Sample records for activation motif itam

  1. Distinct Pathways Regulate Syk Protein Activation Downstream of Immune Tyrosine Activation Motif (ITAM) and hemITAM Receptors in Platelets*

    PubMed Central

    Manne, Bhanu Kanth; Badolia, Rachit; Dangelmaier, Carol; Eble, Johannes A.; Ellmeier, Wilfried; Kahn, Mark; Kunapuli, Satya P.

    2015-01-01

    Tyrosine kinase pathways are known to play an important role in the activation of platelets. In particular, the GPVI and CLEC-2 receptors are known to activate Syk upon tyrosine phosphorylation of an immune tyrosine activation motif (ITAM) and hemITAM, respectively. However, unlike GPVI, the CLEC-2 receptor contains only one tyrosine motif in the intracellular domain. The mechanisms by which this receptor activates Syk are not completely understood. In this study, we identified a novel signaling mechanism in CLEC-2-mediated Syk activation. CLEC-2-mediated, but not GPVI-mediated, platelet activation and Syk phosphorylation were abolished by inhibition of PI3K, which demonstrates that PI3K regulates Syk downstream of CLEC-2. Ibrutinib, a Tec family kinase inhibitor, also completely abolished CLEC-2-mediated aggregation and Syk phosphorylation in human and murine platelets. Furthermore, embryos lacking both Btk and Tec exhibited cutaneous edema associated with blood-filled vessels in a typical lymphatic pattern similar to CLEC-2 or Syk-deficient embryos. Thus, our data show, for the first time, that PI3K and Tec family kinases play a crucial role in the regulation of platelet activation and Syk phosphorylation downstream of the CLEC-2 receptor. PMID:25767114

  2. Distinct pathways regulate Syk protein activation downstream of immune tyrosine activation motif (ITAM) and hemITAM receptors in platelets.

    PubMed

    Manne, Bhanu Kanth; Badolia, Rachit; Dangelmaier, Carol; Eble, Johannes A; Ellmeier, Wilfried; Kahn, Mark; Kunapuli, Satya P

    2015-05-01

    Tyrosine kinase pathways are known to play an important role in the activation of platelets. In particular, the GPVI and CLEC-2 receptors are known to activate Syk upon tyrosine phosphorylation of an immune tyrosine activation motif (ITAM) and hemITAM, respectively. However, unlike GPVI, the CLEC-2 receptor contains only one tyrosine motif in the intracellular domain. The mechanisms by which this receptor activates Syk are not completely understood. In this study, we identified a novel signaling mechanism in CLEC-2-mediated Syk activation. CLEC-2-mediated, but not GPVI-mediated, platelet activation and Syk phosphorylation were abolished by inhibition of PI3K, which demonstrates that PI3K regulates Syk downstream of CLEC-2. Ibrutinib, a Tec family kinase inhibitor, also completely abolished CLEC-2-mediated aggregation and Syk phosphorylation in human and murine platelets. Furthermore, embryos lacking both Btk and Tec exhibited cutaneous edema associated with blood-filled vessels in a typical lymphatic pattern similar to CLEC-2 or Syk-deficient embryos. Thus, our data show, for the first time, that PI3K and Tec family kinases play a crucial role in the regulation of platelet activation and Syk phosphorylation downstream of the CLEC-2 receptor. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. HRV signaling in airway epithelial cells is regulated by ITAM-mediated recruitment and activation of Syk.

    PubMed

    Lau, Christine; Castellanos, Patricia; Ranev, Dimitre; Wang, Xiaomin; Chow, Chung-Wai

    2011-05-01

    Human rhinovirus (HRV), cause of the common cold, is a leading cause of exacerbations of asthma and chronic obstruction pulmonary disease (COPD). Binding of HRV to ICAM (intercellular adhesion molecule)-1, its major receptor, induces a profound inflammatory response from airway epithelial cells. My laboratory has identified Syk tyrosine kinase to be an early regulator of HRV-ICAM-1 signalling: Syk mediates replication-independent p38 mitogen-activated protein (MAP) kinase and phosphatidyl-inositol 3 (PI3)-kinase activation, interleukin (IL)-8 expression, as well as HRV internalization via clathrin-mediated endocytosis. Syk activation is accompanied by formation of a protein complex consisting of ICAM-1, ezrin and Syk at the plasma membrane. However, the molecular mechanisms that regulate this process are not understood. In this report, we investigated the role of the Syk-SH2 domains and the ezrin ITAM (immuno-tyrosine activation motif)-like motif in HRV-induced cell activation using the human BEAS-2B airway epithelial cells. Our observations suggest that the ezrin-ITAM plays a role in Syk recruitment and activation by binding to the Syk tandem SH2 domains, as originally described in the canonical ITAM-mediating signal transduction pathway in hematopoietic cells. This report is the first to demonstrate ITAM-mediated signaling in non-hematopoietic cells, suggesting that this signaling paradigm may be more ubiquitous than previously recognized.

  4. Conformational changes induced in the protein tyrosine kinase p72syk by tyrosine phosphorylation or by binding of phosphorylated immunoreceptor tyrosine-based activation motif peptides.

    PubMed Central

    Kimura, T; Sakamoto, H; Appella, E; Siraganian, R P

    1996-01-01

    A critical event in signaling in immune cells is the interaction of Syk or ZAP-70 protein tyrosine kinases with multisubunit receptors that contain an approximately 18-amino-acid domain called the immunoreceptor tyrosine-based activation motif (ITAM). Tyrosine-phosphorylated Syk from activated cells was in a conformation different from that in nonstimulated cells as demonstrated by changes in immunoreactivity. The addition of tyrosine-diphosphorylated ITAM peptides resulted in a similar conformational change in Syk from nonactivated cells. The peptides based on FcepsilonRIgamma were more active than those based on Fcepsilon RIbeta. In vitro autophosphorylation of Syk was dramatically enhanced by the addition of the diphosphorylated ITAM peptides. The conformational change and the enhanced autophosphorylation required the presence of both phosphorylated tyrosines on the same molecule. These conformational changes in Syk by tyrosine phosphorylation or binding to diphosphorylated ITAM could be critical for Syk activation and downstream propagation of intracellular signals. PMID:8657120

  5. SLAP/SLAP2 prevent excessive platelet (hem)ITAM signaling in thrombosis and ischemic stroke in mice.

    PubMed

    Cherpokova, Deya; Bender, Markus; Morowski, Martina; Kraft, Peter; Schuhmann, Michael K; Akbar, Sarah M; Sultan, Cheryl S; Hughes, Craig E; Kleinschnitz, Christoph; Stoll, Guido; Dragone, Leonard L; Watson, Steve P; Tomlinson, Michael G; Nieswandt, Bernhard

    2015-01-01

    Glycoprotein VI and C-type lectin-like receptor 2 are essential platelet activating receptors in hemostasis and thrombo-inflammatory disease, which signal through a (hem)immunoreceptor tyrosine-based activation motif (ITAM)-dependent pathway. The adapter molecules Src-like adapter proteins (SLAP and SLAP2) are involved in the regulation of immune cell surface expression and signaling, but their function in platelets is unknown. In this study, we show that platelets expressed both SLAP isoforms and that overexpression of either protein in a heterologous cell line almost completely inhibited glycoprotein VI and C-type lectin-like receptor 2 signaling. In mice, single deficiency of SLAP or SLAP2 had only moderate effects on platelet function, whereas double deficiency of both adapters resulted in markedly increased signal transduction, integrin activation, granule release, aggregation, procoagulant activity, and thrombin generation in response to (hem)ITAM-coupled, but not G protein-coupled, receptor activation. In vivo, constitutive SLAP/SLAP2 knockout mice displayed accelerated occlusive arterial thrombus formation and a dramatically worsened outcome after focal cerebral ischemia. This was attributed to the absence of both adapter proteins in platelets, as demonstrated by adoptive transfer of Slap(-/-)/Slap2(-/-) platelets into wild-type mice. Our results establish SLAP and SLAP2 as critical inhibitors of platelet (hem)ITAM signaling in the setting of arterial thrombosis and ischemic stroke. © 2015 by The American Society of Hematology.

  6. Cooperative integrin/ITAM signaling in platelets enhances thrombus formation in vitro and in vivo

    PubMed Central

    Zhi, Huiying; Rauova, Lubica; Hayes, Vincent; Gao, Cunji; Boylan, Brian; Newman, Debra K.; McKenzie, Steven E.; Cooley, Brian C.; Poncz, Mortimer; Newman, Peter J.

    2013-01-01

    The integrin family is composed of a series of 24 αβ heterodimer transmembrane adhesion receptors that mediate cell-cell and cell-extracellular matrix interactions. Adaptor molecules bearing immunoreceptor tyrosine-based activation motifs (ITAMs) have recently been shown to cooperate with specific integrins to increase the efficiency of transmitting ligand-binding–induced signals into cells. In human platelets, Fc receptor γ-chain IIa (FcγRIIa) has been identified as an ITAM-bearing transmembrane receptor responsible for mediating “outside-in” signaling through αIIbβ3, the major adhesion receptor on the platelet surface. To explore the importance of FcγRIIa in thrombosis and hemostasis, we subjected FcγRIIa-negative and FcγRIIa-positive murine platelets to a number of well-accepted models of platelet function. Compared with their FcγRIIa-negative counterparts, FcγRIIa-positive platelets exhibited increased tyrosine phosphorylation of Syk and phospholipase Cγ2 and increased spreading upon interaction with immobilized fibrinogen, retracted a fibrin clot faster, and showed markedly enhanced thrombus formation when perfused over a collagen-coated flow chamber under conditions of arterial and venous shear. They also displayed increased thrombus formation and fibrin deposition in in vivo models of vascular injury. Taken together, these data establish FcγRIIa as a physiologically important functional conduit for αIIbβ3-mediated outside-in signaling, and suggest that modulating the activity of this novel integrin/ITAM pair might be effective in controlling thrombosis. PMID:23264598

  7. Evidence for the requirement of ITAM domains but not SLP-76/Gads interaction for integrin signaling in hematopoietic cells.

    PubMed

    Abtahian, Farhad; Bezman, Natalie; Clemens, Regina; Sebzda, Eric; Cheng, Lan; Shattil, Sanford J; Kahn, Mark L; Koretzky, Gary A

    2006-09-01

    Syk tyrosine kinase and Src homology 2 (SH2) domain-containing leukocyte-specific phosphoprotein of 76 kDa (SLP-76) are signaling mediators activated downstream of immunoreceptor tyrosine-based activation motif (ITAM)-containing immunoreceptors and integrins. While the signaling cascades descending from integrins are similar to immunoreceptors, the mechanism of Syk activation and SLP-76 recruitment remains unclear. We used an in vivo structure-function approach to study the requirements for the domains of Syk and SLP-76 in immunoreceptor and integrin signaling. We found that both SH2 domains and the kinase domain of Syk are required for immunoreceptor-dependent signaling and cellular response via integrins. While the Gads-binding domain of SLP-76 is needed for immunoreceptor signaling, it appears dispensable for integrin signaling. Syk and SLP-76 also are required for initiating and/or maintaining separation between the blood and lymphatic vasculature. Therefore, we correlated the signaling requirement of the various domains of Syk and SLP-76 to their requirement in regulating vascular separation. Our data suggest ITAMs are required in Syk-dependent integrin signaling, demonstrate the separation of the structural features of SLP-76 to selectively support immunoreceptor versus integrin signaling, and provide evidence that the essential domains of SLP-76 for ITAM signals are those which most efficiently support separation between lymphatic and blood vessels.

  8. Regulation of ITAM adaptor molecules and their receptors by inhibition of calcineurin-NFAT signalling during late stage osteoclast differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zawawi, M.S.F.; Discipline of Anatomy and Pathology, School of Medical Sciences, University of Adelaide, Adelaide, SA 5005; Dharmapatni, A.A.S.S.K.

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer Calcineurin/NFAT inhibitors FK506 and VIVIT treated human PBMC derived osteoclasts in vitro. Black-Right-Pointing-Pointer Differential regulation of ITAM receptors and adaptor molecules by calcineurin/NFAT inhibitors. Black-Right-Pointing-Pointer FK506 and VIVIT suppress ITAM factors during late phase osteoclast differentiation. -- Abstract: Osteoclasts are specialised bone resorptive cells responsible for both physiological and pathological bone loss. Osteoclast differentiation and activity is dependent upon receptor activator NF-kappa-B ligand (RANKL) interacting with its receptor RANK to induce the transcription factor, nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1). The immunoreceptor tyrosine-based activation motif (ITAM)-dependent pathway has been identified as a co-stimulatory pathway inmore » osteoclasts. Osteoclast-associated receptor (OSCAR) and triggering receptor expressed in myeloid cells (TREM2) are essential receptors that pair with adaptor molecules Fc receptor common gamma chain (FcR{gamma}) and DNAX-activating protein 12 kDa (DAP12) respectively to induce calcium signalling. Treatment with calcineurin-NFAT inhibitors, Tacrolimus (FK506) and the 11R-VIVIT (VIVIT) peptide, reduces NFATc1 expression consistent with a reduction in osteoclast differentiation and activity. This study aimed to investigate the effects of inhibiting calcineurin-NFAT signalling on the expression of ITAM factors and late stage osteoclast genes including cathepsin K (CathK), Beta 3 integrin ({beta}3) and Annexin VIII (AnnVIII). Human peripheral blood mononuclear cells (PBMCs) were differentiated with RANKL and macrophage-colony stimulating factor (M-CSF) over 10 days in the presence or absence of FK506 or VIVIT. Osteoclast formation (as assessed by tartrate resistant acid phosphatase (TRAP)) and activity (assessed by dentine pit resorption) were significantly reduced with treatment. Quantitative

  9. Immunoreceptor Tyrosine-based Inhibitory Motif (ITIM)-mediated Inhibitory Signaling is Regulated by Sequential Phosphorylation Mediated by Distinct Nonreceptor Tyrosine Kinases: A Case Study Involving PECAM-1

    PubMed Central

    Tourdot, Benjamin E.; Brenner, Michelle K.; Keough, Kathleen C.; Holyst, Trudy; Newman, Peter J.; Newman, Debra K.

    2013-01-01

    The activation state of many blood and vascular cells is tightly controlled by a delicate balance between receptors that contain immunoreceptor tyrosine-based activation motifs (ITAMs) and those that contain immunoreceptor tyrosine-based inhibitory motifs (ITIMs). Precisely how the timing of cellular activation by ITAM-coupled receptors is regulated by ITIM-containing receptors is, however, poorly understood. Using platelet endothelial cell adhesion molecule 1 (PECAM-1) as a prototypical ITIM-bearing receptor, we demonstrate that initiation of inhibitory signaling occurs via a novel, sequential process in which Src family kinases phosphorylate the C-terminal ITIM, thereby enabling phosphorylation of the N-terminal ITIM of PECAM-1 by other Src homology 2 domain-containing non-receptor tyrosine kinases (NRTKs). NRTKs capable of mediating the second phosphorylation event include C-terminal Src kinase (Csk) and Bruton’s tyrosine kinase (Btk). Btk and Csk function downstream of phosphatidylinositol 3-kinase (PI3K) activation during ITAM-dependent platelet activation. In ITAM-activated platelets that were treated with a PI3K inhibitor, PECAM-1 was phosphorylated but did not bind the tandem SH2 domain-containing tyrosine phosphatase SHP-2, indicating that it was not phosphorylated on its N-terminal ITIM. Csk bound to and phosphorylated PECAM-1 more efficiently than did Btk, and required its SH2 domain to perform these functions. Additionally, the phosphorylation of the N-terminal ITIM of Siglec-9 by Csk is enhanced by the prior phosphorylation of its C-terminal ITIM, providing evidence that the ITIMs of other dual ITIM-containing receptors are also sequentially phosphorylated. On the basis of these findings, we propose that sequential ITIM phosphorylation provides a general mechanism for precise temporal control over the recruitment and activation of tandem SH2 domain-containing tyrosine phosphatases that dampen ITAM-dependent signals. PMID:23418871

  10. Crammed signaling motifs in the T-cell receptor.

    PubMed

    Borroto, Aldo; Abia, David; Alarcón, Balbino

    2014-09-01

    Although the T cell antigen receptor (TCR) is long known to contain multiple signaling subunits (CD3γ, CD3δ, CD3ɛ and CD3ζ), their role in signal transduction is still not well understood. The presence of at least one immunoreceptor tyrosine-based activation motif (ITAM) in each CD3 subunit has led to the idea that the multiplication of such elements essentially serves to amplify signals. However, the evolutionary conservation of non-ITAM sequences suggests that each CD3 subunit is likely to have specific non-redundant roles at some stage of development or in mature T cell function. The CD3ɛ subunit is paradigmatic because in a relatively short cytoplasmic sequence (∼55 amino acids) it contains several docking sites for proteins involved in intracellular trafficking and signaling, proteins whose relevance in T cell activation is slowly starting to be revealed. In this review we will summarize our current knowledge on the signaling effectors that bind directly to the TCR and we will propose a hierarchy in their response to TCR triggering. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. A molecule in teleost fish, related with human MHC-encoded G6F, has a cytoplasmic tail with ITAM and marks the surface of thrombocytes and in some fishes also of erythrocytes.

    PubMed

    Ohashi, Ken; Takizawa, Fumio; Tokumaru, Norihiro; Nakayasu, Chihaya; Toda, Hideaki; Fischer, Uwe; Moritomo, Tadaaki; Hashimoto, Keiichiro; Nakanishi, Teruyuki; Dijkstra, Johannes Martinus

    2010-08-01

    In teleost fish, a novel gene G6F-like was identified, encoding a type I transmembrane molecule with four extracellular Ig-like domains and a cytoplasmic tail with putative tyrosine phosphorylation motifs including YxN and an immunoreceptor tyrosine-based activation motif (ITAM). G6F-like maps to a teleost genomic region where stretches corresponding to human chromosomes 6p (with the MHC), 12p (with CD4 and LAG-3), and 19q are tightly linked. This genomic organization resembles the ancestral "Ur-MHC" proposed for the jawed vertebrate ancestor. The deduced G6F-like molecule shows sequence similarity with members of the CD4/LAG-3 family and with the human major histocompatibility complex-encoded thrombocyte marker G6F. Despite some differences in molecular organization, teleost G6F-like and tetrapod G6F seem orthologous as they map to similar genomic location, share typical motifs in transmembrane and cytoplasmic regions, and are both expressed by thrombocytes/platelets. In the crucian carps goldfish (Carassius auratus auratus) and ginbuna (Carassius auratus langsdorfii), G6F-like was found expressed not only by thrombocytes but also by erythrocytes, supporting that erythroid and thromboid cells in teleost fish form a hematopoietic lineage like they do in mammals. The ITAM-bearing of G6F-like suggests that the molecule plays an important role in cell activation, and G6F-like expression by erythrocytes suggests that these cells have functional overlap potential with thrombocytes.

  12. Measurement Techniques for Flow Diagnostic in ITAM Impulse Wind Tunnels

    DTIC Science & Technology

    2010-04-01

    time of wind - tunnel operation, so that oscillations caused by initial shock loads could decay and a comparatively long time period with constant flow...Flow Diagnostic in ITAM Impulse Wind Tunnels 7 - 4 RTO-EN-AVT-186 A strain-gauge pressure probe is an elastic element (membrane) in a sealed...Diagnostic in ITAM Impulse Wind Tunnels RTO-EN-AVT-186 7 - 5 probes are individually calibrated. Piezoelectric pressure gauges are based

  13. Leishmania Uses Mincle to Target an Inhibitory ITAM Signaling Pathway in Dendritic Cells that Dampens Adaptive Immunity to Infection.

    PubMed

    Iborra, Salvador; Martínez-López, María; Cueto, Francisco J; Conde-Garrosa, Ruth; Del Fresno, Carlos; Izquierdo, Helena M; Abram, Clare L; Mori, Daiki; Campos-Martín, Yolanda; Reguera, Rosa María; Kemp, Benjamin; Yamasaki, Sho; Robinson, Matthew J; Soto, Manuel; Lowell, Clifford A; Sancho, David

    2016-10-18

    C-type lectin receptors sense a diversity of endogenous and exogenous ligands that may trigger differential responses. Here, we have found that human and mouse Mincle bind to a ligand released by Leishmania, a eukaryote parasite that evades an effective immune response. Mincle-deficient mice had milder dermal pathology and a tenth of the parasite burden compared to wild-type mice after Leishmania major intradermal ear infection. Mincle deficiency enhanced adaptive immunity against the parasite, correlating with increased activation, migration, and priming by Mincle-deficient dendritic cells (DCs). Leishmania triggered a Mincle-dependent inhibitory axis characterized by SHP1 coupling to the FcRγ chain. Selective loss of SHP1 in CD11c + cells phenocopies enhanced adaptive immunity to Leishmania. In conclusion, Leishmania shifts Mincle to an inhibitory ITAM (ITAMi) configuration that impairs DC activation. Thus, ITAMi can be exploited for immune evasion by a pathogen and may represent a paradigm for ITAM-coupled receptors sensing self and non-self. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. NK cell activation: distinct stimulatory pathways counterbalancing inhibitory signals.

    PubMed

    Bakker, A B; Wu, J; Phillips, J H; Lanier, L L

    2000-01-01

    A delicate balance between positive and negative signals regulates NK cell effector function. Activation of NK cells may be initiated by the triggering of multiple adhesion or costimulatory molecules, and can be counterbalanced by inhibitory signals induced by receptors for MHC class I. A common pathway of inhibitory signaling is provided by immunoreceptor tyrosine-based inhibitory motifs (ITIMs) in the cytoplasmic domains of these receptors which mediate the recruitment of SH2 domain-bearing tyrosine phosphate-1 (SHP-1). In contrast to the extensive progress that has been made regarding the negative regulation of NK cell function, our knowledge of the signals that activate NK cells is still poor. Recent studies of the activating receptor complexes have shed new light on the induction of NK cell effector function. Several NK receptors using novel adaptors with immunoreceptor tyrosine-based activation motifs (ITAMs) and with PI 3-kinase recruiting motifs have been implicated in NK cell stimulation.

  15. Identification of sequence motifs significantly associated with antisense activity.

    PubMed

    McQuisten, Kyle A; Peek, Andrew S

    2007-06-07

    Predicting the suppression activity of antisense oligonucleotide sequences is the main goal of the rational design of nucleic acids. To create an effective predictive model, it is important to know what properties of an oligonucleotide sequence associate significantly with antisense activity. Also, for the model to be efficient we must know what properties do not associate significantly and can be omitted from the model. This paper will discuss the results of a randomization procedure to find motifs that associate significantly with either high or low antisense suppression activity, analysis of their properties, as well as the results of support vector machine modelling using these significant motifs as features. We discovered 155 motifs that associate significantly with high antisense suppression activity and 202 motifs that associate significantly with low suppression activity. The motifs range in length from 2 to 5 bases, contain several motifs that have been previously discovered as associating highly with antisense activity, and have thermodynamic properties consistent with previous work associating thermodynamic properties of sequences with their antisense activity. Statistical analysis revealed no correlation between a motif's position within an antisense sequence and that sequences antisense activity. Also, many significant motifs existed as subwords of other significant motifs. Support vector regression experiments indicated that the feature set of significant motifs increased correlation compared to all possible motifs as well as several subsets of the significant motifs. The thermodynamic properties of the significantly associated motifs support existing data correlating the thermodynamic properties of the antisense oligonucleotide with antisense efficiency, reinforcing our hypothesis that antisense suppression is strongly associated with probe/target thermodynamics, as there are no enzymatic mediators to speed the process along like the RNA Induced

  16. A dinucleotide motif in oligonucleotides shows potent immunomodulatory activity and overrides species-specific recognition observed with CpG motif.

    PubMed

    Kandimalla, Ekambar R; Bhagat, Lakshmi; Zhu, Fu-Gang; Yu, Dong; Cong, Yan-Ping; Wang, Daqing; Tang, Jimmy X; Tang, Jin-Yan; Knetter, Cathrine F; Lien, Egil; Agrawal, Sudhir

    2003-11-25

    Bacterial and synthetic DNAs containing CpG dinucleotides in specific sequence contexts activate the vertebrate immune system through Toll-like receptor 9 (TLR9). In the present study, we used a synthetic nucleoside with a bicyclic heterobase [1-(2'-deoxy-beta-d-ribofuranosyl)-2-oxo-7-deaza-8-methyl-purine; R] to replace the C in CpG, resulting in an RpG dinucleotide. The RpG dinucleotide was incorporated in mouse- and human-specific motifs in oligodeoxynucleotides (oligos) and 3'-3-linked oligos, referred to as immunomers. Oligos containing the RpG motif induced cytokine secretion in mouse spleen-cell cultures. Immunomers containing RpG dinucleotides showed activity in transfected-HEK293 cells stably expressing mouse TLR9, suggesting direct involvement of TLR9 in the recognition of RpG motif. In J774 macrophages, RpG motifs activated NF-kappa B and mitogen-activated protein kinase pathways. Immunomers containing the RpG dinucleotide induced high levels of IL-12 and IFN-gamma, but lower IL-6 in time- and concentration-dependent fashion in mouse spleen-cell cultures costimulated with IL-2. Importantly, immunomers containing GTRGTT and GARGTT motifs were recognized to a similar extent by both mouse and human immune systems. Additionally, both mouse- and human-specific RpG immunomers potently stimulated proliferation of peripheral blood mononuclear cells obtained from diverse vertebrate species, including monkey, pig, horse, sheep, goat, rat, and chicken. An immunomer containing GTRGTT motif prevented conalbumin-induced and ragweed allergen-induced allergic inflammation in mice. We show that a synthetic bicyclic nucleotide is recognized in the C position of a CpG dinucleotide by immune cells from diverse vertebrate species without bias for flanking sequences, suggesting a divergent nucleotide motif recognition pattern of TLR9.

  17. Phosphorylation of a Tyrosine Residue on Zap70 by Lck and Its Subsequent Binding via an SH2 Domain May Be a Key Gatekeeper of T Cell Receptor Signaling In Vivo.

    PubMed

    Thill, Peter A; Weiss, Arthur; Chakraborty, Arup K

    2016-09-15

    The initiation of signaling in T lymphocytes in response to the binding of the T cell receptor (TCR) to cognate ligands is a key step in the emergence of adaptive immune responses. Conventional models posit that TCR signaling is initiated by the phosphorylation of receptor-associated immune receptor activation motifs (ITAMs). The cytoplasmic tyrosine kinase Zap70 binds to phosphorylated ITAMs, is subsequently activated, and then propagates downstream signaling. While evidence for such models is provided by experiments with cell lines, in vivo, Zap70 is bound to phosphorylated ITAMs in resting T cells. However, Zap70 is activated only upon TCR binding to cognate ligand. We report the results of computational studies of a new model for the initiation of TCR signaling that incorporates these in vivo observations. Importantly, the new model is shown to allow better and faster TCR discrimination between self-ligands and foreign ligands. The new model is consistent with many past experimental observations, and experiments that could further test the model are proposed. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  18. Negative regulation of glial engulfment activity by Draper terminates glial responses to axon injury

    PubMed Central

    Logan, Mary A.; Hackett, Rachel; Doherty, Johnna; Sheehan, Amy; Speese, Sean D.; Freeman, Marc R.

    2012-01-01

    Neuronal injury elicits potent cellular responses from glia, but molecular pathways modulating glial activation, phagocytic function, and termination of reactive responses remain poorly defined. Here we show that positive or negative regulation of glial reponses to axon injury are molecularly encoded by unique isoforms of the Drosophila engulfment receptor Draper. Draper-I promotes engulfment of axonal debris through an immunoreceptor tyrosine-based activation motif (ITAM). In contrast, Draper-II, an alternative splice variant, potently inhibits glial engulfment function. Draper-II suppresses Draper-I signaling through a novel immunoreceptor tyrosine-based inhibitory motif (ITIM)-like domain and the tyrosine phosphatase Corkscrew (Csw). Intriguingly, loss of Draper-II/Csw signaling prolongs expression of glial engulfment genes after axotomy and reduces the ability of glia to respond to secondary axotomy. Our work highlights a novel role for Draper-II in inhibiting glial responses to neurodegeneration, and indicates a balance of opposing Draper-I/-II signaling events is essential to maintain glial sensitivity to brain injury. PMID:22426252

  19. Identification of sequence motifs in oligonucleotides whose presence is correlated with antisense activity

    PubMed Central

    Matveeva, O. V.; Tsodikov, A. D.; Giddings, M.; Freier, S. M.; Wyatt, J. R.; Spiridonov, A. N.; Shabalina, S. A.; Gesteland, R. F.; Atkins, J. F.

    2000-01-01

    Design of antisense oligonucleotides targeting any mRNA can be much more efficient when several activity-enhancing motifs are included and activity-decreasing motifs are avoided. This conclusion was made after statistical analysis of data collected from >1000 experiments with phosphorothioate-modified oligonucleotides. Highly significant positive correlation between the presence of motifs CCAC, TCCC, ACTC, GCCA and CTCT in the oligonucleotide and its antisense efficiency was demonstrated. In addition, negative correlation was revealed for the motifs GGGG, ACTG, AAA and TAA. It was found that the likelihood of activity of an oligonucleotide against a desired mRNA target is sequence motif content dependent. PMID:10908347

  20. Retention of duplicated ITAM-containing transmembrane signaling subunits in the tetraploid amphibian species Xenopus laevis

    PubMed Central

    Guselnikov, S.V.; Grayfer, L.; De Jesús Andino, F.; Rogozin, I.B.; Robert, J.; Taranin, A.V.

    2015-01-01

    The ITAM-bearing transmembrane signaling subunits (TSS) are indispensable components of activating leukocyte receptor complexes. The TSS-encoding genes map to paralogous chromosomal regions, which are thought to arise from ancient genome tetraploidization(s). To assess a possible role of tetraploidization in the TSS evolution, we studied TSS and other functionally linked genes in the amphibian species Xenopus laevis whose genome was duplicated about 40 MYR ago. We found that X. laevis has retained a duplicated set of sixteen TSS genes, all except one being transcribed. Furthermore, duplicated TCRα loci and genes encoding TSS-coupling protein kinases have also been retained. No clear evidence for functional divergence of the TSS paralogs was obtained from gene expression and sequence analyses. We suggest that the main factor of maintenance of duplicated TSS genes in X. laevis was a protein dosage effect and that this effect might have facilitated the TSS set expansion in early vertebrates. PMID:26170006

  1. Insights into seven and single transmembrane-spanning domain receptors and their signaling pathways in human natural killer cells.

    PubMed

    Maghazachi, Azzam A

    2005-09-01

    Human natural killer (NK) cells are important cells of the innate immune system. These cells perform two prominent functions: the first is recognizing and destroying virally infected cells and transformed cells; the second is secreting various cytokines that shape up the innate and adaptive immune re-sponses. For these cells to perform these activities, they express different sets of receptors. The receptors used by NK cells to extravasate into sites of injury belong to the seven transmembrane (7TM) family of receptors, which characteristically bind heterotrimeric G proteins. These receptors allow NK cells to sense the chemotactic gradients and activate second messengers, which aid NK cells in polarizing and migrating toward the sites of injured tissues. In addition, these receptors determine how and why human resting NK cells are mainly found in the bloodstream, whereas activated NK cells extravasate into inflammatory sites. Receptors for chemokines and lysophospholipids belong to the 7TM family. On the other hand, NK cells recognize invading or transformed cells through another set of receptors that belong to the single transmembrane-spanning domain family. These receptors are either inhibitory or activating. Inhibitory receptors contain the immune receptor tyrosine-based inhibitory motif, and activating receptors belong to either those that associate with adaptor molecules containing the immune receptor tyrosine-based activating motif (ITAM) or those that associate with adaptor molecules containing motifs other than ITAM. This article will describe the nature of these receptors and examine the intracellular signaling pathways induced in NK cells after ligating both types of receptors. These pathways are crucial for NK cell biology, development, and functions.

  2. MotifMark: Finding regulatory motifs in DNA sequences.

    PubMed

    Hassanzadeh, Hamid Reza; Kolhe, Pushkar; Isbell, Charles L; Wang, May D

    2017-07-01

    The interaction between proteins and DNA is a key driving force in a significant number of biological processes such as transcriptional regulation, repair, recombination, splicing, and DNA modification. The identification of DNA-binding sites and the specificity of target proteins in binding to these regions are two important steps in understanding the mechanisms of these biological activities. A number of high-throughput technologies have recently emerged that try to quantify the affinity between proteins and DNA motifs. Despite their success, these technologies have their own limitations and fall short in precise characterization of motifs, and as a result, require further downstream analysis to extract useful and interpretable information from a haystack of noisy and inaccurate data. Here we propose MotifMark, a new algorithm based on graph theory and machine learning, that can find binding sites on candidate probes and rank their specificity in regard to the underlying transcription factor. We developed a pipeline to analyze experimental data derived from compact universal protein binding microarrays and benchmarked it against two of the most accurate motif search methods. Our results indicate that MotifMark can be a viable alternative technique for prediction of motif from protein binding microarrays and possibly other related high-throughput techniques.

  3. The C-type lectin OCILRP2 costimulates EL4 T cell activation via the DAP12-Raf-MAP kinase pathway.

    PubMed

    Lou, Qiang; Zhang, Wei; Liu, Guangchao; Ma, Yuanfang

    2014-01-01

    OCILRP2 is a typical Type-II transmembrane protein that is selectively expressed in activated T lymphocytes, dendritic cells, and B cells and functions as a novel co-stimulator of T cell activation. However, the signaling pathways underlying OCILRP2 in T cell activation are still not completely understood. In this study, we found that the knockdown of OCILRP2 expression with shRNA or the blockage of its activity by an anti-OCILRP2 antagonist antibody reduced CD3/CD28-costimulated EL4 T cell viability and IL-2 production, inhibit Raf1, MAPK3, and MAPK8 activation, and impair NFAT and NF-κB transcriptional activities. Furthermore, immunoprecipitation results indicated that OCILRP2 could interact with the DAP12 protein, an adaptor containing an intracellular ITAM motif that can transduce signals to induce MAP kinase activation for T cell activation. Our data reveal that after binding with DAP12, OCILRP2 activates the Raf-MAP kinase pathways, resulting in T cell activation.

  4. Growth Factor Receptor–Bound Protein 2 Contributes to (Hem)Immunoreceptor Tyrosine-Based Activation Motif–Mediated Signaling in Platelets

    PubMed Central

    Morowski, Martina; Schiessl, Sarah; Schäfer, Carmen M.; Watson, Stephanie K.; Hughes, Craig E.; Ackermann, Jochen A.; Radtke, Daniel; Hermanns, Heike M.; Watson, Steve P.; Nitschke, Lars; Nieswandt, Bernhard

    2015-01-01

    Rationale Platelets are anuclear cell fragments derived from bone marrow megakaryocytes (MKs) that safeguard vascular integrity but may also cause pathological vessel occlusion. One major pathway of platelet activation is triggered by 2 receptors that signal through an (hem)immunoreceptor tyrosine-based activation motif (ITAM), the activating collagen receptor glycoprotein (GP) VI and the C-type lectin-like receptor 2 (CLEC-2). Growth factor receptor–bound protein 2 (Grb2) is a ubiquitously expressed adapter molecule involved in signaling processes of numerous receptors in different cell types, but its function in platelets and MKs is unknown. Objective We tested the hypothesis that Grb2 is a crucial adapter protein in (hem)immunoreceptor tyrosine-based activation motif signaling in platelets. Methods and Results Here, we show that genetic ablation of Grb2 in MKs and platelets did not interfere with MK differentiation or platelet production. However, Grb2-deficiency severely impaired glycoprotein VI–mediated platelet activation because of defective stabilization of the linker of activated T-cell (LAT) signalosome and activation of downstream signaling proteins that resulted in reduced adhesion, aggregation, and coagulant activity on collagen in vitro. Similarly, CLEC-2–mediated signaling was impaired in Grb2-deficient platelets, whereas the cells responded normally to stimulation of G protein–coupled receptors. In vivo, this selective (hem) immunoreceptor tyrosine-based activation motif signaling defect resulted in prolonged bleeding times but affected arterial thrombus formation only after concomitant treatment with acetylsalicylic acid, indicating that defective glycoprotein VI signaling in the absence of Grb2 can be compensated through thromboxane A2–induced G protein–coupled receptor signaling pathways. Conclusions These results reveal an important contribution of Grb2 in (hem)immunoreceptor tyrosine-based activation motif signaling in platelets in

  5. Spontaneous cortical activity alternates between motifs defined by regional axonal projections

    PubMed Central

    Mohajerani, Majid H.; Chan, Allen W.; Mohsenvand, Mostafa; LeDue, Jeffrey; Liu, Rui; McVea, David A.; Boyd, Jamie D.; Wang, Yu Tian; Reimers, Mark; Murphy, Timothy H.

    2014-01-01

    In lightly anaesthetized or awake adult mice using millisecond timescale voltage sensitive dye imaging, we show that a palette of sensory-evoked and hemisphere-wide activity motifs are represented in spontaneous activity. These motifs can reflect multiple modes of sensory processing including vision, audition, and touch. Similar cortical networks were found with direct cortical activation using channelrhodopsin-2. Regional analysis of activity spread indicated modality specific sources such as primary sensory areas, and a common posterior-medial cortical sink where sensory activity was extinguished within the parietal association area, and a secondary anterior medial sink within the cingulate/secondary motor cortices for visual stimuli. Correlation analysis between functional circuits and intracortical axonal projections indicated a common framework corresponding to long-range mono-synaptic connections between cortical regions. Maps of intracortical mono-synaptic structural connections predicted hemisphere-wide patterns of spontaneous and sensory-evoked depolarization. We suggest that an intracortical monosynaptic connectome shapes the ebb and flow of spontaneous cortical activity. PMID:23974708

  6. A Conserved GPG-Motif in the HIV-1 Nef Core Is Required for Principal Nef-Activities

    PubMed Central

    Martínez-Bonet, Marta; Palladino, Claudia; Briz, Veronica; Rudolph, Jochen M.; Fackler, Oliver T.; Relloso, Miguel; Muñoz-Fernandez, Maria Angeles; Madrid, Ricardo

    2015-01-01

    To find out new determinants required for Nef activity we performed a functional alanine scanning analysis along a discrete but highly conserved region at the core of HIV-1 Nef. We identified the GPG-motif, located at the 121–137 region of HIV-1 NL4.3 Nef, as a novel protein signature strictly required for the p56Lck dependent Nef-induced CD4-downregulation in T-cells. Since the Nef-GPG motif was dispensable for CD4-downregulation in HeLa-CD4 cells, Nef/AP-1 interaction and Nef-dependent effects on Tf-R trafficking, the observed effects on CD4 downregulation cannot be attributed to structure constraints or to alterations on general protein trafficking. Besides, we found that the GPG-motif was also required for Nef-dependent inhibition of ring actin re-organization upon TCR triggering and MHCI downregulation, suggesting that the GPG-motif could actively cooperate with the Nef PxxP motif for these HIV-1 Nef-related effects. Finally, we observed that the Nef-GPG motif was required for optimal infectivity of those viruses produced in T-cells. According to these findings, we propose the conserved GPG-motif in HIV-1 Nef as functional region required for HIV-1 infectivity and therefore with a potential interest for the interference of Nef activity during HIV-1 infection. PMID:26700863

  7. Subtle Changes in Motif Positioning Cause Tissue-Specific Effects on Robustness of an Enhancer's Activity

    PubMed Central

    Erceg, Jelena; Saunders, Timothy E.; Girardot, Charles; Devos, Damien P.; Hufnagel, Lars; Furlong, Eileen E. M.

    2014-01-01

    Deciphering the specific contribution of individual motifs within cis-regulatory modules (CRMs) is crucial to understanding how gene expression is regulated and how this process is affected by sequence variation. But despite vast improvements in the ability to identify where transcription factors (TFs) bind throughout the genome, we are limited in our ability to relate information on motif occupancy to function from sequence alone. Here, we engineered 63 synthetic CRMs to systematically assess the relationship between variation in the content and spacing of motifs within CRMs to CRM activity during development using Drosophila transgenic embryos. In over half the cases, very simple elements containing only one or two types of TF binding motifs were capable of driving specific spatio-temporal patterns during development. Different motif organizations provide different degrees of robustness to enhancer activity, ranging from binary on-off responses to more subtle effects including embryo-to-embryo and within-embryo variation. By quantifying the effects of subtle changes in motif organization, we were able to model biophysical rules that explain CRM behavior and may contribute to the spatial positioning of CRM activity in vivo. For the same enhancer, the effects of small differences in motif positions varied in developmentally related tissues, suggesting that gene expression may be more susceptible to sequence variation in one tissue compared to another. This result has important implications for human eQTL studies in which many associated mutations are found in cis-regulatory regions, though the mechanism for how they affect tissue-specific gene expression is often not understood. PMID:24391522

  8. The PDZ-binding motif of Yes-associated protein is required for its co-activation of TEAD-mediated CTGF transcription and oncogenic cell transforming activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimomura, Tadanori; Miyamura, Norio; Hata, Shoji

    2014-01-17

    Highlights: •Loss of the PDZ-binding motif inhibits constitutively active YAP (5SA)-induced oncogenic cell transformation. •The PDZ-binding motif of YAP promotes its nuclear localization in cultured cells and mouse liver. •Loss of the PDZ-binding motif inhibits YAP (5SA)-induced CTGF transcription in cultured cells and mouse liver. -- Abstract: YAP is a transcriptional co-activator that acts downstream of the Hippo signaling pathway and regulates multiple cellular processes, including proliferation. Hippo pathway-dependent phosphorylation of YAP negatively regulates its function. Conversely, attenuation of Hippo-mediated phosphorylation of YAP increases its ability to stimulate proliferation and eventually induces oncogenic transformation. The C-terminus of YAP contains amore » highly conserved PDZ-binding motif that regulates YAP’s functions in multiple ways. However, to date, the importance of the PDZ-binding motif to the oncogenic cell transforming activity of YAP has not been determined. In this study, we disrupted the PDZ-binding motif in the YAP (5SA) protein, in which the sites normally targeted by Hippo pathway-dependent phosphorylation are mutated. We found that loss of the PDZ-binding motif significantly inhibited the oncogenic transformation of cultured cells induced by YAP (5SA). In addition, the increased nuclear localization of YAP (5SA) and its enhanced activation of TEAD-dependent transcription of the cell proliferation gene CTGF were strongly reduced when the PDZ-binding motif was deleted. Similarly, in mouse liver, deletion of the PDZ-binding motif suppressed nuclear localization of YAP (5SA) and YAP (5SA)-induced CTGF expression. Taken together, our results indicate that the PDZ-binding motif of YAP is critical for YAP-mediated oncogenesis, and that this effect is mediated by YAP’s co-activation of TEAD-mediated CTGF transcription.« less

  9. Genome-Wide Identification of Mitogen-Activated Protein Kinase Gene Family across Fungal Lineage Shows Presence of Novel and Diverse Activation Loop Motifs

    PubMed Central

    Mohanta, Tapan Kumar; Mohanta, Nibedita; Parida, Pratap; Panda, Sujogya Kumar; Ponpandian, Lakshmi Narayanan; Bae, Hanhong

    2016-01-01

    The mitogen-activated protein kinase (MAPK) is characterized by the presence of the T-E-Y, T-D-Y, and T-G-Y motifs in its activation loop region and plays a significant role in regulating diverse cellular responses in eukaryotic organisms. Availability of large-scale genome data in the fungal kingdom encouraged us to identify and analyse the fungal MAPK gene family consisting of 173 fungal species. The analysis of the MAPK gene family resulted in the discovery of several novel activation loop motifs (T-T-Y, T-I-Y, T-N-Y, T-H-Y, T-S-Y, K-G-Y, T-Q-Y, S-E-Y and S-D-Y) in fungal MAPKs. The phylogenetic analysis suggests that fungal MAPKs are non-polymorphic, had evolved from their common ancestors around 1500 million years ago, and are distantly related to plant MAPKs. We are the first to report the presence of nine novel activation loop motifs in fungal MAPKs. The specificity of the activation loop motif plays a significant role in controlling different growth and stress related pathways in fungi. Hence, the presences of these nine novel activation loop motifs in fungi are of special interest. PMID:26918378

  10. Function-based classification of carbohydrate-active enzymes by recognition of short, conserved peptide motifs.

    PubMed

    Busk, Peter Kamp; Lange, Lene

    2013-06-01

    Functional prediction of carbohydrate-active enzymes is difficult due to low sequence identity. However, similar enzymes often share a few short motifs, e.g., around the active site, even when the overall sequences are very different. To exploit this notion for functional prediction of carbohydrate-active enzymes, we developed a simple algorithm, peptide pattern recognition (PPR), that can divide proteins into groups of sequences that share a set of short conserved sequences. When this method was used on 118 glycoside hydrolase 5 proteins with 9% average pairwise identity and representing four characterized enzymatic functions, 97% of the proteins were sorted into groups correlating with their enzymatic activity. Furthermore, we analyzed 8,138 glycoside hydrolase 13 proteins including 204 experimentally characterized enzymes with 28 different functions. There was a 91% correlation between group and enzyme activity. These results indicate that the function of carbohydrate-active enzymes can be predicted with high precision by finding short, conserved motifs in their sequences. The glycoside hydrolase 61 family is important for fungal biomass conversion, but only a few proteins of this family have been functionally characterized. Interestingly, PPR divided 743 glycoside hydrolase 61 proteins into 16 subfamilies useful for targeted investigation of the function of these proteins and pinpointed three conserved motifs with putative importance for enzyme activity. Furthermore, the conserved sequences were useful for cloning of new, subfamily-specific glycoside hydrolase 61 proteins from 14 fungi. In conclusion, identification of conserved sequence motifs is a new approach to sequence analysis that can predict carbohydrate-active enzyme functions with high precision.

  11. Multisite Phosphorylation Modulates the T Cell Receptor ζ-Chain Potency but not the Switchlike Response.

    PubMed

    Mukhopadhyay, Himadri; de Wet, Ben; Clemens, Lara; Maini, Philip K; Allard, Jun; van der Merwe, P Anton; Dushek, Omer

    2016-04-26

    Multisite phosphorylation is ubiquitous in cellular signaling and is thought to provide signaling proteins with additional regulatory mechanisms. Indeed, mathematical models have revealed a large number of mechanisms by which multisite phosphorylation can produce switchlike responses. The T cell antigen receptor (TCR) is a multisubunit receptor on the surface of T cells that is a prototypical multisite substrate as it contains 20 sites that are distributed on 10 conserved immunoreceptor tyrosine-based activation motifs (ITAMs). The TCR ζ-chain is a homodimer subunit that contains six ITAMs (12 sites) and exhibits a number of properties that are predicted to be sufficient for a switchlike response. We have used cellular reconstitution to systematically study multisite phosphorylation of the TCR ζ-chain. We find that multisite phosphorylation proceeds by a nonsequential random mechanism, and find no evidence that multiple ITAMs modulate a switchlike response but do find that they alter receptor potency and maximum phosphorylation. Modulation of receptor potency can be explained by a reduction in molecular entropy of the disordered ζ-chain upon phosphorylation. We further find that the tyrosine kinase ZAP-70 increases receptor potency but does not modulate the switchlike response. In contrast to other multisite proteins, where phosphorylations act in strong concert to modulate protein function, we suggest that the multiple ITAMs on the TCR function mainly to amplify subsequent signaling. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. CD3ζ-based chimeric antigen receptors mediate T cell activation via cis- and trans-signalling mechanisms: implications for optimization of receptor structure for adoptive cell therapy

    PubMed Central

    Bridgeman, J S; Ladell, K; Sheard, V E; Miners, K; Hawkins, R E; Price, D A; Gilham, D E

    2014-01-01

    Chimeric antigen receptors (CARs) can mediate redirected lysis of tumour cells in a major histocompatibility complex (MHC)-independent manner, thereby enabling autologous adoptive T cell therapy for a variety of malignant neoplasms. Currently, most CARs incorporate the T cell receptor (TCR) CD3ζ signalling chain; however, the precise mechanisms responsible for CAR-mediated T cell activation are unclear. In this study, we used a series of immunoreceptor tyrosine-based activation motif (ITAM)-mutant and transmembrane-modified receptors to demonstrate that CARs activate T cells both directly via the antigen-ligated signalling chain and indirectly via associated chains within the TCR complex. These observations allowed us to generate new receptors capable of eliciting polyfunctional responses in primary human T cells. This work increases our understanding of CAR function and identifies new avenues for the optimization of CAR-based therapeutic interventions. PMID:24116999

  13. Contrasting roles of DAP10 and KARAP/DAP12 signaling adaptors in activation of the RBL-2H3 leukemic mast cell line.

    PubMed

    Anfossi, Nicolas; Lucas, Mathias; Diefenbach, Andreas; Bühring, Hans-Jörg; Raulet, David; Tomasello, Elena; Vivier, Eric

    2003-12-01

    A common feature of hematopoietic activating immunoreceptors resides in their association at the cell surface with transmembrane signaling adaptors. Several adaptors, such as the CD3 molecules, FcRgamma and KARAP/DAP12, harbor intracytoplasmic immunoreceptor tyrosine-based activation motifs (ITAM) that activate Syk-family protein tyrosine kinases. In contrast, another transmembrane adaptor, DAP10, bears a YxxM motif that delivers signals by activation of lipid kinase pathways. We show here that the human signal-regulatory protein SIRPbeta1 can associate with both DAP10 and KARAP/DAP12 in a model of RBL-2H3 cell transfectants. In association with KARAP/DAP12, SIRPbeta1 complexes are capable of inducing serotonin release and tumor necrosis factor (TNF) secretion. By contrast,in the absence of KARAP/DAP12, engagement of SIRPbeta1:DAP10 complexes does not lead to detectable serotonin release or TNF secretion by RBL-2H3 transfectants. However, triggering of SIRPbeta1:DAP10 complexes co-stimulates RBL-2H3 effector function induced by sub-optimal stimulation of the endogenous FcepsilonRI complex. Therefore, we report here a cellular model in which the association of a cell surface receptor with various signaling adaptors dictates the co-stimulatory or the direct stimulatory properties of the complex.

  14. CompariMotif: quick and easy comparisons of sequence motifs.

    PubMed

    Edwards, Richard J; Davey, Norman E; Shields, Denis C

    2008-05-15

    CompariMotif is a novel tool for making motif-motif comparisons, identifying and describing similarities between regular expression motifs. CompariMotif can identify a number of different relationships between motifs, including exact matches, variants of degenerate motifs and complex overlapping motifs. Motif relationships are scored using shared information content, allowing the best matches to be easily identified in large comparisons. Many input and search options are available, enabling a list of motifs to be compared to itself (to identify recurring motifs) or to datasets of known motifs. CompariMotif can be run online at http://bioware.ucd.ie/ and is freely available for academic use as a set of open source Python modules under a GNU General Public License from http://bioinformatics.ucd.ie/shields/software/comparimotif/

  15. Multiple Binding Modes between HNF4[alpha] and the LXXLL Motifs of PGC-1[alpha] Lead to Full Activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rha, Geun Bae; Wu, Guangteng; Shoelson, Steven E.

    2010-04-15

    Hepatocyte nuclear factor 4{alpha} (HNF4{alpha}) is a novel nuclear receptor that participates in a hierarchical network of transcription factors regulating the development and physiology of such vital organs as the liver, pancreas, and kidney. Among the various transcriptional coregulators with which HNF4{alpha} interacts, peroxisome proliferation-activated receptor {gamma} (PPAR{gamma}) coactivator 1{alpha} (PGC-1{alpha}) represents a novel coactivator whose activation is unusually robust and whose binding mode appears to be distinct from that of canonical coactivators such as NCoA/SRC/p160 family members. To elucidate the potentially unique molecular mechanism of PGC-1{alpha} recruitment, we have determined the crystal structure of HNF4{alpha} in complex with amore » fragment of PGC-1{alpha} containing all three of its LXXLL motifs. Despite the presence of all three LXXLL motifs available for interactions, only one is bound at the canonical binding site, with no additional contacts observed between the two proteins. However, a close inspection of the electron density map indicates that the bound LXXLL motif is not a selected one but an averaged structure of more than one LXXLL motif. Further biochemical and functional studies show that the individual LXXLL motifs can bind but drive only minimal transactivation. Only when more than one LXXLL motif is involved can significant transcriptional activity be measured, and full activation requires all three LXXLL motifs. These findings led us to propose a model wherein each LXXLL motif has an additive effect, and the multiple binding modes by HNF4{alpha} toward the LXXLL motifs of PGC-1{alpha} could account for the apparent robust activation by providing a flexible mechanism for combinatorial recruitment of additional coactivators and mediators.« less

  16. The C-Type Lectin OCILRP2 Costimulates EL4 T Cell Activation via the DAP12-Raf-MAP Kinase Pathway

    PubMed Central

    Lou, Qiang; Zhang, Wei; Liu, Guangchao; Ma, Yuanfang

    2014-01-01

    OCILRP2 is a typical Type-II transmembrane protein that is selectively expressed in activated T lymphocytes, dendritic cells, and B cells and functions as a novel co-stimulator of T cell activation. However, the signaling pathways underlying OCILRP2 in T cell activation are still not completely understood. In this study, we found that the knockdown of OCILRP2 expression with shRNA or the blockage of its activity by an anti-OCILRP2 antagonist antibody reduced CD3/CD28-costimulated EL4 T cell viability and IL-2 production, inhibit Raf1, MAPK3, and MAPK8 activation, and impair NFAT and NF-κB transcriptional activities. Furthermore, immunoprecipitation results indicated that OCILRP2 could interact with the DAP12 protein, an adaptor containing an intracellular ITAM motif that can transduce signals to induce MAP kinase activation for T cell activation. Our data reveal that after binding with DAP12, OCILRP2 activates the Raf-MAP kinase pathways, resulting in T cell activation. PMID:25411776

  17. Multiple activities of the plant pathogen type III effector proteins WtsE and AvrE require WxxxE motifs.

    PubMed

    Ham, Jong Hyun; Majerczak, Doris R; Nomura, Kinya; Mecey, Christy; Uribe, Francisco; He, Sheng-Yang; Mackey, David; Coplin, David L

    2009-06-01

    The broadly conserved AvrE-family of type III effectors from gram-negative plant-pathogenic bacteria includes important virulence factors, yet little is known about the mechanisms by which these effectors function inside plant cells to promote disease. We have identified two conserved motifs in AvrE-family effectors: a WxxxE motif and a putative C-terminal endoplasmic reticulum membrane retention/retrieval signal (ERMRS). The WxxxE and ERMRS motifs are both required for the virulence activities of WtsE and AvrE, which are major virulence factors of the corn pathogen Pantoea stewartii subsp. stewartii and the tomato or Arabidopsis pathogen Pseudomonas syringae pv. tomato, respectively. The WxxxE and the predicted ERMRS motifs are also required for other biological activities of WtsE, including elicitation of the hypersensitive response in nonhost plants and suppression of defense responses in Arabidopsis. A family of type III effectors from mammalian bacterial pathogens requires WxxxE and subcellular targeting motifs for virulence functions that involve their ability to mimic activated G-proteins. The conservation of related motifs and their necessity for the function of type III effectors from plant pathogens indicates that disturbing host pathways by mimicking activated host G-proteins may be a virulence mechanism employed by plant pathogens as well.

  18. Space-related pharma-motifs for fast search of protein binding motifs and polypharmacological targets

    PubMed Central

    2012-01-01

    Background To discover a compound inhibiting multiple proteins (i.e. polypharmacological targets) is a new paradigm for the complex diseases (e.g. cancers and diabetes). In general, the polypharmacological proteins often share similar local binding environments and motifs. As the exponential growth of the number of protein structures, to find the similar structural binding motifs (pharma-motifs) is an emergency task for drug discovery (e.g. side effects and new uses for old drugs) and protein functions. Results We have developed a Space-Related Pharmamotifs (called SRPmotif) method to recognize the binding motifs by searching against protein structure database. SRPmotif is able to recognize conserved binding environments containing spatially discontinuous pharma-motifs which are often short conserved peptides with specific physico-chemical properties for protein functions. Among 356 pharma-motifs, 56.5% interacting residues are highly conserved. Experimental results indicate that 81.1% and 92.7% polypharmacological targets of each protein-ligand complex are annotated with same biological process (BP) and molecular function (MF) terms, respectively, based on Gene Ontology (GO). Our experimental results show that the identified pharma-motifs often consist of key residues in functional (active) sites and play the key roles for protein functions. The SRPmotif is available at http://gemdock.life.nctu.edu.tw/SRP/. Conclusions SRPmotif is able to identify similar pharma-interfaces and pharma-motifs sharing similar binding environments for polypharmacological targets by rapidly searching against the protein structure database. Pharma-motifs describe the conservations of binding environments for drug discovery and protein functions. Additionally, these pharma-motifs provide the clues for discovering new sequence-based motifs to predict protein functions from protein sequence databases. We believe that SRPmotif is useful for elucidating protein functions and drug discovery

  19. Space-related pharma-motifs for fast search of protein binding motifs and polypharmacological targets.

    PubMed

    Chiu, Yi-Yuan; Lin, Chun-Yu; Lin, Chih-Ta; Hsu, Kai-Cheng; Chang, Li-Zen; Yang, Jinn-Moon

    2012-01-01

    To discover a compound inhibiting multiple proteins (i.e. polypharmacological targets) is a new paradigm for the complex diseases (e.g. cancers and diabetes). In general, the polypharmacological proteins often share similar local binding environments and motifs. As the exponential growth of the number of protein structures, to find the similar structural binding motifs (pharma-motifs) is an emergency task for drug discovery (e.g. side effects and new uses for old drugs) and protein functions. We have developed a Space-Related Pharmamotifs (called SRPmotif) method to recognize the binding motifs by searching against protein structure database. SRPmotif is able to recognize conserved binding environments containing spatially discontinuous pharma-motifs which are often short conserved peptides with specific physico-chemical properties for protein functions. Among 356 pharma-motifs, 56.5% interacting residues are highly conserved. Experimental results indicate that 81.1% and 92.7% polypharmacological targets of each protein-ligand complex are annotated with same biological process (BP) and molecular function (MF) terms, respectively, based on Gene Ontology (GO). Our experimental results show that the identified pharma-motifs often consist of key residues in functional (active) sites and play the key roles for protein functions. The SRPmotif is available at http://gemdock.life.nctu.edu.tw/SRP/. SRPmotif is able to identify similar pharma-interfaces and pharma-motifs sharing similar binding environments for polypharmacological targets by rapidly searching against the protein structure database. Pharma-motifs describe the conservations of binding environments for drug discovery and protein functions. Additionally, these pharma-motifs provide the clues for discovering new sequence-based motifs to predict protein functions from protein sequence databases. We believe that SRPmotif is useful for elucidating protein functions and drug discovery.

  20. HRD Motif as the Central Hub of the Signaling Network for Activation Loop Autophosphorylation in Abl Kinase.

    PubMed

    La Sala, Giuseppina; Riccardi, Laura; Gaspari, Roberto; Cavalli, Andrea; Hantschel, Oliver; De Vivo, Marco

    2016-11-08

    A number of structural factors modulate the activity of Abelson (Abl) tyrosine kinase, whose deregulation is often related to oncogenic processes. First, only the open conformation of the Abl kinase domain's activation loop (A-loop) favors ATP binding to the catalytic cleft. In this regard, the trans-autophosphorylation of the Y412 residue, which is located along the A-loop, favors the stability of the open conformation, in turn enhancing Abl activity. Another key factor for full Abl activity is the formation of active conformations of the catalytic DFG motif in the Abl kinase domain. Furthermore, binding of the SH2 domain to the N-lobe of the Abl kinase was recently demonstrated to have a long-range allosteric effect on the stabilization of the A-loop open state. Intriguingly, these distinct structural factors imply a complex signal transmission network for controlling the A-loop's flexibility and conformational preference for optimal Abl function. However, the exact dynamical features of this signal transmission network structure remain unclear. Here, we report on microsecond-long molecular dynamics coupled with enhanced sampling simulations of multiple Abl model systems, in the presence or absence of the SH2 domain and with the DFG motif flipped in two ways (in or out conformation). Through comparative analysis, our simulations augment the interpretation of the existing Abl experimental data, revealing a dynamical network of interactions that interconnect SH2 domain binding with A-loop plasticity and Y412 autophosphorylation in Abl. This signaling network engages the DFG motif and, importantly, other conserved structural elements of the kinase domain, namely, the EPK-ELK H-bond network and the HRD motif. Our results show that the signal propagation for modulating the A-loop spatial localization is highly dependent on the HRD motif conformation, which thus acts as the central hub of this (allosteric) signaling network controlling Abl activation and function.

  1. MotifNet: a web-server for network motif analysis.

    PubMed

    Smoly, Ilan Y; Lerman, Eugene; Ziv-Ukelson, Michal; Yeger-Lotem, Esti

    2017-06-15

    Network motifs are small topological patterns that recur in a network significantly more often than expected by chance. Their identification emerged as a powerful approach for uncovering the design principles underlying complex networks. However, available tools for network motif analysis typically require download and execution of computationally intensive software on a local computer. We present MotifNet, the first open-access web-server for network motif analysis. MotifNet allows researchers to analyze integrated networks, where nodes and edges may be labeled, and to search for motifs of up to eight nodes. The output motifs are presented graphically and the user can interactively filter them by their significance, number of instances, node and edge labels, and node identities, and view their instances. MotifNet also allows the user to distinguish between motifs that are centered on specific nodes and motifs that recur in distinct parts of the network. MotifNet is freely available at http://netbio.bgu.ac.il/motifnet . The website was implemented using ReactJs and supports all major browsers. The server interface was implemented in Python with data stored on a MySQL database. estiyl@bgu.ac.il or michaluz@cs.bgu.ac.il. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  2. Modification by covalent reaction or oxidation of cysteine residues in the tandem-SH2 domains of ZAP-70 and Syk can block phosphopeptide binding.

    PubMed

    Visperas, Patrick R; Winger, Jonathan A; Horton, Timothy M; Shah, Neel H; Aum, Diane J; Tao, Alyssa; Barros, Tiago; Yan, Qingrong; Wilson, Christopher G; Arkin, Michelle R; Weiss, Arthur; Kuriyan, John

    2015-01-01

    Zeta-chain associated protein of 70 kDa (ZAP-70) and spleen tyrosine kinase (Syk) are non-receptor tyrosine kinases that are essential for T-cell and B-cell antigen receptor signalling respectively. They are recruited, via their tandem-SH2 (Src-homology domain 2) domains, to doubly phosphorylated immunoreceptor tyrosine-based activation motifs (ITAMs) on invariant chains of immune antigen receptors. Because of their critical roles in immune signalling, ZAP-70 and Syk are targets for the development of drugs for autoimmune diseases. We show that three thiol-reactive small molecules can prevent the tandem-SH2 domains of ZAP-70 and Syk from binding to phosphorylated ITAMs. We identify a specific cysteine residue in the phosphotyrosine-binding pocket of each protein (Cys39 in ZAP-70, Cys206 in Syk) that is necessary for inhibition by two of these compounds. We also find that ITAM binding to ZAP-70 and Syk is sensitive to the presence of H2O2 and these two cysteine residues are also necessary for inhibition by H2O2. Our findings suggest a mechanism by which the reactive oxygen species generated during responses to antigen could attenuate signalling through these kinases and may also inform the development of ZAP-70 and Syk inhibitors that bind covalently to their SH2 domains.

  3. Modification by covalent reaction or oxidation of cysteine residues in the Tandem-SH2 Domains of ZAP-70 and Syk Can Block Phosphopeptide Binding

    PubMed Central

    Visperas, Patrick R.; Winger, Jonathan A.; Horton, Timothy M.; Shah, Neel H.; Aum, Diane J.; Tao, Alyssa; Barros, Tiago; Yan, Qingrong; Wilson, Christopher G.; Arkin, Michelle R.; Weiss, Arthur; Kuriyan, John

    2015-01-01

    Zeta-chain Associated Protein of 70kDa (ZAP-70) and Spleen tyrosine kinase (Syk) are non-receptor tyrosine kinases that are essential for T-cell and B-cell antigen receptor signaling, respectively. They are recruited, via their tandem-SH2 domains, to doubly-phosphorylated Immunoreceptor Tyrosine-based Activation Motifs (ITAMs) on invariant chains of immune antigen receptors. Because of their critical roles in immune signaling, ZAP-70 and Syk are targets for the development of drugs for autoimmune diseases. We show that three thiol-reactive small molecules can prevent the tandem-SH2 domains of ZAP-70 and Syk from binding to phosphorylated ITAMs. We identify a specific cysteine residue in the phosphotyrosine-binding pocket of each protein (Cys 39 in ZAP-70, Cys 206 in Syk) that is necessary for inhibition by two of these compounds. We also find that ITAM binding to ZAP-70 and Syk is sensitive to the presence of hydrogen peroxide, and these two cysteine residues are also necessary for inhibition by hydrogen peroxide. Our findings suggest a mechanism by which the generation of reactive oxygen species generated during responses to antigen could attenuate signaling through these kinases, and may also inform the development of ZAP-70 and Syk inhibitors that bind covalently to their SH2 domains. PMID:25287889

  4. BayesMotif: de novo protein sorting motif discovery from impure datasets.

    PubMed

    Hu, Jianjun; Zhang, Fan

    2010-01-18

    Protein sorting is the process that newly synthesized proteins are transported to their target locations within or outside of the cell. This process is precisely regulated by protein sorting signals in different forms. A major category of sorting signals are amino acid sub-sequences usually located at the N-terminals or C-terminals of protein sequences. Genome-wide experimental identification of protein sorting signals is extremely time-consuming and costly. Effective computational algorithms for de novo discovery of protein sorting signals is needed to improve the understanding of protein sorting mechanisms. We formulated the protein sorting motif discovery problem as a classification problem and proposed a Bayesian classifier based algorithm (BayesMotif) for de novo identification of a common type of protein sorting motifs in which a highly conserved anchor is present along with a less conserved motif regions. A false positive removal procedure is developed to iteratively remove sequences that are unlikely to contain true motifs so that the algorithm can identify motifs from impure input sequences. Experiments on both implanted motif datasets and real-world datasets showed that the enhanced BayesMotif algorithm can identify anchored sorting motifs from pure or impure protein sequence dataset. It also shows that the false positive removal procedure can help to identify true motifs even when there is only 20% of the input sequences containing true motif instances. We proposed BayesMotif, a novel Bayesian classification based algorithm for de novo discovery of a special category of anchored protein sorting motifs from impure datasets. Compared to conventional motif discovery algorithms such as MEME, our algorithm can find less-conserved motifs with short highly conserved anchors. Our algorithm also has the advantage of easy incorporation of additional meta-sequence features such as hydrophobicity or charge of the motifs which may help to overcome the limitations of

  5. GIV/Girdin activates Gαi and inhibits Gαs via the same motif

    PubMed Central

    Gupta, Vijay; Bhandari, Deepali; Leyme, Anthony; Aznar, Nicolas; Midde, Krishna K.; Lo, I-Chung; Ear, Jason; Niesman, Ingrid; López-Sánchez, Inmaculada; Blanco-Canosa, Juan Bautista; von Zastrow, Mark; Garcia-Marcos, Mikel; Farquhar, Marilyn G.; Ghosh, Pradipta

    2016-01-01

    We previously showed that guanine nucleotide-binding (G) protein α subunit (Gα)-interacting vesicle-associated protein (GIV), a guanine-nucleotide exchange factor (GEF), transactivates Gα activity-inhibiting polypeptide 1 (Gαi) proteins in response to growth factors, such as EGF, using a short C-terminal motif. Subsequent work demonstrated that GIV also binds Gαs and that inactive Gαs promotes maturation of endosomes and shuts down mitogenic MAPK–ERK1/2 signals from endosomes. However, the mechanism and consequences of dual coupling of GIV to two G proteins, Gαi and Gαs, remained unknown. Here we report that GIV is a bifunctional modulator of G proteins; it serves as a guanine nucleotide dissociation inhibitor (GDI) for Gαs using the same motif that allows it to serve as a GEF for Gαi. Upon EGF stimulation, GIV modulates Gαi and Gαs sequentially: first, a key phosphomodification favors the assembly of GIV–Gαi complexes and activates GIV’s GEF function; then a second phosphomodification terminates GIV’s GEF function, triggers the assembly of GIV–Gαs complexes, and activates GIV’s GDI function. By comparing WT and GIV mutants, we demonstrate that GIV inhibits Gαs activity in cells responding to EGF. Consequently, the cAMP→PKA→cAMP response element-binding protein signaling axis is inhibited, the transit time of EGF receptor through early endosomes are accelerated, mitogenic MAPK–ERK1/2 signals are rapidly terminated, and proliferation is suppressed. These insights define a paradigm in G-protein signaling in which a pleiotropically acting modulator uses the same motif both to activate and to inhibit G proteins. Our findings also illuminate how such modulation of two opposing Gα proteins integrates downstream signals and cellular responses. PMID:27621449

  6. Overlapping activation-induced cytidine deaminase hotspot motifs in Ig class-switch recombination

    PubMed Central

    Han, Li; Masani, Shahnaz; Yu, Kefei

    2011-01-01

    Ig class-switch recombination (CSR) is directed by the long and repetitive switch regions and requires activation-induced cytidine deaminase (AID). One of the conserved switch-region sequence motifs (AGCT) is a preferred site for AID-mediated DNA-cytosine deamination. By using somatic gene targeting and recombinase-mediated cassette exchange, we established a cell line-based CSR assay that allows manipulation of switch sequences at the endogenous locus. We show that AGCT is only one of a family of four WGCW motifs in the switch region that can facilitate CSR. We go on to show that it is the overlap of AID hotspots at WGCW sites on the top and bottom strands that is critical. This finding leads to a much clearer model for the difference between CSR and somatic hypermutation. PMID:21709240

  7. [Personal motif in art].

    PubMed

    Gerevich, József

    2015-01-01

    One of the basic questions of the art psychology is whether a personal motif is to be found behind works of art and if so, how openly or indirectly it appears in the work itself. Analysis of examples and documents from the fine arts and literature allow us to conclude that the personal motif that can be identified by the viewer through symbols, at times easily at others with more difficulty, gives an emotional plus to the artistic product. The personal motif may be found in traumatic experiences, in communication to the model or with other emotionally important persons (mourning, disappointment, revenge, hatred, rivalry, revolt etc.), in self-searching, or self-analysis. The emotions are expressed in artistic activity either directly or indirectly. The intention nourished by the artist's identity (Kunstwollen) may stand in the way of spontaneous self-expression, channelling it into hidden paths. Under the influence of certain circumstances, the artist may arouse in the viewer, consciously or unconsciously, an illusionary, misleading image of himself. An examination of the personal motif is one of the important research areas of art therapy.

  8. A sequence-specific transcription activator motif and powerful synthetic variants that bind Mediator using a fuzzy protein interface.

    PubMed

    Warfield, Linda; Tuttle, Lisa M; Pacheco, Derek; Klevit, Rachel E; Hahn, Steven

    2014-08-26

    Although many transcription activators contact the same set of coactivator complexes, the mechanism and specificity of these interactions have been unclear. For example, do intrinsically disordered transcription activation domains (ADs) use sequence-specific motifs, or do ADs of seemingly different sequence have common properties that encode activation function? We find that the central activation domain (cAD) of the yeast activator Gcn4 functions through a short, conserved sequence-specific motif. Optimizing the residues surrounding this short motif by inserting additional hydrophobic residues creates very powerful ADs that bind the Mediator subunit Gal11/Med15 with high affinity via a "fuzzy" protein interface. In contrast to Gcn4, the activity of these synthetic ADs is not strongly dependent on any one residue of the AD, and this redundancy is similar to that of some natural ADs in which few if any sequence-specific residues have been identified. The additional hydrophobic residues in the synthetic ADs likely allow multiple faces of the AD helix to interact with the Gal11 activator-binding domain, effectively forming a fuzzier interface than that of the wild-type cAD.

  9. Platelet 12-lipoxygenase activation via glycoprotein VI: involvement of multiple signaling pathways in agonist control of H(P)ETE synthesis.

    PubMed

    Coffey, Marcus J; Jarvis, Gavin E; Gibbins, Jonathan M; Coles, Barbara; Barrett, Natasha E; Wylie, Oliver R E; O'Donnell, Valerie B

    2004-06-25

    Lipoxygenases (LOX) contribute to vascular disease and inflammation through generation of bioactive lipids, including 12-hydro(pero)xyeicosatetraenoic acid (12-H(P)ETE). The physiological mechanisms that acutely control LOX product generation in mammalian cells are uncharacterized. Human platelets that contain a 12-LOX isoform (p12-LOX) were used to define pathways that activate H(P)ETE synthesis in the vasculature. Collagen and collagen-related peptide (CRP) (1 to 10 microg/mL) acutely induced platelet 12-H(P)ETE synthesis. This implicated the collagen receptor glycoprotein VI (GPVI), which signals via the immunoreceptor-based activatory motif (ITAM)-containing FcRgamma chain. Conversely, thrombin only activated at high concentrations (> 0.2 U/mL), whereas U46619 and ADP alone were ineffective. Collagen or CRP-stimulated 12-H(P)ETE generation was inhibited by staurosporine, PP2, wortmannin, BAPTA/AM, EGTA, and L-655238, implicating src-tyrosine kinases, PI3-kinase, Ca2+ mobilization, and p12-LOX translocation. In contrast, protein kinase C (PKC) inhibition potentiated 12-H(P)ETE generation. Finally, activation of the immunoreceptor tyrosine-based inhibitory motif (ITIM)-containing platelet endothelial cell adhesion molecule (PECAM-1) inhibited p12-LOX product generation. This study characterizes a receptor-dependent pathway for 12-H(P)ETE synthesis via the collagen receptor GPVI, which is negatively regulated by PECAM-1 and PKC, and demonstrates a novel link between immune receptor signaling and lipid mediator generation in the vasculature.

  10. Functional synthetic Antennapedia genes and the dual roles of YPWM motif and linker size in transcriptional activation and repression

    PubMed Central

    Papadopoulos, Dimitrios K.; Reséndez-Pérez, Diana; Cárdenas-Chávez, Diana L.; Villanueva-Segura, Karina; Canales-del-Castillo, Ricardo; Felix, Daniel A.; Fünfschilling, Raphael; Gehring, Walter J.

    2011-01-01

    Segmental identity along the anteroposterior axis of bilateral animals is specified by Hox genes. These genes encode transcription factors, harboring the conserved homeodomain and, generally, a YPWM motif, which binds Hox cofactors and increases Hox transcriptional specificity in vivo. Here we derive synthetic Drosophila Antennapedia genes, consisting only of the YPWM motif and homeodomain, and investigate their functional role throughout development. Synthetic peptides and full-length Antennapedia proteins cause head-to-thorax transformations in the embryo, as well as antenna-to-tarsus and eye-to-wing transformations in the adult, thus converting the entire head to a mesothorax. This conversion is achieved by repression of genes required for head and antennal development and ectopic activation of genes promoting thoracic and tarsal fates, respectively. Synthetic Antennapedia peptides bind DNA specifically and interact with Extradenticle and Bric-à-brac interacting protein 2 cofactors in vitro and ex vivo. Substitution of the YPWM motif by alanines abolishes Antennapedia homeotic function, whereas substitution of YPWM by the WRPW repressor motif, which binds the transcriptional corepressor Groucho, allows all proteins to act as repressors only. Finally, naturally occurring variations in the size of the linker between the homeodomain and YPWM motif enhance Antennapedia repressive or activating efficiency, emphasizing the importance of linker size, rather than sequence, for specificity. Our results clearly show that synthetic Antennapedia genes are functional in vivo and therefore provide powerful tools for synthetic biology. Moreover, the YPWM motif is necessary—whereas the entire N terminus of the protein is dispensable—for Antennapedia homeotic function, indicating its dual role in transcriptional activation and repression by recruiting either coactivators or corepressors. PMID:21712439

  11. Differential Requirements for Src-Family Kinases in SYK or ZAP70-Mediated SLP-76 Phosphorylation in Lymphocytes

    PubMed Central

    Fasbender, Frank; Claus, Maren; Wingert, Sabine; Sandusky, Mina; Watzl, Carsten

    2017-01-01

    In a synthetic biology approach using Schneider (S2) cells, we show that SLP-76 is directly phosphorylated at tyrosines Y113 and Y128 by SYK in the presence of ITAM-containing adapters such as CD3ζ, DAP12, or FcεRγ. This phosphorylation was dependent on at least one functional ITAM and a functional SH2 domain within SYK. Inhibition of Src-kinases by inhibitors PP1 and PP2 did not reduce SLP-76 phosphorylation in S2 cells, suggesting an ITAM and SYK dependent, but Src-kinase independent signaling pathway. This direct ITAM/SYK/SLP-76 signaling pathway therefore differs from previously described ITAM signaling. However, the SYK-family kinase ZAP70 required the additional co-expression of the Src-family kinases Fyn or Lck to efficiently phosphorylate SLP-76 in S2 cells. This difference in Src-family kinase dependency of SYK versus ZAP70-mediated ITAM-based signaling was further demonstrated in human lymphocytes. ITAM signaling in ZAP70-expressing T cells was dependent on the activity of Src-family kinases. In contrast, Src-family kinases were partially dispensable for ITAM signaling in SYK-expressing B cells or in natural killer cells, which express SYK and ZAP70. This demonstrates that SYK can signal using a Src-kinase independent ITAM-based signaling pathway, which may be involved in calibrating the threshold for lymphocyte activation. PMID:28736554

  12. Differential Requirements for Src-Family Kinases in SYK or ZAP70-Mediated SLP-76 Phosphorylation in Lymphocytes.

    PubMed

    Fasbender, Frank; Claus, Maren; Wingert, Sabine; Sandusky, Mina; Watzl, Carsten

    2017-01-01

    In a synthetic biology approach using Schneider (S2) cells, we show that SLP-76 is directly phosphorylated at tyrosines Y113 and Y128 by SYK in the presence of ITAM-containing adapters such as CD3ζ, DAP12, or FcεRγ. This phosphorylation was dependent on at least one functional ITAM and a functional SH2 domain within SYK. Inhibition of Src-kinases by inhibitors PP1 and PP2 did not reduce SLP-76 phosphorylation in S2 cells, suggesting an ITAM and SYK dependent, but Src-kinase independent signaling pathway. This direct ITAM/SYK/SLP-76 signaling pathway therefore differs from previously described ITAM signaling. However, the SYK-family kinase ZAP70 required the additional co-expression of the Src-family kinases Fyn or Lck to efficiently phosphorylate SLP-76 in S2 cells. This difference in Src-family kinase dependency of SYK versus ZAP70-mediated ITAM-based signaling was further demonstrated in human lymphocytes. ITAM signaling in ZAP70-expressing T cells was dependent on the activity of Src-family kinases. In contrast, Src-family kinases were partially dispensable for ITAM signaling in SYK-expressing B cells or in natural killer cells, which express SYK and ZAP70. This demonstrates that SYK can signal using a Src-kinase independent ITAM-based signaling pathway, which may be involved in calibrating the threshold for lymphocyte activation.

  13. Characterization of human palmitoyl-acyl transferase activity using peptides that mimic distinct palmitoylation motifs.

    PubMed Central

    Varner, Amanda S; Ducker, Charles E; Xia, Zuping; Zhuang, Yan; De Vos, Mackenzie L; Smith, Charles D

    2003-01-01

    The covalent attachment of palmitate to proteins commonly occurs on cysteine residues near either N-myristoylated glycine residues or C-terminal farnesylated cysteine residues. It therefore seems likely that multiple palmitoyl-acyl transferase (PAT) activities exist to recognize and modify these distinct palmitoylation motifs. To evaluate this possibility, two synthetic peptides representing these palmitoylation motifs, termed MyrGCK(NBD) and FarnCNRas(NBD), were used to characterize PAT activity under a variety of conditions. The human tumour cell lines MCF-7 and Hep-G2 each demonstrated high levels of PAT activity towards both peptides. In contrast, normal mouse fibroblasts (NIH/3T3 cells) demonstrated PAT activity towards the myristoylated substrate peptide but not the farnesylated peptide, while ras -transformed NIH/3T3 cells were able to palmitoylate the FarnCNRas(NBD) peptide. The kinetic parameters for PAT activity were determined using membranes from MCF-7 cells, and indicated that the K (m) values for palmitoyl-CoA were identical for PAT activity towards the two substrate peptides; however, the K (m) for MyrGCK(NBD) was 5-fold lower than the K (m) for FarnCNRas(NBD). PAT activity towards the two substrate peptides was dose-dependently inhibited by 2-bromopalmitate and 3-(1-oxo-hexadecyl)oxiranecarboxamide (16C; IC(50) values of approx. 4 and 1.3 microM, respectively); however, 2-bromopalmitate was found to be uncompetitive with respect to palmitoyl-CoA, whereas 16C was competitive. To seek additional evidence for multiple PATs, the effects of altering the assay conditions on the palmitoylation of MyrGCK(NBD) and FarnCNRas(NBD) were compared. PAT activity towards the two peptide substrates was modulated similarly by changing the ionic strength or incubation temperature, or by the addition of dithiothreitol. In contrast, the enzymic palmitoylation of the two peptides was differentially affected by N -ethylmaleimide and thermal denaturation. Overall, these

  14. DLocalMotif: a discriminative approach for discovering local motifs in protein sequences.

    PubMed

    Mehdi, Ahmed M; Sehgal, Muhammad Shoaib B; Kobe, Bostjan; Bailey, Timothy L; Bodén, Mikael

    2013-01-01

    Local motifs are patterns of DNA or protein sequences that occur within a sequence interval relative to a biologically defined anchor or landmark. Current protein motif discovery methods do not adequately consider such constraints to identify biologically significant motifs that are only weakly over-represented but spatially confined. Using negatives, i.e. sequences known to not contain a local motif, can further increase the specificity of their discovery. This article introduces the method DLocalMotif that makes use of positional information and negative data for local motif discovery in protein sequences. DLocalMotif combines three scoring functions, measuring degrees of motif over-representation, entropy and spatial confinement, specifically designed to discriminatively exploit the availability of negative data. The method is shown to outperform current methods that use only a subset of these motif characteristics. We apply the method to several biological datasets. The analysis of peroxisomal targeting signals uncovers several novel motifs that occur immediately upstream of the dominant peroxisomal targeting signal-1 signal. The analysis of proline-tyrosine nuclear localization signals uncovers multiple novel motifs that overlap with C2H2 zinc finger domains. We also evaluate the method on classical nuclear localization signals and endoplasmic reticulum retention signals and find that DLocalMotif successfully recovers biologically relevant sequence properties. http://bioinf.scmb.uq.edu.au/dlocalmotif/

  15. Hydrophobic Motif Phosphorylation Coordinates Activity and Polar Localization of the Neurospora crassa Nuclear Dbf2-Related Kinase COT1

    PubMed Central

    Maerz, Sabine; Dettmann, Anne

    2012-01-01

    Nuclear Dbf2p-related (NDR) kinases and associated proteins are recognized as a conserved network that regulates eukaryotic cell polarity. NDR kinases require association with MOB adaptor proteins and phosphorylation of two conserved residues in the activation segment and hydrophobic motif for activity and function. We demonstrate that the Neurospora crassa NDR kinase COT1 forms inactive dimers via a conserved N-terminal extension, which is also required for the interaction of the kinase with MOB2 to generate heterocomplexes with basal activity. Basal kinase activity also requires autophosphorylation of the COT1-MOB2 complex in the activation segment, while hydrophobic motif phosphorylation of COT1 by the germinal center kinase POD6 fully activates COT1 through induction of a conformational change. Hydrophobic motif phosphorylation is also required for plasma membrane association of the COT1-MOB2 complex. MOB2 further restricts the membrane-associated kinase complex to the hyphal apex to promote polar cell growth. These data support an integrated mechanism of NDR kinase regulation in vivo, in which kinase activation and cellular localization of COT1 are coordinated by dual phosphorylation and interaction with MOB2. PMID:22451488

  16. Viral Protein Inhibits RISC Activity by Argonaute Binding through Conserved WG/GW Motifs

    PubMed Central

    García-Chapa, Meritxell; López-Moya, Juan José; Burgyán, József

    2010-01-01

    RNA silencing is an evolutionarily conserved sequence-specific gene-inactivation system that also functions as an antiviral mechanism in higher plants and insects. To overcome antiviral RNA silencing, viruses express silencing-suppressor proteins. These viral proteins can target one or more key points in the silencing machinery. Here we show that in Sweet potato mild mottle virus (SPMMV, type member of the Ipomovirus genus, family Potyviridae), the role of silencing suppressor is played by the P1 protein (the largest serine protease among all known potyvirids) despite the presence in its genome of an HC-Pro protein, which, in potyviruses, acts as the suppressor. Using in vivo studies we have demonstrated that SPMMV P1 inhibits si/miRNA-programmed RISC activity. Inhibition of RISC activity occurs by binding P1 to mature high molecular weight RISC, as we have shown by immunoprecipitation. Our results revealed that P1 targets Argonaute1 (AGO1), the catalytic unit of RISC, and that suppressor/binding activities are localized at the N-terminal half of P1. In this region three WG/GW motifs were found resembling the AGO-binding linear peptide motif conserved in metazoans and plants. Site-directed mutagenesis proved that these three motifs are absolutely required for both binding and suppression of AGO1 function. In contrast to other viral silencing suppressors analyzed so far P1 inhibits both existing and de novo formed AGO1 containing RISC complexes. Thus P1 represents a novel RNA silencing suppressor mechanism. The discovery of the molecular bases of P1 mediated silencing suppression may help to get better insight into the function and assembly of the poorly explored multiprotein containing RISC. PMID:20657820

  17. Defining RNA motif-aminoglycoside interactions via two-dimensional combinatorial screening and structure-activity relationships through sequencing.

    PubMed

    Velagapudi, Sai Pradeep; Disney, Matthew D

    2013-10-15

    RNA is an extremely important target for the development of chemical probes of function or small molecule therapeutics. Aminoglycosides are the most well studied class of small molecules to target RNA. However, the RNA motifs outside of the bacterial rRNA A-site that are likely to be bound by these compounds in biological systems is largely unknown. If such information were known, it could allow for aminoglycosides to be exploited to target other RNAs and, in addition, could provide invaluable insights into potential bystander targets of these clinically used drugs. We utilized two-dimensional combinatorial screening (2DCS), a library-versus-library screening approach, to select the motifs displayed in a 3×3 nucleotide internal loop library and in a 6-nucleotide hairpin library that bind with high affinity and selectivity to six aminoglycoside derivatives. The selected RNA motifs were then analyzed using structure-activity relationships through sequencing (StARTS), a statistical approach that defines the privileged RNA motif space that binds a small molecule. StARTS allowed for the facile annotation of the selected RNA motif-aminoglycoside interactions in terms of affinity and selectivity. The interactions selected by 2DCS generally have nanomolar affinities, which is higher affinity than the binding of aminoglycosides to a mimic of their therapeutic target, the bacterial rRNA A-site. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Murine natural killer immunoreceptors use distinct proximal signaling complexes to direct cell function

    PubMed Central

    May, Rebecca M.; Okumura, Mariko; Hsu, Chin-Jung; Bassiri, Hamid; Yang, Enjun; Rak, Gregory; Mace, Emily M.; Philip, Naomi H.; Zhang, Weiguo; Baumgart, Tobias; Orange, Jordan S.; Nichols, Kim E.

    2013-01-01

    Signaling pathways leading to natural killer (NK)–cell effector function are complex and incompletely understood. Here, we investigated the proximal signaling pathways downstream of the immunotyrosine-based activation motif (ITAM) bearing activating receptors. We found that the adaptor molecule SH2 domain-containing leukocyte protein of 76 kD (SLP-76) is recruited to microclusters at the plasma membrane in activated NK cells and that this is required for initiation of downstream signaling and multiple NK-cell effector functions in vitro and in vivo. Surprisingly, we found that 2 types of proximal signaling complexes involving SLP-76 were formed. In addition to the canonical membrane complex formed between SLP-76 and linker for activation of T cells (LAT) family members, a novel LAT family–independent SLP-76–dependent signaling pathway was identified. The LAT family–independent pathway involved the SH2 domain of SLP-76 and adhesion and degranulation-promoting adaptor protein (ADAP). Both the LAT family–dependent and ADAP-dependent pathway contributed to interferon-gamma production and cytotoxicity; however, they were not essential for other SLP-76–dependent events, including phosphorylation of AKT and extracellular signal–related kinase and cellular proliferation. These results demonstrate that NK cells possess an unexpected bifurcation of proximal ITAM-mediated signaling, each involving SLP-76 and contributing to optimal NK-cell function. PMID:23407547

  19. Stringency of the 2-His–1-Asp Active-Site Motif in Prolyl 4-Hydroxylase

    PubMed Central

    Gorres, Kelly L.; Pua, Khian Hong; Raines, Ronald T.

    2009-01-01

    The non-heme iron(II) dioxygenase family of enzymes contain a common 2-His–1-carboxylate iron-binding motif. These enzymes catalyze a wide variety of oxidative reactions, such as the hydroxylation of aliphatic C–H bonds. Prolyl 4-hydroxylase (P4H) is an α-ketoglutarate-dependent iron(II) dioxygenase that catalyzes the post-translational hydroxylation of proline residues in protocollagen strands, stabilizing the ensuing triple helix. Human P4H residues His412, Asp414, and His483 have been identified as an iron-coordinating 2-His–1-carboxylate motif. Enzymes that catalyze oxidative halogenation do so by a mechanism similar to that of P4H. These halogenases retain the active-site histidine residues, but the carboxylate ligand is replaced with a halide ion. We replaced Asp414 of P4H with alanine (to mimic the active site of a halogenase) and with glycine. These substitutions do not, however, convert P4H into a halogenase. Moreover, the hydroxylase activity of D414A P4H cannot be rescued with small molecules. In addition, rearranging the two His and one Asp residues in the active site eliminates hydroxylase activity. Our results demonstrate a high stringency for the iron-binding residues in the P4H active site. We conclude that P4H, which catalyzes an especially demanding chemical transformation, is recalcitrant to change. PMID:19890397

  20. Interconnected network motifs control podocyte morphology and kidney function.

    PubMed

    Azeloglu, Evren U; Hardy, Simon V; Eungdamrong, Narat John; Chen, Yibang; Jayaraman, Gomathi; Chuang, Peter Y; Fang, Wei; Xiong, Huabao; Neves, Susana R; Jain, Mohit R; Li, Hong; Ma'ayan, Avi; Gordon, Ronald E; He, John Cijiang; Iyengar, Ravi

    2014-02-04

    Podocytes are kidney cells with specialized morphology that is required for glomerular filtration. Diseases, such as diabetes, or drug exposure that causes disruption of the podocyte foot process morphology results in kidney pathophysiology. Proteomic analysis of glomeruli isolated from rats with puromycin-induced kidney disease and control rats indicated that protein kinase A (PKA), which is activated by adenosine 3',5'-monophosphate (cAMP), is a key regulator of podocyte morphology and function. In podocytes, cAMP signaling activates cAMP response element-binding protein (CREB) to enhance expression of the gene encoding a differentiation marker, synaptopodin, a protein that associates with actin and promotes its bundling. We constructed and experimentally verified a β-adrenergic receptor-driven network with multiple feedback and feedforward motifs that controls CREB activity. To determine how the motifs interacted to regulate gene expression, we mapped multicompartment dynamical models, including information about protein subcellular localization, onto the network topology using Petri net formalisms. These computational analyses indicated that the juxtaposition of multiple feedback and feedforward motifs enabled the prolonged CREB activation necessary for synaptopodin expression and actin bundling. Drug-induced modulation of these motifs in diseased rats led to recovery of normal morphology and physiological function in vivo. Thus, analysis of regulatory motifs using network dynamics can provide insights into pathophysiology that enable predictions for drug intervention strategies to treat kidney disease.

  1. Interconnected Network Motifs Control Podocyte Morphology and Kidney Function

    PubMed Central

    Azeloglu, Evren U.; Hardy, Simon V.; Eungdamrong, Narat John; Chen, Yibang; Jayaraman, Gomathi; Chuang, Peter Y.; Fang, Wei; Xiong, Huabao; Neves, Susana R.; Jain, Mohit R.; Li, Hong; Ma’ayan, Avi; Gordon, Ronald E.; He, John Cijiang; Iyengar, Ravi

    2014-01-01

    Podocytes are kidney cells with specialized morphology that is required for glomerular filtration. Diseases, such as diabetes, or drug exposure that causes disruption of the podocyte foot process morphology results in kidney pathophysiology. Proteomic analysis of glomeruli isolated from rats with puromycin-induced kidney disease and control rats indicated that protein kinase A (PKA), which is activated by adenosine 3′,5′-monophosphate (cAMP), is a key regulator of podocyte morphology and function. In podocytes, cAMP signaling activates cAMP response element–binding protein (CREB) to enhance expression of the gene encoding a differentiation marker, synaptopodin, a protein that associates with actin and promotes its bundling. We constructed and experimentally verified a β-adrenergic receptor–driven network with multiple feedback and feedforward motifs that controls CREB activity. To determine how the motifs interacted to regulate gene expression, we mapped multicompartment dynamical models, including information about protein subcellular localization, onto the network topology using Petri net formalisms. These computational analyses indicated that the juxtaposition of multiple feedback and feedforward motifs enabled the prolonged CREB activation necessary for synaptopodin expression and actin bundling. Drug-induced modulation of these motifs in diseased rats led to recovery of normal morphology and physiological function in vivo. Thus, analysis of regulatory motifs using network dynamics can provide insights into pathophysiology that enable predictions for drug intervention strategies to treat kidney disease. PMID:24497609

  2. Motif discovery and motif finding from genome-mapped DNase footprint data.

    PubMed

    Kulakovskiy, Ivan V; Favorov, Alexander V; Makeev, Vsevolod J

    2009-09-15

    Footprint data is an important source of information on transcription factor recognition motifs. However, a footprinting fragment can contain no sequences similar to known protein recognition sites. Inspection of genome fragments nearby can help to identify missing site positions. Genome fragments containing footprints were supplied to a pipeline that constructed a position weight matrix (PWM) for different motif lengths and selected the optimal PWM. Fragments were aligned with the SeSiMCMC sampler and a new heuristic algorithm, Bigfoot. Footprints with missing hits were found for approximately 50% of factors. Adding only 2 bp on both sides of a footprinting fragment recovered most hits. We automatically constructed motifs for 41 Drosophila factors. New motifs can recognize footprints with a greater sensitivity at the same false positive rate than existing models. Also we discuss possible overfitting of constructed motifs. Software and the collection of regulatory motifs are freely available at http://line.imb.ac.ru/DMMPMM.

  3. Finding specific RNA motifs: Function in a zeptomole world?

    PubMed Central

    KNIGHT, ROB; YARUS, MICHAEL

    2003-01-01

    We have developed a new method for estimating the abundance of any modular (piecewise) RNA motif within a longer random region. We have used this method to estimate the size of the active motifs available to modern SELEX experiments (picomoles of unique sequences) and to a plausible RNA World (zeptomoles of unique sequences: 1 zmole = 602 sequences). Unexpectedly, activities such as specific isoleucine binding are almost certainly present in zeptomoles of molecules, and even ribozymes such as self-cleavage motifs may appear (depending on assumptions about the minimal structures). The number of specified nucleotides is not the only important determinant of a motif’s rarity: The number of modules into which it is divided, and the details of this division, are also crucial. We propose three maxims for easily isolated motifs: the Maxim of Minimization, the Maxim of Multiplicity, and the Maxim of the Median. These maxims together state that selected motifs should be small and composed of as many separate, equally sized modules as possible. For evenly divided motifs with four modules, the largest accessible activity in picomole scale (1–1000 pmole) pools of length 100 is about 34 nucleotides; while for zeptomole scale (1–1000 zmole) pools it is about 20 specific nucleotides (50% probability of occurrence). This latter figure includes some ribozymes and aptamers. Consequently, an RNA metabolism apparently could have begun with only zeptomoles of RNA molecules. PMID:12554865

  4. Unravelling daily human mobility motifs

    PubMed Central

    Schneider, Christian M.; Belik, Vitaly; Couronné, Thomas; Smoreda, Zbigniew; González, Marta C.

    2013-01-01

    Human mobility is differentiated by time scales. While the mechanism for long time scales has been studied, the underlying mechanism on the daily scale is still unrevealed. Here, we uncover the mechanism responsible for the daily mobility patterns by analysing the temporal and spatial trajectories of thousands of persons as individual networks. Using the concept of motifs from network theory, we find only 17 unique networks are present in daily mobility and they follow simple rules. These networks, called here motifs, are sufficient to capture up to 90 per cent of the population in surveys and mobile phone datasets for different countries. Each individual exhibits a characteristic motif, which seems to be stable over several months. Consequently, daily human mobility can be reproduced by an analytically tractable framework for Markov chains by modelling periods of high-frequency trips followed by periods of lower activity as the key ingredient. PMID:23658117

  5. Uncoupling of the ITIM receptor G6b-B from the tyrosine phosphatases Shp1 and Shp2 disrupts platelet homeostasis in mice.

    PubMed

    Geer, Mitchell J; van Geffen, Johanna P; Gopalasingam, Piraveen; Vögtle, Timo; Smith, Christopher W; Heising, Silke; Kuijpers, Marijke J E; Tullemans, Bibian M E; Jarvis, Gavin E; Eble, Johannes A; Jeeves, Mark; Overduin, Michael; Heemskerk, Johan W M; Mazharian, Alexandra; Senis, Yotis A

    2018-06-11

    The immunoreceptor tyrosine-based inhibitory motif (ITIM)-containing receptor G6b-B has emerged as a key regulator of platelet homeostasis. However, it remains unclear how it mediates its effects. Tyrosine phosphorylation of the ITIM and immunoreceptor tyrosine-based switch motif (ITSM) within the cytoplasmic tail of G6b-B provides a docking site for SH2 domain-containing protein-tyrosine phosphatases Shp1 and Shp2, which are also critical regulators of platelet production and function. In this study, we investigate the physiological consequences of uncoupling G6b-B from Shp1 and Shp2. To address this, we generated a transgenic mouse model expressing a mutant form of G6b-B in which tyrosine (Y) residues 212 and 238 within the ITIM and ITSM were mutated to phenylalanine (F), respectively. Mice homozygous for the mutation (G6b-B diY/F) were macrothrombocytopenic, due to a reduction in platelet production, had large clusters of megakaryocytes and myelofibrosis at sites of hematopoiesis, similar to that observed in G6b knockout (G6b KO) mice. Platelets from G6b-B diY/F mice were hypo-responsive to collagen, due to a significant reduction in expression of the immunoreceptor tyrosine-based activation motif (ITAM)-containing collagen receptor complex GPVI-FcR γ-chain, and thrombin, that could be partially rescued by co-stimulating the platelets with ADP. In contrast, platelets from G6b-B diY/F, G6b KO and megakaryocyte-specific Shp2 KO mice were hyper-responsive to antibody-mediated cross-linking of the hemi-ITAM-containing podoplanin receptor CLEC-2, suggesting that G6b-B inhibits CLEC-2-mediated platelet activation through Shp2. Findings from this study demonstrate that G6b-B must engage with Shp1 and Shp2 in order to mediate its regulatory effects on platelet homeostasis. Copyright © 2018 American Society of Hematology.

  6. Insights into the Activity and Substrate Binding of Xylella fastidiosa Polygalacturonase by Modification of a Unique QMK Amino Acid Motif Using Protein Chimeras.

    PubMed

    Warren, Jeremy G; Lincoln, James E; Kirkpatrick, Bruce C

    2015-01-01

    Polygalacturonases (EC 3.2.1.15) catalyze the random hydrolysis of 1, 4-alpha-D-galactosiduronic linkages in pectate and other galacturonans. Xylella fastidiosa possesses a single polygalacturonase gene, pglA (PD1485), and X. fastidiosa mutants deficient in the production of polygalacturonase are non-pathogenic and show a compromised ability to systemically infect grapevines. These results suggested that grapevines expressing sufficient amounts of an inhibitor of X. fastidiosa polygalacturonase might be protected from disease. Previous work in our laboratory and others have tried without success to produce soluble active X. fastidiosa polygalacturonase for use in inhibition assays. In this study, we created two enzymatically active X. fastidiosa / A. vitis polygalacturonase chimeras, AX1A and AX2A to explore the functionality of X. fastidiosa polygalacturonase in vitro. The AX1A chimera was constructed to specifically test if recombinant chimeric protein, produced in Escherichia coli, is soluble and if the X. fastidiosa polygalacturonase catalytic amino acids are able to hydrolyze polygalacturonic acid. The AX2A chimera was constructed to evaluate the ability of a unique QMK motif of X. fastidiosa polygalacturonase, most polygalacturonases have a R(I/L)K motif, to bind to and allow the hydrolysis of polygalacturonic acid. Furthermore, the AX2A chimera was also used to explore what effect modification of the QMK motif of X. fastidiosa polygalacturonase to a conserved RIK motif has on enzymatic activity. These experiments showed that both the AX1A and AX2A polygalacturonase chimeras were soluble and able to hydrolyze the polygalacturonic acid substrate. Additionally, the modification of the QMK motif to the conserved RIK motif eliminated hydrolytic activity, suggesting that the QMK motif is important for the activity of X. fastidiosa polygalacturonase. This result suggests X. fastidiosa polygalacturonase may preferentially hydrolyze a different pectic substrate or

  7. Insights into the Activity and Substrate Binding of Xylella fastidiosa Polygalacturonase by Modification of a Unique QMK Amino Acid Motif Using Protein Chimeras

    PubMed Central

    Warren, Jeremy G.; Lincoln, James E.; Kirkpatrick, Bruce C.

    2015-01-01

    Polygalacturonases (EC 3.2.1.15) catalyze the random hydrolysis of 1, 4-alpha-D-galactosiduronic linkages in pectate and other galacturonans. Xylella fastidiosa possesses a single polygalacturonase gene, pglA (PD1485), and X. fastidiosa mutants deficient in the production of polygalacturonase are non-pathogenic and show a compromised ability to systemically infect grapevines. These results suggested that grapevines expressing sufficient amounts of an inhibitor of X. fastidiosa polygalacturonase might be protected from disease. Previous work in our laboratory and others have tried without success to produce soluble active X. fastidiosa polygalacturonase for use in inhibition assays. In this study, we created two enzymatically active X. fastidiosa / A. vitis polygalacturonase chimeras, AX1A and AX2A to explore the functionality of X. fastidiosa polygalacturonase in vitro. The AX1A chimera was constructed to specifically test if recombinant chimeric protein, produced in Escherichia coli, is soluble and if the X. fastidiosa polygalacturonase catalytic amino acids are able to hydrolyze polygalacturonic acid. The AX2A chimera was constructed to evaluate the ability of a unique QMK motif of X. fastidiosa polygalacturonase, most polygalacturonases have a R(I/L)K motif, to bind to and allow the hydrolysis of polygalacturonic acid. Furthermore, the AX2A chimera was also used to explore what effect modification of the QMK motif of X. fastidiosa polygalacturonase to a conserved RIK motif has on enzymatic activity. These experiments showed that both the AX1A and AX2A polygalacturonase chimeras were soluble and able to hydrolyze the polygalacturonic acid substrate. Additionally, the modification of the QMK motif to the conserved RIK motif eliminated hydrolytic activity, suggesting that the QMK motif is important for the activity of X. fastidiosa polygalacturonase. This result suggests X. fastidiosa polygalacturonase may preferentially hydrolyze a different pectic substrate or

  8. The adaptor molecule Nck localizes the WAVE complex to promote actin polymerization during CEACAM3-mediated phagocytosis of bacteria.

    PubMed

    Pils, Stefan; Kopp, Kathrin; Peterson, Lisa; Delgado Tascón, Julia; Nyffenegger-Jann, Naja J; Hauck, Christof R

    2012-01-01

    CEACAM3 is a granulocyte receptor mediating the opsonin-independent recognition and phagocytosis of human-restricted CEACAM-binding bacteria. CEACAM3 function depends on an intracellular immunoreceptor tyrosine-based activation motif (ITAM)-like sequence that is tyrosine phosphorylated by Src family kinases upon receptor engagement. The phosphorylated ITAM-like sequence triggers GTP-loading of Rac by directly associating with the guanine nucleotide exchange factor (GEF) Vav. Rac stimulation in turn is critical for actin cytoskeleton rearrangements that generate lamellipodial protrusions and lead to bacterial uptake. In our present study we provide biochemical and microscopic evidence that the adaptor proteins Nck1 and Nck2, but not CrkL, Grb2 or SLP-76, bind to tyrosine phosphorylated CEACAM3. The association is phosphorylation-dependent and requires the Nck SH2 domain. Overexpression of the isolated Nck1 SH2 domain, RNAi-mediated knock-down of Nck1, or genetic deletion of Nck1 and Nck2 interfere with CEACAM3-mediated bacterial internalization and with the formation of lamellipodial protrusions. Nck is constitutively associated with WAVE2 and directs the actin nucleation promoting WAVE complex to tyrosine phosphorylated CEACAM3. In turn, dominant-negative WAVE2 as well as shRNA-mediated knock-down of WAVE2 or the WAVE-complex component Nap1 reduce internalization of bacteria. Our results provide novel mechanistic insight into CEACAM3-initiated phagocytosis. We suggest that the CEACAM3 ITAM-like sequence is optimized to co-ordinate a minimal set of cellular factors needed to efficiently trigger actin-based lamellipodial protrusions and rapid pathogen engulfment.

  9. Automated classification of RNA 3D motifs and the RNA 3D Motif Atlas

    PubMed Central

    Petrov, Anton I.; Zirbel, Craig L.; Leontis, Neocles B.

    2013-01-01

    The analysis of atomic-resolution RNA three-dimensional (3D) structures reveals that many internal and hairpin loops are modular, recurrent, and structured by conserved non-Watson–Crick base pairs. Structurally similar loops define RNA 3D motifs that are conserved in homologous RNA molecules, but can also occur at nonhomologous sites in diverse RNAs, and which often vary in sequence. To further our understanding of RNA motif structure and sequence variability and to provide a useful resource for structure modeling and prediction, we present a new method for automated classification of internal and hairpin loop RNA 3D motifs and a new online database called the RNA 3D Motif Atlas. To classify the motif instances, a representative set of internal and hairpin loops is automatically extracted from a nonredundant list of RNA-containing PDB files. Their structures are compared geometrically, all-against-all, using the FR3D program suite. The loops are clustered into motif groups, taking into account geometric similarity and structural annotations and making allowance for a variable number of bulged bases. The automated procedure that we have implemented identifies all hairpin and internal loop motifs previously described in the literature. All motif instances and motif groups are assigned unique and stable identifiers and are made available in the RNA 3D Motif Atlas (http://rna.bgsu.edu/motifs), which is automatically updated every four weeks. The RNA 3D Motif Atlas provides an interactive user interface for exploring motif diversity and tools for programmatic data access. PMID:23970545

  10. Multiple Dileucine-like Motifs Direct VGLUT1 Trafficking

    PubMed Central

    Foss, Sarah M.; Li, Haiyan; Santos, Magda S.; Edwards, Robert H.

    2013-01-01

    The vesicular glutamate transporters (VGLUTs) package glutamate into synaptic vesicles, and the two principal isoforms VGLUT1 and VGLUT2 have been suggested to influence the properties of release. To understand how a VGLUT isoform might influence transmitter release, we have studied their trafficking and previously identified a dileucine-like endocytic motif in the C terminus of VGLUT1. Disruption of this motif impairs the activity-dependent recycling of VGLUT1, but does not eliminate its endocytosis. We now report the identification of two additional dileucine-like motifs in the N terminus of VGLUT1 that are not well conserved in the other isoforms. In the absence of all three motifs, rat VGLUT1 shows limited accumulation at synaptic sites and no longer responds to stimulation. In addition, shRNA-mediated knockdown of clathrin adaptor proteins AP-1 and AP-2 shows that the C-terminal motif acts largely via AP-2, whereas the N-terminal motifs use AP-1. Without the C-terminal motif, knockdown of AP-1 reduces the proportion of VGLUT1 that responds to stimulation. VGLUT1 thus contains multiple sorting signals that engage distinct trafficking mechanisms. In contrast to VGLUT1, the trafficking of VGLUT2 depends almost entirely on the conserved C-terminal dileucine-like motif: without this motif, a substantial fraction of VGLUT2 redistributes to the plasma membrane and the transporter's synaptic localization is disrupted. Consistent with these differences in trafficking signals, wild-type VGLUT1 and VGLUT2 differ in their response to stimulation. PMID:23804088

  11. Multiple dileucine-like motifs direct VGLUT1 trafficking.

    PubMed

    Foss, Sarah M; Li, Haiyan; Santos, Magda S; Edwards, Robert H; Voglmaier, Susan M

    2013-06-26

    The vesicular glutamate transporters (VGLUTs) package glutamate into synaptic vesicles, and the two principal isoforms VGLUT1 and VGLUT2 have been suggested to influence the properties of release. To understand how a VGLUT isoform might influence transmitter release, we have studied their trafficking and previously identified a dileucine-like endocytic motif in the C terminus of VGLUT1. Disruption of this motif impairs the activity-dependent recycling of VGLUT1, but does not eliminate its endocytosis. We now report the identification of two additional dileucine-like motifs in the N terminus of VGLUT1 that are not well conserved in the other isoforms. In the absence of all three motifs, rat VGLUT1 shows limited accumulation at synaptic sites and no longer responds to stimulation. In addition, shRNA-mediated knockdown of clathrin adaptor proteins AP-1 and AP-2 shows that the C-terminal motif acts largely via AP-2, whereas the N-terminal motifs use AP-1. Without the C-terminal motif, knockdown of AP-1 reduces the proportion of VGLUT1 that responds to stimulation. VGLUT1 thus contains multiple sorting signals that engage distinct trafficking mechanisms. In contrast to VGLUT1, the trafficking of VGLUT2 depends almost entirely on the conserved C-terminal dileucine-like motif: without this motif, a substantial fraction of VGLUT2 redistributes to the plasma membrane and the transporter's synaptic localization is disrupted. Consistent with these differences in trafficking signals, wild-type VGLUT1 and VGLUT2 differ in their response to stimulation.

  12. A survey of motif finding Web tools for detecting binding site motifs in ChIP-Seq data

    PubMed Central

    2014-01-01

    Abstract ChIP-Seq (chromatin immunoprecipitation sequencing) has provided the advantage for finding motifs as ChIP-Seq experiments narrow down the motif finding to binding site locations. Recent motif finding tools facilitate the motif detection by providing user-friendly Web interface. In this work, we reviewed nine motif finding Web tools that are capable for detecting binding site motifs in ChIP-Seq data. We showed each motif finding Web tool has its own advantages for detecting motifs that other tools may not discover. We recommended the users to use multiple motif finding Web tools that implement different algorithms for obtaining significant motifs, overlapping resemble motifs, and non-overlapping motifs. Finally, we provided our suggestions for future development of motif finding Web tool that better assists researchers for finding motifs in ChIP-Seq data. Reviewers This article was reviewed by Prof. Sandor Pongor, Dr. Yuriy Gusev, and Dr. Shyam Prabhakar (nominated by Prof. Limsoon Wong). PMID:24555784

  13. Peptides derived from central turn motifs within integrin αIIb and αV cytoplasmic tails inhibit integrin activation.

    PubMed

    Li, Xinlei; Liu, Yongqing; Haas, Thomas A

    2014-12-01

    We previously found that peptides derived from the full length of integrin αIIb and αV cytoplasmic tails inhibited their parent integrin activation, respectively. Here we showed that the cell-permeable peptides corresponding to the conserved central turn motif within αIIb and αV cytoplasmic tails, myr-KRNRPPLEED (αIIb peptide) and myr-KRVRPPQEEQ (αV peptide), similarly inhibited both αIIb and αV integrin activation. Pre-treatment with αIIb or αV peptides inhibited Mn(2+)-activated αIIbβ3 binding to soluble fibrinogen as well as the binding of αIIbβ3-expressing Chinese Hamster Ovary cells to immobilized fibrinogen. Our turn peptides also inhibited adhesion of two breast cancer cell lines (MDA-MB-435 and MCF7) to αV ligand vitronectin. These results suggest that αIIb and αV peptides share a same mechanism in regulating integrin function. Using αIIb peptide as a model, we found that replacement of RPP with AAA significantly attenuated the inhibitory activity of αIIb peptide. Furthermore, we found that αIIb peptide specifically bound to β-tubulin in cells. Our work suggests that the central motif of α tails is an anchoring point for cytoskeletons during integrin activation and integrin-mediated cell adhesion, and its function depends on the turn structure at RPP. However, post-treatment of peptides derived from the full-length tail or from the turn motif did not reverse αIIb and αV integrin activation. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Tyrosine kinase Btk regulates E-selectin-mediated integrin activation and neutrophil recruitment by controlling phospholipase C (PLC) gamma2 and PI3Kgamma pathways.

    PubMed

    Mueller, Helena; Stadtmann, Anika; Van Aken, Hugo; Hirsch, Emilio; Wang, Demin; Ley, Klaus; Zarbock, Alexander

    2010-04-15

    Selectins mediate leukocyte rolling, trigger beta(2)-integrin activation, and promote leukocyte recruitment into inflamed tissue. E-selectin binding to P-selectin glycoprotein ligand 1 (PSGL-1) leads to activation of an immunoreceptor tyrosine-based activation motif (ITAM)-dependent pathway, which in turn activates the spleen tyrosine kinase (Syk). However, the signaling pathway linking Syk to integrin activation after E-selectin engagement is unknown. To identify the pathway, we used different gene-deficient mice in autoperfused flow chamber, intravital microscopy, peritonitis, and biochemical studies. We report here that the signaling pathway downstream of Syk divides into a phospholipase C (PLC) gamma2- and phosphoinositide 3-kinase (PI3K) gamma-dependent pathway. The Tec family kinase Bruton tyrosine kinase (Btk) is required for activating both pathways, generating inositol-3,4,5-trisphosphate (IP(3)), and inducing E-selectin-mediated slow rolling. Inhibition of this signal-transduction pathway diminished Galpha(i)-independent leukocyte adhesion to and transmigration through endothelial cells in inflamed postcapillary venules of the cremaster. Galpha(i)-independent neutrophil recruitment into the inflamed peritoneal cavity was reduced in Btk(-/-) and Plcg2(-/-) mice. Our data demonstrate the functional importance of this newly identified signaling pathway mediated by E-selectin engagement.

  15. DNA containing CpG motifs induces angiogenesis

    NASA Astrophysics Data System (ADS)

    Zheng, Mei; Klinman, Dennis M.; Gierynska, Malgorzata; Rouse, Barry T.

    2002-06-01

    New blood vessel formation in the cornea is an essential step in the pathogenesis of a blinding immunoinflammatory reaction caused by ocular infection with herpes simplex virus (HSV). By using a murine corneal micropocket assay, we found that HSV DNA (which contains a significant excess of potentially bioactive "CpG" motifs when compared with mammalian DNA) induces angiogenesis. Moreover, synthetic oligodeoxynucleotides containing CpG motifs attract inflammatory cells and stimulate the release of vascular endothelial growth factor (VEGF), which in turn triggers new blood vessel formation. In vitro, CpG DNA induces the J774A.1 murine macrophage cell line to produce VEGF. In vivo CpG-induced angiogenesis was blocked by the administration of anti-mVEGF Ab or the inclusion of "neutralizing" oligodeoxynucleotides that specifically oppose the stimulatory activity of CpG DNA. These findings establish that DNA containing bioactive CpG motifs induces angiogenesis, and suggest that CpG motifs in HSV DNA may contribute to the blinding lesions of stromal keratitis.

  16. Efficacy of function specific 3D-motifs in enzyme classification according to their EC-numbers.

    PubMed

    Rahimi, Amir; Madadkar-Sobhani, Armin; Touserkani, Rouzbeh; Goliaei, Bahram

    2013-11-07

    Due to the increasing number of protein structures with unknown function originated from structural genomics projects, protein function prediction has become an important subject in bioinformatics. Among diverse function prediction methods, exploring known 3D-motifs, which are associated with functional elements in unknown protein structures is one of the most biologically meaningful methods. Homologous enzymes inherit such motifs in their active sites from common ancestors. However, slight differences in the properties of these motifs, results in variation in the reactions and substrates of the enzymes. In this study, we examined the possibility of discriminating highly related active site patterns according to their EC-numbers by 3D-motifs. For each EC-number, the spatial arrangement of an active site, which has minimum average distance to other active sites with the same function, was selected as a representative 3D-motif. In order to characterize the motifs, various points in active site elements were tested. The results demonstrated the possibility of predicting full EC-number of enzymes by 3D-motifs. However, the discriminating power of 3D-motifs varies among different enzyme families and depends on selecting the appropriate points and features. © 2013 Elsevier Ltd. All rights reserved.

  17. [Prediction of Promoter Motifs in Virophages].

    PubMed

    Gong, Chaowen; Zhou, Xuewen; Pan, Yingjie; Wang, Yongjie

    2015-07-01

    Virophages have crucial roles in ecosystems and are the transport vectors of genetic materials. To shed light on regulation and control mechanisms in virophage--host systems as well as evolution between virophages and their hosts, the promoter motifs of virophages were predicted on the upstream regions of start codons using an analytical tool for prediction of promoter motifs: Multiple EM for Motif Elicitation. Seventeen potential promoter motifs were identified based on the E-value, location, number and length of promoters in genomes. Sputnik and zamilon motif 2 with AT-rich regions were distributed widely on genomes, suggesting that these motifs may be associated with regulation of the expression of various genes. Motifs containing the TCTA box were predicted to be late promoter motif in mavirus; motifs containing the ATCT box were the potential late promoter motif in the Ace Lake mavirus . AT-rich regions were identified on motif 2 in the Organic Lake virophage, motif 3 in Yellowstone Lake virophage (YSLV)1 and 2, motif 1 in YSLV3, and motif 1 and 2 in YSLV4, respectively. AT-rich regions were distributed widely on the genomes of virophages. All of these motifs may be promoter motifs of virophages. Our results provide insights into further exploration of temporal expression of genes in virophages as well as associations between virophages and giant viruses.

  18. Novel DNA Motif Binding Activity Observed In Vivo With an Estrogen Receptor α Mutant Mouse

    PubMed Central

    Li, Leping; Grimm, Sara A.; Winuthayanon, Wipawee; Hamilton, Katherine J.; Pockette, Brianna; Rubel, Cory A.; Pedersen, Lars C.; Fargo, David; Lanz, Rainer B.; DeMayo, Francesco J.; Schütz, Günther; Korach, Kenneth S.

    2014-01-01

    Estrogen receptor α (ERα) interacts with DNA directly or indirectly via other transcription factors, referred to as “tethering.” Evidence for tethering is based on in vitro studies and a widely used “KIKO” mouse model containing mutations that prevent direct estrogen response element DNA- binding. KIKO mice are infertile, due in part to the inability of estradiol (E2) to induce uterine epithelial proliferation. To elucidate the molecular events that prevent KIKO uterine growth, regulation of the pro-proliferative E2 target gene Klf4 and of Klf15, a progesterone (P4) target gene that opposes the pro-proliferative activity of KLF4, was evaluated. Klf4 induction was impaired in KIKO uteri; however, Klf15 was induced by E2 rather than by P4. Whole uterine chromatin immunoprecipitation-sequencing revealed enrichment of KIKO ERα binding to hormone response elements (HREs) motifs. KIKO binding to HRE motifs was verified using reporter gene and DNA-binding assays. Because the KIKO ERα has HRE DNA-binding activity, we evaluated the “EAAE” ERα, which has more severe DNA-binding domain mutations, and demonstrated a lack of estrogen response element or HRE reporter gene induction or DNA-binding. The EAAE mouse has an ERα null–like phenotype, with impaired uterine growth and transcriptional activity. Our findings demonstrate that the KIKO mouse model, which has been used by numerous investigators, cannot be used to establish biological functions for ERα tethering, because KIKO ERα effectively stimulates transcription using HRE motifs. The EAAE-ERα DNA-binding domain mutant mouse demonstrates that ERα DNA-binding is crucial for biological and transcriptional processes in reproductive tissues and that ERα tethering may not contribute to estrogen responsiveness in vivo. PMID:24713037

  19. An evolutionarily conserved motif in the TAB1 C-terminal region is necessary for interaction with and activation of TAK1 MAPKKK.

    PubMed

    Ono, K; Ohtomo, T; Sato, S; Sugamata, Y; Suzuki, M; Hisamoto, N; Ninomiya-Tsuji, J; Tsuchiya, M; Matsumoto, K

    2001-06-29

    TAK1, a member of the MAPKKK family, is involved in the intracellular signaling pathways mediated by transforming growth factor beta, interleukin 1, and Wnt. TAK1 kinase activity is specifically activated by the TAK1-binding protein TAB1. The C-terminal 68-amino acid sequence of TAB1 (TAB1-C68) is sufficient for TAK1 interaction and activation. Analysis of various truncated versions of TAB1-C68 defined a C-terminal 30-amino acid sequence (TAB1-C30) necessary for TAK1 binding and activation. NMR studies revealed that the TAB1-C30 region has a unique alpha-helical structure. We identified a conserved sequence motif, PYVDXA/TXF, in the C-terminal domain of mammalian TAB1, Xenopus TAB1, and its Caenorhabditis elegans homolog TAP-1, suggesting that this motif constitutes a specific TAK1 docking site. Alanine substitution mutagenesis showed that TAB1 Phe-484, located in the conserved motif, is crucial for TAK1 binding and activation. The C. elegans homolog of TAB1, TAP-1, was able to interact with and activate the C. elegans homolog of TAK1, MOM-4. However, the site in TAP-1 corresponding to Phe-484 of TAB1 is an alanine residue (Ala-364), and changing this residue to Phe abrogates the ability of TAP-1 to interact with and activate MOM-4. These results suggest that the Phe or Ala residue within the conserved motif of the TAB1-related proteins is important for interaction with and activation of specific TAK1 MAPKKK family members in vivo.

  20. Antagonist-perturbation mechanism for activation function-2 fixed motifs: active conformation and docking mode of retinoid X receptor antagonists

    NASA Astrophysics Data System (ADS)

    Tsuji, Motonori

    2017-06-01

    HX531, which contains a dibenzodiazepine skeleton, is one of the first retinoid X receptor (RXR) antagonists. Functioning via RXR-PPARγ heterodimer, this compound is receiving a lot of attention as a therapeutic drug candidate for diabetic disease controlling differentiation of adipose tissue. However, the active conformation of HX531 for RXRs is not well established. In the present study, quantum mechanics calculations and molecular mechanical docking simulations were carried out to precisely study the docking mode of HX531 with the human RXRα ligand-binding domain, as well as to provide a new approach to drug design using a structure-based perspective. It was suggested that HX531, which has the R configuration for the bent dibenzodiazepine plane together with the equatorial configuration for the N-methyl group attached to the nitrogen atom in the seven-membered diazepine ring, is a typical activation function-2 (AF-2) fixed motif perturbation type antagonist, which destabilizes the formation of AF-2 fixed motifs. On the other hand, the docking simulations supported the experimental result that LG100754 is an RXR homodimer antagonist and an RXR heterodimer agonist.

  1. Modeling gene regulatory network motifs using statecharts

    PubMed Central

    2012-01-01

    Background Gene regulatory networks are widely used by biologists to describe the interactions among genes, proteins and other components at the intra-cellular level. Recently, a great effort has been devoted to give gene regulatory networks a formal semantics based on existing computational frameworks. For this purpose, we consider Statecharts, which are a modular, hierarchical and executable formal model widely used to represent software systems. We use Statecharts for modeling small and recurring patterns of interactions in gene regulatory networks, called motifs. Results We present an improved method for modeling gene regulatory network motifs using Statecharts and we describe the successful modeling of several motifs, including those which could not be modeled or whose models could not be distinguished using the method of a previous proposal. We model motifs in an easy and intuitive way by taking advantage of the visual features of Statecharts. Our modeling approach is able to simulate some interesting temporal properties of gene regulatory network motifs: the delay in the activation and the deactivation of the "output" gene in the coherent type-1 feedforward loop, the pulse in the incoherent type-1 feedforward loop, the bistability nature of double positive and double negative feedback loops, the oscillatory behavior of the negative feedback loop, and the "lock-in" effect of positive autoregulation. Conclusions We present a Statecharts-based approach for the modeling of gene regulatory network motifs in biological systems. The basic motifs used to build more complex networks (that is, simple regulation, reciprocal regulation, feedback loop, feedforward loop, and autoregulation) can be faithfully described and their temporal dynamics can be analyzed. PMID:22536967

  2. WebMOTIFS: automated discovery, filtering and scoring of DNA sequence motifs using multiple programs and Bayesian approaches

    PubMed Central

    Romer, Katherine A.; Kayombya, Guy-Richard; Fraenkel, Ernest

    2007-01-01

    WebMOTIFS provides a web interface that facilitates the discovery and analysis of DNA-sequence motifs. Several studies have shown that the accuracy of motif discovery can be significantly improved by using multiple de novo motif discovery programs and using randomized control calculations to identify the most significant motifs or by using Bayesian approaches. WebMOTIFS makes it easy to apply these strategies. Using a single submission form, users can run several motif discovery programs and score, cluster and visualize the results. In addition, the Bayesian motif discovery program THEME can be used to determine the class of transcription factors that is most likely to regulate a set of sequences. Input can be provided as a list of gene or probe identifiers. Used with the default settings, WebMOTIFS accurately identifies biologically relevant motifs from diverse data in several species. WebMOTIFS is freely available at http://fraenkel.mit.edu/webmotifs. PMID:17584794

  3. Gene regulatory and signaling networks exhibit distinct topological distributions of motifs

    NASA Astrophysics Data System (ADS)

    Ferreira, Gustavo Rodrigues; Nakaya, Helder Imoto; Costa, Luciano da Fontoura

    2018-04-01

    The biological processes of cellular decision making and differentiation involve a plethora of signaling pathways and gene regulatory circuits. These networks in turn exhibit a multitude of motifs playing crucial parts in regulating network activity. Here we compare the topological placement of motifs in gene regulatory and signaling networks and observe that it suggests different evolutionary strategies in motif distribution for distinct cellular subnetworks.

  4. Biological network motif detection and evaluation

    PubMed Central

    2011-01-01

    Background Molecular level of biological data can be constructed into system level of data as biological networks. Network motifs are defined as over-represented small connected subgraphs in networks and they have been used for many biological applications. Since network motif discovery involves computationally challenging processes, previous algorithms have focused on computational efficiency. However, we believe that the biological quality of network motifs is also very important. Results We define biological network motifs as biologically significant subgraphs and traditional network motifs are differentiated as structural network motifs in this paper. We develop five algorithms, namely, EDGEGO-BNM, EDGEBETWEENNESS-BNM, NMF-BNM, NMFGO-BNM and VOLTAGE-BNM, for efficient detection of biological network motifs, and introduce several evaluation measures including motifs included in complex, motifs included in functional module and GO term clustering score in this paper. Experimental results show that EDGEGO-BNM and EDGEBETWEENNESS-BNM perform better than existing algorithms and all of our algorithms are applicable to find structural network motifs as well. Conclusion We provide new approaches to finding network motifs in biological networks. Our algorithms efficiently detect biological network motifs and further improve existing algorithms to find high quality structural network motifs, which would be impossible using existing algorithms. The performances of the algorithms are compared based on our new evaluation measures in biological contexts. We believe that our work gives some guidelines of network motifs research for the biological networks. PMID:22784624

  5. The Adaptor Molecule Nck Localizes the WAVE Complex to Promote Actin Polymerization during CEACAM3-Mediated Phagocytosis of Bacteria

    PubMed Central

    Delgado Tascón, Julia; Nyffenegger-Jann, Naja J.; Hauck, Christof R.

    2012-01-01

    Background CEACAM3 is a granulocyte receptor mediating the opsonin-independent recognition and phagocytosis of human-restricted CEACAM-binding bacteria. CEACAM3 function depends on an intracellular immunoreceptor tyrosine-based activation motif (ITAM)-like sequence that is tyrosine phosphorylated by Src family kinases upon receptor engagement. The phosphorylated ITAM-like sequence triggers GTP-loading of Rac by directly associating with the guanine nucleotide exchange factor (GEF) Vav. Rac stimulation in turn is critical for actin cytoskeleton rearrangements that generate lamellipodial protrusions and lead to bacterial uptake. Principal Findings In our present study we provide biochemical and microscopic evidence that the adaptor proteins Nck1 and Nck2, but not CrkL, Grb2 or SLP-76, bind to tyrosine phosphorylated CEACAM3. The association is phosphorylation-dependent and requires the Nck SH2 domain. Overexpression of the isolated Nck1 SH2 domain, RNAi-mediated knock-down of Nck1, or genetic deletion of Nck1 and Nck2 interfere with CEACAM3-mediated bacterial internalization and with the formation of lamellipodial protrusions. Nck is constitutively associated with WAVE2 and directs the actin nucleation promoting WAVE complex to tyrosine phosphorylated CEACAM3. In turn, dominant-negative WAVE2 as well as shRNA-mediated knock-down of WAVE2 or the WAVE-complex component Nap1 reduce internalization of bacteria. Conclusions Our results provide novel mechanistic insight into CEACAM3-initiated phagocytosis. We suggest that the CEACAM3 ITAM-like sequence is optimized to co-ordinate a minimal set of cellular factors needed to efficiently trigger actin-based lamellipodial protrusions and rapid pathogen engulfment. PMID:22448228

  6. The CGTCA sequence motif is essential for biological activity of the vasoactive intestinal peptide gene cAMP-regulated enhancer.

    PubMed Central

    Fink, J S; Verhave, M; Kasper, S; Tsukada, T; Mandel, G; Goodman, R H

    1988-01-01

    cAMP-regulated transcription of the human vasoactive intestinal peptide gene is dependent upon a 17-base-pair DNA element located 70 base pairs upstream from the transcriptional initiation site. This element is similar to sequences in other genes known to be regulated by cAMP and to sequences in several viral enhancers. We have demonstrated that the vasoactive intestinal peptide regulatory element is an enhancer that depends upon the integrity of two CGTCA sequence motifs for biological activity. Mutations in either of the CGTCA motifs diminish the ability of the element to respond to cAMP. Enhancers containing the CGTCA motif from the somatostatin and adenovirus genes compete for binding of nuclear proteins from C6 glioma and PC12 cells to the vasoactive intestinal peptide enhancer, suggesting that CGTCA-containing enhancers interact with similar transacting factors. Images PMID:2842787

  7. Phosphorylation of PPP(S/T)P motif of the free LRP6 intracellular domain is not required to activate the Wnt/beta-catenin pathway and attenuate GSK3beta activity.

    PubMed

    Beagle, Brandon; Mi, Kaihong; Johnson, Gail V W

    2009-11-01

    The canonical Wnt/beta-catenin signaling pathway plays a critical role in numerous physiological and pathological processes. LRP6 is an essential co-receptor for Wnt/beta-catenin signaling; as transduction of the Wnt signal is strongly dependent upon GSK3beta-mediated phosphorylation of multiple PPP(S/T)P motifs within the membrane-anchored LRP6 intracellular domain. Previously, we showed that the free LRP6 intracellular domain (LRP6-ICD) can activate the Wnt/beta-catenin pathway in a beta-catenin and TCF/LEF-1 dependent manner, as well as interact with and attenuate GSK3beta activity. However, it is unknown if the ability of LRP6-ICD to attenuate GSK3beta activity and modulate activation of the Wnt/beta-catenin pathway requires phosphorylation of the LRP6-ICD PPP(S/T)P motifs, in a manner similar to the membrane-anchored LRP6 intracellular domain. Here we provide evidence that the LRP6-ICD does not have to be phosphorylated at its PPP(S/T)P motif by GSK3beta to stabilize endogenous cytosolic beta-catenin resulting in activation of TCF/LEF-1 and the Wnt/beta-catenin pathway. LRP6-ICD and a mutant in which all 5 PPP(S/T)P motifs were changed to PPP(A)P motifs equivalently interacted with and attenuated GSK3beta activity in vitro, and both constructs inhibited the in situ GSK3beta-mediated phosphorylation of beta-catenin and tau to the same extent. These data indicate that the LRP6-ICD attenuates GSK3beta activity similar to other GSK3beta binding proteins, and is not a result of it being a GSK3beta substrate. Our findings suggest the functional and regulatory mechanisms governing the free LRP6-ICD may be distinct from membrane-anchored LRP6, and that release of the LRP6-ICD may provide a complimentary signaling cascade capable of modulating Wnt-dependent gene expression. (c) 2009 Wiley-Liss, Inc.

  8. Efficient exact motif discovery.

    PubMed

    Marschall, Tobias; Rahmann, Sven

    2009-06-15

    The motif discovery problem consists of finding over-represented patterns in a collection of biosequences. It is one of the classical sequence analysis problems, but still has not been satisfactorily solved in an exact and efficient manner. This is partly due to the large number of possibilities of defining the motif search space and the notion of over-representation. Even for well-defined formalizations, the problem is frequently solved in an ad hoc manner with heuristics that do not guarantee to find the best motif. We show how to solve the motif discovery problem (almost) exactly on a practically relevant space of IUPAC generalized string patterns, using the p-value with respect to an i.i.d. model or a Markov model as the measure of over-representation. In particular, (i) we use a highly accurate compound Poisson approximation for the null distribution of the number of motif occurrences. We show how to compute the exact clump size distribution using a recently introduced device called probabilistic arithmetic automaton (PAA). (ii) We define two p-value scores for over-representation, the first one based on the total number of motif occurrences, the second one based on the number of sequences in a collection with at least one occurrence. (iii) We describe an algorithm to discover the optimal pattern with respect to either of the scores. The method exploits monotonicity properties of the compound Poisson approximation and is by orders of magnitude faster than exhaustive enumeration of IUPAC strings (11.8 h compared with an extrapolated runtime of 4.8 years). (iv) We justify the use of the proposed scores for motif discovery by showing our method to outperform other motif discovery algorithms (e.g. MEME, Weeder) on benchmark datasets. We also propose new motifs on Mycobacterium tuberculosis. The method has been implemented in Java. It can be obtained from http://ls11-www.cs.tu-dortmund.de/people/marschal/paa_md/.

  9. Helix–hairpin–helix motifs confer salt resistance and processivity on chimeric DNA polymerases

    PubMed Central

    Pavlov, Andrey R.; Belova, Galina I.; Kozyavkin, Sergei A.; Slesarev, Alexei I.

    2002-01-01

    Helix–hairpin–helix (HhH) is a widespread motif involved in sequence-nonspecific DNA binding. The majority of HhH motifs function as DNA-binding modules with typical occurrence of one HhH motif or one or two (HhH)2 domains in proteins. We recently identified 24 HhH motifs in DNA topoisomerase V (Topo V). Although these motifs are dispensable for the topoisomerase activity of Topo V, their removal narrows the salt concentration range for topoisomerase activity tenfold. Here, we demonstrate the utility of Topo V's HhH motifs for modulating DNA-binding properties of the Stoffel fragment of TaqDNA polymerase and Pfu DNA polymerase. Different HhH cassettes fused with either NH2 terminus or COOH terminus of DNA polymerases broaden the salt concentration range of the polymerase activity significantly (up to 0.5 M NaCl or 1.8 M potassium glutamate). We found that anions play a major role in the inhibition of DNA polymerase activity. The resistance of initial extension rates and the processivity of chimeric polymerases to salts depend on the structure of added HhH motifs. Regardless of the type of the construct, the thermal stability of chimeric Taq polymerases increases under the optimal ionic conditions, as compared with that of TaqDNA polymerase or its Stoffel fragment. Our approach to raise the salt tolerance, processivity, and thermostability of Taq and Pfu DNA polymerases may be applied to all pol1- and polB-type polymerases, as well as to other DNA processing enzymes. PMID:12368475

  10. Identification of a Novel LXXLL Motif in α-Actinin 4-spliced Isoform That Is Critical for Its Interaction with Estrogen Receptor α and Co-activators*

    PubMed Central

    Khurana, Simran; Chakraborty, Sharmistha; Zhao, Xuan; Liu, Yu; Guan, Dongyin; Lam, Minh; Huang, Wei; Yang, Sichun; Kao, Hung-Ying

    2012-01-01

    α-Actinins (ACTNs) are a family of proteins cross-linking actin filaments that maintain cytoskeletal organization and cell motility. Recently, it has also become clear that ACTN4 can function in the nucleus. In this report, we found that ACTN4 (full length) and its spliced isoform ACTN4 (Iso) possess an unusual LXXLL nuclear receptor interacting motif. Both ACTN4 (full length) and ACTN4 (Iso) potentiate basal transcription activity and directly interact with estrogen receptor α, although ACTN4 (Iso) binds ERα more strongly. We have also found that both ACTN4 (full length) and ACTN4 (Iso) interact with the ligand-independent and the ligand-dependent activation domains of estrogen receptor α. Although ACTN4 (Iso) interacts efficiently with transcriptional co-activators such as p300/CBP-associated factor (PCAF) and steroid receptor co-activator 1 (SRC-1), the full length ACTN4 protein either does not or does so weakly. More importantly, the flanking sequences of the LXXLL motif are important not only for interacting with nuclear receptors but also for the association with co-activators. Taken together, we have identified a novel extended LXXLL motif that is critical for interactions with both receptors and co-activators. This motif functions more efficiently in a spliced isoform of ACTN4 than it does in the full-length protein. PMID:22908231

  11. Counting motifs in dynamic networks.

    PubMed

    Mukherjee, Kingshuk; Hasan, Md Mahmudul; Boucher, Christina; Kahveci, Tamer

    2018-04-11

    A network motif is a sub-network that occurs frequently in a given network. Detection of such motifs is important since they uncover functions and local properties of the given biological network. Finding motifs is however a computationally challenging task as it requires solving the costly subgraph isomorphism problem. Moreover, the topology of biological networks change over time. These changing networks are called dynamic biological networks. As the network evolves, frequency of each motif in the network also changes. Computing the frequency of a given motif from scratch in a dynamic network as the network topology evolves is infeasible, particularly for large and fast evolving networks. In this article, we design and develop a scalable method for counting the number of motifs in a dynamic biological network. Our method incrementally updates the frequency of each motif as the underlying network's topology evolves. Our experiments demonstrate that our method can update the frequency of each motif in orders of magnitude faster than counting the motif embeddings every time the network changes. If the network evolves more frequently, the margin with which our method outperforms the existing static methods, increases. We evaluated our method extensively using synthetic and real datasets, and show that our method is highly accurate(≥ 96%) and that it can be scaled to large dense networks. The results on real data demonstrate the utility of our method in revealing interesting insights on the evolution of biological processes.

  12. Activity of the rat osteocalcin basal promoter in osteoblastic cells is dependent upon homeodomain and CP1 binding motifs.

    PubMed

    Towler, D A; Bennett, C D; Rodan, G A

    1994-05-01

    A detailed analysis of the transcriptional machinery responsible for osteoblast-specific gene expression should provide tools useful for understanding osteoblast commitment and differentiation. We have defined three cis-elements important for basal activity of the rat osteocalcin (OC) promoter, located at about -200 to -180, -170 to -138, and -121 to -64 relative to the transcription initiation site. A motif (TCTGATTGTGT) present in the region between -200 and -170 that binds a multisubunit CP1/NFY/CBF-like CAAT factor complex contributes significantly to high level basal activity and presumably functions as the CAAT box for the rat OC promoter. We show that the region -121 to 32 is sufficient to confer osteoblastic cell type specificity in transient transfection assays of cultured cell lines using luciferase as a reporter. The basal promoter is active in rodent osteoblastic cell lines, but not in rodent fibroblastic or muscle cell lines. Although the rat OC box (-100 to -74) contains a CAAT motif, we could not detect CP1-like CAAT factor binding to this region. In fact, we demonstrate that a Msx-1 (Hox 7.1) homeodomain binding motif (ACTAATTG; bottom strand) in the 3'-end of the rat OC box is necessary for high level activity of the rat OC basal promoter in osteoblastic cells. A nuclear factor that recognizes this motif appears to be present in osteoblastic ROS 17/2.8 cells, which produce OC, but not in fibroblastic ROS 25/1 cells, which fail to express OC. This ROS 17/2.8 nuclear factor also recognizes the A/T-rich DNA cognates of the homeodomain-containing POU family of transcription factors. Taken together, these data suggest that a ubiquitous CP1-like CAAT factor and a cell type-restricted homeodomain containing (Msx or POU family) transcription factor interact with the proximal rat OC promoter to direct appropriate basal OC transcription in osteoblastic cells.

  13. Pivotal Role of KARAP/DAP12 Adaptor Molecule in the Natural Killer Cell–mediated Resistance to Murine Cytomegalovirus Infection

    PubMed Central

    Sjölin, Hanna; Tomasello, Elena; Mousavi-Jazi, Mehrdad; Bartolazzi, Armando; Kärre, Klas; Vivier, Eric; Cerboni, Cristina

    2002-01-01

    Natural killer (NK) cells are major contributors to early defense against infections. Their effector functions are controlled by a balance between activating and inhibiting signals. To date, however, the involvement of NK cell activating receptors and signaling pathways in the defense against pathogens has not been extensively investigated. In mice, several NK cell activating receptors are coexpressed with and function through the immunoreceptor tyrosine-based activation motif (ITAM)-bearing molecule KARAP/DAP12. Here, we have analyzed the role of KARAP/DAP12 in the early antiviral response to murine cytomegalovirus (MCMV). In KARAP/DAP12 mutant mice bearing a nonfunctional ITAM, we found a considerable increase in viral titers in the spleen (30–40-fold) and in the liver (2–5-fold). These effects were attributed to NK cells. The formation of hepatic inflammatory foci appeared similar in wild-type and mutant mice, but the latter more frequently developed severe hepatitis with large areas of focal necrosis. Moreover, the percentage of hepatic NK cells producing interferon γ was reduced by 56 ± 22% in the absence of a functional KARAP/DAP12. This is the first study that shows a crucial role for a particular activating signaling pathway, in this case the one induced through KARAP/DAP12, in the NK cell–mediated resistance to an infection. Our results are discussed in relation to recent reports demonstrating that innate resistance to MCMV requires the presence of NK cells expressing the KARAP/DAP12-associated receptor Ly49H. PMID:11927627

  14. Characterization of the mouse junD promoter--high basal level activity due to an octamer motif.

    PubMed Central

    de Groot, R P; Karperien, M; Pals, C; Kruijer, W

    1991-01-01

    The product of the junD gene belongs to the Jun/Fos family of nuclear DNA binding transcription factors. This family regulates the expression of TPA responsive genes by binding to the TPA responsive element (TRE). Unlike its counterparts c-jun and junB, junD expression is hardly inducible by growth factors and phorbol esters. In fact, junD is constitutively expressed at high levels in a wide variety of cells. To unravel the molecular mechanisms underlying constitutive junD expression, we have cloned and characterized the mouse junD promoter. We show that the high constitutive expression is caused by multiple cis-acting elements in its promoter, including an SP1 binding site, an octamer motif, a CAAT box, a Zif268 binding site and a TRE-like sequence. The octamer motif is the major determinant of junD promoter activity, while somewhat smaller contributions are made by the TRE and Zif268 binding site. The SP1 and CAAT box are shown to be of minor importance. The junD TRE is in its behavior indistinguishable from previously identified TREs. However, the junD promoter is not TPA inducible due to the presence of the octamer motif. Images PMID:1714380

  15. Motivated Proteins: A web application for studying small three-dimensional protein motifs

    PubMed Central

    Leader, David P; Milner-White, E James

    2009-01-01

    Background Small loop-shaped motifs are common constituents of the three-dimensional structure of proteins. Typically they comprise between three and seven amino acid residues, and are defined by a combination of dihedral angles and hydrogen bonding partners. The most abundant of these are αβ-motifs, asx-motifs, asx-turns, β-bulges, β-bulge loops, β-turns, nests, niches, Schellmann loops, ST-motifs, ST-staples and ST-turns. We have constructed a database of such motifs from a range of high-quality protein structures and built a web application as a visual interface to this. Description The web application, Motivated Proteins, provides access to these 12 motifs (with 48 sub-categories) in a database of over 400 representative proteins. Queries can be made for specific categories or sub-categories of motif, motifs in the vicinity of ligands, motifs which include part of an enzyme active site, overlapping motifs, or motifs which include a particular amino acid sequence. Individual proteins can be specified, or, where appropriate, motifs for all proteins listed. The results of queries are presented in textual form as an (X)HTML table, and may be saved as parsable plain text or XML. Motifs can be viewed and manipulated either individually or in the context of the protein in the Jmol applet structural viewer. Cartoons of the motifs imposed on a linear representation of protein secondary structure are also provided. Summary information for the motifs is available, as are histograms of amino acid distribution, and graphs of dihedral angles at individual positions in the motifs. Conclusion Motivated Proteins is a publicly and freely accessible web application that enables protein scientists to study small three-dimensional motifs without requiring knowledge of either Structured Query Language or the underlying database schema. PMID:19210785

  16. A two-helix motif positions the active site of lysophosphatidic acid acyltransferase for catalysis within the membrane bilayer

    PubMed Central

    Robertson, Rosanna M.; Yao, Jiangwei; Gajewski, Stefan; Kumar, Gyanendra; Martin, Erik W.; Rock, Charles O.; White, Stephen W.

    2017-01-01

    Phosphatidic acid is the central intermediate in membrane phospholipid synthesis and is generated by two acyltransferases in a pathway conserved in all life forms. The second step in this pathway is catalyzed by 1-acyl-sn-glycero-3-phosphate acyltransferase, called PlsC in bacteria. The crystal structure of PlsC from Thermotoga maritima reveals an unusual hydrophobic/aromatic N-terminal two-helix motif linked to an acyltransferase αβ domain that contains the catalytic HX4D motif. PlsC dictates the acyl chain composition of the 2-position of phospholipids, and the acyl chain selectivity ‘ruler’ is an appropriately placed and closed hydrophobic tunnel. This was confirmed by site-directed mutagenesis and membrane composition analysis of Escherichia coli cells expressing the mutated proteins. MD simulations reveal that the two-helix motif represents a novel substructure that firmly anchors the protein to one leaflet of the membrane. This binding mode allows the PlsC active site to acylate lysophospholipids within the membrane bilayer using soluble acyl donors. PMID:28714993

  17. De Novo Regulatory Motif Discovery Identifies Significant Motifs in Promoters of Five Classes of Plant Dehydrin Genes.

    PubMed

    Zolotarov, Yevgen; Strömvik, Martina

    2015-01-01

    Plants accumulate dehydrins in response to osmotic stresses. Dehydrins are divided into five different classes, which are thought to be regulated in different manners. To better understand differences in transcriptional regulation of the five dehydrin classes, de novo motif discovery was performed on 350 dehydrin promoter sequences from a total of 51 plant genomes. Overrepresented motifs were identified in the promoters of five dehydrin classes. The Kn dehydrin promoters contain motifs linked with meristem specific expression, as well as motifs linked with cold/dehydration and abscisic acid response. KS dehydrin promoters contain a motif with a GATA core. SKn and YnSKn dehydrin promoters contain motifs that match elements connected with cold/dehydration, abscisic acid and light response. YnKn dehydrin promoters contain motifs that match abscisic acid and light response elements, but not cold/dehydration response elements. Conserved promoter motifs are present in the dehydrin classes and across different plant lineages, indicating that dehydrin gene regulation is likely also conserved.

  18. Dynamic motifs in socio-economic networks

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Shao, Shuai; Stanley, H. Eugene; Havlin, Shlomo

    2014-12-01

    Socio-economic networks are of central importance in economic life. We develop a method of identifying and studying motifs in socio-economic networks by focusing on “dynamic motifs,” i.e., evolutionary connection patterns that, because of “node acquaintances” in the network, occur much more frequently than random patterns. We examine two evolving bi-partite networks: i) the world-wide commercial ship chartering market and ii) the ship build-to-order market. We find similar dynamic motifs in both bipartite networks, even though they describe different economic activities. We also find that “influence” and “persistence” are strong factors in the interaction behavior of organizations. When two companies are doing business with the same customer, it is highly probable that another customer who currently only has business relationship with one of these two companies, will become customer of the second in the future. This is the effect of influence. Persistence means that companies with close business ties to customers tend to maintain their relationships over a long period of time.

  19. Feedback Inhibition Shapes Emergent Computational Properties of Cortical Microcircuit Motifs.

    PubMed

    Jonke, Zeno; Legenstein, Robert; Habenschuss, Stefan; Maass, Wolfgang

    2017-08-30

    Cortical microcircuits are very complex networks, but they are composed of a relatively small number of stereotypical motifs. Hence, one strategy for throwing light on the computational function of cortical microcircuits is to analyze emergent computational properties of these stereotypical microcircuit motifs. We are addressing here the question how spike timing-dependent plasticity shapes the computational properties of one motif that has frequently been studied experimentally: interconnected populations of pyramidal cells and parvalbumin-positive inhibitory cells in layer 2/3. Experimental studies suggest that these inhibitory neurons exert some form of divisive inhibition on the pyramidal cells. We show that this data-based form of feedback inhibition, which is softer than that of winner-take-all models that are commonly considered in theoretical analyses, contributes to the emergence of an important computational function through spike timing-dependent plasticity: The capability to disentangle superimposed firing patterns in upstream networks, and to represent their information content through a sparse assembly code. SIGNIFICANCE STATEMENT We analyze emergent computational properties of a ubiquitous cortical microcircuit motif: populations of pyramidal cells that are densely interconnected with inhibitory neurons. Simulations of this model predict that sparse assembly codes emerge in this microcircuit motif under spike timing-dependent plasticity. Furthermore, we show that different assemblies will represent different hidden sources of upstream firing activity. Hence, we propose that spike timing-dependent plasticity enables this microcircuit motif to perform a fundamental computational operation on neural activity patterns. Copyright © 2017 the authors 0270-6474/17/378511-13$15.00/0.

  20. Noncoding RNA danger motifs bridge innate and adaptive immunity and are potent adjuvants for vaccination

    PubMed Central

    Wang, Lilin; Smith, Dan; Bot, Simona; Dellamary, Luis; Bloom, Amy; Bot, Adrian

    2002-01-01

    The adaptive immune response is triggered by recognition of T and B cell epitopes and is influenced by “danger” motifs that act via innate immune receptors. This study shows that motifs associated with noncoding RNA are essential features in the immune response reminiscent of viral infection, mediating rapid induction of proinflammatory chemokine expression, recruitment and activation of antigen-presenting cells, modulation of regulatory cytokines, subsequent differentiation of Th1 cells, isotype switching, and stimulation of cross-priming. The heterogeneity of RNA-associated motifs results in differential binding to cellular receptors, and specifically impacts the immune profile. Naturally occurring double-stranded RNA (dsRNA) triggered activation of dendritic cells and enhancement of specific immunity, similar to selected synthetic dsRNA motifs. Based on the ability of specific RNA motifs to block tolerance induction and effectively organize the immune defense during viral infection, we conclude that such RNA species are potent danger motifs. We also demonstrate the feasibility of using selected RNA motifs as adjuvants in the context of novel aerosol carriers for optimizing the immune response to subunit vaccines. In conclusion, RNA-associated motifs produced during viral infection bridge the early response with the late adaptive phase, regulating the activation and differentiation of antigen-specific B and T cells, in addition to a short-term impact on innate immunity. PMID:12393853

  1. Donor-σ-Acceptor Motifs: Thermally Activated Delayed Fluorescence Emitters with Dual Upconversion.

    PubMed

    Geng, Yan; D'Aleo, Anthony; Inada, Ko; Cui, Lin-Song; Kim, Jong Uk; Nakanotani, Hajime; Adachi, Chihaya

    2017-12-22

    A family of organic emitters with a donor-σ-acceptor (D-σ-A) motif is presented. Owing to the weakly coupled D-σ-A intramolecular charge-transfer state, a transition from the localized excited triplet state ( 3 LE) and charge-transfer triplet state ( 3 CT) to the charge-transfer singlet state ( 1 CT) occurred with a small activation energy and high photoluminescence quantum efficiency. Two thermally activated delayed fluorescence (TADF) components were identified, one of which has a very short lifetime of 200-400 ns and the other a longer TADF lifetime of the order of microseconds. In particular, the two D-σ-A materials presented strong blue emission with TADF properties in toluene. These results will shed light on the molecular design of new TADF emitters with short delayed lifetimes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Redemptive Rhetoric: The Continuity Motif in the Rhetoric of Right to Life.

    ERIC Educational Resources Information Center

    Solomon, Martha

    1980-01-01

    Traces the use of the "continuity" motif in the Right to Life movement's rhetoric and its influence on the depiction of the abortion controversy. Analyzes how the motif functions rhetorically to aid the movement in defining its activities and involvement. (PD)

  3. CombiMotif: A new algorithm for network motifs discovery in protein-protein interaction networks

    NASA Astrophysics Data System (ADS)

    Luo, Jiawei; Li, Guanghui; Song, Dan; Liang, Cheng

    2014-12-01

    Discovering motifs in protein-protein interaction networks is becoming a current major challenge in computational biology, since the distribution of the number of network motifs can reveal significant systemic differences among species. However, this task can be computationally expensive because of the involvement of graph isomorphic detection. In this paper, we present a new algorithm (CombiMotif) that incorporates combinatorial techniques to count non-induced occurrences of subgraph topologies in the form of trees. The efficiency of our algorithm is demonstrated by comparing the obtained results with the current state-of-the art subgraph counting algorithms. We also show major differences between unicellular and multicellular organisms. The datasets and source code of CombiMotif are freely available upon request.

  4. Combinatorial Histone Acetylation Patterns Are Generated by Motif-Specific Reactions.

    PubMed

    Blasi, Thomas; Feller, Christian; Feigelman, Justin; Hasenauer, Jan; Imhof, Axel; Theis, Fabian J; Becker, Peter B; Marr, Carsten

    2016-01-27

    Post-translational modifications (PTMs) are pivotal to cellular information processing, but how combinatorial PTM patterns ("motifs") are set remains elusive. We develop a computational framework, which we provide as open source code, to investigate the design principles generating the combinatorial acetylation patterns on histone H4 in Drosophila melanogaster. We find that models assuming purely unspecific or lysine site-specific acetylation rates were insufficient to explain the experimentally determined motif abundances. Rather, these abundances were best described by an ensemble of models with acetylation rates that were specific to motifs. The model ensemble converged upon four acetylation pathways; we validated three of these using independent data from a systematic enzyme depletion study. Our findings suggest that histone acetylation patterns originate through specific pathways involving motif-specific acetylation activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Assessment of composite motif discovery methods.

    PubMed

    Klepper, Kjetil; Sandve, Geir K; Abul, Osman; Johansen, Jostein; Drablos, Finn

    2008-02-26

    Computational discovery of regulatory elements is an important area of bioinformatics research and more than a hundred motif discovery methods have been published. Traditionally, most of these methods have addressed the problem of single motif discovery - discovering binding motifs for individual transcription factors. In higher organisms, however, transcription factors usually act in combination with nearby bound factors to induce specific regulatory behaviours. Hence, recent focus has shifted from single motifs to the discovery of sets of motifs bound by multiple cooperating transcription factors, so called composite motifs or cis-regulatory modules. Given the large number and diversity of methods available, independent assessment of methods becomes important. Although there have been several benchmark studies of single motif discovery, no similar studies have previously been conducted concerning composite motif discovery. We have developed a benchmarking framework for composite motif discovery and used it to evaluate the performance of eight published module discovery tools. Benchmark datasets were constructed based on real genomic sequences containing experimentally verified regulatory modules, and the module discovery programs were asked to predict both the locations of these modules and to specify the single motifs involved. To aid the programs in their search, we provided position weight matrices corresponding to the binding motifs of the transcription factors involved. In addition, selections of decoy matrices were mixed with the genuine matrices on one dataset to test the response of programs to varying levels of noise. Although some of the methods tested tended to score somewhat better than others overall, there were still large variations between individual datasets and no single method performed consistently better than the rest in all situations. The variation in performance on individual datasets also shows that the new benchmark datasets represents a

  6. A systematic analysis of a mi-RNA inter-pathway regulatory motif

    PubMed Central

    2013-01-01

    Background The continuing discovery of new types and functions of small non-coding RNAs is suggesting the presence of regulatory mechanisms far more complex than the ones currently used to study and design Gene Regulatory Networks. Just focusing on the roles of micro RNAs (miRNAs), they have been found to be part of several intra-pathway regulatory motifs. However, inter-pathway regulatory mechanisms have been often neglected and require further investigation. Results In this paper we present the result of a systems biology study aimed at analyzing a high-level inter-pathway regulatory motif called Pathway Protection Loop, not previously described, in which miRNAs seem to play a crucial role in the successful behavior and activation of a pathway. Through the automatic analysis of a large set of public available databases, we found statistical evidence that this inter-pathway regulatory motif is very common in several classes of KEGG Homo Sapiens pathways and concurs in creating a complex regulatory network involving several pathways connected by this specific motif. The role of this motif seems also confirmed by a deeper review of other research activities on selected representative pathways. Conclusions Although previous studies suggested transcriptional regulation mechanism at the pathway level such as the Pathway Protection Loop, a high-level analysis like the one proposed in this paper is still missing. The understanding of higher-level regulatory motifs could, as instance, lead to new approaches in the identification of therapeutic targets because it could unveil new and “indirect” paths to activate or silence a target pathway. However, a lot of work still needs to be done to better uncover this high-level inter-pathway regulation including enlarging the analysis to other small non-coding RNA molecules. PMID:24152805

  7. Identification of early zygotic genes in the yellow fever mosquito Aedes aegypti and discovery of a motif involved in early zygotic genome activation.

    PubMed

    Biedler, James K; Hu, Wanqi; Tae, Hongseok; Tu, Zhijian

    2012-01-01

    During early embryogenesis the zygotic genome is transcriptionally silent and all mRNAs present are of maternal origin. The maternal-zygotic transition marks the time over which embryogenesis changes its dependence from maternal RNAs to zygotically transcribed RNAs. Here we present the first systematic investigation of early zygotic genes (EZGs) in a mosquito species and focus on genes involved in the onset of transcription during 2-4 hr. We used transcriptome sequencing to identify the "pure" (without maternal expression) EZGs by analyzing transcripts from four embryonic time ranges of 0-2, 2-4, 4-8, and 8-12 hr, which includes the time of cellular blastoderm formation and up to the start of gastrulation. Blast of 16,789 annotated transcripts vs. the transcriptome reads revealed evidence for 63 (P<0.001) and 143 (P<0.05) nonmaternally derived transcripts having a significant increase in expression at 2-4 hr. One third of the 63 EZG transcripts do not have predicted introns compared to 10% of all Ae. aegypti genes. We have confirmed by RT-PCR that zygotic transcription starts as early as 2-3 hours. A degenerate motif VBRGGTA was found to be overrepresented in the upstream sequences of the identified EZGs using a motif identification software called SCOPE. We find evidence for homology between this motif and the TAGteam motif found in Drosophila that has been implicated in EZG activation. A 38 bp sequence in the proximal upstream sequence of a kinesin light chain EZG (KLC2.1) contains two copies of the mosquito motif. This sequence was shown to support EZG transcription by luciferase reporter assays performed on injected early embryos, and confers early zygotic activity to a heterologous promoter from a divergent mosquito species. The results of these studies are consistent with the model of early zygotic genome activation via transcriptional activators, similar to what has been found recently in Drosophila.

  8. Rapid motif compliance scoring with match weight sets.

    PubMed

    Venezia, D; O'Hara, P J

    1993-02-01

    Most current implementations of motif matching in biological sequences have sacrificed the generality of weight matrix scoring for shorter runtimes. The program MOTIF incorporates a weight matrix and a rapid, backtracking tree-search algorithm to score motif compliance with greatly enhanced performance while placing no constraints on the motif. In addition, any positions within a motif can be marked as 'inviolate', thereby requiring an exact match. MOTIF allows a choice of regular expression formats and can use both motif and sequence libraries as either targets or queries. Nucleic acid sequences can optionally be translated by MOTIF in any frame(s) and used against peptide motifs.

  9. A motif detection and classification method for peptide sequences using genetic programming.

    PubMed

    Tomita, Yasuyuki; Kato, Ryuji; Okochi, Mina; Honda, Hiroyuki

    2008-08-01

    An exploration of common rules (property motifs) in amino acid sequences has been required for the design of novel sequences and elucidation of the interactions between molecules controlled by the structural or physical environment. In the present study, we developed a new method to search property motifs that are common in peptide sequence data. Our method comprises the following two characteristics: (i) the automatic determination of the position and length of common property motifs by calculating the physicochemical similarity of amino acids, and (ii) the quick and effective exploration of motif candidates that discriminates the positives and negatives by the introduction of genetic programming (GP). Our method was evaluated by two types of model data sets. First, the intentionally buried property motifs were searched in the artificially derived peptide data containing intentionally buried property motifs. As a result, the expected property motifs were correctly extracted by our algorithm. Second, the peptide data that interact with MHC class II molecules were analyzed as one of the models of biologically active peptides with buried motifs in various lengths. Twofold MHC class II binding peptides were identified with the rule using our method, compared to the existing scoring matrix method. In conclusion, our GP based motif searching approach enabled to obtain knowledge of functional aspects of the peptides without any prior knowledge.

  10. CPI motif interaction is necessary for capping protein function in cells

    PubMed Central

    Edwards, Marc; McConnell, Patrick; Schafer, Dorothy A.; Cooper, John A.

    2015-01-01

    Capping protein (CP) has critical roles in actin assembly in vivo and in vitro. CP binds with high affinity to the barbed end of actin filaments, blocking the addition and loss of actin subunits. Heretofore, models for actin assembly in cells generally assumed that CP is constitutively active, diffusing freely to find and cap barbed ends. However, CP can be regulated by binding of the ‘capping protein interaction' (CPI) motif, found in a diverse and otherwise unrelated set of proteins that decreases, but does not abolish, the actin-capping activity of CP and promotes uncapping in biochemical experiments. Here, we report that CP localization and the ability of CP to function in cells requires interaction with a CPI-motif-containing protein. Our discovery shows that cells target and/or modulate the capping activity of CP via CPI motif interactions in order for CP to localize and function in cells. PMID:26412145

  11. Statistical tests to compare motif count exceptionalities

    PubMed Central

    Robin, Stéphane; Schbath, Sophie; Vandewalle, Vincent

    2007-01-01

    Background Finding over- or under-represented motifs in biological sequences is now a common task in genomics. Thanks to p-value calculation for motif counts, exceptional motifs are identified and represent candidate functional motifs. The present work addresses the related question of comparing the exceptionality of one motif in two different sequences. Just comparing the motif count p-values in each sequence is indeed not sufficient to decide if this motif is significantly more exceptional in one sequence compared to the other one. A statistical test is required. Results We develop and analyze two statistical tests, an exact binomial one and an asymptotic likelihood ratio test, to decide whether the exceptionality of a given motif is equivalent or significantly different in two sequences of interest. For that purpose, motif occurrences are modeled by Poisson processes, with a special care for overlapping motifs. Both tests can take the sequence compositions into account. As an illustration, we compare the octamer exceptionalities in the Escherichia coli K-12 backbone versus variable strain-specific loops. Conclusion The exact binomial test is particularly adapted for small counts. For large counts, we advise to use the likelihood ratio test which is asymptotic but strongly correlated with the exact binomial test and very simple to use. PMID:17346349

  12. Maintenance of murine platelet homeostasis by the kinase Csk and phosphatase CD148

    PubMed Central

    Di Nunzio, Giada; Smith, Christopher W.; Al Ghaithi, Rashid; van Geffen, Johanna P.; Heising, Silke; Tullemans, Bibian M. E.; Tee, Louise; Heemskerk, Johan W. M.; Tarakhovsky, Alexander

    2018-01-01

    Src family kinases (SFKs) coordinate the initiating and propagating activation signals in platelets, but it remains unclear how they are regulated. Here, we show that ablation of C-terminal Src kinase (Csk) and receptor-like protein tyrosine-phosphatase CD148 in mice results in a dramatic increase in platelet SFK activity, demonstrating that these proteins are essential regulators of platelet reactivity. Paradoxically, Csk/CD148-deficient mice exhibit reduced in vivo and ex vivo thrombus formation and increased bleeding following injury rather than a prothrombotic phenotype. This is a consequence of multiple negative feedback mechanisms, including downregulation of the immunoreceptor tyrosine-based activation motif (ITAM)– and hemi-ITAM–containing receptors glycoprotein VI (GPVI)-Fc receptor (FcR) γ-chain and CLEC-2, respectively and upregulation of the immunoreceptor tyrosine-based inhibition motif (ITIM)–containing receptor G6b-B and its interaction with the tyrosine phosphatases Shp1 and Shp2. Results from an analog-sensitive Csk mouse model demonstrate the unconventional role of SFKs in activating ITIM signaling. This study establishes Csk and CD148 as critical molecular switches controlling the thrombotic and hemostatic capacity of platelets and reveals cell-intrinsic mechanisms that prevent pathological thrombosis from occurring. PMID:29301754

  13. Promoter motifs required for c-mpl gene expression induced by thrombopoietin in CMK cells.

    PubMed

    Sunohara, Masataka; Sato, Iwao; Morikawa, Shigeru

    2017-11-30

    Thrombopoietin (TPO) and its receptor, c-Mpl, are the central regulators of megakaryocyte development and platelet production and are also crucial to regulate megakaryocytopoiesis. TPO remarkably elevated c-mpl promoter activity, while the protein kinase C (PKC) inhibitors, GF109203, H7 and Calphostin C, clearly reduced the steady level of its promoter activity.  In the present study, motifs crucial for c-mpl promoter activity induced by TPO treatment have been analyzed using a human megakaryoblastic cell line, CMK. Destruction of the -107Sp1 and the -57Sp1 sites in the c-mpl promoter enhancer region resulted in decrease of the promoter activity by 53.1% and 64.4%, respectively, and destruction of -69Ets and -28Ets elements dramatically decreased the promoter activity by 96.4% and 87.8%, respectively, while mutation of -77GATA moderately reduced the activity by 31.4%. The result was in agreement with our previous report that showed the crucial motifs in the c-mpl promoter for the promoter activity induced by PMA-treatment. This indicates that TPO-induced activation of the c-mpl promoter activity is fully modulated by transcription through a PKC-dependent pathway and the two Sp1 and two Ets motifs are crucial for the activation of the c-mpl promoter activity rather than a GATA motif in the c-mpl promoter of CMK cells.

  14. Discriminative motif optimization based on perceptron training

    PubMed Central

    Patel, Ronak Y.; Stormo, Gary D.

    2014-01-01

    Motivation: Generating accurate transcription factor (TF) binding site motifs from data generated using the next-generation sequencing, especially ChIP-seq, is challenging. The challenge arises because a typical experiment reports a large number of sequences bound by a TF, and the length of each sequence is relatively long. Most traditional motif finders are slow in handling such enormous amount of data. To overcome this limitation, tools have been developed that compromise accuracy with speed by using heuristic discrete search strategies or limited optimization of identified seed motifs. However, such strategies may not fully use the information in input sequences to generate motifs. Such motifs often form good seeds and can be further improved with appropriate scoring functions and rapid optimization. Results: We report a tool named discriminative motif optimizer (DiMO). DiMO takes a seed motif along with a positive and a negative database and improves the motif based on a discriminative strategy. We use area under receiver-operating characteristic curve (AUC) as a measure of discriminating power of motifs and a strategy based on perceptron training that maximizes AUC rapidly in a discriminative manner. Using DiMO, on a large test set of 87 TFs from human, drosophila and yeast, we show that it is possible to significantly improve motifs identified by nine motif finders. The motifs are generated/optimized using training sets and evaluated on test sets. The AUC is improved for almost 90% of the TFs on test sets and the magnitude of increase is up to 39%. Availability and implementation: DiMO is available at http://stormo.wustl.edu/DiMO Contact: rpatel@genetics.wustl.edu, ronakypatel@gmail.com PMID:24369152

  15. Regulation of TCF ETS-domain transcription factors by helix-loop-helix motifs.

    PubMed

    Stinson, Julie; Inoue, Toshiaki; Yates, Paula; Clancy, Anne; Norton, John D; Sharrocks, Andrew D

    2003-08-15

    DNA binding by the ternary complex factor (TCF) subfamily of ETS-domain transcription factors is tightly regulated by intramolecular and intermolecular interactions. The helix-loop-helix (HLH)-containing Id proteins are trans-acting negative regulators of DNA binding by the TCFs. In the TCF, SAP-2/Net/ERP, intramolecular inhibition of DNA binding is promoted by the cis-acting NID region that also contains an HLH-like motif. The NID also acts as a transcriptional repression domain. Here, we have studied the role of HLH motifs in regulating DNA binding and transcription by the TCF protein SAP-1 and how Cdk-mediated phosphorylation affects the inhibitory activity of the Id proteins towards the TCFs. We demonstrate that the NID region of SAP-1 is an autoinhibitory motif that acts to inhibit DNA binding and also functions as a transcription repression domain. This region can be functionally replaced by fusion of Id proteins to SAP-1, whereby the Id moiety then acts to repress DNA binding in cis. Phosphorylation of the Ids by cyclin-Cdk complexes results in reduction in protein-protein interactions between the Ids and TCFs and relief of their DNA-binding inhibitory activity. In revealing distinct mechanisms through which HLH motifs modulate the activity of TCFs, our results therefore provide further insight into the role of HLH motifs in regulating TCF function and how the inhibitory properties of the trans-acting Id HLH proteins are themselves regulated by phosphorylation.

  16. Identity and functions of CxxC-derived motifs.

    PubMed

    Fomenko, Dmitri E; Gladyshev, Vadim N

    2003-09-30

    Two cysteines separated by two other residues (the CxxC motif) are employed by many redox proteins for formation, isomerization, and reduction of disulfide bonds and for other redox functions. The place of the C-terminal cysteine in this motif may be occupied by serine (the CxxS motif), modifying the functional repertoire of redox proteins. Here we found that the CxxC motif may also give rise to a motif, in which the C-terminal cysteine is replaced with threonine (the CxxT motif). Moreover, in contrast to a view that the N-terminal cysteine in the CxxC motif always serves as a nucleophilic attacking group, this residue could also be replaced with threonine (the TxxC motif), serine (the SxxC motif), or other residues. In each of these CxxC-derived motifs, the presence of a downstream alpha-helix was strongly favored. A search for conserved CxxC-derived motif/helix patterns in four complete genomes representing bacteria, archaea, and eukaryotes identified known redox proteins and suggested possible redox functions for several additional proteins. Catalytic sites in peroxiredoxins were major representatives of the TxxC motif, whereas those in glutathione peroxidases represented the CxxT motif. Structural assessments indicated that threonines in these enzymes could stabilize catalytic thiolates, suggesting revisions to previously proposed catalytic triads. Each of the CxxC-derived motifs was also observed in natural selenium-containing proteins, in which selenocysteine was present in place of a catalytic cysteine.

  17. Unitary circular code motifs in genomes of eukaryotes.

    PubMed

    El Soufi, Karim; Michel, Christian J

    A set X of 20 trinucleotides was identified in genes of bacteria, eukaryotes, plasmids and viruses, which has in average the highest occurrence in reading frame compared to its two shifted frames (Michel, 2015; Arquès and Michel, 1996). This set X has an interesting mathematical property as X is a circular code (Arquès and Michel, 1996). Thus, the motifs from this circular code X, called X motifs, have the property to always retrieve, synchronize and maintain the reading frame in genes. The origin of this circular code X in genes is an open problem since its discovery in 1996. Here, we first show that the unitary circular codes (UCC), i.e. sets of one word, allow to generate unitary circular code motifs (UCC motifs), i.e. a concatenation of the same motif (simple repeats) leading to low complexity DNA. Three classes of UCC motifs are studied here: repeated dinucleotides (D + motifs), repeated trinucleotides (T + motifs) and repeated tetranucleotides (T + motifs). Thus, the D + , T + and T + motifs allow to retrieve, synchronize and maintain a frame modulo 2, modulo 3 and modulo 4, respectively, and their shifted frames (1 modulo 2; 1 and 2 modulo 3; 1, 2 and 3 modulo 4 according to the C 2 , C 3 and C 4 properties, respectively) in the DNA sequences. The statistical distribution of the D + , T + and T + motifs is analyzed in the genomes of eukaryotes. A UCC motif and its comp lementary UCC motif have the same distribution in the eukaryotic genomes. Furthermore, a UCC motif and its complementary UCC motif have increasing occurrences contrary to their number of hydrogen bonds, very significant with the T + motifs. The longest D + , T + and T + motifs in the studied eukaryotic genomes are also given. Surprisingly, a scarcity of repeated trinucleotides (T + motifs) in the large eukaryotic genomes is observed compared to the D + and T + motifs. This result has been investigated and may be explained by two outcomes. Repeated trinucleotides (T + motifs) are identified

  18. Validation of chemical compound library screening for transcriptional co-activator with PDZ-binding motif inhibitors using GFP-fused transcriptional co-activator with PDZ-binding motif.

    PubMed

    Nagashima, Shunta; Maruyama, Junichi; Kawano, Shodai; Iwasa, Hiroaki; Nakagawa, Kentaro; Ishigami-Yuasa, Mari; Kagechika, Hiroyuki; Nishina, Hiroshi; Hata, Yutaka

    2016-06-01

    Transcriptional co-activator with PDZ-binding motif (TAZ) plays versatile roles in cell proliferation and differentiation. It is phosphorylated by large tumor suppressor kinases, the core kinases of the tumor-suppressive Hippo pathway. Phosphorylation induces the cytoplasmic accumulation of TAZ and its degradation. In human cancers, the deregulation of the Hippo pathway and gene amplification enhance TAZ activity. TAZ interacts with TEA domain family members (TEAD), and upregulates genes implicated in epithelial-mesenchymal transition. It also confers stemness to cancer cells. Thus, TAZ activation provides cancer cells with malignant properties and worsens the clinical prognosis. Therefore, TAZ attracts attention as a therapeutic target in cancer therapy. We applied 18 606 small chemical compounds to human osteosarcoma U2OS cells expressing GFP-fused TAZ (GFP-TAZ), monitored the subcellular localization of GFP-TAZ, and selected 33 compounds that shifted GFP-TAZ to the cytoplasm. Unexpectedly, only a limited number of compounds suppressed TAZ-mediated enhancement of TEAD-responsive reporter activity. Moreover, the compounds that weakened TEAD reporter activity did not necessarily decrease the unphosphorylated TAZ. In this study, we focused on three compounds that decreased both TEAD reporter activity and unphosphorylated TAZ, and treated several human cancer cells with these compounds. One compound did not show a remarkable effect, whereas the other two compounds compromised the cell viability in certain cancer cells. In conclusion, the GFP-TAZ-based assay can be used as the first screening for compounds that inhibit TAZ and show anticancer properties. To develop anticancer drugs, we need additional assays to select the compounds. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  19. Understanding the role of histidine in the GHSxG acyltransferase active site motif: Evidence for histidine stabilization of the malonyl-enzyme intermediate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poust, Sean; Yoon, Isu; Adams, Paul D.

    Acyltransferases determine which extender units are incorporated into polyketide and fatty acid products. Thus, the ping-pong acyltransferase mechanism utilizes a serine in a conserved GHSxG motif. However, the role of the conserved histidine in this motif is poorly understood. We observed that a histidine to alanine mutation (H640A) in the GHSxG motif of the malonyl-CoA specific yersiniabactin acyltransferase results in an approximately seven-fold higher hydrolysis rate over the wildtype enzyme, while retaining transacylation activity. We propose two possibilities for the reduction in hydrolysis rate: either H640 structurally stabilizes the protein by hydrogen bonding with a conserved asparagine in the ferredoxin-likemore » subdomain of the protein, or a water-mediated hydrogen bond between H640 and the malonyl moiety stabilizes the malonyl-O-AT ester intermediate.« less

  20. Understanding the role of histidine in the GHSxG acyltransferase active site motif: Evidence for histidine stabilization of the malonyl-enzyme intermediate

    DOE PAGES

    Poust, Sean; Yoon, Isu; Adams, Paul D.; ...

    2014-10-06

    Acyltransferases determine which extender units are incorporated into polyketide and fatty acid products. Thus, the ping-pong acyltransferase mechanism utilizes a serine in a conserved GHSxG motif. However, the role of the conserved histidine in this motif is poorly understood. We observed that a histidine to alanine mutation (H640A) in the GHSxG motif of the malonyl-CoA specific yersiniabactin acyltransferase results in an approximately seven-fold higher hydrolysis rate over the wildtype enzyme, while retaining transacylation activity. We propose two possibilities for the reduction in hydrolysis rate: either H640 structurally stabilizes the protein by hydrogen bonding with a conserved asparagine in the ferredoxin-likemore » subdomain of the protein, or a water-mediated hydrogen bond between H640 and the malonyl moiety stabilizes the malonyl-O-AT ester intermediate.« less

  1. Identification of N-Terminal Lobe Motifs that Determine the Kinase Activity of the Catalytic Domains and Regulatory Strategies of Src and Csk Protein Tyrosine Kinases†

    PubMed Central

    Huang, Kezhen; Wang, Yue-Hao; Brown, Alex; Sun, Gongqin

    2009-01-01

    Csk and Src protein tyrosine kinases are structurally homologous, but use opposite regulatory strategies. The isolated catalytic domain of Csk is intrinsically inactive and is activated by interactions with the regulatory SH3 and SH2 domains, while the isolated catalytic domain of Src is intrinsically active and is suppressed by interactions with the regulatory SH3 and SH2 domains. The structural basis for why one isolated catalytic domain is intrinsically active while the other is inactive is not clear. In this current study, we identify the structural elements in the N-terminal lobe of the catalytic domain that render the Src catalytic domain active. These structural elements include the α-helix C region, a β-turn between the β-4 and β-5 strands, and an Arg residue at the beginning of the catalytic domain. These three motifs interact with each other to activate the Src catalytic domain, but the equivalent motifs in Csk directly interact with the regulatory domains that are important for Csk activation. The Src motifs can be grafted to the Csk catalytic domain to obtain an active Csk catalytic domain. These results, together with available Src and Csk tertiary structures, reveal an important structural switch that determines the kinase activity of a catalytic domain and dictates the regulatory strategy of a kinase. PMID:19244618

  2. Systematic comparison of the response properties of protein and RNA mediated gene regulatory motifs.

    PubMed

    Iyengar, Bharat Ravi; Pillai, Beena; Venkatesh, K V; Gadgil, Chetan J

    2017-05-30

    We present a framework enabling the dissection of the effects of motif structure (feedback or feedforward), the nature of the controller (RNA or protein), and the regulation mode (transcriptional, post-transcriptional or translational) on the response to a step change in the input. We have used a common model framework for gene expression where both motif structures have an activating input and repressing regulator, with the same set of parameters, to enable a comparison of the responses. We studied the global sensitivity of the system properties, such as steady-state gain, overshoot, peak time, and peak duration, to parameters. We find that, in all motifs, overshoot correlated negatively whereas peak duration varied concavely with peak time. Differences in the other system properties were found to be mainly dependent on the nature of the controller rather than the motif structure. Protein mediated motifs showed a higher degree of adaptation i.e. a tendency to return to baseline levels; in particular, feedforward motifs exhibited perfect adaptation. RNA mediated motifs had a mild regulatory effect; they also exhibited a lower peaking tendency and mean overshoot. Protein mediated feedforward motifs showed higher overshoot and lower peak time compared to the corresponding feedback motifs.

  3. Induction of cell death by tospoviral protein NSs and the motif critical for cell death does not control RNA silencing suppression activity.

    PubMed

    Singh, Ajeet; Permar, Vipin; Jain, R K; Goswami, Suneha; Kumar, Ranjeet Ranjan; Canto, Tomas; Palukaitis, Peter; Praveen, Shelly

    2017-08-01

    Groundnut bud necrosis virus induces necrotic symptoms in different hosts. Previous studies showed reactive oxygen species-mediated programmed cell death (PCD) resulted in necrotic symptoms. Transgenic expression of viral protein NSs mimics viral symptoms. Here, we showed a role for NSs in influencing oxidative burst in the cell, by analyzing H 2 O 2 accumulation, activities of antioxidant enzymes and expression levels of vacuolar processing enzymes, H 2 O 2 -responsive microRNA 319a.2 plus its possible target metacaspase-8. The role of NSs in PCD, was shown using two NSs mutants: one in the Trp/GH3 motif (a homologue of pro-apototic domain) (NSs S189R ) and the other in a non-Trp/GH3 motif (NSs L172R ). Tobacco rattle virus (TRV) expressing NSs S189R enhanced the PCD response, but not TRV-NSs L172R , while RNA silencing suppression activity was lost in TRV-NSs L172R , but not in TRV-NSs S189R . Therefore, we propose dual roles of NSs in RNA silencing suppression and induction of cell death, controlled by different motifs. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Discovering Sequence Motifs with Arbitrary Insertions and Deletions

    PubMed Central

    Frith, Martin C.; Saunders, Neil F. W.; Kobe, Bostjan; Bailey, Timothy L.

    2008-01-01

    Biology is encoded in molecular sequences: deciphering this encoding remains a grand scientific challenge. Functional regions of DNA, RNA, and protein sequences often exhibit characteristic but subtle motifs; thus, computational discovery of motifs in sequences is a fundamental and much-studied problem. However, most current algorithms do not allow for insertions or deletions (indels) within motifs, and the few that do have other limitations. We present a method, GLAM2 (Gapped Local Alignment of Motifs), for discovering motifs allowing indels in a fully general manner, and a companion method GLAM2SCAN for searching sequence databases using such motifs. glam2 is a generalization of the gapless Gibbs sampling algorithm. It re-discovers variable-width protein motifs from the PROSITE database significantly more accurately than the alternative methods PRATT and SAM-T2K. Furthermore, it usefully refines protein motifs from the ELM database: in some cases, the refined motifs make orders of magnitude fewer overpredictions than the original ELM regular expressions. GLAM2 performs respectably on the BAliBASE multiple alignment benchmark, and may be superior to leading multiple alignment methods for “motif-like” alignments with N- and C-terminal extensions. Finally, we demonstrate the use of GLAM2 to discover protein kinase substrate motifs and a gapped DNA motif for the LIM-only transcriptional regulatory complex: using GLAM2SCAN, we identify promising targets for the latter. GLAM2 is especially promising for short protein motifs, and it should improve our ability to identify the protein cleavage sites, interaction sites, post-translational modification attachment sites, etc., that underlie much of biology. It may be equally useful for arbitrarily gapped motifs in DNA and RNA, although fewer examples of such motifs are known at present. GLAM2 is public domain software, available for download at http://bioinformatics.org.au/glam2. PMID:18437229

  5. Designing synthetic RNAs to determine the relevance of structural motifs in picornavirus IRES elements

    NASA Astrophysics Data System (ADS)

    Fernandez-Chamorro, Javier; Lozano, Gloria; Garcia-Martin, Juan Antonio; Ramajo, Jorge; Dotu, Ivan; Clote, Peter; Martinez-Salas, Encarnacion

    2016-04-01

    The function of Internal Ribosome Entry Site (IRES) elements is intimately linked to their RNA structure. Viral IRES elements are organized in modular domains consisting of one or more stem-loops that harbor conserved RNA motifs critical for internal initiation of translation. A conserved motif is the pyrimidine-tract located upstream of the functional initiation codon in type I and II picornavirus IRES. By computationally designing synthetic RNAs to fold into a structure that sequesters the polypyrimidine tract in a hairpin, we establish a correlation between predicted inaccessibility of the pyrimidine tract and IRES activity, as determined in both in vitro and in vivo systems. Our data supports the hypothesis that structural sequestration of the pyrimidine-tract within a stable hairpin inactivates IRES activity, since the stronger the stability of the hairpin the higher the inhibition of protein synthesis. Destabilization of the stem-loop immediately upstream of the pyrimidine-tract also decreases IRES activity. Our work introduces a hybrid computational/experimental method to determine the importance of structural motifs for biological function. Specifically, we show the feasibility of using the software RNAiFold to design synthetic RNAs with particular sequence and structural motifs that permit subsequent experimental determination of the importance of such motifs for biological function.

  6. Motif enrichment tool.

    PubMed

    Blatti, Charles; Sinha, Saurabh

    2014-07-01

    The Motif Enrichment Tool (MET) provides an online interface that enables users to find major transcriptional regulators of their gene sets of interest. MET searches the appropriate regulatory region around each gene and identifies which transcription factor DNA-binding specificities (motifs) are statistically overrepresented. Motif enrichment analysis is currently available for many metazoan species including human, mouse, fruit fly, planaria and flowering plants. MET also leverages high-throughput experimental data such as ChIP-seq and DNase-seq from ENCODE and ModENCODE to identify the regulatory targets of a transcription factor with greater precision. The results from MET are produced in real time and are linked to a genome browser for easy follow-up analysis. Use of the web tool is free and open to all, and there is no login requirement. ADDRESS: http://veda.cs.uiuc.edu/MET/. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Fast social-like learning of complex behaviors based on motor motifs.

    PubMed

    Calvo Tapia, Carlos; Tyukin, Ivan Y; Makarov, Valeri A

    2018-05-01

    Social learning is widely observed in many species. Less experienced agents copy successful behaviors exhibited by more experienced individuals. Nevertheless, the dynamical mechanisms behind this process remain largely unknown. Here we assume that a complex behavior can be decomposed into a sequence of n motor motifs. Then a neural network capable of activating motor motifs in a given sequence can drive an agent. To account for (n-1)! possible sequences of motifs in a neural network, we employ the winnerless competition approach. We then consider a teacher-learner situation: one agent exhibits a complex movement, while another one aims at mimicking the teacher's behavior. Despite the huge variety of possible motif sequences we show that the learner, equipped with the provided learning model, can rewire "on the fly" its synaptic couplings in no more than (n-1) learning cycles and converge exponentially to the durations of the teacher's motifs. We validate the learning model on mobile robots. Experimental results show that the learner is indeed capable of copying the teacher's behavior composed of six motor motifs in a few learning cycles. The reported mechanism of learning is general and can be used for replicating different functions, including, for example, sound patterns or speech.

  8. Fast social-like learning of complex behaviors based on motor motifs

    NASA Astrophysics Data System (ADS)

    Calvo Tapia, Carlos; Tyukin, Ivan Y.; Makarov, Valeri A.

    2018-05-01

    Social learning is widely observed in many species. Less experienced agents copy successful behaviors exhibited by more experienced individuals. Nevertheless, the dynamical mechanisms behind this process remain largely unknown. Here we assume that a complex behavior can be decomposed into a sequence of n motor motifs. Then a neural network capable of activating motor motifs in a given sequence can drive an agent. To account for (n -1 )! possible sequences of motifs in a neural network, we employ the winnerless competition approach. We then consider a teacher-learner situation: one agent exhibits a complex movement, while another one aims at mimicking the teacher's behavior. Despite the huge variety of possible motif sequences we show that the learner, equipped with the provided learning model, can rewire "on the fly" its synaptic couplings in no more than (n -1 ) learning cycles and converge exponentially to the durations of the teacher's motifs. We validate the learning model on mobile robots. Experimental results show that the learner is indeed capable of copying the teacher's behavior composed of six motor motifs in a few learning cycles. The reported mechanism of learning is general and can be used for replicating different functions, including, for example, sound patterns or speech.

  9. Unique ζ-chain motifs mediate a direct TCR-actin linkage critical for immunological synapse formation and T-cell activation.

    PubMed

    Klieger, Yair; Almogi-Hazan, Osnat; Ish-Shalom, Eliran; Pato, Aviad; Pauker, Maor H; Barda-Saad, Mira; Wang, Lynn; Baniyash, Michal

    2014-01-01

    TCR-mediated activation induces receptor microclusters that evolve to a defined immune synapse (IS). Many studies showed that actin polymerization and remodeling, which create a scaffold critical to IS formation and stabilization, are TCR mediated. However, the mechanisms controlling simultaneous TCR and actin dynamic rearrangement in the IS are yet not fully understood. Herein, we identify two novel TCR ζ-chain motifs, mediating the TCR's direct interaction with actin and inducing actin bundling. While T cells expressing the ζ-chain mutated in these motifs lack cytoskeleton (actin) associated (cska)-TCRs, they express normal levels of non-cska and surface TCRs as cells expressing wild-type ζ-chain. However, such mutant cells are unable to display activation-dependent TCR clustering, IS formation, expression of CD25/CD69 activation markers, or produce/secrete cytokine, effects also seen in the corresponding APCs. We are the first to show a direct TCR-actin linkage, providing the missing gap linking between TCR-mediated Ag recognition, specific cytoskeleton orientation toward the T-cell-APC interacting pole and long-lived IS maintenance. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Allosteric Breakage of the Hydrogen Bond within the Dual-Histidine Motif in the Active Site of Human Pin1 PPIase.

    PubMed

    Wang, Jing; Tochio, Naoya; Kawasaki, Ryosuke; Tamari, Yu; Xu, Ning; Uewaki, Jun-Ichi; Utsunomiya-Tate, Naoko; Tate, Shin-Ichi

    2015-08-25

    Intimate cooperativity among active site residues in enzymes is a key factor for regulating elaborate reactions that would otherwise not occur readily. Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) is the phosphorylation-dependent cis-trans peptidyl-prolyl isomerase (PPIase) that specifically targets phosphorylated Ser/Thr-Pro motifs. Residues C113, H59, H157, and T152 form a hydrogen bond network in the active site, as in the noted connection. Theoretical studies have shown that protonation to thiolate C113 leads to rearrangement of this hydrogen bond network, with switching of the tautomeric states of adjacent histidines (H59 and H157) [Barman, A., and Hamelberg, D. (2014) Biochemistry 53, 3839-3850]. This is called the "dual-histidine motif". Here, C113A and C113S Pin1 mutants were found to alter the protonation states of H59 according to the respective residue type replaced at C113, and the mutations resulted in disruption of the hydrogen bond within the dual-histidine motif. In the C113A mutant, H59 was observed to be in exchange between ε- and δ-tautomers, which widened the entrance of the active site cavity, as seen by an increase in the distance between residues A113 and S154. The C113S mutant caused H59 to exchange between the ε-tautomer and imidazolium while not changing the active site structure. Moreover, the imidazole ring orientations of H59 and H157 were changed in the C113S mutant. These results demonstrated that a mutation at C113 modulates the hydrogen bond network dynamics. Thus, C113 acts as a pivot to drive the concerted function among the residues in the hydrogen bond network, as theoretically predicted.

  11. Multilayer motif analysis of brain networks

    NASA Astrophysics Data System (ADS)

    Battiston, Federico; Nicosia, Vincenzo; Chavez, Mario; Latora, Vito

    2017-04-01

    In the last decade, network science has shed new light both on the structural (anatomical) and on the functional (correlations in the activity) connectivity among the different areas of the human brain. The analysis of brain networks has made possible to detect the central areas of a neural system and to identify its building blocks by looking at overabundant small subgraphs, known as motifs. However, network analysis of the brain has so far mainly focused on anatomical and functional networks as separate entities. The recently developed mathematical framework of multi-layer networks allows us to perform an analysis of the human brain where the structural and functional layers are considered together. In this work, we describe how to classify the subgraphs of a multiplex network, and we extend the motif analysis to networks with an arbitrary number of layers. We then extract multi-layer motifs in brain networks of healthy subjects by considering networks with two layers, anatomical and functional, respectively, obtained from diffusion and functional magnetic resonance imaging. Results indicate that subgraphs in which the presence of a physical connection between brain areas (links at the structural layer) coexists with a non-trivial positive correlation in their activities are statistically overabundant. Finally, we investigate the existence of a reinforcement mechanism between the two layers by looking at how the probability to find a link in one layer depends on the intensity of the connection in the other one. Showing that functional connectivity is non-trivially constrained by the underlying anatomical network, our work contributes to a better understanding of the interplay between the structure and function in the human brain.

  12. OSR1 regulates a subset of inward rectifier potassium channels via a binding motif variant.

    PubMed

    Taylor, Clinton A; An, Sung-Wan; Kankanamalage, Sachith Gallolu; Stippec, Steve; Earnest, Svetlana; Trivedi, Ashesh T; Yang, Jonathan Zijiang; Mirzaei, Hamid; Huang, Chou-Long; Cobb, Melanie H

    2018-04-10

    The with-no-lysine (K) (WNK) signaling pathway to STE20/SPS1-related proline- and alanine-rich kinase (SPAK) and oxidative stress-responsive 1 (OSR1) kinase is an important mediator of cell volume and ion transport. SPAK and OSR1 associate with upstream kinases WNK 1-4, substrates, and other proteins through their C-terminal domains which interact with linear R-F-x-V/I sequence motifs. In this study we find that SPAK and OSR1 also interact with similar affinity with a motif variant, R-x-F-x-V/I. Eight of 16 human inward rectifier K + channels have an R-x-F-x-V motif. We demonstrate that two of these channels, Kir2.1 and Kir2.3, are activated by OSR1, while Kir4.1, which does not contain the motif, is not sensitive to changes in OSR1 or WNK activity. Mutation of the motif prevents activation of Kir2.3 by OSR1. Both siRNA knockdown of OSR1 and chemical inhibition of WNK activity disrupt NaCl-induced plasma membrane localization of Kir2.3. Our results suggest a mechanism by which WNK-OSR1 enhance Kir2.1 and Kir2.3 channel activity by increasing their plasma membrane localization. Regulation of members of the inward rectifier K + channel family adds functional and mechanistic insight into the physiological impact of the WNK pathway.

  13. CD300b regulates the phagocytosis of apoptotic cells via phosphatidylserine recognition

    PubMed Central

    Murakami, Y; Tian, L; Voss, O H; Margulies, D H; Krzewski, K; Coligan, J E

    2014-01-01

    The CD300 receptor family members are a group of molecules that modulate a variety of immune cell processes. We show that mouse CD300b (CLM7/LMIR5), expressed on myeloid cells, recognizes outer membrane-exposed phosphatidylserine (PS) and does not, as previously reported, directly recognize TIM1 or TIM4. CD300b accumulates in phagocytic cups along with F-actin at apoptotic cell contacts, thereby facilitating their engulfment. The CD300b-mediated activation signal is conveyed through CD300b association with the adaptor molecule DAP12, and requires a functional DAP12 ITAM motif. Binding of apoptotic cells promotes the activation of the PI3K-Akt kinase pathway in macrophages, while silencing of CD300b expression diminishes PI3K-Akt kinase activation and impairs efferocytosis. Collectively, our data show that CD300b recognizes PS as a ligand, and regulates the phagocytosis of apoptotic cells via the DAP12 signaling pathway. PMID:25034781

  14. SARM1-specific motifs in the TIR domain enable NAD+ loss and regulate injury-induced SARM1 activation.

    PubMed

    Summers, Daniel W; Gibson, Daniel A; DiAntonio, Aaron; Milbrandt, Jeffrey

    2016-10-11

    Axon injury in response to trauma or disease stimulates a self-destruction program that promotes the localized clearance of damaged axon segments. Sterile alpha and Toll/interleukin receptor (TIR) motif-containing protein 1 (SARM1) is an evolutionarily conserved executioner of this degeneration cascade, also known as Wallerian degeneration; however, the mechanism of SARM1-dependent neuronal destruction is still obscure. SARM1 possesses a TIR domain that is necessary for SARM1 activity. In other proteins, dimerized TIR domains serve as scaffolds for innate immune signaling. In contrast, dimerization of the SARM1 TIR domain promotes consumption of the essential metabolite NAD + and induces neuronal destruction. This activity is unique to the SARM1 TIR domain, yet the structural elements that enable this activity are unknown. In this study, we identify fundamental properties of the SARM1 TIR domain that promote NAD + loss and axon degeneration. Dimerization of the TIR domain from the Caenorhabditis elegans SARM1 ortholog TIR-1 leads to NAD + loss and neuronal death, indicating these activities are an evolutionarily conserved feature of SARM1 function. Detailed analysis of sequence homology identifies canonical TIR motifs as well as a SARM1-specific (SS) loop that are required for NAD + loss and axon degeneration. Furthermore, we identify a residue in the SARM1 BB loop that is dispensable for TIR activity yet required for injury-induced activation of full-length SARM1, suggesting that SARM1 function requires multidomain interactions. Indeed, we identify a physical interaction between the autoinhibitory N terminus and the TIR domain of SARM1, revealing a previously unrecognized direct connection between these domains that we propose mediates autoinhibition and activation upon injury.

  15. Discovery of phosphorylation motif mixtures in phosphoproteomics data

    PubMed Central

    Ritz, Anna; Shakhnarovich, Gregory; Salomon, Arthur R.; Raphael, Benjamin J.

    2009-01-01

    Motivation: Modification of proteins via phosphorylation is a primary mechanism for signal transduction in cells. Phosphorylation sites on proteins are determined in part through particular patterns, or motifs, present in the amino acid sequence. Results: We describe an algorithm that simultaneously discovers multiple motifs in a set of peptides that were phosphorylated by several different kinases. Such sets of peptides are routinely produced in proteomics experiments.Our motif-finding algorithm uses the principle of minimum description length to determine a mixture of sequence motifs that distinguish a foreground set of phosphopeptides from a background set of unphosphorylated peptides. We show that our algorithm outperforms existing motif-finding algorithms on synthetic datasets consisting of mixtures of known phosphorylation sites. We also derive a motif specificity score that quantifies whether or not the phosphoproteins containing an instance of a motif have a significant number of known interactions. Application of our motif-finding algorithm to recently published human and mouse proteomic studies recovers several known phosphorylation motifs and reveals a number of novel motifs that are enriched for interactions with a particular kinase or phosphatase. Our tools provide a new approach for uncovering the sequence specificities of uncharacterized kinases or phosphatases. Availability: Software is available at http:/cs.brown.edu/people/braphael/software.html. Contact: aritz@cs.brown.edu; braphael@cs.brown.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:18996944

  16. Helix-packing motifs in membrane proteins.

    PubMed

    Walters, R F S; DeGrado, W F

    2006-09-12

    The fold of a helical membrane protein is largely determined by interactions between membrane-imbedded helices. To elucidate recurring helix-helix interaction motifs, we dissected the crystallographic structures of membrane proteins into a library of interacting helical pairs. The pairs were clustered according to their three-dimensional similarity (rmsd motifs whose structural features can be understood in terms of simple principles of helix-helix packing. Thus, the universe of common transmembrane helix-pairing motifs is relatively simple. The largest cluster, which comprises 29% of the library members, consists of an antiparallel motif with left-handed packing angles, and it is frequently stabilized by packing of small side chains occurring every seven residues in the sequence. Right-handed parallel and antiparallel structures show a similar tendency to segregate small residues to the helix-helix interface but spaced at four-residue intervals. Position-specific sequence propensities were derived for the most populated motifs. These structural and sequential motifs should be quite useful for the design and structural prediction of membrane proteins.

  17. A generic motif discovery algorithm for sequential data.

    PubMed

    Jensen, Kyle L; Styczynski, Mark P; Rigoutsos, Isidore; Stephanopoulos, Gregory N

    2006-01-01

    Motif discovery in sequential data is a problem of great interest and with many applications. However, previous methods have been unable to combine exhaustive search with complex motif representations and are each typically only applicable to a certain class of problems. Here we present a generic motif discovery algorithm (Gemoda) for sequential data. Gemoda can be applied to any dataset with a sequential character, including both categorical and real-valued data. As we show, Gemoda deterministically discovers motifs that are maximal in composition and length. As well, the algorithm allows any choice of similarity metric for finding motifs. Finally, Gemoda's output motifs are representation-agnostic: they can be represented using regular expressions, position weight matrices or any number of other models for any type of sequential data. We demonstrate a number of applications of the algorithm, including the discovery of motifs in amino acids sequences, a new solution to the (l,d)-motif problem in DNA sequences and the discovery of conserved protein substructures. Gemoda is freely available at http://web.mit.edu/bamel/gemoda

  18. The Regulatory Factor ZFHX3 Modifies Circadian Function in SCN via an AT Motif-Driven Axis

    PubMed Central

    Parsons, Michael J.; Brancaccio, Marco; Sethi, Siddharth; Maywood, Elizabeth S.; Satija, Rahul; Edwards, Jessica K.; Jagannath, Aarti; Couch, Yvonne; Finelli, Mattéa J.; Smyllie, Nicola J.; Esapa, Christopher; Butler, Rachel; Barnard, Alun R.; Chesham, Johanna E.; Saito, Shoko; Joynson, Greg; Wells, Sara; Foster, Russell G.; Oliver, Peter L.; Simon, Michelle M.; Mallon, Ann-Marie; Hastings, Michael H.; Nolan, Patrick M.

    2015-01-01

    Summary We identified a dominant missense mutation in the SCN transcription factor Zfhx3, termed short circuit (Zfhx3Sci), which accelerates circadian locomotor rhythms in mice. ZFHX3 regulates transcription via direct interaction with predicted AT motifs in target genes. The mutant protein has a decreased ability to activate consensus AT motifs in vitro. Using RNA sequencing, we found minimal effects on core clock genes in Zfhx3Sci/+ SCN, whereas the expression of neuropeptides critical for SCN intercellular signaling was significantly disturbed. Moreover, mutant ZFHX3 had a decreased ability to activate AT motifs in the promoters of these neuropeptide genes. Lentiviral transduction of SCN slices showed that the ZFHX3-mediated activation of AT motifs is circadian, with decreased amplitude and robustness of these oscillations in Zfhx3Sci/+ SCN slices. In conclusion, by cloning Zfhx3Sci, we have uncovered a circadian transcriptional axis that determines the period and robustness of behavioral and SCN molecular rhythms. PMID:26232227

  19. Deciphering functional glycosaminoglycan motifs in development.

    PubMed

    Townley, Robert A; Bülow, Hannes E

    2018-03-23

    Glycosaminoglycans (GAGs) such as heparan sulfate, chondroitin/dermatan sulfate, and keratan sulfate are linear glycans, which when attached to protein backbones form proteoglycans. GAGs are essential components of the extracellular space in metazoans. Extensive modifications of the glycans such as sulfation, deacetylation and epimerization create structural GAG motifs. These motifs regulate protein-protein interactions and are thereby repsonsible for many of the essential functions of GAGs. This review focusses on recent genetic approaches to characterize GAG motifs and their function in defined signaling pathways during development. We discuss a coding approach for GAGs that would enable computational analyses of GAG sequences such as alignments and the computation of position weight matrices to describe GAG motifs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Ménage à trois: the complex relationships between mitogen-activated protein kinases, WRKY transcription factors, and VQ-motif-containing proteins.

    PubMed

    Weyhe, Martin; Eschen-Lippold, Lennart; Pecher, Pascal; Scheel, Dierk; Lee, Justin

    2014-01-01

    Out of the 34 members of the VQ-motif-containing protein (VQP) family, 10 are phosphorylated by the mitogen-activated protein kinases (MAPKs), MPK3 and MPK6. Most of these MPK3/6-targeted VQPs (MVQs) interacted with specific sub-groups of WRKY transcription factors in a VQ-motif-dependent manner. In some cases, the MAPK appears to phosphorylate either the MVQ or the WRKY, while in other cases, both proteins have been reported to act as MAPK substrates. We propose a network of dynamic interactions between members from the MAPK, MVQ and WRKY families - either as binary or as tripartite interactions. The compositions of the WRKY-MVQ transcriptional protein complexes may change - for instance, through MPK3/6-mediated modulation of protein stability - and therefore control defense gene transcription.

  1. G protein-coupled estrogen receptor 1 (GPER1)/GPR30 increases ERK1/2 activity through PDZ motif-dependent and -independent mechanisms.

    PubMed

    Gonzalez de Valdivia, Ernesto; Broselid, Stefan; Kahn, Robin; Olde, Björn; Leeb-Lundberg, L M Fredrik

    2017-06-16

    G protein-coupled receptor 30 (GPR30), also called G protein-coupled estrogen receptor 1 (GPER1), is thought to play important roles in breast cancer and cardiometabolic regulation, but many questions remain about ligand activation, effector coupling, and subcellular localization. We showed recently that GPR30 interacts through the C-terminal type I PDZ motif with SAP97 and protein kinase A (PKA)-anchoring protein (AKAP) 5, which anchor the receptor in the plasma membrane and mediate an apparently constitutive decrease in cAMP production independently of G i/o Here, we show that GPR30 also constitutively increases ERK1/2 activity. Removing the receptor PDZ motif or knocking down specifically AKAP5 inhibited the increase, showing that this increase also requires the PDZ interaction. However, the increase was inhibited by pertussis toxin as well as by wortmannin but not by AG1478, indicating that G i/o and phosphoinositide 3-kinase (PI3K) mediate the increase independently of epidermal growth factor receptor transactivation. FK506 and okadaic acid also inhibited the increase, implying that a protein phosphatase is involved. The proposed GPR30 agonist G-1 also increased ERK1/2 activity, but this increase was only observed at a level of receptor expression below that required for the constitutive increase. Furthermore, deleting the PDZ motif did not inhibit the G-1-stimulated increase. Based on these results, we propose that GPR30 increases ERK1/2 activity via two G i/o -mediated mechanisms, a PDZ-dependent, apparently constitutive mechanism and a PDZ-independent G-1-stimulated mechanism. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. A private DNA motif finding algorithm.

    PubMed

    Chen, Rui; Peng, Yun; Choi, Byron; Xu, Jianliang; Hu, Haibo

    2014-08-01

    With the increasing availability of genomic sequence data, numerous methods have been proposed for finding DNA motifs. The discovery of DNA motifs serves a critical step in many biological applications. However, the privacy implication of DNA analysis is normally neglected in the existing methods. In this work, we propose a private DNA motif finding algorithm in which a DNA owner's privacy is protected by a rigorous privacy model, known as ∊-differential privacy. It provides provable privacy guarantees that are independent of adversaries' background knowledge. Our algorithm makes use of the n-gram model and is optimized for processing large-scale DNA sequences. We evaluate the performance of our algorithm over real-life genomic data and demonstrate the promise of integrating privacy into DNA motif finding. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Motif types, motif locations and base composition patterns around the RNA polyadenylation site in microorganisms, plants and animals

    PubMed Central

    2014-01-01

    Background The polyadenylation of RNA is critical for gene functioning, but the conserved sequence motifs (often called signal or signature motifs), motif locations and abundances, and base composition patterns around mRNA polyadenylation [poly(A)] sites are still uncharacterized in most species. The evolutionary tendency for poly(A) site selection is still largely unknown. Results We analyzed the poly(A) site regions of 31 species or phyla. Different groups of species showed different poly(A) signal motifs: UUACUU at the poly(A) site in the parasite Trypanosoma cruzi; UGUAAC (approximately 13 bases upstream of the site) in the alga Chlamydomonas reinhardtii; UGUUUG (or UGUUUGUU) at mainly the fourth base downstream of the poly(A) site in the parasite Blastocystis hominis; and AAUAAA at approximately 16 bases and approximately 19 bases upstream of the poly(A) site in animals and plants, respectively. Polyadenylation signal motifs are usually several hundred times more abundant around poly(A) sites than in whole genomes. These predominant motifs usually had very specific locations, whether upstream of, at, or downstream of poly(A) sites, depending on the species or phylum. The poly(A) site was usually an adenosine (A) in all analyzed species except for B. hominis, and there was weak A predominance in C. reinhardtii. Fungi, animals, plants, and the protist Phytophthora infestans shared a general base abundance pattern (or base composition pattern) of “U-rich—A-rich—U-rich—Poly(A) site—U-rich regions”, or U-A-U-A-U for short, with some variation for each kingdom or subkingdom. Conclusion This study identified the poly(A) signal motifs, motif locations, and base composition patterns around mRNA poly(A) sites in protists, fungi, plants, and animals and provided insight into poly(A) site evolution. PMID:25052519

  4. Web server to identify similarity of amino acid motifs to compounds (SAAMCO).

    PubMed

    Casey, Fergal P; Davey, Norman E; Baran, Ivan; Varekova, Radka Svobodova; Shields, Denis C

    2008-07-01

    Protein-protein interactions are fundamental in mediating biological processes including metabolism, cell growth, and signaling. To be able to selectively inhibit or induce protein activity or complex formation is a key feature in controlling disease. For those situations in which protein-protein interactions derive substantial affinity from short linear peptide sequences, or motifs, we can develop search algorithms for peptidomimetic compounds that resemble the short peptide's structure but are not compromised by poor pharmacological properties. SAAMCO is a Web service ( http://bioware.ucd.ie/ approximately saamco) that facilitates the screening of motifs with known structures against bioactive compound databases. It is built on an algorithm that defines compound similarity based on the presence of appropriate amino acid side chain fragments and a favorable Root Mean Squared Deviation (RMSD) between compound and motif structure. The methodology is efficient as the available compound databases are preprocessed and fast regular expression searches filter potential matches before time-intensive 3D superposition is performed. The required input information is minimal, and the compound databases have been selected to maximize the availability of information on biological activity. "Hits" are accompanied with a visualization window and links to source database entries. Motif matching can be defined on partial or full similarity which will increase or reduce respectively the number of potential mimetic compounds. The Web server provides the functionality for rapid screening of known or putative interaction motifs against prepared compound libraries using a novel search algorithm. The tabulated results can be analyzed by linking to appropriate databases and by visualization.

  5. An intracellular motif of GLUT4 regulates fusion of GLUT4-containing vesicles.

    PubMed

    Heyward, Catherine A; Pettitt, Trevor R; Leney, Sophie E; Welsh, Gavin I; Tavaré, Jeremy M; Wakelam, Michael J O

    2008-05-20

    Insulin stimulates glucose uptake by adipocytes through increasing translocation of the glucose transporter GLUT4 from an intracellular compartment to the plasma membrane. Fusion of GLUT4-containing vesicles at the cell surface is thought to involve phospholipase D activity, generating the signalling lipid phosphatidic acid, although the mechanism of action is not yet clear. Here we report the identification of a putative phosphatidic acid-binding motif in a GLUT4 intracellular loop. Mutation of this motif causes a decrease in the insulin-induced exposure of GLUT4 at the cell surface of 3T3-L1 adipocytes via an effect on vesicle fusion. The potential phosphatidic acid-binding motif identified in this study is unique to GLUT4 among the sugar transporters, therefore this motif may provide a unique mechanism for regulating insulin-induced translocation by phospholipase D signalling.

  6. Chaotic Motifs in Gene Regulatory Networks

    PubMed Central

    Zhang, Zhaoyang; Ye, Weiming; Qian, Yu; Zheng, Zhigang; Huang, Xuhui; Hu, Gang

    2012-01-01

    Chaos should occur often in gene regulatory networks (GRNs) which have been widely described by nonlinear coupled ordinary differential equations, if their dimensions are no less than 3. It is therefore puzzling that chaos has never been reported in GRNs in nature and is also extremely rare in models of GRNs. On the other hand, the topic of motifs has attracted great attention in studying biological networks, and network motifs are suggested to be elementary building blocks that carry out some key functions in the network. In this paper, chaotic motifs (subnetworks with chaos) in GRNs are systematically investigated. The conclusion is that: (i) chaos can only appear through competitions between different oscillatory modes with rivaling intensities. Conditions required for chaotic GRNs are found to be very strict, which make chaotic GRNs extremely rare. (ii) Chaotic motifs are explored as the simplest few-node structures capable of producing chaos, and serve as the intrinsic source of chaos of random few-node GRNs. Several optimal motifs causing chaos with atypically high probability are figured out. (iii) Moreover, we discovered that a number of special oscillators can never produce chaos. These structures bring some advantages on rhythmic functions and may help us understand the robustness of diverse biological rhythms. (iv) The methods of dominant phase-advanced driving (DPAD) and DPAD time fraction are proposed to quantitatively identify chaotic motifs and to explain the origin of chaotic behaviors in GRNs. PMID:22792171

  7. Sequential visibility-graph motifs

    NASA Astrophysics Data System (ADS)

    Iacovacci, Jacopo; Lacasa, Lucas

    2016-04-01

    Visibility algorithms transform time series into graphs and encode dynamical information in their topology, paving the way for graph-theoretical time series analysis as well as building a bridge between nonlinear dynamics and network science. In this work we introduce and study the concept of sequential visibility-graph motifs, smaller substructures of n consecutive nodes that appear with characteristic frequencies. We develop a theory to compute in an exact way the motif profiles associated with general classes of deterministic and stochastic dynamics. We find that this simple property is indeed a highly informative and computationally efficient feature capable of distinguishing among different dynamics and robust against noise contamination. We finally confirm that it can be used in practice to perform unsupervised learning, by extracting motif profiles from experimental heart-rate series and being able, accordingly, to disentangle meditative from other relaxation states. Applications of this general theory include the automatic classification and description of physical, biological, and financial time series.

  8. The Thiamin Pyrophosphate-Motif

    NASA Technical Reports Server (NTRS)

    Dominiak, P.; Ciszak, E.

    2003-01-01

    Using databases the authors have identified a common thiamin pyrophosphate (TPP)-motif in the family of functionally diverse TPP-dependent enzymes. This common motif consists of multimeric organization of subunits and two catalytic centers. Each catalytic center (PP:PYR) is formed at the interface of the PP-domain binding the magnesium ion, pyrophosphate and amhopyrimidine ring of TPP, and the PYR-domain binding the aminopyrimidine ring of that cofactor. A pair of these catalytic centers constitutes the catalytic core (PP:PYR)(sub 2) within these enzymes. Analysis of the structural elements of this catalytic core reveals novel definition of the common amino acid sequences, which are GXPhiX(sub 4)(G)PhiXXGQ and GDGX(sub 25-30)NN in the PP-domain, and the EX(sub 4)(G)PhiXXGPhi in the PYR-domain, where Phi corresponds to a hydrophobic amino acid. This TPP-motif provides a novel tool for annotation of TPP-dependent enzymes useful in advancing functional proteomics.

  9. The Thiamin Pyrophosphate-Motif

    NASA Technical Reports Server (NTRS)

    Dominiak, Paulina M.; Ciszak, Ewa M.

    2003-01-01

    Using databases the authors have identified a common thiamin pyrophosphate (TPP)-motif in the family of functionally diverse TPP-dependent enzymes. This common motif consists of multimeric organization of subunits, two catalytic centers, common amino acid sequence, and specific contacts to provide a flip-flop, or alternate site, mechanism of action. Each catalytic center [PP:PYR] is formed at the interface of the PP-domain binding the magnesium ion, pyrophosphate and aminopyrimidine ring of TPP, and the PYR-domain binding the aminopyrimidine ring of that cofactor. A pair of these catalytic centers constitutes the catalytic core [PP:PYR]* within these enzymes. Analysis of the structural elements of this catalytic core reveals novel definition of the common amino acid sequences, which are GX@&(G)@XXGQ, and GDGX25-30 within the PP- domain, and the E&(G)@XXG@ within the PYR-domain, where Q, corresponds to a hydrophobic amino acid. This TPP-motif provides a novel tool for annotation of TPP-dependent enzymes useful in advancing functional proteomics.

  10. Occurrence probability of structured motifs in random sequences.

    PubMed

    Robin, S; Daudin, J-J; Richard, H; Sagot, M-F; Schbath, S

    2002-01-01

    The problem of extracting from a set of nucleic acid sequences motifs which may have biological function is more and more important. In this paper, we are interested in particular motifs that may be implicated in the transcription process. These motifs, called structured motifs, are composed of two ordered parts separated by a variable distance and allowing for substitutions. In order to assess their statistical significance, we propose approximations of the probability of occurrences of such a structured motif in a given sequence. An application of our method to evaluate candidate promoters in E. coli and B. subtilis is presented. Simulations show the goodness of the approximations.

  11. Structural basis for the binding of tryptophan-based motifs by δ-COP

    PubMed Central

    Suckling, Richard J.; Poon, Pak Phi; Travis, Sophie M.; Majoul, Irina V.; Hughson, Frederick M.; Evans, Philip R.; Duden, Rainer; Owen, David J.

    2015-01-01

    Coatomer consists of two subcomplexes: the membrane-targeting, ADP ribosylation factor 1 (Arf1):GTP-binding βγδζ-COP F-subcomplex, which is related to the adaptor protein (AP) clathrin adaptors, and the cargo-binding αβ’ε-COP B-subcomplex. We present the structure of the C-terminal μ-homology domain of the yeast δ-COP subunit in complex with the WxW motif from its binding partner, the endoplasmic reticulum-localized Dsl1 tether. The motif binds at a site distinct from that used by the homologous AP μ subunits to bind YxxΦ cargo motifs with its two tryptophan residues sitting in compatible pockets. We also show that the Saccharomyces cerevisiae Arf GTPase-activating protein (GAP) homolog Gcs1p uses a related WxxF motif at its extreme C terminus to bind to δ-COP at the same site in the same way. Mutations designed on the basis of the structure in conjunction with isothermal titration calorimetry confirm the mode of binding and show that mammalian δ-COP binds related tryptophan-based motifs such as that from ArfGAP1 in a similar manner. We conclude that δ-COP subunits bind Wxn(1–6)[WF] motifs within unstructured regions of proteins that influence the lifecycle of COPI-coated vesicles; this conclusion is supported by the observation that, in the context of a sensitizing domain deletion in Dsl1p, mutating the tryptophan-based motif-binding site in yeast causes defects in both growth and carboxypeptidase Y trafficking/processing. PMID:26578768

  12. Using SCOPE to identify potential regulatory motifs in coregulated genes.

    PubMed

    Martyanov, Viktor; Gross, Robert H

    2011-05-31

    SCOPE is an ensemble motif finder that uses three component algorithms in parallel to identify potential regulatory motifs by over-representation and motif position preference. Each component algorithm is optimized to find a different kind of motif. By taking the best of these three approaches, SCOPE performs better than any single algorithm, even in the presence of noisy data. In this article, we utilize a web version of SCOPE to examine genes that are involved in telomere maintenance. SCOPE has been incorporated into at least two other motif finding programs and has been used in other studies. The three algorithms that comprise SCOPE are BEAM, which finds non-degenerate motifs (ACCGGT), PRISM, which finds degenerate motifs (ASCGWT), and SPACER, which finds longer bipartite motifs (ACCnnnnnnnnGGT). These three algorithms have been optimized to find their corresponding type of motif. Together, they allow SCOPE to perform extremely well. Once a gene set has been analyzed and candidate motifs identified, SCOPE can look for other genes that contain the motif which, when added to the original set, will improve the motif score. This can occur through over-representation or motif position preference. Working with partial gene sets that have biologically verified transcription factor binding sites, SCOPE was able to identify most of the rest of the genes also regulated by the given transcription factor. Output from SCOPE shows candidate motifs, their significance, and other information both as a table and as a graphical motif map. FAQs and video tutorials are available at the SCOPE web site which also includes a "Sample Search" button that allows the user to perform a trial run. Scope has a very friendly user interface that enables novice users to access the algorithm's full power without having to become an expert in the bioinformatics of motif finding. As input, SCOPE can take a list of genes, or FASTA sequences. These can be entered in browser text fields, or read from

  13. The C-terminal CGHC motif of protein disulfide isomerase supports thrombosis

    PubMed Central

    Zhou, Junsong; Wu, Yi; Wang, Lu; Rauova, Lubica; Hayes, Vincent M.; Poncz, Mortimer; Essex, David W.

    2015-01-01

    Protein disulfide isomerase (PDI) has two distinct CGHC redox-active sites; however, the contribution of these sites during different physiologic reactions, including thrombosis, is unknown. Here, we evaluated the role of PDI and redox-active sites of PDI in thrombosis by generating mice with blood cells and vessel wall cells lacking PDI (Mx1-Cre Pdifl/fl mice) and transgenic mice harboring PDI that lacks a functional C-terminal CGHC motif [PDI(ss-oo) mice]. Both mouse models showed decreased fibrin deposition and platelet accumulation in laser-induced cremaster arteriole injury, and PDI(ss-oo) mice had attenuated platelet accumulation in FeCl3-induced mesenteric arterial injury. These defects were rescued by infusion of recombinant PDI containing only a functional C-terminal CGHC motif [PDI(oo-ss)]. PDI infusion restored fibrin formation, but not platelet accumulation, in eptifibatide-treated wild-type mice, suggesting a direct role of PDI in coagulation. In vitro aggregation of platelets from PDI(ss-oo) mice and PDI-null platelets was reduced; however, this defect was rescued by recombinant PDI(oo-ss). In human platelets, recombinant PDI(ss-oo) inhibited aggregation, while recombinant PDI(oo-ss) potentiated aggregation. Platelet secretion assays demonstrated that the C-terminal CGHC motif of PDI is important for P-selectin expression and ATP secretion through a non-αIIbβ3 substrate. In summary, our results indicate that the C-terminal CGHC motif of PDI is important for platelet function and coagulation. PMID:26529254

  14. RNA motif search with data-driven element ordering.

    PubMed

    Rampášek, Ladislav; Jimenez, Randi M; Lupták, Andrej; Vinař, Tomáš; Brejová, Broňa

    2016-05-18

    In this paper, we study the problem of RNA motif search in long genomic sequences. This approach uses a combination of sequence and structure constraints to uncover new distant homologs of known functional RNAs. The problem is NP-hard and is traditionally solved by backtracking algorithms. We have designed a new algorithm for RNA motif search and implemented a new motif search tool RNArobo. The tool enhances the RNAbob descriptor language, allowing insertions in helices, which enables better characterization of ribozymes and aptamers. A typical RNA motif consists of multiple elements and the running time of the algorithm is highly dependent on their ordering. By approaching the element ordering problem in a principled way, we demonstrate more than 100-fold speedup of the search for complex motifs compared to previously published tools. We have developed a new method for RNA motif search that allows for a significant speedup of the search of complex motifs that include pseudoknots. Such speed improvements are crucial at a time when the rate of DNA sequencing outpaces growth in computing. RNArobo is available at http://compbio.fmph.uniba.sk/rnarobo .

  15. Machine-Learning Methods Enable Exhaustive Searches for Active Bimetallic Facets and Reveal Active Site Motifs for CO 2 Reduction

    DOE PAGES

    Ulissi, Zachary W.; Tang, Michael T.; Xiao, Jianping; ...

    2017-07-27

    Bimetallic catalysts are promising for the most difficult thermal and electrochemical reactions, but modeling the many diverse active sites on polycrystalline samples is an open challenge. Here, we present a general framework for addressing this complexity in a systematic and predictive fashion. Active sites for every stable low-index facet of a bimetallic crystal are enumerated and cataloged, yielding hundreds of possible active sites. The activity of these sites is explored in parallel using a neural-network-based surrogate model to share information between the many density functional theory (DFT) relaxations, resulting in activity estimates with an order of magnitude fewer explicit DFTmore » calculations. Sites with interesting activity were found and provide targets for follow-up calculations. This process was applied to the electrochemical reduction of CO 2 on nickel gallium bimetallics and indicated that most facets had similar activity to Ni surfaces, but a few exposed Ni sites with a very favorable on-top CO configuration. This motif emerged naturally from the predictive modeling and represents a class of intermetallic CO 2 reduction catalysts. These sites rationalize recent experimental reports of nickel gallium activity and why previous materials screens missed this exciting material. Most importantly these methods suggest that bimetallic catalysts will be discovered by studying facet reactivity and diversity of active sites more systematically.« less

  16. Machine-Learning Methods Enable Exhaustive Searches for Active Bimetallic Facets and Reveal Active Site Motifs for CO 2 Reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulissi, Zachary W.; Tang, Michael T.; Xiao, Jianping

    Bimetallic catalysts are promising for the most difficult thermal and electrochemical reactions, but modeling the many diverse active sites on polycrystalline samples is an open challenge. Here, we present a general framework for addressing this complexity in a systematic and predictive fashion. Active sites for every stable low-index facet of a bimetallic crystal are enumerated and cataloged, yielding hundreds of possible active sites. The activity of these sites is explored in parallel using a neural-network-based surrogate model to share information between the many density functional theory (DFT) relaxations, resulting in activity estimates with an order of magnitude fewer explicit DFTmore » calculations. Sites with interesting activity were found and provide targets for follow-up calculations. This process was applied to the electrochemical reduction of CO 2 on nickel gallium bimetallics and indicated that most facets had similar activity to Ni surfaces, but a few exposed Ni sites with a very favorable on-top CO configuration. This motif emerged naturally from the predictive modeling and represents a class of intermetallic CO 2 reduction catalysts. These sites rationalize recent experimental reports of nickel gallium activity and why previous materials screens missed this exciting material. Most importantly these methods suggest that bimetallic catalysts will be discovered by studying facet reactivity and diversity of active sites more systematically.« less

  17. The DRF motif of CXCR6 as chemokine receptor adaptation to adhesion.

    PubMed

    Koenen, Andrea; Babendreyer, Aaron; Schumacher, Julian; Pasqualon, Tobias; Schwarz, Nicole; Seifert, Anke; Deupi, Xavier; Ludwig, Andreas; Dreymueller, Daniela

    2017-01-01

    The CXC-chemokine receptor 6 (CXCR6) is a class A GTP-binding protein-coupled receptor (GPCRs) that mediates adhesion of leukocytes by interacting with the transmembrane cell surface-expressed chemokine ligand 16 (CXCL16), and also regulates leukocyte migration by interacting with the soluble shed variant of CXCL16. In contrast to virtually all other chemokine receptors with chemotactic activity, CXCR6 carries a DRF motif instead of the typical DRY motif as a key element in receptor activation and G protein coupling. In this work, modeling analyses revealed that the phenylalanine F3.51 in CXCR6 might have impact on intramolecular interactions including hydrogen bonds by this possibly changing receptor function. Initial investigations with embryonic kidney HEK293 cells and further studies with monocytic THP-1 cells showed that mutation of DRF into DRY does not influence ligand binding, receptor internalization, receptor recycling, and protein kinase B (AKT) signaling. Adhesion was slightly decreased in a time-dependent manner. However, CXCL16-induced calcium signaling and migration were increased. Vice versa, when the DRY motif of the related receptor CX3CR1 was mutated into DRF the migratory response towards CX3CL1 was diminished, indicating that the presence of a DRF motif generally impairs chemotaxis in chemokine receptors. Transmembrane and soluble CXCL16 play divergent roles in homeostasis, inflammation, and cancer, which can be beneficial or detrimental. Therefore, the DRF motif of CXCR6 may display a receptor adaptation allowing adhesion and cell retention by transmembrane CXCL16 but reducing the chemotactic response to soluble CXCL16. This adaptation may avoid permanent or uncontrolled recruitment of inflammatory cells as well as cancer metastasis.

  18. Characteristic motifs for families of allergenic proteins

    PubMed Central

    Ivanciuc, Ovidiu; Garcia, Tzintzuni; Torres, Miguel; Schein, Catherine H.; Braun, Werner

    2008-01-01

    The identification of potential allergenic proteins is usually done by scanning a database of allergenic proteins and locating known allergens with a high sequence similarity. However, there is no universally accepted cut-off value for sequence similarity to indicate potential IgE cross-reactivity. Further, overall sequence similarity may be less important than discrete areas of similarity in proteins with homologous structure. To identify such areas, we first classified all allergens and their subdomains in the Structural Database of Allergenic Proteins (SDAP, http://fermi.utmb.edu/SDAP/) to their closest protein families as defined in Pfam, and identified conserved physicochemical property motifs characteristic of each group of sequences. Allergens populate only a small subset of all known Pfam families, as all allergenic proteins in SDAP could be grouped to only 130 (of 9318 total) Pfams, and 31 families contain more than four allergens. Conserved physicochemical property motifs for the aligned sequences of the most populated Pfam families were identified with the PCPMer program suite and catalogued in the webserver Motif-Mate (http://born.utmb.edu/motifmate/summary.php). We also determined specific motifs for allergenic members of a family that could distinguish them from non-allergenic ones. These allergen specific motifs should be most useful in database searches for potential allergens. We found that sequence motifs unique to the allergens in three families (seed storage proteins, Bet v 1, and tropomyosin) overlap with known IgE epitopes, thus providing evidence that our motif based approach can be used to assess the potential allergenicity of novel proteins. PMID:18951633

  19. Computational and experimental analysis of short peptide motifs for enzyme inhibition.

    PubMed

    Fu, Jinglin; Larini, Luca; Cooper, Anthony J; Whittaker, John W; Ahmed, Azka; Dong, Junhao; Lee, Minyoung; Zhang, Ting

    2017-01-01

    The metabolism of living systems involves many enzymes that play key roles as catalysts and are essential to biological function. Searching ligands with the ability to modulate enzyme activities is central to diagnosis and therapeutics. Peptides represent a promising class of potential enzyme modulators due to the large chemical diversity, and well-established methods for library synthesis. Peptides and their derivatives are found to play critical roles in modulating enzymes and mediating cellular uptakes, which are increasingly valuable in therapeutics. We present a methodology that uses molecular dynamics (MD) and point-variant screening to identify short peptide motifs that are critical for inhibiting β-galactosidase (β-Gal). MD was used to simulate the conformations of peptides and to suggest short motifs that were most populated in simulated conformations. The function of the simulated motifs was further validated by the experimental point-variant screening as critical segments for inhibiting the enzyme. Based on the validated motifs, we eventually identified a 7-mer short peptide for inhibiting an enzyme with low μM IC50. The advantage of our methodology is the relatively simplified simulation that is informative enough to identify the critical sequence of a peptide inhibitor, with a precision comparable to truncation and alanine scanning experiments. Our combined experimental and computational approach does not rely on a detailed understanding of mechanistic and structural details. The MD simulation suggests the populated motifs that are consistent with the results of the experimental alanine and truncation scanning. This approach appears to be applicable to both natural and artificial peptides. With more discovered short motifs in the future, they could be exploited for modulating biocatalysis, and developing new medicine.

  20. Classification and assessment tools for structural motif discovery algorithms.

    PubMed

    Badr, Ghada; Al-Turaiki, Isra; Mathkour, Hassan

    2013-01-01

    Motif discovery is the problem of finding recurring patterns in biological data. Patterns can be sequential, mainly when discovered in DNA sequences. They can also be structural (e.g. when discovering RNA motifs). Finding common structural patterns helps to gain a better understanding of the mechanism of action (e.g. post-transcriptional regulation). Unlike DNA motifs, which are sequentially conserved, RNA motifs exhibit conservation in structure, which may be common even if the sequences are different. Over the past few years, hundreds of algorithms have been developed to solve the sequential motif discovery problem, while less work has been done for the structural case. In this paper, we survey, classify, and compare different algorithms that solve the structural motif discovery problem, where the underlying sequences may be different. We highlight their strengths and weaknesses. We start by proposing a benchmark dataset and a measurement tool that can be used to evaluate different motif discovery approaches. Then, we proceed by proposing our experimental setup. Finally, results are obtained using the proposed benchmark to compare available tools. To the best of our knowledge, this is the first attempt to compare tools solely designed for structural motif discovery. Results show that the accuracy of discovered motifs is relatively low. The results also suggest a complementary behavior among tools where some tools perform well on simple structures, while other tools are better for complex structures. We have classified and evaluated the performance of available structural motif discovery tools. In addition, we have proposed a benchmark dataset with tools that can be used to evaluate newly developed tools.

  1. A Novel Protein Interaction between Nucleotide Binding Domain of Hsp70 and p53 Motif

    PubMed Central

    Elengoe, Asita; Naser, Mohammed Abu; Hamdan, Salehhuddin

    2015-01-01

    Currently, protein interaction of Homo sapiens nucleotide binding domain (NBD) of heat shock 70 kDa protein (PDB: 1HJO) with p53 motif remains to be elucidated. The NBD-p53 motif complex enhances the p53 stabilization, thereby increasing the tumor suppression activity in cancer treatment. Therefore, we identified the interaction between NBD and p53 using STRING version 9.1 program. Then, we modeled the three-dimensional structure of p53 motif through homology modeling and determined the binding affinity and stability of NBD-p53 motif complex structure via molecular docking and dynamics (MD) simulation. Human DNA binding domain of p53 motif (SCMGGMNR) retrieved from UniProt (UniProtKB: P04637) was docked with the NBD protein, using the Autodock version 4.2 program. The binding energy and intermolecular energy for the NBD-p53 motif complex were −0.44 Kcal/mol and −9.90 Kcal/mol, respectively. Moreover, RMSD, RMSF, hydrogen bonds, salt bridge, and secondary structure analyses revealed that the NBD protein had a strong bond with p53 motif and the protein-ligand complex was stable. Thus, the current data would be highly encouraging for designing Hsp70 structure based drug in cancer therapy. PMID:26098630

  2. A Novel Protein Interaction between Nucleotide Binding Domain of Hsp70 and p53 Motif.

    PubMed

    Elengoe, Asita; Naser, Mohammed Abu; Hamdan, Salehhuddin

    2015-01-01

    Currently, protein interaction of Homo sapiens nucleotide binding domain (NBD) of heat shock 70 kDa protein (PDB: 1HJO) with p53 motif remains to be elucidated. The NBD-p53 motif complex enhances the p53 stabilization, thereby increasing the tumor suppression activity in cancer treatment. Therefore, we identified the interaction between NBD and p53 using STRING version 9.1 program. Then, we modeled the three-dimensional structure of p53 motif through homology modeling and determined the binding affinity and stability of NBD-p53 motif complex structure via molecular docking and dynamics (MD) simulation. Human DNA binding domain of p53 motif (SCMGGMNR) retrieved from UniProt (UniProtKB: P04637) was docked with the NBD protein, using the Autodock version 4.2 program. The binding energy and intermolecular energy for the NBD-p53 motif complex were -0.44 Kcal/mol and -9.90 Kcal/mol, respectively. Moreover, RMSD, RMSF, hydrogen bonds, salt bridge, and secondary structure analyses revealed that the NBD protein had a strong bond with p53 motif and the protein-ligand complex was stable. Thus, the current data would be highly encouraging for designing Hsp70 structure based drug in cancer therapy.

  3. DynaMIT: the dynamic motif integration toolkit

    PubMed Central

    Dassi, Erik; Quattrone, Alessandro

    2016-01-01

    De-novo motif search is a frequently applied bioinformatics procedure to identify and prioritize recurrent elements in sequences sets for biological investigation, such as the ones derived from high-throughput differential expression experiments. Several algorithms have been developed to perform motif search, employing widely different approaches and often giving divergent results. In order to maximize the power of these investigations and ultimately be able to draft solid biological hypotheses, there is the need for applying multiple tools on the same sequences and merge the obtained results. However, motif reporting formats and statistical evaluation methods currently make such an integration task difficult to perform and mostly restricted to specific scenarios. We thus introduce here the Dynamic Motif Integration Toolkit (DynaMIT), an extremely flexible platform allowing to identify motifs employing multiple algorithms, integrate them by means of a user-selected strategy and visualize results in several ways; furthermore, the platform is user-extendible in all its aspects. DynaMIT is freely available at http://cibioltg.bitbucket.org. PMID:26253738

  4. cWINNOWER Algorithm for Finding Fuzzy DNA Motifs

    NASA Technical Reports Server (NTRS)

    Liang, Shoudan

    2003-01-01

    The cWINNOWER algorithm detects fuzzy motifs in DNA sequences rich in protein-binding signals. A signal is defined as any short nucleotide pattern having up to d mutations differing from a motif of length l. The algorithm finds such motifs if multiple mutated copies of the motif (i.e., the signals) are present in the DNA sequence in sufficient abundance. The cWINNOWER algorithm substantially improves the sensitivity of the winnower method of Pevzner and Sze by imposing a consensus constraint, enabling it to detect much weaker signals. We studied the minimum number of detectable motifs qc as a function of sequence length N for random sequences. We found that qc increases linearly with N for a fast version of the algorithm based on counting three-member sub-cliques. Imposing consensus constraints reduces qc, by a factor of three in this case, which makes the algorithm dramatically more sensitive. Our most sensitive algorithm, which counts four-member sub-cliques, needs a minimum of only 13 signals to detect motifs in a sequence of length N = 12000 for (l,d) = (15,4).

  5. Essential role of the NH2-terminal WD/EPF motif in the phosphorylation-activated protective function of mammalian Hsp27.

    PubMed

    Thériault, Jimmy R; Lambert, Herman; Chávez-Zobel, Aura T; Charest, Gabriel; Lavigne, Pierre; Landry, Jacques

    2004-05-28

    Hsp27 is expressed at high levels after mild heat shock and contributes to making cells extremely resistant to subsequent treatments. The activity of the protein is regulated at the transcriptional level, but also by phosphorylation, which occurs rapidly during stress and is responsible for causing the dissociation of large 700-kDa Hsp27 oligomers into dimers. We investigated the mechanism by which phosphorylation and oligomerization modulate the protective activity of Chinese hamster Hsp27. In contrast to oligomer dissociation, which only required Ser90 phosphorylation, activation of Hsp27 thermoprotective activity required the phosphorylation of both Ser90 and Ser15. Replacement of Ser90 by Ala90, which prevented the dissociation of the oligomer upon stress, did cause a severe defect in the protective activity. Dissociation was, however, not a sufficient condition to activate the protein because replacement of Ser15 by Ala15, which caused little effect in the oligomeric organization of the protein, also yielded an inactive protein. Analyzes of mutants with short deletions in the NH2 terminus identified the Hsp27 WD/EPF or PF-rich domain as essential for protection, maintenance of the oligomeric structure, and in vitro chaperone activity of the protein. In light of a three-dimensional model of Hsp27 based on the crystallographic structure of wheat Hsp16.9, we propose that the conserved WD/EPF motif of mammalian Hsp27 mediates important intramolecular interactions with hydrophic surfaces of the alpha-crystallin domain of the protein. These interactions are destabilized by Ser90 phosphorylation, making the motif free to interact with heterologous molecular targets upon the additional phosphorylation of the nearby Ser15.

  6. FPGA implementation of motifs-based neuronal network and synchronization analysis

    NASA Astrophysics Data System (ADS)

    Deng, Bin; Zhu, Zechen; Yang, Shuangming; Wei, Xile; Wang, Jiang; Yu, Haitao

    2016-06-01

    Motifs in complex networks play a crucial role in determining the brain functions. In this paper, 13 kinds of motifs are implemented with Field Programmable Gate Array (FPGA) to investigate the relationships between the networks properties and motifs properties. We use discretization method and pipelined architecture to construct various motifs with Hindmarsh-Rose (HR) neuron as the node model. We also build a small-world network based on these motifs and conduct the synchronization analysis of motifs as well as the constructed network. We find that the synchronization properties of motif determine that of motif-based small-world network, which demonstrates effectiveness of our proposed hardware simulation platform. By imitation of some vital nuclei in the brain to generate normal discharges, our proposed FPGA-based artificial neuronal networks have the potential to replace the injured nuclei to complete the brain function in the treatment of Parkinson's disease and epilepsy.

  7. DMINDA: an integrated web server for DNA motif identification and analyses

    PubMed Central

    Ma, Qin; Zhang, Hanyuan; Mao, Xizeng; Zhou, Chuan; Liu, Bingqiang; Chen, Xin; Xu, Ying

    2014-01-01

    DMINDA (DNA motif identification and analyses) is an integrated web server for DNA motif identification and analyses, which is accessible at http://csbl.bmb.uga.edu/DMINDA/. This web site is freely available to all users and there is no login requirement. This server provides a suite of cis-regulatory motif analysis functions on DNA sequences, which are important to elucidation of the mechanisms of transcriptional regulation: (i) de novo motif finding for a given set of promoter sequences along with statistical scores for the predicted motifs derived based on information extracted from a control set, (ii) scanning motif instances of a query motif in provided genomic sequences, (iii) motif comparison and clustering of identified motifs, and (iv) co-occurrence analyses of query motifs in given promoter sequences. The server is powered by a backend computer cluster with over 150 computing nodes, and is particularly useful for motif prediction and analyses in prokaryotic genomes. We believe that DMINDA, as a new and comprehensive web server for cis-regulatory motif finding and analyses, will benefit the genomic research community in general and prokaryotic genome researchers in particular. PMID:24753419

  8. SCOPE: a web server for practical de novo motif discovery.

    PubMed

    Carlson, Jonathan M; Chakravarty, Arijit; DeZiel, Charles E; Gross, Robert H

    2007-07-01

    SCOPE is a novel parameter-free method for the de novo identification of potential regulatory motifs in sets of coordinately regulated genes. The SCOPE algorithm combines the output of three component algorithms, each designed to identify a particular class of motifs. Using an ensemble learning approach, SCOPE identifies the best candidate motifs from its component algorithms. In tests on experimentally determined datasets, SCOPE identified motifs with a significantly higher level of accuracy than a number of other web-based motif finders run with their default parameters. Because SCOPE has no adjustable parameters, the web server has an intuitive interface, requiring only a set of gene names or FASTA sequences and a choice of species. The most significant motifs found by SCOPE are displayed graphically on the main results page with a table containing summary statistics for each motif. Detailed motif information, including the sequence logo, PWM, consensus sequence and specific matching sites can be viewed through a single click on a motif. SCOPE's efficient, parameter-free search strategy has enabled the development of a web server that is readily accessible to the practising biologist while providing results that compare favorably with those of other motif finders. The SCOPE web server is at .

  9. Stress-Responsive Mitogen-Activated Protein Kinases Interact with the EAR Motif of a Poplar Zinc Finger Protein and Mediate Its Degradation through the 26S Proteasome1[W][OA

    PubMed Central

    Hamel, Louis-Philippe; Benchabane, Meriem; Nicole, Marie-Claude; Major, Ian T.; Morency, Marie-Josée; Pelletier, Gervais; Beaudoin, Nathalie; Sheen, Jen; Séguin, Armand

    2011-01-01

    Mitogen-activated protein kinases (MAPKs) contribute to the establishment of plant disease resistance by regulating downstream signaling components, including transcription factors. In this study, we identified MAPK-interacting proteins, and among the newly discovered candidates was a Cys-2/His-2-type zinc finger protein named PtiZFP1. This putative transcription factor belongs to a family of transcriptional repressors that rely on an ERF-associated amphiphilic repression (EAR) motif for their repression activity. Amino acids located within this repression motif were also found to be essential for MAPK binding. Close examination of the primary protein sequence revealed a functional bipartite MAPK docking site that partially overlaps with the EAR motif. Transient expression assays in Arabidopsis (Arabidopsis thaliana) protoplasts suggest that MAPKs promote PtiZFP1 degradation through the 26S proteasome. Since features of the MAPK docking site are conserved among other EAR repressors, our study suggests a novel mode of defense mechanism regulation involving stress-responsive MAPKs and EAR repressors. PMID:21873571

  10. Identifying novel sequence variants of RNA 3D motifs

    PubMed Central

    Zirbel, Craig L.; Roll, James; Sweeney, Blake A.; Petrov, Anton I.; Pirrung, Meg; Leontis, Neocles B.

    2015-01-01

    Predicting RNA 3D structure from sequence is a major challenge in biophysics. An important sub-goal is accurately identifying recurrent 3D motifs from RNA internal and hairpin loop sequences extracted from secondary structure (2D) diagrams. We have developed and validated new probabilistic models for 3D motif sequences based on hybrid Stochastic Context-Free Grammars and Markov Random Fields (SCFG/MRF). The SCFG/MRF models are constructed using atomic-resolution RNA 3D structures. To parameterize each model, we use all instances of each motif found in the RNA 3D Motif Atlas and annotations of pairwise nucleotide interactions generated by the FR3D software. Isostericity relations between non-Watson–Crick basepairs are used in scoring sequence variants. SCFG techniques model nested pairs and insertions, while MRF ideas handle crossing interactions and base triples. We use test sets of randomly-generated sequences to set acceptance and rejection thresholds for each motif group and thus control the false positive rate. Validation was carried out by comparing results for four motif groups to RMDetect. The software developed for sequence scoring (JAR3D) is structured to automatically incorporate new motifs as they accumulate in the RNA 3D Motif Atlas when new structures are solved and is available free for download. PMID:26130723

  11. A flexible motif search technique based on generalized profiles.

    PubMed

    Bucher, P; Karplus, K; Moeri, N; Hofmann, K

    1996-03-01

    A flexible motif search technique is presented which has two major components: (1) a generalized profile syntax serving as a motif definition language; and (2) a motif search method specifically adapted to the problem of finding multiple instances of a motif in the same sequence. The new profile structure, which is the core of the generalized profile syntax, combines the functions of a variety of motif descriptors implemented in other methods, including regular expression-like patterns, weight matrices, previously used profiles, and certain types of hidden Markov models (HMMs). The relationship between generalized profiles and other biomolecular motif descriptors is analyzed in detail, with special attention to HMMs. Generalized profiles are shown to be equivalent to a particular class of HMMs, and conversion procedures in both directions are given. The conversion procedures provide an interpretation for local alignment in the framework of stochastic models, allowing for clear, simple significance tests. A mathematical statement of the motif search problem defines the new method exactly without linking it to a specific algorithmic solution. Part of the definition includes a new definition of disjointness of alignments.

  12. Triadic motifs in the dependence networks of virtual societies.

    PubMed

    Xie, Wen-Jie; Li, Ming-Xia; Jiang, Zhi-Qiang; Zhou, Wei-Xing

    2014-06-10

    In friendship networks, individuals have different numbers of friends, and the closeness or intimacy between an individual and her friends is heterogeneous. Using a statistical filtering method to identify relationships about who depends on whom, we construct dependence networks (which are directed) from weighted friendship networks of avatars in more than two hundred virtual societies of a massively multiplayer online role-playing game (MMORPG). We investigate the evolution of triadic motifs in dependence networks. Several metrics show that the virtual societies evolved through a transient stage in the first two to three weeks and reached a relatively stable stage. We find that the unidirectional loop motif (M9) is underrepresented and does not appear, open motifs are also underrepresented, while other close motifs are overrepresented. We also find that, for most motifs, the overall level difference of the three avatars in the same motif is significantly lower than average, whereas the sum of ranks is only slightly larger than average. Our findings show that avatars' social status plays an important role in the formation of triadic motifs.

  13. Triadic motifs in the dependence networks of virtual societies

    NASA Astrophysics Data System (ADS)

    Xie, Wen-Jie; Li, Ming-Xia; Jiang, Zhi-Qiang; Zhou, Wei-Xing

    2014-06-01

    In friendship networks, individuals have different numbers of friends, and the closeness or intimacy between an individual and her friends is heterogeneous. Using a statistical filtering method to identify relationships about who depends on whom, we construct dependence networks (which are directed) from weighted friendship networks of avatars in more than two hundred virtual societies of a massively multiplayer online role-playing game (MMORPG). We investigate the evolution of triadic motifs in dependence networks. Several metrics show that the virtual societies evolved through a transient stage in the first two to three weeks and reached a relatively stable stage. We find that the unidirectional loop motif (M9) is underrepresented and does not appear, open motifs are also underrepresented, while other close motifs are overrepresented. We also find that, for most motifs, the overall level difference of the three avatars in the same motif is significantly lower than average, whereas the sum of ranks is only slightly larger than average. Our findings show that avatars' social status plays an important role in the formation of triadic motifs.

  14. Triadic motifs in the dependence networks of virtual societies

    PubMed Central

    Xie, Wen-Jie; Li, Ming-Xia; Jiang, Zhi-Qiang; Zhou, Wei-Xing

    2014-01-01

    In friendship networks, individuals have different numbers of friends, and the closeness or intimacy between an individual and her friends is heterogeneous. Using a statistical filtering method to identify relationships about who depends on whom, we construct dependence networks (which are directed) from weighted friendship networks of avatars in more than two hundred virtual societies of a massively multiplayer online role-playing game (MMORPG). We investigate the evolution of triadic motifs in dependence networks. Several metrics show that the virtual societies evolved through a transient stage in the first two to three weeks and reached a relatively stable stage. We find that the unidirectional loop motif (M9) is underrepresented and does not appear, open motifs are also underrepresented, while other close motifs are overrepresented. We also find that, for most motifs, the overall level difference of the three avatars in the same motif is significantly lower than average, whereas the sum of ranks is only slightly larger than average. Our findings show that avatars' social status plays an important role in the formation of triadic motifs. PMID:24912755

  15. Direct AUC optimization of regulatory motifs.

    PubMed

    Zhu, Lin; Zhang, Hong-Bo; Huang, De-Shuang

    2017-07-15

    The discovery of transcription factor binding site (TFBS) motifs is essential for untangling the complex mechanism of genetic variation under different developmental and environmental conditions. Among the huge amount of computational approaches for de novo identification of TFBS motifs, discriminative motif learning (DML) methods have been proven to be promising for harnessing the discovery power of accumulated huge amount of high-throughput binding data. However, they have to sacrifice accuracy for speed and could fail to fully utilize the information of the input sequences. We propose a novel algorithm called CDAUC for optimizing DML-learned motifs based on the area under the receiver-operating characteristic curve (AUC) criterion, which has been widely used in the literature to evaluate the significance of extracted motifs. We show that when the considered AUC loss function is optimized in a coordinate-wise manner, the cost function of each resultant sub-problem is a piece-wise constant function, whose optimal value can be found exactly and efficiently. Further, a key step of each iteration of CDAUC can be efficiently solved as a computational geometry problem. Experimental results on real world high-throughput datasets illustrate that CDAUC outperforms competing methods for refining DML motifs, while being one order of magnitude faster. Meanwhile, preliminary results also show that CDAUC may also be useful for improving the interpretability of convolutional kernels generated by the emerging deep learning approaches for predicting TF sequences specificities. CDAUC is available at: https://drive.google.com/drive/folders/0BxOW5MtIZbJjNFpCeHlBVWJHeW8 . dshuang@tongji.edu.cn. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  16. Redemptive Journey: The Storytelling Motif in Andersen's "The Snow Queen."

    ERIC Educational Resources Information Center

    Misheff, Sue

    1989-01-01

    Discusses how Hans Christian Andersen's "The Snow Queen" uses the motif of storytelling to describe the journey taken by the heroine Gerda. Identifies a story as that which is alive and active and which causes catharsis for those who participate in it. (MG)

  17. The DRF motif of CXCR6 as chemokine receptor adaptation to adhesion

    PubMed Central

    Koenen, Andrea; Babendreyer, Aaron; Schumacher, Julian; Pasqualon, Tobias; Schwarz, Nicole; Seifert, Anke; Deupi, Xavier

    2017-01-01

    The CXC-chemokine receptor 6 (CXCR6) is a class A GTP-binding protein-coupled receptor (GPCRs) that mediates adhesion of leukocytes by interacting with the transmembrane cell surface-expressed chemokine ligand 16 (CXCL16), and also regulates leukocyte migration by interacting with the soluble shed variant of CXCL16. In contrast to virtually all other chemokine receptors with chemotactic activity, CXCR6 carries a DRF motif instead of the typical DRY motif as a key element in receptor activation and G protein coupling. In this work, modeling analyses revealed that the phenylalanine F3.51 in CXCR6 might have impact on intramolecular interactions including hydrogen bonds by this possibly changing receptor function. Initial investigations with embryonic kidney HEK293 cells and further studies with monocytic THP-1 cells showed that mutation of DRF into DRY does not influence ligand binding, receptor internalization, receptor recycling, and protein kinase B (AKT) signaling. Adhesion was slightly decreased in a time-dependent manner. However, CXCL16-induced calcium signaling and migration were increased. Vice versa, when the DRY motif of the related receptor CX3CR1 was mutated into DRF the migratory response towards CX3CL1 was diminished, indicating that the presence of a DRF motif generally impairs chemotaxis in chemokine receptors. Transmembrane and soluble CXCL16 play divergent roles in homeostasis, inflammation, and cancer, which can be beneficial or detrimental. Therefore, the DRF motif of CXCR6 may display a receptor adaptation allowing adhesion and cell retention by transmembrane CXCL16 but reducing the chemotactic response to soluble CXCL16. This adaptation may avoid permanent or uncontrolled recruitment of inflammatory cells as well as cancer metastasis. PMID:28267793

  18. Temporal motifs reveal collaboration patterns in online task-oriented networks

    NASA Astrophysics Data System (ADS)

    Xuan, Qi; Fang, Huiting; Fu, Chenbo; Filkov, Vladimir

    2015-05-01

    Real networks feature layers of interactions and complexity. In them, different types of nodes can interact with each other via a variety of events. Examples of this complexity are task-oriented social networks (TOSNs), where teams of people share tasks towards creating a quality artifact, such as academic research papers or software development in commercial or open source environments. Accomplishing those tasks involves both work, e.g., writing the papers or code, and communication, to discuss and coordinate. Taking into account the different types of activities and how they alternate over time can result in much more precise understanding of the TOSNs behaviors and outcomes. That calls for modeling techniques that can accommodate both node and link heterogeneity as well as temporal change. In this paper, we report on methodology for finding temporal motifs in TOSNs, limited to a system of two people and an artifact. We apply the methods to publicly available data of TOSNs from 31 Open Source Software projects. We find that these temporal motifs are enriched in the observed data. When applied to software development outcome, temporal motifs reveal a distinct dependency between collaboration and communication in the code writing process. Moreover, we show that models based on temporal motifs can be used to more precisely relate both individual developer centrality and team cohesion to programmer productivity than models based on aggregated TOSNs.

  19. Temporal motifs reveal collaboration patterns in online task-oriented networks.

    PubMed

    Xuan, Qi; Fang, Huiting; Fu, Chenbo; Filkov, Vladimir

    2015-05-01

    Real networks feature layers of interactions and complexity. In them, different types of nodes can interact with each other via a variety of events. Examples of this complexity are task-oriented social networks (TOSNs), where teams of people share tasks towards creating a quality artifact, such as academic research papers or software development in commercial or open source environments. Accomplishing those tasks involves both work, e.g., writing the papers or code, and communication, to discuss and coordinate. Taking into account the different types of activities and how they alternate over time can result in much more precise understanding of the TOSNs behaviors and outcomes. That calls for modeling techniques that can accommodate both node and link heterogeneity as well as temporal change. In this paper, we report on methodology for finding temporal motifs in TOSNs, limited to a system of two people and an artifact. We apply the methods to publicly available data of TOSNs from 31 Open Source Software projects. We find that these temporal motifs are enriched in the observed data. When applied to software development outcome, temporal motifs reveal a distinct dependency between collaboration and communication in the code writing process. Moreover, we show that models based on temporal motifs can be used to more precisely relate both individual developer centrality and team cohesion to programmer productivity than models based on aggregated TOSNs.

  20. DMINDA: an integrated web server for DNA motif identification and analyses.

    PubMed

    Ma, Qin; Zhang, Hanyuan; Mao, Xizeng; Zhou, Chuan; Liu, Bingqiang; Chen, Xin; Xu, Ying

    2014-07-01

    DMINDA (DNA motif identification and analyses) is an integrated web server for DNA motif identification and analyses, which is accessible at http://csbl.bmb.uga.edu/DMINDA/. This web site is freely available to all users and there is no login requirement. This server provides a suite of cis-regulatory motif analysis functions on DNA sequences, which are important to elucidation of the mechanisms of transcriptional regulation: (i) de novo motif finding for a given set of promoter sequences along with statistical scores for the predicted motifs derived based on information extracted from a control set, (ii) scanning motif instances of a query motif in provided genomic sequences, (iii) motif comparison and clustering of identified motifs, and (iv) co-occurrence analyses of query motifs in given promoter sequences. The server is powered by a backend computer cluster with over 150 computing nodes, and is particularly useful for motif prediction and analyses in prokaryotic genomes. We believe that DMINDA, as a new and comprehensive web server for cis-regulatory motif finding and analyses, will benefit the genomic research community in general and prokaryotic genome researchers in particular. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Discovery of candidate KEN-box motifs using cell cycle keyword enrichment combined with native disorder prediction and motif conservation.

    PubMed

    Michael, Sushama; Travé, Gilles; Ramu, Chenna; Chica, Claudia; Gibson, Toby J

    2008-02-15

    KEN-box-mediated target selection is one of the mechanisms used in the proteasomal destruction of mitotic cell cycle proteins via the APC/C complex. While annotating the Eukaryotic Linear Motif resource (ELM, http://elm.eu.org/), we found that KEN motifs were significantly enriched in human protein entries with cell cycle keywords in the UniProt/Swiss-Prot database-implying that KEN-boxes might be more common than reported. Matches to short linear motifs in protein database searches are not, per se, significant. KEN-box enrichment with cell cycle Gene Ontology terms suggests that collectively these motifs are functional but does not prove that any given instance is so. Candidates were surveyed for native disorder prediction using GlobPlot and IUPred and for motif conservation in homologues. Among >25 strong new candidates, the most notable are human HIPK2, CHFR, CDC27, Dab2, Upf2, kinesin Eg5, DNA Topoisomerase 1 and yeast Cdc5 and Swi5. A similar number of weaker candidates were present. These proteins have yet to be tested for APC/C targeted destruction, providing potential new avenues of research.

  2. Synthetic Oligodeoxynucleotides (ODN) Containing Suppressive TTAGGG Motifs Inhibit AIM2 Inflammasome Activation

    PubMed Central

    Kaminski, John J.; Schattgen, Stefan A.; Tzeng, Te-Chen; Bode, Christian; Klinman, Dennis M.; Fitzgerald, Katherine A.

    2013-01-01

    Synthetic oligodeoxynucleotides comprised of the immunosuppressive motif TTAGGG block TLR9 signaling, prevent STAT1 and STAT4 phosphorylation and attenuate a variety of inflammatory responses in vivo. Here, we demonstrate that such suppressive oligodeoxynucleotides (sup ODN) abrogate activation of cytosolic nucleic acid sensing pathways. Pretreatment of dendritic cells and macrophages with the suppressive ODN-A151 abrogated type I IFN, TNFα and ISG induction in response to cytosolic dsDNA. In addition, A151 abrogated caspase-1-dependent IL-1β and IL-18 maturation in dendritic cells stimulated with dsDNA and murine cytomegalovirus (MCMV). Inhibition was dependent on A151’s phosphorothioate backbone while substitution of the guanosine residues for adenosine negatively affected potency. A151 mediates these effects by binding to AIM2 in a manner that is competitive with immune-stimulatory DNA and as a consequence prevents AIM2 inflammasome complex formation. Collectively, these findings reveal a new route by which suppressive ODNs modulate the immune system and unveil novel applications for suppressive ODNs in the treatment of infectious and autoimmune diseases. PMID:23986531

  3. Signature Motifs Identify an Acinetobacter Cif Virulence Factor with Epoxide Hydrolase Activity*

    PubMed Central

    Bahl, Christopher D.; Hvorecny, Kelli L.; Bridges, Andrew A.; Ballok, Alicia E.; Bomberger, Jennifer M.; Cady, Kyle C.; O'Toole, George A.; Madden, Dean R.

    2014-01-01

    Endocytic recycling of the cystic fibrosis transmembrane conductance regulator (CFTR) is blocked by the CFTR inhibitory factor (Cif). Originally discovered in Pseudomonas aeruginosa, Cif is a secreted epoxide hydrolase that is transcriptionally regulated by CifR, an epoxide-sensitive repressor. In this report, we investigate a homologous protein found in strains of the emerging nosocomial pathogens Acinetobacter nosocomialis and Acinetobacter baumannii (“aCif”). Like Cif, aCif is an epoxide hydrolase that carries an N-terminal secretion signal and can be purified from culture supernatants. When applied directly to polarized airway epithelial cells, mature aCif triggers a reduction in CFTR abundance at the apical membrane. Biochemical and crystallographic studies reveal a dimeric assembly with a stereochemically conserved active site, confirming our motif-based identification of candidate Cif-like pathogenic EH sequences. Furthermore, cif expression is transcriptionally repressed by a CifR homolog (“aCifR”) and is induced in the presence of epoxides. Overall, this Acinetobacter protein recapitulates the essential attributes of the Pseudomonas Cif system and thus may facilitate airway colonization in nosocomial lung infections. PMID:24474692

  4. STEME: A Robust, Accurate Motif Finder for Large Data Sets

    PubMed Central

    Reid, John E.; Wernisch, Lorenz

    2014-01-01

    Motif finding is a difficult problem that has been studied for over 20 years. Some older popular motif finders are not suitable for analysis of the large data sets generated by next-generation sequencing. We recently published an efficient approximation (STEME) to the EM algorithm that is at the core of many motif finders such as MEME. This approximation allows the EM algorithm to be applied to large data sets. In this work we describe several efficient extensions to STEME that are based on the MEME algorithm. Together with the original STEME EM approximation, these extensions make STEME a fully-fledged motif finder with similar properties to MEME. We discuss the difficulty of objectively comparing motif finders. We show that STEME performs comparably to existing prominent discriminative motif finders, DREME and Trawler, on 13 sets of transcription factor binding data in mouse ES cells. We demonstrate the ability of STEME to find long degenerate motifs which these discriminative motif finders do not find. As part of our method, we extend an earlier method due to Nagarajan et al. for the efficient calculation of motif E-values. STEME's source code is available under an open source license and STEME is available via a web interface. PMID:24625410

  5. DNA motif alignment by evolving a population of Markov chains.

    PubMed

    Bi, Chengpeng

    2009-01-30

    Deciphering cis-regulatory elements or de novo motif-finding in genomes still remains elusive although much algorithmic effort has been expended. The Markov chain Monte Carlo (MCMC) method such as Gibbs motif samplers has been widely employed to solve the de novo motif-finding problem through sequence local alignment. Nonetheless, the MCMC-based motif samplers still suffer from local maxima like EM. Therefore, as a prerequisite for finding good local alignments, these motif algorithms are often independently run a multitude of times, but without information exchange between different chains. Hence it would be worth a new algorithm design enabling such information exchange. This paper presents a novel motif-finding algorithm by evolving a population of Markov chains with information exchange (PMC), each of which is initialized as a random alignment and run by the Metropolis-Hastings sampler (MHS). It is progressively updated through a series of local alignments stochastically sampled. Explicitly, the PMC motif algorithm performs stochastic sampling as specified by a population-based proposal distribution rather than individual ones, and adaptively evolves the population as a whole towards a global maximum. The alignment information exchange is accomplished by taking advantage of the pooled motif site distributions. A distinct method for running multiple independent Markov chains (IMC) without information exchange, or dubbed as the IMC motif algorithm, is also devised to compare with its PMC counterpart. Experimental studies demonstrate that the performance could be improved if pooled information were used to run a population of motif samplers. The new PMC algorithm was able to improve the convergence and outperformed other popular algorithms tested using simulated and biological motif sequences.

  6. Automatic annotation of protein motif function with Gene Ontology terms.

    PubMed

    Lu, Xinghua; Zhai, Chengxiang; Gopalakrishnan, Vanathi; Buchanan, Bruce G

    2004-09-02

    Conserved protein sequence motifs are short stretches of amino acid sequence patterns that potentially encode the function of proteins. Several sequence pattern searching algorithms and programs exist foridentifying candidate protein motifs at the whole genome level. However, a much needed and important task is to determine the functions of the newly identified protein motifs. The Gene Ontology (GO) project is an endeavor to annotate the function of genes or protein sequences with terms from a dynamic, controlled vocabulary and these annotations serve well as a knowledge base. This paper presents methods to mine the GO knowledge base and use the association between the GO terms assigned to a sequence and the motifs matched by the same sequence as evidence for predicting the functions of novel protein motifs automatically. The task of assigning GO terms to protein motifs is viewed as both a binary classification and information retrieval problem, where PROSITE motifs are used as samples for mode training and functional prediction. The mutual information of a motif and aGO term association is found to be a very useful feature. We take advantage of the known motifs to train a logistic regression classifier, which allows us to combine mutual information with other frequency-based features and obtain a probability of correct association. The trained logistic regression model has intuitively meaningful and logically plausible parameter values, and performs very well empirically according to our evaluation criteria. In this research, different methods for automatic annotation of protein motifs have been investigated. Empirical result demonstrated that the methods have a great potential for detecting and augmenting information about the functions of newly discovered candidate protein motifs.

  7. The glycine-rich motif of Pyrococcus abyssi DNA polymerase D is critical for protein stability.

    PubMed

    Castrec, Benoît; Laurent, Sébastien; Henneke, Ghislaine; Flament, Didier; Raffin, Jean-Paul

    2010-03-05

    A glycine-rich motif described as being involved in human polymerase delta proliferating cell nuclear antigen (PCNA) binding has also been identified in all euryarchaeal DNA polymerase D (Pol D) family members. We redefined the motif as the (G)-PYF box. In the present study, Pol D (G)-PYF box motif mutants from Pyrococcus abyssi were generated to investigate its role in functional interactions with the cognate PCNA. We demonstrated that this motif is not essential for interactions between PabPol D (P. abyssi Pol D) and PCNA, using surface plasmon resonance and primer extension studies. Interestingly, the (G)-PYF box is located in a hydrophobic region close to the active site. The (G)-PYF box mutants exhibited altered DNA binding properties. In addition, the thermal stability of all mutants was reduced compared to that of wild type, and this effect could be attributed to increased exposure of the hydrophobic region. These studies suggest that the (G)-PYF box motif mediates intersubunit interactions and that it may be crucial for the thermostability of PabPol D. (c) 2010 Elsevier Ltd. All rights reserved.

  8. Functional Motifs Responsible for Human Metapneumovirus M2-2-mediated Innate Immune Evasion

    PubMed Central

    Chen, Yu; Deng, Xiaoling; Deng, Junfang; Zhou, Jiehua; Ren, Yuping; Liu, Shengxuan; Prusak, Deborah J.; Wood, Thomas G.; Bao, Xiaoyong

    2016-01-01

    Human metapneumovirus (hMPV) is a major cause of lower respiratory infection in young children. Repeated infections occur throughout life, but its immune evasion mechanisms are largely unknown. We recently found that hMPV M2-2 protein elicits immune evasion by targeting mitochondrial antiviral-signaling protein (MAVS), an antiviral signaling molecule. However, the molecular mechanisms underlying such inhibition are not known. Our mutagenesis studies revealed that PDZ-binding motifs, 29-DEMI-32 and 39-KEALSDGI-46, located in an immune inhibitory region of M2-2, are responsible for M2-2-mediated immune evasion. We also found both motifs prevent TRAF5 and TRAF6, the MAVS downstream adaptors, to be recruited to MAVS, while the motif 39-KEALSDGI-46 also blocks TRAF3 migrating to MAVS. In parallel, these TRAFs are important in activating transcription factors NF-kB and/or IRF-3 by hMPV. Our findings collectively demonstrate that M2-2 uses its PDZ motifs to launch the hMPV immune evasion through blocking the interaction of MAVS and its downstream TRAFs. PMID:27743962

  9. iLIR@viral: A web resource for LIR motif-containing proteins in viruses.

    PubMed

    Jacomin, Anne-Claire; Samavedam, Siva; Charles, Hannah; Nezis, Ioannis P

    2017-10-03

    Macroautophagy/autophagy has been shown to mediate the selective lysosomal degradation of pathogenic bacteria and viruses (xenophagy), and to contribute to the activation of innate and adaptative immune responses. Autophagy can serve as an antiviral defense mechanism but also as a proviral process during infection. Atg8-family proteins play a central role in the autophagy process due to their ability to interact with components of the autophagy machinery as well as selective autophagy receptors and adaptor proteins. Such interactions are usually mediated through LC3-interacting region (LIR) motifs. So far, only one viral protein has been experimentally shown to have a functional LIR motif, leaving open a vast field for investigation. Here, we have developed the iLIR@viral database ( http://ilir.uk/virus/ ) as a freely accessible web resource listing all the putative canonical LIR motifs identified in viral proteins. Additionally, we used a curated text-mining analysis of the literature to identify novel putative LIR motif-containing proteins (LIRCPs) in viruses. We anticipate that iLIR@viral will assist with elucidating the full complement of LIRCPs in viruses.

  10. Functional Analysis of Light-harvesting-like Protein 3 (LIL3) and Its Light-harvesting Chlorophyll-binding Motif in Arabidopsis*

    PubMed Central

    Takahashi, Kaori; Takabayashi, Atsushi; Tanaka, Ayumi; Tanaka, Ryouichi

    2014-01-01

    The light-harvesting complex (LHC) constitutes the major light-harvesting antenna of photosynthetic eukaryotes. LHC contains a characteristic sequence motif, termed LHC motif, consisting of 25–30 mostly hydrophobic amino acids. This motif is shared by a number of transmembrane proteins from oxygenic photoautotrophs that are termed light-harvesting-like (LIL) proteins. To gain insights into the functions of LIL proteins and their LHC motifs, we functionally characterized a plant LIL protein, LIL3. This protein has been shown previously to stabilize geranylgeranyl reductase (GGR), a key enzyme in phytol biosynthesis. It is hypothesized that LIL3 functions to anchor GGR to membranes. First, we conjugated the transmembrane domain of LIL3 or that of ascorbate peroxidase to GGR and expressed these chimeric proteins in an Arabidopsis mutant lacking LIL3 protein. As a result, the transgenic plants restored phytol-synthesizing activity. These results indicate that GGR is active as long as it is anchored to membranes, even in the absence of LIL3. Subsequently, we addressed the question why the LHC motif is conserved in the LIL3 sequences. We modified the transmembrane domain of LIL3, which contains the LHC motif, by substituting its conserved amino acids (Glu-171, Asn-174, and Asp-189) with alanine. As a result, the Arabidopsis transgenic plants partly recovered the phytol-biosynthesizing activity. However, in these transgenic plants, the LIL3-GGR complexes were partially dissociated. Collectively, these results indicate that the LHC motif of LIL3 is involved in the complex formation of LIL3 and GGR, which might contribute to the GGR reaction. PMID:24275650

  11. A Bioinformatics Approach for Detecting Repetitive Nested Motifs using Pattern Matching.

    PubMed

    Romero, José R; Carballido, Jessica A; Garbus, Ingrid; Echenique, Viviana C; Ponzoni, Ignacio

    2016-01-01

    The identification of nested motifs in genomic sequences is a complex computational problem. The detection of these patterns is important to allow the discovery of transposable element (TE) insertions, incomplete reverse transcripts, deletions, and/or mutations. In this study, a de novo strategy for detecting patterns that represent nested motifs was designed based on exhaustive searches for pairs of motifs and combinatorial pattern analysis. These patterns can be grouped into three categories, motifs within other motifs, motifs flanked by other motifs, and motifs of large size. The methodology used in this study, applied to genomic sequences from the plant species Aegilops tauschii and Oryza sativa , revealed that it is possible to identify putative nested TEs by detecting these three types of patterns. The results were validated through BLAST alignments, which revealed the efficacy and usefulness of the new method, which is called Mamushka.

  12. Motif discovery with data mining in 3D protein structure databases: discovery, validation and prediction of the U-shape zinc binding ("Huf-Zinc") motif.

    PubMed

    Maurer-Stroh, Sebastian; Gao, He; Han, Hao; Baeten, Lies; Schymkowitz, Joost; Rousseau, Frederic; Zhang, Louxin; Eisenhaber, Frank

    2013-02-01

    Data mining in protein databases, derivatives from more fundamental protein 3D structure and sequence databases, has considerable unearthed potential for the discovery of sequence motif--structural motif--function relationships as the finding of the U-shape (Huf-Zinc) motif, originally a small student's project, exemplifies. The metal ion zinc is critically involved in universal biological processes, ranging from protein-DNA complexes and transcription regulation to enzymatic catalysis and metabolic pathways. Proteins have evolved a series of motifs to specifically recognize and bind zinc ions. Many of these, so called zinc fingers, are structurally independent globular domains with discontinuous binding motifs made up of residues mostly far apart in sequence. Through a systematic approach starting from the BRIX structure fragment database, we discovered that there exists another predictable subset of zinc-binding motifs that not only have a conserved continuous sequence pattern but also share a characteristic local conformation, despite being included in totally different overall folds. While this does not allow general prediction of all Zn binding motifs, a HMM-based web server, Huf-Zinc, is available for prediction of these novel, as well as conventional, zinc finger motifs in protein sequences. The Huf-Zinc webserver can be freely accessed through this URL (http://mendel.bii.a-star.edu.sg/METHODS/hufzinc/).

  13. DNA motif elucidation using belief propagation.

    PubMed

    Wong, Ka-Chun; Chan, Tak-Ming; Peng, Chengbin; Li, Yue; Zhang, Zhaolei

    2013-09-01

    Protein-binding microarray (PBM) is a high-throughout platform that can measure the DNA-binding preference of a protein in a comprehensive and unbiased manner. A typical PBM experiment can measure binding signal intensities of a protein to all the possible DNA k-mers (k=8∼10); such comprehensive binding affinity data usually need to be reduced and represented as motif models before they can be further analyzed and applied. Since proteins can often bind to DNA in multiple modes, one of the major challenges is to decompose the comprehensive affinity data into multimodal motif representations. Here, we describe a new algorithm that uses Hidden Markov Models (HMMs) and can derive precise and multimodal motifs using belief propagations. We describe an HMM-based approach using belief propagations (kmerHMM), which accepts and preprocesses PBM probe raw data into median-binding intensities of individual k-mers. The k-mers are ranked and aligned for training an HMM as the underlying motif representation. Multiple motifs are then extracted from the HMM using belief propagations. Comparisons of kmerHMM with other leading methods on several data sets demonstrated its effectiveness and uniqueness. Especially, it achieved the best performance on more than half of the data sets. In addition, the multiple binding modes derived by kmerHMM are biologically meaningful and will be useful in interpreting other genome-wide data such as those generated from ChIP-seq. The executables and source codes are available at the authors' websites: e.g. http://www.cs.toronto.edu/∼wkc/kmerHMM.

  14. Distinct cagA EPIYA motifs are associated with ethnic diversity in Malaysia and Singapore.

    PubMed

    Schmidt, Heather-Marie A; Goh, Khean-Lee; Fock, Kwong Ming; Hilmi, Ida; Dhamodaran, Subbiah; Forman, David; Mitchell, Hazel

    2009-08-01

    In vitro studies have shown that the biologic activity of CagA is influenced by the number and class of EPIYA motifs present in its variable region as these motifs correspond to the CagA phosphorylation sites. It has been hypothesized that strains possessing specific combinations of these motifs may be responsible for gastric cancer development. This study investigated the prevalence of cagA and the EPIYA motifs with regard to number, class, and patterns in strains from the three major ethnic groups within the Malaysian and Singaporean populations in relation to disease development. Helicobacter pylori isolates from 49 Chinese, 43 Indian, and 14 Malay patients with functional dyspepsia (FD) and 21 gastric cancer (GC) cases were analyzed using polymerase chain reaction for the presence of cagA and the number, type, and pattern of EPIYA motifs. Additionally, the EPIYA motifs of 47 isolates were sequenced. All 126 isolates possessed cagA, with the majority encoding EPIYA-A (97.6%) and all encoding EPIYA-B. However, while the cagA of 93.0% of Indian FD isolates encoded EPIYA-C as the third motif, 91.8% of Chinese FD isolates and 81.7% of Chinese GC isolates encoded EPIYA-D (p < .001). Of Malay FD isolates, 61.5% and 38.5% possessed EPIYA-C and EPIYA-D, respectively. The majority of isolates possessed three EPIYA motifs; however, Indian isolates were significantly more likely to have four or more (p < .05). Although, H. pylori strains with distinct cagA-types are circulating within the primary ethnic groups resident in Malaysia and Singapore, these genotypes appear unassociated with the development of GC in the ethnic Chinese population. The phenomenon of distinct strains circulating within different ethnic groups, in combination with host and certain environmental factors, may help to explain the rates of GC development in Malaysia.

  15. BlockLogo: visualization of peptide and sequence motif conservation

    PubMed Central

    Olsen, Lars Rønn; Kudahl, Ulrich Johan; Simon, Christian; Sun, Jing; Schönbach, Christian; Reinherz, Ellis L.; Zhang, Guang Lan; Brusic, Vladimir

    2013-01-01

    BlockLogo is a web-server application for visualization of protein and nucleotide fragments, continuous protein sequence motifs, and discontinuous sequence motifs using calculation of block entropy from multiple sequence alignments. The user input consists of a multiple sequence alignment, selection of motif positions, type of sequence, and output format definition. The output has BlockLogo along with the sequence logo, and a table of motif frequencies. We deployed BlockLogo as an online application and have demonstrated its utility through examples that show visualization of T-cell epitopes and B-cell epitopes (both continuous and discontinuous). Our additional example shows a visualization and analysis of structural motifs that determine specificity of peptide binding to HLA-DR molecules. The BlockLogo server also employs selected experimentally validated prediction algorithms to enable on-the-fly prediction of MHC binding affinity to 15 common HLA class I and class II alleles as well as visual analysis of discontinuous epitopes from multiple sequence alignments. It enables the visualization and analysis of structural and functional motifs that are usually described as regular expressions. It provides a compact view of discontinuous motifs composed of distant positions within biological sequences. BlockLogo is available at: http://research4.dfci.harvard.edu/cvc/blocklogo/ and http://methilab.bu.edu/blocklogo/ PMID:24001880

  16. Ca2+-binding Motif of βγ-Crystallins*

    PubMed Central

    Srivastava, Shanti Swaroop; Mishra, Amita; Krishnan, Bal; Sharma, Yogendra

    2014-01-01

    βγ-Crystallin-type double clamp (N/D)(N/D)XX(S/T)S motif is an established but sparsely investigated motif for Ca2+ binding. A βγ-crystallin domain is formed of two Greek key motifs, accommodating two Ca2+-binding sites. βγ-Crystallins make a separate class of Ca2+-binding proteins (CaBP), apparently a major group of CaBP in bacteria. Paralleling the diversity in βγ-crystallin domains, these motifs also show great diversity, both in structure and in function. Although the expression of some of them has been associated with stress, virulence, and adhesion, the functional implications of Ca2+ binding to βγ-crystallins in mediating biological processes are yet to be elucidated. PMID:24567326

  17. RNA chaperone activity of human La protein is mediated by variant RNA recognition motif.

    PubMed

    Naeeni, Amir R; Conte, Maria R; Bayfield, Mark A

    2012-02-17

    La proteins are conserved factors in eukaryotes that bind and protect the 3' trailers of pre-tRNAs from exonuclease digestion via sequence-specific recognition of UUU-3'OH. La has also been hypothesized to assist pre-tRNAs in attaining their native fold through RNA chaperone activity. In addition to binding polymerase III transcripts, human La has also been shown to enhance the translation of several internal ribosome entry sites and upstream ORF-containing mRNA targets, also potentially through RNA chaperone activity. Using in vitro FRET-based assays, we show that human and Schizosaccharomyces pombe La proteins harbor RNA chaperone activity by enhancing RNA strand annealing and strand dissociation. We use various RNA substrates and La mutants to show that UUU-3'OH-dependent La-RNA binding is not required for this function, and we map RNA chaperone activity to its RRM1 motif including a noncanonical α3-helix. We validate the importance of this α3-helix by appending it to the RRM of the unrelated U1A protein and show that this fusion protein acquires significant strand annealing activity. Finally, we show that residues required for La-mediated RNA chaperone activity in vitro are required for La-dependent rescue of tRNA-mediated suppression via a mutated suppressor tRNA in vivo. This work delineates the structural elements required for La-mediated RNA chaperone activity and provides a basis for understanding how La can enhance the folding of its various RNA targets.

  18. RNA Chaperone Activity of Human La Protein Is Mediated by Variant RNA Recognition Motif*

    PubMed Central

    Naeeni, Amir R.; Conte, Maria R.; Bayfield, Mark A.

    2012-01-01

    La proteins are conserved factors in eukaryotes that bind and protect the 3′ trailers of pre-tRNAs from exonuclease digestion via sequence-specific recognition of UUU-3′OH. La has also been hypothesized to assist pre-tRNAs in attaining their native fold through RNA chaperone activity. In addition to binding polymerase III transcripts, human La has also been shown to enhance the translation of several internal ribosome entry sites and upstream ORF-containing mRNA targets, also potentially through RNA chaperone activity. Using in vitro FRET-based assays, we show that human and Schizosaccharomyces pombe La proteins harbor RNA chaperone activity by enhancing RNA strand annealing and strand dissociation. We use various RNA substrates and La mutants to show that UUU-3′OH-dependent La-RNA binding is not required for this function, and we map RNA chaperone activity to its RRM1 motif including a noncanonical α3-helix. We validate the importance of this α3-helix by appending it to the RRM of the unrelated U1A protein and show that this fusion protein acquires significant strand annealing activity. Finally, we show that residues required for La-mediated RNA chaperone activity in vitro are required for La-dependent rescue of tRNA-mediated suppression via a mutated suppressor tRNA in vivo. This work delineates the structural elements required for La-mediated RNA chaperone activity and provides a basis for understanding how La can enhance the folding of its various RNA targets. PMID:22203678

  19. Motif-based analysis of large nucleotide data sets using MEME-ChIP

    PubMed Central

    Ma, Wenxiu; Noble, William S; Bailey, Timothy L

    2014-01-01

    MEME-ChIP is a web-based tool for analyzing motifs in large DNA or RNA data sets. It can analyze peak regions identified by ChIP-seq, cross-linking sites identified by cLIP-seq and related assays, as well as sets of genomic regions selected using other criteria. MEME-ChIP performs de novo motif discovery, motif enrichment analysis, motif location analysis and motif clustering, providing a comprehensive picture of the DNA or RNA motifs that are enriched in the input sequences. MEME-ChIP performs two complementary types of de novo motif discovery: weight matrix–based discovery for high accuracy; and word-based discovery for high sensitivity. Motif enrichment analysis using DNA or RNA motifs from human, mouse, worm, fly and other model organisms provides even greater sensitivity. MEME-ChIP’s interactive HTML output groups and aligns significant motifs to ease interpretation. this protocol takes less than 3 h, and it provides motif discovery approaches that are distinct and complementary to other online methods. PMID:24853928

  20. Hybrid DNA i-motif: Aminoethylprolyl-PNA (pC5) enhance the stability of DNA (dC5) i-motif structure.

    PubMed

    Gade, Chandrasekhar Reddy; Sharma, Nagendra K

    2017-12-15

    This report describes the synthesis of C-rich sequence, cytosine pentamer, of aep-PNA and its biophysical studies for the formation of hybrid DNA:aep-PNAi-motif structure with DNA cytosine pentamer (dC 5 ) under acidic pH conditions. Herein, the CD/UV/NMR/ESI-Mass studies strongly support the formation of stable hybrid DNA i-motif structure with aep-PNA even near acidic conditions. Hence aep-PNA C-rich sequence cytosine could be considered as potential DNA i-motif stabilizing agents in vivo conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. A Conserved Metal Binding Motif in the Bacillus subtilis Competence Protein ComFA Enhances Transformation.

    PubMed

    Chilton, Scott S; Falbel, Tanya G; Hromada, Susan; Burton, Briana M

    2017-08-01

    Genetic competence is a process in which cells are able to take up DNA from their environment, resulting in horizontal gene transfer, a major mechanism for generating diversity in bacteria. Many bacteria carry homologs of the central DNA uptake machinery that has been well characterized in Bacillus subtilis It has been postulated that the B. subtilis competence helicase ComFA belongs to the DEAD box family of helicases/translocases. Here, we made a series of mutants to analyze conserved amino acid motifs in several regions of B. subtilis ComFA. First, we confirmed that ComFA activity requires amino acid residues conserved among the DEAD box helicases, and second, we show that a zinc finger-like motif consisting of four cysteines is required for efficient transformation. Each cysteine in the motif is important, and mutation of at least two of the cysteines dramatically reduces transformation efficiency. Further, combining multiple cysteine mutations with the helicase mutations shows an additive phenotype. Our results suggest that the helicase and metal binding functions are two distinct activities important for ComFA function during transformation. IMPORTANCE ComFA is a highly conserved protein that has a role in DNA uptake during natural competence, a mechanism for horizontal gene transfer observed in many bacteria. Investigation of the details of the DNA uptake mechanism is important for understanding the ways in which bacteria gain new traits from their environment, such as drug resistance. To dissect the role of ComFA in the DNA uptake machinery, we introduced point mutations into several motifs in the protein sequence. We demonstrate that several amino acid motifs conserved among ComFA proteins are important for efficient transformation. This report is the first to demonstrate the functional requirement of an amino-terminal cysteine motif in ComFA. Copyright © 2017 American Society for Microbiology.

  2. Gibbs motif sampling: detection of bacterial outer membrane protein repeats.

    PubMed Central

    Neuwald, A. F.; Liu, J. S.; Lawrence, C. E.

    1995-01-01

    The detection and alignment of locally conserved regions (motifs) in multiple sequences can provide insight into protein structure, function, and evolution. A new Gibbs sampling algorithm is described that detects motif-encoding regions in sequences and optimally partitions them into distinct motif models; this is illustrated using a set of immunoglobulin fold proteins. When applied to sequences sharing a single motif, the sampler can be used to classify motif regions into related submodels, as is illustrated using helix-turn-helix DNA-binding proteins. Other statistically based procedures are described for searching a database for sequences matching motifs found by the sampler. When applied to a set of 32 very distantly related bacterial integral outer membrane proteins, the sampler revealed that they share a subtle, repetitive motif. Although BLAST (Altschul SF et al., 1990, J Mol Biol 215:403-410) fails to detect significant pairwise similarity between any of the sequences, the repeats present in these outer membrane proteins, taken as a whole, are highly significant (based on a generally applicable statistical test for motifs described here). Analysis of bacterial porins with known trimeric beta-barrel structure and related proteins reveals a similar repetitive motif corresponding to alternating membrane-spanning beta-strands. These beta-strands occur on the membrane interface (as opposed to the trimeric interface) of the beta-barrel. The broad conservation and structural location of these repeats suggests that they play important functional roles. PMID:8520488

  3. ELM: the status of the 2010 eukaryotic linear motif resource

    PubMed Central

    Gould, Cathryn M.; Diella, Francesca; Via, Allegra; Puntervoll, Pål; Gemünd, Christine; Chabanis-Davidson, Sophie; Michael, Sushama; Sayadi, Ahmed; Bryne, Jan Christian; Chica, Claudia; Seiler, Markus; Davey, Norman E.; Haslam, Niall; Weatheritt, Robert J.; Budd, Aidan; Hughes, Tim; Paś, Jakub; Rychlewski, Leszek; Travé, Gilles; Aasland, Rein; Helmer-Citterich, Manuela; Linding, Rune; Gibson, Toby J.

    2010-01-01

    Linear motifs are short segments of multidomain proteins that provide regulatory functions independently of protein tertiary structure. Much of intracellular signalling passes through protein modifications at linear motifs. Many thousands of linear motif instances, most notably phosphorylation sites, have now been reported. Although clearly very abundant, linear motifs are difficult to predict de novo in protein sequences due to the difficulty of obtaining robust statistical assessments. The ELM resource at http://elm.eu.org/ provides an expanding knowledge base, currently covering 146 known motifs, with annotation that includes >1300 experimentally reported instances. ELM is also an exploratory tool for suggesting new candidates of known linear motifs in proteins of interest. Information about protein domains, protein structure and native disorder, cellular and taxonomic contexts is used to reduce or deprecate false positive matches. Results are graphically displayed in a ‘Bar Code’ format, which also displays known instances from homologous proteins through a novel ‘Instance Mapper’ protocol based on PHI-BLAST. ELM server output provides links to the ELM annotation as well as to a number of remote resources. Using the links, researchers can explore the motifs, proteins, complex structures and associated literature to evaluate whether candidate motifs might be worth experimental investigation. PMID:19920119

  4. PH motifs in PAR1&2 endow breast cancer growth.

    PubMed

    Kancharla, A; Maoz, M; Jaber, M; Agranovich, D; Peretz, T; Grisaru-Granovsky, S; Uziely, B; Bar-Shavit, R

    2015-11-24

    Although emerging roles of protease-activated receptor1&2 (PAR1&2) in cancer are recognized, their underlying signalling events are poorly understood. Here we show signal-binding motifs in PAR1&2 that are critical for breast cancer growth. This occurs via the association of the pleckstrin homology (PH) domain with Akt/PKB as a key signalling event of PARs. Other PH-domain signal-proteins such as Etk/Bmx and Vav3 also associate with PAR1 and PAR2 through their PH domains. PAR1 and PAR2 bind with priority to Etk/Bmx. A point mutation in PAR2, H349A, but not in R352A, abrogates PH-protein association and is sufficient to markedly reduce PAR2-instigated breast tumour growth in vivo and placental extravillous trophoblast (EVT) invasion in vitro. Similarly, the PAR1 mutant hPar1-7A, which is unable to bind the PH domain, reduces mammary tumours and EVT invasion, endowing these motifs with physiological significance and underscoring the importance of these previously unknown PAR1 and PAR2 PH-domain-binding motifs in both pathological and physiological invasion processes.

  5. Combinations of various CpG motifs cloned into plasmid backbone modulate and enhance protective immunity of viral replicon DNA anthrax vaccines.

    PubMed

    Yu, Yun-Zhou; Ma, Yao; Xu, Wen-Hui; Wang, Shuang; Sun, Zhi-Wei

    2015-08-01

    DNA vaccines are generally weak stimulators of the immune system. Fortunately, their efficacy can be improved using a viral replicon vector or by the addition of immunostimulatory CpG motifs, although the design of these engineered DNA vectors requires optimization. Our results clearly suggest that multiple copies of three types of CpG motifs or combinations of various types of CpG motifs cloned into a viral replicon vector backbone with strong immunostimulatory activities on human PBMC are efficient adjuvants for these DNA vaccines to modulate and enhance protective immunity against anthrax, although modifications with these different CpG forms in vivo elicited inconsistent immune response profiles. Modification with more copies of CpG motifs elicited more potent adjuvant effects leading to the generation of enhanced immunity, which indicated a CpG motif dose-dependent enhancement of antigen-specific immune responses. Notably, the enhanced and/or synchronous adjuvant effects were observed in modification with combinations of two different types of CpG motifs, which provides not only a contribution to the knowledge base on the adjuvant activities of CpG motifs combinations but also implications for the rational design of optimal DNA vaccines with combinations of CpG motifs as "built-in" adjuvants. We describe an efficient strategy to design and optimize DNA vaccines by the addition of combined immunostimulatory CpG motifs in a viral replicon DNA plasmid to produce strong immune responses, which indicates that the CpG-modified viral replicon DNA plasmid may be desirable for use as vector of DNA vaccines.

  6. Recurring sequence-structure motifs in (βα)8-barrel proteins and experimental optimization of a chimeric protein designed based on such motifs.

    PubMed

    Wang, Jichao; Zhang, Tongchuan; Liu, Ruicun; Song, Meilin; Wang, Juncheng; Hong, Jiong; Chen, Quan; Liu, Haiyan

    2017-02-01

    An interesting way of generating novel artificial proteins is to combine sequence motifs from natural proteins, mimicking the evolutionary path suggested by natural proteins comprising recurring motifs. We analyzed the βα and αβ modules of TIM barrel proteins by structure alignment-based sequence clustering. A number of preferred motifs were identified. A chimeric TIM was designed by using recurring elements as mutually compatible interfaces. The foldability of the designed TIM protein was then significantly improved by six rounds of directed evolution. The melting temperature has been improved by more than 20°C. A variety of characteristics suggested that the resulting protein is well-folded. Our analysis provided a library of peptide motifs that is potentially useful for different protein engineering studies. The protein engineering strategy of using recurring motifs as interfaces to connect partial natural proteins may be applied to other protein folds. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. G4 motifs affect origin positioning and efficiency in two vertebrate replicators

    PubMed Central

    Valton, Anne-Laure; Hassan-Zadeh, Vahideh; Lema, Ingrid; Boggetto, Nicole; Alberti, Patrizia; Saintomé, Carole; Riou, Jean-François; Prioleau, Marie-Noëlle

    2014-01-01

    DNA replication ensures the accurate duplication of the genome at each cell cycle. It begins at specific sites called replication origins. Genome-wide studies in vertebrates have recently identified a consensus G-rich motif potentially able to form G-quadruplexes (G4) in most replication origins. However, there is no experimental evidence to demonstrate that G4 are actually required for replication initiation. We show here, with two model origins, that G4 motifs are required for replication initiation. Two G4 motifs cooperate in one of our model origins. The other contains only one critical G4, and its orientation determines the precise position of the replication start site. Point mutations affecting the stability of this G4 in vitro also impair origin function. Finally, this G4 is not sufficient for origin activity and must cooperate with a 200-bp cis-regulatory element. In conclusion, our study strongly supports the predicted essential role of G4 in replication initiation. PMID:24521668

  8. An experimental test of a fundamental food web motif.

    PubMed

    Rip, Jason M K; McCann, Kevin S; Lynn, Denis H; Fawcett, Sonia

    2010-06-07

    Large-scale changes to the world's ecosystem are resulting in the deterioration of biostructure-the complex web of species interactions that make up ecological communities. A difficult, yet crucial task is to identify food web structures, or food web motifs, that are the building blocks of this baroque network of interactions. Once identified, these food web motifs can then be examined through experiments and theory to provide mechanistic explanations for how structure governs ecosystem stability. Here, we synthesize recent ecological research to show that generalist consumers coupling resources with different interaction strengths, is one such motif. This motif amazingly occurs across an enormous range of spatial scales, and so acts to distribute coupled weak and strong interactions throughout food webs. We then perform an experiment that illustrates the importance of this motif to ecological stability. We find that weak interactions coupled to strong interactions by generalist consumers dampen strong interaction strengths and increase community stability. This study takes a critical step by isolating a common food web motif and through clear, experimental manipulation, identifies the fundamental stabilizing consequences of this structure for ecological communities.

  9. Human HDAC7 harbors a class IIa histone deacetylase-specific zinc binding motif and cryptic deacetylase activity.

    PubMed

    Schuetz, Anja; Min, Jinrong; Allali-Hassani, Abdellah; Schapira, Matthieu; Shuen, Michael; Loppnau, Peter; Mazitschek, Ralph; Kwiatkowski, Nick P; Lewis, Timothy A; Maglathin, Rebecca L; McLean, Thomas H; Bochkarev, Alexey; Plotnikov, Alexander N; Vedadi, Masoud; Arrowsmith, Cheryl H

    2008-04-25

    Histone deacetylases (HDACs) are protein deacetylases that play a role in repression of gene transcription and are emerging targets in cancer therapy. Here, we characterize the structure and enzymatic activity of the catalytic domain of human HDAC7 (cdHDAC7). Although HDAC7 normally exists as part of a multiprotein complex, we show that cdHDAC7 has a low level of deacetylase activity which can be inhibited by known HDAC inhibitors. The crystal structures of human cdHDAC7 and its complexes with two hydroxamate inhibitors are the first structures of the catalytic domain of class IIa HDACs and demonstrate significant differences with previously reported class I and class IIb-like HDAC structures. We show that cdHDAC7 has an additional class IIa HDAC-specific zinc binding motif adjacent to the active site which is likely to participate in substrate recognition and protein-protein interaction and may provide a site for modulation of activity. Furthermore, a different active site topology results in modified catalytic properties and in an enlarged active site pocket. Our studies provide mechanistic insights into class IIa HDACs and facilitate the design of specific modulators.

  10. Functional motifs responsible for human metapneumovirus M2-2-mediated innate immune evasion.

    PubMed

    Chen, Yu; Deng, Xiaoling; Deng, Junfang; Zhou, Jiehua; Ren, Yuping; Liu, Shengxuan; Prusak, Deborah J; Wood, Thomas G; Bao, Xiaoyong

    2016-12-01

    Human metapneumovirus (hMPV) is a major cause of lower respiratory infection in young children. Repeated infections occur throughout life, but its immune evasion mechanisms are largely unknown. We recently found that hMPV M2-2 protein elicits immune evasion by targeting mitochondrial antiviral-signaling protein (MAVS), an antiviral signaling molecule. However, the molecular mechanisms underlying such inhibition are not known. Our mutagenesis studies revealed that PDZ-binding motifs, 29-DEMI-32 and 39-KEALSDGI-46, located in an immune inhibitory region of M2-2, are responsible for M2-2-mediated immune evasion. We also found both motifs prevent TRAF5 and TRAF6, the MAVS downstream adaptors, to be recruited to MAVS, while the motif 39-KEALSDGI-46 also blocks TRAF3 migrating to MAVS. In parallel, these TRAFs are important in activating transcription factors NF-kB and/or IRF-3 by hMPV. Our findings collectively demonstrate that M2-2 uses its PDZ motifs to launch the hMPV immune evasion through blocking the interaction of MAVS and its downstream TRAFs. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Mechanisms of Zero-Lag Synchronization in Cortical Motifs

    PubMed Central

    Gollo, Leonardo L.; Mirasso, Claudio; Sporns, Olaf; Breakspear, Michael

    2014-01-01

    Zero-lag synchronization between distant cortical areas has been observed in a diversity of experimental data sets and between many different regions of the brain. Several computational mechanisms have been proposed to account for such isochronous synchronization in the presence of long conduction delays: Of these, the phenomenon of “dynamical relaying” – a mechanism that relies on a specific network motif – has proven to be the most robust with respect to parameter mismatch and system noise. Surprisingly, despite a contrary belief in the community, the common driving motif is an unreliable means of establishing zero-lag synchrony. Although dynamical relaying has been validated in empirical and computational studies, the deeper dynamical mechanisms and comparison to dynamics on other motifs is lacking. By systematically comparing synchronization on a variety of small motifs, we establish that the presence of a single reciprocally connected pair – a “resonance pair” – plays a crucial role in disambiguating those motifs that foster zero-lag synchrony in the presence of conduction delays (such as dynamical relaying) from those that do not (such as the common driving triad). Remarkably, minor structural changes to the common driving motif that incorporate a reciprocal pair recover robust zero-lag synchrony. The findings are observed in computational models of spiking neurons, populations of spiking neurons and neural mass models, and arise whether the oscillatory systems are periodic, chaotic, noise-free or driven by stochastic inputs. The influence of the resonance pair is also robust to parameter mismatch and asymmetrical time delays amongst the elements of the motif. We call this manner of facilitating zero-lag synchrony resonance-induced synchronization, outline the conditions for its occurrence, and propose that it may be a general mechanism to promote zero-lag synchrony in the brain. PMID:24763382

  12. The effect of orthology and coregulation on detecting regulatory motifs.

    PubMed

    Storms, Valerie; Claeys, Marleen; Sanchez, Aminael; De Moor, Bart; Verstuyf, Annemieke; Marchal, Kathleen

    2010-02-03

    Computational de novo discovery of transcription factor binding sites is still a challenging problem. The growing number of sequenced genomes allows integrating orthology evidence with coregulation information when searching for motifs. Moreover, the more advanced motif detection algorithms explicitly model the phylogenetic relatedness between the orthologous input sequences and thus should be well adapted towards using orthologous information. In this study, we evaluated the conditions under which complementing coregulation with orthologous information improves motif detection for the class of probabilistic motif detection algorithms with an explicit evolutionary model. We designed datasets (real and synthetic) covering different degrees of coregulation and orthologous information to test how well Phylogibbs and Phylogenetic sampler, as representatives of the motif detection algorithms with evolutionary model performed as compared to MEME, a more classical motif detection algorithm that treats orthologs independently. Under certain conditions detecting motifs in the combined coregulation-orthology space is indeed more efficient than using each space separately, but this is not always the case. Moreover, the difference in success rate between the advanced algorithms and MEME is still marginal. The success rate of motif detection depends on the complex interplay between the added information and the specificities of the applied algorithms. Insights in this relation provide information useful to both developers and users. All benchmark datasets are available at http://homes.esat.kuleuven.be/~kmarchal/Supplementary_Storms_Valerie_PlosONE.

  13. cWINNOWER algorithm for finding fuzzy dna motifs

    NASA Technical Reports Server (NTRS)

    Liang, S.; Samanta, M. P.; Biegel, B. A.

    2004-01-01

    The cWINNOWER algorithm detects fuzzy motifs in DNA sequences rich in protein-binding signals. A signal is defined as any short nucleotide pattern having up to d mutations differing from a motif of length l. The algorithm finds such motifs if a clique consisting of a sufficiently large number of mutated copies of the motif (i.e., the signals) is present in the DNA sequence. The cWINNOWER algorithm substantially improves the sensitivity of the winnower method of Pevzner and Sze by imposing a consensus constraint, enabling it to detect much weaker signals. We studied the minimum detectable clique size qc as a function of sequence length N for random sequences. We found that qc increases linearly with N for a fast version of the algorithm based on counting three-member sub-cliques. Imposing consensus constraints reduces qc by a factor of three in this case, which makes the algorithm dramatically more sensitive. Our most sensitive algorithm, which counts four-member sub-cliques, needs a minimum of only 13 signals to detect motifs in a sequence of length N = 12,000 for (l, d) = (15, 4). Copyright Imperial College Press.

  14. Mutually Exclusive Formation of G-Quadruplex and i-Motif Is a General Phenomenon Governed by Steric Hindrance in Duplex DNA.

    PubMed

    Cui, Yunxi; Kong, Deming; Ghimire, Chiran; Xu, Cuixia; Mao, Hanbin

    2016-04-19

    G-Quadruplex and i-motif are tetraplex structures that may form in opposite strands at the same location of a duplex DNA. Recent discoveries have indicated that the two tetraplex structures can have conflicting biological activities, which poses a challenge for cells to coordinate. Here, by performing innovative population analysis on mechanical unfolding profiles of tetraplex structures in double-stranded DNA, we found that formations of G-quadruplex and i-motif in the two complementary strands are mutually exclusive in a variety of DNA templates, which include human telomere and promoter fragments of hINS and hTERT genes. To explain this behavior, we placed G-quadruplex- and i-motif-hosting sequences in an offset fashion in the two complementary telomeric DNA strands. We found simultaneous formation of the G-quadruplex and i-motif in opposite strands, suggesting that mutual exclusivity between the two tetraplexes is controlled by steric hindrance. This conclusion was corroborated in the BCL-2 promoter sequence, in which simultaneous formation of two tetraplexes was observed due to possible offset arrangements between G-quadruplex and i-motif in opposite strands. The mutual exclusivity revealed here sets a molecular basis for cells to efficiently coordinate opposite biological activities of G-quadruplex and i-motif at the same dsDNA location.

  15. Prediction of GCRV virus-host protein interactome based on structural motif-domain interactions.

    PubMed

    Zhang, Aidi; He, Libo; Wang, Yaping

    2017-03-02

    Grass carp hemorrhagic disease, caused by grass carp reovirus (GCRV), is the most fatal causative agent in grass carp aquaculture. Protein-protein interactions between virus and host are one avenue through which GCRV can trigger infection and induce disease. Experimental approaches for the detection of host-virus interactome have many inherent limitations, and studies on protein-protein interactions between GCRV and its host remain rare. In this study, based on known motif-domain interaction information, we systematically predicted the GCRV virus-host protein interactome by using motif-domain interaction pair searching strategy. These proteins derived from different domain families and were predicted to interact with different motif patterns in GCRV. JAM-A protein was successfully predicted to interact with motifs of GCRV Sigma1-like protein, and shared the similar binding mode compared with orthoreovirus. Differentially expressed genes during GCRV infection process were extracted and mapped to our predicted interactome, the overlapped genes displayed different tissue expression distributions on the whole, the overall expression level in intestinal is higher than that of other three tissues, which may suggest that the functions of these genes are more active in intestinal. Function annotation and pathway enrichment analysis revealed that the host targets were largely involved in signaling pathway and immune pathway, such as interferon-gamma signaling pathway, VEGF signaling pathway, EGF receptor signaling pathway, B cell activation, and T cell activation. Although the predicted PPIs may contain some false positives due to limited data resource and poor research background in non-model species, the computational method still provide reasonable amount of interactions, which can be further validated by high throughput experiments. The findings of this work will contribute to the development of system biology for GCRV infectious diseases, and help guide the

  16. DNA motifs associated with aberrant CpG island methylation.

    PubMed

    Feltus, F Alex; Lee, Eva K; Costello, Joseph F; Plass, Christoph; Vertino, Paula M

    2006-05-01

    Epigenetic silencing involving the aberrant methylation of promoter region CpG islands is widely recognized as a tumor suppressor silencing mechanism in cancer. However, the molecular pathways underlying aberrant DNA methylation remain elusive. Recently we showed that, on a genome-wide level, CpG island loci differ in their intrinsic susceptibility to aberrant methylation and that this susceptibility can be predicted based on underlying sequence context. These data suggest that there are sequence/structural features that contribute to the protection from or susceptibility to aberrant methylation. Here we use motif elicitation coupled with classification techniques to identify DNA sequence motifs that selectively define methylation-prone or methylation-resistant CpG islands. Motifs common to 28 methylation-prone or 47 methylation-resistant CpG island-containing genomic fragments were determined using the MEME and MAST algorithms (). The five most discriminatory motifs derived from methylation-prone sequences were found to be associated with CpG islands in general and were nonrandomly distributed throughout the genome. In contrast, the eight most discriminatory motifs derived from the methylation-resistant CpG islands were randomly distributed throughout the genome. Interestingly, this latter group tended to associate with Alu and other repetitive sequences. Used together, the frequency of occurrence of these motifs successfully discriminated methylation-prone and methylation-resistant CpG island groups with an accuracy of 87% after 10-fold cross-validation. The motifs identified here are candidate methylation-targeting or methylation-protection DNA sequences.

  17. Discriminative motif discovery via simulated evolution and random under-sampling.

    PubMed

    Song, Tao; Gu, Hong

    2014-01-01

    Conserved motifs in biological sequences are closely related to their structure and functions. Recently, discriminative motif discovery methods have attracted more and more attention. However, little attention has been devoted to the data imbalance problem, which is one of the main reasons affecting the performance of the discriminative models. In this article, a simulated evolution method is applied to solve the multi-class imbalance problem at the stage of data preprocessing, and at the stage of Hidden Markov Models (HMMs) training, a random under-sampling method is introduced for the imbalance between the positive and negative datasets. It is shown that, in the task of discovering targeting motifs of nine subcellular compartments, the motifs found by our method are more conserved than the methods without considering data imbalance problem and recover the most known targeting motifs from Minimotif Miner and InterPro. Meanwhile, we use the found motifs to predict protein subcellular localization and achieve higher prediction precision and recall for the minority classes.

  18. A Gibbs sampler for motif detection in phylogenetically close sequences

    NASA Astrophysics Data System (ADS)

    Siddharthan, Rahul; van Nimwegen, Erik; Siggia, Eric

    2004-03-01

    Genes are regulated by transcription factors that bind to DNA upstream of genes and recognize short conserved ``motifs'' in a random intergenic ``background''. Motif-finders such as the Gibbs sampler compare the probability of these short sequences being represented by ``weight matrices'' to the probability of their arising from the background ``null model'', and explore this space (analogous to a free-energy landscape). But closely related species may show conservation not because of functional sites but simply because they have not had sufficient time to diverge, so conventional methods will fail. We introduce a new Gibbs sampler algorithm that accounts for common ancestry when searching for motifs, while requiring minimal ``prior'' assumptions on the number and types of motifs, assessing the significance of detected motifs by ``tracking'' clusters that stay together. We apply this scheme to motif detection in sporulation-cycle genes in the yeast S. cerevisiae, using recent sequences of other closely-related Saccharomyces species.

  19. Sequence information gain based motif analysis.

    PubMed

    Maynou, Joan; Pairó, Erola; Marco, Santiago; Perera, Alexandre

    2015-11-09

    The detection of regulatory regions in candidate sequences is essential for the understanding of the regulation of a particular gene and the mechanisms involved. This paper proposes a novel methodology based on information theoretic metrics for finding regulatory sequences in promoter regions. This methodology (SIGMA) has been tested on genomic sequence data for Homo sapiens and Mus musculus. SIGMA has been compared with different publicly available alternatives for motif detection, such as MEME/MAST, Biostrings (Bioconductor package), MotifRegressor, and previous work such Qresiduals projections or information theoretic based detectors. Comparative results, in the form of Receiver Operating Characteristic curves, show how, in 70% of the studied Transcription Factor Binding Sites, the SIGMA detector has a better performance and behaves more robustly than the methods compared, while having a similar computational time. The performance of SIGMA can be explained by its parametric simplicity in the modelling of the non-linear co-variability in the binding motif positions. Sequence Information Gain based Motif Analysis is a generalisation of a non-linear model of the cis-regulatory sequences detection based on Information Theory. This generalisation allows us to detect transcription factor binding sites with maximum performance disregarding the covariability observed in the positions of the training set of sequences. SIGMA is freely available to the public at http://b2slab.upc.edu.

  20. The RNA recognition motif domains of RBM5 are required for RNA binding and cancer cell proliferation inhibition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lei; Zhang, Qing; Yang, Yu

    Highlights: • RNA recognition motif domains of RBM5 are essential for cell proliferation inhibition. • RNA recognition motif domains of RBM5 are essential for apoptosis induction. • RNA recognition motif domains of RBM5 are essential for RNA binding. • RNA recognition motif domains of RBM5 are essential for caspase-2 alternative splicing. - Abstract: RBM5 is a known putative tumor suppressor gene that has been shown to function in cell growth inhibition by modulating apoptosis. RBM5 also plays a critical role in alternative splicing as an RNA binding protein. However, it is still unclear which domains of RBM5 are required formore » RNA binding and related functional activities. We hypothesized the two putative RNA recognition motif (RRM) domains of RBM5 spanning from amino acids 98–178 and 231–315 are essential for RBM5-mediated cell growth inhibition, apoptosis regulation, and RNA binding. To investigate this hypothesis, we evaluated the activities of the wide-type and mutant RBM5 gene transfer in low-RBM5 expressing A549 cells. We found that, unlike wild-type RBM5 (RBM5-wt), a RBM5 mutant lacking the two RRM domains (RBM5-ΔRRM), is unable to bind RNA, has compromised caspase-2 alternative splicing activity, lacks cell proliferation inhibition and apoptosis induction function in A549 cells. These data provide direct evidence that the two RRM domains of RBM5 are required for RNA binding and the RNA binding activity of RBM5 contributes to its function on apoptosis induction and cell growth inhibition.« less

  1. RNA 3D Structural Motifs: Definition, Identification, Annotation, and Database Searching

    NASA Astrophysics Data System (ADS)

    Nasalean, Lorena; Stombaugh, Jesse; Zirbel, Craig L.; Leontis, Neocles B.

    Structured RNA molecules resemble proteins in the hierarchical organization of their global structures, folding and broad range of functions. Structured RNAs are composed of recurrent modular motifs that play specific functional roles. Some motifs direct the folding of the RNA or stabilize the folded structure through tertiary interactions. Others bind ligands or proteins or catalyze chemical reactions. Therefore, it is desirable, starting from the RNA sequence, to be able to predict the locations of recurrent motifs in RNA molecules. Conversely, the potential occurrence of one or more known 3D RNA motifs may indicate that a genomic sequence codes for a structured RNA molecule. To identify known RNA structural motifs in new RNA sequences, precise structure-based definitions are needed that specify the core nucleotides of each motif and their conserved interactions. By comparing instances of each recurrent motif and applying base pair isosteriCity relations, one can identify neutral mutations that preserve its structure and function in the contexts in which it occurs.

  2. Evidence for the Concerted Evolution between Short Linear Protein Motifs and Their Flanking Regions

    PubMed Central

    Chica, Claudia; Diella, Francesca; Gibson, Toby J.

    2009-01-01

    Background Linear motifs are short modules of protein sequences that play a crucial role in mediating and regulating many protein–protein interactions. The function of linear motifs strongly depends on the context, e.g. functional instances mainly occur inside flexible regions that are accessible for interaction. Sometimes linear motifs appear as isolated islands of conservation in multiple sequence alignments. However, they also occur in larger blocks of sequence conservation, suggesting an active role for the neighbouring amino acids. Results The evolution of regions flanking 116 functional linear motif instances was studied. The conservation of the amino acid sequence and order/disorder tendency of those regions was related to presence/absence of the instance. For the majority of the analysed instances, the pairs of sequences conserving the linear motif were also observed to maintain a similar local structural tendency and/or to have higher local sequence conservation when compared to pairs of sequences where one is missing the linear motif. Furthermore, those instances have a higher chance to co–evolve with the neighbouring residues in comparison to the distant ones. Those findings are supported by examples where the regulation of the linear motif–mediated interaction has been shown to depend on the modifications (e.g. phosphorylation) at neighbouring positions or is thought to benefit from the binding versatility of disordered regions. Conclusion The results suggest that flanking regions are relevant for linear motif–mediated interactions, both at the structural and sequence level. More interestingly, they indicate that the prediction of linear motif instances can be enriched with contextual information by performing a sequence analysis similar to the one presented here. This can facilitate the understanding of the role of these predicted instances in determining the protein function inside the broader context of the cellular network where they arise

  3. The Effect of Orthology and Coregulation on Detecting Regulatory Motifs

    PubMed Central

    Storms, Valerie; Claeys, Marleen; Sanchez, Aminael; De Moor, Bart; Verstuyf, Annemieke; Marchal, Kathleen

    2010-01-01

    Background Computational de novo discovery of transcription factor binding sites is still a challenging problem. The growing number of sequenced genomes allows integrating orthology evidence with coregulation information when searching for motifs. Moreover, the more advanced motif detection algorithms explicitly model the phylogenetic relatedness between the orthologous input sequences and thus should be well adapted towards using orthologous information. In this study, we evaluated the conditions under which complementing coregulation with orthologous information improves motif detection for the class of probabilistic motif detection algorithms with an explicit evolutionary model. Methodology We designed datasets (real and synthetic) covering different degrees of coregulation and orthologous information to test how well Phylogibbs and Phylogenetic sampler, as representatives of the motif detection algorithms with evolutionary model performed as compared to MEME, a more classical motif detection algorithm that treats orthologs independently. Results and Conclusions Under certain conditions detecting motifs in the combined coregulation-orthology space is indeed more efficient than using each space separately, but this is not always the case. Moreover, the difference in success rate between the advanced algorithms and MEME is still marginal. The success rate of motif detection depends on the complex interplay between the added information and the specificities of the applied algorithms. Insights in this relation provide information useful to both developers and users. All benchmark datasets are available at http://homes.esat.kuleuven.be/~kmarchal/Supplementary_Storms_Valerie_PlosONE. PMID:20140085

  4. Structural and Functional Analysis of a Novel Interaction Motif within UFM1-activating Enzyme 5 (UBA5) Required for Binding to Ubiquitin-like Proteins and Ufmylation*

    PubMed Central

    Habisov, Sabrina; Huber, Jessica; Ichimura, Yoshinobu; Akutsu, Masato; Rogova, Natalia; Loehr, Frank; McEwan, David G.; Johansen, Terje; Dikic, Ivan; Doetsch, Volker; Komatsu, Masaaki; Rogov, Vladimir V.; Kirkin, Vladimir

    2016-01-01

    The covalent conjugation of ubiquitin-fold modifier 1 (UFM1) to proteins generates a signal that regulates transcription, response to cell stress, and differentiation. Ufmylation is initiated by ubiquitin-like modifier activating enzyme 5 (UBA5), which activates and transfers UFM1 to ubiquitin-fold modifier-conjugating enzyme 1 (UFC1). The details of the interaction between UFM1 and UBA5 required for UFM1 activation and its downstream transfer are however unclear. In this study, we described and characterized a combined linear LC3-interacting region/UFM1-interacting motif (LIR/UFIM) within the C terminus of UBA5. This single motif ensures that UBA5 binds both UFM1 and light chain 3/γ-aminobutyric acid receptor-associated proteins (LC3/GABARAP), two ubiquitin (Ub)-like proteins. We demonstrated that LIR/UFIM is required for the full biological activity of UBA5 and for the effective transfer of UFM1 onto UFC1 and a downstream protein substrate both in vitro and in cells. Taken together, our study provides important structural and functional insights into the interaction between UBA5 and Ub-like modifiers, improving the understanding of the biology of the ufmylation pathway. PMID:26929408

  5. Computational Analyses of Synergism in Small Molecular Network Motifs

    PubMed Central

    Zhang, Yili; Smolen, Paul; Baxter, Douglas A.; Byrne, John H.

    2014-01-01

    Cellular functions and responses to stimuli are controlled by complex regulatory networks that comprise a large diversity of molecular components and their interactions. However, achieving an intuitive understanding of the dynamical properties and responses to stimuli of these networks is hampered by their large scale and complexity. To address this issue, analyses of regulatory networks often focus on reduced models that depict distinct, reoccurring connectivity patterns referred to as motifs. Previous modeling studies have begun to characterize the dynamics of small motifs, and to describe ways in which variations in parameters affect their responses to stimuli. The present study investigates how variations in pairs of parameters affect responses in a series of ten common network motifs, identifying concurrent variations that act synergistically (or antagonistically) to alter the responses of the motifs to stimuli. Synergism (or antagonism) was quantified using degrees of nonlinear blending and additive synergism. Simulations identified concurrent variations that maximized synergism, and examined the ways in which it was affected by stimulus protocols and the architecture of a motif. Only a subset of architectures exhibited synergism following paired changes in parameters. The approach was then applied to a model describing interlocked feedback loops governing the synthesis of the CREB1 and CREB2 transcription factors. The effects of motifs on synergism for this biologically realistic model were consistent with those for the abstract models of single motifs. These results have implications for the rational design of combination drug therapies with the potential for synergistic interactions. PMID:24651495

  6. Identifying the scale-dependent motifs in atmospheric surface layer by ordinal pattern analysis

    NASA Astrophysics Data System (ADS)

    Li, Qinglei; Fu, Zuntao

    2018-07-01

    Ramp-like structures in various atmospheric surface layer time series have been long studied, but the presence of motifs with the finer scale embedded within larger scale ramp-like structures has largely been overlooked in the reported literature. Here a novel, objective and well-adapted methodology, the ordinal pattern analysis, is adopted to study the finer-scaled motifs in atmospheric boundary-layer (ABL) time series. The studies show that the motifs represented by different ordinal patterns take clustering properties and 6 dominated motifs out of the whole 24 motifs account for about 45% of the time series under particular scales, which indicates the higher contribution of motifs with the finer scale to the series. Further studies indicate that motif statistics are similar for both stable conditions and unstable conditions at larger scales, but large discrepancies are found at smaller scales, and the frequencies of motifs "1234" and/or "4321" are a bit higher under stable conditions than unstable conditions. Under stable conditions, there are great changes for the occurrence frequencies of motifs "1234" and "4321", where the occurrence frequencies of motif "1234" decrease from nearly 24% to 4.5% with the scale factor increasing, and the occurrence frequencies of motif "4321" change nonlinearly with the scale increasing. These great differences of dominated motifs change with scale can be taken as an indicator to quantify the flow structure changes under different stability conditions, and motif entropy can be defined just by only 6 dominated motifs to quantify this time-scale independent property of the motifs. All these results suggest that the defined scale of motifs with the finer scale should be carefully taken into consideration in the interpretation of turbulence coherent structures.

  7. Limitations and potentials of current motif discovery algorithms

    PubMed Central

    Hu, Jianjun; Li, Bin; Kihara, Daisuke

    2005-01-01

    Computational methods for de novo identification of gene regulation elements, such as transcription factor binding sites, have proved to be useful for deciphering genetic regulatory networks. However, despite the availability of a large number of algorithms, their strengths and weaknesses are not sufficiently understood. Here, we designed a comprehensive set of performance measures and benchmarked five modern sequence-based motif discovery algorithms using large datasets generated from Escherichia coli RegulonDB. Factors that affect the prediction accuracy, scalability and reliability are characterized. It is revealed that the nucleotide and the binding site level accuracy are very low, while the motif level accuracy is relatively high, which indicates that the algorithms can usually capture at least one correct motif in an input sequence. To exploit diverse predictions from multiple runs of one or more algorithms, a consensus ensemble algorithm has been developed, which achieved 6–45% improvement over the base algorithms by increasing both the sensitivity and specificity. Our study illustrates limitations and potentials of existing sequence-based motif discovery algorithms. Taking advantage of the revealed potentials, several promising directions for further improvements are discussed. Since the sequence-based algorithms are the baseline of most of the modern motif discovery algorithms, this paper suggests substantial improvements would be possible for them. PMID:16284194

  8. Encryption of agonistic motifs for TLR4 into artificial antigens augmented the maturation of antigen-presenting cells.

    PubMed

    Ito, Masaki; Hayashi, Kazumi; Minamisawa, Tamiko; Homma, Sadamu; Koido, Shigeo; Shiba, Kiyotaka

    2017-01-01

    Adjuvants are indispensable for achieving a sufficient immune response from vaccinations. From a functional viewpoint, adjuvants are classified into two categories: "physical adjuvants" increase the efficacy of antigen presentation by antigen-presenting cells (APC) and "signal adjuvants" induce the maturation of APC. Our previous study has demonstrated that a physical adjuvant can be encrypted into proteinous antigens by creating artificial proteins from combinatorial assemblages of epitope peptides and those peptide sequences having propensities to form certain protein structures (motif programming). However, the artificial antigens still require a signal adjuvant to maturate the APC; for example, co-administration of the Toll-like receptor 4 (TLR4) agonist monophosphoryl lipid A (MPLA) was required to induce an in vivo immunoreaction. In this study, we further modified the previous artificial antigens by appending the peptide motifs, which have been reported to have agonistic activity for TLR4, to create "adjuvant-free" antigens. The created antigens with triple TLR4 agonistic motifs in their C-terminus have activated NF-κB signaling pathways through TLR4. These proteins also induced the production of the inflammatory cytokine TNF-α, and the expression of the co-stimulatory molecule CD40 in APC, supporting the maturation of APC in vitro. Unexpectedly, these signal adjuvant-encrypted proteins have lost their ability to be physical adjuvants because they did not induce cytotoxic T lymphocytes (CTL) in vivo, while the parental proteins induced CTL. These results confirmed that the manifestation of a motif's function is context-dependent and simple addition does not always work for motif-programing. Further optimization of the molecular context of the TLR4 agonistic motifs in antigens should be required to create adjuvant-free antigens.

  9. Convergent evolution and mimicry of protein linear motifs in host-pathogen interactions.

    PubMed

    Chemes, Lucía Beatriz; de Prat-Gay, Gonzalo; Sánchez, Ignacio Enrique

    2015-06-01

    Pathogen linear motif mimics are highly evolvable elements that facilitate rewiring of host protein interaction networks. Host linear motifs and pathogen mimics differ in sequence, leading to thermodynamic and structural differences in the resulting protein-protein interactions. Moreover, the functional output of a mimic depends on the motif and domain repertoire of the pathogen protein. Regulatory evolution mediated by linear motifs can be understood by measuring evolutionary rates, quantifying positive and negative selection and performing phylogenetic reconstructions of linear motif natural history. Convergent evolution of linear motif mimics is widespread among unrelated proteins from viral, prokaryotic and eukaryotic pathogens and can also take place within individual protein phylogenies. Statistics, biochemistry and laboratory models of infection link pathogen linear motifs to phenotypic traits such as tropism, virulence and oncogenicity. In vitro evolution experiments and analysis of natural sequences suggest that changes in linear motif composition underlie pathogen adaptation to a changing environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. PISMA: A Visual Representation of Motif Distribution in DNA Sequences.

    PubMed

    Alcántara-Silva, Rogelio; Alvarado-Hermida, Moisés; Díaz-Contreras, Gibrán; Sánchez-Barrios, Martha; Carrera, Samantha; Galván, Silvia Carolina

    2017-01-01

    Because the graphical presentation and analysis of motif distribution can provide insights for experimental hypothesis, PISMA aims at identifying motifs on DNA sequences, counting and showing them graphically. The motif length ranges from 2 to 10 bases, and the DNA sequences range up to 10 kb. The motif distribution is shown as a bar-code-like, as a gene-map-like, and as a transcript scheme. We obtained graphical schemes of the CpG site distribution from 91 human papillomavirus genomes. Also, we present 2 analyses: one of DNA motifs associated with either methylation-resistant or methylation-sensitive CpG islands and another analysis of motifs associated with exosome RNA secretion. PISMA is developed in Java; it is executable in any type of hardware and in diverse operating systems. PISMA is freely available to noncommercial users. The English version and the User Manual are provided in Supplementary Files 1 and 2, and a Spanish version is available at www.biomedicas.unam.mx/wp-content/software/pisma.zip and www.biomedicas.unam.mx/wp-content/pdf/manual/pisma.pdf.

  11. Urokinase links plasminogen activation and cell adhesion by cleavage of the RGD motif in vitronectin.

    PubMed

    De Lorenzi, Valentina; Sarra Ferraris, Gian Maria; Madsen, Jeppe B; Lupia, Michela; Andreasen, Peter A; Sidenius, Nicolai

    2016-07-01

    Components of the plasminogen activation system including urokinase (uPA), its inhibitor (PAI-1) and its cell surface receptor (uPAR) have been implicated in a wide variety of biological processes related to tissue homoeostasis. Firstly, the binding of uPA to uPAR favours extracellular proteolysis by enhancing cell surface plasminogen activation. Secondly, it promotes cell adhesion and signalling through binding of the provisional matrix protein vitronectin. We now report that uPA and plasmin induces a potent negative feedback on cell adhesion through specific cleavage of the RGD motif in vitronectin. Cleavage of vitronectin by uPA displays a remarkable receptor dependence and requires concomitant binding of both uPA and vitronectin to uPAR Moreover, we show that PAI-1 counteracts the negative feedback and behaves as a proteolysis-triggered stabilizer of uPAR-mediated cell adhesion to vitronectin. These findings identify a novel and highly specific function for the plasminogen activation system in the regulation of cell adhesion to vitronectin. The cleavage of vitronectin by uPA and plasmin results in the release of N-terminal vitronectin fragments that can be detected in vivo, underscoring the potential physiological relevance of the process. © 2016 The Authors.

  12. Methods and statistics for combining motif match scores.

    PubMed

    Bailey, T L; Gribskov, M

    1998-01-01

    Position-specific scoring matrices are useful for representing and searching for protein sequence motifs. A sequence family can often be described by a group of one or more motifs, and an effective search must combine the scores for matching a sequence to each of the motifs in the group. We describe three methods for combining match scores and estimating the statistical significance of the combined scores and evaluate the search quality (classification accuracy) and the accuracy of the estimate of statistical significance of each. The three methods are: 1) sum of scores, 2) sum of reduced variates, 3) product of score p-values. We show that method 3) is superior to the other two methods in both regards, and that combining motif scores indeed gives better search accuracy. The MAST sequence homology search algorithm utilizing the product of p-values scoring method is available for interactive use and downloading at URL http:/(/)www.sdsc.edu/MEME.

  13. A Monte Carlo-based framework enhances the discovery and interpretation of regulatory sequence motifs

    PubMed Central

    2012-01-01

    Background Discovery of functionally significant short, statistically overrepresented subsequence patterns (motifs) in a set of sequences is a challenging problem in bioinformatics. Oftentimes, not all sequences in the set contain a motif. These non-motif-containing sequences complicate the algorithmic discovery of motifs. Filtering the non-motif-containing sequences from the larger set of sequences while simultaneously determining the identity of the motif is, therefore, desirable and a non-trivial problem in motif discovery research. Results We describe MotifCatcher, a framework that extends the sensitivity of existing motif-finding tools by employing random sampling to effectively remove non-motif-containing sequences from the motif search. We developed two implementations of our algorithm; each built around a commonly used motif-finding tool, and applied our algorithm to three diverse chromatin immunoprecipitation (ChIP) data sets. In each case, the motif finder with the MotifCatcher extension demonstrated improved sensitivity over the motif finder alone. Our approach organizes candidate functionally significant discovered motifs into a tree, which allowed us to make additional insights. In all cases, we were able to support our findings with experimental work from the literature. Conclusions Our framework demonstrates that additional processing at the sequence entry level can significantly improve the performance of existing motif-finding tools. For each biological data set tested, we were able to propose novel biological hypotheses supported by experimental work from the literature. Specifically, in Escherichia coli, we suggested binding site motifs for 6 non-traditional LexA protein binding sites; in Saccharomyces cerevisiae, we hypothesize 2 disparate mechanisms for novel binding sites of the Cse4p protein; and in Halobacterium sp. NRC-1, we discoverd subtle differences in a general transcription factor (GTF) binding site motif across several data sets. We

  14. MOCCS: Clarifying DNA-binding motif ambiguity using ChIP-Seq data.

    PubMed

    Ozaki, Haruka; Iwasaki, Wataru

    2016-08-01

    As a key mechanism of gene regulation, transcription factors (TFs) bind to DNA by recognizing specific short sequence patterns that are called DNA-binding motifs. A single TF can accept ambiguity within its DNA-binding motifs, which comprise both canonical (typical) and non-canonical motifs. Clarification of such DNA-binding motif ambiguity is crucial for revealing gene regulatory networks and evaluating mutations in cis-regulatory elements. Although chromatin immunoprecipitation sequencing (ChIP-seq) now provides abundant data on the genomic sequences to which a given TF binds, existing motif discovery methods are unable to directly answer whether a given TF can bind to a specific DNA-binding motif. Here, we report a method for clarifying the DNA-binding motif ambiguity, MOCCS. Given ChIP-Seq data of any TF, MOCCS comprehensively analyzes and describes every k-mer to which that TF binds. Analysis of simulated datasets revealed that MOCCS is applicable to various ChIP-Seq datasets, requiring only a few minutes per dataset. Application to the ENCODE ChIP-Seq datasets proved that MOCCS directly evaluates whether a given TF binds to each DNA-binding motif, even if known position weight matrix models do not provide sufficient information on DNA-binding motif ambiguity. Furthermore, users are not required to provide numerous parameters or background genomic sequence models that are typically unavailable. MOCCS is implemented in Perl and R and is freely available via https://github.com/yuifu/moccs. By complementing existing motif-discovery software, MOCCS will contribute to the basic understanding of how the genome controls diverse cellular processes via DNA-protein interactions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Structural basis for genome wide recognition of 5-bp GC motifs by SMAD transcription factors.

    PubMed

    Martin-Malpartida, Pau; Batet, Marta; Kaczmarska, Zuzanna; Freier, Regina; Gomes, Tiago; Aragón, Eric; Zou, Yilong; Wang, Qiong; Xi, Qiaoran; Ruiz, Lidia; Vea, Angela; Márquez, José A; Massagué, Joan; Macias, Maria J

    2017-12-12

    Smad transcription factors activated by TGF-β or by BMP receptors form trimeric complexes with Smad4 to target specific genes for cell fate regulation. The CAGAC motif has been considered as the main binding element for Smad2/3/4, whereas Smad1/5/8 have been thought to preferentially bind GC-rich elements. However, chromatin immunoprecipitation analysis in embryonic stem cells showed extensive binding of Smad2/3/4 to GC-rich cis-regulatory elements. Here, we present the structural basis for specific binding of Smad3 and Smad4 to GC-rich motifs in the goosecoid promoter, a nodal-regulated differentiation gene. The structures revealed a 5-bp consensus sequence GGC(GC)|(CG) as the binding site for both TGF-β and BMP-activated Smads and for Smad4. These 5GC motifs are highly represented as clusters in Smad-bound regions genome-wide. Our results provide a basis for understanding the functional adaptability of Smads in different cellular contexts, and their dependence on lineage-determining transcription factors to target specific genes in TGF-β and BMP pathways.

  16. A structural-alphabet-based strategy for finding structural motifs across protein families

    PubMed Central

    Wu, Chih Yuan; Chen, Yao Chi; Lim, Carmay

    2010-01-01

    Proteins with insignificant sequence and overall structure similarity may still share locally conserved contiguous structural segments; i.e. structural/3D motifs. Most methods for finding 3D motifs require a known motif to search for other similar structures or functionally/structurally crucial residues. Here, without requiring a query motif or essential residues, a fully automated method for discovering 3D motifs of various sizes across protein families with different folds based on a 16-letter structural alphabet is presented. It was applied to structurally non-redundant proteins bound to DNA, RNA, obligate/non-obligate proteins as well as free DNA-binding proteins (DBPs) and proteins with known structures but unknown function. Its usefulness was illustrated by analyzing the 3D motifs found in DBPs. A non-specific motif was found with a ‘corner’ architecture that confers a stable scaffold and enables diverse interactions, making it suitable for binding not only DNA but also RNA and proteins. Furthermore, DNA-specific motifs present ‘only’ in DBPs were discovered. The motifs found can provide useful guidelines in detecting binding sites and computational protein redesign. PMID:20525797

  17. CircularLogo: A lightweight web application to visualize intra-motif dependencies.

    PubMed

    Ye, Zhenqing; Ma, Tao; Kalmbach, Michael T; Dasari, Surendra; Kocher, Jean-Pierre A; Wang, Liguo

    2017-05-22

    The sequence logo has been widely used to represent DNA or RNA motifs for more than three decades. Despite its intelligibility and intuitiveness, the traditional sequence logo is unable to display the intra-motif dependencies and therefore is insufficient to fully characterize nucleotide motifs. Many methods have been developed to quantify the intra-motif dependencies, but fewer tools are available for visualization. We developed CircularLogo, a web-based interactive application, which is able to not only visualize the position-specific nucleotide consensus and diversity but also display the intra-motif dependencies. Applying CircularLogo to HNF6 binding sites and tRNA sequences demonstrated its ability to show intra-motif dependencies and intuitively reveal biomolecular structure. CircularLogo is implemented in JavaScript and Python based on the Django web framework. The program's source code and user's manual are freely available at http://circularlogo.sourceforge.net . CircularLogo web server can be accessed from http://bioinformaticstools.mayo.edu/circularlogo/index.html . CircularLogo is an innovative web application that is specifically designed to visualize and interactively explore intra-motif dependencies.

  18. Characterization of a unique motif in LIM mineralization protein-1 that interacts with jun activation-domain-binding protein 1.

    PubMed

    Sangadala, Sreedhara; Yoshioka, Katsuhito; Enyo, Yoshio; Liu, Yunshan; Titus, Louisa; Boden, Scott D

    2014-01-01

    Development and repair of the skeletal system and other organs are highly dependent on precise regulation of the bone morphogenetic protein (BMP) pathway. The use of BMPs clinically to induce bone formation has been limited in part by the requirement of much higher doses of recombinant proteins in primates than were needed in cell culture or rodents. Therefore, increasing cellular responsiveness to BMPs has become our focus. We determined that an osteogenic LIM mineralization protein, LMP-1 interacts with Smurf1 (Smad ubiquitin regulatory factor 1) and prevents ubiquitination of Smads resulting in potentiation of BMP activity. In the region of LMP-1 responsible for bone formation, there is a motif that directly interacts with the Smurf1 WW2 domain and thus effectively competes for binding with Smad1 and Smad5, key signaling proteins in the BMP pathway. Here we show that the same region also contains a motif that interacts with Jun activation-domain-binding protein 1 (Jab1) which targets a common Smad, Smad4, shared by both the BMP and transforming growth factor-β (TGF-β) pathways, for proteasomal degradation. Jab1 was first identified as a coactivator of the transcription factor c-Jun. Jab1 binds to Smad4, Smad5, and Smad7, key intracellular signaling molecules of the TGF-β superfamily, and causes ubiquitination and/or degradation of these Smads. We confirmed a direct interaction of Jab1 with LMP-1 using recombinantly expressed wild-type and mutant proteins in slot-blot-binding assays. We hypothesized that LMP-1 binding to Jab1 prevents the binding and subsequent degradation of these Smads causing increased accumulation of osteogenic Smads in cells. We identified a sequence motif in LMP-1 that was predicted to interact with Jab1 based on the MAME/MAST sequence analysis of several cellular signaling molecules that are known to interact with Jab-1. We further mutated the potential key interacting residues in LMP-1 and showed loss of binding to Jab1 in binding

  19. Human HDAC7 Harbors a Class IIa Histone Deacetylase-specific Zinc Binding Motif and Cryptic Deacetylase Activity*S⃞

    PubMed Central

    Schuetz, Anja; Min, Jinrong; Allali-Hassani, Abdellah; Schapira, Matthieu; Shuen, Michael; Loppnau, Peter; Mazitschek, Ralph; Kwiatkowski, Nick P.; Lewis, Timothy A.; Maglathin, Rebecca L.; McLean, Thomas H.; Bochkarev, Alexey; Plotnikov, Alexander N.; Vedadi, Masoud; Arrowsmith, Cheryl H.

    2008-01-01

    Histone deacetylases (HDACs) are protein deacetylases that play a role in repression of gene transcription and are emerging targets in cancer therapy. Here, we characterize the structure and enzymatic activity of the catalytic domain of human HDAC7 (cdHDAC7). Although HDAC7 normally exists as part of a multiprotein complex, we show that cdHDAC7 has a low level of deacetylase activity which can be inhibited by known HDAC inhibitors. The crystal structures of human cdHDAC7 and its complexes with two hydroxamate inhibitors are the first structures of the catalytic domain of class IIa HDACs and demonstrate significant differences with previously reported class I and class IIb-like HDAC structures. We show that cdHDAC7 has an additional class IIa HDAC-specific zinc binding motif adjacent to the active site which is likely to participate in substrate recognition and protein-protein interaction and may provide a site for modulation of activity. Furthermore, a different active site topology results in modified catalytic properties and in an enlarged active site pocket. Our studies provide mechanistic insights into class IIa HDACs and facilitate the design of specific modulators. PMID:18285338

  20. SARNAclust: Semi-automatic detection of RNA protein binding motifs from immunoprecipitation data

    PubMed Central

    Dotu, Ivan; Adamson, Scott I.; Coleman, Benjamin; Fournier, Cyril; Ricart-Altimiras, Emma; Eyras, Eduardo

    2018-01-01

    RNA-protein binding is critical to gene regulation, controlling fundamental processes including splicing, translation, localization and stability, and aberrant RNA-protein interactions are known to play a role in a wide variety of diseases. However, molecular understanding of RNA-protein interactions remains limited; in particular, identification of RNA motifs that bind proteins has long been challenging, especially when such motifs depend on both sequence and structure. Moreover, although RNA binding proteins (RBPs) often contain more than one binding domain, algorithms capable of identifying more than one binding motif simultaneously have not been developed. In this paper we present a novel pipeline to determine binding peaks in crosslinking immunoprecipitation (CLIP) data, to discover multiple possible RNA sequence/structure motifs among them, and to experimentally validate such motifs. At the core is a new semi-automatic algorithm SARNAclust, the first unsupervised method to identify and deconvolve multiple sequence/structure motifs simultaneously. SARNAclust computes similarity between sequence/structure objects using a graph kernel, providing the ability to isolate the impact of specific features through the bulge graph formalism. Application of SARNAclust to synthetic data shows its capability of clustering 5 motifs at once with a V-measure value of over 0.95, while GraphClust achieves only a V-measure of 0.083 and RNAcontext cannot detect any of the motifs. When applied to existing eCLIP sets, SARNAclust finds known motifs for SLBP and HNRNPC and novel motifs for several other RBPs such as AGGF1, AKAP8L and ILF3. We demonstrate an experimental validation protocol, a targeted Bind-n-Seq-like high-throughput sequencing approach that relies on RNA inverse folding for oligo pool design, that can validate the components within the SLBP motif. Finally, we use this protocol to experimentally interrogate the SARNAclust motif predictions for protein ILF3. Our

  1. Memetic algorithms for de novo motif-finding in biomedical sequences.

    PubMed

    Bi, Chengpeng

    2012-09-01

    The objectives of this study are to design and implement a new memetic algorithm for de novo motif discovery, which is then applied to detect important signals hidden in various biomedical molecular sequences. In this paper, memetic algorithms are developed and tested in de novo motif-finding problems. Several strategies in the algorithm design are employed that are to not only efficiently explore the multiple sequence local alignment space, but also effectively uncover the molecular signals. As a result, there are a number of key features in the implementation of the memetic motif-finding algorithm (MaMotif), including a chromosome replacement operator, a chromosome alteration-aware local search operator, a truncated local search strategy, and a stochastic operation of local search imposed on individual learning. To test the new algorithm, we compare MaMotif with a few of other similar algorithms using simulated and experimental data including genomic DNA, primary microRNA sequences (let-7 family), and transmembrane protein sequences. The new memetic motif-finding algorithm is successfully implemented in C++, and exhaustively tested with various simulated and real biological sequences. In the simulation, it shows that MaMotif is the most time-efficient algorithm compared with others, that is, it runs 2 times faster than the expectation maximization (EM) method and 16 times faster than the genetic algorithm-based EM hybrid. In both simulated and experimental testing, results show that the new algorithm is compared favorably or superior to other algorithms. Notably, MaMotif is able to successfully discover the transcription factors' binding sites in the chromatin immunoprecipitation followed by massively parallel sequencing (ChIP-Seq) data, correctly uncover the RNA splicing signals in gene expression, and precisely find the highly conserved helix motif in the transmembrane protein sequences, as well as rightly detect the palindromic segments in the primary micro

  2. Discovering Motifs in Biological Sequences Using the Micron Automata Processor.

    PubMed

    Roy, Indranil; Aluru, Srinivas

    2016-01-01

    Finding approximately conserved sequences, called motifs, across multiple DNA or protein sequences is an important problem in computational biology. In this paper, we consider the (l, d) motif search problem of identifying one or more motifs of length l present in at least q of the n given sequences, with each occurrence differing from the motif in at most d substitutions. The problem is known to be NP-complete, and the largest solved instance reported to date is (26,11). We propose a novel algorithm for the (l,d) motif search problem using streaming execution over a large set of non-deterministic finite automata (NFA). This solution is designed to take advantage of the micron automata processor, a new technology close to deployment that can simultaneously execute multiple NFA in parallel. We demonstrate the capability for solving much larger instances of the (l, d) motif search problem using the resources available within a single automata processor board, by estimating run-times for problem instances (39,18) and (40,17). The paper serves as a useful guide to solving problems using this new accelerator technology.

  3. PISMA: A Visual Representation of Motif Distribution in DNA Sequences

    PubMed Central

    Alcántara-Silva, Rogelio; Alvarado-Hermida, Moisés; Díaz-Contreras, Gibrán; Sánchez-Barrios, Martha; Carrera, Samantha; Galván, Silvia Carolina

    2017-01-01

    Background: Because the graphical presentation and analysis of motif distribution can provide insights for experimental hypothesis, PISMA aims at identifying motifs on DNA sequences, counting and showing them graphically. The motif length ranges from 2 to 10 bases, and the DNA sequences range up to 10 kb. The motif distribution is shown as a bar-code–like, as a gene-map–like, and as a transcript scheme. Results: We obtained graphical schemes of the CpG site distribution from 91 human papillomavirus genomes. Also, we present 2 analyses: one of DNA motifs associated with either methylation-resistant or methylation-sensitive CpG islands and another analysis of motifs associated with exosome RNA secretion. Availability and Implementation: PISMA is developed in Java; it is executable in any type of hardware and in diverse operating systems. PISMA is freely available to noncommercial users. The English version and the User Manual are provided in Supplementary Files 1 and 2, and a Spanish version is available at www.biomedicas.unam.mx/wp-content/software/pisma.zip and www.biomedicas.unam.mx/wp-content/pdf/manual/pisma.pdf. PMID:28469418

  4. Symmetry compression method for discovering network motifs.

    PubMed

    Wang, Jianxin; Huang, Yuannan; Wu, Fang-Xiang; Pan, Yi

    2012-01-01

    Discovering network motifs could provide a significant insight into systems biology. Interestingly, many biological networks have been found to have a high degree of symmetry (automorphism), which is inherent in biological network topologies. The symmetry due to the large number of basic symmetric subgraphs (BSSs) causes a certain redundant calculation in discovering network motifs. Therefore, we compress all basic symmetric subgraphs before extracting compressed subgraphs and propose an efficient decompression algorithm to decompress all compressed subgraphs without loss of any information. In contrast to previous approaches, the novel Symmetry Compression method for Motif Detection, named as SCMD, eliminates most redundant calculations caused by widespread symmetry of biological networks. We use SCMD to improve three notable exact algorithms and two efficient sampling algorithms. Results of all exact algorithms with SCMD are the same as those of the original algorithms, since SCMD is a lossless method. The sampling results show that the use of SCMD almost does not affect the quality of sampling results. For highly symmetric networks, we find that SCMD used in both exact and sampling algorithms can help get a remarkable speedup. Furthermore, SCMD enables us to find larger motifs in biological networks with notable symmetry than previously possible.

  5. Hydrophobic motif site-phosphorylated protein kinase CβII between mTORC2 and Akt regulates high glucose-induced mesangial cell hypertrophy.

    PubMed

    Das, Falguni; Ghosh-Choudhury, Nandini; Mariappan, Meenalakshmi M; Kasinath, Balakuntalam S; Choudhury, Goutam Ghosh

    2016-04-01

    PKCβII controls the pathologic features of diabetic nephropathy, including glomerular mesangial cell hypertrophy. PKCβII contains the COOH-terminal hydrophobic motif site Ser-660. Whether this hydrophobic motif phosphorylation contributes to high glucose-induced mesangial cell hypertrophy has not been determined. Here we show that, in mesangial cells, high glucose increased phosphorylation of PKCβII at Ser-660 in a phosphatidylinositol 3-kinase (PI3-kinase)-dependent manner. Using siRNAs to downregulate PKCβII, dominant negative PKCβII, and PKCβII hydrophobic motif phosphorylation-deficient mutant, we found that PKCβII regulates activation of mechanistic target of rapamycin complex 1 (mTORC1) and mesangial cell hypertrophy by high glucose. PKCβII via its phosphorylation at Ser-660 regulated phosphorylation of Akt at both catalytic loop and hydrophobic motif sites, resulting in phosphorylation and inactivation of its substrate PRAS40. Specific inhibition of mTORC2 increased mTORC1 activity and induced mesangial cell hypertrophy. In contrast, inhibition of mTORC2 decreased the phosphorylation of PKCβII and Akt, leading to inhibition of PRAS40 phosphorylation and mTORC1 activity and prevented mesangial cell hypertrophy in response to high glucose; expression of constitutively active Akt or mTORC1 restored mesangial cell hypertrophy. Moreover, constitutively active PKCβII reversed the inhibition of high glucose-stimulated Akt phosphorylation and mesangial cell hypertrophy induced by suppression of mTORC2. Finally, using renal cortexes from type 1 diabetic mice, we found that increased phosphorylation of PKCβII at Ser-660 was associated with enhanced Akt phosphorylation and mTORC1 activation. Collectively, our findings identify a signaling route connecting PI3-kinase to mTORC2 to phosphorylate PKCβII at the hydrophobic motif site necessary for Akt phosphorylation and mTORC1 activation, leading to mesangial cell hypertrophy.

  6. Hydrophobic motif site-phosphorylated protein kinase CβII between mTORC2 and Akt regulates high glucose-induced mesangial cell hypertrophy

    PubMed Central

    Das, Falguni; Mariappan, Meenalakshmi M.; Kasinath, Balakuntalam S.; Choudhury, Goutam Ghosh

    2016-01-01

    PKCβII controls the pathologic features of diabetic nephropathy, including glomerular mesangial cell hypertrophy. PKCβII contains the COOH-terminal hydrophobic motif site Ser-660. Whether this hydrophobic motif phosphorylation contributes to high glucose-induced mesangial cell hypertrophy has not been determined. Here we show that, in mesangial cells, high glucose increased phosphorylation of PKCβII at Ser-660 in a phosphatidylinositol 3-kinase (PI3-kinase)-dependent manner. Using siRNAs to downregulate PKCβII, dominant negative PKCβII, and PKCβII hydrophobic motif phosphorylation-deficient mutant, we found that PKCβII regulates activation of mechanistic target of rapamycin complex 1 (mTORC1) and mesangial cell hypertrophy by high glucose. PKCβII via its phosphorylation at Ser-660 regulated phosphorylation of Akt at both catalytic loop and hydrophobic motif sites, resulting in phosphorylation and inactivation of its substrate PRAS40. Specific inhibition of mTORC2 increased mTORC1 activity and induced mesangial cell hypertrophy. In contrast, inhibition of mTORC2 decreased the phosphorylation of PKCβII and Akt, leading to inhibition of PRAS40 phosphorylation and mTORC1 activity and prevented mesangial cell hypertrophy in response to high glucose; expression of constitutively active Akt or mTORC1 restored mesangial cell hypertrophy. Moreover, constitutively active PKCβII reversed the inhibition of high glucose-stimulated Akt phosphorylation and mesangial cell hypertrophy induced by suppression of mTORC2. Finally, using renal cortexes from type 1 diabetic mice, we found that increased phosphorylation of PKCβII at Ser-660 was associated with enhanced Akt phosphorylation and mTORC1 activation. Collectively, our findings identify a signaling route connecting PI3-kinase to mTORC2 to phosphorylate PKCβII at the hydrophobic motif site necessary for Akt phosphorylation and mTORC1 activation, leading to mesangial cell hypertrophy. PMID:26739493

  7. Identifying DNA-binding proteins using structural motifs and the electrostatic potential

    PubMed Central

    Shanahan, Hugh P.; Garcia, Mario A.; Jones, Susan; Thornton, Janet M.

    2004-01-01

    Robust methods to detect DNA-binding proteins from structures of unknown function are important for structural biology. This paper describes a method for identifying such proteins that (i) have a solvent accessible structural motif necessary for DNA-binding and (ii) a positive electrostatic potential in the region of the binding region. We focus on three structural motifs: helix–turn-helix (HTH), helix–hairpin–helix (HhH) and helix–loop–helix (HLH). We find that the combination of these variables detect 78% of proteins with an HTH motif, which is a substantial improvement over previous work based purely on structural templates and is comparable to more complex methods of identifying DNA-binding proteins. Similar true positive fractions are achieved for the HhH and HLH motifs. We see evidence of wide evolutionary diversity for DNA-binding proteins with an HTH motif, and much smaller diversity for those with an HhH or HLH motif. PMID:15356290

  8. IndeCut evaluates performance of network motif discovery algorithms.

    PubMed

    Ansariola, Mitra; Megraw, Molly; Koslicki, David

    2018-05-01

    Genomic networks represent a complex map of molecular interactions which are descriptive of the biological processes occurring in living cells. Identifying the small over-represented circuitry patterns in these networks helps generate hypotheses about the functional basis of such complex processes. Network motif discovery is a systematic way of achieving this goal. However, a reliable network motif discovery outcome requires generating random background networks which are the result of a uniform and independent graph sampling method. To date, there has been no method to numerically evaluate whether any network motif discovery algorithm performs as intended on realistically sized datasets-thus it was not possible to assess the validity of resulting network motifs. In this work, we present IndeCut, the first method to date that characterizes network motif finding algorithm performance in terms of uniform sampling on realistically sized networks. We demonstrate that it is critical to use IndeCut prior to running any network motif finder for two reasons. First, IndeCut indicates the number of samples needed for a tool to produce an outcome that is both reproducible and accurate. Second, IndeCut allows users to choose the tool that generates samples in the most independent fashion for their network of interest among many available options. The open source software package is available at https://github.com/megrawlab/IndeCut. megrawm@science.oregonstate.edu or david.koslicki@math.oregonstate.edu. Supplementary data are available at Bioinformatics online.

  9. SSMART: Sequence-structure motif identification for RNA-binding proteins.

    PubMed

    Munteanu, Alina; Mukherjee, Neelanjan; Ohler, Uwe

    2018-06-11

    RNA-binding proteins (RBPs) regulate every aspect of RNA metabolism and function. There are hundreds of RBPs encoded in the eukaryotic genomes, and each recognize its RNA targets through a specific mixture of RNA sequence and structure properties. For most RBPs, however, only a primary sequence motif has been determined, while the structure of the binding sites is uncharacterized. We developed SSMART, an RNA motif finder that simultaneously models the primary sequence and the structural properties of the RNA targets sites. The sequence-structure motifs are represented as consensus strings over a degenerate alphabet, extending the IUPAC codes for nucleotides to account for secondary structure preferences. Evaluation on synthetic data showed that SSMART is able to recover both sequence and structure motifs implanted into 3'UTR-like sequences, for various degrees of structured/unstructured binding sites. In addition, we successfully used SSMART on high-throughput in vivo and in vitro data, showing that we not only recover the known sequence motif, but also gain insight into the structural preferences of the RBP. Availability: SSMART is freely available at https://ohlerlab.mdc-berlin.de/software/SSMART_137/. Supplementary data are available at Bioinformatics online.

  10. Assessing local structure motifs using order parameters for motif recognition, interstitial identification, and diffusion path characterization

    NASA Astrophysics Data System (ADS)

    Zimmermann, Nils E. R.; Horton, Matthew K.; Jain, Anubhav; Haranczyk, Maciej

    2017-11-01

    Structure-property relationships form the basis of many design rules in materials science, including synthesizability and long-term stability of catalysts, control of electrical and optoelectronic behavior in semiconductors as well as the capacity of and transport properties in cathode materials for rechargeable batteries. The immediate atomic environments (i.e., the first coordination shells) of a few atomic sites are often a key factor in achieving a desired property. Some of the most frequently encountered coordination patterns are tetrahedra, octahedra, body and face-centered cubic as well as hexagonal closed packed-like environments. Here, we showcase the usefulness of local order parameters to identify these basic structural motifs in inorganic solid materials by developing classification criteria. We introduce a systematic testing framework, the Einstein crystal test rig, that probes the response of order parameters to distortions in perfect motifs to validate our approach. Subsequently, we highlight three important application cases. First, we map basic crystal structure information of a large materials database in an intuitive manner by screening the Materials Project (MP) database (61,422 compounds) for element-specific motif distributions. Second, we use the structure-motif recognition capabilities to automatically find interstitials in metals, semiconductor, and insulator materials. Our Interstitialcy Finding Tool (InFiT) facilitates high-throughput screenings of defect properties. Third, the order parameters are reliable and compact quantitative structure descriptors for characterizing diffusion hops of intercalants as our example of magnesium in MnO2-spinel indicates. Finally, the tools developed in our work are readily and freely available as software implementations in the pymatgen library, and we expect them to be further applied to machine-learning approaches for emerging applications in materials science.

  11. [Conserved motifs in voltage sensing proteins].

    PubMed

    Wang, Chang-He; Xie, Zhen-Li; Lv, Jian-Wei; Yu, Zhi-Dan; Shao, Shu-Li

    2012-08-25

    This paper was aimed to study conserved motifs of voltage sensing proteins (VSPs) and establish a voltage sensing model. All VSPs were collected from the Uniprot database using a comprehensive keyword search followed by manual curation, and the results indicated that there are only two types of known VSPs, voltage gated ion channels and voltage dependent phosphatases. All the VSPs have a common domain of four helical transmembrane segments (TMS, S1-S4), which constitute the voltage sensing module of the VSPs. The S1 segment was shown to be responsible for membrane targeting and insertion of these proteins, while S2-S4 segments, which can sense membrane potential, for protein properties. Conserved motifs/residues and their functional significance of each TMS were identified using profile-to-profile sequence alignments. Conserved motifs in these four segments are strikingly similar for all VSPs, especially, the conserved motif [RK]-X(2)-R-X(2)-R-X(2)-[RK] was presented in all the S4 segments, with positively charged arginine (R) alternating with two hydrophobic or uncharged residues. Movement of these arginines across the membrane electric field is the core mechanism by which the VSPs detect changes in membrane potential. The negatively charged aspartate (D) in the S3 segment is universally conserved in all the VSPs, suggesting that the aspartate residue may be involved in voltage sensing properties of VSPs as well as the electrostatic interactions with the positively charged residues in the S4 segment, which may enhance the thermodynamic stability of the S4 segments in plasma membrane.

  12. Identification of the sequence motif of glycoside hydrolase 13 family members

    PubMed Central

    Kumar, Vikash

    2011-01-01

    A bioinformatics analysis of sequences of enzymes of the glycoside hydrolase (GH) 13 family members such as α-amylase, cyclodextrin glycosyltransferase (CGTase), branching enzyme and cyclomaltodextrinase has been carried out in order to find out the sequence motifs that govern the reactions specificities of these enzymes by using hidden Markov model (HMM) profile. This analysis suggests the existence of such sequence motifs and residues of these motifs constituting the −1 to +3 catalytic subsites of the enzyme. Hence, by introducing mutations in the residues of these four subsites, one can change the reaction specificities of the enzymes. In general it has been observed that α -amylase sequence motif have low sequence conservation than rest of the motifs of the GH13 family members. PMID:21544166

  13. Composite Structural Motifs of Binding Sites for Delineating Biological Functions of Proteins

    PubMed Central

    Kinjo, Akira R.; Nakamura, Haruki

    2012-01-01

    Most biological processes are described as a series of interactions between proteins and other molecules, and interactions are in turn described in terms of atomic structures. To annotate protein functions as sets of interaction states at atomic resolution, and thereby to better understand the relation between protein interactions and biological functions, we conducted exhaustive all-against-all atomic structure comparisons of all known binding sites for ligands including small molecules, proteins and nucleic acids, and identified recurring elementary motifs. By integrating the elementary motifs associated with each subunit, we defined composite motifs that represent context-dependent combinations of elementary motifs. It is demonstrated that function similarity can be better inferred from composite motif similarity compared to the similarity of protein sequences or of individual binding sites. By integrating the composite motifs associated with each protein function, we define meta-composite motifs each of which is regarded as a time-independent diagrammatic representation of a biological process. It is shown that meta-composite motifs provide richer annotations of biological processes than sequence clusters. The present results serve as a basis for bridging atomic structures to higher-order biological phenomena by classification and integration of binding site structures. PMID:22347478

  14. Serine 209 resides within a putative p38(MAPK) consensus motif and regulates monoamine oxidase-A activity.

    PubMed

    Cao, Xia; Rui, Lewei; Pennington, Paul R; Chlan-Fourney, Jennifer; Jiang, Zhongjian; Wei, Zelan; Li, Xin-Min; Edmondson, Dale E; Mousseau, Darrell D

    2009-10-01

    The p38 mitogen-activated protein kinase (MAPK) cascade as well as the enzyme monoamine oxidase-A (MAO-A) have both been associated with oxidative stress. We observed that the specific inhibition of the p38(MAPK) protein [using either a chemical inhibitor or a dominant-negative p38(MAPK) clone] selectively induces MAO-A activity and MAO-A-sensitive toxicity in several neuronal cell lines, including primary cortical neurons. Over-expression of a constitutively active p38(MAPK) results in the phosphorylation of the MAO-A protein and inhibition of MAO-A activity. The MAO-A(Ser209Glu) phosphomimic - bearing a targeted substitution within a putative p38(MAPK) consensus motif - is neither active nor neurotoxic. In contrast, the MAO-A(Ser209Ala) variant (mimics dephosphorylation) does not associate with p38(MAPK), and is both very active and very toxic. Substitution of the homologous serine in the MAO-B isoform, i.e. Ser200, with either Glu or Ala does not affect the catalytic activity of the corresponding over-expressed proteins. These combined in vitro data strongly suggest a direct p38(MAPK)-dependent inhibition of MAO-A function. Based on published observations, this endogenous means of selectively regulating MAO-A function could provide for an adaptive response to oxidative stress associated with disorders as diverse as depression, reperfusion/ischemia, and the early stages of Alzheimer's disease.

  15. Monitoring and assessment of water quality of Tasik Cempaka, Bangi

    NASA Astrophysics Data System (ADS)

    Sabri, Nurul Ain Syahirah Mohamad; Abdullah, Md Pauzi; Mat, Sohif

    2014-09-01

    A study was carried out to determine the status of water quality of Tasik Cempaka which is a part of Sg. Air Itam, located near the Bangi industrial area. The study was carried out for eight months from May and to December 2013. Eight sampling stations were selected from upstream to downstream of Sg. Air Itam which represent the entire body of the lake water. There are 8 parameters measured and Water Quality Indices (WQI) was calculated and classified according to the National Water Quality Standard (NWQS). The physical and chemical parameters were temperature, pH, conductivity, dissolve oxygen (DO), total suspended solid (TSS), ammoniacal nitrogen (AN), chemical oxygen demand (COD) and biochemical oxygen demand (BOD). Among parameters that are affected by pollution is AN, COD and BOD. Classification by WQI shows that the average for all sampling was 54 (dry) and 52 (wet). Both are of class III according to National Water Quality Standard (NWQS) indicating slightly polluted. This is mainly due to drainage from Bangi Golf Resort and Bangi-Putrajaya Hotel. Other factors are activities around Sg. Air Itam such as municipal activities, settlements and manufacturing industries.

  16. Mining for class-specific motifs in protein sequence classification

    PubMed Central

    2013-01-01

    Background In protein sequence classification, identification of the sequence motifs or n-grams that can precisely discriminate between classes is a more interesting scientific question than the classification itself. A number of classification methods aim at accurate classification but fail to explain which sequence features indeed contribute to the accuracy. We hypothesize that sequences in lower denominations (n-grams) can be used to explore the sequence landscape and to identify class-specific motifs that discriminate between classes during classification. Discriminative n-grams are short peptide sequences that are highly frequent in one class but are either minimally present or absent in other classes. In this study, we present a new substitution-based scoring function for identifying discriminative n-grams that are highly specific to a class. Results We present a scoring function based on discriminative n-grams that can effectively discriminate between classes. The scoring function, initially, harvests the entire set of 4- to 8-grams from the protein sequences of different classes in the dataset. Similar n-grams of the same size are combined to form new n-grams, where the similarity is defined by positive amino acid substitution scores in the BLOSUM62 matrix. Substitution has resulted in a large increase in the number of discriminatory n-grams harvested. Due to the unbalanced nature of the dataset, the frequencies of the n-grams are normalized using a dampening factor, which gives more weightage to the n-grams that appear in fewer classes and vice-versa. After the n-grams are normalized, the scoring function identifies discriminative 4- to 8-grams for each class that are frequent enough to be above a selection threshold. By mapping these discriminative n-grams back to the protein sequences, we obtained contiguous n-grams that represent short class-specific motifs in protein sequences. Our method fared well compared to an existing motif finding method known as

  17. ATRIAL NATRIURETIC FACTOR RECEPTOR GUANYLATE CYCLASE SIGNALING: NEW ATP- REGULATED TRANSDUCTION MOTIF

    PubMed Central

    Duda, Teresa; Bharill, Shashank; Wojtas, Ireneusz; Yadav, Prem; Gryczynski, Ignacy; Gryczynski, Zygmunt; Sharma, Rameshwar K.

    2010-01-01

    ANF-RGC$ membrane guanylate cyclase is the receptor for the hypotensive peptide hormones, atrial natriuretic factor (ANF) and type B natriuretic peptide (BNP). It is a single transmembrane spanning protein. Binding the hormone to the extracellular domain activates its intracellular catalytic domain. This results in accelerated production of cyclic GMP, a second messenger in controlling blood pressure, cardiac vasculature and fluid secretion. ATP is the obligatory transducer of the ANF signal. It works through its ATP regulated module, ARM, which is juxtaposed to the C-terminal side of the transmembrane domain. Upon interaction, ATP induces a cascade of temporal and spatial changes in the ARM, which, finally, result in activation of the catalytic module. Although the exact nature and the details of these changes are not known, some of these have been stereographed in the simulated three-dimensional model of the ARM and validated biochemically. Through comprehensive techniques ofsteady-state, time-resolved tryptophan fluorescence and Forster Resonance Energy Transfer (FRET), site-directed and deletion-mutagenesis, and reconstitution, the present study validates and explains themechanism of the model-based predicted transduction role of the ARM’s structural motif, 669WTAPELL675. This motif is critical in the ATP-dependent ANF signaling. Molecular modeling shows that ATP binding exposes the 669WTAPELL675 motif, the exposure, in turn, facilitates its interaction and activation of the catalytic module. These principles of the model have been experimentally validated. This knowledge brings us a step closer to our understanding of the mechanism by which the ATP-dependent spatial changes within the ARM cause ANF signaling of ANF-RGC. PMID:19137266

  18. Unusual conformation of the SxN motif in the crystal structure of penicillin-binding protein A from Mycobacterium tuberculosis.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedarovich, Alena; Nicholas, Robert A.; Davies, Christopher

    PBPA from Mycobacterium tuberculosis is a class B-like penicillin-binding protein (PBP) that is not essential for cell growth in M. tuberculosis, but is important for proper cell division in Mycobacterium smegmatis. We have determined the crystal structure of PBPA at 2.05 {angstrom} resolution, the first published structure of a PBP from this important pathogen. Compared to other PBPs, PBPA has a relatively small N-terminal domain, and conservation of a cluster of charged residues within this domain suggests that PBPA is more related to class B PBPs than previously inferred from sequence analysis. The C-terminal domain is a typical transpeptidase foldmore » and contains the three conserved active-site motifs characterisitic of penicillin-interacting enzymes. While the arrangement of the SxxK and KTG motifs is similar to that observed in other PBPs, the SxN motif is markedly displaced away from the active site, such that its serine (Ser281) is not involved in hydrogen bonding with residues of the other two motifs. A disulfide bridge between Cys282 (the 'x' of the SxN motif) and Cys266, which resides on an adjacent loop, may be responsible for this unusual conformation. Another interesting feature of the structure is a relatively long connection between {beta}5 and {alpha}11, which restricts the space available in the active site of PBPA and suggests that conformational changes would be required to accommodate peptide substrate or {beta}-lactam antibiotics during acylation. Finally, the structure shows that one of the two threonines postulated to be targets for phosphorylation is inaccessible (Thr362), whereas the other (Thr437) is well placed on a surface loop near the active site.« less

  19. Cellular microRNAs up-regulate transcription via interaction with promoter TATA-box motifs.

    PubMed

    Zhang, Yijun; Fan, Miaomiao; Zhang, Xue; Huang, Feng; Wu, Kang; Zhang, Junsong; Liu, Jun; Huang, Zhuoqiong; Luo, Haihua; Tao, Liang; Zhang, Hui

    2014-12-01

    The TATA box represents one of the most prevalent core promoters where the pre-initiation complexes (PICs) for gene transcription are assembled. This assembly is crucial for transcription initiation and well regulated. Here we show that some cellular microRNAs (miRNAs) are associated with RNA polymerase II (Pol II) and TATA box-binding protein (TBP) in human peripheral blood mononuclear cells (PBMCs). Among them, let-7i sequence specifically binds to the TATA-box motif of interleukin-2 (IL-2) gene and elevates IL-2 mRNA and protein production in CD4(+) T-lymphocytes in vitro and in vivo. Through direct interaction with the TATA-box motif, let-7i facilitates the PIC assembly and transcription initiation of IL-2 promoter. Several other cellular miRNAs, such as mir-138, mir-92a or mir-181d, also enhance the promoter activities via binding to the TATA-box motifs of insulin, calcitonin or c-myc, respectively. In agreement with the finding that an HIV-1-encoded miRNA could enhance viral replication through targeting the viral promoter TATA-box motif, our data demonstrate that the interaction with core transcription machinery is a novel mechanism for miRNAs to regulate gene expression. © 2014 Zhang et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  20. Modeling protein homopolymeric repeats: possible polyglutamine structural motifs for Huntington's disease.

    PubMed

    Lathrop, R H; Casale, M; Tobias, D J; Marsh, J L; Thompson, L M

    1998-01-01

    We describe a prototype system (Poly-X) for assisting an expert user in modeling protein repeats. Poly-X reduces the large number of degrees of freedom required to specify a protein motif in complete atomic detail. The result is a small number of parameters that are easily understood by, and under the direct control of, a domain expert. The system was applied to the polyglutamine (poly-Q) repeat in the first exon of huntingtin, the gene implicated in Huntington's disease. We present four poly-Q structural motifs: two poly-Q beta-sheet motifs (parallel and antiparallel) that constitute plausible alternatives to a similar previously published poly-Q beta-sheet motif, and two novel poly-Q helix motifs (alpha-helix and pi-helix). To our knowledge, helical forms of polyglutamine have not been proposed before. The motifs suggest that there may be several plausible aggregation structures for the intranuclear inclusion bodies which have been found in diseased neurons, and may help in the effort to understand the structural basis for Huntington's disease.

  1. Enrichment of Circular Code Motifs in the Genes of the Yeast Saccharomyces cerevisiae.

    PubMed

    Michel, Christian J; Ngoune, Viviane Nguefack; Poch, Olivier; Ripp, Raymond; Thompson, Julie D

    2017-12-03

    A set X of 20 trinucleotides has been found to have the highest average occurrence in the reading frame, compared to the two shifted frames, of genes of bacteria, archaea, eukaryotes, plasmids and viruses. This set X has an interesting mathematical property, since X is a maximal C3 self-complementary trinucleotide circular code. Furthermore, any motif obtained from this circular code X has the capacity to retrieve, maintain and synchronize the original (reading) frame. Since 1996, the theory of circular codes in genes has mainly been developed by analysing the properties of the 20 trinucleotides of X, using combinatorics and statistical approaches. For the first time, we test this theory by analysing the X motifs, i.e., motifs from the circular code X, in the complete genome of the yeast Saccharomyces cerevisiae . Several properties of X motifs are identified by basic statistics (at the frequency level), and evaluated by comparison to R motifs, i.e., random motifs generated from 30 different random codes R. We first show that the frequency of X motifs is significantly greater than that of R motifs in the genome of S. cerevisiae . We then verify that no significant difference is observed between the frequencies of X and R motifs in the non-coding regions of S. cerevisiae , but that the occurrence number of X motifs is significantly higher than R motifs in the genes (protein-coding regions). This property is true for all cardinalities of X motifs (from 4 to 20) and for all 16 chromosomes. We further investigate the distribution of X motifs in the three frames of S. cerevisiae genes and show that they occur more frequently in the reading frame, regardless of their cardinality or their length. Finally, the ratio of X genes, i.e., genes with at least one X motif, to non-X genes, in the set of verified genes is significantly different to that observed in the set of putative or dubious genes with no experimental evidence. These results, taken together, represent the first

  2. SLiMSearch 2.0: biological context for short linear motifs in proteins

    PubMed Central

    Davey, Norman E.; Haslam, Niall J.; Shields, Denis C.

    2011-01-01

    Short, linear motifs (SLiMs) play a critical role in many biological processes. The SLiMSearch 2.0 (Short, Linear Motif Search) web server allows researchers to identify occurrences of a user-defined SLiM in a proteome, using conservation and protein disorder context statistics to rank occurrences. User-friendly output and visualizations of motif context allow the user to quickly gain insight into the validity of a putatively functional motif occurrence. For each motif occurrence, overlapping UniProt features and annotated SLiMs are displayed. Visualization also includes annotated multiple sequence alignments surrounding each occurrence, showing conservation and protein disorder statistics in addition to known and predicted SLiMs, protein domains and known post-translational modifications. In addition, enrichment of Gene Ontology terms and protein interaction partners are provided as indicators of possible motif function. All web server results are available for download. Users can search motifs against the human proteome or a subset thereof defined by Uniprot accession numbers or GO term. The SLiMSearch server is available at: http://bioware.ucd.ie/slimsearch2.html. PMID:21622654

  3. Reversible Redox Activity by Ion-pH Dually Modulated Duplex Formation of i-Motif DNA with Complementary G-DNA.

    PubMed

    Chang, Soyoung; Kilic, Tugba; Lee, Chang Kee; Avci, Huseyin; Bae, Hojae; Oskui, Shirin Mesbah; Jung, Sung Mi; Shin, Su Ryon; Kim, Seon Jeong

    2018-04-08

    The unique biological features of supramolecular DNA have led to an increasing interest in biomedical applications such as biosensors. We have developed an i-motif and G-rich DNA conjugated single-walled carbon nanotube hybrid materials, which shows reversible conformational switching upon external stimuli such as pH (5 and 8) and presence of ions (Li⁺ and K⁺). We observed reversible electrochemical redox activity upon external stimuli in a quick and robust manner. Given the ease and the robustness of this method, we believe that pH- and ion-driven reversible DNA structure transformations will be utilized for future applications for developing novel biosensors.

  4. Assessing Local Structure Motifs Using Order Parameters for Motif Recognition, Interstitial Identification, and Diffusion Path Characterization

    DOE PAGES

    Zimmermann, Nils E. R.; Horton, Matthew K.; Jain, Anubhav; ...

    2017-11-13

    Structure–property relationships form the basis of many design rules in materials science, including synthesizability and long-term stability of catalysts, control of electrical and optoelectronic behavior in semiconductors, as well as the capacity of and transport properties in cathode materials for rechargeable batteries. The immediate atomic environments (i.e., the first coordination shells) of a few atomic sites are often a key factor in achieving a desired property. Some of the most frequently encountered coordination patterns are tetrahedra, octahedra, body and face-centered cubic as well as hexagonal close packed-like environments. Here, we showcase the usefulness of local order parameters to identify thesemore » basic structural motifs in inorganic solid materials by developing classification criteria. We introduce a systematic testing framework, the Einstein crystal test rig, that probes the response of order parameters to distortions in perfect motifs to validate our approach. Subsequently, we highlight three important application cases. First, we map basic crystal structure information of a large materials database in an intuitive manner by screening the Materials Project (MP) database (61,422 compounds) for element-specific motif distributions. Second, we use the structure-motif recognition capabilities to automatically find interstitials in metals, semiconductor, and insulator materials. Our Interstitialcy Finding Tool (InFiT) facilitates high-throughput screenings of defect properties. Third, the order parameters are reliable and compact quantitative structure descriptors for characterizing diffusion hops of intercalants as our example of magnesium in MnO 2-spinel indicates. Finally, the tools developed in our work are readily and freely available as software implementations in the pymatgen library, and we expect them to be further applied to machine-learning approaches for emerging applications in materials science.« less

  5. Assessing Local Structure Motifs Using Order Parameters for Motif Recognition, Interstitial Identification, and Diffusion Path Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimmermann, Nils E. R.; Horton, Matthew K.; Jain, Anubhav

    Structure–property relationships form the basis of many design rules in materials science, including synthesizability and long-term stability of catalysts, control of electrical and optoelectronic behavior in semiconductors, as well as the capacity of and transport properties in cathode materials for rechargeable batteries. The immediate atomic environments (i.e., the first coordination shells) of a few atomic sites are often a key factor in achieving a desired property. Some of the most frequently encountered coordination patterns are tetrahedra, octahedra, body and face-centered cubic as well as hexagonal close packed-like environments. Here, we showcase the usefulness of local order parameters to identify thesemore » basic structural motifs in inorganic solid materials by developing classification criteria. We introduce a systematic testing framework, the Einstein crystal test rig, that probes the response of order parameters to distortions in perfect motifs to validate our approach. Subsequently, we highlight three important application cases. First, we map basic crystal structure information of a large materials database in an intuitive manner by screening the Materials Project (MP) database (61,422 compounds) for element-specific motif distributions. Second, we use the structure-motif recognition capabilities to automatically find interstitials in metals, semiconductor, and insulator materials. Our Interstitialcy Finding Tool (InFiT) facilitates high-throughput screenings of defect properties. Third, the order parameters are reliable and compact quantitative structure descriptors for characterizing diffusion hops of intercalants as our example of magnesium in MnO 2-spinel indicates. Finally, the tools developed in our work are readily and freely available as software implementations in the pymatgen library, and we expect them to be further applied to machine-learning approaches for emerging applications in materials science.« less

  6. Edge usage, motifs, and regulatory logic for cell cycling genetic networks

    NASA Astrophysics Data System (ADS)

    Zagorski, M.; Krzywicki, A.; Martin, O. C.

    2013-01-01

    The cell cycle is a tightly controlled process, yet it shows marked differences across species. Which of its structural features follow solely from the ability to control gene expression? We tackle this question in silico by examining the ensemble of all regulatory networks which satisfy the constraint of producing a given sequence of gene expressions. We focus on three cell cycle profiles coming from baker's yeast, fission yeast, and mammals. First, we show that the networks in each of the ensembles use just a few interactions that are repeatedly reused as building blocks. Second, we find an enrichment in network motifs that is similar in the two yeast cell cycle systems investigated. These motifs do not have autonomous functions, yet they reveal a regulatory logic for cell cycling based on a feed-forward cascade of activating interactions.

  7. Detecting DNA regulatory motifs by incorporating positional trendsin information content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kechris, Katherina J.; van Zwet, Erik; Bickel, Peter J.

    2004-05-04

    On the basis of the observation that conserved positions in transcription factor binding sites are often clustered together, we propose a simple extension to the model-based motif discovery methods. We assign position-specific prior distributions to the frequency parameters of the model, penalizing deviations from a specified conservation profile. Examples with both simulated and real data show that this extension helps discover motifs as the data become noisier or when there is a competing false motif.

  8. The BaMM web server for de-novo motif discovery and regulatory sequence analysis.

    PubMed

    Kiesel, Anja; Roth, Christian; Ge, Wanwan; Wess, Maximilian; Meier, Markus; Söding, Johannes

    2018-05-28

    The BaMM web server offers four tools: (i) de-novo discovery of enriched motifs in a set of nucleotide sequences, (ii) scanning a set of nucleotide sequences with motifs to find motif occurrences, (iii) searching with an input motif for similar motifs in our BaMM database with motifs for >1000 transcription factors, trained from the GTRD ChIP-seq database and (iv) browsing and keyword searching the motif database. In contrast to most other servers, we represent sequence motifs not by position weight matrices (PWMs) but by Bayesian Markov Models (BaMMs) of order 4, which we showed previously to perform substantially better in ROC analyses than PWMs or first order models. To address the inadequacy of P- and E-values as measures of motif quality, we introduce the AvRec score, the average recall over the TP-to-FP ratio between 1 and 100. The BaMM server is freely accessible without registration at https://bammmotif.mpibpc.mpg.de.

  9. Rules for the recognition of dilysine retrieval motifs by coatomer

    PubMed Central

    Ma, Wenfu; Goldberg, Jonathan

    2013-01-01

    Cytoplasmic dilysine motifs on transmembrane proteins are captured by coatomer α-COP and β′-COP subunits and packaged into COPI-coated vesicles for Golgi-to-ER retrieval. Numerous ER/Golgi proteins contain K(x)Kxx motifs, but the rules for their recognition are unclear. We present crystal structures of α-COP and β′-COP bound to a series of naturally occurring retrieval motifs—encompassing KKxx, KxKxx and non-canonical RKxx and viral KxHxx sequences. Binding experiments show that α-COP and β′-COP have generally the same specificity for KKxx and KxKxx, but only β′-COP recognizes the RKxx signal. Dilysine motif recognition involves lysine side-chain interactions with two acidic patches. Surprisingly, however, KKxx and KxKxx motifs bind differently, with their lysine residues transposed at the binding patches. We derive rules for retrieval motif recognition from key structural features: the reversed binding modes, the recognition of the C-terminal carboxylate group which enforces lysine positional context, and the tolerance of the acidic patches for non-lysine residues. PMID:23481256

  10. Canonical Bcl-2 motifs of the Na+/K+ pump revealed by the BH3 mimetic chelerythrine: early signal transducers of apoptosis?

    PubMed

    Lauf, Peter K; Heiny, Judith; Meller, Jarek; Lepera, Michael A; Koikov, Leonid; Alter, Gerald M; Brown, Thomas L; Adragna, Norma C

    2013-01-01

    Chelerythrine [CET], a protein kinase C [PKC] inhibitor, is a prop-apoptotic BH3-mimetic binding to BH1-like motifs of Bcl-2 proteins. CET action was examined on PKC phosphorylation-dependent membrane transporters (Na+/K+ pump/ATPase [NKP, NKA], Na+-K+-2Cl+ [NKCC] and K+-Cl- [KCC] cotransporters, and channel-supported K+ loss) in human lens epithelial cells [LECs]. K+ loss and K+ uptake, using Rb+ as congener, were measured by atomic absorption/emission spectrophotometry with NKP and NKCC inhibitors, and Cl- replacement by NO3ˉ to determine KCC. 3H-Ouabain binding was performed on a pig renal NKA in the presence and absence of CET. Bcl-2 protein and NKA sequences were aligned and motifs identified and mapped using PROSITE in conjunction with BLAST alignments and analysis of conservation and structural similarity based on prediction of secondary and crystal structures. CET inhibited NKP and NKCC by >90% (IC50 values ~35 and ~15 μM, respectively) without significant KCC activity change, and stimulated K+ loss by ~35% at 10-30 μM. Neither ATP levels nor phosphorylation of the NKA α1 subunit changed. 3H-ouabain was displaced from pig renal NKA only at 100 fold higher CET concentrations than the ligand. Sequence alignments of NKA with BH1- and BH3-like motifs containing pro-survival Bcl-2 and BclXl proteins showed more than one BH1-like motif within NKA for interaction with CET or with BH3 motifs. One NKA BH1-like motif (ARAAEILARDGPN) was also found in all P-type ATPases. Also, NKA possessed a second motif similar to that near the BH3 region of Bcl-2. Findings support the hypothesis that CET inhibits NKP by binding to BH1-like motifs and disrupting the α1 subunit catalytic activity through conformational changes. By interacting with Bcl-2 proteins through their complementary BH1- or BH3-like-motifs, NKP proteins may be sensors of normal and pathological cell functions, becoming important yet unrecognized signal transducers in the initial phases of apoptosis. CET

  11. One motif to bind them: A small-XXX-small motif affects transmembrane domain 1 oligomerization, function, localization, and cross-talk between two yeast GPCRs.

    PubMed

    Lock, Antonia; Forfar, Rachel; Weston, Cathryn; Bowsher, Leo; Upton, Graham J G; Reynolds, Christopher A; Ladds, Graham; Dixon, Ann M

    2014-12-01

    G protein-coupled receptors (GPCRs) are the largest family of cell-surface receptors in mammals and facilitate a range of physiological responses triggered by a variety of ligands. GPCRs were thought to function as monomers, however it is now accepted that GPCR homo- and hetero-oligomers also exist and influence receptor properties. The Schizosaccharomyces pombe GPCR Mam2 is a pheromone-sensing receptor involved in mating and has previously been shown to form oligomers in vivo. The first transmembrane domain (TMD) of Mam2 contains a small-XXX-small motif, overrepresented in membrane proteins and well-known for promoting helix-helix interactions. An ortholog of Mam2 in Saccharomyces cerevisiae, Ste2, contains an analogous small-XXX-small motif which has been shown to contribute to receptor homo-oligomerization, localization and function. Here we have used experimental and computational techniques to characterize the role of the small-XXX-small motif in function and assembly of Mam2 for the first time. We find that disruption of the motif via mutagenesis leads to reduction of Mam2 TMD1 homo-oligomerization and pheromone-responsive cellular signaling of the full-length protein. It also impairs correct targeting to the plasma membrane. Mutation of the analogous motif in Ste2 yielded similar results, suggesting a conserved mechanism for assembly. Using co-expression of the two fungal receptors in conjunction with computational models, we demonstrate a functional change in G protein specificity and propose that this is brought about through hetero-dimeric interactions of Mam2 with Ste2 via the complementary small-XXX-small motifs. This highlights the potential of these motifs to affect a range of properties that can be investigated in other GPCRs. Copyright © 2014. Published by Elsevier B.V.

  12. Prediction of virus-host protein-protein interactions mediated by short linear motifs.

    PubMed

    Becerra, Andrés; Bucheli, Victor A; Moreno, Pedro A

    2017-03-09

    Short linear motifs in host organisms proteins can be mimicked by viruses to create protein-protein interactions that disable or control metabolic pathways. Given that viral linear motif instances of host motif regular expressions can be found by chance, it is necessary to develop filtering methods of functional linear motifs. We conduct a systematic comparison of linear motifs filtering methods to develop a computational approach for predicting motif-mediated protein-protein interactions between human and the human immunodeficiency virus 1 (HIV-1). We implemented three filtering methods to obtain linear motif sets: 1) conserved in viral proteins (C), 2) located in disordered regions (D) and 3) rare or scarce in a set of randomized viral sequences (R). The sets C,D,R are united and intersected. The resulting sets are compared by the number of protein-protein interactions correctly inferred with them - with experimental validation. The comparison is done with HIV-1 sequences and interactions from the National Institute of Allergy and Infectious Diseases (NIAID). The number of correctly inferred interactions allows to rank the interactions by the sets used to deduce them: D∪R and C. The ordering of the sets is descending on the probability of capturing functional interactions. With respect to HIV-1, the sets C∪R, D∪R, C∪D∪R infer all known interactions between HIV1 and human proteins mediated by linear motifs. We found that the majority of conserved linear motifs in the virus are located in disordered regions. We have developed a method for predicting protein-protein interactions mediated by linear motifs between HIV-1 and human proteins. The method only use protein sequences as inputs. We can extend the software developed to any other eukaryotic virus and host in order to find and rank candidate interactions. In future works we will use it to explore possible viral attack mechanisms based on linear motif mimicry.

  13. A novel homodimeric geranyl diphosphate synthase from the orchid Phalaenopsis bellina lacking a DD(X)2-4D motif.

    PubMed

    Hsiao, Yu-Yun; Jeng, Mei-Fen; Tsai, Wen-Chieh; Chuang, Yu-Chen; Li, Chia-Ying; Wu, Tian-Shung; Kuoh, Chang-Sheng; Chen, Wen-Huei; Chen, Hong-Hwa

    2008-09-01

    Geranyl diphosphate (GDP) is the precursor of monoterpenes, which are the major floral scent compounds in Phalaenopsis bellina. The cDNA of P. bellina GDP synthase (PbGDPS) was cloned, and its sequence corresponds to the second Asp-rich motif (SARM), but not to any aspartate-rich (Asp-rich) motif. The recombinant PbGDPS enzyme exhibits dual prenyltransferase activity, producing both GDP and farnesyl diphosphate (FDP), and a yeast two-hybrid assay and gel filtration revealed that PbGDPS was able to form a homodimer. Spatial and temporal expression analyses showed that the expression of PbGDPS was flower specific, and that maximal PbGDPS expression was concomitant with maximal emission of monoterpenes on day 5 post-anthesis. Homology modelling of PbGDPS indicated that the Glu-rich motif might provide a binding site for Mg(2+) and catalyze the formation of prenyl products in a similar way to SARM. Replacement of the key Glu residues with alanine totally abolished enzyme activity, whereas their mutation to Asp resulted in a mutant with two-thirds of the activity of the wild-type protein. Phylogenetic analysis indicated that plant GDPS proteins formed four clades: members of both GDPS-a and GDPS-b clades contain Asp-rich motifs, and function as homodimers. In contrast, proteins in the GDPS-c and GDPS-d clades do not contain Asp-rich motifs, but although members of the GDPS-c clade function as heterodimers, PbGDPS, which is more closely related to the GDPS-c clade proteins than to GDPS-a and GDPS-b proteins, and is currently the sole member of the GDPS-d clade, functions as a homodimer.

  14. D-MATRIX: A web tool for constructing weight matrix of conserved DNA motifs

    PubMed Central

    Sen, Naresh; Mishra, Manoj; Khan, Feroz; Meena, Abha; Sharma, Ashok

    2009-01-01

    Despite considerable efforts to date, DNA motif prediction in whole genome remains a challenge for researchers. Currently the genome wide motif prediction tools required either direct pattern sequence (for single motif) or weight matrix (for multiple motifs). Although there are known motif pattern databases and tools for genome level prediction but no tool for weight matrix construction. Considering this, we developed a D-MATRIX tool which predicts the different types of weight matrix based on user defined aligned motif sequence set and motif width. For retrieval of known motif sequences user can access the commonly used databases such as TFD, RegulonDB, DBTBS, Transfac. D­MATRIX program uses a simple statistical approach for weight matrix construction, which can be converted into different file formats according to user requirement. It provides the possibility to identify the conserved motifs in the co­regulated genes or whole genome. As example, we successfully constructed the weight matrix of LexA transcription factor binding site with the help of known sos­box cis­regulatory elements in Deinococcus radiodurans genome. The algorithm is implemented in C-Sharp and wrapped in ASP.Net to maintain a user friendly web interface. D­MATRIX tool is accessible through the CIMAP domain network. Availability http://203.190.147.116/dmatrix/ PMID:19759861

  15. D-MATRIX: a web tool for constructing weight matrix of conserved DNA motifs.

    PubMed

    Sen, Naresh; Mishra, Manoj; Khan, Feroz; Meena, Abha; Sharma, Ashok

    2009-07-27

    Despite considerable efforts to date, DNA motif prediction in whole genome remains a challenge for researchers. Currently the genome wide motif prediction tools required either direct pattern sequence (for single motif) or weight matrix (for multiple motifs). Although there are known motif pattern databases and tools for genome level prediction but no tool for weight matrix construction. Considering this, we developed a D-MATRIX tool which predicts the different types of weight matrix based on user defined aligned motif sequence set and motif width. For retrieval of known motif sequences user can access the commonly used databases such as TFD, RegulonDB, DBTBS, Transfac. D-MATRIX program uses a simple statistical approach for weight matrix construction, which can be converted into different file formats according to user requirement. It provides the possibility to identify the conserved motifs in the co-regulated genes or whole genome. As example, we successfully constructed the weight matrix of LexA transcription factor binding site with the help of known sos-box cis-regulatory elements in Deinococcus radiodurans genome. The algorithm is implemented in C-Sharp and wrapped in ASP.Net to maintain a user friendly web interface. D-MATRIX tool is accessible through the CIMAP domain network. http://203.190.147.116/dmatrix/

  16. Modeling of DNA local parameters predicts encrypted architectural motifs in Xenopus laevis ribosomal gene promoter

    PubMed Central

    Roux-Rouquie, Magali; Marilley, Monique

    2000-01-01

    We have modeled local DNA sequence parameters to search for DNA architectural motifs involved in transcription regulation and promotion within the Xenopus laevis ribosomal gene promoter and the intergenic spacer (IGS) sequences. The IGS was found to be shaped into distinct topological domains. First, intrinsic bends split the IGS into domains of common but different helical features. Local parameters at inter-domain junctions exhibit a high variability with respect to intrinsic curvature, bendability and thermal stability. Secondly, the repeated sequence blocks of the IGS exhibit right-handed supercoiled structures which could be related to their enhancer properties. Thirdly, the gene promoter presents both inherent curvature and minor groove narrowing which may be viewed as motifs of a structural code for protein recognition and binding. Such pre-existing deformations could simply be remodeled during the binding of the transcription complex. Alternatively, these deformations could pre-shape the promoter in such a way that further remodeling is facilitated. Mutations shown to abolish promoter curvature as well as intrinsic minor groove narrowing, in a variant which maintained full transcriptional activity, bring circumstantial evidence for structurally-preorganized motifs in relation to transcription regulation and promotion. Using well documented X.laevis rDNA regulatory sequences we showed that computer modeling may be of invaluable assistance in assessing encrypted architectural motifs. The evidence of these DNA topological motifs with respect to the concept of structural code is discussed. PMID:10982860

  17. Modeling of DNA local parameters predicts encrypted architectural motifs in Xenopus laevis ribosomal gene promoter.

    PubMed

    Roux-Rouquie, M; Marilley, M

    2000-09-15

    We have modeled local DNA sequence parameters to search for DNA architectural motifs involved in transcription regulation and promotion within the Xenopus laevis ribosomal gene promoter and the intergenic spacer (IGS) sequences. The IGS was found to be shaped into distinct topological domains. First, intrinsic bends split the IGS into domains of common but different helical features. Local parameters at inter-domain junctions exhibit a high variability with respect to intrinsic curvature, bendability and thermal stability. Secondly, the repeated sequence blocks of the IGS exhibit right-handed supercoiled structures which could be related to their enhancer properties. Thirdly, the gene promoter presents both inherent curvature and minor groove narrowing which may be viewed as motifs of a structural code for protein recognition and binding. Such pre-existing deformations could simply be remodeled during the binding of the transcription complex. Alternatively, these deformations could pre-shape the promoter in such a way that further remodeling is facilitated. Mutations shown to abolish promoter curvature as well as intrinsic minor groove narrowing, in a variant which maintained full transcriptional activity, bring circumstantial evidence for structurally-preorganized motifs in relation to transcription regulation and promotion. Using well documented X. laevis rDNA regulatory sequences we showed that computer modeling may be of invaluable assistance in assessing encrypted architectural motifs. The evidence of these DNA topological motifs with respect to the concept of structural code is discussed.

  18. A conserved human DJ1-subfamily motif (DJSM) is critical for anti-oxidative and deglycase activities of Plasmodium falciparum DJ1.

    PubMed

    Nair, Divya N; Prasad, Rajesh; Singhal, Neha; Bhattacharjee, Manish; Sudhakar, Renu; Singh, Pushpa; Thanumalayan, Subramonian; Kiran, Uday; Sharma, Yogendra; Sijwali, Puran Singh

    2018-06-01

    Plasmodium falciparum DJ1 (PfDJ1) belongs to the DJ-1/ThiJ/PfpI superfamily whose members are present in all the kingdoms of life and exhibit diverse cellular functions and biochemical activities. The common feature of the superfamily is the class I glutamine amidotransferase domain with a conserved redox-active cysteine residue, which mediates various activities of the superfamily members, including anti-oxidative activity in PfDJ1 and human DJ1 (hDJ1). As the superfamily members represent diverse functional classes, to investigate if there is any sequence feature unique to hDJ1-like proteins, sequences of the representative proteins of different functional classes were compared and analysed. A novel motif unique to PfDJ1 and several other hDJ1-like proteins, with the consensus sequence of TSXGPX5FXLX5L, was identified that we designated as the hDJ1-subfamily motif (DJSM). Several mutations that have been associated with Parkinson's disease are also present in DJSM, suggesting its functional importance in hDJ1-like proteins. Mutations of the conserved residues of DJSM of PfDJ1 did not significantly affect overall secondary structure, but caused both a significant loss (S151A and P154A) and gain (L168A) of anti-oxidative activity. We also report that PfDJ1 has deglycase activity, which was significantly decreased in its mutants of the catalytic cysteine (C106A) and DJSM (S151A and P154A). Episomal expression of the catalytic cysteine (C106A) or DJSM (P154A) mutant decreased growth rates of parasites as compared to that of wild type parasites or parasites expressing wild type PfDJ1. S151 appears to properly position the nucleophilic elbow containing C106 and P154 forms a hydrogen bond with C106, which could be a reason for the loss of activities of PfDJ1 upon their mutations. Taken together, DJSM delineates PfDJ1 and other hDJ1-subfamily proteins from the remaining superfamily, and is critical for anti-oxidative and deglycase activities of PfDJ1. Copyright © 2018

  19. Anion induced conformational preference of Cα NN motif residues in functional proteins.

    PubMed

    Patra, Piya; Ghosh, Mahua; Banerjee, Raja; Chakrabarti, Jaydeb

    2017-12-01

    Among different ligand binding motifs, anion binding C α NN motif consisting of peptide backbone atoms of three consecutive residues are observed to be important for recognition of free anions, like sulphate or biphosphate and participate in different key functions. Here we study the interaction of sulphate and biphosphate with C α NN motif present in different proteins. Instead of total protein, a peptide fragment has been studied keeping C α NN motif flanked in between other residues. We use classical force field based molecular dynamics simulations to understand the stability of this motif. Our data indicate fluctuations in conformational preferences of the motif residues in absence of the anion. The anion gives stability to one of these conformations. However, the anion induced conformational preferences are highly sequence dependent and specific to the type of anion. In particular, the polar residues are more favourable compared to the other residues for recognising the anion. © 2017 Wiley Periodicals, Inc.

  20. Statistical Methods for Identifying Sequence Motifs Affecting Point Mutations

    PubMed Central

    Zhu, Yicheng; Neeman, Teresa; Yap, Von Bing; Huttley, Gavin A.

    2017-01-01

    Mutation processes differ between types of point mutation, genomic locations, cells, and biological species. For some point mutations, specific neighboring bases are known to be mechanistically influential. Beyond these cases, numerous questions remain unresolved, including: what are the sequence motifs that affect point mutations? How large are the motifs? Are they strand symmetric? And, do they vary between samples? We present new log-linear models that allow explicit examination of these questions, along with sequence logo style visualization to enable identifying specific motifs. We demonstrate the performance of these methods by analyzing mutation processes in human germline and malignant melanoma. We recapitulate the known CpG effect, and identify novel motifs, including a highly significant motif associated with A→G mutations. We show that major effects of neighbors on germline mutation lie within ±2 of the mutating base. Models are also presented for contrasting the entire mutation spectra (the distribution of the different point mutations). We show the spectra vary significantly between autosomes and X-chromosome, with a difference in T→C transition dominating. Analyses of malignant melanoma confirmed reported characteristic features of this cancer, including statistically significant strand asymmetry, and markedly different neighboring influences. The methods we present are made freely available as a Python library https://bitbucket.org/pycogent3/mutationmotif. PMID:27974498

  1. Crystal structure of yeast allantoicase reveals a repeated jelly roll motif.

    PubMed

    Leulliot, Nicolas; Quevillon-Cheruel, Sophie; Sorel, Isabelle; Graille, Marc; Meyer, Philippe; Liger, Dominique; Blondeau, Karine; Janin, Joël; van Tilbeurgh, Herman

    2004-05-28

    Allantoicase (EC 3.5.3.4) catalyzes the conversion of allantoate into ureidoglycolate and urea, one of the final steps in the degradation of purines to urea. The mechanism of most enzymes involved in this pathway, which has been known for a long time, is unknown. In this paper we describe the three-dimensional crystal structure of the yeast allantoicase determined at a resolution of 2.6 A by single anomalous diffraction. This constitutes the first structure for an enzyme of this pathway. The structure reveals a repeated jelly roll beta-sheet motif, also present in proteins of unrelated biochemical function. Allantoicase has a hexameric arrangement in the crystal (dimer of trimers). Analysis of the protein sequence against the structural data reveals the presence of two totally conserved surface patches, one on each jelly roll motif. The hexameric packing concentrates these patches into conserved pockets that probably constitute the active site.

  2. BEAM web server: a tool for structural RNA motif discovery.

    PubMed

    Pietrosanto, Marco; Adinolfi, Marta; Casula, Riccardo; Ausiello, Gabriele; Ferrè, Fabrizio; Helmer-Citterich, Manuela

    2018-03-15

    RNA structural motif finding is a relevant problem that becomes computationally hard when working on high-throughput data (e.g. eCLIP, PAR-CLIP), often represented by thousands of RNA molecules. Currently, the BEAM server is the only web tool capable to handle tens of thousands of RNA in input with a motif discovery procedure that is only limited by the current secondary structure prediction accuracies. The recently developed method BEAM (BEAr Motifs finder) can analyze tens of thousands of RNA molecules and identify RNA secondary structure motifs associated to a measure of their statistical significance. BEAM is extremely fast thanks to the BEAR encoding that transforms each RNA secondary structure in a string of characters. BEAM also exploits the evolutionary knowledge contained in a substitution matrix of secondary structure elements, extracted from the RFAM database of families of homologous RNAs. The BEAM web server has been designed to streamline data pre-processing by automatically handling folding and encoding of RNA sequences, giving users a choice for the preferred folding program. The server provides an intuitive and informative results page with the list of secondary structure motifs identified, the logo of each motif, its significance, graphic representation and information about its position in the RNA molecules sharing it. The web server is freely available at http://beam.uniroma2.it/ and it is implemented in NodeJS and Python with all major browsers supported. marco.pietrosanto@uniroma2.it. Supplementary data are available at Bioinformatics online.

  3. Dynamic Repositioning of Dorsal to Two Different κB Motifs Controls Its Autoregulation during Immune Response in Drosophila

    PubMed Central

    Mrinal, Nirotpal; Nagaraju, Javaregowda

    2010-01-01

    Autoregulation is one of the mechanisms of imparting feedback control on gene expression. Positive autoregulatory feedback results in induction of a gene, and negative feedback leads to its suppression. Here, we report an interesting mechanism of autoregulation operating on Drosophila Rel gene dorsal that can activate as well as repress its expression. Using biochemical and genetic approaches, we show that upon immune challenge Dorsal regulates its activation as well as repression by dynamically binding to two different κB motifs, κBI (intronic κB) and κBP (promoter κB), present in the dorsal gene. Although the κBI motif functions as an enhancer, the κBP motif acts as a transcriptional repressor. Interestingly, Dorsal binding to these two motifs is dynamic; immediately upon immune challenge, Dorsal binds to the κBI leading to auto-activation, whereas at the terminal phase of the immune response, it is removed from the κBI and repositioned at the κBP, resulting in its repression. Furthermore, we show that repression of Dorsal as well as its binding to the κBP depends on the transcription factor AP1. Depletion of AP1 by RNA interference resulted in constitutive expression of Dorsal. In conclusion, this study suggests that during acute phase response dorsal is regulated by following two subcircuits: (i) Dl-κBI for activation and (ii) Dl-AP1-κBP for repression. These two subcircuits are temporally delineated and bring about overall regulation of dorsal during immune response. These results suggest the presence of a previously unknown mechanism of Dorsal autoregulation in immune-challenged Drosophila. PMID:20504768

  4. Seed storage protein gene promoters contain conserved DNA motifs in Brassicaceae, Fabaceae and Poaceae

    PubMed Central

    Fauteux, François; Strömvik, Martina V

    2009-01-01

    Background Accurate computational identification of cis-regulatory motifs is difficult, particularly in eukaryotic promoters, which typically contain multiple short and degenerate DNA sequences bound by several interacting factors. Enrichment in combinations of rare motifs in the promoter sequence of functionally or evolutionarily related genes among several species is an indicator of conserved transcriptional regulatory mechanisms. This provides a basis for the computational identification of cis-regulatory motifs. Results We have used a discriminative seeding DNA motif discovery algorithm for an in-depth analysis of 54 seed storage protein (SSP) gene promoters from three plant families, namely Brassicaceae (mustards), Fabaceae (legumes) and Poaceae (grasses) using backgrounds based on complete sets of promoters from a representative species in each family, namely Arabidopsis (Arabidopsis thaliana (L.) Heynh.), soybean (Glycine max (L.) Merr.) and rice (Oryza sativa L.) respectively. We have identified three conserved motifs (two RY-like and one ACGT-like) in Brassicaceae and Fabaceae SSP gene promoters that are similar to experimentally characterized seed-specific cis-regulatory elements. Fabaceae SSP gene promoter sequences are also enriched in a novel, seed-specific E2Fb-like motif. Conserved motifs identified in Poaceae SSP gene promoters include a GCN4-like motif, two prolamin-box-like motifs and an Skn-1-like motif. Evidence of the presence of a variant of the TATA-box is found in the SSP gene promoters from the three plant families. Motifs discovered in SSP gene promoters were used to score whole-genome sets of promoters from Arabidopsis, soybean and rice. The highest-scoring promoters are associated with genes coding for different subunits or precursors of seed storage proteins. Conclusion Seed storage protein gene promoter motifs are conserved in diverse species, and different plant families are characterized by a distinct combination of conserved motifs

  5. Self-Assembled Coacervates of Chitosan and an Insect Cuticle Protein Containing a Rebers-Riddiford Motif.

    PubMed

    Vaclaw, M Coleman; Sprouse, Patricia A; Dittmer, Neal T; Ghazvini, Saba; Middaugh, C Russell; Kanost, Michael R; Gehrke, Stevin H; Dhar, Prajnaparamita

    2018-05-09

    The interactions among biomacromolecules within insect cuticle may offer new motifs for biomimetic material design. CPR27 is an abundant protein in the rigid cuticle of the elytron from Tribolium castaneum. CPR27 contains the Rebers-Riddiford (RR) motif, which is hypothesized to bind chitin. In this study, active magnetic microrheology coupled with microscopy and protein particle analysis techniques were used to correlate alterations in the viscosity of chitosan solutions with changes in solution microstructure. Addition of CPR27 to chitosan solutions led to a 3-fold drop in viscosity. This change was accompanied by the presence of micrometer-sized coacervate particles in solution. Coacervate formation had a strong dependence on chitosan concentration. Analysis showed the existence of a critical CPR27 concentration beyond which a significant increase in particle count was observed. These effects were not observed when a non-RR cuticular protein, CP30, was tested, providing evidence of a structure-function relationship related to the RR motif.

  6. SiteBinder: an improved approach for comparing multiple protein structural motifs.

    PubMed

    Sehnal, David; Vařeková, Radka Svobodová; Huber, Heinrich J; Geidl, Stanislav; Ionescu, Crina-Maria; Wimmerová, Michaela; Koča, Jaroslav

    2012-02-27

    There is a paramount need to develop new techniques and tools that will extract as much information as possible from the ever growing repository of protein 3D structures. We report here on the development of a software tool for the multiple superimposition of large sets of protein structural motifs. Our superimposition methodology performs a systematic search for the atom pairing that provides the best fit. During this search, the RMSD values for all chemically relevant pairings are calculated by quaternion algebra. The number of evaluated pairings is markedly decreased by using PDB annotations for atoms. This approach guarantees that the best fit will be found and can be applied even when sequence similarity is low or does not exist at all. We have implemented this methodology in the Web application SiteBinder, which is able to process up to thousands of protein structural motifs in a very short time, and which provides an intuitive and user-friendly interface. Our benchmarking analysis has shown the robustness, efficiency, and versatility of our methodology and its implementation by the successful superimposition of 1000 experimentally determined structures for each of 32 eukaryotic linear motifs. We also demonstrate the applicability of SiteBinder using three case studies. We first compared the structures of 61 PA-IIL sugar binding sites containing nine different sugars, and we found that the sugar binding sites of PA-IIL and its mutants have a conserved structure despite their binding different sugars. We then superimposed over 300 zinc finger central motifs and revealed that the molecular structure in the vicinity of the Zn atom is highly conserved. Finally, we superimposed 12 BH3 domains from pro-apoptotic proteins. Our findings come to support the hypothesis that there is a structural basis for the functional segregation of BH3-only proteins into activators and enablers.

  7. Distance-dependent duplex DNA destabilization proximal to G-quadruplex/i-motif sequences

    PubMed Central

    König, Sebastian L. B.; Huppert, Julian L.; Sigel, Roland K. O.; Evans, Amanda C.

    2013-01-01

    G-quadruplexes and i-motifs are complementary examples of non-canonical nucleic acid substructure conformations. G-quadruplex thermodynamic stability has been extensively studied for a variety of base sequences, but the degree of duplex destabilization that adjacent quadruplex structure formation can cause has yet to be fully addressed. Stable in vivo formation of these alternative nucleic acid structures is likely to be highly dependent on whether sufficient spacing exists between neighbouring duplex- and quadruplex-/i-motif-forming regions to accommodate quadruplexes or i-motifs without disrupting duplex stability. Prediction of putative G-quadruplex-forming regions is likely to be assisted by further understanding of what distance (number of base pairs) is required for duplexes to remain stable as quadruplexes or i-motifs form. Using oligonucleotide constructs derived from precedented G-quadruplexes and i-motif-forming bcl-2 P1 promoter region, initial biophysical stability studies indicate that the formation of G-quadruplex and i-motif conformations do destabilize proximal duplex regions. The undermining effect that quadruplex formation can have on duplex stability is mitigated with increased distance from the duplex region: a spacing of five base pairs or more is sufficient to maintain duplex stability proximal to predicted quadruplex/i-motif-forming regions. PMID:23771141

  8. The Methionine-aromatic Motif Plays a Unique Role in Stabilizing Protein Structure*

    PubMed Central

    Valley, Christopher C.; Cembran, Alessandro; Perlmutter, Jason D.; Lewis, Andrew K.; Labello, Nicholas P.; Gao, Jiali; Sachs, Jonathan N.

    2012-01-01

    Of the 20 amino acids, the precise function of methionine (Met) remains among the least well understood. To establish a determining characteristic of methionine that fundamentally differentiates it from purely hydrophobic residues, we have used in vitro cellular experiments, molecular simulations, quantum calculations, and a bioinformatics screen of the Protein Data Bank. We show that approximately one-third of all known protein structures contain an energetically stabilizing Met-aromatic motif and, remarkably, that greater than 10,000 structures contain this motif more than 10 times. Critically, we show that as compared with a purely hydrophobic interaction, the Met-aromatic motif yields an additional stabilization of 1–1.5 kcal/mol. To highlight its importance and to dissect the energetic underpinnings of this motif, we have studied two clinically relevant TNF ligand-receptor complexes, namely TRAIL-DR5 and LTα-TNFR1. In both cases, we show that the motif is necessary for high affinity ligand binding as well as function. Additionally, we highlight previously overlooked instances of the motif in several disease-related Met mutations. Our results strongly suggest that the Met-aromatic motif should be exploited in the rational design of therapeutics targeting a range of proteins. PMID:22859300

  9. Automatic Network Fingerprinting through Single-Node Motifs

    PubMed Central

    Echtermeyer, Christoph; da Fontoura Costa, Luciano; Rodrigues, Francisco A.; Kaiser, Marcus

    2011-01-01

    Complex networks have been characterised by their specific connectivity patterns (network motifs), but their building blocks can also be identified and described by node-motifs—a combination of local network features. One technique to identify single node-motifs has been presented by Costa et al. (L. D. F. Costa, F. A. Rodrigues, C. C. Hilgetag, and M. Kaiser, Europhys. Lett., 87, 1, 2009). Here, we first suggest improvements to the method including how its parameters can be determined automatically. Such automatic routines make high-throughput studies of many networks feasible. Second, the new routines are validated in different network-series. Third, we provide an example of how the method can be used to analyse network time-series. In conclusion, we provide a robust method for systematically discovering and classifying characteristic nodes of a network. In contrast to classical motif analysis, our approach can identify individual components (here: nodes) that are specific to a network. Such special nodes, as hubs before, might be found to play critical roles in real-world networks. PMID:21297963

  10. RSAT matrix-clustering: dynamic exploration and redundancy reduction of transcription factor binding motif collections

    PubMed Central

    Jaeger, Sébastien; Thieffry, Denis

    2017-01-01

    Abstract Transcription factor (TF) databases contain multitudes of binding motifs (TFBMs) from various sources, from which non-redundant collections are derived by manual curation. The advent of high-throughput methods stimulated the production of novel collections with increasing numbers of motifs. Meta-databases, built by merging these collections, contain redundant versions, because available tools are not suited to automatically identify and explore biologically relevant clusters among thousands of motifs. Motif discovery from genome-scale data sets (e.g. ChIP-seq) also produces redundant motifs, hampering the interpretation of results. We present matrix-clustering, a versatile tool that clusters similar TFBMs into multiple trees, and automatically creates non-redundant TFBM collections. A feature unique to matrix-clustering is its dynamic visualisation of aligned TFBMs, and its capability to simultaneously treat multiple collections from various sources. We demonstrate that matrix-clustering considerably simplifies the interpretation of combined results from multiple motif discovery tools, and highlights biologically relevant variations of similar motifs. We also ran a large-scale application to cluster ∼11 000 motifs from 24 entire databases, showing that matrix-clustering correctly groups motifs belonging to the same TF families, and drastically reduced motif redundancy. matrix-clustering is integrated within the RSAT suite (http://rsat.eu/), accessible through a user-friendly web interface or command-line for its integration in pipelines. PMID:28591841

  11. World Color Survey color naming reveals universal motifs and their within-language diversity

    PubMed Central

    Lindsey, Delwin T.; Brown, Angela M.

    2009-01-01

    We analyzed the color terms in the World Color Survey (WCS) (www.icsi.berkeley.edu/wcs/), a large color-naming database obtained from informants of mostly unwritten languages spoken in preindustrialized cultures that have had limited contact with modern, industrialized society. The color naming idiolects of 2,367 WCS informants fall into three to six “motifs,” where each motif is a different color-naming system based on a subset of a universal glossary of 11 color terms. These motifs are universal in that they occur worldwide, with some individual variation, in completely unrelated languages. Strikingly, these few motifs are distributed across the WCS informants in such a way that multiple motifs occur in most languages. Thus, the culture a speaker comes from does not completely determine how he or she will use color terms. An analysis of the modern patterns of motif usage in the WCS languages, based on the assumption that they reflect historical patterns of color term evolution, suggests that color lexicons have changed over time in a complex but orderly way. The worldwide distribution of the motifs and the cooccurrence of multiple motifs within languages suggest that universal processes control the naming of colors. PMID:19901327

  12. Motif formation and industry specific topologies in the Japanese business firm network

    NASA Astrophysics Data System (ADS)

    Maluck, Julian; Donner, Reik V.; Takayasu, Hideki; Takayasu, Misako

    2017-05-01

    Motifs and roles are basic quantities for the characterization of interactions among 3-node subsets in complex networks. In this work, we investigate how the distribution of 3-node motifs can be influenced by modifying the rules of an evolving network model while keeping the statistics of simpler network characteristics, such as the link density and the degree distribution, invariant. We exemplify this problem for the special case of the Japanese Business Firm Network, where a well-studied and relatively simple yet realistic evolving network model is available, and compare the resulting motif distribution in the real-world and simulated networks. To better approximate the motif distribution of the real-world network in the model, we introduce both subgraph dependent and global additional rules. We find that a specific rule that allows only for the merging process between nodes with similar link directionality patterns reduces the observed excess of densely connected motifs with bidirectional links. Our study improves the mechanistic understanding of motif formation in evolving network models to better describe the characteristic features of real-world networks with a scale-free topology.

  13. Binding properties of SUMO-interacting motifs (SIMs) in yeast.

    PubMed

    Jardin, Christophe; Horn, Anselm H C; Sticht, Heinrich

    2015-03-01

    Small ubiquitin-like modifier (SUMO) conjugation and interaction play an essential role in many cellular processes. A large number of yeast proteins is known to interact non-covalently with SUMO via short SUMO-interacting motifs (SIMs), but the structural details of this interaction are yet poorly characterized. In the present work, sequence analysis of a large dataset of 148 yeast SIMs revealed the existence of a hydrophobic core binding motif and a preference for acidic residues either within or adjacent to the core motif. Thus the sequence properties of yeast SIMs are highly similar to those described for human. Molecular dynamics simulations were performed to investigate the binding preferences for four representative SIM peptides differing in the number and distribution of acidic residues. Furthermore, the relative stability of two previously observed alternative binding orientations (parallel, antiparallel) was assessed. For all SIMs investigated, the antiparallel binding mode remained stable in the simulations and the SIMs were tightly bound via their hydrophobic core residues supplemented by polar interactions of the acidic residues. In contrary, the stability of the parallel binding mode is more dependent on the sequence features of the SIM motif like the number and position of acidic residues or the presence of additional adjacent interaction motifs. This information should be helpful to enhance the prediction of SIMs and their binding properties in different organisms to facilitate the reconstruction of the SUMO interactome.

  14. Multi-scale modularity and motif distributional effect in metabolic networks.

    PubMed

    Gao, Shang; Chen, Alan; Rahmani, Ali; Zeng, Jia; Tan, Mehmet; Alhajj, Reda; Rokne, Jon; Demetrick, Douglas; Wei, Xiaohui

    2016-01-01

    Metabolism is a set of fundamental processes that play important roles in a plethora of biological and medical contexts. It is understood that the topological information of reconstructed metabolic networks, such as modular organization, has crucial implications on biological functions. Recent interpretations of modularity in network settings provide a view of multiple network partitions induced by different resolution parameters. Here we ask the question: How do multiple network partitions affect the organization of metabolic networks? Since network motifs are often interpreted as the super families of evolved units, we further investigate their impact under multiple network partitions and investigate how the distribution of network motifs influences the organization of metabolic networks. We studied Homo sapiens, Saccharomyces cerevisiae and Escherichia coli metabolic networks; we analyzed the relationship between different community structures and motif distribution patterns. Further, we quantified the degree to which motifs participate in the modular organization of metabolic networks.

  15. Lunasin, with an arginine-glycine-aspartic acid motif, causes apoptosis to L1210 leukemia cells by activation of caspase-3.

    PubMed

    de Mejia, Elvira Gonzalez; Wang, Wenyi; Dia, Vermont P

    2010-03-01

    Lunasin is a novel chemopreventive peptide featuring a cell adhesion motif composed of arginine-glycine-aspartate (RGD) which has been associated to cytotoxicity to established cell lines. The objectives of this study were to determine the effect of lunasin on the viability of L1210 leukemia cells and to understand the underlying mechanisms involved. Pure lunasin and lunasin enriched soy flour (LES) caused cytotoxicity to L1210 leukemia cells with IC(50) of 14 and 16 microM (lunasin equivalent), respectively. Simulated gastrointestinal digestion showed that 25% of the original amount of lunasin survived 3 h of pepsin digestion and 3% of lunasin remained after sequential pepsin-pancreatin digestion for a total of 6 h. Cell cycle analysis showed that lunasin caused a dose-dependent G2 cell cycle arrest and apoptosis. Treatment of L1210 leukemia cells with 1 mg/mL of LES for 18 h led to an increase in the amount of apoptotic cells from 2 to 40%. Compared to untreated cells, treatment with 1 mg/mL LES showed a 6-fold increase on the expressions of caspases-8 and -9, and and a 12-fold increase on the expression of caspase-3. These results showed for the first time that lunasin, a naturally occurring peptide containing an RGD motif, caused apoptosis to L1210 leukemia cells through caspase-3 activation.

  16. Encryption of agonistic motifs for TLR4 into artificial antigens augmented the maturation of antigen-presenting cells

    PubMed Central

    Hayashi, Kazumi; Minamisawa, Tamiko; Homma, Sadamu; Koido, Shigeo; Shiba, Kiyotaka

    2017-01-01

    Adjuvants are indispensable for achieving a sufficient immune response from vaccinations. From a functional viewpoint, adjuvants are classified into two categories: “physical adjuvants” increase the efficacy of antigen presentation by antigen-presenting cells (APC) and “signal adjuvants” induce the maturation of APC. Our previous study has demonstrated that a physical adjuvant can be encrypted into proteinous antigens by creating artificial proteins from combinatorial assemblages of epitope peptides and those peptide sequences having propensities to form certain protein structures (motif programming). However, the artificial antigens still require a signal adjuvant to maturate the APC; for example, co-administration of the Toll-like receptor 4 (TLR4) agonist monophosphoryl lipid A (MPLA) was required to induce an in vivo immunoreaction. In this study, we further modified the previous artificial antigens by appending the peptide motifs, which have been reported to have agonistic activity for TLR4, to create “adjuvant-free” antigens. The created antigens with triple TLR4 agonistic motifs in their C-terminus have activated NF-κB signaling pathways through TLR4. These proteins also induced the production of the inflammatory cytokine TNF-α, and the expression of the co-stimulatory molecule CD40 in APC, supporting the maturation of APC in vitro. Unexpectedly, these signal adjuvant-encrypted proteins have lost their ability to be physical adjuvants because they did not induce cytotoxic T lymphocytes (CTL) in vivo, while the parental proteins induced CTL. These results confirmed that the manifestation of a motif’s function is context-dependent and simple addition does not always work for motif-programing. Further optimization of the molecular context of the TLR4 agonistic motifs in antigens should be required to create adjuvant-free antigens. PMID:29190754

  17. Pathogen recognition of a novel C-type lectin from Marsupenaeus japonicus reveals the divergent sugar-binding specificity of QAP motif.

    PubMed

    Alenton, Rod Russel R; Koiwai, Keiichiro; Miyaguchi, Kohei; Kondo, Hidehiro; Hirono, Ikuo

    2017-04-04

    C-type lectins (CTLs) are calcium-dependent carbohydrate-binding proteins known to assist the innate immune system as pattern recognition receptors (PRRs). The binding specificity of CTLs lies in the motif of their carbohydrate recognition domain (CRD), the tripeptide motifs EPN and QPD bind to mannose and galactose, respectively. However, variants of these motifs were discovered including a QAP sequence reported in shrimp believed to have the same carbohydrate specificity as QPD. Here, we characterized a novel C-type lectin (MjGCTL) possessing a CRD with a QAP motif. The recombinant MjGCTL has a calcium-dependent agglutinating capability against both Gram-negative and Gram-positive bacteria, and its sugar specificity did not involve either mannose or galactose. In an encapsulation assay, agarose beads coated with rMjGCTL were immediately encapsulated from 0 h followed by melanization at 4 h post-incubation with hemocytes. These results confirm that MjGCTL functions as a classical CTL. The structure of QAP motif and carbohydrate-specificity of rMjGCTL was found to be different to both EPN and QPD, suggesting that QAP is a new motif. Furthermore, MjGCTL acts as a PRR binding to hemocytes to activate their adherent state and initiate encapsulation.

  18. Pathogen recognition of a novel C-type lectin from Marsupenaeus japonicus reveals the divergent sugar-binding specificity of QAP motif

    PubMed Central

    Alenton, Rod Russel R.; Koiwai, Keiichiro; Miyaguchi, Kohei; Kondo, Hidehiro; Hirono, Ikuo

    2017-01-01

    C-type lectins (CTLs) are calcium-dependent carbohydrate-binding proteins known to assist the innate immune system as pattern recognition receptors (PRRs). The binding specificity of CTLs lies in the motif of their carbohydrate recognition domain (CRD), the tripeptide motifs EPN and QPD bind to mannose and galactose, respectively. However, variants of these motifs were discovered including a QAP sequence reported in shrimp believed to have the same carbohydrate specificity as QPD. Here, we characterized a novel C-type lectin (MjGCTL) possessing a CRD with a QAP motif. The recombinant MjGCTL has a calcium-dependent agglutinating capability against both Gram-negative and Gram-positive bacteria, and its sugar specificity did not involve either mannose or galactose. In an encapsulation assay, agarose beads coated with rMjGCTL were immediately encapsulated from 0 h followed by melanization at 4 h post-incubation with hemocytes. These results confirm that MjGCTL functions as a classical CTL. The structure of QAP motif and carbohydrate-specificity of rMjGCTL was found to be different to both EPN and QPD, suggesting that QAP is a new motif. Furthermore, MjGCTL acts as a PRR binding to hemocytes to activate their adherent state and initiate encapsulation. PMID:28374848

  19. Efficient sequential and parallel algorithms for finding edit distance based motifs.

    PubMed

    Pal, Soumitra; Xiao, Peng; Rajasekaran, Sanguthevar

    2016-08-18

    Motif search is an important step in extracting meaningful patterns from biological data. The general problem of motif search is intractable and there is a pressing need to develop efficient, exact and approximation algorithms to solve this problem. In this paper, we present several novel, exact, sequential and parallel algorithms for solving the (l,d) Edit-distance-based Motif Search (EMS) problem: given two integers l,d and n biological strings, find all strings of length l that appear in each input string with atmost d errors of types substitution, insertion and deletion. One popular technique to solve the problem is to explore for each input string the set of all possible l-mers that belong to the d-neighborhood of any substring of the input string and output those which are common for all input strings. We introduce a novel and provably efficient neighborhood exploration technique. We show that it is enough to consider the candidates in neighborhood which are at a distance exactly d. We compactly represent these candidate motifs using wildcard characters and efficiently explore them with very few repetitions. Our sequential algorithm uses a trie based data structure to efficiently store and sort the candidate motifs. Our parallel algorithm in a multi-core shared memory setting uses arrays for storing and a novel modification of radix-sort for sorting the candidate motifs. The algorithms for EMS are customarily evaluated on several challenging instances such as (8,1), (12,2), (16,3), (20,4), and so on. The best previously known algorithm, EMS1, is sequential and in estimated 3 days solves up to instance (16,3). Our sequential algorithms are more than 20 times faster on (16,3). On other hard instances such as (9,2), (11,3), (13,4), our algorithms are much faster. Our parallel algorithm has more than 600 % scaling performance while using 16 threads. Our algorithms have pushed up the state-of-the-art of EMS solvers and we believe that the techniques introduced in

  20. Physical-chemical property based sequence motifs and methods regarding same

    DOEpatents

    Braun, Werner [Friendswood, TX; Mathura, Venkatarajan S [Sarasota, FL; Schein, Catherine H [Friendswood, TX

    2008-09-09

    A data analysis system, program, and/or method, e.g., a data mining/data exploration method, using physical-chemical property motifs. For example, a sequence database may be searched for identifying segments thereof having physical-chemical properties similar to the physical-chemical property motifs.

  1. DETAIL VIEW, MAIN ENTRANCE GATES, SHOWING A WINGED HOURGLASS MOTIF, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW, MAIN ENTRANCE GATES, SHOWING A WINGED HOURGLASS MOTIF, WHICH REFERS TO THE QUICK PASSAGE OF TIME AND THE SHORTNESS OF HUMAN LIFE. USE OF THIS MOTIF WAS A CARRYOVER FROM THE MCARTHUR GATES. - Woodlands Cemetery, 4000 Woodlands Avenue, Philadelphia, Philadelphia County, PA

  2. Dissecting protein loops with a statistical scalpel suggests a functional implication of some structural motifs.

    PubMed

    Regad, Leslie; Martin, Juliette; Camproux, Anne-Claude

    2011-06-20

    One of the strategies for protein function annotation is to search particular structural motifs that are known to be shared by proteins with a given function. Here, we present a systematic extraction of structural motifs of seven residues from protein loops and we explore their correspondence with functional sites. Our approach is based on the structural alphabet HMM-SA (Hidden Markov Model - Structural Alphabet), which allows simplification of protein structures into uni-dimensional sequences, and advanced pattern statistics adapted to short sequences. Structural motifs of interest are selected by looking for structural motifs significantly over-represented in SCOP superfamilies in protein loops. We discovered two types of structural motifs significantly over-represented in SCOP superfamilies: (i) ubiquitous motifs, shared by several superfamilies and (ii) superfamily-specific motifs, over-represented in few superfamilies. A comparison of ubiquitous words with known small structural motifs shows that they contain well-described motifs as turn, niche or nest motifs. A comparison between superfamily-specific motifs and biological annotations of Swiss-Prot reveals that some of them actually correspond to functional sites involved in the binding sites of small ligands, such as ATP/GTP, NAD(P) and SAH/SAM. Our findings show that statistical over-representation in SCOP superfamilies is linked to functional features. The detection of over-represented motifs within structures simplified by HMM-SA is therefore a promising approach for prediction of functional sites and annotation of uncharacterized proteins.

  3. Dissecting protein loops with a statistical scalpel suggests a functional implication of some structural motifs

    PubMed Central

    2011-01-01

    Background One of the strategies for protein function annotation is to search particular structural motifs that are known to be shared by proteins with a given function. Results Here, we present a systematic extraction of structural motifs of seven residues from protein loops and we explore their correspondence with functional sites. Our approach is based on the structural alphabet HMM-SA (Hidden Markov Model - Structural Alphabet), which allows simplification of protein structures into uni-dimensional sequences, and advanced pattern statistics adapted to short sequences. Structural motifs of interest are selected by looking for structural motifs significantly over-represented in SCOP superfamilies in protein loops. We discovered two types of structural motifs significantly over-represented in SCOP superfamilies: (i) ubiquitous motifs, shared by several superfamilies and (ii) superfamily-specific motifs, over-represented in few superfamilies. A comparison of ubiquitous words with known small structural motifs shows that they contain well-described motifs as turn, niche or nest motifs. A comparison between superfamily-specific motifs and biological annotations of Swiss-Prot reveals that some of them actually correspond to functional sites involved in the binding sites of small ligands, such as ATP/GTP, NAD(P) and SAH/SAM. Conclusions Our findings show that statistical over-representation in SCOP superfamilies is linked to functional features. The detection of over-represented motifs within structures simplified by HMM-SA is therefore a promising approach for prediction of functional sites and annotation of uncharacterized proteins. PMID:21689388

  4. Detection of core-periphery structure in networks based on 3-tuple motifs

    NASA Astrophysics Data System (ADS)

    Ma, Chuang; Xiang, Bing-Bing; Chen, Han-Shuang; Small, Michael; Zhang, Hai-Feng

    2018-05-01

    Detecting mesoscale structure, such as community structure, is of vital importance for analyzing complex networks. Recently, a new mesoscale structure, core-periphery (CP) structure, has been identified in many real-world systems. In this paper, we propose an effective algorithm for detecting CP structure based on a 3-tuple motif. In this algorithm, we first define a 3-tuple motif in terms of the patterns of edges as well as the property of nodes, and then a motif adjacency matrix is constructed based on the 3-tuple motif. Finally, the problem is converted to find a cluster that minimizes the smallest motif conductance. Our algorithm works well in different CP structures: including single or multiple CP structure, and local or global CP structures. Results on the synthetic and the empirical networks validate the high performance of our method.

  5. info-gibbs: a motif discovery algorithm that directly optimizes information content during sampling.

    PubMed

    Defrance, Matthieu; van Helden, Jacques

    2009-10-15

    Discovering cis-regulatory elements in genome sequence remains a challenging issue. Several methods rely on the optimization of some target scoring function. The information content (IC) or relative entropy of the motif has proven to be a good estimator of transcription factor DNA binding affinity. However, these information-based metrics are usually used as a posteriori statistics rather than during the motif search process itself. We introduce here info-gibbs, a Gibbs sampling algorithm that efficiently optimizes the IC or the log-likelihood ratio (LLR) of the motif while keeping computation time low. The method compares well with existing methods like MEME, BioProspector, Gibbs or GAME on both synthetic and biological datasets. Our study shows that motif discovery techniques can be enhanced by directly focusing the search on the motif IC or the motif LLR. http://rsat.ulb.ac.be/rsat/info-gibbs

  6. Organization of feed-forward loop motifs reveals architectural principles in natural and engineered networks.

    PubMed

    Gorochowski, Thomas E; Grierson, Claire S; di Bernardo, Mario

    2018-03-01

    Network motifs are significantly overrepresented subgraphs that have been proposed as building blocks for natural and engineered networks. Detailed functional analysis has been performed for many types of motif in isolation, but less is known about how motifs work together to perform complex tasks. To address this issue, we measure the aggregation of network motifs via methods that extract precisely how these structures are connected. Applying this approach to a broad spectrum of networked systems and focusing on the widespread feed-forward loop motif, we uncover striking differences in motif organization. The types of connection are often highly constrained, differ between domains, and clearly capture architectural principles. We show how this information can be used to effectively predict functionally important nodes in the metabolic network of Escherichia coli . Our findings have implications for understanding how networked systems are constructed from motif parts and elucidate constraints that guide their evolution.

  7. Organization of feed-forward loop motifs reveals architectural principles in natural and engineered networks

    PubMed Central

    Grierson, Claire S.

    2018-01-01

    Network motifs are significantly overrepresented subgraphs that have been proposed as building blocks for natural and engineered networks. Detailed functional analysis has been performed for many types of motif in isolation, but less is known about how motifs work together to perform complex tasks. To address this issue, we measure the aggregation of network motifs via methods that extract precisely how these structures are connected. Applying this approach to a broad spectrum of networked systems and focusing on the widespread feed-forward loop motif, we uncover striking differences in motif organization. The types of connection are often highly constrained, differ between domains, and clearly capture architectural principles. We show how this information can be used to effectively predict functionally important nodes in the metabolic network of Escherichia coli. Our findings have implications for understanding how networked systems are constructed from motif parts and elucidate constraints that guide their evolution. PMID:29670941

  8. Mixotrophy and intraguild predation - dynamic consequences of shifts between food web motifs

    NASA Astrophysics Data System (ADS)

    Karnatak, Rajat; Wollrab, Sabine

    2017-06-01

    Mixotrophy is ubiquitous in microbial communities of aquatic systems with many flagellates being able to use autotroph as well as heterotroph pathways for energy acquisition. The usage of one over the other pathway is associated with resource availability and the coupling of alternative pathways has strong implications for system stability. We investigated the impact of dominance of different energy pathways related to relative resource availability on system dynamics in the setting of a tritrophic food web motif. This motif consists of a mixotroph feeding on a purely autotroph species while competing for a shared resource. In addition, the autotroph can use an additional exclusive food source. By changing the relative abundance of shared vs. exclusive food source, we shift the food web motif from an intraguild predation motif to a food chain motif. We analyzed the dependence of system dynamics on absolute and relative resource availability. In general, the system exhibits a transition from stable to oscillatory dynamics with increasing nutrient availability. However, this transition occurs at a much lower nutrient level for the food chain in comparison to the intraguild predation motif. A similar transition is also observed with variations in the relative abundance of food sources for a range of nutrient levels. We expect this shift in food web motifs to occur frequently in microbial communities and therefore the results from our study are highly relevant for natural systems.

  9. Cellular automata simulation of topological effects on the dynamics of feed-forward motifs

    PubMed Central

    Apte, Advait A; Cain, John W; Bonchev, Danail G; Fong, Stephen S

    2008-01-01

    Background Feed-forward motifs are important functional modules in biological and other complex networks. The functionality of feed-forward motifs and other network motifs is largely dictated by the connectivity of the individual network components. While studies on the dynamics of motifs and networks are usually devoted to the temporal or spatial description of processes, this study focuses on the relationship between the specific architecture and the overall rate of the processes of the feed-forward family of motifs, including double and triple feed-forward loops. The search for the most efficient network architecture could be of particular interest for regulatory or signaling pathways in biology, as well as in computational and communication systems. Results Feed-forward motif dynamics were studied using cellular automata and compared with differential equation modeling. The number of cellular automata iterations needed for a 100% conversion of a substrate into a target product was used as an inverse measure of the transformation rate. Several basic topological patterns were identified that order the specific feed-forward constructions according to the rate of dynamics they enable. At the same number of network nodes and constant other parameters, the bi-parallel and tri-parallel motifs provide higher network efficacy than single feed-forward motifs. Additionally, a topological property of isodynamicity was identified for feed-forward motifs where different network architectures resulted in the same overall rate of the target production. Conclusion It was shown for classes of structural motifs with feed-forward architecture that network topology affects the overall rate of a process in a quantitatively predictable manner. These fundamental results can be used as a basis for simulating larger networks as combinations of smaller network modules with implications on studying synthetic gene circuits, small regulatory systems, and eventually dynamic whole-cell models

  10. RSAT matrix-clustering: dynamic exploration and redundancy reduction of transcription factor binding motif collections.

    PubMed

    Castro-Mondragon, Jaime Abraham; Jaeger, Sébastien; Thieffry, Denis; Thomas-Chollier, Morgane; van Helden, Jacques

    2017-07-27

    Transcription factor (TF) databases contain multitudes of binding motifs (TFBMs) from various sources, from which non-redundant collections are derived by manual curation. The advent of high-throughput methods stimulated the production of novel collections with increasing numbers of motifs. Meta-databases, built by merging these collections, contain redundant versions, because available tools are not suited to automatically identify and explore biologically relevant clusters among thousands of motifs. Motif discovery from genome-scale data sets (e.g. ChIP-seq) also produces redundant motifs, hampering the interpretation of results. We present matrix-clustering, a versatile tool that clusters similar TFBMs into multiple trees, and automatically creates non-redundant TFBM collections. A feature unique to matrix-clustering is its dynamic visualisation of aligned TFBMs, and its capability to simultaneously treat multiple collections from various sources. We demonstrate that matrix-clustering considerably simplifies the interpretation of combined results from multiple motif discovery tools, and highlights biologically relevant variations of similar motifs. We also ran a large-scale application to cluster ∼11 000 motifs from 24 entire databases, showing that matrix-clustering correctly groups motifs belonging to the same TF families, and drastically reduced motif redundancy. matrix-clustering is integrated within the RSAT suite (http://rsat.eu/), accessible through a user-friendly web interface or command-line for its integration in pipelines. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Dominant-Negative Regulation of Cell Surface Expression by a Pentapeptide Motif at the Extreme COOH Terminus of an Slo1 Calcium-Activated Potassium Channel Splice Variant

    PubMed Central

    Chiu, Yu-Hsin; Alvarez-Baron, Claudia; Kim, Eun Young

    2010-01-01

    Large-conductance Ca2+-activated K+ (BKCa) channels regulate the physiology of many cell types. A single vertebrate gene variously known as Slo1, KCa1.1, or KCNMA1 encodes the pore-forming subunits of BKCa channel but is expressed in a potentially very large number of alternative splice variants. Two splice variants of Slo1, Slo1VEDEC and Slo1QEERL, which differ at the extreme COOH terminus, show markedly different steady-state expression levels on the cell surface. Here we show that Slo1VEDEC and Slo1QEERL can reciprocally coimmunoprecipitate, indicating that they form heteromeric complexes. Moreover, coexpression of even small amounts of Slo1VEDEC markedly reduces surface expression of Slo1QEERL and total Slo1 as indicated by cell-surface biotinylation assays. The effects of Slo1VEDEC on steady-state surface expression can be attributed primarily to the last five residues of the protein based on surface expression of motif-swapped constructs of Slo1 in human embryonic kidney (HEK) 293T cells. In addition, the presence of the VEDEC motif at the COOH terminus of Slo1 channels is sufficient to confer a dominant-negative effect on cell surface expression of itself or other types of Slo1 subunits. Treating cells with short peptides containing the VEDEC motif increased surface expression of Slo1VEDEC channels transiently expressed in HEK293T cells and increased current through endogenous BKCa channels in mouse podocytes. Slo1VEDEC and Slo1QEERL channels are removed from the HEK293T cell surface with similar kinetics and to a similar extent, which suggests that the inhibitory effect of the VEDEC motif is exerted primarily on forward trafficking into the plasma membrane. PMID:20051533

  12. Searching RNA motifs and their intermolecular contacts with constraint networks.

    PubMed

    Thébault, P; de Givry, S; Schiex, T; Gaspin, C

    2006-09-01

    Searching RNA gene occurrences in genomic sequences is a task whose importance has been renewed by the recent discovery of numerous functional RNA, often interacting with other ligands. Even if several programs exist for RNA motif search, none exists that can represent and solve the problem of searching for occurrences of RNA motifs in interaction with other molecules. We present a constraint network formulation of this problem. RNA are represented as structured motifs that can occur on more than one sequence and which are related together by possible hybridization. The implemented tool MilPat is used to search for several sRNA families in genomic sequences. Results show that MilPat allows to efficiently search for interacting motifs in large genomic sequences and offers a simple and extensible framework to solve such problems. New and known sRNA are identified as H/ACA candidates in Methanocaldococcus jannaschii. http://carlit.toulouse.inra.fr/MilPaT/MilPat.pl.

  13. The Thiamine-Pyrophosphate-Motif

    NASA Technical Reports Server (NTRS)

    Ciszak, Ewa; Dominiak, Paulina

    2004-01-01

    Thiamin pyrophosphate (TPP), a derivative of vitamin B1, is a cofactor for enzymes performing catalysis in pathways of energy production including the well known decarboxylation of a-keto acid dehydrogenases followed by transketolation. TPP-dependent enzymes constitute a structurally and functionally diverse group exhibiting multimeric subunit organization, multiple domains and two chemically equivalent catalytic centers. Annotation of functional TPP-dependcnt enzymes, therefore, has not been trivial due to low sequence similarity related to this complex organization. Our approach to analysis of structures of known TPP-dependent enzymes reveals for the first time features common to this group, which we have termed the TPP-motif. The TPP-motif consists of specific spatial arrangements of structural elements and their specific contacts to provide for a flip-flop, or alternate site, enzymatic mechanism of action. Analysis of structural elements entrained in the flip-flop action displayed by TPP-dependent enzymes reveals a novel definition of the common amino acid sequences. These sequences allow for annotation of TPP-dependent enzymes, thus advancing functional proteomics. Further details of three-dimensional structures of TPP-dependent enzymes will be discussed.

  14. [Cover motifs of the Tidsskrift. A 14-year cavalcade].

    PubMed

    Nylenna, M

    1998-12-10

    In 1985 the Journal of the Norwegian Medical Association changed its cover policy, moving the table of contents inside the Journal and introducing cover illustrations. This article provides an analysis of all cover illustrations published over this 14-year period, 420 covers in all. There is a great variation in cover motifs and designs and a development towards more general motifs. The initial emphasis on historical and medical aspects is now less pronounced, while the use of works of art and nature motifs has increased, and the cover now more often has a direct bearing on the specific contents of the issue. Professor of medical history Oivind Larsen has photographed two thirds of the covers and contributed 95% of the inside essay-style reflections on the cover motif. Over the years, he has expanded the role of the historian of medicine disseminating knowledge to include that of the raconteur with a personal tone of voice. The Journal's covers are now one of its most characteristic features, emblematic of the Journal's ambition of standing for quality and timelessness vis-à-vis the news media, and of its aim of bridging the gap between medicine and the humanities.

  15. A dileucine motif is involved in plasma membrane expression and endocytosis of rat sodium taurocholate cotransporting polypeptide (Ntcp).

    PubMed

    Stross, Claudia; Kluge, Stefanie; Weissenberger, Katrin; Winands, Elisabeth; Häussinger, Dieter; Kubitz, Ralf

    2013-11-15

    The sodium taurocholate cotransporting polypeptide (Ntcp) is the major uptake transporter for bile salts into liver parenchymal cells, and PKC-mediated endocytosis was shown to regulate the number of Ntcp molecules at the plasma membrane. In this study, mechanisms of Ntcp internalization were analyzed by flow cytometry, immunofluorescence, and Western blot analyses in HepG2 cells. PKC activation induced endocytosis of Ntcp from the plasma membrane by ~30%. Endocytosis of Ntcp was clathrin dependent and was followed by lysosomal degradation. A dileucine motif located in the third intracellular loop of Ntcp was essential for endocytosis but also for processing and plasma membrane targeting, suggesting a dual function of this motif for intracellular trafficking of Ntcp. Mutation of two of five potential phosphorylation sites surrounding the dileucine motif (Thr225 and Ser226) inhibited PKC-mediated endocytosis. In conclusion, we could identify a motif, which is critical for Ntcp plasma membrane localization. Endocytic retrieval protects hepatocytes from elevated bile salt concentrations and is of special interest, because NTCP has been identified as a receptor for the hepatitis B and D virus.

  16. RNA Bricks—a database of RNA 3D motifs and their interactions

    PubMed Central

    Chojnowski, Grzegorz; Waleń, Tomasz; Bujnicki, Janusz M.

    2014-01-01

    The RNA Bricks database (http://iimcb.genesilico.pl/rnabricks), stores information about recurrent RNA 3D motifs and their interactions, found in experimentally determined RNA structures and in RNA–protein complexes. In contrast to other similar tools (RNA 3D Motif Atlas, RNA Frabase, Rloom) RNA motifs, i.e. ‘RNA bricks’ are presented in the molecular environment, in which they were determined, including RNA, protein, metal ions, water molecules and ligands. All nucleotide residues in RNA bricks are annotated with structural quality scores that describe real-space correlation coefficients with the electron density data (if available), backbone geometry and possible steric conflicts, which can be used to identify poorly modeled residues. The database is also equipped with an algorithm for 3D motif search and comparison. The algorithm compares spatial positions of backbone atoms of the user-provided query structure and of stored RNA motifs, without relying on sequence or secondary structure information. This enables the identification of local structural similarities among evolutionarily related and unrelated RNA molecules. Besides, the search utility enables searching ‘RNA bricks’ according to sequence similarity, and makes it possible to identify motifs with modified ribonucleotide residues at specific positions. PMID:24220091

  17. I-motif DNA structures are formed in the nuclei of human cells

    NASA Astrophysics Data System (ADS)

    Zeraati, Mahdi; Langley, David B.; Schofield, Peter; Moye, Aaron L.; Rouet, Romain; Hughes, William E.; Bryan, Tracy M.; Dinger, Marcel E.; Christ, Daniel

    2018-06-01

    Human genome function is underpinned by the primary storage of genetic information in canonical B-form DNA, with a second layer of DNA structure providing regulatory control. I-motif structures are thought to form in cytosine-rich regions of the genome and to have regulatory functions; however, in vivo evidence for the existence of such structures has so far remained elusive. Here we report the generation and characterization of an antibody fragment (iMab) that recognizes i-motif structures with high selectivity and affinity, enabling the detection of i-motifs in the nuclei of human cells. We demonstrate that the in vivo formation of such structures is cell-cycle and pH dependent. Furthermore, we provide evidence that i-motif structures are formed in regulatory regions of the human genome, including promoters and telomeric regions. Our results support the notion that i-motif structures provide key regulatory roles in the genome.

  18. ssHMM: extracting intuitive sequence-structure motifs from high-throughput RNA-binding protein data

    PubMed Central

    Krestel, Ralf; Ohler, Uwe; Vingron, Martin; Marsico, Annalisa

    2017-01-01

    Abstract RNA-binding proteins (RBPs) play an important role in RNA post-transcriptional regulation and recognize target RNAs via sequence-structure motifs. The extent to which RNA structure influences protein binding in the presence or absence of a sequence motif is still poorly understood. Existing RNA motif finders either take the structure of the RNA only partially into account, or employ models which are not directly interpretable as sequence-structure motifs. We developed ssHMM, an RNA motif finder based on a hidden Markov model (HMM) and Gibbs sampling which fully captures the relationship between RNA sequence and secondary structure preference of a given RBP. Compared to previous methods which output separate logos for sequence and structure, it directly produces a combined sequence-structure motif when trained on a large set of sequences. ssHMM’s model is visualized intuitively as a graph and facilitates biological interpretation. ssHMM can be used to find novel bona fide sequence-structure motifs of uncharacterized RBPs, such as the one presented here for the YY1 protein. ssHMM reaches a high motif recovery rate on synthetic data, it recovers known RBP motifs from CLIP-Seq data, and scales linearly on the input size, being considerably faster than MEMERIS and RNAcontext on large datasets while being on par with GraphProt. It is freely available on Github and as a Docker image. PMID:28977546

  19. Identification and preliminary characterization of a protein motif related to the zinc finger.

    PubMed Central

    Lovering, R; Hanson, I M; Borden, K L; Martin, S; O'Reilly, N J; Evan, G I; Rahman, D; Pappin, D J; Trowsdale, J; Freemont, P S

    1993-01-01

    We have identified a protein motif, related to the zinc finger, which defines a newly discovered family of proteins. The motif was found in the sequence of the human RING1 gene, which is proximal to the major histocompatibility complex region on chromosome six. We propose naming this motif the "RING finger" and it is found in 27 proteins, all of which have putative DNA binding functions. We have synthesized a peptide corresponding to the RING1 motif and examined a number of properties, including metal and DNA binding. We provide evidence to support the suggestion that the RING finger motif is the DNA binding domain of this newly defined family of proteins. Images Fig. 1 Fig. 4 PMID:7681583

  20. Exploitation of peptide motif sequences and their use in nanobiotechnology.

    PubMed

    Shiba, Kiyotaka

    2010-08-01

    Short amino acid sequences extracted from natural proteins or created using in vitro evolution systems are sometimes associated with particular biological functions. These peptides, called peptide motifs, can serve as functional units for the creation of various tools for nanobiotechnology. In particular, peptide motifs that have the ability to specifically recognize the surfaces of solid materials and to mineralize certain inorganic materials have been linking biological science to material science. Here, I review how these peptide motifs have been isolated from natural proteins or created using in vitro evolution systems, and how they have been used in the nanobiotechnology field. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. The RXL motif of the African cassava mosaic virus Rep protein is necessary for rereplication of yeast DNA and viral infection in plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hipp, Katharina; Rau, Peter; Schäfer, Benjamin

    Geminiviruses, single-stranded DNA plant viruses, encode a replication-initiator protein (Rep) that is indispensable for virus replication. A potential cyclin interaction motif (RXL) in the sequence of African cassava mosaic virus Rep may be an alternative link to cell cycle controls to the known interaction with plant homologs of retinoblastoma protein (pRBR). Mutation of this motif abrogated rereplication in fission yeast induced by expression of wildtype Rep suggesting that Rep interacts via its RXL motif with one or several yeast proteins. The RXL motif is essential for viral infection of Nicotiana benthamiana plants, since mutation of this motif in infectious clonesmore » prevented any symptomatic infection. The cell-cycle link (Clink) protein of a nanovirus (faba bean necrotic yellows virus) was investigated that activates the cell cycle by binding via its LXCXE motif to pRBR. Expression of wildtype Clink and a Clink mutant deficient in pRBR-binding did not trigger rereplication in fission yeast. - Highlights: • A potential cyclin interaction motif is conserved in geminivirus Rep proteins. • In ACMV Rep, this motif (RXL) is essential for rereplication of fission yeast DNA. • Mutating RXL abrogated viral infection completely in Nicotiana benthamiana. • Expression of a nanovirus Clink protein in yeast did not induce rereplication. • Plant viruses may have evolved multiple routes to exploit host DNA synthesis.« less

  2. The Crc and Hfq proteins of Pseudomonas putida cooperate in catabolite repression and formation of ribonucleic acid complexes with specific target motifs.

    PubMed

    Moreno, Renata; Hernández-Arranz, Sofía; La Rosa, Ruggero; Yuste, Luis; Madhushani, Anjana; Shingler, Victoria; Rojo, Fernando

    2015-01-01

    The Crc protein is a global regulator that has a key role in catabolite repression and optimization of metabolism in Pseudomonads. Crc inhibits gene expression post-transcriptionally, preventing translation of mRNAs bearing an AAnAAnAA motif [the catabolite activity (CA) motif] close to the translation start site. Although Crc was initially believed to bind RNA by itself, this idea was recently challenged by results suggesting that a protein co-purifying with Crc, presumably the Hfq protein, could account for the detected RNA-binding activity. Hfq is an abundant protein that has a central role in post-transcriptional gene regulation. Herein, we show that the Pseudomonas putida Hfq protein can recognize the CA motifs of RNAs through its distal face and that Crc facilitates formation of a more stable complex at these targets. Crc was unable to bind RNA in the absence of Hfq. However, pull-down assays showed that Crc and Hfq can form a co-complex with RNA containing a CA motif in vitro. Inactivation of the hfq or the crc gene impaired catabolite repression to a similar extent. We propose that Crc and Hfq cooperate in catabolite repression, probably through forming a stable co-complex with RNAs containing CA motifs to result in inhibition of translation initiation. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Sequence-specific DNA binding activity of the cross-brace zinc finger motif of the piggyBac transposase

    PubMed Central

    Morellet, Nelly; Li, Xianghong; Wieninger, Silke A; Taylor, Jennifer L; Bischerour, Julien; Moriau, Séverine; Lescop, Ewen; Bardiaux, Benjamin; Mathy, Nathalie; Assrir, Nadine; Bétermier, Mireille; Nilges, Michael; Hickman, Alison B; Dyda, Fred; Craig, Nancy L; Guittet, Eric

    2018-01-01

    Abstract The piggyBac transposase (PB) is distinguished by its activity and utility in genome engineering, especially in humans where it has highly promising therapeutic potential. Little is known, however, about the structure–function relationships of the different domains of PB. Here, we demonstrate in vitro and in vivo that its C-terminal Cysteine-Rich Domain (CRD) is essential for DNA breakage, joining and transposition and that it binds to specific DNA sequences in the left and right transposon ends, and to an additional unexpectedly internal site at the left end. Using NMR, we show that the CRD adopts the specific fold of the cross-brace zinc finger protein family. We determine the interaction interfaces between the CRD and its target, the 5′-TGCGT-3′/3′-ACGCA-5′ motifs found in the left, left internal and right transposon ends, and use NMR results to propose docking models for the complex, which are consistent with our site-directed mutagenesis data. Our results provide support for a model of the PB/DNA interactions in the context of the transpososome, which will be useful for the rational design of PB mutants with increased activity. PMID:29385532

  4. Calmodulin Bound to the First IQ Motif Is Responsible for Calcium-dependent Regulation of Myosin 5a*

    PubMed Central

    Lu, Zekuan; Shen, Mei; Cao, Yang; Zhang, Hai-Man; Yao, Lin-Lin; Li, Xiang-dong

    2012-01-01

    Myosin 5a is as yet the best-characterized unconventional myosin motor involved in transport of organelles along actin filaments. It is well-established that myosin 5a is regulated by its tail in a Ca2+-dependent manner. The fact that the actin-activated ATPase activity of myosin 5a is stimulated by micromolar concentrations of Ca2+ and that calmodulin (CaM) binds to IQ motifs of the myosin 5a heavy chain indicates that Ca2+ regulates myosin 5a function via bound CaM. However, it is not known which IQ motif and bound CaM are responsible for the Ca2+-dependent regulation and how the head-tail interaction is affected by Ca2+. Here, we found that the CaM in the first IQ motif (IQ1) is responsible for Ca2+ regulation of myosin 5a. In addition, we demonstrate that the C-lobe fragment of CaM in IQ1 is necessary for mediating Ca2+ regulation of myosin 5a, suggesting that the C-lobe fragment of CaM in IQ1 participates in the interaction between the head and the tail. We propose that Ca2+ induces a conformational change of the C-lobe of CaM in IQ1 and prevents interaction between the head and the tail, thus activating motor function. PMID:22437832

  5. Molecular Signaling Network Motifs Provide a Mechanistic Basis for Cellular Threshold Responses

    PubMed Central

    Bhattacharya, Sudin; Conolly, Rory B.; Clewell, Harvey J.; Kaminski, Norbert E.; Andersen, Melvin E.

    2014-01-01

    Background: Increasingly, there is a move toward using in vitro toxicity testing to assess human health risk due to chemical exposure. As with in vivo toxicity testing, an important question for in vitro results is whether there are thresholds for adverse cellular responses. Empirical evaluations may show consistency with thresholds, but the main evidence has to come from mechanistic considerations. Objectives: Cellular response behaviors depend on the molecular pathway and circuitry in the cell and the manner in which chemicals perturb these circuits. Understanding circuit structures that are inherently capable of resisting small perturbations and producing threshold responses is an important step towards mechanistically interpreting in vitro testing data. Methods: Here we have examined dose–response characteristics for several biochemical network motifs. These network motifs are basic building blocks of molecular circuits underpinning a variety of cellular functions, including adaptation, homeostasis, proliferation, differentiation, and apoptosis. For each motif, we present biological examples and models to illustrate how thresholds arise from specific network structures. Discussion and Conclusion: Integral feedback, feedforward, and transcritical bifurcation motifs can generate thresholds. Other motifs (e.g., proportional feedback and ultrasensitivity)produce responses where the slope in the low-dose region is small and stays close to the baseline. Feedforward control may lead to nonmonotonic or hormetic responses. We conclude that network motifs provide a basis for understanding thresholds for cellular responses. Computational pathway modeling of these motifs and their combinations occurring in molecular signaling networks will be a key element in new risk assessment approaches based on in vitro cellular assays. Citation: Zhang Q, Bhattacharya S, Conolly RB, Clewell HJ III, Kaminski NE, Andersen ME. 2014. Molecular signaling network motifs provide a

  6. Tyrocidine A Analogues Bearing the Planar d-Phe-2-Abz Turn Motif: How Conformation Impacts Bioactivity.

    PubMed

    Cameron, Alan J; Edwards, Patrick J B; Harjes, Elena; Sarojini, Vijayalekshmi

    2017-12-14

    The d-Phe-Pro β-turn of the cyclic β-hairpin antimicrobial decapeptide tyrocidine A, (Tyrc A) was substituted with the d-Phe-2-aminobenzoic acid (2-Abz) motif in a synthetic analogue (1). The NMR structure of 1 demonstrated that compound 1 retained the β-hairpin structure of Tyrc A with additional planarity, resulting in approximately 30-fold reduced hemolysis than Tyrc A. Although antibacterial activity was partially compromised, a single Gln to Lys substitution (2) restored activity equivalent to Tyrc A against S. aureus, enhanced activity against two Gram negative strains and maintained the reduced hemeloysis of 1. Analysis by transmission electron microscopy (TEM) suggested a membrane lytic mechanism of action for these peptides. Compound 2 also exhibits nanomolar antifungal activity in synergy with amphotericin B. The d-Phe-2-Abz turn may serve as a tool for the synthesis of structurally predictable β-hairpin libraries. Unlike traditional β-turn motifs such as d-Pro-Gly, both the 2-Abz and d-Phe rings may be further functionalized.

  7. Motif mismatches in microsatellites: insights from genome-wide investigation among 20 insect species.

    PubMed

    Behura, Susanta K; Severson, David W

    2015-02-01

    We present a detailed genome-wide comparative study of motif mismatches of microsatellites among 20 insect species representing five taxonomic orders. The results show that varying proportions (∼15-46%) of microsatellites identified in these species are imperfect in motif structure, and that they also vary in chromosomal distribution within genomes. It was observed that the genomic abundance of imperfect repeats is significantly associated with the length and number of motif mismatches of microsatellites. Furthermore, microsatellites with a higher number of mismatches tend to have lower abundance in the genome, suggesting that sequence heterogeneity of repeat motifs is a key determinant of genomic abundance of microsatellites. This relationship seems to be a general feature of microsatellites even in unrelated species such as yeast, roundworm, mouse and human. We provide a mechanistic explanation of the evolutionary link between motif heterogeneity and genomic abundance of microsatellites by examining the patterns of motif mismatches and allele sequences of single-nucleotide polymorphisms identified within microsatellite loci. Using Drosophila Reference Genetic Panel data, we further show that pattern of allelic variation modulates motif heterogeneity of microsatellites, and provide estimates of allele age of specific imperfect microsatellites found within protein-coding genes. © The Author 2014. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  8. DNA nanotechnology based on i-motif structures.

    PubMed

    Dong, Yuanchen; Yang, Zhongqiang; Liu, Dongsheng

    2014-06-17

    CONSPECTUS: Most biological processes happen at the nanometer scale, and understanding the energy transformations and material transportation mechanisms within living organisms has proved challenging. To better understand the secrets of life, researchers have investigated artificial molecular motors and devices over the past decade because such systems can mimic certain biological processes. DNA nanotechnology based on i-motif structures is one system that has played an important role in these investigations. In this Account, we summarize recent advances in functional DNA nanotechnology based on i-motif structures. The i-motif is a DNA quadruplex that occurs as four stretches of cytosine repeat sequences form C·CH(+) base pairs, and their stabilization requires slightly acidic conditions. This unique property has produced the first DNA molecular motor driven by pH changes. The motor is reliable, and studies show that it is capable of millisecond running speeds, comparable to the speed of natural protein motors. With careful design, the output of these types of motors was combined to drive micrometer-sized cantilevers bend. Using established DNA nanostructure assembly and functionalization methods, researchers can easily integrate the motor within other DNA assembled structures and functional units, producing DNA molecular devices with new functions such as suprahydrophobic/suprahydrophilic smart surfaces that switch, intelligent nanopores triggered by pH changes, molecular logic gates, and DNA nanosprings. Recently, researchers have produced motors driven by light and electricity, which have allowed DNA motors to be integrated within silicon-based nanodevices. Moreover, some devices based on i-motif structures have proven useful for investigating processes within living cells. The pH-responsiveness of the i-motif structure also provides a way to control the stepwise assembly of DNA nanostructures. In addition, because of the stability of the i-motif, this

  9. Proteome-wide search for functional motifs altered in tumors: Prediction of nuclear export signals inactivated by cancer-related mutations

    PubMed Central

    Prieto, Gorka; Fullaondo, Asier; Rodríguez, Jose A.

    2016-01-01

    Large-scale sequencing projects are uncovering a growing number of missense mutations in human tumors. Understanding the phenotypic consequences of these alterations represents a formidable challenge. In silico prediction of functionally relevant amino acid motifs disrupted by cancer mutations could provide insight into the potential impact of a mutation, and guide functional tests. We have previously described Wregex, a tool for the identification of potential functional motifs, such as nuclear export signals (NESs), in proteins. Here, we present an improved version that allows motif prediction to be combined with data from large repositories, such as the Catalogue of Somatic Mutations in Cancer (COSMIC), and to be applied to a whole proteome scale. As an example, we have searched the human proteome for candidate NES motifs that could be altered by cancer-related mutations included in the COSMIC database. A subset of the candidate NESs identified was experimentally tested using an in vivo nuclear export assay. A significant proportion of the selected motifs exhibited nuclear export activity, which was abrogated by the COSMIC mutations. In addition, our search identified a cancer mutation that inactivates the NES of the human deubiquitinase USP21, and leads to the aberrant accumulation of this protein in the nucleus. PMID:27174732

  10. Identification of 15 candidate structured noncoding RNA motifs in fungi by comparative genomics.

    PubMed

    Li, Sanshu; Breaker, Ronald R

    2017-10-13

    With the development of rapid and inexpensive DNA sequencing, the genome sequences of more than 100 fungal species have been made available. This dataset provides an excellent resource for comparative genomics analyses, which can be used to discover genetic elements, including noncoding RNAs (ncRNAs). Bioinformatics tools similar to those used to uncover novel ncRNAs in bacteria, likewise, should be useful for searching fungal genomic sequences, and the relative ease of genetic experiments with some model fungal species could facilitate experimental validation studies. We have adapted a bioinformatics pipeline for discovering bacterial ncRNAs to systematically analyze many fungal genomes. This comparative genomics pipeline integrates information on conserved RNA sequence and structural features with alternative splicing information to reveal fungal RNA motifs that are candidate regulatory domains, or that might have other possible functions. A total of 15 prominent classes of structured ncRNA candidates were identified, including variant HDV self-cleaving ribozyme representatives, atypical snoRNA candidates, and possible structured antisense RNA motifs. Candidate regulatory motifs were also found associated with genes for ribosomal proteins, S-adenosylmethionine decarboxylase (SDC), amidase, and HexA protein involved in Woronin body formation. We experimentally confirm that the variant HDV ribozymes undergo rapid self-cleavage, and we demonstrate that the SDC RNA motif reduces the expression of SAM decarboxylase by translational repression. Furthermore, we provide evidence that several other motifs discovered in this study are likely to be functional ncRNA elements. Systematic screening of fungal genomes using a computational discovery pipeline has revealed the existence of a variety of novel structured ncRNAs. Genome contexts and similarities to known ncRNA motifs provide strong evidence for the biological and biochemical functions of some newly found ncRNA motifs

  11. An integrative and applicable phylogenetic footprinting framework for cis-regulatory motifs identification in prokaryotic genomes.

    PubMed

    Liu, Bingqiang; Zhang, Hanyuan; Zhou, Chuan; Li, Guojun; Fennell, Anne; Wang, Guanghui; Kang, Yu; Liu, Qi; Ma, Qin

    2016-08-09

    Phylogenetic footprinting is an important computational technique for identifying cis-regulatory motifs in orthologous regulatory regions from multiple genomes, as motifs tend to evolve slower than their surrounding non-functional sequences. Its application, however, has several difficulties for optimizing the selection of orthologous data and reducing the false positives in motif prediction. Here we present an integrative phylogenetic footprinting framework for accurate motif predictions in prokaryotic genomes (MP(3)). The framework includes a new orthologous data preparation procedure, an additional promoter scoring and pruning method and an integration of six existing motif finding algorithms as basic motif search engines. Specifically, we collected orthologous genes from available prokaryotic genomes and built the orthologous regulatory regions based on sequence similarity of promoter regions. This procedure made full use of the large-scale genomic data and taxonomy information and filtered out the promoters with limited contribution to produce a high quality orthologous promoter set. The promoter scoring and pruning is implemented through motif voting by a set of complementary predicting tools that mine as many motif candidates as possible and simultaneously eliminate the effect of random noise. We have applied the framework to Escherichia coli k12 genome and evaluated the prediction performance through comparison with seven existing programs. This evaluation was systematically carried out at the nucleotide and binding site level, and the results showed that MP(3) consistently outperformed other popular motif finding tools. We have integrated MP(3) into our motif identification and analysis server DMINDA, allowing users to efficiently identify and analyze motifs in 2,072 completely sequenced prokaryotic genomes. The performance evaluation indicated that MP(3) is effective for predicting regulatory motifs in prokaryotic genomes. Its application may enhance

  12. Prediction of Binding Energy of Keap1 Interaction Motifs in the Nrf2 Antioxidant Pathway and Design of Potential High-Affinity Peptides.

    PubMed

    Karttunen, Mikko; Choy, Wing-Yiu; Cino, Elio A

    2018-06-07

    Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor and principal regulator of the antioxidant pathway. The Kelch domain of Kelch-like ECH-associated protein 1 (Keap1) binds to motifs in the N-terminal region of Nrf2, promoting its degradation. There is interest in developing ligands that can compete with Nrf2 for binding to Kelch, thereby activating its transcriptional activities and increasing antioxidant levels. Using experimental Δ G bind values of Kelch-binding motifs determined previously, a revised hydrophobicity-based model was developed for estimating Δ G bind from amino acid sequence and applied to rank potential uncharacterized Kelch-binding motifs identified from interaction databases and BLAST searches. Model predictions and molecular dynamics (MD) simulations suggested that full-length MAD2A binds Kelch more favorably than a high-affinity 20-mer Nrf2 E78P peptide, but that the motif in isolation is not a particularly strong binder. Endeavoring to develop shorter peptides for activating Nrf2, new designs were created based on the E78P peptide, some of which showed considerable propensity to form binding-competent structures in MD, and were predicted to interact with Kelch more favorably than the E78P peptide. The peptides could be promising new ligands for enhancing the oxidative stress response.

  13. Stem/Progenitor Cell Proteoglycans Decorated with 7-D-4, 4-C-3 and 3-B-3(-) Chondroitin Sulphate Motifs Are Morphogenetic Markers Of Tissue Development.

    PubMed

    Hayes, Anthony J; Smith, Susan M; Caterson, Bruce; Melrose, James

    2018-06-11

    This study reviewed the occurrence of chondroitin sulphate (CS) motifs 4-C-3, 7-D-4 and 3-B-3(-) which are expressed by progenitor cells in tissues undergoing morphogenesis. These motifs have a transient early expression pattern during tissue development and also appear in mature tissues during pathological remodeling and attempted repair processes by activated adult stem cells. The CS motifs are information and recognition modules, which may regulate cellular behavior and delineate stem cell niches in developmental tissues. One of the difficulties in determining the precise role of stem cells in tissue development and repair processes is their short engraftment period and the lack of specific markers, which differentiate the activated stem cell lineages from the resident cells. The CS sulphation motifs 7-D-4, 4-C-3 and 3-B-3 (-) decorate cell surface proteoglycans on activated stem/progenitor cells and appear to identify these cells in transitional areas of tissue development and in tissue repair and may be applicable to determining a more precise role for stem cells in tissue morphogenesis. This article is protected by copyright. All rights reserved. © 2018 AlphaMed Press.

  14. Argo_CUDA: Exhaustive GPU based approach for motif discovery in large DNA datasets.

    PubMed

    Vishnevsky, Oleg V; Bocharnikov, Andrey V; Kolchanov, Nikolay A

    2018-02-01

    The development of chromatin immunoprecipitation sequencing (ChIP-seq) technology has revolutionized the genetic analysis of the basic mechanisms underlying transcription regulation and led to accumulation of information about a huge amount of DNA sequences. There are a lot of web services which are currently available for de novo motif discovery in datasets containing information about DNA/protein binding. An enormous motif diversity makes their finding challenging. In order to avoid the difficulties, researchers use different stochastic approaches. Unfortunately, the efficiency of the motif discovery programs dramatically declines with the query set size increase. This leads to the fact that only a fraction of top "peak" ChIP-Seq segments can be analyzed or the area of analysis should be narrowed. Thus, the motif discovery in massive datasets remains a challenging issue. Argo_Compute Unified Device Architecture (CUDA) web service is designed to process the massive DNA data. It is a program for the detection of degenerate oligonucleotide motifs of fixed length written in 15-letter IUPAC code. Argo_CUDA is a full-exhaustive approach based on the high-performance GPU technologies. Compared with the existing motif discovery web services, Argo_CUDA shows good prediction quality on simulated sets. The analysis of ChIP-Seq sequences revealed the motifs which correspond to known transcription factor binding sites.

  15. Process-based network decomposition reveals backbone motif structure

    PubMed Central

    Wang, Guanyu; Du, Chenghang; Chen, Hao; Simha, Rahul; Rong, Yongwu; Xiao, Yi; Zeng, Chen

    2010-01-01

    A central challenge in systems biology today is to understand the network of interactions among biomolecules and, especially, the organizing principles underlying such networks. Recent analysis of known networks has identified small motifs that occur ubiquitously, suggesting that larger networks might be constructed in the manner of electronic circuits by assembling groups of these smaller modules. Using a unique process-based approach to analyzing such networks, we show for two cell-cycle networks that each of these networks contains a giant backbone motif spanning all the network nodes that provides the main functional response. The backbone is in fact the smallest network capable of providing the desired functionality. Furthermore, the remaining edges in the network form smaller motifs whose role is to confer stability properties rather than provide function. The process-based approach used in the above analysis has additional benefits: It is scalable, analytic (resulting in a single analyzable expression that describes the behavior), and computationally efficient (all possible minimal networks for a biological process can be identified and enumerated). PMID:20498084

  16. iFORM: Incorporating Find Occurrence of Regulatory Motifs.

    PubMed

    Ren, Chao; Chen, Hebing; Yang, Bite; Liu, Feng; Ouyang, Zhangyi; Bo, Xiaochen; Shu, Wenjie

    2016-01-01

    Accurately identifying the binding sites of transcription factors (TFs) is crucial to understanding the mechanisms of transcriptional regulation and human disease. We present incorporating Find Occurrence of Regulatory Motifs (iFORM), an easy-to-use and efficient tool for scanning DNA sequences with TF motifs described as position weight matrices (PWMs). Both performance assessment with a receiver operating characteristic (ROC) curve and a correlation-based approach demonstrated that iFORM achieves higher accuracy and sensitivity by integrating five classical motif discovery programs using Fisher's combined probability test. We have used iFORM to provide accurate results on a variety of data in the ENCODE Project and the NIH Roadmap Epigenomics Project, and the tool has demonstrated its utility in further elucidating individual roles of functional elements. Both the source and binary codes for iFORM can be freely accessed at https://github.com/wenjiegroup/iFORM. The identified TF binding sites across human cell and tissue types using iFORM have been deposited in the Gene Expression Omnibus under the accession ID GSE53962.

  17. Optimized mixed Markov models for motif identification

    PubMed Central

    Huang, Weichun; Umbach, David M; Ohler, Uwe; Li, Leping

    2006-01-01

    Background Identifying functional elements, such as transcriptional factor binding sites, is a fundamental step in reconstructing gene regulatory networks and remains a challenging issue, largely due to limited availability of training samples. Results We introduce a novel and flexible model, the Optimized Mixture Markov model (OMiMa), and related methods to allow adjustment of model complexity for different motifs. In comparison with other leading methods, OMiMa can incorporate more than the NNSplice's pairwise dependencies; OMiMa avoids model over-fitting better than the Permuted Variable Length Markov Model (PVLMM); and OMiMa requires smaller training samples than the Maximum Entropy Model (MEM). Testing on both simulated and actual data (regulatory cis-elements and splice sites), we found OMiMa's performance superior to the other leading methods in terms of prediction accuracy, required size of training data or computational time. Our OMiMa system, to our knowledge, is the only motif finding tool that incorporates automatic selection of the best model. OMiMa is freely available at [1]. Conclusion Our optimized mixture of Markov models represents an alternative to the existing methods for modeling dependent structures within a biological motif. Our model is conceptually simple and effective, and can improve prediction accuracy and/or computational speed over other leading methods. PMID:16749929

  18. Dienogest inhibits C-C motif chemokine ligand 20 expression in human endometriotic epithelial cells.

    PubMed

    Mita, Shizuka; Nakakuki, Masanori; Ichioka, Masayuki; Shimizu, Yutaka; Hashiba, Masamichi; Miyazaki, Hiroyasu; Kyo, Satoru

    2017-07-01

    C-C motif chemokine ligand 20 is thought to contribute to the development of endometriosis by recruiting Th17 lymphocytes into endometriotic foci. The present study investigated the effects of dienogest, a progesterone receptor agonist used to treat endometriosis, on C-C motif chemokine ligand 20 expression by endometriotic cells. Effects of dienogest on mRNA expression and protein secretion of C-C motif chemokine ligand 20 induced by interleukin 1β were assessed in three immortalized endometriotic epithelial cell lines, parental cells (EMosis-CC/TERT1), and stably expressing human progesterone receptor isoform A (EMosis-CC/TERT1/PRA+) or isoform B (EMosis-CC/TERT1/PRA-/PRB+). Dienogest markedly inhibited interleukin 1β-stimulated C-C motif chemokine ligand 20 mRNA expression and protein secretion in EMosis-CC/TERT1/PRA-/PRB+, which was abrogated by the progesterone receptor antagonist RU486. In EMosis-CC/TERT1/PRA+, dienogest slightly inhibited C-C motif chemokine ligand 20 mRNA and protein. In EMosis-CC/TERT1, dienogest slightly inhibited C-C motif chemokine ligand 20 mRNA, but had no effect on C-C motif chemokine ligand 20 protein. Dienogest inhibited interleukin 1β-induced up-regulation of C-C motif chemokine ligand 20 in endometriotic epithelial cells, mainly mediated by progesterone receptor B. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. SLIDER: a generic metaheuristic for the discovery of correlated motifs in protein-protein interaction networks.

    PubMed

    Boyen, Peter; Van Dyck, Dries; Neven, Frank; van Ham, Roeland C H J; van Dijk, Aalt D J

    2011-01-01

    Correlated motif mining (cmm) is the problem of finding overrepresented pairs of patterns, called motifs, in sequences of interacting proteins. Algorithmic solutions for cmm thereby provide a computational method for predicting binding sites for protein interaction. In this paper, we adopt a motif-driven approach where the support of candidate motif pairs is evaluated in the network. We experimentally establish the superiority of the Chi-square-based support measure over other support measures. Furthermore, we obtain that cmm is an np-hard problem for a large class of support measures (including Chi-square) and reformulate the search for correlated motifs as a combinatorial optimization problem. We then present the generic metaheuristic slider which uses steepest ascent with a neighborhood function based on sliding motifs and employs the Chi-square-based support measure. We show that slider outperforms existing motif-driven cmm methods and scales to large protein-protein interaction networks. The slider-implementation and the data used in the experiments are available on http://bioinformatics.uhasselt.be.

  20. The amino acid motif L/IIxxFE defines a novel actin-binding sequence in PDZ-RhoGEF

    PubMed Central

    Banerjee, Jayashree; Fischer, Christopher C.; Wedegaertner, Philip B.

    2009-01-01

    PDZ-RhoGEF is a member of the regulator of G protein signaling (RGS) domain-containing RhoGEFs (RGS-RhoGEFs) that link activated heterotrimeric G protein α subunits of the G12 family to activation of the small GTPase RhoA. Unique among the RGS-RhoGEFs, PDZ-RhoGEF contains a short sequence that localizes the protein to the actin cytoskeleton. In this report, we demonstrate that the actin-binding domain, located between amino acids 561–585, directly binds to F-actin in vitro. Extensive mutagenesis identifies isoleucine 568, isoleucine 569, phenylalanine 572, and glutamic acid 573 as necessary for binding to actin and for co-localization with the actin cytoskeleton in cells. These results define a novel actin-binding sequence in PDZ-RhoGEF with a critical amino acid motif of IIxxFE. Moreover, sequence analysis identifies a similar actin-binding motif in the N-terminus of the RhoGEF frabin, and, as with PDZ-RhoGEF, mutagenesis and actin interaction experiments demonstrate a motif of LIxxFE, consisting of the key amino acids leucine 23, isoleucine 24, phenylalanine 27, and glutamic acid 28. Taken together, results with PDZ-RhoGEF and frabin identify a novel actin binding sequence. Lastly, inducible dimerization of the actin-binding region of PDZ-RhoGEF revealed a dimerization-dependent actin bundling activity in vitro. PDZ-RhoGEF exists in cells as a dimer, raising the possibility that PDZ-RhoGEF could influence actin structure independent of its ability to activate RhoA. PMID:19618964

  1. Highly Conserved Arg Residue of ERFNIN Motif of Pro-Domain is Important for pH-Induced Zymogen Activation Process in Cysteine Cathepsins K and L.

    PubMed

    Aich, Pulakesh; Biswas, Sampa

    2018-06-01

    Pro-domain of a cysteine cathepsin contains a highly conserved Ex 2 Rx 2 Fx 2 Nx 3 Ix 3 N (ERFNIN) motif. The zymogen structure of cathepsins revealed that the Arg(R) residue of the motif is a central residue of a salt-bridge/H-bond network, stabilizing the scaffold of the pro-domain. Importance of the arginine is also demonstrated in studies where a single mutation (Arg → Trp) in human lysosomal cathepsin K (hCTSK) is linked to a bone-related genetic disorder "Pycnodysostosis". In the present study, we have characterized in vitro Arg → Trp mutant of hCTSK and the same mutant of hCTSL. The R → W mutant of hCTSK revealed that this mutation leads to an unstable zymogen that is spontaneously activated and auto-proteolytically degraded rapidly. In contrast, the same mutant of hCTSL is sufficiently stable and has proteolytic activity almost like its wild-type counterpart; however it shows an altered zymogen activation condition in terms of pH, temperature and time. Far and near UV circular dichroism and intrinsic tryptophan fluorescence experiments have revealed that the mutation has minimal effect on structure of the protease hCTSL. Molecular modeling studies shows that the mutated Trp31 in hCTSL forms an aromatic cluster with Tyr23 and Trp30 leading to a local stabilization of pro-domain and supplements the loss of salt-bridge interaction mediated by Arg31 in wild-type. In hCTSK-R31W mutant, due to presence of a non-aromatic Ser30 residue such interaction is not possible and may be responsible for local instability. These differences may cause detrimental effects of R31W mutation on the regulation of hCTSK auto-activation process compared to altered activation process in hCTSL.

  2. Generation of Potent T-cell Immunotherapy for Cancer using DAP12-based, Multichain, Chimeric Immunoreceptors

    PubMed Central

    Wang, Enxiu; Wang, Liang-Chuan; Tsai, Ching-Yi; Bhoj, Vijay; Gershenson, Zack; Moon, Edmund; Newick, Kheng; Sun, Jing; Lo, Albert; Baradet, Timothy; Feldman, Michael D.; Barrett, David; Puré, Ellen; Albelda, Steven; Milone, Michael C.

    2015-01-01

    Chimeric antigen receptors (CAR) bearing an antigen-binding domain linked in cis to the cytoplasmic domains of CD3ζ and costimulatory receptors have provided a potent method for engineering T-cell cytotoxicity towards B-cell leukemia and lymphoma. However, resistance to immunotherapy due to loss of T-cell effector function remains a significant barrier, especially in solid malignancies. We describe an alternative chimeric immunoreceptor design in which we have fused a single-chain variable fragment for antigen recognition to the transmembrane and cytoplasmic domains of KIR2DS2, a stimulatory killer immunoglobulin-like receptor (KIR). We show that this simple, KIR-based CAR (KIR-CAR) triggers robust antigen-specific proliferation and effector function in vitro when introduced into human T cells with DAP12, an immunotyrosine-based activation motifs (ITAM)-containing adaptor. T cells modified to express a KIR-CAR and DAP12 exhibit superior antitumor activity compared to standard first and second generation CD3ζ-based CARs in a xenograft model of mesothelioma highly resistant to immunotherapy. The enhanced antitumor activity is associated with improved retention of chimeric immunoreceptor expression and improved effector function of isolated tumor-infiltrating lymphocytes. These results support the exploration of KIR-CARs for adoptive T-cell immunotherapy, particularly in immunotherapy-resistant solid tumors. PMID:25941351

  3. Trend Motif: A Graph Mining Approach for Analysis of Dynamic Complex Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, R; McCallen, S; Almaas, E

    2007-05-28

    Complex networks have been used successfully in scientific disciplines ranging from sociology to microbiology to describe systems of interacting units. Until recently, studies of complex networks have mainly focused on their network topology. However, in many real world applications, the edges and vertices have associated attributes that are frequently represented as vertex or edge weights. Furthermore, these weights are often not static, instead changing with time and forming a time series. Hence, to fully understand the dynamics of the complex network, we have to consider both network topology and related time series data. In this work, we propose a motifmore » mining approach to identify trend motifs for such purposes. Simply stated, a trend motif describes a recurring subgraph where each of its vertices or edges displays similar dynamics over a userdefined period. Given this, each trend motif occurrence can help reveal significant events in a complex system; frequent trend motifs may aid in uncovering dynamic rules of change for the system, and the distribution of trend motifs may characterize the global dynamics of the system. Here, we have developed efficient mining algorithms to extract trend motifs. Our experimental validation using three disparate empirical datasets, ranging from the stock market, world trade, to a protein interaction network, has demonstrated the efficiency and effectiveness of our approach.« less

  4. Identifying the preferred RNA motifs and chemotypes that interact by probing millions of combinations.

    PubMed

    Tran, Tuan; Disney, Matthew D

    2012-01-01

    RNA is an important therapeutic target but information about RNA-ligand interactions is limited. Here, we report a screening method that probes over 3,000,000 combinations of RNA motif-small molecule interactions to identify the privileged RNA structures and chemical spaces that interact. Specifically, a small molecule library biased for binding RNA was probed for binding to over 70,000 unique RNA motifs in a high throughput solution-based screen. The RNA motifs that specifically bind each small molecule were identified by microarray-based selection. In this library-versus-library or multidimensional combinatorial screening approach, hairpin loops (among a variety of RNA motifs) were the preferred RNA motif space that binds small molecules. Furthermore, it was shown that indole, 2-phenyl indole, 2-phenyl benzimidazole and pyridinium chemotypes allow for specific recognition of RNA motifs. As targeting RNA with small molecules is an extremely challenging area, these studies provide new information on RNA-ligand interactions that has many potential uses.

  5. Identifying the Preferred RNA Motifs and Chemotypes that Interact by Probing Millions of Combinations

    PubMed Central

    Tran, Tuan; Disney, Matthew D.

    2012-01-01

    RNA is an important therapeutic target but information about RNA-ligand interactions is limited. Here we report a screening method that probes over 3,000,000 combinations of RNA motif-small molecule interactions to identify the privileged RNA structures and chemical spaces that interact. Specifically, a small molecule library biased for binding RNA was probed for binding to over 70,000 unique RNA motifs in a high throughput solution-based screen. The RNA motifs that specifically bind each small molecule were identified by microarray-based selection. In this library-versus-library or multidimensional combinatorial screening approach, hairpin loops (amongst a variety of RNA motifs) were the preferred RNA motif space that binds small molecules. Furthermore, it was shown that indole, 2-phenyl indole, 2-phenyl benzimidazole, and pyridinium chemotypes allow for specific recognition of RNA motifs. Since targeting RNA with small molecules is an extremely challenging area, these studies provide new information on RNA-ligand interactions that has many potential uses. PMID:23047683

  6. A Second Las17 Monomeric Actin-Binding Motif Functions in Arp2/3-Dependent Actin Polymerization During Endocytosis

    PubMed Central

    Feliciano, Daniel; Tolsma, Thomas O.; Farrell, Kristen B.; Aradi, Al; Di Pietro, Santiago M.

    2018-01-01

    During clathrin-mediated endocytosis (CME), actin assembly provides force to drive vesicle internalization. Members of the Wiskott–Aldrich syndrome protein (WASP) family play a fundamental role stimulating actin assembly. WASP family proteins contain a WH2 motif that binds globular actin (G-actin) and a central-acidic motif that binds the Arp2/3 complex, thus promoting the formation of branched actin filaments. Yeast WASP (Las17) is the strongest of five factors promoting Arp2/3-dependent actin polymerization during CME. It was suggested that this strong activity may be caused by a putative second G-actin-binding motif in Las17. Here, we describe the in vitro and in vivo characterization of such Las17 G-actin-binding motif (LGM) and its dependence on a group of conserved arginine residues. Using the yeast two-hybrid system, GST-pulldown, fluorescence polarization and pyrene-actin polymerization assays, we show that LGM binds G-actin and is necessary for normal Arp2/3-mediated actin polymerization in vitro. Live-cell fluorescence microscopy experiments demonstrate that LGM is required for normal dynamics of actin polymerization during CME. Further, LGM is necessary for normal dynamics of endocytic machinery components that are recruited at early, intermediate and late stages of endocytosis, as well as for optimal endocytosis of native CME cargo. Both in vitro and in vivo experiments show that LGM has relatively lower potency compared to the previously known Las17 G-actin-binding motif, WH2. These results establish a second G-actin-binding motif in Las17 and advance our knowledge on the mechanism of actin assembly during CME. PMID:25615019

  7. De novo discovery of structural motifs in RNA 3D structures through clustering.

    PubMed

    Ge, Ping; Islam, Shahidul; Zhong, Cuncong; Zhang, Shaojie

    2018-05-18

    As functional components in three-dimensional (3D) conformation of an RNA, the RNA structural motifs provide an easy way to associate the molecular architectures with their biological mechanisms. In the past years, many computational tools have been developed to search motif instances by using the existing knowledge of well-studied families. Recently, with the rapidly increasing number of resolved RNA 3D structures, there is an urgent need to discover novel motifs with the newly presented information. In this work, we classify all the loops in non-redundant RNA 3D structures to detect plausible RNA structural motif families by using a clustering pipeline. Compared with other clustering approaches, our method has two benefits: first, the underlying alignment algorithm is tolerant to the variations in 3D structures. Second, sophisticated downstream analysis has been performed to ensure the clusters are valid and easily applied to further research. The final clustering results contain many interesting new variants of known motif families, such as GNAA tetraloop, kink-turn, sarcin-ricin and T-loop. We have also discovered potential novel functional motifs conserved in ribosomal RNA, sgRNA, SRP RNA, riboswitch and ribozyme.

  8. LDsplit: screening for cis-regulatory motifs stimulating meiotic recombination hotspots by analysis of DNA sequence polymorphisms.

    PubMed

    Yang, Peng; Wu, Min; Guo, Jing; Kwoh, Chee Keong; Przytycka, Teresa M; Zheng, Jie

    2014-02-17

    As a fundamental genomic element, meiotic recombination hotspot plays important roles in life sciences. Thus uncovering its regulatory mechanisms has broad impact on biomedical research. Despite the recent identification of the zinc finger protein PRDM9 and its 13-mer binding motif as major regulators for meiotic recombination hotspots, other regulators remain to be discovered. Existing methods for finding DNA sequence motifs of recombination hotspots often rely on the enrichment of co-localizations between hotspots and short DNA patterns, which ignore the cross-individual variation of recombination rates and sequence polymorphisms in the population. Our objective in this paper is to capture signals encoded in genetic variations for the discovery of recombination-associated DNA motifs. Recently, an algorithm called "LDsplit" has been designed to detect the association between single nucleotide polymorphisms (SNPs) and proximal meiotic recombination hotspots. The association is measured by the difference of population recombination rates at a hotspot between two alleles of a candidate SNP. Here we present an open source software tool of LDsplit, with integrative data visualization for recombination hotspots and their proximal SNPs. Applying LDsplit on SNPs inside an established 7-mer motif bound by PRDM9 we observed that SNP alleles preserving the original motif tend to have higher recombination rates than the opposite alleles that disrupt the motif. Running on SNP windows around hotspots each containing an occurrence of the 7-mer motif, LDsplit is able to guide the established motif finding algorithm of MEME to recover the 7-mer motif. In contrast, without LDsplit the 7-mer motif could not be identified. LDsplit is a software tool for the discovery of cis-regulatory DNA sequence motifs stimulating meiotic recombination hotspots by screening and narrowing down to hotspot associated SNPs. It is the first computational method that utilizes the genetic variation of

  9. LDsplit: screening for cis-regulatory motifs stimulating meiotic recombination hotspots by analysis of DNA sequence polymorphisms

    PubMed Central

    2014-01-01

    Background As a fundamental genomic element, meiotic recombination hotspot plays important roles in life sciences. Thus uncovering its regulatory mechanisms has broad impact on biomedical research. Despite the recent identification of the zinc finger protein PRDM9 and its 13-mer binding motif as major regulators for meiotic recombination hotspots, other regulators remain to be discovered. Existing methods for finding DNA sequence motifs of recombination hotspots often rely on the enrichment of co-localizations between hotspots and short DNA patterns, which ignore the cross-individual variation of recombination rates and sequence polymorphisms in the population. Our objective in this paper is to capture signals encoded in genetic variations for the discovery of recombination-associated DNA motifs. Results Recently, an algorithm called “LDsplit” has been designed to detect the association between single nucleotide polymorphisms (SNPs) and proximal meiotic recombination hotspots. The association is measured by the difference of population recombination rates at a hotspot between two alleles of a candidate SNP. Here we present an open source software tool of LDsplit, with integrative data visualization for recombination hotspots and their proximal SNPs. Applying LDsplit on SNPs inside an established 7-mer motif bound by PRDM9 we observed that SNP alleles preserving the original motif tend to have higher recombination rates than the opposite alleles that disrupt the motif. Running on SNP windows around hotspots each containing an occurrence of the 7-mer motif, LDsplit is able to guide the established motif finding algorithm of MEME to recover the 7-mer motif. In contrast, without LDsplit the 7-mer motif could not be identified. Conclusions LDsplit is a software tool for the discovery of cis-regulatory DNA sequence motifs stimulating meiotic recombination hotspots by screening and narrowing down to hotspot associated SNPs. It is the first computational method that

  10. An Efficient Scheme for Crystal Structure Prediction Based on Structural Motifs

    DOE PAGES

    Zhu, Zizhong; Wu, Ping; Wu, Shunqing; ...

    2017-05-15

    An efficient scheme based on structural motifs is proposed for the crystal structure prediction of materials. The key advantage of the present method comes in two fold: first, the degrees of freedom of the system are greatly reduced, since each structural motif, regardless of its size, can always be described by a set of parameters (R, θ, φ) with five degrees of freedom; second, the motifs could always appear in the predicted structures when the energies of the structures are relatively low. Both features make the present scheme a very efficient method for predicting desired materials. The method has beenmore » applied to the case of LiFePO 4, an important cathode material for lithium-ion batteries. Numerous new structures of LiFePO 4 have been found, compared to those currently available, available, demonstrating the reliability of the present methodology and illustrating the promise of the concept of structural motifs.« less

  11. An Efficient Scheme for Crystal Structure Prediction Based on Structural Motifs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Zizhong; Wu, Ping; Wu, Shunqing

    An efficient scheme based on structural motifs is proposed for the crystal structure prediction of materials. The key advantage of the present method comes in two fold: first, the degrees of freedom of the system are greatly reduced, since each structural motif, regardless of its size, can always be described by a set of parameters (R, θ, φ) with five degrees of freedom; second, the motifs could always appear in the predicted structures when the energies of the structures are relatively low. Both features make the present scheme a very efficient method for predicting desired materials. The method has beenmore » applied to the case of LiFePO 4, an important cathode material for lithium-ion batteries. Numerous new structures of LiFePO 4 have been found, compared to those currently available, available, demonstrating the reliability of the present methodology and illustrating the promise of the concept of structural motifs.« less

  12. New Structural and Functional Contexts of the Dx[DN]xDG Linear Motif: Insights into Evolution of Calcium-Binding Proteins

    PubMed Central

    Rigden, Daniel J.; Woodhead, Duncan D.; Wong, Prudence W. H.; Galperin, Michael Y.

    2011-01-01

    Binding of calcium ions (Ca2+) to proteins can have profound effects on their structure and function. Common roles of calcium binding include structure stabilization and regulation of activity. It is known that diverse families – EF-hands being one of at least twelve – use a Dx[DN]xDG linear motif to bind calcium in near-identical fashion. Here, four novel structural contexts for the motif are described. Existing experimental data for one of them, a thermophilic archaeal subtilisin, demonstrate for the first time a role for Dx[DN]xDG-bound calcium in protein folding. An integrin-like embedding of the motif in the blade of a β-propeller fold – here named the calcium blade – is discovered in structures of bacterial and fungal proteins. Furthermore, sensitive database searches suggest a common origin for the calcium blade in β-propeller structures of different sizes and a pan-kingdom distribution of these proteins. Factors favouring the multiple convergent evolution of the motif appear to include its general Asp-richness, the regular spacing of the Asp residues and the fact that change of Asp into Gly and vice versa can occur though a single nucleotide change. Among the known structural contexts for the Dx[DN]xDG motif, only the calcium blade and the EF-hand are currently found intracellularly in large numbers, perhaps because the higher extracellular concentration of Ca2+ allows for easier fixing of newly evolved motifs that have acquired useful functions. The analysis presented here will inform ongoing efforts toward prediction of similar calcium-binding motifs from sequence information alone. PMID:21720552

  13. Motifs, modules and games in bacteria.

    PubMed

    Wolf, Denise M; Arkin, Adam P

    2003-04-01

    Global explorations of regulatory network dynamics, organization and evolution have become tractable thanks to high-throughput sequencing and molecular measurement of bacterial physiology. From these, a nascent conceptual framework is developing, that views the principles of regulation in term of motifs, modules and games. Motifs are small, repeated, and conserved biological units ranging from molecular domains to small reaction networks. They are arranged into functional modules, genetically dissectible cellular functions such as the cell cycle, or different stress responses. The dynamical functioning of modules defines the organism's strategy to survive in a game, pitting cell against cell, and cell against environment. Placing pathway structure and dynamics into an evolutionary context begins to allow discrimination between those physical and molecular features that particularize a species to its surroundings, and those that provide core physiological function. This approach promises to generate a higher level understanding of cellular design, pathway evolution and cellular bioengineering.

  14. Conservation of the PTEN catalytic motif in the bacterial undecaprenyl pyrophosphate phosphatase, BacA/UppP.

    PubMed

    Bickford, Justin S; Nick, Harry S

    2013-12-01

    Isoprenoid lipid carriers are essential in protein glycosylation and bacterial cell envelope biosynthesis. The enzymes involved in their metabolism (synthases, kinases and phosphatases) are therefore critical to cell viability. In this review, we focus on two broad groups of isoprenoid pyrophosphate phosphatases. One group, containing phosphatidic acid phosphatase motifs, includes the eukaryotic dolichyl pyrophosphate phosphatases and proposed recycling bacterial undecaprenol pyrophosphate phosphatases, PgpB, YbjB and YeiU/LpxT. The second group comprises the bacterial undecaprenol pyrophosphate phosphatase, BacA/UppP, responsible for initial formation of undecaprenyl phosphate, which we predict contains a tyrosine phosphate phosphatase motif resembling that of the tumour suppressor, phosphatase and tensin homologue (PTEN). Based on protein sequence alignments across species and 2D structure predictions, we propose catalytic and lipid recognition motifs unique to BacA/UppP enzymes. The verification of our proposed active-site residues would provide new strategies for the development of substrate-specific inhibitors which mimic both the lipid and pyrophosphate moieties, leading to the development of novel antimicrobial agents.

  15. SVM2Motif—Reconstructing Overlapping DNA Sequence Motifs by Mimicking an SVM Predictor

    PubMed Central

    Vidovic, Marina M. -C.; Görnitz, Nico; Müller, Klaus-Robert; Rätsch, Gunnar; Kloft, Marius

    2015-01-01

    Identifying discriminative motifs underlying the functionality and evolution of organisms is a major challenge in computational biology. Machine learning approaches such as support vector machines (SVMs) achieve state-of-the-art performances in genomic discrimination tasks, but—due to its black-box character—motifs underlying its decision function are largely unknown. As a remedy, positional oligomer importance matrices (POIMs) allow us to visualize the significance of position-specific subsequences. Although being a major step towards the explanation of trained SVM models, they suffer from the fact that their size grows exponentially in the length of the motif, which renders their manual inspection feasible only for comparably small motif sizes, typically k ≤ 5. In this work, we extend the work on positional oligomer importance matrices, by presenting a new machine-learning methodology, entitled motifPOIM, to extract the truly relevant motifs—regardless of their length and complexity—underlying the predictions of a trained SVM model. Our framework thereby considers the motifs as free parameters in a probabilistic model, a task which can be phrased as a non-convex optimization problem. The exponential dependence of the POIM size on the oligomer length poses a major numerical challenge, which we address by an efficient optimization framework that allows us to find possibly overlapping motifs consisting of up to hundreds of nucleotides. We demonstrate the efficacy of our approach on a synthetic data set as well as a real-world human splice site data set. PMID:26690911

  16. Novel peptide-based platform for the dual presentation of biologically active peptide motifs on biomaterials.

    PubMed

    Mas-Moruno, Carlos; Fraioli, Roberta; Albericio, Fernando; Manero, José María; Gil, F Javier

    2014-05-14

    Biofunctionalization of metallic materials with cell adhesive molecules derived from the extracellular matrix is a feasible approach to improve cell-material interactions and enhance the biointegration of implant materials (e.g., osseointegration of bone implants). However, classical biomimetic strategies may prove insufficient to elicit complex and multiple biological signals required in the processes of tissue regeneration. Thus, newer strategies are focusing on installing multifunctionality on biomaterials. In this work, we introduce a novel peptide-based divalent platform with the capacity to simultaneously present distinct bioactive peptide motifs in a chemically controlled fashion. As a proof of concept, the integrin-binding sequences RGD and PHSRN were selected and introduced in the platform. The biofunctionalization of titanium with this platform showed a positive trend towards increased numbers of cell attachment, and statistically higher values of spreading and proliferation of osteoblast-like cells compared to control noncoated samples. Moreover, it displayed statistically comparable or improved cell responses compared to samples coated with the single peptides or with an equimolar mixture of the two motifs. Osteoblast-like cells produced higher levels of alkaline phosphatase on surfaces functionalized with the platform than on control titanium; however, these values were not statistically significant. This study demonstrates that these peptidic structures are versatile tools to convey multiple biofunctionality to biomaterials in a chemically defined manner.

  17. Wayward Warriors: The Viking Motif in Swedish and English Children's Literature

    ERIC Educational Resources Information Center

    Sundmark, Björn

    2014-01-01

    In this article the Viking motif in children's literature is explored--from its roots in (adult) nationalist and antiquarian discourse, over pedagogical and historical texts for children, to the eventual diversification (or dissolution) of the motif into different genres and forms. The focus is on Swedish Viking narratives, but points of…

  18. Gene Isolation Using Degenerate Primers Targeting Protein Motif: A Laboratory Exercise

    ERIC Educational Resources Information Center

    Yeo, Brandon Pei Hui; Foong, Lian Chee; Tam, Sheh May; Lee, Vivian; Hwang, Siaw San

    2018-01-01

    Structures and functions of protein motifs are widely included in many biology-based course syllabi. However, little emphasis is placed to link this knowledge to applications in biotechnology to enhance the learning experience. Here, the conserved motifs of nucleotide binding site-leucine rich repeats (NBS-LRR) proteins, successfully used for the…

  19. Evolutionary dynamics of a conserved sequence motif in the ribosomal genes of the ciliate Paramecium.

    PubMed

    Catania, Francesco; Lynch, Michael

    2010-05-04

    In protozoa, the identification of preserved motifs by comparative genomics is often impeded by difficulties to generate reliable alignments for non-coding sequences. Moreover, the evolutionary dynamics of regulatory elements in 3' untranslated regions (both in protozoa and metazoa) remains a virtually unexplored issue. By screening Paramecium tetraurelia's 3' untranslated regions for 8-mers that were previously found to be preserved in mammalian 3' UTRs, we detect and characterize a motif that is distinctly conserved in the ribosomal genes of this ciliate. The motif appears to be conserved across Paramecium aurelia species but is absent from the ribosomal genes of four additional non-Paramecium species surveyed, including another ciliate, Tetrahymena thermophila. Motif-free ribosomal genes retain fewer paralogs in the genome and appear to be lost more rapidly relative to motif-containing genes. Features associated with the discovered preserved motif are consistent with this 8-mer playing a role in post-transcriptional regulation. Our observations 1) shed light on the evolution of a putative regulatory motif across large phylogenetic distances; 2) are expected to facilitate the understanding of the modulation of ribosomal genes expression in Paramecium; and 3) reveal a largely unexplored--and presumably not restricted to Paramecium--association between the presence/absence of a DNA motif and the evolutionary fate of its host genes.

  20. The bioactive acidic serine- and aspartate-rich motif peptide.

    PubMed

    Minamizaki, Tomoko; Yoshiko, Yuji

    2015-01-01

    The organic component of the bone matrix comprises 40% dry weight of bone. The organic component is mostly composed of type I collagen and small amounts of non-collagenous proteins (NCPs) (10-15% of the total bone protein content). The small integrin-binding ligand N-linked glycoprotein (SIBLING) family, a NCP, is considered to play a key role in bone mineralization. SIBLING family of proteins share common structural features and includes the arginine-glycine-aspartic acid (RGD) motif and acidic serine- and aspartic acid-rich motif (ASARM). Clinical manifestations of gene mutations and/or genetically modified mice indicate that SIBLINGs play diverse roles in bone and extraskeletal tissues. ASARM peptides might not be primary responsible for the functional diversity of SIBLINGs, but this motif is suggested to be a key domain of SIBLINGs. However, the exact function of ASARM peptides is poorly understood. In this article, we discuss the considerable progress made in understanding the role of ASARM as a bioactive peptide.

  1. Double-hydrophobic elastin-like polypeptides with added functional motifs: Self-assembly and cytocompatibility.

    PubMed

    Le, Duc H T; Tsutsui, Yoko; Sugawara-Narutaki, Ayae; Yukawa, Hiroshi; Baba, Yoshinobu; Ohtsuki, Chikara

    2017-09-01

    We have recently developed a novel double-hydrophobic elastin-like triblock polypeptide called GPG, designed after the uneven distribution of two different hydrophobic domains found in elastin, an extracellular matrix protein providing elasticity and resilience to tissues. Upon temperature trigger, GPG undergoes a sequential self-assembling process to form flexible beaded nanofibers with high homogeneity and excellent dispersibility in water. Given that GPG might be a potential elastin-mimetic material, we sought to explore the biological activities of this block polypeptide. Besides GPG, several functionalized derivatives were also constructed by fusing functional motifs such as KAAK or KAAKGRGDS at the C-terminal of GPG. Although the added motifs affected the kinetics of fiber formation and β-sheet contents, all three GPGs assembled into beaded nanofibers at the physiological temperature. The resulting GPG nanofibers preserved their beaded structures in cell culture medium; therefore, they were coated on polystyrene substrates to study their cytocompatibility toward mouse embryonic fibroblasts, NIH-3T3. Among the three polypeptides, GPG having the cell-binding motif GRGDS derived from fibronectin showed excellent cell adhesion and cell proliferation properties compared to other conventional materials, suggesting its promising applications as extracellular matrices for mammalian cells. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2475-2484, 2017. © 2017 Wiley Periodicals, Inc.

  2. SA-Mot: a web server for the identification of motifs of interest extracted from protein loops

    PubMed Central

    Regad, Leslie; Saladin, Adrien; Maupetit, Julien; Geneix, Colette; Camproux, Anne-Claude

    2011-01-01

    The detection of functional motifs is an important step for the determination of protein functions. We present here a new web server SA-Mot (Structural Alphabet Motif) for the extraction and location of structural motifs of interest from protein loops. Contrary to other methods, SA-Mot does not focus only on functional motifs, but it extracts recurrent and conserved structural motifs involved in structural redundancy of loops. SA-Mot uses the structural word notion to extract all structural motifs from uni-dimensional sequences corresponding to loop structures. Then, SA-Mot provides a description of these structural motifs using statistics computed in the loop data set and in SCOP superfamily, sequence and structural parameters. SA-Mot results correspond to an interactive table listing all structural motifs extracted from a target structure and their associated descriptors. Using this information, the users can easily locate loop regions that are important for the protein folding and function. The SA-Mot web server is available at http://sa-mot.mti.univ-paris-diderot.fr. PMID:21665924

  3. SA-Mot: a web server for the identification of motifs of interest extracted from protein loops.

    PubMed

    Regad, Leslie; Saladin, Adrien; Maupetit, Julien; Geneix, Colette; Camproux, Anne-Claude

    2011-07-01

    The detection of functional motifs is an important step for the determination of protein functions. We present here a new web server SA-Mot (Structural Alphabet Motif) for the extraction and location of structural motifs of interest from protein loops. Contrary to other methods, SA-Mot does not focus only on functional motifs, but it extracts recurrent and conserved structural motifs involved in structural redundancy of loops. SA-Mot uses the structural word notion to extract all structural motifs from uni-dimensional sequences corresponding to loop structures. Then, SA-Mot provides a description of these structural motifs using statistics computed in the loop data set and in SCOP superfamily, sequence and structural parameters. SA-Mot results correspond to an interactive table listing all structural motifs extracted from a target structure and their associated descriptors. Using this information, the users can easily locate loop regions that are important for the protein folding and function. The SA-Mot web server is available at http://sa-mot.mti.univ-paris-diderot.fr.

  4. Genome-wide colonization of gene regulatory elements by G4 DNA motifs

    PubMed Central

    Du, Zhuo; Zhao, Yiqiang; Li, Ning

    2009-01-01

    G-quadruplex (or G4 DNA), a stable four-stranded structure found in guanine-rich regions, is implicated in the transcriptional regulation of genes involved in growth and development. Previous studies on the role of G4 DNA in gene regulation mostly focused on genomic regions proximal to transcription start sites (TSSs). To gain a more comprehensive understanding of the regulatory role of G4 DNA, we examined the landscape of potential G4 DNA (PG4Ms) motifs in the human genome and found that G4 motifs, not restricted to those found in the TSS-proximal regions, are bias toward gene-associated regions. Significantly, analyses of G4 motifs in seven types of well-known gene regulatory elements revealed a constitutive enrichment pattern and the clusters of G4 motifs tend to be colocalized with regulatory elements. Considering our analysis from a genome evolutionary perspective, we found evidence that the occurrence and accumulation of certain progenitors and canonical G4 DNA motifs within regulatory regions were progressively favored by natural selection. Our results suggest that G4 DNA motifs are ‘colonized’ in regulatory regions, supporting a likely genome-wide role of G4 DNA in gene regulation. We hypothesize that G4 DNA is a regulatory apparatus situated in regulatory elements, acting as a molecular switch that can modulate the role of the host functional regions, by transition in DNA structure. PMID:19759215

  5. qPMS9: An Efficient Algorithm for Quorum Planted Motif Search

    NASA Astrophysics Data System (ADS)

    Nicolae, Marius; Rajasekaran, Sanguthevar

    2015-01-01

    Discovering patterns in biological sequences is a crucial problem. For example, the identification of patterns in DNA sequences has resulted in the determination of open reading frames, identification of gene promoter elements, intron/exon splicing sites, and SH RNAs, location of RNA degradation signals, identification of alternative splicing sites, etc. In protein sequences, patterns have led to domain identification, location of protease cleavage sites, identification of signal peptides, protein interactions, determination of protein degradation elements, identification of protein trafficking elements, discovery of short functional motifs, etc. In this paper we focus on the identification of an important class of patterns, namely, motifs. We study the (l, d) motif search problem or Planted Motif Search (PMS). PMS receives as input n strings and two integers l and d. It returns all sequences M of length l that occur in each input string, where each occurrence differs from M in at most d positions. Another formulation is quorum PMS (qPMS), where the motif appears in at least q% of the strings. We introduce qPMS9, a parallel exact qPMS algorithm that offers significant runtime improvements on DNA and protein datasets. qPMS9 solves the challenging DNA (l, d)-instances (28, 12) and (30, 13). The source code is available at https://code.google.com/p/qpms9/.

  6. How pathogens use linear motifs to perturb host cell networks.

    PubMed

    Via, Allegra; Uyar, Bora; Brun, Christine; Zanzoni, Andreas

    2015-01-01

    Molecular mimicry is one of the powerful stratagems that pathogens employ to colonise their hosts and take advantage of host cell functions to guarantee their replication and dissemination. In particular, several viruses have evolved the ability to interact with host cell components through protein short linear motifs (SLiMs) that mimic host SLiMs, thus facilitating their internalisation and the manipulation of a wide range of cellular networks. Here we present convincing evidence from the literature that motif mimicry also represents an effective, widespread hijacking strategy in prokaryotic and eukaryotic parasites. Further insights into host motif mimicry would be of great help in the elucidation of the molecular mechanisms behind host cell invasion and the development of anti-infective therapeutic strategies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Effector prediction in host-pathogen interaction based on a Markov model of a ubiquitous EPIYA motif

    PubMed Central

    2010-01-01

    Background Effector secretion is a common strategy of pathogen in mediating host-pathogen interaction. Eight EPIYA-motif containing effectors have recently been discovered in six pathogens. Once these effectors enter host cells through type III/IV secretion systems (T3SS/T4SS), tyrosine in the EPIYA motif is phosphorylated, which triggers effectors binding other proteins to manipulate host-cell functions. The objectives of this study are to evaluate the distribution pattern of EPIYA motif in broad biological species, to predict potential effectors with EPIYA motif, and to suggest roles and biological functions of potential effectors in host-pathogen interactions. Results A hidden Markov model (HMM) of five amino acids was built for the EPIYA-motif based on the eight known effectors. Using this HMM to search the non-redundant protein database containing 9,216,047 sequences, we obtained 107,231 sequences with at least one EPIYA motif occurrence and 3115 sequences with multiple repeats of the EPIYA motif. Although the EPIYA motif exists among broad species, it is significantly over-represented in some particular groups of species. For those proteins containing at least four copies of EPIYA motif, most of them are from intracellular bacteria, extracellular bacteria with T3SS or T4SS or intracellular protozoan parasites. By combining the EPIYA motif and the adjacent SH2 binding motifs (KK, R4, Tarp and Tir), we built HMMs of nine amino acids and predicted many potential effectors in bacteria and protista by the HMMs. Some potential effectors for pathogens (such as Lawsonia intracellularis, Plasmodium falciparum and Leishmania major) are suggested. Conclusions Our study indicates that the EPIYA motif may be a ubiquitous functional site for effectors that play an important pathogenicity role in mediating host-pathogen interactions. We suggest that some intracellular protozoan parasites could secrete EPIYA-motif containing effectors through secretion systems similar to the

  8. SALAD database: a motif-based database of protein annotations for plant comparative genomics

    PubMed Central

    Mihara, Motohiro; Itoh, Takeshi; Izawa, Takeshi

    2010-01-01

    Proteins often have several motifs with distinct evolutionary histories. Proteins with similar motifs have similar biochemical properties and thus related biological functions. We constructed a unique comparative genomics database termed the SALAD database (http://salad.dna.affrc.go.jp/salad/) from plant-genome-based proteome data sets. We extracted evolutionarily conserved motifs by MEME software from 209 529 protein-sequence annotation groups selected by BLASTP from the proteome data sets of 10 species: rice, sorghum, Arabidopsis thaliana, grape, a lycophyte, a moss, 3 algae, and yeast. Similarity clustering of each protein group was performed by pairwise scoring of the motif patterns of the sequences. The SALAD database provides a user-friendly graphical viewer that displays a motif pattern diagram linked to the resulting bootstrapped dendrogram for each protein group. Amino-acid-sequence-based and nucleotide-sequence-based phylogenetic trees for motif combination alignment, a logo comparison diagram for each clade in the tree, and a Pfam-domain pattern diagram are also available. We also developed a viewer named ‘SALAD on ARRAYs’ to view arbitrary microarray data sets of paralogous genes linked to the same dendrogram in a window. The SALAD database is a powerful tool for comparing protein sequences and can provide valuable hints for biological analysis. PMID:19854933

  9. SALAD database: a motif-based database of protein annotations for plant comparative genomics.

    PubMed

    Mihara, Motohiro; Itoh, Takeshi; Izawa, Takeshi

    2010-01-01

    Proteins often have several motifs with distinct evolutionary histories. Proteins with similar motifs have similar biochemical properties and thus related biological functions. We constructed a unique comparative genomics database termed the SALAD database (http://salad.dna.affrc.go.jp/salad/) from plant-genome-based proteome data sets. We extracted evolutionarily conserved motifs by MEME software from 209,529 protein-sequence annotation groups selected by BLASTP from the proteome data sets of 10 species: rice, sorghum, Arabidopsis thaliana, grape, a lycophyte, a moss, 3 algae, and yeast. Similarity clustering of each protein group was performed by pairwise scoring of the motif patterns of the sequences. The SALAD database provides a user-friendly graphical viewer that displays a motif pattern diagram linked to the resulting bootstrapped dendrogram for each protein group. Amino-acid-sequence-based and nucleotide-sequence-based phylogenetic trees for motif combination alignment, a logo comparison diagram for each clade in the tree, and a Pfam-domain pattern diagram are also available. We also developed a viewer named 'SALAD on ARRAYs' to view arbitrary microarray data sets of paralogous genes linked to the same dendrogram in a window. The SALAD database is a powerful tool for comparing protein sequences and can provide valuable hints for biological analysis.

  10. Phosphatidylinositol-4-kinase type II alpha contains an AP-3-sorting motif and a kinase domain that are both required for endosome traffic.

    PubMed

    Craige, Branch; Salazar, Gloria; Faundez, Victor

    2008-04-01

    The adaptor complex 3 (AP-3) targets membrane proteins from endosomes to lysosomes, lysosome-related organelles and synaptic vesicles. Phosphatidylinositol-4-kinase type II alpha (PI4KIIalpha) is one of several proteins possessing catalytic domains that regulate AP-3-dependent sorting. Here we present evidence that PI4KIIalpha uniquely behaves both as a membrane protein cargo as well as an enzymatic regulator of adaptor function. In fact, AP-3 and PI4KIIalpha form a complex that requires a dileucine-sorting motif present in PI4KIIalpha. Mutagenesis of either the PI4KIIalpha-sorting motif or its kinase-active site indicates that both are necessary to interact with AP-3 and properly localize PI4KIIalpha to LAMP-1-positive endosomes. Similarly, both the kinase activity and the sorting signal present in PI4KIIalpha are necessary to rescue endosomal PI4KIIalpha siRNA-induced mutant phenotypes. We propose a mechanism whereby adaptors use canonical sorting motifs to selectively recruit a regulatory enzymatic activity to restricted membrane domains.

  11. Detecting Statistically Significant Communities of Triangle Motifs in Undirected Networks

    DTIC Science & Technology

    2016-04-26

    REPORT TYPE Final 3. DATES COVERED (From - To) 15 Oct 2014 to 14 Jan 2015 4. TITLE AND SUBTITLE Detecting statistically significant clusters of...extend the work of Perry et al. [6] by developing a statistical framework that supports the detection of triangle motif-based clusters in complex...priori, the need for triangle motif-based clustering . 2. Developed an algorithm for clustering undirected networks, where the triangle con guration was

  12. Simultaneously learning DNA motif along with its position and sequence rank preferences through expectation maximization algorithm.

    PubMed

    Zhang, ZhiZhuo; Chang, Cheng Wei; Hugo, Willy; Cheung, Edwin; Sung, Wing-Kin

    2013-03-01

    Although de novo motifs can be discovered through mining over-represented sequence patterns, this approach misses some real motifs and generates many false positives. To improve accuracy, one solution is to consider some additional binding features (i.e., position preference and sequence rank preference). This information is usually required from the user. This article presents a de novo motif discovery algorithm called SEME (sampling with expectation maximization for motif elicitation), which uses pure probabilistic mixture model to model the motif's binding features and uses expectation maximization (EM) algorithms to simultaneously learn the sequence motif, position, and sequence rank preferences without asking for any prior knowledge from the user. SEME is both efficient and accurate thanks to two important techniques: the variable motif length extension and importance sampling. Using 75 large-scale synthetic datasets, 32 metazoan compendium benchmark datasets, and 164 chromatin immunoprecipitation sequencing (ChIP-Seq) libraries, we demonstrated the superior performance of SEME over existing programs in finding transcription factor (TF) binding sites. SEME is further applied to a more difficult problem of finding the co-regulated TF (coTF) motifs in 15 ChIP-Seq libraries. It identified significantly more correct coTF motifs and, at the same time, predicted coTF motifs with better matching to the known motifs. Finally, we show that the learned position and sequence rank preferences of each coTF reveals potential interaction mechanisms between the primary TF and the coTF within these sites. Some of these findings were further validated by the ChIP-Seq experiments of the coTFs. The application is available online.

  13. Motifs, modules and games in bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, Denise M.; Arkin, Adam P.

    2003-04-01

    Global explorations of regulatory network dynamics, organization and evolution have become tractable thanks to high-throughput sequencing and molecular measurement of bacterial physiology. From these, a nascent conceptual framework is developing, that views the principles of regulation in term of motifs, modules and games. Motifs are small, repeated, and conserved biological units ranging from molecular domains to small reaction networks. They are arranged into functional modules, genetically dissectible cellular functions such as the cell cycle, or different stress responses. The dynamical functioning of modules defines the organism's strategy to survive in a game, pitting cell against cell, and cell against environment.more » Placing pathway structure and dynamics into an evolutionary context begins to allow discrimination between those physical and molecular features that particularize a species to its surroundings, and those that provide core physiological function. This approach promises to generate a higher level understanding of cellular design, pathway evolution and cellular bioengineering.« less

  14. Computational study of stability of an H-H-type pseudoknot motif.

    PubMed

    Wang, Jun; Zhao, Yunjie; Wang, Jian; Xiao, Yi

    2015-12-01

    Motifs in RNA tertiary structures are important to their structural organizations and biological functions. Here we consider an H-H-type pseudoknot (HHpk) motif that consists of two hairpins connected by a junction loop and with kissing interactions between the two hairpin loops. Such a tertiary structural motif is recurrently found in RNA tertiary structures, but is difficult to predict computationally. So it is important to understand the mechanism of its formation and stability. Here we investigate the stability of the HHpk tertiary structure by using an all-atom molecular dynamics simulation. The results indicate that the HHpk tertiary structure is stable. However, it is found that this stability is not due to the helix-helix packing, as is usually expected, but is maintained by the combined action of the kissing hairpin loops and junctions, although the former plays the main role. Stable HHpk motifs may form structural platforms for the molecules to realize their biological functions. These results are useful for understanding the construction principle of RNA tertiary structures and structure prediction.

  15. Reversible conformational switching of i-motif DNA studied by fluorescence spectroscopy.

    PubMed

    Choi, Jungkweon; Majima, Tetsuro

    2013-01-01

    Non-B DNAs, which can form unique structures other than double helix of B-DNA, have attracted considerable attention from scientists in various fields including biology, chemistry and physics etc. Among them, i-motif DNA, which is formed from cytosine (C)-rich sequences found in telomeric DNA and the promoter region of oncogenes, has been extensively investigated as a signpost and controller for the oncogene expression at the transcription level and as a promising material in nanotechnology. Fluorescence techniques such as fluorescence resonance energy transfer (FRET) and the fluorescence quenching are important for studying DNA and in particular for the visualization of reversible conformational switching of i-motif DNA that is triggered by the protonation. Here, we review the latest studies on the conformational dynamics of i-motif DNA as well as the application of FRET and fluorescence quenching techniques to the visualization of reversible conformational switching of i-motif DNA in nano-biotechnology. © 2013 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2013 The American Society of Photobiology.

  16. Methods for Identifying Ligands that Target Nucleic Acid Molecules and Nucleic Acid Structural Motifs

    NASA Technical Reports Server (NTRS)

    Childs-Disney, Jessica L. (Inventor); Disney, Matthew D. (Inventor)

    2017-01-01

    Disclosed are methods for identifying a nucleic acid (e.g., RNA, DNA, etc.) motif which interacts with a ligand. The method includes providing a plurality of ligands immobilized on a support, wherein each particular ligand is immobilized at a discrete location on the support; contacting the plurality of immobilized ligands with a nucleic acid motif library under conditions effective for one or more members of the nucleic acid motif library to bind with the immobilized ligands; and identifying members of the nucleic acid motif library that are bound to a particular immobilized ligand. Also disclosed are methods for selecting, from a plurality of candidate ligands, one or more ligands that have increased likelihood of binding to a nucleic acid molecule comprising a particular nucleic acid motif, as well as methods for identifying a nucleic acid which interacts with a ligand.

  17. ProMotE: an efficient algorithm for counting independent motifs in uncertain network topologies.

    PubMed

    Ren, Yuanfang; Sarkar, Aisharjya; Kahveci, Tamer

    2018-06-26

    Identifying motifs in biological networks is essential in uncovering key functions served by these networks. Finding non-overlapping motif instances is however a computationally challenging task. The fact that biological interactions are uncertain events further complicates the problem, as it makes the existence of an embedding of a given motif an uncertain event as well. In this paper, we develop a novel method, ProMotE (Probabilistic Motif Embedding), to count non-overlapping embeddings of a given motif in probabilistic networks. We utilize a polynomial model to capture the uncertainty. We develop three strategies to scale our algorithm to large networks. Our experiments demonstrate that our method scales to large networks in practical time with high accuracy where existing methods fail. Moreover, our experiments on cancer and degenerative disease networks show that our method helps in uncovering key functional characteristics of biological networks.

  18. Core signalling motif displaying multistability through multi-state enzymes.

    PubMed

    Feng, Song; Sáez, Meritxell; Wiuf, Carsten; Feliu, Elisenda; Soyer, Orkun S

    2016-10-01

    Bistability, and more generally multistability, is a key system dynamics feature enabling decision-making and memory in cells. Deciphering the molecular determinants of multistability is thus crucial for a better understanding of cellular pathways and their (re)engineering in synthetic biology. Here, we show that a key motif found predominantly in eukaryotic signalling systems, namely a futile signalling cycle, can display bistability when featuring a two-state kinase. We provide necessary and sufficient mathematical conditions on the kinetic parameters of this motif that guarantee the existence of multiple steady states. These conditions foster the intuition that bistability arises as a consequence of competition between the two states of the kinase. Extending from this result, we find that increasing the number of kinase states linearly translates into an increase in the number of steady states in the system. These findings reveal, to our knowledge, a new mechanism for the generation of bistability and multistability in cellular signalling systems. Further the futile cycle featuring a two-state kinase is among the smallest bistable signalling motifs. We show that multi-state kinases and the described competition-based motif are part of several natural signalling systems and thereby could enable them to implement complex information processing through multistability. These results indicate that multi-state kinases in signalling systems are readily exploited by natural evolution and could equally be used by synthetic approaches for the generation of multistable information processing systems at the cellular level. © 2016 The Authors.

  19. Evolutionary dynamics of a conserved sequence motif in the ribosomal genes of the ciliate Paramecium

    PubMed Central

    2010-01-01

    Background In protozoa, the identification of preserved motifs by comparative genomics is often impeded by difficulties to generate reliable alignments for non-coding sequences. Moreover, the evolutionary dynamics of regulatory elements in 3' untranslated regions (both in protozoa and metazoa) remains a virtually unexplored issue. Results By screening Paramecium tetraurelia's 3' untranslated regions for 8-mers that were previously found to be preserved in mammalian 3' UTRs, we detect and characterize a motif that is distinctly conserved in the ribosomal genes of this ciliate. The motif appears to be conserved across Paramecium aurelia species but is absent from the ribosomal genes of four additional non-Paramecium species surveyed, including another ciliate, Tetrahymena thermophila. Motif-free ribosomal genes retain fewer paralogs in the genome and appear to be lost more rapidly relative to motif-containing genes. Features associated with the discovered preserved motif are consistent with this 8-mer playing a role in post-transcriptional regulation. Conclusions Our observations 1) shed light on the evolution of a putative regulatory motif across large phylogenetic distances; 2) are expected to facilitate the understanding of the modulation of ribosomal genes expression in Paramecium; and 3) reveal a largely unexplored--and presumably not restricted to Paramecium--association between the presence/absence of a DNA motif and the evolutionary fate of its host genes. PMID:20441586

  20. Relevance of CARC and CRAC Cholesterol-Recognition Motifs in the Nicotinic Acetylcholine Receptor and Other Membrane-Bound Receptors.

    PubMed

    Di Scala, Coralie; Baier, Carlos J; Evans, Luke S; Williamson, Philip T F; Fantini, Jacques; Barrantes, Francisco J

    2017-01-01

    Cholesterol is a ubiquitous neutral lipid, which finely tunes the activity of a wide range of membrane proteins, including neurotransmitter and hormone receptors and ion channels. Given the scarcity of available X-ray crystallographic structures and the even fewer in which cholesterol sites have been directly visualized, application of in silico computational methods remains a valid alternative for the detection and thermodynamic characterization of cholesterol-specific sites in functionally important membrane proteins. The membrane-embedded segments of the paradigm neurotransmitter receptor for acetylcholine display a series of cholesterol consensus domains (which we have coined "CARC"). The CARC motif exhibits a preference for the outer membrane leaflet and its mirror motif, CRAC, for the inner one. Some membrane proteins possess the double CARC-CRAC sequences within the same transmembrane domain. In addition to in silico molecular modeling, the affinity, concentration dependence, and specificity of the cholesterol-recognition motif-protein interaction have recently found experimental validation in other biophysical approaches like monolayer techniques and nuclear magnetic resonance spectroscopy. From the combined studies, it becomes apparent that the CARC motif is now more firmly established as a high-affinity cholesterol-binding domain for membrane-bound receptors and remarkably conserved along phylogenetic evolution. © 2017 Elsevier Inc. All rights reserved.

  1. Amino acid sequence motifs essential for P0-mediated suppression of RNA silencing in an isolate of potato leafroll virus from Inner Mongolia.

    PubMed

    Zhuo, Tao; Li, Yuan-Yuan; Xiang, Hai-Ying; Wu, Zhan-Yu; Wang, Xian-Bin; Wang, Ying; Zhang, Yong-Liang; Li, Da-Wei; Yu, Jia-Lin; Han, Cheng-Gui

    2014-06-01

    Polerovirus P0 suppressors of host gene silencing contain a consensus F-box-like motif with Leu/Pro (L/P) requirements for suppressor activity. The Inner Mongolian Potato leafroll virus (PLRV) P0 protein (P0(PL-IM)) has an unusual F-box-like motif that contains a Trp/Gly (W/G) sequence and an additional GW/WG-like motif (G139/W140/G141) that is lacking in other P0 proteins. We used Agrobacterium infiltration-mediated RNA silencing assays to establish that P0(PL-IM) has a strong suppressor activity. Mutagenesis experiments demonstrated that the P0(PL-IM) F-box-like motif encompasses amino acids 76-LPRHLHYECLEWGLLCG THP-95, and that the suppressor activity is abolished by L76A, W87A, or G88A substitution. The suppressor activity is also weakened substantially by mutations within the G139/W140/G141 region and is eliminated by a mutation (F220R) in a C-terminal conserved sequence of P0(PL-IM). As has been observed with other P0 proteins, P0(PL-IM) suppression is correlated with reduced accumulation of the host AGO1-silencing complex protein. However, P0(PL-IM) fails to bind SKP1, which functions in a proteasome pathway that may be involved in AGO1 degradation. These results suggest that P0(PL-IM) may suppress RNA silencing by using an alternative pathway to target AGO1 for degradation. Our results help improve our understanding of the molecular mechanisms involved in PLRV infection.

  2. Learning cellular sorting pathways using protein interactions and sequence motifs.

    PubMed

    Lin, Tien-Ho; Bar-Joseph, Ziv; Murphy, Robert F

    2011-11-01

    Proper subcellular localization is critical for proteins to perform their roles in cellular functions. Proteins are transported by different cellular sorting pathways, some of which take a protein through several intermediate locations until reaching its final destination. The pathway a protein is transported through is determined by carrier proteins that bind to specific sequence motifs. In this article, we present a new method that integrates protein interaction and sequence motif data to model how proteins are sorted through these sorting pathways. We use a hidden Markov model (HMM) to represent protein sorting pathways. The model is able to determine intermediate sorting states and to assign carrier proteins and motifs to the sorting pathways. In simulation studies, we show that the method can accurately recover an underlying sorting model. Using data for yeast, we show that our model leads to accurate prediction of subcellular localization. We also show that the pathways learned by our model recover many known sorting pathways and correctly assign proteins to the path they utilize. The learned model identified new pathways and their putative carriers and motifs and these may represent novel protein sorting mechanisms. Supplementary results and software implementation are available from http://murphylab.web.cmu.edu/software/2010_RECOMB_pathways/.

  3. Learning Cellular Sorting Pathways Using Protein Interactions and Sequence Motifs

    PubMed Central

    Lin, Tien-Ho; Bar-Joseph, Ziv

    2011-01-01

    Abstract Proper subcellular localization is critical for proteins to perform their roles in cellular functions. Proteins are transported by different cellular sorting pathways, some of which take a protein through several intermediate locations until reaching its final destination. The pathway a protein is transported through is determined by carrier proteins that bind to specific sequence motifs. In this article, we present a new method that integrates protein interaction and sequence motif data to model how proteins are sorted through these sorting pathways. We use a hidden Markov model (HMM) to represent protein sorting pathways. The model is able to determine intermediate sorting states and to assign carrier proteins and motifs to the sorting pathways. In simulation studies, we show that the method can accurately recover an underlying sorting model. Using data for yeast, we show that our model leads to accurate prediction of subcellular localization. We also show that the pathways learned by our model recover many known sorting pathways and correctly assign proteins to the path they utilize. The learned model identified new pathways and their putative carriers and motifs and these may represent novel protein sorting mechanisms. Supplementary results and software implementation are available from http://murphylab.web.cmu.edu/software/2010_RECOMB_pathways/. PMID:21999284

  4. PSSMSearch: a server for modeling, visualization, proteome-wide discovery and annotation of protein motif specificity determinants.

    PubMed

    Krystkowiak, Izabella; Manguy, Jean; Davey, Norman E

    2018-06-05

    There is a pressing need for in silico tools that can aid in the identification of the complete repertoire of protein binding (SLiMs, MoRFs, miniMotifs) and modification (moiety attachment/removal, isomerization, cleavage) motifs. We have created PSSMSearch, an interactive web-based tool for rapid statistical modeling, visualization, discovery and annotation of protein motif specificity determinants to discover novel motifs in a proteome-wide manner. PSSMSearch analyses proteomes for regions with significant similarity to a motif specificity determinant model built from a set of aligned motif-containing peptides. Multiple scoring methods are available to build a position-specific scoring matrix (PSSM) describing the motif specificity determinant model. This model can then be modified by a user to add prior knowledge of specificity determinants through an interactive PSSM heatmap. PSSMSearch includes a statistical framework to calculate the significance of specificity determinant model matches against a proteome of interest. PSSMSearch also includes the SLiMSearch framework's annotation, motif functional analysis and filtering tools to highlight relevant discriminatory information. Additional tools to annotate statistically significant shared keywords and GO terms, or experimental evidence of interaction with a motif-recognizing protein have been added. Finally, PSSM-based conservation metrics have been created for taxonomic range analyses. The PSSMSearch web server is available at http://slim.ucd.ie/pssmsearch/.

  5. Identification of cancer-specific motifs in mimotope profiles of serum antibody repertoire.

    PubMed

    Gerasimov, Ekaterina; Zelikovsky, Alex; Măndoiu, Ion; Ionov, Yurij

    2017-06-07

    For fighting cancer, earlier detection is crucial. Circulating auto-antibodies produced by the patient's own immune system after exposure to cancer proteins are promising bio-markers for the early detection of cancer. Since an antibody recognizes not the whole antigen but 4-7 critical amino acids within the antigenic determinant (epitope), the whole proteome can be represented by a random peptide phage display library. This opens the possibility to develop an early cancer detection test based on a set of peptide sequences identified by comparing cancer patients' and healthy donors' global peptide profiles of antibody specificities. Due to the enormously large number of peptide sequences contained in global peptide profiles generated by next generation sequencing, the large number of cancer and control sera is required to identify cancer-specific peptides with high degree of statistical significance. To decrease the number of peptides in profiles generated by nextgen sequencing without losing cancer-specific sequences we used for generation of profiles the phage library enriched by panning on the pool of cancer sera. To further decrease the complexity of profiles we used computational methods for transforming a list of peptides constituting the mimotope profiles to the list motifs formed by similar peptide sequences. We have shown that the amino-acid order is meaningful in mimotope motifs since they contain significantly more peptides than motifs among peptides where amino-acids are randomly permuted. Also the single sample motifs significantly differ from motifs in peptides drawn from multiple samples. Finally, multiple cancer-specific motifs have been identified.

  6. Recognition of β-Strand Motifs by RseB Is Required for σE Activity in Escherichia coli ▿

    PubMed Central

    Kulp, Adam; Kuehn, Meta J.

    2011-01-01

    Gram-negative bacteria react to misfolded proteins in the envelope through a myriad of different stress response pathways. This cohort of pathways allows the bacteria to specifically respond to different types of damage, and many of these have been discovered to have key roles in the virulence of bacterial pathogens. Misfolded outer membrane proteins (OMPs) are typically recognized by the σE pathway, a highly conserved envelope stress response pathway. We examined the features of misfolded OMPs with respect to their ability to generate envelope stress responses. We determined that the secondary structure, particularly the potential to form β strands, is critical to inducing the σE response in an RseB-dependent manner. The sequence of the potential β-strand motif modulates the strength of the σE response generated by the constructs. By understanding the details of how such stress response pathways are activated, we can gain a greater understanding of how bacteria survive in harsh environments. PMID:21908666

  7. MOTIFSIM 2.1: An Enhanced Software Platform for Detecting Similarity in Multiple DNA Motif Data Sets

    PubMed Central

    Huang, Chun-Hsi

    2017-01-01

    Abstract Finding binding site motifs plays an important role in bioinformatics as it reveals the transcription factors that control the gene expression. The development for motif finders has flourished in the past years with many tools have been introduced to the research community. Although these tools possess exceptional features for detecting motifs, they report different results for an identical data set. Hence, using multiple tools is recommended because motifs reported by several tools are likely biologically significant. However, the results from multiple tools need to be compared for obtaining common significant motifs. MOTIFSIM web tool and command-line tool were developed for this purpose. In this work, we present several technical improvements as well as additional features to further support the motif analysis in our new release MOTIFSIM 2.1. PMID:28632401

  8. Identification of helix capping and β-turn motifs from NMR chemical shifts

    PubMed Central

    Shen, Yang; Bax, Ad

    2012-01-01

    We present an empirical method for identification of distinct structural motifs in proteins on the basis of experimentally determined backbone and 13Cβ chemical shifts. Elements identified include the N-terminal and C-terminal helix capping motifs and five types of β-turns: I, II, I′, II′ and VIII. Using a database of proteins of known structure, the NMR chemical shifts, together with the PDB-extracted amino acid preference of the helix capping and β-turn motifs are used as input data for training an artificial neural network algorithm, which outputs the statistical probability of finding each motif at any given position in the protein. The trained neural networks, contained in the MICS (motif identification from chemical shifts) program, also provide a confidence level for each of their predictions, and values ranging from ca 0.7–0.9 for the Matthews correlation coefficient of its predictions far exceed that attainable by sequence analysis. MICS is anticipated to be useful both in the conventional NMR structure determination process and for enhancing on-going efforts to determine protein structures solely on the basis of chemical shift information, where it can aid in identifying protein database fragments suitable for use in building such structures. PMID:22314702

  9. GPUmotif: An Ultra-Fast and Energy-Efficient Motif Analysis Program Using Graphics Processing Units

    PubMed Central

    Zandevakili, Pooya; Hu, Ming; Qin, Zhaohui

    2012-01-01

    Computational detection of TF binding patterns has become an indispensable tool in functional genomics research. With the rapid advance of new sequencing technologies, large amounts of protein-DNA interaction data have been produced. Analyzing this data can provide substantial insight into the mechanisms of transcriptional regulation. However, the massive amount of sequence data presents daunting challenges. In our previous work, we have developed a novel algorithm called Hybrid Motif Sampler (HMS) that enables more scalable and accurate motif analysis. Despite much improvement, HMS is still time-consuming due to the requirement to calculate matching probabilities position-by-position. Using the NVIDIA CUDA toolkit, we developed a graphics processing unit (GPU)-accelerated motif analysis program named GPUmotif. We proposed a “fragmentation" technique to hide data transfer time between memories. Performance comparison studies showed that commonly-used model-based motif scan and de novo motif finding procedures such as HMS can be dramatically accelerated when running GPUmotif on NVIDIA graphics cards. As a result, energy consumption can also be greatly reduced when running motif analysis using GPUmotif. The GPUmotif program is freely available at http://sourceforge.net/projects/gpumotif/ PMID:22662128

  10. GPUmotif: an ultra-fast and energy-efficient motif analysis program using graphics processing units.

    PubMed

    Zandevakili, Pooya; Hu, Ming; Qin, Zhaohui

    2012-01-01

    Computational detection of TF binding patterns has become an indispensable tool in functional genomics research. With the rapid advance of new sequencing technologies, large amounts of protein-DNA interaction data have been produced. Analyzing this data can provide substantial insight into the mechanisms of transcriptional regulation. However, the massive amount of sequence data presents daunting challenges. In our previous work, we have developed a novel algorithm called Hybrid Motif Sampler (HMS) that enables more scalable and accurate motif analysis. Despite much improvement, HMS is still time-consuming due to the requirement to calculate matching probabilities position-by-position. Using the NVIDIA CUDA toolkit, we developed a graphics processing unit (GPU)-accelerated motif analysis program named GPUmotif. We proposed a "fragmentation" technique to hide data transfer time between memories. Performance comparison studies showed that commonly-used model-based motif scan and de novo motif finding procedures such as HMS can be dramatically accelerated when running GPUmotif on NVIDIA graphics cards. As a result, energy consumption can also be greatly reduced when running motif analysis using GPUmotif. The GPUmotif program is freely available at http://sourceforge.net/projects/gpumotif/

  11. QuateXelero: An Accelerated Exact Network Motif Detection Algorithm

    PubMed Central

    Khakabimamaghani, Sahand; Sharafuddin, Iman; Dichter, Norbert; Koch, Ina; Masoudi-Nejad, Ali

    2013-01-01

    Finding motifs in biological, social, technological, and other types of networks has become a widespread method to gain more knowledge about these networks’ structure and function. However, this task is very computationally demanding, because it is highly associated with the graph isomorphism which is an NP problem (not known to belong to P or NP-complete subsets yet). Accordingly, this research is endeavoring to decrease the need to call NAUTY isomorphism detection method, which is the most time-consuming step in many existing algorithms. The work provides an extremely fast motif detection algorithm called QuateXelero, which has a Quaternary Tree data structure in the heart. The proposed algorithm is based on the well-known ESU (FANMOD) motif detection algorithm. The results of experiments on some standard model networks approve the overal superiority of the proposed algorithm, namely QuateXelero, compared with two of the fastest existing algorithms, G-Tries and Kavosh. QuateXelero is especially fastest in constructing the central data structure of the algorithm from scratch based on the input network. PMID:23874498

  12. A +1 ribosomal frameshifting motif prevalent among plant amalgaviruses.

    PubMed

    Nibert, Max L; Pyle, Jesse D; Firth, Andrew E

    2016-11-01

    Sequence accessions attributable to novel plant amalgaviruses have been found in the Transcriptome Shotgun Assembly database. Sixteen accessions, derived from 12 different plant species, appear to encompass the complete protein-coding regions of the proposed amalgaviruses, which would substantially expand the size of genus Amalgavirus from 4 current species. Other findings include evidence for UUU_CGN as a +1 ribosomal frameshifting motif prevalent among plant amalgaviruses; for a variant version of this motif found thus far in only two amalgaviruses from solanaceous plants; for a region of α-helical coiled coil propensity conserved in a central region of the ORF1 translation product of plant amalgaviruses; and for conserved sequences in a C-terminal region of the ORF2 translation product (RNA-dependent RNA polymerase) of plant amalgaviruses, seemingly beyond the region of conserved polymerase motifs. These results additionally illustrate the value of mining the TSA database and others for novel viral sequences for comparative analyses. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Beyond Atg8 binding: The role of AIM/LIR motifs in autophagy.

    PubMed

    Fracchiolla, Dorotea; Sawa-Makarska, Justyna; Martens, Sascha

    2017-05-04

    Selective macroautophagy/autophagy mediates the selective delivery of cytoplasmic cargo material via autophagosomes into the lytic compartment for degradation. This selectivity is mediated by cargo receptor molecules that link the cargo to the phagophore (the precursor of the autophagosome) membrane via their simultaneous interaction with the cargo and Atg8 proteins on the membrane. Atg8 proteins are attached to membrane in a conjugation reaction and the cargo receptors bind them via short peptide motifs called Atg8-interacting motifs/LC3-interacting regions (AIMs/LIRs). We have recently shown for the yeast Atg19 cargo receptor that the AIM/LIR motifs also serve to recruit the Atg12-Atg5-Atg16 complex, which stimulates Atg8 conjugation, to the cargo. We could further show in a reconstituted system that the recruitment of the Atg12-Atg5-Atg16 complex is sufficient for cargo-directed Atg8 conjugation. Our results suggest that AIM/LIR motifs could have more general roles in autophagy.

  14. Overlapping ETS and CRE Motifs (G/CCGGAAGTGACGTCA) Preferentially Bound by GABPα and CREB Proteins

    PubMed Central

    Chatterjee, Raghunath; Zhao, Jianfei; He, Ximiao; Shlyakhtenko, Andrey; Mann, Ishminder; Waterfall, Joshua J.; Meltzer, Paul; Sathyanarayana, B. K.; FitzGerald, Peter C.; Vinson, Charles

    2012-01-01

    Previously, we identified 8-bps long DNA sequences (8-mers) that localize in human proximal promoters and grouped them into known transcription factor binding sites (TFBS). We now examine split 8-mers consisting of two 4-mers separated by 1-bp to 30-bps (X4-N1-30-X4) to identify pairs of TFBS that localize in proximal promoters at a precise distance. These include two overlapping TFBS: the ETS⇔ETS motif (C/GCCGGAAGCGGAA) and the ETS⇔CRE motif (C/GCGGAAGTGACGTCAC). The nucleotides in bold are part of both TFBS. Molecular modeling shows that the ETS⇔CRE motif can be bound simultaneously by both the ETS and the B-ZIP domains without protein-protein clashes. The electrophoretic mobility shift assay (EMSA) shows that the ETS protein GABPα and the B-ZIP protein CREB preferentially bind to the ETS⇔CRE motif only when the two TFBS overlap precisely. In contrast, the ETS domain of ETV5 and CREB interfere with each other for binding the ETS⇔CRE. The 11-mer (CGGAAGTGACG), the conserved part of the ETS⇔CRE motif, occurs 226 times in the human genome and 83% are in known regulatory regions. In vivo GABPα and CREB ChIP-seq peaks identified the ETS⇔CRE as the most enriched motif occurring in promoters of genes involved in mRNA processing, cellular catabolic processes, and stress response, suggesting that a specific class of genes is regulated by this composite motif. PMID:23050235

  15. Detection and Preliminary Analysis of Motifs in Promoters of Anaerobically Induced Genes of Different Plant Species

    PubMed Central

    MOHANTY, BIJAYALAXMI; KRISHNAN, S. P. T.; SWARUP, SANJAY; BAJIC, VLADIMIR B.

    2005-01-01

    • Background and Aims Plants can suffer from oxygen limitation during flooding or more complete submergence and may therefore switch from Kreb's cycle respiration to fermentation in association with the expression of anaerobically inducible genes coding for enzymes involved in glycolysis and fermentation. The aim of this study was to clarify mechanisms of transcriptional regulation of these anaerobic genes by identifying motifs shared by their promoter regions. • Methods Statistically significant motifs were detected by an in silico method from 13 promoters of anaerobic genes. The selected motifs were common for the majority of analysed promoters. Their significance was evaluated by searching for their presence in transcription factor-binding site databases (TRANSFAC, PlantCARE and PLACE). Using several negative control data sets, it was tested whether the motifs found were specific to the anaerobic group. • Key Results Previously, anaerobic response elements have been identified in maize (Zea mays) and arabidopsis (Arabidopsis thaliana) genes. Known functional motifs were detected, such as GT and GC motifs, but also other motifs shared by most of the genes examined. Five motifs detected have not been found in plants hitherto but are present in the promoters of animal genes with various functions. The consensus sequences of these novel motifs are 5′-AAACAAA-3′, 5′-AGCAGC-3′, 5′-TCATCAC-3′, 5′-GTTT(A/C/T)GCAA-3′ and 5′-TTCCCTGTT-3′. • Conclusions It is believed that the promoter motifs identified could be functional by conferring anaerobic sensitivity to the genes that possess them. This proposal now requires experimental verification. PMID:16027132

  16. Conserved binding of GCAC motifs by MEC-8, couch potato, and the RBPMS protein family

    PubMed Central

    Soufari, Heddy

    2017-01-01

    Precise regulation of mRNA processing, translation, localization, and stability relies on specific interactions with RNA-binding proteins whose biological function and target preference are dictated by their preferred RNA motifs. The RBPMS family of RNA-binding proteins is defined by a conserved RNA recognition motif (RRM) domain found in metazoan RBPMS/Hermes and RBPMS2, Drosophila couch potato, and MEC-8 from Caenorhabditis elegans. In order to determine the parameters of RNA sequence recognition by the RBPMS family, we have first used the N-terminal domain from MEC-8 in binding assays and have demonstrated a preference for two GCAC motifs optimally separated by >6 nucleotides (nt). We have also determined the crystal structure of the dimeric N-terminal RRM domain from MEC-8 in the unbound form, and in complex with an oligonucleotide harboring two copies of the optimal GCAC motif. The atomic details reveal the molecular network that provides specificity to all four bases in the motif, including multiple hydrogen bonds to the initial guanine. Further studies with human RBPMS, as well as Drosophila couch potato, confirm a general preference for this double GCAC motif by other members of the protein family and the presence of this motif in known targets. PMID:28003515

  17. Motif finding in DNA sequences based on skipping nonconserved positions in background Markov chains.

    PubMed

    Zhao, Xiaoyan; Sze, Sing-Hoi

    2011-05-01

    One strategy to identify transcription factor binding sites is through motif finding in upstream DNA sequences of potentially co-regulated genes. Despite extensive efforts, none of the existing algorithms perform very well. We consider a string representation that allows arbitrary ignored positions within the nonconserved portion of single motifs, and use O(2(l)) Markov chains to model the background distributions of motifs of length l while skipping these positions within each Markov chain. By focusing initially on positions that have fixed nucleotides to define core occurrences, we develop an algorithm to identify motifs of moderate lengths. We compare the performance of our algorithm to other motif finding algorithms on a few benchmark data sets, and show that significant improvement in accuracy can be obtained when the sites are sufficiently conserved within a given sample, while comparable performance is obtained when the site conservation rate is low. A software program (PosMotif ) and detailed results are available online at http://faculty.cse.tamu.edu/shsze/posmotif.

  18. PhyloGibbs-MP: Module Prediction and Discriminative Motif-Finding by Gibbs Sampling

    PubMed Central

    Siddharthan, Rahul

    2008-01-01

    PhyloGibbs, our recent Gibbs-sampling motif-finder, takes phylogeny into account in detecting binding sites for transcription factors in DNA and assigns posterior probabilities to its predictions obtained by sampling the entire configuration space. Here, in an extension called PhyloGibbs-MP, we widen the scope of the program, addressing two major problems in computational regulatory genomics. First, PhyloGibbs-MP can localise predictions to small, undetermined regions of a large input sequence, thus effectively predicting cis-regulatory modules (CRMs) ab initio while simultaneously predicting binding sites in those modules—tasks that are usually done by two separate programs. PhyloGibbs-MP's performance at such ab initio CRM prediction is comparable with or superior to dedicated module-prediction software that use prior knowledge of previously characterised transcription factors. Second, PhyloGibbs-MP can predict motifs that differentiate between two (or more) different groups of regulatory regions, that is, motifs that occur preferentially in one group over the others. While other “discriminative motif-finders” have been published in the literature, PhyloGibbs-MP's implementation has some unique features and flexibility. Benchmarks on synthetic and actual genomic data show that this algorithm is successful at enhancing predictions of differentiating sites and suppressing predictions of common sites and compares with or outperforms other discriminative motif-finders on actual genomic data. Additional enhancements include significant performance and speed improvements, the ability to use “informative priors” on known transcription factors, and the ability to output annotations in a format that can be visualised with the Generic Genome Browser. In stand-alone motif-finding, PhyloGibbs-MP remains competitive, outperforming PhyloGibbs-1.0 and other programs on benchmark data. PMID:18769735

  19. Redundant CArG Box Cis-motif Activity Mediates SHATTERPROOF2 Transcriptional Regulation during Arabidopsis thaliana Gynoecium Development

    PubMed Central

    Sehra, Bhupinder; Franks, Robert G.

    2017-01-01

    In the Arabidopsis thaliana seed pod, pod shatter and seed dispersal properties are in part determined by the development of a longitudinally orientated dehiscence zone (DZ) that derives from cells of the gynoecial valve margin (VM). Transcriptional regulation of the MADS protein encoding transcription factors genes SHATTERPROOF1 (SHP1) and SHATTERPROOF2 (SHP2) are critical for proper VM identity specification and later on for DZ development. Current models of SHP1 and SHP2 regulation indicate that the transcription factors FRUITFULL (FUL) and REPLUMLESS (RPL) repress these SHP genes in the developing valve and replum domains, respectively. Thus the expression of the SHP genes is restricted to the VM. FUL encodes a MADS-box containing transcription factor that is predicted to act through CArG-box containing cis-regulatory motifs. Here we delimit functional modules within the SHP2 cis-regulatory region and examine the functional importance of CArG box motifs within these regulatory regions. We have characterized a 2.2kb region upstream of the SHP2 translation start site that drives early and late medial domain expression in the gynoecium, as well as expression within the VM and DZ. We identified two separable, independent cis-regulatory modules, a 1kb promoter region and a 700bp enhancer region, that are capable of giving VM and DZ expression. Our results argue for multiple independent cis-regulatory modules that support SHP2 expression during VM development and may contribute to the robustness of SHP2 expression in this tissue. Additionally, three closely positioned CArG box motifs located in the SHP2 upstream regulatory region were mutated in the context of the 2.2kb reporter construct. Mutating simultaneously all three CArG boxes caused a moderate de-repression of the SHP2 reporter that was detected within the valve domain, suggesting that these CArG boxes are involved in SHP2 repression in the valve. PMID:29085379

  20. Growth factor pleiotropy is controlled by a receptor Tyr/Ser motif that acts as a binary switch

    PubMed Central

    Guthridge, Mark A; Powell, Jason A; Barry, Emma F; Stomski, Frank C; McClure, Barbara J; Ramshaw, Hayley; Felquer, Fernando A; Dottore, Mara; Thomas, Daniel T; To, Bik; Begley, C Glenn; Lopez, Angel F

    2006-01-01

    Pleiotropism is a hallmark of cytokines and growth factors; yet, the underlying mechanisms are not clearly understood. We have identified a motif in the granulocyte macrophage-colony-stimulating factor receptor composed of a tyrosine and a serine residue that functions as a binary switch for the independent regulation of multiple biological activities. Signalling occurs either through Ser585 at lower cytokine concentrations, leading to cell survival only, or through Tyr577 at higher cytokine concentrations, leading to cell survival as well as proliferation, differentiation or functional activation. The phosphorylation of Ser585 and Tyr577 is mutually exclusive and occurs via a unidirectional mechanism that involves protein kinase A and tyrosine kinases, respectively, and is deregulated in at least some leukemias. We have identified similar Tyr/Ser motifs in other cell surface receptors, suggesting that such signalling switches may play important roles in generating specificity and pleiotropy in other biological systems. PMID:16437163

  1. Chiral Alkyl Halides: Underexplored Motifs in Medicine

    PubMed Central

    Gál, Bálint; Bucher, Cyril; Burns, Noah Z.

    2016-01-01

    While alkyl halides are valuable intermediates in synthetic organic chemistry, their use as bioactive motifs in drug discovery and medicinal chemistry is rare in comparison. This is likely attributable to the common misconception that these compounds are merely non-specific alkylators in biological systems. A number of chlorinated compounds in the pharmaceutical and food industries, as well as a growing number of halogenated marine natural products showing unique bioactivity, illustrate the role that chiral alkyl halides can play in drug discovery. Through a series of case studies, we demonstrate in this review that these motifs can indeed be stable under physiological conditions, and that halogenation can enhance bioactivity through both steric and electronic effects. Our hope is that, by placing such compounds in the minds of the chemical community, they may gain more traction in drug discovery and inspire more synthetic chemists to develop methods for selective halogenation. PMID:27827902

  2. C-Aryl glucoside SGLT2 inhibitors containing a biphenyl motif as potential anti-diabetic agents.

    PubMed

    Ding, Yuyang; Mao, Liufeng; Xu, Dengfeng; Xie, Hui; Yang, Ling; Xu, Hongjiang; Geng, Wenjun; Gao, Yong; Xia, Chunguang; Zhang, Xiquan; Meng, Qingyi; Wu, Donghai; Zhao, Junling; Hu, Wenhui

    2015-07-15

    A series of highly active C-aryl glucoside SGLT2 inhibitors containing a biphenyl motif were designed and synthesized for biological evaluation. Among the compounds tested, compound 16l demonstrated high inhibitory activity against SGLT2 (IC50=1.9 nM) with an excellent pharmacokinetic profile. Further study indicated that the in vivo efficacy of compound 16l was comparable to that of dapagliflozin, suggesting that further development would be worthwhile. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Comprehensive human transcription factor binding site map for combinatory binding motifs discovery.

    PubMed

    Müller-Molina, Arnoldo J; Schöler, Hans R; Araúzo-Bravo, Marcos J

    2012-01-01

    To know the map between transcription factors (TFs) and their binding sites is essential to reverse engineer the regulation process. Only about 10%-20% of the transcription factor binding motifs (TFBMs) have been reported. This lack of data hinders understanding gene regulation. To address this drawback, we propose a computational method that exploits never used TF properties to discover the missing TFBMs and their sites in all human gene promoters. The method starts by predicting a dictionary of regulatory "DNA words." From this dictionary, it distills 4098 novel predictions. To disclose the crosstalk between motifs, an additional algorithm extracts TF combinatorial binding patterns creating a collection of TF regulatory syntactic rules. Using these rules, we narrowed down a list of 504 novel motifs that appear frequently in syntax patterns. We tested the predictions against 509 known motifs confirming that our system can reliably predict ab initio motifs with an accuracy of 81%-far higher than previous approaches. We found that on average, 90% of the discovered combinatorial binding patterns target at least 10 genes, suggesting that to control in an independent manner smaller gene sets, supplementary regulatory mechanisms are required. Additionally, we discovered that the new TFBMs and their combinatorial patterns convey biological meaning, targeting TFs and genes related to developmental functions. Thus, among all the possible available targets in the genome, the TFs tend to regulate other TFs and genes involved in developmental functions. We provide a comprehensive resource for regulation analysis that includes a dictionary of "DNA words," newly predicted motifs and their corresponding combinatorial patterns. Combinatorial patterns are a useful filter to discover TFBMs that play a major role in orchestrating other factors and thus, are likely to lock/unlock cellular functional clusters.

  4. Comprehensive Human Transcription Factor Binding Site Map for Combinatory Binding Motifs Discovery

    PubMed Central

    Müller-Molina, Arnoldo J.; Schöler, Hans R.; Araúzo-Bravo, Marcos J.

    2012-01-01

    To know the map between transcription factors (TFs) and their binding sites is essential to reverse engineer the regulation process. Only about 10%–20% of the transcription factor binding motifs (TFBMs) have been reported. This lack of data hinders understanding gene regulation. To address this drawback, we propose a computational method that exploits never used TF properties to discover the missing TFBMs and their sites in all human gene promoters. The method starts by predicting a dictionary of regulatory “DNA words.” From this dictionary, it distills 4098 novel predictions. To disclose the crosstalk between motifs, an additional algorithm extracts TF combinatorial binding patterns creating a collection of TF regulatory syntactic rules. Using these rules, we narrowed down a list of 504 novel motifs that appear frequently in syntax patterns. We tested the predictions against 509 known motifs confirming that our system can reliably predict ab initio motifs with an accuracy of 81%—far higher than previous approaches. We found that on average, 90% of the discovered combinatorial binding patterns target at least 10 genes, suggesting that to control in an independent manner smaller gene sets, supplementary regulatory mechanisms are required. Additionally, we discovered that the new TFBMs and their combinatorial patterns convey biological meaning, targeting TFs and genes related to developmental functions. Thus, among all the possible available targets in the genome, the TFs tend to regulate other TFs and genes involved in developmental functions. We provide a comprehensive resource for regulation analysis that includes a dictionary of “DNA words,” newly predicted motifs and their corresponding combinatorial patterns. Combinatorial patterns are a useful filter to discover TFBMs that play a major role in orchestrating other factors and thus, are likely to lock/unlock cellular functional clusters. PMID:23209563

  5. Multiple TPR motifs characterize the Fanconi anemia FANCG protein.

    PubMed

    Blom, Eric; van de Vrugt, Henri J; de Vries, Yne; de Winter, Johan P; Arwert, Fré; Joenje, Hans

    2004-01-05

    The genome protection pathway that is defective in patients with Fanconi anemia (FA) is controlled by at least eight genes, including BRCA2. A key step in the pathway involves the monoubiquitylation of FANCD2, which critically depends on a multi-subunit nuclear 'core complex' of at least six FANC proteins (FANCA, -C, -E, -F, -G, and -L). Except for FANCL, which has WD40 repeats and a RING finger domain, no significant domain structure has so far been recognized in any of the core complex proteins. By using a homology search strategy comparing the human FANCG protein sequence with its ortholog sequences in Oryzias latipes (Japanese rice fish) and Danio rerio (zebrafish) we identified at least seven tetratricopeptide repeat motifs (TPRs) covering a major part of this protein. TPRs are degenerate 34-amino acid repeat motifs which function as scaffolds mediating protein-protein interactions, often found in multiprotein complexes. In four out of five TPR motifs tested (TPR1, -2, -5, and -6), targeted missense mutagenesis disrupting the motifs at the critical position 8 of each TPR caused complete or partial loss of FANCG function. Loss of function was evident from failure of the mutant proteins to complement the cellular FA phenotype in FA-G lymphoblasts, which was correlated with loss of binding to FANCA. Although the TPR4 mutant fully complemented the cells, it showed a reduced interaction with FANCA, suggesting that this TPR may also be of functional importance. The recognition of FANCG as a typical TPR protein predicts this protein to play a key role in the assembly and/or stabilization of the nuclear FA protein core complex.

  6. The ARTT motif and a unified structural understanding of substraterecognition in ADP ribosylating bacterial toxins and eukaryotic ADPribosyltransferases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, S.; Tainer, J.A.

    2001-08-01

    ADP-ribosylation is a widely occurring and biologically critical covalent chemical modification process in pathogenic mechanisms, intracellular signaling systems, DNA repair, and cell division. The reaction is catalyzed by ADP-ribosyltransferases, which transfer the ADP-ribose moiety of NAD to a target protein with nicotinamide release. A family of bacterial toxins and eukaryotic enzymes has been termed the mono-ADP-ribosyltransferases, in distinction to the poly-ADP-ribosyltransferases, which catalyze the addition of multiple ADP-ribose groups to the carboxyl terminus of eukaryotic nucleoproteins. Despite the limited primary sequence homology among the different ADP-ribosyltransferases, a central cleft bearing NAD-binding pocket formed by the two perpendicular b-sheet core hasmore » been remarkably conserved between bacterial toxins and eukaryotic mono- and poly-ADP-ribosyltransferases. The majority of bacterial toxins and eukaryotic mono-ADP-ribosyltransferases are characterized by conserved His and catalytic Glu residues. In contrast, Diphtheria toxin, Pseudomonas exotoxin A, and eukaryotic poly-ADP-ribosyltransferases are characterized by conserved Arg and catalytic Glu residues. The NAD-binding core of a binary toxin and a C3-like toxin family identified an ARTT motif (ADP-ribosylating turn-turn motif) that is implicated in substrate specificity and recognition by structural and mutagenic studies. Here we apply structure-based sequence alignment and comparative structural analyses of all known structures of ADP-ribosyltransfeases to suggest that this ARTT motif is functionally important in many ADP-ribosylating enzymes that bear a NAD binding cleft as characterized by conserved Arg and catalytic Glu residues. Overall, structure-based sequence analysis reveals common core structures and conserved active sites of ADP-ribosyltransferases to support similar NAD binding mechanisms but differing mechanisms of target protein binding via sequence variations within

  7. AMP-acetyl CoA synthetase from Leishmania donovani: identification and functional analysis of 'PX4GK' motif.

    PubMed

    Soumya, Neelagiri; Kumar, I Sravan; Shivaprasad, S; Gorakh, Landage Nitin; Dinesh, Neeradi; Swamy, Kayala Kambagiri; Singh, Sushma

    2015-04-01

    An adenosine monophosphate forming acetyl CoA synthetase (AceCS) which is the key enzyme involved in the conversion of acetate to acetyl CoA has been identified from Leishmania donovani for the first time. Sequence analysis of L. donovani AceCS (LdAceCS) revealed the presence of a 'PX4GK' motif which is highly conserved throughout organisms with higher sequence identity (96%) to lower sequence identity (38%). A ∼ 77 kDa heterologous protein with C-terminal 6X His-tag was expressed in Escherichia coli. Expression of LdAceCS in promastigotes was confirmed by western blot and RT-PCR analysis. Immunolocalization studies revealed that it is a cytosolic protein. We also report the kinetic characterization of recombinant LdAceCS with acetate, adenosine 5'-triphosphate, coenzyme A and propionate as substrates. Site directed mutagenesis of residues in conserved PX4GK motif of LdAceCS was performed to gain insight into its potential role in substrate binding, catalysis and its role in maintaining structural integrity of the protein. P646A, G651A and K652R exhibited more than 90% loss in activity signifying its indispensible role in the enzyme activity. Substitution of other residues in this motif resulted in altered substrate specificity and catalysis. However, none of them had any role in modulation of the secondary structure of the protein except G651A mutant. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Identification and characterization of a selenoprotein family containing a diselenide bond in a redox motif

    PubMed Central

    Shchedrina, Valentina A.; Novoselov, Sergey V.; Malinouski, Mikalai Yu.; Gladyshev, Vadim N.

    2007-01-01

    Selenocysteine (Sec, U) insertion into proteins is directed by translational recoding of specific UGA codons located upstream of a stem-loop structure known as Sec insertion sequence (SECIS) element. Selenoproteins with known functions are oxidoreductases containing a single redox-active Sec in their active sites. In this work, we identified a family of selenoproteins, designated SelL, containing two Sec separated by two other residues to form a UxxU motif. SelL proteins show an unusual occurrence, being present in diverse aquatic organisms, including fish, invertebrates, and marine bacteria. Both eukaryotic and bacterial SelL genes use single SECIS elements for insertion of two Sec. In eukaryotes, the SECIS is located in the 3′ UTR, whereas the bacterial SelL SECIS is within a coding region and positioned at a distance that supports the insertion of either of the two Sec or both of these residues. SelL proteins possess a thioredoxin-like fold wherein the UxxU motif corresponds to the catalytic CxxC motif in thioredoxins, suggesting a redox function of SelL proteins. Distantly related SelL-like proteins were also identified in a variety of organisms that had either one or both Sec replaced with Cys. Danio rerio SelL, transiently expressed in mammalian cells, incorporated two Sec and localized to the cytosol. In these cells, it occurred in an oxidized form and was not reducible by DTT. In a bacterial expression system, we directly demonstrated the formation of a diselenide bond between the two Sec, establishing it as the first diselenide bond found in a natural protein. PMID:17715293

  9. A novel swarm intelligence algorithm for finding DNA motifs.

    PubMed

    Lei, Chengwei; Ruan, Jianhua

    2009-01-01

    Discovering DNA motifs from co-expressed or co-regulated genes is an important step towards deciphering complex gene regulatory networks and understanding gene functions. Despite significant improvement in the last decade, it still remains one of the most challenging problems in computational molecular biology. In this work, we propose a novel motif finding algorithm that finds consensus patterns using a population-based stochastic optimisation technique called Particle Swarm Optimisation (PSO), which has been shown to be effective in optimising difficult multidimensional problems in continuous domains. We propose to use a word dissimilarity graph to remap the neighborhood structure of the solution space of DNA motifs, and propose a modification of the naive PSO algorithm to accommodate discrete variables. In order to improve efficiency, we also propose several strategies for escaping from local optima and for automatically determining the termination criteria. Experimental results on simulated challenge problems show that our method is both more efficient and more accurate than several existing algorithms. Applications to several sets of real promoter sequences also show that our approach is able to detect known transcription factor binding sites, and outperforms two of the most popular existing algorithms.

  10. Versatile RNA tetra-U helix linking motif as a toolkit for nucleic acid nanotechnology.

    PubMed

    Bui, My N; Brittany Johnson, M; Viard, Mathias; Satterwhite, Emily; Martins, Angelica N; Li, Zhihai; Marriott, Ian; Afonin, Kirill A; Khisamutdinov, Emil F

    2017-04-01

    RNA nanotechnology employs synthetically modified ribonucleic acid (RNA) to engineer highly stable nanostructures in one, two, and three dimensions for medical applications. Despite the tremendous advantages in RNA nanotechnology, unmodified RNA itself is fragile and prone to enzymatic degradation. In contrast to use traditionally modified RNA strands e.g. 2'-fluorine, 2'-amine, 2'-methyl, we studied the effect of RNA/DNA hybrid approach utilizing a computer-assisted RNA tetra-uracil (tetra-U) motif as a toolkit to address questions related to assembly efficiency, versatility, stability, and the production costs of hybrid RNA/DNA nanoparticles. The tetra-U RNA motif was implemented to construct four functional triangles using RNA, DNA and RNA/DNA mixtures, resulting in fine-tunable enzymatic and thermodynamic stabilities, immunostimulatory activity and RNAi capability. Moreover, the tetra-U toolkit has great potential in the fabrication of rectangular, pentagonal, and hexagonal NPs, representing the power of simplicity of RNA/DNA approach for RNA nanotechnology and nanomedicine community. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. FoldMiner and LOCK 2: protein structure comparison and motif discovery on the web.

    PubMed

    Shapiro, Jessica; Brutlag, Douglas

    2004-07-01

    The FoldMiner web server (http://foldminer.stanford.edu/) provides remote access to methods for protein structure alignment and unsupervised motif discovery. FoldMiner is unique among such algorithms in that it improves both the motif definition and the sensitivity of a structural similarity search by combining the search and motif discovery methods and using information from each process to enhance the other. In a typical run, a query structure is aligned to all structures in one of several databases of single domain targets in order to identify its structural neighbors and to discover a motif that is the basis for the similarity among the query and statistically significant targets. This process is fully automated, but options for manual refinement of the results are available as well. The server uses the Chime plugin and customized controls to allow for visualization of the motif and of structural superpositions. In addition, we provide an interface to the LOCK 2 algorithm for rapid alignments of a query structure to smaller numbers of user-specified targets.

  12. Peptide-binding motifs of two common equine class I MHC molecules in Thoroughbred horses.

    PubMed

    Bergmann, Tobias; Lindvall, Mikaela; Moore, Erin; Moore, Eugene; Sidney, John; Miller, Donald; Tallmadge, Rebecca L; Myers, Paisley T; Malaker, Stacy A; Shabanowitz, Jeffrey; Osterrieder, Nikolaus; Peters, Bjoern; Hunt, Donald F; Antczak, Douglas F; Sette, Alessandro

    2017-05-01

    Quantitative peptide-binding motifs of MHC class I alleles provide a valuable tool to efficiently identify putative T cell epitopes. Detailed information on equine MHC class I alleles is still very limited, and to date, only a single equine MHC class I allele, Eqca-1*00101 (ELA-A3 haplotype), has been characterized. The present study extends the number of characterized ELA class I specificities in two additional haplotypes found commonly in the Thoroughbred breed. Accordingly, we here report quantitative binding motifs for the ELA-A2 allele Eqca-16*00101 and the ELA-A9 allele Eqca-1*00201. Utilizing analyses of endogenously bound and eluted ligands and the screening of positional scanning combinatorial libraries, detailed and quantitative peptide-binding motifs were derived for both alleles. Eqca-16*00101 preferentially binds peptides with aliphatic/hydrophobic residues in position 2 and at the C-terminus, and Eqca-1*00201 has a preference for peptides with arginine in position 2 and hydrophobic/aliphatic residues at the C-terminus. Interestingly, the Eqca-16*00101 motif resembles that of the human HLA A02-supertype, while the Eqca-1*00201 motif resembles that of the HLA B27-supertype and two macaque class I alleles. It is expected that the identified motifs will facilitate the selection of candidate epitopes for the study of immune responses in horses.

  13. ATtRACT-a database of RNA-binding proteins and associated motifs.

    PubMed

    Giudice, Girolamo; Sánchez-Cabo, Fátima; Torroja, Carlos; Lara-Pezzi, Enrique

    2016-01-01

    RNA-binding proteins (RBPs) play a crucial role in key cellular processes, including RNA transport, splicing, polyadenylation and stability. Understanding the interaction between RBPs and RNA is key to improve our knowledge of RNA processing, localization and regulation in a global manner. Despite advances in recent years, a unified non-redundant resource that includes information on experimentally validated motifs, RBPs and integrated tools to exploit this information is lacking. Here, we developed a database named ATtRACT (available athttp://attract.cnic.es) that compiles information on 370 RBPs and 1583 RBP consensus binding motifs, 192 of which are not present in any other database. To populate ATtRACT we (i) extracted and hand-curated experimentally validated data from CISBP-RNA, SpliceAid-F, RBPDB databases, (ii) integrated and updated the unavailable ASD database and (iii) extracted information from Protein-RNA complexes present in Protein Data Bank database through computational analyses. ATtRACT provides also efficient algorithms to search a specific motif and scan one or more RNA sequences at a time. It also allows discoveringde novomotifs enriched in a set of related sequences and compare them with the motifs included in the database.Database URL:http:// attract. cnic. es. © The Author(s) 2016. Published by Oxford University Press.

  14. Structural and functional analysis of the GABARAP interaction motif (GIM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogov, Vladimir V.; Stolz, Alexandra; Ravichandran, Arvind C.

    Through the canonical LC3 interaction motif (LIR), [W/F/Y]–X 1–X 2[I/L/V], protein complexes are recruited to autophagosomes to perform their functions as either autophagy adaptors or receptors. How these adaptors/receptors selectively interact with either LC3 or GABARAP families remains unclear. Herein, we determine the range of selectivity of 30 known core LIR motifs towards individual LC3s and GABARAPs. From these, we define a GABARAP Interaction Motif (GIM) sequence ([W/F]–[V/I]–X 2–V) that the adaptor protein PLEKHM1 tightly conforms to. Using biophysical and structural approaches, we show that the PLEKHM1–LIR is indeed 11–fold more specific for GABARAP than LC3B. Selective mutation of themore » X 1 and X 2 positions either completely abolished the interaction with all LC3 and GABARAPs or increased PLEKHM1–GIM selectivity 20–fold towards LC3B. Finally, we show that conversion of p62/SQSTM1, FUNDC1 and FIP200 LIRs into our newly defined GIM, by introducing two valine residues, enhances their interaction with endogenous GABARAP over LC3B. In conclusion, the identification of a GABARAP–specific interaction motif will aid the identification and characterization of the expanding array of autophagy receptor and adaptor proteins and their in vivo functions.« less

  15. Structural and functional analysis of the GABARAP interaction motif (GIM)

    DOE PAGES

    Rogov, Vladimir V.; Stolz, Alexandra; Ravichandran, Arvind C.; ...

    2017-06-27

    Through the canonical LC3 interaction motif (LIR), [W/F/Y]–X 1–X 2[I/L/V], protein complexes are recruited to autophagosomes to perform their functions as either autophagy adaptors or receptors. How these adaptors/receptors selectively interact with either LC3 or GABARAP families remains unclear. Herein, we determine the range of selectivity of 30 known core LIR motifs towards individual LC3s and GABARAPs. From these, we define a GABARAP Interaction Motif (GIM) sequence ([W/F]–[V/I]–X 2–V) that the adaptor protein PLEKHM1 tightly conforms to. Using biophysical and structural approaches, we show that the PLEKHM1–LIR is indeed 11–fold more specific for GABARAP than LC3B. Selective mutation of themore » X 1 and X 2 positions either completely abolished the interaction with all LC3 and GABARAPs or increased PLEKHM1–GIM selectivity 20–fold towards LC3B. Finally, we show that conversion of p62/SQSTM1, FUNDC1 and FIP200 LIRs into our newly defined GIM, by introducing two valine residues, enhances their interaction with endogenous GABARAP over LC3B. In conclusion, the identification of a GABARAP–specific interaction motif will aid the identification and characterization of the expanding array of autophagy receptor and adaptor proteins and their in vivo functions.« less

  16. Identification of a novel calcium binding motif based on the detection of sequence insertions in the animal peroxidase domain of bacterial proteins.

    PubMed

    Santamaría-Hernando, Saray; Krell, Tino; Ramos-González, María-Isabel

    2012-01-01

    Proteins of the animal heme peroxidase (ANP) superfamily differ greatly in size since they have either one or two catalytic domains that match profile PS50292. The orf PP_2561 of Pseudomonas putida KT2440 that we have called PepA encodes a two-domain ANP. The alignment of these domains with those of PepA homologues revealed a variable number of insertions with the consensus G-x-D-G-x-x-[GN]-[TN]-x-D-D. This motif has also been detected in the structure of pseudopilin (pdb 3G20), where it was found to be involved in Ca(2+) coordination although a sequence analysis did not reveal the presence of any known calcium binding motifs in this protein. Isothermal titration calorimetry revealed that a peptide containing this consensus motif bound specifically calcium ions with affinities ranging between 33-79 µM depending on the pH. Microcalorimetric titrations of the purified N-terminal ANP-like domain of PepA revealed Ca(2+) binding with a K(D) of 12 µM and stoichiometry of 1.25 calcium ions per protein monomer. This domain exhibited peroxidase activity after its reconstitution with heme. These data led to the definition of a novel calcium binding motif that we have termed PERCAL and which was abundantly present in animal peroxidase-like domains of bacterial proteins. Bacterial heme peroxidases thus possess two different types of calcium binding motifs, namely PERCAL and the related hemolysin type calcium binding motif, with the latter being located outside the catalytic domains and in their C-terminal end. A phylogenetic tree of ANP-like catalytic domains of bacterial proteins with PERCAL motifs, including single domain peroxidases, was divided into two major clusters, representing domains with and without PERCAL motif containing insertions. We have verified that the recently reported classification of bacterial heme peroxidases in two families (cd09819 and cd09821) is unrelated to these insertions. Sequences matching PERCAL were detected in all kingdoms of life.

  17. Design, Synthesis and Qualitative Structure Activity Relationship Evaluations of Quinoline-Based Bisarylimidazoles as Antibacterial Motifs.

    PubMed

    Al-Qawasmeh, Raed A; Huthail, Basil B; Sinnokrot, Mutasem O; Semreen, Mohammad H; Odeh, Raed A; Abu-Zarga, Musa H; Tarazi, Hamadeh; Yousef, Imad A; Al-Tel, Taleb H

    2016-01-01

    their antibacterial activity. In this respect, it was found that, hydrophobic and electron-withdrawing moieties, such as halogens, were required on each end of the isoquinoline-based bisaryl imidazole hybrid motifs to produce broad-spectrum activity against the tested strains. Thus, molecules containing halophenyl or pyridyl arms were found more potent than molecules containing thiophene and/or electron-releasing groups on the phenyl arms, which showed much less antibacterial activity against the tested strains. In summary, 4-(4,5-diphenyl-1H-imidazol-2-yl)-2-phenylquinoline systems can be assembled efficiently through the Pfitzinger ring expansion- condensation strategy. This approach appears to hold considerable synthetic utility. The particular value of such a synthetic route resides on the conciseness and efficiency through which imidazo-quinoline construction can be synthesized from structurally simple and accessible acetophenone precursors.

  18. Disparate requirements for the Walker A and B ATPase motifs of human RAD51D in homologous recombination.

    PubMed

    Wiese, Claudia; Hinz, John M; Tebbs, Robert S; Nham, Peter B; Urbin, Salustra S; Collins, David W; Thompson, Larry H; Schild, David

    2006-01-01

    In vertebrates, homologous recombinational repair (HRR) requires RAD51 and five RAD51 paralogs (XRCC2, XRCC3, RAD51B, RAD51C and RAD51D) that all contain conserved Walker A and B ATPase motifs. In human RAD51D we examined the requirement for these motifs in interactions with XRCC2 and RAD51C, and for survival of cells in response to DNA interstrand crosslinks (ICLs). Ectopic expression of wild-type human RAD51D or mutants having a non-functional A or B motif was used to test for complementation of a rad51d knockout hamster CHO cell line. Although A-motif mutants complement very efficiently, B-motif mutants do not. Consistent with these results, experiments using the yeast two- and three-hybrid systems show that the interactions between RAD51D and its XRCC2 and RAD51C partners also require a functional RAD51D B motif, but not motif A. Similarly, hamster Xrcc2 is unable to bind to the non-complementing human RAD51D B-motif mutants in co-immunoprecipitation assays. We conclude that a functional Walker B motif, but not A motif, is necessary for RAD51D's interactions with other paralogs and for efficient HRR. We present a model in which ATPase sites are formed in a bipartite manner between RAD51D and other RAD51 paralogs.

  19. Phospholipid composition and a polybasic motif determine D6 PROTEIN KINASE polar association with the plasma membrane and tropic responses.

    PubMed

    Barbosa, Inês C R; Shikata, Hiromasa; Zourelidou, Melina; Heilmann, Mareike; Heilmann, Ingo; Schwechheimer, Claus

    2016-12-15

    Polar transport of the phytohormone auxin through PIN-FORMED (PIN) auxin efflux carriers is essential for the spatiotemporal control of plant development. The Arabidopsis thaliana serine/threonine kinase D6 PROTEIN KINASE (D6PK) is polarly localized at the plasma membrane of many cells where it colocalizes with PINs and activates PIN-mediated auxin efflux. Here, we show that the association of D6PK with the basal plasma membrane and PINs is dependent on the phospholipid composition of the plasma membrane as well as on the phosphatidylinositol phosphate 5-kinases PIP5K1 and PIP5K2 in epidermis cells of the primary root. We further show that D6PK directly binds polyacidic phospholipids through a polybasic lysine-rich motif in the middle domain of the kinase. The lysine-rich motif is required for proper PIN3 phosphorylation and for auxin transport-dependent tropic growth. Polybasic motifs are also present at a conserved position in other D6PK-related kinases and required for membrane and phospholipid binding. Thus, phospholipid-dependent recruitment to membranes through polybasic motifs might not only be required for D6PK-mediated auxin transport but also other processes regulated by these, as yet, functionally uncharacterized kinases. © 2016. Published by The Company of Biologists Ltd.

  20. Unique Structural Features and Sequence Motifs of Proline Utilization A (PutA)

    PubMed Central

    Singh, Ranjan K.; Tanner, John J.

    2013-01-01

    Proline utilization A proteins (PutAs) are bifunctional enzymes that catalyze the oxidation of proline to glutamate using spatially separated proline dehydrogenase and pyrroline-5-carboxylate dehydrogenase active sites. Here we use the crystal structure of the minimalist PutA from Bradyrhizobium japonicum (BjPutA) along with sequence analysis to identify unique structural features of PutAs. This analysis shows that PutAs have secondary structural elements and domains not found in the related monofunctional enzymes. Some of these extra features are predicted to be important for substrate channeling in BjPutA. Multiple sequence alignment analysis shows that some PutAs have a 17-residue conserved motif in the C-terminal 20–30 residues of the polypeptide chain. The BjPutA structure shows that this motif helps seal the internal substrate-channeling cavity from the bulk medium. Finally, it is shown that some PutAs have a 100–200 residue domain of unknown function in the C-terminus that is not found in minimalist PutAs. Remote homology detection suggests that this domain is homologous to the oligomerization beta-hairpin and Rossmann fold domain of BjPutA. PMID:22201760

  1. The Verrucomicrobia LexA-Binding Motif: Insights into the Evolutionary Dynamics of the SOS Response.

    PubMed

    Erill, Ivan; Campoy, Susana; Kılıç, Sefa; Barbé, Jordi

    2016-01-01

    The SOS response is the primary bacterial mechanism to address DNA damage, coordinating multiple cellular processes that include DNA repair, cell division, and translesion synthesis. In contrast to other regulatory systems, the composition of the SOS genetic network and the binding motif of its transcriptional repressor, LexA, have been shown to vary greatly across bacterial clades, making it an ideal system to study the co-evolution of transcription factors and their regulons. Leveraging comparative genomics approaches and prior knowledge on the core SOS regulon, here we define the binding motif of the Verrucomicrobia, a recently described phylum of emerging interest due to its association with eukaryotic hosts. Site directed mutagenesis of the Verrucomicrobium spinosum recA promoter confirms that LexA binds a 14 bp palindromic motif with consensus sequence TGTTC-N4-GAACA. Computational analyses suggest that recognition of this novel motif is determined primarily by changes in base-contacting residues of the third alpha helix of the LexA helix-turn-helix DNA binding motif. In conjunction with comparative genomics analysis of the LexA regulon in the Verrucomicrobia phylum, electrophoretic shift assays reveal that LexA binds to operators in the promoter region of DNA repair genes and a mutagenesis cassette in this organism, and identify previously unreported components of the SOS response. The identification of tandem LexA-binding sites generating instances of other LexA-binding motifs in the lexA gene promoter of Verrucomicrobia species leads us to postulate a novel mechanism for LexA-binding motif evolution. This model, based on gene duplication, successfully addresses outstanding questions in the intricate co-evolution of the LexA protein, its binding motif and the regulatory network it controls.

  2. The Motif of Meeting in Digital Education

    ERIC Educational Resources Information Center

    Sheail, Philippa

    2015-01-01

    This article draws on theoretical work which considers the composition of meetings, in order to think about the form of the meeting in digital environments for higher education. To explore the motif of meeting, I undertake a "compositional interpretation" (Rose, 2012) of the default interface offered by "Collaborate", an…

  3. A novel approach to identifying regulatory motifs in distantly related genomes

    PubMed Central

    Van Hellemont, Ruth; Monsieurs, Pieter; Thijs, Gert; De Moor, Bart; Van de Peer, Yves; Marchal, Kathleen

    2005-01-01

    Although proven successful in the identification of regulatory motifs, phylogenetic footprinting methods still show some shortcomings. To assess these difficulties, most apparent when applying phylogenetic footprinting to distantly related organisms, we developed a two-step procedure that combines the advantages of sequence alignment and motif detection approaches. The results on well-studied benchmark datasets indicate that the presented method outperforms other methods when the sequences become either too long or too heterogeneous in size. PMID:16420672

  4. TOPDOM: database of conservatively located domains and motifs in proteins.

    PubMed

    Varga, Julia; Dobson, László; Tusnády, Gábor E

    2016-09-01

    The TOPDOM database-originally created as a collection of domains and motifs located consistently on the same side of the membranes in α-helical transmembrane proteins-has been updated and extended by taking into consideration consistently localized domains and motifs in globular proteins, too. By taking advantage of the recently developed CCTOP algorithm to determine the type of a protein and predict topology in case of transmembrane proteins, and by applying a thorough search for domains and motifs as well as utilizing the most up-to-date version of all source databases, we managed to reach a 6-fold increase in the size of the whole database and a 2-fold increase in the number of transmembrane proteins. TOPDOM database is available at http://topdom.enzim.hu The webpage utilizes the common Apache, PHP5 and MySQL software to provide the user interface for accessing and searching the database. The database itself is generated on a high performance computer. tusnady.gabor@ttk.mta.hu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  5. Maximum likelihood density modification by pattern recognition of structural motifs

    DOEpatents

    Terwilliger, Thomas C.

    2004-04-13

    An electron density for a crystallographic structure having protein regions and solvent regions is improved by maximizing the log likelihood of a set of structures factors {F.sub.h } using a local log-likelihood function: (x)+p(.rho.(x).vertline.SOLV)p.sub.SOLV (x)+p(.rho.(x).vertline.H)p.sub.H (x)], where p.sub.PROT (x) is the probability that x is in the protein region, p(.rho.(x).vertline.PROT) is the conditional probability for .rho.(x) given that x is in the protein region, and p.sub.SOLV (x) and p(.rho.(x).vertline.SOLV) are the corresponding quantities for the solvent region, p.sub.H (x) refers to the probability that there is a structural motif at a known location, with a known orientation, in the vicinity of the point x; and p(.rho.(x).vertline.H) is the probability distribution for electron density at this point given that the structural motif actually is present. One appropriate structural motif is a helical structure within the crystallographic structure.

  6. Motifs in triadic random graphs based on Steiner triple systems

    NASA Astrophysics Data System (ADS)

    Winkler, Marco; Reichardt, Jörg

    2013-08-01

    Conventionally, pairwise relationships between nodes are considered to be the fundamental building blocks of complex networks. However, over the last decade, the overabundance of certain subnetwork patterns, i.e., the so-called motifs, has attracted much attention. It has been hypothesized that these motifs, instead of links, serve as the building blocks of network structures. Although the relation between a network's topology and the general properties of the system, such as its function, its robustness against perturbations, or its efficiency in spreading information, is the central theme of network science, there is still a lack of sound generative models needed for testing the functional role of subgraph motifs. Our work aims to overcome this limitation. We employ the framework of exponential random graph models (ERGMs) to define models based on triadic substructures. The fact that only a small portion of triads can actually be set independently poses a challenge for the formulation of such models. To overcome this obstacle, we use Steiner triple systems (STSs). These are partitions of sets of nodes into pair-disjoint triads, which thus can be specified independently. Combining the concepts of ERGMs and STSs, we suggest generative models capable of generating ensembles of networks with nontrivial triadic Z-score profiles. Further, we discover inevitable correlations between the abundance of triad patterns, which occur solely for statistical reasons and need to be taken into account when discussing the functional implications of motif statistics. Moreover, we calculate the degree distributions of our triadic random graphs analytically.

  7. Identification of sequence-structure RNA binding motifs for SELEX-derived aptamers.

    PubMed

    Hoinka, Jan; Zotenko, Elena; Friedman, Adam; Sauna, Zuben E; Przytycka, Teresa M

    2012-06-15

    Systematic Evolution of Ligands by EXponential Enrichment (SELEX) represents a state-of-the-art technology to isolate single-stranded (ribo)nucleic acid fragments, named aptamers, which bind to a molecule (or molecules) of interest via specific structural regions induced by their sequence-dependent fold. This powerful method has applications in designing protein inhibitors, molecular detection systems, therapeutic drugs and antibody replacement among others. However, full understanding and consequently optimal utilization of the process has lagged behind its wide application due to the lack of dedicated computational approaches. At the same time, the combination of SELEX with novel sequencing technologies is beginning to provide the data that will allow the examination of a variety of properties of the selection process. To close this gap we developed, Aptamotif, a computational method for the identification of sequence-structure motifs in SELEX-derived aptamers. To increase the chances of identifying functional motifs, Aptamotif uses an ensemble-based approach. We validated the method using two published aptamer datasets containing experimentally determined motifs of increasing complexity. We were able to recreate the author's findings to a high degree, thus proving the capability of our approach to identify binding motifs in SELEX data. Additionally, using our new experimental dataset, we illustrate the application of Aptamotif to elucidate several properties of the selection process.

  8. Identification of sequence–structure RNA binding motifs for SELEX-derived aptamers

    PubMed Central

    Hoinka, Jan; Zotenko, Elena; Friedman, Adam; Sauna, Zuben E.; Przytycka, Teresa M.

    2012-01-01

    Motivation: Systematic Evolution of Ligands by EXponential Enrichment (SELEX) represents a state-of-the-art technology to isolate single-stranded (ribo)nucleic acid fragments, named aptamers, which bind to a molecule (or molecules) of interest via specific structural regions induced by their sequence-dependent fold. This powerful method has applications in designing protein inhibitors, molecular detection systems, therapeutic drugs and antibody replacement among others. However, full understanding and consequently optimal utilization of the process has lagged behind its wide application due to the lack of dedicated computational approaches. At the same time, the combination of SELEX with novel sequencing technologies is beginning to provide the data that will allow the examination of a variety of properties of the selection process. Results: To close this gap we developed, Aptamotif, a computational method for the identification of sequence–structure motifs in SELEX-derived aptamers. To increase the chances of identifying functional motifs, Aptamotif uses an ensemble-based approach. We validated the method using two published aptamer datasets containing experimentally determined motifs of increasing complexity. We were able to recreate the author's findings to a high degree, thus proving the capability of our approach to identify binding motifs in SELEX data. Additionally, using our new experimental dataset, we illustrate the application of Aptamotif to elucidate several properties of the selection process. Contact: przytyck@ncbi.nlm.nih.gov, Zuben.Sauna@fda.hhs.gov PMID:22689764

  9. HOXB9 induction of mesenchymal-to-epithelial transition in gastric carcinoma is negatively regulated by its hexapeptide motif

    PubMed Central

    He, Changyu; Zhang, Baogui; Zhang, Jun; Liu, Bingya; Zeng, Naiyan; Zhu, Zhenggang

    2015-01-01

    HOXB9, a transcription factor, plays an important role in development. While HOXB9 has been implicated in tumorigenesis and metastasis, its mechanisms are variable and its role in gastric carcinoma (GC) remains unclear. In the present study, we demonstrated that the expression of HOXB9 decreased in gastric carcinoma and was associated with malignancy and metastasis. Re-expression of HOXB9 in gastric cell lines resulted in the suppression of cell proliferation, migration, and invasion, which was accompanied by the induction of mesenchymal-to-epithelial transition (MET). Comparative sequence analysis and examination of a HOXB9 structural model indicated that three sites might possibly be involved in MET regulation. The in vitro study of HOXB9 mutants showed that these were unable to inhibit MET induction. However, when overexpressing a HOXB9 mutant lacking the hexapeptide motif, a more potent MET induction and tumor suppression was observed compared to that of the wild-type, indicating that the presence of the hexapeptide motif reduced HOXB9 MET induction and tumor suppression activity. Therefore, the results of the present study suggested that HOXB9 is a tumor suppressor in gastric carcinoma, and its activity was controlled by different regulatory mechanisms such as the hexapeptide motif as a “brake” in this case. The results of these regulatory effects could lead to either oncogenic or tumor suppressive roles of HOXB9, depending on the context of the particular type of cancer involved. PMID:26536658

  10. A single amino-acid change in a highly conserved motif of gp41 elicits HIV-1 neutralization and protects against CD4 depletion.

    PubMed

    Petitdemange, Caroline; Achour, Abla; Dispinseri, Stefania; Malet, Isabelle; Sennepin, Alexis; Ho Tsong Fang, Raphaël; Crouzet, Joël; Marcelin, Anne-Geneviève; Calvez, Vincent; Scarlatti, Gabriella; Debré, Patrice; Vieillard, Vincent

    2013-09-01

    The induction of neutralizing antibodies against conserved regions of the human immunodeficiency virus type 1 (HIV-1) envelope protein is a major goal of vaccine strategies. We previously identified 3S, a critical conserved motif of gp41 that induces the NKp44L ligand of an activating NK receptor. In vivo, anti-3S antibodies protect against the natural killer (NK) cell-mediated CD4 depletion that occurs without efficient viral neutralization. Specific substitutions within the 3S peptide motif were prepared by directed mutagenesis. Virus production was monitored by measuring the p24 production. Neutralization assays were performed with immune-purified antibodies from immunized mice and a cohort of HIV-infected patients. Expression of NKp44L on CD4(+) T cells and degranulation assay on activating NK cells were both performed by flow cytometry. Here, we show that specific substitutions in the 3S motif reduce viral infection without affecting gp41 production, while decreasing both its capacity to induce NKp44L expression on CD4(+) T cells and its sensitivity to autologous NK cells. Generation of antibodies in mice against the W614 specific position in the 3S motif elicited a capacity to neutralize cross-clade viruses, notable in its magnitude, breadth, and durability. Antibodies against this 3S variant were also detected in sera from some HIV-1-infected patients, demonstrating both neutralization activity and protection against CD4 depletion. These findings suggest that a specific substitution in a 3S-based immunogen might allow the generation of specific antibodies, providing a foundation for a rational vaccine that combine a capacity to neutralize HIV-1 and to protect CD4(+) T cells.

  11. Characterization of Novel Calmodulin Binding Domains within IQ Motifs of IQGAP1

    PubMed Central

    Jang, Deok-Jin; Ban, Byungkwan; Lee, Jin-A

    2011-01-01

    IQ motif-containing GTPase-activating protein 1 (IQGAP1), which is a well-known calmodulin (CaM) binding protein, is involved in a wide range of cellular processes including cell proliferation, tumorigenesis, adhesion, and migration. Interaction of IQGAP1 with CaM is important for its cellular functions. Although each IQ domain of IQGAP1 for CaM binding has been characterized in a Ca2+-dependent or -independent manner, it was not clear which IQ motifs are physiologically relevant for CaM binding in the cells. In this study, we performed immunoprecipitation using 3xFLAGhCaM in mammalian cell lines to characterize the domains of IQGAP1 that are key for CaM binding under physiological conditions. Interestingly, using this method, we identified two novel domains, IQ(2.7-3) and IQ(3.5-4.4), within IQGAP1 that were involved in Ca2+-independent or -dependent CaM binding, respectively. Mutant analysis clearly showed that the hydrophobic regions within IQ(2.7-3) were mainly involved in apoCaM binding, while the basic amino acids and hydrophobic region of IQ(3.5-4.4) were required for Ca2+/CaM binding. Finally, we showed that IQ(2.7-3) was the main apoCaM binding domain and both IQ(2.7-3) and IQ(3.5-4.4) were required for Ca2+/CaM binding within IQ(1- 2-3-4). Thus, we identified and characterized novel direct CaM binding motifs essential for IQGAP1. This finding indicates that IQGAP1 plays a dynamic role via direct interactions with CaM in a Ca2+-dependent or -independent manner. PMID:22080369

  12. Transient α-helices in the disordered RPEL motifs of the serum response factor coactivator MKL1

    NASA Astrophysics Data System (ADS)

    Mizuguchi, Mineyuki; Fuju, Takahiro; Obita, Takayuki; Ishikawa, Mitsuru; Tsuda, Masaaki; Tabuchi, Akiko

    2014-06-01

    The megakaryoblastic leukemia 1 (MKL1) protein functions as a transcriptional coactivator of the serum response factor. MKL1 has three RPEL motifs (RPEL1, RPEL2, and RPEL3) in its N-terminal region. MKL1 binds to monomeric G-actin through RPEL motifs, and the dissociation of MKL1 from G-actin promotes the translocation of MKL1 to the nucleus. Although structural data are available for RPEL motifs of MKL1 in complex with G-actin, the structural characteristics of RPEL motifs in the free state have been poorly defined. Here we characterized the structures of free RPEL motifs using NMR and CD spectroscopy. NMR and CD measurements showed that free RPEL motifs are largely unstructured in solution. However, NMR analysis identified transient α-helices in the regions where helices α1 and α2 are induced upon binding to G-actin. Proline mutagenesis showed that the transient α-helices are locally formed without helix-helix interactions. The helix content is higher in the order of RPEL1, RPEL2, and RPEL3. The amount of preformed structure may correlate with the binding affinity between the intrinsically disordered protein and its target molecule.

  13. N-Terminal Ile-Orn- and Trp-Orn-Motif Repeats Enhance Membrane Interaction and Increase the Antimicrobial Activity of Apidaecins against Pseudomonas aeruginosa

    PubMed Central

    Bluhm, Martina E. C.; Schneider, Viktoria A. F.; Schäfer, Ingo; Piantavigna, Stefania; Goldbach, Tina; Knappe, Daniel; Seibel, Peter; Martin, Lisandra L.; Veldhuizen, Edwin J. A.; Hoffmann, Ralf

    2016-01-01

    The Gram-negative bacterium Pseudomonas aeruginosa is a life-threatening nosocomial pathogen due to its generally low susceptibility toward antibiotics. Furthermore, many strains have acquired resistance mechanisms requiring new antimicrobials with novel mechanisms to enhance treatment options. Proline-rich antimicrobial peptides, such as the apidaecin analog Api137, are highly efficient against various Enterobacteriaceae infections in mice, but less active against P. aeruginosa in vitro. Here, we extended our recent work by optimizing lead peptides Api755 (gu-OIORPVYOPRPRPPHPRL-OH; gu = N,N,N′,N′-tetramethylguanidino, O = L-ornithine) and Api760 (gu-OWORPVYOPRPRPPHPRL-OH) by incorporation of Ile-Orn- and Trp-Orn-motifs, respectively. Api795 (gu-O(IO)2RPVYOPRPRPPHPRL-OH) and Api794 (gu-O(WO)3RPVYOPRPRPPHPRL-OH) were highly active against P. aeruginosa with minimal inhibitory concentrations of 8–16 and 8–32 μg/mL against Escherichia coli and Klebsiella pneumoniae. Assessed using a quartz crystal microbalance, these peptides inserted into a membrane layer and the surface activity increased gradually from Api137, over Api795, to Api794. This mode of action was confirmed by transmission electron microscopy indicating some membrane damage only at the high peptide concentrations. Api794 and Api795 were highly stable against serum proteases (half-life times >5 h) and non-hemolytic to human erythrocytes at peptide concentrations of 0.6 g/L. At this concentration, Api795 reduced the cell viability of HeLa cells only slightly, whereas the IC50 of Api794 was 0.23 ± 0.09 g/L. Confocal fluorescence microscopy revealed no colocalization of 5(6)-carboxyfluorescein-labeled Api794 or Api795 with the mitochondria, excluding interactions with the mitochondrial membrane. Interestingly, Api795 was localized in endosomes, whereas Api794 was present in endosomes and the cytosol. This was verified using flow cytometry showing a 50% higher uptake of Api794 in HeLa cells compared

  14. Molecular Interaction Between Smurfl WW2 Domain and PPXY Motifs of Smadl, Smad5, and Smad6-Modeling and Analysis.

    PubMed

    Sangadala, Sreedhara; Rao Metpally, Raghu Prasad; B Reddy, Boojala Vijay

    2007-08-01

    Abstract The ubiquitin-proteasome proteolytic pathway is essential for various important biological processes including cell cycle progression, gene transcription, and signal transduction. One of the important regulatory mechanisms by which the bone-inducing activity of the bone morphogenetic protein (BMP) signaling is modulated involves ubiquitin-mediated proteasomal degradation. The BMP induced receptor signal is transmitted intracellularly by phosphorylation of Smad proteins by the activated receptor I. The phosphorylated Smads 1, 5, and 8 (R-Smads) oligomerize with the co-Smad (Smad4). The complex, thus, formed translocates to the nucleus and interacts with other cofactors to regulate the expression of downstream target genes. R-Smads contain PPXY motif in the linker region that interacts with Smad ubiquitin regulatory factor 1 (Smurf1), an E3 ubiquitin ligase that catalyzes ubiquitination of target proteins for proteasomal degradation. Smurf1 contains a HECT domain, a C2 domain, and 2 WW domains (WW1, WW2). The PPXY motif in target proteins and its interaction with Smurf1 may form the basis for regulation of steady-state levels of Smads in controlling BMP-responsiveness of cells. Here, we present a homology-based model of the Smurf1 WW2 domain and the target octa-peptides containing PPXY motif of Smurf1- interacting Smads. We carried out docking of Smurf1 WW2 domain with the PPXY motifs of Smadl, Smad5, and Smad6 and identified the key amino acid residues involved in interaction. Furthermore, we present experimental evidence that WW2 domain of Smurf1 does indeed interact with the Smad proteins and that the deletion of WW2 domain of Smurf1 results in loss of its binding to Smads using the purified recombinant proteins. Finally, we also present data confirming that the deletion of WW2 domain in Smurf1 abolishes its ubiquitination activity on Smad1 in an in vitro ubiquitination assay. It shows that the interaction between the WW domain and Smad PPXY motif is a

  15. Characterization of a Smad motif similar to Drosophila mad in the mouse Msx 1 promoter.

    PubMed

    Alvarez Martinez, Cristina E; Binato, Renata; Gonzalez, Sayonara; Pereira, Monica; Robert, Benoit; Abdelhay, Eliana

    2002-03-01

    Mouse Msx 1 gene, orthologous of the Drosophila msh, is involved in several developmental processes. BMP family members are major proteins in the regulation of Msx 1 expression. BMP signaling activates Smad 1/5/8 proteins, which associate to Smad 4 before translocating to the nucleus. Analysis of Msx 1 promoter revealed the presence of three elements similar to the consensus established for Mad, the Smad 1 Drosophila counterpart. Notably, such an element was identified in an enhancer important for Msx 1 regulation. Gel shift analysis demonstrated that proteins from 13.5 dpc embryo associate to this enhancer. Remarkably, supershift assays showed that Smad proteins are present in the complex. Purified Smad 1 and 4 also bind to this fragment. We demonstrate that functional binding sites in this enhancer are confined to the Mad motif and flanking region. Our data suggest that this Mad motif may be functional in response to BMP signaling. ©2002 Elsevier Science (USA).

  16. DNA motifs determining the accuracy of repeat duplication during CRISPR adaptation in Haloarcula hispanica

    PubMed Central

    Wang, Rui; Li, Ming; Gong, Luyao; Hu, Songnian; Xiang, Hua

    2016-01-01

    Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) acquire new spacers to generate adaptive immunity in prokaryotes. During spacer integration, the leader-preceded repeat is always accurately duplicated, leading to speculations of a repeat-length ruler. Here in Haloarcula hispanica, we demonstrate that the accurate duplication of its 30-bp repeat requires two conserved mid-repeat motifs, AACCC and GTGGG. The AACCC motif was essential and needed to be ∼10 bp downstream from the leader-repeat junction site, where duplication consistently started. Interestingly, repeat duplication terminated sequence-independently and usually with a specific distance from the GTGGG motif, which seemingly served as an anchor site for a molecular ruler. Accordingly, altering the spacing between the two motifs led to an aberrant duplication size (29, 31, 32 or 33 bp). We propose the adaptation complex may recognize these mid-repeat elements to enable measuring the repeat DNA for spacer integration. PMID:27085805

  17. Aerodynamics of the EXPERT Re-Entry Ballistic Vehicle

    NASA Astrophysics Data System (ADS)

    Kharitonov, A. M.; Adamov, N. P.; Mazhul, I. I.; Vasenyov, L. G.; Zvegintsev, V. I.; Muylaert, J. M.

    2009-01-01

    Since 2002 till now, experimental studies of the EXPERT reentry capsule have been performed in ITAM SB RAS wind tunnels. These studies have been performed in consecutive ISTC project No. 2109, 3151, and currently ongoing project No. 3550. The results of earlier studies in ITAM wind tunnels can be found in [1-4]. The present paper describes new data obtained for the EXPERT model.

  18. An analysis of multi-type relational interactions in FMA using graph motifs with disjointness constraints.

    PubMed

    Zhang, Guo-Qiang; Luo, Lingyun; Ogbuji, Chime; Joslyn, Cliff; Mejino, Jose; Sahoo, Satya S

    2012-01-01

    The interaction of multiple types of relationships among anatomical classes in the Foundational Model of Anatomy (FMA) can provide inferred information valuable for quality assurance. This paper introduces a method called Motif Checking (MOCH) to study the effects of such multi-relation type interactions for detecting logical inconsistencies as well as other anomalies represented by the motifs. MOCH represents patterns of multi-type interaction as small labeled (with multiple types of edges) sub-graph motifs, whose nodes represent class variables, and labeled edges represent relational types. By representing FMA as an RDF graph and motifs as SPARQL queries, fragments of FMA are automatically obtained as auditing candidates. Leveraging the scalability and reconfigurability of Semantic Web Technology, we performed exhaustive analyses of a variety of labeled sub-graph motifs. The quality assurance feature of MOCH comes from the distinct use of a subset of the edges of the graph motifs as constraints for disjointness, whereby bringing in rule-based flavor to the approach as well. With possible disjointness implied by antonyms, we performed manual inspection of the resulting FMA fragments and tracked down sources of abnormal inferred conclusions (logical inconsistencies), which are amendable for programmatic revision of the FMA. Our results demonstrate that MOCH provides a unique source of valuable information for quality assurance. Since our approach is general, it is applicable to any ontological system with an OWL representation.

  19. An Analysis of Multi-type Relational Interactions in FMA Using Graph Motifs with Disjointness Constraints

    PubMed Central

    Zhang, Guo-Qiang; Luo, Lingyun; Ogbuji, Chime; Joslyn, Cliff; Mejino, Jose; Sahoo, Satya S

    2012-01-01

    The interaction of multiple types of relationships among anatomical classes in the Foundational Model of Anatomy (FMA) can provide inferred information valuable for quality assurance. This paper introduces a method called Motif Checking (MOCH) to study the effects of such multi-relation type interactions for detecting logical inconsistencies as well as other anomalies represented by the motifs. MOCH represents patterns of multi-type interaction as small labeled (with multiple types of edges) sub-graph motifs, whose nodes represent class variables, and labeled edges represent relational types. By representing FMA as an RDF graph and motifs as SPARQL queries, fragments of FMA are automatically obtained as auditing candidates. Leveraging the scalability and reconfigurability of Semantic Web Technology, we performed exhaustive analyses of a variety of labeled sub-graph motifs. The quality assurance feature of MOCH comes from the distinct use of a subset of the edges of the graph motifs as constraints for disjointness, whereby bringing in rule-based flavor to the approach as well. With possible disjointness implied by antonyms, we performed manual inspection of the resulting FMA fragments and tracked down sources of abnormal inferred conclusions (logical inconsistencies), which are amendable for programmatic revision of the FMA. Our results demonstrate that MOCH provides a unique source of valuable information for quality assurance. Since our approach is general, it is applicable to any ontological system with an OWL representation. PMID:23304382

  20. Accurate quantification of microRNA via single strand displacement reaction on DNA origami motif.

    PubMed

    Zhu, Jie; Feng, Xiaolu; Lou, Jingyu; Li, Weidong; Li, Sheng; Zhu, Hongxin; Yang, Lun; Zhang, Aiping; He, Lin; Li, Can

    2013-01-01

    DNA origami is an emerging technology that assembles hundreds of staple strands and one single-strand DNA into certain nanopattern. It has been widely used in various fields including detection of biological molecules such as DNA, RNA and proteins. MicroRNAs (miRNAs) play important roles in post-transcriptional gene repression as well as many other biological processes such as cell growth and differentiation. Alterations of miRNAs' expression contribute to many human diseases. However, it is still a challenge to quantitatively detect miRNAs by origami technology. In this study, we developed a novel approach based on streptavidin and quantum dots binding complex (STV-QDs) labeled single strand displacement reaction on DNA origami to quantitatively detect the concentration of miRNAs. We illustrated a linear relationship between the concentration of an exemplary miRNA as miRNA-133 and the STV-QDs hybridization efficiency; the results demonstrated that it is an accurate nano-scale miRNA quantifier motif. In addition, both symmetrical rectangular motif and asymmetrical China-map motif were tested. With significant linearity in both motifs, our experiments suggested that DNA Origami motif with arbitrary shape can be utilized in this method. Since this DNA origami-based method we developed owns the unique advantages of simple, time-and-material-saving, potentially multi-targets testing in one motif and relatively accurate for certain impurity samples as counted directly by atomic force microscopy rather than fluorescence signal detection, it may be widely used in quantification of miRNAs.

  1. Accurate Quantification of microRNA via Single Strand Displacement Reaction on DNA Origami Motif

    PubMed Central

    Lou, Jingyu; Li, Weidong; Li, Sheng; Zhu, Hongxin; Yang, Lun; Zhang, Aiping; He, Lin; Li, Can

    2013-01-01

    DNA origami is an emerging technology that assembles hundreds of staple strands and one single-strand DNA into certain nanopattern. It has been widely used in various fields including detection of biological molecules such as DNA, RNA and proteins. MicroRNAs (miRNAs) play important roles in post-transcriptional gene repression as well as many other biological processes such as cell growth and differentiation. Alterations of miRNAs' expression contribute to many human diseases. However, it is still a challenge to quantitatively detect miRNAs by origami technology. In this study, we developed a novel approach based on streptavidin and quantum dots binding complex (STV-QDs) labeled single strand displacement reaction on DNA origami to quantitatively detect the concentration of miRNAs. We illustrated a linear relationship between the concentration of an exemplary miRNA as miRNA-133 and the STV-QDs hybridization efficiency; the results demonstrated that it is an accurate nano-scale miRNA quantifier motif. In addition, both symmetrical rectangular motif and asymmetrical China-map motif were tested. With significant linearity in both motifs, our experiments suggested that DNA Origami motif with arbitrary shape can be utilized in this method. Since this DNA origami-based method we developed owns the unique advantages of simple, time-and-material-saving, potentially multi-targets testing in one motif and relatively accurate for certain impurity samples as counted directly by atomic force microscopy rather than fluorescence signal detection, it may be widely used in quantification of miRNAs. PMID:23990889

  2. The Transcriptional Complex Between the BCL2 i-Motif and hnRNP LL Is a Molecular Switch for Control of Gene Expression That Can Be Modulated by Small Molecules

    PubMed Central

    2015-01-01

    In a companion paper (DOI: 10.021/ja410934b) we demonstrate that the C-rich strand of the cis-regulatory element in the BCL2 promoter element is highly dynamic in nature and can form either an i-motif or a flexible hairpin. Under physiological conditions these two secondary DNA structures are found in an equilibrium mixture, which can be shifted by the addition of small molecules that trap out either the i-motif (IMC-48) or the flexible hairpin (IMC-76). In cellular experiments we demonstrate that the addition of these molecules has opposite effects on BCL2 gene expression and furthermore that these effects are antagonistic. In this contribution we have identified a transcriptional factor that recognizes and binds to the BCL2 i-motif to activate transcription. The molecular basis for the recognition of the i-motif by hnRNP LL is determined, and we demonstrate that the protein unfolds the i-motif structure to form a stable single-stranded complex. In subsequent experiments we show that IMC-48 and IMC-76 have opposite, antagonistic effects on the formation of the hnRNP LL–i-motif complex as well as on the transcription factor occupancy at the BCL2 promoter. For the first time we propose that the i-motif acts as a molecular switch that controls gene expression and that small molecules that target the dynamic equilibrium of the i-motif and the flexible hairpin can differentially modulate gene expression. PMID:24559432

  3. Cloud-based MOTIFSIM: Detecting Similarity in Large DNA Motif Data Sets.

    PubMed

    Tran, Ngoc Tam L; Huang, Chun-Hsi

    2017-05-01

    We developed the cloud-based MOTIFSIM on Amazon Web Services (AWS) cloud. The tool is an extended version from our web-based tool version 2.0, which was developed based on a novel algorithm for detecting similarity in multiple DNA motif data sets. This cloud-based version further allows researchers to exploit the computing resources available from AWS to detect similarity in multiple large-scale DNA motif data sets resulting from the next-generation sequencing technology. The tool is highly scalable with expandable AWS.

  4. Imperfect duplicate insertions type of mutations in plasmepsin V modulates binding properties of PEXEL motifs of export proteins in Indian Plasmodium vivax.

    PubMed

    Rawat, Manmeet; Vijay, Sonam; Gupta, Yash; Tiwari, Pramod Kumar; Sharma, Arun

    2013-01-01

    Plasmepsin V (PM-V) have functionally conserved orthologues across the Plasmodium genus who's binding and antigenic processing at the PEXEL motifs for export about 200-300 essential proteins is important for the virulence and viability of the causative Plasmodium species. This study was undertaken to determine P. vivax plasmepsin V Ind (PvPM-V-Ind) PEXEL motif export pathway for pathogenicity-related proteins/antigens export thereby altering plasmodium exportome during erythrocytic stages. We identify and characterize Plasmodium vivax plasmepsin-V-Ind (mutant) gene by cloning, sequence analysis, in silico bioinformatic protocols and structural modeling predictions based on docking studies on binding capacity with PEXEL motifs processing in terms of binding and accessibility of export proteins. Cloning and sequence analysis for genetic diversity demonstrates PvPM-V-Ind (mutant) gene is highly conserved among all isolates from different geographical regions of India. Imperfect duplicate insertion types of mutations (SVSE from 246-249 AA and SLSE from 266-269 AA) were identified among all Indian isolates in comparison to P.vivax Sal-1 (PvPM-V-Sal 1) isolate. In silico bioinformatics interaction studies of PEXEL peptide and active enzyme reveal that PvPM-V-Ind (mutant) is only active in endoplasmic reticulum lumen and membrane embedding is essential for activation of plasmepsin V. Structural modeling predictions based on docking studies with PEXEL motif show significant variation in substrate protein binding of these imperfect mutations with data mined PEXEL sequences. The predicted variation in the docking score and interacting amino acids of PvPM-V-Ind (mutant) proteins with PEXEL and lopinavir suggests a modulation in the activity of PvPM-V in terms of binding and accessibility at these sites. Our functional modeled validation of PvPM-V-Ind (mutant) imperfect duplicate insertions with data mined PEXEL sequences leading to altered binding and substrate accessibility

  5. Imperfect Duplicate Insertions Type of Mutations in Plasmepsin V Modulates Binding Properties of PEXEL Motifs of Export Proteins in Indian Plasmodium vivax

    PubMed Central

    Rawat, Manmeet; Vijay, Sonam; Gupta, Yash; Tiwari, Pramod Kumar; Sharma, Arun

    2013-01-01

    Introduction Plasmepsin V (PM-V) have functionally conserved orthologues across the Plasmodium genus who's binding and antigenic processing at the PEXEL motifs for export about 200–300 essential proteins is important for the virulence and viability of the causative Plasmodium species. This study was undertaken to determine P. vivax plasmepsin V Ind (PvPM-V-Ind) PEXEL motif export pathway for pathogenicity-related proteins/antigens export thereby altering plasmodium exportome during erythrocytic stages. Method We identify and characterize Plasmodium vivax plasmepsin-V-Ind (mutant) gene by cloning, sequence analysis, in silico bioinformatic protocols and structural modeling predictions based on docking studies on binding capacity with PEXEL motifs processing in terms of binding and accessibility of export proteins. Results Cloning and sequence analysis for genetic diversity demonstrates PvPM-V-Ind (mutant) gene is highly conserved among all isolates from different geographical regions of India. Imperfect duplicate insertion types of mutations (SVSE from 246–249 AA and SLSE from 266–269 AA) were identified among all Indian isolates in comparison to P.vivax Sal-1 (PvPM-V-Sal 1) isolate. In silico bioinformatics interaction studies of PEXEL peptide and active enzyme reveal that PvPM-V-Ind (mutant) is only active in endoplasmic reticulum lumen and membrane embedding is essential for activation of plasmepsin V. Structural modeling predictions based on docking studies with PEXEL motif show significant variation in substrate protein binding of these imperfect mutations with data mined PEXEL sequences. The predicted variation in the docking score and interacting amino acids of PvPM-V-Ind (mutant) proteins with PEXEL and lopinavir suggests a modulation in the activity of PvPM-V in terms of binding and accessibility at these sites. Conclusion/Significance Our functional modeled validation of PvPM-V-Ind (mutant) imperfect duplicate insertions with data mined PEXEL

  6. Peptides derived from transcription factor EB bind to calcineurin at a similar region as the NFAT-type motif

    PubMed Central

    Song, Ruiwen; Li, Jing; Zhang, Jin; Wang, Lu; Tong, Li; Wang, Ping; Yang, Huan; Wei, Qun; Cai, Huaibin; Luo, Jing

    2018-01-01

    Calcineurin (CN) is involved in many physiological processes and interacts with multiple substrates. Most of the substrates contain similar motifs recognized by CN. Recent studies revealed a new CN substrate, transcription factor EB (TFEB), which is involved in autophagy. We showed that a 15-mer QSYLENPTSYHLQQS peptide from TFEB (TFEB-YLENP) bound to CN. When the TFEB-YLENP peptide was changed to YLAVP, its affinity for CN increased and it had stronger CN inhibitory activity. Molecular dynamics simulations revealed that the TFEB-YLENP peptide has the same docking sites in CN as the 15-mer DQYLAVPQHPYQWAK motif of the nuclear factor of activated T cells, cytoplasmic 1 (NFATc1-YLAVP). Moreover expression of the NFATc1-YLAVP peptide suppressed the TFEB activation in starved Hela cells. Our studies first identified a CN binding site in TFEB and compared the inhibitory capability of various peptides derived from CN substrates. The data uncovered a diversity in recognition sequences that underlies the CN signaling within the cell. Studies of CN-substrate interactions should lay the groundwork for developing selective CN peptide inhibitors that target CN-substrate interaction in vitro experiments. PMID:28890387

  7. Use of Limited Proteolysis and Mutagenesis To Identify Folding Domains and Sequence Motifs Critical for Wax Ester Synthase/Acyl Coenzyme A:Diacylglycerol Acyltransferase Activity

    PubMed Central

    Villa, Juan A.; Cabezas, Matilde; de la Cruz, Fernando

    2014-01-01

    Triacylglycerols and wax esters are synthesized as energy storage molecules by some proteobacteria and actinobacteria under stress. The enzyme responsible for neutral lipid accumulation is the bifunctional wax ester synthase/acyl-coenzyme A (CoA):diacylglycerol acyltransferase (WS/DGAT). Structural modeling of WS/DGAT suggests that it can adopt an acyl-CoA-dependent acyltransferase fold with the N-terminal and C-terminal domains connected by a helical linker, an architecture demonstrated experimentally by limited proteolysis. Moreover, we found that both domains form an active complex when coexpressed as independent polypeptides. The structural prediction and sequence alignment of different WS/DGAT proteins indicated catalytically important motifs in the enzyme. Their role was probed by measuring the activities of a series of alanine scanning mutants. Our study underscores the structural understanding of this protein family and paves the way for their modification to improve the production of neutral lipids. PMID:24296496

  8. A Common Molecular Motif Characterizes Extracellular Allosteric Enhancers of GPCR Aminergic Receptors and Suggests Enhancer Mechanism of Action

    PubMed Central

    Bernstein, Robert Root; Dillon, Patrick F

    2014-01-01

    Several classes of compounds that have no intrinsic activity on aminergic systems nonetheless enhance the potency of aminergic receptor ligands three-fold or more while significantly increasing their duration of activity, preventing tachyphylaxis and reversing fade. Enhancer compounds include ascorbic acid, ethylenediaminetetraacetic acid, cortico-steroids, opioid peptides, opiates and opiate antagonists. This paper provides the first review of aminergic enhancement, demonstrating that all enhancers have a common, inobvious molecular motif and work through a common mechanism that is manifested by three common characteristics. First, aminergic enhancers bind directly to the amines they enhance, suggesting that the common structural motif is reflected in common binding targets. Second, one common target is the first extracellular loop of aminergic receptors. Third, at least some enhancers are antiphosphodiesterases. These observations suggest that aminergic enhancers act on the extracellular surface of aminergic receptors to keep the receptor in its high affinity state, trapping the ligand inside the receptor. Enhancer binding produces allosteric modifications of the receptor structure that interfere with phosphorylation of the receptor, thereby inhibiting down-regulation of the receptor. The mechanism explains how enhancers potentiate aminergic activity and increase duration of activity and makes testable predictions about additional compounds that should act as aminergic enhancers. PMID:25174918

  9. T:G mismatch-specific thymine-DNA glycosylase (TDG) as a coregulator of transcription interacts with SRC1 family members through a novel tyrosine repeat motif

    PubMed Central

    Lucey, Marie J.; Chen, Dongsheng; Lopez-Garcia, Jorge; Hart, Stephen M.; Phoenix, Fladia; Al-Jehani, Rajai; Alao, John P.; White, Roger; Kindle, Karin B.; Losson, Régine; Chambon, Pierre; Parker, Malcolm G.; Schär, Primo; Heery, David M.; Buluwela, Lakjaya; Ali, Simak

    2005-01-01

    Gene activation involves protein complexes with diverse enzymatic activities, some of which are involved in chromatin modification. We have shown previously that the base excision repair enzyme thymine DNA glycosylase (TDG) acts as a potent coactivator for estrogen receptor-α. To further understand how TDG acts in this context, we studied its interaction with known coactivators of nuclear receptors. We find that TDG interacts in vitro and in vivo with the p160 coactivator SRC1, with the interaction being mediated by a previously undescribed motif encoding four equally spaced tyrosine residues in TDG, each tyrosine being separated by three amino acids. This is found to interact with two motifs in SRC1 also containing tyrosine residues separated by three amino acids. Site-directed mutagenesis shows that the tyrosines encoded in these motifs are critical for the interaction. The related p160 protein TIF2 does not interact with TDG and has the altered sequence, F-X-X-X-Y, at the equivalent positions relative to SRC1. Substitution of the phenylalanines to tyrosines is sufficient to bring about interaction of TIF2 with TDG. These findings highlight a new protein–protein interaction motif based on Y-X-X-X-Y and provide new insight into the interaction of diverse proteins in coactivator complexes. PMID:16282588

  10. PDSM, a motif for phosphorylation-dependent SUMO modification

    PubMed Central

    Hietakangas, Ville; Anckar, Julius; Blomster, Henri A.; Fujimoto, Mitsuaki; Palvimo, Jorma J.; Nakai, Akira; Sistonen, Lea

    2006-01-01

    SUMO (small ubiquitin-like modifier) modification regulates many cellular processes, including transcription. Although sumoylation often occurs on specific lysines within the consensus tetrapeptide ΨKxE, other modifications, such as phosphorylation, may regulate the sumoylation of a substrate. We have discovered PDSM (phosphorylation-dependent sumoylation motif), composed of a SUMO consensus site and an adjacent proline-directed phosphorylation site (ΨKxExxSP). The highly conserved motif regulates phosphorylation-dependent sumoylation of multiple substrates, such as heat-shock factors (HSFs), GATA-1, and myocyte enhancer factor 2. In fact, the majority of the PDSM-containing proteins are transcriptional regulators. Within the HSF family, PDSM is conserved between two functionally distinct members, HSF1 and HSF4b, whose transactivation capacities are repressed through the phosphorylation-dependent sumoylation. As the first recurrent sumoylation determinant beyond the consensus tetrapeptide, the PDSM provides a valuable tool in predicting new SUMO substrates. PMID:16371476

  11. CoSMoS: Conserved Sequence Motif Search in the proteome

    PubMed Central

    Liu, Xiao I; Korde, Neeraj; Jakob, Ursula; Leichert, Lars I

    2006-01-01

    Background With the ever-increasing number of gene sequences in the public databases, generating and analyzing multiple sequence alignments becomes increasingly time consuming. Nevertheless it is a task performed on a regular basis by researchers in many labs. Results We have now created a database called CoSMoS to find the occurrences and at the same time evaluate the significance of sequence motifs and amino acids encoded in the whole genome of the model organism Escherichia coli K12. We provide a precomputed set of multiple sequence alignments for each individual E. coli protein with all of its homologues in the RefSeq database. The alignments themselves, information about the occurrence of sequence motifs together with information on the conservation of each of the more than 1.3 million amino acids encoded in the E. coli genome can be accessed via the web interface of CoSMoS. Conclusion CoSMoS is a valuable tool to identify highly conserved sequence motifs, to find regions suitable for mutational studies in functional analyses and to predict important structural features in E. coli proteins. PMID:16433915

  12. Structural motifs of pre-nucleation clusters.

    PubMed

    Zhang, Y; Türkmen, I R; Wassermann, B; Erko, A; Rühl, E

    2013-10-07

    Structural motifs of pre-nucleation clusters prepared in single, optically levitated supersaturated aqueous aerosol microparticles containing CaBr2 as a model system are reported. Cluster formation is identified by means of X-ray absorption in the Br K-edge regime. The salt concentration beyond the saturation point is varied by controlling the humidity in the ambient atmosphere surrounding the 15-30 μm microdroplets. This leads to the formation of metastable supersaturated liquid particles. Distinct spectral shifts in near-edge spectra as a function of salt concentration are observed, in which the energy position of the Br K-edge is red-shifted by up to 7.1 ± 0.4 eV if the dilute solution is compared to the solid. The K-edge positions of supersaturated solutions are found between these limits. The changes in electronic structure are rationalized in terms of the formation of pre-nucleation clusters. This assumption is verified by spectral simulations using first-principle density functional theory and molecular dynamics calculations, in which structural motifs are considered, explaining the experimental results. These consist of solvated CaBr2 moieties, rather than building blocks forming calcium bromide hexahydrates, the crystal system that is formed by drying aqueous CaBr2 solutions.

  13. A key general stress response motif is regulated non-uniformly by CAMTA transcription factors.

    PubMed

    Benn, Geoffrey; Wang, Chang-Quan; Hicks, Derrick R; Stein, Jeffrey; Guthrie, Cade; Dehesh, Katayoon

    2014-10-01

    Plants cope with environmental challenges by rapidly triggering and synchronizing mechanisms governing stress-specific and general stress response (GSR) networks. The GSR acts rapidly and transiently in response to various stresses, but the underpinning mechanisms have remained elusive. To define GSR regulatory components we have exploited the Rapid Stress Response Element (RSRE), a previously established functional GSR motif, using Arabidopsis plants expressing a 4xRSRE::Luciferase (RSRE::LUC) reporter. Initially, we searched public microarray datasets and found an enrichment of RSRE in promoter sequences of stress genes. Next, we treated RSRE::LUC plants with wounding and a range of rapidly stress-inducible hormones and detected a robust LUC activity solely in response to wounding. Application of two Ca(2+) burst inducers, flagellin22 (flg22) and oligogalacturonic acid, activated RSRE strongly and systemically, while the Ca(2+) chelator ethylene glycol tetraacetic acid (EGTA) significantly reduced wound induction of RSRE::LUC. In line with the signaling function of Ca(2+) in transduction events leading to activation of RSRE, we examined the role of CALMODULIN-BINDING TRANSCRIPTIONAL ACTIVATORs (CAMTAs) in RSRE induction. Transient expression assays displayed CAMTA3 induction of RSRE and not that of the mutated element mRSRE. Treatment of selected camta mutant lines integrated into RSRE::LUC parent plant, with wounding, flg22, and freezing, established a differential function of these CAMTAs in potentiating the activity of RSRE. Wound response studies using camta double mutants revealed a cooperative function of CAMTAs2 and 4 with CAMTA 3 in the RSRE regulation. These studies provide insights into governing components of transduction events and reveal transcriptional modules that tune the expression of a key GSR motif. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  14. Deletion of transcription factor binding motifs using the CRISPR/spCas9 system in the β-globin LCR.

    PubMed

    Kim, Yea Woon; Kim, AeRi

    2017-07-20

    Transcription factors play roles in gene transcription through direct binding to their motifs in genome, and inhibiting this binding provides an effective strategy for studying their roles. Here we applied the CRISPR/spCas9 system to mutate the binding motifs of transcription factors. Binding motifs for erythroid specific transcription factors were mutated in the locus control region hypersensitive sites of the human β-globin locus. Guide RNAs targeting binding motifs were cloned into lentiviral CRISPR vector containing the spCas9 gene, and transduced into MEL/ch11 cells carrying a human chromosome 11. DNA mutations in clonal cells were initially screened by quantitative PCR in genomic DNA and then clarified by sequencing. Mutations in binding motifs reduced occupancy by transcription factors in a chromatin environment. Characterization of mutations revealed that the CRISPR/spCas9 system mainly induced deletions in short regions of <20 bp and preferentially deleted nucleotides around the fifth nucleotide upstream of Protospacer adjacent motifs. These results indicate that the CRISPR/Cas9 system is suitable for mutating the binding motifs of transcription factors, and, consequently, would contribute to elucidate the direct roles of transcription factors. ©2017 The Author(s).

  15. A R/K-rich motif in the C-terminal of the homeodomain is required for complete translocating of NKX2.5 protein into nucleus.

    PubMed

    Ouyang, Ping; Zhang, He; Fan, Zhaolan; Wei, Pei; Huang, Zhigang; Wang, Sen; Li, Tao

    2016-11-05

    NKX2.5 plays important roles in heart development. Being a transcription factor, NKX2.5 exerts its biological functions in nucleus. However, the sequence motif that localize NKX2.5 into nucleus is still not clear. Here, we found a R/K-rich sequence motif from Q187 to R197 (QNRRYKCKRQR) was required for exclusive nuclear localization of NKX2.5. Eight truncated plasmids (E109X, Q149X, Q170X, Q187X, Q198X, Y256X, Y259X, and C264X) which were associated with congenital heart disease (CHD) were constructed. Compared with the wild type NKX2.5, the proteins E109X, Q149X, Q170X, Q187X without intact homeodomain (HD) showed no transcriptional activity while Q198X, Y256X, Y259X and C264X with intact HD showed 50 to 66% transcriptional activity. E109X, Q149X, Q170X, Q187X without intact HD localized in the cytoplasm and nucleus simultaneously and Q198X, Y256X, Y259X and C264X with intact HD localized completely in nucleus. These results inferred the indispensability of 187QNRRYKCKRQR197 in exclusive nucleus localization. Additionally, this sequence motif was very conservative among human, mouse and rat, indicating this motif was important for NKX2.5 function. Thus, we concluded that R/K-rich sequence motif 187QNRRYKCKRQR197 played a central role for NKX2.5 nuclear localization. Our findings provided a clue to understand the mechanisms between the truncated NKX2.5 mutants and CHD. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Comparative genomics of metabolic capacities of regulons controlled by cis-regulatory RNA motifs in bacteria.

    PubMed

    Sun, Eric I; Leyn, Semen A; Kazanov, Marat D; Saier, Milton H; Novichkov, Pavel S; Rodionov, Dmitry A

    2013-09-02

    In silico comparative genomics approaches have been efficiently used for functional prediction and reconstruction of metabolic and regulatory networks. Riboswitches are metabolite-sensing structures often found in bacterial mRNA leaders controlling gene expression on transcriptional or translational levels.An increasing number of riboswitches and other cis-regulatory RNAs have been recently classified into numerous RNA families in the Rfam database. High conservation of these RNA motifs provides a unique advantage for their genomic identification and comparative analysis. A comparative genomics approach implemented in the RegPredict tool was used for reconstruction and functional annotation of regulons controlled by RNAs from 43 Rfam families in diverse taxonomic groups of Bacteria. The inferred regulons include ~5200 cis-regulatory RNAs and more than 12000 target genes in 255 microbial genomes. All predicted RNA-regulated genes were classified into specific and overall functional categories. Analysis of taxonomic distribution of these categories allowed us to establish major functional preferences for each analyzed cis-regulatory RNA motif family. Overall, most RNA motif regulons showed predictable functional content in accordance with their experimentally established effector ligands. Our results suggest that some RNA motifs (including thiamin pyrophosphate and cobalamin riboswitches that control the cofactor metabolism) are widespread and likely originated from the last common ancestor of all bacteria. However, many more analyzed RNA motifs are restricted to a narrow taxonomic group of bacteria and likely represent more recent evolutionary innovations. The reconstructed regulatory networks for major known RNA motifs substantially expand the existing knowledge of transcriptional regulation in bacteria. The inferred regulons can be used for genetic experiments, functional annotations of genes, metabolic reconstruction and evolutionary analysis. The obtained genome

  17. Effect of C(60) fullerene on the duplex formation of i-motif DNA with complementary DNA in solution.

    PubMed

    Jin, Kyeong Sik; Shin, Su Ryon; Ahn, Byungcheol; Jin, Sangwoo; Rho, Yecheol; Kim, Heesoo; Kim, Seon Jeong; Ree, Moonhor

    2010-04-15

    The structural effects of fullerene on i-motif DNA were investigated by characterizing the structures of fullerene-free and fullerene-bound i-motif DNA, in the presence of cDNA and in solutions of varying pH, using circular dichroism and synchrotron small-angle X-ray scattering. To facilitate a direct structural comparison between the i-motif and duplex structures in response to pH stimulus, we developed atomic scale structural models for the duplex and i-motif DNA structures, and for the C(60)/i-motif DNA hybrid associated with the cDNA strand, assuming that the DNA strands are present in an ideal right-handed helical conformation. We found that fullerene shifted the pH-induced conformational transition between the i-motif and the duplex structure, possibly due to the hydrophobic interactions between the terminal fullerenes and between the terminal fullerenes and an internal TAA loop in the DNA strand. The hybrid structure showed a dramatic reduction in cyclic hysteresis.

  18. The ability of an arginine to tryptophan substitution in Saccharomyces cerevisiae tRNA nucleotidyltransferase to alleviate a temperature-sensitive phenotype suggests a role for motif C in active site organization.

    PubMed

    Goring, Mark E; Leibovitch, Matthew; Gea-Mallorqui, Ester; Karls, Shawn; Richard, Francis; Hanic-Joyce, Pamela J; Joyce, Paul B M

    2013-10-01

    We report that the temperature-sensitive (ts) phenotype in Saccharomyces cerevisiae associated with a variant tRNA nucleotidyltransferase containing an amino acid substitution at position 189 results from a reduced ability to incorporate AMP and CMP into tRNAs. We show that this defect can be compensated for by a second-site suppressor converting residue arginine 64 to tryptophan. The R64W substitution does not alter the structure or thermal stability of the enzyme dramatically but restores catalytic activity in vitro and suppresses the ts phenotype in vivo. R64 is found in motif A known to be involved in catalysis and nucleotide triphosphate binding while E189 lies within motif C previously thought only to connect the head and neck domains of the protein. Although mutagenesis experiments indicate that residues R64 and E189 do not interact directly, our data suggest a critical role for residue E189 in enzyme structure and function. Both R64 and E189 may contribute to the organization of the catalytic domain of the enzyme. These results, along with overexpression and deletion analyses, show that the ts phenotype of cca1-E189F does not arise from thermal instability of the variant tRNA nucleotidyltransferase but instead from the inability of a partially active enzyme to support growth only at higher temperatures. © 2013.

  19. Discovery and validation of information theory-based transcription factor and cofactor binding site motifs.

    PubMed

    Lu, Ruipeng; Mucaki, Eliseos J; Rogan, Peter K

    2017-03-17

    Data from ChIP-seq experiments can derive the genome-wide binding specificities of transcription factors (TFs) and other regulatory proteins. We analyzed 765 ENCODE ChIP-seq peak datasets of 207 human TFs with a novel motif discovery pipeline based on recursive, thresholded entropy minimization. This approach, while obviating the need to compensate for skewed nucleotide composition, distinguishes true binding motifs from noise, quantifies the strengths of individual binding sites based on computed affinity and detects adjacent cofactor binding sites that coordinate with the targets of primary, immunoprecipitated TFs. We obtained contiguous and bipartite information theory-based position weight matrices (iPWMs) for 93 sequence-specific TFs, discovered 23 cofactor motifs for 127 TFs and revealed six high-confidence novel motifs. The reliability and accuracy of these iPWMs were determined via four independent validation methods, including the detection of experimentally proven binding sites, explanation of effects of characterized SNPs, comparison with previously published motifs and statistical analyses. We also predict previously unreported TF coregulatory interactions (e.g. TF complexes). These iPWMs constitute a powerful tool for predicting the effects of sequence variants in known binding sites, performing mutation analysis on regulatory SNPs and predicting previously unrecognized binding sites and target genes. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Do motifs reflect evolved function?--No convergent evolution of genetic regulatory network subgraph topologies.

    PubMed

    Knabe, Johannes F; Nehaniv, Chrystopher L; Schilstra, Maria J

    2008-01-01

    Methods that analyse the topological structure of networks have recently become quite popular. Whether motifs (subgraph patterns that occur more often than in randomized networks) have specific functions as elementary computational circuits has been cause for debate. As the question is difficult to resolve with currently available biological data, we approach the issue using networks that abstractly model natural genetic regulatory networks (GRNs) which are evolved to show dynamical behaviors. Specifically one group of networks was evolved to be capable of exhibiting two different behaviors ("differentiation") in contrast to a group with a single target behavior. In both groups we find motif distribution differences within the groups to be larger than differences between them, indicating that evolutionary niches (target functions) do not necessarily mold network structure uniquely. These results show that variability operators can have a stronger influence on network topologies than selection pressures, especially when many topologies can create similar dynamics. Moreover, analysis of motif functional relevance by lesioning did not suggest that motifs were of greater importance to the functioning of the network than arbitrary subgraph patterns. Only when drastically restricting network size, so that one motif corresponds to a whole functionally evolved network, was preference for particular connection patterns found. This suggests that in non-restricted, bigger networks, entanglement with the rest of the network hinders topological subgraph analysis.

  1. New PAH gene promoter KLF1 and 3'-region C/EBPalpha motifs influence transcription in vitro.

    PubMed

    Klaassen, Kristel; Stankovic, Biljana; Kotur, Nikola; Djordjevic, Maja; Zukic, Branka; Nikcevic, Gordana; Ugrin, Milena; Spasovski, Vesna; Srzentic, Sanja; Pavlovic, Sonja; Stojiljkovic, Maja

    2017-02-01

    Phenylketonuria (PKU) is a metabolic disease caused by mutations in the phenylalanine hydroxylase (PAH) gene. Although the PAH genotype remains the main determinant of PKU phenotype severity, genotype-phenotype inconsistencies have been reported. In this study, we focused on unanalysed sequences in non-coding PAH gene regions to assess their possible influence on the PKU phenotype. We transiently transfected HepG2 cells with various chloramphenicol acetyl transferase (CAT) reporter constructs which included PAH gene non-coding regions. Selected non-coding regions were indicated by in silico prediction to contain transcription factor binding sites. Furthermore, electrophoretic mobility shift assay (EMSA) and supershift assays were performed to identify which transcriptional factors were engaged in the interaction. We found novel KLF1 motif in the PAH promoter, which decreases CAT activity by 50 % in comparison to basal transcription in vitro. The cytosine at the c.-170 promoter position creates an additional binding site for the protein complex involving KLF1 transcription factor. Moreover, we assessed for the first time the role of a multivariant variable number tandem repeat (VNTR) region located in the 3'-region of the PAH gene. We found that the VNTR3, VNTR7 and VNTR8 constructs had approximately 60 % of CAT activity. The regulation is mediated by the C/EBPalpha transcription factor, present in protein complex binding to VNTR3. Our study highlighted two novel promoter KLF1 and 3'-region C/EBPalpha motifs in the PAH gene which decrease transcription in vitro and, thus, could be considered as PAH expression modifiers. New transcription motifs in non-coding regions will contribute to better understanding of the PKU phenotype complexity and may become important for the optimisation of PKU treatment.

  2. The helix bundle: A reversible lipid binding motif

    PubMed Central

    Narayanaswami, Vasanthy; Kiss, Robert S.; Weers, Paul M.M.

    2009-01-01

    Apolipoproteins are the protein components of lipoproteins that have the innate ability to inter convert between a lipid-free and a lipid-bound form in a facile manner, a remarkable property conferred by the helix bundle motif. Composed of a series of four or five amphipathic α-helices that fold to form a helix bundle, this motif allows the en face orientation of the hydrophobic faces of the α-helices in the protein interior in the lipid-free state. A conformational switch then permits helix-helix interactions to be substituted by helix-lipid interactions upon lipid binding interaction. This review compares the apolipoprotein high resolution structures and the factors that trigger this switch in insect apolipophorin III and the mammalian apolipoproteins, apolipoprotein E and apolipoprotein A-I, pointing out the commonalities and key differences in the mode of lipid interaction. Further insights into the lipid bound conformation of apolipoproteins are required to fully understand their functional role under physiological conditions. PMID:19770066

  3. Factoring local sequence composition in motif significance analysis.

    PubMed

    Ng, Patrick; Keich, Uri

    2008-01-01

    We recently introduced a biologically realistic and reliable significance analysis of the output of a popular class of motif finders. In this paper we further improve our significance analysis by incorporating local base composition information. Relying on realistic biological data simulation, as well as on FDR analysis applied to real data, we show that our method is significantly better than the increasingly popular practice of using the normal approximation to estimate the significance of a finder's output. Finally we turn to leveraging our reliable significance analysis to improve the actual motif finding task. Specifically, endowing a variant of the Gibbs Sampler with our improved significance analysis we demonstrate that de novo finders can perform better than has been perceived. Significantly, our new variant outperforms all the finders reviewed in a recently published comprehensive analysis of the Harbison genome-wide binding location data. Interestingly, many of these finders incorporate additional information such as nucleosome positioning and the significance of binding data.

  4. Form and function in gene regulatory networks: the structure of network motifs determines fundamental properties of their dynamical state space.

    PubMed

    Ahnert, S E; Fink, T M A

    2016-07-01

    Network motifs have been studied extensively over the past decade, and certain motifs, such as the feed-forward loop, play an important role in regulatory networks. Recent studies have used Boolean network motifs to explore the link between form and function in gene regulatory networks and have found that the structure of a motif does not strongly determine its function, if this is defined in terms of the gene expression patterns the motif can produce. Here, we offer a different, higher-level definition of the 'function' of a motif, in terms of two fundamental properties of its dynamical state space as a Boolean network. One is the basin entropy, which is a complexity measure of the dynamics of Boolean networks. The other is the diversity of cyclic attractor lengths that a given motif can produce. Using these two measures, we examine all 104 topologically distinct three-node motifs and show that the structural properties of a motif, such as the presence of feedback loops and feed-forward loops, predict fundamental characteristics of its dynamical state space, which in turn determine aspects of its functional versatility. We also show that these higher-level properties have a direct bearing on real regulatory networks, as both basin entropy and cycle length diversity show a close correspondence with the prevalence, in neural and genetic regulatory networks, of the 13 connected motifs without self-interactions that have been studied extensively in the literature. © 2016 The Authors.

  5. A relational extension of the notion of motifs: application to the common 3D protein substructures searching problem.

    PubMed

    Pisanti, Nadia; Soldano, Henry; Carpentier, Mathilde; Pothier, Joel

    2009-12-01

    The geometrical configurations of atoms in protein structures can be viewed as approximate relations among them. Then, finding similar common substructures within a set of protein structures belongs to a new class of problems that generalizes that of finding repeated motifs. The novelty lies in the addition of constraints on the motifs in terms of relations that must hold between pairs of positions of the motifs. We will hence denote them as relational motifs. For this class of problems, we present an algorithm that is a suitable extension of the KMR paradigm and, in particular, of the KMRC as it uses a degenerate alphabet. Our algorithm contains several improvements that become especially useful when-as it is required for relational motifs-the inference is made by partially overlapping shorter motifs, rather than concatenating them. The efficiency, correctness and completeness of the algorithm is ensured by several non-trivial properties that are proven in this paper. The algorithm has been applied in the important field of protein common 3D substructure searching. The methods implemented have been tested on several examples of protein families such as serine proteases, globins and cytochromes P450 additionally. The detected motifs have been compared to those found by multiple structural alignments methods.

  6. Molecular dynamics simulations of electrostatics and hydration distributions around RNA and DNA motifs

    NASA Astrophysics Data System (ADS)

    Marlowe, Ashley E.; Singh, Abhishek; Semichaevsky, Andrey V.; Yingling, Yaroslava G.

    2009-03-01

    Nucleic acid nanoparticles can self-assembly through the formation of complementary loop-loop interactions or stem-stem interactions. Presence and concentration of ions can significantly affect the self-assembly process and the stability of the nanostructure. In this presentation we use explicit molecular dynamics simulations to examine the variations in cationic distributions and hydration environment around DNA and RNA helices and loop-loop interactions. Our simulations show that the potassium and sodium ionic distributions are different around RNA and DNA motifs which could be indicative of ion mediated relative stability of loop-loop complexes. Moreover in RNA loop-loop motifs ions are consistently present and exchanged through a distinct electronegative channel. We will also show how we used the specific RNA loop-loop motif to design a RNA hexagonal nanoparticle.

  7. Commensurate distances and similar motifs in genetic congruence and protein interaction networks in yeast

    PubMed Central

    Ye, Ping; Peyser, Brian D; Spencer, Forrest A; Bader, Joel S

    2005-01-01

    Background In a genetic interaction, the phenotype of a double mutant differs from the combined phenotypes of the underlying single mutants. When the single mutants have no growth defect, but the double mutant is lethal or exhibits slow growth, the interaction is termed synthetic lethality or synthetic fitness. These genetic interactions reveal gene redundancy and compensating pathways. Recently available large-scale data sets of genetic interactions and protein interactions in Saccharomyces cerevisiae provide a unique opportunity to elucidate the topological structure of biological pathways and how genes function in these pathways. Results We have defined congruent genes as pairs of genes with similar sets of genetic interaction partners and constructed a genetic congruence network by linking congruent genes. By comparing path lengths in three types of networks (genetic interaction, genetic congruence, and protein interaction), we discovered that high genetic congruence not only exhibits correlation with direct protein interaction linkage but also exhibits commensurate distance with the protein interaction network. However, consistent distances were not observed between genetic and protein interaction networks. We also demonstrated that congruence and protein networks are enriched with motifs that indicate network transitivity, while the genetic network has both transitive (triangle) and intransitive (square) types of motifs. These results suggest that robustness of yeast cells to gene deletions is due in part to two complementary pathways (square motif) or three complementary pathways, any two of which are required for viability (triangle motif). Conclusion Genetic congruence is superior to genetic interaction in prediction of protein interactions and function associations. Genetically interacting pairs usually belong to parallel compensatory pathways, which can generate transitive motifs (any two of three pathways needed) or intransitive motifs (either of two

  8. Clustering and Candidate Motif Detection in Exosomal miRNAs by Application of Machine Learning Algorithms.

    PubMed

    Gaur, Pallavi; Chaturvedi, Anoop

    2017-07-22

    The clustering pattern and motifs give immense information about any biological data. An application of machine learning algorithms for clustering and candidate motif detection in miRNAs derived from exosomes is depicted in this paper. Recent progress in the field of exosome research and more particularly regarding exosomal miRNAs has led much bioinformatic-based research to come into existence. The information on clustering pattern and candidate motifs in miRNAs of exosomal origin would help in analyzing existing, as well as newly discovered miRNAs within exosomes. Along with obtaining clustering pattern and candidate motifs in exosomal miRNAs, this work also elaborates the usefulness of the machine learning algorithms that can be efficiently used and executed on various programming languages/platforms. Data were clustered and sequence candidate motifs were detected successfully. The results were compared and validated with some available web tools such as 'BLASTN' and 'MEME suite'. The machine learning algorithms for aforementioned objectives were applied successfully. This work elaborated utility of machine learning algorithms and language platforms to achieve the tasks of clustering and candidate motif detection in exosomal miRNAs. With the information on mentioned objectives, deeper insight would be gained for analyses of newly discovered miRNAs in exosomes which are considered to be circulating biomarkers. In addition, the execution of machine learning algorithms on various language platforms gives more flexibility to users to try multiple iterations according to their requirements. This approach can be applied to other biological data-mining tasks as well.

  9. Substrate specificity and reaction kinetics of an X-motif ribozyme

    PubMed Central

    LAZAREV, DENIS; PUSKARZ, IZABELA; BREAKER, RONALD R.

    2003-01-01

    The X-motif is an in vitro-selected ribozyme that catalyzes RNA cleavage by an internal phosphoester transfer reaction. This ribozyme class is distinguished by the fact that it emerged as the dominant clone among at least 12 different classes of ribozymes when in vitro selection was conducted to favor the isolation of high-speed catalysts. We have examined the structural and kinetic properties of the X-motif in order to provide a framework for its application as an RNA-cleaving agent and to explore how this ribozyme catalyzes phosphoester transfer with a predicted rate constant that is similar to those exhibited by the four natural self-cleaving ribozymes. The secondary structure of the X-motif includes four stem elements that form a central unpaired junction. In a bimolecular format, two of these base-paired arms define the substrate specificity of the ribozyme and can be changed to target different RNAs for cleavage. The requirements for nucleotide identity at the cleavage site are GD, where D = G, A, or U and cleavage occurs between the two nucleotides. The ribozyme has an absolute requirement for a divalent cation cofactor and exhibits kinetic behavior that is consistent with the obligate binding of at least two metal ions. PMID:12756327

  10. Human telomeric DNA: G-quadruplex, i-motif and Watson–Crick double helix

    PubMed Central

    Phan, Anh Tuân; Mergny, Jean-Louis

    2002-01-01

    Human telomeric DNA composed of (TTAGGG/CCCTAA)n repeats may form a classical Watson–Crick double helix. Each individual strand is also prone to quadruplex formation: the G-rich strand may adopt a G-quadruplex conformation involving G-quartets whereas the C-rich strand may fold into an i-motif based on intercalated C·C+ base pairs. Using an equimolar mixture of the telomeric oligonucleotides d[AGGG(TTAGGG)3] and d[(CCCTAA)3CCCT], we defined which structures existed and which would be the predominant species under a variety of experimental conditions. Under near-physiological conditions of pH, temperature and salt concentration, telomeric DNA was predominantly in a double-helix form. However, at lower pH values or higher temperatures, the G-quadruplex and/or the i-motif efficiently competed with the duplex. We also present kinetic and thermodynamic data for duplex association and for G-quadruplex/i-motif unfolding. PMID:12409451

  11. [Screening specific recognition motif of RNA-binding proteins by SELEX in combination with next-generation sequencing technique].

    PubMed

    Zhang, Lu; Xu, Jinhao; Ma, Jinbiao

    2016-07-25

    RNA-binding protein exerts important biological function by specifically recognizing RNA motif. SELEX (Systematic evolution of ligands by exponential enrichment), an in vitro selection method, can obtain consensus motif with high-affinity and specificity for many target molecules from DNA or RNA libraries. Here, we combined SELEX with next-generation sequencing to study the protein-RNA interaction in vitro. A pool of RNAs with 20 bp random sequences were transcribed by T7 promoter, and target protein was inserted into plasmid containing SBP-tag, which can be captured by streptavidin beads. Through only one cycle, the specific RNA motif can be obtained, which dramatically improved the selection efficiency. Using this method, we found that human hnRNP A1 RRMs domain (UP1 domain) bound RNA motifs containing AGG and AG sequences. The EMSA experiment indicated that hnRNP A1 RRMs could bind the obtained RNA motif. Taken together, this method provides a rapid and effective method to study the RNA binding specificity of proteins.

  12. Organofluorine chemistry: synthesis and conformation of vicinal fluoromethylene motifs.

    PubMed

    O'Hagan, David

    2012-04-20

    The C-F bond is the most polar bond in organic chemistry, and thus the bond has a relatively large dipole moment with a significant -ve charge density on the fluorine atom and correspondingly a +ve charge density on carbon. The electrostatic nature of the bond renders it the strongest one in organic chemistry. However, the fluorine atom itself is nonpolarizable, and thus, despite the charge localization on fluorine, it is a poor hydrogen-bonding acceptor. These properties of the C-F bond make it attractive in the design of nonviscous but polar organic compounds, with a polarity limited to influencing the intramolecular nature of the molecule and less so intermolecular interactions with the immediate environment. In this Perspective, the synthesis of aliphatic chains carrying multivicinal fluoromethylene motifs is described. It emerges that the dipoles of adjacent C-F bonds orientate relative to each other, and thus, individual diastereoisomers display different backbone carbon chain conformations. These conformational preferences recognize the influence of the well-known gauche effect associated with 1,2-difluoroethane but extend to considering 1,3-fluorine-fluorine dipolar repulsions. The synthesis of carbon chains carrying two, three, four, five, and six vicinal fluoromethylene motifs is described, with an emphasis on our own research contributions. These motifs obey almost predictable conformational behavior, and they emerge as candidates for inclusion in the design of performance organic molecules. © 2012 American Chemical Society

  13. Motif structure and cooperation in real-world complex networks

    NASA Astrophysics Data System (ADS)

    Salehi, Mostafa; Rabiee, Hamid R.; Jalili, Mahdi

    2010-12-01

    Networks of dynamical nodes serve as generic models for real-world systems in many branches of science ranging from mathematics to physics, technology, sociology and biology. Collective behavior of agents interacting over complex networks is important in many applications. The cooperation between selfish individuals is one of the most interesting collective phenomena. In this paper we address the interplay between the motifs’ cooperation properties and their abundance in a number of real-world networks including yeast protein-protein interaction, human brain, protein structure, email communication, dolphins’ social interaction, Zachary karate club and Net-science coauthorship networks. First, the amount of cooperativity for all possible undirected subgraphs with three to six nodes is calculated. To this end, the evolutionary dynamics of the Prisoner’s Dilemma game is considered and the cooperativity of each subgraph is calculated as the percentage of cooperating agents at the end of the simulation time. Then, the three- to six-node motifs are extracted for each network. The significance of the abundance of a motif, represented by a Z-value, is obtained by comparing them with some properly randomized versions of the original network. We found that there is always a group of motifs showing a significant inverse correlation between their cooperativity amount and Z-value, i.e. the more the Z-value the less the amount of cooperativity. This suggests that networks composed of well-structured units do not have good cooperativity properties.

  14. Mutations in the Putative Zinc-Binding Motif of UL52 Demonstrate a Complex Interdependence between the UL5 and UL52 Subunits of the Human Herpes Simplex Virus Type 1 Helicase/Primase Complex

    PubMed Central

    Chen, Yan; Carrington-Lawrence, Stacy D.; Bai, Ping; Weller, Sandra K.

    2005-01-01

    Herpes simplex virus type 1 (HSV-1) encodes a heterotrimeric helicase-primase (UL5/8/52) complex. UL5 contains seven motifs found in helicase superfamily 1, and UL52 contains conserved motifs found in primases. The contributions of each subunit to the biochemical activities of the complex, however, remain unclear. We have previously demonstrated that a mutation in the putative zinc finger at UL52 C terminus abrogates not only primase but also ATPase, helicase, and DNA-binding activities of a UL5/UL52 subcomplex, indicating a complex interdependence between the two subunits. To test this hypothesis and to further investigate the role of the zinc finger in the enzymatic activities of the helicase-primase, a series of mutations were constructed in this motif. They differed in their ability to complement a UL52 null virus: totally defective, partial complementation, and potentiating. In this study, four of these mutants were studied biochemically after expression and purification from insect cells infected with recombinant baculoviruses. All mutants show greatly reduced primase activity. Complementation-defective mutants exhibited severe defects in ATPase, helicase, and DNA-binding activities. Partially complementing mutants displayed intermediate levels of these activities, except that one showed a wild-type level of helicase activity. These data suggest that the UL52 zinc finger motif plays an important role in the activities of the helicase-primase complex. The observation that mutations in UL52 affected helicase, ATPase, and DNA-binding activities indicates that UL52 binding to DNA via the zinc finger may be necessary for loading UL5. Alternatively, UL5 and UL52 may share a DNA-binding interface. PMID:15994803

  15. Mutations in the putative zinc-binding motif of UL52 demonstrate a complex interdependence between the UL5 and UL52 subunits of the human herpes simplex virus type 1 helicase/primase complex.

    PubMed

    Chen, Yan; Carrington-Lawrence, Stacy D; Bai, Ping; Weller, Sandra K

    2005-07-01

    Herpes simplex virus type 1 (HSV-1) encodes a heterotrimeric helicase-primase (UL5/8/52) complex. UL5 contains seven motifs found in helicase superfamily 1, and UL52 contains conserved motifs found in primases. The contributions of each subunit to the biochemical activities of the complex, however, remain unclear. We have previously demonstrated that a mutation in the putative zinc finger at UL52 C terminus abrogates not only primase but also ATPase, helicase, and DNA-binding activities of a UL5/UL52 subcomplex, indicating a complex interdependence between the two subunits. To test this hypothesis and to further investigate the role of the zinc finger in the enzymatic activities of the helicase-primase, a series of mutations were constructed in this motif. They differed in their ability to complement a UL52 null virus: totally defective, partial complementation, and potentiating. In this study, four of these mutants were studied biochemically after expression and purification from insect cells infected with recombinant baculoviruses. All mutants show greatly reduced primase activity. Complementation-defective mutants exhibited severe defects in ATPase, helicase, and DNA-binding activities. Partially complementing mutants displayed intermediate levels of these activities, except that one showed a wild-type level of helicase activity. These data suggest that the UL52 zinc finger motif plays an important role in the activities of the helicase-primase complex. The observation that mutations in UL52 affected helicase, ATPase, and DNA-binding activities indicates that UL52 binding to DNA via the zinc finger may be necessary for loading UL5. Alternatively, UL5 and UL52 may share a DNA-binding interface.

  16. A common structural motif in immunopotentiating peptides with sequences present in human autoantigens. Elicitation of a response mediated by monocytes and Th1 cells.

    PubMed

    López-Moratalla, N; Ruíz, E; López-Zabalza, M J; Santiago, E

    1996-12-16

    We have found a common structural motif in human autoantigens, heat shock proteins and viral proteins. Peptides modelled after sequences present in those molecules were synthesized and immunomodulating properties tested. They share a core of 15 amino acid residues and a common pattern ('2-6-11' motif) characterized by requirements at fixed positions with respect to a Pro (position 6); an apolar residue or a Lys at position 2; and a Glu, Asp or Lys at position 11. Any of these peptides, when added to cultures of lymphomononuclear cells, caused the activation of monocytes manifested by a release of IL-1 alpha, IL-1 beta and TNF alpha. A release of INF gamma and IL-2 took also place; this release was abolished by anti-DR antibodies. Neither IL-4 nor IL-5 could be detected. This suggests a presentation by APCs and the appearance of cells with a Th1 phenotype. Monocytes and Th1 cells freshly obtained from 12 patients of Graves' disease, 8 of Hashimoto's disease and 8 of primary biliary cirrhosis exhibited activation features similar to those found in cells from healthy subjects incubated in the presence of peptides with a "2-6-11' motif and representing fragments of autoantigens. Their immunopotentiating properties suggest their involvement in the initiation or progression of the autoimmune response mediated by activated monocytes and Th1 cells.

  17. N-Terminal Cu-Binding Motifs (Xxx-Zzz-His, Xxx-His) and Their Derivatives: Chemistry, Biology and Medicinal Applications.

    PubMed

    Gonzalez, Paulina; Bossak, Karolina; Stefaniak, Ewelina; Hureau, Christelle; Raibaut, Laurent; Bal, Wojciech; Faller, Peter

    2018-06-07

    Peptides and proteins with N-terminal amino acid sequences NH 2 -Xxx-His (XH) and NH 2 -Xxx-Zzz-His (XZH) form well-established high-affinity Cu II -complexes. Key examples are Asp-Ala-His (in serum albumin) and Gly-His-Lys, the wound healing factor. This opens a straightforward way to add a high-affinity Cu II -binding site to almost any peptide or protein, by chemical or recombinant approaches. Thus, these motifs, NH 2 -Xxx-Zzz-His in particular, have been used to equip peptides and proteins with a multitude of functions based on the redox activity of Cu, including nuclease, protease, glycosidase, or oxygen activation properties, useful in anticancer or antimicrobial drugs. More recent research suggests novel biological functions, mainly based on the redox inertness of Cu II in XZH, like PET imaging (with 64 Cu), chelation therapies (for instance in Alzheimer's disease and other types of neurodegeneration), antioxidant units, Cu transporters and activation of biological functions by strong Cu II binding. This Review gives an overview of the chemical properties of Cu-XH and -XZH motifs and discusses the pros and cons of the vastly different biological applications, and how they could be improved depending on the application. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Two LXXLL motifs in the N terminus of Mps1 are required for Mps1 nuclear import during G(2)/M transition and sustained spindle checkpoint responses.

    PubMed

    Zhang, Xiaojuan; Yin, Qingqing; Ling, Youguo; Zhang, Yanhong; Ma, Runlin; Ma, Qingjun; Cao, Cheng; Zhong, Hui; Liu, Xuedong; Xu, Quanbin

    2011-08-15

    Spindle assembly checkpoint kinase Mps1 is spatially and temporally regulated during cell cycle progression. Mps1 is predominately localized to the cytosol in interphase cells, whereas it is concentrated on kinetochores in prophase and prometaphase cells. The timing and mechanism of Mps1 redistribution during cell cycle transition is currently poorly understood. Here, we show that Mps1 relocates from the cytosol to the nucleus at the G 2/M boundary prior to nuclear envelope breakdown (NEB). This timely translocation depends on two tandem LXXLL motifs in the N terminus of Mps1, and mutations in either motif abolish Mps1 nuclear accumulation. Furthermore, we found that phosphorylation of Mps1 Ser80 (which is located between the two LXXLL motifs) also plays a role in regulating timely nuclear entry of Mps1. Mps1 that is defective in LXXLL motifs has near wild-type kinase activity. Moreover, the kinase activity of Mps1 appears to be dispensable for nuclear translocation, as inhibition of Mps1 by a highly specific small-molecule inhibitor did not perturb its nuclear entry. Remarkably, translocation-deficient Mps1 can mediate activation of spindle assembly checkpoint response; however, it fails to support a sustained mitotic arrest upon prolonged treatment with nocodazole. The mitotic slippage can be attributed to precocious degradation of Mps1 in the arrested cells. Our studies reveal a novel cell cycle-dependent nuclear translocation signal in the N terminus of Mps1 and suggest that timely nuclear entry could be important for sustaining spindle assembly checkpoint responses.

  19. Two LXXLL motifs in the N terminus of Mps1 are required for Mps1 nuclear import during G2/M transition and sustained spindle checkpoint responses

    PubMed Central

    Zhang, Xiaojuan; Yin, Qingqing; Ling, Youguo; Zhang, Yanhong; Ma, Runlin; Ma, Qingjun; Cao, Cheng; Zhong, Hui

    2011-01-01

    Spindle assembly checkpoint kinase Mps1 is spatially and temporally regulated during cell cycle progression. Mps1 is predominately localized to the cytosol in interphase cells, whereas it is concentrated on kinetochores in prophase and prometaphase cells. The timing and mechanism of Mps1 redistribution during cell cycle transition is currently poorly understood. Here, we show that Mps1 relocates from the cytosol to the nucleus at the G2/M boundary prior to nuclear envelope breakdown (NEB). This timely translocation depends on two tandem LXXLL motifs in the N terminus of Mps1, and mutations in either motif abolish Mps1 nuclear accumulation. Furthermore, we found that phosphorylation of Mps1 Ser80 (which is located between the two LXXLL motifs) also plays a role in regulating timely nuclear entry of Mps1. Mps1 that is defective in LXXLL motifs has near wild-type kinase activity. Moreover, the kinase activity of Mps1 appears to be dispensable for nuclear translocation, as inhibition of Mps1 by a highly specific small-molecule inhibitor did not perturb its nuclear entry. Remarkably, translocation-deficient Mps1 can mediate activation of spindle assembly checkpoint response; however, it fails to support a sustained mitotic arrest upon prolonged treatment with nocodazole. The mitotic slippage can be attributed to precocious degradation of Mps1 in the arrested cells. Our studies reveal a novel cell cycle-dependent nuclear translocation signal in the N terminus of Mps1 and suggest that timely nuclear entry could be important for sustaining spindle assembly checkpoint responses. PMID:21778823

  20. Arginine-glycine-aspartic acid motif is critical for human parechovirus 1 entry.

    PubMed

    Boonyakiat, Y; Hughes, P J; Ghazi, F; Stanway, G

    2001-10-01

    The human parechovirus 1 RGD motif in VP1 was studied by mutagenesis. An RGD-to-RGE change gave only revertant viruses with a restored RGD, while deletion of GD was lethal and nonrevertable. Mutations at the +1 and +2 positions had some effect on growth properties and a +1 M-to-P change was lethal. These studies indicate that the RGD motif plays a critical role in infectivity, presumably by interacting with integrins, and that downstream amino acids can have an influence on function.

  1. TFBSshape: a motif database for DNA shape features of transcription factor binding sites.

    PubMed

    Yang, Lin; Zhou, Tianyin; Dror, Iris; Mathelier, Anthony; Wasserman, Wyeth W; Gordân, Raluca; Rohs, Remo

    2014-01-01

    Transcription factor binding sites (TFBSs) are most commonly characterized by the nucleotide preferences at each position of the DNA target. Whereas these sequence motifs are quite accurate descriptions of DNA binding specificities of transcription factors (TFs), proteins recognize DNA as a three-dimensional object. DNA structural features refine the description of TF binding specificities and provide mechanistic insights into protein-DNA recognition. Existing motif databases contain extensive nucleotide sequences identified in binding experiments based on their selection by a TF. To utilize DNA shape information when analysing the DNA binding specificities of TFs, we developed a new tool, the TFBSshape database (available at http://rohslab.cmb.usc.edu/TFBSshape/), for calculating DNA structural features from nucleotide sequences provided by motif databases. The TFBSshape database can be used to generate heat maps and quantitative data for DNA structural features (i.e., minor groove width, roll, propeller twist and helix twist) for 739 TF datasets from 23 different species derived from the motif databases JASPAR and UniPROBE. As demonstrated for the basic helix-loop-helix and homeodomain TF families, our TFBSshape database can be used to compare, qualitatively and quantitatively, the DNA binding specificities of closely related TFs and, thus, uncover differential DNA binding specificities that are not apparent from nucleotide sequence alone.

  2. TFBSshape: a motif database for DNA shape features of transcription factor binding sites

    PubMed Central

    Yang, Lin; Zhou, Tianyin; Dror, Iris; Mathelier, Anthony; Wasserman, Wyeth W.; Gordân, Raluca; Rohs, Remo

    2014-01-01

    Transcription factor binding sites (TFBSs) are most commonly characterized by the nucleotide preferences at each position of the DNA target. Whereas these sequence motifs are quite accurate descriptions of DNA binding specificities of transcription factors (TFs), proteins recognize DNA as a three-dimensional object. DNA structural features refine the description of TF binding specificities and provide mechanistic insights into protein–DNA recognition. Existing motif databases contain extensive nucleotide sequences identified in binding experiments based on their selection by a TF. To utilize DNA shape information when analysing the DNA binding specificities of TFs, we developed a new tool, the TFBSshape database (available at http://rohslab.cmb.usc.edu/TFBSshape/), for calculating DNA structural features from nucleotide sequences provided by motif databases. The TFBSshape database can be used to generate heat maps and quantitative data for DNA structural features (i.e., minor groove width, roll, propeller twist and helix twist) for 739 TF datasets from 23 different species derived from the motif databases JASPAR and UniPROBE. As demonstrated for the basic helix-loop-helix and homeodomain TF families, our TFBSshape database can be used to compare, qualitatively and quantitatively, the DNA binding specificities of closely related TFs and, thus, uncover differential DNA binding specificities that are not apparent from nucleotide sequence alone. PMID:24214955

  3. Molecular interaction between Smurf1 WW2 domain and PPXY motifs of Smad1, Smad5, and Smad6--modeling and analysis.

    PubMed

    Sangadala, Sreedhara; Metpally, Raghu Prasad Rao; Reddy, Boojala Vijay B

    2007-08-01

    The ubiquitin-proteasome proteolytic pathway is essential for various important biological processes including cell cycle progression, gene transcription, and signal transduction. One of the important regulatory mechanisms by which the bone-inducing activity of the bone morphogenetic protein (BMP) signaling is modulated involves ubiquitin-mediated proteasomal degradation. The BMP induced receptor signal is transmitted intracellularly by phosphorylation of Smad proteins by the activated receptor I. The phosphorylated Smads 1, 5, and 8 (R-Smads) oligomerize with the co-Smad (Smad4). The complex, thus, formed translocates to the nucleus and interacts with other cofactors to regulate the expression of downstream target genes. R-Smads contain PPXY motif in the linker region that interacts with Smad ubiquitin regulatory factor 1 (Smurf1), an E3 ubiquitin ligase that catalyzes ubiquitination of target proteins for proteasomal degradation. Smurf1 contains a HECT domain, a C2 domain, and 2 WW domains (WW1, WW2). The PPXY motif in target proteins and its interaction with Smurf1 may form the basis for regulation of steady-state levels of Smads in controlling BMP-responsiveness of cells. Here, we present a homology-based model of the Smurf1 WW2 domain and the target octa-peptides containing PPXY motif of Smurf1-interacting Smads. We carried out docking of Smurf1 WW2 domain with the PPXY motifs of Smad1, Smad5, and Smad6 and identified the key amino acid residues involved in interaction. Furthermore, we present experimental evidence that WW2 domain of Smurf1 does indeed interact with the Smad proteins and that the deletion of WW2 domain of Smurf1 results in loss of its binding to Smads using the purified recombinant proteins. Finally, we also present data confirming that the deletion of WW2 domain in Smurf1 abolishes its ubiquitination activity on Smad1 in an in vitro ubiquitination assay. It shows that the interaction between the WW domain and Smad PPXY motif is a key step in

  4. MDD-carb: a combinatorial model for the identification of protein carbonylation sites with substrate motifs.

    PubMed

    Kao, Hui-Ju; Weng, Shun-Long; Huang, Kai-Yao; Kaunang, Fergie Joanda; Hsu, Justin Bo-Kai; Huang, Chien-Hsun; Lee, Tzong-Yi

    2017-12-21

    Carbonylation, which takes place through oxidation of reactive oxygen species (ROS) on specific residues, is an irreversibly oxidative modification of proteins. It has been reported that the carbonylation is related to a number of metabolic or aging diseases including diabetes, chronic lung disease, Parkinson's disease, and Alzheimer's disease. Due to the lack of computational methods dedicated to exploring motif signatures of protein carbonylation sites, we were motivated to exploit an iterative statistical method to characterize and identify carbonylated sites with motif signatures. By manually curating experimental data from research articles, we obtained 332, 144, 135, and 140 verified substrate sites for K (lysine), R (arginine), T (threonine), and P (proline) residues, respectively, from 241 carbonylated proteins. In order to examine the informative attributes for classifying between carbonylated and non-carbonylated sites, multifarious features including composition of twenty amino acids (AAC), composition of amino acid pairs (AAPC), position-specific scoring matrix (PSSM), and positional weighted matrix (PWM) were investigated in this study. Additionally, in an attempt to explore the motif signatures of carbonylation sites, an iterative statistical method was adopted to detect statistically significant dependencies of amino acid compositions between specific positions around substrate sites. Profile hidden Markov model (HMM) was then utilized to train a predictive model from each motif signature. Moreover, based on the method of support vector machine (SVM), we adopted it to construct an integrative model by combining the values of bit scores obtained from profile HMMs. The combinatorial model could provide an enhanced performance with evenly predictive sensitivity and specificity in the evaluation of cross-validation and independent testing. This study provides a new scheme for exploring potential motif signatures at substrate sites of protein

  5. Creation of hybrid nanorods from sequences of natural trimeric fibrous proteins using the fibritin trimerization motif.

    PubMed

    Papanikolopoulou, Katerina; van Raaij, Mark J; Mitraki, Anna

    2008-01-01

    Stable, artificial fibrous proteins that can be functionalized open new avenues in fields such as bionanomaterials design and fiber engineering. An important source of inspiration for the creation of such proteins are natural fibrous proteins such as collagen, elastin, insect silks, and fibers from phages and viruses. The fibrous parts of this last class of proteins usually adopt trimeric, beta-stranded structural folds and are appended to globular, receptor-binding domains. It has been recently shown that the globular domains are essential for correct folding and trimerization and can be successfully substituted by a very small (27-amino acid) trimerization motif from phage T4 fibritin. The hybrid proteins are correctly folded nanorods that can withstand extreme conditions. When the fibrous part derives from the adenovirus fiber shaft, different tissue-targeting specificities can be engineered into the hybrid proteins, which therefore can be used as gene therapy vectors. The integration of such stable nanorods in devices is also a big challenge in the field of biomechanical design. The fibritin foldon domain is a versatile trimerization motif and can be combined with a variety of fibrous motifs, such as coiled-coil, collagenous, and triple beta-stranded motifs, provided the appropriate linkers are used. The combination of different motifs within the same fibrous molecule to create stable rods with multiple functions can even be envisioned. We provide a comprehensive overview of the experimental procedures used for designing, creating, and characterizing hybrid fibrous nanorods using the fibritin trimerization motif.

  6. Creation of Hybrid Nanorods From Sequences of Natural Trimeric Fibrous Proteins Using the Fibritin Trimerization Motif

    NASA Astrophysics Data System (ADS)

    Papanikolopoulou, Katerina; van Raaij, Mark J.; Mitraki, Anna

    Stable, artificial fibrous proteins that can be functionalized open new avenues in fields such as bionanomaterials design and fiber engineering. An important source of inspiration for the creation of such proteins are natural fibrous proteins such as collagen, elastin, insect silks, and fibers from phages and viruses. The fibrous parts of this last class of proteins usually adopt trimeric, β-stranded structural folds and are appended to globular, receptor-binding domains. It has been recently shown that the globular domains are essential for correct folding and trimerization and can be successfully substituted by a very small (27-amino acid) trimerization motif from phage T4 fibritin. The hybrid proteins are correctly folded nanorods that can withstand extreme conditions. When the fibrous part derives from the adenovirus fiber shaft, different tissue-targeting specificities can be engineered into the hybrid proteins, which therefore can be used as gene therapy vectors. The integration of such stable nanorods in devices is also a big challenge in the field of biomechanical design. The fibritin foldon domain is a versatile trimerization motif and can be combined with a variety of fibrous motifs, such as coiled-coil, collagenous, and triple β-stranded motifs, provided the appropriate linkers are used. The combination of different motifs within the same fibrous molecule to create stable rods with multiple functions can even be envisioned. We provide a comprehensive overview of the experimental procedures used for designing, creating, and characterizing hybrid fibrous nanorods using the fibritin trimerization motif.

  7. An analysis of the positional distribution of DNA motifs in promoter regions and its biological relevance.

    PubMed

    Casimiro, Ana C; Vinga, Susana; Freitas, Ana T; Oliveira, Arlindo L

    2008-02-07

    Motif finding algorithms have developed in their ability to use computationally efficient methods to detect patterns in biological sequences. However the posterior classification of the output still suffers from some limitations, which makes it difficult to assess the biological significance of the motifs found. Previous work has highlighted the existence of positional bias of motifs in the DNA sequences, which might indicate not only that the pattern is important, but also provide hints of the positions where these patterns occur preferentially. We propose to integrate position uniformity tests and over-representation tests to improve the accuracy of the classification of motifs. Using artificial data, we have compared three different statistical tests (Chi-Square, Kolmogorov-Smirnov and a Chi-Square bootstrap) to assess whether a given motif occurs uniformly in the promoter region of a gene. Using the test that performed better in this dataset, we proceeded to study the positional distribution of several well known cis-regulatory elements, in the promoter sequences of different organisms (S. cerevisiae, H. sapiens, D. melanogaster, E. coli and several Dicotyledons plants). The results show that position conservation is relevant for the transcriptional machinery. We conclude that many biologically relevant motifs appear heterogeneously distributed in the promoter region of genes, and therefore, that non-uniformity is a good indicator of biological relevance and can be used to complement over-representation tests commonly used. In this article we present the results obtained for the S. cerevisiae data sets.

  8. Automated Recognition of RNA Structure Motifs by Their SHAPE Data Signatures.

    PubMed

    Radecki, Pierce; Ledda, Mirko; Aviran, Sharon

    2018-06-14

    High-throughput structure profiling (SP) experiments that provide information at nucleotide resolution are revolutionizing our ability to study RNA structures. Of particular interest are RNA elements whose underlying structures are necessary for their biological functions. We previously introduced patteRNA , an algorithm for rapidly mining SP data for patterns characteristic of such motifs. This work provided a proof-of-concept for the detection of motifs and the capability of distinguishing structures displaying pronounced conformational changes. Here, we describe several improvements and automation routines to patteRNA . We then consider more elaborate biological situations starting with the comparison or integration of results from searches for distinct motifs and across datasets. To facilitate such analyses, we characterize patteRNA ’s outputs and describe a normalization framework that regularizes results. We then demonstrate that our algorithm successfully discerns between highly similar structural variants of the human immunodeficiency virus type 1 (HIV-1) Rev response element (RRE) and readily identifies its exact location in whole-genome structure profiles of HIV-1. This work highlights the breadth of information that can be gleaned from SP data and broadens the utility of data-driven methods as tools for the detection of novel RNA elements.

  9. The Cytoplasmic Tail of the T Cell Receptor CD3 ε Subunit Contains a Phospholipid-Binding Motif that Regulates T Cell Functions1

    PubMed Central

    DeFord-Watts, Laura M.; Tassin, Tara C.; Becker, Amy M.; Medeiros, Jennifer J.; Albanesi, Joseph P.; Love, Paul E.; Wülfing, Christoph; van Oers, Nicolai S. C.

    2010-01-01

    The CD3 ε subunit of the TCR complex contains two defined signaling domains, a proline-rich sequence and an ITAM. We identified a third signaling sequence in CD3 ε, termed the basic-rich stretch (BRS). Herein, we show that the positively charged residues of the BRS enable this region of CD3 ε to complex a subset of acidic phospholipids, including PI(3)P, PI(4)P, PI(5)P, PI(3,4,5)P3, and PI(4,5)P2. Transgenic mice containing mutations of the BRS exhibited varying developmental defects, ranging from reduced thymic cellularity to a complete block in T cell development. Peripheral T cells from BRS-modified mice also exhibited several defects, including decreased TCR surface expression, reduced TCR-mediated signaling responses to agonist peptide-loaded APCs, and delayed CD3 ε localization to the immunological synapse. Overall, these findings demonstrate a functional role for the CD3 ε lipid-binding domain in T cell biology. PMID:19542373

  10. Characterization of various promoter regions of the human DNA helicase-encoding genes and identification of duplicated ets (GGAA) motifs as an essential transcription regulatory element.

    PubMed

    Uchiumi, Fumiaki; Watanabe, Takeshi; Tanuma, Sei-ichi

    2010-05-15

    DNA helicases are important in the regulation of DNA transaction and thereby various cellular functions. In this study, we developed a cost-effective multiple DNA transfection assay with DEAE-dextran reagent and analyzed the promoter activities of the human DNA helicases. The 5'-flanking regions of the human DNA helicase-encoding genes were isolated and subcloned into luciferase (Luc) expression plasmids. They were coated onto 96-well plate and used for co-transfection with a renilla-Luc expression vector into various cells, and dual-Luc assays were performed. The profiles of promoter activities were dependent on cell lines used. Among these human DNA helicase genes, XPB, RecQL5, and RTEL promoters were activated during TPA-induced HL-60 cell differentiation. Interestingly, duplicated ets (GGAA) elements are commonly located around the transcription start sites of these genes. The duplicated GGAA motifs are also found in the promoters of DNA replication/repair synthesis factor genes including PARG, ATR, TERC, and Rb1. Mutation analyses suggested that the duplicated GGAA-motifs are necessary for the basal promoter activity in various cells and some of them positively respond to TPA in HL-60 cells. TPA-induced response of 44-bp in the RTEL promoter was attenuated by co-transfection of the PU.1 expression vector. These findings suggest that the duplicated ets motifs regulate DNA-repair associated gene expressions during macrophage-like differentiation of HL-60 cells. Copyright 2010 Elsevier Inc. All rights reserved.

  11. The SRE Motif in the Human PNPLA3 Promoter (-97 to -88 bp) Mediates Transactivational Effects of SREBP-1c.

    PubMed

    Liang, Hua; Xu, Jing; Xu, Fen; Liu, Hongxia; Yuan, Ding; Yuan, Shuhua; Cai, Mengyin; Yan, Jinhua; Weng, Jianping

    2015-09-01

    Patatin-like phospholipase domain containing 3 (PNPLA3) is a non-secreted protein primarily expressed in liver and adipose tissue. Recently, numerous genetic studies have shown that PNPLA3 is a major susceptibility gene for nonalcoholic fatty liver disease (NAFLD). However, the mechanism involved in transcriptional regulation of the PNPLA3 gene remains unknown. We performed a detailed analysis of the human PNPLA3 gene promoter and identified two novel cis-acting elements (SRE and NFY binding motifs) located at -97/-88 and -26/-22 bp, respectively. Overexpression of SREBP-1c in HepG2 cells significantly increased PNPLA3 promoter activity. Mutation of either of the putative SRE or NFY binding motifs blocked the transactivation effects of SREBP-1c on the promoter. Overexpression of SREBP-1c and NFY together increased PNPLA3 promoter activity twice as much as that of SREBP-1c or NFY expression alone. This result suggests that SREBP-1c and NFY synergistically transactivate the human PNPLA3 gene. The ability of SREBP-1c and NFY to bind these cis-elements was confirmed using gel shift analysis. Putative SRE and NFY motifs also mediated synergistic insulin-induced transactivation of the PNPLA3 promoter in HepG2 cells. Additionally, the ability of SREBP-1c to bind to the PNPLA3 promoter was increased by insulin in a dose-dependent manner. Moreover, the treatment of HepG2 cells with the PI3K inhibitor LY294002 led to reduced insulin promoter-activating ability accompanied by a decrease in PNPLA3 and SREBP-1c protein expression. These results demonstrate that SREBP-1c is a direct activator of the human PNPLA3 gene and insulin transactivates the PNPLA3 gene via the PI3K-SREBP-1c/NFY pathway in HepG2 cells. © 2015 Wiley Periodicals, Inc.

  12. Cave acoustics in prehistory: Exploring the association of Palaeolithic visual motifs and acoustic response.

    PubMed

    Fazenda, Bruno; Scarre, Chris; Till, Rupert; Pasalodos, Raquel Jiménez; Guerra, Manuel Rojo; Tejedor, Cristina; Peredo, Roberto Ontañón; Watson, Aaron; Wyatt, Simon; Benito, Carlos García; Drinkall, Helen; Foulds, Frederick

    2017-09-01

    During the 1980 s, acoustic studies of Upper Palaeolithic imagery in French caves-using the technology then available-suggested a relationship between acoustic response and the location of visual motifs. This paper presents an investigation, using modern acoustic measurement techniques, into such relationships within the caves of La Garma, Las Chimeneas, La Pasiega, El Castillo, and Tito Bustillo in Northern Spain. It addresses methodological issues concerning acoustic measurement at enclosed archaeological sites and outlines a general framework for extraction of acoustic features that may be used to support archaeological hypotheses. The analysis explores possible associations between the position of visual motifs (which may be up to 40 000 yrs old) and localized acoustic responses. Results suggest that motifs, in general, and lines and dots, in particular, are statistically more likely to be found in places where reverberation is moderate and where the low frequency acoustic response has evidence of resonant behavior. The work presented suggests that an association of the location of Palaeolithic motifs with acoustic features is a statistically weak but tenable hypothesis, and that an appreciation of sound could have influenced behavior among Palaeolithic societies of this region.

  13. Thioredoxin reductase regulates AP-1 activity as well as thioredoxin nuclear localization via active cysteines in response to ionizing radiation.

    PubMed

    Karimpour, Shervin; Lou, Junyang; Lin, Lilie L; Rene, Luis M; Lagunas, Lucio; Ma, Xinrong; Karra, Sreenivasu; Bradbury, C Matthew; Markovina, Stephanie; Goswami, Prabhat C; Spitz, Douglas R; Hirota, Kiichi; Kalvakolanu, Dhananjaya V; Yodoi, Junji; Gius, David

    2002-09-12

    A recently identified class of signaling factors uses critical cysteine motif(s) that act as redox-sensitive 'sulfhydryl switches' to reversibly modulate specific signal transduction cascades regulating downstream proteins with similar redox-sensitive sites. For example, signaling factors such as redox factor-1 (Ref-1) and transcription factors such as the AP-1 complex both contain redox-sensitive cysteine motifs that regulate activity in response to oxidative stress. The mammalian thioredoxin reductase-1 (TR) is an oxidoreductase selenocysteine-containing flavoprotein that also appears to regulate multiple downstream intracellular redox-sensitive proteins. Since ionizing radiation (IR) induces oxidative stress as well as increases AP-1 DNA-binding activity via the activation of Ref-1, the potential roles of TR and thioredoxin (TRX) in the regulation of AP-1 activity in response to IR were investigated. Permanently transfected cell lines that overexpress wild type TR demonstrated constitutive increases in AP-1 DNA-binding activity as well as AP-1-dependent reporter gene expression, relative to vector control cells. In contrast, permanently transfected cell lines expressing a TR gene with the active site cysteine motif deleted were unable to induce AP-1 activity or reporter gene expression in response to IR. Transient genetic overexpression of either the TR wild type or dominant-negative genes demonstrated similar results using a transient assay system. One mechanism through which TR regulates AP-1 activity appears to involve TRX sub-cellular localization, with no change in the total TRX content of the cell. These results identify a novel function of the TR enzyme as a signaling factor in the regulation of AP-1 activity via a cysteine motif located in the protein.

  14. Positive evolutionary selection of an HD motif on Alzheimer precursor protein orthologues suggests a functional role.

    PubMed

    Miklós, István; Zádori, Zoltán

    2012-02-01

    HD amino acid duplex has been found in the active center of many different enzymes. The dyad plays remarkably different roles in their catalytic processes that usually involve metal coordination. An HD motif is positioned directly on the amyloid beta fragment (Aβ) and on the carboxy-terminal region of the extracellular domain (CAED) of the human amyloid precursor protein (APP) and a taxonomically well defined group of APP orthologues (APPOs). In human Aβ HD is part of a presumed, RGD-like integrin-binding motif RHD; however, neither RHD nor RXD demonstrates reasonable conservation in APPOs. The sequences of CAEDs and the position of the HD are not particularly conserved either, yet we show with a novel statistical method using evolutionary modeling that the presence of HD on CAEDs cannot be the result of neutral evolutionary forces (p<0.0001). The motif is positively selected along the evolutionary process in the majority of APPOs, despite the fact that HD motif is underrepresented in the proteomes of all species of the animal kingdom. Position migration can be explained by high probability occurrence of multiple copies of HD on intermediate sequences, from which only one is kept by selective evolutionary forces, in a similar way as in the case of the "transcription binding site turnover." CAED of all APP orthologues and homologues are predicted to bind metal ions including Amyloid-like protein 1 (APLP1) and Amyloid-like protein 2 (APLP2). Our results suggest that HDs on the CAEDs are most probably key components of metal-binding domains, which facilitate and/or regulate inter- or intra-molecular interactions in a metal ion-dependent or metal ion concentration-dependent manner. The involvement of naturally occurring mutations of HD (Tottori (D7N) and English (H6R) mutations) in early onset Alzheimer's disease gives additional support to our finding that HD has an evolutionary preserved function on APPOs.

  15. Positive Evolutionary Selection of an HD Motif on Alzheimer Precursor Protein Orthologues Suggests a Functional Role

    PubMed Central

    Miklós, István; Zádori, Zoltán

    2012-01-01

    HD amino acid duplex has been found in the active center of many different enzymes. The dyad plays remarkably different roles in their catalytic processes that usually involve metal coordination. An HD motif is positioned directly on the amyloid beta fragment (Aβ) and on the carboxy-terminal region of the extracellular domain (CAED) of the human amyloid precursor protein (APP) and a taxonomically well defined group of APP orthologues (APPOs). In human Aβ HD is part of a presumed, RGD-like integrin-binding motif RHD; however, neither RHD nor RXD demonstrates reasonable conservation in APPOs. The sequences of CAEDs and the position of the HD are not particularly conserved either, yet we show with a novel statistical method using evolutionary modeling that the presence of HD on CAEDs cannot be the result of neutral evolutionary forces (p<0.0001). The motif is positively selected along the evolutionary process in the majority of APPOs, despite the fact that HD motif is underrepresented in the proteomes of all species of the animal kingdom. Position migration can be explained by high probability occurrence of multiple copies of HD on intermediate sequences, from which only one is kept by selective evolutionary forces, in a similar way as in the case of the “transcription binding site turnover.” CAED of all APP orthologues and homologues are predicted to bind metal ions including Amyloid-like protein 1 (APLP1) and Amyloid-like protein 2 (APLP2). Our results suggest that HDs on the CAEDs are most probably key components of metal-binding domains, which facilitate and/or regulate inter- or intra-molecular interactions in a metal ion-dependent or metal ion concentration-dependent manner. The involvement of naturally occurring mutations of HD (Tottori (D7N) and English (H6R) mutations) in early onset Alzheimer's disease gives additional support to our finding that HD has an evolutionary preserved function on APPOs. PMID:22319430

  16. Event Networks and the Identification of Crime Pattern Motifs

    PubMed Central

    2015-01-01

    In this paper we demonstrate the use of network analysis to characterise patterns of clustering in spatio-temporal events. Such clustering is of both theoretical and practical importance in the study of crime, and forms the basis for a number of preventative strategies. However, existing analytical methods show only that clustering is present in data, while offering little insight into the nature of the patterns present. Here, we show how the classification of pairs of events as close in space and time can be used to define a network, thereby generalising previous approaches. The application of graph-theoretic techniques to these networks can then offer significantly deeper insight into the structure of the data than previously possible. In particular, we focus on the identification of network motifs, which have clear interpretation in terms of spatio-temporal behaviour. Statistical analysis is complicated by the nature of the underlying data, and we provide a method by which appropriate randomised graphs can be generated. Two datasets are used as case studies: maritime piracy at the global scale, and residential burglary in an urban area. In both cases, the same significant 3-vertex motif is found; this result suggests that incidents tend to occur not just in pairs, but in fact in larger groups within a restricted spatio-temporal domain. In the 4-vertex case, different motifs are found to be significant in each case, suggesting that this technique is capable of discriminating between clustering patterns at a finer granularity than previously possible. PMID:26605544

  17. Motif Discovery in Speech: Application to Monitoring Alzheimer's Disease.

    PubMed

    Garrard, Peter; Nemes, Vanda; Nikolic, Dragana; Barney, Anna

    2017-01-01

    Perseveration - repetition of words, phrases or questions in speech - is commonly described in Alzheimer's disease (AD). Measuring perseveration is difficult, but may index cognitive performance, aiding diagnosis and disease monitoring. Continuous recording of speech would produce a large quantity of data requiring painstaking manual analysis, and risk violating patients' and others' privacy. A secure record and an automated approach to analysis are required. To record bone-conducted acoustic energy fluctuations from a subject's vocal apparatus using an accelerometer, to describe the recording and analysis stages in detail, and demonstrate that the approach is feasible in AD. Speech-related vibration was captured by an accelerometer, affixed above the temporomandibular joint. Healthy subjects read a script with embedded repetitions. Features were extracted from recorded signals and combined using Principal Component Analysis to obtain a one-dimensional representation of the feature vector. Motif discovery techniques were used to detect repeated segments. The equipment was tested in AD patients to determine device acceptability and recording quality. Comparison with the known location of embedded motifs suggests that, with appropriate parameter tuning, the motif discovery method can detect repetitions. The device was acceptable to patients and produced adequate signal quality in their home environments. We established that continuously recording bone-conducted speech and detecting perseverative patterns were both possible. In future studies we plan to associate the frequency of verbal repetitions with stage, progression and type of dementia. It is possible that the method could contribute to the assessment of disease-modifying treatments. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Isosteric And Non-Isosteric Base Pairs In RNA Motifs: Molecular Dynamics And Bioinformatics Study Of The Sarcin-Ricin Internal Loop

    PubMed Central

    Havrila, Marek; Réblová, Kamila; Zirbel, Craig L.; Leontis, Neocles B.; Šponer, Jiří

    2013-01-01

    The Sarcin-Ricin RNA motif (SR motif) is one of the most prominent recurrent RNA building blocks that occurs in many different RNA contexts and folds autonomously, i.e., in a context-independent manner. In this study, we combined bioinformatics analysis with explicit-solvent molecular dynamics (MD) simulations to better understand the relation between the RNA sequence and the evolutionary patterns of SR motif. SHAPE probing experiment was also performed to confirm fidelity of MD simulations. We identified 57 instances of the SR motif in a non-redundant subset of the RNA X-ray structure database and analyzed their basepairing, base-phosphate, and backbone-backbone interactions. We extracted sequences aligned to these instances from large ribosomal RNA alignments to determine frequency of occurrence for different sequence variants. We then used a simple scoring scheme based on isostericity to suggest 10 sequence variants with highly variable expected degree of compatibility with the SR motif 3D structure. We carried out MD simulations of SR motifs with these base substitutions. Non isosteric base substitutions led to unstable structures, but so did isosteric substitutions which were unable to make key base-phosphate interactions. MD technique explains why some potentially isosteric SR motifs are not realized during evolution. We also found that inability to form stable cWW geometry is an important factor in case of the first base pair of the flexible region of the SR motif. Comparison of structural, bioinformatics, SHAPE probing and MD simulation data reveals that explicit solvent MD simulations neatly reflect viability of different sequence variants of the SR motif. Thus, MD simulations can efficiently complement bioinformatics tools in studies of conservation patterns of RNA motifs and provide atomistic insight into the role of their different signature interactions. PMID:24144333

  19. Discovery of T Cell Receptor β Motifs Specific to HLA-B27-Positive Ankylosing Spondylitis by Deep Repertoire Sequence Analysis.

    PubMed

    Faham, Malek; Carlton, Victoria; Moorhead, Martin; Zheng, Jianbiao; Klinger, Mark; Pepin, Francois; Asbury, Thomas; Vignali, Marissa; Emerson, Ryan O; Robins, Harlan S; Ireland, James; Baechler-Gillespie, Emily; Inman, Robert D

    2017-04-01

    Ankylosing spondylitis (AS), a chronic inflammatory disorder, has a notable association with HLA-B27. One hypothesis suggests that a common antigen that binds to HLA-B27 is important for AS disease pathogenesis. This study was undertaken to determine sequences and motifs that are shared among HLA-B27-positive AS patients, using T cell repertoire next-generation sequencing. To identify motifs enriched among B27-positive AS patients, we performed T cell receptor β (TCRβ) repertoire sequencing on samples from 191 B27-positive AS patients, 43 B27-negative AS patients, and 227 controls, and we obtained >77 million TCRβ clonotype sequences. First, we assessed whether any of 50 previously published sequences were enriched in B27-positive AS patients. We then used training and test cohorts to identify discovered motifs that were enriched in B27-positive AS patients versus controls. Six previously published and 11 discovered motifs were enriched in the B27-positive AS samples as compared to controls. After combining motifs related by sequence, we identified a total of 15 independent motifs. Both the full set of 15 motifs and a set of 6 published motifs were enriched in the B27-positive AS patients as compared to B27-positive healthy individuals (P = 0.049 and P = 0.001, respectively). Using an independent cohort, we validated that at least some of these motifs were associated with AS, and not simply with B27-positive status. We identified TCRβ motifs that are enriched in B27-positive AS patients as compared to B27-positive healthy controls. This suggests that a common antigen, presented by HLA-B27 and detected by CD8+ T cells, may be associated with AS disease pathogenesis. © 2016, American College of Rheumatology.

  20. Cancer-related marketing centrality motifs acting as pivot units in the human signaling network and mediating cross-talk between biological pathways.

    PubMed

    Li, Wan; Chen, Lina; Li, Xia; Jia, Xu; Feng, Chenchen; Zhang, Liangcai; He, Weiming; Lv, Junjie; He, Yuehan; Li, Weiguo; Qu, Xiaoli; Zhou, Yanyan; Shi, Yuchen

    2013-12-01

    Network motifs in central positions are considered to not only have more in-coming and out-going connections but are also localized in an area where more paths reach the networks. These central motifs have been extensively investigated to determine their consistent functions or associations with specific function categories. However, their functional potentials in the maintenance of cross-talk between different functional communities are unclear. In this paper, we constructed an integrated human signaling network from the Pathway Interaction Database. We identified 39 essential cancer-related motifs in central roles, which we called cancer-related marketing centrality motifs, using combined centrality indices on the system level. Our results demonstrated that these cancer-related marketing centrality motifs were pivotal units in the signaling network, and could mediate cross-talk between 61 biological pathways (25 could be mediated by one motif on average), most of which were cancer-related pathways. Further analysis showed that molecules of most marketing centrality motifs were in the same or adjacent subcellular localizations, such as the motif containing PI3K, PDK1 and AKT1 in the plasma membrane, to mediate signal transduction between 32 cancer-related pathways. Finally, we analyzed the pivotal roles of cancer genes in these marketing centrality motifs in the pathogenesis of cancers, and found that non-cancer genes were potential cancer-related genes.