared, and rutin and kaempferol-3-O-rutinoside were identified to be two of its major components. C2C12 and human periodontal ligament (hPDL) cells were used to study the effect of Noni. Noni did not show cytotoxicity at a concentration range of 0.015%-1.0% (w/v%) and significantly enhanced the activity of alkaline phosphatase (ALP) and expression levels of osteoblast differentiation markers, including Runx2, ALP, osterix, and osteocalcin, bone morphogenetic protein 2, Wnt3a, and β-catenin. In addition, Noni enhanced the matrix mineralization of hPDL cells. In the signaling pathways, Noni increased the phosphorylation levels of Akt and GSK3β and nuclear translocation and transcriptional activity of β-catenin, which were attenuated by the addition of Dkk-1, a Wnt inhibitor, or LY294002, a PI3K inhibitor. These results suggest that Noni leaf extract enhances osteogenic differentiation through the PI3K/Akt-dependent activation of Wnt/β-catenin signaling. Noni leaf extract might be a novel alternative medicine for bone and periodontal regeneration in patients with periodontal diseases.

  8. Enhanced hydrogen evolution reaction on hybrids of cobalt phosphide and molybdenum phosphide

    NASA Astrophysics Data System (ADS)

    Fang, Si-Ling; Chou, Tsu-Chin; Samireddi, Satyanarayana; Chen, Kuei-Hsien; Chen, Li-Chyong; Chen, Wei-Fu

    2017-03-01

    Production of hydrogen from water electrolysis has stimulated the search of sustainable electrocatalysts as possible alternatives. Recently, cobalt phosphide (CoP) and molybdenum phosphide (MoP) received great attention owing to their superior catalytic activity and stability towards the hydrogen evolution reaction (HER) which rivals platinum catalysts. In this study, we synthesize and study a series of catalysts based on hybrids of CoP and MoP with different Co/Mo ratio. The HER activity shows a volcano shape and reaches a maximum for Co/Mo = 1. Tafel analysis indicates a change in the dominating step of Volmer-Hyrovský mechanism. Interestingly, X-ray diffraction patterns confirmed a major ternary interstitial hexagonal CoMoP2 crystal phase is formed which enhances the electrochemical activity.

  9. Effect of various enhancers on transdermal penetration of indomethacin and urea, and relationship between penetration parameters and enhancement factors.

    PubMed

    Ogiso, T; Iwaki, M; Paku, T

    1995-04-01

    The enhancing capacity of various chemicals, which are widely recognized as enhancers, for the transdermal penetration into full-thickness rat skin of a model lipophilic drug [indomethacin (IND)] and a hydrophilic permeant (urea) was estimated by an in vitro technique. In addition, the fluidity of the stratum corneum lipids, the partitioning of IND into skin, the lipid (ceramides) extraction from the stratum corneum by enhancers, and the IND solubility in enhancer vehicle were measured and related to the enhancing capacity. In vitro permeation experiments with hairless rat skin unequivocally revealed that the enhancers varied in abilities to enhance the fluxes of both agents. Laurocapram, isopropylmyristate (IPM), sodium oleate, and cineol increased fluxes of both agents to a great extent, but N-methyl-2-pyrrolidone (NMP), N,N-diethyl-m-tolamide (DEET), and oleyl oleate were less effective acclerants. Many enhancers increased the fluidity of the lipids [with a threshold of approximately 0.6-0.8 ns at 37 degrees C in the rotational correlation time (tau c)], the skin partitioning of IND, the extraction of ceramides from the cornified cells, and the thermodynamic activity of IND in vehicle (calculated from the solubility) to varying extents. A good correlation was observed between the increase in the fluidity of stratum corneum lipids and the partitioning of IND into skin, between the increase in the fluidity and the flux or the decrease in lag time for IND, between the removal of ceramides and the skin partitioning of IND, and between the removal of ceramides and the flux of urea (p < 0.05 in all cases).(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Enhancement mechanisms of short-time aerobic digestion for waste activated sludge in the presence of cocoamidopropyl betaine.

    PubMed

    Xia, Siqing; Zhou, Yun; Eustance, Everett; Zhang, Zhiqiang

    2017-10-18

    Cocoamidopropyl betaine (CAPB), which is a biodegradable ampholytic surfactant, has recently been found to dramatically enhance the aerobic digestion of waste activated sludge (WAS) in short-time aerobic digestion (STAD) systems. Therefore, it is important to understand the mechanisms in which CAPB enhances WAS aerobic digestion performance. Results showed that CAPB could dramatically enhance the solubilization of soluble proteins (PN), polysaccharides (PS), nucleic acids (NA) and humic-like substances (HS) in the STAD system within the initial 2 h. Then PN, PS and NA gradually decreased, while HS showed only minor decease. In addition, CAPB increased the proportion of low MW fractions (<20 kDa) from 4.22% to 39.4%, which are more biodegradable. Specific oxygen uptake rates and dehydrogenase enzyme activity results indicated that CAPB markedly improved the aerobic microorganism activities. Microbial community analyses and principle coordinate analyses (PCoA) revealed that CAPB increased the proportion of some functional microorganisms, including Proteobacteria, Planctomycetales, Acinetobacter, Pseudomonas and Aeromonas. The changes driven by CAPB could explain the enhanced performance of the STAD system for WAS aerobic treatment.

  11. Using Stellarium to cyber-observe the Great American Eclipse

    NASA Astrophysics Data System (ADS)

    Prim, Ellie R.; Sitar, David J.

    2017-09-01

    The Great American Eclipse is over. Somewhat sad, is it not? Individuals who were unable to experience the event on August 21, 2017, can now cyber-observe the eclipse with Stellarium (http://www.stellarium.org). In the authors' opinion, it is fun and has many great applications in the classroom. In addition it is open source and available for Android, iOS, and Linux users. We here at Appalachian use it in our introductory astronomy labs for specific activities such as investigating coordinate systems, discovering differences between solar and sidereal days, as well as determining why your "astrological sign" is most often not your "astronomical sign."

  12. Understanding Interactions between Manganese Oxide and Gold That Lead to Enhanced Activity for Electrocatalytic Water Oxidation

    PubMed Central

    2015-01-01

    To develop active nonprecious metal-based electrocatalysts for the oxygen evolution reaction (OER), a limiting reaction in several emerging renewable energy technologies, a deeper understanding of the activity of the first row transition metal oxides is needed. Previous studies of these catalysts have reported conflicting results on the influence of noble metal supports on the OER activity of the transition metal oxides. Our study aims to clarify the interactions between a transition metal oxide catalyst and its metal support in turning over this reaction. To achieve this goal, we examine a catalytic system comprising nanoparticulate Au, a common electrocatalytic support, and nanoparticulate MnOx, a promising OER catalyst. We conclusively demonstrate that adding Au to MnOx significantly enhances OER activity relative to MnOx in the absence of Au, producing an order of magnitude higher turnover frequency (TOF) than the TOF of the best pure MnOx catalysts reported to date. We also provide evidence that it is a local rather than bulk interaction between Au and MnOx that leads to the observed enhancement in the OER activity. Engineering improvements in nonprecious metal-based catalysts by the addition of Au or other noble metals could still represent a scalable catalyst as even trace amounts of Au are shown to lead a significant enhancement in the OER activity of MnOx. PMID:24661269

  13. Understanding interactions between manganese oxide and gold that lead to enhanced activity for electrocatalytic water oxidation.

    PubMed

    Gorlin, Yelena; Chung, Chia-Jung; Benck, Jesse D; Nordlund, Dennis; Seitz, Linsey; Weng, Tsu-Chien; Sokaras, Dimosthenis; Clemens, Bruce M; Jaramillo, Thomas F

    2014-04-02

    To develop active nonprecious metal-based electrocatalysts for the oxygen evolution reaction (OER), a limiting reaction in several emerging renewable energy technologies, a deeper understanding of the activity of the first row transition metal oxides is needed. Previous studies of these catalysts have reported conflicting results on the influence of noble metal supports on the OER activity of the transition metal oxides. Our study aims to clarify the interactions between a transition metal oxide catalyst and its metal support in turning over this reaction. To achieve this goal, we examine a catalytic system comprising nanoparticulate Au, a common electrocatalytic support, and nanoparticulate MnO(x), a promising OER catalyst. We conclusively demonstrate that adding Au to MnO(x) significantly enhances OER activity relative to MnO(x) in the absence of Au, producing an order of magnitude higher turnover frequency (TOF) than the TOF of the best pure MnO(x) catalysts reported to date. We also provide evidence that it is a local rather than bulk interaction between Au and MnO(x) that leads to the observed enhancement in the OER activity. Engineering improvements in nonprecious metal-based catalysts by the addition of Au or other noble metals could still represent a scalable catalyst as even trace amounts of Au are shown to lead a significant enhancement in the OER activity of MnO(x).

  14. Investigation of repressive and enhancive effects of fruit extracts on the activity of glucose-6-phophatase.

    PubMed

    Zahoor, Muhammad; Jan, Muhammad Rasul; Naz, Sumaira

    2016-11-01

    Glucose-6-phosphatase is a key enzyme of glucose metabolic pathways. Deficiency of this enzyme leads to glycogen storage disease. This enzyme also plays a negative role in diabetes mellitus disorder in which the catalytic activity of this enzyme increases. Thus there is need for activators to enhance the activity of glucose-6-phosphatase in glycogen storage disease of type 1b while in diabetes mellitus repressors are needed to reduce its activity. Crude extracts of apricot, fig, mulberry and apple fruits were investigated for their repressive/enhancive effects on glucose-6-phosphatase in vivo. Albino mice were used as experimental animal. All the selected extracts showed depressive effects on glucose-6-phosphatase, which shows that all these extracts can be used as antidiabetic supplement of food. The inhibitory pattern was competitive one, which was evident from the effect of increasing dose from 1g/Kg body weight to 3g/Kg body weight for all the selected fruit extracts. However fig and apple fruit extracts showed high repressive effects for high doses as compared to apricot and mulberry fruit extracts. None of these selected fruit extracts showed enhancive effect on glucose-6-phosphatase activity. All these fruits or their extracts can be used as antidiabetic dietary supplement for diabetes mellitus.

  15. A Sacrificial Coating Strategy Toward Enhancement of Metal-Support Interaction for Ultrastable Au Nanocatalysts

    DOE PAGES

    Zhan, Wangcheng; He, Qian; Liu, Xiaofei; ...

    2016-11-22

    Supported gold (Au) nanocatalysts hold great promise for heterogeneous catalysis; however, their practical application is greatly hampered by poor thermodynamic stability. Herein, a general synthetic strategy is reported where discrete metal nanoparticles are made resistant to sintering, preserving their catalytic activities in high-temperature oxidation processes. Taking advantage of the unique coating chemistry of dopamine, sacrificial carbon layers are constructed on the material surface, stabilizing the supported catalyst. Upon annealing at high temperature under an inert atmosphere, the interactions between support and metal nanoparticle are dramatically enhanced, while the sacrificial carbon layers can be subsequently removed through oxidative calcination in air.more » Owing to the improved metal-support contact and strengthened electronic interactions, the resulting Au nanocatalysts are resistant to sintering and exhibit excellent durability for catalytic combustion of propylene at elevated temperatures. Moreover, the facile synthetic strategy can be extended to the stabilization of other supported catalysts on a broad range of supports, providing a general approach to enhancing the thermal stability and sintering resistance of supported nanocatalysts.« less

  16. PIAS1 interacts with FLASH and enhances its co-activation of c-Myb

    PubMed Central

    2011-01-01

    Background FLASH is a huge nuclear protein involved in various cellular functions such as apoptosis signalling, NF-κB activation, S-phase regulation, processing of histone pre-mRNAs, and co-regulation of transcription. Recently, we identified FLASH as a co-activator of the transcription factor c-Myb and found FLASH to be tightly associated with active transcription foci. As a huge multifunctional protein, FLASH is expected to have many interaction partners, some which may shed light on its function as a transcriptional regulator. Results To find additional FLASH-associated proteins, we performed a yeast two-hybrid (Y2H) screening with FLASH as bait and identified the SUMO E3 ligase PIAS1 as an interaction partner. The association appears to involve two distinct interaction surfaces in FLASH. We verified the interaction by Y2H-mating, GST pulldowns, co-IP and ChIP. FLASH and PIAS1 were found to co-localize in nuclear speckles. Functional assays revealed that PIAS1 enhances the intrinsic transcriptional activity of FLASH in a RING finger-dependent manner. Furthermore, PIAS1 also augments the specific activity of c-Myb, and cooperates with FLASH to further co-activate c-Myb. The three proteins, FLASH, PIAS1, and c-Myb, are all co-localized with active RNA polymerase II foci, resembling transcription factories. Conclusions We conclude that PIAS1 is a common partner for two cancer-related nuclear factors, c-Myb and FLASH. Our results point to a functional cooperation between FLASH and PIAS1 in the enhancement of c-Myb activity in active nuclear foci. PMID:21338522

  17. Engineering and Evolution of Molecular Chaperones and Protein Disaggregases with Enhanced Activity

    PubMed Central

    Mack, Korrie L.; Shorter, James

    2016-01-01

    Cells have evolved a sophisticated proteostasis network to ensure that proteins acquire and retain their native structure and function. Critical components of this network include molecular chaperones and protein disaggregases, which function to prevent and reverse deleterious protein misfolding. Nevertheless, proteostasis networks have limits, which when exceeded can have fatal consequences as in various neurodegenerative disorders, including Parkinson's disease and amyotrophic lateral sclerosis. A promising strategy is to engineer proteostasis networks to counter challenges presented by specific diseases or specific proteins. Here, we review efforts to enhance the activity of individual molecular chaperones or protein disaggregases via engineering and directed evolution. Remarkably, enhanced global activity or altered substrate specificity of various molecular chaperones, including GroEL, Hsp70, ClpX, and Spy, can be achieved by minor changes in primary sequence and often a single missense mutation. Likewise, small changes in the primary sequence of Hsp104 yield potentiated protein disaggregases that reverse the aggregation and buffer toxicity of various neurodegenerative disease proteins, including α-synuclein, TDP-43, and FUS. Collectively, these advances have revealed key mechanistic and functional insights into chaperone and disaggregase biology. They also suggest that enhanced chaperones and disaggregases could have important applications in treating human disease as well as in the purification of valuable proteins in the pharmaceutical sector. PMID:27014702

  18. Backward masked fearful faces enhance contralateral occipital cortical activity for visual targets within the spotlight of attention

    PubMed Central

    Reinke, Karen S.; LaMontagne, Pamela J.; Habib, Reza

    2011-01-01

    Spatial attention has been argued to be adaptive by enhancing the processing of visual stimuli within the ‘spotlight of attention’. We previously reported that crude threat cues (backward masked fearful faces) facilitate spatial attention through a network of brain regions consisting of the amygdala, anterior cingulate and contralateral visual cortex. However, results from previous functional magnetic resonance imaging (fMRI) dot-probe studies have been inconclusive regarding a fearful face-elicited contralateral modulation of visual targets. Here, we tested the hypothesis that the capture of spatial attention by crude threat cues would facilitate processing of subsequently presented visual stimuli within the masked fearful face-elicited ‘spotlight of attention’ in the contralateral visual cortex. Participants performed a backward masked fearful face dot-probe task while brain activity was measured with fMRI. Masked fearful face left visual field trials enhanced activity for spatially congruent targets in the right superior occipital gyrus, fusiform gyrus and lateral occipital complex, while masked fearful face right visual field trials enhanced activity in the left middle occipital gyrus. These data indicate that crude threat elicited spatial attention enhances the processing of subsequent visual stimuli in contralateral occipital cortex, which may occur by lowering neural activation thresholds in this retinotopic location. PMID:20702500

  19. Mitochondrial Targeting of Vitamin E Succinate Enhances Its Pro-apoptotic and Anti-cancer Activity via Mitochondrial Complex II*

    PubMed Central

    Dong, Lan-Feng; Jameson, Victoria J. A.; Tilly, David; Cerny, Jiri; Mahdavian, Elahe; Marín-Hernández, Alvaro; Hernández-Esquivel, Luz; Rodríguez-Enríquez, Sara; Stursa, Jan; Witting, Paul K.; Stantic, Bela; Rohlena, Jakub; Truksa, Jaroslav; Kluckova, Katarina; Dyason, Jeffrey C.; Ledvina, Miroslav; Salvatore, Brian A.; Moreno-Sánchez, Rafael; Coster, Mark J.; Ralph, Stephen J.; Smith, Robin A. J.; Neuzil, Jiri

    2011-01-01

    Mitochondrial complex II (CII) has been recently identified as a novel target for anti-cancer drugs. Mitochondrially targeted vitamin E succinate (MitoVES) is modified so that it is preferentially localized to mitochondria, greatly enhancing its pro-apoptotic and anti-cancer activity. Using genetically manipulated cells, MitoVES caused apoptosis and generation of reactive oxygen species (ROS) in CII-proficient malignant cells but not their CII-dysfunctional counterparts. MitoVES inhibited the succinate dehydrogenase (SDH) activity of CII with IC50 of 80 μm, whereas the electron transfer from CII to CIII was inhibited with IC50 of 1.5 μm. The agent had no effect either on the enzymatic activity of CI or on electron transfer from CI to CIII. Over 24 h, MitoVES caused stabilization of the oxygen-dependent destruction domain of HIF1α fused to GFP, indicating promotion of the state of pseudohypoxia. Molecular modeling predicted the succinyl group anchored into the proximal CII ubiquinone (UbQ)-binding site and successively reduced interaction energies for serially shorter phytyl chain homologs of MitoVES correlated with their lower effects on apoptosis induction, ROS generation, and SDH activity. Mutation of the UbQ-binding Ser68 within the proximal site of the CII SDHC subunit (S68A or S68L) suppressed both ROS generation and apoptosis induction by MitoVES. In vivo studies indicated that MitoVES also acts by causing pseudohypoxia in the context of tumor suppression. We propose that mitochondrial targeting of VES with an 11-carbon chain localizes the agent into an ideal position across the interface of the mitochondrial inner membrane and matrix, optimizing its biological effects as an anti-cancer drug. PMID:21059645

  20. Repression of enhancer II activity by a negative regulatory element in the hepatitis B virus genome.

    PubMed Central

    Lo, W Y; Ting, L P

    1994-01-01

    Enhancer II of human hepatitis B virus has dual functions in vivo. Located at nucleotides (nt) 1646 to 1741, it can stimulate the surface and X promoters from a downstream position. Moreover, the same sequence can also function as upstream regulatory element that activates the core promoter in a position- and orientation-dependent manner. In this study, we report the identification and characterization of a negative regulatory element (NRE) upstream of enhancer II (nt 1613 to 1636) which can repress both the enhancer and upstream stimulatory function of the enhancer II sequence in differentiated liver cells. This NRE has marginal inhibitory effect by itself but a strong repressive function in the presence of a functional enhancer II. Mutational analysis reveals that sequence from nt 1616 to 1621 is required for repression of enhancer activity by the NRE. Gel shift analysis reveals that this negative regulatory region can be recognized by a specific protein factor(s) present at the 0.4 M NaCl fraction of HepG2 nuclear extracts. The discovery of the NRE indicates that HBV gene transcription is controlled by combined effects of both positive and negative regulation. It also provides a unique system with which to study the mechanism of negative regulation of gene expression. Images PMID:8107237

  1. The Effectiveness of Cooperative Learning Activities in Enhancing EFL Learners' Fluency

    ERIC Educational Resources Information Center

    Alrayah, Hassan

    2018-01-01

    This research-paper aims at examining the effectiveness of cooperative learning activities in enhancing EFL learners' fluency. The researcher has used the descriptive approach, recorded interviews for testing fluency as tools of data collection and the software program SPSS as a tool for the statistical treatment of data. Research sample consists…

  2. Participation in Sports-Related Extracurricular Activities: A Strategy That Enhances School Engagement

    ERIC Educational Resources Information Center

    St-Amand, Jerome; Girard, Stéphanie; Hiroux, Marie-Hélène; Smith, Jonathan

    2017-01-01

    This article outlines a strategy that we, as high school teachers, used in the academic year 2012-2013 to improve a student's school engagement. Extracurricular activities such as sports have proven useful (among other strategies) to counter school disengagement, specifically in enhancing positive social relations among the teachers and students…

  3. Cobalt-doping-induced synthesis of ceria nanodisks and their significantly enhanced catalytic activity.

    PubMed

    Guo, Xiao-Hui; Mao, Chao-Chao; Zhang, Ji; Huang, Jun; Wang, Wa-Nv; Deng, Yong-Hui; Wang, Yao-Yu; Cao, Yong; Huang, Wei-Xin; Yu, Shu-Hong

    2012-05-21

    High-quality cobalt-doped ceria nanostructures with triangular column, triangular slab, and disklike shapes are synthesized by tuning the doping amount of cobalt nitrate in a facile hydrothermal reaction. The cobalt-doped ceria nanodisks display significantly enhanced catalytic activity in CO oxidation due to exposed highly active crystal planes and the presence of numerous surface defects. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Circadian variations of interferon-induced enhancement of human natural killer (NK) cell activity.

    PubMed

    Gatti, G; Cavallo, R; Sartori, M L; Carignola, R; Masera, R; Delponte, D; Salvadori, A; Angeli, A

    1988-01-01

    We searched for circadian changes in the enhancement of the NK activity after exposure to IFN-gamma of peripheral blood mononuclear (PBM) cells obtained serially throughout the 24-h cycle. In August-October 1986, blood was drawn from 7 healthy, diurnally active and nocturnally resting male volunteers (22-34 yr) at 4-h intervals for 24 h starting at 08:00. PBM cells were immediately separated and assayed for NK cell activity, using K 562 cultured cells as a target in a 4-h 51Cr release assay after prior incubation for 20 h with buffer or 300 IU rIFN-gamma. Circadian variations of the spontaneous NK cell cytotoxicity were apparent; the activity was at its maximum at the end of the night or in the early morning and then declined in the afternoon. The 24-h rhythmic pattern was validated with statistical significance by the Cosinor method (p less than 0.02; acrophase 04:22). Maximum enhancement by IFN-gamma was attained in the second part of the night or in the early morning, i.e. in phase with the peak of the spontaneous NK cell activity. A significant circadian rhythm of the percent increase above control levels was validated by the Cosinor method (p less than 0.01; acrophase 04:03). Our findings may be of relevance to a better understanding of the mechanisms of control of human NK activity and warrant consideration as an approach to improve the effectiveness of time-qualified immunotherapy.

  5. Antimicrobial activity of Bacillus amyloliquefaciens LBM 5006 is enhanced in the presence of Escherichia coli.

    PubMed

    Benitez, Lisianne; Correa, AnaPaula; Daroit, Daniel; Brandelli, Adriano

    2011-03-01

    Increased antimicrobial activity was observed when Bacillus amyloliquefaciens LBM 5006 strain was cultivated in the presence of thermally inactivated cells of Escherichia coli, but not with Staphylococcus aureus, Listeria monocytogenes, or Bacillus cereus. E. coli also enhanced the antimicrobial activity when it was added to the medium in the form of living cells or as cell debris after cellular fractionation. No inducing activity was observed with addition of cell-free supernatant of E. coli cultures, suggesting that inducing factor is associated to the cells. Polyacrylamide gel electrophoresis revealed that additional peptide bands are secreted when B. amyloliquefaciens was cultivated in the presence of cell debris of E. coli. These results suggest that the presence of intact or inactivated E. coli enhanced the synthesis of antimicrobial peptides by B. amyloliquefaciens LBM 5006.

  6. Evaluations of imidazolium ionic liquids as novel skin permeation enhancers for drug transdermal delivery.

    PubMed

    Zhang, Ding; Wang, Huai-Ji; Cui, Xiu-Ming; Wang, Cheng-Xiao

    2017-06-01

    In this work, imidazolium ionic liquids (imidazolium ILs) were employed as the novel chemical permeation enhancers (CPEs) and their performances and mechanisms of action were deeply investigated. Testosterone was used as a model drug to investigate the transdermal delivery enhancement of twenty imdidazolium ILs. The results suggested that the promotion activity connected to the structure and composition of the ILs. The quantitative structure-activity relationship (QSAR) model revealed a good linearity between the electronic properties of ILs and their enhancements. Furthermore, the transepidermal water loss (TEWL) and scanning laser confocal microscope (CLSM) examinations showed the strong improvement of ILs on skin barrier permeability, which were well correlated with the drug penetration profiles. The total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) and atomic force microscope (AFM) evaluations of skins indicated that the ILs can disrupt the regular and compact arrangements of the corneocytes, change the surface properties of stratum corneum, and make the skin structure more permeable. Our work demonstrated the significant skin permeation promotion profiles of the imidazolium ILs, which are of great potential in transdermal drug delivery systems.

  7. Enhancement of lysyl-tRNA synthetase activity in the Enterobacteriaceae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hickey, E.W.; Hirshfield, I.

    1987-05-01

    Lysyl-tRNA synthetase (LRS) in E. coli is coded by two genes, one constitutive, and the other inducible; the latter is a cell stress protein. To determine if this system is wide spread in prokaryotes, the inducibility of LRS was first tested in eight members of the Enterobacteriaceae using cultural conditions known to induce the enzyme in E. coli K-12. Uninduced control cultures were grown to an O.D. of 0.2 at 580 nm in a supplemented minimal medium (SMM), pH 7.0 at 37/sup 0/C. Induction stimuli include: growth in SMM with 3mM Gly-L-Leu; growth in SMM as above, but with themore » initial pH adjusted to 5.0; or growth in Difco AC Broth to early stationary phase with a concomitant drop in the pH of the medium below 5.5. LRS activity was assayed in whole-cell sonic extracts by the aminoacylation of crude E. coli tRNA by /sup 14/C-lysine at pH 7.8 for three minutes. When E. aerogenes, K. pneumoniae, C. freundii, and S. typhimurium were grown in AC Broth, LRS activity was enhanced 2 to 4 fold. The enzyme is induced 2 to 4 fold in C. freundii and S. typhimurium upon growth at pH 5.0, whereas E. coli, K.; pneumoniae, and E. aerogenes show only a 1.5 fold induction. The peptide Gly-L-Leu enhanced LRS activity only in E. coli. LRS was not found to be inducible in S. marcescens, M. morganii, P. mirabilis, or P. vulgaris by any of the stimuli.« less

  8. Enhanced heterogeneous ice nucleation by special surface geometry

    PubMed Central

    Bi, Yuanfei; Cao, Boxiao; Li, Tianshu

    2017-01-01

    The freezing of water typically proceeds through impurity-mediated heterogeneous nucleation. Although non-planar geometry generically exists on the surfaces of ice nucleation centres, its role in nucleation remains poorly understood. Here we show that an atomically sharp, concave wedge can further promote ice nucleation with special wedge geometries. Our molecular analysis shows that significant enhancements of ice nucleation can emerge both when the geometry of a wedge matches the ice lattice and when such lattice match does not exist. In particular, a 45° wedge is found to greatly enhance ice nucleation by facilitating the formation of special topological defects that consequently catalyse the growth of regular ice. Our study not only highlights the active role of defects in nucleation but also suggests that the traditional concept of lattice match between a nucleation centre and crystalline lattice should be extended to include a broader match with metastable, non-crystalline structural motifs. PMID:28513603

  9. Enhanced heterogeneous ice nucleation by special surface geometry.

    PubMed

    Bi, Yuanfei; Cao, Boxiao; Li, Tianshu

    2017-05-17

    The freezing of water typically proceeds through impurity-mediated heterogeneous nucleation. Although non-planar geometry generically exists on the surfaces of ice nucleation centres, its role in nucleation remains poorly understood. Here we show that an atomically sharp, concave wedge can further promote ice nucleation with special wedge geometries. Our molecular analysis shows that significant enhancements of ice nucleation can emerge both when the geometry of a wedge matches the ice lattice and when such lattice match does not exist. In particular, a 45° wedge is found to greatly enhance ice nucleation by facilitating the formation of special topological defects that consequently catalyse the growth of regular ice. Our study not only highlights the active role of defects in nucleation but also suggests that the traditional concept of lattice match between a nucleation centre and crystalline lattice should be extended to include a broader match with metastable, non-crystalline structural motifs.

  10. Three-dimensional TiO2/Au nanoparticles for plasmon enhanced photocatalysis

    NASA Astrophysics Data System (ADS)

    Yu, Jianyu; Zhou, Lin; Wang, Yang; Tan, Yingling; Wang, Zhenlin; Zhu, Shining; Zhu, Jia

    2018-03-01

    The mechanisms of plasmonic nanostructures assisted photocatalytic processes are fundamental and of great importance and interest for decades. Therefore, we adopt a unique porous structure of three-dimensional TiO2/Au nanoparticles to experimentally explore the potential mechanisms of rhodamine B (RhB) based photocatalytic degradation. The highly efficient absorbance measured across the entire ultraviolet and infrared regions shows the broadband light harvesting capability and photocatalytic activity, in which the direct bandgap transition, plasmon sensitization as well as the plasmonic photothermal effect can be beneficial for the photocatalytic reaction. The RhB photocatalytic degradation experiments were conducted systematically under solar irradiance with finely chosen optical filters. Apart from the ultraviolet-driven degradation of TiO2, the plasmon assisted photocatalytic rate of our TiO2/Au structure can be enhanced by >30% as compared to the referenced TiO2 structure (equivalent to 2-4 times promotion with respect to the same quantity of the active material TiO2). Detailed wavelength-dependent analyses have revealed that the visible-driven degradation rate can be enhanced by 10 times because of the plasmon sensitization effect; while infrared-driven degradation rate is enhanced by 4 times as well for the plasmonic photothermal effect, respectively. Our experimental results may provide a clear understanding for the wavelength-dependent plasmon enhanced photocatalytic processes.

  11. 78 FR 961 - Agency Information Collection Activities: Proposed New Collection; Comments Requested: Enhancing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-07

    ... DEPARTMENT OF JUSTICE [OMB Number 1103-NEW] Agency Information Collection Activities: Proposed New Collection; Comments Requested: Enhancing Community Policing Through Community Mediation Surveys ACTION: 60-Day notice. The Department of Justice (DOJ) Office of Community Oriented Policing Services (COPS) will...

  12. Jalal A. Aliyev (1928-2016): a great scientist, a great teacher and a great human being.

    PubMed

    Huseynova, Irada M; Allakhverdiev, Suleyman I; Govindjee

    2016-06-01

    Jalal A. Aliyev was a distinguished and respected plant biologist of our time, a great teacher, and great human being. He was a pioneer of photosynthesis research in Azerbaijan. Almost up to the end of his life, he was deeply engaged in research. His work on the productivity of wheat, and biochemistry, genetics and molecular biology of gram (chick pea) are some of his important legacies. He left us on February 1, 2016, but many around the world remember him as he was engaged in international dialog on solving global issues, and in supporting international conferences on ''Photosynthesis Research for Sustainability" in 2011 and 2013.

  13. Assessing the Impacts of Climate Change on Tourism-Dependent Communities in the Great Lakes

    NASA Astrophysics Data System (ADS)

    Chin, N.; Day, J.; Sydnor, S.; Cherkauer, K. A.

    2013-12-01

    Tourism is an essential element of the Laurentian Great Lakes economy as well as one of the sectors expected to be affected most by climate change, particularly through extreme weather events. While studies looking at climate change impacts on the Great Lakes tourism, specifically, are limited, the results of other studies suggest that both summer tourism activities, such as beach-going, and winter tourism activities, such as skiing and snowboarding, could feel the effects of a changing climate. The purpose of this study was to determine how existing data and models might be used to predict the potential impacts of climate change on tourism-dependent communities at the local scale. Future climate projections and variable infiltration capacity (VIC) model simulations based on historical climate data were used to quantify trends in environmental metrics with a potential influence on tourism for several tourism-dependent Great Lakes communities. The results of this research show that the potential impacts of climate change vary at the local scale and could require different adaptation strategies for different communities and for different sectors of the tourism industry. For example, communities in the northern parts of the Great Lakes may find benefit in a greater diversification of their tourism industries, given that warming temperatures could be beneficial for summer tourism activities, while communities in the southern parts of the Great Lakes may have to find other ways to cope with climate conditions that are less conducive to summer tourism activities. Stakeholder input could also help inform the process of producing scientific information that is useful to policymakers when it comes to tourism sector-related decision making.

  14. Magnetic flux transport of decaying active regions and enhanced magnetic network. [of solar supergranulation

    NASA Technical Reports Server (NTRS)

    Wang, Haimin; Zirin, Harold; Ai, Guoxiang

    1991-01-01

    Several series of coordinated observations on decaying active regions and enhanced magnetic network regions on the sun were carried out jointly at Big Bear Solar Observatory and at the Huairou Solar Observing Station of the Bejing Astronomical Observatory in China. The magnetic field evolution in several regions was followed closely for three to seven days. The magnetic flux transport from the remnants of decayed active regions was studied, along with the evolution and lifetime of the magnetic network which defines the boundaries of supergranules. The magnetic flux transport in an enhanced network region was studied in detail and found to be negative. Also briefly described are some properties of moving magnetic features around a sunspot. Results of all of the above studies are presented.

  15. Enhancement of death-receptor induced caspase-8-activation in the death-inducing signalling complex by uncoupling of oxidative phosphorylation.

    PubMed

    Vier, Juliane; Gerhard, Monika; Wagner, Hermann; Häcker, Georg

    2004-01-01

    Signalling through the death receptor CD95 induces apoptosis by formation of a signalling complex at the cell membrane and subsequent caspase-8 and caspase-3-activation. Treatment of Jurkat T cells with protonophores across the mitochondrial membrane such as 2,4-dinitrophenol (DNP) enhances the death-inducing capacity of CD95. In this study, we show that this enhancement is due to the specific acceleration of caspase-8-processing and activation at the CD95-receptor. DNP-treatment did not affect NF-kappaB-induction by CD95. Immunoprecipitation experiments showed that the amounts of the adapter FADD/MORT1 and pro-caspase-8 at the CD95-receptor were not altered by DNP. Subcellular fractionation studies revealed that the amount of mature caspase-8 but not pro-caspase at the membrane was increased following CD95-stimulation in the presence of DNP. As a consequence of caspase-activation, c-FLIP-levels in the cytosol decreased. In Jurkat cells overexpressing c-FLIPS, DNP was still able to enhance caspase-activation. The enhancing capacity of DNP was seen in some cell lines (Jurkat, CEM and HeLa) but not in SKW6 cells and was also found in mitogen-stimulated human T cells. Furthermore, the enhancement extended to TRAIL-induced caspase-activation. Thus, a mechanism exists by which caspase-8-activation can be accelerated at death receptors and this mechanism can be triggered by targeting mitochondrial oxidative phosphorylation.

  16. Structural definition of a potent macrophage activating factor derived from vitamin D3-binding protein with adjuvant activity for antibody production.

    PubMed

    Yamamoto, N

    1996-10-01

    Incubation of human vitamin D3-binding protein (Gc protein), with a mixture of immobilized beta-galactosidase and sialidase, efficiently generated a potent macrophage activating factor, a protein with N-acetylgalactosamine as the remaining sugar. Stepwise incubation of Gc protein with immobilized beta-galactosidase and sialidase, and isolation of the intermediates with immobilized lectins, revealed that either sequence of hydrolysis of Gc glycoprotein by these glycosidases yields the macrophage-activating factor, implying that Gc protein carries a trisaccharide composed of N-acetylgalactosamine and dibranched galactose and sialic acid termini. A 3 hr incubation of mouse peritoneal macrophages with picomolar amounts of the enzymatically generated macrophage-activating factor (GcMAF) resulted in a greatly enhanced phagocytic activity. Administration of a minute amount (10-50 pg/mouse) of GcMAF resulted in a seven- to nine-fold enhanced phagocytic activity of macrophages. Injection of sheep red blood cells (SRBC) along with GcMAF into mice produced a large number of anti-SRBC antibody secreting splenic cells in 2-4 days.

  17. Impact of Groundwater Salinity on Bioremediation Enhanced by Micro-Nano Bubbles

    PubMed Central

    Li, Hengzhen; Hu, Liming; Xia, Zhiran

    2013-01-01

    Micro-nano bubbles (MNBs) technology has shown great potential in groundwater bioremediation because of their large specific surface area, negatively charged surface, long stagnation, high oxygen transfer efficiency, etc. Groundwater salinity, which varies from sites due to different geological and environmental conditions, has a strong impact on the bioremediation effect. However, the groundwater salinity effect on MNBs’ behavior has not been reported. In this study, the size distribution, oxygen transfer efficiency and zeta potential of MNBs was investigated in different salt concentrations. In addition, the permeability of MNBs’ water through sand in different salt concentrations was studied. The results showed that water salinity has no influence on bubble size distribution during MNBs generation. MNBs could greatly enhance the oxygen transfer efficiency from inner bubbles to outer water, which may greatly enhance aerobic bioremediation. However, the enhancement varied depending on salt concentration. 0.7 g/L was found to be the optimal salt concentration to transfer oxygen. Moreover, MNBs in water salinity of 0.7 g/L had the minimum zeta potential. The correlation of zeta potential and mass transfer was discussed. The hydraulic conductivities of sand were similar for MNBs water with different salt concentrations. The results suggested that salinity had a great influence on MNBs performance, and groundwater salinity should be taken into careful consideration in applying MNBs technology to the enhancement of bioremediation. PMID:28788299

  18. Inhibition of ERK activity enhances the cytotoxic effect of peroxisome proliferator-activated receptor γ (PPARγ) agonists in HeLa cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Ha Kyun; Kim, Dae Seong; Chae, Jung Jun

    In this study, we examined whether the peroxisome proliferator-activated receptor γ (PPARγ) agonists, ciglitazone (CGZ) and troglitazone (TGZ), induce cell death in human cervical cancer HeLa cells. The cells were treated with a range of CGZ or TGZ doses for 24 or 48 h. Low concentrations of CGZ (≤10 μM) or TGZ (≤20 μM) had no effect on cell viability whereas higher doses induced cell death in a time- and dose-dependent manner as evidenced by the detection of activated caspase-3 and PARP cleavage. Treatment with the PPARγ antagonist GW9662 followed by PPARγ agonists did not increase CGZ- or TGZ-induced cell death, indicating thatmore » PPARγ agonists induced HeLa cell death independently of PPARγ. Moreover, ERK1/2 activation was observed at a CGZ concentration of 25 μM and a TGZ concentration of 35 μM, both of which induced cell death. To elucidate the role of ERK1/2 activated by the two PPARγ agonists, the effect of U0126, an inhibitor of ERK1/2, on PPARγ-agonist-induced cell death was examined. Treatment with 10 or 20 μM U0126 followed by CGZ or TGZ induced the down-regulation of ERK1/2 activity and a decrease in Bcl-2 expression accompanied by the collapse of mitochondrial membrane potential, which in turn significantly enhanced CGZ- or TGZ-induced apoptotic cell death. Our results suggest that PPARγ agonists are capable of inducing apoptotic cell death in HeLa cells independently of PPARγ and that inhibition of ERK1/2 activity offers a strategy to enhance the cytotoxicity of PPARγ agonists in the treatment of cervical cancer. - Highlights: • The PPARγ agonists CGZ and TGZ induce apoptotic cell death in HeLa cells. • CGZ or TGZ induces apoptotic cell death independently of PPARγ in HeLa cells. • Inhibition of ERK1/2 enhances CGZ- or TGZ-induced cell death via the collapse of MMP.« less

  19. Enhanced dispersion of epicardial activation-recovery intervals at sites of histological inhomogeneity during regional cardiac ischaemia and reperfusion

    PubMed Central

    Gottwald, E; Gottwald, M; Dhein, S

    1998-01-01

    Objective—To examine how epicardial activation and repolarisation patterns change in the course of ischaemia, and how these changes are related to the underlying histological structures.
Methods—Langendorff perfused isolated rabbit hearts were submitted to 30 minutes of left anterior descending coronary artery occlusion followed by 30 minutes of reperfusion. A 256 channel epicardial map was plotted during the various experimental phases. Activation time points were determined as t(dU/dtmin) and repolarisation time points as t(dU/dtmax). From these data the local activation-recovery interval (ARI), its dispersion (SD of ARI), and the geometry of the activation spread could be analysed. After the experiments the hearts were processed histologically and the mapping data were projected onto histological slides.
Results—There was elevation of the ST segment within the occluded area, which recovered during reperfusion. Within this area, ARI was significantly shortened and its dispersion was maximally enhanced. The enhancement of dispersion was pronounced at sites of histological inhomogeneity like fat, connective tissue, or vessels. There was also a change in the preferential direction of activation spread within the occluded zone with a marked transverse propagation of the activation wavefront, whereas under normal conditions the activation followed the longitudinal fibre axis. In addition, the total activation time in the occluded area was significantly prolonged.
Conclusions—Ischaemia alters the local activation pattern with enhanced dispersion, especially at sites of histological irregularity, transverse shift of the activation waves, and a general slowing of conduction, which may explain the increased susceptibility to arrhythmia in hearts with enhanced histological irregularities—for example, an infarct or in multi-infarcted hearts, or after myocarditis. 

 Keywords: dispersion;  epicardial activation-recovery interval;  ischaemia PMID

  20. Preparation of Bioactive Polysaccharide Nanoparticles with Enhanced Radical Scavenging Activity and Antimicrobial Activity.

    PubMed

    Qin, Yang; Xiong, Liu; Li, Man; Liu, Jing; Wu, Hao; Qiu, Hongwei; Mu, Hongyan; Xu, Xingfeng; Sun, Qingjie

    2018-05-02

    Because of their biocompatibility and biodegradability in vivo, natural polysaccharides are effective nanocarriers for delivery of active ingredients or drugs. Moreover, bioactive polysaccharides, such as tea, Ganoderma lucidum, and Momordica charantia polysaccharides (TP, GLP, and MCP), have antibacterial, antioxidant, antitumor, and antiviral properties. In this study, tea, Ganoderma lucidum, and Momordica charantia polysaccharide nanoparticles (TP-NPs, GLP-NPs, and MCP-NPs) were prepared via the nanoprecipitation approach. When the ethanol to water ratio was 10:1, the diameter of the spherical polysaccharide nanoparticles was the smallest, and the mean particle size of the TP-NPs, GLP-NPs, and MCP-NPs was 99 ± 15, 95 ± 7, and 141 ± 9 nm, respectively. When exposed to heat, increased ionic strength and pH levels, the nanoparticles exhibited superior stability and higher activity than the corresponding polysaccharides. In physiological conditions (pH 7.4), the nanoparticles underwent different protein adsorption capacities in the following order: MCP-NPs> TP-NPs> GLP-NPs. Moreover, the 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl radical, and superoxide anion radical scavenging rates of the nanoparticles were increased by 9-25% as compared to the corresponding polysaccharides. Compared to the bioactive polysaccharides, the nanoparticles enhanced antimicrobial efficacy markedly and exhibited long-acting antibacterial activity.