Sample records for activation monitoring solution

  1. Integrated Solution for Physical Activity Monitoring Based on Mobile Phone and PC.

    PubMed

    Lee, Mi Hee; Kim, Jungchae; Jee, Sun Ha; Yoo, Sun Kook

    2011-03-01

    This study is part of the ongoing development of treatment methods for metabolic syndrome (MS) project, which involves monitoring daily physical activity. In this study, we have focused on detecting walking activity from subjects which includes many other physical activities such as standing, sitting, lying, walking, running, and falling. Specially, we implemented an integrated solution for various physical activities monitoring using a mobile phone and PC. We put the iPod touch has built in a tri-axial accelerometer on the waist of the subjects, and measured change in acceleration signal according to change in ambulatory movement and physical activities. First, we developed of programs that are aware of step counts, velocity of walking, energy consumptions, and metabolic equivalents based on iPod. Second, we have developed the activity recognition program based on PC. iPod synchronization with PC to transmit measured data using iPhoneBrowser program. Using the implemented system, we analyzed change in acceleration signal according to the change of six activity patterns. We compared results of the step counting algorithm with different positions. The mean accuracy across these tests was 99.6 ± 0.61%, 99.1 ± 0.87% (right waist location, right pants pocket). Moreover, six activities recognition was performed using Fuzzy c means classification algorithm recognized over 98% accuracy. In addition we developed of programs that synchronization of data between PC and iPod for long-term physical activity monitoring. This study will provide evidence on using mobile phone and PC for monitoring various activities in everyday life. The next step in our system will be addition of a standard value of various physical activities in everyday life such as household duties and a health guideline how to select and plan exercise considering one's physical characteristics and condition.

  2. Lunar Dust and Lunar Simulant Activation, Monitoring, Solution and Cellular Toxicity Properties

    NASA Technical Reports Server (NTRS)

    Jeevarajan, A.S.; Wallace, W.T.

    2009-01-01

    During the Apollo missions, many undesirable situations were encountered that must be mitigated prior to returning humans to the moon. Lunar dust (that part of the lunar regolith less than 20 m in diameter) was found to produce several problems with astronaut s suits and helmets, mechanical seals and equipment, and could have conceivably produced harmful physiological effects for the astronauts. For instance, the abrasive nature of the dust was found to cause malfunctions of various joints and seals of the spacecraft and suits. Additionally, though efforts were made to exclude lunar dust from the cabin of the lunar module, a significant amount of material nonetheless found its way inside. With the loss of gravity correlated with ascent of the lunar module from the lunar surface to rendezvous with the command module, much of the major portions of the contaminating soil and dust began to float, irritating the astronaut s eyes and being inhaled into their lungs. Our goal has been to understand some of the properties of lunar dust that could lead to possible hazards for humans. Due to the lack of an atmosphere, there is nothing to protect the lunar soil from ultraviolet radiation, solar wind, and meteorite impacts. These processes could all serve to activate the soil, or produce reactive surface species. In order to understand the possible toxic effects of the reactive dust, it is necessary to reactivate the dust, as samples returned during the Apollo missions were exposed to the atmosphere of the Earth. We have used grinding and UV exposure to mimic some of the processes occurring on the Moon. The level of activation has been monitored using two methods: fluorescence spectroscopy and electron paramagnetic resonance spectroscopy (EPR). These techniques allow the monitoring of hydroxyl radical production in solution. We have found that grinding of lunar dust produces 2-3 times the concentration of hydroxyl radicals as lunar simulant and 10 times that of quartz. Exposure

  3. Chemical Sensor Platform for Non-Invasive Monitoring of Activity and Dehydration

    PubMed Central

    Solovei, Dmitry; Žák, Jaromír; Majzlíková, Petra; Sedláček, Jiří; Hubálek, Jaromír

    2015-01-01

    A non-invasive solution for monitoring of the activity and dehydration of organisms is proposed in the work. For this purpose, a wireless standalone chemical sensor platform using two separate measurement techniques has been developed. The first approach for activity monitoring is based on humidity measurement. Our solution uses new humidity sensor based on a nanostructured TiO2 surface for sweat rate monitoring. The second technique is based on monitoring of potassium concentration in urine. High level of potassium concentration denotes clear occurrence of dehydration. Furthermore, a Wireless Body Area Network (WBAN) was developed for this sensor platform to manage data transfer among devices and the internet. The WBAN coordinator controls the sensor devices and collects and stores the measured data. The collected data is particular to individuals and can be shared with physicians, emergency systems or athletes' coaches. Long-time monitoring of activity and potassium concentration in urine can help maintain the appropriate water intake of elderly people or athletes and to send warning signals in the case of near dehydration. The created sensor system was calibrated and tested in laboratory and real conditions as well. The measurement results are discussed. PMID:25594591

  4. Middle infrared optoelectronic absorption systems for monitoring physiological glucose solutions

    NASA Astrophysics Data System (ADS)

    Martin, W. Blake

    Tight monitoring of the glucose levels for diabetic individuals is essential to control long-term complications. A definitive diabetes management system has yet to be developed for the diabetic. This research investigates the application of middle infrared absorption frequencies for monitoring glucose levels in biological solutions. Three frequencies were identified using a Fourier transform infrared spectrometer and correlated to changes in glucose concentrations. The 1035 +/- 1 cm-1 frequency was determined to be the best representative frequency. Other biological molecules contributed no significant interference to monitoring glucose absorption. A second frequency at 1193 cm-1 was suggested as a representative background absorption frequency, which could be used for more accurate glucose absorption values. Next, a quantum cascade laser optoelectronic absorption system was designed and developed to monitor glucose. After careful alignment and design, the system was used to monitor physiological glucose concentrations. Correlation at 1036 cm-1 with glucose changes was comparable to the previous results. The use of the background absorption frequency was verified. This frequency essentially acts as a calibrating frequency to adjust in real-time to any changes in the background absorption that may alter the accuracy of the predicted glucose value. An evanescent wave cavity ring-down spectroscopy technique was explored to monitor molecules in a biological solution. Visible light at 425 nm was used to monitor hemoglobin in control urine samples. An adsorption isotherm for hemoglobin was detectable to limit of 5.8 nM. Evanescent wave cavity ring-down spectroscopy would be useful for a glucose solution. Given an equivalent system designed for the middle infrared, the molar extinction coefficient of glucose allows for a detectable limit of 45 mg/dl for a free-floating glucose solution, which is below normal physiological concentrations. The future use of a hydrophobic

  5. Non-Invasive Acoustic-Based Monitoring of Heavy Water and Uranium Process Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pantea, Cristian; Sinha, Dipen N.; Lakis, Rollin Evan

    This presentation includes slides on Project Goals; Heavy Water Production Monitoring: A New Challenge for the IAEA; Noninvasive Measurements in SFAI Cell; Large Scatter in Literature Values; Large Scatter in Literature Values; Highest Precision Sound Speed Data Available: New Standard in H/D; ~400 pts of data; Noninvasive Measurements in SFAI Cell; New funding from NA241 SGTech; Uranium Solution Monitoring: Inspired by IAEA Challenge in Kazakhstan; Non-Invasive Acoustic-Based Monitoring of Uranium in Solutions; Non-Invasive Acoustic-Based Monitoring of Uranium in Solutions; and finally a summary.

  6. An integrated Diet Monitoring Solution for nutrigenomic research.

    PubMed

    Conti, Costanza; Rossi, Elena; Marceglia, Sara; Tauro, Vittorio; Rizzi, Federica; Lazzaroni, Monica; Barlassina, Cristina; Soldati, Laura; Cusi, Daniele

    2015-01-01

    The emergence of evidence pointing at diet as key risk factor for chronic diseases and at gene-diet interactions as key elements in the interplay between an individual genetic background and his/her lifestyle, pave the way for studies in nutrigenomics. Such studies need an integrated solution to collect, monitor and analyse a large set of data. In the frame of ATHENA, a European Commission FP7 project, we developed an integrated platform, called Dietary Monitoring Solution enabling the collection of phenotypic, genetic and lifestyle information, linked to a mHealth application tool. The data collection solution allows maintaining anonymized information and supports a number of features making it particularly suited for multicentre studies. The mHealth application was designed to translate the knowledge generated from research into a personalised prevention programme and to support the patient adherence to the programme.

  7. Review of Trackside Monitoring Solutions: From Strain Gages to Optical Fibre Sensors

    PubMed Central

    Kouroussis, Georges; Caucheteur, Christophe; Kinet, Damien; Alexandrou, Georgios; Verlinden, Olivier; Moeyaert, Véronique

    2015-01-01

    A review of recent research on structural monitoring in railway industry is proposed in this paper, with a special focus on stress-based solutions. After a brief analysis of the mechanical behaviour of ballasted railway tracks, an overview of the most common monitoring techniques is presented. A special attention is paid on strain gages and accelerometers for which the accurate mounting position on the track is requisite. These types of solution are then compared to another modern approach based on the use of optical fibres. Besides, an in-depth discussion is made on the evolution of numerical models that investigate the interaction between railway vehicles and tracks. These models are used to validate experimental devices and to predict the best location(s) of the sensors. It is hoped that this review article will stimulate further research activities in this continuously expanding field. PMID:26287207

  8. Use of a consumer market activity monitoring and feedback device improves exercise capacity and activity levels in COPD.

    PubMed

    Caulfield, Brian; Kaljo, Indira; Donnelly, Seamas

    2014-01-01

    COPD is associated with a gradual decline in physical activity, which itself contributes to a worsening of the underlying condition. Strategies that improve physical activity levels are critical to halt this cycle. Wearable sensor based activity monitoring and persuasive feedback might offer a potential solution. However it is not clear just how much intervention might be needed in this regard - i.e. whether programmes need to be tailored specifically for the target clinical population or whether more simple activity monitoring and feedback solutions, such as that offered in consumer market devices, might be sufficient. This research was carried out to investigate the impact of 4 weeks of using an off the shelf consumer market activity monitoring and feedback application on measures of physical activity, exercise capacity, and health related quality of life in a population of 10 Stage I and II COPD patients. Results demonstrate a significant and positive effect on exercise capacity (measured using a 6-minute walk test) and activity levels (measured in terms of average number of steps per hour) yet no impact on health related quality of life (St Georges Respiratory Disease Questionnaire).

  9. Environmental Monitoring Networks Optimization Using Advanced Active Learning Algorithms

    NASA Astrophysics Data System (ADS)

    Kanevski, Mikhail; Volpi, Michele; Copa, Loris

    2010-05-01

    The problem of environmental monitoring networks optimization (MNO) belongs to one of the basic and fundamental tasks in spatio-temporal data collection, analysis, and modeling. There are several approaches to this problem, which can be considered as a design or redesign of monitoring network by applying some optimization criteria. The most developed and widespread methods are based on geostatistics (family of kriging models, conditional stochastic simulations). In geostatistics the variance is mainly used as an optimization criterion which has some advantages and drawbacks. In the present research we study an application of advanced techniques following from the statistical learning theory (SLT) - support vector machines (SVM) and the optimization of monitoring networks when dealing with a classification problem (data are discrete values/classes: hydrogeological units, soil types, pollution decision levels, etc.) is considered. SVM is a universal nonlinear modeling tool for classification problems in high dimensional spaces. The SVM solution is maximizing the decision boundary between classes and has a good generalization property for noisy data. The sparse solution of SVM is based on support vectors - data which contribute to the solution with nonzero weights. Fundamentally the MNO for classification problems can be considered as a task of selecting new measurement points which increase the quality of spatial classification and reduce the testing error (error on new independent measurements). In SLT this is a typical problem of active learning - a selection of the new unlabelled points which efficiently reduce the testing error. A classical approach (margin sampling) to active learning is to sample the points closest to the classification boundary. This solution is suboptimal when points (or generally the dataset) are redundant for the same class. In the present research we propose and study two new advanced methods of active learning adapted to the solution of

  10. Monitoring Malware Activity on the LAN Network

    NASA Astrophysics Data System (ADS)

    Skrzewski, Mirosław

    Many security related organizations periodically publish current network and systems security information, with the lists of top malware programs. These lists raises the question how these threats spreads out, if the worms (the only threat with own communication abilities) are low or missing on these lists. The paper discuss the research on malware network activity, aimed to deliver the answer to the question, what is the main infection channel of modern malware, done with the usage of virtual honeypot systems on dedicated, unprotected network. Systems setup, network and systems monitoring solutions, results of over three months of network traffic and malware monitoring are presented, along with the proposed answer to our research question.

  11. Active Job Monitoring in Pilots

    NASA Astrophysics Data System (ADS)

    Kuehn, Eileen; Fischer, Max; Giffels, Manuel; Jung, Christopher; Petzold, Andreas

    2015-12-01

    Recent developments in high energy physics (HEP) including multi-core jobs and multi-core pilots require data centres to gain a deep understanding of the system to monitor, design, and upgrade computing clusters. Networking is a critical component. Especially the increased usage of data federations, for example in diskless computing centres or as a fallback solution, relies on WAN connectivity and availability. The specific demands of different experiments and communities, but also the need for identification of misbehaving batch jobs, requires an active monitoring. Existing monitoring tools are not capable of measuring fine-grained information at batch job level. This complicates network-aware scheduling and optimisations. In addition, pilots add another layer of abstraction. They behave like batch systems themselves by managing and executing payloads of jobs internally. The number of real jobs being executed is unknown, as the original batch system has no access to internal information about the scheduling process inside the pilots. Therefore, the comparability of jobs and pilots for predicting run-time behaviour or network performance cannot be ensured. Hence, identifying the actual payload is important. At the GridKa Tier 1 centre a specific tool is in use that allows the monitoring of network traffic information at batch job level. This contribution presents the current monitoring approach and discusses recent efforts and importance to identify pilots and their substructures inside the batch system. It will also show how to determine monitoring data of specific jobs from identified pilots. Finally, the approach is evaluated.

  12. Accelerometer's position independent physical activity recognition system for long-term activity monitoring in the elderly.

    PubMed

    Khan, Adil Mehmood; Lee, Young-Koo; Lee, Sungyoung; Kim, Tae-Seong

    2010-12-01

    Mobility is a good indicator of health status and thus objective mobility data could be used to assess the health status of elderly patients. Accelerometry has emerged as an effective means for long-term physical activity monitoring in the elderly. However, the output of an accelerometer varies at different positions on a subject's body, even for the same activity, resulting in high within-class variance. Existing accelerometer-based activity recognition systems thus require firm attachment of the sensor to a subject's body. This requirement makes them impractical for long-term activity monitoring during unsupervised free-living as it forces subjects into a fixed life pattern and impede their daily activities. Therefore, we introduce a novel single-triaxial-accelerometer-based activity recognition system that reduces the high within-class variance significantly and allows subjects to carry the sensor freely in any pocket without its firm attachment. We validated our system using seven activities: resting (lying/sitting/standing), walking, walking-upstairs, walking-downstairs, running, cycling, and vacuuming, recorded from five positions: chest pocket, front left trousers pocket, front right trousers pocket, rear trousers pocket, and inner jacket pocket. Its simplicity, ability to perform activities unimpeded, and an average recognition accuracy of 94% make our system a practical solution for continuous long-term activity monitoring in the elderly.

  13. Application of refractometry to quality assurance monitoring of parenteral nutrition solutions.

    PubMed

    Chang, Wei-Kuo; Chao, You-Chen; Yeh, Ming-Kung

    2008-01-01

    Parenteral nutrition (PN) solution contains various concentrations of dextrose, amino acids, lipids, vitamins, electrolytes, and trace elements. Incorrect preparation of PN solution could lead to patient death. In this study we used the refractive index as a quality assurance tool to monitor the preparation of PN solution. Refractive indices of single nutrient components and PN solutions consisting of various concentrations of dextrose, amino acids, electrolytes, and lipids were measured. A mathematical equation and its linear plot were generated then used to predict the refractive index of the PN solution. The best-fit refractive index for PN solution (i.e., the predicted refractive index)=0.9798x(% dextrose)+1.2889x(% amino acids)+1.1017x(% lipids)+0.9440x(% sum of the electrolytes)+0.5367 (r2=0.99). This equation was validated by comparing the measured refractive indices of 500 clinical PN solutions to their predicted refractive indices. We found that 2 of the 500 prepared samples (0.4%) had less than the predicted refractive index (<95%). Refractive index can be used as a reliable quality assurance tool for monitoring PN preparation. Such information can be obtained at the bedside and used to confirm the accuracy of the PN solution composition.

  14. Employing Magnetic Levitation to Monitor Reaction Kinetics and Measure Activation Energy

    ERIC Educational Resources Information Center

    Benz, Lauren; Cesafsky, Karen E.; Le, Tran; Park, Aileen; Malicky, David

    2012-01-01

    This article describes a simple and inexpensive undergraduate-level kinetics experiment that uses magnetic levitation to monitor the progress and determine the activation energy of a condensation reaction on a polymeric solid support. The method employs a cuvette filled with a paramagnetic solution positioned between two strong magnets. The…

  15. Monitoring Business Activity

    DTIC Science & Technology

    2006-03-01

    AFRL-IF-RS-TR-2006-88 Final Technical Report March 2006 MONITORING BUSINESS ACTIVITY New York University...REPORT DATE MARCH 2006 3. REPORT TYPE AND DATES COVERED Final Sep 01 – Oct 05 4. TITLE AND SUBTITLE MONITORING BUSINESS ACTIVITY 6. AUTHOR(S...Accepted to Journal of Machine Learning Research, pending revisions. CeDER Working Paper #CeDER-04-08, Stern School of Business , New York University

  16. Devices for monitoring content of microparticles and bacterium in injection solutions in pharmaceutical production

    NASA Astrophysics Data System (ADS)

    Bilyi, Olexander I.; Getman, Vasyl B.; Konyev, Fedir A.; Sapunkov, Olexander; Sapunkov, Pavlo G.

    2001-06-01

    The devices for monitoring of parameters of efficiency of water solutions filtration, which are based on the analysis of scattered light by microparticles are considered in this article. The efficiency of using of devices in pharmaceutics in technological processes of manufacturing medical injection solutions is shown. The examples of monitoring of contents of bacterial cultures Pseudomonas aeruginosa, Escherichia coli, and Micrococcus luteus in water solutions of glucose are indicated.

  17. Assessing Human Activity in Elderly People Using Non-Intrusive Load Monitoring.

    PubMed

    Alcalá, José M; Ureña, Jesús; Hernández, Álvaro; Gualda, David

    2017-02-11

    The ageing of the population, and their increasing wish of living independently, are motivating the development of welfare and healthcare models. Existing approaches based on the direct heath-monitoring using body sensor networks (BSN) are precise and accurate. Nonetheless, their intrusiveness causes non-acceptance. New approaches seek the indirect monitoring through monitoring activities of daily living (ADLs), which proves to be a suitable solution. ADL monitoring systems use many heterogeneous sensors, are less intrusive, and are less expensive than BSN, however, the deployment and maintenance of wireless sensor networks (WSN) prevent them from a widespread acceptance. In this work, a novel technique to monitor the human activity, based on non-intrusive load monitoring (NILM), is presented. The proposal uses only smart meter data, which leads to minimum intrusiveness and a potential massive deployment at minimal cost. This could be the key to develop sustainable healthcare models for smart homes, capable of complying with the elderly people' demands. This study also uses the Dempster-Shafer theory to provide a daily score of normality with regard to the regular behavior. This approach has been evaluated using real datasets and, additionally, a benchmarking against a Gaussian mixture model approach is presented.

  18. An autonomous structural health monitoring solution

    NASA Astrophysics Data System (ADS)

    Featherston, Carol A.; Holford, Karen M.; Pullin, Rhys; Lees, Jonathan; Eaton, Mark; Pearson, Matthew

    2013-05-01

    Combining advanced sensor technologies, with optimised data acquisition and diagnostic and prognostic capability, structural health monitoring (SHM) systems provide real-time assessment of the integrity of bridges, buildings, aircraft, wind turbines, oil pipelines and ships, leading to improved safety and reliability and reduced inspection and maintenance costs. The implementation of power harvesting, using energy scavenged from ambient sources such as thermal gradients and sources of vibration in conjunction with wireless transmission enables truly autonomous systems, reducing the need for batteries and associated maintenance in often inaccessible locations, alongside bulky and expensive wiring looms. The design and implementation of such a system however presents numerous challenges. A suitable energy source or multiple sources capable of meeting the power requirements of the system, over the entire monitoring period, in a location close to the sensor must be identified. Efficient power management techniques must be used to condition the power and deliver it, as required, to enable appropriate measurements to be taken. Energy storage may be necessary, to match a continuously changing supply and demand for a range of different monitoring states including sleep, record and transmit. An appropriate monitoring technique, capable of detecting, locating and characterising damage and delivering reliable information, whilst minimising power consumption, must be selected. Finally a wireless protocol capable of transmitting the levels of information generated at the rate needed in the required operating environment must be chosen. This paper considers solutions to some of these challenges, and in particular examines SHM in the context of the aircraft environment.

  19. Sentinel-1 Contribution to Monitoring Maritime Activity in the Arctic

    NASA Astrophysics Data System (ADS)

    Santamaria, Carlos; Greidanus, Harm; Fournier, Melanie; Eriksen, Torkild; Vespe, Michele; Alvarez, Marlene; Arguedas, Virginia Fernandez; Delaney, Conor; Argentieri, Pietro

    2016-08-01

    This paper presents results on the use of Sentinel-1 combined with satellite AIS to monitor maritime activity in the Arctic. Such activities are expected to increase, even if not uniformly across the Arctic, as the ice cover in the region retreats due to changes in climate. The objectives of monitoring efforts in the region can vary from country to country, but are generally related to increasing awareness on non- cooperative, small and cruise ships, fisheries, safety at sea, and Search and Rescue. A ship monitoring study has been conducted, involving more than 2,000 Sentinel-1 images acquired during one year in the central Arctic, where the ship densities are high. The main challenges to SAR-based monitoring in this area are described, solutions for some of them are proposed, and analyses of the results are shown. With the high detection thresholds needed to prevent false alarms from sea ice, 16% of the ships detected overall in the Sentinel-1 images have not been correlated to AIS- transmitting ships, and 48% of the AIS-transmitting ships are not correlated to ships detected in the images.

  20. Active landslide monitoring using remote sensing data, GPS measurements and cameras on board UAV

    NASA Astrophysics Data System (ADS)

    Nikolakopoulos, Konstantinos G.; Kavoura, Katerina; Depountis, Nikolaos; Argyropoulos, Nikolaos; Koukouvelas, Ioannis; Sabatakakis, Nikolaos

    2015-10-01

    An active landslide can be monitored using many different methods: Classical geotechnical measurements like inclinometer, topographical survey measurements with total stations or GPS and photogrammetric techniques using airphotos or high resolution satellite images. As the cost of the aerial photo campaign and the acquisition of very high resolution satellite data is quite expensive the use of cameras on board UAV could be an identical solution. Small UAVs (Unmanned Aerial Vehicles) have started their development as expensive toys but they currently became a very valuable tool in remote sensing monitoring of small areas. The purpose of this work is to demonstrate a cheap but effective solution for an active landslide monitoring. We present the first experimental results of the synergistic use of UAV, GPS measurements and remote sensing data. A six-rotor aircraft with a total weight of 6 kg carrying two small cameras has been used. Very accurate digital airphotos, high accuracy DSM, DGPS measurements and the data captured from the UAV are combined and the results are presented in the current study.

  1. Assessing Human Activity in Elderly People Using Non-Intrusive Load Monitoring

    PubMed Central

    Alcalá, José M.; Ureña, Jesús; Hernández, Álvaro; Gualda, David

    2017-01-01

    The ageing of the population, and their increasing wish of living independently, are motivating the development of welfare and healthcare models. Existing approaches based on the direct heath-monitoring using body sensor networks (BSN) are precise and accurate. Nonetheless, their intrusiveness causes non-acceptance. New approaches seek the indirect monitoring through monitoring activities of daily living (ADLs), which proves to be a suitable solution. ADL monitoring systems use many heterogeneous sensors, are less intrusive, and are less expensive than BSN, however, the deployment and maintenance of wireless sensor networks (WSN) prevent them from a widespread acceptance. In this work, a novel technique to monitor the human activity, based on non-intrusive load monitoring (NILM), is presented. The proposal uses only smart meter data, which leads to minimum intrusiveness and a potential massive deployment at minimal cost. This could be the key to develop sustainable healthcare models for smart homes, capable of complying with the elderly people’ demands. This study also uses the Dempster-Shafer theory to provide a daily score of normality with regard to the regular behavior. This approach has been evaluated using real datasets and, additionally, a benchmarking against a Gaussian mixture model approach is presented. PMID:28208672

  2. Innovative solutions in monitoring systems in flood protection

    NASA Astrophysics Data System (ADS)

    Sekuła, Klaudia; Połeć, Marzena; Borecka, Aleksandra

    2018-02-01

    The article presents the possibilities of ISMOP - IT System of Levee Monitoring. This system is able to collecting data from the reference and experimental control and measurement network. The experimental levee is build in a 1:1 scale and located in the village of Czernichow, near Cracow. The innovation is the utilization of a series of sensors monitoring the changes in the body of levee. It can be done by comparing the results of numerical simulations with results from installed two groups of sensors: reference sensors and experimental sensors. The reference control and measurement sensors create network based on pore pressure and temperature sensors. Additionally, it contains the fiber-optic technology. The second network include design experimental sensors, constructed for the development of solutions that can be used in existing flood embankments. The results are important to create the comprehensive and inexpensive monitoring system, which could be helpful for state authorities and local governments in flood protection.

  3. Automated iodine monitor system. [for aqueous solutions

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The feasibility of a direct spectrophotometric measurement of iodine in water was established. An iodine colorimeter, was built to demonstrate the practicality of this technique. The specificity of this method was verified when applied to an on-line system where a reference solution cannot be used, and a preliminary design is presented for an automated iodine measuring and controlling system meeting the desired specifications. An Automated iodine monitor/controller system based on this preliminary design was built, tested, and delivered to the Johnson Space Center.

  4. Assessing physical activity using wearable monitors: measures of physical activity.

    PubMed

    Butte, Nancy F; Ekelund, Ulf; Westerterp, Klaas R

    2012-01-01

    Physical activity may be defined broadly as "all bodily actions produced by the contraction of skeletal muscle that increase energy expenditure above basal level." Physical activity is a complex construct that can be classified into major categories qualitatively, quantitatively, or contextually. The quantitative assessment of physical activity using wearable monitors is grounded in the measurement of energy expenditure. Six main categories of wearable monitors are currently available to investigators: pedometers, load transducers/foot-contact monitors, accelerometers, HR monitors, combined accelerometer and HR monitors, and multiple sensor systems. Currently available monitors are capable of measuring total physical activity as well as components of physical activity that play important roles in human health. The selection of wearable monitors for measuring physical activity will depend on the physical activity component of interest, study objectives, characteristics of the target population, and study feasibility in terms of cost and logistics. Future development of sensors and analytical techniques for assessing physical activity should focus on the dynamic ranges of sensors, comparability for sensor output across manufacturers, and the application of advanced modeling techniques to predict energy expenditure and classify physical activities. New approaches for qualitatively classifying physical activity should be validated using direct observation or recording. New sensors and methods for quantitatively assessing physical activity should be validated in laboratory and free-living populations using criterion methods of calorimetry or doubly labeled water.

  5. IoT/M2M wearable-based activity-calorie monitoring and analysis for elders.

    PubMed

    Soraya, Sabrina I; Ting-Hui Chiang; Guo-Jing Chan; Yi-Juan Su; Chih-Wei Yi; Yu-Chee Tseng; Yu-Tai Ching

    2017-07-01

    With the growth of aging population, elder care service has become an important part of the service industry of Internet of Things. Activity monitoring is one of the most important services in the field of the elderly care service. In this paper, we proposed a wearable solution to provide an activity monitoring service on elders for caregivers. The system uses wireless signals to estimate calorie burned by the walking and localization. In addition, it also uses wireless motion sensors to recognize physical activity, such as drinking and restroom activity. Overall, the system can be divided into four parts: wearable device, gateway, cloud server, and caregiver's android application. The algorithms we proposed for drinking activity are Decision Tree (J48) and Random Forest (RF). While for restroom activity, we proposed supervised Reduced Error Pruning (REP) Tree and Variable Order Hidden Markov Model (VOHMM). We developed a prototype service Android app to provide a life log for the recording of the activity sequence which would be useful for the caregiver to monitor elder activity and its calorie consumption.

  6. New seismic array solution for earthquake observations and hydropower plant health monitoring

    NASA Astrophysics Data System (ADS)

    Antonovskaya, Galina N.; Kapustian, Natalya K.; Moshkunov, Alexander I.; Danilov, Alexey V.; Moshkunov, Konstantin A.

    2017-09-01

    We present the novel fusion of seismic safety monitoring data of the hydropower plant in Chirkey (Caucasus Mountains, Russia). This includes new hardware solutions and observation methods, along with technical limitations for three types of applications: (a) seismic monitoring of the Chirkey reservoir area, (b) structure monitoring of the dam, and (c) monitoring of turbine vibrations. Previous observations and data processing for health monitoring do not include complex data analysis, while the new system is more rational and less expensive. The key new feature of the new system is remote monitoring of turbine vibration. A comparison of the data obtained at the test facilities and by hydropower plant inspection with remote sensors enables early detection of hazardous hydrodynamic phenomena.

  7. Active subjects of passive monitoring: responses to a passive monitoring system in low-income independent living

    PubMed Central

    BERRIDGE, CLARA

    2016-01-01

    Passive monitoring technology is beginning to be reimbursed by third-party payers in the United States of America. Given the low voluntary uptake of these technologies on the market, it is important to understand the concerns and perspectives of users, former users and non-users. In this paper, the range of ways older adults relate to passive monitoring in low-income independent-living residences is presented. This includes experiences of adoption, non-adoption, discontinuation and creative ‘misuse’. The analysis of interviews reveals three key insights. First, assumptions built into the technology about how older adults live present a problem for many users who experience unwanted disruptions and threats to their behavioural autonomy. Second, resident response is varied and challenges the dominant image of residents as passive subjects of a passive monitoring system. Third, the priorities of older adults (e.g. safety, autonomy, privacy, control, contact) are more diverse and multi-faceted than those of the housing organisation staff and family members (e.g. safety, efficiency) who drive the passive monitoring intervention. The tension between needs, desires and the daily lives of older adults and the technological solutions offered to them is made visible by their active responses, including resistance to them. This exposes the active and meaningful qualities of older adults’ decisions and practices. PMID:28239211

  8. Introducing a modular activity monitoring system.

    PubMed

    Reiss, Attila; Stricker, Didier

    2011-01-01

    In this paper, the idea of a modular activity monitoring system is introduced. By using different combinations of the system's three modules, different functionality becomes available: 1) a coarse intensity estimation of physical activities 2) different features based on HR-data and 3) the recognition of basic activities and postures. 3D-accelerometers--placed on lower arm, chest and foot--and a heart rate monitor were used as sensors. A dataset with 8 subjects and 14 different activities was recorded to evaluate the performance of the system. The overall performance on the intensity estimation task, relying on the chest-worn accelerometer and the HR-monitor, was 94.37%. The overall performance on the activity recognition task, using all three accelerometer placements and the HR-monitor, was 90.65%. This paper also gives an analysis of the importance of different accelerometer placements and the importance of a HR-monitor for both tasks.

  9. Maritime Activities: Requirements for Improving Space Based Solutions

    NASA Astrophysics Data System (ADS)

    Cragnolini, A.; Miguel-Lago, M.

    2005-03-01

    Maritime initiatives cannot be pursued only within their own perimeter. Sector endeavours and the policies which rule over them have wide range implications and several links with other sectors of activity. A well- balanced relationship of sea exploitation, maritime transportation, environmental protection and security ruled by national or international laws, will be a main issue for the future of all kind of maritime activities. Scientific research and technology development, along with enlightened and appropriate institutional regulations are relevant to ensure maritime sustainability.The use of satellite technology for monitoring international agreements should have a close co- ordination and be based on institutional consensus. Frequently, rules and new regulations set by policy makers are not demanding enough due to lack of knowledge about the possibilities offered by available technologies.Law enforcement actions could bring space technology new opportunities to offer solutions for monitoring and verification. Operators should aim at offering space data in a more operational and user-friendly way, providing them with useful and timely information.This paper will analyse the contribution of satellite technology to deal with the specificity of maritime sector, stressing the conditions for both an adequate technology improvement and an effective policy implementation.After analysing the links between maritime activities, space technologies and the institutional environment, the paper identifies some boundary conditions of the future developments. Conclusions are basically a check list for improving the present situation, while a road map is suggested as a matter of a way to proceed.

  10. Evaluation of the antibacterial activity of a cationic polymer in aqueous solution with a convenient electrochemical method.

    PubMed

    Wang, Yihong; Guo, Qing; Wang, Huafu; Qian, Kun; Tian, Liang; Yao, Chen; Song, Wei; Shu, Weixia; Chen, Ping; Qi, Jinxu

    2017-02-01

    Quaternized chitosan is a cationic biopolymer with good antibacterial activity, biocompatibility, and biodegradability, and it has been widely applied in many fields. We have developed a convenient method to evaluate the antibacterial activity of hydroxypropyltrimethylammonium chloride chitosan (HACC) with a nonionic surfactant poloxamer in aqueous solution by monitoring the change of the oxidation peak current in cyclic voltammetry. Increasing values of the oxidation peak current were positively correlated with the antibacterial activity of HACC-poloxamer solutions. Optical microscope images, the zeta potential, and fluorescence spectroscopy showed that the aggregation state of HACC-poloxamer was related to the ratio of the two polymers and also to the antibacterial activity and oxidation peak current. At an HACC-to-poloxamer ratio of 1:0.75, the maximum surface charge density and the smooth edge of HACC-poloxamer aggregates can accelerate diffusion in aqueous solution. It is expected that this convenient method can be applied for a quick evaluation of the antibacterial activity of cationic biopolymers in aqueous solution. Graphical Abstract The cyclic voltammograms of MB in HACC/poloxamer solution, and the antibacterial efficiency against S. aureus after incubated with HACC (a) and 1/0.75 of HACC/poloxamer (b).

  11. 34 CFR 300.120 - Monitoring activities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 2 2013-07-01 2013-07-01 false Monitoring activities. 300.120 Section 300.120... CHILDREN WITH DISABILITIES State Eligibility Least Restrictive Environment (lre) § 300.120 Monitoring activities. (a) The SEA must carry out activities to ensure that § 300.114 is implemented by each public...

  12. 34 CFR 300.120 - Monitoring activities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 2 2012-07-01 2012-07-01 false Monitoring activities. 300.120 Section 300.120... CHILDREN WITH DISABILITIES State Eligibility Least Restrictive Environment (lre) § 300.120 Monitoring activities. (a) The SEA must carry out activities to ensure that § 300.114 is implemented by each public...

  13. Fabric-based active electrode design and fabrication for health monitoring clothing.

    PubMed

    Merritt, Carey R; Nagle, H Troy; Grant, Edward

    2009-03-01

    In this paper, two versions of fabric-based active electrodes are presented to provide a wearable solution for ECG monitoring clothing. The first version of active electrode involved direct attachment of surface-mountable components to a textile screen-printed circuit using polymer thick film techniques. The second version involved attaching a much smaller, thinner, and less obtrusive interposer containing the active electrode circuitry to a simplified textile circuit. These designs explored techniques for electronic textile interconnection, chip attachment to textiles, and packaging of circuits on textiles for durability. The results from ECG tests indicate that the performance of each active electrode is comparable to commercial Ag/AgCl electrodes. The interposer-based active electrodes survived a five-cycle washing test while maintaining good signal integrity.

  14. Physical activity monitoring in patients with peripheral arterial disease: validation of an activity monitor.

    PubMed

    Fokkenrood, H J P; Verhofstad, N; van den Houten, M M L; Lauret, G J; Wittens, C; Scheltinga, M R M; Teijink, J A W

    2014-08-01

    The daily life physical activity (PA) of patients with peripheral arterial disease (PAD) may be severely hampered by intermittent claudication (IC). From a therapeutic, as well as research, point of view, it may be more relevant to determine improvement in PA as an outcome measure in IC. The aim of this study was to validate daily activities using a novel type of tri-axial accelerometer (Dynaport MoveMonitor) in patients with IC. Patients with IC were studied during a hospital visit. Standard activities (locomotion, lying, sitting, standing, shuffling, number of steps and "not worn" detection) were video recorded and compared with activities scored by the MoveMonitor. Inter-rater reliability (expressed in intraclass correlation coefficients [ICC]), sensitivity, specificity, and positive predictive values (PPV) were calculated for each activity. Twenty-eight hours of video observation were analysed (n = 21). Our video annotation method (the gold standard method) appeared to be accurate for most postures (ICC > 0.97), except for shuffling (ICC = 0.38). The MoveMonitor showed a high sensitivity (>86%), specificity (>91%), and PPV (>88%) for locomotion, lying, sitting, and "not worn" detection. Moderate accuracy was found for standing (46%), while shuffling appeared to be undetectable (18%). A strong correlation was found between video recordings and the MoveMonitor with regard to the calculation of the "number of steps" (ICC = 0.90). The MoveMonitor provides accurate information on a diverse set of postures, daily activities, and number of steps in IC patients. However, the detection of low amplitude movements, such as shuffling and "sitting to standing" transfers, is a matter of concern. This tool is useful in assessing the role of PA as a novel, clinically relevant outcome parameter in IC. Copyright © 2014 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  15. Solute and geothermal flux monitoring using electrical conductivity in the Madison, Firehole, and Gibbon Rivers, Yellowstone National Park

    USGS Publications Warehouse

    McCleskey, R. Blaine; Clor, Laura; Lowenstern, Jacob B.; Evans, William C.; Nordstrom, D. Kirk; Heasler, Henry; Huebner, Mark

    2012-01-01

    The thermal output from the Yellowstone magma chamber can be estimated from the Cl flux in the major rivers in Yellowstone National Park; and by utilizing continuous discharge and electrical conductivity measurements the Cl flux can be calculated. The relationship between electrical conductivity and concentrations of Cl and other geothermal solutes (Na, SO4, F, HCO3, SiO2, K, Li, B, and As) was quantified at monitoring sites along the Madison, Gibbon, and Firehole Rivers, which receive discharge from some of the largest and most active geothermal areas in Yellowstone. Except for some trace elements, most solutes behave conservatively and the ratios between geothermal solute concentrations are constant in the Madison, Gibbon, and Firehole Rivers. Hence, dissolved concentrations of Cl, Na, SO4, F, HCO3, SiO2, K, Li, Ca, B and As correlate well with conductivity (R2 > 0.9 for most solutes) and most exhibit linear trends. The 2011 flux for Cl, SO4, F and HCO3 determined using automated conductivity sensors and discharge data from nearby USGS gaging stations is in good agreement with those of previous years (1983–1994 and 1997–2008) at each of the monitoring sites. Continuous conductivity monitoring provides a cost- and labor-effective alternative to existing protocols whereby flux is estimated through manual collection of numerous water samples and subsequent chemical analysis. Electrical conductivity data also yield insights into a variety of topics of research interest at Yellowstone and elsewhere: (1) Geyser eruptions are easily identified and the solute flux quantified with conductivity data. (2) Short-term heavy rain events can produce conductivity anomalies due to dissolution of efflorescent salts that are temporarily trapped in and around geyser basins during low-flow periods. During a major rain event in October 2010, 180,000 kg of additional solute was measured in the Madison River. (3) The output of thermal water from the Gibbon River appears to have

  16. 34 CFR 300.120 - Monitoring activities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 2 2011-07-01 2010-07-01 true Monitoring activities. 300.120 Section 300.120 Education... DISABILITIES State Eligibility Least Restrictive Environment (lre) § 300.120 Monitoring activities. (a) The SEA must carry out activities to ensure that § 300.114 is implemented by each public agency. (b) If there...

  17. 34 CFR 300.120 - Monitoring activities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 2 2014-07-01 2013-07-01 true Monitoring activities. 300.120 Section 300.120 Education... DISABILITIES State Eligibility Least Restrictive Environment (lre) § 300.120 Monitoring activities. (a) The SEA must carry out activities to ensure that § 300.114 is implemented by each public agency. (b) If there...

  18. An active monitoring method for flood events

    NASA Astrophysics Data System (ADS)

    Chen, Zeqiang; Chen, Nengcheng; Du, Wenying; Gong, Jianya

    2018-07-01

    Timely and active detecting and monitoring of a flood event are critical for a quick response, effective decision-making and disaster reduction. To achieve the purpose, this paper proposes an active service framework for flood monitoring based on Sensor Web services and an active model for the concrete implementation of the active service framework. The framework consists of two core components-active warning and active planning. The active warning component is based on a publish-subscribe mechanism implemented by the Sensor Event Service. The active planning component employs the Sensor Planning Service to control the execution of the schemes and models and plans the model input data. The active model, called SMDSA, defines the quantitative calculation method for five elements, scheme, model, data, sensor, and auxiliary information, as well as their associations. Experimental monitoring of the Liangzi Lake flood in the summer of 2010 is conducted to test the proposed framework and model. The results show that 1) the proposed active service framework is efficient for timely and automated flood monitoring. 2) The active model, SMDSA, is a quantitative calculation method used to monitor floods from manual intervention to automatic computation. 3) As much preliminary work as possible should be done to take full advantage of the active service framework and the active model.

  19. Comparison of two different physical activity monitors.

    PubMed

    Paul, David R; Kramer, Matthew; Moshfegh, Alanna J; Baer, David J; Rumpler, William V

    2007-06-25

    Understanding the relationships between physical activity (PA) and disease has become a major area of research interest. Activity monitors, devices that quantify free-living PA for prolonged periods of time (days or weeks), are increasingly being used to estimate PA. A range of different activity monitors brands are available for investigators to use, but little is known about how they respond to different levels of PA in the field, nor if data conversion between brands is possible. 56 women and men were fitted with two different activity monitors, the Actigraph (Actigraph LLC; AGR) and the Actical (Mini-Mitter Co.; MM) for 15 days. Both activity monitors were fixed to an elasticized belt worn over the hip, with the anterior and posterior position of the activity monitors randomized. Differences between activity monitors and the validity of brand inter-conversion were measured by t-tests, Pearson correlations, Bland-Altman plots, and coefficients of variation (CV). The AGR detected a significantly greater amount of daily PA (216.2 +/- 106.2 vs. 188.0 +/- 101.1 counts/min, P < 0.0001). The average difference between activity monitors expressed as a CV were 3.1 and 15.5% for log-transformed and raw data, respectively. When a conversion equation was applied to convert datasets from one brand to another, the differences were no longer significant, with CV's of 2.2 and 11.7%, log-transformed and raw data, respectively. Although activity monitors predict PA on the same scale (counts/min), the results between these two brands are not directly comparable. However, the data are comparable if a conversion equation is applied, with better results for log-transformed data.

  20. Predicting Activity Energy Expenditure Using the Actical[R] Activity Monitor

    ERIC Educational Resources Information Center

    Heil, Daniel P.

    2006-01-01

    This study developed algorithms for predicting activity energy expenditure (AEE) in children (n = 24) and adults (n = 24) from the Actical[R] activity monitor. Each participant performed 10 activities (supine resting, three sitting, three house cleaning, and three locomotion) while wearing monitors on the ankle, hip, and wrist; AEE was computed…

  1. 7 CFR 800.216 - Activities that shall be monitored.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... REGULATIONS Supervision, Monitoring, and Equipment Testing § 800.216 Activities that shall be monitored. (a...) Grain merchandising activities. Grain merchandising activities subject to monitoring for compliance with.... Grain handling activities subject to monitoring for compliance with the Act include but are not limited...

  2. 7 CFR 800.216 - Activities that shall be monitored.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... REGULATIONS Supervision, Monitoring, and Equipment Testing § 800.216 Activities that shall be monitored. (a...) Grain merchandising activities. Grain merchandising activities subject to monitoring for compliance with.... Grain handling activities subject to monitoring for compliance with the Act include but are not limited...

  3. 7 CFR 800.216 - Activities that shall be monitored.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... REGULATIONS Supervision, Monitoring, and Equipment Testing § 800.216 Activities that shall be monitored. (a...) Grain merchandising activities. Grain merchandising activities subject to monitoring for compliance with.... Grain handling activities subject to monitoring for compliance with the Act include but are not limited...

  4. 7 CFR 800.216 - Activities that shall be monitored.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... REGULATIONS Supervision, Monitoring, and Equipment Testing § 800.216 Activities that shall be monitored. (a...) Grain merchandising activities. Grain merchandising activities subject to monitoring for compliance with.... Grain handling activities subject to monitoring for compliance with the Act include but are not limited...

  5. Implementation experience of a patient monitoring solution based on end-to-end standards.

    PubMed

    Martinez, I; Fernandez, J; Galarraga, M; Serrano, L; de Toledo, P; Escayola, J; Jimenez-Fernandez, S; Led, S; Martinez-Espronceda, M; Garcia, J

    2007-01-01

    This paper presents a proof-of-concept design of a patient monitoring solution for Intensive Care Unit (ICU). It is end-to-end standards-based, using ISO/IEEE 11073 (X73) in the bedside environment and EN13606 to communicate the information to an Electronic Healthcare Record (EHR) server. At the bedside end a plug-and-play sensor network is implemented, which communicates with a gateway that collects the medical information and sends it to a monitoring server. At this point the server transforms the data frame into an EN13606 extract, to be stored on the EHR server. The presented system has been tested in a laboratory environment to demonstrate the feasibility of this end-to-end standards-based solution.

  6. 21 CFR 884.2730 - Home uterine activity monitor.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Home uterine activity monitor. 884.2730 Section... Devices § 884.2730 Home uterine activity monitor. (a) Identification. A home uterine activity monitor (HUAM) is an electronic system for at home antepartum measurement of uterine contractions, data...

  7. 21 CFR 884.2730 - Home uterine activity monitor.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Home uterine activity monitor. 884.2730 Section... Devices § 884.2730 Home uterine activity monitor. (a) Identification. A home uterine activity monitor (HUAM) is an electronic system for at home antepartum measurement of uterine contractions, data...

  8. 21 CFR 884.2730 - Home uterine activity monitor.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Home uterine activity monitor. 884.2730 Section... Devices § 884.2730 Home uterine activity monitor. (a) Identification. A home uterine activity monitor (HUAM) is an electronic system for at home antepartum measurement of uterine contractions, data...

  9. 21 CFR 884.2730 - Home uterine activity monitor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Home uterine activity monitor. 884.2730 Section... Devices § 884.2730 Home uterine activity monitor. (a) Identification. A home uterine activity monitor (HUAM) is an electronic system for at home antepartum measurement of uterine contractions, data...

  10. 21 CFR 884.2730 - Home uterine activity monitor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Home uterine activity monitor. 884.2730 Section... Devices § 884.2730 Home uterine activity monitor. (a) Identification. A home uterine activity monitor (HUAM) is an electronic system for at home antepartum measurement of uterine contractions, data...

  11. Monitoring the Impact of Solution Concepts within a Given Problematic

    NASA Astrophysics Data System (ADS)

    Cavallucci, Denis; Rousselot, François; Zanni, Cecilia

    It is acknowledged that one of the most critical issues facing today’s organizations concerns the substantial leaps required to methodologically structure innovation. Among other published work, some suggest that a complete rethinking of current practices is required. In this article, we propose a methodology aiming at providing controlled R&D choices based on a monitoring of the impact Solution Concepts provoke on a problematic situation. Initially this problematic situation is modeled in a graph form, namely a Problem Graph. It has the objective to assists R&D managers when choosing which activities to support and bring them concrete arguments to defend their choices. We postulate that by improving the robustness of such approaches we help deciders to switch from intuitive decisions (mostly built upon their past experiences, fear regarding risks, and awareness of the company’s level of acceptance of novelties) to thoroughly constructed inventive problem solving strategies. Our approach will be discussed using a computer application that illustrates our hypothesis after being tested in several industrial applications.

  12. Validity of physical activity monitors for assessing lower intensity activity in adults.

    PubMed

    Calabró, M Andrés; Lee, Jung-Min; Saint-Maurice, Pedro F; Yoo, Hyelim; Welk, Gregory J

    2014-09-28

    Accelerometers can provide accurate estimates of moderate-to-vigorous physical activity (MVPA). However, one of the limitations of these instruments is the inability to capture light activity within an acceptable range of error. The purpose of the present study was to determine the validity of different activity monitors for estimating energy expenditure (EE) of light intensity, semi-structured activities. Forty healthy participants wore a SenseWear Pro3 Armband (SWA, v.6.1), the SenseWear Mini, the Actiheart, ActiGraph, and ActivPAL monitors, while being monitored with a portable indirect calorimetry (IC). Participants engaged in a variety of low intensity activities but no formalized scripts or protocols were used during these periods. The Mini and SWA overestimated total EE on average by 1.0% and 4.0%, respectively, while the AH, the GT3X, and the AP underestimated total EE on average by 7.8%, 25.5%, and 22.2%, respectively. The pattern-recognition monitors yielded non-significant differences in EE estimates during the semi-structured period (p = 0.66, p = 0.27, and p = 0.21 for the Mini, SWA, and AH, respectively). The SenseWear Mini provided more accurate estimates of EE during light to moderate intensity semi-structured activities compared to other activity monitors. This monitor should be considered when there is interest in tracking low intensity activities in groups of individuals.

  13. Active Solution Space and Search on Job-shop Scheduling Problem

    NASA Astrophysics Data System (ADS)

    Watanabe, Masato; Ida, Kenichi; Gen, Mitsuo

    In this paper we propose a new searching method of Genetic Algorithm for Job-shop scheduling problem (JSP). The coding method that represent job number in order to decide a priority to arrange a job to Gannt Chart (called the ordinal representation with a priority) in JSP, an active schedule is created by using left shift. We define an active solution at first. It is solution which can create an active schedule without using left shift, and set of its defined an active solution space. Next, we propose an algorithm named Genetic Algorithm with active solution space search (GA-asol) which can create an active solution while solution is evaluated, in order to search the active solution space effectively. We applied it for some benchmark problems to compare with other method. The experimental results show good performance.

  14. Isotherm-Based Thermodynamic Model for Solute Activities of Asymmetric Electrolyte Aqueous Solutions.

    PubMed

    Nandy, Lucy; Dutcher, Cari S

    2017-09-21

    Adsorption isotherm-based statistical thermodynamic models can be used to determine solute concentration and solute and solvent activities in aqueous solutions. Recently, the number of adjustable parameters in the isotherm model of Dutcher et al. J. Phys. Chem. A/C 2011, 2012, 2013 were reduced for neutral solutes as well as symmetric 1:1 electrolytes by using a Coulombic model to describe the solute-solvent energy interactions (Ohm et al. J. Phys. Chem. A 2015, Nandy et al. J. Phys. Chem. A 2016). Here, the Coulombic treatment for symmetric electrolytes is extended to establish improved isotherm model equations for asymmetric 1-2 and 1-3 electrolyte systems. The Coulombic model developed here results in prediction of activities and other thermodynamic properties in multicomponent systems containing ions of arbitrary charge. The model is found to accurately calculate the osmotic coefficient over the entire solute concentration range with two model parameters, related to intermolecular solute-solute and solute-solvent spacing. The inorganic salts and acids treated here are generally considered to be fully dissociated. However, there are certain weak acids that do not dissociate completely, such as the bisulfate ion. In this work, partial dissociation of the bisulfate ion from sulfuric acid is treated as a mixture, with an additional model parameter that accounts for the dissociation ratio of the dissociated ions to nondissociated ions.

  15. Impedance spectroscopy of micro-Droplets reveals activation of Bacterial Mechanosensitive Channels in Hypotonic Solutions

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Aida; Alam, Muhammad A.

    Rapid detection of bacterial pathogens is of great importance in healthcare, food safety, environmental monitoring, and homeland security. Most bacterial detection platforms rely on binary fission (i.e. cell growth) to reach a threshold cell population that can be resolved by the sensing method. Since cell division depends on the bacteria type, the detection time of such methods can vary from hours to days. In contrast, in this work, we show that bacteria cells can be detected within minutes by relying on activation of specific protein channels, i.e. mechanosensitive channels (MS channels). When cells are exposed to hypotonic solutions, MS channels allow efflux of solutes to the external solution which leads to release the excessive membrane tension. Release of the cytoplasmic solutes, in turn, results in increase of the electrical conductance measured by droplet-based impedance sensing. The approach can be an effective technique for fast, pre-screening of bacterial contamination at ultra-low concentration.

  16. Antimicrobial activity of sodium hypochlorite-based irrigating solutions.

    PubMed

    Poggio, Claudio; Arciola, Carla Renata; Dagna, Alberto; Chiesa, Marco; Sforza, Dario; Visai, Livia

    2010-09-01

    The objective of the present study was the in vitro evaluation of the antimicrobial activity of three different NaOCl-based endodontic irrigating solutions: a 5.25% conventional sodium hypochlorite solution; and two new irrigating solutions, a 5.25% sodium hypochlorite solution with the addition of a proteolytic enzyme and a surfactant; and a 5.25% sodium hypochlorite gel with inorganic silicate. Enterococcus faecalis, Staphylococcus aureus and Streptococcus mutans strains were selected to evaluate the antimicrobial activity of the endodontic irrigating solutions by the agar disc diffusion test. Paper disks were saturated with each one of the tested solutions (at room temperature and pre-warmed at 45°C) and placed onto culture agar-plates pre-adsorbed with bacterial cells and further incubated for 24 h at 37°C. The growth inhibition zones around each irrigating solution were recorded and compared for each bacterial strain. The results were significantly different among the tested irrigating solutions: 5.25% sodium hypochlorite solution produced the highest inhibition areas; 5.25% sodium hypochlorite solution with a proteolytic enzyme and a surfactant, and 5.25% sodium hypochlorite gel with inorganic silicate showed the lowest zones of inhibition. Even if all tested irrigating solution possessed antibacterial activity versus all tested bacterial strains, 5.25% sodium hypochlorite solution with a proteolytic enzyme and a surfactant, and 5.25% sodium hypochlorite gel with inorganic silicate showed lower in vitro efficacy than 5.25% conventional sodium hypochlorite solution.

  17. GPS signal loss in the wide area monitoring system: Prevalence, impact, and solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Wenxuan; Zhou, Dao; Zhan, Lingwei

    The phasor measurement unit (PMUs), equipped with Global Positioning System (GPS) receivers for precise time synchronization, provides measurements of voltage and current phasors at different nodes of the wide area monitoring system. However, GPS receivers are likely to lose satellite signals due to various unpredictable factors. The prevalence of GPS signal loss (GSL) on PMUs is first investigated using real PMU data. The historical GSL events are extracted from a phasor data concentrator (PDC) and FNET/GridEye server. The correlation between GSL and time, spatial location, solar activity are explored via comprehensive statistical analysis. Furthermore, the impact of GSL on phasormore » measurement accuracy has been studied via experiments. Finally, several potential solutions to mitigate the impact of GSL on PMUs are discussed and compared.« less

  18. GPS signal loss in the wide area monitoring system: Prevalence, impact, and solution

    DOE PAGES

    Yao, Wenxuan; Zhou, Dao; Zhan, Lingwei; ...

    2017-03-19

    The phasor measurement unit (PMUs), equipped with Global Positioning System (GPS) receivers for precise time synchronization, provides measurements of voltage and current phasors at different nodes of the wide area monitoring system. However, GPS receivers are likely to lose satellite signals due to various unpredictable factors. The prevalence of GPS signal loss (GSL) on PMUs is first investigated using real PMU data. The historical GSL events are extracted from a phasor data concentrator (PDC) and FNET/GridEye server. The correlation between GSL and time, spatial location, solar activity are explored via comprehensive statistical analysis. Furthermore, the impact of GSL on phasormore » measurement accuracy has been studied via experiments. Finally, several potential solutions to mitigate the impact of GSL on PMUs are discussed and compared.« less

  19. Solute-specific patterns and drivers of urban stream chemistry revealed by long-term monitoring in Baltimore, Maryland

    NASA Astrophysics Data System (ADS)

    Reisinger, A. J.; Woytowitz, E.; Majcher, E.; Rosi, E. J.; Groffman, P.

    2017-12-01

    Urban streams receive a myriad of chemical inputs from the surrounding landscape due to altered lithology (asphalt, concrete), leaky sewage infrastructure, and other human activities (road salt, fertilizer, industrial wastes, wastewater effluent), potentially leading to multiple chemical stressors occurring simultaneously. To evaluate potential drivers of water chemistry change, we used approximately 20 years of weekly water chemistry monitoring data from streams in the Baltimore Ecosystem Study (BES) to quantify trends of annual loads and flow-weighted concentrations for multiple solutes of interest, including nitrate (NO3-), phosphate (PO43-), total nitrogen (TN), total phosphorus (TP), chloride (Cl-), and sulfate (SO42-) and subsequently examined various gray and green infrastructure characteristics at the watershed scale. For example, we quantified annual volume and duration of reported sanitary sewer overflows (SSO) and cumulative storage volume and area of various best management practices (BMPs). Site- and solute-specific trends differed, but across our monitoring network we found evidence for decreasing annual export for multiple solutes. Additionally, we found that changes in gray- and green-infrastructure characteristics were related to changes in water quality at our most downstream (most urban) monitoring site. For example, annual NO3- loads increased with longer cumulative SSO duration, whereas annual PO43- and TP loads decreased with a cumulative BMP area in the watershed. Further, we used same long-term water chemistry data and multivariate analyses to investigate whether urban streams have unique water chemistry fingerprints representing the multiple chemical stressors at a given site, which could provide insight into sources and impacts of water-quality impairment. These analyses and results illustrate the major role gray and green infrastructure play in influencing water quality in urban environments, and illustrate that focusing on a variety of

  20. National physical activity surveillance: Users of wearable activity monitors as a potential data source.

    PubMed

    Omura, John D; Carlson, Susan A; Paul, Prabasaj; Watson, Kathleen B; Fulton, Janet E

    2017-03-01

    The objective of this study was to assess usage patterns of wearable activity monitors among US adults and how user characteristics might influence physical activity estimates from this type of sample. We analyzed data on 3367 respondents to the 2015 HealthStyles survey, an annual consumer mail panel survey conducted on a nationwide sample. Approximately 1 in 8 respondents (12.5%) reported currently using a wearable activity monitor. Current use varied by sex, age, and education level. Use increased with physical activity level from 4.3% for inactive adults to 17.4% for active adults. Overall, 49.9% of all adults met the aerobic physical activity guideline, while this prevalence was 69.5% among current activity monitor users. Our findings suggest that current users of wearable activity monitors are not representative of the overall US population. Estimates of physical activity levels using data from wearable activity monitors users may be an overestimate and therefore data from users alone may have a limited role in physical activity surveillance.

  1. Geothermal solute flux monitoring and the source and fate of solutes in the Snake River, Yellowstone National Park, WY

    USGS Publications Warehouse

    McCleskey, R. Blaine; Lowenstern, Jacob B.; Schaper, Jonas; Nordstrom, D. Kirk; Heasler, Henry P.; Mahony, Dan

    2016-01-01

    The combined geothermal discharge from over 10,000 features in Yellowstone National Park (YNP) can be can be estimated from the Cl flux in the Madison, Yellowstone, Falls, and Snake Rivers. Over the last 30 years, the Cl flux in YNP Rivers has been calculated using discharge measurements and Cl concentrations determined in discrete water samples and it has been determined that approximately 12% of the Cl flux exiting YNP is from the Snake River. The relationship between electrical conductivity and concentrations of Cl and other geothermal solutes was quantified at a monitoring site located downstream from the thermal inputs in the Snake River. Beginning in 2012, continuous (15 min) electrical conductivity measurements have been made at the monitoring site. Combining continuous electrical conductivity and discharge data, the Cl and other geothermal solute fluxes were determined. The 2013–2015 Cl fluxes (5.3–5.8 kt/yr) determined using electrical conductivity are comparable to historical data. In addition, synoptic water samples and discharge data were obtained from sites along the Snake River under low-flow conditions of September 2014. The synoptic water study extended 17 km upstream from the monitoring site. Surface inflows were sampled to identify sources and to quantify solute loading. The Lewis River was the primary source of Cl, Na, K, Cl, SiO2, Rb, and As loads (50–80%) in the Snake River. The largest source of SO4 was from the upper Snake River (50%). Most of the Ca and Mg (50–55%) originate from the Snake Hot Springs. Chloride, Ca, Mg, Na, K, SiO2, F, HCO3, SO4, B, Li, Rb, and As behave conservatively in the Snake River, and therefore correlate well with conductivity (R2 ≥ 0.97).

  2. Time-resolved forward-light-scattering monitoring of protein–lysozyme aggregation in precrystalline solutions

    NASA Astrophysics Data System (ADS)

    Wakamatsu, Takashi; Onoda, Takashi; Ogata, Makoto

    2018-05-01

    An in situ measurement method of monitoring protein aggregation in precrystalline solutions is presented. The method is based on a small-angle forward static light scattering (F-SLS) technique. This technique uses an accurate optical arrangement of a combination of a collimating lens and a CCD to obtain an F-SLS pattern from an aggregate-containing protein solution in one shot. The real-time observation of a crystallizing lysozyme captured the formation of fractal aggregates in the initial formation stage.

  3. Small Active Radiation Monitor

    NASA Technical Reports Server (NTRS)

    Badhwar, Gautam D.

    2004-01-01

    A device, named small active radiation monitor, allows on-orbit evaluations during periods of increased radiation, after extravehicular activities, or at predesignated times for crews on such long-duration space missions as on the International Space Station. It also permits direct evaluation of biological doses, a task now performed using a combination of measurements and potentially inaccurate simulations. Indeed the new monitor can measure a full array of radiation levels, from soft x-rays to hard galactic cosmic-ray particles. With refinement, it will benefit commercial (nuclear power-plant workers, airline pilots, medical technicians, physicians/dentists, and others) and military personnel as well as the astronauts for whom thermoluminescent dosimeters are inadequate. Civilian and military personnel have long since graduated from film badges to thermoluminescent dosimeters. Once used, most dosimeters must be returned to a central facility for processing, a step that can take days or even weeks. While this suffices for radiation workers for whom exposure levels are typically very low and of brief duration, it does not work for astronauts. Even in emergencies and using express mail, the results can often be delayed by as much as 24 hours. Electronic dosimeters, which are the size of electronic oral thermometers, and tattlers, small electronic dosimeters that sound an alarm when the dose/dose rate exceeds preset values, are also used but suffer disadvantages similar to those of thermoluminescent dosimeters. None of these devices fully answers the need of rapid monitoring during the space missions. Instead, radiation is monitored by passive detectors, which are read out after the missions. Unfortunately, these detectors measure only the absorbed dose and not the biologically relevant dose equivalent. The new monitor provides a real-time readout, a time history of radiation exposures (both absorbed dose and biologically relevant dose equivalent), and a count of the

  4. Integration of structural health monitoring solutions onto commercial aircraft via the Federal Aviation Administration structural health monitoring research program

    NASA Astrophysics Data System (ADS)

    Swindell, Paul; Doyle, Jon; Roach, Dennis

    2017-02-01

    The Federal Aviation Administration (FAA) started a research program in structural health monitoring (SHM) in 2011. The program's goal was to understand the technical gaps of implementing SHM on commercial aircraft and the potential effects on FAA regulations and guidance. The program evolved into a demonstration program consisting of a team from Sandia National Labs Airworthiness Assurance NDI Center (AANC), the Boeing Corporation, Delta Air Lines, Structural Monitoring Systems (SMS), Anodyne Electronics Manufacturing Corp (AEM) and the FAA. This paper will discuss the program from the selection of the inspection problem, the SHM system (Comparative Vacuum Monitoring-CVM) that was selected as the inspection solution and the testing completed to provide sufficient data to gain the first approved use of an SHM system for routine maintenance on commercial US aircraft.

  5. Comparative study on ATR-FTIR calibration models for monitoring solution concentration in cooling crystallization

    NASA Astrophysics Data System (ADS)

    Zhang, Fangkun; Liu, Tao; Wang, Xue Z.; Liu, Jingxiang; Jiang, Xiaobin

    2017-02-01

    In this paper calibration model building based on using an ATR-FTIR spectroscopy is investigated for in-situ measurement of the solution concentration during a cooling crystallization process. The cooling crystallization of L-glutamic Acid (LGA) as a case is studied here. It was found that using the metastable zone (MSZ) data for model calibration can guarantee the prediction accuracy for monitoring the operating window of cooling crystallization, compared to the usage of undersaturated zone (USZ) spectra for model building as traditionally practiced. Calibration experiments were made for LGA solution under different concentrations. Four candidate calibration models were established using different zone data for comparison, by using a multivariate partial least-squares (PLS) regression algorithm for the collected spectra together with the corresponding temperature values. Experiments under different process conditions including the changes of solution concentration and operating temperature were conducted. The results indicate that using the MSZ spectra for model calibration can give more accurate prediction of the solution concentration during the crystallization process, while maintaining accuracy in changing the operating temperature. The primary reason of prediction error was clarified as spectral nonlinearity for in-situ measurement between USZ and MSZ. In addition, an LGA cooling crystallization experiment was performed to verify the sensitivity of these calibration models for monitoring the crystal growth process.

  6. Monitoring snowmelt and solute transport at Oslo airport by combining time-lapse electrical resistivity, soil water sampling and tensiometer measurements

    NASA Astrophysics Data System (ADS)

    Bloem, E.; French, H. K.

    2013-12-01

    Monitoring contaminant transport at contaminated sites requires optimization of the configuration of a limited number of samplings points combined with heterogeneous flow and preferential flowpaths. Especially monitoring processes in the unsaturated zone is a major challenge due to the limited volume monitored by for example suction cups and their risk to clog in a highly active degradation zone. To make progress on soil contamination assessment and site characterization there is a strong need to integrate field-sale extensively instrumented tools, with non-invasive (geophysical) methods which provide spatially integrated measurements also in the unsaturated zone. Examples of sites that might require monitoring activities in the unsaturated zone are airports with winter frost where large quantities of de-icing chemicals are used each winter; salt and contaminant infiltration along roads; constructed infiltration systems for treatment of sewerage or landfill seepage. Electrical resistivity methods have proved to be useful as an indirect measurement of subsurface properties and processes at the field-scale. The non-uniqueness of the interpretation techniques can be reduced by constraining the inversion through the addition of independent geophysical measurements along the same profile. Or interpretation and understanding of geophysical images can be improved by the combination with classical measurements of soil physical properties, soil suction, contaminant concentration and temperatures. In our experiment, at the research field station at Gardermoen, Oslo airport, we applied a degradable de-icing chemical and an inactive tracer to the snow cover prior to snowmelt. To study the solute transport processes in the unsaturated zone time-lapse cross borehole electrical resistivity tomography (ERT) measurements were conducted at the same time as soil water samples were extracted at multiple depths with suction cups. Measurements of soil temperature, and soil tension were

  7. How consumer physical activity monitors could transform human physiology research.

    PubMed

    Wright, Stephen P; Hall Brown, Tyish S; Collier, Scott R; Sandberg, Kathryn

    2017-03-01

    A sedentary lifestyle and lack of physical activity are well-established risk factors for chronic disease and adverse health outcomes. Thus, there is enormous interest in measuring physical activity in biomedical research. Many consumer physical activity monitors, including Basis Health Tracker, BodyMedia Fit, DirectLife, Fitbit Flex, Fitbit One, Fitbit Zip, Garmin Vivofit, Jawbone UP, MisFit Shine, Nike FuelBand, Polar Loop, Withings Pulse O 2 , and others have accuracies similar to that of research-grade physical activity monitors for measuring steps. This review focuses on the unprecedented opportunities that consumer physical activity monitors offer for human physiology and pathophysiology research because of their ability to measure activity continuously under real-life conditions and because they are already widely used by consumers. We examine current and potential uses of consumer physical activity monitors as a measuring or monitoring device, or as an intervention in strategies to change behavior and predict health outcomes. The accuracy, reliability, reproducibility, and validity of consumer physical activity monitors are reviewed, as are limitations and challenges associated with using these devices in research. Other topics covered include how smartphone apps and platforms, such as the Apple ResearchKit, can be used in conjunction with consumer physical activity monitors for research. Lastly, the future of consumer physical activity monitors and related technology is considered: pattern recognition, integration of sleep monitors, and other biosensors in combination with new forms of information processing. Copyright © 2017 the American Physiological Society.

  8. How consumer physical activity monitors could transform human physiology research

    PubMed Central

    Hall Brown, Tyish S.; Collier, Scott R.; Sandberg, Kathryn

    2017-01-01

    A sedentary lifestyle and lack of physical activity are well-established risk factors for chronic disease and adverse health outcomes. Thus, there is enormous interest in measuring physical activity in biomedical research. Many consumer physical activity monitors, including Basis Health Tracker, BodyMedia Fit, DirectLife, Fitbit Flex, Fitbit One, Fitbit Zip, Garmin Vivofit, Jawbone UP, MisFit Shine, Nike FuelBand, Polar Loop, Withings Pulse O2, and others have accuracies similar to that of research-grade physical activity monitors for measuring steps. This review focuses on the unprecedented opportunities that consumer physical activity monitors offer for human physiology and pathophysiology research because of their ability to measure activity continuously under real-life conditions and because they are already widely used by consumers. We examine current and potential uses of consumer physical activity monitors as a measuring or monitoring device, or as an intervention in strategies to change behavior and predict health outcomes. The accuracy, reliability, reproducibility, and validity of consumer physical activity monitors are reviewed, as are limitations and challenges associated with using these devices in research. Other topics covered include how smartphone apps and platforms, such as the Apple ResearchKit, can be used in conjunction with consumer physical activity monitors for research. Lastly, the future of consumer physical activity monitors and related technology is considered: pattern recognition, integration of sleep monitors, and other biosensors in combination with new forms of information processing. PMID:28052867

  9. Device-based monitoring in physical activity and public health research.

    PubMed

    Bassett, David R

    2012-11-01

    Measurement of physical activity is important, given the vital role of this behavior in physical and mental health. Over the past quarter of a century, the use of small, non-invasive, wearable monitors to assess physical activity has become commonplace. This review is divided into three sections. In the first section, a brief history of physical activity monitoring is provided, along with a discussion of the strengths and weaknesses of different devices. In the second section, recent applications of physical activity monitoring in physical activity and public health research are discussed. Wearable monitors are being used to conduct surveillance, and to determine the extent and distribution of physical activity and sedentary behaviors in populations around the world. They have been used to help clarify the dose-response relation between physical activity and health. Wearable monitors that provide feedback to users have also been used in longitudinal interventions to motivate research participants and to assess their compliance with program goals. In the third section, future directions for research in physical activity monitoring are discussed. It is likely that new developments in wearable monitors will lead to greater accuracy and improved ease-of-use.

  10. IMIS desktop & smartphone software solutions for monitoring spacecrafts' payload from anywhere

    NASA Astrophysics Data System (ADS)

    Baroukh, J.; Queyrut, O.; Airaud, J.

    In the past years, the demand for satellite remote operations has increased guided by on one hand, the will to reduce operations cost (on-call operators out of business hours), and on the other hand, the development of cooperation space missions resulting in a world wide distribution of engineers and science team members. Only a few off-the-shelf solutions exist to fulfill the need of remote payload monitoring, and they mainly use proprietary devices. The recent advent of mobile technologies (laptops, smartphones and tablets) as well as the worldwide deployment of broadband networks (3G, Wi-Fi hotspots), has opened up a technical window that brings new options. As part of the Mars Science Laboratory (MSL) mission, the Centre National D'Etudes Spatiales (CNES, the French space agency) has developed a new software solution for monitoring spacecraft payloads. The Instrument Monitoring Interactive Software (IMIS) offers state-of-the-art operational features for payload monitoring, and can be accessed remotely. It was conceived as a generic tool that can be used for heterogeneous payloads and missions. IMIS was designed as a classical client/server architecture. The server is hosted at CNES and acts as a data provider while two different kinds of clients are available depending on the level of mobility required. The first one is a rich client application, built on Eclipse framework, which can be installed on usual operating systems and communicates with the server through the Internet. The second one is a smartphone application for any Android platform, connected to the server thanks to the mobile broadband network or a Wi-Fi connection. This second client is mainly devoted to on-call operations and thus only contains a subset of the IMIS functionalities. This paper describes the operational context, including security aspects, that led IMIS development, presents the selected software architecture and details the various features of both clients: the desktop and the sm

  11. Activity Monitors as Support for Older Persons’ Physical Activity in Daily Life: Qualitative Study of the Users’ Experiences

    PubMed Central

    Eriksson, Lennie Carlén; Åkerberg, Nina; Johansson, Ann-Christin

    2018-01-01

    Background Falls are a major threat to the health and independence of seniors. Regular physical activity (PA) can prevent 40% of all fall injuries. The challenge is to motivate and support seniors to be physically active. Persuasive systems can constitute valuable support for persons aiming at establishing and maintaining healthy habits. However, these systems need to support effective behavior change techniques (BCTs) for increasing older adults’ PA and meet the senior users’ requirements and preferences. Therefore, involving users as codesigners of new systems can be fruitful. Prestudies of the user’s experience with similar solutions can facilitate future user-centered design of novel persuasive systems. Objective The aim of this study was to investigate how seniors experience using activity monitors (AMs) as support for PA in daily life. The addressed research questions are as follows: (1) What are the overall experiences of senior persons, of different age and balance function, in using wearable AMs in daily life?; (2) Which aspects did the users perceive relevant to make the measurements as meaningful and useful in the long-term perspective?; and (3) What needs and requirements did the users perceive as more relevant for the activity monitors to be useful in a long-term perspective? Methods This qualitative interview study included 8 community-dwelling older adults (median age: 83 years). The participants’ experiences in using two commercial AMs together with tablet-based apps for 9 days were investigated. Activity diaries during the usage and interviews after the usage were exploited to gather user experience. Comments in diaries were summarized, and interviews were analyzed by inductive content analysis. Results The users (n=8) perceived that, by using the AMs, their awareness of own PA had increased. However, the AMs’ impact on the users’ motivation for PA and activity behavior varied between participants. The diaries showed that self

  12. AAC Language Activity Monitoring: Entering the New Millennium.

    ERIC Educational Resources Information Center

    Hill, Katya; Romich, Barry

    This report describes how augmentative and alternative communication (AAC) automated language activity monitoring can provide clinicians with the tools they need to collect and analyze language samples from the natural environment of children with disabilities for clinical intervention and outcomes measurements. The Language Activity Monitor (LAM)…

  13. The SERENITY Runtime Monitoring Framework

    NASA Astrophysics Data System (ADS)

    Spanoudakis, George; Kloukinas, Christos; Mahbub, Khaled

    This chapter describes SERENITY’s approach to runtime monitoring and the framework that has been developed to support it. Runtime monitoring is required in SERENITY in order to check for violations of security and dependability properties which are necessary for the correct operation of the security and dependability solutions that are available from the SERENITY framework. This chapter discusses how such properties are specified and monitored. The chapter focuses on the activation and execution of monitoring activities using S&D Patterns and the actions that may be undertaken following the detection of property violations. The approach is demonstrated in reference to one of the industrial case studies of the SERENITY project.

  14. The validity of activity monitors for measuring sleep in elite athletes.

    PubMed

    Sargent, Charli; Lastella, Michele; Halson, Shona L; Roach, Gregory D

    2016-10-01

    There is a growing interest in monitoring the sleep of elite athletes. Polysomnography is considered the gold standard for measuring sleep, however this technique is impractical if the aim is to collect data simultaneously with multiple athletes over consecutive nights. Activity monitors may be a suitable alternative for monitoring sleep, but these devices have not been validated against polysomnography in a population of elite athletes. Participants (n=16) were endurance-trained cyclists participating in a 6-week training camp. A total of 122 nights of sleep were recorded with polysomnography and activity monitors simultaneously. Agreement, sensitivity, and specificity were calculated from epoch-for-epoch comparisons of polysomnography and activity monitor data. Sleep variables derived from polysomnography and activity monitors were compared using paired t-tests. Activity monitor data were analysed using low, medium, and high sleep-wake thresholds. Epoch-for-epoch comparisons showed good agreement between activity monitors and polysomnography for each sleep-wake threshold (81-90%). Activity monitors were sensitive to sleep (81-92%), but specificity differed depending on the threshold applied (67-82%). Activity monitors underestimated sleep duration (18-90min) and overestimated wake duration (4-77min) depending on the threshold applied. Applying the correct sleep-wake threshold is important when using activity monitors to measure the sleep of elite athletes. For example, the default sleep-wake threshold (>40 activity counts=wake) underestimates sleep duration by ∼50min and overestimates wake duration by ∼40min. In contrast, sleep-wake thresholds that have a high sensitivity to sleep (>80 activity counts=wake) yield the best combination of agreement, sensitivity, and specificity. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  15. Ant-App-DB: a smart solution for monitoring arthropods activities, experimental data management and solar calculations without GPS in behavioral field studies.

    PubMed

    Ahmed, Zeeshan; Zeeshan, Saman; Fleischmann, Pauline; Rössler, Wolfgang; Dandekar, Thomas

    2014-01-01

    Field studies on arthropod ecology and behaviour require simple and robust monitoring tools, preferably with direct access to an integrated database. We have developed and here present a database tool allowing smart-phone based monitoring of arthropods. This smart phone application provides an easy solution to collect, manage and process the data in the field which has been a very difficult task for field biologists using traditional methods. To monitor our example species, the desert ant Cataglyphis fortis, we considered behavior, nest search runs, feeding habits and path segmentations including detailed information on solar position and azimuth calculation, ant orientation and time of day. For this we established a user friendly database system integrating the Ant-App-DB with a smart phone and tablet application, combining experimental data manipulation with data management and providing solar position and timing estimations without any GPS or GIS system. Moreover, the new desktop application Dataplus allows efficient data extraction and conversion from smart phone application to personal computers, for further ecological data analysis and sharing. All features, software code and database as well as Dataplus application are made available completely free of charge and sufficiently generic to be easily adapted to other field monitoring studies on arthropods or other migratory organisms. The software applications Ant-App-DB and Dataplus described here are developed using the Android SDK, Java, XML, C# and SQLite Database.

  16. Ant-App-DB: a smart solution for monitoring arthropods activities, experimental data management and solar calculations without GPS in behavioral field studies

    PubMed Central

    Ahmed, Zeeshan; Zeeshan, Saman; Fleischmann, Pauline; Rössler, Wolfgang; Dandekar, Thomas

    2015-01-01

    Field studies on arthropod ecology and behaviour require simple and robust monitoring tools, preferably with direct access to an integrated database. We have developed and here present a database tool allowing smart-phone based monitoring of arthropods. This smart phone application provides an easy solution to collect, manage and process the data in the field which has been a very difficult task for field biologists using traditional methods. To monitor our example species, the desert ant Cataglyphis fortis, we considered behavior, nest search runs, feeding habits and path segmentations including detailed information on solar position and azimuth calculation, ant orientation and time of day. For this we established a user friendly database system integrating the Ant-App-DB with a smart phone and tablet application, combining experimental data manipulation with data management and providing solar position and timing estimations without any GPS or GIS system. Moreover, the new desktop application Dataplus allows efficient data extraction and conversion from smart phone application to personal computers, for further ecological data analysis and sharing. All features, software code and database as well as Dataplus application are made available completely free of charge and sufficiently generic to be easily adapted to other field monitoring studies on arthropods or other migratory organisms. The software applications Ant-App-DB and Dataplus described here are developed using the Android SDK, Java, XML, C# and SQLite Database. PMID:25977753

  17. Embedded ARM system for volcano monitoring in remote areas: application to the active volcano on Deception Island (Antarctica).

    PubMed

    Peci, Luis Miguel; Berrocoso, Manuel; Fernández-Ros, Alberto; García, Alicia; Marrero, José Manuel; Ortiz, Ramón

    2014-01-02

    This paper describes the development of a multi-parameter system for monitoring volcanic activity. The system permits the remote access and the connection of several modules in a network. An embedded ARM™ processor has been used, allowing a great flexibility in hardware configuration. The use of a complete Linux solution (Debian™) as Operating System permits a quick, easy application development to control sensors and communications. This provides all the capabilities required and great stability with relatively low energy consumption. The cost of the components and applications development is low since they are widely used in different fields. Sensors and commercial modules have been combined with other self-developed modules. The Modular Volcano Monitoring System (MVMS) described has been deployed on the active Deception Island (Antarctica) volcano, within the Spanish Antarctic Program, and has proved successful for monitoring the volcano, with proven reliability and efficient operation under extreme conditions. In another context, i.e., the recent volcanic activity on El Hierro Island (Canary Islands) in 2011, this technology has been used for the seismic equipment and GPS systems deployed, thus showing its efficiency in the monitoring of a volcanic crisis.

  18. Embedded ARM System for Volcano Monitoring in Remote Areas: Application to the Active Volcano on Deception Island (Antarctica)

    PubMed Central

    Peci, Luis Miguel; Berrocoso, Manuel; Fernández-Ros, Alberto; García, Alicia; Marrero, José Manuel; Ortiz, Ramón

    2014-01-01

    This paper describes the development of a multi-parameter system for monitoring volcanic activity. The system permits the remote access and the connection of several modules in a network. An embedded ARM™™ processor has been used, allowing a great flexibility in hardware configuration. The use of a complete Linux solution (Debian™) as Operating System permits a quick, easy application development to control sensors and communications. This provides all the capabilities required and great stability with relatively low energy consumption. The cost of the components and applications development is low since they are widely used in different fields. Sensors and commercial modules have been combined with other self-developed modules. The Modular Volcano Monitoring System (MVMS) described has been deployed on the active Deception Island (Antarctica) volcano, within the Spanish Antarctic Program, and has proved successful for monitoring the volcano, with proven reliability and efficient operation under extreme conditions. In another context, i.e., the recent volcanic activity on El Hierro Island (Canary Islands) in 2011, this technology has been used for the seismic equipment and GPS systems deployed, thus showing its efficiency in the monitoring of a volcanic crisis. PMID:24451461

  19. Vadose Zone Monitoring of Dairy Green Water Lagoons using Soil Solution Samplers.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brainard, James R.; Coplen, Amy K

    2005-11-01

    Over the last decade, dairy farms in New Mexico have become an important component to the economy of many rural ranching and farming communities. Dairy operations are water intensive and use groundwater that otherwise would be used for irrigation purposes. Most dairies reuse their process/green water three times and utilize lined lagoons for temporary storage of green water. Leakage of water from lagoons can pose a risk to groundwater quality. Groundwater resource protection infrastructures at dairies are regulated by the New Mexico Environment Department which currently relies on monitoring wells installed in the saturated zone for detecting leakage of wastemore » water lagoon liners. Here we present a proposal to monitor the unsaturated zone beneath the lagoons with soil water solution samplers to provide early detection of leaking liners. Early detection of leaking liners along with rapid repair can minimize contamination of aquifers and reduce dairy liability for aquifer remediation. Additionally, acceptance of vadose zone monitoring as a NMED requirement over saturated zone monitoring would very likely significantly reduce dairy startup and expansion costs. Acknowledgment Funding for this project was provided by the Sandia National Laboratories Small Business Assistance Program« less

  20. Monitoring Biological Activity at Geothermal Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter Pryfogle

    2005-09-01

    The economic impact of microbial growth in geothermal power plants has been estimated to be as high as $500,000 annually for a 100 MWe plant. Many methods are available to monitor biological activity at these facilities; however, very few plants have any on-line monitoring program in place. Metal coupon, selective culturing (MPN), total organic carbon (TOC), adenosine triphosphate (ATP), respirometry, phospholipid fatty acid (PLFA), and denaturing gradient gel electrophoresis (DGGE) characterizations have been conducted using water samples collected from geothermal plants located in California and Utah. In addition, the on-line performance of a commercial electrochemical monitor, the BIoGEORGE?, has beenmore » evaluated during extended deployments at geothermal facilities. This report provides a review of these techniques, presents data on their application from laboratory and field studies, and discusses their value in characterizing and monitoring biological activities at geothermal power plants.« less

  1. Leisure time activities, parental monitoring and drunkenness in adolescents.

    PubMed

    Tomcikova, Zuzana; Veselska, Zuzana; Madarasova Geckova, Andrea; van Dijk, Jitse P; Reijneveld, Sijmen A

    2013-01-01

    The aim of this cross-sectional study was to explore the association between adolescent drunkenness and participation in risky leisure time activities and parental monitoring. A sample of 3,694 Slovak elementary school students (mean age 14.5 years; 49.0% males) was assessed for drunkenness in the previous month, participation in risky leisure activities and parental monitoring. Participation in risky leisure time activities increased the probability of drunkenness among adolescents, while parental monitoring decreased it. The effect did not change after adding the mother's and father's monitoring into the models. Our results imply that adolescents involved in going out with friends, having parties with friends and/or visiting sporting events every day or several times a week are at a higher risk of drunkenness, as are those less monitored by their parents. These less monitored adolescents and their parents should become a target group in prevention. Copyright © 2012 S. Karger AG, Basel.

  2. Remote Physical Activity Monitoring in Neurological Disease: A Systematic Review.

    PubMed

    Block, Valerie A J; Pitsch, Erica; Tahir, Peggy; Cree, Bruce A C; Allen, Diane D; Gelfand, Jeffrey M

    2016-01-01

    To perform a systematic review of studies using remote physical activity monitoring in neurological diseases, highlighting advances and determining gaps. Studies were systematically identified in PubMed/MEDLINE, CINAHL and SCOPUS from January 2004 to December 2014 that monitored physical activity for ≥24 hours in adults with neurological diseases. Studies that measured only involuntary motor activity (tremor, seizures), energy expenditure or sleep were excluded. Feasibility, findings, and protocols were examined. 137 studies met inclusion criteria in multiple sclerosis (MS) (61 studies); stroke (41); Parkinson's Disease (PD) (20); dementia (11); traumatic brain injury (2) and ataxia (1). Physical activity levels measured by remote monitoring are consistently low in people with MS, stroke and dementia, and patterns of physical activity are altered in PD. In MS, decreased ambulatory activity assessed via remote monitoring is associated with greater disability and lower quality of life. In stroke, remote measures of upper limb function and ambulation are associated with functional recovery following rehabilitation and goal-directed interventions. In PD, remote monitoring may help to predict falls. In dementia, remote physical activity measures correlate with disease severity and can detect wandering. These studies show that remote physical activity monitoring is feasible in neurological diseases, including in people with moderate to severe neurological disability. Remote monitoring can be a psychometrically sound and responsive way to assess physical activity in neurological disease. Further research is needed to ensure these tools provide meaningful information in the context of specific neurological disorders and patterns of neurological disability.

  3. Remote Physical Activity Monitoring in Neurological Disease: A Systematic Review

    PubMed Central

    Block, Valerie A. J.; Pitsch, Erica; Tahir, Peggy; Cree, Bruce A. C.; Allen, Diane D.; Gelfand, Jeffrey M.

    2016-01-01

    Objective To perform a systematic review of studies using remote physical activity monitoring in neurological diseases, highlighting advances and determining gaps. Methods Studies were systematically identified in PubMed/MEDLINE, CINAHL and SCOPUS from January 2004 to December 2014 that monitored physical activity for ≥24 hours in adults with neurological diseases. Studies that measured only involuntary motor activity (tremor, seizures), energy expenditure or sleep were excluded. Feasibility, findings, and protocols were examined. Results 137 studies met inclusion criteria in multiple sclerosis (MS) (61 studies); stroke (41); Parkinson's Disease (PD) (20); dementia (11); traumatic brain injury (2) and ataxia (1). Physical activity levels measured by remote monitoring are consistently low in people with MS, stroke and dementia, and patterns of physical activity are altered in PD. In MS, decreased ambulatory activity assessed via remote monitoring is associated with greater disability and lower quality of life. In stroke, remote measures of upper limb function and ambulation are associated with functional recovery following rehabilitation and goal-directed interventions. In PD, remote monitoring may help to predict falls. In dementia, remote physical activity measures correlate with disease severity and can detect wandering. Conclusions These studies show that remote physical activity monitoring is feasible in neurological diseases, including in people with moderate to severe neurological disability. Remote monitoring can be a psychometrically sound and responsive way to assess physical activity in neurological disease. Further research is needed to ensure these tools provide meaningful information in the context of specific neurological disorders and patterns of neurological disability. PMID:27124611

  4. Lunar Dust and Lunar Simulant Activation and Monitoring

    NASA Technical Reports Server (NTRS)

    Wallace, W. T.; Hammond, D. K.; Jeevarajan, A. S.

    2008-01-01

    . Respir. Dis. 138 (1988) 1213-1219). The size and cost of these instruments makes them unattractive for the monitoring of lunar dust activity. A more suitable technique is based on the change in fluorescence of a molecule upon reaction with a hydroxyl radical (or other radical species). Fluorescence instruments are much less costly and bulky than ESR spectrometers, and small fluorescence sensors for space missions have already been developed (F. Gao, et al., J. Biomed. Opt. 10 (2005) 054005). For the current fluorescence studies, the terephthalate molecule has been chosen for monitoring the production of hydroxyl radicals in solution. As shown in Scheme 1, the reaction between the non-fluorescent terephthalate molecule and a hydroxyl radical produces the highly-fluorescent 2-hydroxyterephthalate molecule.

  5. Validity of Activity Monitor Step Detection Is Related to Movement Patterns.

    PubMed

    Hickey, Amanda; John, Dinesh; Sasaki, Jeffer E; Mavilia, Marianna; Freedson, Patty

    2016-02-01

    There is a need to examine step-counting accuracy of activity monitors during different types of movements. The purpose of this study was to compare activity monitor and manually counted steps during treadmill and simulated free-living activities and to compare the activity monitor steps to the StepWatch (SW) in a natural setting. Fifteen participants performed laboratory-based treadmill (2.4, 4.8, 7.2 and 9.7 km/h) and simulated free-living activities (eg, cleaning room) while wearing an activPAL, Omron HJ720-ITC, Yamax Digi- Walker SW-200, 2 ActiGraph GT3Xs (1 in "low-frequency extension" [AGLFE] and 1 in "normal-frequency" mode), an ActiGraph 7164, and a SW. Participants also wore monitors for 1-day in their free-living environment. Linear mixed models identified differences between activity monitor steps and the criterion in the laboratory/free-living settings. Most monitors performed poorly during treadmill walking at 2.4 km/h. Cleaning a room had the largest errors of all simulated free-living activities. The accuracy was highest for forward/rhythmic movements for all monitors. In the free-living environment, the AGLFE had the largest discrepancy with the SW. This study highlights the need to verify step-counting accuracy of activity monitors with activities that include different movement types/directions. This is important to understand the origin of errors in step-counting during free-living conditions.

  6. Activity Monitors as Support for Older Persons' Physical Activity in Daily Life: Qualitative Study of the Users' Experiences.

    PubMed

    Ehn, Maria; Eriksson, Lennie Carlén; Åkerberg, Nina; Johansson, Ann-Christin

    2018-02-01

    Falls are a major threat to the health and independence of seniors. Regular physical activity (PA) can prevent 40% of all fall injuries. The challenge is to motivate and support seniors to be physically active. Persuasive systems can constitute valuable support for persons aiming at establishing and maintaining healthy habits. However, these systems need to support effective behavior change techniques (BCTs) for increasing older adults' PA and meet the senior users' requirements and preferences. Therefore, involving users as codesigners of new systems can be fruitful. Prestudies of the user's experience with similar solutions can facilitate future user-centered design of novel persuasive systems. The aim of this study was to investigate how seniors experience using activity monitors (AMs) as support for PA in daily life. The addressed research questions are as follows: (1) What are the overall experiences of senior persons, of different age and balance function, in using wearable AMs in daily life?; (2) Which aspects did the users perceive relevant to make the measurements as meaningful and useful in the long-term perspective?; and (3) What needs and requirements did the users perceive as more relevant for the activity monitors to be useful in a long-term perspective? This qualitative interview study included 8 community-dwelling older adults (median age: 83 years). The participants' experiences in using two commercial AMs together with tablet-based apps for 9 days were investigated. Activity diaries during the usage and interviews after the usage were exploited to gather user experience. Comments in diaries were summarized, and interviews were analyzed by inductive content analysis. The users (n=8) perceived that, by using the AMs, their awareness of own PA had increased. However, the AMs' impact on the users' motivation for PA and activity behavior varied between participants. The diaries showed that self-estimated physical effort varied between participants and

  7. Monitoring eruption activity using temporal stress changes at Mount Ontake volcano.

    PubMed

    Terakawa, Toshiko; Kato, Aitaro; Yamanaka, Yoshiko; Maeda, Yuta; Horikawa, Shinichiro; Matsuhiro, Kenjiro; Okuda, Takashi

    2016-02-19

    Volcanic activity is often accompanied by many small earthquakes. Earthquake focal mechanisms represent the fault orientation and slip direction, which are influenced by the stress field. Focal mechanisms of volcano-tectonic earthquakes provide information on the state of volcanoes via stresses. Here we demonstrate that quantitative evaluation of temporal stress changes beneath Mt. Ontake, Japan, using the misfit angles of focal mechanism solutions to the regional stress field, is effective for eruption monitoring. The moving average of misfit angles indicates that during the precursory period the local stress field beneath Mt. Ontake was deviated from the regional stress field, presumably by stress perturbations caused by the inflation of magmatic/hydrothermal fluids, which was removed immediately after the expulsion of volcanic ejecta. The deviation of the local stress field can be an indicator of increases in volcanic activity. The proposed method may contribute to the mitigation of volcanic hazards.

  8. Monitoring eruption activity using temporal stress changes at Mount Ontake volcano

    PubMed Central

    Terakawa, Toshiko; Kato, Aitaro; Yamanaka, Yoshiko; Maeda, Yuta; Horikawa, Shinichiro; Matsuhiro, Kenjiro; Okuda, Takashi

    2016-01-01

    Volcanic activity is often accompanied by many small earthquakes. Earthquake focal mechanisms represent the fault orientation and slip direction, which are influenced by the stress field. Focal mechanisms of volcano-tectonic earthquakes provide information on the state of volcanoes via stresses. Here we demonstrate that quantitative evaluation of temporal stress changes beneath Mt. Ontake, Japan, using the misfit angles of focal mechanism solutions to the regional stress field, is effective for eruption monitoring. The moving average of misfit angles indicates that during the precursory period the local stress field beneath Mt. Ontake was deviated from the regional stress field, presumably by stress perturbations caused by the inflation of magmatic/hydrothermal fluids, which was removed immediately after the expulsion of volcanic ejecta. The deviation of the local stress field can be an indicator of increases in volcanic activity. The proposed method may contribute to the mitigation of volcanic hazards. PMID:26892716

  9. Unscented Kalman filter assimilation of time-lapse self-potential data for monitoring solute transport

    NASA Astrophysics Data System (ADS)

    Cui, Yi-an; Liu, Lanbo; Zhu, Xiaoxiong

    2017-08-01

    Monitoring the extent and evolution of contaminant plumes in local and regional groundwater systems from existing landfills is critical in contamination control and remediation. The self-potential survey is an efficient and economical nondestructive geophysical technique that can be used to investigate underground contaminant plumes. Based on the unscented transform, we have built a Kalman filtering cycle to conduct time-lapse data assimilation for monitoring the transport of solute based on the solute transport experiment using a bench-scale physical model. The data assimilation was formed by modeling the evolution based on the random walk model and observation correcting based on the self-potential forward. Thus, monitoring self-potential data can be inverted by the data assimilation technique. As a result, we can reconstruct the dynamic process of the contaminant plume instead of using traditional frame-to-frame static inversion, which may cause inversion artifacts. The data assimilation inversion algorithm was evaluated through noise-added synthetic time-lapse self-potential data. The result of the numerical experiment shows validity, accuracy and tolerance to the noise of the dynamic inversion. To validate the proposed algorithm, we conducted a scaled-down sandbox self-potential observation experiment to generate time-lapse data that closely mimics the real-world contaminant monitoring setup. The results of physical experiments support the idea that the data assimilation method is a potentially useful approach for characterizing the transport of contamination plumes using the unscented Kalman filter (UKF) data assimilation technique applied to field time-lapse self-potential data.

  10. Near real-time GRACE gravity field solutions for hydrological monitoring applications

    NASA Astrophysics Data System (ADS)

    Kvas, Andreas; Gouweleeuw, Ben; Mayer-Gürr, Torsten; Güntner, Andreas

    2016-04-01

    Within the EGSIEM (European Gravity Service for Improved Emergency Management) project, a demonstrator for a near real-time (NRT) gravity field service which provides daily GRACE gravity field solutions will be established. Compared to the official GRACE gravity products, these NRT solutions will increase the temporal resolution from one month to one day and reduce the latency from currently two months to five days. This fast availability allows the monitoring of total water storage variations and of hydrological extreme events as they occur, in contrast to a 'confirmation after occurrence' as is the situation today. The service will be jointly run by GFZ (German Research Centre for Geosciences) and Graz University of Technology, with each analysis center providing an independent solution. A Kalman filter framework, in which GRACE data is combined with prior information, serves as basis for the gravity field recovery in order to increase the redundancy of the gravity field estimates. The on-line nature of the NRT service necessitates a tailored smoothing algorithm as opposed to post-processing applications, where forward-backward smoothing can be applied. This contribution gives an overview on the near real-time processing chain and highlights differences between the computed NRT solutions and the standard GRACE products. We discuss the special characteristics of the Kalman filtered gravity field models as well as derived products and give an estimate of the expected error levels. Additionally, we show the added value of the NRT solutions through comparison of the first results of the pre-operational phase with in-situ data and monthly GRACE gravity field models.

  11. Activity monitor intervention to promote physical activity of physicians-in-training: randomized controlled trial.

    PubMed

    Thorndike, Anne N; Mills, Sarah; Sonnenberg, Lillian; Palakshappa, Deepak; Gao, Tian; Pau, Cindy T; Regan, Susan

    2014-01-01

    Physicians are expected to serve as role models for healthy lifestyles, but long work hours reduce time for healthy behaviors. A hospital-based physical activity intervention could improve physician health and increase counseling about exercise. We conducted a two-phase intervention among 104 medical residents at a large hospital in Boston, Massachusetts. Phase 1 was a 6-week randomized controlled trial comparing daily steps of residents assigned to an activity monitor displaying feedback about steps and energy consumed (intervention) or to a blinded monitor (control). Phase 2 immediately followed and was a 6-week non-randomized team steps competition in which all participants wore monitors with feedback. Phase 1 outcomes were: 1) median steps/day and 2) proportion of days activity monitor worn. The Phase 2 outcome was mean steps/day on days monitor worn (≥500 steps/day). Physiologic measurements were collected at baseline and study end. Median steps/day were compared using Wilcoxon rank-sum tests. Mean steps were compared using repeated measures regression analyses. In Phase 1, intervention and control groups had similar activity (6369 vs. 6063 steps/day, p = 0.16) and compliance with wearing the monitor (77% vs. 77% of days, p = 0.73). In Phase 2 (team competition), residents recorded more steps/day than during Phase 1 (CONTROL: 7,971 vs. 7,567, p = 0.002; 7,832 vs. 7,739, p = 0.13). Mean compliance with wearing the activity monitor decreased for both groups during Phase 2 compared to Phase 1 (60% vs. 77%, p<0.001). Mean systolic blood pressure decreased (p = 0.004) and HDL cholesterol increased (p<0.001) among all participants at end of study compared to baseline. Although the activity monitor intervention did not have a major impact on activity or health, the high participation rates of busy residents and modest changes in steps, blood pressure, and HDL suggest that more intensive hospital-based wellness programs have potential for

  12. Active personal radiation monitor for lunar EVA

    NASA Astrophysics Data System (ADS)

    Straume, Tore; Borak, Tom; Braby, L. A.; Lusby, Terry; Semones, Edward J.; Vazquez, Marcelo E.

    As astronauts return to the Moon-and this time, work for extended periods-there will be a critical need for crew personnel radiation monitoring as they operate lunar rovers or otherwise perform a myriad of extravehicular activities (EVAs). Our focus is on development of a small personal radiation monitor for lunar EVA that responds to the complex radiation quality and changing dose rates on the Moon. Of particular concern are active monitoring capabilities that provide both early warning and radiation dosimetry information during solar particle events (SPEs). To accomplish this, we are developing small detectors integrated with modern high speed, low power microelectronics to measure dose-rate and dose-mean lineal energy in real time. The monitor is designed to perform over the range of dose rates and LETs expected from both GCR and SPE radiations during lunar EVA missions. The monitor design provides simultaneous measurement of dose-equivalent rates at two tissue-equivalent depths simulating skin and marrow. The compact personal monitor is estimated to be the size of a cell phone and would fit on an EVA spacesuit (e.g., in backpack) or in a toolbox. The four-year development effort (which began December 2007) will result in a prototype radiation monitor field tested and characterized for the major radiations expected on the surface of the Moon. We acknowledge support from NSBRI through grants to NASA Ames Research Center (T. Straume, PI) and Colorado State University (T. Borak, PI).

  13. Ambulatory monitoring of activities and motor symptoms in Parkinson's disease.

    PubMed

    Zwartjes, Daphne G M; Heida, Tjitske; van Vugt, Jeroen P P; Geelen, Jan A G; Veltink, Peter H

    2010-11-01

    Ambulatory monitoring of motor symptoms in Parkinsons disease (PD) can improve our therapeutic strategies, especially in patients with motor fluctuations. Previously published monitors usually assess only one or a few basic aspects of the cardinal motor symptoms in a laboratory setting. We developed a novel ambulatory monitoring system that provides a complete motor assessment by simultaneously analyzing current motor activity of the patient (e.g. sitting, walking) and the severity of many aspects related to tremor, bradykinesia, and hypokinesia. The monitor consists of a set of four inertial sensors. Validity of our monitor was established in seven healthy controls and six PD patients treated with deep brain stimulation (DBS) of the subthalamic nucleus. Patients were tested at three different levels of DBS treatment. Subjects were monitored while performing different tasks, including motor tests of the Unified Parkinsons Disease Rating Scale (UPDRS). Output of the monitor was compared to simultaneously recorded videos. The monitor proved very accurate in discriminating between several motor activities. Monitor output correlated well with blinded UPDRS ratings during different DBS levels. The combined analysis of motor activity and symptom severity by our PD monitor brings true ambulatory monitoring of a wide variety of motor symptoms one step closer..

  14. Embedded Triboelectric Active Sensors for Real-Time Pneumatic Monitoring.

    PubMed

    Fu, Xian Peng; Bu, Tian Zhao; Xi, Feng Ben; Cheng, Ting Hai; Zhang, Chi; Wang, Zhong Lin

    2017-09-20

    Pneumatic monitoring sensors have great demands for power supply in cylinder systems. Here, we present an embedded sliding triboelectric nanogenerator (TENG) in air cylinder as active sensors for position and velocity monitoring. The embedded TENG is composed of a circular poly(tetrafluoroethylene) polymer and a triangular copper electrode. The working mechanism as triboelectric active sensors and electric output performance are systematically investigated. By integrating into the pneumatic system, the embedded triboelectric active sensors have been used for real-time air pressure/flow monitoring and energy storage. Air pressures are measured from 0.04 to 0.12 MPa at a step of 0.02 MPa with a sensitivity of 49.235 V/MPa, as well as airflow from 50 to 250 L/min at a step of 50 L/min with a sensitivity of 0.002 μA·min/L. This work has first demonstrated triboelectric active sensors for pneumatic monitoring and may promote the development of TENG in intelligent pneumatic system.

  15. Influence of Activity Monitor Location and Bout Duration on Free-Living Physical Activity

    ERIC Educational Resources Information Center

    Heil, Daniel P.; Bennett, Gary G.; Bond, Kathleen S.; Webster, Michael D.; Wolin, Kathleen Y.

    2009-01-01

    The purpose of this study was to evaluate the influence of the location (ankle, hip, wrist) where an activity monitor (AM) is worn and of the minimum bout duration (BD) on physical activity (PA) variables during free-living monitoring. Study 1 participants wore AMs at three locations for 1 day while wearing the Intelligent Device for Energy…

  16. Reactive Nitrogen Monitoring Gaps: Issues, Activities and Needs

    EPA Science Inventory

    In this article we demonstrate the importance of ammonia and organic nitrogen to total N deposition budgets and review the current activities to close these monitoring gaps. Finally, remaining monitoring needs and issues are discussed.

  17. Security and Dependability Solutions for Web Services and Workflows

    NASA Astrophysics Data System (ADS)

    Kokolakis, Spyros; Rizomiliotis, Panagiotis; Benameur, Azzedine; Sinha, Smriti Kumar

    In this chapter we present an innovative approach towards the design and application of Security and Dependability (S&D) solutions for Web services and service-based workflows. Recently, several standards have been published that prescribe S&D solutions for Web services, e.g. OASIS WS-Security. However,the application of these solutions in specific contexts has been proven problematic. We propose a new framework for the application of such solutions based on the SERENITY S&D Pattern concept. An S&D Pattern comprises all the necessary information for the implementation, verification, deployment, and active monitoring of an S&D Solution. Thus, system developers may rely on proven solutions that are dynamically deployed and monitored by the Serenity Runtime Framework. Finally, we further extend this approach to cover the case of executable workflows which are realised through the orchestration of Web services.

  18. Size-selective QD@MOF core-shell nanocomposites for the highly sensitive monitoring of oxidase activities.

    PubMed

    Wang, Ke; Li, Nan; Zhang, Jing; Zhang, Zhiqi; Dang, Fuquan

    2017-01-15

    In this work, we proposed a novel and facile method to monitor oxidase activities based on size-selective fluorescent quantum dot (QD)@metal-organic framework (MOF) core-shell nanocomposites (CSNCPs). The CSNCPs were synthesized from ZIF-8 and CdTe QDs in aqueous solution in 40min at room temperature with stirring. The prepared CdTe@ZIF-8 CSNCPs , which have excellent water dispersibility and stability, displays distinct fluorescence responses to hole scavengers of different molecular sizes (e.g., H 2 O 2 , substrate, and oxidase) due to the aperture limitation of the ZIF-8 shell. H 2 O 2 can efficiently quench the fluorescence of CdTe@ZIF-8 CSNCPs over a linearity range of 1-100nM with a detection limit of 0.29nM, whereas large molecules such as substrate and oxidase have very little effect on its fluorescence. Therefore, the highly sensitive detection of oxidase activities was achieved by monitoring the fluorescence quenching of CdTe@ZIF-8 CSNCPs by H 2 O 2 produced in the presence of substrate and oxidase, which is proportional to the oxidase activities. The linearity ranges of the uricase and glucose oxidase activity are 0.1-50U/L and 1-100U/L, respectively, and their detection limits are 0.024U/L and 0.26U/L, respectively. Therefore, the current QD@MOF CSNCPs based sensing system is a promising, widely applicable means of monitoring oxidase activities in biochemical research. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Instructional physical activity monitor video in english and spanish

    USDA-ARS?s Scientific Manuscript database

    The ActiGraph activity monitor is a widely used method for assessing physical activity. Compliance with study procedures in critical. A common procedure is for the research team to meet with participants and demonstrate how and when to attach and remove the monitor and convey how many wear-days are ...

  20. Reporters to monitor cellular MMP12 activity

    NASA Astrophysics Data System (ADS)

    Cobos-Correa, Amanda; Mall, Marcus A.; Schultz, Carsten

    2010-02-01

    Macrophage elastase, also called MMP12, belongs to a family of proteolytic enzymes whose best known physiological function is the remodeling of the extracellular matrix. Under certain pathological conditions, including inflammation, chronic overexpression of MMP12 has been observed and its elevated proteolytic activity has been suggested to be the cause of pulmonary emphysema. However, it was until recently impossible to monitor the activity of MMP12 under disease conditions, mainly due to a lack of detection methods. Recent development of new reporters for monitoring MMP12 activity in living cells, such as LaRee1, provided novel insights into the pathobiology of MMP12 in pulmonary inflammation.1 In the future, these reporters might contribute to improved diagnosis and in finding better treatments for chronic inflammatory lung diseases and emphysema. Our approach for visualizing MMP12 activity is based on peptidic, membrane-targeted FRET (Foerster Resonance Energy Transfer) reporters. Here we describe a set of new reporters containing different fluorophore pairs as well as modifications in the membrane-targeting lipid moiety. We studied the influence of these modifications on reporter performance and the reporter mobility on live cell membranes by FRAP (fluorescence recovery after photobleaching). Finally, we generated several new fluorescently labeled MMP inhibitors based on the peptidic reporter structures as prototypes for future tools to inhibit and monitor MMP activity at the same time.

  1. Ultrafast studies of organometallic photochemistry: The mechanism of carbon-hydrogen bond activation in solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bromberg, S.E.

    1998-05-01

    When certain organometallic compounds are photoexcited in room temperature alkane solution, they are able to break or activate the C-H bonds of the solvent. Understanding this potentially practical reaction requires a detailed knowledge of the entire reaction mechanism. Because of the dynamic nature of chemical reactions, time-resolved spectroscopy is commonly employed to follow the important events that take place as reactants are converted to products. For the organometallic reactions examined here, the electronic/structural characteristics of the chemical systems along with the time scales for the key steps in the reaction make ultrafast UV/Vis and IR spectroscopy along with nanosecond Step-Scanmore » FTIR spectroscopy the ideal techniques to use for this study. An initial study of the photophysics of (non-activating) model metal carbonyls centering on the photodissociation of M(CO){sub 6} (M = Cr, W, Mo) was carried out in alkane solutions using ultrafast IR spectroscopy. Next, picosecond UV/vis studies of the C-H bond activation reaction of Cp{sup *}M(CO){sub 2} (M = Rh, Ir), conducted in room temperature alkane solution, are described in an effort to investigate the origin of the low quantum yield for bond cleavage ({approximately}1%). To monitor the chemistry that takes place in the reaction after CO is lost, a system with higher quantum yield is required. The reaction of Tp{sup *}Rh(CO){sub 2} (Tp{sup *} = HB-Pz{sub 3}{sup *}, Pz{sup *} = 3,5-dimethylpyrazolyl) in alkanes has a quantum yield of {approximately}30%, making time resolved spectroscopic measurements possible. From ultrafast IR experiments, two subsequently formed intermediates were observed. The nature of these intermediates are discussed and the first comprehensive reaction mechanism for a photochemical C-H activating organometallic complex is presented.« less

  2. Wearable activity monitors in oncology trials: Current use of an emerging technology.

    PubMed

    Gresham, Gillian; Schrack, Jennifer; Gresham, Louise M; Shinde, Arvind M; Hendifar, Andrew E; Tuli, Richard; Rimel, B J; Figlin, Robert; Meinert, Curtis L; Piantadosi, Steven

    2018-01-01

    Physical activity is an important outcome in oncology trials. Physical activity is commonly assessed using self-reported questionnaires, which are limited by recall and response biases. Recent advancements in wearable technology have provided oncologists with new opportunities to obtain real-time, objective physical activity data. The purpose of this review was to describe current uses of wearable activity monitors in oncology trials. We searched Pubmed, Embase, and the Cochrane Central Register of Controlled Trials for oncology trials involving wearable activity monitors published between 2005 and 2016. We extracted details on study design, types of activity monitors used, and purpose for their use. We summarized activity monitor metrics including step counts, sleep and sedentary time, and time spent in moderate-to-vigorous activity. We identified 41 trials of which 26 (63%) involved cancer survivors (post-treatment) and 15 trials (37%) involved patients with active cancer. Most trials (65%) involved breast cancer patients. Wearable activity monitors were commonly used in exercise (54%) or behavioral (29%) trials. Cancer survivors take between 4660 and 11,000 steps/day and those undergoing treatment take 2885 to 8300steps/day. Wearable activity monitors are increasingly being used to obtain objective measures of physical activity in oncology trials. There is potential for their use to expand to evaluate and predict clinical outcomes such as survival, quality of life, and treatment tolerance in future studies. Currently, there remains a lack of standardization in the types of monitors being used and how their data are being collected, analyzed, and interpreted. Recent advancements in wearable activity monitor technology have provided oncologists with new opportunities to monitor their patients' daily activity in real-world settings. The integration of wearable activity monitors into cancer care will help increase our understanding of the associations between

  3. Activity Monitor Intervention to Promote Physical Activity of Physicians-In-Training: Randomized Controlled Trial

    PubMed Central

    Thorndike, Anne N.; Mills, Sarah; Sonnenberg, Lillian; Palakshappa, Deepak; Gao, Tian; Pau, Cindy T.; Regan, Susan

    2014-01-01

    Background Physicians are expected to serve as role models for healthy lifestyles, but long work hours reduce time for healthy behaviors. A hospital-based physical activity intervention could improve physician health and increase counseling about exercise. Methods We conducted a two-phase intervention among 104 medical residents at a large hospital in Boston, Massachusetts. Phase 1 was a 6-week randomized controlled trial comparing daily steps of residents assigned to an activity monitor displaying feedback about steps and energy consumed (intervention) or to a blinded monitor (control). Phase 2 immediately followed and was a 6-week non-randomized team steps competition in which all participants wore monitors with feedback. Phase 1 outcomes were: 1) median steps/day and 2) proportion of days activity monitor worn. The Phase 2 outcome was mean steps/day on days monitor worn (≥500 steps/day). Physiologic measurements were collected at baseline and study end. Median steps/day were compared using Wilcoxon rank-sum tests. Mean steps were compared using repeated measures regression analyses. Results In Phase 1, intervention and control groups had similar activity (6369 vs. 6063 steps/day, p = 0.16) and compliance with wearing the monitor (77% vs. 77% of days, p = 0.73). In Phase 2 (team competition), residents recorded more steps/day than during Phase 1 (Control: 7,971 vs. 7,567, p = 0.002; Intervention: 7,832 vs. 7,739, p = 0.13). Mean compliance with wearing the activity monitor decreased for both groups during Phase 2 compared to Phase 1 (60% vs. 77%, p<0.001). Mean systolic blood pressure decreased (p = 0.004) and HDL cholesterol increased (p<0.001) among all participants at end of study compared to baseline. Conclusions Although the activity monitor intervention did not have a major impact on activity or health, the high participation rates of busy residents and modest changes in steps, blood pressure, and HDL suggest that more intensive

  4. 24 CFR 1000.501 - Who is involved in monitoring activities under NAHASDA?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT NATIVE AMERICAN HOUSING ACTIVITIES Recipient Monitoring, Oversight and Accountability § 1000.501 Who is involved in monitoring activities under NAHASDA? The recipient, the grant beneficiary and HUD are involved in monitoring activities under NAHASDA. ...

  5. 24 CFR 1000.501 - Who is involved in monitoring activities under NAHASDA?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT NATIVE AMERICAN HOUSING ACTIVITIES Recipient Monitoring, Oversight and Accountability § 1000.501 Who is involved in monitoring activities under NAHASDA? The recipient, the grant beneficiary and HUD are involved in monitoring activities under NAHASDA. ...

  6. 24 CFR 1000.501 - Who is involved in monitoring activities under NAHASDA?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT NATIVE AMERICAN HOUSING ACTIVITIES Recipient Monitoring, Oversight and Accountability § 1000.501 Who is involved in monitoring activities under NAHASDA? The recipient, the grant beneficiary and HUD are involved in monitoring activities under NAHASDA. ...

  7. 24 CFR 1000.501 - Who is involved in monitoring activities under NAHASDA?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT NATIVE AMERICAN HOUSING ACTIVITIES Recipient Monitoring, Oversight and Accountability § 1000.501 Who is involved in monitoring activities under NAHASDA? The recipient, the grant beneficiary and HUD are involved in monitoring activities under NAHASDA. ...

  8. 24 CFR 1000.501 - Who is involved in monitoring activities under NAHASDA?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT NATIVE AMERICAN HOUSING ACTIVITIES Recipient Monitoring, Oversight and Accountability § 1000.501 Who is involved in monitoring activities under NAHASDA? The recipient, the grant beneficiary and HUD are involved in monitoring activities under NAHASDA. ...

  9. Modular Subsea Monitoring Network (MSM) - Realizing Integrated Environmental Monitoring Solutions

    NASA Astrophysics Data System (ADS)

    Mosch, Thomas; Fietzek, Peer

    2016-04-01

    In a variety of scientific and industrial application areas, ranging i.e. from the supervision of hydrate fields over the detection and localization of fugitive emissions from subsea oil and gas production to fish farming, fixed point observatories are useful and applied means. They monitor the water column and/or are placed at the sea floor over long periods of time. They are essential oceanographic platforms for providing valuable long-term time series data and multi-parameter measurements. Various mooring and observatory endeavors world-wide contribute valuable data needed for understanding our planet's ocean systems and biogeochemical processes. Continuously powered cabled observatories enable real-time data transmission from spots of interest close to the shore or to ocean infrastructures. Independent of the design of the observatories they all rely on sensors which demands for regular maintenance. This work is in most cases associated with cost-intensive maintenance on a regular time basis for the entire sensor carrying fixed platform. It is mandatory to encounter this asset for long-term monitoring by enhancing hardware efficiency. On the basis of two examples of use from the area of hydrate monitoring (off Norway and Japan) we will present the concept of the Modular Subsea Monitoring Network (MSM). The modular, scalable and networking capabilities of the MSM allow for an easy adaptation to different monitoring tasks. Providing intelligent power management, combining chemical and acoustical sensors, adaptation of the payload according to the monitoring tasks, autonomous powering, modular design for easy transportation, storage and mobilization, Vessel of Opportunity-borne launching and recovery capability with a video-guided launcher system and a rope recovery system are key facts addressed during the development of the MSM. Step by step the MSM concept applied to the observatory hardware will also be extended towards the gathered data to maximize the

  10. Surfactant monitoring by foam generation

    DOEpatents

    Mullen, Ken I.

    1997-01-01

    A device for monitoring the presence or absence of active surfactant or other surface active agents in a solution or flowing stream based on the formation of foam or bubbles is presented. The device detects the formation of foam with a light beam or conductivity measurement. The height or density of the foam can be correlated to the concentration of the active surfactant present.

  11. A bioluminescent caspase-1 activity assay rapidly monitors inflammasome activation in cells.

    PubMed

    O'Brien, Martha; Moehring, Danielle; Muñoz-Planillo, Raúl; Núñez, Gabriel; Callaway, Justin; Ting, Jenny; Scurria, Mike; Ugo, Tim; Bernad, Laurent; Cali, James; Lazar, Dan

    2017-08-01

    Inflammasomes are protein complexes induced by diverse inflammatory stimuli that activate caspase-1, resulting in the processing and release of cytokines, IL-1β and IL-18, and pyroptosis, an immunogenic form of cell death. To provide a homogeneous method for detecting caspase-1 activity, we developed a bioluminescent, plate-based assay that combines a substrate, Z-WEHD-aminoluciferin, with a thermostable luciferase in an optimized lytic reagent added directly to cultured cells. Assay specificity for caspase-1 is conferred by inclusion of a proteasome inhibitor in the lytic reagent and by use of a caspase-1 inhibitor to confirm activity. This approach enables a specific and rapid determination of caspase-1 activation. Caspase-1 activity is stable in the reagent thereby providing assay convenience and flexibility. Using this assay system, caspase-1 activation has been determined in THP-1 cells following treatment with α-hemolysin, LPS, nigericin, gramicidin, MSU, R848, Pam3CSK4, and flagellin. Caspase-1 activation has also been demonstrated in treated J774A.1 mouse macrophages, bone marrow-derived macrophages (BMDMs) from mice, as well as in human primary monocytes. Caspase-1 activity was not detected in treated BMDMs derived from Casp1 -/- mice, further confirming the specificity of the assay. Caspase-1 activity can be measured directly in cultured cells using the lytic reagent, or caspase-1 activity released into medium can be monitored by assay of transferred supernatant. The caspase-1 assay can be multiplexed with other assays to monitor additional parameters from the same cells, such as IL-1β release or cell death. The caspase-1 assay in combination with a sensitive real-time monitor of cell death allows one to accurately establish pyroptosis. This assay system provides a rapid, convenient, and flexible method to specifically and quantitatively monitor caspase-1 activation in cells in a plate-based format. This will allow a more efficient and effective

  12. Active Low Intrusion Hybrid Monitor for Wireless Sensor Networks

    PubMed Central

    Navia, Marlon; Campelo, Jose C.; Bonastre, Alberto; Ors, Rafael; Capella, Juan V.; Serrano, Juan J.

    2015-01-01

    Several systems have been proposed to monitor wireless sensor networks (WSN). These systems may be active (causing a high degree of intrusion) or passive (low observability inside the nodes). This paper presents the implementation of an active hybrid (hardware and software) monitor with low intrusion. It is based on the addition to the sensor node of a monitor node (hardware part) which, through a standard interface, is able to receive the monitoring information sent by a piece of software executed in the sensor node. The intrusion on time, code, and energy caused in the sensor nodes by the monitor is evaluated as a function of data size and the interface used. Then different interfaces, commonly available in sensor nodes, are evaluated: serial transmission (USART), serial peripheral interface (SPI), and parallel. The proposed hybrid monitor provides highly detailed information, barely disturbed by the measurement tool (interference), about the behavior of the WSN that may be used to evaluate many properties such as performance, dependability, security, etc. Monitor nodes are self-powered and may be removed after the monitoring campaign to be reused in other campaigns and/or WSNs. No other hardware-independent monitoring platforms with such low interference have been found in the literature. PMID:26393604

  13. Note on the coupled oscillator model solutions in crystalline optical activity

    NASA Astrophysics Data System (ADS)

    Vyšín, I.; Ríha, J.; Svácková, K.

    2006-06-01

    Many methods have been used in the crystalline optical activity solution, among them the traditional method of coupled oscillators. The two coupled oscillator model was first solved by Chandrasekhar, and the most general dispersion relations for the crystalline optical activity can be obtained from its next extensions. However, the Chandrasekhar solution method seems to be based on a mistake in the computations. For this reason, the solution of a more complicated model of coupled oscillators which better corresponds to the structure of real crystals using the Condon relations is presented. This solution leads to the conclusion that, although it is possible to object to the Chandrasekhar solution method, the form of his final dispersion relations is correct. On the other hand, the dispersion relations following from the solution of more complicated coupled oscillator models are more convenient for the interpretation of the crystalline optical activity experimental data, which is demonstrated in examples of crystals of tellurium and benzil.

  14. IDEEA activity monitor: validity of activity recognition for lying, reclining, sitting and standing.

    PubMed

    Jiang, Yuyu; Larson, Janet L

    2013-03-01

    Recent evidence demonstrates the independent negative effects of sedentary behavior on health, but there are few objective measures of sedentary behavior. Most instruments measure physical activity and are not validated as measures of sedentary behavior. The purpose of this study was to evaluate the validity of the IDEEA system's measures of sedentary and low-intensity physical activities: lying, reclining, sitting and standing. Thirty subjects, 14 men and 16 women, aged 23 to 77 years, body mass index (BMI) between 18 to 34 kg/m(2), participated in the study. IDEEA measures were compared to direct observation for 27 activities: 10 lying in bed, 3 lying on a sofa, 1 reclining in a lawn chair, 10 sitting and 3 standing. Two measures are reported, the percentage of activities accurately identified and the percentage of monitored time that was accurately labeled by the IDEEA system for all subjects. A total of 91.6% of all observed activities were accurately identified and 92.4% of the total monitored time was accurately labeled. The IDEEA system did not accurately differentiate between lying and reclining so the two activities were combined for calculating accuracy. Using this approach the IDEEA system accurately identified 96% of sitting activities for a total of 97% of the monitored sitting time, 99% and 99% for standing, 87% and 88% for lying in bed, 87% and 88% for lying on the sofa, and 83% and 83% for reclining on a lawn chair. We conclude that the IDEEA system accurately recognizes sitting and standing positions, but it is less accurate in identifying lying and reclining positions. We recommend combining the lying and reclining activities to improve accuracy. The IDEEA system enables researchers to monitor lying, reclining, sitting and standing with a reasonable level of accuracy and has the potential to advance the science of sedentary behaviors and low-intensity physical activities.

  15. Sensing Solutions for Collecting Spatio-Temporal Data for Wildlife Monitoring Applications: A Review

    PubMed Central

    Baratchi, Mitra; Meratnia, Nirvana; Havinga, Paul J. M.; Skidmore, Andrew K.; Toxopeus, Bert A. G.

    2013-01-01

    Movement ecology is a field which places movement as a basis for understanding animal behavior. To realize this concept, ecologists rely on data collection technologies providing spatio-temporal data in order to analyze movement. Recently, wireless sensor networks have offered new opportunities for data collection from remote places through multi-hop communication and collaborative capability of the nodes. Several technologies can be used in such networks for sensing purposes and for collecting spatio-temporal data from animals. In this paper, we investigate and review technological solutions which can be used for collecting data for wildlife monitoring. Our aim is to provide an overview of different sensing technologies used for wildlife monitoring and to review their capabilities in terms of data they provide for modeling movement behavior of animals. PMID:23666132

  16. The perceived impacts of monitoring activities on intergovernmental relationships: some lessons from the Ecological Monitoring Network and Water in Focus.

    PubMed

    de Kool, Dennis

    2015-11-01

    An increasing stream of monitoring activities is entering the public sector. This article analyzes the perceived impacts of monitoring activities on intergovernmental relationships. Our theoretical framework is based on three approaches to monitoring and intergovernmental relationships, namely, a rational, a political, and a cultural perspective. Our empirical insights are based on two Dutch case studies, namely, the Ecological Monitoring Network and the Water in Focus reports. The conclusion is that monitoring activities have an impact on intergovernmental relationships in terms of standardizing working processes and methods, formalizing information relationships, ritualizing activities, and developing shared concepts ("common grammar"). An important challenge is to deal with the politicization of intergovernmental relationships, because monitoring reports can also stimulate political discussions about funding, the design of the instrument, administrative burdens, and supervisory relationships.

  17. Label-free monitoring of interaction between DNA and oxaliplatin in aqueous solution by terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Wu, Xiaojun; E, Yiwen; Xu, Xinlong; Wang, Li

    2012-07-01

    We demonstrated the feasibility of applying terahertz time-domain spectroscopy (THz-TDS) to monitor the molecular reactions in aqueous solutions of anticancer drug oxaliplatin with λ-DNA and macrophages DNA. The reaction time dependent refractive index and absorption coefficient were extracted and analyzed. The reaction half-decaying time of about 4.0 h for λ-DNA and 12.9 h for M-DNA was established. The results suggest that the THz-TDS detection could be an effective label-free technique to sense the molecular reaction in aqueous solutions and could be very useful in biology, medicine, and pharmacy industry.

  18. Increasing the reliability of solution exchanges by monitoring solenoid valve actuation.

    PubMed

    Auzmendi, Jerónimo Andrés; Moffatt, Luciano

    2010-01-15

    Solenoid valves are a core component of most solution perfusion systems used in neuroscience research. As they open and close, they control the flow of solution through each perfusion line, thereby modulating the timing and sequence of chemical stimulation. The valves feature a ferromagnetic plunger that moves due to the magnetization of the solenoid and returns to its initial position with the aid of a spring. The delays between the time of voltage application or removal and the actual opening or closing of the valve are difficult to predict beforehand and have to be measured experimentally. Here we propose a simple method for monitoring whether and when the solenoid valve opens and closes. The proposed method detects the movement of the plunger as it generates a measurable signal on the solenoid that surrounds it. Using this plunger signal, we detected the opening and closing of diaphragm and pinch solenoid valves with a systematic error of less than 2ms. After this systematic error is subtracted, the trial-to-trial error was below 0.2ms.

  19. Monitoring Neural Activity with Bioluminescence during Natural Behavior

    PubMed Central

    Naumann, Eva A.; Kampff, Adam R.; Prober, David A.; Schier, Alexander F.; Engert, Florian

    2010-01-01

    Existing techniques for monitoring neural activity in awake, freely behaving vertebrates are invasive and difficult to target to genetically identified neurons. Here we describe the use of bioluminescence to non-invasively monitor the activity of genetically specified neurons in freely behaving zebrafish. Transgenic fish expressing the Ca2+-sensitive photoprotein GFP-apoAequorin (GA) in most neurons generated large and fast bioluminescent signals related to neural activity, neuroluminescence, that could be recorded continuously for many days. To test the limits of this technique, GA was specifically targeted to the hypocretin-positive neurons of the hypothalamus. We found that neuroluminescence generated by this group of ~20 neurons was associated with periods of increased locomotor activity and identified two classes of neural activity corresponding to distinct swim latencies. Thus, our neuroluminescence assay can report, with high temporal resolution and sensitivity, the activity of small subsets of neurons during unrestrained behavior. PMID:20305645

  20. Lunar Dust and Lunar Simulant Activation, Monitoring, Solution and Cellular Toxicity Properties

    NASA Technical Reports Server (NTRS)

    Wallace, William; Jeevarajan, A. S.

    2009-01-01

    During the Apollo missions, many undesirable situations were encountered that must be mitigated prior to returning humans to the moon. Lunar dust (that part of the lunar regolith less than 20 microns in diameter) was found to produce several problems with mechanical equipment and could have conceivably produced harmful physiological effects for the astronauts. For instance, the abrasive nature of the dust was found to cause malfunctions of various joints and seals of the spacecraft and suits. Additionally, though efforts were made to exclude lunar dust from the cabin of the lunar module, a significant amount of material nonetheless found its way inside. With the loss of gravity correlated with ascent from the lunar surface, much of the finer fraction of this dust began to float and was inhaled by the astronauts. The short visits tothe Moon during Apollo lessened exposure to the dust, but the plan for future lunar stays of up to six months demands that methods be developed to minimize the risk of dust inhalation. The guidelines for what constitutes "safe" exposure will guide the development of engineering controls aimed at preventing the presence of dust in the lunar habitat. This work has shown the effects of grinding on the activation level of lunar dust, the changes in dissolution properties of lunar simulant, and the production of cytokines by cellular systems. Grinding of lunar dust leads to the production of radicals in solution and increased dissolution of lunar simulant in buffers of different pH. Additionally, ground lunar simulant has been shown to promote the production of IL-6 and IL-8, pro-inflammatory cytokines, by alveolar epithelial cells. These results provide evidence of the need for further studies on these materials prior to returning to the lunar surface.

  1. Advances in physical activity monitoring and lifestyle interventions in obesity: a review.

    PubMed

    Bonomi, A G; Westerterp, K R

    2012-02-01

    Obesity represents a strong risk factor for developing chronic diseases. Strategies for disease prevention often promote lifestyle changes encouraging participation in physical activity. However, determining what amount of physical activity is necessary for achieving specific health benefits has been hampered by the lack of accurate instruments for monitoring physical activity and the related physiological outcomes. This review aims at presenting recent advances in activity-monitoring technology and their application to support interventions for health promotion. Activity monitors have evolved from step counters and measuring devices of physical activity duration and intensity to more advanced systems providing quantitative and qualitative information on the individuals' activity behavior. Correspondingly, methods to predict activity-related energy expenditure using bodily acceleration and subjects characteristics have advanced from linear regression to innovative algorithms capable of determining physical activity types and the related metabolic costs. These novel techniques can monitor modes of sedentary behavior as well as the engagement in specific activity types that helps to evaluate the effectiveness of lifestyle interventions. In conclusion, advances in activity monitoring have the potential to support the design of response-dependent physical activity recommendations that are needed to generate effective and personalized lifestyle interventions for health promotion.

  2. Activity Monitors Step Count Accuracy in Community-Dwelling Older Adults.

    PubMed

    Johnson, Marquell

    2015-01-01

    Objective: To examine the step count accuracy of activity monitors in community-dwelling older adults. Method : Twenty-nine participants aged 67.70 ± 6.07 participated. Three pedometers and the Actical accelerometer step count functions were compared with actual steps taken during a 200-m walk around an indoor track and during treadmill walking at three different speeds. Results : There was no statistical difference between activity monitors step counts and actual steps during self-selected pace walking. During treadmill walking at 0.67 m∙s -1 , all activity monitors step counts were significantly different from actual steps. During treadmill walking at 0.894m∙s -1 , the Omron HJ-112 pedometer step counts were not significantly different from actual steps. During treadmill walking at 1.12 m∙s -1 , the Yamax SW-200 pedometer steps were significantly different from actual steps. Discussion : Activity monitor selection should be deliberate when examining the walking behaviors of community-dwelling older adults, especially for those who walk at a slower pace.

  3. Step Detection and Activity Recognition Accuracy of Seven Physical Activity Monitors

    PubMed Central

    Storm, Fabio A.; Heller, Ben W.; Mazzà, Claudia

    2015-01-01

    The aim of this study was to compare the seven following commercially available activity monitors in terms of step count detection accuracy: Movemonitor (Mc Roberts), Up (Jawbone), One (Fitbit), ActivPAL (PAL Technologies Ltd.), Nike+ Fuelband (Nike Inc.), Tractivity (Kineteks Corp.) and Sensewear Armband Mini (Bodymedia). Sixteen healthy adults consented to take part in the study. The experimental protocol included walking along an indoor straight walkway, descending and ascending 24 steps, free outdoor walking and free indoor walking. These tasks were repeated at three self-selected walking speeds. Angular velocity signals collected at both shanks using two wireless inertial measurement units (OPAL, ADPM Inc) were used as a reference for the step count, computed using previously validated algorithms. Step detection accuracy was assessed using the mean absolute percentage error computed for each sensor. The Movemonitor and the ActivPAL were also tested within a nine-minute activity recognition protocol, during which the participants performed a set of complex tasks. Posture classifications were obtained from the two monitors and expressed as a percentage of the total task duration. The Movemonitor, One, ActivPAL, Nike+ Fuelband and Sensewear Armband Mini underestimated the number of steps in all the observed walking speeds, whereas the Tractivity significantly overestimated step count. The Movemonitor was the best performing sensor, with an error lower than 2% at all speeds and the smallest error obtained in the outdoor walking. The activity recognition protocol showed that the Movemonitor performed best in the walking recognition, but had difficulty in discriminating between standing and sitting. Results of this study can be used to inform choice of a monitor for specific applications. PMID:25789630

  4. Step detection and activity recognition accuracy of seven physical activity monitors.

    PubMed

    Storm, Fabio A; Heller, Ben W; Mazzà, Claudia

    2015-01-01

    The aim of this study was to compare the seven following commercially available activity monitors in terms of step count detection accuracy: Movemonitor (Mc Roberts), Up (Jawbone), One (Fitbit), ActivPAL (PAL Technologies Ltd.), Nike+ Fuelband (Nike Inc.), Tractivity (Kineteks Corp.) and Sensewear Armband Mini (Bodymedia). Sixteen healthy adults consented to take part in the study. The experimental protocol included walking along an indoor straight walkway, descending and ascending 24 steps, free outdoor walking and free indoor walking. These tasks were repeated at three self-selected walking speeds. Angular velocity signals collected at both shanks using two wireless inertial measurement units (OPAL, ADPM Inc) were used as a reference for the step count, computed using previously validated algorithms. Step detection accuracy was assessed using the mean absolute percentage error computed for each sensor. The Movemonitor and the ActivPAL were also tested within a nine-minute activity recognition protocol, during which the participants performed a set of complex tasks. Posture classifications were obtained from the two monitors and expressed as a percentage of the total task duration. The Movemonitor, One, ActivPAL, Nike+ Fuelband and Sensewear Armband Mini underestimated the number of steps in all the observed walking speeds, whereas the Tractivity significantly overestimated step count. The Movemonitor was the best performing sensor, with an error lower than 2% at all speeds and the smallest error obtained in the outdoor walking. The activity recognition protocol showed that the Movemonitor performed best in the walking recognition, but had difficulty in discriminating between standing and sitting. Results of this study can be used to inform choice of a monitor for specific applications.

  5. Hyperspectral imaging solutions for brain tissue metabolic and hemodynamic monitoring: past, current and future developments

    NASA Astrophysics Data System (ADS)

    Giannoni, Luca; Lange, Frédéric; Tachtsidis, Ilias

    2018-04-01

    Hyperspectral imaging (HSI) technologies have been used extensively in medical research, targeting various biological phenomena and multiple tissue types. Their high spectral resolution over a wide range of wavelengths enables acquisition of spatial information corresponding to different light-interacting biological compounds. This review focuses on the application of HSI to monitor brain tissue metabolism and hemodynamics in life sciences. Different approaches involving HSI have been investigated to assess and quantify cerebral activity, mainly focusing on: (1) mapping tissue oxygen delivery through measurement of changes in oxygenated (HbO2) and deoxygenated (HHb) hemoglobin; and (2) the assessment of the cerebral metabolic rate of oxygen (CMRO2) to estimate oxygen consumption by brain tissue. Finally, we introduce future perspectives of HSI of brain metabolism, including its potential use for imaging optical signals from molecules directly involved in cellular energy production. HSI solutions can provide remarkable insight in understanding cerebral tissue metabolism and oxygenation, aiding investigation on brain tissue physiological processes.

  6. Active Sites Environmental Monitoring Program: Mid-FY 1991 report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1991-10-01

    This report summarizes the activities of the Active Sites Environmental Monitoring Program (ASEMP) from October 1990 through March 1991. The ASEMP was established in 1989 by Solid Waste Operations and the Environmental Sciences Division to provide early detection and performance monitoring at active low-level radioactive waste (LLW) disposal sites in Solid Waste Storage Area (SWSA) 6 and transuranic (TRU) waste storage sites in SWSA 5 as required by chapters II and III of US Department of Energy Order 5820.2A. Monitoring results continue to demonstrate the no LLW is being leached from the storage vaults on the tumulus pads. Loading ofmore » vaults on Tumulus II began during this reporting period and 115 vaults had been loaded by the end of March 1991.« less

  7. A ubiquitous and low-cost solution for movement monitoring and accident detection based on sensor fusion.

    PubMed

    Felisberto, Filipe; Fdez-Riverola, Florentino; Pereira, António

    2014-05-21

    The low average birth rate in developed countries and the increase in life expectancy have lead society to face for the first time an ageing situation. This situation associated with the World's economic crisis (which started in 2008) forces the need of equating better and more efficient ways of providing more quality of life for the elderly. In this context, the solution presented in this work proposes to tackle the problem of monitoring the elderly in a way that is not restrictive for the life of the monitored, avoiding the need for premature nursing home admissions. To this end, the system uses the fusion of sensory data provided by a network of wireless sensors placed on the periphery of the user. Our approach was also designed with a low-cost deployment in mind, so that the target group may be as wide as possible. Regarding the detection of long-term problems, the tests conducted showed that the precision of the system in identifying and discerning body postures and body movements allows for a valid monitorization and rehabilitation of the user. Moreover, concerning the detection of accidents, while the proposed solution presented a near 100% precision at detecting normal falls, the detection of more complex falls (i.e., hampered falls) will require further study.

  8. Monitoring activities of satellite data processing services in real-time with SDDS Live Monitor

    NASA Astrophysics Data System (ADS)

    Duc Nguyen, Minh

    2017-10-01

    This work describes Live Monitor, the monitoring subsystem of SDDS - an automated system for space experiment data processing, storage, and distribution created at SINP MSU. Live Monitor allows operators and developers of satellite data centers to identify errors occurred in data processing quickly and to prevent further consequences caused by the errors. All activities of the whole data processing cycle are illustrated via a web interface in real-time. Notification messages are delivered to responsible people via emails and Telegram messenger service. The flexible monitoring mechanism implemented in Live Monitor allows us to dynamically change and control events being shown on the web interface on our demands. Physicists, whose space weather analysis models are functioning upon satellite data provided by SDDS, can use the developed RESTful API to monitor their own events and deliver customized notification messages by their needs.

  9. NMR solution structure of the activation domain of human procarboxypeptidase A2

    PubMed Central

    Jiménez, M. Angeles; Villegas, Virtudes; Santoro, Jorge; Serrano, Luis; Vendrell, Josep; Avilés, Francesc X.; Rico, Manuel

    2003-01-01

    The activation domain of human procarboxypeptidase A2, ADA2h, is an 81-residue globular domain released during the proteolytic activation of the proenzyme. The role of this and other similar domains as assistants of the correct folding of the enzyme is not fully understood. The folding pathway of ADA2h was characterized previously, and it was also observed that under certain conditions it may convert into amyloid fibrils in vitro. To gain insight into these processes, a detailed description of its three-dimensional structure in aqueous solution is required so that eventual changes could be properly monitored. A complete assignment of the 1H and 15N resonances of ADA2h was performed, and the solution structure, as derived from a set of 1688 nonredundant constraints, is very well defined (pairwise backbone RMSD = 0.67 ± 0.17 Å for residues 10–80). The structure is composed of two antiparallel α-helices comprising residues 19–32 and 58–69 packed on the same side of a three-stranded β-sheet spanning residues 10–15, 50–55, and 73–75. The global fold for the isolated human A2 activation domain is very similar to that of porcine carboxypeptidase B, as well as to the structure of the domain in the crystal of the intact human proenzyme. The observed structural differences relative to the intact human proenzyme are located at the interface between the activation domain and the enzyme and can be related with the activation mechanism. The backbone amide proton exchange behavior of ADA2h was also examined. The global free energy of unfolding obtained from exchange data of the most protected amide protons at pH 7.0 and 298K is 4.9 ± 0.3 kcal.mole−1, in good agreement with the values determined by thermal or denaturant unfolding studies. PMID:12538893

  10. 34 CFR 300.120 - Monitoring activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 2 2010-07-01 2010-07-01 false Monitoring activities. 300.120 Section 300.120 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION ASSISTANCE TO STATES FOR THE EDUCATION OF...

  11. Shape-Independent Model of Monitor Neutron Activation Analysis

    NASA Astrophysics Data System (ADS)

    Yusuf, Siaka Ojo

    The technique of monitor neutron activation analysis has been improved by developing a shape-independent model to solve the problem of the treatment of the epithermal reaction contribution to the reaction rate in reactor neutron activation analysis. It is a form of facility characterization in which differential approximations to neither the neutron flux distribution as a function of energy nor the reaction cross section as a function of energy are necessary. The model predicts a linear relationship when the k-factors (ratios of reaction rates of two nuclides at a given irradiation position) for element x, k _{c} (x), is plotted against the k-factor for the monitor, k_{c} (m). The slope of this line, B(x,c,m) is measured for each element x to provide the calibration of the irradiation facility for monitor activation analysis. In this thesis, scandium was chosen as the comparator and antimony as the epithermal monitor. B(x, Sc, Sb) has been accurately measured for a number of nuclides in three different reactors. The measurement was done by irradiating filter papers containing binary mixture of the elements x and the flux monitor Sc at the various irradiation positions in these three reactors. The experiment was designed in such a way that systematic errors due to mass ratios and efficiency ratios cancel out. Also, rate related errors and backgrounds were kept at negligible values. The results show that B(x,c,m) depends not only on x, c, and m, but also on the type of moderator used for the reactor. We want this new approach to be adopted at all laboratories where routine analysis of multi-element samples are done with the monitor method since the choices of c and m are flexible.

  12. Evaluation of a novel canine activity monitor for at-home physical activity analysis.

    PubMed

    Yashari, Jonathan M; Duncan, Colleen G; Duerr, Felix M

    2015-07-04

    Accelerometers are motion-sensing devices that have been used to assess physical activity in dogs. However, the lack of a user-friendly, inexpensive accelerometer has hindered the widespread use of this objective outcome measure in veterinary research. Recently, a smartphone-based, affordable activity monitor (Whistle) has become available for measurement of at-home physical activity in dogs. The aim of this research was to evaluate this novel accelerometer. Eleven large breed, privately owned dogs wore a collar fitted with both the Whistle device and a previously validated accelerometer-based activity monitor (Actical) for a 24-h time period. Owners were asked to have their dogs resume normal daily activities. Total activity time obtained from the Whistle device in minutes was compared to the total activity count from the Actical device. Activity intensity from the Whistle device was calculated manually from screenshots of the activity bars displayed in the smartphone-application and compared to the activity count recorded by the Actical in the same 3-min time period. A total of 3740 time points were compared. There was a strong correlation between activity intensity of both devices for individual time points (Pearson's correlation coefficient 0.81, p < 0.0001). An even stronger correlation was observed between the total activity data between the two devices (Pearson's correlation coefficient 0.925, p < 0.0001). Activity data provided by the Whistle activity monitor may be used as an objective outcome measurement in dogs. The total activity time provided by the Whistle application offers an inexpensive method for obtaining at-home, canine, real-time physical activity data. Limitations of the Whistle device include the limited battery life, the need for manual derivation of activity intensity data and data transfer, and the requirement of Wi-Fi and Bluetooth availability for data transmission.

  13. Characteristics of Zinc Phosphate Coating Activated by Different Concentrations of Nickel Acetate Solution

    NASA Astrophysics Data System (ADS)

    Abdalla, Khalid; Zuhailawati, H.; Rahmat, Azmi; Azizan, A.

    2017-02-01

    Activation pretreatment with nickel acetate solution at various concentrations was performed prior to the phosphating step to enhance the corrosion resistance of carbon steel substrates. The activation solution was studied over various concentrations: 10, 50, and 100 g/L. The effects of these concentrations on surface characteristics and microstructural evolution of the coated samples were characterized by scanning electron microscopy and energy-dispersive spectroscopy. The electrochemical behavior was evaluated using potentiodynamic polarization curves, electrochemical impedance spectroscopy, and immersion test in a 3.5 pct NaCl solution. Significant increases in the nucleation sites and surface coverage of zinc phosphate coating were observed as the concentration of activation solution reached 50 g/L. The electrochemical analysis revealed that the activation treatment with 50 g/L nickel acetate solution significantly improved the protection ability of the zinc phosphate coating. The corrosion current density of activated phosphate coating with 50 g/L was reduced by 64.64 and 13.22 pct, compared to the coatings obtained with activation solutions of 10 and 100 g/L, respectively.

  14. Monitoring Active Volcanoes

    NASA Astrophysics Data System (ADS)

    Swanson, Don

    Monitoring volcanoes is a surprisingly controversial enterprise. Some volcanologists argue that monitoring promises too much and delivers too little for risk mitigation. They trust only strict land-use measures (and accompanying high insurance premiums in risky zones) and urge that funds be used for public education and awareness rather than for instrumental monitoring. Others claim that monitoring is more akin to Brownian motion than to science: lots of action but little net progress. Still other volcanologists acknowledge the potential value of monitoring for prediction and warning but despair at the difficulty of it all. And, finally, some shy from surveillance, fearing the legal consequences of a failed monitoring effort during these litigious times. They wonder, “Will I be sued if an eruption is not foreseen or if an instrument fails at a critical time?”

  15. A Comparison of Energy Expenditure Estimation of Several Physical Activity Monitors

    PubMed Central

    Dannecker, Kathryn L.; Sazonova, Nadezhda A.; Melanson, Edward L.; Sazonov, Edward S.; Browning, Raymond C.

    2013-01-01

    Accurately and precisely estimating free-living energy expenditure (EE) is important for monitoring energy balance and quantifying physical activity. Recently, single and multi-sensor devices have been developed that can classify physical activities, potentially resulting in improved estimates of EE. PURPOSE To determine the validity of EE estimation of a footwear-based physical activity monitor and to compare this validity against a variety of research and consumer physical activity monitors. METHODS Nineteen healthy young adults (10 male, 9 female), completed a four-hour stay in a room calorimeter. Participants wore a footwear-based physical activity monitor, as well as Actical, Actigraph, IDEEA, DirectLife and Fitbit devices. Each individual performed a series of postures/activities. We developed models to estimate EE from the footwear-based device, and we used the manufacturer's software to estimate EE for all other devices. RESULTS Estimated EE using the shoe-based device was not significantly different than measured EE (476(20) vs. 478(18) kcal) (Mean (SE)), respectively, and had a root mean square error (RMSE) of (29.6 kcal (6.2%)). The IDEEA and DirectLlife estimates of EE were not significantly different than the measured EE but the Actigraph and Fitbit devices significantly underestimated EE. Root mean square errors were 93.5 (19%), 62.1 kcal (14%), 88.2 kcal (18%), 136.6 kcal (27%), 130.1 kcal (26%), and 143.2 kcal (28%) for Actical, DirectLife, IDEEA, Actigraph and Fitbit respectively. CONCLUSIONS The shoe based physical activity monitor provides a valid estimate of EE while the other physical activity monitors tested have a wide range of validity when estimating EE. Our results also demonstrate that estimating EE based on classification of physical activities can be more accurate and precise than estimating EE based on total physical activity. PMID:23669877

  16. A comparison of energy expenditure estimation of several physical activity monitors.

    PubMed

    Dannecker, Kathryn L; Sazonova, Nadezhda A; Melanson, Edward L; Sazonov, Edward S; Browning, Raymond C

    2013-11-01

    Accurately and precisely estimating free-living energy expenditure (EE) is important for monitoring energy balance and quantifying physical activity. Recently, single and multisensor devices have been developed that can classify physical activities, potentially resulting in improved estimates of EE. This study aimed to determine the validity of EE estimation of a footwear-based physical activity monitor and to compare this validity against a variety of research and consumer physical activity monitors. Nineteen healthy young adults (10 men, 9 women) completed a 4-h stay in a room calorimeter. Participants wore a footwear-based physical activity monitor as well as Actical, ActiGraph, IDEEA, DirectLife, and Fitbit devices. Each individual performed a series of postures/activities. We developed models to estimate EE from the footwear-based device, and we used the manufacturer's software to estimate EE for all other devices. Estimated EE using the shoe-based device was not significantly different than measured EE (mean ± SE; 476 ± 20 vs 478 ± 18 kcal, respectively) and had a root-mean-square error of 29.6 kcal (6.2%). The IDEEA and the DirectLlife estimates of EE were not significantly different than the measured EE, but the ActiGraph and the Fitbit devices significantly underestimated EE. Root-mean-square errors were 93.5 (19%), 62.1 kcal (14%), 88.2 kcal (18%), 136.6 kcal (27%), 130.1 kcal (26%), and 143.2 kcal (28%) for Actical, DirectLife, IDEEA, ActiGraph, and Fitbit, respectively. The shoe-based physical activity monitor provides a valid estimate of EE, whereas the other physical activity monitors tested have a wide range of validity when estimating EE. Our results also demonstrate that estimating EE based on classification of physical activities can be more accurate and precise than estimating EE based on total physical activity.

  17. Desorption of CO{sub 2} from MDEA and activated MDEA solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, G.W.; Zhang, C.F.; Qin, S.J.

    1995-03-01

    A packed column was used for investigating the desorption rate of CO{sub 2} from aqueous methyldiethanolamine (MDEA) and activated MDEA solutions. Experiments were conducted within the temperature range 30--70 C, the concentration of MDEA was 4.28 kmol/m{sup 3}, and the concentration of piperazine (PZ) was 0.10 kmol/m{sup 3} for aqueous activated MDEA solutions. Experimental data confirmed that the kinetics model of absorption CO{sub 2} into aqueous MDEA and activated MDEA solutions can be applicable to the situations in which desorption occurs, and the desorption rate of model predictions agree well with that of experimental determination.

  18. Activity Monitors Step Count Accuracy in Community-Dwelling Older Adults

    PubMed Central

    2015-01-01

    Objective: To examine the step count accuracy of activity monitors in community-dwelling older adults. Method: Twenty-nine participants aged 67.70 ± 6.07 participated. Three pedometers and the Actical accelerometer step count functions were compared with actual steps taken during a 200-m walk around an indoor track and during treadmill walking at three different speeds. Results: There was no statistical difference between activity monitors step counts and actual steps during self-selected pace walking. During treadmill walking at 0.67 m∙s−1, all activity monitors step counts were significantly different from actual steps. During treadmill walking at 0.894m∙s−1, the Omron HJ-112 pedometer step counts were not significantly different from actual steps. During treadmill walking at 1.12 m∙s−1, the Yamax SW-200 pedometer steps were significantly different from actual steps. Discussion: Activity monitor selection should be deliberate when examining the walking behaviors of community-dwelling older adults, especially for those who walk at a slower pace. PMID:28138464

  19. Detection of physical activities using a physical activity monitor system for wheelchair users.

    PubMed

    Hiremath, Shivayogi V; Intille, Stephen S; Kelleher, Annmarie; Cooper, Rory A; Ding, Dan

    2015-01-01

    Availability of physical activity monitors for wheelchair users can potentially assist these individuals to track regular physical activity (PA), which in turn could lead to a healthier and more active lifestyle. Therefore, the aim of this study was to develop and validate algorithms for a physical activity monitoring system (PAMS) to detect wheelchair based activities. The PAMS consists of a gyroscope based wheel rotation monitor (G-WRM) and an accelerometer device (wocket) worn on the upper arm or on the wrist. A total of 45 persons with spinal cord injury took part in the study, which was performed in a structured university-based laboratory environment, a semi-structured environment at the National Veterans Wheelchair Games, and in the participants' home environments. Participants performed at least ten PAs, other than resting, taken from a list of PAs. The classification performance for the best classifiers on the testing dataset for PAMS-Arm (G-WRM and wocket on upper arm) and PAMS-Wrist (G-WRM and wocket on wrist) was 89.26% and 88.47%, respectively. The outcomes of this study indicate that multi-modal information from the PAMS can help detect various types of wheelchair-based activities in structured laboratory, semi-structured organizational, and unstructured home environments. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  20. Monitoring by Control Technique - Activated Carbon Adsorber

    EPA Pesticide Factsheets

    Stationary source emissions monitoring is required to demonstrate that a source is meeting the requirements in Federal or state rules. This page is about Activated Carbon Adsorber control techniques used to reduce pollutant emissions.

  1. Validity of consumer-grade activity monitor to identify manual wheelchair propulsion in standardized activities of daily living.

    PubMed

    Leving, Marika T; Horemans, Henricus L D; Vegter, Riemer J K; de Groot, Sonja; Bussmann, Johannes B J; van der Woude, Lucas H V

    2018-01-01

    Hypoactive lifestyle contributes to the development of secondary complications and lower quality of life in wheelchair users. There is a need for objective and user-friendly physical activity monitors for wheelchair-dependent individuals in order to increase physical activity through self-monitoring, goal setting, and feedback provision. To determine the validity of Activ8 Activity Monitors to 1) distinguish two classes of activities: independent wheelchair propulsion from other non-propulsive wheelchair-related activities 2) distinguish five wheelchair-related classes of activities differing by the movement intensity level: sitting in a wheelchair (hands may be moving but wheelchair remains stationary), maneuvering, and normal, high speed or assisted wheelchair propulsion. Sixteen able-bodied individuals performed sixteen various standardized 60s-activities of daily living. Each participant was equipped with a set of two Activ8 Professional Activity Monitors, one at the right forearm and one at the right wheel. Task classification by the Active8 Monitors was validated using video recordings. For the overall agreement, sensitivity and positive predictive value, outcomes above 90% are considered excellent, between 70 and 90% good, and below 70% unsatisfactory. Division in two classes resulted in overall agreement of 82.1%, sensitivity of 77.7% and positive predictive value of 78.2%. 84.5% of total duration of all tasks was classified identically by Activ8 and based on the video material. Division in five classes resulted in overall agreement of 56.6%, sensitivity of 52.8% and positive predictive value of 51.9%. 59.8% of total duration of all tasks was classified identically by Activ8 and based on the video material. Activ8 system proved to be suitable for distinguishing between active wheelchair propulsion and other non-propulsive wheelchair-related activities. The ability of the current system and algorithms to distinguish five various wheelchair-related activities

  2. Validity of consumer-grade activity monitor to identify manual wheelchair propulsion in standardized activities of daily living

    PubMed Central

    Horemans, Henricus L. D.; Vegter, Riemer J. K.; de Groot, Sonja; Bussmann, Johannes B. J.; van der Woude, Lucas H. V.

    2018-01-01

    Background Hypoactive lifestyle contributes to the development of secondary complications and lower quality of life in wheelchair users. There is a need for objective and user-friendly physical activity monitors for wheelchair-dependent individuals in order to increase physical activity through self-monitoring, goal setting, and feedback provision. Objective To determine the validity of Activ8 Activity Monitors to 1) distinguish two classes of activities: independent wheelchair propulsion from other non-propulsive wheelchair-related activities 2) distinguish five wheelchair-related classes of activities differing by the movement intensity level: sitting in a wheelchair (hands may be moving but wheelchair remains stationary), maneuvering, and normal, high speed or assisted wheelchair propulsion. Methods Sixteen able-bodied individuals performed sixteen various standardized 60s-activities of daily living. Each participant was equipped with a set of two Activ8 Professional Activity Monitors, one at the right forearm and one at the right wheel. Task classification by the Active8 Monitors was validated using video recordings. For the overall agreement, sensitivity and positive predictive value, outcomes above 90% are considered excellent, between 70 and 90% good, and below 70% unsatisfactory. Results Division in two classes resulted in overall agreement of 82.1%, sensitivity of 77.7% and positive predictive value of 78.2%. 84.5% of total duration of all tasks was classified identically by Activ8 and based on the video material. Division in five classes resulted in overall agreement of 56.6%, sensitivity of 52.8% and positive predictive value of 51.9%. 59.8% of total duration of all tasks was classified identically by Activ8 and based on the video material. Conclusions Activ8 system proved to be suitable for distinguishing between active wheelchair propulsion and other non-propulsive wheelchair-related activities. The ability of the current system and algorithms to

  3. Coherent spectroscopic methods for monitoring pathogens, genetically modified products and nanostructured materials in colloidal solution

    NASA Astrophysics Data System (ADS)

    Moguilnaya, T.; Suminov, Y.; Botikov, A.; Ignatov, S.; Kononenko, A.; Agibalov, A.

    2017-01-01

    We developed the new automatic method that combines the method of forced luminescence and stimulated Brillouin scattering. This method is used for monitoring pathogens, genetically modified products and nanostructured materials in colloidal solution. We carried out the statistical spectral analysis of pathogens, genetically modified soy and nano-particles of silver in water from different regions in order to determine the statistical errors of the method. We studied spectral characteristics of these objects in water to perform the initial identification with 95% probability. These results were used for creation of the model of the device for monitor of pathogenic organisms and working model of the device to determine the genetically modified soy in meat.

  4. Prescribing of Electronic Activity Monitors in Cardiometabolic Diseases: Qualitative Interview-Based Study

    PubMed Central

    Macé, Sandrine; Oppert, Jean-Michel

    2017-01-01

    Background The prevalence of noncommunicable diseases, including those such as type 2 diabetes, obesity, dyslipidemia, and hypertension, so-called cardiometabolic diseases, is high and is increasing worldwide. Strong evidence supports the role of physical activity in management of these diseases. There is general consensus that mHealth technology, including electronic activity monitors, can potentially increase physical activity in patients, but their use in clinical settings remains limited. Practitioners’ requirements when prescribing electronic activity monitors have been poorly described. Objective The aims of this qualitative study were (1) to explore how specialist physicians prescribe electronic activity monitors to patients presenting with cardiometabolic conditions, and (2) to better understand their motivation for and barriers to prescribing such monitors. Methods We conducted qualitative semistructured interviews in March to May 2016 with 11 senior physicians from a public university hospital in France with expertise in management of cardiometabolic diseases (type 1 and type 2 diabetes, obesity, hypertension, and dyslipidemia). Interviews lasted 45 to 60 minutes and were audiotaped, transcribed verbatim, and analyzed using directed content analysis. We report our findings following the Consolidated Criteria for Reporting Qualitative Research (COREQ) checklist. Results Most physicians we interviewed had never prescribed electronic activity monitors, whereas they frequently prescribed blood glucose or blood pressure self-monitoring devices. Reasons for nonprescription included lack of interest in the data collected, lack of evidence for data accuracy, concern about work overload possibly resulting from automatic data transfer, and risk of patients becoming addicted to data. Physicians expected future marketing of easy-to-use monitors that will accurately measure physical activity duration and intensity and provide understandable motivating feedback

  5. Prescribing of Electronic Activity Monitors in Cardiometabolic Diseases: Qualitative Interview-Based Study.

    PubMed

    Bellicha, Alice; Macé, Sandrine; Oppert, Jean-Michel

    2017-09-23

    The prevalence of noncommunicable diseases, including those such as type 2 diabetes, obesity, dyslipidemia, and hypertension, so-called cardiometabolic diseases, is high and is increasing worldwide. Strong evidence supports the role of physical activity in management of these diseases. There is general consensus that mHealth technology, including electronic activity monitors, can potentially increase physical activity in patients, but their use in clinical settings remains limited. Practitioners' requirements when prescribing electronic activity monitors have been poorly described. The aims of this qualitative study were (1) to explore how specialist physicians prescribe electronic activity monitors to patients presenting with cardiometabolic conditions, and (2) to better understand their motivation for and barriers to prescribing such monitors. We conducted qualitative semistructured interviews in March to May 2016 with 11 senior physicians from a public university hospital in France with expertise in management of cardiometabolic diseases (type 1 and type 2 diabetes, obesity, hypertension, and dyslipidemia). Interviews lasted 45 to 60 minutes and were audiotaped, transcribed verbatim, and analyzed using directed content analysis. We report our findings following the Consolidated Criteria for Reporting Qualitative Research (COREQ) checklist. Most physicians we interviewed had never prescribed electronic activity monitors, whereas they frequently prescribed blood glucose or blood pressure self-monitoring devices. Reasons for nonprescription included lack of interest in the data collected, lack of evidence for data accuracy, concern about work overload possibly resulting from automatic data transfer, and risk of patients becoming addicted to data. Physicians expected future marketing of easy-to-use monitors that will accurately measure physical activity duration and intensity and provide understandable motivating feedback. Features of electronic activity monitors

  6. Solution Dependence of the Collisional Activation of Ubiquitin [M+7H]7+ Ions

    PubMed Central

    Shi, Huilin; Atlasevich, Natalya; Merenbloom, Samuel I.; Clemmer, David E.

    2014-01-01

    The solution dependence of gas-phase unfolding for ubiquitin [M+7H]7+ ions has been studied by ion mobility spectrometry-mass spectrometry (IMS-MS). Different acidic water:methanol solutions are used to favor the native (N), more helical (A), or unfolded (U) solution states of ubiquitin. Unfolding of gas-phase ubiquitin ions is achieved by collisional heating and newly formed structures are examined by IMS. With an activation voltage of 100 V, a selected distribution of compact structures unfolds, forming three resolvable elongated states (E1-E3). The relative populations of these elongated structures depend strongly on the solution composition. Activation of compact ions from aqueous solutions known to favor N-state ubiquitin produces mostly the E1 type elongated state, whereas, activation of compact ions from methanol containing solutions that populate A-state ubiquitin favors the E3 elongated state. Presumably, this difference arises because of differences in precursor ion structures emerging from solution. Thus, it appears that information about solution populations can be retained after ionization, selection, and activation to produce the elongated states. These data as well as others are discussed. PMID:24658799

  7. Integrated active sensor system for real time vibration monitoring.

    PubMed

    Liang, Qijie; Yan, Xiaoqin; Liao, Xinqin; Cao, Shiyao; Lu, Shengnan; Zheng, Xin; Zhang, Yue

    2015-11-05

    We report a self-powered, lightweight and cost-effective active sensor system for vibration monitoring with multiplexed operation based on contact electrification between sensor and detected objects. The as-fabricated sensor matrix is capable of monitoring and mapping the vibration state of large amounts of units. The monitoring contents include: on-off state, vibration frequency and vibration amplitude of each unit. The active sensor system delivers a detection range of 0-60 Hz, high accuracy (relative error below 0.42%), long-term stability (10000 cycles). On the time dimension, the sensor can provide the vibration process memory by recording the outputs of the sensor system in an extend period of time. Besides, the developed sensor system can realize detection under contact mode and non-contact mode. Its high performance is not sensitive to the shape or the conductivity of the detected object. With these features, the active sensor system has great potential in automatic control, remote operation, surveillance and security systems.

  8. Integrated active sensor system for real time vibration monitoring

    PubMed Central

    Liang, Qijie; Yan, Xiaoqin; Liao, Xinqin; Cao, Shiyao; Lu, Shengnan; Zheng, Xin; Zhang, Yue

    2015-01-01

    We report a self-powered, lightweight and cost-effective active sensor system for vibration monitoring with multiplexed operation based on contact electrification between sensor and detected objects. The as-fabricated sensor matrix is capable of monitoring and mapping the vibration state of large amounts of units. The monitoring contents include: on-off state, vibration frequency and vibration amplitude of each unit. The active sensor system delivers a detection range of 0–60 Hz, high accuracy (relative error below 0.42%), long-term stability (10000 cycles). On the time dimension, the sensor can provide the vibration process memory by recording the outputs of the sensor system in an extend period of time. Besides, the developed sensor system can realize detection under contact mode and non-contact mode. Its high performance is not sensitive to the shape or the conductivity of the detected object. With these features, the active sensor system has great potential in automatic control, remote operation, surveillance and security systems. PMID:26538293

  9. Antimicrobial activity of a sodium hypochlorite/etidronic acid irrigant solution.

    PubMed

    Arias-Moliz, Maria Teresa; Ordinola-Zapata, Ronald; Baca, Pilar; Ruiz-Linares, Matilde; Ferrer-Luque, Carmen María

    2014-12-01

    The aim of this study was to evaluate the antimicrobial activity of a 2.5% sodium hypochlorite (NaOCl)/9% etidronic acid (HEBP) irrigant solution on Enterococcus faecalis growing in biofilms and a dentinal tubule infection model. The antimicrobial activity of the solutions 2.5% NaOCl and 9% HEBP alone and associated was evaluated on E. faecalis biofilms grown in the Calgary biofilm model (minimum biofilm eradication concentration high-throughput device). For the dentinal tubule infection test, the percentage of dead cells in E. faecalis-infected dentinal tubules treated with the solutions for 10 minutes was measured using confocal laser scanning microscopy and the live/dead technique. Available chlorine and pH of the solutions were also measured. Distilled water was used as the control. Nonparametric tests were used to determine statistical differences. The highest viability was found in the distilled water group and the lowest in the NaOCl-treated dentin (P < .05). Both NaOCl solutions killed 100% of the E. faecalis biofilms and showed the highest antimicrobial activity inside dentinal tubules, without statistical differences between the 2 (P < .05). The HEBP isolated solution killed bacteria inside dentinal tubules but did not present any significant effect against E. faecalis biofilms. The incorporation of HEBP to NaOCl did not cause any loss of available chlorine within 60 minutes. HEBP did not interfere with the ability of NaOCl to kill E. faecalis grown in biofilms and inside dentinal tubules. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  10. 14 CFR 405.1 - Monitoring of licensed, permitted, and other activities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Monitoring of licensed, permitted, and other activities. Each licensee or permittee must allow access by and... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Monitoring of licensed, permitted, and other activities. 405.1 Section 405.1 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL...

  11. 14 CFR 405.1 - Monitoring of licensed, permitted, and other activities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Monitoring of licensed, permitted, and other activities. Each licensee or permittee must allow access by and... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Monitoring of licensed, permitted, and other activities. 405.1 Section 405.1 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL...

  12. 14 CFR 405.1 - Monitoring of licensed, permitted, and other activities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Monitoring of licensed, permitted, and other activities. Each licensee or permittee must allow access by and... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Monitoring of licensed, permitted, and other activities. 405.1 Section 405.1 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL...

  13. 14 CFR 405.1 - Monitoring of licensed, permitted, and other activities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Monitoring of licensed, permitted, and other activities. Each licensee or permittee must allow access by and... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Monitoring of licensed, permitted, and other activities. 405.1 Section 405.1 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL...

  14. 14 CFR 405.1 - Monitoring of licensed, permitted, and other activities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Monitoring of licensed, permitted, and other activities. Each licensee or permittee must allow access by and... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Monitoring of licensed, permitted, and other activities. 405.1 Section 405.1 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL...

  15. Accuracy of intensity and inclinometer output of three activity monitors for identification of sedentary behavior and light-intensity activity.

    PubMed

    Carr, Lucas J; Mahar, Matthew T

    2012-01-01

    Purpose. To examine the accuracy of intensity and inclinometer output of three physical activity monitors during various sedentary and light-intensity activities. Methods. Thirty-six participants wore three physical activity monitors (ActiGraph GT1M, ActiGraph GT3X+, and StepWatch) while completing sedentary (lying, sitting watching television, sitting using computer, and standing still) light (walking 1.0 mph, pedaling 7.0 mph, pedaling 15.0 mph) intensity activities under controlled settings. Accuracy for correctly categorizing intensity was assessed for each monitor and threshold. Accuracy of the GT3X+ inclinometer function (GT3X+Incl) for correctly identifying anatomical position was also assessed. Percentage agreement between direct observation and the monitor recorded time spent in sedentary behavior and light intensity was examined. Results. All monitors using all thresholds accurately identified over 80% of sedentary behaviors and 60% of light-intensity walking time based on intensity output. The StepWatch was the most accurate in detecting pedaling time but unable to detect pedal workload. The GT3X+Incl accurately identified anatomical position during 70% of all activities but demonstrated limitations in discriminating between activities of differing intensity. Conclusions. Our findings suggest that all three monitors accurately measure most sedentary and light-intensity activities although choice of monitors should be based on study-specific needs.

  16. [Development of a wearable electrocardiogram monitor with recognition of physical activity scene].

    PubMed

    Wang, Zihong; Wu, Baoming; Yin, Jian; Gong, Yushun

    2012-10-01

    To overcome the problems of current electrocardiogram (ECG) tele-monitoring devices used for daily life, according to information fusion thought and by means of wearable technology, we developed a new type of wearable ECG monitor with the capability of physical activity recognition in this paper. The ECG monitor synchronously detected electrocardiogram signal and body acceleration signal, and recognized the scene information of physical activity, and finally determined the health status of the heart. With the advantages of accuracy for measurement, easy to use, comfort to wear, private feelings and long-term continuous in monitoring, this ECG monitor is quite fit for the heart-health monitoring in daily life.

  17. Li2MoO4 crystal growth from solution activated by low-frequency vibrations

    NASA Astrophysics Data System (ADS)

    Barinova, Olga; Sadovskiy, Andrey; Ermochenkov, Ivan; Kirsanova, Svetlana; Sukhanova, Ekaterina; Kostikov, Vladimir; Belov, Stanislav; Mozhevitina, Elena; Khomyakov, Andrew; Kuchuk, Zhanna; Zharikov, Eugeny; Avetissov, Igor

    2017-01-01

    The possibility of Li2MoO4 crystal growth from aqueous solutions activated by axial vibrational control (AVC) technique was investigated. It was found out that a low-frequency mechanical activation of the solution led to an increase of Li2MoO4 equilibrium solubility in aqueous solution for 11 rel% in the 25-29 °C temperature range. The changes in solution structure were analyzed in situ by Raman study of the solution. The AVC activation of solution resulted in a re-faceting of growing crystals, a smoothing of a face surface morphology and reduction of water content in the crystal.

  18. Comparison of the performance of the activPAL Professional physical activity logger to a discrete accelerometer-based activity monitor.

    PubMed

    Godfrey, A; Culhane, K M; Lyons, G M

    2007-10-01

    The aim of this study was to assess the accuracy of the 'activPAL Professional' physical activity logger by comparing its output to that of a proven discrete accelerometer-based activity monitor during extended measurements on healthy subjects while performing activities of daily living (ADL). Ten healthy adults, with unrestricted mobility, wore both the activPAL and the discrete dual accelerometer (Analog Devices ADXL202)-based activity monitor that recorded in synchronization with each other. The accelerometer derived data were then compared to that generated by the activPAL and a complete statistical and error analysis was performed using a Matlab program. This program determined trunk and thigh inclination angles to distinguish between sitting/lying, standing and stepping for the discrete accelerometer device and amount of time spent on each activity. Analysis was performed on a second-by-second basis and then categorized at 15s intervals in direct comparison with the activPAL generated data. Of the total time monitored (approximately 60 h) the detection accuracies for static and dynamic activities were approximately 98%. In a population of healthy adults, the data obtained from the activPAL Professional physical activity logger for both static and dynamic activities showed a close match to a proven discrete accelerometer data with an offset of approximately 2% between the two systems.

  19. Open source hardware solutions for low-cost, do-it-yourself environmental monitoring, citizen science, and STEM education

    NASA Astrophysics Data System (ADS)

    Hicks, S. D.; Aufdenkampe, A. K.; Horsburgh, J. S.; Arscott, D. B.; Muenz, T.; Bressler, D. W.

    2016-12-01

    The explosion in DIY open-source hardware and software has resulted in the development of affordable and accessible technologies, like drones and weather stations, that can greatly assist the general public in monitoring environmental health and its degradation. It is widely recognized that education and support of audiences in pursuit of STEM literacy and the application of emerging technologies is a challenge for the future of citizen science and for preparing high school graduates to be actively engaged in environmental stewardship. It is also clear that detecting environmental change/degradation over time and space will be greatly enhanced with expanded use of networked, remote monitoring technologies by watershed organizations and citizen scientists if data collection and reporting are properly carried out and curated. However, there are few focused efforts to link citizen scientists and school programs with these emerging tools. We have started a multi-year program to develop hardware and teaching materials for training students and citizen scientists about the use of open source hardware in environmental monitoring. Scientists and educators around the world have started building their own dataloggers and devices using a variety of boards based on open source electronics. This new hardware is now providing researchers with an inexpensive alternative to commercial data logging and transmission hardware. We will present a variety of hardware solutions using the Arduino-compatible EnviroDIY Mayfly board (http://envirodiy.org/mayfly) that can be used to build and deploy a rugged environmental monitoring station using a wide variety of sensors and options, giving the users a fully customizable device for making measurements almost anywhere. A database and visualization system is being developed that will allow the users to view and manage the data their devices are collecting. We will also present our plan for developing curricula and leading workshops to various

  20. Behavior change techniques implemented in electronic lifestyle activity monitors: a systematic content analysis.

    PubMed

    Lyons, Elizabeth J; Lewis, Zakkoyya H; Mayrsohn, Brian G; Rowland, Jennifer L

    2014-08-15

    Electronic activity monitors (such as those manufactured by Fitbit, Jawbone, and Nike) improve on standard pedometers by providing automated feedback and interactive behavior change tools via mobile device or personal computer. These monitors are commercially popular and show promise for use in public health interventions. However, little is known about the content of their feedback applications and how individual monitors may differ from one another. The purpose of this study was to describe the behavior change techniques implemented in commercially available electronic activity monitors. Electronic activity monitors (N=13) were systematically identified and tested by 3 trained coders for at least 1 week each. All monitors measured lifestyle physical activity and provided feedback via an app (computer or mobile). Coding was based on a hierarchical list of 93 behavior change techniques. Further coding of potentially effective techniques and adherence to theory-based recommendations were based on findings from meta-analyses and meta-regressions in the research literature. All monitors provided tools for self-monitoring, feedback, and environmental change by definition. The next most prevalent techniques (13 out of 13 monitors) were goal-setting and emphasizing discrepancy between current and goal behavior. Review of behavioral goals, social support, social comparison, prompts/cues, rewards, and a focus on past success were found in more than half of the systems. The monitors included a range of 5-10 of 14 total techniques identified from the research literature as potentially effective. Most of the monitors included goal-setting, self-monitoring, and feedback content that closely matched recommendations from social cognitive theory. Electronic activity monitors contain a wide range of behavior change techniques typically used in clinical behavioral interventions. Thus, the monitors may represent a medium by which these interventions could be translated for

  1. Stress monitoring versus microseismic ruptures in an active deep mine

    NASA Astrophysics Data System (ADS)

    Tonnellier, Alice; Bouffier, Christian; Bigarré, Pascal; Nyström, Anders; Österberg, Anders; Fjellström, Peter

    2015-04-01

    monitoring data coming from the mine in quasi-real time and facilitates information exchanges and decision making for experts and stakeholders. On the basis of these data acquisition and sharing, preliminary analysis has been started to highlight whether stress variations and seismic sources behaviour might be directly bound with mine working evolution and could improve the knowledge on the equilibrium states inside the mine. Knowing such parameters indeed will be a potential solution to understand better the response of deep mining activities to the exploitation solicitations and to develop, if possible, methods to prevent from major hazards such as rock bursts and other ground failure phenomena.

  2. When a Step Is Not a Step! Specificity Analysis of Five Physical Activity Monitors.

    PubMed

    O'Connell, Sandra; ÓLaighin, Gearóid; Quinlan, Leo R

    2017-01-01

    Physical activity is an essential aspect of a healthy lifestyle for both physical and mental health states. As step count is one of the most utilized measures for quantifying physical activity it is important that activity-monitoring devices be both sensitive and specific in recording actual steps taken and disregard non-stepping body movements. The objective of this study was to assess the specificity of five activity monitors during a variety of prescribed non-stepping activities. Participants wore five activity monitors simultaneously for a variety of prescribed activities including deskwork, taking an elevator, taking a bus journey, automobile driving, washing and drying dishes; functional reaching task; indoor cycling; outdoor cycling; and indoor rowing. Each task was carried out for either a specific duration of time or over a specific distance. Activity monitors tested were the ActivPAL micro™, NL-2000™ pedometer, Withings Smart Activity Monitor Tracker (Pulse O2)™, Fitbit One™ and Jawbone UP™. Participants were video-recorded while carrying out the prescribed activities and the false positive step count registered on each activity monitor was obtained and compared to the video. All activity monitors registered a significant number of false positive steps per minute during one or more of the prescribed activities. The Withings™ activity performed best, registering a significant number of false positive steps per minute during the outdoor cycling activity only (P = 0.025). The Jawbone™ registered a significant number of false positive steps during the functional reaching task and while washing and drying dishes, which involved arm and hand movement (P < 0.01 for both). The ActivPAL™ registered a significant number of false positive steps during the cycling exercises (P < 0.001 for both). As a number of false positive steps were registered on the activity monitors during the non-stepping activities, the authors conclude that non

  3. Big Data Solution for CTBT Monitoring Using Global Cross Correlation

    NASA Astrophysics Data System (ADS)

    Gaillard, P.; Bobrov, D.; Dupont, A.; Grenouille, A.; Kitov, I. O.; Rozhkov, M.

    2014-12-01

    Due to the mismatch between data volume and the performance of the Information Technology infrastructure used in seismic data centers, it becomes more and more difficult to process all the data with traditional applications in a reasonable elapsed time. To fulfill their missions, the International Data Centre of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO/IDC) and the Département Analyse Surveillance Environnement of Commissariat à l'Energie atomique et aux énergies alternatives (CEA/DASE) collect, process and produce complex data sets whose volume is growing exponentially. In the medium term, computer architectures, data management systems and application algorithms will require fundamental changes to meet the needs. This problem is well known and identified as a "Big Data" challenge. To tackle this major task, the CEA/DASE takes part during two years to the "DataScale" project. Started in September 2013, DataScale gathers a large set of partners (research laboratories, SMEs and big companies). The common objective is to design efficient solutions using the synergy between Big Data solutions and the High Performance Computing (HPC). The project will evaluate the relevance of these technological solutions by implementing a demonstrator for seismic event detections thanks to massive waveform correlations. The IDC has developed an expertise on such techniques leading to an algorithm called "Master Event" and provides a high-quality dataset for an extensive cross correlation study. The objective of the project is to enhance the Master Event algorithm and to reanalyze 10 years of waveform data from the International Monitoring System (IMS) network thanks to a dedicated HPC infrastructure operated by the "Centre de Calcul Recherche et Technologie" at the CEA of Bruyères-le-Châtel. The dataset used for the demonstrator includes more than 300,000 seismic events, tens of millions of raw detections and more than 30 terabytes of continuous seismic data

  4. Expert Systems and Diagnostic Monitors in Psychiatry

    PubMed Central

    Gelernter, David; Gelernter, Joel

    1984-01-01

    We argue that existing expert systems for medical diagnosis have not satisfactorily addressed an important problem: how are such systems to be integrated into the clinical environment? This problem should be addressed before and not after a working system is developed, because its solution might well determine important aspects of the ultimate system structure. We propose as one solution the online diagnostic monitor, which is a diagnostic expert system designed for interactive use by a clinican during the course of a patient interview. The exchange between a diagnostic monitor and its clinican user is guided by the user, not the system, and the monitor functions as a passive advisor rather than an active decision-maker. We discuss why a system of this sort might be particularly well-suited to psychiatric diagnosis, and describe preliminary work on an experimental prototype.

  5. RE-DEFINING THE ROLES OF SENSORS IN OBJECTIVE PHYSICAL ACTIVITY MONITORING

    PubMed Central

    Chen, Kong Y.; Janz, Kathleen F.; Zhu, Weimo; Brychta, Robert J.

    2011-01-01

    Background As physical activity researchers are increasingly using objective portable devices, this review describes current state of the technology to assess physical activity, with a focus on specific sensors and sensor properties currently used in monitors and their strengths and weakness. Additional sensors and sensor properties desirable for activity measurement and best practices for users and developers also are discussed. Best Practices We grouped current sensors into three broad categories for objectively measuring physical activity: associated body movement, physiology, and context. Desirable sensor properties for measuring physical activity and the importance of these properties in relationship to specific applications are addressed, and the specific roles of transducers and data acquisition systems within the monitoring devices are defined. Technical advancements in sensors, microcomputer processors, memory storage, batteries, wireless communication, and digital filters have made monitors more usable for subjects (smaller, more stable, and longer running time) and for researchers (less costly, higher time resolution and memory storage, shorter download time, and user-defined data features). Future Directions Users and developers of physical activity monitors should learn about the basic properties of their sensors, such as range, accuracy, precision, while considering the data acquisition/filtering steps that may be critical to data quality and may influence the desirable measurement outcome(s). PMID:22157770

  6. Eco-analytical Methodology in Environmental Problems Monitoring

    NASA Astrophysics Data System (ADS)

    Agienko, M. I.; Bondareva, E. P.; Chistyakova, G. V.; Zhironkina, O. V.; Kalinina, O. I.

    2017-01-01

    Among the problems common to all mankind, which solutions influence the prospects of civilization, the problem of ecological situation monitoring takes very important place. Solution of this problem requires specific methodology based on eco-analytical comprehension of global issues. Eco-analytical methodology should help searching for the optimum balance between environmental problems and accelerating scientific and technical progress. The fact that Governments, corporations, scientists and nations focus on the production and consumption of material goods cause great damage to environment. As a result, the activity of environmentalists is developing quite spontaneously, as a complement to productive activities. Therefore, the challenge posed by the environmental problems for the science is the formation of geo-analytical reasoning and the monitoring of global problems common for the whole humanity. So it is expected to find the optimal trajectory of industrial development to prevent irreversible problems in the biosphere that could stop progress of civilization.

  7. Influences of animal mucins on lysozyme activity in solution and on hydroxyapatite surfaces.

    PubMed

    Park, Won-Kyu; Chung, Jin-Woo; Kim, Young-Ku; Chung, Sung-Chang; Kho, Hong-Seop

    2006-10-01

    The purpose of this study was to investigate the influence of animal mucins on lysozyme activity in solution and on the surface of hydroxyapatite (HA) beads. The effects of animal mucins on lysozyme activity in solution were examined by incubating porcine gastric mucin (PGM) or bovine submaxillary mucin (BSM) with hen egg-white lysozyme (HEWL) or salivary samples. HA-immobilised animal mucins or lysozyme were used to determine the influence of animal mucins on lysozyme activity on HA surfaces. Lysozyme activity was determined by turbidity measurement of a Micrococcus lysodeikticus substrate suspension. Protein concentration was determined by ninhydrin assay. PGM inhibited the activity of HEWL and salivary lysozyme in solution. The amount of inhibition was dependent on mucin concentration, incubation time and temperature, and the structural integrity of the mucin. The inhibition of salivary lysozyme activity by PGM was greater in submandibular/sublingual saliva than in parotid saliva. The inhibition of lysozyme activity by PGM was markedly dependent on pH. However, BSM did not inhibit the in-solution lysozyme activities of HEWL and clarified saliva. Both PGM and BSM bound to HA surfaces, and HA-adsorbed animal mucins increased the subsequent adsorption of lysozyme. When HA beads were exposed to a mixture of HEWL and PGM or BSM, lysozyme activity on the HA surfaces was significantly increased. The results suggest that animal mucins affect lysozyme activity, and the effects are different on HA surfaces compared with in solution. Further research is needed to determine the effect of animal mucins on lysozyme activity in vivo.

  8. Micro-scale NMR Experiments for Monitoring the Optimization of Membrane Protein Solutions for Structural Biology.

    PubMed

    Horst, Reto; Wüthrich, Kurt

    2015-07-20

    Reconstitution of integral membrane proteins (IMP) in aqueous solutions of detergent micelles has been extensively used in structural biology, using either X-ray crystallography or NMR in solution. Further progress could be achieved by establishing a rational basis for the selection of detergent and buffer conditions, since the stringent bottleneck that slows down the structural biology of IMPs is the preparation of diffracting crystals or concentrated solutions of stable isotope labeled IMPs. Here, we describe procedures to monitor the quality of aqueous solutions of [ 2 H, 15 N]-labeled IMPs reconstituted in detergent micelles. This approach has been developed for studies of β-barrel IMPs, where it was successfully applied for numerous NMR structure determinations, and it has also been adapted for use with α-helical IMPs, in particular GPCRs, in guiding crystallization trials and optimizing samples for NMR studies (Horst et al ., 2013). 2D [ 15 N, 1 H]-correlation maps are used as "fingerprints" to assess the foldedness of the IMP in solution. For promising samples, these "inexpensive" data are then supplemented with measurements of the translational and rotational diffusion coefficients, which give information on the shape and size of the IMP/detergent mixed micelles. Using microcoil equipment for these NMR experiments enables data collection with only micrograms of protein and detergent. This makes serial screens of variable solution conditions viable, enabling the optimization of parameters such as the detergent concentration, sample temperature, pH and the composition of the buffer.

  9. Behavior Change Techniques Implemented in Electronic Lifestyle Activity Monitors: A Systematic Content Analysis

    PubMed Central

    Lewis, Zakkoyya H; Mayrsohn, Brian G; Rowland, Jennifer L

    2014-01-01

    Background Electronic activity monitors (such as those manufactured by Fitbit, Jawbone, and Nike) improve on standard pedometers by providing automated feedback and interactive behavior change tools via mobile device or personal computer. These monitors are commercially popular and show promise for use in public health interventions. However, little is known about the content of their feedback applications and how individual monitors may differ from one another. Objective The purpose of this study was to describe the behavior change techniques implemented in commercially available electronic activity monitors. Methods Electronic activity monitors (N=13) were systematically identified and tested by 3 trained coders for at least 1 week each. All monitors measured lifestyle physical activity and provided feedback via an app (computer or mobile). Coding was based on a hierarchical list of 93 behavior change techniques. Further coding of potentially effective techniques and adherence to theory-based recommendations were based on findings from meta-analyses and meta-regressions in the research literature. Results All monitors provided tools for self-monitoring, feedback, and environmental change by definition. The next most prevalent techniques (13 out of 13 monitors) were goal-setting and emphasizing discrepancy between current and goal behavior. Review of behavioral goals, social support, social comparison, prompts/cues, rewards, and a focus on past success were found in more than half of the systems. The monitors included a range of 5-10 of 14 total techniques identified from the research literature as potentially effective. Most of the monitors included goal-setting, self-monitoring, and feedback content that closely matched recommendations from social cognitive theory. Conclusions Electronic activity monitors contain a wide range of behavior change techniques typically used in clinical behavioral interventions. Thus, the monitors may represent a medium by which

  10. Enhanced active liposomal loading of a poorly soluble ionizable drug using supersaturated drug solutions.

    PubMed

    Modi, Sweta; Xiang, Tian-Xiang; Anderson, Bradley D

    2012-09-10

    Nanoparticulate drug carriers such as liposomal drug delivery systems are of considerable interest in cancer therapy because of their ability to passively accumulate in solid tumors. For liposomes to have practical utility for antitumor therapy in patients, however, optimization of drug loading, retention, and release kinetics are necessary. Active loading is the preferred method for optimizing loading of ionizable drugs in liposomes as measured by drug-to-lipid ratios, but the extremely low aqueous solubilities of many anticancer drug candidates may limit the external driving force, thus slowing liposomal uptake during active loading. This report demonstrates the advantages of maintaining drug supersaturation during active loading. A novel method was developed for creating and maintaining supersaturation of a poorly soluble camptothecin analogue, AR-67 (7-t-butyldimethylsilyl-10-hydroxycamptothecin), using a low concentration of a cyclodextrin (sulfobutylether-β-cyclodextrin) to inhibit crystallization over a 48 h period. Active loading into liposomes containing high concentrations of entrapped sodium or calcium acetate was monitored using drug solutions at varying degrees of supersaturation. Liposomal uptake rates increased linearly with the degree of supersaturation of drug in the external loading solution. A mathematical model was developed to predict the rate and extent of drug loading versus time, taking into account the chemical equilibria inside and outside of the vesicles and the transport kinetics of various permeable species across the lipid bilayer and the dialysis membrane. Intraliposomal sink conditions were maintained by the high internal pH caused by the efflux of acetic acid and exchange with AR-67, which undergoes lactone ring-opening, ionization, and membrane binding in the interior of the vesicles. The highest drug to lipid ratio achieved was 0.17 from a supersaturated solution at a total drug concentration of 0.6 mg/ml. The rate and extent of

  11. Anti-inflammatory activity of nanocrystalline silver-derived solutions in porcine contact dermatitis

    PubMed Central

    2010-01-01

    Background Nanocrystalline silver dressings have anti-inflammatory activity, unlike solutions containing Ag+ only, which may be due to dissolution of multiple silver species. These dressings can only be used to treat surfaces. Thus, silver-containing solutions with nanocrystalline silver properties could be valuable for treating hard-to-dress surfaces and inflammatory conditions of the lungs and bowels. This study tested nanocrystalline silver-derived solutions for anti-inflammatory activity. Methods Inflammation was induced on porcine backs using dinitrochlorobenzene. Negative and positive controls were treated with distilled water. Experimental groups were treated with solutions generated by dissolving nanocrystalline silver in distilled water adjusted to starting pHs of 4 (using CO2), 5.6 (as is), 7, and 9 (using Ca(OH)2). Solution samples were analyzed for total silver. Daily imaging, biopsying, erythema and oedema scoring, and treatments were performed for three days. Biopsies were processed for histology, immunohistochemistry (for IL-4, IL-8, IL-10, TNF-α, EGF, KGF, KGF-2, and apoptotic cells), and zymography (MMP-2 and -9). One-way ANOVAs with Tukey-Kramer post tests were used for statistical analyses. Results Animals treated with pH 7 and 9 solutions showed clear visual improvements. pH 9 solutions resulted in the most significant reductions in erythema and oedema scores. pH 4 and 7 solutions also reduced oedema scores. Histologically, all treatment groups demonstrated enhanced re-epithelialisation, with decreased inflammation. At 24 h, pMMP-2 expression was significantly lowered with pH 5.6 and 9 treatments, as was aMMP-2 expression with pH 9 treatments. In general, treatment with silver-containing solutions resulted in decreased TNF-α and IL-8 expression, with increased IL-4, EGF, KGF, and KGF-2 expression. At 24 h, apoptotic cells were detected mostly in the dermis with pH 4 and 9 treatments, nowhere with pH 5.6, and in both the epidermis and dermis

  12. Method for monitoring stack gases for uranium activity

    DOEpatents

    Beverly, C.R.; Ernstberger, E.G.

    1985-07-03

    A method for monitoring the stack gases of a purge cascade of gaseous diffusion plant for uranium activity. A sample stream is taken from the stack gases and contacted with a volume of moisture-laden air for converting trace levels of uranium hexafluoride, if any, in the stack gases into particulate uranyl fluoride. A continuous strip of filter paper from a supply roll is passed through this sampling stream to intercept and gather any uranyl fluoride in the sampling stream. This filter paper is then passed by an alpha scintillation counting device where any radioactivity on the filter paper is sensed so as to provide a continuous monitoring of the gas stream for activity indicative of the uranium content in the stack gases. 1 fig.

  13. Method for monitoring stack gases for uranium activity

    DOEpatents

    Beverly, Claude R.; Ernstberger, Harold G.

    1988-01-01

    A method for monitoring the stack gases of a purge cascade of a gaseous diffusion plant for uranium activity. A sample stream is taken from the stack gases and contacted with a volume of moisture-laden air for converting trace levels of uranium hexafluoride, if any, in the stack gases into particulate uranyl fluoride. A continuous strip of filter paper from a supply roll is passed through this sampling stream to intercept and gather any uranyl fluoride in the sampling stream. This filter paper is then passed by an alpha scintillation counting device where any radioactivity on the filter paper is sensed so as to provide a continuous monitoring of the gas stream for activity indicative of the uranium content in the stack gases.

  14. Sound solutions for habitat monitoring

    Treesearch

    Mary M. Rowland; Lowell H. Suring; Christina D. Vojta

    2015-01-01

    For agencies and organizations to effectively manage wildlife, knowledge about the status and trend of wildlife habitat is critical. Traditional wildlife monitoring, however, has focused on populations rather than habitat, because ultimately population status drives long-term species viability. Still, habitat loss has contributed to the decline of nearly all at-risk...

  15. Wearable and Implantable Wireless Sensor Network Solutions for Healthcare Monitoring

    PubMed Central

    Darwish, Ashraf; Hassanien, Aboul Ella

    2011-01-01

    Wireless sensor network (WSN) technologies are considered one of the key research areas in computer science and the healthcare application industries for improving the quality of life. The purpose of this paper is to provide a snapshot of current developments and future direction of research on wearable and implantable body area network systems for continuous monitoring of patients. This paper explains the important role of body sensor networks in medicine to minimize the need for caregivers and help the chronically ill and elderly people live an independent life, besides providing people with quality care. The paper provides several examples of state of the art technology together with the design considerations like unobtrusiveness, scalability, energy efficiency, security and also provides a comprehensive analysis of the various benefits and drawbacks of these systems. Although offering significant benefits, the field of wearable and implantable body sensor networks still faces major challenges and open research problems which are investigated and covered, along with some proposed solutions, in this paper. PMID:22163914

  16. Wearable and implantable wireless sensor network solutions for healthcare monitoring.

    PubMed

    Darwish, Ashraf; Hassanien, Aboul Ella

    2011-01-01

    Wireless sensor network (WSN) technologies are considered one of the key research areas in computer science and the healthcare application industries for improving the quality of life. The purpose of this paper is to provide a snapshot of current developments and future direction of research on wearable and implantable body area network systems for continuous monitoring of patients. This paper explains the important role of body sensor networks in medicine to minimize the need for caregivers and help the chronically ill and elderly people live an independent life, besides providing people with quality care. The paper provides several examples of state of the art technology together with the design considerations like unobtrusiveness, scalability, energy efficiency, security and also provides a comprehensive analysis of the various benefits and drawbacks of these systems. Although offering significant benefits, the field of wearable and implantable body sensor networks still faces major challenges and open research problems which are investigated and covered, along with some proposed solutions, in this paper.

  17. Solute-mediated interactions between active droplets

    NASA Astrophysics Data System (ADS)

    Moerman, Pepijn G.; Moyses, Henrique W.; van der Wee, Ernest B.; Grier, David G.; van Blaaderen, Alfons; Kegel, Willem K.; Groenewold, Jan; Brujic, Jasna

    2017-09-01

    Concentration gradients play a critical role in embryogenesis, bacterial locomotion, as well as the motility of active particles. Particles develop concentration profiles around them by dissolution, adsorption, or the reactivity of surface species. These gradients change the surface energy of the particles, driving both their self-propulsion and governing their interactions. Here, we uncover a regime in which solute gradients mediate interactions between slowly dissolving droplets without causing autophoresis. This decoupling allows us to directly measure the steady-state, repulsive force, which scales with interparticle distance as F ˜1 /r2 . Our results show that the dissolution process is diffusion rather than reaction rate limited, and the theoretical model captures the dependence of the interactions on droplet size and solute concentration, using a single fit parameter, l =16 ±3 nm , which corresponds to the length scale of a swollen micelle. Our results shed light on the out-of-equilibrium behavior of particles with surface reactivity.

  18. Technical note: Validation of a commercial system for the continuous and automated monitoring of dairy cow activity.

    PubMed

    Tullo, E; Fontana, I; Gottardo, D; Sloth, K H; Guarino, M

    2016-09-01

    Current farm sizes do not allow the precise identification and tracking of individual cows and their health and behavioral records. Currently, the application of information technology within intensive dairy farming takes a key role in proper routine management to improve animal welfare and to enhance the comfort of dairy cows. An existing application based on information technology is represented by the GEA CowView system (GEA Farm Technologies, Bönen, Germany). This system is able to detect and monitor animal behavioral activities based on positioning, through the creation of a virtual map of the barn that outlines all the areas where cows have access. The aim of this study was to validate the accuracy, sensitivity, and specificity of data provided by the CowView system. The validation was performed by comparing data automatically obtained from the CowView system with those obtained by a manual labeling procedure performed on video recordings. Data used for the comparisons were represented by the zone-related activities performed by the selected dairy cows and were classified into 2 categories: activity and localization. The duration in seconds of each of the activities/localizations detected both with the manual labeling and with the automated system were used to evaluate the correlation coefficients among data; and subsequently the accuracy, sensitivity, specificity, and positive and negative predictive values of the automated monitoring system were calculated. The results of this validation study showed that the CowView automated monitoring system is able to identify the cow localization/position (alley, trough, cubicles) with high reliability in relation to the zone-related activities performed by dairy cows (accuracy higher than 95%). The results obtained support the CowView system as an innovative potential solution for the easier management of dairy cows. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Using Commercial Activity Monitors to Measure Gait in Patients with Suspected iNPH: Implications for Ambulatory Monitoring

    PubMed Central

    Gaglani, Shiv; Haynes, M Ryan; Hoffberger, Jamie B; Rigamonti, Daniele

    2015-01-01

    Objectives: This study seeks to validate the use of activity monitors to detect and record gait abnormalities, potentially identifying patients with idiopathic normal pressure hydrocephalus (iNPH) prior to the onset of cognitive or urinary symptoms. Methods: This study compared the step counts of four common activity monitors (Omron Step Counter HJ-113, New Lifestyles 2000, Nike Fuelband, and Fitbit Ultra) to an observed step count in 17 patients with confirmed iNPH. Results: Of the four devices, the Fitbit Ultra (Fitbit, Inc., San Francisco, CA) provided the most accurate step count. The correlation with the observed step count was significantly higher (p<0.009) for the Fitbit Ultra than for any of the other three devices. Conclusions: These preliminary findings suggest that existing activity monitors have variable efficacy in the iNPH patient population and that the MEMS tri-axial accelerometer and algorithm of the Fitbit Ultra provides the most accurate gait measurements of the four devices tested. PMID:26719825

  20. Using Commercial Activity Monitors to Measure Gait in Patients with Suspected iNPH: Implications for Ambulatory Monitoring.

    PubMed

    Gaglani, Shiv; Moore, Jessica; Haynes, M Ryan; Hoffberger, Jamie B; Rigamonti, Daniele

    2015-11-17

    This study seeks to validate the use of activity monitors to detect and record gait abnormalities, potentially identifying patients with idiopathic normal pressure hydrocephalus (iNPH) prior to the onset of cognitive or urinary symptoms. This study compared the step counts of four common activity monitors (Omron Step Counter HJ-113, New Lifestyles 2000, Nike Fuelband, and Fitbit Ultra) to an observed step count in 17 patients with confirmed iNPH. Of the four devices, the Fitbit Ultra (Fitbit, Inc., San Francisco, CA) provided the most accurate step count. The correlation with the observed step count was significantly higher (p<0.009) for the Fitbit Ultra than for any of the other three devices. These preliminary findings suggest that existing activity monitors have variable efficacy in the iNPH patient population and that the MEMS tri-axial accelerometer and algorithm of the Fitbit Ultra provides the most accurate gait measurements of the four devices tested.

  1. Extraction of Lithium from Brine Solution by Hydrolysis of Activated Aluminum Powder

    NASA Astrophysics Data System (ADS)

    Li, Yanhong; Chen, Xingyu; Liu, Xuheng; Zhao, Zhongwei; Liu, Chongwu

    2018-05-01

    Activated aluminum powder has been used to extract lithium from Mg-Li mixed solution via a hydrolysis-adsorption reaction. First, activated aluminum powder was prepared under the optimal conditions of NaCl addition of 70%, ball-milling time of 3 h, and ball-to-powder mass ratio of 20:1. Then, the activated aluminum powder was added into the Mg-Li mixed solution to extract lithium. X-ray diffraction analysis indicated that Li+ was adsorbed by freshly formed Al(OH)3 in the form of LADH-Cl [LiCl·2Al(OH)3·mH2O]. Under the optimal conditions of reaction time of 3 h, Al/Li molar ratio of 4:1 for activated aluminum powder addition, and reaction temperature of 70°C, lithium precipitation exceeded 90% while magnesium precipitation was controlled at 13%. These results indicate that activated aluminum powder can efficiently extract lithium from Mg-Li mixed solution via a hydrolysis-adsorption reaction.

  2. Real-time monitoring of the solution concentration variation during the crystallization process of protein-lysozyme by using digital holographic interferometry.

    PubMed

    Zhang, Yanyan; Zhao, Jianlin; Di, Jianglei; Jiang, Hongzhen; Wang, Qian; Wang, Jun; Guo, Yunzhu; Yin, Dachuan

    2012-07-30

    We report a real-time measurement method of the solution concentration variation during the growth of protein-lysozyme crystals based on digital holographic interferometry. A series of holograms containing the information of the solution concentration variation in the whole crystallization process is recorded by CCD. Based on the principle of double-exposure holographic interferometry and the relationship between the phase difference of the reconstructed object wave and the solution concentration, the solution concentration variation with time for arbitrary point in the solution can be obtained, and then the two-dimensional concentration distribution of the solution during crystallization process can also be figured out under the precondition which the refractive index is constant through the light propagation direction. The experimental results turns out that it is feasible to in situ, full-field and real-time monitor the crystal growth process by using this method.

  3. Active Cavity Irradiance Monitor Satellite ACRIMSAT Artist Concept

    NASA Image and Video Library

    1999-12-21

    The Active Cavity Irradiance Monitor Satellite, or ACRIMSAT, mission is a climate change investigation that measures changes in how much of the sun's energy reaches Earth's atmosphere. This energy, called solar irradience, creates winds, heats the land and drives ocean currents, and therefore contains significant data that climatologists can use to improve predictions of climate change and global warming. The satellite's Active Cavity Irradiance Monitor III instrument, now in its third generation, has been used since the 1980s to study solar irradiance and its impacts on global warming. Scientists, using data from the instrument, now theorize that there is a significant correlation between solar radiation and global warming. ACRIMSAT completed its five-year primary mission in 2005 when it began operating under its extended mission. http://photojournal.jpl.nasa.gov/catalog/PIA18157

  4. Direct NMR Monitoring of Phase Separation Behavior of Highly Supersaturated Nifedipine Solution Stabilized with Hypromellose Derivatives.

    PubMed

    Ueda, Keisuke; Higashi, Kenjirou; Moribe, Kunikazu

    2017-07-03

    We investigated the phase separation behavior and maintenance mechanism of the supersaturated state of poorly water-soluble nifedipine (NIF) in hypromellose (HPMC) derivative solutions. Highly supersaturated NIF formed NIF-rich nanodroplets through phase separation from aqueous solution containing HPMC derivative. Dissolvable NIF concentration in the bulk water phase was limited by the phase separation of NIF from the aqueous solution. HPMC derivatives stabilized the NIF-rich nanodroplets and maintained the NIF supersaturation with phase-separated NIF for several hours. The size of the NIF-rich phase was different depending on the HPMC derivatives dissolved in aqueous solution, although the droplet size had no correlation with the time for which NIF supersaturation was maintained without NIF crystallization. HPMC acetate and HPMC acetate succinate (HPMC-AS) effectively maintained the NIF supersaturation containing phase-separated NIF compared with HPMC. Furthermore, HPMC-AS stabilized NIF supersaturation more effectively in acidic conditions. Solution 1 H NMR measurements of NIF-supersaturated solution revealed that HPMC derivatives distributed into the NIF-rich phase during the phase separation of NIF from the aqueous solution. The hydrophobicity of HPMC derivative strongly affected its distribution into the NIF-rich phase. Moreover, the distribution of HPMC-AS into the NIF-rich phase was promoted at lower pH due to the lower aqueous solubility of HPMC-AS. The distribution of a large amount of HPMC derivatives into NIF-rich phase induced the strong inhibition of NIF crystallization from the NIF-rich phase. Polymer distribution into the drug-rich phase directly monitored by solution NMR technique can be a useful index for the stabilization efficiency of drug-supersaturated solution containing a drug-rich phase.

  5. Diabetes and Technology for Increased Activity (DaTA) Study: Results of a Remote Monitoring Intervention for Prevention of Metabolic Syndrome

    PubMed Central

    Stuckey, Melanie; Russell-Minda, Elizabeth; Read, Emily; Munoz, Claudio; Shoemaker, Kevin; Kleinstiver, Peter; Petrella, Robert

    2011-01-01

    Objective: An increasingly aged, overweight, and sedentary population has resulted in elevated risk of cardiovascular disease (CVD). The escalating incidence of diabetes and other chronic illnesses, deficits in health care budgets, and physician shortages, especially in rural communities, have prompted investigations of feasible solutions. The Diabetes and Technology for Increased Activity (DaTA) study was designed to test the effectiveness of a lifestyle intervention driven by self-monitoring of blood glucose (BG), blood pressure (BP), physical activity (PA), and weight to positively impact CVD risk factors in a medically underserviced rural population with a high incidence of metabolic syndrome (MS). Research Design and Methods: Conducted in a community-based research setting, this single-center open feasibility study used smart phones to transmit BP, BG, pedometer, weight, heart rate, and activity measurements to a database. Technology allowed participants to interface with the clinical team and self-monitor their personal health indicators. Results Twenty-four participants aged 30 to 71 years completed the 8-week intervention. Participants had significant improvement in clinic (p = .046) and self-monitored diastolic BP (p = .001), body mass index (p = .002), and total cholesterol (p = .009), and steps per day. Daily PA increased as well as participants' interest in and willingness to make lifestyle changes that impact health outcomes. Conclusions The DaTA study demonstrated that self-monitoring of the risk factors for MS and increased PA improved the participant's CVD risk profile. Considering the 8-week time period of this intervention, results are encouraging. This lifestyle intervention, which uses education and technology as tools, confirms the utility of remote health monitoring. PMID:21880236

  6. Current state of active-fault monitoring in Taiwan

    NASA Astrophysics Data System (ADS)

    Hou, C.; Lin, C.; Chen, Y.; Liu, H.; Chen, C.; Lin, Y.; Chen, C.

    2008-12-01

    The earthquake is one of the major hazard sources in Taiwan where an arc-continent collision is on-going. For the purpose of seismic hazard mitigation, to understand current situation of each already-known active fault is urgently needed. After the 1999 Chi-chi earthquake shocked Taiwan, the Central Geological Survey (CGS) of Taiwan aggressively promoted the tasks on studying the activities of active faults. One of them is the deployment of miscellaneous monitoring networks to cover all the target areas, where the earthquake occurrence potentials on active faults are eager to be answered. Up to the end of 2007, CGS has already deployed over 1000 GPS campaign sites, 44 GPS stations in continuous mode, and 42 leveling transects across the major active faults with a total ground distance of 974 km. The campaign sites and leveling tasks have to be measured once a year. The resulted crustal deformation will be relied on to derive the fault slip model. The time series analysis on continuous mode of GPS can further help understand the details of the fault behavior. In addition, 12 down-hole strain meters, five stations for liquid flux and geochemical proxies, and two for water table monitoring have been also installed to seek possible anomalies related to the earthquake activities. It may help discover reliable earthquake precursors.

  7. Monitoring ATP dynamics in electrically active white matter tracts

    PubMed Central

    Trevisiol, Andrea; Saab, Aiman S; Winkler, Ulrike; Marx, Grit; Imamura, Hiromi; Möbius, Wiebke; Kusch, Kathrin; Nave, Klaus-Armin; Hirrlinger, Johannes

    2017-01-01

    In several neurodegenerative diseases and myelin disorders, the degeneration profiles of myelinated axons are compatible with underlying energy deficits. However, it is presently impossible to measure selectively axonal ATP levels in the electrically active nervous system. We combined transgenic expression of an ATP-sensor in neurons of mice with confocal FRET imaging and electrophysiological recordings of acutely isolated optic nerves. This allowed us to monitor dynamic changes and activity-dependent axonal ATP homeostasis at the cellular level and in real time. We find that changes in ATP levels correlate well with compound action potentials. However, this correlation is disrupted when metabolism of lactate is inhibited, suggesting that axonal glycolysis products are not sufficient to maintain mitochondrial energy metabolism of electrically active axons. The combined monitoring of cellular ATP and electrical activity is a novel tool to study neuronal and glial energy metabolism in normal physiology and in models of neurodegenerative disorders. DOI: http://dx.doi.org/10.7554/eLife.24241.001 PMID:28414271

  8. Characterization of photosynthetically active duckweed (Wolffia australiana) in vitro culture by Respiration Activity Monitoring System (RAMOS).

    PubMed

    Rechmann, Henrik; Friedrich, Andrea; Forouzan, Dara; Barth, Stefan; Schnabl, Heide; Biselli, Manfred; Boehm, Robert

    2007-06-01

    The feasibility of oxygen transfer rate (OTR) measurement to non-destructively monitor plant propagation and vitality of photosynthetically active plant in vitro culture of duckweed (Wolffia australiana, Lemnaceae) was tested using Respiration Activity Monitoring System (RAMOS). As a result, OTR proofed to be a sensitive indicator for plant vitality. The culture characterization under day/night light conditions, however, revealed a complex interaction between oxygen production and consumption, rendering OTR measurement an unsuitable tool to track plant propagation. However, RAMOS was found to be a useful tool in preliminary studies for process development of photosynthetically active plant in vitro cultures.

  9. A new mathematical solution for predicting char activation reactions

    USGS Publications Warehouse

    Rafsanjani, H.H.; Jamshidi, E.; Rostam-Abadi, M.

    2002-01-01

    The differential conservation equations that describe typical gas-solid reactions, such as activation of coal chars, yield a set of coupled second-order partial differential equations. The solution of these coupled equations by exact analytical methods is impossible. In addition, an approximate or exact solution only provides predictions for either reaction- or diffusion-controlling cases. A new mathematical solution, the quantize method (QM), was applied to predict the gasification rates of coal char when both chemical reaction and diffusion through the porous char are present. Carbon conversion rates predicted by the QM were in closer agreement with the experimental data than those predicted by the random pore model and the simple particle model. ?? 2002 Elsevier Science Ltd. All rights reserved.

  10. Solutions Network Formulation Report. The Potential Contribution of the International GPM Program to the NOAA Estuarine Reserves Division's System-wide Monitoring Program

    NASA Technical Reports Server (NTRS)

    Hilbert, Kent; Anderson, Daniel; Lewis, David

    2007-01-01

    Data collected via the International GPM Program could be used to provide a solution for the NOAA Estuarine Reserves Division s System-wide Monitoring Program by augmenting in situ rainfall measurements with data acquired via future satellite-acquired precipitation data. This Candidate Solution is in alignment with the Coastal Management National Application and will benefit society by assisting in estuary preservation.

  11. Antimicrobial activity of a new preservative for multiuse ophthalmic solutions.

    PubMed

    Ghelardi, Emilia; Celandroni, Francesco; Gueye, Sokhna A; Salvetti, Sara; Campa, Mario; Senesi, Sonia

    2013-01-01

    The aim of this study was to examine the antimicrobial activity and the preservative efficacy of a novel preservative solution containing sodium hydroxymethyl glycinate (SHMG) and edetate disodium (EDTA), which is used for preservation of some commercial ophthalmic formulations. In vitro susceptibility assays were performed against several gram-positive (Staphylococcus aureus, Staphylococcus epidermidis, and Bacillus cereus) and gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria representative of the microbial flora of epithelial surfaces or colonizing the conjunctiva, as well as against Candida albicans and Aspergillus niger. Using different concentrations of SHMG alone or in combination with EDTA, the minimal inhibitory and microbicidal concentrations against these organisms were assessed. In addition, 8 brands of multidose eye drops containing 0.002% SHMG and 0.1% EDTA as preservative were tested for antimicrobial activity using the antimicrobial effectiveness test recommended by the international pharmacopoeias. The minimal inhibitory and bactericidal/fungicidal concentration values of SHMG ranged from 0.0025% to 0.0125% for bacteria and from 0.125% to 0.50% for mold and yeast. Susceptibility testing demonstrated that the addition of EDTA substantially increased the SHMG activity against all bacterial and fungal strains. The preservative effectiveness test was applied to commercial eye drops. All the drop solutions met the criteria reported by the U.S. Pharmacopeia for parenteral and ophthalmic preparations. All products also satisfied the major acceptance criteria of the European Pharmacopeia with respect to the antifungal activity. With regard to the antibacterial activity, the less-stringent criteria of the European Pharmacopeia were fulfilled. The present study demonstrates the efficacy of a novel preservative for ophthalmic solutions (SHMG/EDTA) and its activity in protecting selected commercial artificial tears against microbial

  12. 25 CFR 170.702 - What activities may the Secretary review and monitor?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false What activities may the Secretary review and monitor? 170.702 Section 170.702 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN RESERVATION ROADS PROGRAM Program Oversight and Accountability § 170.702 What activities may the Secretary review and monitor? The Secretary...

  13. 25 CFR 170.702 - What activities may the Secretary review and monitor?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false What activities may the Secretary review and monitor? 170.702 Section 170.702 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER INDIAN RESERVATION ROADS PROGRAM Program Oversight and Accountability § 170.702 What activities may the Secretary review and monitor? The Secretary...

  14. Validity of Different Activity Monitors to Count Steps in an Inpatient Rehabilitation Setting.

    PubMed

    Treacy, Daniel; Hassett, Leanne; Schurr, Karl; Chagpar, Sakina; Paul, Serene S; Sherrington, Catherine

    2017-05-01

    Commonly used activity monitors have been shown to be accurate in counting steps in active people; however, further validation is needed in slower walking populations. To determine the validity of activity monitors for measuring step counts in rehabilitation inpatients compared with visually observed step counts. To explore the influence of gait parameters, activity monitor position, and use of walkers on activity monitor accuracy. One hundred and sixty-six inpatients admitted to a rehabilitation unit with an average walking speed of 0.4 m/s (SD 0.2) wore 16 activity monitors (7 different devices in different positions) simultaneously during 6-minute and 6-m walks. The number of steps taken during the tests was also counted by a physical therapist. Gait parameters were assessed using the GAITRite system. To analyze the influence of different gait parameters, the percentage accuracy for each monitor was graphed against various gait parameters for each activity monitor. The StepWatch, Fitbit One worn on the ankle and the ActivPAL showed excellent agreement with observed step count (ICC 2,1 0.98; 0.92; 0.78 respectively). Other devices (Fitbit Charge, Fitbit One worn on hip, G-Sensor, Garmin Vivofit, Actigraph) showed poor agreement with the observed step count (ICC 2,1 0.12-0.40). Percentage agreement with observed step count was highest for the StepWatch (mean 98%). The StepWatch and the Fitbit One worn on the ankle maintained accuracy in individuals who walked more slowly and with shorter strides but other devices were less accurate in these individuals. There were small numbers of participants for some gait parameters. The StepWatch showed the highest accuracy and closest agreement with observed step count. This device can be confidently used by researchers for accurate measurement of step counts in inpatient rehabilitation in individuals who walk slowly. If immediate feedback is desired, the Fitbit One when worn on the ankle would be the best choice for this

  15. Chemotaxis of active, self-oscillating polymer gels in solution

    NASA Astrophysics Data System (ADS)

    Dayal, Pratyush; Bhattacharya, Amitabh; Kuksenok, Olga; Balazs, Anna C.

    2012-02-01

    Fighting, fleeing and feeding are hallmarks of all living things; all these activities require some degree of mobility. Herein, we undertake the first computational study of self-oscillating polymer gels and show that this system can ``communicate'' to undergo a biomimetic, collective response to small-scale chemical changes. In this study we harness unique properties of polymer gels that undergo oscillatory Belousov-Zhabotinsky (BZ) reaction. The activator for the reaction is generated within these BZ cilia and diffuses between the neighboring gels. In order to simulate the dynamics of the BZ gels in surrounding fluid we have developed a nonlinear hybrid 3D model which captures the elasto-dynamics of polymer gel and diffusive exchange of BZ reagents between the gel and the fluid. We illustrate that multiple BZ gels in solution exhibit a distinct form of chemotaxis, moving towards the highest activator concentration in the solution. Similar ability to sense and move in response to chemical gradients constitutes a vital function in simple organisms, enabling them to find food and flee from poisons.

  16. Non-thermal atmospheric pressure plasma activates lactate in Ringer’s solution for anti-tumor effects

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiromasa; Nakamura, Kae; Mizuno, Masaaki; Ishikawa, Kenji; Takeda, Keigo; Kajiyama, Hiroaki; Utsumi, Fumi; Kikkawa, Fumitaka; Hori, Masaru

    2016-11-01

    Non-thermal atmospheric pressure plasma is a novel approach for wound healing, blood coagulation, and cancer therapy. A recent discovery in the field of plasma medicine is that non-thermal atmospheric pressure plasma not only directly but also indirectly affects cells via plasma-treated liquids. This discovery has led to the use of non-thermal atmospheric pressure plasma as a novel chemotherapy. We refer to these plasma-treated liquids as plasma-activated liquids. We chose Ringer’s solutions to produce plasma-activated liquids for clinical applications. In vitro and in vivo experiments demonstrated that plasma-activated Ringer’s lactate solution has anti-tumor effects, but of the four components in Ringer’s lactate solution, only lactate exhibited anti-tumor effects through activation by non-thermal plasma. Nuclear magnetic resonance analyses indicate that plasma irradiation generates acetyl and pyruvic acid-like groups in Ringer’s lactate solution. Overall, these results suggest that plasma-activated Ringer’s lactate solution is promising for chemotherapy.

  17. Active solution of homography for pavement crack recovery with four laser lines.

    PubMed

    Xu, Guan; Chen, Fang; Wu, Guangwei; Li, Xiaotao

    2018-05-08

    An active solution method of the homography, which is derived from four laser lines, is proposed to recover the pavement cracks captured by the camera to the real-dimension cracks in the pavement plane. The measurement system, including a camera and four laser projectors, captures the projection laser points on the 2D reference in different positions. The projection laser points are reconstructed in the camera coordinate system. Then, the laser lines are initialized and optimized by the projection laser points. Moreover, the plane-indicated Plücker matrices of the optimized laser lines are employed to model the laser projection points of the laser lines on the pavement. The image-pavement homography is actively determined by the solutions of the perpendicular feet of the projection laser points. The pavement cracks are recovered by the active solution of homography in the experiments. The recovery accuracy of the active solution method is verified by the 2D dimension-known reference. The test case with the measurement distance of 700 mm and the relative angle of 8° achieves the smallest recovery error of 0.78 mm in the experimental investigations, which indicates the application potentials in the vision-based pavement inspection.

  18. Personalized USB Biosensor Module for Effective ECG Monitoring.

    PubMed

    Sladojević, Srdjan; Arsenović, Marko; Lončar-Turukalo, Tatjana; Sladojević, Miroslava; Ćulibrk, Dubravko

    2016-01-01

    The burden of chronic disease and associated disability present a major threat to financial sustainability of healthcare delivery systems. The need for cost-effective early diagnosis and disease prevention is evident driving the development of personalized home health solutions. The proposed solution presents an easy to use ECG monitoring system. The core hardware component is a biosensor dongle with sensing probes at one end, and micro USB interface at the other end, offering reliable and unobtrusive sensing, preprocessing and storage. An additional component is a smart phone, providing both the biosensor's power supply and an intuitive user application for the real-time data reading. The system usage is simplified, with innovative solutions offering plug and play functionality avoiding additional driver installation. Personalized needs could be met with different sensor combinations enabling adequate monitoring in chronic disease, during physical activity and in the rehabilitation process.

  19. Processing of the WLCG monitoring data using NoSQL

    NASA Astrophysics Data System (ADS)

    Andreeva, J.; Beche, A.; Belov, S.; Dzhunov, I.; Kadochnikov, I.; Karavakis, E.; Saiz, P.; Schovancova, J.; Tuckett, D.

    2014-06-01

    The Worldwide LHC Computing Grid (WLCG) today includes more than 150 computing centres where more than 2 million jobs are being executed daily and petabytes of data are transferred between sites. Monitoring the computing activities of the LHC experiments, over such a huge heterogeneous infrastructure, is extremely demanding in terms of computation, performance and reliability. Furthermore, the generated monitoring flow is constantly increasing, which represents another challenge for the monitoring systems. While existing solutions are traditionally based on Oracle for data storage and processing, recent developments evaluate NoSQL for processing large-scale monitoring datasets. NoSQL databases are getting increasingly popular for processing datasets at the terabyte and petabyte scale using commodity hardware. In this contribution, the integration of NoSQL data processing in the Experiment Dashboard framework is described along with first experiences of using this technology for monitoring the LHC computing activities.

  20. MINERVA: An INSAR Monitoring Service for Volcanic Hazard

    NASA Astrophysics Data System (ADS)

    Tampellini, M. L.; Sansosti, E.; Usai, S.; Lanari, R.; Borgstrom, S.; van Persie, M.; Ricciardi, G. P.; Maddalena, V.; Cicero, L.; Pepe, A.

    2004-06-01

    MINERVA (Monitoring by Interferometric SAR of Environmental Risk in Volcanic Areas) is a small scale service demonstration project financed by ESA in the Data User Programme framework. The objective of the project is the design, development and assessment of a demonstrative information service based on the interferometric processing of images acquired from either the ASAR instrument on board ENVISAT-I or SAR instruments on board ERS1/2. The system is based on a new approach for the processing of INSAR data, which allows to optimize the quality of interferograms spanning from 35 days up to several years, and to merge them to generate a single solution describing the temporal evolution of the ground deformations in the examined risk area. The system allows to update this solution each time a new SAR image is available, and constitutes therefore an innovative tool for monitoring of the ground displacements in risk areas. The system has been implemented and demonstrated at Osservatorio Vesuviano (Naples, Italy), which is the institution responsible for monitoring the volcanic phenomena in the Neapolitan volcanic district, and for alerting the Italian civil authorities (''Protezione Civile'') in case such monitoring activity reveals signals of imminent eruptions. In particular, the MINERVA system has been used to monitor the ground deformations at the Phlegrean Fields, a densely populated, high-hazard zone which is subject to alternate phases of uplift and subsidence, accompanied often by seismic activity.

  1. Non-Traditional Displays for Mission Monitoring

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna C.; Schutte, Paul C.

    1999-01-01

    Advances in automation capability and reliability have changed the role of humans from operating and controlling processes to simply monitoring them for anomalies. However, humans are traditionally bad monitors of highly reliable systems over time. Thus, the human is assigned a task for which he is ill equipped. We believe that this has led to the dominance of human error in process control activities such as operating transportation systems (aircraft and trains), monitoring patient health in the medical industry, and controlling plant operations. Research has shown, though, that an automated monitor can assist humans in recognizing and dealing with failures. One possible solution to this predicament is to use a polar-star display that will show deviations from normal states based on parameters that are most indicative of mission health.

  2. Agile Infrastructure Monitoring

    NASA Astrophysics Data System (ADS)

    Andrade, P.; Ascenso, J.; Fedorko, I.; Fiorini, B.; Paladin, M.; Pigueiras, L.; Santos, M.

    2014-06-01

    At the present time, data centres are facing a massive rise in virtualisation and cloud computing. The Agile Infrastructure (AI) project is working to deliver new solutions to ease the management of CERN data centres. Part of the solution consists in a new "shared monitoring architecture" which collects and manages monitoring data from all data centre resources. In this article, we present the building blocks of this new monitoring architecture, the different open source technologies selected for each architecture layer, and how we are building a community around this common effort.

  3. Evaluation of Shiryaev-Roberts Procedure for On-line Environmental Radiation Monitoring

    NASA Astrophysics Data System (ADS)

    Watson, Mara Mae

    An on-line radiation monitoring system that simultaneously concentrates and detects radioactivity is needed to detect an accidental leakage from a nuclear waste disposal facility or clandestine nuclear activity. Previous studies have shown that classical control chart methods can be applied to on-line radiation monitoring data to quickly detect these events as they occur; however, Bayesian control chart methods were not included in these studies. This work will evaluate the performance of a Bayesian control chart method, the Shiryaev-Roberts (SR) procedure, compared to classical control chart methods, Shewhart 3-sigma and cumulative sum (CUSUM), for use in on-line radiation monitoring of 99Tc in water using extractive scintillating resin. Measurements were collected by pumping solutions containing 0.1-5 Bq/L of 99Tc, as 99T cO4-, through a flow cell packed with extractive scintillating resin coupled to a Beta-RAM Model 5 HPLC detector. While 99T cO4- accumulated on the resin, simultaneous measurements were acquired in 10-s intervals and then re-binned to 100-s intervals. The Bayesian statistical method, Shiryaev-Roberts procedure, and classical control chart methods, Shewhart 3-sigma and cumulative sum (CUSUM), were applied to the data using statistical algorithms developed in MATLAB RTM. Two SR control charts were constructed using Poisson distributions and Gaussian distributions to estimate the likelihood ratio, and are referred to as Poisson SR and Gaussian SR to indicate the distribution used to calculate the statistic. The Poisson and Gaussian SR methods required as little as 28.9 mL less solution at 5 Bq/L and as much as 170 mL less solution at 0.5 Bq/L to exceed the control limit than the Shewhart 3-sigma method. The Poisson SR method needed as little as 6.20 mL less solution at 5 Bq/L and up to 125 mL less solution at 0.5 Bq/L to exceed the control limit than the CUSUM method. The Gaussian SR and CUSUM method required comparable solution volumes for test

  4. OLAM: A wearable, non-contact sensor for continuous heart-rate and activity monitoring.

    PubMed

    Albright, Ryan K; Goska, Benjamin J; Hagen, Tory M; Chi, Mike Y; Cauwenberghs, G; Chiang, Patrick Y

    2011-01-01

    A wearable, multi-modal sensor is presented that can non-invasively monitor a patient's activity level and heart function concurrently for more than a week. The 4 in(2) sensor incorporates both a non-contact heartrate sensor and a 5-axis inertial measurement unit (IMU), allowing simultaneous heart, respiration, and movement monitoring without requiring physical contact with the skin [1]. Hence, this Oregon State University Life and Activity Monitor (OLAM) provides the unique opportunity to combine motion data with heart-rate information, enabling assessment of actual physical activity beyond conventional movement sensors. OLAM also provides a unique platform for non-contact sensing, enabling the filtering of movement artifacts generated by the non-contact capacitive interface, using the IMU data as a movement noise channel. Intended to be used in clinical trials for weeks at a time with no physician intervention, the OLAM allows continuous non-invasive monitoring of patients, providing the opportunity for long-term observation into a patient's physical activity and subtle longitudinal changes.

  5. Monitoring of Crew Activity with FAMOS

    NASA Astrophysics Data System (ADS)

    Wolf, L.; Cajochen, C.; Bromundt, V.

    2007-10-01

    The success of long duration space missions, such as manned missions to Mars, depends on high and sustained levels of vigilance and performance of astronauts and operators working in the technology rich environment of a spacecraft. Experiment 'Monitoring of Crew Activity with FAMOS' was set up to obtain operational experience with complimentary methods / technologies to assess the alertness / sleepiness status of selected AustroMars crewmembers on a daily basis. We applied a neurobehavioral test battery consisting of 1) Karolinska Sleepiness Scale KSS, 2) Karolinska Drowsiness Test KDT, 3) Psychomotor Vigilance Task PVT, combined with 4) left eye video recordings with an early prototype of the FAMOS Fatigue Monitoring System headset currently being developed by Sowoon Technologies (CH), and 5) Actiwatches that were worn continuously. A test battery required approximately 15 minutes and was repeated up to 4 times daily by 2 to 4 subjects. Here we present the data analysis of methods 1, 2, 3, and 5, while data analysis of method 4 is still in progress.

  6. AAC Best Practice Using Automated Language Activity Monitoring.

    ERIC Educational Resources Information Center

    Hill, Katya; Romich, Barry

    This brief paper describes automated language activity monitoring (LAM), an augmentative and alternative communication (AAC) methodology for the collection, editing, and analysis of language data in structured or natural situations with people who have severe communication disorders. The LAM function records each language event (letters, words,…

  7. A daily living activity remote monitoring system for solitary elderly people.

    PubMed

    Maki, Hiromichi; Ogawa, Hidekuni; Matsuoka, Shingo; Yonezawa, Yoshiharu; Caldwell, W Morton

    2011-01-01

    A daily living activity remote monitoring system has been developed for supporting solitary elderly people. The monitoring system consists of a tri-axis accelerometer, six low-power active filters, a low-power 8-bit microcontroller (MC), a 1GB SD memory card (SDMC) and a 2.4 GHz low transmitting power mobile phone (PHS). The tri-axis accelerometer attached to the subject's chest can simultaneously measure dynamic and static acceleration forces produced by heart sound, respiration, posture and behavior. The heart rate, respiration rate, activity, posture and behavior are detected from the dynamic and static acceleration forces. These data are stored in the SD. The MC sends the data to the server computer every hour. The server computer stores the data and makes a graphic chart from the data. When the caregiver calls from his/her mobile phone to the server computer, the server computer sends the graphical chart via the PHS. The caregiver's mobile phone displays the chart to the monitor graphically.

  8. Statistical Analysis of Time-Series from Monitoring of Active Volcanic Vents

    NASA Astrophysics Data System (ADS)

    Lachowycz, S.; Cosma, I.; Pyle, D. M.; Mather, T. A.; Rodgers, M.; Varley, N. R.

    2016-12-01

    Despite recent advances in the collection and analysis of time-series from volcano monitoring, and the resulting insights into volcanic processes, challenges remain in forecasting and interpreting activity from near real-time analysis of monitoring data. Statistical methods have potential to characterise the underlying structure and facilitate intercomparison of these time-series, and so inform interpretation of volcanic activity. We explore the utility of multiple statistical techniques that could be widely applicable to monitoring data, including Shannon entropy and detrended fluctuation analysis, by their application to various data streams from volcanic vents during periods of temporally variable activity. Each technique reveals changes through time in the structure of some of the data that were not apparent from conventional analysis. For example, we calculate the Shannon entropy (a measure of the randomness of a signal) of time-series from the recent dome-forming eruptions of Volcán de Colima (Mexico) and Soufrière Hills (Montserrat). The entropy of real-time seismic measurements and the count rate of certain volcano-seismic event types from both volcanoes is found to be temporally variable, with these data generally having higher entropy during periods of lava effusion and/or larger explosions. In some instances, the entropy shifts prior to or coincident with changes in seismic or eruptive activity, some of which were not clearly recognised by real-time monitoring. Comparison with other statistics demonstrates the sensitivity of the entropy to the data distribution, but that it is distinct from conventional statistical measures such as coefficient of variation. We conclude that each analysis technique examined could provide valuable insights for interpretation of diverse monitoring time-series.

  9. Activity Learning as a Foundation for Security Monitoring in Smart Homes.

    PubMed

    Dahmen, Jessamyn; Thomas, Brian L; Cook, Diane J; Wang, Xiaobo

    2017-03-31

    Smart environment technology has matured to the point where it is regularly used in everyday homes as well as research labs. With this maturation of the technology, we can consider using smart homes as a practical mechanism for improving home security. In this paper, we introduce an activity-aware approach to security monitoring and threat detection in smart homes. We describe our approach using the CASAS smart home framework and activity learning algorithms. By monitoring for activity-based anomalies we can detect possible threats and take appropriate action. We evaluate our proposed method using data collected in CASAS smart homes and demonstrate the partnership between activity-aware smart homes and biometric devices in the context of the CASAS on-campus smart apartment testbed.

  10. Activity Learning as a Foundation for Security Monitoring in Smart Homes

    PubMed Central

    Dahmen, Jessamyn; Thomas, Brian L.; Cook, Diane J.; Wang, Xiaobo

    2017-01-01

    Smart environment technology has matured to the point where it is regularly used in everyday homes as well as research labs. With this maturation of the technology, we can consider using smart homes as a practical mechanism for improving home security. In this paper, we introduce an activity-aware approach to security monitoring and threat detection in smart homes. We describe our approach using the CASAS smart home framework and activity learning algorithms. By monitoring for activity-based anomalies we can detect possible threats and take appropriate action. We evaluate our proposed method using data collected in CASAS smart homes and demonstrate the partnership between activity-aware smart homes and biometric devices in the context of the CASAS on-campus smart apartment testbed. PMID:28362342

  11. An IoT-Based Solution for Monitoring a Fleet of Educational Buildings Focusing on Energy Efficiency.

    PubMed

    Amaxilatis, Dimitrios; Akrivopoulos, Orestis; Mylonas, Georgios; Chatzigiannakis, Ioannis

    2017-10-10

    Raising awareness among young people and changing their behaviour and habits concerning energy usage is key to achieving sustained energy saving. Additionally, young people are very sensitive to environmental protection so raising awareness among children is much easier than with any other group of citizens. This work examines ways to create an innovative Information & Communication Technologies (ICT) ecosystem (including web-based, mobile, social and sensing elements) tailored specifically for school environments, taking into account both the users (faculty, staff, students, parents) and school buildings, thus motivating and supporting young citizens' behavioural change to achieve greater energy efficiency. A mixture of open-source IoT hardware and proprietary platforms on the infrastructure level, are currently being utilized for monitoring a fleet of 18 educational buildings across 3 countries, comprising over 700 IoT monitoring points. Hereon presented is the system's high-level architecture, as well as several aspects of its implementation, related to the application domain of educational building monitoring and energy efficiency. The system is developed based on open-source technologies and services in order to make it capable of providing open IT-infrastructure and support from different commercial hardware/sensor vendors as well as open-source solutions. The system presented can be used to develop and offer new app-based solutions that can be used either for educational purposes or for managing the energy efficiency of the building. The system is replicable and adaptable to settings that may be different than the scenarios envisioned here (e.g., targeting different climate zones), different IT infrastructures and can be easily extended to accommodate integration with other systems. The overall performance of the system is evaluated in real-world environment in terms of scalability, responsiveness and simplicity.

  12. An IoT-Based Solution for Monitoring a Fleet of Educational Buildings Focusing on Energy Efficiency

    PubMed Central

    Akrivopoulos, Orestis

    2017-01-01

    Raising awareness among young people and changing their behaviour and habits concerning energy usage is key to achieving sustained energy saving. Additionally, young people are very sensitive to environmental protection so raising awareness among children is much easier than with any other group of citizens. This work examines ways to create an innovative Information & Communication Technologies (ICT) ecosystem (including web-based, mobile, social and sensing elements) tailored specifically for school environments, taking into account both the users (faculty, staff, students, parents) and school buildings, thus motivating and supporting young citizens’ behavioural change to achieve greater energy efficiency. A mixture of open-source IoT hardware and proprietary platforms on the infrastructure level, are currently being utilized for monitoring a fleet of 18 educational buildings across 3 countries, comprising over 700 IoT monitoring points. Hereon presented is the system’s high-level architecture, as well as several aspects of its implementation, related to the application domain of educational building monitoring and energy efficiency. The system is developed based on open-source technologies and services in order to make it capable of providing open IT-infrastructure and support from different commercial hardware/sensor vendors as well as open-source solutions. The system presented can be used to develop and offer new app-based solutions that can be used either for educational purposes or for managing the energy efficiency of the building. The system is replicable and adaptable to settings that may be different than the scenarios envisioned here (e.g., targeting different climate zones), different IT infrastructures and can be easily extended to accommodate integration with other systems. The overall performance of the system is evaluated in real-world environment in terms of scalability, responsiveness and simplicity. PMID:28994719

  13. The Canadian Immunization Monitoring Program, ACTive (IMPACT): Active surveillance for vaccine adverse events and vaccine-preventable diseases

    PubMed Central

    Bettinger, JA; Halperin, SA; Vaudry, W; Law, BJ; Scheifele, DW

    2014-01-01

    For almost 25 years the Canadian Immunization Monitoring Program, ACTive (IMPACT) has been conducting active surveillance for severe adverse events following immunization (AEFIs) and vaccine-preventable diseases in children. The network, which consists of volunteer paediatric infectious diseases investigators at 12 tertiary care paediatric hospitals, is an important component of Canada’s AEFI monitoring. The network employs nurses at each of the sites to search for and report possible AEFIs to local, provincial and national public health authorities. The active nature of the surveillance ensures a high level of vigilance for severe AEFIs in children. PMID:29769912

  14. Relation Between the Adsorbed Quantity and the Immersion Enthalpy in Catechol Aqueous Solutions on Activated Carbons

    PubMed Central

    Moreno-Piraján, Juan Carlos; Blanco, Diego; Giraldo, Liliana

    2012-01-01

    An activated carbon, CarbochemTM—PS230, was modified by chemical and thermal treatment in flow of H2, in order to evaluate the influence of the activated carbon chemical characteristics in the adsorption of the catechol. The catechol adsorption in aqueous solution was studied along with the effect of the pH solution in the adsorption process of modified activated carbons and the variation of immersion enthalpy of activated carbons in the aqueous solutions of catechol. The interaction solid-solution is characterized by adsorption isotherms analysis, at 298 K and pH 7, 9 and 11 in order to evaluate the adsorption value above and below that of the catechol pKa. The adsorption capacity of carbons increases when the solution pH decreases. The retained amount increases slightly in the reduced carbon to maximum adsorption pH and diminishes in the oxidized carbon. Similar conclusions are obtained from the immersion enthalpies, whose values increase with the solute quantity retained. In granular activated carbon (CAG), the immersion enthalpies obtained are between 21.5 and 45.7 J·g−1 for catechol aqueous solutions in a range of 20 at 1500 mg·L−1. PMID:22312237

  15. Relation between the adsorbed quantity and the immersion enthalpy in catechol aqueous solutions on activated carbons.

    PubMed

    Moreno-Piraján, Juan Carlos; Blanco, Diego; Giraldo, Liliana

    2012-01-01

    An activated carbon, Carbochem(TM)-PS230, was modified by chemical and thermal treatment in flow of H(2), in order to evaluate the influence of the activated carbon chemical characteristics in the adsorption of the catechol. The catechol adsorption in aqueous solution was studied along with the effect of the pH solution in the adsorption process of modified activated carbons and the variation of immersion enthalpy of activated carbons in the aqueous solutions of catechol. The interaction solid-solution is characterized by adsorption isotherms analysis, at 298 K and pH 7, 9 and 11 in order to evaluate the adsorption value above and below that of the catechol pK(a). The adsorption capacity of carbons increases when the solution pH decreases. The retained amount increases slightly in the reduced carbon to maximum adsorption pH and diminishes in the oxidized carbon. Similar conclusions are obtained from the immersion enthalpies, whose values increase with the solute quantity retained. In granular activated carbon (CAG), the immersion enthalpies obtained are between 21.5 and 45.7 J·g(-1) for catechol aqueous solutions in a range of 20 at 1500 mg·L(-1).

  16. An overview of existing raptor contaminant monitoring activities in Europe.

    PubMed

    Gómez-Ramírez, P; Shore, R F; van den Brink, N W; van Hattum, B; Bustnes, J O; Duke, G; Fritsch, C; García-Fernández, A J; Helander, B O; Jaspers, V; Krone, O; Martínez-López, E; Mateo, R; Movalli, P; Sonne, C

    2014-06-01

    Biomonitoring using raptors as sentinels can provide early warning of the potential impacts of contaminants on humans and the environment and also a means of tracking the success of associated mitigation measures. Examples include detection of heavy metal-induced immune system impairment, PCB-induced altered reproductive impacts, and toxicity associated with lead in shot game. Authorisation of such releases and implementation of mitigation is now increasingly delivered through EU-wide directives but there is little established pan-European monitoring to quantify outcomes. We investigated the potential for EU-wide coordinated contaminant monitoring using raptors as sentinels. We did this using a questionnaire to ascertain the current scale of national activity across 44 European countries. According to this survey, there have been 52 different contaminant monitoring schemes with raptors over the last 50years. There were active schemes in 15 (predominantly western European) countries and 23 schemes have been running for >20years; most monitoring was conducted for >5years. Legacy persistent organic compounds (specifically organochlorine insecticides and PCBs), and metals/metalloids were monitored in most of the 15 countries. Fungicides, flame retardants and anticoagulant rodenticides were also relatively frequently monitored (each in at least 6 countries). Common buzzard (Buteo buteo), common kestrel (Falco tinnunculus), golden eagle (Aquila chrysaetos), white-tailed sea eagle (Haliaeetus albicilla), peregrine falcon (Falco peregrinus), tawny owl (Strix aluco) and barn owl (Tyto alba) were most commonly monitored (each in 6-10 countries). Feathers and eggs were most widely analysed although many schemes also analysed body tissues. Our study reveals an existing capability across multiple European countries for contaminant monitoring using raptors. However, coordination between existing schemes and expansion of monitoring into Eastern Europe is needed. This would enable

  17. A pilot crossover study: effects of an intervention using an activity monitor with computerized game functions on physical activity and body composition.

    PubMed

    Nishiwaki, Masato; Kuriyama, Akinori; Ikegami, Yumi; Nakashima, Nana; Matsumoto, Naoyuki

    2014-12-02

    Wearing an activity monitor as a motivational tool and incorporating a behavior-based reward system or a computerized game element might have a synergistic effect on an increase in daily physical activity, thereby inducing body fat reduction. This pilot crossover study aimed to examine the effects of a short-term lifestyle intervention using an activity monitor with computerized game functions on physical activity and body composition. Twenty healthy volunteers (31 ± 3 years) participated in a 12-week crossover study. The participants were randomly assigned to either Group A (a 6-week game intervention followed by a 6-week normal intervention) or Group B (a 6-week normal intervention followed by a 6-week game intervention). The participants wore both a normal activity monitor (Lifecorder EX) and an activity monitor with computerized game functions (Yuuhokei) during the game intervention, whereas they only wore a normal activity monitor during the normal intervention. Before, during, and after the intervention, body composition was assessed. Significantly more daily steps were recorded for the game intervention than for the normal intervention (10,520 ± 562 versus 8,711 ± 523 steps/day, P < 0.01). The participants performed significantly more physical activity at an intensity of ≥ 3 metabolic equivalents (METs) in the game intervention than in the normal intervention (3.1 ± 0.2 versus 2.4 ± 0.2 METs · hour/day, P < 0.01). Although body mass and fat were significantly reduced in both periods (P < 0.01), the difference in body fat reduction was significantly greater in the game intervention than in the normal intervention (P < 0.05). A short-term intervention using an activity monitor with computerized game functions increases physical activity and reduces body fat more effectively than an intervention using a standard activity monitor.

  18. 21 CFR 312.87 - Active monitoring of conduct and evaluation of clinical trials.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 5 2011-04-01 2011-04-01 false Active monitoring of conduct and evaluation of clinical trials. 312.87 Section 312.87 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... to Treat Life-threatening and Severely-debilitating Illnesses § 312.87 Active monitoring of conduct...

  19. 21 CFR 312.87 - Active monitoring of conduct and evaluation of clinical trials.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 5 2012-04-01 2012-04-01 false Active monitoring of conduct and evaluation of clinical trials. 312.87 Section 312.87 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... to Treat Life-threatening and Severely-debilitating Illnesses § 312.87 Active monitoring of conduct...

  20. 21 CFR 312.87 - Active monitoring of conduct and evaluation of clinical trials.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 5 2014-04-01 2014-04-01 false Active monitoring of conduct and evaluation of clinical trials. 312.87 Section 312.87 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... to Treat Life-threatening and Severely-debilitating Illnesses § 312.87 Active monitoring of conduct...

  1. 21 CFR 312.87 - Active monitoring of conduct and evaluation of clinical trials.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 5 2013-04-01 2013-04-01 false Active monitoring of conduct and evaluation of clinical trials. 312.87 Section 312.87 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... to Treat Life-threatening and Severely-debilitating Illnesses § 312.87 Active monitoring of conduct...

  2. Modified cotton gauze dressings that selectively absorb neutrophil elastase activity in solution.

    PubMed

    Edwards, J V; Yager, D R; Cohen, I K; Diegelmann, R F; Montante, S; Bertoniere, N; Bopp, A F

    2001-01-01

    Dressings for chronic human wounds have been aimed at protection, removal of exudate, and improved appearance. However since the time of ancient Greece wound care and dressing strategies have primarily relied on empiricism. Recent studies have shown that chronic wounds contain high levels of tissue and cytokine destroying proteases including collagenase and neutrophil elastase. Therefore we sought to develop an effective wound dressing that could absorb elastase through affinity sequestration. Cotton gauze was modified by oxidation, phosphorylation, and sulfonation to enhance elastase affinity by ionic or active site uptake. Type VII absorbent cotton gauze was oxidized to dialdehyde cotton which was subsequently converted in part to the bisulfite addition product. Gauze preparations were also phosphorylated and carboxymethylated. Modified cotton gauzes were compared with untreated gauze for reduction of elastase activity in buffered saline. Solutions of elastase that were soaked in oxidized, sulfonated, and phosphorylated cotton gauze showed reduced elastase activity. The initial velocities (v(o)) and turnover rates of elastase showed significant decreases compared with solutions taken from untreated gauze. The reduction in enzyme activity with dialdehyde cotton gauze was confirmed in solution by determining elastase inhibition with dialdehyde starch. The dialdehyde cotton gauze also decreased elastase activity in human wound fluid in a dose response relation based on weight of gauze per volume of wound fluid. Absorbency, pH, air permeability and strength properties of the modified gauze were also compared with untreated cotton gauze. This report shows the effect of reducing elastase activity in solution with cotton containing aldehydic or negatively charged cellulose fibers that may be applicable to treatment modalities in chronic wounds.

  3. Regenerable activated bauxite adsorbent alkali monitor probe

    DOEpatents

    Lee, S.H.D.

    1992-12-22

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases. 6 figs.

  4. Chlorovirus-mediated membrane depolarization of Chlorella alters secondary active transport of solutes.

    PubMed

    Agarkova, Irina; Dunigan, David; Gurnon, James; Greiner, Timo; Barres, Julia; Thiel, Gerhard; Van Etten, James L

    2008-12-01

    Paramecium bursaria chlorella virus 1 (PBCV-1) is the prototype of a family of large, double-stranded DNA, plaque-forming viruses that infect certain eukaryotic chlorella-like green algae from the genus Chlorovirus. PBCV-1 infection results in rapid host membrane depolarization and potassium ion release. One interesting feature of certain chloroviruses is that they code for functional potassium ion-selective channel proteins (Kcv) that are considered responsible for the host membrane depolarization and, as a consequence, the efflux of potassium ions. This report examines the relationship between cellular depolarization and solute uptake. Annotation of the virus host Chlorella strain NC64A genome revealed 482 putative transporter-encoding genes; 224 are secondary active transporters. Solute uptake experiments using seven radioactive compounds revealed that virus infection alters the transport of all the solutes. However, the degree of inhibition varied depending on the solute. Experiments with nystatin, a drug known to depolarize cell membranes, produced changes in solute uptake that are similar but not identical to those that occurred during virus infection. Therefore, these studies indicate that chlorovirus infection causes a rapid and sustained depolarization of the host plasma membrane and that this depolarization leads to the inhibition of secondary active transporters that changes solute uptake.

  5. Monitoring activities of daily living based on wearable wireless body sensor network.

    PubMed

    Kańtoch, E; Augustyniak, P; Markiewicz, M; Prusak, D

    2014-01-01

    With recent advances in microprocessor chip technology, wireless communication, and biomedical engineering it is possible to develop miniaturized ubiquitous health monitoring devices that are capable of recording physiological and movement signals during daily life activities. The aim of the research is to implement and test the prototype of health monitoring system. The system consists of the body central unit with Bluetooth module and wearable sensors: the custom-designed ECG sensor, the temperature sensor, the skin humidity sensor and accelerometers placed on the human body or integrated with clothes and a network gateway to forward data to a remote medical server. The system includes custom-designed transmission protocol and remote web-based graphical user interface for remote real time data analysis. Experimental results for a group of humans who performed various activities (eg. working, running, etc.) showed maximum 5% absolute error compared to certified medical devices. The results are promising and indicate that developed wireless wearable monitoring system faces challenges of multi-sensor human health monitoring during performing daily activities and opens new opportunities in developing novel healthcare services.

  6. Combining fast walking training and a step activity monitoring program to improve daily walking activity after stroke: a preliminary study

    PubMed Central

    Danks, Kelly A.; Pohlig, Ryan; Reisman, Darcy S.

    2016-01-01

    Objective To determine preliminary efficacy and to identify baseline characteristics predicting who would benefit most from fast walking training plus a step activity monitoring program (FAST+SAM) compared to fast walking training alone (FAST) in persons with chronic stroke. Design Randomized controlled trial with blinded assessors Setting Outpatient clinical research laboratory Participants 37 individuals greater than 6 months post-stroke. Interventions Subjects were assigned to either FAST which was walking training at their fastest possible speed on the treadmill (30 minutes) and over ground 3 times/week for 12 weeks or FAST plus a step activity monitoring program (FAST+SAM). The step activity monitoring program consisted of daily step monitoring with a StepWatch Activity monitor, goal setting, and identification of barriers to activity and strategies to overcome barriers. Main Outcome Measures Daily step activity metrics (steps/day, time walking/day), walking speed and six minute walk test distance (6MWT). Results There was a significant effect of time for both groups with all outcomes improving from pre to post-training, (all p<0.05). The FAST+SAM was superior to FAST for 6MWT (p=0.018), with a larger increase in the FAST+SAM group. The interventions had differential effectiveness based on baseline step activity. Sequential moderated regression models demonstrated that for subjects with baseline levels of step activity and 6MWT distances that were below the mean, the FAST+SAM intervention was more effective than FAST (1715±1584 vs. 254±933 steps/day, respectively; p<0.05 for overall model and ΔR2 for steps/day and 6MWT). Conclusions The addition of a step activity monitoring program to a fast walking training intervention may be most effective in persons with chronic stroke that have initial low levels of walking endurance and activity. Regardless of baseline performance, the FAST + SAM intervention was more effective for improving walking endurance. PMID

  7. Low-power sensor module for long-term activity monitoring.

    PubMed

    Leuenberger, Kaspar; Gassert, Roger

    2011-01-01

    Wearable sensor modules are a promising approach to collecting data on functional motor activities, both for repeated and long-term assessments, as well as to investigate the transfer of therapy to activities of daily living at home, but have so far either had limited sensing capabilities, or were not laid out for long-term monitoring. This paper presents ReSense, a miniature sensor unit optimized for long-term monitoring of functional activity. Inertial MEMS sensors capture accelerations along six degrees of freedom and a barometric pressure sensor serves as a precise altimeter. Data is written to an integrated memory card. The realized module measures Ø25 × 10 mm, weighs 10 g and can record continuously for 27 h at 25 Hz and over 22 h at 100 Hz. The integrated power-management system detects inactivity and extends the operating time by about a factor of two, as shown by initial 24 h recordings on five energetic healthy adults. The integrated barometric pressure sensor allowed to identify activities incorporating a change in altitude, such as going up/down stairs or riding an elevator. By taking into account data from the inertial sensors during the altitude changes, it becomes possible to distinguish between these two activities.

  8. Testing the applicability of rapid on-site enzymatic activity detection for surface water monitoring

    NASA Astrophysics Data System (ADS)

    Stadler, Philipp; Vogl, Wolfgang; Juri, Koschelnik; Markus, Epp; Maximilian, Lackner; Markus, Oismüller; Monika, Kumpan; Peter, Strauss; Regina, Sommer; Gabriela, Ryzinska-Paier; Farnleitner Andreas, H.; Matthias, Zessner

    2015-04-01

    On-site detection of enzymatic activities has been suggested as a rapid surrogate for microbiological pollution monitoring of water resources (e.g. using glucuronidases, galactosidases, esterases). Due to the possible short measuring intervals enzymatic methods have high potential as near-real time water quality monitoring tools. This presentation describes results from a long termed field test. For twelve months, two ColiMinder devices (Vienna Water Monitoring, Austria) for on-site determination of enzymatic activity were tested for stream water monitoring at the experimental catchment HOAL (Hydrological Open Air Laboratory, Center for Water Resource Systems, Vienna University of Technology). The devices were overall able to follow and reflect the diverse hydrological and microbiological conditions of the monitored stream during the test period. Continuous data in high temporal resolution captured the course of enzymatic activity in stream water during diverse rainfall events. The method also proofed sensitive enough to determine diurnal fluctuations of enzymatic activity in stream water during dry periods. The method was able to capture a seasonal trend of enzymatic activity in stream water that matches the results gained from Colilert18 analysis for E. coli and coliform bacteria of monthly grab samples. Furthermore the comparison of ColiMinder data with measurements gained at the same test site with devices using the same method but having different construction design (BACTcontrol, microLAN) showed consistent measuring results. Comparative analysis showed significant differences between measured enzymatic activity (modified fishman units and pmol/min/100ml) and cultivation based analyses (most probable number, colony forming unit). Methods of enzymatic activity measures are capable to detect ideally the enzymatic activity caused by all active target bacteria members, including VBNC (viable but nonculturable) while cultivation based methods cannot detect VBNC

  9. A Wearable System for Real-Time Continuous Monitoring of Physical Activity

    PubMed Central

    2018-01-01

    Over the last decades, wearable systems have gained interest for monitoring of physiological variables, promoting health, and improving exercise adherence in different populations ranging from elite athletes to patients. In this paper, we present a wearable system for the continuous real-time monitoring of respiratory frequency (fR), heart rate (HR), and movement cadence during physical activity. The system has been experimentally tested in the laboratory (by simulating the breathing pattern with a mechanical ventilator) and by collecting data from one healthy volunteer. Results show the feasibility of the proposed device for real-time continuous monitoring of fR, HR, and movement cadence both in resting condition and during activity. Finally, different synchronization techniques have been investigated to enable simultaneous data collection from different wearable modules. PMID:29849993

  10. 4D monitoring of actively failing rockslopes

    NASA Astrophysics Data System (ADS)

    Rosser, Nick; Williams, Jack; Hardy, Richard; Brain, Matthew

    2017-04-01

    Assessing the conditions which promote rockfall to collapse relies upon detailed monitoring, ideally before, during and immediately after failure. With standard repeat surveys it is common that surveys do not coincide with or capture precursors, or that surveys are widely spaced relative to the timing and duration of driving forces such as storms. As a result gaining insight into the controls on failure and the timescales over which precursors operate remains difficult to establish with certainty, and establishing direct links between environmental conditions and rock-falls, or sequences of events prior to rockfall, remain difficult to define. To address this, we present analysis of a high-frequency 3D laser scan dataset captured using a new permanently installed system developed to constantly monitor actively failing rock slopes. The system is based around a time of flight laser scanner, integrated with and remotely controlled by dedicated controls and analysis software. The system is configured to capture data at 0.1 m spacing across > 22,000 m3 at up to 30 minute intervals. Here we present results captured with this system over a period of 9 months, spanning spring to winter 2015. Our analysis is focussed upon improving the understanding of the nature of small (< 1m^3) rockfalls falling from near vertical rock cliffs. We focus here on the development of a set of algorithms for differencing that trade-off the temporal resolution of frequent surveys (hourly) against high spatial resolution point clouds (< 0.05 m) to enhance the precision of change detection, allowing both deformation and detachments to be monitored through time. From this dataset we derive rockfall volume frequency distributions based upon short-interval surveys, and identify the presence and/or absence of precursors, in what we believe to be the first constant volumetric measurement of rock face erosion. The results hold implications for understanding of rockfall mechanics, but also for how

  11. Activation energy and entropy for viscosity of wormlike micelle solutions.

    PubMed

    Chandler, H D

    2013-11-01

    The viscosities of two surfactant solutions which form wormlike micelles (WLMs) were studied over a range of temperatures and strain rates. WLM solutions appear to differ from many other shear thinning systems in that, as the shear rate increases, stress-shear rate curves tend to converge with temperature rather than diverge and this can sometimes lead to higher temperature curves crossing those at lower. Behaviour was analysed in terms of activation kinetics. It is suggested that two mechanisms are involved: Newtonian flow, following an Arrhenius law superimposed on a non-Newtonian flow described by a stress assisted kinetic law, this being a more general form of the Arrhenius law. Anomalous flow is introduced into the kinetic equation via a stress dependent activation entropy term. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Continuous Activity Monitoring During Concurrent Chemoradiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohri, Nitin, E-mail: ohri.nitin@gmail.com; Kabarriti, Rafi; Bodner, William R.

    Purpose: To perform a prospective trial testing the feasibility and utility of acquiring activity data as a measure of health status during concurrent chemoradiotherapy. Methods and Materials: Ambulatory patients who were planned for treatment with concurrent chemoradiotherapy with curative intent for cancers of the head and neck, lung, or gastrointestinal tract were provided with activity monitors before treatment initiation. Patients were asked to wear the devices continuously throughout the radiation therapy course. Step count data were downloaded weekly during radiation therapy and 2 and 4 weeks after radiation therapy completion. The primary objective was to demonstrate feasibility, defined as collection ofmore » step counts for 80% of the days during study subjects' radiation therapy courses. Secondary objectives included establishing step count as a dynamic predictor of unplanned hospitalization risk. Results: Thirty-eight enrolled patients were treated with concurrent chemoradiotherapy. Primary diagnoses included head and neck cancer (n=11), lung cancer (n=13), and a variety of gastrointestinal cancers (n=14). Step data were collected for 1524 of 1613 days (94%) during patients' radiation therapy courses. Fourteen patients were hospitalized during radiation therapy or within 4 weeks of radiation therapy completion. Cox regression modeling demonstrated a significant association between recent step counts (3-day average) and hospitalization risk, with a 38% reduction in the risk of hospitalization for every 1000 steps taken each day (hazard ratio 0.62, 95% confidence interval 0.46-0.83, P=.002). Inferior quality of life scores and impaired performance status were not associated with increased hospitalization risk. Conclusion: Continuous activity monitoring during concurrent chemoradiotherapy is feasible and well-tolerated. Step counts may serve as powerful, objective, and dynamic indicators of hospitalization risk.« less

  13. A framework for supervising lifestyle diseases using long-term activity monitoring.

    PubMed

    Han, Yongkoo; Han, Manhyung; Lee, Sungyoung; Sarkar, A M Jehad; Lee, Young-Koo

    2012-01-01

    Activity monitoring of a person for a long-term would be helpful for controlling lifestyle associated diseases. Such diseases are often linked with the way a person lives. An unhealthy and irregular standard of living influences the risk of such diseases in the later part of one's life. The symptoms and the initial signs of these diseases are common to the people with irregular lifestyle. In this paper, we propose a novel healthcare framework to manage lifestyle diseases using long-term activity monitoring. The framework recognizes the user's activities with the help of the sensed data in runtime and reports the irregular and unhealthy activity patterns to a doctor and a caregiver. The proposed framework is a hierarchical structure that consists of three modules: activity recognition, activity pattern generation and lifestyle disease prediction. We show that it is possible to assess the possibility of lifestyle diseases from the sensor data. We also show the viability of the proposed framework.

  14. Solution Behavior and Activity of a Halophilic Esterase under High Salt Concentration

    PubMed Central

    Rao, Lang; Zhao, Xiubo; Pan, Fang; Li, Yin; Xue, Yanfen; Ma, Yanhe; Lu, Jian R.

    2009-01-01

    Background Halophiles are extremophiles that thrive in environments with very high concentrations of salt. Although the salt reliance and physiology of these extremophiles have been widely investigated, the molecular working mechanisms of their enzymes under salty conditions have been little explored. Methodology/Principal Findings A halophilic esterolytic enzyme LipC derived from archeaon Haloarcula marismortui was overexpressed from Escherichia coli BL21. The purified enzyme showed a range of hydrolytic activity towards the substrates of p-nitrophenyl esters with different alkyl chains (n = 2−16), with the highest activity being observed for p-nitrophenyl acetate, consistent with the basic character of an esterase. The optimal esterase activities were found to be at pH 9.5 and [NaCl] = 3.4 M or [KCl] = 3.0 M and at around 45°C. Interestingly, the hydrolysis activity showed a clear reversibility against changes in salt concentration. At the ambient temperature of 22°C, enzyme systems working under the optimal salt concentrations were very stable against time. Increase in temperature increased the activity but reduced its stability. Circular dichroism (CD), dynamic light scattering (DLS) and small angle neutron scattering (SANS) were deployed to determine the physical states of LipC in solution. As the salt concentration increased, DLS revealed substantial increase in aggregate sizes, but CD measurements revealed the maximal retention of the α-helical structure at the salt concentration matching the optimal activity. These observations were supported by SANS analysis that revealed the highest proportion of unimers and dimers around the optimal salt concentration, although the coexistent larger aggregates showed a trend of increasing size with salt concentration, consistent with the DLS data. Conclusions/Significance The solution α-helical structure and activity relation also matched the highest proportion of enzyme unimers and dimers. Given that

  15. Bioluminescence Monitoring of Neuronal Activity in Freely Moving Zebrafish Larvae

    PubMed Central

    Knafo, Steven; Prendergast, Andrew; Thouvenin, Olivier; Figueiredo, Sophie Nunes; Wyart, Claire

    2017-01-01

    The proof of concept for bioluminescence monitoring of neural activity in zebrafish with the genetically encoded calcium indicator GFP-aequorin has been previously described (Naumann et al., 2010) but challenges remain. First, bioluminescence signals originating from a single muscle fiber can constitute a major pitfall. Second, bioluminescence signals emanating from neurons only are very small. To improve signals while verifying specificity, we provide an optimized 4 steps protocol achieving: 1) selective expression of a zebrafish codon-optimized GFP-aequorin, 2) efficient soaking of larvae in GFP-aequorin substrate coelenterazine, 3) bioluminescence monitoring of neural activity from motor neurons in free-tailed moving animals performing acoustic escapes and 4) verification of the absence of muscle expression using immunohistochemistry. PMID:29130058

  16. A computerized system to monitor resilience indicators in organizations.

    PubMed

    de Carvalho, Paulo Victor Rodrigues; de Souza, Alan Pinheiro; Gomes, Jose Orlando

    2012-01-01

    The concepts developed by resilience engineering allow the understanding and monitoring the functioning of organizations and, particularly, to map the role of human activities, in success or in failure, enabling a better comprehension about how people make decisions in unexpected situations. The capture of information about human activities in the various organization levels gives managers a deeper real-time understanding of what is influencing the people performance, providing awareness of the factors that influence positively or negatively the organizational goals initially projected. The monitoring is important because the correct functioning of complex systems depends on the knowledge that people have to perform their activities and how the system environment provides tools that actually support the human performance. Therefore, organizations should look forward through precursors in operating signals to identify possible problems or solutions in the structure of tasks and activities, safety, quality, schedule, rework, and maintenance. We apply the concepts of resilience engineering to understand the organization by the analysis of cognitive tasks and activities. The aim is the development of a computerized system to monitor human activities to produce indicators to access system resilience. The validation of the approach was made in a real organization and the results show the successful applicability of the system. Based on findings obtained after the experiment of the system in a real organization, and managers and workers opinions, it was possible to show that the use of system provided an anticipated (real-time) perception about how activities are effectively being performed, allowing managers and workers to make decisions more consistent with daily problems, and also to anticipate solutions to cope with unexpected situations.

  17. The adsorption of pharmaceutically active compounds from aqueous solutions onto activated carbons.

    PubMed

    Rakić, Vesna; Rac, Vladislav; Krmar, Marija; Otman, Otman; Auroux, Aline

    2015-01-23

    In this study, the adsorption of pharmaceutically active compounds - salicylic acid, acetylsalicylic acid, atenolol and diclofenac-Na onto activated carbons has been studied. Three different commercial activated carbons, possessing ∼650, 900 or 1500m(2)g(-1) surface areas were used as solid adsorbents. These materials were fully characterized - their textural, surface features and points of zero charge have been determined. The adsorption was studied from aqueous solutions at 303K using batch adsorption experiments and titration microcalorimetry, which was employed in order to obtain the heats evolved as a result of adsorption. The maximal adsorption capacities of investigated solids for all target pharmaceuticals are in the range of 10(-4)molg(-1). The obtained maximal retention capacities are correlated with the textural properties of applied activated carbon. The roles of acid/base features of activated carbons and of molecular structures of adsorbate molecules have been discussed. The obtained results enabled to estimate the possibility to use the activated carbons in the removal of pharmaceuticals by adsorption. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. 77 FR 59664 - Agency Information Collection Activities: Extension Requested; Comments Requested, Monitoring...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-28

    ... DEPARTMENT OF JUSTICE [OMB Number 1103-0100] Agency Information Collection Activities: Extension Requested; Comments Requested, Monitoring Information Collections ACTION: 60-day notice. The Department of.... (2) Title of the Form/Collection: Monitoring Information Collections. (3) Agency form number, if any...

  19. Active Monitoring of Travelers for Ebola Virus Disease-New York City, October 25, 2014-December 29, 2015.

    PubMed

    Saffa, Alhaji; Tate, Anna; Ezeoke, Ifeoma; Jacobs-Wingo, Jasmine; Iqbal, Maryam; Baumgartner, Jennifer; Fine, Anne; Perri, Bianca R; McIntosh, Natasha; Levy Stennis, Natalie; Lee, Kristen; Peterson, Eric; Jones, Lucretia; Helburn, Lisa; Heindrichs, Caroline; Guthartz, Seth; Chamany, Shadi; Starr, David; Scaccia, Allison; Raphael, Marisa; Varma, Jay K; Vora, Neil M

    The CDC recommended active monitoring of travelers potentially exposed to Ebola virus during the 2014 West African Ebola virus disease outbreak, which involved daily contact between travelers and health authorities to ascertain the presence of fever or symptoms for 21 days after the travelers' last potential Ebola virus exposure. From October 25, 2014, to December 29, 2015, the New York City Department of Health and Mental Hygiene (DOHMH) monitored 5,359 persons for Ebola virus disease, corresponding to 5,793 active monitoring events. Most active monitoring events were in travelers classified as low (but not zero) risk (n = 5,778; 99%). There were no gaps in contact with DOHMH of ≥2 days during 95% of active monitoring events. Instances of not making any contact with travelers decreased after CDC began distributing mobile telephones at the airport. Ebola virus disease-like symptoms or a temperature ≥100.0°F were reported in 122 (2%) active monitoring events. In the final month of active monitoring, an optional health insurance enrollment referral was offered for interested travelers, through which 8 travelers are known to have received coverage. Because it is possible that active monitoring will be used again for an infectious threat, the experience we describe might help to inform future such efforts.

  20. Accuracy of 2 activity monitors in detecting steps in people with stroke and traumatic brain injury.

    PubMed

    Fulk, George D; Combs, Stephanie A; Danks, Kelly A; Nirider, Coby D; Raja, Bhavana; Reisman, Darcy S

    2014-02-01

    Advances in sensor technologies and signal processing techniques provide a method to accurately measure walking activity in the home and community. Activity monitors geared toward consumer or patient use may be an alternative to more expensive monitors designed for research to measure stepping activity. The objective of this study was to examine the accuracy of 2 consumer/patient activity monitors, the Fitbit Ultra and the Nike+ Fuelband, in identifying stepping activity in people with stroke and traumatic brain injury (TBI). Secondarily, the study sought to compare the accuracy of these 2 activity monitors with that of the StepWatch Activity Monitor (SAM) and a pedometer, the Yamax Digi-Walker SW-701 pedometer (YDWP). A cross-sectional design was used for this study. People with chronic stroke and TBI wore the 4 activity monitors while they performed the Two-Minute Walk Test (2MWT), during which they were videotaped. Activity monitor estimated steps taken were compared with actual steps taken counted from videotape. Accuracy and agreement between activity monitor estimated steps and actual steps were examined using intraclass correlation coefficients (ICC [2,1]) and the Bland-Altman method. The SAM demonstrated the greatest accuracy (ICC [2,1]=.97, mean difference between actual steps and SAM estimated steps=4.7 steps) followed by the Fitbit Ultra (ICC [2,1]=.73, mean difference between actual steps and Fitbit Ultra estimated steps=-9.7 steps), the YDWP (ICC [2,1]=.42, mean difference between actual steps and YDWP estimated steps=-28.8 steps), and the Nike+ Fuelband (ICC [2,1]=.20, mean difference between actual steps and Nike+ Fuelband estimated steps=-66.2 steps). Walking activity was measured over a short distance in a closed environment, and participants were high functioning ambulators, with a mean gait speed of 0.93 m/s. The Fitbit Ultra may be a low-cost alternative to measure the stepping activity in level, predictable environments of people with stroke

  1. Continuous monitoring of water flow and solute transport using vadose zone monitoring technology

    NASA Astrophysics Data System (ADS)

    Dahan, O.

    2009-04-01

    Groundwater contamination is usually attributed to pollution events that initiate on land surface. These may be related to various sources such as industrial, urban or agricultural, and may appear as point or non point sources, through a single accidental event or a continuous pollution process. In all cases, groundwater pollution is a consequence of pollutant transport processes that take place in the vadose zone above the water table. Attempts to control pollution events and prevent groundwater contamination usually involve groundwater monitoring programs. This, however, can not provide any protection against contamination since pollution identification in groundwater is clear evidence that the groundwater is already polluted and contaminants have already traversed the entire vadose zone. Accordingly, an efficient monitoring program that aims at providing information that may prevent groundwater pollution has to include vadose-zone monitoring systems. Such system should provide real-time information on the hydrological and chemical properties of the percolating water and serve as an early warning system capable of detecting pollution events in their early stages before arrival of contaminants to groundwater. Recently, a vadose-zone monitoring system (VMS) was developed to allow continuous monitoring of the hydrological and chemical properties of percolating water in the deep vadose zone. The VMS includes flexible time-domain reflectometry (FTDR) probes for continuous tracking of water content profiles, and vadose-zone sampling ports (VSPs) for frequent sampling of the deep vadose pore water at multiple depths. The monitoring probes and sampling ports are installed through uncased slanted boreholes using a flexible sleeve that allows attachment of the monitoring devices to the borehole walls while achieving good contact between the sensors and the undisturbed sediment column. The system has been successfully implemented in several studies on water flow and

  2. Combining Fast-Walking Training and a Step Activity Monitoring Program to Improve Daily Walking Activity After Stroke: A Preliminary Study.

    PubMed

    Danks, Kelly A; Pohlig, Ryan; Reisman, Darcy S

    2016-09-01

    To determine preliminary efficacy and to identify baseline characteristics predicting who would benefit most from fast walking training plus a step activity monitoring program (FAST+SAM) compared with fast walking training (FAST) alone in persons with chronic stroke. Randomized controlled trial with blinded assessors. Outpatient clinical research laboratory. Individuals (N=37) >6 months poststroke. Subjects were assigned to either FAST, which was walking training at their fastest possible speed on the treadmill (30min) and overground 3 times per week for 12 weeks, or FAST+SAM. The step activity monitoring program consisted of daily step monitoring with an activity monitor, goal setting, and identification of barriers to activity and strategies to overcome barriers. Daily step activity metrics (steps/day [SPD], time walking per day), walking speed, and 6-minute walk test (6MWT) distance. There was a significant effect of time for both groups, with all outcomes improving from pre- to posttraining (all P values <.05). The FAST+SAM was superior to FAST for 6MWT (P=.018), with a larger increase in the FAST+SAM group. The interventions had differential effectiveness based on baseline step activity. Sequential moderated regression models demonstrated that for subjects with baseline levels of step activity and 6MWT distances that were below the mean, the FAST+SAM intervention was more effective than FAST (1715±1584 vs 254±933 SPD; P<.05 for overall model and ΔR(2) for SPD and 6MWT). The addition of a step activity monitoring program to a fast walking training intervention may be most effective in persons with chronic stroke who have initial low levels of walking endurance and activity. Regardless of baseline performance, the FAST+SAM intervention was more effective for improving walking endurance. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  3. Fabric-based integrated energy devices for wearable activity monitors.

    PubMed

    Jung, Sungmook; Lee, Jongsu; Hyeon, Taeghwan; Lee, Minbaek; Kim, Dae-Hyeong

    2014-09-01

    A wearable fabric-based integrated power-supply system that generates energy triboelectrically using human activity and stores the generated energy in an integrated supercapacitor is developed. This system can be utilized as either a self-powered activity monitor or as a power supply for external wearable sensors. These demonstrations give new insights for the research of wearable electronics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A SOA-Based Solution to Monitor Vaccination Coverage Among HIV-Infected Patients in Liguria.

    PubMed

    Giannini, Barbara; Gazzarata, Roberta; Sticchi, Laura; Giacomini, Mauro

    2016-01-01

    Vaccination in HIV-infected patients constitutes an essential tool in the prevention of the most common infectious diseases. The Ligurian Vaccination in HIV Program is a proposed vaccination schedule specifically dedicated to this risk group. Selective strategies are proposed within this program, employing ICT (Information and Communication) tools to identify this susceptible target group, to monitor immunization coverage over time and to manage failures and defaulting. The proposal is to connect an immunization registry system to an existing regional platform that allows clinical data re-use among several medical structures, to completely manage the vaccination process. This architecture will adopt a Service Oriented Architecture (SOA) approach and standard HSSP (Health Services Specification Program) interfaces to support interoperability. According to the presented solution, vaccination administration information retrieved from the immunization registry will be structured according to the specifications within the immunization section of the HL7 (Health Level 7) CCD (Continuity of Care Document) document. Immunization coverage will be evaluated through the continuous monitoring of serology and antibody titers gathered from the hospital LIS (Laboratory Information System) structured into a HL7 Version 3 (v3) Clinical Document Architecture Release 2 (CDA R2).

  5. UWB Monitoring System for AAL Applications

    PubMed Central

    Kolakowski, Jerzy

    2017-01-01

    Independent living of elderly persons in their homes requires support that can be provided with modern assistive technologies. Monitoring of elderly persons behaviour delivers valuable information that can be used for diagnosis and detection of health problems as well as triggering alerts in emergency situations. The paper includes a description of the ultra wideband system developed within Networked InfrasTructure for Innovative home Care Solutions (NITICS) Active and Assisted Living (AAL) project. The system can be used as a component of AAL platforms. It delivers data on users localization and has a fall detector functionality. The system also provides access to raw measurement results from Microelectromechanical Systems (MEMS) sensors embedded in the device worn by the monitored person. These data can be used in solutions intended for elderly person’s behaviour investigation. The system was investigated under laboratory conditions as well as in home environment. The detailed system description and results of performed tests are included in the article. PMID:28895917

  6. THORON-SCOUT - first diffusion based active Radon and Thoron monitor

    NASA Astrophysics Data System (ADS)

    Wagner, W.; Streil, T.; Oeser, V.; Horak, G.; Duzynski, M.

    2016-10-01

    THORON-SCOUT is a stand-alone diffusion based active Radon and Thoron monitor for long term indoor measurements to evaluate the human health risk due to activity concentration in the breathing air. Alpha-particle spectroscopy of Po isotopes, being the progeny of the decay of the radioactive noble gas Radon, is applied to separately monitor activity contributions of 222Rn and 220Rn (Thoron) as well. In this work we show that the portion of Thoron (Tn) may locally be remarkable and even dominating and cannot be neglected as often has been assumed up to now. Along with tobacco consumption, Rn radioactivity turned out to be a dangerous cause of lung cancer, especially in older badly vented buildings situated in regions of radioactive geological formations. THORON-SCOUT allows a precise examination of the indoor atmosphere with respect to Rn and Inactivity concentration and, therefore, a realistic evaluation of corresponding health risk.

  7. Energy expenditure prediction via a footwear-based physical activity monitor: Accuracy and comparison to other devices

    NASA Astrophysics Data System (ADS)

    Dannecker, Kathryn

    2011-12-01

    Accurately estimating free-living energy expenditure (EE) is important for monitoring or altering energy balance and quantifying levels of physical activity. The use of accelerometers to monitor physical activity and estimate physical activity EE is common in both research and consumer settings. Recent advances in physical activity monitors include the ability to identify specific activities (e.g. stand vs. walk) which has resulted in improved EE estimation accuracy. Recently, a multi-sensor footwear-based physical activity monitor that is capable of achieving 98% activity identification accuracy has been developed. However, no study has compared the EE estimation accuracy for this monitor and compared this accuracy to other similar devices. Purpose . To determine the accuracy of physical activity EE estimation of a footwear-based physical activity monitor that uses an embedded accelerometer and insole pressure sensors and to compare this accuracy against a variety of research and consumer physical activity monitors. Methods. Nineteen adults (10 male, 9 female), mass: 75.14 (17.1) kg, BMI: 25.07(4.6) kg/m2 (mean (SD)), completed a four hour stay in a room calorimeter. Participants wore a footwear-based physical activity monitor, as well as three physical activity monitoring devices used in research: hip-mounted Actical and Actigraph accelerometers and a multi-accelerometer IDEEA device with sensors secured to the limb and chest. In addition, participants wore two consumer devices: Philips DirectLife and Fitbit. Each individual performed a series of randomly assigned and ordered postures/activities including lying, sitting (quietly and using a computer), standing, walking, stepping, cycling, sweeping, as well as a period of self-selected activities. We developed branched (i.e. activity specific) linear regression models to estimate EE from the footwear-based device, and we used the manufacturer's software to estimate EE for all other devices. Results. The shoe

  8. Monitoring activity patterns and trends of older adults.

    PubMed

    Virone, G; Sixsmith, A

    2008-01-01

    This paper presents a pattern mining model developed for the continuous monitoring of high level activities and home-based behaviors for functional and cognitive status assessment with ambient assisted living systems such as in the EU-funded SOPRANO project. Motivating older people to engage in regular physical exercise is a key task of SOPRANO to improve health status and executive functions. A case study has been elaborated through software simulations to show how physical everyday life activity such as walking or sitting could be assessed and controlled for a better health lifestyle using the model.

  9. A solar activity monitoring platform for SCADM

    NASA Technical Reports Server (NTRS)

    Kissell, K. E.; Ratcliff, D. D.

    1980-01-01

    The adaptation of proven space probe technology is proposed as a means of providing a solar activity monitoring platform which could be injected behind the Earth's orbital position to give 3 to 6 days advanced coverage of the solar phenomenon on the backside hemisphere before it rotates into view and affects terrestrial activities. The probe would provide some three dimensional discrimination within the ecliptic latitude. This relatively simple off-Earth probe could provide very high quality data to support the SCADM program, by transmitting both high resolution video data of the solar surface and such measurements of solar activity as particle, X-ray, ultraviolet, and radio emission fluxes. Topics covered include the orbit; constraints on the spacecraft; subsystems and their embodiments; optical imaging sensors and their operation; and the radiation-pressure attitude control system are described. The platform would be capable of mapping active regions on an hourly basis with one arc-second resolution.

  10. Glacier quakes mimicking volcanic earthquakes: The challenge of monitoring ice-clad volcanoes and some solutions

    NASA Astrophysics Data System (ADS)

    Allstadt, K.; Carmichael, J. D.; Malone, S. D.; Bodin, P.; Vidale, J. E.; Moran, S. C.

    2012-12-01

    Swarms of repeating earthquakes at volcanoes are often a sign of volcanic unrest. However, glaciers also can generate repeating seismic signals, so detecting unrest at glacier-covered volcanoes can be a challenge. We have found that multi-day swarms of shallow, low-frequency, repeating earthquakes occur regularly at Mount Rainier, a heavily glaciated stratovolcano in Washington, but that most swarms had escaped recognition until recently. Typically such earthquakes were too small to be routinely detected by the seismic network and were often buried in the noise on visual records, making the few swarms that had been detected seem more unusual and significant at the time they were identified. Our comprehensive search for repeating earthquakes through the past 10 years of continuous seismic data uncovered more than 30 distinct swarms of low-frequency earthquakes at Rainier, each consisting of hundreds to thousands of events. We found that these swarms locate high on the glacier-covered edifice, occur almost exclusively between late fall and early spring, and that their onset coincides with heavy snowfalls. We interpret the correlation with snowfall to indicate a seismically observable glacial response to snow loading. Efforts are underway to confirm this by monitoring glacier motion before and after a major snowfall event using ground based radar interferometry. Clearly, if the earthquakes in these swarms reflect a glacial source, then they are not directly related to volcanic activity. However, from an operational perspective they make volcano monitoring difficult because they closely resemble earthquakes that often precede and accompany volcanic eruptions. Because we now have a better sense of the background level of such swarms and know that their occurrence is seasonal and correlated with snowfall, it will now be easier to recognize if future swarms at Rainier are unusual and possibly related to volcanic activity. To methodically monitor for such unusual activity

  11. A multi-sensor monitoring system of human physiology and daily activities.

    PubMed

    Doherty, Sean T; Oh, Paul

    2012-04-01

    To present the design and pilot test results of a continuous multi-sensor monitoring system of real-world physiological conditions and daily life (activities, travel, exercise, and food consumption), culminating in a Web-based graphical decision-support interface. The system includes a set of wearable sensors wirelessly connected to a "smartphone" with a continuously running software application that compresses and transmits the data to a central server. Sensors include a Global Positioning System (GPS) receiver, electrocardiogram (ECG), three-axis accelerometer, and continuous blood glucose monitor. A food/medicine diary and prompted recall activity diary were also used. The pilot test involved 40 type 2 diabetic patients monitored over a 72-h period. All but three subjects were successfully monitored for the full study period. Smartphones proved to be an effective hub for managing multiple streams of data but required attention to data compression and battery consumption issues. ECG, accelerometer, and blood glucose devices performed adequately as long as subjects wore them. GPS tracking for a full day was feasible, although significant efforts are needed to impute missing data. Activity detection algorithms were successful in identifying activities and trip modes but could benefit by incorporating accelerometer data. The prompted recall diary was an effective tool for augmenting algorithm results, although subjects reported some difficulties with it. The food and medicine diary was completed fully, although end times and medicine dosages were occasionally missing. The unique combination of sensors holds promise for increasing accuracy and reducing burden associated with collecting individual-level activity and physiological data under real-world conditions, but significant data processing issues remain. Such data will provide new opportunities to explore the impacts of human geography and daily lifestyle on health at a fine spatial/temporal scale.

  12. 78 FR 57668 - U.S. Nuclear Regulatory Commission Planned for Monitoring Activities for the Saltstone Disposal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-19

    ... Monitoring Activities for the Saltstone Disposal Facility at the Savannah River Site, Revision 1 AGENCY... responsibilities for monitoring DOE's waste disposal activities at the Saltstone Disposal Facility (SDF) at the... Monitoring Disposal Actions Taken by the U.S. Department of Energy at the Savannah River Site Saltstone...

  13. Active Volcano Monitoring using a Space-based Hyperspectral Imager

    NASA Astrophysics Data System (ADS)

    Cipar, J. J.; Dunn, R.; Cooley, T.

    2010-12-01

    Active volcanoes occur on every continent, often in close proximity to heavily populated areas. While ground-based studies are essential for scientific research and disaster mitigation, remote sensing from space can provide rapid and continuous monitoring of active and potentially active volcanoes [Ramsey and Flynn, 2004]. In this paper, we report on hyperspectral measurements of Kilauea volcano, Hawaii. Hyperspectral images obtained by the US Air Force TacSat-3/ARTEMIS sensor [Lockwood et al, 2006] are used to obtain estimates of the surface temperatures for the volcano. ARTEMIS measures surface-reflected light in the visible, near-infrared, and short-wave infrared bands (VNIR-SWIR). The SWIR bands are known to be sensitive to thermal radiation [Green, 1996]. For example, images from the NASA Hyperion hyperspectral sensor have shown the extent of wildfires and active volcanoes [Young, 2009]. We employ the methodology described by Dennison et al, (2006) to obtain an estimate of the temperature of the active region of Kilauea. Both day and night-time images were used in the analysis. To improve the estimate, we aggregated neighboring pixels. The active rim of the lava lake is clearly discernable in the temperature image, with a measured temperature exceeding 1100o C. The temperature decreases markedly on the exterior of the summit crater. While a long-wave infrared (LWIR) sensor would be ideal for volcano monitoring, we have shown that the thermal state of an active volcano can be monitored using the SWIR channels of a reflective hyperspectral imager. References: Dennison, Philip E., Kraivut Charoensiri, Dar A. Roberts, Seth H. Peterson, and Robert O. Green (2006). Wildfire temperature and land cover modeling using hyperspectral data, Remote Sens. Environ., vol. 100, pp. 212-222. Green, R. O. (1996). Estimation of biomass fire temperature and areal extent from calibrated AVIRIS spectra, in Summaries of the 6th Annual JPL Airborne Earth Science Workshop, Pasadena, CA

  14. Validity of Wearable Activity Monitors during Cycling and Resistance Exercise.

    PubMed

    Boudreaux, Benjamin D; Hebert, Edward P; Hollander, Daniel B; Williams, Brian M; Cormier, Corinne L; Naquin, Mildred R; Gillan, Wynn W; Gusew, Emily E; Kraemer, Robert R

    2018-03-01

    The use of wearable activity monitors has seen rapid growth; however, the mode and intensity of exercise could affect the validity of heart rate (HR) and caloric (energy) expenditure (EE) readings. There is a lack of data regarding the validity of wearable activity monitors during graded cycling regimen and a standard resistance exercise. The present study determined the validity of eight monitors for HR compared with an ECG and seven monitors for EE compared with a metabolic analyzer during graded cycling and resistance exercise. Fifty subjects (28 women, 22 men) completed separate trials of graded cycling and three sets of four resistance exercises at a 10-repetition-maximum load. Monitors included the following: Apple Watch Series 2, Fitbit Blaze, Fitbit Charge 2, Polar H7, Polar A360, Garmin Vivosmart HR, TomTom Touch, and Bose SoundSport Pulse (BSP) headphones. HR was recorded after each cycling intensity and after each resistance exercise set. EE was recorded after both protocols. Validity was established as having a mean absolute percent error (MAPE) value of ≤10%. The Polar H7 and BSP were valid during both exercise modes (cycling: MAPE = 6.87%, R = 0.79; resistance exercise: MAPE = 6.31%, R = 0.83). During cycling, the Apple Watch Series 2 revealed the greatest HR validity (MAPE = 4.14%, R = 0.80). The BSP revealed the greatest HR accuracy during resistance exercise (MAPE = 6.24%, R = 0.86). Across all devices, as exercise intensity increased, there was greater underestimation of HR. No device was valid for EE during cycling or resistance exercise. HR from wearable devices differed at different exercise intensities; EE estimates from wearable devices were inaccurate. Wearable devices are not medical devices, and users should be cautious when using these devices for monitoring physiological responses to exercise.

  15. The effects of monitoring environment on problem-solving performance.

    PubMed

    Laird, Brian K; Bailey, Charles D; Hester, Kim

    2018-01-01

    While effective and efficient solving of everyday problems is important in business domains, little is known about the effects of workplace monitoring on problem-solving performance. In a laboratory experiment, we explored the monitoring environment's effects on an individual's propensity to (1) establish pattern solutions to problems, (2) recognize when pattern solutions are no longer efficient, and (3) solve complex problems. Under three work monitoring regimes-no monitoring, human monitoring, and electronic monitoring-114 participants solved puzzles for monetary rewards. Based on research related to worker autonomy and theory of social facilitation, we hypothesized that monitored (versus non-monitored) participants would (1) have more difficulty finding a pattern solution, (2) more often fail to recognize when the pattern solution is no longer efficient, and (3) solve fewer complex problems. Our results support the first two hypotheses, but in complex problem solving, an interaction was found between self-assessed ability and the monitoring environment.

  16. Physical activity monitoring: addressing the difficulties of accurately detecting slow walking speeds.

    PubMed

    Harrison, Samantha L; Horton, Elizabeth J; Smith, Robert; Sandland, Carolyn J; Steiner, Michael C; Morgan, Mike D L; Singh, Sally J

    2013-01-01

    To test the accuracy of a multi-sensor activity monitor (SWM) in detecting slow walking speeds in patients with chronic obstructive pulmonary disease (COPD). Concerns have been expressed regarding the use of pedometers in patient populations. Although activity monitors are more sophisticated devices, their accuracy at detecting slow walking speeds common in patients with COPD has yet to be proven. A prospective observational study design was employed. An incremental shuttle walk test (ISWT) was completed by 57 patients with COPD wearing an SWM. The ISWT was repeated by 20 patients wearing the same SWM. Differences were identified between metabolic equivalents (METS) and between step-count across five levels of the ISWT (p < 0.001). Good within monitor reproducibility between two ISWT was identified for total energy expenditure and step-count (p < 0.001). The SWM is able to detect slow (standardized) speeds of walking and is an acceptable method for measuring physical activity in individuals disabled by COPD. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Sucrose diffusion in aqueous solution

    PubMed Central

    Murray, Benjamin J.

    2016-01-01

    The diffusion of sugar in aqueous solution is important both in nature and in technological applications, yet measurements of diffusion coefficients at low water content are scarce. We report directly measured sucrose diffusion coefficients in aqueous solution. Our technique utilises a Raman isotope tracer method to monitor the diffusion of non-deuterated and deuterated sucrose across a boundary between the two aqueous solutions. At a water activity of 0.4 (equivalent to 90 wt% sucrose) at room temperature, the diffusion coefficient of sucrose was determined to be approximately four orders of magnitude smaller than that of water in the same material. Using literature viscosity data, we show that, although inappropriate for the prediction of water diffusion, the Stokes–Einstein equation works well for predicting sucrose diffusion under the conditions studied. As well as providing information of importance to the fundamental understanding of diffusion in binary solutions, these data have technological, pharmaceutical and medical implications, for example in cryopreservation. Moreover, in the atmosphere, slow organic diffusion may have important implications for aerosol growth, chemistry and evaporation, where processes may be limited by the inability of a molecule to diffuse between the bulk and the surface of a particle. PMID:27364512

  18. [A monitor of the biomechanical cardiac activity].

    PubMed

    Masloboev, Iu P; Okhritskiĭ, A A; Prilutskiĭ, D A; Selishchev, S V

    2004-01-01

    A monitor of the biomechanical cardiac activity is described, which was elaborated on the basis of the accelerometer sensor and sigma-delta ADC for the purpose of registering the ballistocardiograms and seismocardiograms. The device ensures a non-stop signal recording for as long as 8 hours with the data being preserved in an inbuilt memory. Data are fed to the computer through the USB port. An algorithm is suggested for recordings processing by using the neuron-net technologies.

  19. Comparison of four Fitbit and Jawbone activity monitors with a research-grade ActiGraph accelerometer for estimating physical activity and energy expenditure.

    PubMed

    Imboden, Mary T; Nelson, Michael B; Kaminsky, Leonard A; Montoye, Alexander Hk

    2017-05-08

    Consumer-based physical activity (PA) monitors have become popular tools to track PA behaviours. Currently, little is known about the validity of the measurements provided by consumer monitors. We aimed to compare measures of steps, energy expenditure (EE) and active minutes of four consumer monitors with one research-grade accelerometer within a semistructured protocol. Thirty men and women (18-80 years old) wore Fitbit One (worn at the waist), Fitbit Zip (waist), Fitbit Flex (wrist), Jawbone UP24 (wrist) and one waist-worn research-grade accelerometer (ActiGraph) while participating in an 80 min protocol. A validated EE prediction equation and active minute cut-points were applied to ActiGraph data. Criterion measures were assessed using direct observation (step count) and portable metabolic analyser (EE, active minutes). A repeated measures analysis of variance (ANOVA) was used to compare differences between consumer monitors, ActiGraph, and criterion measures. Similarly, a repeated measures ANOVA was applied to a subgroup of subjects who didn't cycle. Participants took 3321±571 steps, had 28±6 active min and expended 294±56 kcal based on criterion measures. Comparatively, all monitors underestimated steps and EE by 13%-32% (p<0.01); additionally the Fitbit Flex, UP24, and ActiGraph underestimated active minutes by 35%-65% (p<0.05). Underestimations of PA and EE variables were found to be similar in the subgroup analysis. Consumer monitors had similar accuracy for PA assessment as the ActiGraph, which suggests that consumer monitors may serve to track personal PA behaviours and EE. However, due to discrepancies among monitors, individuals should be cautious when comparing relative and absolute differences in PA values obtained using different monitors. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  20. Multi-Source Autonomous Response for Targeting and Monitoring of Volcanic Activity

    NASA Technical Reports Server (NTRS)

    Davies, Ashley G.; Doubleday, Joshua R.; Tran, Daniel Q.

    2014-01-01

    The study of volcanoes is important for both purely scientific and human survival reasons. From a scientific standpoint, volcanic gas and ash emissions contribute significantly to the terrestrial atmosphere. Ash depositions and lava flows can also greatly affect local environments. From a human survival standpoint, many people live within the reach of active volcanoes, and therefore can be endangered by both atmospheric (ash, debris) toxicity and lava flow. There are many potential information sources that can be used to determine how to best monitor volcanic activity worldwide. These are of varying temporal frequency, spatial regard, method of access, and reliability. The problem is how to incorporate all of these inputs in a general framework to assign/task/reconfigure assets to monitor events in a timely fashion. In situ sensing can provide a valuable range of complementary information such as seismographic, discharge, acoustic, and other data. However, many volcanoes are not instrumented with in situ sensors, and those that have sensor networks are restricted to a relatively small numbers of point sensors. Consequently, ideal volcanic study synergistically combines space and in situ measurements. This work demonstrates an effort to integrate spaceborne sensing from MODIS (Terra and Aqua), ALI (EO-1), Worldview-2, and in situ sensing in an automated scheme to improve global volcano monitoring. Specifically, it is a "sensor web" concept in which a number of volcano monitoring systems are linked together to monitor volcanic activity more accurately, and this activity measurement automatically tasks space assets to acquire further satellite imagery of ongoing volcanic activity. A general framework was developed for evidence combination that accounts for multiple information sources in a scientist-directed fashion to weigh inputs and allocate observations based on the confidence of an events occurrence, rarity of the event at that location, and other scientists

  1. Practical Approaches to Prescribing Physical Activity and Monitoring Exercise Intensity.

    PubMed

    Reed, Jennifer L; Pipe, Andrew L

    2016-04-01

    Regular physical activity helps to prevent heart disease, and reduces the risk of first or subsequent cardiovascular events. It is recommended that Canadian adults accumulate at least 150 minutes of moderate- to vigorous-intensity aerobic exercise per week, in bouts of 10 minutes or more, and perform muscle- and bone-strengthening activities at least 2 days per week. Individual exercise prescriptions can be developed using the frequency, intensity, time, and type principles. Increasing evidence suggests that high-intensity interval training is efficacious for a broad spectrum of heart health outcomes. Several practical approaches to prescribing and monitoring exercise intensity exist including: heart rate monitoring, the Borg rating of perceived exertion scale, the Talk Test, and, motion sensors. The Borg rating of perceived exertion scale matches a numerical value to an individual's perception of effort, and can also be used to estimate heart rate. The Talk Test, the level at which simple conversation is possible, can be used to monitor desired levels of moderate- to vigorous-intensity exercise. Motion sensors can provide users with practical and useful exercise training information to aid in meeting current exercise recommendations. These approaches can be used by the public, exercise scientists, and clinicians to easily and effectively guide physical activity in a variety of settings. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  2. 15 CFR 400.49 - Monitoring and reviews of zone operations and activity.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 2 2013-01-01 2013-01-01 false Monitoring and reviews of zone operations and activity. 400.49 Section 400.49 Commerce and Foreign Trade Regulations Relating to Commerce... FOREIGN-TRADE ZONES BOARD Operation of Zones and Administrative Requirements § 400.49 Monitoring and...

  3. 15 CFR 400.49 - Monitoring and reviews of zone operations and activity.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 2 2014-01-01 2014-01-01 false Monitoring and reviews of zone operations and activity. 400.49 Section 400.49 Commerce and Foreign Trade Regulations Relating to Commerce... FOREIGN-TRADE ZONES BOARD Operation of Zones and Administrative Requirements § 400.49 Monitoring and...

  4. Centralized remote structural monitoring and management of real-time data

    NASA Astrophysics Data System (ADS)

    Han, Liting; Newhook, John P.; Mufti, Aftab A.

    2004-07-01

    Structural health monitoring (SHM) activities in civil engineering are increasing at a rapid pace in both research and field applications. This paper addresses the specific issue of incorporating internet technology into a structural health monitoring program. The issue of data volume versus communication speed is discussed along with a practical solution employed by ISIS Canada. The approach is illustrated through reference to several current case studies which include two bridges and a statue. It is seen that although the specifics of the projects and monitoring needs are different, the manner in which on-line monitoring can be conducted is very similar and easily allows for centralized monitoring. A general framework for website construction integrating sensing data and web camera options are presented. Issues related to simple real-time performance indices versus more comprehensive complex data analysis are discussed. Examples of on-line websites which allow visualization of new and historic data are presented. The paper also discusses future activities and research needs related to centralized remote structural monitoring and management of real-time data.

  5. Geophysical monitoring of solute transport in dual-domain environments through laboratory experiments, field-scale solute tracer tests, and numerical simulation

    NASA Astrophysics Data System (ADS)

    Swanson, Ryan David

    The advection-dispersion equation (ADE) fails to describe non-Fickian solute transport breakthrough curves (BTCs) in saturated porous media in both laboratory and field experiments, necessitating the use of other models. The dual-domain mass transfer (DDMT) model partitions the total porosity into mobile and less-mobile domains with an exchange of mass between the two domains, and this model can reproduce better fits to BTCs in many systems than ADE-based models. However, direct experimental estimation of DDMT model parameters remains elusive and model parameters are often calculated a posteriori by an optimization procedure. Here, we investigate the use of geophysical tools (direct-current resistivity, nuclear magnetic resonance, and complex conductivity) to estimate these model parameters directly. We use two different samples of the zeolite clinoptilolite, a material shown to demonstrate solute mass transfer due to a significant internal porosity, and provide the first evidence that direct-current electrical methods can track solute movement into and out of a less-mobile pore space in controlled laboratory experiments. We quantify the effects of assuming single-rate DDMT for multirate mass transfer systems. We analyze pore structures using material characterization methods (mercury porosimetry, scanning electron microscopy, and X-ray computer tomography), and compare these observations to geophysical measurements. Nuclear magnetic resonance in conjunction with direct-current resistivity measurements can constrain mobile and less-mobile porosities, but complex conductivity may have little value in relation to mass transfer despite the hypothesis that mass transfer and complex conductivity lengths scales are related. Finally, we conduct a geoelectrical monitored tracer test at the Macrodispersion Experiment (MADE) site in Columbus, MS. We relate hydraulic and electrical conductivity measurements to generate a 3D hydraulic conductivity field, and compare to

  6. Does self-perceived sleep reflect sleep estimated via activity monitors in professional rugby league athletes?

    PubMed

    Caia, Johnpaul; Thornton, Heidi R; Kelly, Vincent G; Scott, Tannath J; Halson, Shona L; Cupples, Balin; Driller, Matthew W

    2018-07-01

    This study examined agreement between self-perceived sleep and sleep estimated via activity monitors in professional rugby league athletes. 63 athletes, from three separate teams wore actigraphy monitors for 10.3 ± 3.9 days. During the monitoring period, ratings of perceived sleep quality (on a 1-5 and 1-10 Likert scale), and an estimate of sleep duration were recorded daily. Agreement between sleep estimated via activity monitors and self-perceived sleep was examined using mean bias, Pearson correlation (r) and typical error of the estimate (TEE). 641 nights of sleep were recorded, with a very large, positive correlation observed between sleep duration estimated via activity monitors and subjective sleep duration (r = 0.85), and a TEE of 48 minutes. Mean bias revealed subjective sleep duration overestimated sleep by an average of 19.8 minutes. The relationship between sleep efficiency estimated via activity monitors and self-perceived sleep quality on a 1-5 (r = 0.22) and 1-10 Likert scale (r = 0.28) was limited. The outcomes of this investigation support the use of subjective measures to monitor sleep duration in rugby league athletes when objective means are unavailable. However, practitioners should be aware of the tendency of athletes to overestimate sleep duration.

  7. Design and Implementation of a Modern Automatic Deformation Monitoring System

    NASA Astrophysics Data System (ADS)

    Engel, Philipp; Schweimler, Björn

    2016-03-01

    The deformation monitoring of structures and buildings is an important task field of modern engineering surveying, ensuring the standing and reliability of supervised objects over a long period. Several commercial hardware and software solutions for the realization of such monitoring measurements are available on the market. In addition to them, a research team at the University of Applied Sciences in Neubrandenburg (NUAS) is actively developing a software package for monitoring purposes in geodesy and geotechnics, which is distributed under an open source licence and free of charge. The task of managing an open source project is well-known in computer science, but it is fairly new in a geodetic context. This paper contributes to that issue by detailing applications, frameworks, and interfaces for the design and implementation of open hardware and software solutions for sensor control, sensor networks, and data management in automatic deformation monitoring. It will be discussed how the development effort of networked applications can be reduced by using free programming tools, cloud computing technologies, and rapid prototyping methods.

  8. Incorporating physical activity measures into environmental monitoring of national parks: an example from Yosemite.

    PubMed

    Walden-Schreiner, Chelsey; Leung, Yu-Fai; Floyd, Myron F

    2014-09-01

    To address increasing prevalence of obesity and associated chronic disease, recent national initiatives have called upon federal agencies to promote healthy lifestyles and provide opportunities for physical activity. In response, the U.S. National Park Service has developed strategies promoting health through physical activity in addition to its well-established biodiversity and landscape conservation mission. Incorporating physical activity measures with routine environmental monitoring would help identify areas where parks can promote active pursuits with minimal environmental impact. This study provides one example of how protocols developed for visitor and environmental monitoring can generate data to evaluate physical activity. Researchers implemented an observational study in high-use meadows of Yosemite National Park during the summer of 2011. Variables measured include the spatial location of visitors and activity type. Metabolic equivalents (METs) were assigned to activity categories and analyzed for average energy expenditure. Mean METs values indicated sedentary to light physical activity across the meadows, with greater means in areas with boardwalks or paved pathways. Data leveraged in this study provide park managers an example of adapting existing monitoring programs to incorporate indicators relevant to physical activity evaluation and how physical activity may impact resource conditions in national parks.

  9. Active and passive electrical and seismic time-lapse monitoring of earthen embankments

    NASA Astrophysics Data System (ADS)

    Rittgers, Justin Bradley

    In this dissertation, I present research involving the application of active and passive geophysical data collection, data assimilation, and inverse modeling for the purpose of earthen embankment infrastructure assessment. Throughout the dissertation, I identify several data characteristics, and several challenges intrinsic to characterization and imaging of earthen embankments and anomalous seepage phenomena, from both a static and time-lapse geophysical monitoring perspective. I begin with the presentation of a field study conducted on a seeping earthen dam, involving static and independent inversions of active tomography data sets, and self-potential modeling of fluid flow within a confined aquifer. Additionally, I present results of active and passive time-lapse geophysical monitoring conducted during two meso-scale laboratory experiments involving the failure and self-healing of embankment filter materials via induced vertical cracking. Identified data signatures and trends, as well as 4D inversion results, are discussed as an underlying motivation for conducting subsequent research. Next, I present a new 4D acoustic emissions source localization algorithm that is applied to passive seismic monitoring data collected during a full-scale embankment failure test. Acoustic emissions localization results are then used to help spatially constrain 4D inversion of collocated self-potential monitoring data. I then turn to time-lapse joint inversion of active tomographic data sets applied to the characterization and monitoring of earthen embankments. Here, I develop a new technique for applying spatiotemporally varying structural joint inversion constraints. The new technique, referred to as Automatic Joint Constraints (AJC), is first demonstrated on a synthetic 2D joint model space, and is then applied to real geophysical monitoring data sets collected during a full-scale earthen embankment piping-failure test. Finally, I discuss some non-technical issues related to

  10. Isotherm-Based Thermodynamic Models for Solute Activities of Organic Acids with Consideration of Partial Dissociation.

    PubMed

    Nandy, Lucy; Ohm, Peter B; Dutcher, Cari S

    2016-06-23

    Organic acids make up a significant fraction of the organic mass in atmospheric aerosol particles. The calculation of gas-liquid-solid equilibrium partitioning of the organic acid is therefore critical for accurate determination of atmospheric aerosol physicochemical properties and processes such as new particle formation and activation to cloud condensation nuclei. Previously, an adsorption isotherm-based statistical thermodynamic model was developed for capturing solute concentration-activity relationships for multicomponent aqueous solutions over the entire concentration range (Dutcher et al. J. Phys. Chem. C/A 2011, 2012, 2013), with model parameters for energies of adsorption successfully related to dipole-dipole electrostatic forces in solute-solvent and solvent-solvent interactions for both electrolytes and organics (Ohm et al. J. Phys. Chem. A 2015). However, careful attention is needed for weakly dissociating semivolatile organic acids. Dicarboxylic acids, such as malonic acid and glutaric acid are treated here as a mixture of nondissociated organic solute (HA) and dissociated solute (H(+) + A(-)). It was found that the apparent dissociation was greater than that predicted by known dissociation constants alone, emphasizing the effect of dissociation on osmotic and activity coefficient predictions. To avoid additional parametrization from the mixture approach, an expression was used to relate the Debye-Hückel hard-core collision diameter to the adjustable solute-solvent intermolecular distance. An improved reference state treatment for electrolyte-organic aqueous mixtures, such as that observed here with partial dissociation, has also been proposed. This work results in predictive correlations for estimation of organic acid and water activities for which there is little or no activity data.

  11. Activity of Cu-activated carbon fiber catalyst in wet oxidation of ammonia solution.

    PubMed

    Hung, Chang-Mao

    2009-07-30

    Aqueous solutions of 200-1000 mg/L of ammonia were oxidized in a trickle-bed reactor using Cu-activated carbon fiber (ACF) catalysts, which were prepared by incipient wet impregnation with aqueous solutions of copper nitrate that was deposited on ACF substrates. The results reveal that the conversion of ammonia by wet oxidation in the presence of Cu-ACF catalysts was a function of the metal loading weight ratio of the catalyst. The total conversion efficiency of ammonia was 95% during wet oxidation over the catalyst at 463 K at an oxygen partial pressure of 3.0 MPa. Moreover, the effect of the initial concentration of ammonia and the reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid space velocity of less than 3.0 h(-1).

  12. Recent Advances in Free-Living Physical Activity Monitoring: A Review

    PubMed Central

    Andre, David; Wolf, Donna L.

    2007-01-01

    It has become clear recently that the epidemic of type 2 diabetes sweeping the globe is associated with decreased levels of physical activity and an increase in obesity. Incorporating appropriate and sufficient physical activity into one's life is an essential component of achieving and maintaining a healthy weight and overall health, especially for those with type II diabetes mellitus. Regular physical activity can have a positive impact by lowering blood glucose, helping the body to be more efficient at using insulin. There are other substantial benefits for patients with diabetes, including prevention of cardiovascular disease, hyperlipidemia, hypertension, and obesity. Several complications of utilizing a self-care treatment methodology involving exercise include (1) patients may not know how much activity that they engage in and (2) health-care providers do not have objective measurements of how much activity their patients perform. However, several technological advances have brought a variety of activity monitoring devices to the market that can address these concerns. Ranging from simple pedometers to multisensor devices, the different technologies offer varying levels of accuracy, comfort, and reliability. The key notion is that by providing feedback to the patient, motivation can be increased and targets can be set and aimed toward. Although these devices are not specific to the treatment of diabetes, the importance of physical activity in treating the disease makes an understanding of these devices important. This article reviews these physical activity monitors and describes the advantages and disadvantages of each. PMID:19885145

  13. Active damage interrogation system for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Lichtenwalner, Peter F.; Dunne, James P.; Becker, Ronald S.; Baumann, Erwin W.

    1997-05-01

    An integrated and automated smart structures approach for in situ damage assessment has been implemented and evaluated in a laboratory environment for health monitoring of a realistic aerospace structural component. This approach, called Active Damage Interrogation (ADI), utilizes an array of piezoelectric transducers attached to or embedded within the structure for both actuation and sensing. The ADI system, which is model independent, actively interrogates the structure through broadband excitation of multiple actuators across the desired frequency range. Statistical analysis of the changes in transfer functions between actuator/sensor pairs is used to detect, localize, and assess the severity of damage in the structure. This paper presents the overall concept of the ADI system and provides experimental results of damage assessment studies conducted for a composite structural component of the MD-900 Explorer helicopter rotor system. The potential advantages of this approach include simplicity (no need for a model), sensitivity, and low cost implementation. The results obtained thus far indicate considerably promise for integrated structural health monitoring of aerospace vehicles, leading to the practice of condition-based maintenance and consequent reduction in life cycle costs.

  14. Predicting the Activity Coefficients of Free-Solvent for Concentrated Globular Protein Solutions Using Independently Determined Physical Parameters

    PubMed Central

    McBride, Devin W.; Rodgers, Victor G. J.

    2013-01-01

    The activity coefficient is largely considered an empirical parameter that was traditionally introduced to correct the non-ideality observed in thermodynamic systems such as osmotic pressure. Here, the activity coefficient of free-solvent is related to physically realistic parameters and a mathematical expression is developed to directly predict the activity coefficients of free-solvent, for aqueous protein solutions up to near-saturation concentrations. The model is based on the free-solvent model, which has previously been shown to provide excellent prediction of the osmotic pressure of concentrated and crowded globular proteins in aqueous solutions up to near-saturation concentrations. Thus, this model uses only the independently determined, physically realizable quantities: mole fraction, solvent accessible surface area, and ion binding, in its prediction. Predictions are presented for the activity coefficients of free-solvent for near-saturated protein solutions containing either bovine serum albumin or hemoglobin. As a verification step, the predictability of the model for the activity coefficient of sucrose solutions was evaluated. The predicted activity coefficients of free-solvent are compared to the calculated activity coefficients of free-solvent based on osmotic pressure data. It is observed that the predicted activity coefficients are increasingly dependent on the solute-solvent parameters as the protein concentration increases to near-saturation concentrations. PMID:24324733

  15. Novel label-free biosensing technology for monitoring of aqueous solutions (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kehl, Florian; Bielecki, Robert; Follonier, Stephane; Dorokhin, Denis

    2016-03-01

    Waste water, drinking water and other industrial water sources are more and more/increasingly polluted with a large variety of contaminants, such as pesticides or residuals of pharmaceuticals. These compounds can impact human and animal organisms and lead to serious health issues. Today, in order to analyze the presence and quantity of the abovementioned micropollutants, samples are typically sent to specialized centralized laboratories and their processing may take up to several days. In order to meet the demand for continuous and consistent monitoring of aqueous solutions we propose a novel label-free technology system comprising proprietary chip and reader device designs. The core of the system is constituted by a planar-grated-waveguide (PGW) chip. Label-free biosensors, based on PGWs are sensitive to effective refractive index changes caused by the adsorption of biomolecules (micropollutants) onto the sensor surface or due to refractive index changes of the bulk solution. The presented reader device operates with a novel readout concept based on a scanning MEMS mirror for the angular interrogation of input grating couplers at a high repetition rate. The reader has fully integrated optics, electronics and fluidics and at the same time consumes limited energy (portable, field use ready). In the recent experiments, the effectiveness of the technology has been demonstrated with various liquids and bioassays showing (i) an excellent refractometric sensitivity with a limit of detection towards effective refractive index changes of ▵neff < 2 x 10-7, and (ii) the capability to perform affinity measurements for large (<150 kDa) and small (<250 Da) molecules.

  16. Consumer-Based Physical Activity Monitor as a Practical Way to Measure Walking Intensity During Inpatient Stroke Rehabilitation.

    PubMed

    Klassen, Tara D; Semrau, Jennifer A; Dukelow, Sean P; Bayley, Mark T; Hill, Michael D; Eng, Janice J

    2017-09-01

    Identifying practical ways to accurately measure exercise intensity and dose in clinical environments is essential to advancing stroke rehabilitation. This is especially relevant in monitoring walking activity during inpatient rehabilitation where recovery is greatest. This study evaluated the accuracy of a readily available consumer-based physical activity monitor during daily inpatient stroke rehabilitation physical therapy sessions. Twenty-one individuals admitted to inpatient rehabilitation were monitored for a total of 471 one-hour physical therapy sessions which consisted of walking and nonwalking therapeutic activities. Participants wore a consumer-based physical activity monitor (Fitbit One) and the gold standard for assessing step count (StepWatch Activity Monitor) during physical therapy sessions. Linear mixed modeling was used to assess the relationship of the step count of the Fitbit to the StepWatch Activity Monitor. Device accuracy is reported as the percent error of the Fitbit compared with the StepWatch Activity Monitor. A strong relationship (slope=0.99; 95% confidence interval, 0.97-1.01) was found between the number of steps captured by the Fitbit One and the StepWatch Activity Monitor. The Fitbit One had a mean error of 10.9% (5.3) for participants with walking velocities <0.4 m/s, 6.8% (3.0) for walking velocities between 0.4 and 0.8 m/s, and 4.4% (2.8) for walking velocities >0.8 m/s. This study provides preliminary evidence that the Fitbit One, when positioned on the nonparetic ankle, can accurately measure walking steps early after stroke during inpatient rehabilitation physical therapy sessions. URL: https://www.clinicaltrials.gov. Unique identifier: NCT01915368. © 2017 American Heart Association, Inc.

  17. Mineralization of aniline in aqueous solution by electrochemical activation of persulfate.

    PubMed

    Chen, Wen-Shing; Huang, Chi-Pin

    2015-04-01

    Oxidative degradation of aniline in aqueous solution was carried out by coupling electrolysis with persulfate oxidation, in which a synergistic effect occurred. Experiments were performed under a batch-wise mode to evaluate the influence of various operation parameters on the electrolytic behavior, such as acidity of aqueous solution, temperature, electrode potential, persulfate anion concentration and nitrogen/oxygen gas dosage. The aniline pollutants could be almost entirely mineralized by means of electro-activated persulfate oxidation, wherein sulfate radicals were presumed to be principal oxidizing agents. Besides, electrogenerated hydrogen peroxide originated from cathodic reduction of oxygen, supplied chiefly by anodic oxidation of water, would contribute partially for decomposition of aniline. On the whole, the electro-activated persulfate process is a very promising method for treatment of aniline in wastewater. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. JSC MCC Bldg 30 personnel monitor STS-26 post landing activities

    NASA Image and Video Library

    1988-10-03

    JSC Mission Control Center (MCC) Bldg 30 flight control room (FCR) personnel monitor STS-26 post landing activities and ceremonies at Edwards Air Force Base (EAFB) via their monitors. Displayed on front screens are approach and landing diagrams, data, the space shuttle program insignia, the STS-26 mission insignia, the Mission Operations Directorate insignia, and the STS-26 crew standing in front of Discovery, Orbiter Vehicle (OV) 103.

  19. Measuring physical activity in young people with cerebral palsy: validity and reliability of the ActivPAL™ monitor.

    PubMed

    Bania, Theofani

    2014-09-01

    We determined the criterion validity and the retest reliability of the ΑctivPAL™ monitor in young people with diplegic cerebral palsy (CP). Activity monitor data were compared with the criterion of video recording for 10 participants. For the retest reliability, activity monitor data were collected from 24 participants on two occasions. Participants had to have diplegic CP and be between 14 and 22 years of age. They also had to be of Gross Motor Function Classification System level II or III. Outcomes were time spent in standing, number of steps (physical activity) and time spent in sitting (sedentary behaviour). For criterion validity, coefficients of determination were all high (r(2)  ≥ 0.96), and limits of group agreement were relatively narrow, but limits of agreement for individuals were narrow only for number of steps (≥5.5%). Relative reliability was high for number of steps (intraclass correlation coefficient = 0.87) and moderate for time spent in sitting and lying, and time spent in standing (intraclass correlation coefficients = 0.60-0.66). For groups, changes of up to 7% could be due to measurement error with 95% confidence, but for individuals, changes as high as 68% could be due to measurement error. The results support the criterion validity and the retest reliability of the ActivPAL™ to measure physical activity and sedentary behaviour in groups of young people with diplegic CP but not in individuals. Copyright © 2014 John Wiley & Sons, Ltd.

  20. Monitoring of toxicity of As(V) solutions by AMPHITOX test without and with treatment with zerovalent iron nanoparticles.

    PubMed

    Pérez Coll, Cristina S; Pabón-Reyes, Carolina; Meichtry, Jorge M; Litter, Marta I

    2018-06-01

    Changes in toxicity of As(V) solutions from acute to chronic exposure have been evaluated by the AMPHITOX test. This test employs Rhinella arenarum, a widely distributed toad in Argentine areas. LOEC values were 6.37 and 1.88 mg L -1 for embryos and larvae, respectively, and serious sublethal effects have been observed. Toxicity of As(V) solutions has been also evaluated after treatment with zerovalent iron nanoparticles (nZVI). After 60 min of treatment with nZVI, As(V) removal was 77%, and neither lethal nor sublethal effects were observed. However, nZVI had to be eliminated before the bioassay because they caused adverse effects in both embryos and larvae. This work highlights the high sensitivity of R. arenarum to As(V), the relevance to assess toxicity on different periods of the lifecycle, and the need to expand exposure to As(V) to chronic times. The utility of the test for monitoring toxicity changes in As(V) solutions after nZVI treatment has been also shown. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Soil solid-phase controls lead activity in soil solution.

    PubMed

    Badawy, S H; Helal, M I D; Chaudri, A M; Lawlor, K; McGrath, S P

    2002-01-01

    Lead pollution of the environment is synonymous with civilization. It has no known biological function, and is naturally present in soil, but its presence in food crops is deemed undesirable. The concern regarding Pb is mostly due to chronic human and animal health effects, rather then phytotoxicity. However, not much is known about the chemistry and speciation of Pb in soils. We determined the activity of Pb2+, in near neutral and alkaline soils, representative of alluvial, desertic and calcareous soils of Egypt, using the competitive chelation method. Lead activity ranged from 10(-6.73) to 10(-4.83) M, and was negatively correlated with soil and soil solution pH (R2 = -0.92, P < 0.01 and R2 = -0.89, P < 0.01, respectively). It could be predicted in soil solution from the equation: log(Pb2+) = 9.9 - 2pH. A solubility diagram for the various Pb minerals found in soil was constructed using published thermodynamic data obtained from the literature, and our measured Pb2+ activities compared with this information. The measured Pb2+ activities were undersaturated with regard to the solubility of PbSiO3 in equilibrium with SiO2 (soil). However, they were supersaturated with regard to the solubilities of the Pb carbonate minerals PbCO3 (cerussite) and Pb3(CO3)2(OH)2 in equilibrium with atmospheric CO2 and hydroxide Pb(OH)2. They were also supersaturated with regard to the solubilities of the Pb phosphate minerals Pb3(PO4)2, Pb5(PO4)3OH, and Pb4O(PO4)2 in equilibrium with tricalcium phosphate and CaCO3. The activity of Pb2+ was not regulated by any mineral of known solubility in our soils, but possibly by a mixture of Pb carbonate and phosphate minerals.

  2. Automated locomotor activity monitoring as a quality control assay for mass-reared tephritid flies.

    PubMed

    Dominiak, Bernard C; Fanson, Benjamin G; Collins, Samuel R; Taylor, Phillip W

    2014-02-01

    The Sterile Insect Technique (SIT) requires vast numbers of consistently high quality insects to be produced over long periods. Quality control (QC) procedures are critical to effective SIT, both providing quality assurance and warning of operational deficiencies. We here present a potential new QC assay for mass rearing of Queensland fruit flies (Bactrocera tryoni Froggatt) for SIT; locomotor activity monitoring. We investigated whether automated locomotor activity monitors (LAMs) that simply detect how often a fly passes an infrared sensor in a glass tube might provide similar insights but with much greater economy. Activity levels were generally lower for females than for males, and declined over five days in the monitor for both sexes. Female activity levels were not affected by irradiation, but males irradiated at 60 or 70 Gy had reduced activity levels compared with unirradiated controls. We also found some evidence that mild heat shock of pupae results in adults with reduced activity. LAM offers a convenient, effective and economical assay to probe such changes. © 2013 Society of Chemical Industry.

  3. [Arthroscope monitored solution of adult intramuscular injection associated gluteal muscle contracture by radiofrequency].

    PubMed

    Liu, Yu-Jie; Xue, Jing; Zhou, Mi; Wang, Zhi-Gang; Li, Zhong-Li; Cai, Xu; Wei, Min; Wang, Yan; Zhu, Juan-Li

    2008-07-01

    To evaluate the result of releasing adult intramuscular injection associated gluteal muscle contracture under the monitor of arthroscope by radiofrequency probe. From June 2001 to June 2005, 108 cases of bilateral gluteal muscle contracture were treated with radiofrequency colation under the arthroscope and solution with an average age of 24 years (from 18 to 40 years). There were 57 males and 51 females. Preoperatively, the course of the outline of the femur greater trochanter the sciatic nerve in buttocks and the area of gluteal muscle contracture were marked. With the patients firmly anchored in the straight lateral position, normal saline (which contains Adnephrin) was injected between the surface of contracted gluteus and subcutaneous fat to reduce bleeding in operation. The ports for the motorized shaver and radiofrequency probe were located at the edge of gluteal muscle contracture and were 5 mm superior to the greater trochanter. The 6 mm diameter port for the arthroscope was 3 cm inferior to the greater trochanter. Space was made between contracture bands and overlying subcutaneous tissue with a periosteal elevator by blunt dissection. After the anterior and posterior edge of the contracture bands were fully revealed, normal saline were filled in the space. With the monitor of arthroscope, the procedures were: removing fatty tissue from the surface of the contracture bands with motorized shaver, then cutting off the contracture bands curve and carefully probing and cutting off contracture bands which were mixed in gluteus maximus with radiofrequency probe, finally hemostasis by radiofrequency probe. In the operation flexion, adduction, internal rotation and straightening hip joint were repeated, until it got normal range of motion without snap and bleeding. Results One hundred and one patients were followed up with an average of 19 months. According to a comprehensive evaluating system, 91 cases were excellent, 7 were good, and 3 were fair. No infection

  4. Acceptability of mHealth Technology for Self-Monitoring Eating and Activity among Rural Men.

    PubMed

    Eisenhauer, Christine M; Hageman, Patricia A; Rowland, Sheri; Becker, Betsy J; Barnason, Susan A; Pullen, Carol H

    2017-03-01

    To examine rural men's use and perceptions of mobile and wireless devices to self-monitor eating and physical activity (mHealth). Men in this 3-week pilot study used FitBit One ® to log daily food intake and monitor activity. A companion application (app) allowed activity monitoring of fellow participants. Health-related text messages were received 1-3 times daily. A purposive sample of 12 rural men (ages 40-67) was recruited by community leaders. (1) baseline heart rate, blood pressure, and BMI, (2) FitBit One ® usage, (3) investigator-generated surveys on acceptability of mHealth, and (4) focus group on experience with mHealth. Men were overweight (n = 3) or obese (n = 9) and 9 of 12 were hypertensive. Nine of twelve wore FitBit One ® all 21 days. Eleven of 12 men logged food, with 9 of 12 doing this at least 15 of 21 days. Self-monitoring and daily text messaging increased awareness of energy intake and output. Companion app's food log needed targeting for rural foods. Rotating seasons (occupational, religious, recreational) and weak cellular signals created contextual barriers to self-monitoring eating and activity. FitBit One ® and text messaging were perceived as useful among the rural men, while the companion apps require adaptation to reflect dietary norms. © 2016 Wiley Periodicals, Inc.

  5. Energy monitoring system based on human activity in the workplace

    NASA Astrophysics Data System (ADS)

    Mustafa, Nur Hanim; Husain, Mohd Nor; Aziz, Mohamad Zoinol Abidin Abdul; Othman, Mohd Azlishah; Malek, Fareq

    2015-05-01

    Human behaviors always related to day routine activities in a smart house directly give the significant factor to manage energy usage in human life. An Addition that, the factor will contribute to the best efficiency of the system. This paper will focus on the monitoring efficiency based on duration time in office hours around 8am until 5pm which depend on human behavior at working place. Besides that, the correlation coefficient method is used to show the relation between energy consumption and energy saving based on the total hours of time energy spent. In future, the percentages of energy monitoring system usage will be increase to manage energy saving based on human behaviors. This scenario will help to see the human activity in the workplace in order to get the energy saving and support world green environment.

  6. Lateral transport of solutes in microfluidic channels using electrochemically generated gradients in redox-active surfactants.

    PubMed

    Liu, Xiaoyang; Abbott, Nicholas L

    2011-04-15

    We report principles for a continuous flow process that can separate solutes based on a driving force for selective transport that is generated by a lateral concentration gradient of a redox-active surfactant across a microfluidic channel. Microfluidic channels fabricated with gold electrodes lining each vertical wall were used to electrochemically generate concentration gradients of the redox-active surfactant 11-ferrocenylundecyl-trimethylammonium bromide (FTMA) in a direction perpendicular to the flow. The interactions of three solutes (a hydrophobic dye, 1-phenylazo-2-naphthylamine (yellow AB), an amphiphilic molecule, 2-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-pentanoyl)-1-hexadecanoyl-sn-glycero-3-phosphocholine (BODIPY C(5)-HPC), and an organic salt, 1-methylpyridinium-3-sulfonate (MPS)) with the lateral gradients in surfactant/micelle concentration were shown to drive the formation of solute-specific concentration gradients. Two distinct physical mechanisms were identified to lead to the solute concentration gradients: solubilization of solutes by micelles and differential adsorption of the solutes onto the walls of the microchannels in the presence of the surfactant concentration gradient. These two mechanisms were used to demonstrate delipidation of a mixture of BODIPY C(5)-HPC (lipid) and MPS and purification of BODIPY C(5)-HPC from a mixture of BODIPY C(5)-HPC and yellow AB. Overall, the results of this study demonstrate that lateral concentration gradients of redox-active surfactants formed within microfluidic channels can be used to transport solutes across the microfluidic channels in a solute-dependent manner. The approach employs electrical potentials (<1 V) that are sufficiently small to avoid electrolysis of water, can be performed in solutions having high ionic strength (>0.1M), and offers the basis of continuous processes for the purification or separation of solutes in microscale systems. © 2011 American Chemical Society

  7. Physical Activities Monitoring Using Wearable Acceleration Sensors Attached to the Body.

    PubMed

    Arif, Muhammad; Kattan, Ahmed

    2015-01-01

    Monitoring physical activities by using wireless sensors is helpful for identifying postural orientation and movements in the real-life environment. A simple and robust method based on time domain features to identify the physical activities is proposed in this paper; it uses sensors placed on the subjects' wrist, chest and ankle. A feature set based on time domain characteristics of the acceleration signal recorded by acceleration sensors is proposed for the classification of twelve physical activities. Nine subjects performed twelve different types of physical activities, including sitting, standing, walking, running, cycling, Nordic walking, ascending stairs, descending stairs, vacuum cleaning, ironing clothes and jumping rope, and lying down (resting state). Their ages were 27.2 ± 3.3 years and their body mass index (BMI) is 25.11 ± 2.6 Kg/m2. Classification results demonstrated a high validity showing precision (a positive predictive value) and recall (sensitivity) of more than 95% for all physical activities. The overall classification accuracy for a combined feature set of three sensors is 98%. The proposed framework can be used to monitor the physical activities of a subject that can be very useful for the health professional to assess the physical activity of healthy individuals as well as patients.

  8. Simulating Osmotic Equilibria: A New Tool for Calculating Activity Coefficients in Concentrated Aqueous Salt Solutions.

    PubMed

    Bley, Michael; Duvail, Magali; Guilbaud, Philippe; Dufrêche, Jean-François

    2017-10-19

    Herein, a new theoretical method is presented for predicting osmotic equilibria and activities, where a bulk liquid and its corresponding vapor phase are simulated by means of molecular dynamics using explicit polarization. Calculated time-averaged number density profiles provide the amount of evaporated molecules present in the vapor phase and consequently the vapor-phase density. The activity of the solvent and the corresponding osmotic coefficient are determined by the vapor density at different solute concentrations with respect to the reference vapor density of the pure solvent. With the extended Debye-Hückel equation for the activity coefficient along with the corresponding Gibbs-Duhem relation, the activity coefficients of the solutes are calculated by fitting the osmotic coefficients. A simple model based on the combination of Poisson processes and Maxwell-Boltzmann velocity distributions is introduced to interpret statistical phenomena observed during the simulations, which are related to evaporation and recondensation. This method is applied to aqueous dysprosium nitrate [Dy(NO 3 ) 3 ] solutions at different concentrations. The obtained densities of the liquid bulk and the osmotic and activity coefficients are in good agreement with the experimental results for concentrated and saturated solutions. Density profiles of the liquid-vapor interface at different concentrations provide detailed insight into the spatial distributions of all compounds.

  9. SoM: a smart sensor for human activity monitoring and assisted healthy ageing.

    PubMed

    Naranjo-Hernández, David; Roa, Laura M; Reina-Tosina, Javier; Estudillo-Valderrama, Miguel Ángel

    2012-11-01

    This paper presents the hardware and software design and implementation of a low-cost, wearable, and unobstructive intelligent accelerometer sensor for the monitoring of human physical activities. In order to promote healthy lifestyles to elders for an active, independent, and healthy ageing, as well as for the early detection of psychomotor abnormalities, the activity monitoring is performed in a holistic manner in the same device through different approaches: 1) a classification of the level of activity that allows to establish patterns of behavior; 2) a daily activity living classifier that is able to distinguish activities such as climbing or descending stairs using a simple method to decouple the gravitational acceleration components of the motion components; and 3) an estimation of metabolic expenditure independent of the activity performed and the anthropometric characteristics of the user. Experimental results have demonstrated the feasibility of the prototype and the proposed algorithms.

  10. Electromagnetic interference in intraoperative monitoring of motor evoked potentials and a wireless solution.

    PubMed

    Farajidavar, Aydin; Seifert, Jennifer L; Delgado, Mauricio R; Sparagana, Steven; Romero-Ortega, Mario I; Chiao, J-C

    2016-02-01

    Intraoperative neurophysiological monitoring (IONM) is utilized to minimize neurological morbidity during spine surgery. Transcranial motor evoked potentials (TcMEPs) are principal IONM signals in which the motor cortex of the subject is stimulated with electrical pulses and the evoked potentials are recorded from the muscles of interest. Currently available monitoring systems require the connection of 40-60 lengthy lead wires to the patient. These wires contribute to a crowded and cluttered surgical environment, and limit the maneuverability of the surgical team. In this work, it was demonstrated that the cumbersome wired system is vulnerable to electromagnetic interference (EMI) produced by operating room (OR) equipment. It was hypothesized that eliminating the lengthy recording wires can remove the EMI induced in the IONM signals. Hence, a wireless system to acquire TcMEPs was developed and validated through bench-top and animal experiments. Side-by-side TcMEPs acquisition from the wired and wireless systems in animal experiments under controlled conditions (absence of EMI from OR equipment) showed comparable magnitudes and waveforms, thus demonstrating the fidelity in the signal acquisition of the wireless solution. The robustness of the wireless system to minimize EMI was compared with a wired-system under identical conditions. Unlike the wired-system, the wireless system was not influenced by the electromagnetic waves from the C-Arm X-ray machine and temperature management system in the OR. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  11. Self-monitoring to increase physical activity in patients with cardiovascular disease: a systematic review and meta-analysis.

    PubMed

    Kanejima, Yuji; Kitamura, Masahiro; Izawa, Kazuhiro P

    2018-04-30

    It is important to encourage physical activity in patients with cardiovascular disease (CVD), and self-monitoring is considered to contribute to increased physical activity. However, the effects of self-monitoring on CVD patients remain to be established. In this study, we examined the influence of self-monitoring on physical activity of patients with CVD via a systematic review and meta-analysis. Screening of randomized controlled trials only was undertaken twice on PubMed (date of appraisal: August 29, 2017). The inclusion criteria included outpatients with CVD, interventions for them, daily step counts as physical activity included in the outcome, and self-monitoring included in the intervention. Assessments of the risk of bias and meta-analysis in relation to the mean change of daily step counts were conducted to verify the effects of self-monitoring. From 205 studies retrieved on PubMed, six studies were included, with the oldest study published in 2005. Participants included 693 patients of whom 541 patients completed each study program. Their mean age was 60.8 years, and the ratio of men was 79.6%. From these 6 studies, a meta-analysis was conducted with 269 patients of 4 studies including only RCTs with step counts in the intervention group and the control group, and self-monitoring significantly increased physical activity (95% confidence interval, 1916-3090 steps per day, p < 0.05). The average intervention period was about 5 months. Moreover, four studies involved intervention via the internet, and five studies confirmed the use of self-monitoring combined with other behavior change techniques. The results suggest that self-monitoring of physical activity by patients with CVD has a significantly positive effect on their improvement. Moreover, the trend toward self-monitoring combined with setting counseling and activity goals, and increased intervention via the internet, may lead to the future development and spread of self-monitoring for CVD

  12. AVHRR-based drought-observing system for monitoring the environment and socioeconomic activities

    NASA Astrophysics Data System (ADS)

    Kogan, F.

    From all natural disaster, drought is the least understandable and the most damaging environmental phenomenon. Although in pre-satellite era, climate data were used for drought monitoring, drought specifics created problems in early drought detection start/end, monitoring its expansion/contraction, intensity and area coverage and the most important, timely estimation of the impacts on the environment and socioeconomic activities. The latest prevented to take prompt measures in mitigating negative consequences of drought for the society. Advances in remote sensing of the past ten years, contributed to the development of comprehensive drought monitoring system and numerous applications, which helped to make decisions for monitoring the environment and predicting sustainable socioeconomic activities. This paper discusses satellite-based land-surface observing system, which provides wells of information used for monitoring such unusual natural disaster as drought. This system was developed from the observations of the Advanced Very High Resolution Radiometer (AVHRR) flown on NOAA operational polar-orbiting satellites. The AVHRR data were packed into the Global Vegetation Index (GVI) product, which have served the global community since 1981. The GVI provided reflectances and indices (4 km spacial resolution) every seven days for each 16 km map cell between 75EN and 55ES covering all land ecosystems. The data includes raw and calibrated radiances in the visible, near infrared and infrared spectral bands, processed (with eliminated high frequency noise) radiances, normalized difference vegetation index (NDVI), 20-year climatology, vegetation condition indices and also products, such as vegetation health, drought, vegetation fraction, fire risk etc. In the past ten years, users around the world used this information addressing different issues of drought impacts on socioeconomic activities and responded positively to real time drought information place regularly on the

  13. Physical Activity and Food Environments: Solutions to the Obesity Epidemic

    PubMed Central

    Sallis, James F; Glanz, Karen

    2009-01-01

    Context: Environmental, policy, and societal changes are important contributors to the rapid rise in obesity over the past few decades, and there has been substantial progress toward identifying environmental and policy factors related to eating and physical activity that can point toward solutions. This article is a status report on research on physical activity and food environments, and it suggests how these findings can be used to improve diet and physical activity and to control or reduce obesity. Methods: This article summarizes and synthesizes recent reviews and provides examples of representative studies. It also describes ongoing innovative interventions and policy change efforts that were identified through conference presentations, media coverage, and websites. Findings: Numerous cross-sectional studies have consistently demonstrated that some attributes of built and food environments are associated with physical activity, healthful eating, and obesity. Residents of walkable neighborhoods who have good access to recreation facilities are more likely to be physically active and less likely to be overweight or obese. Residents of communities with ready access to healthy foods also tend to have more healthful diets. Disparities in environments and policies that disadvantage low-income communities and racial minorities have been documented as well. Evidence from multilevel studies, prospective research, and quasi-experimental evaluations of environmental changes are just beginning to emerge. Conclusions: Environment, policy, and multilevel strategies for improving diet, physical activity, and obesity control are recommended based on a rapidly growing body of research and the collective wisdom of leading expert organizations. A public health imperative to identify and implement solutions to the obesity epidemic warrants the use of the most promising strategies while continuing to build the evidence base. PMID:19298418

  14. Mean ionic activity coefficients in aqueous NaCl solutions from molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mester, Zoltan; Panagiotopoulos, Athanassios Z., E-mail: azp@princeton.edu

    The mean ionic activity coefficients of aqueous NaCl solutions of varying concentrations at 298.15 K and 1 bar have been obtained from molecular dynamics simulations by gradually turning on the interactions of an ion pair inserted into the solution. Several common non-polarizable water and ion models have been used in the simulations. Gibbs-Duhem equation calculations of the thermodynamic activity of water are used to confirm the thermodynamic consistency of the mean ionic activity coefficients. While the majority of model combinations predict the correct trends in mean ionic activity coefficients, they overestimate their values at high salt concentrations. The solubility predictionsmore » also suffer from inaccuracies, with all models underpredicting the experimental values, some by large factors. These results point to the need for further ion and water model development.« less

  15. Heterogeneity of activated carbons in adsorption of aniline from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Podkościelny, P.; László, K.

    2007-08-01

    The heterogeneity of activated carbons (ACs) prepared from different precursors is investigated on the basis of adsorption isotherms of aniline from dilute aqueous solutions at various pH values. The APET carbon prepared from polyethyleneterephthalate (PET), as well as, commercial ACP carbon prepared from peat were used. Besides, to investigate the influence of carbon surface chemistry, the adsorption was studied on modified carbons based on ACP carbon. Its various oxygen surface groups were changed by both nitric acid and thermal treatments. The Dubinin-Astakhov (DA) equation and Langmuir-Freundlich (LF) one have been used to model the phenomenon of aniline adsorption from aqueous solutions on heterogeneous carbon surfaces. Adsorption-energy distribution (AED) functions have been calculated by using an algorithm based on a regularization method. Analysis of these functions for activated carbons studied provides important comparative information about their surface heterogeneity.

  16. System and method for monitoring cellular activity

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory H. (Inventor); Fraser, Scott E. (Inventor); Lansford, Russell D. (Inventor)

    2002-01-01

    A system and method for monitoring cellular activity in a cellular specimen. According to one embodiment, a plurality of excitable markers are applied to the specimen. A multi-photon laser microscope is provided to excite a region of the specimen and cause fluorescence to be radiated from the region. The radiating fluorescence is processed by a spectral analyzer to separate the fluorescence into respective wavelength bands. The respective bands of fluorescence are then collected by an array of detectors, with each detector receiving a corresponding one of the wavelength bands.

  17. System and method for monitoring cellular activity

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory H. (Inventor); Fraser, Scott E. (Inventor); Lansford, Russell D. (Inventor)

    2004-01-01

    A system and method for monitoring cellular activity in a cellular specimen. According to one embodiment, a plurality of excitable markers are applied to the specimen. A multi-photon laser microscope is provided to excite a region of the specimen and cause fluorescence to be radiated from the region. The radiating fluorescence is processed by a spectral analyzer to separate the fluorescence into respective wavelength bands. The respective bands of fluorescence are then collected by an array of detectors, with each detector receiving a corresponding one of the wavelength bands.

  18. Evaluation of Shiryaev-Roberts procedure for on-line environmental radiation monitoring.

    PubMed

    Watson, Mara M; Seliman, Ayman F; Bliznyuk, Valery N; DeVol, Timothy A

    2018-04-30

    Water can become contaminated as a result of a leak from a nuclear facility, such as a waste facility, or from clandestine nuclear activity. Low-level on-line radiation monitoring is needed to detect these events in real time. A Bayesian control chart method, Shiryaev-Roberts (SR) procedure, was compared with classical methods, 3-σ and cumulative sum (CUSUM), for quantifying an accumulating signal from an extractive scintillating resin flow-cell detection system. Solutions containing 0.10-5.0 Bq/L of 99 Tc, as T99cO 4 - were pumped through a flow cell packed with extractive scintillating resin used in conjunction with a Beta-RAM Model 5 HPLC detector. While T99cO 4 - accumulated on the resin, time series data were collected. Control chart methods were applied to the data using statistical algorithms developed in MATLAB. SR charts were constructed using Poisson (Poisson SR) and Gaussian (Gaussian SR) probability distributions of count data to estimate the likelihood ratio. Poisson and Gaussian SR charts required less volume of radioactive solution at a fixed concentration to exceed the control limit in most cases than 3-σ and CUSUM control charts, particularly solutions with lower activity. SR is thus the ideal control chart for low-level on-line radiation monitoring. Once the control limit was exceeded, activity concentrations were estimated from the SR control chart using the control chart slope on a semi-logarithmic plot. A linear regression fit was applied to averaged slope data for five activity concentration groupings for Poisson and Gaussian SR control charts. A correlation coefficient (R 2 ) of 0.77 for Poisson SR and 0.90 for Gaussian SR suggest this method will adequately estimate activity concentration for an unknown solution. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Monitoring volcanic thermal activity by Robust Satellite Techniques: achievements and perspectives

    NASA Astrophysics Data System (ADS)

    Tramutoli, V.; Marchese, F.; Mazzeo, G.; Pergola, N.

    2009-12-01

    Satellite data have been increasingly used in last decades to study active volcanoes and to monitor thermal activity variation in space-time domain. Several satellite techniques and original methods have been developed and tested, devoted to hotspot detection and thermal monitoring. Among them, a multi-temporal approach, named RST (Robust Satellite Techniques), has shown high performances in detecting hotspots, with a low false positive rate under different observational and atmospheric conditions, providing also a potential toward low-level thermal anomalies which may announce incoming eruptions. As the RST scheme is intrinsically exportable on different geographic areas and satellite sensors, it has been applied and tested on a number of volcanoes and in different environmental conditions. This work presents major results and outcomes of studies carried out on Etna and Stromboli (Italy), Merapi (Java Indonesia), Asamayama (Japan), Jebel Al Tair (Yemen) by using different satellite systems and sensors (e.g. NOAA-AVHRR, EOS-MODIS, MSG-SEVIRI). Performances on hotspot detection, early warning and real-time monitoring, together with capabilities in possible thermal precursor identification, will be presented and discussed.

  20. Component Analysis of Multipurpose Contact Lens Solutions To Enhance Activity against Pseudomonas aeruginosa and Staphylococcus aureus

    PubMed Central

    Lin, Leo; Kim, Janie; Chen, Hope; Kowalski, Regis

    2016-01-01

    More than 125 million people wear contact lenses worldwide, and contact lens use is the single greatest risk factor for developing microbial keratitis. We tested the antibacterial activity of multipurpose contact lens solutions and their individual component preservatives against the two most common pathogens causing bacterial keratitis, Pseudomonas aeruginosa and Staphylococcus aureus. The in vitro antibacterial activity of five multipurpose contact lens solutions (Opti-Free GP, Boston Simplus, Boston Advance, Menicare GP, and Lobob) was assayed by the standard broth dilution method. Synergy between the preservative components found in the top performing solutions was assayed using checkerboard and time-kill assays. The ISO 14729 criteria and the standard broth dilution method were used to define an optimized contact lens solution formulation against a clinical panel of drug-susceptible and drug-resistant P. aeruginosa and S. aureus strains. Preservatives with the biguanide function group, chlorhexidine and polyaminopropylbiguanide (PAPB), had the best antistaphylococcal activity, while EDTA was the best antipseudomonal preservative. The combination of chlorhexidine and EDTA had excellent synergy against P. aeruginosa. A solution formulation containing chlorhexidine (30 ppm), PAPB (5 ppm), and EDTA (5,000 ppm) had three to seven times more antipseudomonal activity than anything available to consumers today. A multipurpose contact lens solution containing a combination of chlorhexidine, PAPB, and EDTA could help to reduce the incidence of microbial keratitis for contact lens users worldwide. PMID:27139484

  1. A tritium activity monitor for the KATRIN Experiment

    NASA Astrophysics Data System (ADS)

    Schmitt, Udo

    2008-06-01

    The KArlsruhe TRItium Neutrino experiment KATRIN is designed to measure the absolute neutrino mass scale by analyzing the endpoint region of the tritium beta-decay spectrum with a sensitivity of 0.2 eV/c2 (90 % C.L.). A high-luminous windowless gaseous tritium source with an activity of 1.7 · 1011 Bq will produce the decay electrons, their energy spectrum will be analyzed by a combination of two electrostatic retarding spectrometers with magnetic adiabatic collimation (MAC-E-filter). Fluctuations of the source column density and inelastic scattering processes within the source affect the energy distribution of the decay electrons. Hence, a precise and continuous monitoring of the source activity is necessary to correct the data taken by the main detector. A prototype of the beam monitor detector, based on a silicon drift diode, has been developed to measure an expected counting rate in the range of 106/(s · mm2). The detector element shall be moveable across the complete beam in a magnetic field of 0.8 T, resulting in a beam diameter of 20 cm. A precise sensor positioning device has been designed and built to be compatible with the primary beamline vacuum of 10-11 mbar.

  2. Robot-assisted motor activation monitored by time-domain optical brain imaging

    NASA Astrophysics Data System (ADS)

    Steinkellner, O.; Wabnitz, H.; Schmid, S.; Steingräber, R.; Schmidt, H.; Krüger, J.; Macdonald, R.

    2011-07-01

    Robot-assisted motor rehabilitation proved to be an effective supplement to conventional hand-to-hand therapy in stroke patients. In order to analyze and understand motor learning and performance during rehabilitation it is desirable to develop a monitor to provide objective measures of the corresponding brain activity at the rehabilitation progress. We used a portable time-domain near-infrared reflectometer to monitor the hemodynamic brain response to distal upper extremity activities. Four healthy volunteers performed two different robot-assisted wrist/forearm movements, flexion-extension and pronation-supination in comparison with an unassisted squeeze ball exercise. A special headgear with four optical measurement positions to include parts of the pre- and postcentral gyrus provided a good overlap with the expected activation areas. Data analysis based on variance of time-of-flight distributions of photons through tissue was chosen to provide a suitable representation of intracerebral signals. In all subjects several of the four detection channels showed a response. In some cases indications were found of differences in localization of the activated areas for the various tasks.

  3. Adolescents' leisure activities, parental monitoring and cigarette smoking - a cross-sectional study

    PubMed Central

    2011-01-01

    Background Adolescent participation in leisure activities is developmentally beneficial, but certain activities may increase health compromising behaviours, such as tobacco smoking. A limited range of leisure activities has been studied, with little research on out-of-school settings where parental supervision is a potential protective factor. Tobacco smoking is an important, potentially modifiable health determinant, so understanding associations between adolescent leisure activities, parental monitoring, demographic factors and daily smoking may inform preventive strategies. These associations are reported for a New Zealand adolescent sample. Methods Randomly selected schools (n = 145) participated in the 2006 Youth In-depth Survey, a national, biennial study of Year 10 students (predominantly 14-15 years). School classes were randomly selected and students completed a self-report questionnaire in class time. Adjustment for clustering at the school level was included in all analyses. Since parental monitoring and demographic variables potentially confound relations between adolescent leisure activities and smoking, variables were screened before multivariable modelling. Given prior indications of demographic differences, gender and ethnic specific regression models were built. Results and Discussion Overall, 8.5% of the 3,161 students were daily smokers, including more females (10.5%) than males (6.5%). In gender and ethnic specific multivariate analysis of associations with daily smoking (adjusted for age, school socioeconomic decile rating, leisure activities and ethnicity or gender, respectively), parental monitoring exhibited a consistently protective, dose response effect, although less strongly among Māori. Attending a place of worship and going to the movies were protective for non-Māori, as was watching sports, whereas playing team sport was protective for all, except males. Attending a skate park was a risk factor for females and Māori which

  4. Adolescents' leisure activities, parental monitoring and cigarette smoking--a cross-sectional study.

    PubMed

    Guo, Hui; Reeder, Anthony I; McGee, Rob; Darling, Helen

    2011-06-06

    Adolescent participation in leisure activities is developmentally beneficial, but certain activities may increase health compromising behaviours, such as tobacco smoking. A limited range of leisure activities has been studied, with little research on out-of-school settings where parental supervision is a potential protective factor. Tobacco smoking is an important, potentially modifiable health determinant, so understanding associations between adolescent leisure activities, parental monitoring, demographic factors and daily smoking may inform preventive strategies. These associations are reported for a New Zealand adolescent sample. Randomly selected schools (n = 145) participated in the 2006 Youth In-depth Survey, a national, biennial study of Year 10 students (predominantly 14-15 years). School classes were randomly selected and students completed a self-report questionnaire in class time. Adjustment for clustering at the school level was included in all analyses. Since parental monitoring and demographic variables potentially confound relations between adolescent leisure activities and smoking, variables were screened before multivariable modelling. Given prior indications of demographic differences, gender and ethnic specific regression models were built. Overall, 8.5% of the 3,161 students were daily smokers, including more females (10.5%) than males (6.5%). In gender and ethnic specific multivariate analysis of associations with daily smoking (adjusted for age, school socioeconomic decile rating, leisure activities and ethnicity or gender, respectively), parental monitoring exhibited a consistently protective, dose response effect, although less strongly among Māori. Attending a place of worship and going to the movies were protective for non-Māori, as was watching sports, whereas playing team sport was protective for all, except males. Attending a skate park was a risk factor for females and Māori which demonstrated a strong dose response effect. There

  5. Ultrasonic Monitoring of the Interaction between Cement Matrix and Alkaline Silicate Solution in Self-Healing Systems.

    PubMed

    Ait Ouarabi, Mohand; Antonaci, Paola; Boubenider, Fouad; Gliozzi, Antonio S; Scalerandi, Marco

    2017-01-07

    Alkaline solutions, such as sodium, potassium or lithium silicates, appear to be very promising as healing agents for the development of encapsulated self-healing concretes. However, the evolution of their mechanical and acoustic properties in time has not yet been completely clarified, especially regarding their behavior and related kinetics when they are used in the form of a thin layer in contact with a hardened cement matrix. This study aims to monitor, using linear and nonlinear ultrasonic methods, the evolution of a sodium silicate solution interacting with a cement matrix in the presence of localized cracks. The ultrasonic inspection via linear methods revealed that an almost complete recovery of the elastic and acoustic properties occurred within a few days of healing. The nonlinear ultrasonic measurements contributed to provide further insight into the kinetics of the recovery due to the presence of the healing agent. A good regain of mechanical performance was ascertained through flexural tests at the end of the healing process, confirming the suitability of sodium silicate as a healing agent for self-healing cementitious systems.

  6. Monitoring and controlling ovarian activity in elephants.

    PubMed

    Thitaram, Chatchote; Brown, Janine L

    2018-03-15

    Both Asian (Elephas maximus) and African (Loxodonta africana) elephants are important keystone, umbrella and flagship species. Paradoxically, world population numbers of both species are declining in many of their natural ranges due mainly to poaching, while over population of elephants in some areas is resulting in serious human-elephant conflict, and modifications of natural habitats that impact biodiversity. Understanding mechanisms of reproductive control is vital to effective population management, and for that reason significant advances have been made in endocrine and ultrasonographic monitoring techniques, particularly in studies of elephants ex situ. However, there remains a need to develop new methods to control ovarian activity, both for enhancing and inhibiting reproduction, to maintain population numbers at levels that ensure species survival and their ability to safely cohabitate with humans and other species. We present an overview of reproductive monitoring methods and how they have contributed to our knowledge of elephant reproductive biology, as well as their application for in situ and ex situ conservation purposes. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. ActivityAware: An App for Real-Time Daily Activity Level Monitoring on the Amulet Wrist-Worn Device.

    PubMed

    Boateng, George; Batsis, John A; Halter, Ryan; Kotz, David

    2017-03-01

    Physical activity helps reduce the risk of cardiovascular disease, hypertension and obesity. The ability to monitor a person's daily activity level can inform self-management of physical activity and related interventions. For older adults with obesity, the importance of regular, physical activity is critical to reduce the risk of long-term disability. In this work, we present ActivityAware , an application on the Amulet wrist-worn device that measures daily activity levels (sedentary, moderate and vigorous) of individuals, continuously and in real-time. The app implements an activity-level detection model, continuously collects acceleration data on the Amulet, classifies the current activity level, updates the day's accumulated time spent at that activity level, logs the data for later analysis, and displays the results on the screen. We developed an activity-level detection model using a Support Vector Machine (SVM). We trained our classifiers using data from a user study, where subjects performed the following physical activities: sit, stand, lay down, walk and run. With 10-fold cross validation and leave-one-subject-out (LOSO) cross validation, we obtained preliminary results that suggest accuracies up to 98%, for n=14 subjects. Testing the ActivityAware app revealed a projected battery life of up to 4 weeks before needing to recharge. The results are promising, indicating that the app may be used for activity-level monitoring, and eventually for the development of interventions that could improve the health of individuals.

  8. Preliminary study on activity monitoring using an android smart-watch

    PubMed Central

    Ahanathapillai, Vijayalakshmi; Goodwin, Zoe; James, Christopher J.

    2015-01-01

    The global trend for increasing life expectancy is resulting in aging populations in a number of countries. This brings to bear a pressure to provide effective care for the older population with increasing constraints on available resources. Providing care for and maintaining the independence of an older person in their own home is one way that this problem can be addressed. The EU Funded Unobtrusive Smart Environments for Independent Living (USEFIL) project is an assistive technology tool being developed to enhance independent living. As part of USEFIL, a wrist wearable unit (WWU) is being developed to monitor the physical activity (PA) of the user and integrate with the USEFIL system. The WWU is a novel application of an existing technology to the assisted living problem domain. It combines existing technologies and new algorithms to extract PA parameters for activity monitoring. The parameters that are extracted include: activity level, step count and worn state. The WWU, the algorithms that have been developed and a preliminary validation are presented. The results show that activity level can be successfully extracted, that worn state can be correctly identified and that step counts in walking data can be estimated within 3% error, using the controlled dataset. PMID:26609402

  9. Preliminary study on activity monitoring using an android smart-watch.

    PubMed

    Ahanathapillai, Vijayalakshmi; Amor, James D; Goodwin, Zoe; James, Christopher J

    2015-02-01

    The global trend for increasing life expectancy is resulting in aging populations in a number of countries. This brings to bear a pressure to provide effective care for the older population with increasing constraints on available resources. Providing care for and maintaining the independence of an older person in their own home is one way that this problem can be addressed. The EU Funded Unobtrusive Smart Environments for Independent Living (USEFIL) project is an assistive technology tool being developed to enhance independent living. As part of USEFIL, a wrist wearable unit (WWU) is being developed to monitor the physical activity (PA) of the user and integrate with the USEFIL system. The WWU is a novel application of an existing technology to the assisted living problem domain. It combines existing technologies and new algorithms to extract PA parameters for activity monitoring. The parameters that are extracted include: activity level, step count and worn state. The WWU, the algorithms that have been developed and a preliminary validation are presented. The results show that activity level can be successfully extracted, that worn state can be correctly identified and that step counts in walking data can be estimated within 3% error, using the controlled dataset.

  10. New solutions for standardization, monitoring and quality management of fluorescence-based imaging systems (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Royon, Arnaud; Papon, Gautier

    2016-03-01

    Fluorescence microscopes have become ubiquitous in life sciences laboratories, including those focused on pharmaceuticals, diagnosis, and forensics. For the past few years, the need for both performance guarantees and quantifiable results has driven development in this area. However, the lack of appropriate standards and reference materials makes it difficult or impossible to compare the results of two fluorescence microscopes, or to measure performance fluctuations of one microscope over time. Therefore, the operation of fluorescence microscopes is not monitored as often as their use warrants - an issue that is recognized by both systems manufacturers and national metrology institutes. We have developed a new process that enables the etching of long-term stable fluorescent patterns with sub-micrometer sizes in three dimensions inside glass. In this paper, we present, based on this new process, a fluorescent multi-dimensional ruler and a dedicated software that are suitable for monitoring and quality management of fluorescence-based imaging systems (wide-field, confocal, multiphoton, high content machines). In addition to fluorescence, the same patterns exhibit bright- and dark-field contrast, DIC, and phase contrast, which make them also relevant to monitor these types of microscopes. Non-exhaustively, this new solution enables the measurement of: The stage repositioning accuracy; The illumination and detection homogeneities; The field flatness; The detectors' characteristics; The lateral and axial spatial resolutions; The spectral response (spectrum, intensity and lifetime) of the system. Thanks to the stability of the patterns, microscope performance assessment can be carried out as well in a daily basis as in the long term.

  11. Astronaut George Nelson working on Comet Halley Active monitoring program

    NASA Image and Video Library

    1986-01-14

    61C-05-026 (14 Jan. 1986) --- Astronaut George D. Nelson smiles for a fellow crew man's 35mm camera exposure while participating in the Comet Halley active monitoring program (CHAMP). Camera equipment and a protective shroud used to eliminate all cabin light interference surround the mission specialist. This is the first of three 1986 missions which are scheduled to monitor the rare visit by the comet. The principal investigators for CHAMP are S. Alan Stern of the Laboratory for Atmospheric and Space Physics at the University of Colorado; and Dr. Stephen Mende of Lockheed Palo Alto Research Laboratory.

  12. Corrosion monitoring on a large steel pressure vessel by thin-layer activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, G.; Boulton, L.H.; Hodder, D.

    1989-12-01

    Thin-layer activation (TLA) is a technique in which a surface is irradiated by a nuclear accelerator and thereby labeled with an accurate depth profile of low-level radioactivity. By monitoring this activity it is possible to calculate how much of that surface has been removed by corrosion. As the radioactivity is marked by the emission of penetrating gamma rays, it is possible to monitor this corrosion remotely through several centimeters of steel. This technique has been used to monitor erosion-corrosion occurring on the inner carbon steel wall of a continuous Kraft pulp digester at a paper mill. Representative coupons of themore » same steel as the digester wall were irradiated and fixed to the walls in the liquor extraction zone during a maintenance shutdown. The loss of metal over the six months was measured by external monitoring of gamma radiation through the vessel wall, and converted to a corrosion rate. Subsequent weight-loss measurements and comparison with ultrasonic thickness measurements established that the corrosion rate measured gave accurate results over a much shorter time scale. TLA thus enables current, rather than historical corrosion rates to be measured in a large steel pressure vessel.« less

  13. Integrated structural health monitoring

    NASA Astrophysics Data System (ADS)

    Farrar, Charles R.; Sohn, Hoon; Fugate, Michael L.; Czarnecki, Jerry J.

    2001-07-01

    Structural health monitoring is the implementation of a damage detection strategy for aerospace, civil and mechanical engineering infrastructure. Typical damage experienced by this infrastructure might be the development of fatigue cracks, degradation of structural connections, or bearing wear in rotating machinery. The goal of the research effort reported herein is to develop a robust and cost-effective structural health monitoring solution by integrating and extending technologies from various engineering and information technology disciplines. It is the author's opinion that all structural health monitoring systems must be application specific. Therefore, a specific application, monitoring welded moment resisting steel frame connections in structures subjected to seismic excitation, is described along with the motivation for choosing this application. The structural health monitoring solution for this application will integrate structural dynamics, wireless data acquisition, local actuation, micro-electromechanical systems (MEMS) technology, and statistical pattern recognition algorithms. The proposed system is based on an assessment of the deficiencies associated with many current structural health monitoring technologies including past efforts by the authors. This paper provides an example of the integrated approach to structural health monitoring being undertaken at Los Alamos National Laboratory and summarizes progress to date on various aspects of the technology development.

  14. Ferroelectric thin-film active sensors for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Lin, Bin; Giurgiutiu, Victor; Yuan, Zheng; Liu, Jian; Chen, Chonglin; Jiang, Jiechao; Bhalla, Amar S.; Guo, Ruyan

    2007-04-01

    Piezoelectric wafer active sensors (PWAS) have been proven a valuable tool in structural health monitoring. Piezoelectric wafer active sensors are able to send and receive guided Lamb/Rayleigh waves that scan the structure and detect the presence of incipient cracks and structural damage. In-situ thin-film active sensor deposition can eliminate the bonding layer to improve the durability issue and reduce the acoustic impedance mismatch. Ferroelectric thin films have been shown to have piezoelectric properties that are close to those of single-crystal ferroelectrics but the fabrication of ferroelectric thin films on structural materials (steel, aluminum, titanium, etc.) has not been yet attempted. In this work, in-situ fabrication method of piezoelectric thin-film active sensors arrays was developed using the nano technology approach. Specification for the piezoelectric thin-film active sensors arrays was based on electro-mechanical-acoustical model. Ferroelectric BaTiO3 (BTO) thin films were successfully deposited on Ni tapes by pulsed laser deposition under the optimal synthesis conditions. Microstructural studies by X-ray diffractometer and transmission electron microscopy reveal that the as-grown BTO thin films have the nanopillar structures with an average size of approximately 80 nm in diameter and the good interface structures with no inter-diffusion or reaction. The dielectric and ferroelectric property measurements exhibit that the BTO films have a relatively large dielectric constant, a small dielectric loss, and an extremely large piezoelectric response with a symmetric hysteresis loop. The research objective is to develop the fabrication and optimum design of thin-film active sensor arrays for structural health monitoring applications. The short wavelengths of the micro phased arrays will permit the phased-array imaging of smaller parts and smaller damage than is currently not possible with existing technology.

  15. Activity Coefficients of Acetone-Chloroform Solutions: An Undergraduate Experiment. Undergraduate Experiment.

    ERIC Educational Resources Information Center

    Ozog, J. Z.; Morrison, J. A.

    1983-01-01

    Presents information, laboratory procedures, and results of an undergraduate experiment in which activity coefficients for a two-component liquid-vapor system are determined. Working in pairs, students can perform the experiment with 10 solutions in a given three-hour laboratory period. (Author/JN)

  16. Novel Flexible Wearable Sensor Materials and Signal Processing for Vital Sign and Human Activity Monitoring.

    PubMed

    Servati, Amir; Zou, Liang; Wang, Z Jane; Ko, Frank; Servati, Peyman

    2017-07-13

    Advances in flexible electronic materials and smart textile, along with broad availability of smart phones, cloud and wireless systems have empowered the wearable technologies for significant impact on future of digital and personalized healthcare as well as consumer electronics. However, challenges related to lack of accuracy, reliability, high power consumption, rigid or bulky form factor and difficulty in interpretation of data have limited their wide-scale application in these potential areas. As an important solution to these challenges, we present latest advances in novel flexible electronic materials and sensors that enable comfortable and conformable body interaction and potential for invisible integration within daily apparel. Advances in novel flexible materials and sensors are described for wearable monitoring of human vital signs including, body temperature, respiratory rate and heart rate, muscle movements and activity. We then present advances in signal processing focusing on motion and noise artifact removal, data mining and aspects of sensor fusion relevant to future clinical applications of wearable technology.

  17. Novel Flexible Wearable Sensor Materials and Signal Processing for Vital Sign and Human Activity Monitoring

    PubMed Central

    Servati, Amir; Wang, Z. Jane; Ko, Frank; Servati, Peyman

    2017-01-01

    Advances in flexible electronic materials and smart textile, along with broad availability of smart phones, cloud and wireless systems have empowered the wearable technologies for significant impact on future of digital and personalized healthcare as well as consumer electronics. However, challenges related to lack of accuracy, reliability, high power consumption, rigid or bulky form factor and difficulty in interpretation of data have limited their wide-scale application in these potential areas. As an important solution to these challenges, we present latest advances in novel flexible electronic materials and sensors that enable comfortable and conformable body interaction and potential for invisible integration within daily apparel. Advances in novel flexible materials and sensors are described for wearable monitoring of human vital signs including, body temperature, respiratory rate and heart rate, muscle movements and activity. We then present advances in signal processing focusing on motion and noise artifact removal, data mining and aspects of sensor fusion relevant to future clinical applications of wearable technology. PMID:28703744

  18. Application of Terrestrial Ecosystem Monitoring under the CAFF Circumpolar Biodiversity Monitoring Program: Designing and Implementing Terrestrial Monitoring to Establish the Canadian High Arctic Research Station as a Flagship Arctic Environmental Monitoring Site

    NASA Astrophysics Data System (ADS)

    McLennan, D.; Kehler, D.

    2016-12-01

    The Canadian High Arctic Research Station (CHARS) is scheduled for completion in July 2017 and is the northern science component of Polar Knowledge Canada (POLAR). A mandated goal for POLAR is to establish the adjacent Experimental and Reference Area (ERA) as an Arctic Flagship monitoring site that will track change in Arctic terrestrial, freshwater and marine ecosystems. Situated in the community of Cambridge Bay, CHARS provides the opportunity to draw on the Indigenous Knowledge of local residents to help design and conduct the monitoring, and to operate 12 months a year. Monitoring at CHARS will be linked to networks nationally and internationally, and is being designed so that change in key indicators can be understood in terms of drivers and processes, modeled and scaled up regionally, and used to predict important changes in critical indicators. As a partner in the Circumpolar Biodiversity Monitoring Program (CBMP), the monitoring design for terrestrial ecosystems follows approaches outlined by the CBMP Terrestrial Expert Monitoring Group, who have listed key monitoring questions and identified a list of important Focal Ecosystem Components (FECs). To link drivers to FECs we are proposing a multi-scaled approach: 1) an Intensive Monitoring Area to establish replicated monitoring plots that track change in snow depth and condition, active layer depth, soil temperature, soil moisture, and soil solution chemistry that are spatially and temporally linked to changes in microbiological activity, CO2/CH4 net ecosystem flux, vegetation relative frequency, species composition, growth and foliar nutrient concentration, arthropod abundance, lemming abundance and health, and shorebird/songbird abundance and productivity. 2) These intensive observations are supported by watershed scale measures that will monitor, during the growing season, lemming winter nest abundance, songbird, shorebird and waterfowl staging and nesting, and other observations; in the winter we will

  19. Active Monitoring of Travelers Arriving from Ebola-Affected Countries - New York City, October 2014-April 2015.

    PubMed

    Millman, Alexander J; Chamany, Shadi; Guthartz, Seth; Thihalolipavan, Sayone; Porter, Michael; Schroeder, Andrew; Vora, Neil M; Varma, Jay K; Starr, David

    2016-01-29

    The Ebola virus disease (Ebola) outbreak in West Africa has claimed approximately 11,300 lives (1), and the magnitude and course of the epidemic prompted many nonaffected countries to prepare for Ebola cases imported from affected countries. In October 2014, CDC and the Department of Homeland Security (DHS) implemented enhanced entry risk assessment and management at five U.S. airports: John F. Kennedy (JFK) International Airport in New York City (NYC), O'Hare International Airport in Chicago, Newark Liberty International Airport in New Jersey, Hartsfield-Jackson International Airport in Atlanta, and Dulles International Airport in Virginia (2). Enhanced entry risk assessment began at JFK on October 11, 2014, and at the remaining airports on October 16 (3). On October 21, DHS exercised its authority to direct all travelers flying into the United States from an Ebola-affected country to arrive at one of the five participating airports. At the time, the Ebola-affected countries included Guinea, Liberia, Mali, and Sierra Leone. On October 27, CDC issued updated guidance for monitoring persons with potential Ebola virus exposure (4), including recommending daily monitoring of such persons to ascertain the presence of fever or symptoms for a period of 21 days (the maximum incubation period of Ebola virus) after the last potential exposure; this was termed "active monitoring." CDC also recommended "direct active monitoring" of persons with a higher risk for Ebola virus exposure, including health care workers who had provided direct patient care in Ebola-affected countries. Direct active monitoring required direct observation of the person being monitored by the local health authority at least once daily (5). This report describes the operational structure of the NYC Department of Health and Mental Hygiene's (DOHMH) active monitoring program during its first 6 months (October 2014-April 2015) of operation. Data collected on persons who required direct active monitoring

  20. UV-shielding property, photocatalytic activity and photocytotoxicity of ceria colloid solutions.

    PubMed

    Zholobak, N M; Ivanov, V K; Shcherbakov, A B; Shaporev, A S; Polezhaeva, O S; Baranchikov, A Ye; Spivak, N Ya; Tretyakov, Yu D

    2011-01-10

    UV-shielding property, photocatalytic activity and cytotoxicity (including photocytotoxicity) of citrate-stabilized ceria colloid solutions were studied. It was established that UV-shielding property (namely, the sun protection factor, the critical absorption wavelength and the UVA/UVB-ratio) of ceria nanoparticles are as good as those of titanium dioxide and zinc oxide nanoparticles. It was further demonstrated that ceria nanoparticles possesses substantially lower photocatalytic activity, which additionally decreases upon decrease in ceria particle size. It was found that colloid ceria solutions are non-toxic to mouse fibroblasts (L929) and fibroblast-like cells of African Green monkey (VERO). Moreover, ceria nanoparticles are capable to protect these cells from UV-irradiation-induced damage. It was proposed that nanocrystalline ceria could be used not only as UV-blocking material, but also as prophylactic and even therapeutic compound for sunburns treatment. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Patient-centered activity monitoring in the self-management of chronic health conditions.

    PubMed

    Chiauzzi, Emil; Rodarte, Carlos; DasMahapatra, Pronabesh

    2015-04-09

    As activity tracking devices become smaller, cheaper, and more consumer-accessible, they will be used more extensively across a wide variety of contexts. The expansion of activity tracking and personal data collection offers the potential for patient engagement in the management of chronic diseases. Consumer wearable devices for activity tracking have shown promise in post-surgery recovery in cardiac patients, pulmonary rehabilitation, and activity counseling in diabetic patients, among others. Unfortunately, the data generated by wearable devices is seldom integrated into programmatic self-management chronic disease regimens. In addition, there is lack of evidence supporting sustained use or effects on health outcomes, as studies have primarily focused on establishing the feasibility of monitoring activity and the association of measured activity with short-term benefits. Monitoring devices can make a direct and real-time impact on self-management, but the validity and reliability of measurements need to be established. In order for patients to become engaged in wearable data gathering, key patient-centered issues relating to usefulness in care, motivation, the safety and privacy of information, and clinical integration need to be addressed. Because the successful usage of wearables requires an ability to comprehend and utilize personal health data, the user experience should account for individual differences in numeracy skills and apply evidence-based behavioral science principles to promote continued engagement. Activity monitoring has the potential to engage patients as advocates in their personalized care, as well as offer health care providers real world assessments of their patients' daily activity patterns. This potential will be realized as the voice of the chronic disease patients is accounted for in the design of devices, measurements are validated against existing clinical assessments, devices become part of the treatment 'prescription', behavior

  2. Development of a real time activity monitoring Android application utilizing SmartStep.

    PubMed

    Hegde, Nagaraj; Melanson, Edward; Sazonov, Edward

    2016-08-01

    Footwear based activity monitoring systems are becoming popular in academic research as well as consumer industry segments. In our previous work, we had presented developmental aspects of an insole based activity and gait monitoring system-SmartStep, which is a socially acceptable, fully wireless and versatile insole. The present work describes the development of an Android application that captures the SmartStep data wirelessly over Bluetooth Low energy (BLE), computes features on the received data, runs activity classification algorithms and provides real time feedback. The development of activity classification methods was based on the the data from a human study involving 4 participants. Participants were asked to perform activities of sitting, standing, walking, and cycling while they wore SmartStep insole system. Multinomial Logistic Discrimination (MLD) was utilized in the development of machine learning model for activity prediction. The resulting classification model was implemented in an Android Smartphone. The Android application was benchmarked for power consumption and CPU loading. Leave one out cross validation resulted in average accuracy of 96.9% during model training phase. The Android application for real time activity classification was tested on a human subject wearing SmartStep resulting in testing accuracy of 95.4%.

  3. NIRPS - Solutions Facilitator Team Overview and Accomplishments

    NASA Technical Reports Server (NTRS)

    Brown, Thomas M., III; Childress, Rhonda

    2013-01-01

    National Institute for Rocket Propulsion Systems (NIRPS) purpose is to help preserve and align government and private rocket propulsion capabilities to meet present and future US commercial, civil, and defense needs, while providing authoritative insight and recommendations to National decisional authorities. Stewardship: Monitor and analyze the state of the industry in order to formulate and recommend National Policy options and strategies that promote a healthy industrial base and ensure best-value for the American taxpayer. Technology: Identify technology needs and recommend technology insertions by leading roadmap assessments and actively participating in program formulation activities. Solutions Facilitator/Provider: Maintain relationships and awareness across the Government, industry and academia, to align available capacity with emerging demand.

  4. Devices for Self-Monitoring Sedentary Time or Physical Activity: A Scoping Review.

    PubMed

    Sanders, James P; Loveday, Adam; Pearson, Natalie; Edwardson, Charlotte; Yates, Thomas; Biddle, Stuart J H; Esliger, Dale W

    2016-05-04

    It is well documented that meeting the guideline levels (150 minutes per week) of moderate-to-vigorous physical activity (PA) is protective against chronic disease. Conversely, emerging evidence indicates the deleterious effects of prolonged sitting. Therefore, there is a need to change both behaviors. Self-monitoring of behavior is one of the most robust behavior-change techniques available. The growing number of technologies in the consumer electronics sector provides a unique opportunity for individuals to self-monitor their behavior. The aim of this study is to review the characteristics and measurement properties of currently available self-monitoring devices for sedentary time and/or PA. To identify technologies, four scientific databases were systematically searched using key terms related to behavior, measurement, and population. Articles published through October 2015 were identified. To identify technologies from the consumer electronic sector, systematic searches of three Internet search engines were also performed through to October 1, 2015. The initial database searches identified 46 devices and the Internet search engines identified 100 devices yielding a total of 146 technologies. Of these, 64 were further removed because they were currently unavailable for purchase or there was no evidence that they were designed for, had been used in, or could readily be modified for self-monitoring purposes. The remaining 82 technologies were included in this review (73 devices self-monitored PA, 9 devices self-monitored sedentary time). Of the 82 devices included, this review identified no published articles in which these devices were used for the purpose of self-monitoring PA and/or sedentary behavior; however, a number of technologies were found via Internet searches that matched the criteria for self-monitoring and provided immediate feedback on PA (ActiGraph Link, Microsoft Band, and Garmin Vivofit) and sedentary time (activPAL VT, the Lumo Back, and Darma

  5. Devices for Self-Monitoring Sedentary Time or Physical Activity: A Scoping Review

    PubMed Central

    Loveday, Adam; Pearson, Natalie; Edwardson, Charlotte; Yates, Thomas; Biddle, Stuart JH; Esliger, Dale W

    2016-01-01

    Background It is well documented that meeting the guideline levels (150 minutes per week) of moderate-to-vigorous physical activity (PA) is protective against chronic disease. Conversely, emerging evidence indicates the deleterious effects of prolonged sitting. Therefore, there is a need to change both behaviors. Self-monitoring of behavior is one of the most robust behavior-change techniques available. The growing number of technologies in the consumer electronics sector provides a unique opportunity for individuals to self-monitor their behavior. Objective The aim of this study is to review the characteristics and measurement properties of currently available self-monitoring devices for sedentary time and/or PA. Methods To identify technologies, four scientific databases were systematically searched using key terms related to behavior, measurement, and population. Articles published through October 2015 were identified. To identify technologies from the consumer electronic sector, systematic searches of three Internet search engines were also performed through to October 1, 2015. Results The initial database searches identified 46 devices and the Internet search engines identified 100 devices yielding a total of 146 technologies. Of these, 64 were further removed because they were currently unavailable for purchase or there was no evidence that they were designed for, had been used in, or could readily be modified for self-monitoring purposes. The remaining 82 technologies were included in this review (73 devices self-monitored PA, 9 devices self-monitored sedentary time). Of the 82 devices included, this review identified no published articles in which these devices were used for the purpose of self-monitoring PA and/or sedentary behavior; however, a number of technologies were found via Internet searches that matched the criteria for self-monitoring and provided immediate feedback on PA (ActiGraph Link, Microsoft Band, and Garmin Vivofit) and sedentary time

  6. Active sensors for health monitoring of aging aerospace structures

    NASA Astrophysics Data System (ADS)

    Giurgiutiu, Victor; Redmond, James M.; Roach, Dennis P.; Rackow, Kirk

    2000-06-01

    A project to develop non-intrusive active sensors that can be applied on existing aging aerospace structures for monitoring the onset and progress of structural damage (fatigue cracks and corrosion) is presented. The state of the art in active sensors structural health monitoring and damage detection is reviewed. Methods based on (a) elastic wave propagation and (b) electro-mechanical (E/M) impedance technique are cited and briefly discussed. The instrumentation of these specimens with piezoelectric active sensors is illustrated. The main detection strategies (E/M impedance for local area detection and wave propagation for wide area interrogation) are discussed. The signal processing and damage interpretation algorithms are tuned to the specific structural interrogation method used. In the high frequency E/M impedance approach, pattern recognition methods are used to compare impedance signatures taken at various time intervals and to identify damage presence and progression from the change in these signatures. In the wave propagation approach, the acousto- ultrasonic methods identifying additional reflection generated from the damage site and changes in transmission velocity and phase are used. Both approaches benefit from the use of artificial intelligence neural networks algorithms that can extract damage features based on a learning process. Design and fabrication of a set of structural specimens representative of aging aerospace structures is presented. Three built-up specimens, (pristine, with cracks, and with corrosion damage) are used. The specimen instrumentation with active sensors fabricated at the University of South Carolina is illustrated. Preliminary results obtained with the E/M impedance method on pristine and cracked specimens are presented.

  7. 78 FR 13712 - U.S. Nuclear Regulatory Commission Planned Monitoring Activities for F-Area Tank Farm at the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-28

    ... Monitoring Activities for F-Area Tank Farm at the Savannah River Site, Revision 0 AGENCY: Nuclear Regulatory... carrying out its responsibilities for monitoring DOE's waste disposal activities at the F-Area Tank Farm at... the availability of ``U.S. Nuclear Regulatory Commission Plan for Monitoring Disposal Actions Taken by...

  8. Rapid kinetic BRET measurements to monitor G protein activation by GPCR and non-GPCR proteins.

    PubMed

    Maziarz, Marcin; Garcia-Marcos, Mikel

    2017-01-01

    Heterotrimeric G proteins are central hubs of signal transduction whose activity is controlled by G protein-coupled receptors (GPCRs) as well as by a complex network of regulatory proteins. Recently, bioluminescence resonance energy transfer (BRET)-based assays have been used to monitor real-time activation of heterotrimeric G proteins in cells. Here we describe the use of a previously established BRET assay to monitor G protein activation upon GPCR stimulation and its adaptation to measure G protein activation by non-GPCR proteins, such as by cytoplasmic guanine nucleotide exchange factors (GEFs) like GIV/Girdin. The BRET assay monitors the release of free Gβγ from Gα-Gβγ heterotrimers as a readout of G protein activation, which is readily observable upon agonist stimulation of GPCRs. To control the signal input for non-GPCR activators, we describe the use of a chemically induced dimerization strategy to promote rapid membrane translocation of proteins containing the Gα-binding and -activating (GBA) motif found in some nonreceptor GEFs. The assay described here allows the kinetic measurement of G protein activation with subsecond temporal resolution and to compare the levels of activation induced by GPCR agonists vs those induced by the membrane recruitment of nonreceptor G protein signaling activators. © 2017 Elsevier Inc. All rights reserved.

  9. Study of the antibacterial activity of electro-activated solutions of salts of weak organic acids on Salmonella enterica, Staphylococcus aureus and Listeria monocytogenes.

    PubMed

    Liato, Viacheslav; Labrie, Steve; Aïder, Mohammed

    2017-01-01

    This work assessed the antibacterial activity of electro-activated solutions of salts of weak organic acids (potassium acetate, potassium citrate and calcium lactate) on Salmonella enterica, Staphylococcus aureus and Listeria monocytogenes. This activity was compared in terms of minimal inhibitory (bactericidal) concentration to the effect of commercial acetic, citric and lactic acid at equivalent titratable acidity. Staining live/dead BacLight method was used to consider physiological state of bacteria following the evaluation of pathogenic strains during exposure to the tested solutions. The results demonstrated strong inhibitory activity of all electro-activated solutions. After 10 min of exposure to electro-activated potassium acetate, a reduction of ≥6 log CFU/ml of all bacteria was observed. The electro-activated potassium citrate demonstrated the lowest minimal inhibitory concentration. Nevertheless, its inactivation power was significantly higher than that of conjugated citric acid. Although electro-activated calcium lactate was found less effective in comparison with its conjugated acid form, after 10 min of contact with the tested pathogens, it induced a population reduction of 2.23, 2.97 and 5.57 log CFU/ml of S. aureus, L. monocytogenes and S. enterica, respectively.

  10. Soil Solution Phosphorus Status and Mycorrhizal Dependency in Leucaena leucocephala.

    PubMed

    Habte, M; Manjunath, A

    1987-04-01

    A phosphorus sorption isotherm was used to establish concentrations of P in a soil solution ranging from 0.002 to 0.807 mug/ml. The influence of P concentration on the symbiotic interaction between the tropical tree legume Leucaena leucocephala and the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum was evaluated in pot experiments. The level of mycorrhizal infection in Leucaena roots increased as the concentration of P was raised from 0.002 to 0.153 mug/ml. Higher levels of P depressed mycorrhizal infection, but the level of infection never declined below 50%. Periodic monitoring of P contents of Leucaena subleaflets indicated that significant mycorrhizal activity was detected as early as 17 days after planting, with the activity peaking 12 to 16 days thereafter. The highest level of mycorrhizal activity was associated with a soil solution P level of 0.021 mug/ml. Even though the mycorrhizal inoculation effect diminished as the concentration of P in the soil solution was increased, mycorrhizal inoculation significantly increased P uptake and dry-matter yield of Leucaena at all levels of soil solution P examined. The concentration of P required by nonmycorrhizal L. leucocephala for maximum yield was 27 to 38 times higher than that required by mycorrhizal L. leucocephala. The results illustrate the very high dependence of L. leucocephala on VAM fungi and the significance of optimizing soil solution phosphorus for enhancing the benefits of the VAM symbiosis.

  11. Soil Solution Phosphorus Status and Mycorrhizal Dependency in Leucaena leucocephala†

    PubMed Central

    Habte, Mitiku; Manjunath, Aswathanarayan

    1987-01-01

    A phosphorus sorption isotherm was used to establish concentrations of P in a soil solution ranging from 0.002 to 0.807 μg/ml. The influence of P concentration on the symbiotic interaction between the tropical tree legume Leucaena leucocephala and the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum was evaluated in pot experiments. The level of mycorrhizal infection in Leucaena roots increased as the concentration of P was raised from 0.002 to 0.153 μg/ml. Higher levels of P depressed mycorrhizal infection, but the level of infection never declined below 50%. Periodic monitoring of P contents of Leucaena subleaflets indicated that significant mycorrhizal activity was detected as early as 17 days after planting, with the activity peaking 12 to 16 days thereafter. The highest level of mycorrhizal activity was associated with a soil solution P level of 0.021 μg/ml. Even though the mycorrhizal inoculation effect diminished as the concentration of P in the soil solution was increased, mycorrhizal inoculation significantly increased P uptake and dry-matter yield of Leucaena at all levels of soil solution P examined. The concentration of P required by nonmycorrhizal L. leucocephala for maximum yield was 27 to 38 times higher than that required by mycorrhizal L. leucocephala. The results illustrate the very high dependence of L. leucocephala on VAM fungi and the significance of optimizing soil solution phosphorus for enhancing the benefits of the VAM symbiosis. PMID:16347323

  12. Monitoring of stability of ASG-EUPOS network coordinates

    NASA Astrophysics Data System (ADS)

    Figurski, M.; Szafranek, K.; Wrona, M.

    2009-04-01

    ASG-EUPOS (Active Geodetic Network - European Position Determination System) is the national system of precise satellite positioning in Poland, which increases a density of regional and global GNSS networks and is widely used by public administration, national institutions, entrepreneurs and citizens (especially surveyors). In near future ASG-EUPOS is to take role of main national network. Control of proper activity of stations and realization of ETRS'89 is a necessity. User of the system needs to be sure that observations quality and coordinates accuracy are high enough. Coordinates of IGS (International GNSS Service) and EPN (European Permanent Network) stations are precisely determined and any changes are monitored all the time. Observations are verified before they are archived in regional and global databases. The same applies to ASG-EUPOS. This paper concerns standardization of GNSS observations from different stations (uniform adjustment), examination of solutions correctness according to IGS and EPN standards and stability of solutions and sites activity

  13. The validity and reliability of a novel activity monitor as a measure of walking

    PubMed Central

    Ryan, C G; Grant, P M; Tigbe, W W; Granat, M H

    2006-01-01

    Background The accurate measurement of physical activity is crucial to understanding the relationship between physical activity and disease prevention and treatment. Objective The primary purpose of this study was to investigate the validity and reliability of the activPAL physical activity monitor in measuring step number and cadence. Methods The ability of the activPAL monitor to measure step number and cadence in 20 healthy adults (age 34.5±6.9 years; BMI 26.8±4.8 (mean±SD)) was evaluated against video observation. Concurrently, the accuracy of two commonly used pedometers, the Yamax Digi‐Walker SW‐200 and the Omron HJ‐109‐E, was compared to observation for measuring step number. Participants walked on a treadmill at five different speeds (0.90, 1.12, 1.33, 1.56, and 1.78 m/s) and outdoors at three self selected speeds (slow, normal, and fast). Results At all speeds, inter device reliability was excellent for the activPAL (ICC (2,1)⩾0.99) for both step number and cadence. The absolute percentage error for the activPAL was <1.11% for step number and cadence regardless of walking speed. The accuracy of the pedometers was adversely affected by slow walking speeds. Conclusion The activPAL monitor is a valid and reliable measure of walking in healthy adults. Its accuracy is not influenced by walking speed. The activPAL may be a useful device in sports medicine. PMID:16825270

  14. Monitoring of the active layer at Kapp Linne', SVALBARD 1972-2002

    NASA Astrophysics Data System (ADS)

    Akerman, J.

    2003-04-01

    The active layer has been monitored at ten sites in the vicinity of Kapp Linné, (78o03'42" 13o37'07") Svalbard during the period 1972 - 2002. The ten sites differ in elevation, distance from the sea, vegetation cover, substrate and active periglacial processes. From 1994 the International permafrost Association "CALM" standard grids, with measurement within 100x100m squares, has been applied. Microclimate and soil temperatures have been monitored by data logger covering levels form 2 m above to 7m below the ground. The macroclimate is covered by complete data series from the nearby weather station at Kapp Linne’, covering the period 1912 to 2002. A number of periglacial processes, especially slope processes, are monitored parallel with the active layer. The mean active layer for the sites varies between 1,13m and 0,43m. The deepest active layer is found in the exposed, well drained raised beach ridges and the shallowest in the bogs. The interannual variability during the observation period do not correlate well with the MAAT but better with the summer climate, June - August mean or DDT. The data clearly illustrate colder summers during the period 1972 to 1983 and after that steadily increasing summer temperatures. The active layer follows the same general pattern with good correlations. There are several surface indications as a response to the deepening active layer especially in the bogs. Thermokarst scars appear frequently and a majority of the palsa like mounds and pounus have disappeared. A drastic change in the vegetation on the bogs has also occurred, from dry heath to wet Carex vegetation. In summary the observations from Kapp Linne’ are; 1. A clear trend towards milder summers, 2. A clear trend towards deeper active layers, 3. All sites show a similar pattern, 4. The bogs are getting strikingly wetter, 5. Mounds in the bog sites are disappearing, 6. The slow slope processes are getting accelerated, 7. Thermokarst depressions and scars are appearing in

  15. Removal of nitroimidazole antibiotics from aqueous solution by adsorption/bioadsorption on activated carbon.

    PubMed

    Rivera-Utrilla, J; Prados-Joya, G; Sánchez-Polo, M; Ferro-García, M A; Bautista-Toledo, I

    2009-10-15

    The objective of the present study was to analyse the behaviour of activated carbon with different chemical and textural properties in nitroimidazole adsorption, also assessing the combined use of microorganisms and activated carbon in the removal of these compounds from waters and the influence of the chemical nature of the solution (pH and ionic strength) on the adsorption process. Results indicate that the adsorption of nitroimidazoles is largely determined by activated carbon chemical properties. Application of the Langmuir equation to the adsorption isotherms showed an elevated adsorption capacity (X(m)=1.04-2.04 mmol/g) for all contaminants studied. Solution pH and electrolyte concentration did not have a major effect on the adsorption of these compounds on activated carbon, confirming that the principal interactions involved in the adsorption of these compounds are non-electrostatic. Nitroimidazoles are not degraded by microorganisms used in the biological stage of a wastewater treatment plant. However, the presence of microorganisms during nitroimidazole adsorption increased their adsorption on the activated carbon, although it weakened interactions between the adsorbate and carbon surface. In dynamic regime, the adsorptive capacity of activated carbon was markedly higher in surface water and groundwater than in urban wastewaters.

  16. Context-aware mobile health monitoring: evaluation of different pattern recognition methods for classification of physical activity.

    PubMed

    Jatobá, Luciana C; Grossmann, Ulrich; Kunze, Chistophe; Ottenbacher, Jörg; Stork, Wilhelm

    2008-01-01

    There are various applications of physical activity monitoring for medical purposes, such as therapeutic rehabilitation, fitness enhancement or the use of physical activity as context information for evaluation of other vital data. Physical activity can be estimated using acceleration sensor-systems fixed on a person's body. By means of pattern recognition methods, it is possible to identify with certain accuracy which movement is being performed. This work presents a comparison of different methods for recognition of daily-life activities, which will serve as basis for the development of an online activity monitoring system.

  17. Advanced Performance Modeling with Combined Passive and Active Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dovrolis, Constantine; Sim, Alex

    2015-04-15

    To improve the efficiency of resource utilization and scheduling of scientific data transfers on high-speed networks, the "Advanced Performance Modeling with combined passive and active monitoring" (APM) project investigates and models a general-purpose, reusable and expandable network performance estimation framework. The predictive estimation model and the framework will be helpful in optimizing the performance and utilization of networks as well as sharing resources with predictable performance for scientific collaborations, especially in data intensive applications. Our prediction model utilizes historical network performance information from various network activity logs as well as live streaming measurements from network peering devices. Historical network performancemore » information is used without putting extra load on the resources by active measurement collection. Performance measurements collected by active probing is used judiciously for improving the accuracy of predictions.« less

  18. A pilot lifestyle intervention study: effects of an intervention using an activity monitor and Twitter on physical activity and body composition.

    PubMed

    Nishiwaki, Masato; Nakashima, Nana; Ikegami, Yumi; Kawakami, Ryoko; Kurobe, Kazumichi; Matsumoto, Naoyuki

    2017-04-01

    This pilot study aimed to examine the effects of a lifestyle intervention comprising an activity monitor and the concurrent use of Twitter, on physical activity (PA) and body composition. Seventeen healthy volunteers (36±3 years) were randomly assigned to normal (N, N.=8) or Twitter (T, N.=9) intervention groups for six weeks. Participants in both groups wore an activity monitor but those in the T group also tweeted daily about their PA. An observer read the tweets from each participant and provided feedback. Body composition was determined using bioelectrical impedance analysis before and after the intervention. Significantly more daily steps and PA at an intensity of ≥3 metabolic equivalents (METs) were recorded by the T than the N during six weeks. The number of steps and PA did not significantly change over time in the N, but significantly increased in the T from weeks one to six (8170±1130 to 12,934±1400 steps/day and 2.6±0.5 to 5.0±0.8 METs·h/day). In addition, significantly more body fat was lost in the T, than in the N (-1.1±0.2 vs. -0.1±0.3 kg), and the changes in PA significantly correlated with the changes in body fat (r=-0.713). Lifestyle intervention can increase daily PA and reduce body fat more effectively when using an activity monitor and Twitter than an activity monitor alone.

  19. Organizational Structures and Data Use in Volunteer Monitoring Organizations (VMOs)

    ERIC Educational Resources Information Center

    Laird, Shelby Gull; Nelson, Stacy A. C.; Stubbs, Harriett S.; James, April L.; Menius, Erika

    2012-01-01

    Complex environmental problems call for unique solutions to monitoring efforts alongside developing a more environmentally literate citizenry. Community-based monitoring (CBM) through the use of volunteer monitoring organizations helps to provide a part of the solution, particularly when CBM groups work with research scientists or government…

  20. Outward electron transfer by Saccharomyces cerevisiae monitored with a bi-cathodic microbial fuel cell-type activity sensor.

    PubMed

    Ducommun, Raphaël; Favre, Marie-France; Carrard, Delphine; Fischer, Fabian

    2010-03-01

    A Janus head-like bi-cathodic microbial fuel cell was constructed to monitor the electron transfer from Saccharomyces cerevisiae to a woven carbon anode. The experiments were conducted during an ethanol cultivation of 170 g/l glucose in the presence and absence of yeast-peptone medium. First, using a basic fuel-cell type activity sensor, it was shown that yeast-peptone medium contains electroactive compounds. For this purpose, 1% solutions of soy peptone and yeast extract were subjected to oxidative conditions, using a microbial fuel cell set-up corresponding to a typical galvanic cell, consisting of culture medium in the anodic half-cell and 0.5 M K(3)Fe(CN)(6) in the cathodic half-cell. Second, using a bi-cathodic microbial fuel cell, it was shown that electrons were transferred from yeast cells to the carbon anode. The participation of electroactive compounds in the electron transport was separated as background current. This result was verified by applying medium-free conditions, where only glucose was fed, confirming that electrons are transferred from yeast cells to the woven carbon anode. Knowledge about the electron transfer through the cell membrane is of importance in amperometric online monitoring of yeast fermentations and for electricity production with microbial fuel cells. Copyright (c) 2009 John Wiley & Sons, Ltd.

  1. Influence of hydroclimatic variations on solute concentration dynamics in nested subtropical catchments with heterogeneous landscapes.

    PubMed

    Piazza, Gustavo Antonio; Dupas, Rémi; Gascuel-Odoux, Chantal; Grimaldi, Catherine; Pinheiro, Adilson; Kaufmann, Vander

    2018-04-20

    Despite global efforts to monitor water quality in catchments worldwide, tropical and subtropical zones still lack data to study the influence of human activities and climate variations on solute dynamics. In this study, we monitored ten solutes every two weeks for six years (2010-2015) in three nested catchments (2 to30 km 2 ), which contained heterogeneous landscapes composed of forests and agricultural land, and one small neighboring forested catchment (0.4 km 2 ). Data analysis revealed that i) rainfall, discharge and solute concentrations displayed no clear seasonal patterns, unlike many catchments of the temperate zone; ii) solute concentrations in the agricultural area were higher than those in the forested area, but both areas displayed similar temporal patterns due to a common hydroclimatic driver; iii) all four catchments displayed a chemostatic export regime for most of the solutes, similar to catchments of the temperate zone; and iv) a positive correlation was observed between anion concentrations and ENSO (El Niño-Southern Oscillation) index. ENSO appeared to influence both hydroclimatic and anion dynamics in these subtropical catchments. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Pattern Matching for Volcano Status Assessment: what monitoring data alone can say about Mt. Etna activity

    NASA Astrophysics Data System (ADS)

    Cannavo, F.; Cannata, A.; Cassisi, C.

    2017-12-01

    The importance of assessing the ongoing status of active volcanoes is crucial not only for exposures to the local population but due to possible presence of tephra also for airline traffic. Adequately monitoring of active volcanoes, hence, plays a key role for civil protection purposes. In last decades, in order to properly monitor possible threats, continuous measuring networks have been designed and deployed on most of potentially hazardous volcanos. Nevertheless, at the present, volcano real-time surveillance is basically delegated to one or more human experts in volcanology, who interpret data coming from different kind of monitoring networks using their experience and non-measurable information (e.g. information from the field) to infer the volcano status. In some cases, raw data are used in some models to obtain more clues on the ongoing activity. In the last decades, with the development of volcano monitoring networks, huge amount of data of different geophysical, geochemical and volcanological types have been collected and stored in large databases. Having such big data sets with many examples of volcanic activity allows us to study volcano monitoring from a machine learning perspective. Thus, exploiting opportunities offered by the abundance of volcano monitoring time-series data we can try to address the following questions: Are the monitored parameters sufficient to discriminate the volcano status? Is it possible to infer/distinguish the volcano status only from the multivariate patterns of measurements? Are all the kind of measurements in the pattern equally useful for status assessment? How accurate would be an automatic system of status inference based only on pattern recognition of data? Here we present preliminary results of the data analysis we performed on a set of data and activity covering the period 2011-2017 at Mount Etna (Italy). In the considered period, we had 52 events of lava fountaining and long periods of Strombolian activity. We

  3. Validity of an activity monitor in young people with cerebral palsy gross motor function classification system level I.

    PubMed

    O' Donoghue, Deirdre; Kennedy, Norelee

    2014-11-01

    The activPAL™ activity monitor has potential for use in youth with Cerebral Palsy (CP) as it has demonstrated acceptable validity for the assessment of sedentary and physical activity in other populations. This study determined the validity of the activPAL™ activity monitor for the measurement of sitting, standing, walking time, transitions and step count for both legs in young people with hemiplegic and asymmetric diplegic CP. Seventeen participants with CP Gross Motor Function Classification System level I completed two video recorded test protocols that involved wearing an activPAL™ activity monitor on alternate legs. Agreement between observed video recorded data and activPAL™ activity monitor data was assessed using the Bland and Altman (BA) method and intraclass correlation coefficients (ICC 3,1). There was perfect agreement for transitions and high agreement for sitting (BA mean differences (MD): -1.8 and -1.8 s; ICCs: 0.49 and 0.95) standing (MD: 0.8 and 0.1 s; ICCs: 0.59 and 0.98) walking (MD: 1 and 1.1 s; ICCs: 0.99 and 0.94) timings and low agreement for step count (MD: 4.1 and 2.8 steps; ICCs: 0.96 and 0.95) for both legs. This study found clinically acceptable agreement with direct observation for all activPAL™ activity monitor functions, except for step count measurement with respect to the range of measurement values obtained for both legs in this study population.

  4. Degradation of trichloroethylene in aqueous solution by calcium peroxide activated with ferrous ion.

    PubMed

    Zhang, Xiang; Gu, Xiaogang; Lu, Shuguang; Miao, Zhouwei; Xu, Minhui; Fu, Xiaori; Qiu, Zhaofu; Sui, Qian

    2015-03-02

    The application of calcium peroxide (CaO2) activated with ferrous ion to stimulate the degradation of trichloroethylene (TCE) was investigated. The experimental results showed that TCE could be completely degraded in 5 min at a CaO2/Fe(II)/TCE molar ratio of 4/8/1. Probe compound tests demonstrated the presence of reactive oxygen species HO· and O2(-·) in CaO2/Fe(II) system, while scavenging tests indicated that HO· was the dominant active species responsible for TCE removal, and O2(-·) could promote TCE degradation in CaO2/Fe(II) system. In addition, the influences of initial solution pH and solution matrix were evaluated. It suggested that the elevation of initial solution pH suppressed TCE degradation. Cl(-) had significant scavenging effect on TCE removal, whereas HCO3(-) of high concentration showed favorable function. The influences of NO3(-) and SO4(2-) could be negligible, while natural organic matter (NOM) had a negative effect on TCE removal at a relatively high concentration. The results demonstrated that the technique of CaO2 activated with ferrous ion is a highly promising technique in in situ chemical oxidation (ISCO) remediation in TCE contaminated sites. Copyright © 2014. Published by Elsevier B.V.

  5. Flexible piezoelectric nanogenerator in wearable self-powered active sensor for respiration and healthcare monitoring

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Zhang, S.; Jin, Y. M.; Ouyang, H.; Zou, Y.; Wang, X. X.; Xie, L. X.; Li, Z.

    2017-06-01

    A wearable self-powered active sensor for respiration and healthcare monitoring was fabricated based on a flexible piezoelectric nanogenerator. An electrospinning poly(vinylidene fluoride) thin film on silicone substrate was polarized to fabricate the flexible nanogenerator and its electrical property was measured. When periodically stretched by a linear motor, the flexible piezoelectric nanogenerator generated an output open-circuit voltage and short-circuit current of up to 1.5 V and 400 nA, respectively. Through integration with an elastic bandage, a wearable self-powered sensor was fabricated and used to monitor human respiration, subtle muscle movement, and voice recognition. As respiration proceeded, the electrical output signals of the sensor corresponded to the signals measured by a physiological signal recording system with good reliability and feasibility. This self-powered, wearable active sensor has significant potential for applications in pulmonary function evaluation, respiratory monitoring, and detection of gesture and vocal cord vibration for the personal healthcare monitoring of disabled or paralyzed patients.

  6. DEVELOPMENT OF AN ETD SURVEILLANCE CHECKLIST FOR MONITORING EPA RESEARCH ACTIVITIES

    EPA Science Inventory

    DEVELOPMENT OF AN ETD SURVEILLANCE CHECKLIST FOR MONITORING EPA RESEARCH ACTIVITIES, Thomas J. Hughes, National Health and Environmental Effects Research Laboratory (NHEERL), ORD, U.S. EPA, Experimental Toxicology Division (ETD), MD 66, RTP, NC 27711

    Research studies condu...

  7. Evaluating Growth of Zeolites on Fly Ash in Hydro-Thermally Heated Low Alkaline Solution

    NASA Astrophysics Data System (ADS)

    Jha, Bhagwanjee; Singh, D. N.

    2017-12-01

    Fly ash has been well established materials for synthesis of zeolites, under hydrothermally heated aqueous NaOH solution. Efficacy of such technique is reported to be improved when high molarity of NaOH is used. Consequently, highly alkaline waste solution, as by-product, is generally disposed of in the surrounding, which may contaminate the environment. In this context, less alkaline NaOH solution may become a safer option, which has not been tried in the past as per the literature. With this in view, the present study demonstrates effectiveness of the 0.5 M NaOH solution and critically monitors transition on the fly ash after hydrothermal treatment. As an enhancement over previous researchers, such activation of the fly ash finally results in remarkable morphological and mineralogical growth on the bulk material (the residue), which comprises of new nano-sized crystals (the zeolites Na-P1 and natrolite), after 24 h of activation of the fly ash.

  8. A cooled CCD camera-based protocol provides an effective solution for in vitro monitoring of luciferase.

    PubMed

    Afshari, Amirali; Uhde-Stone, Claudia; Lu, Biao

    2015-03-13

    Luciferase assay has become an increasingly important technique to monitor a wide range of biological processes. However, the mainstay protocols require a luminometer to acquire and process the data, therefore limiting its application to specialized research labs. To overcome this limitation, we have developed an alternative protocol that utilizes a commonly available cooled charge-coupled device (CCCD), instead of a luminometer for data acquiring and processing. By measuring activities of different luciferases, we characterized their substrate specificity, assay linearity, signal-to-noise levels, and fold-changes via CCCD. Next, we defined the assay parameters that are critical for appropriate use of CCCD for different luciferases. To demonstrate the usefulness in cultured mammalian cells, we conducted a case study to examine NFκB gene activation in response to inflammatory signals in human embryonic kidney cells (HEK293 cells). We found that data collected by CCCD camera was equivalent to those acquired by luminometer, thus validating the assay protocol. In comparison, The CCCD-based protocol is readily amenable to live-cell and high-throughput applications, offering fast simultaneous data acquisition and visual and quantitative data presentation. In conclusion, the CCCD-based protocol provides a useful alternative for monitoring luciferase reporters. The wide availability of CCCD will enable more researchers to use luciferases to monitor and quantify biological processes. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Neurophysiological mechanism of possibly confounding peripheral activation of the facial nerve during corticobulbar tract monitoring.

    PubMed

    Téllez, Maria J; Ulkatan, Sedat; Urriza, Javier; Arranz-Arranz, Beatriz; Deletis, Vedran

    2016-02-01

    To improve the recognition and possibly prevent confounding peripheral activation of the facial nerve caused by leaking transcranial electrical stimulation (TES) current during corticobulbar tract monitoring. We applied a single stimulus and a short train of electrical stimuli directly to the extracranial portion of the facial nerve. We compared the peripherally elicited compound muscle action potential (CMAP) of the facial nerve with the responses elicited by TES during intraoperative monitoring of the corticobulbar tract. A single stimulus applied directly to the facial nerve at subthreshold intensities did not evoke a CMAP, whereas short trains of subthreshold stimuli repeatedly evoked CMAPs. This is due to the phenomenon of sub- or near-threshold super excitability of the cranial nerve. Therefore, the facial responses evoked by short trains TES, when the leaked current reaches the facial nerve at sub- or near-threshold intensity, could lead to false interpretation. Our results revealed a potential pitfall in the current methodology for facial corticobulbar tract monitoring that is due to the activation of the facial nerve by subthreshold trains of stimuli. This study proposes a new criterion to exclude peripheral activation during corticobulbar tract monitoring. The failure to recognize and avoid facial nerve activation due to leaking current in the peripheral portion of the facial nerve during TES decreases the reliability of corticobulbar tract monitoring by increasing the possibility of false interpretation. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  10. Potential of multisyringe chromatography for the on-line monitoring of the photocatalytic degradation of antituberculosis drugs in aqueous solution.

    PubMed

    Guevara-Almaraz, E; Hinojosa-Reyes, L; Caballero-Quintero, A; Ruiz-Ruiz, E; Hernández-Ramírez, A; Guzmán-Mar, J L

    2015-02-01

    In this study, a multisyringe chromatography system (MSC) using a C18 monolithic column was proposed for the on-line monitoring of the photocatalytic degradation of isoniazid (INH, 10 mg L(-1)) and pyrazinamide (PYRA, 5mgL(-1)) mixtures in aqueous solution using a small sample volume (200 μL) with an on-line filtration device in a fully automated approach. During the photocatalytic oxidation using TiO2 or ZnO semiconductor materials, total organic carbon (TOC) and the formed intermediates were analyzed off-line using ion chromatography, ion exclusion HPLC, and ESI-MS/MS. The results showed that TiO2 exhibits a better photocatalytic activity than ZnO under UV irradiation (365 nm) for the degradation of INH and PYRA mixtures, generating 97% and 92% degradation, respectively. The optimal oxidation conditions were identified as pH 7 and 1.0 g L(-1) of TiO2 as catalyst. The mineralization of the initial organic compounds was confirmed by the regular decrease in TOC, which indicated 63% mineralization, and the quantitative release of nitrate and nitrite ions, which represent 33% of the nitrogen in these compounds. The major intermediates of INH degradation included isonicotinamide, isonicotinic acid, and pyridine, while the ESI-MS/MS analysis of PYRA aqueous solution after photocatalytic treatment showed the formation of pyrazin-2-ylmethanol, pyrazin-2-ol, and pyrazine. Three low-molecular weight compounds, acetamide, acetic acid and formic acid, were detected during INH and PYRA decomposition. PYRA was more resistant to photocatalytic degradation due to the presence of the pyrazine ring, which provides greater stability against OH attack. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Competitive adsorption of phenolic compounds from aqueous solution using sludge-based activated carbon.

    PubMed

    Mohamed, E F; Andriantsiferana, C; Wilhelm, A M; Delmas, H

    2011-01-01

    Preparation of activated carbon from sewage sludge is a promising approach to produce cheap and efficient adsorbent for pollutants removal as well as to dispose of sewage sludge. The first objective of this study was to investigate the physical and chemical properties (BET surface area, ash and elemental content, surface functional groups by Boehm titration and weight loss by thermogravimetric analysis) of the sludge-based activated carbon (SBAC) so as to give a basic understanding of its structure and to compare to those of two commercial activated carbons, PICA S23 and F22. The second and main objective was to evaluate the performance of SBAC for single and competitive adsorption of four substituted phenols (p-nitrophenol, p-chlorophenol, p-hydroxy benzoic acid and phenol) from their aqueous solutions. The results indicated that, despite moderate micropore and mesopore surface areas, SBAC had remarkable adsorption capacity for phenols, though less than PICA carbons. Uptake of the phenolic compound was found to be dependent on both the porosity and surface chemistry of the carbons. Furthermore, the electronegativity and the hydrophobicity of the adsorbate have significant influence on the adsorption capacity. The Langmuir and Freundlich models were used for the mathematical description of the adsorption equilibrium for single-solute isotherms. Moreover, the Langmuir-Freundlich model gave satisfactory results for describing multicomponent system isotherms. The capacity of the studied activated carbons to adsorb phenols from a multi-solute system was in the following order: p-nitrophenol > p-chlorophenol > PHBA > phenol.

  12. Monitoring Ion Activities In and Around Cells Using Ion-Selective Liquid-Membrane Microelectrodes

    PubMed Central

    Lee, Seong-Ki; Boron, Walter F.; Parker, Mark D.

    2013-01-01

    Determining the effective concentration (i.e., activity) of ions in and around living cells is important to our understanding of the contribution of those ions to cellular function. Moreover, monitoring changes in ion activities in and around cells is informative about the actions of the transporters and/or channels operating in the cell membrane. The activity of an ion can be measured using a glass microelectrode that includes in its tip a liquid-membrane doped with an ion-selective ionophore. Because these electrodes can be fabricated with tip diameters that are less than 1 μm, they can be used to impale single cells in order to monitor the activities of intracellular ions. This review summarizes the history, theory, and practice of ion-selective microelectrode use and brings together a number of classic and recent examples of their usefulness in the realm of physiological study. PMID:23322102

  13. Thermodynamic analysis of sol-gel transition of gelatin in terms of water activity in various solutions.

    PubMed

    Miyawaki, Osato; Omote, Chiaki; Matsuhira, Keiko

    2015-12-01

    Sol-gel transition of gelatin was analyzed as a multisite stoichiometric reaction of a gelatin molecule with water and solute molecules. The equilibrium sol-gel transition temperature, Tt , was estimated from the average of gelation and melting temperature measured by differential scanning calorimetry. From Tt and the melting enthalpy, ΔHsol , the equilibrium sol-to-gel ratio was estimated by the van't Hoff equation. The reciprocal form of the Wyman-Tanford equation, which describes the sol-to-gel ratio as a function of water activity, was successfully applied to obtain a good linear relationship. From this analysis, the role of water activity on the sol-gel transition of gelatin was clearly explained and the contributions of hydration and solute binding to gelatin molecules were separately discussed in sol-gel transition. The general solution for the free energy for gel-stabilization in various solutions was obtained as a simple function of solute concentration. © 2015 Wiley Periodicals, Inc.

  14. ADVANTAGES OF REMOTE MONITORING THE ACTIVITY OF PATIENTS WITH AXIAL SPONDYLITIS (PROGRESS STUDY).

    PubMed

    Gaidukova, I Z; Akulova, A I; Aparkina, A V; Rebrov, A P

    To improve the quality of treatment of patients with spondyloarthrities based on analysis of adherence to therapy and its timely correction by regular remote monitoring the activity of the disease. 46 patents with axial spondylitis (ankylosing spondylitis, non-radiographic spondylitis) were interviewed by phone once in 4 weeks for 18 months with a 3 month interval after 12 months. 96 patients underwent routine outpatient examination for the evaluation of the main parameters of the disease. Arbitrarily examined patients with spondyloarthritis reported poor compliance with therapy and its low efficiency. During 18 months, 79% of the patients were recommended treatment with TNF-a inhibitors. Only 18.5% of them in the remote monitoring group failed to reach the BASDAI index S 4 whereas 73.9% of the patients examined remotely for 1 year had low activity of the disease or its partial remission. An increased period between two phone interviews from 1 to 3 months in 58.6% patients with low activity of the disease was associated with impaired adherence to therapy (decreased intake of the anti-inflammatory drug or its withdrawal) that did not lead to enhancement of activity during 3 months after the change in the treatment. Remote monitoring of activity of the disease (one phone interview every 4 weeks) allows to decrease it or reach remission in 73.9% of the patients with axial spondyloarthritis. The decrease in the frequency of telephone calls to one every 3 months results in the impairment of compliance with therapy but does not lead to increase of disease activity in the short run.

  15. POFBG-Embedded Cork Insole for Plantar Pressure Monitoring

    PubMed Central

    Vilarinho, Débora; Theodosiou, Antreas; Domingues, Maria de Fátima; André, Paulo; Marques, Carlos

    2017-01-01

    We propose a novel polymer optical fiber (POF) sensing system based on fiber Bragg gratings (FBGs) to measure foot plantar pressure. The plantar pressure signals are detected by five FBGs, in the same piece of cyclic transparent optical polymer (CYTOP) fiber, which are embedded in a cork insole for the dynamic monitoring of gait. The calibration and measurements performed with the suggested system are presented, and the results obtained demonstrate the accuracy and reliability of the sensing platform to monitor the foot plantar pressure distribution during gait motion and the application of pressure. This architecture does not compromise the patient’s mobility nor interfere in their daily activities. The results using the CYTOP fiber showed a very good response when compared with solutions using silica optical fibers, resulting in a sensitivity almost twice as high, with excellent repeatability and ease of handling. The advantages of POF (e.g., high flexibility and robustness) proved that this is a viable solution for this type of application, since POF’s high fracture toughness enables its application in monitoring patients with higher body mass compared with similar systems based on silica fiber. This study has demonstrated the viability of the proposed system based on POF technology as a useful alternative for plantar pressure detection systems. PMID:29258166

  16. POFBG-Embedded Cork Insole for Plantar Pressure Monitoring.

    PubMed

    Vilarinho, Débora; Theodosiou, Antreas; Leitão, Cátia; Leal-Junior, Arnaldo G; Domingues, Maria de Fátima; Kalli, Kyriacos; André, Paulo; Antunes, Paulo; Marques, Carlos

    2017-12-16

    We propose a novel polymer optical fiber (POF) sensing system based on fiber Bragg gratings (FBGs) to measure foot plantar pressure. The plantar pressure signals are detected by five FBGs, in the same piece of cyclic transparent optical polymer (CYTOP) fiber, which are embedded in a cork insole for the dynamic monitoring of gait. The calibration and measurements performed with the suggested system are presented, and the results obtained demonstrate the accuracy and reliability of the sensing platform to monitor the foot plantar pressure distribution during gait motion and the application of pressure. This architecture does not compromise the patient's mobility nor interfere in their daily activities. The results using the CYTOP fiber showed a very good response when compared with solutions using silica optical fibers, resulting in a sensitivity almost twice as high, with excellent repeatability and ease of handling. The advantages of POF (e.g., high flexibility and robustness) proved that this is a viable solution for this type of application, since POF's high fracture toughness enables its application in monitoring patients with higher body mass compared with similar systems based on silica fiber. This study has demonstrated the viability of the proposed system based on POF technology as a useful alternative for plantar pressure detection systems.

  17. Feedback from physical activity monitors is not compatible with current recommendations: A recalibration study.

    PubMed

    Thompson, Dylan; Batterham, Alan M; Peacock, Oliver J; Western, Max J; Booso, Rahuman

    2016-10-01

    Wearable devices to self-monitor physical activity have become popular with individuals and healthcare practitioners as a route to the prevention of chronic disease. It is not currently possible to reconcile feedback from these devices with activity recommendations because the guidelines refer to the amount of activity required on top of normal lifestyle activities (e.g., 150 minutes of moderate-to-vigorous intensity activity per week over-and-above normal moderate-to-vigorous lifestyle activities). The aim of this study was to recalibrate the feedback from self-monitoring. We pooled data from four studies conducted between 2006 and 2014 in patients and volunteers from the community that included both sophisticated measures of physical activity and 10-year risk for cardiovascular disease and type 2 diabetes (n=305). We determined the amount of moderate-to-vigorous intensity activity that corresponded to FAO/WHO/UNU guidance for a required PAL of 1.75 (Total Energy Expenditure/Basal Metabolic Rate). Our results show that, at the UK median PAL, total moderate-to-vigorous intensity physical activity will be around 735 minutes per week (~11% of waking time). We estimate that a 4% increase in moderate-to-vigorous intensity activity will achieve standardised guidance from FAO/WHO/UNU and will require ~1000 minutes of moderate-to-vigorous intensity activity per week. This study demonstrates that feedback from sophisticated wearable devices is incompatible with current physical activity recommendations. Without adjustment, people will erroneously form the view that they are exceeding recommendations by several fold. A more appropriate target from self-monitoring that accounts for normal moderate-to-vigorous lifestyle activities is ~1000 minutes per week, which represents ~15% of waking time. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Micro-patterned graphene-based sensing skins for human physiological monitoring

    NASA Astrophysics Data System (ADS)

    Wang, Long; Loh, Kenneth J.; Chiang, Wei-Hung; Manna, Kausik

    2018-03-01

    Ultrathin, flexible, conformal, and skin-like electronic transducers are emerging as promising candidates for noninvasive and nonintrusive human health monitoring. In this work, a wearable sensing membrane is developed by patterning a graphene-based solution onto ultrathin medical tape, which can then be attached to the skin for monitoring human physiological parameters and physical activity. Here, the sensor is validated for monitoring finger bending/movements and for recognizing hand motion patterns, thereby demonstrating its future potential for evaluating athletic performance, physical therapy, and designing next-generation human-machine interfaces. Furthermore, this study also quantifies the sensor’s ability to monitor eye blinking and radial pulse in real-time, which can find broader applications for the healthcare sector. Overall, the printed graphene-based sensing skin is highly conformable, flexible, lightweight, nonintrusive, mechanically robust, and is characterized by high strain sensitivity.

  19. On the adequacy of modeling the concentration dependences of the activity coefficients for the components of solutions

    NASA Astrophysics Data System (ADS)

    Sergievskii, V. V.; Rudakov, A. M.

    2006-11-01

    An analysis of the accepted methods for calculating the activity coefficients for the components of binary aqueous solutions was performed. It was demonstrated that the use of the osmotic coefficients in auxiliary calculations decreases the accuracy of estimates of the activity coefficients. The possibility of calculating the activity coefficient of the solute from the concentration dependence of the water activity was examined. It was established that, for weak electrolytes, the interpretation of data on heterogeneous equilibria within the framework of the standard assumption that the dissociation is complete encounters serious difficulties.

  20. Cost-effective and monitoring-active technique for TDM-passive optical networks

    NASA Astrophysics Data System (ADS)

    Chi, Chang-Chia; Lin, Hong-Mao; Tarn, Chen-Wen; Lin, Huang-Liang

    2014-08-01

    A reliable, detection-active and cost-effective method which employs the hello and heartbeat signals for branched node distinguishing to monitor fiber fault in any branch of distribution fibers of a time division multiplexing passive optical network (TDM-PON) is proposed. With this method, the material cost of building an optical network monitor system for a TDM-PON with 168 ONUs and the time of identifying a multiple branch faults is significantly reduced in a TDM-PON system of any scale. A fault location in a 1 × 32 TDM-PON system using this method to identify the fault branch is demonstrated.

  1. Antimicrobial Activity of Chitosan Film Forming Solution Enriched with Essential Oils; an in Vitro Assay

    PubMed Central

    Raphaël, Kana Jean; Meimandipour, Amir

    2017-01-01

    Background: The resistance of the bacteria and fungi to the innumerous antimicrobial agents is a major challenge in the treatment of the infections demands to the necessity for searching and finding new sources of substances with antimicrobial properties. The incorporation of the essential oils (EOs) in chitosan film forming solution may enhance antimicrobial properties. However, its use as the feeding additive in the poultry nutrition needs to clarify the product’s activity against both pathogen and the useful microbes in the gastrointestinal tract. Objectives: In the present study, we carried out an in vitro investigation and evaluated the antimicrobial activity of chitosan film forming solution incorporated with essential oils (CFs+EOs) against microbial strains including Staphylococcus aureus, Escherichia coli, Enterococcus faecium, Lactobacillus rahmnosus, Aspergillus niger and Alternaria alternate. Material and Methods: In three replicates, the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of different treatments including: 1- essential oils (EOs), 2- chitosan film solution (CFs), and 3-chitosan film solution enriched with EOs (CFs+EOs) were determined against above mentioned microbes. Results: The results indicated that the chitosan solution enriched with essential oils (CFs+EOs) is capable of inhibiting the bacterial and fungal growth even at the lowest concentrations. The MIC and MBC for all the antimicrobial agents against Escherichia coli and Staphylococcus aureus were very low compared to the concentrations needed to inhibit the growth of useful bacteria, Lactobacillus rahmnosu and Enterococcus faecium. The antifungal activity of chitosan was enhanced as the concentration of EOs increased in the film solution. Conclusion: Chitosan-EOs complexes are the promising candidate for novel contact antimicrobial agents that can be used in animal feeds. PMID:29845058

  2. Antimicrobial Activity of Chitosan Film Forming Solution Enriched with Essential Oils; an in Vitro Assay.

    PubMed

    Raphaël, Kana Jean; Meimandipour, Amir

    2017-01-01

    Background: The resistance of the bacteria and fungi to the innumerous antimicrobial agents is a major challenge in the treatment of the infections demands to the necessity for searching and finding new sources of substances with antimicrobial properties. The incorporation of the essential oils (EOs) in chitosan film forming solution may enhance antimicrobial properties. However, its use as the feeding additive in the poultry nutrition needs to clarify the product's activity against both pathogen and the useful microbes in the gastrointestinal tract. Objectives: In the present study, we carried out an in vitro investigation and evaluated the antimicrobial activity of chitosan film forming solution incorporated with essential oils (CFs+EOs) against microbial strains including Staphylococcus aureus, Escherichia coli, Enterococcus faecium, Lactobacillus rahmnosus, Aspergillus niger and Alternaria alternate . Material and Methods: In three replicates, the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of different treatments including: 1- essential oils (EOs), 2- chitosan film solution (CFs), and 3-chitosan film solution enriched with EOs (CFs+EOs) were determined against above mentioned microbes. Results: The results indicated that the chitosan solution enriched with essential oils (CFs+EOs) is capable of inhibiting the bacterial and fungal growth even at the lowest concentrations. The MIC and MBC for all the antimicrobial agents against Escherichia coli and Staphylococcus aureus were very low compared to the concentrations needed to inhibit the growth of useful bacteria, Lactobacillus rahmnosu and Enterococcus faecium . The antifungal activity of chitosan was enhanced as the concentration of EOs increased in the film solution. Conclusion: Chitosan-EOs complexes are the promising candidate for novel contact antimicrobial agents that can be used in animal feeds.

  3. Implicit Interaction: A Modality for Ambient Exercise Monitoring

    NASA Astrophysics Data System (ADS)

    Wan, J.; O'Grady, M. J.; O'Hare, G. M. P.

    Ambient Exercise refers to the implicit exercise that people undertake in the course of their everyday duties - a simple example being climbing stairs. Increasing awareness of the potential health benefits of such activities may well contribute to an increase in a person’s well-being. Initially, it is necessary to monitor and quantify such exercise so that personalized fitness plans may be constructed. In this paper, the implicit interaction modality is harnessed to enable the capturing of ambient exercise activity thereby facilitating its subsequent quantification and interpretation. The novelty of the solution proposed lies in its ubiquity and transparency.

  4. Free-living cross-comparison of two wearable monitors for sleep and physical activity in healthy young adults.

    PubMed

    Cellini, Nicola; McDevitt, Elizabeth A; Mednick, Sara C; Buman, Matthew P

    2016-04-01

    There is a growing need for free-living monitoring of the full 24 h spectrum of behaviors with a single or integrated set of sensors. The validity of field standard wearable monitors in sleep and physical activity have yet to be assessed for the complementary behavior in the context of 24 h continuous monitoring. We conducted a free-living comparison study of the Actigraph GT3X+ (GT3X+) to assess sleep parameters as compared with the Actiwatch-64 (AW-64) and concurrently, the AW-64 to assess sedentary and physical activity behaviors as compared with the GT3X+. Thirty young adults (15 female, 19.2±0.86 years) wore both monitors for 3 consecutive days and 2 consecutive nights. Agreement of sleep, sedentary, and physical activity metrics were evaluated using analyses of variance, intraclass correlation coefficients, Bland-Altman plots with associated confidence limits, mean absolute percentage of errors and equivalence tests. For sleep, the GT3X+ showed high agreement for total sleep time and sleep efficiency, but underestimated wakefulness after sleep onset and sleep onset latency relative to the AW-64. For sedentary behavior and physical activity, the AW-64 showed a moderate agreement for activity energy expenditure, but not for sedentary, light or moderate-vigorous physical activities relative to the GT3X+. Overall our results showed good agreement of the GT3X+ with AW-64 for assessing sleep but a lack of agreement between AW-64 and GT3X+ for physical activity and sedentary behaviors. These results are likely due to the monitor placement (wrist vs hip), as well as the algorithm employed to score the data. Future validation work of existing and emerging technologies that may hold promise for 24 h continuous monitoring is needed. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Solutions Network Formulation Report. Visible/Infrared Imager/Radiometer Suite and Advanced Microwave Scanning Radiometer Data Products for National Drought Monitor Decision Support

    NASA Technical Reports Server (NTRS)

    Estep, Leland

    2007-01-01

    Drought effects are either direct or indirect depending on location, population, and regional economic vitality. Common direct effects of drought are reduced crop, rangeland, and forest productivity; increased fire hazard; reduced water levels; increased livestock and wildlife mortality rates; and damage to wildlife and fish habitat. Indirect impacts follow on the heels of direct impacts. For example, a reduction in crop, rangeland, and forest productivity may result in reduced income for farmers and agribusiness, increased prices for food and timber, unemployment, reduced tax revenues, increased crime, foreclosures on bank loans to farmers and businesses, migration, and disaster relief programs. In the United States alone, drought is estimated to result in annual losses of between $6 - 8 billion. Recent sustained drought in the United States has made decision-makers aware of the impacts of climate change on society and environment. The eight major droughts that occurred in the United States between 1980 and 1999 accounted for the largest percentage of weather-related monetary losses. Monitoring drought and its impact that occurs at a variety of scales is an important government activity -- not only nationally but internationally as well. The NDMC (National Drought Mitigation Center) and the USDA (U.S. Department of Agriculture) RMA (Risk Management Agency) have partnered together to develop a DM-DSS (Drought Monitoring Decision Support System). This monitoring system will be an interactive portal that will provide users the ability to visualize and assess drought at all levels. This candidate solution incorporates atmospherically corrected VIIRS data products, such as NDVI (Normalized Difference Vegetation Index) and Ocean SST (sea surface temperature), and AMSR-E soil moisture data products into two NDMC vegetation indices -- VegDRI (Vegetation Drought Response Index) and VegOUT (Vegetation Outlook) -- which are then input into the DM-DSS.

  6. Influence of social connectedness, communication and monitoring on adolescent sexual activity in Ghana.

    PubMed

    Kumi-Kyereme, Akwasi; Awusabo-Asare, Kofi; Biddlecom, Ann; Tanle, Augustine

    2007-12-01

    This paper examines connectedness to, communication with and monitoring of unmarried adolescents in Ghana by parents, other adults, friends and key social institutions and the roles these groups play with respect to adolescent sexual activity. The paper draws on 2004 nationally-representative survey data and qualitative evidence from focus group discussions and in-depth interviews with adolescents in 2003. Adolescents show high levels of connectedness to family, adults, friends, school and religious groups. High levels of adult monitoring are also observed, but communication with family about sex-related matters was not as high as with non-family members. The qualitative data highlight gender differences in communication. Multivariate analysis of survey data shows a strong negative relationship between parental monitoring and recent sexual activity for males and females, and limited effects of communication. Creating a supportive environment and showing interest in the welfare of adolescents appear to promote positive sexual and reproductive health outcomes.

  7. Subsidence monitoring network: an Italian example aimed at a sustainable hydrocarbon E&P activity

    NASA Astrophysics Data System (ADS)

    Dacome, M. C.; Miandro, R.; Vettorel, M.; Roncari, G.

    2015-11-01

    According to the Italian law in order to start-up any new hydrocarbon exploitation activity, an Environmental Impact Assessment study has to be presented, including a monitoring plan, addressed to foresee, measure and analyze in real time any possible impact of the project on the coastal areas and on those ones in the close inland located. The occurrence of subsidence, that could partly be related to hydrocarbon production, both on-shore and off-shore, can generate great concern in those areas where its occurrence may have impacts on the local environment. ENI, following the international scientific community recommendations on the matter, since the beginning of 90's years, implemented a cutting-edge monitoring network, with the aim to prevent, mitigate and control geodynamics phenomena generated in the activity areas, with a particular attention to conservation and protection of environmental and territorial equilibrium, taking care of what is known as "sustainable development". The current ENI implemented monitoring surveys can be divided as: - Shallow monitoring: spirit levelling surveys, continuous GPS surveys in permanent stations, SAR surveys, assestimeter subsurface compaction monitoring, ground water level monitoring, LiDAR surveys, bathymetrical surveys. - Deep monitoring: reservoir deep compaction trough radioactive markers, reservoir static (bottom hole) pressure monitoring. All the information, gathered through the monitoring network, allow: 1. to verify if the produced subsidence is evolving accordingly with the simulated forecast. 2. to provide data to revise and adjust the prediction compaction models 3. to put in place the remedial actions if the impact exceeds the threshold magnitude originally agreed among the involved parties. ENI monitoring plan to measure and monitor the subsidence process, during field production and also after the field closure, is therefore intended to support a sustainable field development and an acceptable exploitation

  8. Impact of electrochemical treatment of soil washing solution on PAH degradation efficiency and soil respirometry.

    PubMed

    Mousset, Emmanuel; Huguenot, David; van Hullebusch, Eric D; Oturan, Nihal; Guibaud, Gilles; Esposito, Giovanni; Oturan, Mehmet A

    2016-04-01

    The remediation of a genuinely PAH-contaminated soil was performed, for the first time, through a new and complete investigation, including PAH extraction followed by advanced oxidation treatment of the washing solution and its recirculation, and an analysis of the impact of the PAH extraction on soil respirometry. The study has been performed on the remediation of genuine PAH-contaminated soil, in the following three steps: (i) PAH extraction with soil washing (SW) techniques, (ii) PAH degradation with an electro-Fenton (EF) process, and (iii) recirculation of the partially oxidized effluent for another SW cycle. The following criteria were monitored during the successive washing cycles: PAH extraction efficiency, PAH oxidation rates and yields, extracting agent recovery, soil microbial activity, and pH of soil. Two representative extracting agents were compared: hydroxypropyl-beta-cyclodextrin (HPCD) and a non-ionic surfactant, Tween(®) 80. Six PAH with different numbers of rings were monitored: acenaphthene (ACE), phenanthrene (PHE), fluoranthene (FLA), pyrene (PYR), benzo(a)pyrene (BaP), and benzo(g,h,i)perylene (BghiP). Tween(®) 80 showed much better PAH extraction efficiency (after several SW cycles) than HPCD, regardless of the number of washing cycles. Based on successive SW experiments, a new mathematical relation taking into account the soil/water partition coefficient (Kd*) was established, and could predict the amount of each PAH extracted by the surfactant with a good correlation with experimental results (R(2) > 0.975). More HPCD was recovered (89%) than Tween(®) 80 (79%), while the monitored pollutants were completely degraded (>99%) after 4 h and 8 h, respectively. Even after being washed with partially oxidized solutions, the Tween(®) 80 solutions extracted significantly more PAH than HPCD and promoted better soil microbial activity, with higher oxygen consumption rates. Moreover, neither the oxidation by-products nor the acidic media (p

  9. Monitoring And Controlling Hydroponic Flow

    NASA Technical Reports Server (NTRS)

    Dreschel, Thomas W.

    1992-01-01

    Pressure-monitoring and -controlling apparatus maintains slight suction required on nutrient solution in apparatus described in "Tubular Membrane Plant-Growth Unit" (KSC-11375), while overcoming gravity effects on operation of system on Earth. Suction helps to hold solution in tubular membrane.

  10. Resource-Aware Mobile-Based Health Monitoring.

    PubMed

    Masud, Mohammad M; Adel Serhani, Mohamed; Navaz, Alramzana Nujum

    2017-03-01

    Monitoring heart diseases often requires frequent measurements of electrocardiogram (ECG) signals at different periods of the day, and at different situations (e.g., traveling, and exercising). This can only be implemented using mobile devices in order to cope with mobility of patients under monitoring, thus supporting continuous monitoring practices. However, these devices are energy-aware, have limited computing resources (e.g., CPU speed and memory), and might lose network connectivity, which makes it very challenging to maintain a continuity of the monitoring episode. In this paper, we propose a mobile monitoring solution to cope with these challenges by compromising on the fly resources availability, battery level, and network intermittence. In order to solve this problem, first we divide the whole process into several subtasks such that each subtask can be executed sequentially either in the server or in the mobile or in parallel in both devices. Then, we developed a mathematical model that considers all the constraints and finds a dynamic programing solution to obtain the best execution path (i.e., which substep should be done where). The solution guarantees an optimum execution time, while considering device battery availability, execution and transmission time, and network availability. We conducted a series of experiments to evaluate our proposed approach using some key monitoring tasks starting from preprocessing to classification and prediction. The results we have obtained proved that our approach gives the best (lowest) running time for any combination of factors including processing speed, input size, and network bandwidth. Compared to several greedy but nonoptimal solutions, the execution time of our approach was at least 10 times faster and consumed 90% less energy.

  11. Acoustic (loudspeaker) facial EMG monitoring: II. Use of evoked EMG activity during acoustic neuroma resection.

    PubMed

    Prass, R L; Kinney, S E; Hardy, R W; Hahn, J F; Lüders, H

    1987-12-01

    Facial electromyographic (EMG) activity was continuously monitored via loudspeaker during eleven translabyrinthine and nine suboccipital consecutive unselected acoustic neuroma resections. Ipsilateral facial EMG activity was synchronously recorded on the audio channels of operative videotapes, which were retrospectively reviewed in order to allow detailed evaluation of the potential benefit of various acoustic EMG patterns in the performance of specific aspects of acoustic neuroma resection. The use of evoked facial EMG activity was classified and described. Direct local mechanical (surgical) stimulation and direct electrical stimulation were of benefit in the localization and/or delineation of the facial nerve contour. Burst and train acoustic patterns of EMG activity appeared to indicate surgical trauma to the facial nerve that would not have been appreciated otherwise. Early results of postoperative facial function of monitored patients are presented, and the possible value of burst and train acoustic EMG activity patterns in the intraoperative assessment of facial nerve function is discussed. Acoustic facial EMG monitoring appears to provide a potentially powerful surgical tool for delineation of the facial nerve contour, the ongoing use of which may lead to continued improvement in facial nerve function preservation through modification of dissection strategy.

  12. Environmental urban runoff monitoring

    NASA Astrophysics Data System (ADS)

    Yu, Byunggu; Behera, Pradeep K.; Kim, Seon Ho; Ramirez Rochac, Juan F.; Branham, Travis

    2010-04-01

    Urban stormwater runoff has been a critical and chronic problem in the quantity and quality of receiving waters, resulting in a major environmental concern. To address this problem engineers and professionals have developed a number of solutions which include various monitoring and modeling techniques. The most fundamental issue in these solutions is accurate monitoring of the quantity and quality of the runoff from both combined and separated sewer systems. This study proposes a new water quantity monitoring system, based on recent developments in sensor technology. Rather than using a single independent sensor, we harness an intelligent sensor platform that integrates various sensors, a wireless communication module, data storage, a battery, and processing power such that more comprehensive, efficient, and scalable data acquisition becomes possible. Our experimental results show the feasibility and applicability of such a sensor platform in the laboratory test setting.

  13. 30 CFR 580.29 - Will BOEM monitor the environmental effects of my activity?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Will BOEM monitor the environmental effects of my activity? 580.29 Section 580.29 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF... research activities for adverse impact on the environment to determine the need for mitigation measures. ...

  14. 30 CFR 580.29 - Will BOEM monitor the environmental effects of my activity?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Will BOEM monitor the environmental effects of my activity? 580.29 Section 580.29 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF... research activities for adverse impact on the environment to determine the need for mitigation measures. ...

  15. 30 CFR 580.29 - Will BOEM monitor the environmental effects of my activity?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Will BOEM monitor the environmental effects of my activity? 580.29 Section 580.29 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF... research activities for adverse impact on the environment to determine the need for mitigation measures. ...

  16. Potentiometric/turbidometric titration of antiperspirant actives.

    PubMed

    Johnston, Clifford T; Hem, Stanley L; Guenin, Eric; Mattai, Jairajh; Afflito, John

    2003-01-01

    A titration procedure that simultaneously monitors the pH and turbidity of an antiperspirant solution during neutralization with sodium hydroxide was developed to characterize antiperspirant actives. Aluminum chloride, aluminum chlorohydrate (ACH), and aluminum zirconium glycine complex (AZG) gave distinctive pH/turbidity profiles. The activated forms of aluminum chlorohydrate (ACH') and aluminum zirconium glycine complex (AZG') produced more turbidity than the non-activated forms. On an equimolar basis, AZG' produced more turbidity than any of the antiperspirant actives tested.

  17. Development of AN Open-Source Automatic Deformation Monitoring System for Geodetical and Geotechnical Measurements

    NASA Astrophysics Data System (ADS)

    Engel, P.; Schweimler, B.

    2016-04-01

    The deformation monitoring of structures and buildings is an important task field of modern engineering surveying, ensuring the standing and reliability of supervised objects over a long period. Several commercial hardware and software solutions for the realization of such monitoring measurements are available on the market. In addition to them, a research team at the Neubrandenburg University of Applied Sciences (NUAS) is actively developing a software package for monitoring purposes in geodesy and geotechnics, which is distributed under an open source licence and free of charge. The task of managing an open source project is well-known in computer science, but it is fairly new in a geodetic context. This paper contributes to that issue by detailing applications, frameworks, and interfaces for the design and implementation of open hardware and software solutions for sensor control, sensor networks, and data management in automatic deformation monitoring. It will be discussed how the development effort of networked applications can be reduced by using free programming tools, cloud computing technologies, and rapid prototyping methods.

  18. Agreement between activity-monitoring devices during home rehabilitation: a substudy of the AAA STOP trial.

    PubMed

    Myers, Jonathan; Dupain, Mandi; Vu, Andrew; Jaffe, Alyssa; Smith, Kimberly; Fonda, Holly; Dalman, Ronald

    2014-01-01

    As part of a home-based rehabilitation program, 24 older adult patients (71 ± 3 years) with abdominal aortic aneurysm (AAA) disease underwent 3 days (12 awake hr/day) of activity monitoring using an accelerometer (ACC), a pedometer, and a heart rate (HR) monitor, and recorded hourly activity logs. Subjects then underwent an interview to complete a 3-day activity recall questionnaire (3-DR). Mean energy expenditure (EE) in kcals/ day for HR, ACC, and 3-DR were 1,687 ± 458, 2,068 ± 529, and 1,974 ± 491, respectively. Differences in EE were not significant between 3-DR and ACC, but HR differed from both ACC (p < .001) and 3-DR (p < .01). ACC and 3-DR had the highest agreement, with a coefficient of variation of 7.9% and r = .86. Thus, ACC provided a reasonably accurate reflection of EE based the criterion measure, an activity recall questionnaire. ACC can be effectively used to monitor EE to achieve an appropriate training stimulus during home-based cardiac rehabilitation.

  19. New monitoring technology to objectively assess adherence to prescribed footwear and assistive devices during ambulatory activity.

    PubMed

    Bus, Sicco A; Waaijman, Roelof; Nollet, Frans

    2012-11-01

    To assess the validity and feasibility of a new temperature-based adherence monitor to measure footwear use. Observational study. University medical center and participants' homes. Convenience sample of healthy subjects (n=11) and neuropathic diabetic patients at high risk for foot ulceration (n=14). In healthy subjects, the validity of the in-shoe attached adherence monitor was investigated by comparing its registrations of donning and doffing of footwear during 7 days to an accurately kept log registration. In diabetic patients, the feasibility of using the adherence monitor for 7 days in conjunction with a time-synchronized ankle-worn step activity monitor to register prescribed footwear use during walking was assessed. Furthermore, a usability questionnaire was completed. For validity, the mean time difference and 95% confidence interval (CI) between moments of donning/doffing footwear recorded with the adherence monitor and in the log were calculated. For feasibility, technical performance, usability, and the percentage of steps that the footwear was worn (adherence) were assessed. The mean time difference between the adherence monitor and log recordings was 0.4 minutes (95% CI, 0.2-0.6min). One erroneous recording and 2 incomplete recordings were obtained in diabetic patients. Three patients reported discomfort with the step activity monitor, and 4 patients would not favor repeated testing. Patients used their footwear for between 9% and 99% of their walking steps. The adherence monitor shows good validity in measuring when footwear is used or not, and is, together with instrumented monitoring of walking activity, a feasible and objective method to assess treatment adherence. This method can have wide application in clinical practice and research regarding prescribed footwear and other body-worn assistive devices. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  20. Monitoring single protease activities on triple-helical collagen molecules

    NASA Astrophysics Data System (ADS)

    Harzar, Raj; Froberg, James; Srivastava, D. K.; Choi, Yongki

    Matrix metalloproteinases (MMPs), a particular family of proteases, play a pivotal role in degrading the extracellular matrix (ECM). It has been known for more than 40 years that MMPs are closely involved in multiple human cancers during cell growth, invasion, and metastasis. However, the mechanisms of MMP activity are far from being understood. Here, we monitored enzymatic processing of MMPs with two complementary approaches, atomic force microscopy and nanocircuits measurements. AFM measurements demonstrated that incubation of collagen monomers with MMPs resulted in a single position cleavage, producing 3/4 and 1/4 collagen fragments. From electronic monitoring of single MMP nanocircuit measurements, we were able to capture a single cleavage event with a rate of 0.012 Hz, which were in good agreement with fluorescence assay measurements. This work was supported financially by the NIGMS/NIH (P30GM103332-02) and ND NASA EPSCoR RID Grant.

  1. Sensitivity Analysis of Genetic Algorithm Parameters for Optimal Groundwater Monitoring Network Design

    NASA Astrophysics Data System (ADS)

    Abdeh-Kolahchi, A.; Satish, M.; Datta, B.

    2004-05-01

    A state art groundwater monitoring network design is introduced. The method combines groundwater flow and transport results with optimization Genetic Algorithm (GA) to identify optimal monitoring well locations. Optimization theory uses different techniques to find a set of parameter values that minimize or maximize objective functions. The suggested groundwater optimal monitoring network design is based on the objective of maximizing the probability of tracking a transient contamination plume by determining sequential monitoring locations. The MODFLOW and MT3DMS models included as separate modules within the Groundwater Modeling System (GMS) are used to develop three dimensional groundwater flow and contamination transport simulation. The groundwater flow and contamination simulation results are introduced as input to the optimization model, using Genetic Algorithm (GA) to identify the groundwater optimal monitoring network design, based on several candidate monitoring locations. The groundwater monitoring network design model is used Genetic Algorithms with binary variables representing potential monitoring location. As the number of decision variables and constraints increase, the non-linearity of the objective function also increases which make difficulty to obtain optimal solutions. The genetic algorithm is an evolutionary global optimization technique, which is capable of finding the optimal solution for many complex problems. In this study, the GA approach capable of finding the global optimal solution to a groundwater monitoring network design problem involving 18.4X 1018 feasible solutions will be discussed. However, to ensure the efficiency of the solution process and global optimality of the solution obtained using GA, it is necessary that appropriate GA parameter values be specified. The sensitivity analysis of genetic algorithms parameters such as random number, crossover probability, mutation probability, and elitism are discussed for solution of

  2. Data mining spacecraft telemetry: towards generic solutions to automatic health monitoring and status characterisation

    NASA Astrophysics Data System (ADS)

    Royer, P.; De Ridder, J.; Vandenbussche, B.; Regibo, S.; Huygen, R.; De Meester, W.; Evans, D. J.; Martinez, J.; Korte-Stapff, M.

    2016-07-01

    We present the first results of a study aimed at finding new and efficient ways to automatically process spacecraft telemetry for automatic health monitoring. The goal is to reduce the load on the flight control team while extending the "checkability" to the entire telemetry database, and provide efficient, robust and more accurate detection of anomalies in near real time. We present a set of effective methods to (a) detect outliers in the telemetry or in its statistical properties, (b) uncover and visualise special properties of the telemetry and (c) detect new behavior. Our results are structured around two main families of solutions. For parameters visiting a restricted set of signal values, i.e. all status parameters and about one third of all the others, we focus on a transition analysis, exploiting properties of Poincare plots. For parameters with an arbitrarily high number of possible signal values, we describe the statistical properties of the signal via its Kernel Density Estimate. We demonstrate that this allows for a generic and dynamic approach of the soft-limit definition. Thanks to a much more accurate description of the signal and of its time evolution, we are more sensitive and more responsive to outliers than the traditional checks against hard limits. Our methods were validated on two years of Venus Express telemetry. They are generic for assisting in health monitoring of any complex system with large amounts of diagnostic sensor data. Not only spacecraft systems but also present-day astronomical observatories can benefit from them.

  3. Assessment of laboratory and daily energy expenditure estimates from consumer multi-sensor physical activity monitors.

    PubMed

    Chowdhury, Enhad A; Western, Max J; Nightingale, Thomas E; Peacock, Oliver J; Thompson, Dylan

    2017-01-01

    Wearable physical activity monitors are growing in popularity and provide the opportunity for large numbers of the public to self-monitor physical activity behaviours. The latest generation of these devices feature multiple sensors, ostensibly similar or even superior to advanced research instruments. However, little is known about the accuracy of their energy expenditure estimates. Here, we assessed their performance against criterion measurements in both controlled laboratory conditions (simulated activities of daily living and structured exercise) and over a 24 hour period in free-living conditions. Thirty men (n = 15) and women (n = 15) wore three multi-sensor consumer monitors (Microsoft Band, Apple Watch and Fitbit Charge HR), an accelerometry-only device as a comparison (Jawbone UP24) and validated research-grade multi-sensor devices (BodyMedia Core and individually calibrated Actiheart™). During discrete laboratory activities when compared against indirect calorimetry, the Apple Watch performed similarly to criterion measures. The Fitbit Charge HR was less consistent at measurement of discrete activities, but produced similar free-living estimates to the Apple Watch. Both these devices underestimated free-living energy expenditure (-394 kcal/d and -405 kcal/d, respectively; P<0.01). The multi-sensor Microsoft Band and accelerometry-only Jawbone UP24 devices underestimated most laboratory activities and substantially underestimated free-living expenditure (-1128 kcal/d and -998 kcal/d, respectively; P<0.01). None of the consumer devices were deemed equivalent to the reference method for daily energy expenditure. For all devices, there was a tendency for negative bias with greater daily energy expenditure. No consumer monitors performed as well as the research-grade devices although in some (but not all) cases, estimates were close to criterion measurements. Thus, whilst industry-led innovation has improved the accuracy of consumer monitors, these devices

  4. Assessment of laboratory and daily energy expenditure estimates from consumer multi-sensor physical activity monitors

    PubMed Central

    Chowdhury, Enhad A.; Western, Max J.; Nightingale, Thomas E.; Peacock, Oliver J.; Thompson, Dylan

    2017-01-01

    Wearable physical activity monitors are growing in popularity and provide the opportunity for large numbers of the public to self-monitor physical activity behaviours. The latest generation of these devices feature multiple sensors, ostensibly similar or even superior to advanced research instruments. However, little is known about the accuracy of their energy expenditure estimates. Here, we assessed their performance against criterion measurements in both controlled laboratory conditions (simulated activities of daily living and structured exercise) and over a 24 hour period in free-living conditions. Thirty men (n = 15) and women (n = 15) wore three multi-sensor consumer monitors (Microsoft Band, Apple Watch and Fitbit Charge HR), an accelerometry-only device as a comparison (Jawbone UP24) and validated research-grade multi-sensor devices (BodyMedia Core and individually calibrated Actiheart™). During discrete laboratory activities when compared against indirect calorimetry, the Apple Watch performed similarly to criterion measures. The Fitbit Charge HR was less consistent at measurement of discrete activities, but produced similar free-living estimates to the Apple Watch. Both these devices underestimated free-living energy expenditure (-394 kcal/d and -405 kcal/d, respectively; P<0.01). The multi-sensor Microsoft Band and accelerometry-only Jawbone UP24 devices underestimated most laboratory activities and substantially underestimated free-living expenditure (-1128 kcal/d and -998 kcal/d, respectively; P<0.01). None of the consumer devices were deemed equivalent to the reference method for daily energy expenditure. For all devices, there was a tendency for negative bias with greater daily energy expenditure. No consumer monitors performed as well as the research-grade devices although in some (but not all) cases, estimates were close to criterion measurements. Thus, whilst industry-led innovation has improved the accuracy of consumer monitors, these devices

  5. An MFC-Based Online Monitoring and Alert System for Activated Sludge Process

    PubMed Central

    Xu, Gui-Hua; Wang, Yun-Kun; Sheng, Guo-Ping; Mu, Yang; Yu, Han-Qing

    2014-01-01

    In this study, based on a simple, compact and submersible microbial fuel cell (MFC), a novel online monitoring and alert system with self-diagnosis function was established for the activated sludge (AS) process. Such a submersible MFC utilized organic substrates and oxygen in the AS reactor as the electron donor and acceptor respectively, and could provide an evaluation on the status of the AS reactor and thus give a reliable early warning of potential risks. In order to evaluate the reliability and sensitivity of this online monitoring and alert system, a series of tests were conducted to examine the response of this system to various shocks imposed on the AS reactor. The results indicate that this online monitoring and alert system was highly sensitive to the performance variations of the AS reactor. The stability, sensitivity and repeatability of this online system provide feasibility of being incorporated into current control systems of wastewater treatment plants to real-time monitor, diagnose, alert and control the AS process. PMID:25345502

  6. Influence of electro-activated solutions of weak organic acid salts on microbial quality and overall appearance of blueberries during storage.

    PubMed

    Liato, Viacheslav; Hammami, Riadh; Aïder, Mohammed

    2017-06-01

    The aim of this work was to study the potential of diluted electro-activated solutions of weak organic acid salts (potassium acetate, potassium citrate and calcium lactate) to extend the shelf life of blueberries during post-harvest storage. The sanitizing capacity of these solutions was studied against pathogenic bacteria Listeria monocytogenes and E. coli O157:H7 as well as phytopathogenic fungi A. alternata, F. oxysporum and B. cinerea. The results showed that a 5-min treatment of inoculated blueberries with electro-activated solutions resulted in a 4 log CFU/g reduction in Listeria monocytogenes for all solutions. For E. coli O157:H7, the electro-activated potassium acetate and potassium citrate solutions achieved a decrease of 3.5 log CFU/g after 5 min of berry washing. The most important fungus reduction was found when blueberries were washed with an electro-activated solution of potassium acetate and a NaOCl solution. After 5 min of blueberry washing with an electro-activated potassium acetate solution, a very high reduction effect was observed for A. alternata, F. oxysporum and B. cinerea, which showed survival levels of only 2.2 ± 0.16, 0.34 ± 0.15 and 0.21 ± 0.16 log CFU/g, respectively. Regarding the effect of the washing on the organoleptic quality of blueberries, the obtained results showed no negative effect on the product color or textural profile. Finally, this work suggests that washing with electro-activated solutions of weak organic acid salts can be used to enhance the shelf-life of blueberries during post-harvest storage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Increasing trend of wearables and multimodal interface for human activity monitoring: A review.

    PubMed

    Kumari, Preeti; Mathew, Lini; Syal, Poonam

    2017-04-15

    Activity recognition technology is one of the most important technologies for life-logging and for the care of elderly persons. Elderly people prefer to live in their own houses, within their own locality. If, they are capable to do so, several benefits can follow in terms of society and economy. However, living alone may have high risks. Wearable sensors have been developed to overcome these risks and these sensors are supposed to be ready for medical uses. It can help in monitoring the wellness of elderly persons living alone by unobtrusively monitoring their daily activities. The study aims to review the increasing trends of wearable devices and need of multimodal recognition for continuous or discontinuous monitoring of human activity, biological signals such as Electroencephalogram (EEG), Electrooculogram (EOG), Electromyogram (EMG), Electrocardiogram (ECG) and parameters along with other symptoms. This can provide necessary assistance in times of ominous need, which is crucial for the advancement of disease-diagnosis and treatment. Shared control architecture with multimodal interface can be used for application in more complex environment where more number of commands is to be used to control with better results in terms of controlling. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Process monitoring and visualization solutions for hot-melt extrusion: a review.

    PubMed

    Saerens, Lien; Vervaet, Chris; Remon, Jean Paul; De Beer, Thomas

    2014-02-01

    Hot-melt extrusion (HME) is applied as a continuous pharmaceutical manufacturing process for the production of a variety of dosage forms and formulations. To ensure the continuity of this process, the quality of the extrudates must be assessed continuously during manufacturing. The objective of this review is to provide an overview and evaluation of the available process analytical techniques which can be applied in hot-melt extrusion. Pharmaceutical extruders are equipped with traditional (univariate) process monitoring tools, observing barrel and die temperatures, throughput, screw speed, torque, drive amperage, melt pressure and melt temperature. The relevance of several spectroscopic process analytical techniques for monitoring and control of pharmaceutical HME has been explored recently. Nevertheless, many other sensors visualizing HME and measuring diverse critical product and process parameters with potential use in pharmaceutical extrusion are available, and were thoroughly studied in polymer extrusion. The implementation of process analytical tools in HME serves two purposes: (1) improving process understanding by monitoring and visualizing the material behaviour and (2) monitoring and analysing critical product and process parameters for process control, allowing to maintain a desired process state and guaranteeing the quality of the end product. This review is the first to provide an evaluation of the process analytical tools applied for pharmaceutical HME monitoring and control, and discusses techniques that have been used in polymer extrusion having potential for monitoring and control of pharmaceutical HME. © 2013 Royal Pharmaceutical Society.

  9. Dashboard Task Monitor for Managing ATLAS User Analysis on the Grid

    NASA Astrophysics Data System (ADS)

    Sargsyan, L.; Andreeva, J.; Jha, M.; Karavakis, E.; Kokoszkiewicz, L.; Saiz, P.; Schovancova, J.; Tuckett, D.; Atlas Collaboration

    2014-06-01

    The organization of the distributed user analysis on the Worldwide LHC Computing Grid (WLCG) infrastructure is one of the most challenging tasks among the computing activities at the Large Hadron Collider. The Experiment Dashboard offers a solution that not only monitors but also manages (kill, resubmit) user tasks and jobs via a web interface. The ATLAS Dashboard Task Monitor provides analysis users with a tool that is independent of the operating system and Grid environment. This contribution describes the functionality of the application and its implementation details, in particular authentication, authorization and audit of the management operations.

  10. Evaluation of surveillance methods for monitoring house fly abundance and activity on large commercial dairy operations.

    PubMed

    Gerry, Alec C; Higginbotham, G E; Periera, L N; Lam, A; Shelton, C R

    2011-06-01

    Relative house fly, Musca domestica L., activity at three large dairies in central California was monitored during the peak fly activity period from June to August 2005 by using spot cards, fly tapes, bait traps, and Alsynite traps. Counts for all monitoring methods were significantly related at two of three dairies; with spot card counts significantly related to fly tape counts recorded the same week, and both spot card counts and fly tape counts significantly related to bait trap counts 1-2 wk later. Mean fly counts differed significantly between dairies, but a significant interaction between dairies sampled and monitoring methods used demonstrates that between-dairy comparisons are unwise. Estimate precision was determined by the coefficient of variability (CV) (or SE/mean). Using a CV = 0.15 as a desired level of estimate precision and assuming an integrate pest management (IPM) action threshold near the peak house fly activity measured by each monitoring method, house fly monitoring at a large dairy would require 12 spot cards placed in midafternoon shaded fly resting sites near cattle or seven bait traps placed in open areas near cattle. Software (FlySpotter; http://ucanr.org/ sites/FlySpotter/download/) using computer vision technology was developed to count fly spots on a scanned image of a spot card to dramatically reduce time invested in monitoring house flies. Counts provided by the FlySpotter software were highly correlated to visual counts. The use of spot cards for monitoring house flies is recommended for dairy IPM programs.

  11. Post-marketing safety monitoring of shenqifuzheng injection: a solution made of dangshen (Radix Codonopsis) and huangqi (Radix Astragali Mongolici).

    PubMed

    Ai, Qinghua; Zhang, Wen; Xie, Yanming; Huang, Wenhua; Liang, Hong; Cao, Hui

    2014-08-01

    To identify the potential risk factors associated with Shenqifuzheng injection (SFI), a solution made of Dangshen (Radix Codonopsis) and Huangqi (Radix Astragali Mongolici), for the timely provision of information to regulatory authorities. A comprehensive analysis of the production process, quality standards, pharmacology, post-marketing clinical studies, and safety evaluation using the primary literature of adverse reactions (ADR), case analyses, and systematic reviews, intensive hospital safety monitoring of post-marketing drugs, and data provided by the hospital information system (HIS). Sub-acute toxicity tests suggesting that a dose of 15 mL/kg (concentrated solution) had specific biological effects, whereas a smaller dose engendered no observable effects. Long-term toxicity testing in domestic rabbits showed that after SFI was administered for 90 days, the animals in each dosing group showed no chronic toxic reactions. Among 20 100 cases observed, the incidence of an ADR was 1.85 per thousand. From March to November 2013, of the leading institutions and 22 sub-centers involved in the post-marketing clinical safety intensive hospital monitoring, 21 units completed 8484 cases of monitoring, and reported 23 cases of adverse reactions. No damage to renal function was found using SFI at a dosage and a treatment course larger and longer than that recommended for the adjuvant treatment of tumors. This could reduce the mortality rate of admitted patients based on the analysis of the data provided by the HIS. A total of 16 clinical case reports of adverse reactions related to SFI in 1999-2012 were obtained through literature retrieval. These reports contained information concerning 17 cases, with adverse reaction symptoms including thrombocytopenia, rash, chills, feeling cold, palpitation, dyspnea, edema of a lower extremity, palpebral edema, and superficial vein inflammation, among others. This study introduces "get full access" to the flow of information on

  12. Degradation of Penicillin G by heat activated persulfate in aqueous solution.

    PubMed

    Norzaee, Samira; Taghavi, Mahmoud; Djahed, Babak; Kord Mostafapour, Ferdos

    2018-06-01

    We used Heat Activated of Persulfate (HAP) to decompose Penicillin G (PEN G) in aqueous solution. The effect of pH (3-11), temperature (313-353 K), and initial concentration of Sodium Persulfate (SPS) (0.05-0.5 mM) on the decomposition level of PEN G were investigated. The residue of PEN G was determined by spectrophotometry at the wavelength of 290 nm. Also, the Chemical Oxygen Demand (COD) was measured in each experiment. The Total Organic Carbon (TOC) analysis was utilized for surveying the mineralization of PEN G. In addition, based on Arrhenius equation, the activation energy of PEN G decomposition was calculated. The results indicated that the maximum PEN G removal rate was obtained at pH 5 and by increasing the doses of SPS from 0.05 to 0.5 mM, the PEN G decomposition was enhanced. It was found that an increase in temperature is accompanied by an increase in removal efficiency of PEN G. The activation energy of the studied process was determined to be 94.8 kJ mol -1 , suggesting that a moderate activation energy is required for PEN G decomposition. The TOC measurements indicate that the HAP can efficiently mineralize PEN G. Besides, the presence of the scavengers significantly suppressed the HAP process to remove the PEN G. Overall, the results of this study demonstrate that using HAP process can be a suitable method for decomposing of PEN G in aqueous solutions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Investigating the media power of a population health monitoring survey: case study of the NSW Schools Physical Activity and Nutrition Survey (SPANS).

    PubMed

    Espinel, Paola T; Laws, Rachel; Bonfiglioli, Catriona; Hardy, Louise L; King, Lesley

    2013-06-01

    To examine the extent and nature of news coverage of a government-funded population monitoring survey of children and the potential implications of this coverage for public health advocacy. Case study of the NSW Schools Physical Activity and Nutrition Survey (SPANS), a population monitoring survey of school-aged children's weight and weight-related behaviours, conducted in 1997, 2004 and 2010. Printed news items from all Australian newspapers between January 1997 and December 2011 mentioning the survey findings were identified from the Factiva database and a descriptive analysis of the content conducted. Overall, 144 news items were identified. The news angles focused mainly on physical activity/sedentary behaviour; overweight/obesity and nutrition; however these angles changed between 1997 and 2011, with angles focused on physical activity/sedentary behaviour increasing, compared with overweight/obesity and nutrition angles (p=0.001). Responsibility for obesity and weight-related behaviours was most frequently assigned to parents and food marketing, and the most common solutions were policy strategies and parental/child education and support. Population health surveys are newsworthy and when coupled with strategic dissemination, media can contribute to communicating health issues and interpreting findings in ways that are relevant for consumers, policy makers and stakeholders. Implications : This case study emphasises the news value of government-funded population surveys, while providing a cautionary note about media focus on individual studies rather than a larger body of research evidence. © 2013 The Authors. ANZJPH © 2013 Public Health Association of Australia.

  14. Aqueous penetration and biological activity of moxifloxacin 0.5% ophthalmic solution and gatifloxacin 0.3% solution in cataract surgery patients.

    PubMed

    Kim, Dianne H; Stark, Walter J; O'Brien, Terrence P; Dick, James D

    2005-11-01

    To measure the achievable perioperative aqueous concentration of the commercially available topically administered fourth generation fluoroquinolones, moxifloxacin 0.5% ophthalmic solution, and gatifloxacin 0.3% ophthalmic solution, and to correlate this concentration with the agents' biological efficacy in the aqueous humor of patients undergoing routine cataract surgery. Prospective, randomized, parallel, double-masked, clinical trial. Fifty patients undergoing cataract extraction. Patients (n = 25) were given perioperative topical moxifloxacin 0.5% or topical gatifloxacin 0.3% (n = 25). One drop of antibiotic was administered every 10 minutes for 4 doses beginning 1 hour prior to surgery. Aqueous humor was sampled via paracentesis and antibiotic concentrations were determined using validated high performance liquid chromatography (HPLC) procedures. Dilution analyses were performed to determine the biological efficacy of the agents in the aqueous against Staphylococcus epidermidis, the most common cause of postcataract endophthalmitis. Aqueous humor antibiotic concentrations were measured using HPLC and microdilution bioassay techniques. Biological activity was measured as minimal inhibitory dilution and minimal bactericidal dilution. Aqueous humor concentrations for moxifloxacin via HPLC analysis were 1.80 (+/-1.21) microg/ml, whereas those for gatifloxacin were 0.48 (+/-0.34) microg/ml. This 3.8-fold difference in aqueous humor antibiotic concentrations was statistically significant (P = 0.00003). Similarly, the biological dilution analysis of the aqueous humor samples showed that moxifloxacin attained an estimated activity of 2.1 microg/ml, whereas the gatifloxacin activity was approximately 0.4 mug/ml, which represented a 4.9-fold difference. This study demonstrated that after topically administered perioperative antibiotics with cataract surgery, moxifloxacin 0.5% ophthalmic solution achieved a statistically significantly higher concentration in aqueous

  15. Activities of the components in a spinel solid solution of the Fe-Al-O system

    NASA Astrophysics Data System (ADS)

    Lykasov, A. A.; Kimyashev, A. A.

    2011-09-01

    The conditions of the equilibrium between the Fe3O4-FeAl2O4 solution and wustite are determined by measuring the EMF of galvanic cells containing a solid electrolyte, and the activities of the components in the Fe3O4-FeAl2O4 solution are calculated by treating the results of the experiment on the equilibrium between the spinel solution and wustite. Their properties are found to be different from those of ideal solutions at temperatures of 1000-1300 K. A significant positive deviation from the Raoult's law is believed to indicate the tendency of the solution to decompose. The experimental data are treated in terms of the theory of regular solutions, assuming the energy of mixing to be a function of temperature only. The critical temperature of decomposition for the Fe3O4-FeAl2O4 solution is found to be 1084 K.

  16. An Intelligent CAI Monitor and Generative Tutor. Interim Report.

    ERIC Educational Resources Information Center

    Koffman, Elliot B.; And Others

    Design techniques for generative computer-assisted-instructional (CAI) systems are described in this report. These are systems capable of generating problems for students and of deriving and monitoring solutions; problem difficulty, instructional pace, and depth of monitoring are all individually tailored and parts of the solution algorithms can…

  17. Age-related differences in prefrontal cortex activity during retrieval monitoring: testing the compensation and dysfunction accounts.

    PubMed

    McDonough, Ian M; Wong, Jessica T; Gallo, David A

    2013-05-01

    Current theories of cognitive aging emphasize that the prefrontal cortex might not only be a major source of dysfunction but also a source of compensation. We evaluated neural activity associated with retrieval monitoring--or the selection and evaluation of recollected information during memory retrieval--for evidence of dysfunction or compensation. Younger and older adults studied pictures and words and were subsequently given criterial recollection tests during event-related functional magnetic resonance imaging. Although memory accuracy was greater on the picture test than the word test in both groups, activity in right dorsolateral prefrontal cortex (DLPFC) was associated with greater retrieval monitoring demands (word test > picture test) only in younger adults. Similarly, DLPFC activity was consistently associated with greater item difficulty (studied > nonstudied) only in younger adults. Older adults instead exhibited high levels of DLPFC activity for all of these conditions, and activity was greater than younger adults even when test performance was naturally matched across the groups (picture test). Correlations also differed between DLPFC activity and test performance across the groups. Collectively, these findings are more consistent with accounts of DLPFC dysfunction than compensation, suggesting that aging disrupts the otherwise beneficial coupling between DLPFC recruitment and retrieval monitoring demands.

  18. Hand-held monitor of sympathetic nervous system using salivary amylase activity and its validation by driver fatigue assessment.

    PubMed

    Yamaguchi, Masaki; Deguchi, Mitsuo; Wakasugi, Junichi; Ono, Shin; Takai, Noriyasu; Higashi, Tomoyuki; Mizuno, Yasufumi

    2006-01-15

    In order to realize a hand-held monitor of the sympathetic nervous system, we fabricated a completely automated analytical system for salivary amylase activity using a dry-chemistry system. This was made possible by the fabrication of a disposable test-strip equipped with built-in collecting and reagent papers and an automatic saliva transfer device. In order to cancel out the effects of variations in environmental temperature and pH of saliva, temperature- and pH-adjusted equations were experimentally determined, and each theoretical value was input into the memory of the hand-held monitor. Within a range of salivary amylase activity between 10 and 140 kU/l, the calibration curve for the hand-held monitor showed a coefficient with R(2)=0.97. Accordingly, it was demonstrated that the hand-held monitor enabled a user to automatically measure the salivary amylase activity with high accuracy with only 30 microl sample of saliva within a minute from collection to completion of the measurement. In order to make individual variations of salivary amylase activity negligible during driver fatigue assessment, a normalized equation was proposed. The normalized salivary amylase activity correlated with the mental and physical fatigue states. Thus, this study demonstrated that an excellent hand-held monitor with an algorithm for normalization of individuals' differences in salivary amylase activity, which could be easily and quickly used for evaluating the activity of the sympathetic nervous system at any time. Furthermore, it is suggested that the salivary amylase activity might be used as a better index for psychological research.

  19. The Activation and Monitoring of Memories Produced by Words and Pseudohomophones

    ERIC Educational Resources Information Center

    Cortese, Michael J.; Khanna, Maya M.; White, Katherine K.; Veljkovic, Ilija; Drumm, Geoffery

    2008-01-01

    Using the DRM paradigm, our experiments examined the activation and monitoring of memories in semantic and phonological networks. Participants viewed lists of words and/or pseudohomophones (e.g., "dreem"). In Experiment 1, participants verbally recalled lists of semantic associates or attempted to write them as they appeared during study. False…

  20. 40 CFR 63.2164 - If I monitor brew ethanol, what are my monitoring installation, operation, and maintenance...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false If I monitor brew ethanol, what are my... § 63.2164 If I monitor brew ethanol, what are my monitoring installation, operation, and maintenance...) of this section. (1) Calibrate the GC at least daily, by analyzing standard solutions of ethanol in...

  1. 40 CFR 63.2164 - If I monitor brew ethanol, what are my monitoring installation, operation, and maintenance...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true If I monitor brew ethanol, what are my... § 63.2164 If I monitor brew ethanol, what are my monitoring installation, operation, and maintenance...) of this section. (1) Calibrate the GC at least daily, by analyzing standard solutions of ethanol in...

  2. Inverse atmospheric radiative transfer problems - A nonlinear minimization search method of solution. [aerosol pollution monitoring

    NASA Technical Reports Server (NTRS)

    Fymat, A. L.

    1976-01-01

    The paper studies the inversion of the radiative transfer equation describing the interaction of electromagnetic radiation with atmospheric aerosols. The interaction can be considered as the propagation in the aerosol medium of two light beams: the direct beam in the line-of-sight attenuated by absorption and scattering, and the diffuse beam arising from scattering into the viewing direction, which propagates more or less in random fashion. The latter beam has single scattering and multiple scattering contributions. In the former case and for single scattering, the problem is reducible to first-kind Fredholm equations, while for multiple scattering it is necessary to invert partial integrodifferential equations. A nonlinear minimization search method, applicable to the solution of both types of problems has been developed, and is applied here to the problem of monitoring aerosol pollution, namely the complex refractive index and size distribution of aerosol particles.

  3. Causes and consequences of timing errors associated with global positioning system collar accelerometer activity monitors

    Treesearch

    Adam J. Gaylord; Dana M. Sanchez

    2014-01-01

    Direct behavioral observations of multiple free-ranging animals over long periods of time and large geographic areas is prohibitively difficult. However, recent improvements in technology, such as Global Positioning System (GPS) collars equipped with motion-sensitive activity monitors, create the potential to remotely monitor animal behavior. Accelerometer-equipped...

  4. Exercise Therapy for Management of Type 2 Diabetes Mellitus: Superior Efficacy of Activity Monitors over Pedometers.

    PubMed

    Miyauchi, Masaaki; Toyoda, Masao; Kaneyama, Noriko; Miyatake, Han; Tanaka, Eitaro; Kimura, Moritsugu; Umezono, Tomoya; Fukagawa, Masafumi

    2016-01-01

    We compared the efficacy of activity monitor (which displays exercise intensity and number of steps) versus that of pedometer in exercise therapy for patients with type 2 diabetes. The study subjects were divided into the activity monitor group ( n = 92) and pedometer group ( n = 95). The primary goal was improvement in hemoglobin A1c (HbA1c). The exercise target was set at 8,000 steps/day and 20 minutes of moderate-intensity exercise (≥3.5 metabolic equivalents). The activity monitor is equipped with a triple-axis accelerometer sensor capable of measuring medium-intensity walking duration, number of steps, walking distance, calorie consumption, and total calorie consumption. The pedometer counts the number of steps. Blood samples for laboratory tests were obtained during the visits. The first examination was conducted at the start of the study and repeated at 2 and 6 months. A significant difference in the decrease in HbA1c level was observed between the two groups at 2 months. The results suggest that the use of activity level monitor that displays information on exercise intensity, in addition to the number of steps, is useful in exercise therapy as it enhances the concept of exercise therapy and promotes lowering of HbA1c in diabetic patients.

  5. Monitoring of blazars on the SPbSU 16" telescope

    NASA Astrophysics Data System (ADS)

    Troitskiy, I. S.; Morozova, D. A.; Blinov, D. A.; Larionov, V. M.; Ershtadt, S. G.

    2012-05-01

    The fast variability in the total and polarized fluxes is prominent feature of blazars. The analysis demands dense series of observations. Meade 16" LX200 telescope is one of the basic instruments for these purposes in St.Petersburg State University. The photometry in B, V, R, I bands and polarimetry of the majority of program sources are spent. Thanks to organizational, methodical and technical solutions it was possible to achieve high efficiency of usage of the telescope for blazar monitoring. Unique observаtions series have been received. Results were included into articles published in such magazines, as the Astronomy Letters, Astronomy Reports, A&A, ApJ, Nature. International programs of active galactic nuclei monitoring are regularly spent.

  6. OpenLMD, multimodal monitoring and control of LMD processing

    NASA Astrophysics Data System (ADS)

    Rodríguez-Araújo, Jorge; García-Díaz, Antón

    2017-02-01

    This paper presents OpenLMD, a novel open-source solution for on-line multimodal monitoring of Laser Metal Deposition (LMD). The solution is also applicable to a wider range of laser-based applications that require on-line control (e.g. laser welding). OpenLMD is a middleware that enables the orchestration and virtualization of a LMD robot cell, using several open-source frameworks (e.g. ROS, OpenCV, PCL). The solution also allows reconfiguration by easy integration of multiple sensors and processing equipment. As a result, OpenLMD delivers significant advantages over existing monitoring and control approaches, such as improved scalability, and multimodal monitoring and data sharing capabilities.

  7. Solution XAS Analysis for Exploring the Active Species in Homogeneous Vanadium Complex Catalysis

    NASA Astrophysics Data System (ADS)

    Nomura, Kotohiro; Mitsudome, Takato; Tsutsumi, Ken; Yamazoe, Seiji

    2018-06-01

    Selected examples in V K-edge X-ray Absorption Near Edge Structure (XANES) analysis of a series of vanadium complexes containing imido ligands (possessing metal-nitrogen double bond) in toluene solution have been introduced, and their pre-edge and the edge were affected by their structures and nature of ligands. Selected results in exploring the oxidation states of the active species in ethylene dimerization/polymerization using homogeneous vanadium catalysts [consisting of (imido)vanadium(V) complexes and Al cocatalysts] by X-ray absorption spectroscopy (XAS) analyses have been introduced. It has been demonstrated that the method should provide more clear information concerning the active species in situ, especially by combination with the other methods (NMR and ESR spectra, X-ray crystallographic analysis, and reaction chemistry), and should be powerful tool for study of catalysis mechanism as well as for the structural analysis in solution.

  8. Secure and Efficient Reactive Video Surveillance for Patient Monitoring.

    PubMed

    Braeken, An; Porambage, Pawani; Gurtov, Andrei; Ylianttila, Mika

    2016-01-02

    Video surveillance is widely deployed for many kinds of monitoring applications in healthcare and assisted living systems. Security and privacy are two promising factors that align the quality and validity of video surveillance systems with the caliber of patient monitoring applications. In this paper, we propose a symmetric key-based security framework for the reactive video surveillance of patients based on the inputs coming from data measured by a wireless body area network attached to the human body. Only authenticated patients are able to activate the video cameras, whereas the patient and authorized people can consult the video data. User and location privacy are at each moment guaranteed for the patient. A tradeoff between security and quality of service is defined in order to ensure that the surveillance system gets activated even in emergency situations. In addition, the solution includes resistance against tampering with the device on the patient's side.

  9. IDEA Fiscal Monitoring and Support Activities 2011-2012 Quick Reference Document

    ERIC Educational Resources Information Center

    Regional Resource Center Program, 2011

    2011-01-01

    This Quick Reference Document is being distributed by the Regional Resource Center Program ARRA/Fiscal Priority Team to provide RRCP state liaisons and other (Technical Assistance) TA providers with a summary of critical fiscal monitoring and support activities they may be involved in during calendar years 2011 and 2012. Like other documents in…

  10. Thermally Activated Delayed Fluorescence in Polymers: A New Route toward Highly Efficient Solution Processable OLEDs.

    PubMed

    Nikolaenko, Andrey E; Cass, Michael; Bourcet, Florence; Mohamad, David; Roberts, Matthew

    2015-11-25

    Efficient intermonomer thermally activated delayed fluorescence is demonstrated for the first time, opening a new route to achieving high-efficiency solution processable polymer light-emitting device materials. External quantum efficiency (EQE) of up to 10% is achieved in a simple fully solution-processed device structure, and routes for further EQE improvement identified. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Direct Real-Time Monitoring of Prodrug Activation by Chemiluminescence.

    PubMed

    Gnaim, Samer; Scomparin, Anna; Das, Sayantan; Blau, Rachel; Satchi-Fainaro, Ronit; Shabat, Doron

    2018-05-22

    The majority of theranostic prodrugs reported so far relay information through a fluorogenic response generated upon release of the active chemotherapeutic agent. A chemiluminescence detection mode offers significant advantages over fluorescence, mainly due to the superior signal-to-noise ratio of chemiluminescence. Here we report the design and synthesis of the first theranostic prodrug monitored by a chemiluminescence diagnostic mode. As a representative model, we prepared a prodrug from the chemotherapeutic monomethyl auristatin E, which was modified for activation by β-galactosidase. The activation of the prodrug in the presence of β-galactosidase is accompanied by emission of a green photon. Light emission intensities, which increase with increasing concentration of the prodrug, were linearly correlated with a decrease in the viability of a human cell line that stably expresses β-galactosidase. We obtained sharp intravital chemiluminescent images of endogenous enzymatic activity in β-galactosidase-overexpressing tumor-bearing mice. The exceptional sensitivity achieved with the chemiluminescence diagnostic mode should allow the exploitation of theranostic prodrugs for personalized cancer treatment. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Efficient removal of tetracycline with KOH-activated graphene from aqueous solution

    PubMed Central

    Sun, Yiran; Yu, Fei

    2017-01-01

    Activated graphene absorbents with high specific surface area (SSA) were prepared by an easy KOH-activated method, and were applied in absorbing antibiotics, such as tetracycline (TC). After activation, many micropores were introduced to graphene oxide sheets, leading to higher SSA and many new oxygen-containing functional groups, which gave KOH-activated graphene excellent adsorption capacity (approx. 532.59 mg g−1) of TC. Further study on the adsorption mechanism showed that the Langmuir isotherm model and the pseudo-second-order kinetic model fitted with experiment data. To further understand the adsorption process, the effects of solid–liquid ratio, pH, ionic strength and coexisting ions were also investigated. The results revealed that, compared with pH and ionic strength, solid–liquid ratio and coexisting ions (Cu2+, CrO42−) had more significant influence over the adsorption performance. The findings provide guidance for application of KOH-activated graphene as a promising alternative adsorbent for antibiotics removal from aqueous solutions. PMID:29291064

  13. Advanced oxidation processes on doxycycline degradation: monitoring of antimicrobial activity and toxicity.

    PubMed

    Spina-Cruz, Mylena; Maniero, Milena Guedes; Guimarães, José Roberto

    2018-05-08

    Advanced oxidation processes (AOPs) have been highly efficient in degrading contaminants of emerging concern (CEC). This study investigated the efficiency of photolysis, peroxidation, photoperoxidation, and ozonation at different pH values to degrade doxycycline (DC) in three aqueous matrices: fountain, tap, and ultrapure water. More than 99.6% of DC degradation resulted from the UV/H 2 O 2 and ozonation processes. Also, to evaluate the toxicity of the original solution and throughout the degradation time, antimicrobial activity tests were conducted using Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacteria, and acute toxicity test using the bioluminescent marine bacterium (Vibrio fischeri). Antimicrobial activity reduced as the drug degradation increased in UV/H 2 O 2 and ozonation processes, wherein the first process only 6 min was required to reduce 100% of both bacteria activity. In ozonation, 27.7 mg L -1 of ozone was responsible for reducing 100% of the antimicrobial activity. When applied the photoperoxidation process, an increase in the toxicity occurred as the high levels of degradation were achieved; it means that toxic intermediates were formed. The ozonated solutions did not present toxicity.

  14. Antimicrobial activity of complete denture cleanser solutions based on sodium hypochlorite and Ricinus communis - a randomized clinical study.

    PubMed

    Salles, Marcela Moreira; Badaró, Maurício Malheiros; Arruda, Carolina Noronha Ferraz de; Leite, Vanessa Maria Fagundes; Silva, Cláudia Helena Lovato da; Watanabe, Evandro; Oliveira, Viviane de Cássia; Paranhos, Helena de Freitas Oliveira

    2015-01-01

    To preserve oral health and to maintain the prosthetic devices, it is important not only to improve the properties of commonly known hygiene products, but also to investigate new materials with antimicrobial action. Objectives This study evaluated the antimicrobial activity of sodium hypochlorite (0.25% and 0.50%) and 10% Ricinus communis' solutions against specific microorganisms. Sixty four maxillary complete denture wearers were instructed to brush their dentures three times a day and to soak them (20 min/day) in the solutions: SH1: 0.25% sodium hypochlorite; SH2: 0.5% sodium hypochlorite; RC: 10% R. communis oil; and C: 0.85% saline (control). The solutions were used for 7 days in a randomized sequence. Following each period of use, there was a 1-week washout period. Antimicrobial activity was determined by Colony Forming Units (CFU) counts of Streptococcus mutans, Candida spp., and gram-negative microorganisms. For collecting biofilm, the internal surface of maxillary dentures was brushed with saline solution, and biofilm suspension obtained. After dilutions (100 - 10-3), aliquots were seeded in Mitis salivarius, CHROMagar Candida, and MacConkey agar for detecting S. mutans, Candida spp., or gram-negative microorganisms, respectively. After incubation, colonies were counted, and CFU/mL values were calculated. Then, transformation - log10 (CFU+1) - data were analyzed using the Friedman test (α=0.05). Results showed significant differences between the solutions (p<0.001). All three solutions showed antimicrobial activity against S. mutans. Against Candida spp., RC and SH1 solutions showed similar effect while SH2 showed superior activity. SH1 and SH2 solutions showed antimicrobial action against gram-negative microorganisms. The Candida species most frequently isolated was C. albicans, followed by C. tropicalis and C. glabrata. The 0.5% sodium hypochlorite solution was the most effective and might be used to control denture biofilm. C. albicans was the most

  15. A framework to monitor activities of satellite data processing in real-time

    NASA Astrophysics Data System (ADS)

    Nguyen, M. D.; Kryukov, A. P.

    2018-01-01

    Space Monitoring Data Center (SMDC) of SINP MSU is one of the several centers in the world that collects data on the radiational conditions in near-Earth orbit from various Russian (Lomonosov, Electro-L1, Electro-L2, Meteor-M1, Meteor-M2, etc.) and foreign (GOES 13, GOES 15, ACE, SDO, etc.) satellites. The primary purposes of SMDC are: aggregating heterogeneous data from different sources; providing a unified interface for data retrieval, visualization, analysis, as well as development and testing new space weather models; and controlling the correctness and completeness of data. Space weather models rely on data provided by SMDC to produce forecasts. Therefore, monitoring the whole data processing cycle is crucial for further success in the modeling of physical processes in near-Earth orbit based on the collected data. To solve the problem described above, we have developed a framework called Live Monitor at SMDC. Live Monitor allows watching all stages and program components involved in each data processing cycle. All activities of each stage are logged by Live Monitor and shown in real-time on a web interface. When an error occurs, a notification message will be sent to satellite operators via email and the Telegram messenger service so that they could take measures in time. The Live Monitor’s API can be used to create a customized monitoring service with minimum coding.

  16. Dimerization in Highly Concentrated Solutions of Phosphoimidazolide Activated Mononucleotides

    NASA Technical Reports Server (NTRS)

    Kanavarioti, Anastassia

    1997-01-01

    Phosphoimidazolide activated ribomononucleotides (*pN) are useful substrates for the non-enzymatic synthesis of polynucleotides. However, dilute neutral aqueous solutions of *pN typically yield small amounts of dimers and traces of polymers; most of *pN hydrolyzes to yield nucleoside 5'-monophosphate. Here we report the self-condensation of nucleoside 5'-phosphate 2- methylimidazolide (2-MeImpN with N = cytidine, uridine or guanosine) in the presence of Mg2(+) in concentrated solutions, such as might have been found in an evaporating lagoon on prebiotic Earth. The product distribution indicates that oligomerization is favored at the expense of hydrolysis. At 1.0 M, 2-MelmpU and 2-MelmpC produce about 65% of oligomers including 4% of the 3',5'-Iinked dimer. Examination of the product distribution of the three isomeric dimers in a self-condensation allows identification of reaction pathways that lead to dimer formation. Condensations in a concentrated mixture of all three nucleotides (U,C,G mixtures) is made possible by the enhanced solubility of 2-MeImpG in such mixtures. Although percent yield of intemucleotide linked dimers is enhanced as a function of initial monomer concentration, pyrophosphate dimer yields remain practically unchanged at about 20% for 2-MelmpU, 16% for 2-MeImpC and 25% of the total pyrophosphate in the U,C,G mixtures. The efficiency by which oligomers are produced in these concentrated solutions makes the evaporating lagoon scenario a potentially interesting medium for the prebiotic synthesis of dimers and short RNAs.

  17. Dimerization in Highly Concentrated Solutions of Phosphoimidazolide Activated Monomucleotides

    NASA Astrophysics Data System (ADS)

    Kanavarioti, Anastassia

    1997-08-01

    Phosphoimidazolide activated ribomononucleotides (*pN) are useful substrates for the non-enzymatic synthesis of polynucleotides. However, dilute neutral aqueous solutions of *pN typically yield small amounts of dimers and traces of polymers; most of *pN hydrolyzes to yield nucleoside 5'-monophosphate. Here we report the self-condensation of nucleoside 5'-phosphate 2-methylimidazolide (2-MeImpN with N = cytidine, uridine or guanosine) in the presence of Mg2+ in concentrated solutions, such as might have been found in an evaporating lagoon on prebiotic Earth. The product distribution indicates that oligomerization is favored at the expense of hydrolysis. At 1.0 M, 2-MeImpU and 2-MeImpC produce about 65% of oligomers including 4% of the 3',5'-linked dimer. Examination of the product distribution of the three isomeric dimers in a self-condensation allows identification of reaction pathways that lead to dimer formation. Condensations in a concentrated mixture of all three nucleotides (U,C,G mixtures) is made possible by the enhanced solubility of 2-MeImpG in such mixtures. Although percent yield of internucleotide linked dimers is enhanced as a function of initial monomer concentration, pyrophosphate dimer yields remain practically unchanged at about 20% for 2-MeImpU, 16% for 2-MeImpC and 25% of the total pyrophosphate in the U,C,G mixtures. The efficiency by which oligomers are produced in these concentrated solutions makes the evaporating lagoon scenario a potentially interesting medium for the prebiotic synthesis of dimers and short RNAs.

  18. Using an electronic activity monitor system as an intervention modality: A systematic review.

    PubMed

    Lewis, Zakkoyya H; Lyons, Elizabeth J; Jarvis, Jessica M; Baillargeon, Jacques

    2015-06-24

    Obesity is a growing global health concern that may lead to cardiovascular disease, type II diabetes, and cancer. Several systematic reviews have shown that technology is successful in combating obesity through increased physical activity, but there is no known review on interventions that use an electronic activity monitor system (EAMS). EAMSs are defined as a wearable device that objectively measures lifestyle physical activity and can provide feedback, beyond the display of basic activity count information, via the monitor display or through a partnering application to elicit continual self-monitoring of activity behavior. These devices improve upon standard pedometers because they have the ability to provide visual feedback on activity progression, verbal encouragement, and social comparison. This systematic review aimed to synthesize the efficacy and feasibility results of EAMSs within published physical activity interventions. Electronic databases and journal references were searched for relevant articles. Data sources included CINAHL, Cochrane CENTRAL, Medline Ovid, PsycINFO, and clinicaltrials.gov. Out of the 1,574 retrieved, 11 articles met the inclusion criteria. These articles were reviewed for quality and content based on a risk of bias tool and intervention components. Most articles were determined to be of medium quality while two were of low quality, and one of high quality. Significant pre-post improvements in the EAMS group were found in five of nine studies for physical activity and in four of five studies for weight. One found a significant increase in physical activity and two studies found significant weight loss in the intervention group compared with the comparator group. The EAMS interventions appear to be feasible with most studies reporting continual wear of the device during waking hours and a higher retention rate of participants in the EAMS groups. These studies provide preliminary evidence suggesting that EAMS can increase physical

  19. Wearable strain sensors based on thin graphite films for human activity monitoring

    NASA Astrophysics Data System (ADS)

    Saito, Takanari; Kihara, Yusuke; Shirakashi, Jun-ichi

    2017-12-01

    Wearable health-monitoring devices have attracted increasing attention in disease diagnosis and health assessment. In many cases, such devices have been prepared by complicated multistep procedures which result in the waste of materials and require expensive facilities. In this study, we focused on pyrolytic graphite sheet (PGS), which is a low-cost, simple, and flexible material, used as wearable devices for monitoring human activity. We investigated wearable devices based on PGSs for the observation of elbow and finger motions. The thin graphite films were fabricated by cutting small films from PGSs. The wearable devices were then made from the thin graphite films assembled on a commercially available rubber glove. The human motions could be observed using the wearable devices. Therefore, these results suggested that the wearable devices based on thin graphite films may broaden their application in cost-effective wearable electronics for the observation of human activity.

  20. Measuring Anti–Factor Xa Activity to Monitor Low-Molecular-Weight Heparin in Obesity: A Critical Review

    PubMed Central

    Egan, Gregory; Ensom, Mary H H

    2015-01-01

    Background: The choice of whether to monitor anti–factor Xa (anti-Xa) activity in patients who are obese and who are receiving low-molecular-weight heparin (LMWH) therapy is controversial. To the authors’ knowledge, no systematic review of monitoring of anti-Xa activity in such patients has been published to date. Objective: To systematically ascertain the utility of monitoring anti-Xa concentrations for LMWH therapy in obese patients. Data Sources: MEDLINE (1946 to September 2014), the Cochrane Database of Systematic Reviews, Embase (1974 to September 2014), PubMed (1947 to September 2014), International Pharmaceutical Abstracts (1970 to September 2014), and Scopus were searched using the terms obesity, morbid obesity, thrombosis, venous thrombosis, embolism, venous thromboembolism, pulmonary embolism, low-molecular weight heparin, enoxaparin, dalteparin, tinzaparin, anti-factor Xa, anti-factor Xa monitoring, anti-factor Xa activity, and anti-factor Xa assay. The reference lists of retrieved articles were also reviewed. Study Selection and Data Extraction: English-language studies describing obese patients treated with LMWH or reporting anti-Xa activity were reviewed using a 9-step decision-making algorithm to determine whether monitoring of LMWH therapy by means of anti-Xa activity in obesity is warranted. Studies published in abstract form were excluded. Data Synthesis: The analysis showed that anti-Xa concentrations are not strongly associated with thrombosis or hemorrhage. In clinical studies of LMWH for thromboprophylaxis in bariatric surgery, orthopedic surgery, general surgery, and medical patients, and for treatment of venous thrombo embolism and acute coronary syndrome, anti-Xa activity can be predicted from dose of LMWH and total body weight; no difference in clinical outcome was found between obese and non-obese participants. Conclusions: Routinely determining anti-Xa concentrations in obese patients to monitor the clinical effectiveness of LMWH is

  1. Examining the validity of the ActivPAL monitor in measuring posture and ambulatory movement in children.

    PubMed

    Aminian, Saeideh; Hinckson, Erica A

    2012-10-02

    Decreasing sedentary activities that involve prolonged sitting may be an important strategy to reduce obesity and other physical and psychosocial health problems in children. The first step to understanding the effect of sedentary activities on children's health is to objectively assess these activities with a valid measurement tool. To examine the validity of the ActivPAL monitor in measuring sitting/lying, standing, and walking time, transition counts and step counts in children in a laboratory setting. Twenty five healthy elementary school children (age 9.9 ± 0.3 years; BMI 18.2 ± 1.9; mean ± SD) were randomly recruited across the Auckland region, New Zealand. Children were fitted with ActivPAL monitors and observed during simulated free-living activities involving sitting/lying, standing and walking, followed by treadmill and over-ground activities at various speeds (slow, normal, fast) against video observation (criterion measure). The ActivPAL sit-to-stand and stand-to-sit transition counts and steps were also compared with video data. The accuracy of step counts measured by the ActivPAL was also compared against the New Lifestyles NL-2000 and the Yamax Digi-Walker SW-200 pedometers. We observed a perfect correlation between the ActivPAL monitor in time spent sitting/lying, standing, and walking in simulated free-living activities with direct observation. Correlations between the ActivPAL and video observation in total numbers of sit-to-stand and stand-to-sit transitions were high (r = 0.99 ± 0.01). Unlike pedometers, the ActivPAL did not misclassify fidgeting as steps taken. Strong correlations (r = 0.88-1.00) between ActivPAL step counts and video observation in both treadmill and over-ground slow and normal walking were also observed. During treadmill and over-ground fast walking and running, the correlations were low (r = 0.21-0.46). The ActivPAL monitor is a valid measurement tool for assessing time spent sitting/lying, standing, and walking, sit

  2. Examining the validity of the ActivPAL monitor in measuring posture and ambulatory movement in children

    PubMed Central

    2012-01-01

    Background Decreasing sedentary activities that involve prolonged sitting may be an important strategy to reduce obesity and other physical and psychosocial health problems in children. The first step to understanding the effect of sedentary activities on children’s health is to objectively assess these activities with a valid measurement tool. Purpose To examine the validity of the ActivPAL monitor in measuring sitting/lying, standing, and walking time, transition counts and step counts in children in a laboratory setting. Methods Twenty five healthy elementary school children (age 9.9 ± 0.3 years; BMI 18.2 ± 1.9; mean ± SD) were randomly recruited across the Auckland region, New Zealand. Children were fitted with ActivPAL monitors and observed during simulated free-living activities involving sitting/lying, standing and walking, followed by treadmill and over-ground activities at various speeds (slow, normal, fast) against video observation (criterion measure). The ActivPAL sit-to-stand and stand-to-sit transition counts and steps were also compared with video data. The accuracy of step counts measured by the ActivPAL was also compared against the New Lifestyles NL-2000 and the Yamax Digi-Walker SW-200 pedometers. Results We observed a perfect correlation between the ActivPAL monitor in time spent sitting/lying, standing, and walking in simulated free-living activities with direct observation. Correlations between the ActivPAL and video observation in total numbers of sit-to-stand and stand-to-sit transitions were high (r = 0.99 ± 0.01). Unlike pedometers, the ActivPAL did not misclassify fidgeting as steps taken. Strong correlations (r = 0.88-1.00) between ActivPAL step counts and video observation in both treadmill and over-ground slow and normal walking were also observed. During treadmill and over-ground fast walking and running, the correlations were low (r = 0.21-0.46). Conclusion The ActivPAL monitor is a valid measurement

  3. Monitoring with Data Automata

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus

    2014-01-01

    We present a form of automaton, referred to as data automata, suited for monitoring sequences of data-carrying events, for example emitted by an executing software system. This form of automata allows states to be parameterized with data, forming named records, which are stored in an efficiently indexed data structure, a form of database. This very explicit approach differs from other automaton-based monitoring approaches. Data automata are also characterized by allowing transition conditions to refer to other parameterized states, and by allowing transitions sequences. The presented automaton concept is inspired by rule-based systems, especially the Rete algorithm, which is one of the well-established algorithms for executing rule-based systems. We present an optimized external DSL for data automata, as well as a comparable unoptimized internal DSL (API) in the Scala programming language, in order to compare the two solutions. An evaluation compares these two solutions to several other monitoring systems.

  4. Model-based design and experimental verification of a monitoring concept for an active-active electromechanical aileron actuation system

    NASA Astrophysics Data System (ADS)

    Arriola, David; Thielecke, Frank

    2017-09-01

    Electromechanical actuators have become a key technology for the onset of power-by-wire flight control systems in the next generation of commercial aircraft. The design of robust control and monitoring functions for these devices capable to mitigate the effects of safety-critical faults is essential in order to achieve the required level of fault tolerance. A primary flight control system comprising two electromechanical actuators nominally operating in active-active mode is considered. A set of five signal-based monitoring functions are designed using a detailed model of the system under consideration which includes non-linear parasitic effects, measurement and data acquisition effects, and actuator faults. Robust detection thresholds are determined based on the analysis of parametric and input uncertainties. The designed monitoring functions are verified experimentally and by simulation through the injection of faults in the validated model and in a test-rig suited to the actuation system under consideration, respectively. They guarantee a robust and efficient fault detection and isolation with a low risk of false alarms, additionally enabling the correct reconfiguration of the system for an enhanced operational availability. In 98% of the performed experiments and simulations, the correct faults were detected and confirmed within the time objectives set.

  5. Personalized Monitoring and Assistive Systems: Case Study of Efficient Home Solutions.

    PubMed

    Lhotska, Lenka; Doležal, Jaromír; Adolf, Jindřich; Potůček, Jiří; Křížek, Miroslav; Chbani, Baha

    2018-01-01

    The rapid emergence and proliferation of connected medical devices and their application in healthcare are already part of the Healthcare Internet of Things (IoT) - as this area started to be named. Their true impact on patient care and other aspects of healthcare remains to be seen and is highly dependent on the quality and relevancy of the data acquired. There is also the trend of application of IoT in telemedicine and home care environment. Currently many research groups focus on design and development of various solutions that can assist elderly and handicapped people in their home environment. However, many of these solutions are sophisticated and require advanced users that are able to control the device, handle error states and exceptions. They are frequently using expensive technologies that are good for laboratory environment but they are not affordable for many elderly or handicapped persons. In the paper we will analyze the current situation, present identified needs of elderly population and propose potential solutions. On a case study of efficient home solution of a personalized and assistive system we will show possibilities of technologically simple solutions using off-the-shelf devices and elements.

  6. Coagulation mechanism of salt solution-extracted active component in Moringa oleifera seeds.

    PubMed

    Okuda, T; Baes, A U; Nishijima, W; Okada, M

    2001-03-01

    This study focuses on the coagulation mechanism by the purified coagulant solution (MOC-SC-PC) with the coagulation active component extracted from M. oleifera seeds using salt solution. The addition of MOC-SC-PC tap water formed insoluble matters. This formation was responsible for kaolin coagulation. On the other hand, insoluble matters were not formed when the MOC-SC-PC was added into distilled water. The formation was affected by Ca2+ or other bivalent cations which may connect each molecule of the active coagulation component in MOC-SC-PC and form a net-like structure. The coagulation mechanism of MOC-SC-PC seemed to be an enmeshment of Kaolin by the insoluble matters with the net-like structure. In case of Ca2+ ion (bivalent cations), at least 0.2 mM was necessary for coagulation at 0.3 mgC l-1 dose of MOC-SC-PC. Other coagulation mechanisms like compression of double layer, interparticle bridging or charge neutralization were not responsible for the coagulation by MOC-SC-PC.

  7. In situ monitoring of myenteric neuron activity using acetylcholinesterase-modified AlGaN/GaN solution-gate field-effect transistors.

    PubMed

    Müntze, Gesche Mareike; Pouokam, Ervice; Steidle, Julia; Schäfer, Wladimir; Sasse, Alexander; Röth, Kai; Diener, Martin; Eickhoff, Martin

    2016-03-15

    The response characteristics of acetylcholinesterase-modified AlGaN/GaN solution-gate field-effect transistors (AcFETs) are quantitatively analyzed by means of a kinetic model. The characterization shows that the covalent enzyme immobilization process yields reproducible AcFET characteristics with a Michaelis constant KM of (122 ± 4) μM for the immobilized enzyme layer. The increase of KM by a factor of 2.4 during the first four measurement cycles is attributed to partial denaturation of the enzyme. The AcFETs were used to record the release of acetylcholine (ACh) by neuronal tissue cultivated on the gate area upon stimulation by rising the extracellular K(+) concentration. The neuronal tissue constituted of isolated myenteric neurons from four to 12 days old Wistar rats, or sections from the muscularis propria containing the myenteric plexus from adult rats. For both cases the AcFET response was demonstrated to be related to the activity of the immobilized acetylcholinesterase using the reversible acetylcholinesterase blocker donepezil. A concentration response curve of this blocking agent revealed a half maximal inhibitory concentration of 40 nM which is comparable to values measured by complementary in vitro methods. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Understanding the Activation and Solution Properties of Lunar Dust for Future Lunar Habitation

    NASA Technical Reports Server (NTRS)

    Wallace, William T.; Jeevarajan, Antony S.

    2009-01-01

    The decision to return humans to the moon by 2020 makes it imperative to understand the effects of lunar dust on human and mechanical systems.( Bush 2004; Gaier 2005; Mendell 2005) During the Apollo missions, dust was found to cause numerous problems for various instruments and systems. Additionally, the dust may have caused health issues for some of the astronauts.(Gaier 2005; Rowe 2007) It is necessary, therefore, for studies to be carried out in a variety of disciplines in order to mitigate the effects of the dust as completely as possible. Due to the lack of an atmosphere, there is nothing to protect the lunar soil from ultraviolet radiation, solar wind, and meteorite impacts. These processes could all serve to "activate" the soil, or produce reactive surface species. In order to understand the possible toxic effects of the reactive dust, it is necessary to "reactivate" the dust, as samples returned during the Apollo missions were exposed to the atmosphere of the Earth. We have used grinding and exposure to UV radiation in order to mimic some of the processes occurring on the lunar surface. To monitor the reactivity of the dust, we have measured the ability of the dust to produce hydroxyl radicals in solution. These radicals have been measured using a novel fluorescent technique developed in our laboratory,(Wallace et al. 2008) as well as using electron paramagnetic resonance (EPR).

  9. How many days of accelerometer monitoring predict weekly physical activity behaviour in obese youth?

    PubMed

    Vanhelst, Jérémy; Fardy, Paul S; Duhamel, Alain; Béghin, Laurent

    2014-09-01

    The aim of this study was to determine the type and the number of accelerometer monitoring days needed to predict weekly sedentary behaviour and physical activity in obese youth. Fifty-three obese youth wore a triaxial accelerometer for 7 days to measure physical activity in free-living conditions. Analyses of variance for repeated measures, Intraclass coefficient (ICC) and regression linear analyses were used. Obese youth spent significantly less time in physical activity on weekends or free days compared with school days. ICC analyses indicated a minimum of 2 days is needed to estimate physical activity behaviour. ICC were 0·80 between weekly physical activity and weekdays and 0·92 between physical activity and weekend days. The model has to include a weekday and a weekend day. Using any combination of one weekday and one weekend day, the percentage of variance explained is >90%. Results indicate that 2 days of monitoring are needed to estimate the weekly physical activity behaviour in obese youth with an accelerometer. Our results also showed the importance of taking into consideration school day versus free day and weekday versus weekend day in assessing physical activity in obese youth. © 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  10. One size fits all electronics for insole-based activity monitoring.

    PubMed

    Hegde, Nagaraj; Bries, Matthew; Melanson, Edward; Sazonov, Edward

    2017-07-01

    Footwear based wearable sensors are becoming prominent in many areas of monitoring health and wellness, such as gait and activity monitoring. In our previous research we introduced an insole based wearable system SmartStep, which is completely integrated in a socially acceptable package. From a manufacturing perspective, SmartStep's electronics had to be custom made for each shoe size, greatly complicating the manufacturing process. In this work we explore the possibility of making a universal electronics platform for SmartStep - SmartStep 3.0, which can be used in the most common insole sizes without modifications. A pilot human subject experiments were run to compare the accuracy between the one-size fits all (SmartStep 3.0) and custom size SmartStep 2.0. A total of ~10 hours of data was collected in the pilot study involving three participants performing different activities of daily living while wearing SmartStep 2.0 and SmartStep 3.0. Leave one out cross validation resulted in a 98.5% average accuracy from SmartStep 2.0, while SmartStep 3.0 resulted in 98.3% accuracy, suggesting that the SmartStep 3.0 can be as accurate as SmartStep 2.0, while fitting most common shoe sizes.

  11. Main Pipelines Corrosion Monitoring Device

    NASA Astrophysics Data System (ADS)

    Anatoliy, Bazhenov; Galina, Bondareva; Natalia, Grivennaya; Sergey, Malygin; Mikhail, Goryainov

    2017-01-01

    The aim of the article is to substantiate the technical solution for the problem of monitoring corrosion changes in oil and gas pipelines with use (using) of an electromagnetic NDT method. Pipeline wall thinning under operating conditions can lead to perforations and leakage of the product to be transported outside the pipeline. In most cases there is danger for human life and environment. Monitoring of corrosion changes in pipeline inner wall under operating conditions is complicated because pipelines are mainly made of structural steels with conductive and magnetic properties that complicate test signal passage through the entire thickness of the object under study. The technical solution of this problem lies in monitoring of the internal corrosion changes in pipes under operating conditions in order to increase safety of pipelines by automated prediction of achieving the threshold pre-crash values due to corrosion.

  12. Development of parthenium based activated carbon and its utilization for adsorptive removal of p-cresol from aqueous solution.

    PubMed

    Singh, Ravi Kant; Kumar, Shashi; Kumar, Surendra; Kumar, Arinjay

    2008-07-15

    The activated carbon was prepared from carbonaceous agriculture waste Parthenium hysterophorous by chemical activation using concentrated H2SO4 at 130+/-5 degrees C. The prepared activated carbon was characterized and was found as an effective adsorbent material. In order to test the efficacy of parthenium based activated carbon (PAC), batch experiments were performed to carryout the adsorption studies on PAC for the removal of highly toxic pollutant p-cresol from aqueous solution. The p-cresol adsorption studies were also carried out on commercial grade activated carbon (AC) to facilitate comparison between the adsorption capabilities of PAC and AC. For PAC and AC, the predictive capabilities of two types of kinetic models and six types of adsorption equilibrium isotherm models were examined. The effect of pH of solution, adsorbent dose and initial p-cresol concentration on adsorption behaviour was investigated, as well. The adsorption on PAC and on AC was found to follow pseudo-first order kinetics with rate constant 0.0016 min(-1) and 0.0050 min(-1), respectively. The highest adsorptive capacity of PAC and AC for p-cresol solution was attained at pH 6.0. Further, as an adsorbent PAC was found to be as good as AC for removal of p-cresol upto a concentration of 500 mg/l in aqueous solution. Freundlich, Redlich-Peterson, and Fritz-Schlunder models were found to be appropriate isotherm models for PAC while Toth, Radke-Prausnitz and Fritz-Schlunder were suitable models for AC to remove p-cresol from aqueous solution.

  13. Techniques for chronic monitoring of brain activity in freely moving sheep using wireless EEG recording.

    PubMed

    Perentos, N; Nicol, A U; Martins, A Q; Stewart, J E; Taylor, P; Morton, A J

    2017-03-01

    Large mammals with complex central nervous systems offer new possibilities for translational research into basic brain function. Techniques for monitoring brain activity in large mammals, however, are not as well developed as they are in rodents. We have developed a method for chronic monitoring of electroencephalographic (EEG) activity in unrestrained sheep. We describe the methods for behavioural training prior to implantation, surgical procedures for implantation, a protocol for reliable anaesthesia and recovery, methods for EEG data collection, as well as data pertaining to suitability and longevity of different types of electrodes. Sheep tolerated all procedures well, and surgical complications were minimal. Electrode types used included epidural and subdural screws, intracortical needles and subdural disk electrodes, with the latter producing the best and most reliable results. The implants yielded longitudinal EEG data of consistent quality for periods of at least a year, and in some cases up to 2 years. This is the first detailed methodology to be described for chronic brain function monitoring in freely moving unrestrained sheep. The developed method will be particularly useful in chronic investigations of brain activity during normal behaviour that can include sleep, learning and memory. As well, within the context of disease, the method can be used to monitor brain pathology or the progress of therapeutic trials in transgenic or natural disease models in sheep. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Burrowing Owl (Speotyto cunicularia) monitoring and management activities in Manitoba, 1987-1996

    Treesearch

    Ken D. De Smet

    1997-01-01

    Monitoring of Burrowing Owl (Speotyto cunicularia) populations in Manitoba from 1987-1996 revealed a continuous population decline from 34 known nesting pairs to only one. Management activities are discussed including public awareness programs, reintroductions, habitat protection and provision of artificial nest burrows. Nest reuse in consecutive...

  15. Structure-activity relationship for hydrophobic salts as viscosity-lowering excipients for concentrated solutions of monoclonal antibodies.

    PubMed

    Guo, Zheng; Chen, Alvin; Nassar, Roger A; Helk, Bernhard; Mueller, Claudia; Tang, Yu; Gupta, Kapil; Klibanov, Alexander M

    2012-11-01

    To discover, elucidate the structure-activity relationship (SAR), and explore the mechanism of action of excipients able to drastically lower the viscosities of concentrated aqueous solutions of humanized monoclonal antibodies (MAbs). Salts prepared from hydrophobic cations and anions were dissolved into humanized MAbs solutions. Viscosities of the resulting solutions were measured as a function of the nature and concentration of the salts and MAbs. Even at moderate concentrations, some of the salts prepared herein were found to reduce over 10-fold the viscosities of concentrated aqueous solutions of several MAbs at room temperature. To be potent viscosity-lowering excipients, the ionic constituents of the salts must be hydrophobic, bulky, and aliphatic. A mechanistic hypothesis explaining the observed salt effects on MAb solutions' viscosities was proposed and verified.

  16. Anion-activated, thermoreversible gelation system for the capture, release, and visual monitoring of CO2

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Lee, Songyi; Liu, Yifan; Lee, Minji; Yin, Jun; Sessler, Jonathan L.; Yoon, Juyoung

    2014-04-01

    Carbon dioxide (CO2) is an important green house gas. This is providing an incentive to develop new strategies to detect and capture CO2. Achieving both functions within a single molecular system represents an unmet challenge in terms of molecular design and could translate into enhanced ease of use. Here, we report an anion-activated chemosensor system, NAP-chol 1, that permits dissolved CO2 to be detected in organic media via simple color changes or through ratiometric differences in fluorescence intensity. NAP-chol 1 also acts as a super gelator for DMSO. The resulting gel is transformed into a homogeneous solution upon exposure to fluoride anions. Bubbling with CO2 regenerates the gel. Subsequent flushing with N2 or heating serves to release the CO2 and reform the sol form. This series of transformations is reversible and can be followed by easy-to-discern color changes. Thus, NAP-chol 1 allows for the capture and release of CO2 gas while acting as a three mode sensing system. In particular, it permits CO2 to be detected through reversible sol-gel transitions, simple changes in color, or ratiometric monitoring of the differences in the fluorescence features.

  17. The study of the antimicrobial activity of colloidal solutions of silver nanoparticles prepared using food stabilizers.

    PubMed

    Balandin, G V; Suvorov, O A; Shaburova, L N; Podkopaev, D O; Frolova, Yu V; Ermolaeva, G A

    2015-06-01

    The bactericidal effect of colloidal solutions of silver nanoparticles based on food stabilizers, gum arabic and chitosan, against bacterial cultures of microorganisms in food production is described. The antibacterial activity of nanotechnology products containing different amounts of stabilizing additives when applied to solid pH-neutral substrates is studied. For its evaluation a method making it possible to take into account the capability of nanoparticles to diffuse in solid media was applied. Minimal inhibitory concentrations of nanoparticles used against Erwinia herbicola, Pseudomonas fluorescens, Bacillus subtilis, Sarcina flava were found. A suggestion was made concerning the influence of the spatial structure of bacteria on the antibacterial activity of colloidal solutions of silver nanoparticles. The data concerning the antibacterial activity and minimal inhibiting concentrations of nanoparticles may be used for development of products suppressing activity of microorganisms hazardous for food production.

  18. Secure and Efficient Reactive Video Surveillance for Patient Monitoring

    PubMed Central

    Braeken, An; Porambage, Pawani; Gurtov, Andrei; Ylianttila, Mika

    2016-01-01

    Video surveillance is widely deployed for many kinds of monitoring applications in healthcare and assisted living systems. Security and privacy are two promising factors that align the quality and validity of video surveillance systems with the caliber of patient monitoring applications. In this paper, we propose a symmetric key-based security framework for the reactive video surveillance of patients based on the inputs coming from data measured by a wireless body area network attached to the human body. Only authenticated patients are able to activate the video cameras, whereas the patient and authorized people can consult the video data. User and location privacy are at each moment guaranteed for the patient. A tradeoff between security and quality of service is defined in order to ensure that the surveillance system gets activated even in emergency situations. In addition, the solution includes resistance against tampering with the device on the patient’s side. PMID:26729130

  19. User friendly IT Services for Monitoring and Prevention during Pregnancy.

    PubMed

    Crişan-Vida, Mihaela; Serban, Alexandru; Ghihor-Izdrăilă, Ioana; Mirea, Adrian; Stoicu-Tivadar, Lacramioara

    2014-01-01

    A healthy lifestyle for a mother and monitoring both mother and fetus activities are crucial factors for a normal pregnancy without hazardous conditions. This paper proposes a cloud computing solution and a mobile application which collect data from the sensors to be used in Obstetrics-Gynecology Department. This application monitors the dietary plan of the pregnant and gives her the possibility to socialize and share pregnancy experience with the rest of women from the social network from the hospital. The physicians can access the information's of the patient in real time and they can alert mothers in some situations. Using this cloud computing device, the health condition of the pregnant women may be improved.

  20. The solubility and activity coefficient of oxygen in salt solutions and brines

    NASA Astrophysics Data System (ADS)

    Clegg, Simon L.; Brimblecombe, Peter

    1990-12-01

    Molal oxygen activity coefficients ( γO2) in aqueous salt solutions from 0-100°C have been calculated from O 2 solubility data and established Henry's law constants. Pitzer specific interaction model parameters λO2c, λO2a and ζO2ca have been determined for the following ions: H +, NH +4 Li +, Na +, Rb +, Cs +, Mg 2+, Ca 2+, Ba 2+, Al 3+, OH -, Cl -, Br -, I -, NO -3, SO 2-3, SO 2-4, HCO 3-, CO 32- and PO 3-4. Results confirm that the effect of individual ions on In ( γO2) is additive. Model calculations of γO2 in seawater agree with experimentally derived values at normal salinities to within 0.2% at 298 K and 0.65% at 273 K. Additional data for brines of seawater composition enable the model to be used to represent γO2 empirically to a salinity of 255 S%. The model has thus far only been parameterised from measurements for single salt solutions. Comparisons with experimental data for brines suggest that additional model parameters, obtained from ternary solution data, will be required for accurate representation of γO2 in mixed salt solutions above about 5 mol kg -1 total ion concentration.

  1. Physical activity monitoring in COPD: compliance and associations with clinical characteristics in a multicenter study.

    PubMed

    Waschki, Benjamin; Spruit, Martijn A; Watz, Henrik; Albert, Paul S; Shrikrishna, Dinesh; Groenen, Miriam; Smith, Cayley; Man, William D-C; Tal-Singer, Ruth; Edwards, Lisa D; Calverley, Peter M A; Magnussen, Helgo; Polkey, Michael I; Wouters, Emiel F M

    2012-04-01

    Little is known about COPD patients' compliance with physical activity monitoring and how activity relates to disease characteristics in a multi-center setting. In a prospective study at three Northern European sites physical activity and clinical disease characteristics were measured in 134 COPD patients (GOLD-stage II-IV; BODE index 0-9) and 46 controls. Wearing time, steps per day, and the physical activity level (PAL) were measured by a multisensory armband over a period of 6 consecutive days (in total, 144 h). A valid measurement period was defined as ≥22 h wearing time a day on at least 5 days. The median wearing time was 142 h:17 min (99%), 141 h:1 min (98%), and 142 h:24 min (99%), respectively in the three centres. A valid measurement period was reached in 94%, 97%, and 94% of the patients and did not differ across sites (P = 0.53). The amount of physical activity did not differ across sites (mean steps per day, 4725 ± 3212, P = 0.58; mean PAL, 1.45 ± 0.20, P = 0.48). Multivariate linear regression analyses revealed significant associations of FEV1, 6-min walk distance, quadriceps strength, fibrinogen, health status, and dyspnoea with both steps per day and PAL. Previously unrecognized correlates of activity were grade of fatigue, degree of emphysema, and exacerbation rate. The excellent compliance with wearing a physical activity monitor irrespective of study site and consistent associations with relevant disease characteristics support the use of activity monitoring as a valid outcome in multi-center studies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Evaluation of Feature Extraction and Recognition for Activity Monitoring and Fall Detection Based on Wearable sEMG Sensors.

    PubMed

    Xi, Xugang; Tang, Minyan; Miran, Seyed M; Luo, Zhizeng

    2017-05-27

    As an essential subfield of context awareness, activity awareness, especially daily activity monitoring and fall detection, plays a significant role for elderly or frail people who need assistance in their daily activities. This study investigates the feature extraction and pattern recognition of surface electromyography (sEMG), with the purpose of determining the best features and classifiers of sEMG for daily living activities monitoring and fall detection. This is done by a serial of experiments. In the experiments, four channels of sEMG signal from wireless, wearable sensors located on lower limbs are recorded from three subjects while they perform seven activities of daily living (ADL). A simulated trip fall scenario is also considered with a custom-made device attached to the ankle. With this experimental setting, 15 feature extraction methods of sEMG, including time, frequency, time/frequency domain and entropy, are analyzed based on class separability and calculation complexity, and five classification methods, each with 15 features, are estimated with respect to the accuracy rate of recognition and calculation complexity for activity monitoring and fall detection. It is shown that a high accuracy rate of recognition and a minimal calculation time for daily activity monitoring and fall detection can be achieved in the current experimental setting. Specifically, the Wilson Amplitude (WAMP) feature performs the best, and the classifier Gaussian Kernel Support Vector Machine (GK-SVM) with Permutation Entropy (PE) or WAMP results in the highest accuracy for activity monitoring with recognition rates of 97.35% and 96.43%. For fall detection, the classifier Fuzzy Min-Max Neural Network (FMMNN) has the best sensitivity and specificity at the cost of the longest calculation time, while the classifier Gaussian Kernel Fisher Linear Discriminant Analysis (GK-FDA) with the feature WAMP guarantees a high sensitivity (98.70%) and specificity (98.59%) with a short

  3. Evaluation of Feature Extraction and Recognition for Activity Monitoring and Fall Detection Based on Wearable sEMG Sensors

    PubMed Central

    Xi, Xugang; Tang, Minyan; Miran, Seyed M.; Luo, Zhizeng

    2017-01-01

    As an essential subfield of context awareness, activity awareness, especially daily activity monitoring and fall detection, plays a significant role for elderly or frail people who need assistance in their daily activities. This study investigates the feature extraction and pattern recognition of surface electromyography (sEMG), with the purpose of determining the best features and classifiers of sEMG for daily living activities monitoring and fall detection. This is done by a serial of experiments. In the experiments, four channels of sEMG signal from wireless, wearable sensors located on lower limbs are recorded from three subjects while they perform seven activities of daily living (ADL). A simulated trip fall scenario is also considered with a custom-made device attached to the ankle. With this experimental setting, 15 feature extraction methods of sEMG, including time, frequency, time/frequency domain and entropy, are analyzed based on class separability and calculation complexity, and five classification methods, each with 15 features, are estimated with respect to the accuracy rate of recognition and calculation complexity for activity monitoring and fall detection. It is shown that a high accuracy rate of recognition and a minimal calculation time for daily activity monitoring and fall detection can be achieved in the current experimental setting. Specifically, the Wilson Amplitude (WAMP) feature performs the best, and the classifier Gaussian Kernel Support Vector Machine (GK-SVM) with Permutation Entropy (PE) or WAMP results in the highest accuracy for activity monitoring with recognition rates of 97.35% and 96.43%. For fall detection, the classifier Fuzzy Min-Max Neural Network (FMMNN) has the best sensitivity and specificity at the cost of the longest calculation time, while the classifier Gaussian Kernel Fisher Linear Discriminant Analysis (GK-FDA) with the feature WAMP guarantees a high sensitivity (98.70%) and specificity (98.59%) with a short

  4. A Decentralized Wireless Solution to Monitor and Diagnose PV Solar Module Performance Based on Symmetrized-Shifted Gompertz Functions

    PubMed Central

    Molina-García, Angel; Campelo, José Carlos; Blanc, Sara; Serrano, Juan José; García-Sánchez, Tania; Bueso, María C.

    2015-01-01

    This paper proposes and assesses an integrated solution to monitor and diagnose photovoltaic (PV) solar modules based on a decentralized wireless sensor acquisition system. Both DC electrical variables and environmental data are collected at PV module level using low-cost and high-energy efficiency node sensors. Data is real-time processed locally and compared with expected PV module performances obtained by a PV module model based on symmetrized-shifted Gompertz functions (as previously developed and assessed by the authors). Sensor nodes send data to a centralized sink-computing module using a multi-hop wireless sensor network architecture. Such integration thus provides extensive analysis of PV installations, and avoids off-line tests or post-processing processes. In comparison with previous approaches, this solution is enhanced with a low-cost system and non-critical performance constraints, and it is suitable for extensive deployment in PV power plants. Moreover, it is easily implemented in existing PV installations, since no additional wiring is required. The system has been implemented and assessed in a Spanish PV power plant connected to the grid. Results and estimations of PV module performances are also included in the paper. PMID:26230694

  5. A Decentralized Wireless Solution to Monitor and Diagnose PV Solar Module Performance Based on Symmetrized-Shifted Gompertz Functions.

    PubMed

    Molina-García, Angel; Campelo, José Carlos; Blanc, Sara; Serrano, Juan José; García-Sánchez, Tania; Bueso, María C

    2015-07-29

    This paper proposes and assesses an integrated solution to monitor and diagnose photovoltaic (PV) solar modules based on a decentralized wireless sensor acquisition system. Both DC electrical variables and environmental data are collected at PV module level using low-cost and high-energy efficiency node sensors. Data is real-time processed locally and compared with expected PV module performances obtained by a PV module model based on symmetrized-shifted Gompertz functions (as previously developed and assessed by the authors). Sensor nodes send data to a centralized sink-computing module using a multi-hop wireless sensor network architecture. Such integration thus provides extensive analysis of PV installations, and avoids off-line tests or post-processing processes. In comparison with previous approaches, this solution is enhanced with a low-cost system and non-critical performance constraints, and it is suitable for extensive deployment in PV power plants. Moreover, it is easily implemented in existing PV installations, since no additional wiring is required. The system has been implemented and assessed in a Spanish PV power plant connected to the grid. Results and estimations of PV module performances are also included in the paper.

  6. Biochip for Real-Time Monitoring of Hepatitis B Virus (HBV) by Combined Loop-Mediated Isothermal Amplification and Solution-Phase Electrochemical Detection

    NASA Astrophysics Data System (ADS)

    Tien, Bui Quang; Ngoc, Nguyen Thy; Loc, Nguyen Thai; Thu, Vu Thi; Lam, Tran Dai

    2017-06-01

    Accurate in situ diagnostic tests play a key role in patient management and control of most infectious diseases. To achieve this, use of handheld biochips that implement sample handling, sample analysis, and result readout together is an ideal approach. We present herein a fluid-handling biochip for real-time electrochemical monitoring of nucleic acid amplification based on loop-mediated isothermal amplification and real-time electrochemical detection on a microfluidic platform. Intercalation between amplifying DNA and free redox probe in solution phase was used to monitor the number of DNA copies. The whole diagnostic process is completed within 70 min. Our platform offers a fast and easy tool for quantification of viral pathogens in shorter time and with limited risk of all potential forms of cross-contamination. Such diagnostic tools have potential to make a huge difference to the lives of millions of people worldwide.

  7. Quantitative rest activity in ambulatory monitoring as a physiological marker of restless legs syndrome: a controlled study.

    PubMed

    Tuisku, Katinka; Holi, Matti Mikael; Wahlbeck, Kristian; Ahlgren, Aulikki Johanna; Lauerma, Hannu

    2003-04-01

    An objective marker of restless legs syndrome (RLS) is needed for developing diagnostic tools and monitoring symptoms. Actometric ambulatory monitoring of 15 RLS patients and 15 healthy controls was undertaken in order to differentiate between RLS-related motor symptoms and normal motor activity. Nocturnal lower-limb activity per minute differentiated and discriminated between groups with no overlap, whereas the periodic limb movement index and the controlled rest activity during sitting showed less discriminative power. The naturalistic recording of nocturnal activity by actometry may prove useful for assessing the severity of RLS and for finding an objective marker to support the diagnosis of RLS. Copyright 2002 Movement Disorder Society

  8. Antimicrobial and anti-adherence activity of various combinations of coffee-chicory solutions on Streptococcus mutans: An in-vitro study

    PubMed Central

    Sharma, Rama; Reddy, Vamsi Krishna L; Prashant, GM; Ojha, Vivek; Kumar, Naveen PG

    2014-01-01

    Context: Several studies have demonstrated the activity of natural plants on the dental biofilm and caries development. But few studies on the antimicrobial activity of coffee-based solutions were found in the literature. Further there was no study available to check the antimicrobial effect of coffee solutions with different percentages of chicory in it. Aims: To evaluate the antimicrobial activity of different combinations of coffee-chicory solutions and their anti-adherence effect on Streptococcus mutans to glass surface. Materials and Methods: Test solutions were prepared. For antimicrobial activity testing, tubes containing test solution and culture medium were inoculated with a suspension of S. mutans followed by plating on Brain Heart Infusion (BHI) agar. S. mutans adherence to glass in presence of the different test solutions was also tested. The number of adhered bacteria (CFU/mL) was determined by plating method. Statistical Analysis: Statistical significance was measured using one way ANOVA followed by Tukey's post hoc test. P value < 0.05 was considered statistically significant. Results: Pure chicory had shown significantly less bacterial count compared to all other groups. Groups IV and V had shown significant reduction in bacterial counts over the period of 4 hrs. Regarding anti-adherence effect, group I-IV had shown significantly less adherence of bacteria to glass surface. Conclusions: Chicory exerted antibacterial effect against S. mutans while coffee reduced significantly the adherence of S. mutans to the glass surface. PMID:25328299

  9. Identification of inhibitors using a cell-based assay for monitoring Golgi-resident protease activity.

    PubMed

    Coppola, Julia M; Hamilton, Christin A; Bhojani, Mahaveer S; Larsen, Martha J; Ross, Brian D; Rehemtulla, Alnawaz

    2007-05-01

    Noninvasive real-time quantification of cellular protease activity allows monitoring of enzymatic activity and identification of activity modulators within the protease's natural milieu. We developed a protease activity assay based on differential localization of a recombinant reporter consisting of a Golgi retention signal and a protease cleavage sequence fused to alkaline phosphatase (AP). When expressed in mammalian cells, this protein localizes to Golgi bodies and, on protease-mediated cleavage, AP translocates to the extracellular medium where its activity is measured. We used this system to monitor the Golgi-associated protease furin, a pluripotent enzyme with a key role in tumorigenesis, viral propagation of avian influenza, ebola, and HIV as well as in activation of anthrax, pseudomonas, and diphtheria toxins. This technology was adapted for high-throughput screening of 39,000-compound small molecule libraries, leading to identification of furin inhibitors. Furthermore, this strategy was used to identify inhibitors of another Golgi protease, the beta-site amyloid precursor protein (APP)-cleaving enzyme (BACE). BACE cleavage of the APP leads to formation of the Abeta peptide, a key event that leads to Alzheimer's disease. In conclusion, we describe a customizable noninvasive technology for real-time assessment of Golgi protease activity used to identify inhibitors of furin and BACE.

  10. Identification of inhibitors using a cell based assay for monitoring golgi-resident protease activity

    PubMed Central

    Coppola, Julia M.; Hamilton, Christin A.; Bhojani, Mahaveer S.; Larsen, Martha J.; Ross, Brian D.; Rehemtulla, Alnawaz

    2007-01-01

    Non-invasive real time quantification of cellular protease activity allows monitoring of enzymatic activity and identification of activity modulators within the protease’s natural milieu. We developed a protease-activity assay based on differential localization of a recombinant reporter consisting of a Golgi retention signal and a protease cleavage sequence fused to alkaline phosphatase (AP). When expressed in mammalian cells, this protein localizes to Golgi bodies and, upon protease mediated cleavage, AP translocates to the extracellular medium where its activity is measured. We used this system to monitor the Golgi-associated protease furin, a pluripotent enzyme with a key role in tumorigenesis, viral propagation of avian influenza, ebola, and HIV, and in activation of anthrax, pseudomonas, and diphtheria toxins. This technology was adapted for high throughput screening of 30,000 compound small molecule libraries, leading to identification of furin inhibitors. Further, this strategy was utilized to identify inhibitors of another Golgi protease, the β-site APP-cleaving enzyme (BACE). BACE cleavage of the amyloid precursor protein leads to formation of the Aβ peptide, a key event that leads to Alzheimer’s disease. In conclusion, we describe a customizable, non-invasive technology for real time assessment of Golgi protease activity used to identify inhibitors of furin and BACE. PMID:17316541

  11. Magneto-impedance sensor for quasi-noncontact monitoring of breathing, pulse rate and activity status

    NASA Astrophysics Data System (ADS)

    Corodeanu, S.; Chiriac, H.; Radulescu, L.; Lupu, N.

    2014-05-01

    Results on the development and testing of a novel magnetic sensor based on the detection of the magneto-impedance variation due to changes in the permeability of an amorphous wire are reported. The proposed application is the quasi-noncontact monitoring of the breathing frequency and heart rate for diagnosing sleep disorders. Patient discomfort is significantly decreased by transversally placing the sensitive element onto the surface of a flexible mattress in order to detect its deformation associated with cardiorespiratory activity and body movements. The developed sensor has a great application potential in monitoring the vital signs during sleep, with special advantages for children sleep monitoring.

  12. The validity of consumer-level, activity monitors in healthy adults worn in free-living conditions: a cross-sectional study.

    PubMed

    Ferguson, Ty; Rowlands, Alex V; Olds, Tim; Maher, Carol

    2015-03-27

    Technological advances have seen a burgeoning industry for accelerometer-based wearable activity monitors targeted at the consumer market. The purpose of this study was to determine the convergent validity of a selection of consumer-level accelerometer-based activity monitors. 21 healthy adults wore seven consumer-level activity monitors (Fitbit One, Fitbit Zip, Jawbone UP, Misfit Shine, Nike Fuelband, Striiv Smart Pedometer and Withings Pulse) and two research-grade accelerometers/multi-sensor devices (BodyMedia SenseWear, and ActiGraph GT3X+) for 48-hours. Participants went about their daily life in free-living conditions during data collection. The validity of the consumer-level activity monitors relative to the research devices for step count, moderate to vigorous physical activity (MVPA), sleep and total daily energy expenditure (TDEE) was quantified using Bland-Altman analysis, median absolute difference and Pearson's correlation. All consumer-level activity monitors correlated strongly (r > 0.8) with research-grade devices for step count and sleep time, but only moderately-to-strongly for TDEE (r = 0.74-0.81) and MVPA (r = 0.52-0.91). Median absolute differences were generally modest for sleep and steps (<10% of research device mean values for the majority of devices) moderate for TDEE (<30% of research device mean values), and large for MVPA (26-298%). Across the constructs examined, the Fitbit One, Fitbit Zip and Withings Pulse performed most strongly. In free-living conditions, the consumer-level activity monitors showed strong validity for the measurement of steps and sleep duration, and moderate valid for measurement of TDEE and MVPA. Validity for each construct ranged widely between devices, with the Fitbit One, Fitbit Zip and Withings Pulse being the strongest performers.

  13. Small Schools Mathematics Curriculum, 9-12: Scope Objectives, Activities, Resources, Monitoring Procedures.

    ERIC Educational Resources Information Center

    Nelson, JoAnne, Ed.; And Others

    The grade 9-12 mathematics curriculum learning objectives, activities, monitoring procedures and resources for small schools were developed during 1978-79 through the cooperative efforts of 10 Snohomish and Island County school districts, Educational Service District 189 and the Washington State Office of Public Instruction. The objectives were…

  14. A multi-modal approach for activity classification and fall detection

    NASA Astrophysics Data System (ADS)

    Castillo, José Carlos; Carneiro, Davide; Serrano-Cuerda, Juan; Novais, Paulo; Fernández-Caballero, Antonio; Neves, José

    2014-04-01

    The society is changing towards a new paradigm in which an increasing number of old adults live alone. In parallel, the incidence of conditions that affect mobility and independence is also rising as a consequence of a longer life expectancy. In this paper, the specific problem of falls of old adults is addressed by devising a technological solution for monitoring these users. Video cameras, accelerometers and GPS sensors are combined in a multi-modal approach to monitor humans inside and outside the domestic environment. Machine learning techniques are used to detect falls and classify activities from accelerometer data. Video feeds and GPS are used to provide location inside and outside the domestic environment. It results in a monitoring solution that does not imply the confinement of the users to a closed environment.

  15. Effects of solution volume on hydrogen production by pulsed spark discharge in ethanol solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xin, Y. B.; Sun, B., E-mail: sunb88@dlmu.edu.cn; Zhu, X. M.

    2016-07-15

    Hydrogen production from ethanol solution (ethanol/water) by pulsed spark discharge was optimized by varying the volume of ethanol solution (liquid volume). Hydrogen yield was initially increased and then decreased with the increase in solution volume, which achieved 1.5 l/min with a solution volume of 500 ml. The characteristics of pulsed spark discharge were studied in this work; the results showed that the intensity of peak current, the rate of current rise, and energy efficiency of hydrogen production can be changed by varying the volume of ethanol solution. Meanwhile, the mechanism analysis of hydrogen production was accomplished by monitoring the process of hydrogenmore » production and the state of free radicals. The analysis showed that decreasing the retention time of gas production and properly increasing the volume of ethanol solution can enhance the hydrogen yield. Through this research, a high-yield and large-scale method of hydrogen production can be achieved, which is more suitable for industrial application.« less

  16. Five-Year Longitudinal Assessment (2008 to 2012) of E-101 Solution Activity against Clinical Target and Antimicrobial-Resistant Pathogens

    PubMed Central

    Pillar, Chris M.; Sahm, Daniel F.; O'Hanley, Peter; Stephens, Jackson T.

    2014-01-01

    This study summarizes the topical E-101 solution susceptibility testing results for 760 Gram-positive and Gram-negative target pathogens collected from 75 U.S. sites between 2008 and 2012 and 103 ESKAPE pathogens. E-101 solution maintained potent activity against all bacterial species studied for each year tested, with MICs ranging from <0.008 to 0.25 μg porcine myeloperoxidase (pMPO)/ml. These results confirm that E-101 solution retains its potent broad-spectrum activity against U.S. clinical isolates and organisms with challenging resistance phenotypes. PMID:24841272

  17. Monitoring gross alpha and beta activity in liquids by using ZnS(Ag) scintillation detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevanato, L.; Cester, D.; Filippi, D.

    In this work the possibility of monitoring gross alpha and beta activity in liquids using EJ-444 was investigated. Specific tests were carried out to determine the change of the detector properties in water tests. Possible protecting coating is also proposed and tested. Alpha/beta real-time monitoring in liquids is a goal of the EU project TAWARA{sub R}TM. (authors)

  18. Novel HPGe Probe solution for Harsh Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clauss, J.; Pirard, B.; Menaa, N.

    2015-07-01

    In situ measurement is a privileged way of monitoring radioactive contamination compared to analyzing samples in a distant, specialized laboratory. Scintillators based spectrometers offer small footprints and are easy to easy to use, however they do not provide an accurate nuclide identification capability and activities measurement because notably of their limited energy resolution, for instance when low minimum detectable activity (MDA) are required, or in complex mixture of sources. On the other hand, High Purity Germanium (HPGe) detectors provide unmatched nuclide identification capability with the lowest MDA but they are not always of practical use on the field because themore » crystal needs to be cooled down to liquid nitrogen temperature, increasing the overall weight, bulkiness and complexity of the measurement. This paper presents the configuration and performance of a novel turnkey and compact HPGe solution developed by Canberra for radionuclide identification under harsh environments. Radio-contaminations surveys now can be undertaken outdoor under various weather conditions, in contaminated areas, underground or underwater locations (including under sea water), with fast on site deployment. The spectrometer is also designed in a small diameter tubular shape to offer minimal footprint for an operation in narrow and confined spaces. Besides, this innovative design does not mitigate the performances nor the reliability experienced with standard laboratory-grade HPGe spectrometers. This achievement relies on advanced technologies such as the encapsulation of the crystal in ultra-high vacuum (UHV) which provides higher robustness and does not requires thermal cycles faced with regular HPGe equipment. It also relies on a low vibration, low consumption electrical cooler so that no liquid nitrogen is being used. The detector is connected to a state-of-the-art digital spectroscopy suite embedded in an autonomous acquisition station monitoring the cryo

  19. Physical activity measured by physical activity monitoring system correlates with glucose trends reconstructed from continuous glucose monitoring.

    PubMed

    Zecchin, Chiara; Facchinetti, Andrea; Sparacino, Giovanni; Dalla Man, Chiara; Manohar, Chinmay; Levine, James A; Basu, Ananda; Kudva, Yogish C; Cobelli, Claudio

    2013-10-01

    In type 1 diabetes mellitus (T1DM), physical activity (PA) lowers the risk of cardiovascular complications but hinders the achievement of optimal glycemic control, transiently boosting insulin action and increasing hypoglycemia risk. Quantitative investigation of relationships between PA-related signals and glucose dynamics, tracked using, for example, continuous glucose monitoring (CGM) sensors, have been barely explored. In the clinic, 20 control and 19 T1DM subjects were studied for 4 consecutive days. They underwent low-intensity PA sessions daily. PA was tracked by the PA monitoring system (PAMS), a system comprising accelerometers and inclinometers. Variations on glucose dynamics were tracked estimating first- and second-order time derivatives of glucose concentration from CGM via Bayesian smoothing. Short-time effects of PA on glucose dynamics were quantified through the partial correlation function in the interval (0, 60 min) after starting PA. Correlation of PA with glucose time derivatives is evident. In T1DM, the negative correlation with the first-order glucose time derivative is maximal (absolute value) after 15 min of PA, whereas the positive correlation is maximal after 40-45 min. The negative correlation between the second-order time derivative and PA is maximal after 5 min, whereas the positive correlation is maximal after 35-40 min. Control subjects provided similar results but with positive and negative correlation peaks anticipated of 5 min. Quantitative information on correlation between mild PA and short-term glucose dynamics was obtained. This represents a preliminary important step toward incorporation of PA information in more realistic physiological models of the glucose-insulin system usable in T1DM simulators, in development of closed-loop artificial pancreas control algorithms, and in CGM-based prediction algorithms for generation of hypoglycemic alerts.

  20. In vitro and in vivo activities of E-101 solution against Acinetobacter baumannii isolates from U.S. military personnel.

    PubMed

    Denys, G A; Davis, J C; O'Hanley, P D; Stephens, J T

    2011-07-01

    We evaluated the in vitro and in vivo activity of a novel topical myeloperoxidase-mediated antimicrobial, E-101 solution, against 5 multidrug-resistant Acinetobacter baumannii isolates recovered from wounded American soldiers. Time-kill studies demonstrated rapid bactericidal activity against all A. baumannii strains tested in the presence of 3% blood. The in vitro bactericidal activity of E-101 solution against A. baumannii strains was confirmed in a full-thickness excision rat model. Additional in vivo studies appear warranted.

  1. An Overview of Recent Geostationary Fire Monitoring Activities and Applications in the Western Hemisphere

    NASA Astrophysics Data System (ADS)

    McRae, D. J.; Conard, S. G.; Ivanova, G. A.; Sukhinin, A. I.; Hao, W. M.; Koutzenogii, K. P.; Prins, E. M.; Schmidt, C. C.; Feltz, J. M.

    2002-05-01

    Over the past twenty years the international scientific research and environmental monitoring communities have recognized the vital role environmental satellites can play in detecting and monitoring active fires both regionally and around the globe for hazards applications and to better understand the extent and impact of biomass burning on the global environment. Both groups have stressed the importance of utilizing operational satellites to produce routine fire products and to ensure long-term stable records of fire activity for applications such as land-use/land cover change analyses and global climate change research. The current NOAA GOES system provides the unique opportunity to detect fires throughout the Western Hemisphere every half-hour from a series of nearly identical satellites for a period of 15+ years. This presentation will provide an overview of the GOES biomass burning monitoring program at UW-Madison Cooperative Institute for Meteorological Satellite Studies (CIMSS) with an emphasis on recent applications of the new GOES Wildfire Automated Biomass Burning Algorithm (WF_ABBA). For the past 8 years, CIMSS has utilized the GOES-8 imager to monitor biomass burning trends in South America. Since September 2000, CIMSS has been producing half-hourly fire products in real-time for most of the Western Hemisphere. The WF_ABBA half-hourly fire product is providing new insights into diurnal, spatial, seasonal and interannual fire dynamics in North, Central, and South America. In North America these products are utilized to detect and monitor wildfires in northerly and remote locations. In South America the diurnal GOES fire product is being used as an indicator of land-use and land-cover change and carbon dynamics along the borders between Brazil, Peru, and Bolivia. The Navy is assimilating the Wildfire ABBA fire product into the Navy Aerosol Analysis and Prediction System (NAAPS) to analyze and predict aerosol loading and transport as part of the NASA

  2. An investigation into non-invasive physical activity recognition using smartphones.

    PubMed

    Kelly, Daniel; Caulfield, Brian

    2012-01-01

    Technology utilized to automatically monitor Activities of Daily Living (ADL) could be a key component in identifying deviations from normal functional profiles and providing feedback on interventions aimed at improving health. However, if activity recognition systems are to be implemented in real world scenarios such as health and wellness monitoring, the activity sensing modality must unobtrusively fit the human environment rather than forcing humans to adhere to sensor specific conditions. Modern smart phones represent a ubiquitous computing device which has already undergone mainstream adoption. In this paper, we investigate the feasibility of using a modern smartphone, with limited placement constraints, as the sensing modality for an activity recognition system. A dataset of 4 subjects performing 7 activities, using varying sensor placement conditions, is utilized to investigate this. Initial experiments show that a decision tree classifier performs activity classification with precision and recall scores of 0.75 and 0.73 respectively. More importantly, as part of this initial experiment, 3 main problems, and subsequently 3 solutions, relating to unconstrained sensor placement were identified. Using our proposed solutions, classification precision and recall scores were improved by +13% and +14.6% respectively.

  3. Optimization of activator solution and heat treatment of ground lignite type fly ash geopolymers

    NASA Astrophysics Data System (ADS)

    Molnár, Z.; Szabó, R.; Rácz, Á.; Lakatos, J.; Debreczeni, Á.; Mucsi, G.

    2017-02-01

    Geopolymers are inorganic polymers which can be produced by the reaction between silico aluminate oxides and alkali silicates in alkaline medium. Materialscontaining silica and alumina compounds are suitable for geopolymer production. These can beprimary materials or industrial wastes, i. e. fly ash, metallurgical slag and red mud. In this paper, the results of the systematic experimental series are presented which were carried out in order to optimize the geopolymer preparation process. Fly ash was ground for different residence time (0, 5, 10, 30, 60 min) in order to investigate the optimal specific surface area. NaOH activator solution concentration also varied (6, 8, 10, 12, 14 M). Furthermore, sodium silicate was added to NaOH as a network builder solution. In this last serie different heat curing temperatures (30, 60, 90°C) were also applied. After seven days of ageing the physical properties of the geopolymer(compressive strength and specimen density)were measured. Chemical leaching tests on the rawmaterial and the geopolymers were carried out to determine the elements which can be mobilized by different leaching solutions. It was found that the above mentioned parameters (fly ash fineness, molar concentration and composition of activator solution, heat curing) has great effect on the physical and chemical properties of geopolymer specimens. Optimal conditions were as follows: specific surface area of the fly ash above 2000 cm2/g, 10 M NaOH, 30°C heat curing temperature which resulted in 21 MPa compressive strength geopolymer.

  4. Cavitation controlled acoustic probe for fabric spot cleaning and moisture monitoring

    DOEpatents

    Sheen, Shuh-Haw; Chien, Hual-Te; Raptis, Apostolos C.

    1997-01-01

    A method and apparatus are provided for monitoring a fabric. An acoustic probe generates acoustic waves relative to the fabric. An acoustic sensor, such as an accelerometer is coupled to the acoustic probe for generating a signal representative of cavitation activity in the fabric. The generated cavitation activity representative signal is processed to indicate moisture content of the fabric. A feature of the invention is a feedback control signal is generated responsive to the generated cavitation activity representative signal. The feedback control signal can be used to control the energy level of the generated acoustic waves and to control the application of a cleaning solution to the fabric.

  5. Small Schools Health Curriculum, K-3: Scope, Objectives, Activities, Resources, Monitoring Procedures.

    ERIC Educational Resources Information Center

    McInerney, Mike, Ed.; Destito, Therese, Ed.

    The K-3 health curriculum developed during 1975-77 by teachers in small school districts working with district and state health education specialists presents student learning objectives and suggested activities, monitoring procedures and resources which are correlated to the 10 Goals for Washington Common Schools and the nine Small Schools Health…

  6. LASERS, ACTIVE MEDIA: The aqueous-polyelectrolyte dye solution as an active laser medium

    NASA Astrophysics Data System (ADS)

    Akimov, A. I.; Saletskii, A. M.

    2000-11-01

    The spectral, luminescent, and lasing properties of aqueous solutions of a cationic dye rhodamine 6G with additions of anion polyelectrolytes — polyacrylic and polymethacrylic acids — are studied. It is found that the energy and spectral properties of lasing of these solutions depend on the ratio of concentrations of polyelectrolyte and molecules. It is also found that the lasing parameters of aqueous-polyelectrolyte dye solutions can be controlled by changing the structure of the molecular system. The variation in the structure of aqueous-polyelectrolyte dye solutions of rhodamine 6G resulted in an almost five-fold increase in the lasing efficiency compared to that in aqueous dye solutions.

  7. Active Ground Optical Remote Sensing for Improved Monitoring of Seedling Stress in Nurseries

    USDA-ARS?s Scientific Manuscript database

    Active ground optical remote sensing (AGORS) devices mounted on overhead irrigation booms could help to improve seedling quality by autonomously monitoring seedling stress. In contrast to traditionally used passive optical sensors, AGORS devices operate independently of ambient light conditions and ...

  8. Electro-activation of potassium acetate, potassium citrate and calcium lactate: impact on solution acidity, Redox potential, vibrational properties of Raman spectra and antibacterial activity on E. coli O157:H7 at ambient temperature.

    PubMed

    Liato, Viacheslav; Labrie, Steve; Aïder, Mohammed

    2016-01-01

    To study the electro-activation of potassium acetate, potassium citrate and calcium lactate aqueous solutions and to evaluate their antimicrobial effect against E. coli O157:H7 at ambient temperature. Potassium acetate, potassium citrate and calcium lactate aqueous solutions were electrically excited in the anodic compartment of a four sectional electro-activation reactor. Different properties of the electro-activated solutions were measured such as: solutions acidity (pH and titratable), Redox potential and vibrational properties by Raman spectroscopy. Moreover, the antimicrobial activity of these solutions was evaluated against E. coli O157:H7. The results showed a pH decrease from 7.07 ± 0.08, 7.53 ± 0.12 and 6.18 ± 0.1 down to 2.82 ± 0.1, 2.13 ± 0.09 and 2.26 ± 0.15, after 180 min of electro-activation of potassium acetate, potassium citrate and calcium lactate solution, respectively. These solutions were characterized by high oxidative ORP of +1076 ± 12, +958 ± 11 and +820 ± 14 mV, respectively. Raman scattering analysis of anolytes showed stretching vibrations of the hydrogen bonds with the major changes within the region of 3410-3430 cm -1 . These solutions were used against E. coli O157:H7 and the results from antimicrobial assays showed high antibacterial effect with a population reduction of ≥6 log CFU/ml within 5 min of treatment. This study demonstrated the effectiveness of the electro-activation to confer to aqueous solutions of organic salts of highly reactive properties that differ them from their conjugated commercial acids. The electro-activated solutions demonstrated significant antimicrobial activity against E. coli O157:H7. This study opens new possibilities to use electro-activated solutions of salts of weak organic acids as food preservatives to develop safe, nutritive and low heat processed foods.

  9. Automated swimming activity monitor for examining temporal patterns of toxicant effects on individual Daphnia magna.

    PubMed

    Bahrndorff, Simon; Michaelsen, Thomas Yssing; Jensen, Anne; Marcussen, Laurits Faarup; Nielsen, Majken Elley; Roslev, Peter

    2016-07-01

    Aquatic pollutants are often biologically active at low concentrations and impact on biota in combination with other abiotic stressors. Traditional toxicity tests may not detect these effects, and there is a need for sensitive high-throughput methods for detecting sublethal effects. We have evaluated an automated infra-red (IR) light-based monitor for recording the swimming activity of Daphnia magna to establish temporal patterns of toxicant effects on an individual level. Activity was recorded for 48 h and the sensitivity of the monitor was evaluated by exposing D. magna to the reference chemicals K2 Cr2 O7 at 15, 20 and 25 °C and 2,4-dichlorophenol at 20 °C. Significant effects (P < 0.001) of toxicant concentrations, exposure time and incubation temperatures were observed. At 15 °C, the swimming activity remained unchanged for 48 h at sublethal concentrations of K2 Cr2 O7 whereas activity at 20 and 25 °C was more biphasic with decreases in activity occurring after 12-18 h. A similar biphasic pattern was observed after 2,4-dichlorophenol exposure at 20 °C. EC50 values for 2,4-dichlorophenol and K2 Cr2 O7 determined from automated recording of swimming activity showed increasing toxicity with time corresponding to decreases in EC50 of 0.03-0.07 mg l(-1) h(-1) . EC50 values determined after 48 h were comparable or lower than EC50 values based on visual inspection according to ISO 6341. The results demonstrated that the swimming activity monitor is capable of detecting sublethal behavioural effects that are toxicant and temperature dependent. The method allows EC values to be established at different time points and can serve as a high-throughput screening tool in toxicity testing. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Effect of a surfactant on the antimicrobial activity of sodium hypochlorite solutions.

    PubMed

    Bolfoni, Marcos Rodolfo; Ferla, Marcelo dos Santos; Sposito, Otávio da Silva; Giardino, Luciano; Jacinto, Rogério de Castilho; Pappen, Fernanda Geraldes

    2014-01-01

    The objective of the present study was to evaluate the antimicrobial activity of sodium hypochlorite (NaOCl) associated with a surfactant. Seventy single-rooted extracted human teeth were inoculated with Enterococcus faecalis, and incubated for 21 days (37 °C). The groups were distributed according to the irrigation solution used during root canal preparation: 5%, 2.5% and 1% NaOCl; 5%, 2.5% and 1% Hypoclean®, a solution containing a surfactant (cetrimide) associated with NaOCl. Three microbiological samples were collected from each tooth: S1 - before instrumentation; S2 - immediately after instrumentation; and S3 - after a seven-day period. Data were submitted to ANOVA and Tukey test with 5% significance level. The results showed that immediately after root canal preparation (S2), E. faecalis was eliminated in all the experimental groups. However, after 7 days (S3), only the groups in which Hypoclean was used, remained contamination-free, including Hypoclean associated with 1% NaOCl, while the root canals irrigated with 1% NaOCl only, presented the highest percentage of bacterial growth. In conclusion, the addition of surfactant increased the antimicrobial activity of 1% NaOCl to levels similar to 5% NaOCl.

  11. The use of pedometers for monitoring physical activity in children and adolescents: measurement considerations.

    PubMed

    Clemes, Stacy A; Biddle, Stuart J H

    2013-02-01

    Pedometers are increasingly being used to measure physical activity in children and adolescents. This review provides an overview of common measurement issues relating to their use. Studies addressing the following measurement issues in children/adolescents (aged 3-18 years) were included: pedometer validity and reliability, monitoring period, wear time, reactivity, and data treatment and reporting. Pedometer surveillance studies in children/adolescents (aged: 4-18 years) were also included to enable common measurement protocols to be highlighted. In children > 5 years, pedometers provide a valid and reliable, objective measure of ambulatory activity. Further evidence is required on pedometer validity in preschool children. Across all ages, optimal monitoring frames to detect habitual activity have yet to be determined; most surveillance studies use 7 days. It is recommended that standardized wear time criteria are established for different age groups, and that wear times are reported. As activity varies between weekdays and weekend days, researchers interested in habitual activity should include both types of day in surveillance studies. There is conflicting evidence on the presence of reactivity to pedometers. Pedometers are a suitable tool to objectively assess ambulatory activity in children (> 5 years) and adolescents. This review provides recommendations to enhance the standardization of measurement protocols.

  12. Monitoring seasonal bat activity on a coastal barrier island in Maryland, USA.

    PubMed

    Johnson, Joshua B; Gates, J Edward; Zegre, Nicolas P

    2011-02-01

    Research on effects of wind turbines on bats has increased dramatically in recent years because of significant numbers of bats killed by rotating wind turbine blades. Whereas most research has focused on the Midwest and inland portions of eastern North America, bat activity and migration on the Atlantic Coast has largely been unexamined. We used three long-term acoustic monitoring stations to determine seasonal bat activity patterns on the Assateague Island National Seashore, a barrier island off the coast of Maryland, from 2005 to 2006. We recorded five species, including eastern red bats (Lasiurus borealis), big brown bats (Eptesicus fuscus), hoary bats (Lasiurus cinereus), tri-colored bats (Perimyotis subflavus), and silver-haired bats (Lasionycteris noctivagans). Seasonal bat activity (number of bat passes recorded) followed a cosine function and gradually increased beginning in April, peaked in August, and declined gradually until cessation in December. Based on autoregressive models, inter-night bat activity was autocorrelated for lags of seven nights or fewer but varied among acoustic monitoring stations. Higher nightly temperatures and lower wind speeds positively affected bat activity. When autoregressive model predictions were fitted to the observed nightly bat pass totals, model residuals>2 standard deviations from the mean existed only during migration periods, indicating that periodic increases in bat activity could not be accounted for by seasonal trends and weather variables alone. Rather, the additional bat passes were attributable to migrating bats. We conclude that bats, specifically eastern red, hoary, and silver-haired bats, use this barrier island during migration and that this phenomenon may have implications for the development of near and offshore wind energy.

  13. Methods of InSAR atmosphere correction for volcano activity monitoring

    USGS Publications Warehouse

    Gong, W.; Meyer, F.; Webley, P.W.; Lu, Z.

    2011-01-01

    When a Synthetic Aperture Radar (SAR) signal propagates through the atmosphere on its path to and from the sensor, it is inevitably affected by atmospheric effects. In particular, the applicability and accuracy of Interferometric SAR (InSAR) techniques for volcano monitoring is limited by atmospheric path delays. Therefore, atmospheric correction of interferograms is required to improve the performance of InSAR for detecting volcanic activity, especially in order to advance its ability to detect subtle pre-eruptive changes in deformation dynamics. In this paper, we focus on InSAR tropospheric mitigation methods and their performance in volcano deformation monitoring. Our study areas include Okmok volcano and Unimak Island located in the eastern Aleutians, AK. We explore two methods to mitigate atmospheric artifacts, namely the numerical weather model simulation and the atmospheric filtering using Persistent Scatterer processing. We investigate the capability of the proposed methods, and investigate their limitations and advantages when applied to determine volcanic processes. ?? 2011 IEEE.

  14. Noninvasive monitoring of cancer therapy induced activated T cells using [18F]FB-IL-2 PET imaging.

    PubMed

    Hartimath, S V; Draghiciu, O; van de Wall, S; Manuelli, V; Dierckx, R A J O; Nijman, H W; Daemen, T; de Vries, E F J

    2017-01-01

    Cancer immunotherapy urgently calls for methods to monitor immune responses at the site of the cancer. Since activated T lymphocytes may serve as a hallmark for anticancer responses, we targeted these cells using the radiotracer N-(4-[ 18 F]fluorobenzoyl)-interleukin-2 ([ 18 F]FB-IL-2) for positron emission tomography (PET) imaging. Thus, we noninvasively monitored the effects of local tumor irradiation and/or immunization on tumor-infiltrating and systemic activated lymphocytes in tumor-bearing mice. A 10- and 27-fold higher [ 18 F]FB-IL-2 uptake was observed in tumors of mice receiving tumor irradiation alone or in combination with immunization, respectively. This increased uptake was extended to several non-target tissues. Administration of the CXCR4 antagonist AMD3100 reduced tracer uptake by 2.8-fold, indicating a CXCR4-dependent infiltration of activated T lymphocytes upon cancer treatment. In conclusion, [ 18 F]FB-IL-2 PET can serve as a clinical biomarker to monitor treatment-induced infiltration of activated T lymphocytes and, on that basis, may guide cancer immunotherapies.

  15. International comparison of activity measurements of a solution of 75Se

    NASA Astrophysics Data System (ADS)

    Ratel, Guy

    2002-04-01

    Activity measurements of a solution of 75Se, supplied by the BIPM, have been carried out by 21 laboratories within the framework of an international comparison. Seven different methods were used. Details on source preparation, experimental facilities and counting data are reported. The measured activity-concentration values show a total spread of 6.62% before correction and 6.02% after correction for delayed events, with standard deviations of the unweighted means of 0.45% and 0.36%, respectively. The correction for delayed events was measured directly by four laboratories. Unfortunately no consensus on the activity value could be deduced from their results. The results of the comparison have been entered in the tables of the International Reference System (SIR) for γ-ray emitting radionuclides. The half-life of the metastable state was also determined by two laboratories and found to be in good agreement with the values found in the literature.

  16. Monitoring lipase/esterase activity by stopped flow in a sequential injection analysis system using p-nitrophenyl butyrate.

    PubMed

    Pliego, Jorge; Mateos, Juan Carlos; Rodriguez, Jorge; Valero, Francisco; Baeza, Mireia; Femat, Ricardo; Camacho, Rosa; Sandoval, Georgina; Herrera-López, Enrique J

    2015-01-27

    Lipases and esterases are biocatalysts used at the laboratory and industrial level. To obtain the maximum yield in a bioprocess, it is important to measure key variables, such as enzymatic activity. The conventional method for monitoring hydrolytic activity is to take out a sample from the bioreactor to be analyzed off-line at the laboratory. The disadvantage of this approach is the long time required to recover the information from the process, hindering the possibility to develop control systems. New strategies to monitor lipase/esterase activity are necessary. In this context and in the first approach, we proposed a lab-made sequential injection analysis system to analyze off-line samples from shake flasks. Lipase/esterase activity was determined using p-nitrophenyl butyrate as the substrate. The sequential injection analysis allowed us to measure the hydrolytic activity from a sample without dilution in a linear range from 0.05-1.60 U/mL, with the capability to reach sample dilutions up to 1000 times, a sampling frequency of five samples/h, with a kinetic reaction of 5 min and a relative standard deviation of 8.75%. The results are promising to monitor lipase/esterase activity in real time, in which optimization and control strategies can be designed.

  17. Monitoring Lipase/Esterase Activity by Stopped Flow in a Sequential Injection Analysis System Using p-Nitrophenyl Butyrate

    PubMed Central

    Pliego, Jorge; Mateos, Juan Carlos; Rodriguez, Jorge; Valero, Francisco; Baeza, Mireia; Femat, Ricardo; Camacho, Rosa; Sandoval, Georgina; Herrera-López, Enrique J.

    2015-01-01

    Lipases and esterases are biocatalysts used at the laboratory and industrial level. To obtain the maximum yield in a bioprocess, it is important to measure key variables, such as enzymatic activity. The conventional method for monitoring hydrolytic activity is to take out a sample from the bioreactor to be analyzed off-line at the laboratory. The disadvantage of this approach is the long time required to recover the information from the process, hindering the possibility to develop control systems. New strategies to monitor lipase/esterase activity are necessary. In this context and in the first approach, we proposed a lab-made sequential injection analysis system to analyze off-line samples from shake flasks. Lipase/esterase activity was determined using p-nitrophenyl butyrate as the substrate. The sequential injection analysis allowed us to measure the hydrolytic activity from a sample without dilution in a linear range from 0.05–1.60 U/mL, with the capability to reach sample dilutions up to 1000 times, a sampling frequency of five samples/h, with a kinetic reaction of 5 min and a relative standard deviation of 8.75%. The results are promising to monitor lipase/esterase activity in real time, in which optimization and control strategies can be designed. PMID:25633600

  18. Accelerometry-based monitoring of daily physical activity in children with juvenile idiopathic arthritis.

    PubMed

    Nørgaard, M; Twilt, M; Andersen, L B; Herlin, T

    2016-01-01

    Juvenile idiopathic arthritis (JIA) may cause functional impairment, reduced participation in physical activity (PA) and, over time, physical deconditioning. The aim of this study was to objectively monitor daily free-living PA in 10-16-year-old children with JIA using accelerometry with regard to disease activity and physical variables and to compare the data with those from healthy age- and gender-matched controls. Patients underwent an evaluation of disease activity, functional ability, physical capacity, and pain. Accelerometer monitoring was assessed using the GT1M ActiGraph. Normative data from two major studies on PA in Danish schoolchildren were used for comparison. Data of accelerometry were available for 61 JIA patients and 2055 healthy controls. Of the JIA patients, 57% showed below-average values of maximal physical capacity (fitness level). JIA patients showed low disease activity and pain and were physically well functioning. Accelerometer counts were lower in JIA patients than in controls. Accelerometer measurements were negatively correlated with disease activity, erythrocyte sedimentation rate (ESR), and number of joints with swelling and/or limited range of motion (ROM). No correlation was found between PA and pain scores, functional ability, and hypermobility. Patients with involvement of ankles or hips demonstrated significantly lower levels of PA. Children with JIA are less physically active and have lower physical capacity and fitness than their age- and gender-matched healthy peers despite good disease control. The involvement of hips or ankles is associated with lower PA.

  19. Parental Monitoring Among Young Men Who Have Sex With Men: Associations With Sexual Activity and HIV-Related Sexual Risk Behaviors

    PubMed Central

    Thoma, Brian C.

    2018-01-01

    Purpose Young men who have sex with men (YMSM) are at disproportionate risk for HIV infection. Parental monitoring is protective against adolescent sexual risk behavior among heterosexual adolescents, yet it is unclear whether these findings generalize to YMSM. YMSM experience unique family dynamics during adolescence, including coming out to parents and parental rejection of sexual orientation. The present study examined how theoretically derived parental monitoring constructs were associated with sexual activity and sexual risk behaviors among YMSM. Methods YMSM aged 14–18 years completed a cross-sectional online survey (n = 646). Factor analysis was completed to determine factor structure of monitoring measure. Sexual behaviors were predicted from monitoring constructs and covariates within regression models. Results Parental knowledge and adolescent disclosure, parental solicitation, parental control, and adolescent secret-keeping emerged as four distinct monitoring constructs among YMSM. Higher knowledge and disclosure (b = −.32, p = .022), higher control (b = −.28, p = .006), lower solicitation (b = .31, p = .008), and lower secret-keeping (b = .25, p =.015) were associated with lower odds of sexual activity with males in the past 6 months. Higher knowledge and disclosure (b = −.12, p = .016), higher control (b = −.08, p = .039), and lower secret-keeping (b =.11, p = .005) were associated with having fewer recent sexual partners. Monitoring constructs were unassociated with condomless anal intercourse instances among sexually active YMSM. Conclusions YMSM disclosure is closely tied with parental knowledge, and parents should foster relationships and home environments where YMSM are comfortable disclosing information freely. Effective parental monitoring could limit YMSM’s opportunities for sexual activity, but monitoring is not sufficient to protect against HIV-related sexual risk behaviors among sexually active YMSM. PMID:28528209

  20. Parental Monitoring Among Young Men Who Have Sex With Men: Associations With Sexual Activity and HIV-Related Sexual Risk Behaviors.

    PubMed

    Thoma, Brian C

    2017-09-01

    Young men who have sex with men (YMSM) are at disproportionate risk for HIV infection. Parental monitoring is protective against adolescent sexual risk behavior among heterosexual adolescents, yet it is unclear whether these findings generalize to YMSM. YMSM experience unique family dynamics during adolescence, including coming out to parents and parental rejection of sexual orientation. The present study examined how theoretically derived parental monitoring constructs were associated with sexual activity and sexual risk behaviors among YMSM. YMSM aged 14-18 years completed a cross-sectional online survey (n = 646). Factor analysis was completed to determine factor structure of monitoring measure. Sexual behaviors were predicted from monitoring constructs and covariates within regression models. Parental knowledge and adolescent disclosure, parental solicitation, parental control, and adolescent secret-keeping emerged as four distinct monitoring constructs among YMSM. Higher knowledge and disclosure (b = -.32, p = .022), higher control (b = -.28, p = .006), lower solicitation (b = .31, p = .008), and lower secret-keeping (b = .25, p = .015) were associated with lower odds of sexual activity with males in the past 6 months. Higher knowledge and disclosure (b = -.12, p = .016), higher control (b = -.08, p = .039), and lower secret-keeping (b = .11, p = .005) were associated with having fewer recent sexual partners. Monitoring constructs were unassociated with condomless anal intercourse instances among sexually active YMSM. YMSM disclosure is closely tied with parental knowledge, and parents should foster relationships and home environments where YMSM are comfortable disclosing information freely. Effective parental monitoring could limit YMSM's opportunities for sexual activity, but monitoring is not sufficient to protect against HIV-related sexual risk behaviors among sexually active YMSM. Copyright © 2017 Society for Adolescent Health and

  1. Project Catch: A space based solution to combat illegal, unreported and unregulated fishing. Part I: Vessel monitoring system

    NASA Astrophysics Data System (ADS)

    Detsis, Emmanouil; Brodsky, Yuval; Knudtson, Peter; Cuba, Manuel; Fuqua, Heidi; Szalai, Bianca

    2012-11-01

    Space assets have a unique opportunity to play a more active role in global resource management. There is a clear need to develop resource management tools in a global framework. Illegal, Unregulated and Unreported (IUU) fishing is placing pressure on the health and size of fishing stocks around the world. Earth observation systems can provide fishery management organizations with cost effective monitoring of large swaths of ocean. Project Catch is a fisheries management project based upon the complimentary, but independent Catch-VMS and Catch-GIS systems. Catch-VMS is a Vessel Monitoring System with increased fidelity over existing offerings. Catch-GIS is a Geographical Information System that combines VMS information with existing Earth Observation data and other data sources to identify Illegal, Unregulated and Unreported (IUU) fishing. Project Catch was undertaken by 19 Masters students from the 2010 class of the International Space University. In this paper, the space-based system architecture of Project Catch is presented and analyzed. The rationale for the creation of the system, as well as the engineering trade-off studies in its creation, are discussed. The Catch-VMS proposal was envisaged in order to address two specific problems: (1) the expansion of illegal fishing to high-latitude regions where existing satellite systems coverage is an issue and (2) the lack of coverage in remote oceanic regions due to reliance on coastal-based monitoring. Catch-VMS utilizes ship-borne transponders and hosted-payload receivers on a Global Navigation Satellite System in order to monitor the position and activity of compliant fishing vessels. Coverage is global and continuous with multiple satellites in view providing positional verification through multilateration techniques. The second part of the paper briefly describes the Catch-GIS system and investigates its cost of implementation.

  2. Passive and Active Monitoring on a High Performance Research Network.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, Warren

    2001-05-01

    The bold network challenges described in ''Internet End-to-end Performance Monitoring for the High Energy and Nuclear Physics Community'' presented at PAM 2000 have been tackled by the intrepid administrators and engineers providing the network services. After less than a year, the BaBar collaboration has collected almost 100 million particle collision events in a database approaching 165TB (Tera=10{sup 12}). Around 20TB has been exported via the Internet to the BaBar regional center at IN2P3 in Lyon, France, for processing and around 40 TB of simulated events have been imported to SLAC from Lawrence Livermore National Laboratory (LLNL). An unforseen challenge hasmore » arisen due to recent events and highlighted security concerns at DoE funded labs. New rules and regulations suggest it is only a matter of time before many active performance measurements may not be possible between many sites. Yet, at the same time, the importance of understanding every aspect of the network and eradicating packet loss for high throughput data transfers has become apparent. Work at SLAC to employ passive monitoring using netflow and OC3MON is underway and techniques to supplement and possibly replace the active measurements are being considered. This paper will detail the special needs and traffic characterization of a remarkable research project, and how the networking hurdles have been resolved (or not!) to achieve the required high data throughput. Results from active and passive measurements will be compared, and methods for achieving high throughput and the effect on the network will be assessed along with tools that directly measure throughput and applications used to actually transfer data.« less

  3. Deriving a GPS Monitoring Time Recommendation for Physical Activity Studies of Adults.

    PubMed

    Holliday, Katelyn M; Howard, Annie Green; Emch, Michael; Rodríguez, Daniel A; Rosamond, Wayne D; Evenson, Kelly R

    2017-05-01

    Determining locations of physical activity (PA) is important for surveillance and intervention development, yet recommendations for using location recording tools like global positioning system (GPS) units are lacking. Specifically, no recommendation exists for the number of days study participants should wear a GPS to reliably estimate PA time spent in locations. This study used data from participants (N = 224, age = 18-85 yr) in five states who concurrently wore an ActiGraph GT1M accelerometer and a Qstarz BT-Q1000X GPS for three consecutive weeks to construct monitoring day recommendations through variance partitioning methods. PA bouts ≥10 min were constructed from accelerometer counts, and the location of GPS points was determined using a hand-coding protocol. Monitoring day recommendations varied by the type of location (e.g., participant homes vs parks) and the intensity of PA bouts considered (low and medium cut point moderate to vigorous PA [MVPA] bouts or high cut point vigorous PA [VPA] bouts). In general, minutes of all PA intensities spent in a given location could be measured with ≥80% reliability using 1-3 d of GPS monitoring for fitness facilities, schools, and footpaths. MVPA bout minutes in parks and roads required longer monitoring periods of 5-12 d. PA in homes and commercial areas required >19 d of monitoring. Twelve days of monitoring was found to reliably estimate minutes in both low and medium threshold MVPA as well as VPA bouts for many important built environment locations that can be targeted to increase PA at the population level. Minutes of PA in the home environment and commercial locations may be best assessed through other means given the lengthy estimated monitoring time required.

  4. Monitoring Peptidase Activities in Complex Proteomes by MALDI-TOF Mass Spectrometry

    PubMed Central

    Villanueva, Josep; Nazarian, Arpi; Lawlor, Kevin; Tempst, Paul

    2009-01-01

    Measuring enzymatic activities in biological fluids is a form of activity-based proteomics and may be utilized as a means of developing disease biomarkers. Activity-based assays allow amplification of output signals, thus potentially visualizing low-abundant enzymes on a virtually transparent whole-proteome background. The protocol presented here describes a semi-quantitative in vitro assay of proteolytic activities in complex proteomes by monitoring breakdown of designer peptide-substrates using robotic extraction and a MALDI-TOF mass spectrometric read-out. Relative quantitation of the peptide metabolites is done by comparison with spiked internal standards, followed by statistical analysis of the resulting mini-peptidome. Partial automation provides reproducibility and throughput essential for comparing large sample sets. The approach may be employed for diagnostic or predictive purposes and enables profiling of 96 samples in 30 hours. It could be tailored to many diagnostic and pharmaco-dynamic purposes, as a read-out of catalytic and metabolic activities in body fluids or tissues. PMID:19617888

  5. Technologies for physical activity self-monitoring: a study of differences between users and non-users

    PubMed Central

    Åkerberg, Anna; Söderlund, Anne; Lindén, Maria

    2017-01-01

    Background Different kinds of physical activity (PA) self-monitoring technologies are used today to monitor and motivate PA behavior change. The user focus is essential in the development process of this technology, including potential future users such as representatives from the group of non-users. There is also a need to study whether there are differences between the groups of users and non-users. The aims of this study were to investigate possible differences between users and non-users regarding their opinions about PA self-monitoring technologies and to investigate differences in demographic variables between the groups. Materials and methods Participants were randomly selected from seven municipalities in central Sweden. In total, 107 adults responded to the Physical Activity Products Questionnaire, which consisted of 22 questions. Results Significant differences between the users and non-users were shown for six of the 20 measurement-related items: measures accurately (p=0.007), measures with high precision (p=0.024), measures distance (p=0.020), measures speed (p=0.003), shows minutes of activity (p=0.004), and shows geographical position (p=0.000). Significant differences between the users and non-users were also found for two of the 29 encouragement items: measures accurately (p=0.001) and has long-term memory (p=0.019). Significant differences between the groups were also shown for level of education (p=0.030) and level of physical exercise (p=0.037). Conclusion With a few exceptions, the users and the non-users in this study had similar opinions about PA self-monitoring technologies. Because this study showed significant differences regarding level of education and level of physical exercise, these demographic variables seemed more relevant to investigate than differences in opinions about the PA self-monitoring technologies. PMID:28280399

  6. Pacemaker remote monitoring in the pediatric population: is it a real solution?

    PubMed

    Leoni, Loira; Padalino, Massimo; Biffanti, Roberta; Ferretto, Sonia; Vettor, Giulia; Corrado, Domenico; Stellin, Giovanni; Milanesi, Ornella; Iliceto, Sabino

    2015-05-01

    Clinical utility of remote monitoring of implantable cardiac devices has been previously demonstrated in several trials in the adult population. The aim of this study was to assess the clinical utility of remote monitoring in a pediatric population undergoing pacemakers implantation. The study population included 73 consecutive pediatric patients who received an implantable pacemaker. The remote device check was programmed for every 3 months and all patients had a yearly out-patient visit. Data on device-related events, hospitalization, and other clinical information were collected during remote checks and out-patient visits. During a mean follow-up of 18 ± 10 months, 470 remote transmissions were collected and analyzed. Two deaths were reported. Eight transmissions (1.7%) triggered an urgent out-patient visit. Twenty percent of transmissions reported evidence of significant clinical or technical events. All young patients and their families were very satisfied when using remote monitoring to replace out-patient visits. The ease in use, together with satisfaction and acceptance of remote monitoring in pediatric patients, brought very good results. The remote management of our pediatric population was safe and remote monitoring adequately replaced the periodic out-patient device checks without compromising patient safety. ©2015 Wiley Periodicals, Inc.

  7. Hyperventilation revisited: physiological effects and efficacy on focal seizure activation in the era of video-EEG monitoring.

    PubMed

    Guaranha, Mirian S B; Garzon, Eliana; Buchpiguel, Carlos A; Tazima, Sérgio; Yacubian, Elza M T; Sakamoto, Américo C

    2005-01-01

    Hyperventilation is an activation method that provokes physiological slowing of brain rhythms, interictal discharges, and seizures, especially in generalized idiopathic epilepsies. In this study we assessed its effectiveness in inducing focal seizures during video-EEG monitoring. We analyzed the effects of hyperventilation (HV) during video-EEG monitoring (video-EEG) of patients with medically intractable focal epilepsies. We excluded children younger than 10 years, mentally retarded patients, and individuals with frequent seizures. We analyzed 97 patients; 24 had positive seizure activation (PSA), and 73 had negative seizure activation (NSA). No differences were found between groups regarding sex, age, age at epilepsy onset, duration of epilepsy, frequency of seizures, and etiology. Temporal lobe epilepsies were significantly more activated than frontal lobe epilepsies. Spontaneous and activated seizures did not differ in terms of their clinical characteristics, and the activation did not affect the performance of ictal single-photon emission computed tomography (SPECT). HV is a safe and effective method of seizure activation during monitoring. It does not modify any of the characteristics of the seizures and allows the obtaining of valuable ictal SPECTs. This observation is clinically relevant and suggests the effectiveness and the potential of HV in shortening the presurgical evaluation, especially of temporal lobe epilepsy patients, consequently reducing its costs and increasing the number of candidates for epilepsy surgery.

  8. Cybersecurity Intrusion Detection and Monitoring for Field Area Network: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pietrowicz, Stanley

    This report summarizes the key technical accomplishments, industry impact and performance of the I2-CEDS grant entitled “Cybersecurity Intrusion Detection and Monitoring for Field Area Network”. Led by Applied Communication Sciences (ACS/Vencore Labs) in conjunction with its utility partner Sacramento Municipal Utility District (SMUD), the project accelerated research on a first-of-its-kind cybersecurity monitoring solution for Advanced Meter Infrastructure and Distribution Automation field networks. It advanced the technology to a validated, full-scale solution that detects anomalies, intrusion events and improves utility situational awareness and visibility. The solution was successfully transitioned and commercialized for production use as SecureSmart™ Continuous Monitoring. Discoveries made withmore » SecureSmart™ Continuous Monitoring led to tangible and demonstrable improvements in the security posture of the US national electric infrastructure.« less

  9. The Effect of Storage at Three Different Temperatures on the Activity of Lipase Solution.

    ERIC Educational Resources Information Center

    Bradley, Karen; Mathewman, David

    1984-01-01

    Presented are procedures used to assay the activity of lipase during storage at three different temperatures. Since lipase solutions can decay even when refrigerated, it is recommended that the enzyme be freshly prepared prior to laboratory sessions in which they are used. (JN)

  10. Action Monitoring Cortical Activity Coupled to Submovements

    PubMed Central

    Sobolewski, Aleksander

    2017-01-01

    Numerous studies have examined neural correlates of the human brain’s action-monitoring system during experimentally segmented tasks. However, it remains unknown how such a system operates during continuous motor output when no experimental time marker is available (such as button presses or stimulus onset). We set out to investigate the electrophysiological correlates of action monitoring when hand position has to be repeatedly monitored and corrected. For this, we recorded high-density electroencephalography (EEG) during a visuomotor tracking task during which participants had to follow a target with the mouse cursor along a visible trajectory. By decomposing hand kinematics into naturally occurring periodic submovements, we found an event-related potential (ERP) time-locked to these submovements and localized in a sensorimotor cortical network comprising the supplementary motor area (SMA) and the precentral gyrus. Critically, the amplitude of the ERP correlated with the deviation of the cursor, 110 ms before the submovement. Control analyses showed that this correlation was truly due to the cursor deviation and not to differences in submovement kinematics or to the visual content of the task. The ERP closely resembled those found in response to mismatch events in typical cognitive neuroscience experiments. Our results demonstrate the existence of a cortical process in the SMA, evaluating hand position in synchrony with submovements. These findings suggest a functional role of submovements in a sensorimotor loop of periodic monitoring and correction and generalize previous results from the field of action monitoring to cases where action has to be repeatedly monitored. PMID:29071301

  11. Using the Landsat Thematic Mapper to detect and monitor active volcanoes - An example from Lascar volcano, northern Chile

    NASA Technical Reports Server (NTRS)

    Francis, P. W.; Rothery, D. A.

    1987-01-01

    The Landsat Thematic Mapper (TM) offers a means of detecting and monitoring thermal features of active volcanoes. Using the TM, a prominent thermal anomaly has been discovered on Lascar volcano, northern Chile. Data from two short-wavelength infrared channels of the TM show that material within a 300-m-diameter pit crater was at a temperature of at least 380 C on two dates in 1985. The thermal anomaly closely resembles in size and radiant temperature the anomaly over the active lava lake at Erta'ale in Ethiopia. An eruption took place at Lascar on Sept. 16, 1986. TM data acquired on Oct. 27, 1986, revealed significant changes within the crater area. Lascar is in a much more active state than any other volcano in the central Andes, and for this reason it merits further careful monitoring. Studies show that the TM is capable of confidently identifying thermal anomalies less than 100 m in size, at temperatures of above 150 C, and thus it offers a valuable means of monitoring the conditions of active or potentially active volcanoes, particularly those in remote regions.

  12. Removal of Cd(II) from aqueous solution with activated Firmiana Simplex Leaf: behaviors and affecting factors.

    PubMed

    Tang, Qiang; Tang, Xiaowu; Hu, Manman; Li, Zhenze; Chen, Yunmin; Lou, Peng

    2010-07-15

    Cadmium pollution is known to cause severe public health problems. This study is intended to examine the effect of an activated Firmiana Simplex Leaf (FSL) on the removal of Cd(II) from aqueous solution. Results showed that the active Firmiana Simplex Leaf could efficiently remove Cd(II) from wastewater due to the preservation of beneficial groups (amine, carboxyl, and phosphate) at a temperature of 250 degrees C. The adsorbent component, dosage, concentration of the initial solute, and the pH of the solution were all found to have significant effects on Cd(II) adsorption. The kinetic constants were predicted by pseudo-first-order kinetics, and the thermodynamic analysis revealed the endothermic and spontaneous nature of the adsorption. FT-IR and XRD analyses confirmed the strong adsorption between beneficial groups and cadmium ions, and the adsorption capacity was calculated to be 117.786 mg g(-1) according to the Langmuir isotherm. 2010 Elsevier B.V. All rights reserved.

  13. Wearable Sensors for Remote Health Monitoring.

    PubMed

    Majumder, Sumit; Mondal, Tapas; Deen, M Jamal

    2017-01-12

    Life expectancy in most countries has been increasing continually over the several few decades thanks to significant improvements in medicine, public health, as well as personal and environmental hygiene. However, increased life expectancy combined with falling birth rates are expected to engender a large aging demographic in the near future that would impose significant  burdens on the socio-economic structure of these countries. Therefore, it is essential to develop cost-effective, easy-to-use systems for the sake of elderly healthcare and well-being. Remote health monitoring, based on non-invasive and wearable sensors, actuators and modern communication and information technologies offers an efficient and cost-effective solution that allows the elderly to continue to live in their comfortable home environment instead of expensive healthcare facilities. These systems will also allow healthcare personnel to monitor important physiological signs of their patients in real time, assess health conditions and provide feedback from distant facilities. In this paper, we have presented and compared several low-cost and non-invasive health and activity monitoring systems that were reported in recent years. A survey on textile-based sensors that can potentially be used in wearable systems is also presented. Finally, compatibility of several communication technologies as well as future perspectives and research challenges in remote monitoring systems will be discussed.

  14. Wearable Sensors for Remote Health Monitoring

    PubMed Central

    Majumder, Sumit; Mondal, Tapas; Deen, M. Jamal

    2017-01-01

    Life expectancy in most countries has been increasing continually over the several few decades thanks to significant improvements in medicine, public health, as well as personal and environmental hygiene. However, increased life expectancy combined with falling birth rates are expected to engender a large aging demographic in the near future that would impose significant  burdens on the socio-economic structure of these countries. Therefore, it is essential to develop cost-effective, easy-to-use systems for the sake of elderly healthcare and well-being. Remote health monitoring, based on non-invasive and wearable sensors, actuators and modern communication and information technologies offers an efficient and cost-effective solution that allows the elderly to continue to live in their comfortable home environment instead of expensive healthcare facilities. These systems will also allow healthcare personnel to monitor important physiological signs of their patients in real time, assess health conditions and provide feedback from distant facilities. In this paper, we have presented and compared several low-cost and non-invasive health and activity monitoring systems that were reported in recent years. A survey on textile-based sensors that can potentially be used in wearable systems is also presented. Finally, compatibility of several communication technologies as well as future perspectives and research challenges in remote monitoring systems will be discussed. PMID:28085085

  15. Effective adsorption of phenolic compound from aqueous solutions on activated semi coke

    NASA Astrophysics Data System (ADS)

    Gao, Xiaoming; Dai, Yuan; Zhang, Yu; Fu, Feng

    2017-03-01

    Activated Semi coke was prepared by KOH activation and employed as adsorbent to study adsorption function of phenolic compound from aqueous solutions. The adsorption result showed that the adsorption capacity of the activated semi coke for phenolic compound increased with contact time and adsorbent dosage, and slightly affected by temperature. The surface structure property of the activated semi coke was characterized by N2 adsorption, indicating that the activated semi coke was essentially macroporous, and the BET surface area was 347.39 m2 g-1. Scanning electron microscopy indicated that the surface of the activated semi coke had a high developed pore. The adsorption kinetics were investigated according to pseudofirst order, pseudosecond order and intraparticle diffusion, and the kinetics data were fitted by pseudosecond order model, and intraparticle diffusion was not the only rate-controlling step. Adsorption isotherm was studied by Langmuir, Freundlich, Temkin, Redlich-Peterson, Sips and Toth models. The result indicated that adsorption isotherm data could fit well with Langmuir, Redlich-Peterson, Sips and Toth models.

  16. [Portable Epileptic Seizure Monitoring Intelligent System Based on Android System].

    PubMed

    Liang, Zhenhu; Wu, Shufeng; Yang, Chunlin; Jiang, Zhenzhou; Yu, Tao; Lu, Chengbiao; Li, Xiaoli

    2016-02-01

    The clinical electroencephalogram (EEG) monitoring systems based on personal computer system can not meet the requirements of portability and home usage. The epilepsy patients have to be monitored in hospital for an extended period of time, which imposes a heavy burden on hospitals. In the present study, we designed a portable 16-lead networked monitoring system based on the Android smart phone. The system uses some technologies including the active electrode, the WiFi wireless transmission, the multi-scale permutation entropy (MPE) algorithm, the back-propagation (BP) neural network algorithm, etc. Moreover, the software of Android mobile application can realize the processing and analysis of EEG data, the display of EEG waveform and the alarm of epileptic seizure. The system has been tested on the mobile phones with Android 2. 3 operating system or higher version and the results showed that this software ran accurately and steadily in the detection of epileptic seizure. In conclusion, this paper provides a portable and reliable solution for epileptic seizure monitoring in clinical and home applications.

  17. Monitoring of In-Situ Remediation By Time Lapse 3D Geo-Electric Measurements

    NASA Astrophysics Data System (ADS)

    Kanli, A. I.; Tildy, P.; Neducza, B.; Nagy, P.; Hegymegi, C.

    2017-12-01

    Injection of chemical oxidant solution to degrade the subsurface contaminants can be used for hydrocarbon contamination remediation. In this study, we developed a non-destructive measurement strategy to monitor oxidative in-situ remediation processes. The difficulties of the presented study originate from the small volume of conductive solution that can be used due to environmental considerations. Due to the effect of conductive groundwater and the high clay content of the targeted layer and the small volume of conductive solution that can be used due to environmental considerations, a site specific synthetic modelling is necessary for measurement design involving the results of preliminary 2D ERT measurements, electrical conductivity measurements of different active agents and expected resistivity changes calculated by soil resistivity modelling. Because of chemical biodegradation, the results of soil resistivity modelling have suggested that the reagent have complex effects on contaminated soils. As a result the plume of resistivity changes caused by the injected agent was determined showing strong fracturing effect because of the high pressure of injection. 3D time-lapse geo-electric measurements were proven to provide a usable monitoring tool for in-situ remediation as a result of our sophisticated tests and synthetic modelling.

  18. Chronic monitoring of lower urinary tract activity via a sacral dorsal root ganglia interface

    NASA Astrophysics Data System (ADS)

    Khurram, Abeer; Ross, Shani E.; Sperry, Zachariah J.; Ouyang, Aileen; Stephan, Christopher; Jiman, Ahmad A.; Bruns, Tim M.

    2017-06-01

    Objective. Our goal is to develop an interface that integrates chronic monitoring of lower urinary tract (LUT) activity with stimulation of peripheral pathways. Approach. Penetrating microelectrodes were implanted in sacral dorsal root ganglia (DRG) of adult male felines. Peripheral electrodes were placed on or in the pudendal nerve, bladder neck and near the external urethral sphincter. Supra-pubic bladder catheters were implanted for saline infusion and pressure monitoring. Electrode and catheter leads were enclosed in an external housing on the back. Neural signals from microelectrodes and bladder pressure of sedated or awake-behaving felines were recorded under various test conditions in weekly sessions. Electrodes were also stimulated to drive activity. Main results. LUT single- and multi-unit activity was recorded for 4-11 weeks in four felines. As many as 18 unique bladder pressure single-units were identified in each experiment. Some channels consistently recorded bladder afferent activity for up to 41 d, and we tracked individual single-units for up to 23 d continuously. Distension-evoked and stimulation-driven (DRG and pudendal) bladder emptying was observed, during which LUT sensory activity was recorded. Significance. This chronic implant animal model allows for behavioral studies of LUT neurophysiology and will allow for continued development of a closed-loop neuroprosthesis for bladder control.

  19. Catalytic ozonation of pentachlorophenol in aqueous solutions using granular activated carbon

    NASA Astrophysics Data System (ADS)

    Asgari, Ghorban; Samiee, Fateme; Ahmadian, Mohammad; Poormohammadi, Ali; solimanzadeh, Bahman

    2017-03-01

    The efficiency of granular activated carbon (GAC) was investigated in this study as a catalyst for the elimination of pentachlorophenol (PCP) from contaminated streams in a laboratory-scale semi-batch reactor. The influence of important parameters including solution pH (2-10), radical scavenger (tert-butanol, 0.04 mol/L), catalyst dosage (0.416-8.33 g/L), initial PCP concentration (100-1000 mg/L) and ozone flow rate (2.3-12 mg/min) was examined on the efficiency of the catalytic ozonation process (COP) in degradation and mineralization of PCP in aqueous solution. The experimental results showed that catalytic ozonation with GAC was most effective at pH of 8 with ozone flow rate of 12 mg/min and a GAC dosage of 2 g. Compared to the sole ozonation process (SOP), the removal levels of PCP and COP were, 98, and 79 %, respectively. The degradation rate of kinetics was also investigated. The results showed that using a GAC catalyst in the ozonation of PCP produced an 8.33-fold increase in rate kinetic compared to the SOP under optimum conditions. Tert-butanol alcohol (TBA) was used as a radical scavenger. The results demonstrated that COP was affected less by TBA than by SOP. These findings suggested that GAC acts as a suitable catalyst in COP to remove refractory pollutants from aqueous solution.

  20. BeMonitored: Monitoring psychophysiology and behavior using Android in phobias.

    PubMed

    Brás, Susana; Soares, Sandra C; Moreira, Ricardo; Fernandes, José M

    2016-09-01

    It is of the utmost importance that researchers can recreate, as accurately as possible, real-life conditions in psychological studies. However, that is not always possible. Given that phobias are rather context-specific, their study is the ideal candidate to assess the feasibility of using a mobile and wearable device for obtaining physiological and behavioral data. In this article, we propose BeMonitored, a smartphone-based solution to support more ecologically valid monitoring of psychological experiments. BeMonitored delivers customizable, specific context-dependent audiovisual stimuli and uses external resources connected via Bluetooth or a smartphone's own resources, while capturing the participant's behavior, physiology, and environment. We used BeMonitored in a spider phobia case study and showed that spider phobics differed from control participants in face motion, captured by the smartphone camera. Moreover, our results also revealed heart rate differences between spider and neutral stimuli in phobic participants. The presented results emphasize the usefulness of smartphones for phobia monitoring. Considering their intrinsic characteristics, smartphones may constitute the natural evolution from the lab to more realistic contexts.