Sample records for activation reaction rates

  1. Analyzing Reaction Rates with the Distortion/Interaction‐Activation Strain Model

    PubMed Central

    2017-01-01

    Abstract The activation strain or distortion/interaction model is a tool to analyze activation barriers that determine reaction rates. For bimolecular reactions, the activation energies are the sum of the energies to distort the reactants into geometries they have in transition states plus the interaction energies between the two distorted molecules. The energy required to distort the molecules is called the activation strain or distortion energy. This energy is the principal contributor to the activation barrier. The transition state occurs when this activation strain is overcome by the stabilizing interaction energy. Following the changes in these energies along the reaction coordinate gives insights into the factors controlling reactivity. This model has been applied to reactions of all types in both organic and inorganic chemistry, including substitutions and eliminations, cycloadditions, and several types of organometallic reactions. PMID:28447369

  2. Determination of reaction rates and activation energy in aerobic composting processes for yard waste.

    PubMed

    Uma, R N; Manjula, G; Meenambal, T

    2007-04-01

    The reaction rates and activation energy in aerobic composting processes for yard waste were determined using specifically designed reactors. Different mixture ratios were fixed before the commencement of the process. The C/N ratio was found to be optimum for a mixture ratio of 1:6 containing one part of coir pith to six parts of other waste which included yard waste, yeast sludge, poultry yard waste and decomposing culture (Pleurotosis). The path of stabilization of the wastes was continuously monitored by observing various parameters such as temperature, pH, Electrical Conductivity, C.O.D, VS at regular time intervals. Kinetic analysis was done to determine the reaction rates and activation energy for the optimum mixture ratio under forced aeration condition. The results of the analysis clearly indicated that the temperature dependence of the reaction rates followed the Arrhenius equation. The temperature coefficients were also determined. The degradation of the organic fraction of the yard waste could be predicted using first order reaction model.

  3. Generalization of the Activated Complex Theory of Reaction Rates. I. Quantum Mechanical Treatment

    DOE R&D Accomplishments Database

    Marcus, R. A.

    1964-01-01

    In its usual form activated complex theory assumes a quasi-equilibrium between reactants and activated complex, a separable reaction coordinate, a Cartesian reaction coordinate, and an absence of interaction of rotation with internal motion in the complex. In the present paper a rate expression is derived without introducing the Cartesian assumption. The expression bears a formal resemblance to the usual one and reduces to it when the added assumptions of the latter are introduced.

  4. Linear free energy relationships between aqueous phase hydroxyl radical reaction rate constants and free energy of activation.

    PubMed

    Minakata, Daisuke; Crittenden, John

    2011-04-15

    The hydroxyl radical (HO(•)) is a strong oxidant that reacts with electron-rich sites on organic compounds and initiates complex radical chain reactions in aqueous phase advanced oxidation processes (AOPs). Computer based kinetic modeling requires a reaction pathway generator and predictions of associated reaction rate constants. Previously, we reported a reaction pathway generator that can enumerate the most important elementary reactions for aliphatic compounds. For the reaction rate constant predictor, we develop linear free energy relationships (LFERs) between aqueous phase literature-reported HO(•) reaction rate constants and theoretically calculated free energies of activation for H-atom abstraction from a C-H bond and HO(•) addition to alkenes. The theoretical method uses ab initio quantum mechanical calculations, Gaussian 1-3, for gas phase reactions and a solvation method, COSMO-RS theory, to estimate the impact of water. Theoretically calculated free energies of activation are found to be within approximately ±3 kcal/mol of experimental values. Considering errors that arise from quantum mechanical calculations and experiments, this should be within the acceptable errors. The established LFERs are used to predict the HO(•) reaction rate constants within a factor of 5 from the experimental values. This approach may be applied to other reaction mechanisms to establish a library of rate constant predictions for kinetic modeling of AOPs.

  5. Raman Spectral Determination of Chemical Reaction Rate Characteristics

    NASA Astrophysics Data System (ADS)

    Balakhnina, I. A.; Brandt, N. N.; Mankova, A. A.; Chikishev, A. Yu.; Shpachenko, I. G.

    2017-09-01

    The feasibility of using Raman spectroscopy to determine chemical reaction rates and activation energies has been demonstrated for the saponification of ethyl acetate. The temperature dependence of the reaction rate was found in the range from 15 to 45°C.

  6. Generalization of the Activated Complex Theory of Reaction Rates. II. Classical Mechanical Treatment

    DOE R&D Accomplishments Database

    Marcus, R. A.

    1964-01-01

    In its usual classical form activated complex theory assumes a particular expression for the kinetic energy of the reacting system -- one associated with a rectilinear motion along the reaction coordinate. The derivation of the rate expression given in the present paper is based on the general kinetic energy expression.

  7. An Interactive Classroom Activity Demonstrating Reaction Mechanisms and Rate-Determining Steps

    ERIC Educational Resources Information Center

    Jennings, Laura D.; Keller, Steven W.

    2005-01-01

    An interactive classroom activity that includes two-step reaction of unwrapping and eating chocolate candies is described which brings not only the reaction intermediate, but also the reactants and products into macroscopic view. The qualitative activation barriers of both steps can be adjusted independently.

  8. Pop-it beads to introduce catalysis of reaction rate and substrate depletion effects.

    PubMed

    Gehret, Austin U

    2017-03-04

    A kinesthetic classroom activity was designed to help students understand enzyme activity and catalysis of reaction rate. Students served the role of enzymes by manipulating Pop-It Beads as the catalytic event. This activity illuminates the relationship between reaction rate and reaction progress by allowing students to experience first-hand the effect of substrate depletion on catalyzed reaction rate. Preliminary findings based on survey results and exam performance suggest the activity could prove beneficial to students in the targeted learning outcomes. Unique to previous kinesthetic approaches that model Michaelis-Menten kinetics, this activity models the effects of substrate depletion on catalyzed reaction rate. Therefore, it could prove beneficial for conveying the reasoning behind the initial rate simplification used in Michaelis-Menten kinetics. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(2):179-183, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  9. Pop-It Beads to Introduce Catalysis of Reaction Rate and Substrate Depletion Effects

    ERIC Educational Resources Information Center

    Gehret, Austin U.

    2017-01-01

    A kinesthetic classroom activity was designed to help students understand enzyme activity and catalysis of reaction rate. Students served the role of enzymes by manipulating Pop-It Beads as the catalytic event. This activity illuminates the relationship between reaction rate and reaction progress by allowing students to experience first-hand the…

  10. What Is a Reaction Rate?

    ERIC Educational Resources Information Center

    Schmitz, Guy

    2005-01-01

    The definition of reaction rate is derived and demonstrations are made for the care to be taken while using the term. Reaction rate can be in terms of a reaction property, the extent of reaction and thus it is possible to give a definition applicable in open and closed systems.

  11. Negativization rates of IgE radioimmunoassay and basophil activation test in immediate reactions to penicillins.

    PubMed

    Fernández, T D; Torres, M J; Blanca-López, N; Rodríguez-Bada, J L; Gomez, E; Canto, G; Mayorga, C; Blanca, M

    2009-02-01

    Skin test sensitivity in patients with immediate allergy to penicillins tends to decrease over time, but no information is available concerning in vitro tests. We analysed the negativization rates of two in vitro methods that determine specific immunoglobulin E (IgE) antibodies, the basophil activation test using flow cytometry (BAT) and the radioallergosorbent test (RAST), in immediate allergic reactions to penicillins. Forty-one patients with immediate allergic reactions to amoxicillin were followed up over a 4-year period. BAT and RAST were performed at 6-month intervals. Patients were randomized into groups: Group I, skin tests carried out at regular intervals; Group II, skin tests made only at the beginning of the study. Differences were observed between RAST and BAT (P < 0.01), the latter showing earlier negativization. Considering different haptens, significant differences for the rate of negativization were only found for amoxicillin (P < 0.05). Comparisons between Groups I (n = 10) and II (n = 31) showed a tendency to become negative later in Group I with RAST. Levels of specific IgE antibodies tended to decrease over time in patients with immediate allergic reactions to amoxicillin. Conversion to negative took longer for the RAST assay, although the differences were only detected with the amoxicillin hapten. Skin testing influenced the rate of negativization of the RAST assay, contributing to maintenance of in vitro sensitivity. Because of the loss of sensitivity over time, the determination of specific IgE antibodies to penicillins in patients with immediate allergic reactions must be done as soon as possible after the reaction.

  12. Plasticity of Performance Curves Can Buffer Reaction Rates from Body Temperature Variation in Active Endotherms.

    PubMed

    Seebacher, Frank; Little, Alexander G

    2017-01-01

    Endotherms regulate their core body temperature by adjusting metabolic heat production and insulation. Endothermic body temperatures are therefore relatively stable compared to external temperatures. The thermal sensitivity of biochemical reaction rates is thought to have co-evolved with body temperature regulation so that optimal reaction rates occur at the regulated body temperature. However, recent data show that core body temperatures even of non-torpid endotherms fluctuate considerably. Additionally, peripheral temperatures can be considerably lower and more variable than core body temperatures. Here we discuss whether published data support the hypothesis that thermal performance curves of physiological reaction rates are plastic so that performance is maintained despite variable body temperatures within active (non-torpid) endotherms, and we explore mechanisms that confer plasticity. There is evidence that thermal performance curves in tissues that experience thermal fluctuations can be plastic, although this question remains relatively unexplored for endotherms. Mechanisms that alter thermal responses locally at the tissue level include transient potential receptor ion channels (TRPV and TRPM) and the AMP-activated protein kinase (AMPK) both of which can influence metabolism and energy expenditure. Additionally, the thermal sensitivity of processes that cause post-transcriptional RNA degradation can promote the relative expression of cold-responsive genes. Endotherms can respond to environmental fluctuations similarly to ectotherms, and thermal plasticity complements core body temperature regulation to increase whole-organism performance. Thermal plasticity is ancestral to endothermic thermoregulation, but it has not lost its selective advantage so that modern endotherms are a physiological composite of ancestral ectothermic and derived endothermic traits.

  13. Plasticity of Performance Curves Can Buffer Reaction Rates from Body Temperature Variation in Active Endotherms

    PubMed Central

    Seebacher, Frank; Little, Alexander G.

    2017-01-01

    Endotherms regulate their core body temperature by adjusting metabolic heat production and insulation. Endothermic body temperatures are therefore relatively stable compared to external temperatures. The thermal sensitivity of biochemical reaction rates is thought to have co-evolved with body temperature regulation so that optimal reaction rates occur at the regulated body temperature. However, recent data show that core body temperatures even of non-torpid endotherms fluctuate considerably. Additionally, peripheral temperatures can be considerably lower and more variable than core body temperatures. Here we discuss whether published data support the hypothesis that thermal performance curves of physiological reaction rates are plastic so that performance is maintained despite variable body temperatures within active (non-torpid) endotherms, and we explore mechanisms that confer plasticity. There is evidence that thermal performance curves in tissues that experience thermal fluctuations can be plastic, although this question remains relatively unexplored for endotherms. Mechanisms that alter thermal responses locally at the tissue level include transient potential receptor ion channels (TRPV and TRPM) and the AMP-activated protein kinase (AMPK) both of which can influence metabolism and energy expenditure. Additionally, the thermal sensitivity of processes that cause post-transcriptional RNA degradation can promote the relative expression of cold-responsive genes. Endotherms can respond to environmental fluctuations similarly to ectotherms, and thermal plasticity complements core body temperature regulation to increase whole-organism performance. Thermal plasticity is ancestral to endothermic thermoregulation, but it has not lost its selective advantage so that modern endotherms are a physiological composite of ancestral ectothermic and derived endothermic traits. PMID:28824463

  14. On the ambiguity of the reaction rate constants in multivariate curve resolution for reversible first-order reaction systems.

    PubMed

    Schröder, Henning; Sawall, Mathias; Kubis, Christoph; Selent, Detlef; Hess, Dieter; Franke, Robert; Börner, Armin; Neymeyr, Klaus

    2016-07-13

    If for a chemical reaction with a known reaction mechanism the concentration profiles are accessible only for certain species, e.g. only for the main product, then often the reaction rate constants cannot uniquely be determined from the concentration data. This is a well-known fact which includes the so-called slow-fast ambiguity. This work combines the question of unique or non-unique reaction rate constants with factor analytic methods of chemometrics. The idea is to reduce the rotational ambiguity of pure component factorizations by considering only those concentration factors which are possible solutions of the kinetic equations for a properly adapted set of reaction rate constants. The resulting set of reaction rate constants corresponds to those solutions of the rate equations which appear as feasible factors in a pure component factorization. The new analysis of the ambiguity of reaction rate constants extends recent research activities on the Area of Feasible Solutions (AFS). The consistency with a given chemical reaction scheme is shown to be a valuable tool in order to reduce the AFS. The new methods are applied to model and experimental data. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Rate Constants and Activation Energies for Gas-Phase Reactions of Three Cyclic Volatile Methyl Siloxanes with the Hydroxyl Radical.

    PubMed

    Safron, Andreas; Strandell, Michael; Kierkegaard, Amelie; Macleod, Matthew

    2015-07-01

    Reaction with hydroxyl radicals (OH) is the major pathway for removal of cyclic volatile methyl siloxanes (cVMS) from air. We present new measurements of second-order rate constants for reactions of the cVMS octamethylcyclotetrasiloxane (D 4 ), decamethylcyclopentasiloxane (D 5 ), and dodecamethylcyclohexasiloxane (D 6 ) with OH determined at temperatures between 313 and 353 K. Our measurements were made using the method of relative rates with cyclohexane as a reference substance and were conducted in a 140-mL gas-phase reaction chamber with online mass spectrometry analysis. When extrapolated to 298 K, our measured reaction rate constants of D 4 and D 5 with the OH radical are 1.9 × 10 -12 (95% confidence interval (CI): (1.7-2.2) × 10 -12 ) and 2.6 × 10 -12 (CI: (2.3-2.9) × 10 -12 ) cm 3 molecule -1 s -1 , respectively, which are 1.9× and 1.7× faster than previous measurements. Our measured rate constant for D 6 is 2.8 × 10 -12 (CI: (2.5-3.2) × 10 -12 ) cm 3 molecule -1 s -1 and to our knowledge there are no comparable laboratory measurements in the literature. Reaction rates for D 5 were 33% higher than for D 4 (CI: 30-37%), whereas the rates for D 6 were only 8% higher than for D 5 (CI: 5-10%). The activation energies of the reactions of D 4 , D 5 , and D 6 with OH were not statistically different and had a value of 4300 ± 2800 J/mol.

  16. Rate Constants and Activation Energies for Gas‐Phase Reactions of Three Cyclic Volatile Methyl Siloxanes with the Hydroxyl Radical

    PubMed Central

    Safron, Andreas; Strandell, Michael; Kierkegaard, Amelie

    2015-01-01

    ABSTRACT Reaction with hydroxyl radicals (OH) is the major pathway for removal of cyclic volatile methyl siloxanes (cVMS) from air. We present new measurements of second‐order rate constants for reactions of the cVMS octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) with OH determined at temperatures between 313 and 353 K. Our measurements were made using the method of relative rates with cyclohexane as a reference substance and were conducted in a 140‐mL gas‐phase reaction chamber with online mass spectrometry analysis. When extrapolated to 298 K, our measured reaction rate constants of D4 and D5 with the OH radical are 1.9 × 10−12 (95% confidence interval (CI): (1.7–2.2) × 10−12) and 2.6 × 10−12 (CI: (2.3–2.9) × 10−12) cm3 molecule−1 s−1, respectively, which are 1.9× and 1.7× faster than previous measurements. Our measured rate constant for D6 is 2.8 × 10−12 (CI: (2.5–3.2) × 10−12) cm3 molecule−1 s−1 and to our knowledge there are no comparable laboratory measurements in the literature. Reaction rates for D5 were 33% higher than for D4 (CI: 30–37%), whereas the rates for D6 were only 8% higher than for D5 (CI: 5–10%). The activation energies of the reactions of D4, D5, and D6 with OH were not statistically different and had a value of 4300 ± 2800 J/mol. PMID:27708500

  17. Reaction rates for mesoscopic reaction-diffusion kinetics

    DOE PAGES

    Hellander, Stefan; Hellander, Andreas; Petzold, Linda

    2015-02-23

    The mesoscopic reaction-diffusion master equation (RDME) is a popular modeling framework frequently applied to stochastic reaction-diffusion kinetics in systems biology. The RDME is derived from assumptions about the underlying physical properties of the system, and it may produce unphysical results for models where those assumptions fail. In that case, other more comprehensive models are better suited, such as hard-sphere Brownian dynamics (BD). Although the RDME is a model in its own right, and not inferred from any specific microscale model, it proves useful to attempt to approximate a microscale model by a specific choice of mesoscopic reaction rates. In thismore » paper we derive mesoscopic scale-dependent reaction rates by matching certain statistics of the RDME solution to statistics of the solution of a widely used microscopic BD model: the Smoluchowski model with a Robin boundary condition at the reaction radius of two molecules. We also establish fundamental limits on the range of mesh resolutions for which this approach yields accurate results and show both theoretically and in numerical examples that as we approach the lower fundamental limit, the mesoscopic dynamics approach the microscopic dynamics. Finally, we show that for mesh sizes below the fundamental lower limit, results are less accurate. Thus, the lower limit determines the mesh size for which we obtain the most accurate results.« less

  18. Reaction rates for mesoscopic reaction-diffusion kinetics

    PubMed Central

    Hellander, Stefan; Hellander, Andreas; Petzold, Linda

    2016-01-01

    The mesoscopic reaction-diffusion master equation (RDME) is a popular modeling framework frequently applied to stochastic reaction-diffusion kinetics in systems biology. The RDME is derived from assumptions about the underlying physical properties of the system, and it may produce unphysical results for models where those assumptions fail. In that case, other more comprehensive models are better suited, such as hard-sphere Brownian dynamics (BD). Although the RDME is a model in its own right, and not inferred from any specific microscale model, it proves useful to attempt to approximate a microscale model by a specific choice of mesoscopic reaction rates. In this paper we derive mesoscopic scale-dependent reaction rates by matching certain statistics of the RDME solution to statistics of the solution of a widely used microscopic BD model: the Smoluchowski model with a Robin boundary condition at the reaction radius of two molecules. We also establish fundamental limits on the range of mesh resolutions for which this approach yields accurate results and show both theoretically and in numerical examples that as we approach the lower fundamental limit, the mesoscopic dynamics approach the microscopic dynamics. We show that for mesh sizes below the fundamental lower limit, results are less accurate. Thus, the lower limit determines the mesh size for which we obtain the most accurate results. PMID:25768640

  19. Method of controlling fusion reaction rates

    DOEpatents

    Kulsrud, Russell M.; Furth, Harold P.; Valeo, Ernest J.; Goldhaber, Maurice

    1988-01-01

    A method of controlling the reaction rates of the fuel atoms in a fusion reactor comprises the step of polarizing the nuclei of the fuel atoms in a particular direction relative to the plasma confining magnetic field. Fusion reaction rates can be increased or decreased, and the direction of emission of the reaction products can be controlled, depending on the choice of polarization direction.

  20. Method of controlling fusion reaction rates

    DOEpatents

    Kulsrud, Russell M.; Furth, Harold P.; Valeo, Ernest J.; Goldhaber, Maurice

    1988-03-01

    A method of controlling the reaction rates of the fuel atoms in a fusion reactor comprises the step of polarizing the nuclei of the fuel atoms in a particular direction relative to the plasma confining magnetic field. Fusion reaction rates can be increased or decreased, and the direction of emission of the reaction products can be controlled, depending on the choice of polarization direction.

  1. Representing Rate Equations for Enzyme-Catalyzed Reactions

    ERIC Educational Resources Information Center

    Ault, Addison

    2011-01-01

    Rate equations for enzyme-catalyzed reactions are derived and presented in a way that makes it easier for the nonspecialist to see how the rate of an enzyme-catalyzed reaction depends upon kinetic constants and concentrations. This is done with distribution equations that show how the rate of the reaction depends upon the relative quantities of…

  2. Typewriting rate as a function of reaction time.

    PubMed

    Hayes, V; Wilson, G D; Schafer, R L

    1977-12-01

    This study was designed to determine the relationship between reaction time and typewriting rate. Subjects were 24 typists ranging in age from 19 to 39 yr. Reaction times (.001 sec) to a light were recorded for each finger and to each alphabetic character and three punctuation marks. Analysis of variance yielded significant differences in reaction time among subjects and fingers. Correlation between typewriting rate and average reaction time to the alphabetic characters and three punctuation marks was --.75. Correlation between typewriting rate and the difference between the reaction time of the hands was --.42. Factors influencing typewriting rate may include reaction time of the fingers, difference between the reaction time of the hands, and reaction time to individual keys on the typewriter. Implications exist for instructional methodology and further research.

  3. pH & Rate of Enzymatic Reactions.

    ERIC Educational Resources Information Center

    Clariana, Roy B.

    1991-01-01

    A quantitative and inexpensive way to measure the rate of enzymatic reaction is provided. The effects of different pH levels on the reaction rate of an enzyme from yeast are investigated and the results graphed. Background information, a list of needed materials, directions for preparing solutions, procedure, and results and discussion are…

  4. Non-equilibrium reaction rates in chemical kinetic equations

    NASA Astrophysics Data System (ADS)

    Gorbachev, Yuriy

    2018-05-01

    Within the recently proposed asymptotic method for solving the Boltzmann equation for chemically reacting gas mixture, the chemical kinetic equations has been derived. Corresponding one-temperature non-equilibrium reaction rates are expressed in terms of specific heat capacities of the species participate in the chemical reactions, bracket integrals connected with the internal energy transfer in inelastic non-reactive collisions and energy transfer coefficients. Reactions of dissociation/recombination of homonuclear and heteronuclear diatomic molecules are considered. It is shown that all reaction rates are the complex functions of the species densities, similarly to the unimolecular reaction rates. For determining the rate coefficients it is recommended to tabulate corresponding bracket integrals, additionally to the equilibrium rate constants. Correlation of the obtained results with the irreversible thermodynamics is established.

  5. Correlated uncertainties in Monte Carlo reaction rate calculations

    NASA Astrophysics Data System (ADS)

    Longland, Richard

    2017-07-01

    Context. Monte Carlo methods have enabled nuclear reaction rates from uncertain inputs to be presented in a statistically meaningful manner. However, these uncertainties are currently computed assuming no correlations between the physical quantities that enter those calculations. This is not always an appropriate assumption. Astrophysically important reactions are often dominated by resonances, whose properties are normalized to a well-known reference resonance. This insight provides a basis from which to develop a flexible framework for including correlations in Monte Carlo reaction rate calculations. Aims: The aim of this work is to develop and test a method for including correlations in Monte Carlo reaction rate calculations when the input has been normalized to a common reference. Methods: A mathematical framework is developed for including correlations between input parameters in Monte Carlo reaction rate calculations. The magnitude of those correlations is calculated from the uncertainties typically reported in experimental papers, where full correlation information is not available. The method is applied to four illustrative examples: a fictional 3-resonance reaction, 27Al(p, γ)28Si, 23Na(p, α)20Ne, and 23Na(α, p)26Mg. Results: Reaction rates at low temperatures that are dominated by a few isolated resonances are found to minimally impacted by correlation effects. However, reaction rates determined from many overlapping resonances can be significantly affected. Uncertainties in the 23Na(α, p)26Mg reaction, for example, increase by up to a factor of 5. This highlights the need to take correlation effects into account in reaction rate calculations, and provides insight into which cases are expected to be most affected by them. The impact of correlation effects on nucleosynthesis is also investigated.

  6. On the possibility of negative activation energies in bimolecular reactions

    NASA Technical Reports Server (NTRS)

    Jaffe, R. L.

    1978-01-01

    The temperature dependence of the rate constants for model reacting systems was studied to understand some recent experimental measurements which imply the existence of negative activation energies. A collision theory model and classical trajectory calculations are used to demonstrate that the reaction probability can vary inversely with collision energy for bimolecular reactions occurring on attractive potential energy surfaces. However, this is not a sufficient condition to ensure that the rate constant has a negative temperature dependence. On the basis of these calculations, it seems unlikely that a true bimolecular reaction between neutral molecules will have a negative activation energy.

  7. Bayesian Estimation of Thermonuclear Reaction Rates for Deuterium+Deuterium Reactions

    NASA Astrophysics Data System (ADS)

    Gómez Iñesta, Á.; Iliadis, C.; Coc, A.

    2017-11-01

    The study of d+d reactions is of major interest since their reaction rates affect the predicted abundances of D, 3He, and 7Li. In particular, recent measurements of primordial D/H ratios call for reduced uncertainties in the theoretical abundances predicted by Big Bang nucleosynthesis (BBN). Different authors have studied reactions involved in BBN by incorporating new experimental data and a careful treatment of systematic and probabilistic uncertainties. To analyze the experimental data, Coc et al. used results of ab initio models for the theoretical calculation of the energy dependence of S-factors in conjunction with traditional statistical methods based on χ 2 minimization. Bayesian methods have now spread to many scientific fields and provide numerous advantages in data analysis. Astrophysical S-factors and reaction rates using Bayesian statistics were calculated by Iliadis et al. Here we present a similar analysis for two d+d reactions, d(d, n)3He and d(d, p)3H, that has been translated into a total decrease of the predicted D/H value by 0.16%.

  8. Extension of a Kinetic-Theory Approach for Computing Chemical-Reaction Rates to Reactions with Charged Particles

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.; Lewis, Mark J.

    2010-01-01

    Recently introduced molecular-level chemistry models that predict equilibrium and nonequilibrium reaction rates using only kinetic theory and fundamental molecular properties (i.e., no macroscopic reaction rate information) are extended to include reactions involving charged particles and electronic energy levels. The proposed extensions include ionization reactions, exothermic associative ionization reactions, endothermic and exothermic charge exchange reactions, and other exchange reactions involving ionized species. The extensions are shown to agree favorably with the measured Arrhenius rates for near-equilibrium conditions.

  9. A simple reaction-rate model for turbulent diffusion flames

    NASA Technical Reports Server (NTRS)

    Bangert, L. H.

    1975-01-01

    A simple reaction rate model is proposed for turbulent diffusion flames in which the reaction rate is proportional to the turbulence mixing rate. The reaction rate is also dependent on the mean mass fraction and the mean square fluctuation of mass fraction of each reactant. Calculations are compared with experimental data and are generally successful in predicting the measured quantities.

  10. Reaction of H2 with O2 in Excited Electronic States: Reaction Pathways and Rate Constants.

    PubMed

    Pelevkin, Alexey V; Loukhovitski, Boris I; Sharipov, Alexander S

    2017-12-21

    Comprehensive quantum chemical analysis with the use of the multireference state-averaged complete active space self-consistent field approach was carried out to study the reactions of H 2 with O 2 in a 1 Δ g , b 1 Σ g + , c 1 Σ u - , and A' 3 Δ u electronically excited states. The energetically favorable reaction pathways and possible intersystem crossings have been revealed. The energy barriers were refined employing the extended multiconfiguration quasi-degenerate second-order perturbation theory. It has been shown that the interaction of O 2 (a 1 Δ g ) and O 2 (A' 3 Δ u ) with H 2 occurs through the H-abstraction process with relatively low activation barriers that resulted in the formation of the HO 2 molecule in A″ and A' electronic states, respectively. Meanwhile, molecular oxygen in singlet sigma states (b 1 Σ g + and c 1 Σ u - ) was proved to be nonreactive with respect to the molecular hydrogen. Appropriate rate constants for revealed reaction and quenching channels have been estimated using variational transition-state theory including corrections for the tunneling effect, possible nonadiabatic transitions, and anharmonicity of vibrations for transition states and reactants. It was demonstrated that the calculated reaction rate constant for the H 2 + O 2 (a 1 Δ g ) process is in reasonable agreement with known experimental data. The Arrhenius approximations for these processes have been proposed for the temperature range T = 300-3000 K.

  11. Rates and mechanisms of the atomic oxygen reaction with nickel at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Christian, J. D.; Gilbreath, W. P.

    1973-01-01

    The oxidation of nickel by atomic oxygen at pressure from 1 to 45 N/sq m between 1050 and 1250 K was investigated. In these ranges, the oxidation was found to follow the parobolic rate law, viz., K sub p = 0.0000114 exp(-13410/T) g squared/cm4/sec for films of greater than 1 micron thickness and was pressure independent. The activation enthalpy for the oxidation reaction was 112 + or - 11 kj/mole (27 + or - 3 kcal/mole). Of a number of possible mechanisms and defect structures considered, it was shown that the most likely was a saturated surface defect model for atomic oxidation, based on reaction activation enthalpies, impurity effects, pressure independence, and magnitudes of rates. A model judged somewhat less likely was one having doubly ionized cationic defects rate controlling in both atomic and molecular oxygen. From comparisons of the appropriate processes, the following enthalpy values were derived: enthalpy of activation (Ni diffusion in Ni0) = 110 + or - 30 kj/mole and standard enthalpy change for reaction formation (doubly ionized cation vacancies in Ni0 from atomic oxygen)= -9 + or - 25 kj/mole.

  12. Statistical methods for thermonuclear reaction rates and nucleosynthesis simulations

    NASA Astrophysics Data System (ADS)

    Iliadis, Christian; Longland, Richard; Coc, Alain; Timmes, F. X.; Champagne, Art E.

    2015-03-01

    Rigorous statistical methods for estimating thermonuclear reaction rates and nucleosynthesis are becoming increasingly established in nuclear astrophysics. The main challenge being faced is that experimental reaction rates are highly complex quantities derived from a multitude of different measured nuclear parameters (e.g., astrophysical S-factors, resonance energies and strengths, particle and γ-ray partial widths). We discuss the application of the Monte Carlo method to two distinct, but related, questions. First, given a set of measured nuclear parameters, how can one best estimate the resulting thermonuclear reaction rates and associated uncertainties? Second, given a set of appropriate reaction rates, how can one best estimate the abundances from nucleosynthesis (i.e., reaction network) calculations? The techniques described here provide probability density functions that can be used to derive statistically meaningful reaction rates and final abundances for any desired coverage probability. Examples are given for applications to s-process neutron sources, core-collapse supernovae, classical novae, and Big Bang nucleosynthesis.

  13. Calibrating reaction rates for the CREST model

    NASA Astrophysics Data System (ADS)

    Handley, Caroline A.; Christie, Michael A.

    2017-01-01

    The CREST reactive-burn model uses entropy-dependent reaction rates that, until now, have been manually tuned to fit shock-initiation and detonation data in hydrocode simulations. This paper describes the initial development of an automatic method for calibrating CREST reaction-rate coefficients, using particle swarm optimisation. The automatic method is applied to EDC32, to help develop the first CREST model for this conventional high explosive.

  14. Reaction Order Ambiguity in Integrated Rate Plots

    ERIC Educational Resources Information Center

    Lee, Joe

    2008-01-01

    Integrated rate plots are frequently used in reaction kinetics to determine orders of reactions. It is often emphasised, when using this methodology in practice, that it is necessary to monitor the reaction to a substantial fraction of completion for these plots to yield unambiguous orders. The present article gives a theoretical and statistical…

  15. Organocatalytic C–H activation reactions

    PubMed Central

    2012-01-01

    Summary Organocatalytic C–H activation reactions have recently been developed besides the traditional metal-catalysed C–H activation reactions. The recent non-asymmetric and asymmetric C–H activation reactions mediated by organocatalysts are discussed in this review. PMID:23019474

  16. Viscosity Dependence of Some Protein and Enzyme Reaction Rates: Seventy-Five Years after Kramers.

    PubMed

    Sashi, Pulikallu; Bhuyan, Abani K

    2015-07-28

    Kramers rate theory is a milestone in chemical reaction research, but concerns regarding the basic understanding of condensed phase reaction rates of large molecules in viscous milieu persist. Experimental studies of Kramers theory rely on scaling reaction rates with inverse solvent viscosity, which is often equated with the bulk friction coefficient based on simple hydrodynamic relations. Apart from the difficulty of abstraction of the prefactor details from experimental data, it is not clear why the linearity of rate versus inverse viscosity, k ∝ η(-1), deviates widely for many reactions studied. In most cases, the deviation simulates a power law k ∝ η(-n), where the exponent n assumes fractional values. In rate-viscosity studies presented here, results for two reactions, unfolding of cytochrome c and cysteine protease activity of human ribosomal protein S4, show an exceedingly overdamped rate over a wide viscosity range, registering n values up to 2.4. Although the origin of this extraordinary reaction friction is not known at present, the results indicate that the viscosity exponent need not be bound by the 0-1 limit as generally suggested. For the third reaction studied here, thermal dissociation of CO from nativelike cytochrome c, the rate-viscosity behavior can be explained using Grote-Hynes theory of time-dependent friction in conjunction with correlated motions intrinsic to the protein. Analysis of the glycerol viscosity-dependent rate for the CO dissociation reaction in the presence of urea as the second variable shows that the protein stabilizing effect of subdenaturing amounts of urea is not affected by the bulk viscosity. It appears that a myriad of factors as diverse as parameter uncertainty due to the difficulty of knowing the exact reaction friction and both mode and consequences of protein-solvent interaction work in a complex manner to convey as though Kramers rate equation is not absolute.

  17. A Transition in the Cumulative Reaction Rate of Two Species Diffusion with Bimolecular Reaction

    NASA Astrophysics Data System (ADS)

    Rajaram, Harihar; Arshadi, Masoud

    2015-04-01

    Diffusion and bimolecular reaction between two initially separated reacting species is a prototypical small-scale description of reaction induced by transverse mixing. It is also relevant to diffusion controlled transport regimes as encountered in low-permeability matrix blocks in fractured media. In previous work, the reaction-diffusion problem has been analyzed as a Stefan problem involving a distinct moving boundary (reaction front), which predicts that front motion scales as √t, and the cumulative reaction rate scales as 1/√t-. We present a general non-dimensionalization of the problem and a perturbation analysis to show that there is an early time regime where the cumulative reaction rate scales as √t- rather than 1/√t. The duration of this early time regime (where the cumulative rate is kinetically rather than diffusion controlled) depends on the rate parameter, in a manner that is consistently predicted by our non-dimensionalization. We also present results on the scaling of the reaction front width. We present numerical simulations in homogeneous and heterogeneous porous media to demonstrate the limited influence of heterogeneity on the behavior of the reaction-diffusion system. We illustrate applications to the practical problem of in-situ chemical oxidation of TCE and PCE by permanganate, which is employed to remediate contaminated sites where the DNAPLs are largely dissolved in the rock matrix.

  18. The Sugar Model: Autocatalytic Activity of the Triose-Ammonia Reaction

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.

    2006-01-01

    Reaction of triose sugars with ammonia under anaerobic conditions yielded autocatalytic products. The autocatalytic behavior of the products was examined by measuring the effect of the crude triose-ammonia reaction product on the kinetics of a second identical triose-ammonia reaction. The reaction product showed autocatalytic activity by increasing both the rate of disappearance of triose and the rate formation of pyruvaldehyde, the product of triose dehydration. This synthetic process is considered a reasonable model of origin-of-life chemistry because it uses plausible prebiotic substrates, and resembles modern biosynthesis by employing the energized carbon groups of sugars to drive the synthesis of autocatalytic molecules.

  19. The Sugar Model: Autocatalytic Activity of the Triose Ammonia Reaction

    NASA Astrophysics Data System (ADS)

    Weber, Arthur L.

    2007-04-01

    Reaction of triose sugars with ammonia under anaerobic conditions yielded autocatalytic products. The autocatalytic behavior of the products was examined by measuring the effect of the crude triose ammonia reaction product on the kinetics of a second identical triose ammonia reaction. The reaction product showed autocatalytic activity by increasing both the rate of disappearance of triose and the rate of formation of pyruvaldehyde, the product of triose dehydration. This synthetic process is considered a reasonable model of origin-of-life chemistry because it uses plausible prebiotic substrates, and resembles modern biosynthesis by employing the energized carbon groups of sugars to drive the synthesis of autocatalytic molecules.

  20. Quantum Tunneling Contribution for the Activation Energy in Microwave-Induced Reactions.

    PubMed

    Kuhnen, Carlos A; Dall'Oglio, Evandro L; de Sousa, Paulo T

    2017-08-03

    In this study, a quantum approach is presented to explain microwave-enhanced reaction rates by considering the tunneling effects in chemical reactions. In the Arrhenius equation, the part of the Hamiltonian relative to the interaction energy during tunneling, between the particle that tunnels and the electrical field defined in the medium, whose spatial component is specified by its rms value, is taken into account. An approximate evaluation of the interaction energy leads to a linear dependence of the effective activation energy on the applied field. The evaluation of the rms value of the field for pure liquids and reaction mixtures, through their known dielectric properties, leads to an appreciable reduction in the activation energies for the proton transfer process in these liquids. The results indicate the need to move toward the use of more refined methods of modern quantum chemistry to calculate more accurately field-induced reaction rates and effective activation energies.

  1. Modeling microbial reaction rates in a submarine hydrothermal vent chimney wall

    NASA Astrophysics Data System (ADS)

    LaRowe, Douglas E.; Dale, Andrew W.; Aguilera, David R.; L'Heureux, Ivan; Amend, Jan P.; Regnier, Pierre

    2014-01-01

    The fluids emanating from active submarine hydrothermal vent chimneys provide a window into subseafloor processes and, through mixing with seawater, are responsible for steep thermal and compositional gradients that provide the energetic basis for diverse biological communities. Although several models have been developed to better understand the dynamic interplay of seawater, hydrothermal fluid, minerals and microorganisms inside chimney walls, none provide a fully integrated approach to quantifying the biogeochemistry of these hydrothermal systems. In an effort to remedy this, a fully coupled biogeochemical reaction-transport model of a hydrothermal vent chimney has been developed that explicitly quantifies the rates of microbial catalysis while taking into account geochemical processes such as fluid flow, solute transport and oxidation-reduction reactions associated with fluid mixing as a function of temperature. The metabolisms included in the reaction network are methanogenesis, aerobic oxidation of hydrogen, sulfide and methane and sulfate reduction by hydrogen and methane. Model results indicate that microbial catalysis is generally fastest in the hottest habitable portion of the vent chimney (77-102 °C), and methane and sulfide oxidation peak near the seawater-side of the chimney. The fastest metabolisms are aerobic oxidation of H2 and sulfide and reduction of sulfate by H2 with maximum rates of 140, 900 and 800 pmol cm-3 d-1, respectively. The maximum rate of hydrogenotrophic methanogenesis is just under 0.03 pmol cm-3 d-1, the slowest of the metabolisms considered. Due to thermodynamic inhibition, there is no anaerobic oxidation of methane by sulfate (AOM). These simulations are consistent with vent chimney metabolic activity inferred from phylogenetic data reported in the literature. The model developed here provides a quantitative approach to describing the rates of biogeochemical transformations in hydrothermal systems and can be used to constrain the

  2. Scanning mass spectrometer for quantitative reaction studies on catalytically active microstructures.

    PubMed

    Roos, M; Kielbassa, S; Schirling, C; Häring, T; Bansmann, J; Behm, R J

    2007-08-01

    We describe an apparatus for spatially resolving scanning mass spectrometry which is able to measure the gas composition above catalytically active microstructures or arrays of these microstructures with a lateral resolution of better than 100 mum under reaction conditions and which allows us to quantitatively determine reaction rates on individual microstructures. Measurements of the three-dimensional gas composition at different vertical distances and separations between active structures allow the evaluation of gas phase mass transport effects. The system is based on a piezoelectrically driven positioning substage for controlled lateral and vertical positioning of the sample under a rigidly mounted capillary probe connecting to a mass spectrometer. Measurements can be performed at pressures in the range of <10(-2)-10 mbars and temperatures between room temperature and 450 degrees C. The performance of the setup is demonstrated using the CO oxidation reaction on Pt microstructures on Si with sizes between 100 and 300 mum and distances in the same order of magnitude, evaluating CO(2) formation and CO consumption above the microstructures. The rapidly decaying lateral resolution with increasing distance between sample and probe underlines the effects of (lateral) gas transport in the room between sample and probe. The reaction rates and apparent activation energy obtained from such measurements agree with previous data on extended surfaces, demonstrating the feasibility of determining absolute reaction rates on individual microstructures.

  3. Reaction rates for a generalized reaction-diffusion master equation

    DOE PAGES

    Hellander, Stefan; Petzold, Linda

    2016-01-19

    It has been established that there is an inherent limit to the accuracy of the reaction-diffusion master equation. Specifically, there exists a fundamental lower bound on the mesh size, below which the accuracy deteriorates as the mesh is refined further. In this paper we extend the standard reaction-diffusion master equation to allow molecules occupying neighboring voxels to react, in contrast to the traditional approach in which molecules react only when occupying the same voxel. We derive reaction rates, in two dimensions as well as three dimensions, to obtain an optimal match to the more fine-grained Smoluchowski model, and show inmore » two numerical examples that the extended algorithm is accurate for a wide range of mesh sizes, allowing us to simulate systems that are intractable with the standard reaction-diffusion master equation. In addition, we show that for mesh sizes above the fundamental lower limit of the standard algorithm, the generalized algorithm reduces to the standard algorithm. We derive a lower limit for the generalized algorithm which, in both two dimensions and three dimensions, is on the order of the reaction radius of a reacting pair of molecules.« less

  4. Reaction rates for a generalized reaction-diffusion master equation

    PubMed Central

    Hellander, Stefan; Petzold, Linda

    2016-01-01

    It has been established that there is an inherent limit to the accuracy of the reaction-diffusion master equation. Specifically, there exists a fundamental lower bound on the mesh size, below which the accuracy deteriorates as the mesh is refined further. In this paper we extend the standard reaction-diffusion master equation to allow molecules occupying neighboring voxels to react, in contrast to the traditional approach in which molecules react only when occupying the same voxel. We derive reaction rates, in two dimensions as well as three dimensions, to obtain an optimal match to the more fine-grained Smoluchowski model, and show in two numerical examples that the extended algorithm is accurate for a wide range of mesh sizes, allowing us to simulate systems that are intractable with the standard reaction-diffusion master equation. In addition, we show that for mesh sizes above the fundamental lower limit of the standard algorithm, the generalized algorithm reduces to the standard algorithm. We derive a lower limit for the generalized algorithm which, in both two dimensions and three dimensions, is on the order of the reaction radius of a reacting pair of molecules. PMID:26871190

  5. Pressure Dependence of Gas-Phase Reaction Rates

    ERIC Educational Resources Information Center

    De Persis, Stephanie; Dollet, Alain; Teyssandier, Francis

    2004-01-01

    It is presented that only simple concepts, mainly taken from activated-complex or transition-state theory, are required to explain and analytically describe the influence of pressure on gas-phase reaction kinetics. The simplest kind of elementary gas-phase reaction is a unimolecular decomposition reaction.

  6. Rate constant for reaction of atomic hydrogen with germane

    NASA Technical Reports Server (NTRS)

    Nava, David F.; Payne, Walter A.; Marston, George; Stief, Louis J.

    1990-01-01

    Due to the interest in the chemistry of germane in the atmospheres of Jupiter and Saturn, and because previously reported kinetic reaction rate studies at 298 K gave results differing by a factor of 200, laboratory measurements were performed to determine the reaction rate constant for H + GeH4. Results of the study at 298 K, obtained via the direct technique of flash photolysis-resonance fluorescence, yield the reaction rate constant, k = (4.08 + or - 0.22) x 10(exp -12) cu cm/s.

  7. Determining Role of the Chain Mechanism in the Temperature Dependence of the Gas-Phase Rate of Combustion Reactions

    NASA Astrophysics Data System (ADS)

    Azatyan, V. V.; Bolod'yan, I. A.; Kopylov, N. P.; Kopylov, S. N.; Prokopenko, V. M.; Shebeko, Yu. N.

    2018-05-01

    It is shown that the strong dependence of the rate of gas-phase combustion reactions on temperature is determined by the high values of the reaction rate constants of free atoms and radicals. It is established that with a branched chain mechanism, a special role in the reaction rate temperature dependence is played by positive feedback between the concentrations of active intermediate species and the rate of their change. The role of the chemical mechanism in the temperature dependence of the process rate with and without inhibitors is considered.

  8. A new mathematical solution for predicting char activation reactions

    USGS Publications Warehouse

    Rafsanjani, H.H.; Jamshidi, E.; Rostam-Abadi, M.

    2002-01-01

    The differential conservation equations that describe typical gas-solid reactions, such as activation of coal chars, yield a set of coupled second-order partial differential equations. The solution of these coupled equations by exact analytical methods is impossible. In addition, an approximate or exact solution only provides predictions for either reaction- or diffusion-controlling cases. A new mathematical solution, the quantize method (QM), was applied to predict the gasification rates of coal char when both chemical reaction and diffusion through the porous char are present. Carbon conversion rates predicted by the QM were in closer agreement with the experimental data than those predicted by the random pore model and the simple particle model. ?? 2002 Elsevier Science Ltd. All rights reserved.

  9. Understanding ligninase-mediated reactions of endocrine disrupting chemicals in water: reaction rates and quantitative structure-activity relationships.

    PubMed

    Mao, Liang; Colosi, Lisa M; Gao, Shixiang; Huang, Qingguo

    2011-07-15

    We have verified in our previous work that lignin peroxidase (LiP) mediates effective removal of selected natural and synthetic estrogens. The efficiency of these reactions was greatly enhanced in the presence of veratryl alcohol (VA), a chemical that is produced along with LiP by certain white rot fungi, for example, Phanerochaete chrysosporium. In this study, we systematically evaluated the kinetic behaviors of LiP-mediated reactions for six endocrine disrupting compounds (EDCs), that is, steroid estrogens and their structural analogs, in both the presence and absence of VA. Resulting kinetic parameters were then correlated with structural features of LiP/substrate binding complexes, as quantified using molecular simulation, to create quantitative structure-activity relationship (QSAR) equations. These equations suggest that binding distance between a substrate's phenolic proton and δN of HIS47's imidazole ring plays an important role in modulating substrate reactivity toward LiP in both the presence and absence of VA. This information provides insight into an important enzymatic reaction process that occurs in the natural environment affecting EDC transformation, a process that may be used in engineered systems to achieve EDC removal from water.

  10. Reaction rate kinetics for in situ combustion retorting of Michigan Antrim oil shale

    USGS Publications Warehouse

    Rostam-Abadi, M.; Mickelson, R.W.

    1984-01-01

    The intrinsic reaction rate kinetics for the pyrolysis of Michigan Antrim oil shale and the oxidation of the carbonaceous residue of this shale have been determined using a thermogravimetric analysis method. The kinetics of the pyrolysis reaction were evaluated from both isothermal and nonisothermal rate data. The reaction was found to be second-order with an activation energy of 252.2 kJ/mole, and with a frequency factor of 9.25 ?? 1015 sec-1. Pyrolysis kinetics were not affected by heating rates between 0.01 to 0.67??K/s. No evidence of any reactions among the oil shale mineral constituents was observed at temperatures below 1173??K. However, it was found that the presence of pyrite in oil shale reduces the primary devolatilization rate of kerogen and increases the amount of residual char in the spent shale. Carbonaceous residues which were prepared by heating the oil shale at a rate of 0.166??K/s to temperatures between 923??K and 1073??K, had the highest reactivities when oxidized at 0.166??K/s in a gas having 21 volume percent oxygen. Oxygen chemisorption was found to be the initial precursor to the oxidation process. The kinetics governing oxygen chemisorption is (Equation Presented) where X is the fractional coverage. The oxidation of the carbonaceous residue was found also to be second-order. The activation energy and the frequency factor determined from isothermal experiments were 147 kJ/mole and 9.18??107 sec-1 respectively, while the values of these parameters obtained from a nonisothermal experiment were 212 kJ/mole and 1.5??1013 sec-1. The variation in the rate constants is attributed to the fact that isothermal and nonisothermal analyses represent two different aspects of the combustion process.

  11. A review of reaction rates in high temperature air

    NASA Technical Reports Server (NTRS)

    Park, Chul

    1989-01-01

    The existing experimental data on the rate coefficients for the chemical reactions in nonequilibrium high temperature air are reviewed and collated, and a selected set of such values is recommended for use in hypersonic flow calculations. For the reactions of neutral species, the recommended values are chosen from the experimental data that existed mostly prior to 1970, and are slightly different from those used previously. For the reactions involving ions, the recommended rate coefficients are newly chosen from the experimental data obtained more recently. The reacting environment is assumed to lack thermal equilibrium, and the rate coefficients are expressed as a function of the controlling temperature, incorporating the recent multitemperature reaction concept.

  12. Reactions of the phthalimide N-oxyl radical (PINO) with activated phenols: the contribution of π-stacking interactions to hydrogen atom transfer rates.

    PubMed

    D'Alfonso, Claudio; Bietti, Massimo; DiLabio, Gino A; Lanzalunga, Osvaldo; Salamone, Michela

    2013-02-01

    The kinetics of reactions of the phthalimide N-oxyl radical (PINO) with a series of activated phenols (2,2,5,7,8-pentamethylchroman-6-ol (PMC), 2,6-dimethyl- and 2,6-di-tert-butyl-4-substituted phenols) were investigated by laser flash photolysis in CH(3)CN and PhCl in order to establish if the reactions with PINO can provide a useful tool for evaluating the radical scavenging ability of phenolic antioxidants. On the basis of the small values of deuterium kinetic isotope effects, the relatively high and negative ρ values in the Hammett correlations and the results of theoretical calculations, we suggest that these reactions proceed by a hydrogen atom transfer (HAT) mechanism having a significant degree of charge transfer resulting from a π-stacked conformation between PINO and the aromatic ring of the phenols. Kinetic solvent effects were analyzed in detail for the hydrogen transfer from 2,4,6-trimethylphenol to PINO and the data obtained are in accordance with the Snelgrove-Ingold equation for HAT. Experimental rate constants for the reactions of PINO with activated phenols are in accordance with those predicted by applying the Marcus cross relation.

  13. BAYESIAN ESTIMATION OF THERMONUCLEAR REACTION RATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iliadis, C.; Anderson, K. S.; Coc, A.

    The problem of estimating non-resonant astrophysical S -factors and thermonuclear reaction rates, based on measured nuclear cross sections, is of major interest for nuclear energy generation, neutrino physics, and element synthesis. Many different methods have been applied to this problem in the past, almost all of them based on traditional statistics. Bayesian methods, on the other hand, are now in widespread use in the physical sciences. In astronomy, for example, Bayesian statistics is applied to the observation of extrasolar planets, gravitational waves, and Type Ia supernovae. However, nuclear physics, in particular, has been slow to adopt Bayesian methods. We presentmore » astrophysical S -factors and reaction rates based on Bayesian statistics. We develop a framework that incorporates robust parameter estimation, systematic effects, and non-Gaussian uncertainties in a consistent manner. The method is applied to the reactions d(p, γ ){sup 3}He, {sup 3}He({sup 3}He,2p){sup 4}He, and {sup 3}He( α , γ ){sup 7}Be, important for deuterium burning, solar neutrinos, and Big Bang nucleosynthesis.« less

  14. Analysis of reaction schemes using maximum rates of constituent steps

    PubMed Central

    Motagamwala, Ali Hussain; Dumesic, James A.

    2016-01-01

    We show that the steady-state kinetics of a chemical reaction can be analyzed analytically in terms of proposed reaction schemes composed of series of steps with stoichiometric numbers equal to unity by calculating the maximum rates of the constituent steps, rmax,i, assuming that all of the remaining steps are quasi-equilibrated. Analytical expressions can be derived in terms of rmax,i to calculate degrees of rate control for each step to determine the extent to which each step controls the rate of the overall stoichiometric reaction. The values of rmax,i can be used to predict the rate of the overall stoichiometric reaction, making it possible to estimate the observed reaction kinetics. This approach can be used for catalytic reactions to identify transition states and adsorbed species that are important in controlling catalyst performance, such that detailed calculations using electronic structure calculations (e.g., density functional theory) can be carried out for these species, whereas more approximate methods (e.g., scaling relations) are used for the remaining species. This approach to assess the feasibility of proposed reaction schemes is exact for reaction schemes where the stoichiometric coefficients of the constituent steps are equal to unity and the most abundant adsorbed species are in quasi-equilibrium with the gas phase and can be used in an approximate manner to probe the performance of more general reaction schemes, followed by more detailed analyses using full microkinetic models to determine the surface coverages by adsorbed species and the degrees of rate control of the elementary steps. PMID:27162366

  15. Modular rate laws for enzymatic reactions: thermodynamics, elasticities and implementation.

    PubMed

    Liebermeister, Wolfram; Uhlendorf, Jannis; Klipp, Edda

    2010-06-15

    Standard rate laws are a key requisite for systematically turning metabolic networks into kinetic models. They should provide simple, general and biochemically plausible formulae for reaction velocities and reaction elasticities. At the same time, they need to respect thermodynamic relations between the kinetic constants and the metabolic fluxes and concentrations. We present a family of reversible rate laws for reactions with arbitrary stoichiometries and various types of regulation, including mass-action, Michaelis-Menten and uni-uni reversible Hill kinetics as special cases. With a thermodynamically safe parameterization of these rate laws, parameter sets obtained by model fitting, sampling or optimization are guaranteed to lead to consistent chemical equilibrium states. A reformulation using saturation values yields simple formulae for rates and elasticities, which can be easily adjusted to the given stationary flux distributions. Furthermore, this formulation highlights the role of chemical potential differences as thermodynamic driving forces. We compare the modular rate laws to the thermodynamic-kinetic modelling formalism and discuss a simplified rate law in which the reaction rate directly depends on the reaction affinity. For automatic handling of modular rate laws, we propose a standard syntax and semantic annotations for the Systems Biology Markup Language. An online tool for inserting the rate laws into SBML models is freely available at www.semanticsbml.org. Supplementary data are available at Bioinformatics online.

  16. Astrophysical Nuclear Reaction Rates in the Dense Metallic Environments

    NASA Astrophysics Data System (ADS)

    Kilic, Ali Ihsan

    2017-09-01

    Nuclear reaction rates can be enhanced by many orders of magnitude in dense and relatively cold astrophysical plasmas such as in white dwarfs, brown dwarfs, and giant planets. Similar conditions are also present in supernova explosions where the ignition conditions are vital for cosmological models. White dwarfs are compact objects that have both extremely high interior densities and very strong local magnetic fields. For the first time, a new formula has been developed to explain cross section and reaction rate quantities for light elements that includes not only the nuclear component but also the material dependence, magnetic field, and crystal structure dependency in dense metallic environments. I will present the impact of the developed formula on the cross section and reaction rates for light elements. This could have possible technological applications in energy production using nuclear fusion reactions.

  17. Reaction rate for carbon burning in massive stars

    NASA Astrophysics Data System (ADS)

    Jiang, C. L.; Santiago-Gonzalez, D.; Almaraz-Calderon, S.; Rehm, K. E.; Back, B. B.; Auranen, K.; Avila, M. L.; Ayangeakaa, A. D.; Bottoni, S.; Carpenter, M. P.; Dickerson, C.; DiGiovine, B.; Greene, J. P.; Hoffman, C. R.; Janssens, R. V. F.; Kay, B. P.; Kuvin, S. A.; Lauritsen, T.; Pardo, R. C.; Sethi, J.; Seweryniak, D.; Talwar, R.; Ugalde, C.; Zhu, S.; Bourgin, D.; Courtin, S.; Haas, F.; Heine, M.; Fruet, G.; Montanari, D.; Jenkins, D. G.; Morris, L.; Lefebvre-Schuhl, A.; Alcorta, M.; Fang, X.; Tang, X. D.; Bucher, B.; Deibel, C. M.; Marley, S. T.

    2018-01-01

    Carbon burning is a critical phase for nucleosynthesis in massive stars. The conditions for igniting this burning stage, and the subsequent isotope composition of the resulting ashes, depend strongly on the reaction rate for 12C+12C fusion at very low energies. Results for the cross sections for this reaction are influenced by various backgrounds encountered in measurements at such energies. In this paper, we report on a new measurement of 12C+12C fusion cross sections where these backgrounds have been minimized. It is found that the astrophysical S factor exhibits a maximum around Ecm=3.5 -4.0 MeV, which leads to a reduction of the previously predicted astrophysical reaction rate.

  18. Analysis of reaction schemes using maximum rates of constituent steps

    DOE PAGES

    Motagamwala, Ali Hussain; Dumesic, James A.

    2016-05-09

    In this paper, we show that the steady-state kinetics of a chemical reaction can be analyzed analytically in terms of proposed reaction schemes composed of series of steps with stoichiometric numbers equal to unity by calculating the maximum rates of the constituent steps, r max,i, assuming that all of the remaining steps are quasi-equilibrated. Analytical expressions can be derived in terms of r max,i to calculate degrees of rate control for each step to determine the extent to which each step controls the rate of the overall stoichiometric reaction. The values of r max,i can be used to predict themore » rate of the overall stoichiometric reaction, making it possible to estimate the observed reaction kinetics. This approach can be used for catalytic reactions to identify transition states and adsorbed species that are important in controlling catalyst performance, such that detailed calculations using electronic structure calculations (e.g., density functional theory) can be carried out for these species, whereas more approximate methods (e.g., scaling relations) are used for the remaining species. Finally, this approach to assess the feasibility of proposed reaction schemes is exact for reaction schemes where the stoichiometric coefficients of the constituent steps are equal to unity and the most abundant adsorbed species are in quasi-equilibrium with the gas phase and can be used in an approximate manner to probe the performance of more general reaction schemes, followed by more detailed analyses using full microkinetic models to determine the surface coverages by adsorbed species and the degrees of rate control of the elementary steps.« less

  19. Reaction rates and prediction of thermal instability during aluminum alloy 6061 dissolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McFarlane, J.; DePaoli, D. W.; Mattus, C. H.

    Here, chemical kinetics of dissolution of aluminum alloy 6061 was investigated for the processing of Pu-238 for deep space missions. The rate of dissolution was measured by the heat release and appeared to be controlled by the rate of release of Al(OH) 4 – from the metal surface. Rates of reaction were measured from 273 to 365 K, giving an activation energy of 72 ± 13 kJ•(mol Al) –1 and a pre-exponential factor of 5 ± 3 × 10 9 dm 3mol –1min –1. Minor alloying elements did not appear to affect the reaction kinetics. The average heat of dissolutionmore » was –360 ± 70 kJ•(mol NaAlO 2) –1. When extrapolated to an infinitely dilute solution of aluminum, kJ•(mol NaAlO 2) –1.« less

  20. Reaction rates and prediction of thermal instability during aluminum alloy 6061 dissolution

    DOE PAGES

    McFarlane, J.; DePaoli, D. W.; Mattus, C. H.

    2017-11-10

    Here, chemical kinetics of dissolution of aluminum alloy 6061 was investigated for the processing of Pu-238 for deep space missions. The rate of dissolution was measured by the heat release and appeared to be controlled by the rate of release of Al(OH) 4 – from the metal surface. Rates of reaction were measured from 273 to 365 K, giving an activation energy of 72 ± 13 kJ•(mol Al) –1 and a pre-exponential factor of 5 ± 3 × 10 9 dm 3mol –1min –1. Minor alloying elements did not appear to affect the reaction kinetics. The average heat of dissolutionmore » was –360 ± 70 kJ•(mol NaAlO 2) –1. When extrapolated to an infinitely dilute solution of aluminum, kJ•(mol NaAlO 2) –1.« less

  1. New Approach for Investigating Reaction Dynamics and Rates with Ab Initio Calculations.

    PubMed

    Fleming, Kelly L; Tiwary, Pratyush; Pfaendtner, Jim

    2016-01-21

    Herein, we demonstrate a convenient approach to systematically investigate chemical reaction dynamics using the metadynamics (MetaD) family of enhanced sampling methods. Using a symmetric SN2 reaction as a model system, we applied infrequent metadynamics, a theoretical framework based on acceleration factors, to quantitatively estimate the rate of reaction from biased and unbiased simulations. A systematic study of the algorithm and its application to chemical reactions was performed by sampling over 5000 independent reaction events. Additionally, we quantitatively reweighed exhaustive free-energy calculations to obtain the reaction potential-energy surface and showed that infrequent metadynamics works to effectively determine Arrhenius-like activation energies. Exact agreement with unbiased high-temperature kinetics is also shown. The feasibility of using the approach on actual ab initio molecular dynamics calculations is then presented by using Car-Parrinello MD+MetaD to sample the same reaction using only 10-20 calculations of the rare event. Owing to the ease of use and comparatively low-cost of computation, the approach has extensive potential applications for catalysis, combustion, pyrolysis, and enzymology.

  2. Characterization of shock-dependent reaction rates in an aluminum/perfluoropolyether pyrolant

    NASA Astrophysics Data System (ADS)

    Wilson, Dennis; Granier, John; Johnson, Richard; Littrell, Donald

    2017-01-01

    Energetic formulations of perfluoropolyether (PFPE) and aluminum are highly non-ideal. They release energy via a fast self-oxidized combustion wave rather than a true self-sustaining detonation. Unlike high explosives, the reactions are shock dependent and can be overdriven to control energy release rate. Reaction rate experiments show that the velocity can vary from 1.25 to 3 km/s. This paper examines the effect of the initial shock conditions upon the reaction rate of the explosive. The following conditions were varied in a series of reaction rate experiments: the high explosive booster mass and geometry; shock attenuation; confinement; and rate stick diameter and length. Several experiments designed to isolate and quantify these dependencies are described and summarized.

  3. Activity in the human brain predicting differential heart rate responses to emotional facial expressions.

    PubMed

    Critchley, Hugo D; Rotshtein, Pia; Nagai, Yoko; O'Doherty, John; Mathias, Christopher J; Dolan, Raymond J

    2005-02-01

    The James-Lange theory of emotion proposes that automatically generated bodily reactions not only color subjective emotional experience of stimuli, but also necessitate a mechanism by which these bodily reactions are differentially generated to reflect stimulus quality. To examine this putative mechanism, we simultaneously measured brain activity and heart rate to identify regions where neural activity predicted the magnitude of heart rate responses to emotional facial expressions. Using a forewarned reaction time task, we showed that orienting heart rate acceleration to emotional face stimuli was modulated as a function of the emotion depicted. The magnitude of evoked heart rate increase, both across the stimulus set and within each emotion category, was predicted by level of activity within a matrix of interconnected brain regions, including amygdala, insula, anterior cingulate, and brainstem. We suggest that these regions provide a substrate for translating visual perception of emotional facial expression into differential cardiac responses and thereby represent an interface for selective generation of visceral reactions that contribute to the embodied component of emotional reaction.

  4. Reaction rate for carbon burning in massive stars

    DOE PAGES

    Jiang, C. L.; Santiago-Gonzalez, D.; Almaraz-Calderon, S.; ...

    2018-01-10

    Carbon burning is a critical phase for nucleosynthesis in massive stars. The conditions for igniting this burning stage, and the subsequent isotope composition of the resulting ashes, depend strongly on the reaction rate for 12C+ 12C fusion at very low energies. Results for the cross sections for this reaction are influenced by various backgrounds encountered in measurements at such energies. In this paper, we report on a new measurement of 12C+ 12C fusion cross sections where these backgrounds have been minimized. In conclusion, it is found that the astrophysical S factor exhibits a maximum around E cm=3.5–4.0 MeV, which leadsmore » to a reduction of the previously predicted astrophysical reaction rate.« less

  5. Theoretical derivation for reaction rate constants of H abstraction from thiophenol by the H/O radical pool

    PubMed Central

    Batiha, Marwan; Altarawneh, Mohammednoor; Al-Harahsheh, Mohammad; Altarawneh, Ibrahem; Rawadieh, Saleh

    2011-01-01

    Reaction and activation energy barriers are calculated for the H abstraction reactions (C6H5SH + X• → C6H5S + XH, X = H, OH and HO2) at the BB1K/GTLarge level of theory. The corresponding reactions with H2S and CH3SH are also investigated using the G3B3 and CBS-QB3 methods in order to demonstrate the accuracy of BB1K functional in finding activation barriers for hydrogen atom transfer reactions. Arrhenius parameters for the title reactions are fitted in the temperature range of 300 K–2000 K. The calculated reaction enthalpies are in good agreement with their corresponding experimental reaction enthalpies. It is found that H abstraction by OH radicals from the thiophenol molecule proceed in a much slower rate in reference to the analogous phenol molecule. ΔfH298o of thiophenoxy radical is calculated to be 63.3 kcal/mol. Kinetic parameters presented herein should be useful in describing the decomposition rate of thiophenol; i.e., one of the major aromatic sulfur carriers, at high temperatures. PMID:22485200

  6. Reactions and reaction rates in the regional aquifer beneath the Pajarito Plateau, north-central New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Hereford, Anne G.; Keating, Elizabeth H.; Guthrie, George D.; Zhu, Chen

    2007-05-01

    Reactions and reaction rates within aquifers are fundamental components of critical hydrological processes. However, reactions simulated in laboratory experiments typically demonstrate rates that are much faster than those observed in the field. Therefore, it is necessary to conduct more reaction rate analyses in natural settings. This study of geochemical reactions in the regional aquifer in the Pajarito Plateau near Los Alamos, New Mexico combines modeling with petrographic assessment to further knowledge and understanding of complex natural hydrologic systems. Groundwater geochemistry shows marked evolution along assumed flow paths. The flow path chosen for this study was evaluated using inverse mass balance modeling to calculate the mass transfer. X-ray diffraction and field emission gun scanning electron microscopy were used to identify possible reactants and products. Considering the mineralogy of the aquifer and saturation indices for the regional water refined initial interpretations. Calculations yielded dissolution rates for plagioclase on the order of 10-15 mol s-1 m-2 and for K-feldspar on the order of 10-17 mol s-1 m-2, orders of magnitude slower than laboratory rates. While these rates agree with other aquifer studies, they must be considered in the light of the uncertainty associated with geometric surface area estimates, 14C ages, and aquifer properties.

  7. The Kinetic Rate Law for Autocatalytic Reactions.

    ERIC Educational Resources Information Center

    Mata-Perez, Fernando; Perez-Benito, Joaquin F.

    1987-01-01

    Presented is a method of obtaining accurate rate constants for autocatalytic reactions. The autocatalytic oxidation of dimethylamine by permanganate ion in aqueous solution is used as an example. (RH)

  8. Control of serpentinisation rate by reaction-induced cracking

    NASA Astrophysics Data System (ADS)

    Malvoisin, Benjamin; Brantut, Nicolas; Kaczmarek, Mary-Alix

    2017-10-01

    Serpentinisation of mantle rocks requires the generation and maintenance of transport pathways for water. The solid volume increase during serpentinisation can lead to stress build-up and trigger cracking, which ease fluid penetration into the rock. The quantitative effect of this reaction-induced cracking mechanism on reactive surface generation is poorly constrained, thus hampering our ability to predict serpentinisation rate in geological environments. Here we use a combined approach with numerical modelling and observations in natural samples to provide estimates of serpentinisation rate at mid-ocean ridges. We develop a micromechanical model to quantify the propagation of serpentinisation-induced cracks in olivine. The maximum crystallisation pressure deduced from thermodynamic calculations reaches several hundreds of megapascals but does not necessary lead to crack propagation if the olivine grain is subjected to high compressive stresses. The micromechanical model is then coupled to a simple geometrical model to predict reactive surface area formation during grain splitting, and thus bulk reaction rate. Our model reproduces quantitatively experimental kinetic data and the typical mesh texture formed during serpentinisation. We also compare the model results with olivine grain size distribution data obtained on natural serpentinised peridotites from the Marum ophiolite and the Papuan ultramafic belt (Papua New Guinea). The natural serpentinised peridotites show an increase of the number of olivine grains for a decrease of the mean grain size by one order of magnitude as reaction progresses from 5 to 40%. These results are in agreement with our model predictions, suggesting that reaction-induced cracking controls the serpentinisation rate. We use our model to estimate that, at mid-ocean ridges, serpentinisation occurs up to 12 km depth and reaction-induced cracking reduces the characteristic time of serpentinisation by one order of magnitude, down to values

  9. Incorporating reaction-rate dependence in reaction-front models of wellbore-cement/carbonated-brine systems

    DOE PAGES

    Iyer, Jaisree; Walsh, Stuart D. C.; Hao, Yue; ...

    2017-03-08

    Contact between wellbore cement and carbonated brine produces reaction zones that alter the cement's chemical composition and its mechanical properties. The reaction zones have profound implications on the ability of wellbore cement to serve as a seal to prevent the flow of carbonated brine. Under certain circumstances, the reactions may cause resealing of leakage pathways within the cement or at cement-interfaces; either due to fracture closure in response to mechanical weakening or due to the precipitation of calcium carbonate within the fracture. In prior work, we showed how mechanical sealing can be simulated using a diffusion-controlled reaction-front model that linksmore » the growth of the cement reaction zones to the mechanical response of the fracture. Here, we describe how such models may be extended to account for the effects of the calcite reaction-rate. We discuss how the relative rates of reaction and diffusion within the cement affect the precipitation of calcium carbonate within narrow leakage pathways, and how such behavior relates to the formation of characteristic reaction modes in the direction of flow. In addition, we compare the relative impact of precipitation and mechanical deformation on fracture sealing for a range of flow conditions and fracture apertures. Here, we conclude by considering how the prior leaching of calcium from cement may influence the sealing behavior of fractures, and the implication of prior leaching on the ability of laboratory tests to predict long-term sealing.« less

  10. Incorporating reaction-rate dependence in reaction-front models of wellbore-cement/carbonated-brine systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iyer, Jaisree; Walsh, Stuart D. C.; Hao, Yue

    Contact between wellbore cement and carbonated brine produces reaction zones that alter the cement's chemical composition and its mechanical properties. The reaction zones have profound implications on the ability of wellbore cement to serve as a seal to prevent the flow of carbonated brine. Under certain circumstances, the reactions may cause resealing of leakage pathways within the cement or at cement-interfaces; either due to fracture closure in response to mechanical weakening or due to the precipitation of calcium carbonate within the fracture. In prior work, we showed how mechanical sealing can be simulated using a diffusion-controlled reaction-front model that linksmore » the growth of the cement reaction zones to the mechanical response of the fracture. Here, we describe how such models may be extended to account for the effects of the calcite reaction-rate. We discuss how the relative rates of reaction and diffusion within the cement affect the precipitation of calcium carbonate within narrow leakage pathways, and how such behavior relates to the formation of characteristic reaction modes in the direction of flow. In addition, we compare the relative impact of precipitation and mechanical deformation on fracture sealing for a range of flow conditions and fracture apertures. Here, we conclude by considering how the prior leaching of calcium from cement may influence the sealing behavior of fractures, and the implication of prior leaching on the ability of laboratory tests to predict long-term sealing.« less

  11. Influence of reaction-induced fracturing on serpentinisation rate

    NASA Astrophysics Data System (ADS)

    Malvoisin, B.; Brantut, N.; Kaczmarek, M. A.

    2017-12-01

    The alteration of mantle rocks at mid-ocean ridges (i.e. serpentinisation) can lead to a solid volume increase responsible for stress build-up and cracking during reaction (reaction-induced fracturing). This mechanism has been proposed to play a key role for maintaining fluid pathways during reaction. However, its impact on the reaction rate is not yet quantified. We propose here a micromechanical model to quantify the influence of the crystallisation pressure generated during serpentine precipitation on crack propagation in olivine. This model is then coupled to a simple geometrical model to calculate the generation of reactive surface area during grain splitting, and thus bulk reaction rate. The model is able to reproduce experimental kinetic data as well as the mesh texture observed in natural samples. The model results are compared to olivine grain size distribution in serpentinised peridotites from the Marum ophiolite and the Papuan ultramafic belt (Papuan New Guinea). The observations and the model both indicate a decrease of the mean grain size by one order of magnitude as the reaction progresses from 5 to 40 %. Based on this good agreement, we use our model to predict that cracking reduces the characteristic time of serpentinisation by one order of magnitude, down to values comprised between 10 and 1,000 yr. The peak serpentinisation is also shifted 4 km above the previous predictions due to effective pressure increase with depth.

  12. Application of the compensated Arrhenius formalism to explain the dielectric constant dependence of rates for Menschutkin reactions.

    PubMed

    Petrowsky, Matt; Glatzhofer, Daniel T; Frech, Roger

    2013-11-21

    The dependence of the reaction rate on solvent dielectric constant is examined for the reaction of trihexylamine with 1-bromohexane in a series of 2-ketones over the temperature range 25-80 °C. The rate constant data are analyzed using the compensated Arrhenius formalism (CAF), where the rate constant assumes an Arrhenius-like equation that also contains a dielectric constant dependence in the exponential prefactor. The CAF activation energies are substantially higher than those obtained using the simple Arrhenius equation. A master curve of the data is observed by plotting the prefactors against the solvent dielectric constant. The master curve shows that the reaction rate has a weak dependence on dielectric constant for values approximately less than 10 and increases more rapidly for dielectric constant values greater than 10.

  13. Rate of reaction of OH with HNO3

    NASA Technical Reports Server (NTRS)

    Wine, P. H.; Ravishankara, A. R.; Kreutter, N. M.; Shah, R. C.; Nicovich, J. M.; Thompson, R. L.; Wuebbles, D. J.

    1981-01-01

    Measurements of the kinetics of the reaction of OH with HNO3, and mechanisms of HNO3 removal from the stratosphere, are reported. Bimolecular rate constants were determined at temperatures between 224 and 366 K by monitoring the concentrations of OH radicals produced by HNO3 photolysis and HNO3 according to their resonance fluorescence and 184.9-nm absorption, respectively. The rate constant measured at 298 K is found to be somewhat faster than previously accepted values, with a negative temperature dependence. Calculations of a one-dimensional transport-kinetic atmospheric model on the basis of the new rate constant indicate reductions in O3 depletion due to chlorofluoromethane release and NOx injection, of magnitudes dependent on the nature of the reaction products.

  14. DEPENDENCE OF X-RAY BURST MODELS ON NUCLEAR REACTION RATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cyburt, R. H.; Keek, L.; Schatz, H.

    2016-10-20

    X-ray bursts are thermonuclear flashes on the surface of accreting neutron stars, and reliable burst models are needed to interpret observations in terms of properties of the neutron star and the binary system. We investigate the dependence of X-ray burst models on uncertainties in (p, γ ), ( α , γ ), and ( α , p) nuclear reaction rates using fully self-consistent burst models that account for the feedbacks between changes in nuclear energy generation and changes in astrophysical conditions. A two-step approach first identified sensitive nuclear reaction rates in a single-zone model with ignition conditions chosen to matchmore » calculations with a state-of-the-art 1D multi-zone model based on the Kepler stellar evolution code. All relevant reaction rates on neutron-deficient isotopes up to mass 106 were individually varied by a factor of 100 up and down. Calculations of the 84 changes in reaction rate with the highest impact were then repeated in the 1D multi-zone model. We find a number of uncertain reaction rates that affect predictions of light curves and burst ashes significantly. The results provide insights into the nuclear processes that shape observables from X-ray bursts, and guidance for future nuclear physics work to reduce nuclear uncertainties in X-ray burst models.« less

  15. Some Nuclear Reaction Rates of Importance for Nucleosynthesis around Mass 45

    NASA Astrophysics Data System (ADS)

    Mitchell, Leon William

    1985-06-01

    This thesis describes the measurement of absolute cross sections and the determination of thermonuclear reaction rates for a series of reactions which are of importance in stellar nucleosynthesis. The yield of (gamma)-rays from the reaction ('42)Ca(p,(gamma))('43)Sc has been measured as a function of bombarding energy over the range 0.63 - 3.01 MeV, from ('44)Ca(p,(gamma))('45)Sc over the range 0.775 - 4.00 MeV, from ('42)Ca((alpha),(gamma))('46)Ti over the range 3.62 - 5.62 MeV, from ('42)Ca((alpha),p(gamma))('45)Sc over the range 4.06 - 5.92 MeV, from ('44)Ca(p,p'(gamma))('44)Ca over the range 1.90 - 5.03 MeV and from ('42)Ca(p,p'(gamma))('42)Ca over the range 2.24 - 3.01 MeV. High resolution Ge(Li) detectors have been used for all meas- urements. The cross section of the reaction ('44)Ca(p,n)('44)Sc has been measured from threshold up to a bombarding energy of 5.05 MeV by observation of the 1157 keV (gamma)-ray associated with the residual 3.93 h ('44)Sc activity, and the cross section of ('45)Sc(p,n)('45)Ti has been measured from threshold to a bombarding energy of 4.00 MeV both by observation of the annihilation radiation associated with the residual 3.09 h ('45)Ti activity and by measurement of the total neutron yield with a wide angle BF(,3) tube and paraffin detector. The cross section for the ('42)Ca((alpha),p(,0,1))('45)Sc reaction has been measured over the range 4.78 - 5.92 MeV by observing the emitted protons with a surface barrier detector. Experimental procedures for these measurements are detailed in the thesis, and in particular the efficient preparation of calcium targets with very low levels of ('19)F contamination is discussed. Data from all reactions are compared with the predictions of the statistical model code HAUSER*4, which employs global optical model parameters in the calculation of transmission coefficients and includes width fluctuation corrections. Satisfactory agreement is achieved, being better than a factor of 2 for all reactions

  16. Perturbation theory in the catalytic rate constant of the Henri-Michaelis-Menten enzymatic reaction.

    PubMed

    Bakalis, Evangelos; Kosmas, Marios; Papamichael, Emmanouel M

    2012-11-01

    The Henry-Michaelis-Menten (HMM) mechanism of enzymatic reaction is studied by means of perturbation theory in the reaction rate constant k (2) of product formation. We present analytical solutions that provide the concentrations of the enzyme (E), the substrate (S), as well as those of the enzyme-substrate complex (C), and the product (P) as functions of time. For k (2) small compared to k (-1), we properly describe the entire enzymatic activity from the beginning of the reaction up to longer times without imposing extra conditions on the initial concentrations E ( o ) and S ( o ), which can be comparable or much different.

  17. Multiscale Investigation on Biofilm Distribution and Its Impact on Macroscopic Biogeochemical Reaction Rates: BIOFILM DISTRIBUTION AND RATE SCALING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Zhifeng; Liu, Chongxuan; Liu, Yuanyuan

    Biofilms are critical locations for biogeochemical reactions in the subsurface environment. The occurrence and distribution of biofilms at microscale as well as their impacts on macroscopic biogeochemical reaction rates are still poorly understood. This paper investigated the formation and distributions of biofilms in heterogeneous sediments using multiscale models, and evaluated the effects of biofilm heterogeneity on local and macroscopic biogeochemical reaction rates. Sediment pore structures derived from X-ray computed tomography were used to simulate the microscale flow dynamics and biofilm distribution in the sediment column. The response of biofilm formation and distribution to the variations in hydraulic and chemical propertiesmore » was first examined. One representative biofilm distribution was then utilized to evaluate its effects on macroscopic reaction rates using nitrate reduction as an example. The results revealed that microorganisms primarily grew on the surfaces of grains and aggregates near preferential flow paths where both electron donor and acceptor were readily accessible, leading to the heterogeneous distribution of biofilms in the sediments. The heterogeneous biofilm distribution decreased the macroscopic rate of biogeochemical reactions as compared with those in homogeneous cases. Operationally considering the heterogeneous biofilm distribution in macroscopic reactive transport models such as using dual porosity domain concept can significantly improve the prediction of biogeochemical reaction rates. Overall, this study provided important insights into the biofilm formation and distribution in soils and sediments as well as their impacts on the macroscopic manifestation of reaction rates.« less

  18. Kinetic Modeling of the Reaction Rate for Quartz and Carbon Black Pellet

    NASA Astrophysics Data System (ADS)

    Li, Fei; Tangstad, Merete

    2018-06-01

    The kinetic modeling for the carbothermal reduction reaction rate in quartz and carbon black pellets is studied at different temperatures, under varying CO partial pressures in ambient atmosphere, varying carbon contents, different quartz particle sizes, and different crucible opening areas. Carbon black is produced by the cracking of natural gas. The activation energy of the SiC-producing step was determined to be 594 kJ/mol. The averaged pre-exponential factor A obtained from 1898 K, 1923 K, and 1948 K (1625 °C, 1650 °C, and 1675 °C) is 2.62E+16 min-1. The reaction rate of the gas-solid interface factor, fix-C content ( X fix-C), temperature ( T), and CO partial pressure ( X CO) can be expressed as follows: {{d/pct}}{{{d}t}} = (1 - 0.40 × X_{{{fix} - C}}^{ - 0.86} × {pct}) × 2.62 × 10^{16} × \\exp ( { - 594000/RT} ) × (2.6 - 0.015 × X_{co} ).

  19. Astrophysical reaction rate for α(αn,γ)9Be by photodisintegration

    NASA Astrophysics Data System (ADS)

    Sumiyoshi, K.; Utsunomiya, H.; Goko, S.; Kajino, T.

    2002-10-01

    We study the astrophysical reaction rate for the formation of 9Be through the three body reaction α(αn,γ). This reaction is one of the key reactions which could bridge the mass gap at A=8 nuclear systems to produce intermediate-to-heavy mass elements in alpha- and neutron-rich environments such as r-process nucleosynthesis in supernova explosions, s-process nucleosynthesis in asymptotic giant branch (AGB) stars, and primordial nucleosynthesis in baryon inhomogeneous cosmological models. To calculate the thermonuclear reaction rate in a wide range of temperatures, we numerically integrate the thermal average of cross sections assuming a two-steps formation through a metastable 8Be, α+α⇌8Be(n,γ)9Be. Off-resonant and on-resonant contributions from the ground state in 8Be are taken into account. As input cross section, we adopt the latest experimental data by photodisintegration of 9Be with laser-electron photon beams, which covers all relevant resonances in 9Be. Experimental data near the neutron threshold are added with γ-ray flux corrections and a new least-squares analysis is made to deduce resonance parameters in the Breit-Wigner formulation. Based on the photodisintegration cross section, we provide the reaction rate for α(αn,γ)9Be in the temperature range from T9=10-3 to T9=101 (T9 is the temperature in units of 109 K) both in the tabular form and in the analytical form for potential usage in nuclear reaction network calculations. The calculated reaction rate is compared with the reaction rates of the CF88 and the NACRE compilations. The CF88 rate, which is based on the photoneutron cross section for the 1/2+ state in 9Be by Berman et al., is valid at T9>0.028 due to lack of the off-resonant contribution. The CF88 rate differs from the present rate by a factor of two in a temperature range T9⩾0.1. The NACRE rate, which adopted different sources of experimental information on resonance states in 9Be, is 4-12 times larger than the present rate at T9

  20. Variational RRKM theory calculation of thermal rate constant for carbon—hydrogen bond fission reaction of nitro benzene

    NASA Astrophysics Data System (ADS)

    Manesh, Afshin Taghva; Heidarnezhad, Zabi alah; Masnabadi, Nasrin

    2013-07-01

    The present work provides quantitative results for the rate of unimolecular carbon-hydrogen bond fission reaction of benzene and nitro benzene at elevated temperatures up to 2000 K. The potential energy surface for each C-H (in the ortho, meta, and para sites) bond fission reaction of nitro benzene was investigated by ab initio calculations. The geometry and vibrational frequencies of the species involved in this process were optimized at the MP2 level of theory, using the cc-pvdz basis set. Since C-H bond fission channel is barrier less reaction, we have used variational RRKM theory to predict rate constants. By means of calculated rate constant at the different temperatures, the activation energy and exponential factor were determined. The Arrhenius expression for C-H bond fission reaction of nitro benzene on the ortho, meta and para sites are k( T) = 2.1 × 1017exp(-56575.98/ T), k( T) = 2.1 × 1017exp(-57587.45/ T), and k( T) = 3.3 × 1016exp(-57594.79/ T) respectively. The Arrhenius expression for C-H bond fission reaction of benzene is k( T) = 2 × 1018exp(-59343.48.18/ T). The effect of NO2 group, location of hydrogen atoms on the substituted benzene ring, reaction degeneracy, benzene ring resonance and tunneling effect on the rate expression have been discussed.

  1. Design of experiments for zeroth and first-order reaction rates.

    PubMed

    Amo-Salas, Mariano; Martín-Martín, Raúl; Rodríguez-Aragón, Licesio J

    2014-09-01

    This work presents optimum designs for reaction rates experiments. In these experiments, time at which observations are to be made and temperatures at which reactions are to be run need to be designed. Observations are performed along time under isothermal conditions. Each experiment needs a fixed temperature and so the reaction can be measured at the designed times. For these observations under isothermal conditions over the same reaction a correlation structure has been considered. D-optimum designs are the aim of our work for zeroth and first-order reaction rates. Temperatures for the isothermal experiments and observation times, to obtain the most accurate estimates of the unknown parameters, are provided in these designs. D-optimum designs for a single observation in each isothermal experiment or for several correlated observations have been obtained. Robustness of the optimum designs for ranges of the correlation parameter and comparisons of the information gathered by different designs are also shown. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Gas-Phase Reaction Pathways and Rate Coefficients for the Dichlorosilane-Hydrogen and Trichlorosilane-Hydrogen Systems

    NASA Technical Reports Server (NTRS)

    Dateo, Christopher E.; Walch, Stephen P.

    2002-01-01

    As part of NASA Ames Research Center's Integrated Process Team on Device/Process Modeling and Nanotechnology our goal is to create/contribute to a gas-phase chemical database for use in modeling microelectronics devices. In particular, we use ab initio methods to determine chemical reaction pathways and to evaluate reaction rate coefficients. Our initial studies concern reactions involved in the dichlorosilane-hydrogen (SiCl2H2--H2) and trichlorosilane-hydrogen (SiCl2H-H2) systems. Reactant, saddle point (transition state), and product geometries and their vibrational harmonic frequencies are determined using the complete-active-space self-consistent-field (CASSCF) electronic structure method with the correlation consistent polarized valence double-zeta basis set (cc-pVDZ). Reaction pathways are constructed by following the imaginary frequency mode of the saddle point to both the reactant and product. Accurate energetics are determined using the singles and doubles coupled-cluster method that includes a perturbational estimate of the effects of connected triple excitations (CCSD(T)) extrapolated to the complete basis set limit. Using the data from the electronic structure calculations, reaction rate coefficients are obtained using conventional and variational transition state and RRKM theories.

  3. Co-solvent effects on reaction rate and reaction equilibrium of an enzymatic peptide hydrolysis.

    PubMed

    Wangler, A; Canales, R; Held, C; Luong, T Q; Winter, R; Zaitsau, D H; Verevkin, S P; Sadowski, G

    2018-04-25

    This work presents an approach that expresses the Michaelis constant KaM and the equilibrium constant Kth of an enzymatic peptide hydrolysis based on thermodynamic activities instead of concentrations. This provides KaM and Kth values that are independent of any co-solvent. To this end, the hydrolysis reaction of N-succinyl-l-phenylalanine-p-nitroanilide catalysed by the enzyme α-chymotrypsin was studied in pure buffer and in the presence of the co-solvents dimethyl sulfoxide, trimethylamine-N-oxide, urea, and two salts. A strong influence of the co-solvents on the measured Michaelis constant (KM) and equilibrium constant (Kx) was observed, which was found to be caused by molecular interactions expressed as activity coefficients. Substrate and product activity coefficients were used to calculate the activity-based values KaM and Kth for the co-solvent free reaction. Based on these constants, the co-solvent effect on KM and Kx was predicted in almost quantitative agreement with the experimental data. The approach presented here does not only reveal the importance of understanding the thermodynamic non-ideality of reactions taking place in biological solutions and in many technological applications, it also provides a framework for interpreting and quantifying the multifaceted co-solvent effects on enzyme-catalysed reactions that are known and have been observed experimentally for a long time.

  4. Thermonuclear 19F(p, {{\\boldsymbol{\\alpha }}}_{0})16O reaction rate

    NASA Astrophysics Data System (ADS)

    He, Jian-Jun; Lombardo, Ivano; Dell'Aquila, Daniele; Xu, Yi; Zhang, Li-Yong; Liu, Wei-Ping

    2018-01-01

    The thermonuclear 19F(p, {{{α }}}0)16O reaction rate in the temperature region 0.007-10 GK has been derived by re-evaluating the available experimental data, together with the low-energy theoretical R-matrix extrapolations. Our new rate deviates by up to about 30% compared to the previous results, although all rates are consistent within the uncertainties. At very low temperature (e.g. 0.01 GK) our reaction rate is about 20% lower than the most recently published rate, because of a difference in the low energy extrapolated S-factor and a more accurate estimate of the reduced mass used in the calculation of the reaction rate. At temperatures above ˜1 GK, our rate is lower, for instance, by about 20% around 1.75 GK, because we have re-evaluated the previous data (Isoya et al., Nucl. Phys. 7, 116 (1958)) in a meticulous way. The present interpretation is supported by the direct experimental data. The uncertainties of the present evaluated rate are estimated to be about 20% in the temperature region below 0.2 GK, and are mainly caused by the lack of low-energy experimental data and the large uncertainties in the existing data. Asymptotic giant branch (AGB) stars evolve at temperatures below 0.2 GK, where the 19F(p, {{α }})16O reaction may play a very important role. However, the current accuracy of the reaction rate is insufficient to help to describe, in a careful way, the fluorine over-abundances observed in AGB stars. Precise cross section (or S factor) data in the low energy region are therefore needed for astrophysical nucleosynthesis studies. Supported by National Natural Science Foundation of China (11490562, 11490560, 11675229) and National Key Research and Development Program of China (2016YFA0400503)

  5. Multi-path variational transition state theory for chemical reaction rates of complex polyatomic species: ethanol + OH reactions.

    PubMed

    Zheng, Jingjing; Truhlar, Donald G

    2012-01-01

    Complex molecules often have many structures (conformations) of the reactants and the transition states, and these structures may be connected by coupled-mode torsions and pseudorotations; some but not all structures may have hydrogen bonds in the transition state or reagents. A quantitative theory of the reaction rates of complex molecules must take account of these structures, their coupled-mode nature, their qualitatively different character, and the possibility of merging reaction paths at high temperature. We have recently developed a coupled-mode theory called multi-structural variational transition state theory (MS-VTST) and an extension, called multi-path variational transition state theory (MP-VTST), that includes a treatment of the differences in the multi-dimensional tunneling paths and their contributions to the reaction rate. The MP-VTST method was presented for unimolecular reactions in the original paper and has now been extended to bimolecular reactions. The MS-VTST and MP-VTST formulations of variational transition state theory include multi-faceted configuration-space dividing surfaces to define the variational transition state. They occupy an intermediate position between single-conformation variational transition state theory (VTST), which has been used successfully for small molecules, and ensemble-averaged variational transition state theory (EA-VTST), which has been used successfully for enzyme kinetics. The theories are illustrated and compared here by application to three thermal rate constants for reactions of ethanol with hydroxyl radical--reactions with 4, 6, and 14 saddle points.

  6. Method and apparatus for obtaining enhanced production rate of thermal chemical reactions

    DOEpatents

    Tonkovich, Anna Lee Y [Pasco, WA; Wang, Yong [Richland, WA; Wegeng, Robert S [Richland, WA; Gao, Yufei [Kennewick, WA

    2003-04-01

    The present invention is a method and apparatus (vessel) for providing a heat transfer rate from a reaction chamber through a wall to a heat transfer chamber substantially matching a local heat transfer rate of a catalytic thermal chemical reaction. The key to the invention is a thermal distance defined on a cross sectional plane through the vessel inclusive of a heat transfer chamber, reaction chamber and a wall between the chambers. The cross sectional plane is perpendicular to a bulk flow direction of the reactant stream, and the thermal distance is a distance between a coolest position and a hottest position on the cross sectional plane. The thermal distance is of a length wherein the heat transfer rate from the reaction chamber to the heat transfer chamber substantially matches the local heat transfer rate.

  7. A mesoscopic reaction rate model for shock initiation of multi-component PBX explosives.

    PubMed

    Liu, Y R; Duan, Z P; Zhang, Z Y; Ou, Z C; Huang, F L

    2016-11-05

    The primary goal of this research is to develop a three-term mesoscopic reaction rate model that consists of a hot-spot ignition, a low-pressure slow burning and a high-pressure fast reaction terms for shock initiation of multi-component Plastic Bonded Explosives (PBX). Thereinto, based on the DZK hot-spot model for a single-component PBX explosive, the hot-spot ignition term as well as its reaction rate is obtained through a "mixing rule" of the explosive components; new expressions for both the low-pressure slow burning term and the high-pressure fast reaction term are also obtained by establishing the relationships between the reaction rate of the multi-component PBX explosive and that of its explosive components, based on the low-pressure slow burning term and the high-pressure fast reaction term of a mesoscopic reaction rate model. Furthermore, for verification, the new reaction rate model is incorporated into the DYNA2D code to simulate numerically the shock initiation process of the PBXC03 and the PBXC10 multi-component PBX explosives, and the numerical results of the pressure histories at different Lagrange locations in explosive are found to be in good agreements with previous experimental data. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Dissolution Rates and Reaction Products of Olivine Interaction with Ammonia-Rich Fluid

    NASA Astrophysics Data System (ADS)

    Zandanel, A. E.; Truche, L.; Hellmann, R.; Tobie, G.; Marrocchi, Y.

    2018-05-01

    Olivine dissolution rates and reaction products in NH3-rich fluids are determined from experiments simulating H2O-rock interaction on Enceladus. Kinetic rates are calculated from flow through experiments and reaction products from static experiments.

  9. Kinetic Modeling of the Reaction Rate for Quartz and Carbon Pellet

    NASA Astrophysics Data System (ADS)

    Li, Fei; Tangstad, Merete

    2018-04-01

    Kinetic modeling of quartz and carbon pellet at temperatures of 1898 K, 1923 K, and 1948 K (1625 °C, 1650 °C, and 1675 °C) was investigated in this study. The carbon materials used were charcoal, coke, coal, and preheated coal. The overall SiC producing reaction can be described by the reaction SiO2 + 3C = SiC + 2CO. In the SiC-producing step, the reaction rate of quartz and carbon pellet can be expressed as {d{ pct}}/dt = ( {1 - 0.40 × X_{fix - C}^{ - 0.86} × FC × {pct}} ) × A × \\exp ( { - E/{{RT}}} ) The carbon factor F C was used to describe the influence of different carbon materials that effect the gas-solid interface reaction. For charcoal, coke, coal, and preheated coal, the F C values were 0.83, 0.80, 0.94, and 0.83, respectively. The pre-exponential factor A values for the preceding four carbon materials were 1.06 × 1016 min-1, 4.21 × 1015 min-1, 3.85 × 109 min-1, and 1.00 × 1025 min-1, respectively. The activation energies E for the SiC-producing step were 570, 563, 336, and 913 kJ/mole for charcoal, coke, coal, and preheated coal pellets, respectively.

  10. Triple-α reaction rate constrained by stellar evolution models

    NASA Astrophysics Data System (ADS)

    Suda, Takuma; Hirschi, Raphael; Fujimoto, Masayuki Y.

    2012-11-01

    We investigate the quantitative constraint on the triple-α reaction rate based on stellar evolution theory, motivated by the recent significant revision of the rate proposed by nuclear physics calculations. Targeted stellar models were computed in order to investigate the impact of that rate in the mass range of 0.8<=M/Msolar<=25 and in the metallicity range between Z = 0 and Z = 0.02. The revised rate has a significant impact on the evolution of low-and intermediate-mass stars, while its influence on the evolution of massive stars (M > 10Msolar) is minimal. We find that employing the revised rate suppresses helium shell flashes on AGB phase for stars in the initial mass range 0.8<=M/Msolar<=6, which is contradictory to what is observed. The absence of helium shell flashes is due to the weak temperature dependence of the revised triple-α reaction cross section at the temperature involved. In our models, it is suggested that the temperature dependence of the cross section should have at least ν > 10 at T = 1-1.2×108K where the cross section is proportional to Tν. We also derive the helium ignition curve to estimate the maximum cross section to retain the low-mass first red giants. The semi-analytically derived ignition curves suggest that the reaction rate should be less than ~ 10-29 cm6 s-1 mole-2 at ~ 107.8 K, which corresponds to about three orders of magnitude larger than that of the NACRE compilation.

  11. Advanced foil activation techniques for the measurement of within-pin distributions of the 63Cu(n,γ) 64Cu reaction rate in nuclear fuel

    NASA Astrophysics Data System (ADS)

    Macku, K.; Jatuff, F.; Murphy, M. F.; Joneja, O. P.; Bischofberger, R.; Chawla, R.

    2006-06-01

    Different foil activation techniques have been used for measuring spatial distributions of the 63Cu(n,γ) 64Cu reaction within two pins of a SVEA-96 Optima2 boiling water reactor fuel assembly, at the critical facility PROTEUS. This reaction is of interest because its 1/v cross-section gives it a good representation of the 235U fission rate. Initially, radial capture rate profiles were measured with mechanically punched copper foils. More detailed profiles were then determined by using a 0.2 mm copper wire spiral (˜200 μm resolution), as well as 5-, 10-, and 20-ring UV-lithography, electroplating, and molding (UV-LIGA) foils (up to a 100 μm resolution). For azimuthal measurements, apart from manually cut activation foils (into 8 sectors), 8- and 12-sector LIGA foils were used. The highly versatile LIGA foils have the additional advantage of being very easily separated into individual pieces after irradiation without the use of punches or other cutting tools. In order to account for the invasive character of the foil activation techniques, corrections to account for sample perturbations and for self-shielding effects were determined via simplified Monte Carlo (MCNP4C) modeling of the experimental setup. The final results from the various measurements of 63Cu(n,γ) 64Cu within-pin distributions have been compared with MCNP computations employing a detailed model of the full SVEA Optima2 fuel assembly.

  12. Pycnonuclear reaction rates for binary ionic mixtures

    NASA Technical Reports Server (NTRS)

    Ichimaru, S.; Ogata, S.; Van Horn, H. M.

    1992-01-01

    Through a combination of compositional scaling arguments and examinations of Monte Carlo simulation results for the interparticle separations in binary-ionic mixture (BIM) solids, we have derived parameterized expressions for the BIM pycnonuclear rates as generalizations of those in one-component solids obtained previously by Salpeter and Van Horn and by Ogata et al. We have thereby discovered a catalyzing effect of the heavier elements, which enhances the rates of reactions among the lighter elements when the charge ratio exceeds a critical value of approximately 2.3.

  13. Measuring one nucleon transfer reaction 24Mg( p, d)23Mg for astrophysical reaction rates

    NASA Astrophysics Data System (ADS)

    Lee, E. J.; Chae, K. Y.

    2017-12-01

    The level structure of a radionuclide 23Mg has been studied by using the 24Mg( p, d)23Mg one nucleon transfer reaction measurement for the astrophysical 19Ne(α, γ)23Mg reaction rate. A 41 MeV proton beam was produced and accelerated at the 25 MV tandem accelerator of the Holifield Radioactive Ion Beam Facility of the Oak Ridge National Laboratory in the United States. The beam particles impinged on an isotopically-enriched 24Mg solid target. Angular distributions of recoiling deuterons were extracted by using a large area silicon strip detector array. By comparing the experimentally-obtained angular distributions with zero range distorted wave Born approximation calculations, spins and parities of three energy levels of 23Mg could be constrained for the first time, which is very important information needed to understand the 19Ne(α, γ)23Mg reaction rate.

  14. An approximate classical unimolecular reaction rate theory

    NASA Astrophysics Data System (ADS)

    Zhao, Meishan; Rice, Stuart A.

    1992-05-01

    We describe a classical theory of unimolecular reaction rate which is derived from the analysis of Davis and Gray by use of simplifying approximations. These approximations concern the calculation of the locations of, and the fluxes of phase points across, the bottlenecks to fragmentation and to intramolecular energy transfer. The bottleneck to fragment separation is represented as a vibration-rotation state dependent separatrix, which approximation is similar to but extends and improves the approximations for the separatrix introduced by Gray, Rice, and Davis and by Zhao and Rice. The novel feature in our analysis is the representation of the bottlenecks to intramolecular energy transfer as dividing surfaces in phase space; the locations of these dividing surfaces are determined by the same conditions as locate the remnants of robust tori with frequency ratios related to the golden mean (in a two degree of freedom system these are the cantori). The flux of phase points across each dividing surface is calculated with an analytic representation instead of a stroboscopic mapping. The rate of unimolecular reaction is identified with the net rate at which phase points escape from the region of quasiperiodic bounded motion to the region of free fragment motion by consecutively crossing the dividing surfaces for intramolecular energy exchange and the separatrix. This new theory generates predictions of the rates of predissociation of the van der Waals molecules HeI2, NeI2 and ArI2 which are in very good agreement with available experimental data.

  15. Decomposition reaction rate of BCl3-C3H6(propene)-H2 in the gas phase.

    PubMed

    Xiao, Jun; Su, Kehe; Liu, Yan; Ren, Hongjiang; Zeng, Qingfeng; Cheng, Laifei; Zhang, Litong

    2012-07-05

    temperature have an excellent linear relationship within 700-2000 K with a correlation coefficient of 0.99996. This corresponds to an apparent activation energy 337.0 kJ/mol, which is comparable with the energy barrier 362.6 kJ/mol of the rate control reaction at 0 K but is higher than either of the experiments 208.7 kJ/mol or the Gibbs free energy barrier 226.2 kJ/mol at 1200 K.

  16. VizieR Online Data Catalog: Brussels nuclear reaction rate library (Aikawa+, 2005)

    NASA Astrophysics Data System (ADS)

    Aikawa, M.; Arnould, M.; Goriely, S.; Jorissen, A.; Takahashi, K.

    2005-07-01

    The present data is part of the Brussels nuclear reaction rate library (BRUSLIB) for astrophysics applications and concerns nuclear reaction rate predictions calculated within the statistical Hauser-Feshbach approximation and making use of global and coherent microscopic nuclear models for the quantities (nuclear masses, nuclear structure properties, nuclear level densities, gamma-ray strength functions, optical potentials) entering the rate calculations. (4 data files).

  17. Scale-Dependent Rates of Uranyl Surface Complexation Reaction in Sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chongxuan; Shang, Jianying; Kerisit, Sebastien N.

    Scale-dependency of uranyl[U(VI)] surface complexation rates was investigated in stirred flow-cell and column systems using a U(VI)-contaminated sediment from the US Department of Energy, Hanford site, WA. The experimental results were used to estimate the apparent rate of U(VI) surface complexation at the grain-scale and in porous media. Numerical simulations using molecular, pore-scale, and continuum models were performed to provide insights into and to estimate the rate constants of U(VI) surface complexation at the different scales. The results showed that the grain-scale rate constant of U(VI) surface complexation was over 3 to 10 orders of magnitude smaller, dependent on themore » temporal scale, than the rate constant calculated using the molecular simulations. The grain-scale rate was faster initially and slower with time, showing the temporal scale-dependency. The largest rate constant at the grain-scale decreased additional 2 orders of magnitude when the rate was scaled to the porous media in the column. The scaling effect from the grain-scale to the porous media became less important for the slower sorption sites. Pore-scale simulations revealed the importance of coupled mass transport and reactions in both intragranular and inter-granular domains, which caused both spatial and temporal dependence of U(VI) surface complexation rates in the sediment. Pore-scale simulations also revealed a new rate-limiting mechanism in the intragranular porous domains that the rate of coupled diffusion and surface complexation reaction was slower than either process alone. The results provided important implications for developing models to scale geochemical/biogeochemical reactions.« less

  18. The Gaseous Explosive Reaction : the Effect of Pressure on the Rate of Propagation of the Reaction Zone and upon the Rate of Molecular Transformation

    NASA Technical Reports Server (NTRS)

    Stevens, F W

    1932-01-01

    This study of gaseous explosive reaction has brought out a number of important fundamental characteristics of the explosive reaction indicating that the basal processes of the transformation are much simpler and corresponds more closely to the general laws and principles of ordinary transformations than is usually supposed. The report calls attention to the point that the rate of molecular transformation within the zone was found in all cases to be proportional to pressure, that the transformation within the zone is the result of binary impacts. This result is of unusual interest in the case of the reaction of heavy hydrocarbon fuels and the reaction mechanism proposed by the recent kinetic theory of chain reactions.

  19. Multiscale Investigation on Biofilm Distribution and Its Impact on Macroscopic Biogeochemical Reaction Rates

    NASA Astrophysics Data System (ADS)

    Yan, Zhifeng; Liu, Chongxuan; Liu, Yuanyuan; Bailey, Vanessa L.

    2017-11-01

    Biofilms are critical locations for biogeochemical reactions in the subsurface environment. The occurrence and distribution of biofilms at microscale as well as their impacts on macroscopic biogeochemical reaction rates are still poorly understood. This paper investigated the formation and distributions of biofilms in heterogeneous sediments using multiscale models and evaluated the effects of biofilm heterogeneity on local and macroscopic biogeochemical reaction rates. Sediment pore structures derived from X-ray computed tomography were used to simulate the microscale flow dynamics and biofilm distribution in the sediment column. The response of biofilm formation and distribution to the variations in hydraulic and chemical properties was first examined. One representative biofilm distribution was then utilized to evaluate its effects on macroscopic reaction rates using nitrate reduction as an example. The results revealed that microorganisms primarily grew on the surfaces of grains and aggregates near preferential flow paths where both electron donor and acceptor were readily accessible, leading to the heterogeneous distribution of biofilms in the sediments. The heterogeneous biofilm distribution decreased the macroscopic rate of biogeochemical reactions as compared with those in homogeneous cases. Operationally considering the heterogeneous biofilm distribution in macroscopic reactive transport models such as using dual porosity domain concept can significantly improve the prediction of biogeochemical reaction rates. Overall, this study provided important insights into the biofilm formation and distribution in soils and sediments as well as their impacts on the macroscopic manifestation of reaction rates.

  20. Semiclassical Calculation of Reaction Rate Constants for Homolytical Dissociations

    NASA Technical Reports Server (NTRS)

    Cardelino, Beatriz H.

    2002-01-01

    There is growing interest in extending organometallic chemical vapor deposition (OMCVD) to III-V materials that exhibit large thermal decomposition at their optimum growth temperature, such as indium nitride. The group III nitrides are candidate materials for light-emitting diodes and semiconductor lasers operating into the blue and ultraviolet regions. To overcome decomposition of the deposited compound, the reaction must be conducted at high pressures, which causes problems of uniformity. Microgravity may provide the venue for maintaining conditions of laminar flow under high pressure. Since the selection of optimized parameters becomes crucial when performing experiments in microgravity, efforts are presently geared to the development of computational OMCVD models that will couple the reactor fluid dynamics with its chemical kinetics. In the present study, we developed a method to calculate reaction rate constants for the homolytic dissociation of III-V compounds for modeling OMCVD. The method is validated by comparing calculations with experimental reaction rate constants.

  1. Effect of hydrostatic pressure, temperature, and solvent on the rate of the Diels-Alder reaction between 9,10-anthracenedimethanol and maleic anhydride

    NASA Astrophysics Data System (ADS)

    Kiselev, V. D.; Kornilov, D. A.; Anikin, O. V.; Latypova, L. I.; Konovalov, A. I.

    2017-03-01

    The rate of the reaction between 9,10-anthracenedimethanol and maleic anhydride in 1,4-dioxane, acetonitrile, trichloromethane, and toluene is studied at 25, 35, 45°C in the pressure range of 1-1772 bar. The rate constants, enthalpies, entropies and activation volumes are determined. It is shown that the rate of reaction with 9,10-anthracenedimethanol is approximately one order of magnitude higher than with 9-anthracenemethanol.

  2. Rate constants for the slow Mu + propane abstraction reaction at 300 K by diamagnetic RF resonance.

    PubMed

    Fleming, Donald G; Cottrell, Stephen P; McKenzie, Iain; Ghandi, Khashayar

    2015-08-14

    The study of kinetic isotope effects for H-atom abstraction rates by incident H-atoms from the homologous series of lower mass alkanes (CH4, C2H6 and, here, C3H8) provides important tests of reaction rate theory on polyatomic systems. With a mass of only 0.114 amu, the most sensitive test is provided by the rates of the Mu atom. Abstraction of H by Mu can be highly endoergic, due to the large zero-point energy shift in the MuH bond formed, which also gives rise to high activation energies from similar zero-point energy corrections at the transition state. Rates are then far too slow near 300 K to be measured by conventional TF-μSR techniques that follow the disappearance of the spin-polarised Mu atom with time. Reported here is the first measurement of a slow Mu reaction rate in the gas phase by the technique of diamagnetic radio frequency (RF) resonance, where the amplitude of the MuH product formed in the Mu + C3H8 reaction is followed with time. The measured rate constant, kMu = (6.8 ± 0.5) × 10(-16) cm(3) s(-1) at 300 K, is surprisingly only about a factor of three slower than that expected for H + C3H8, indicating a dominant contribution from quantum tunneling in the Mu reaction, consistent with elementary transition state theory calculations of the kMu/kH kinetic isotope effect.

  3. Reaction of atomic bromine with acetylene and loss rate of atmospheric acetylene due to reaction with OH, Cl, O, and Br

    NASA Technical Reports Server (NTRS)

    Payne, W. A.; Nava, D. F.; Brunning, J.; Stief, L. J.

    1986-01-01

    The first-order, diffusion, and bimolecular rate constants for the reaction Br + C2H2 yields C2H3Br are evaluated. The rate constants are measured at 210, 248, 298, and 393 K and at pressures between 15-100 torr Ar using flash photolysis combined with time-resolved detection of atomic bromine via Br resonance radiation. It is observed that the reaction is not affected by pressure or temperature and the bimolecular constant = (4.0 + or - 0.8) x 10 to the -15th cu cm/sec with an error of two standard deviations. The C2H2 + Br reaction rates are compared with reactions of C2H2 with Cl, OH, NH2, and H. The loss rates for atmospheric C2H2 for reactions with OH, Cl, O, and Br are calculated as a function of altitude.

  4. Nuclear reaction rate uncertainties and the 22Ne( p,gamma)23Na reaction: Classical novae and globular clusters

    NASA Astrophysics Data System (ADS)

    Kelly, Keegan John

    The overall theme of this thesis is the advancement of nuclear astrophysics via the analysis of stellar processes in the presence of varying levels of precision in the available nuclear data. With regard to classical novae, the level of mixing that occurs between the outer layers of the white dwarf core and the solar accreted material in oxygen-neon novae is presently undetermined by stellar models, but the nuclear data relevant to these explosive phenomena are fairly precise. This precision allowed for the identification of a series of elemental ratios indicative of the level of mixing occurring in novae. Direct comparisons of the modelled elemental ratios to observations showed that there is likely to be much less of this mixing than was previously assumed. Thus, our understanding of classical novae was altered via the investigation of the nuclear reactions relevant to this phenomenon. However, this level of experimental precision is rare and large nuclear reaction uncertainties can hinder our understanding of certain astrophysical phenomena. For example, it is commonly believed that uncertainties in the 22Ne(p,g)23Na reaction rate at temperatures relevant to thermally-pulsing asymptotic giant branch stars are largely responsible for our inability to explain the observed sodium-oxygen anti-correlation in globular clusters. With this motivation, resonances in the 22Ne(p,g) 23Na reaction at E_{c.m.} = 458, 417, 178, and 151 keV were measured. The direct-capture contribution was also measured at E_{lab} = 425 keV. It was determined that the 22Ne(p,g)23Na reaction rate in the astrophysically relevant temperature range is dominated by the resonances at 178 and 151 keV and that the total reaction rate is greater than the previously assumed rate by a factor of approximately ˜40 at 0.15 GK. This increased reaction rate impacts the expected nucleosynthesis that occurs in these stars and will shed light onto the origin of this anti-correlation as it is incorporated into

  5. Comparing transfusion reaction rates for various plasma types: a systematic review and meta-analysis/regression.

    PubMed

    Saadah, Nicholas H; van Hout, Fabienne M A; Schipperus, Martin R; le Cessie, Saskia; Middelburg, Rutger A; Wiersum-Osselton, Johanna C; van der Bom, Johanna G

    2017-09-01

    We estimated rates for common plasma-associated transfusion reactions and compared reported rates for various plasma types. We performed a systematic review and meta-analysis of peer-reviewed articles that reported plasma transfusion reaction rates. Random-effects pooled rates were calculated and compared between plasma types. Meta-regression was used to compare various plasma types with regard to their reported plasma transfusion reaction rates. Forty-eight studies reported transfusion reaction rates for fresh-frozen plasma (FFP; mixed-sex and male-only), amotosalen INTERCEPT FFP, methylene blue-treated FFP, and solvent/detergent-treated pooled plasma. Random-effects pooled average rates for FFP were: allergic reactions, 92/10 5 units transfused (95% confidence interval [CI], 46-184/10 5 units transfused); febrile nonhemolytic transfusion reactions (FNHTRs), 12/10 5 units transfused (95% CI, 7-22/10 5 units transfused); transfusion-associated circulatory overload (TACO), 6/10 5 units transfused (95% CI, 1-30/10 5 units transfused); transfusion-related acute lung injury (TRALI), 1.8/10 5 units transfused (95% CI, 1.2-2.7/10 5 units transfused); and anaphylactic reactions, 0.8/10 5 units transfused (95% CI, 0-45.7/10 5 units transfused). Risk differences between plasma types were not significant for allergic reactions, TACO, or anaphylactic reactions. Methylene blue-treated FFP led to fewer FNHTRs than FFP (risk difference = -15.3 FNHTRs/10 5 units transfused; 95% CI, -24.7 to -7.1 reactions/10 5 units transfused); and male-only FFP led to fewer cases of TRALI than mixed-sex FFP (risk difference = -0.74 TRALI/10 5 units transfused; 95% CI, -2.42 to -0.42 injuries/10 5 units transfused). Meta-regression demonstrates that the rate of FNHTRs is lower for methylene blue-treated compared with FFP, and the rate of TRALI is lower for male-only than for mixed-sex FFP; whereas no significant differences are observed between plasma types for allergic reactions, TACO

  6. EXPERIMENTAL PROTOCOL FOR DETERMINING PROTOLYSIS REACTION RATE CONSTANTS

    EPA Science Inventory

    An experimental protocol to determine photolysis rates of chemicals which photolyze relatively rapidly in the gas phase has been developed. This procedure provides a basis for evaluating the relative importance of one atmospheric reaction pathway (i.e., photolysis) for organic su...

  7. Measurement of Fluorine Atom Concentrations and Reaction Rates in Chemical Laser Systems.

    DTIC Science & Technology

    1981-09-01

    AD-A1RA 070 AERODYNEERESEARCHUINC BEDFORDM MA F/6_20/5 MEASURE MENT OF FLUORINE ATOM CONCENTRATIONS AND REACTION RATFS -ETC(U) SEP_ A A C STANT ON...0772 LEVELIg 00 ~ARI-RR-272 cO0 MEASUREMENT OF FLUORINE ATOM CONCENTRATIONS AND REACTION RATES IN CHEMICAL LASER SYSTEMS ANNUAL TECHNICAL REPORT by...MEASUREMENT OF FLUORINE ATOM CONCENTRATIONS AND Annual Report REACTION RATES IN CHEMICAL LASER SYSTEMS 23 July 1980 - 23 July 1981 S. PERFORMING ORG. REPORT

  8. Temperature-Dependent Rate Coefficients for the Reaction of CH2OO with Hydrogen Sulfide.

    PubMed

    Smith, Mica C; Chao, Wen; Kumar, Manoj; Francisco, Joseph S; Takahashi, Kaito; Lin, Jim Jr-Min

    2017-02-09

    The reaction of the simplest Criegee intermediate CH 2 OO with hydrogen sulfide was measured with transient UV absorption spectroscopy in a temperature-controlled flow reactor, and bimolecular rate coefficients were obtained from 278 to 318 K and from 100 to 500 Torr. The average rate coefficient at 298 K and 100 Torr was (1.7 ± 0.2) × 10 -13 cm 3 s -1 . The reaction was found to be independent of pressure and exhibited a weak negative temperature dependence. Ab initio quantum chemistry calculations of the temperature-dependent reaction rate coefficient at the QCISD(T)/CBS level are in reasonable agreement with the experiment. The reaction of CH 2 OO with H 2 S is 2-3 orders of magnitude faster than the reaction with H 2 O monomer. Though rates of CH 2 OO scavenging by water vapor under atmospheric conditions are primarily controlled by the reaction with water dimer, the H 2 S loss pathway will be dominated by the reaction with monomer. The agreement between experiment and theory for the CH 2 OO + H 2 S reaction lends credence to theoretical descriptions of other Criegee intermediate reactions that cannot easily be probed experimentally.

  9. Correcting reaction rates measured by saturation-transfer magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Gabr, Refaat E.; Weiss, Robert G.; Bottomley, Paul A.

    2008-04-01

    Off-resonance or spillover irradiation and incomplete saturation can introduce significant errors in the estimates of chemical rate constants measured by saturation-transfer magnetic resonance spectroscopy (MRS). Existing methods of correction are effective only over a limited parameter range. Here, a general approach of numerically solving the Bloch-McConnell equations to calculate exchange rates, relaxation times and concentrations for the saturation-transfer experiment is investigated, but found to require more measurements and higher signal-to-noise ratios than in vivo studies can practically afford. As an alternative, correction formulae for the reaction rate are provided which account for the expected parameter ranges and limited measurements available in vivo. The correction term is a quadratic function of experimental measurements. In computer simulations, the new formulae showed negligible bias and reduced the maximum error in the rate constants by about 3-fold compared to traditional formulae, and the error scatter by about 4-fold, over a wide range of parameters for conventional saturation transfer employing progressive saturation, and for the four-angle saturation-transfer method applied to the creatine kinase (CK) reaction in the human heart at 1.5 T. In normal in vivo spectra affected by spillover, the correction increases the mean calculated forward CK reaction rate by 6-16% over traditional and prior correction formulae.

  10. Reaction Paths and Chemical Activation Reactions of 2-Methyl-5-Furanyl Radical with 3O2.

    PubMed

    Hudzik, Jason M; Bozzelli, Joseph W

    2017-10-05

    Interest in high-energy substituted furans has been increasing due to their occurrence in biofuel production and their versatility in conversion to other useful products. Methylfurans are the simplest substituted furans and understanding their reaction pathways, thermochemical properties, including intermediate species stability, and chemical kinetics would aid in the study of larger furans. Furan ring C-H bonds have been shown to be extremely strong, approximately 120 kcal mol -1 , due in part to the placement of the oxygen atom and aromatic-like resonance, both within the ring. The thermochemistry and kinetics of the oxidation of 2-methyfuran radical at position 5 of the furan ring, 2-methyl-5-furanyl radical (2MF5j), is analyzed. The resulting chemically activated species, 2MF5OOj radical, has a well depth of 51 kcal mol -1 below the 2MF5j + O 2 reactants; this is 4-5 kcal mol -1 deeper than that of phenyl and vinyl radical plus O 2 , with both of these reactions known to undergo chain branching. Important, low-energy reaction pathways include chain branching dissociations, intramolecular abstractions, group transfers, and radical oxygen additions. Enthalpies of formation, entropies, and heat capacities for the stable molecules, radicals, and transition-state species are analyzed using computational methods. Calculated ΔH ° f 298 values were determined using an isodesmic work reaction from the CBS-QB3 composite method. Elementary rate parameters are from saddle point transition-state structures and compared to variational transition-state analysis for the barrierless reactions. Temperature- and pressure-dependent rate constants which are calculated using QRRK and master equation analysis is used for falloff and stabilization.

  11. On the use temperature parameterized rate coefficients in the estimation of non-equilibrium reaction rates

    NASA Astrophysics Data System (ADS)

    Shizgal, Bernie D.; Chikhaoui, Aziz

    2006-06-01

    The present paper considers a detailed analysis of the nonequilibrium effects for a model reactive system with the Chapman-Eskog (CE) solution of the Boltzmann equation as well as an explicit time dependent solution. The elastic cross sections employed are a hard sphere cross section and the Maxwell molecule cross section. Reactive cross sections which model reactions with and without activation energy are used. A detailed comparison is carried out with these solutions of the Boltzmann equation and the approximation introduced by Cukrowski and coworkers [J. Chem. Phys. 97 (1992) 9086; Chem. Phys. 89 (1992) 159; Physica A 188 (1992) 344; Chem. Phys. Lett. A 297 (1998) 402; Physica A 275 (2000) 134; Chem. Phys. Lett. 341 (2001) 585; Acta Phys. Polonica B 334 (2003) 3607.] based on the temperature of the reactive particles. We show that the Cukrowski approximation has limited applicability for the large class of reactive systems studied in this paper. The explicit time dependent solutions of the Boltzmann equation demonstrate that the CE approach is valid only for very slow reactions for which the corrections to the equilibrium rate coefficient are very small.

  12. Energy diffusion controlled reaction rate of reacting particle driven by broad-band noise

    NASA Astrophysics Data System (ADS)

    Deng, M. L.; Zhu, W. Q.

    2007-10-01

    The energy diffusion controlled reaction rate of a reacting particle with linear weak damping and broad-band noise excitation is studied by using the stochastic averaging method. First, the stochastic averaging method for strongly nonlinear oscillators under broad-band noise excitation using generalized harmonic functions is briefly introduced. Then, the reaction rate of the classical Kramers' reacting model with linear weak damping and broad-band noise excitation is investigated by using the stochastic averaging method. The averaged Itô stochastic differential equation describing the energy diffusion and the Pontryagin equation governing the mean first-passage time (MFPT) are established. The energy diffusion controlled reaction rate is obtained as the inverse of the MFPT by solving the Pontryagin equation. The results of two special cases of broad-band noises, i.e. the harmonic noise and the exponentially corrected noise, are discussed in details. It is demonstrated that the general expression of reaction rate derived by the authors can be reduced to the classical ones via linear approximation and high potential barrier approximation. The good agreement with the results of the Monte Carlo simulation verifies that the reaction rate can be well predicted using the stochastic averaging method.

  13. Simulation of biochemical reactions with time-dependent rates by the rejection-based algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thanh, Vo Hong, E-mail: vo@cosbi.eu; Priami, Corrado, E-mail: priami@cosbi.eu; Department of Mathematics, University of Trento, Trento

    We address the problem of simulating biochemical reaction networks with time-dependent rates and propose a new algorithm based on our rejection-based stochastic simulation algorithm (RSSA) [Thanh et al., J. Chem. Phys. 141(13), 134116 (2014)]. The computation for selecting next reaction firings by our time-dependent RSSA (tRSSA) is computationally efficient. Furthermore, the generated trajectory is exact by exploiting the rejection-based mechanism. We benchmark tRSSA on different biological systems with varying forms of reaction rates to demonstrate its applicability and efficiency. We reveal that for nontrivial cases, the selection of reaction firings in existing algorithms introduces approximations because the integration of reactionmore » rates is very computationally demanding and simplifying assumptions are introduced. The selection of the next reaction firing by our approach is easier while preserving the exactness.« less

  14. The affects on Titan atmospheric modeling by variable molecular reaction rates

    NASA Astrophysics Data System (ADS)

    Hamel, Mark D.

    The main effort of this thesis is to study the production and loss of molecular ions in the ionosphere of Saturn's largest moon Titan. Titan's atmosphere is subject to complex photochemical processes that can lead to the production of higher order hydrocarbons and nitriles. Ion-molecule chemistry plays an important role in this process but remains poorly understood. In particular, current models that simulate the photochemistry of Titan's atmosphere overpredict the abundance of the ionosphere's main ions suggesting a flaw in the modeling process. The objective of this thesis is to determine which reactions are most important for production and loss of the two primary ions, C2H5+ and HCNH+, and what is the impact of uncertainty in the reaction rates on the production and loss of these ions. In reviewing the literature, there is a contention about what reactions are really necessary to illuminate what is occurring in the atmosphere. Approximately seven hundred reactions are included in the model used in this discussion (INT16). This paper studies what reactions are fundamental to the atmospheric processes in Titan's upper atmosphere, and also to the reactions that occur in the lower bounds of the ionosphere which are used to set a baseline molecular density for all species, and reflects what is expected at those altitudes on Titan. This research was conducted through evaluating reaction rates and cross sections available in the scientific literature and through conducting model simulations of the photochemistry in Titan's atmosphere under a range of conditions constrained by the literature source. The objective of this study is to determine the dependence of ion densities of C2H5+ and HCNH+ on the uncertainty in the reaction rates that involve these two ions in Titan's atmosphere.

  15. The Impact of Nuclear Reaction Rate Uncertainties on the Evolution of Core-collapse Supernova Progenitors

    NASA Astrophysics Data System (ADS)

    Fields, C. E.; Timmes, F. X.; Farmer, R.; Petermann, I.; Wolf, William M.; Couch, S. M.

    2018-02-01

    We explore properties of core-collapse supernova progenitors with respect to the composite uncertainties in the thermonuclear reaction rates by coupling the probability density functions of the reaction rates provided by the STARLIB reaction rate library with MESA stellar models. We evolve 1000 models of 15{M}ȯ from the pre-main sequence to core O-depletion at solar and subsolar metallicities for a total of 2000 Monte Carlo stellar models. For each stellar model, we independently and simultaneously sample 665 thermonuclear reaction rates and use them in a MESA in situ reaction network that follows 127 isotopes from 1H to 64Zn. With this framework we survey the core mass, burning lifetime, composition, and structural properties at five different evolutionary epochs. At each epoch we measure the probability distribution function of the variations of each property and calculate Spearman rank-order correlation coefficients for each sampled reaction rate to identify which reaction rate has the largest impact on the variations on each property. We find that uncertainties in the reaction rates of {}14{{N}}{({{p}},γ )}15{{O}}, triple-α, {}12{{C}}{(α ,γ )}16{{O}}, 12C(12C,p)23Na, 12C(16O, p)27Al, 16O(16O,n)31S, 16O(16O, p)31P, and 16O(16O,α)28Si dominate the variations of the properties surveyed. We find that variations induced by uncertainties in nuclear reaction rates grow with each passing phase of evolution, and at core H-, He-depletion they are of comparable magnitude to the variations induced by choices of mass resolution and network resolution. However, at core C-, Ne-, and O-depletion, the reaction rate uncertainties can dominate the variation, causing uncertainty in various properties of the stellar model in the evolution toward iron core-collapse.

  16. "Depletion": A Game with Natural Rules for Teaching Reaction Rate Theory.

    ERIC Educational Resources Information Center

    Olbris, Donald J.; Herzfeld, Judith

    2002-01-01

    Depletion is a game that reinforces central concepts of reaction rate theory through simulation. Presents the game with a set of follow-up questions suitable for either a quiz or discussion. Also describes student reaction to the game. (MM)

  17. Sensitivity study of explosive nucleosynthesis in type Ia supernovae: Modification of individual thermonuclear reaction rates

    NASA Astrophysics Data System (ADS)

    Bravo, Eduardo; Martínez-Pinedo, Gabriel

    2012-05-01

    Background: Type Ia supernovae contribute significantly to the nucleosynthesis of many Fe-group and intermediate-mass elements. However, the robustness of nucleosynthesis obtained via models of this class of explosions has not been studied in depth until now.Purpose: We explore the sensitivity of the nucleosynthesis resulting from thermonuclear explosions of massive white dwarfs with respect to uncertainties in nuclear reaction rates. We put particular emphasis on indentifying the individual reactions rates that most strongly affect the isotopic products of these supernovae.Method: We have adopted a standard one-dimensional delayed detonation model of the explosion of a Chandrasekhar-mass white dwarf and have postprocessed the thermodynamic trajectories of every mass shell with a nucleosynthetic code to obtain the chemical composition of the ejected matter. We have considered increases (decreases) by a factor of 10 on the rates of 1196 nuclear reactions (simultaneously with their inverse reactions), repeating the nucleosynthesis calculations after modification of each reaction rate pair. We have computed as well hydrodynamic models for different rates of the fusion reactions of 12C and of 16O. From the calculations we have selected the reactions that have the largest impact on the supernova yields, and we have computed again the nucleosynthesis using two or three alternative prescriptions for their rates, taken from the JINA REACLIB database. For the three reactions with the largest sensitivity we have analyzed as well the temperature ranges where a modification of their rates has the strongest effect on nucleosynthesis.Results: The nucleosynthesis resulting from the type Ia supernova models is quite robust with respect to variations of nuclear reaction rates, with the exception of the reaction of fusion of two 12C nuclei. The energy of the explosion changes by less than ˜4% when the rates of the reactions 12C+12C or 16O+16O are multiplied by a factor of ×10 or

  18. Kinetics and Quantitative Structure—Activity Relationship Study on the Degradation Reaction from Perfluorooctanoic Acid to Trifluoroacetic Acid

    PubMed Central

    Gong, Chen; Sun, Xiaomin; Zhang, Chenxi; Zhang, Xue; Niu, Junfeng

    2014-01-01

    Investigation of the degradation kinetics of perfluorooctanoic acid (PFOA) has been carried out to calculate rate constants of the main elementary reactions using the multichannel Rice-Ramsperger-Kassel-Marcus theory and canonical variational transition state theory with small-curvature tunneling correction over a temperature range of 200~500 K. The Arrhenius equations of rate constants of elementary reactions are fitted. The decarboxylation is role step in the degradation mechanism of PFOA. For the perfluorinated carboxylic acids from perfluorooctanoic acid to trifluoroacetic acid, the quantitative structure–activity relationship of the decarboxylation was analyzed with the genetic function approximation method and the structure–activity model was constructed. The main parameters governing rate constants of the decarboxylation reaction from the eight-carbon chain to the two-carbon chain were obtained. As the structure–activity model shows, the bond length and energy of C1–C2 (RC1–C2 and EC1–C2) are positively correlated to rate constants, while the volume (V), the energy difference between EHOMO and ELUMO (ΔE), and the net atomic charges on atom C2 (QC2) are negatively correlated. PMID:25196516

  19. Monte carlo simulations of Yttrium reaction rates in Quinta uranium target

    NASA Astrophysics Data System (ADS)

    Suchopár, M.; Wagner, V.; Svoboda, O.; Vrzalová, J.; Chudoba, P.; Tichý, P.; Kugler, A.; Adam, J.; Závorka, L.; Baldin, A.; Furman, W.; Kadykov, M.; Khushvaktov, J.; Solnyshkin, A.; Tsoupko-Sitnikov, V.; Tyutyunnikov, S.; Bielewicz, M.; Kilim, S.; Strugalska-Gola, E.; Szuta, M.

    2017-03-01

    The international collaboration Energy and Transmutation of Radioactive Waste (E&T RAW) performed intensive studies of several simple accelerator-driven system (ADS) setups consisting of lead, uranium and graphite which were irradiated by relativistic proton and deuteron beams in the past years at the Joint Institute for Nuclear Research (JINR) in Dubna, Russia. The most recent setup called Quinta, consisting of natural uranium target-blanket and lead shielding, was irradiated by deuteron beams in the energy range between 1 and 8 GeV in three accelerator runs at JINR Nuclotron in 2011 and 2012 with yttrium samples among others inserted inside the setup to measure the neutron flux in various places. Suitable activation detectors serve as one of possible tools for monitoring of proton and deuteron beams and for measurements of neutron field distribution in ADS studies. Yttrium is one of such suitable materials for monitoring of high energy neutrons. Various threshold reactions can be observed in yttrium samples. The yields of isotopes produced in the samples were determined using the activation method. Monte Carlo simulations of the reaction rates leading to production of different isotopes were performed in the MCNPX transport code and compared with the experimental results obtained from the yttrium samples.

  20. A simple thermometric technique for reaction-rate determination of inorganic species, based on the iodide-catalysed cerium(IV)-arsenic(III) reaction.

    PubMed

    Grases, F; Forteza, R; March, J G; Cerda, V

    1985-02-01

    A very simple reaction-rate thermometric technique is used for determination of iodide (5-20 ng ml ), based on its catalytic action on the cerium(IV)-arsenic(III) reaction, and for determination of mercury(II) (1.5-10 ng ml ) and silver(I) (2-10 ng ml ), based on their inhibitory effect on this reaction. The reaction is followed by measuring the rate of temperature increase. The method suffers from very few interferences and is applied to determination of iodide in biological and inorganic samples, and Hg(II) and Ag(I) in pharmaceutical products.

  1. Surface-Activated Coupling Reactions Confined on a Surface.

    PubMed

    Dong, Lei; Liu, Pei Nian; Lin, Nian

    2015-10-20

    Chemical reactions may take place in a pure phase of gas or liquid or at the interface of two phases (gas-solid or liquid-solid). Recently, the emerging field of "surface-confined coupling reactions" has attracted intensive attention. In this process, reactants, intermediates, and products of a coupling reaction are adsorbed on a solid-vacuum or a solid-liquid interface. The solid surface restricts all reaction steps on the interface, in other words, the reaction takes place within a lower-dimensional, for example, two-dimensional, space. Surface atoms that are fixed in the surface and adatoms that move on the surface often activate the surface-confined coupling reactions. The synergy of surface morphology and activity allow some reactions that are inefficient or prohibited in the gas or liquid phase to proceed efficiently when the reactions are confined on a surface. Over the past decade, dozens of well-known "textbook" coupling reactions have been shown to proceed as surface-confined coupling reactions. In most cases, the surface-confined coupling reactions were discovered by trial and error, and the reaction pathways are largely unknown. It is thus highly desirable to unravel the mechanisms, mechanisms of surface activation in particular, of the surface-confined coupling reactions. Because the reactions take place on surfaces, advanced surface science techniques can be applied to study the surface-confined coupling reactions. Among them, scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS) are the two most extensively used experimental tools. The former resolves submolecular structures of individual reactants, intermediates, and products in real space, while the latter monitors the chemical states during the reactions in real time. Combination of the two methods provides unprecedented spatial and temporal information on the reaction pathways. The experimental findings are complemented by theoretical modeling. In particular, density

  2. The rate constant of a quantum-diffusion-controlled bimolecular reaction

    NASA Astrophysics Data System (ADS)

    Bondarev, B. V.

    1986-04-01

    A quantum-mechanical equation is derived in the tight-bond approximation which describes the motion and chemical interaction of a pair of species A and B when their displacement in the matrix is caused by tunnelling. Within the framework of the discrete model of random walks, definitions are given of the probability and rate constant of a reaction A + B → P (products) proceeding in a condensed medium. A method is suggested for calculating the rate constant of a quantum-diffusion-controlled bimolecular reaction. By this method, an expression is obtained for the rate constant in the stationary spherically symmetrical case. An equation for the density matrix is also proposed which describes the motion and chemical interaction of a pair of species when the quantum and classical diffusion are competitive.

  3. First measurement of 30S+α resonant elastic scattering for the 30S(α ,p ) reaction rate

    NASA Astrophysics Data System (ADS)

    Kahl, D.; Yamaguchi, H.; Kubono, S.; Chen, A. A.; Parikh, A.; Binh, D. N.; Chen, J.; Cherubini, S.; Duy, N. N.; Hashimoto, T.; Hayakawa, S.; Iwasa, N.; Jung, H. S.; Kato, S.; Kwon, Y. K.; Nishimura, S.; Ota, S.; Setoodehnia, K.; Teranishi, T.; Tokieda, H.; Yamada, T.; Yun, C. C.; Zhang, L. Y.

    2018-01-01

    Background: Type I x-ray bursts are the most frequently observed thermonuclear explosions in the galaxy, resulting from thermonuclear runaway on the surface of an accreting neutron star. The 30S(α ,p ) reaction plays a critical role in burst models, yet insufficient experimental information is available to calculate a reliable, precise rate for this reaction. Purpose: Our measurement was conducted to search for states in 34Ar and determine their quantum properties. In particular, natural-parity states with large α -decay partial widths should dominate the stellar reaction rate. Method: We performed the first measurement of 30S+α resonant elastic scattering up to a center-of-mass energy of 5.5 MeV using a radioactive ion beam. The experiment utilized a thick gaseous active target system and silicon detector array in inverse kinematics. Results: We obtained an excitation function for 30S(α ,α ) near 150∘ in the center-of-mass frame. The experimental data were analyzed with R -matrix calculations, and we observed three new resonant patterns between 11.1 and 12.1 MeV, extracting their properties of resonance energy, widths, spin, and parity. Conclusions: We calculated the resonant thermonuclear reaction rate of 30S(α ,p ) based on all available experimental data of 34Ar and found an upper limit about one order of magnitude larger than a rate determined using a statistical model. The astrophysical impact of these two rates has been investigated through one-zone postprocessing type I x-ray burst calculations. We find that our new upper limit for the 30S(α ,p )33Cl rate significantly affects the predicted nuclear energy generation rate during the burst.

  4. On the relation between the activation energy for electron attachment reactions and the size of their thermal rate coefficients.

    PubMed

    Hotop, H; Ruf, M-W; Kopyra, J; Miller, T M; Fabrikant, I I

    2011-02-14

    Rate coefficients k(T) for dissociative electron attachment (DEA) to molecules in many cases exhibit a more or less strong rise with increasing temperature T (the electron temperature T(e) and the molecular temperature T(G) are assumed to be in thermal equilibrium, i.e., T = T(e) = T(G)). This rise is frequently modeled by the Arrhenius equation k(T) = k(A) exp[-E(a)∕(k(B)T)], and an activation energy E(a) is deduced from fits to the experimental data k(T). This behavior reflects the presence of an energy barrier for the anion on its path to the dissociated products. In a recent paper [J. Kopyra, J. Wnorowska, M. Foryś, and I. Szamrej, Int. J. Mass Spectrom. 268, 60 (2007)] it was suggested that the size of the rate coefficients for DEA reactions at room temperature exhibits an exponential dependence on the activation energy, i.e., k(E(a); T ≈ 300 K) = k(1) exp[-E(a)∕E(0)]. More recent experimental data for molecules with high barriers [T. M. Miller, J. F. Friedman, L. C. Schaffer, and A. A. Viggiano, J. Chem. Phys. 131, 084302 (2009)] are compatible with such a correlation. We investigate the validity and the possible origin of this dependence by analyzing the results of R-matrix calculations for temperature-dependent rate coefficients of exothermic DEA processes with intermediate barrier toward dissociation. These include results for model systems with systematically varied barrier height as well as results of molecule-specific calculations for CH(3)Cl, CH(3)Br, CF(3)Cl, and CH(2)Cl(2) (activation energies above 0.2 eV) involving appropriate molecular parameters. A comparison of the experimental and theoretical results for the considered class of molecules (halogenated alkanes) supports the idea that the exponential dependence of k(T = 300 K) on the activation energy reflects a general phenomenon associated with Franck-Condon factors for getting from the initial neutral vibrational levels to the dissociating final anion state in a direct DEA process. Cases

  5. The Influence of Particle Charge on Heterogeneous Reaction Rate Coefficients

    NASA Technical Reports Server (NTRS)

    Aikin, A. C.; Pesnell, W. D.

    2000-01-01

    The effects of particle charge on heterogeneous reaction rates are presented. Many atmospheric particles, whether liquid or solid are charged. This surface charge causes a redistribution of charge within a liquid particle and as a consequence a perturbation in the gaseous uptake coefficient. The amount of perturbation is proportional to the external potential and the square of the ratio of debye length in the liquid to the particle radius. Previous modeling has shown how surface charge affects the uptake coefficient of charged aerosols. This effect is now included in the heterogeneous reaction rate of an aerosol ensemble. Extension of this analysis to ice particles will be discussed and examples presented.

  6. Communication: rate coefficients from quasiclassical trajectory calculations from the reverse reaction: The Mu + H2 reaction re-visited.

    PubMed

    Homayoon, Zahra; Jambrina, Pablo G; Aoiz, F Javier; Bowman, Joel M

    2012-07-14

    In a previous paper [P. G. Jambrina et al., J. Chem. Phys. 135, 034310 (2011)] various calculations of the rate coefficient for the Mu + H(2) → MuH + H reaction were presented and compared to experiment. The widely used standard quasiclassical trajectory (QCT) method was shown to overestimate the rate coefficients by several orders of magnitude over the temperature range 200-1000 K. This was attributed to a major failure of that method to describe the correct threshold for the reaction owing to the large difference in zero-point energies (ZPE) of the reactant H(2) and product MuH (∼0.32 eV). In this Communication we show that by performing standard QCT calculations for the reverse reaction and then applying detailed balance, the resulting rate coefficient is in very good agreement with the other computational results that respect the ZPE, (as well as with the experiment) but which are more demanding computationally.

  7. Communication: Rate coefficients from quasiclassical trajectory calculations from the reverse reaction: The Mu + H2 reaction re-visited

    NASA Astrophysics Data System (ADS)

    Homayoon, Zahra; Jambrina, Pablo G.; Aoiz, F. Javier; Bowman, Joel M.

    2012-07-01

    In a previous paper [P. G. Jambrina et al., J. Chem. Phys. 135, 034310 (2011), 10.1063/1.3611400] various calculations of the rate coefficient for the Mu + H2 → MuH + H reaction were presented and compared to experiment. The widely used standard quasiclassical trajectory (QCT) method was shown to overestimate the rate coefficients by several orders of magnitude over the temperature range 200-1000 K. This was attributed to a major failure of that method to describe the correct threshold for the reaction owing to the large difference in zero-point energies (ZPE) of the reactant H2 and product MuH (˜0.32 eV). In this Communication we show that by performing standard QCT calculations for the reverse reaction and then applying detailed balance, the resulting rate coefficient is in very good agreement with the other computational results that respect the ZPE, (as well as with the experiment) but which are more demanding computationally.

  8. Chemical Reaction Rate Coefficients from Ring Polymer Molecular Dynamics: Theory and Practical Applications

    DOE PAGES

    Suleimanov, Yury V.; Aoiz, F. Javier; Guo, Hua

    2016-09-14

    This Feature Article presents an overview of the current status of ring polymer molecular dynamics (RPMD) rate theory. We first analyze the RPMD approach and its connection to quantum transition-state theory. We then focus on its practical applications to prototypical chemical reactions in the gas phase, which demonstrate how accurate and reliable RPMD is for calculating thermal chemical reaction rate coefficients in multifarious cases. This review serves as an important checkpoint in RPMD rate theory development, which shows that RPMD is shifting from being just one of recent novel ideas to a well-established and validated alternative to conventional techniques formore » calculating thermal chemical rate coefficients. We also hope it will motivate further applications of RPMD to various chemical reactions.« less

  9. Activation energy of tantalum-tungsten oxide thermite reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cervantes, Octavio G.; Munir, Zuhair A.; Chemical Engineering and Materials Science, University of California, Davis, CA

    2011-01-15

    The activation energy of a sol-gel (SG) derived tantalum-tungsten oxide thermite composite was determined using the Kissinger isoconversion method. The SG derived powder was consolidated using the high-pressure spark plasma sintering (HPSPS) technique at 300 and 400 C. The ignition temperatures were investigated under high heating rates (500-2000 C min{sup -1}). Such heating rates were required in order to ignite the thermite composite. Samples consolidated at 300 C exhibit an abrupt change in temperature response prior to the main ignition temperature. This change in temperature response is attributed to the crystallization of the amorphous WO{sub 3} in the SG derivedmore » Ta-WO{sub 3} thermite composite and not to a pre-ignition reaction between the constituents. Ignition temperatures for the Ta-WO{sub 3} thermite ranged from approximately 465 to 670 C. The activation energies of the SG derived Ta-WO{sub 3} thermite composite consolidated at 300 and 400 C were determined to be 38{+-} 2 kJ mol{sup -1} and 57 {+-} 2 kJ mol{sup -1}, respectively. (author)« less

  10. Rate variations of a hetero-Diels--Alder reaction in supercritical fluid CO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, R.L.; Glaeser, R.; Bush, D.

    1999-11-01

    The hetero-Diels-Alder reaction between anthracene and excess 4-phenyl-1,2,4-triazoline-3,5-dione has been investigated in supercritical CO{sub 2} at 40 C and pressures between 75 and 216 bar. Biomolecular reaction rate constants have been measured via fluorescence spectroscopy by following the decrease in anthracene concentration with reaction time. The reaction rate is elevated in the vicinity of the critical pressure. This difference is consistent with local composition enhancement and can be modeled with the Peng-Robinson equation of state.

  11. Estimating reaction rate coefficients within a travel-time modeling framework.

    PubMed

    Gong, R; Lu, C; Wu, W-M; Cheng, H; Gu, B; Watson, D; Jardine, P M; Brooks, S C; Criddle, C S; Kitanidis, P K; Luo, J

    2011-01-01

    A generalized, efficient, and practical approach based on the travel-time modeling framework is developed to estimate in situ reaction rate coefficients for groundwater remediation in heterogeneous aquifers. The required information for this approach can be obtained by conducting tracer tests with injection of a mixture of conservative and reactive tracers and measurements of both breakthrough curves (BTCs). The conservative BTC is used to infer the travel-time distribution from the injection point to the observation point. For advection-dominant reactive transport with well-mixed reactive species and a constant travel-time distribution, the reactive BTC is obtained by integrating the solutions to advective-reactive transport over the entire travel-time distribution, and then is used in optimization to determine the in situ reaction rate coefficients. By directly working on the conservative and reactive BTCs, this approach avoids costly aquifer characterization and improves the estimation for transport in heterogeneous aquifers which may not be sufficiently described by traditional mechanistic transport models with constant transport parameters. Simplified schemes are proposed for reactive transport with zero-, first-, nth-order, and Michaelis-Menten reactions. The proposed approach is validated by a reactive transport case in a two-dimensional synthetic heterogeneous aquifer and a field-scale bioremediation experiment conducted at Oak Ridge, Tennessee. The field application indicates that ethanol degradation for U(VI)-bioremediation is better approximated by zero-order reaction kinetics than first-order reaction kinetics. Copyright © 2010 The Author(s). Journal compilation © 2010 National Ground Water Association.

  12. Estimating Reaction Rate Coefficients Within a Travel-Time Modeling Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, R; Lu, C; Luo, Jian

    A generalized, efficient, and practical approach based on the travel-time modeling framework is developed to estimate in situ reaction rate coefficients for groundwater remediation in heterogeneous aquifers. The required information for this approach can be obtained by conducting tracer tests with injection of a mixture of conservative and reactive tracers and measurements of both breakthrough curves (BTCs). The conservative BTC is used to infer the travel-time distribution from the injection point to the observation point. For advection-dominant reactive transport with well-mixed reactive species and a constant travel-time distribution, the reactive BTC is obtained by integrating the solutions to advective-reactive transportmore » over the entire travel-time distribution, and then is used in optimization to determine the in situ reaction rate coefficients. By directly working on the conservative and reactive BTCs, this approach avoids costly aquifer characterization and improves the estimation for transport in heterogeneous aquifers which may not be sufficiently described by traditional mechanistic transport models with constant transport parameters. Simplified schemes are proposed for reactive transport with zero-, first-, nth-order, and Michaelis-Menten reactions. The proposed approach is validated by a reactive transport case in a two-dimensional synthetic heterogeneous aquifer and a field-scale bioremediation experiment conducted at Oak Ridge, Tennessee. The field application indicates that ethanol degradation for U(VI)-bioremediation is better approximated by zero-order reaction kinetics than first-order reaction kinetics.« less

  13. Advances in copper-catalyzed C-C coupling reactions and related domino reactions based on active methylene compounds.

    PubMed

    Liu, Yunyun; Wan, Jie-Ping

    2012-06-01

    Active methylene compounds are a major class of reaction partners for C-C bond formation with sp(2) C-X (X = halide) fragments. As one of the most-classical versions of the Ullmann-type coupling reaction, activated-methylene-based C-C coupling reactions have been efficiently employed in a large number of syntheses. Although this type of reaction has long relied on noble-metal catalysis, the renaissance of copper catalysis at the end of last century has led to dramatic developments in Ullmann C-C coupling reactions. Owing to its low cost, abundance, as well as excellent catalytic activity, the exceptional atom economy of copper catalysis is gaining widespread attention in various organic synthesis. This review summarizes the advances in copper-catalyzed intermolecular and intramolecular C-C coupling reactions that use activated methylene species as well as in tandem reactions that are initiated by this transformation. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Kinetics of the creatine kinase reaction in neonatal rabbit heart: An empirical analysis of the rate equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McAuliffe, J.J.; Perry, S.B.; Brooks, E.E.

    1991-03-12

    Here the authors define the kinetics of the creatine kinase (CK) reaction in an intact mammalian heart containing the full rnage of CK isoenzymes. Previously derived kinetic constants were refit for the reaction occurring at 37C. Steady-state metabolite concentrations from {sup 31}P NMR and standard biochemical techniques were determined. {sup 31}P magnetization transfer data were obtained to determine unidirectional creatine kinase fluxes in hearts with differing total creatine contents and differing mitochondrial CK activities during KCl arrest and isovolumic work for both the forward reaction (MgATP synthesis) and reverse reaction (phosphocreatine synthesis). The NMR kinetic data and substrate concentrations datamore » were used in conjunction with a kinetic model based on MM-CK in solution to determine the applicability of the solution-based kinetic models to the CK kinetics of the intact heart. The results indicated that no single set of rate equation constants could describe both the KCl-arrested and working hearts. Analysis of the results indicated that the CK reaction is rate limited in the direction of ATP synthesis, the size of the guanidino substrate pool drives the measured CK flux in the intact heart, and during isovolumic work, the CK reaction operates under saturating conditions; that is, the substrate concentrations are at least 2-fold greater than the K{sub m} or K{sub im} for each substrate. However, during KCl arrest the reaction does not operate under saturating conditions and the CK reaction velocity is strongly influenced by the guanidino substrate pool size.« less

  15. Catalyst activation, deactivation, and degradation in palladium-mediated Negishi cross-coupling reactions.

    PubMed

    Böck, Katharina; Feil, Julia E; Karaghiosoff, Konstantin; Koszinowski, Konrad

    2015-03-27

    Pd-mediated Negishi cross-coupling reactions were studied by a combination of kinetic measurements, electrospray-ionization (ESI) mass spectrometry, (31)P NMR and UV/Vis spectroscopy. The kinetic measurements point to a rate-determining oxidative addition. Surprisingly, this step seems to involve not only the Pd catalyst and the aryl halide substrate, but also the organozinc reagent. In this context, the ESI-mass spectrometric observation of heterobimetallic Pd-Zn complexes [L2 PdZnR](+) (L=S-PHOS, R=Bu, Ph, Bn) is particularly revealing. The inferred presence of these and related neutral complexes with a direct Pd-Zn interaction in solution explains how the organozinc reagent can modulate the reactivity of the Pd catalyst. Previous theoretical calculations by González-Pérez et al. (Organometallics- 2012, 31, 2053) suggest that the complexation by the organozinc reagent lowers the activity of the Pd catalyst. Presumably, a similar effect also causes the rate decrease observed upon addition of ZnBr2 . In contrast, added LiBr apparently counteracts the formation of Pd-Zn complexes and restores the high activity of the Pd catalyst. At longer reaction times, deactivation processes due to degradation of the S-PHOS ligand and aggregation of the Pd catalyst come into play, thus further contributing to the appreciable complexity of the title reaction. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Rate Constant and Reaction Coordinate of Trp-Cage Folding in Explicit Water

    PubMed Central

    Juraszek, Jarek; Bolhuis, Peter G.

    2008-01-01

    We report rate constant calculations and a reaction coordinate analysis of the rate-limiting folding and unfolding process of the Trp-cage mini-protein in explicit solvent using transition interface sampling. Previous transition path sampling simulations revealed that in this (un)folding process the protein maintains its compact configuration, while a (de)increase of secondary structure is observed. The calculated folding rate agrees reasonably with experiment, while the unfolding rate is 10 times higher. We discuss possible origins for this mismatch. We recomputed the rates with the forward flux sampling method, and found a discrepancy of four orders of magnitude, probably caused by the method's higher sensitivity to the choice of order parameter with respect to transition interface sampling. Finally, we used the previously computed transition path-sampling ensemble to screen combinations of many order parameters for the best model of the reaction coordinate by employing likelihood maximization. We found that a combination of the root mean-square deviation of the helix and of the entire protein was, of the set of tried order parameters, the one that best describes the reaction coordination. PMID:18676648

  17. Rate constants for chemical reactions in high-temperature nonequilibrium air

    NASA Technical Reports Server (NTRS)

    Jaffe, R. L.

    1986-01-01

    In the nonequilibrium atmospheric chemistry regime that will be encountered by the proposed Aeroassisted Orbital Transfer Vehicle in the upper atmosphere, where air density is too low for thermal and chemical equilibrium to be maintained, the detailed high temperature air chemistry plays a critical role in defining radiative and convective heating loads. Although vibrational and electronic temperatures remain low (less than 15,000 K), rotational and translational temperatures may reach 50,000 K. Attention is presently given to the effects of multiple temperatures on the magnitudes of various chemical reaction rate constants, for the cases of both bimolecular exchange reactions and collisional excitation and dissociation reactions.

  18. Bioluminescent Reaction by Immobilized Luciferase

    NASA Astrophysics Data System (ADS)

    Tanaka, Ryuta; Takahama, Eriko; Iinuma, Masataka; Ikeda, Takeshi; Kadoya, Yutaka; Kuroda, Akio

    We have investigated an effect of immobilization of luciferase molecules at the optical fiber end on a bioluminescent reaction. The time dependence of measured count rates of emitted photons has been analyzed by fitting with numerical solution of differential equations including the effect of the product-inhibitor and the deactivation of the luciferase. Through the analysis, we have successfully extracted kinetic constants such as, reaction rate, number of active luciferase molecules, etc. Ratio of active molecules to total luciferase molecules in immobilization was one order of magnitude lower than that in solution. The reaction rate of the bioluminescent process was also different from the one of free luciferase in solution.

  19. Rate constants measured for hydrated electron reactions with peptides and proteins

    NASA Technical Reports Server (NTRS)

    Braams, R.

    1968-01-01

    Effects of ionizing radiation on the amino acids of proteins and the reactivity of the protonated amino group depends upon the pK subscript a of the group. Estimates of the rate constants for reactions involving the amino acid side chains are presented. These rate constants gave an approximate rate constant for three different protein molecules.

  20. Inference of reaction rate parameters based on summary statistics from experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalil, Mohammad; Chowdhary, Kamaljit Singh; Safta, Cosmin

    Here, we present the results of an application of Bayesian inference and maximum entropy methods for the estimation of the joint probability density for the Arrhenius rate para meters of the rate coefficient of the H 2/O 2-mechanism chain branching reaction H + O 2 → OH + O. Available published data is in the form of summary statistics in terms of nominal values and error bars of the rate coefficient of this reaction at a number of temperature values obtained from shock-tube experiments. Our approach relies on generating data, in this case OH concentration profiles, consistent with the givenmore » summary statistics, using Approximate Bayesian Computation methods and a Markov Chain Monte Carlo procedure. The approach permits the forward propagation of parametric uncertainty through the computational model in a manner that is consistent with the published statistics. A consensus joint posterior on the parameters is obtained by pooling the posterior parameter densities given each consistent data set. To expedite this process, we construct efficient surrogates for the OH concentration using a combination of Pad'e and polynomial approximants. These surrogate models adequately represent forward model observables and their dependence on input parameters and are computationally efficient to allow their use in the Bayesian inference procedure. We also utilize Gauss-Hermite quadrature with Gaussian proposal probability density functions for moment computation resulting in orders of magnitude speedup in data likelihood evaluation. Despite the strong non-linearity in the model, the consistent data sets all res ult in nearly Gaussian conditional parameter probability density functions. The technique also accounts for nuisance parameters in the form of Arrhenius parameters of other rate coefficients with prescribed uncertainty. The resulting pooled parameter probability density function is propagated through stoichiometric hydrogen-air auto-ignition computations to

  1. Inference of reaction rate parameters based on summary statistics from experiments

    DOE PAGES

    Khalil, Mohammad; Chowdhary, Kamaljit Singh; Safta, Cosmin; ...

    2016-10-15

    Here, we present the results of an application of Bayesian inference and maximum entropy methods for the estimation of the joint probability density for the Arrhenius rate para meters of the rate coefficient of the H 2/O 2-mechanism chain branching reaction H + O 2 → OH + O. Available published data is in the form of summary statistics in terms of nominal values and error bars of the rate coefficient of this reaction at a number of temperature values obtained from shock-tube experiments. Our approach relies on generating data, in this case OH concentration profiles, consistent with the givenmore » summary statistics, using Approximate Bayesian Computation methods and a Markov Chain Monte Carlo procedure. The approach permits the forward propagation of parametric uncertainty through the computational model in a manner that is consistent with the published statistics. A consensus joint posterior on the parameters is obtained by pooling the posterior parameter densities given each consistent data set. To expedite this process, we construct efficient surrogates for the OH concentration using a combination of Pad'e and polynomial approximants. These surrogate models adequately represent forward model observables and their dependence on input parameters and are computationally efficient to allow their use in the Bayesian inference procedure. We also utilize Gauss-Hermite quadrature with Gaussian proposal probability density functions for moment computation resulting in orders of magnitude speedup in data likelihood evaluation. Despite the strong non-linearity in the model, the consistent data sets all res ult in nearly Gaussian conditional parameter probability density functions. The technique also accounts for nuisance parameters in the form of Arrhenius parameters of other rate coefficients with prescribed uncertainty. The resulting pooled parameter probability density function is propagated through stoichiometric hydrogen-air auto-ignition computations to

  2. Reaction rates of the 113In(γ,n)112mIn and 115In(γ,n)114mIn

    NASA Astrophysics Data System (ADS)

    Skakun, Ye; Semisalov, I.; Kasilov, V.; Popov, V.; Kochetov, S.; Maslyuk, V.; Mazur, V.; Parlag, O.; Gajnish, I.

    2016-01-01

    The integral yields of the 113In(γ,n)112mIn (Jπ=9/2+→Jπ=4+) and 115In(γ,n)114mIn (Jπ=9/2+→Jπ=5+) photonuclear reactions were measured in the bremsstrahlung end-point energy range from the respective thresholds up to 14 MeV by a conventional activation/decay technique using the 197Au(γ,n)196Au reaction cross sections as the standard for the absolute photon intensity determination. The metallic indium samples of the natural and enriched compositions were irradiated by the bremsstrahlung beams from thin tantalum converters of the electron linear accelerator of NSC KIPT (Kharkiv) and the microtron of IEP (Ughhorod). The integral reaction yields were determined from the activities of the nuclei-products measured by the high resolution γ-ray spectrometry technique with Ge(Li)- and HPGe-detectors. The reaction rates for the Planck spectrum of a thermal photon bath were derived for the ground state target nuclei and compared to the predictions of the statistical model of nuclear reactions.

  3. Assessing hydrodynamic effects on jarosite dissolution rates, reaction products, and preservation on Mars

    NASA Astrophysics Data System (ADS)

    Dixon, Emily M.; Elwood Madden, Andrew S.; Hausrath, Elisabeth M.; Elwood Madden, Megan E.

    2015-04-01

    Jarosite flow-through dissolution experiments were conducted in ultrapure water (UPW), pH 2 sulfuric acid, and saturated NaCl and CaCl2 brines at 295-298 K to investigate how hydrologic variables may affect jarosite preservation and reaction products on Mars. K+-based dissolution rates in flowing UPW did not vary significantly with flow rate, indicating that mineral surface reactions control dissolution rates over the range of flow rates investigated. In all of the solutions tested, hydrologic variables do not significantly affect extent of jarosite alteration; therefore, jarosite is equally likely to be preserved in flowing or stagnant waters on Mars. However, increasing flow rate did affect the mineralogy and accumulation of secondary reaction products. Iron release rates in dilute solutions increased as the flow rate increased, likely due to nanoscale iron (hydr)oxide transport in flowing water. Anhydrite formed in CaCl2 brine flow-through experiments despite low temperatures, while metastable gypsum and bassanite were observed in batch experiments. Therefore, observations of the hydration state of calcium sulfate minerals on Mars may provide clues to unravel past salinity and hydrologic conditions as well as temperatures and vapor pressures.

  4. Rate constant for the reaction SO + BrO yields SO2 + Br

    NASA Technical Reports Server (NTRS)

    Brunning, J.; Stief, L.

    1986-01-01

    The rate of the radical-radical reaction SO + BrO yields SO2 + Br has been determined at 298 K in a discharge flow system near 1 torr pressure with detection of SO and BrO via collision-free sampling mass spectrometry. The rate constant was determined using two different methods: measuring the decay of SO radicals in the presence of an excess of BrO and measuring the decay of BrO radicals in excess SO. The results from the two methods are in reasonable agreement and the simple mean of the two values gives the recommended rate constant at 298 K, k = (5.7 + or - 2.0) x 10 to the -11th cu cm/s. This represents the first determination of this rate constant and it is consistent with a previously derived lower limit based on SO2 formation. Comparison is made with other radical-radical reactions involving SO or BrO. The reaction SO + BrO yields SO2 + Br is of interest for models of the upper atmosphere of the earth and provides a potential coupling between atmospheric sulfur and bromine chemistry.

  5. Nucleotides as nucleophiles: Reactions of nucleotides with phosphoimidazolide activated guanosine

    NASA Astrophysics Data System (ADS)

    Kanavarioti, Anastassia; Rosenbach, Morgan T.; Brian Hurley, T.

    1992-07-01

    An earlier study of the reaction of phosphoimidazolide activated nucleosides (ImpN) in aqueous phosphate buffers indicated two modes of reaction of the phosphate monoanion and dianion. The first mode is catalysis of the hydrolysis of the P-N bond in ImpN's which leads to imidazole and nucleoside 5'-monophosphate. The second represents a nucleophilic substitution of the imidazole to yield the nucleoside 5'-diphosphate. This earlier study thus served as a model for the reaction of ImpN with nucleoside monophosphates (pN) because the latter can be regarded as phosphate derivatives. In the present study we investigated the reaction of guanosine 5'-phosphate-2-methylimidazolide, 2-MeImpG, in the presence of pN (N=guanosine, adenosine and uridine) in the range 6.9 ≤ pH ≤ 7.7. We observed that pN's do act as nucleophiles to form NppG, and as general base to enhance the hydrolysis of the P-N bond in 2-MeImpG, i.e. pN show the same behavior as inorganic phosphate. The kinetic analysis yields the following rate constants for the dianion pN2-:k {/n pN}=0.17±0.02 M-1 h-1 for nucleophilic attack andk {/h pN}=0.11±0.07 M-1 h-1 for general base catalysis of the hydrolysis. These rate constants which are independent of the nucleobase compare withk p 2=0.415 M-1 h-1 andk_h^{p^2 } =0.217 M-1 h-1 for the reactions of HPO{4/2-}. In addition, this study shows that under conditions where pN presumably form stacks, the reaction mechanism remains unchanged although in quantitative terms stacked pN are somewhat less reactive. Attack by the 2'-OH and 3'-OH groups of the ribose moiety in amounts ≥1% is not observed; this is attributed to the large difference in nucleophilicity in the neutral pH range between the phosphate group and the ribose hydroxyls. This nucleophilicity rank is not altered by stacking.

  6. The effect of viscous flow and thermal flux on the rate of chemical reaction in dilute gases

    NASA Astrophysics Data System (ADS)

    Cukrowski, A. S.; Popielawski, J.

    1986-11-01

    Expression for the corrections describing the effect of viscous flow and thermal flux on the rate of chemical reaction have been derived for the reaction A + A = B + C described by Prigogine-Xhrouet and Present. These corrections are calculated for the velocity distribution function up to the second-order approximation for the Chapman-Enskog solution of the Boltzmann equation. These corrections are shown to be the same as those which would follow after application of the method of linearized-moments equations described by Eu and Li. The effects of viscous flow and thermal flux are presented as functions of activation energy of chemical reaction, temperature, density, coefficients of shear viscosity of thermal conductivity, and relevant gradients of mean molecular velocity or temperature. It is pointed out that for very slow reactions and for very large gradients (e.g. in shock waves) these effects can be quite significant.

  7. Origin of the Non-Arrhenius Behavior of the Rates of Enzymatic Reactions.

    PubMed

    Roy, Subhendu; Schopf, Patrick; Warshel, Arieh

    2017-07-13

    The origin of the non-Arrhenius behavior of the rate constant for hydride transfer enzymatic reactions has been a puzzling problem since its initial observation. This effect has been used originally to support the idea that enzymes work by dynamical effects and more recently to suggest an entropy funnel model. Our analysis, however, has advanced the idea that the reason for the non-Arrhenius trend reflects the temperature dependence of the rearrangements of the protein polar groups in response to the change in the charge distribution of the reacting system during the transition from the ground state (GS) to the transition state (TS). Here we examine the validity of our early proposal by simulating the catalytic reaction of alcohol dehydrogenase (ADH) and determine the microscopic origin of the entropic and enthalpic contributions to the activation barrier. The corresponding analysis establishes the origin of the non-Arrhenius behaviors and quantifies our original suggestion that the classical effect is due to the entropic contributions of the environment. We also find that the quantum effects reflect in part the temperature dependence of the donor-acceptor distance.

  8. Reaction Rate of Small Diffusing Molecules on a Cylindrical Membrane

    NASA Astrophysics Data System (ADS)

    Straube, Ronny; Ward, Michael J.; Falcke, Martin

    2007-10-01

    Biomembranes consist of a lipid bi-layer into which proteins are embedded to fulfill numerous tasks in localized regions of the membrane. Often, the proteins have to reach these regions by simple diffusion. Motivated by the observation that IP3 receptor channels (IP3R) form clusters on the surface of the endoplasmic reticulum (ER) during ATP-induced calcium release, the reaction rate of small diffusing molecules on a cylindrical membrane is calculated based on the Smoluchowski approach. In this way, the cylindrical topology of the tubular ER is explicitly taken into account. The problem can be reduced to the solution of the diffusion equation on a finite cylindrical surface containing a small absorbing hole. The solution is constructed by matching appropriate `inner' and `outer' asymptotic expansions. The asymptotic results are compared with those from numerical simulations and excellent agreement is obtained. For realistic parameter sets, we find reaction rates in the range of experimentally measured clustering rates of IP3R. This supports the idea that clusters are formed by a purely diffusion limited process.

  9. Determination of astrophysical 7Be(p, γ)8B reaction rates from the 7Li(d, p)8Li reaction

    NASA Astrophysics Data System (ADS)

    Du, XianChao; Guo, Bing; Li, ZhiHong; Pang, DanYang; Li, ErTao; Liu, WeiPing

    2015-06-01

    The 7Be(p, γ)8B reaction plays a central role not only in the evaluation of solar neutrino fluxes but also in the evolution of the first stars. Study of this reaction requires the asymptotic normalization coefficient (ANC) for the virtual decay 8B g.s. → 7Be + p. By using the charge symmetry relation, we obtain this proton ANC with the single neutron ANC of 8Li g.s. →7Li + n, which is determined with the distorted wave Born approximation (DWBA) and adiabatic distorted wave approximation (ADWA) analysis of the 7Li(d, p)8Li angular distribution. The astrophysical S-factors and reaction rates of the direct capture process in the 7Be(p, γ)8B reaction are further deduced at energies of astrophysical relevance. The astrophysical S-factor at zero energy for direct capture, S 17(0), is derived to be (19.9 ± 3.5) eV b in good agreement with the most recent recommended value. The contributions of the 1+ and 3+ resonances to the S-factor and reaction rate are also evaluated. The present result demonstrates that the direct capture dominates the 7Be(p, γ)8B reaction in the whole temperature range. This work provides an independent examination to the current results of the 7Be(p, γ)8B reaction.

  10. A study of the photocatalytic effects of aqueous suspensions of platinized semiconductor materials on the reaction rates of candidate redox reactions

    NASA Technical Reports Server (NTRS)

    Miles, A. M.

    1982-01-01

    The effectiveness of powdered semiconductor materials in photocatalyzing candidate redox reactions was investigated. The rate of the photocatalyzed oxidation of cyanide at platinized TiO2 was studied. The extent of the cyanide reaction was followed directly using an electroanalytical method (i.e. differential pulse polarography). Experiments were performed in natural or artificial light. A comparison was made of kinetic data obtained for photocatalysis at platinized powders with rate data for nonplatinized powders.

  11. Rate Coefficient Measurements of the Reaction CH3 + O2 = CH3O + O

    NASA Technical Reports Server (NTRS)

    Hwang, S. M.; Ryu, Si-Ok; DeWitt, K. J.; Rabinowitz, M. J.

    1999-01-01

    Rate coefficients for the reaction CH3 + O2 = CH3O + O were measured behind reflected shock waves in a series of lean CH4-O2-Ar mixtures using hydroxyl and methyl radical diagnostics. The rate coefficients are well represented by an Arrhenius expression given as k = (1.60(sup +0.67, sub -0.47 ) x 10(exp 13) e(-15813 +/- 587 K/T)/cubic cm.mol.s. This expression, which is valid in the temperature range 1575-1822 K, supports the downward trend in the rate coefficients that has been reported in recent determinations. All measurements to date, including the present study, have been to some extent affected by secondary reactions. The complications due to secondary reactions, choice of thermochemical data, and shock-boundary layer interactions that affect the determination of the rate coefficients are examined.

  12. Rate Coefficient Measurements of the Reaction CH3+O2+CH3O+O

    NASA Technical Reports Server (NTRS)

    Hwang, S. M.; Ryu, Si-Ok; DeWitt, K. J.; Rabinowitz, M. J.

    1999-01-01

    Rate coefficients for the reaction CH3 + O2 = CH3O + O were measured behind reflected shock waves in a series of lean CH4-O2-Ar mixtures using hydroxyl and methyl radical diagnostics. The rate coefficients are well represented by an Arrhenius expression given as k = (1.60(sup +0.67, -0.47)) X 10(exp 13) exp(- 15813 +/- 587 K/T)cc/mol s. This expression, which is valid in the temperature range 1575-1822 K, supports the downward trend in the rate coefficients that has been reported in recent determinations. All measurements to date, including the present study, have been to some extent affected by secondary reactions. The complications due to secondary reactions, choice of thermochemical data, and shock-boundary layer interactions that affect the determination of the rate coefficients are examined.

  13. Calculating the True and Observed Rates of Complex Heterogeneous Catalytic Reactions

    NASA Astrophysics Data System (ADS)

    Avetisov, A. K.; Zyskin, A. G.

    2018-06-01

    Equations of the theory of steady-state complex reactions are considered in matrix form. A set of stage stationarity equations is given, and an algorithm is described for deriving the canonic set of stationarity equations with appropriate corrections for the existence of fast stages in a mechanism. A formula for calculating the number of key compounds is presented. The applicability of the Gibbs rule to estimating the number of independent compounds in a complex reaction is analyzed. Some matrix equations relating the rates of dependent and key substances are derived. They are used as a basis to determine the general diffusion stoichiometry relationships between temperature, the concentrations of dependent reaction participants, and the concentrations of key reaction participants in a catalyst grain. An algorithm is described for calculating heat and mass transfer in a catalyst grain with respect to arbitrary complex heterogeneous catalytic reactions.

  14. Estimation of parameters in rational reaction rates of molecular biological systems via weighted least squares

    NASA Astrophysics Data System (ADS)

    Wu, Fang-Xiang; Mu, Lei; Shi, Zhong-Ke

    2010-01-01

    The models of gene regulatory networks are often derived from statistical thermodynamics principle or Michaelis-Menten kinetics equation. As a result, the models contain rational reaction rates which are nonlinear in both parameters and states. It is challenging to estimate parameters nonlinear in a model although there have been many traditional nonlinear parameter estimation methods such as Gauss-Newton iteration method and its variants. In this article, we develop a two-step method to estimate the parameters in rational reaction rates of gene regulatory networks via weighted linear least squares. This method takes the special structure of rational reaction rates into consideration. That is, in the rational reaction rates, the numerator and the denominator are linear in parameters. By designing a special weight matrix for the linear least squares, parameters in the numerator and the denominator can be estimated by solving two linear least squares problems. The main advantage of the developed method is that it can produce the analytical solutions to the estimation of parameters in rational reaction rates which originally is nonlinear parameter estimation problem. The developed method is applied to a couple of gene regulatory networks. The simulation results show the superior performance over Gauss-Newton method.

  15. Aerobic composting of waste activated sludge: Kinetic analysis for microbiological reaction and oxygen consumption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, Y.; Kawase, Y.

    2006-07-01

    In order to examine the optimal design and operating parameters, kinetics for microbiological reaction and oxygen consumption in composting of waste activated sludge were quantitatively examined. A series of experiments was conducted to discuss the optimal operating parameters for aerobic composting of waste activated sludge obtained from Kawagoe City Wastewater Treatment Plant (Saitama, Japan) using 4 and 20 L laboratory scale bioreactors. Aeration rate, compositions of compost mixture and height of compost pile were investigated as main design and operating parameters. The optimal aerobic composting of waste activated sludge was found at the aeration rate of 2.0 L/min/kg (initial compostingmore » mixture dry weight). A compost pile up to 0.5 m could be operated effectively. A simple model for composting of waste activated sludge in a composting reactor was developed by assuming that a solid phase of compost mixture is well mixed and the kinetics for microbiological reaction is represented by a Monod-type equation. The model predictions could fit the experimental data for decomposition of waste activated sludge with an average deviation of 2.14%. Oxygen consumption during composting was also examined using a simplified model in which the oxygen consumption was represented by a Monod-type equation and the axial distribution of oxygen concentration in the composting pile was described by a plug-flow model. The predictions could satisfactorily simulate the experiment results for the average maximum oxygen consumption rate during aerobic composting with an average deviation of 7.4%.« less

  16. Surface reaction rate and probability of ozone and alpha-terpineol on glass, polyvinyl chloride, and latex paint surfaces.

    PubMed

    Shu, Shi; Morrison, Glenn C

    2011-05-15

    Ozone can react homogeneously with unsaturated organic compounds in buildings to generate undesirable products. However, these reactions can also occur on indoor surfaces, especially for low-volatility organics. Conversion rates of ozone with α-terpineol, a representative low-volatility compound, were quantified on surfaces that mimic indoor substrates. Rates were measured for α-terpineol adsorbed to beads of glass, polyvinylchloride (PVC), and dry latex paint, in a plug flow reactor. A newly defined second-order surface reaction rate coefficient, k(2), was derived from the flow reactor model. The value of k(2) ranged from 0.68 × 10(-14) cm(4)s(-1)molecule(-1) for α-terpineol adsorbed to PVC to 3.17 × 10(-14) cm(4)s(-1)molecule(-1) for glass, but was insensitive to relative humidity. Further, k(2) is only weakly influenced by the adsorbed mass but instead appears to be more strongly related to the interfacial activity α-terpineol. The minimum reaction probability ranged from 3.79 × 10(-6) for glass at 20% RH to 6.75 × 10(-5) for PVC at 50% RH. The combination of high equilibrium surface coverage and high reactivity for α-terpineol suggests that surface conversion rates are fast enough to compete with or even overwhelm other removal mechanisms in buildings such as gas-phase conversion and air exchange.

  17. Investigation of Solvent Effects on the Rate and Stereoselectivity of the Henry Reaction

    PubMed Central

    Kostal, Jakub; Voutchkova, Adelina M.; Jorgensen, William L.

    2011-01-01

    A combined computational and experimental kinetic study on the Henry reaction is reported. The effects of salvation on the transition structures and the rates of reaction between nitromethane and formaldehyde, and between nitropropane and benzaldehyde are elucidated with QM/MM calculations. PMID:22168236

  18. "JCE" Classroom Activity #111: Redox Reactions in Three Representations

    ERIC Educational Resources Information Center

    Nieves, Edgardo L. Ortiz; Barreto, Reizelie; Medina, Zuleika

    2012-01-01

    This activity introduces students to the concept of reduction-oxidation (redox) reactions. To help students obtain a thorough understanding of redox reactions, the concept is explored at three levels: macroscopic, submicroscopic, and symbolic. In this activity, students perform hands-on investigations of the three levels as they work at different…

  19. The temperature dependence of the rate constant for the reaction of hydroxyl radicals with nitric acid

    NASA Technical Reports Server (NTRS)

    Kurylo, M. J.; Cornett, K. D.; Murphy, J. L.

    1982-01-01

    The rate constant for the reaction of hydroxyl radicals with nitric acid in the 225-443 K temperature range has been measured by means of the flash photolysis resonance fluorescence technique. Above 300 K, the rate constant levels off in a way that can only be explained by the occurrence of two reaction channels, of which one, operative at low temperatures, proceeds through the formation of an adduct intermediate. The implications of these rate constant values for stratospheric reaction constants is discussed.

  20. Microalloying of transition metal silicides by mechanical activation and field-activated reaction

    DOEpatents

    Munir, Zuhair A [Davis, CA; Woolman, Joseph N [Davis, CA; Petrovic, John J [Los Alamos, NM

    2003-09-02

    Alloys of transition metal suicides that contain one or more alloying elements are fabricated by a two-stage process involving mechanical activation as the first stage and densification and field-activated reaction as the second stage. Mechanical activation, preferably performed by high-energy planetary milling, results in the incorporation of atoms of the alloying element(s) into the crystal lattice of the transition metal, while the densification and field-activated reaction, preferably performed by spark plasma sintering, result in the formation of the alloyed transition metal silicide. Among the many advantages of the process are its ability to accommodate materials that are incompatible in other alloying methods.

  1. Aligned carbon nanotube with electro-catalytic activity for oxygen reduction reaction

    DOEpatents

    Liu, Di-Jia; Yang, Junbing; Wang, Xiaoping

    2010-08-03

    A catalyst for an electro-chemical oxygen reduction reaction (ORR) of a bundle of longitudinally aligned carbon nanotubes having a catalytically active transition metal incorporated longitudinally in said nanotubes. A method of making an electro-chemical catalyst for an oxygen reduction reaction (ORR) having a bundle of longitudinally aligned carbon nanotubes with a catalytically active transition metal incorporated throughout the nanotubes, where a substrate is in a first reaction zone, and a combination selected from one or more of a hydrocarbon and an organometallic compound containing an catalytically active transition metal and a nitrogen containing compound and an inert gas and a reducing gas is introduced into the first reaction zone which is maintained at a first reaction temperature for a time sufficient to vaporize material therein. The vaporized material is then introduced to a second reaction zone maintained at a second reaction temperature for a time sufficient to grow longitudinally aligned carbon nanotubes over the substrate with a catalytically active transition metal incorporated throughout the nanotubes.

  2. Prediction of Chain Propagation Rate Constants of Polymerization Reactions in Aqueous NIPAM/BIS and VCL/BIS Systems.

    PubMed

    Kröger, Leif C; Kopp, Wassja A; Leonhard, Kai

    2017-04-06

    Microgels have a wide range of possible applications and are therefore studied with increasing interest. Nonetheless, the microgel synthesis process and some of the resulting properties of the microgels, such as the cross-linker distribution within the microgels, are not yet fully understood. An in-depth understanding of the synthesis process is crucial for designing tailored microgels with desired properties. In this work, rate constants and reaction enthalpies of chain propagation reactions in aqueous N-isopropylacrylamide/N,N'-methylenebisacrylamide and aqueous N-vinylcaprolactam/N,N'-methylenebisacrylamide systems are calculated to identify the possible sources of an inhomogeneous cross-linker distribution in the resulting microgels. Gas-phase reaction rate constants are calculated from B2PLYPD3/aug-cc-pVTZ energies and B3LYPD3/tzvp geometries and frequencies. Then, solvation effects based on COSMO-RS are incorporated into the rate constants to obtain the desired liquid-phase reaction rate constants. The rate constants agree with experiments within a factor of 2-10, and the reaction enthalpies deviate less than 5 kJ/mol. Further, the effect of rate constants on the microgel growth process is analyzed, and it is shown that differences in the magnitude of the reaction rate constants are a source of an inhomogeneous cross-linker distribution within the resulting microgel.

  3. Kinetics of the benzyl + O(3P) reaction: a quantum chemical/statistical reaction rate theory study.

    PubMed

    da Silva, Gabriel; Bozzelli, Joseph W

    2012-12-14

    The resonance stabilized benzyl radical is an important intermediate in the combustion of aromatic hydrocarbons and in polycyclic aromatic hydrocarbon (PAH) formation in flames. Despite being a free radical, benzyl is relatively stable in thermal, oxidizing environments, and is predominantly removed through bimolecular reactions with open-shell species other than O(2). In this study the reaction of benzyl with ground-state atomic oxygen, O((3)P), is examined using quantum chemistry and statistical reaction rate theory. C(7)H(7)O energy surfaces are generated at the G3SX level, and include several novel pathways. Transition state theory is used to describe elementary reaction kinetics, with canonical variational transition state theory applied for barrierless O atom association with benzyl. Apparent rate constants and branching ratios to different product sets are obtained as a function of temperature and pressure from solving the time-dependent master equation, with RRKM theory for microcanonical k(E). These simulations indicate that the benzyl + O reaction predominantly forms the phenyl radical (C(6)H(5)) plus formaldehyde (HCHO), with lesser quantities of the C(7)H(6)O products benzaldehyde, ortho-quinone methide, and para-quinone methide (+H), along with minor amounts of the formyl radical (HCO) + benzene. Addition of O((3)P) to the methylene site in benzyl produces a highly vibrationally excited C(7)H(7)O* adduct, the benzoxyl radical, which can β-scission to benzaldehyde + H and phenyl + HCHO. In order to account for the experimental observation of benzene as the major reaction product, a roaming radical mechanism is proposed that converts the nascent products phenyl and HCHO to benzene + HCO. Oxygen atom addition at the ortho and para ring sites in benzyl, which has not been previously considered, is shown to lead to the quinone methides + H; these species are less-stable isomers of benzaldehyde that are proposed as important combustion intermediates, but

  4. Rate and reaction probability of the surface reaction between ozone and dihydromyrcenol measured in a bench scale reactor and a room-sized chamber

    NASA Astrophysics Data System (ADS)

    Shu, Shi; Morrison, Glenn C.

    2012-02-01

    Low volatility terpenoids emitted from consumer products can react with ozone on surfaces and may significantly alter concentrations of ozone, terpenoids and reaction products in indoor air. We measured the reaction probability and a second-order surface-specific reaction rate for the ozonation of dihydromyrcenol, a representative indoor terpenoid, adsorbed onto polyvinylchloride (PVC), glass, and latex paint coated spheres. The reaction probability ranged from (0.06-8.97) × 10 -5 and was very sensitive to humidity, substrate and mass adsorbed. The average surface reaction probability is about 10 times greater than that for the gas-phase reaction. The second-order surface-specific rate coefficient ranged from (0.32-7.05) × 10 -15 cm 4 s -1 molecule -1and was much less sensitive to humidity, substrate, or mass adsorbed. We also measured the ozone deposition velocity due to adsorbed dihydromyrcenol on painted drywall in a room-sized chamber, Based on that, we calculated the rate coefficient ((0.42-1.6) × 10 -15 cm 4 molecule -1 s -1), which was consistent with that derived from bench-scale experiments for the latex paint under similar conditions. We predict that more than 95% of dihydromyrcenol oxidation takes place on indoor surfaces, rather than in building air.

  5. Rate equation for creatine kinase predicts the in vivo reaction velocity: /sup 31/P NMR surface coil studies in brain, heart, and skeletal muscle of the living rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bittl, J.A.; DeLayre, J.; Ingwall, J.S.

    1987-09-22

    Brain, heart, and skeletal muscle contain four different creatine kinase isozymes and various concentrations of substrates for the creatine kinase reaction. To identify if the velocity of the creatine kinase reaction under cellular conditions is regulated by enzyme activity and substrate concentrations as predicted by the rate equation, the authors used /sup 31/P NMR and spectrophotometric techniques to measure reaction velocity, enzyme content, isozyme distribution, and concentrations of substrates in brain, heart, and skeletal muscle of living rat under basal or resting conditions. The total tissue activity of creatine kinase in the direction of MgATP synthesis provided an estimate formore » V/sub max/ and exceeded the NMR-determined in vivo reaction velocities by an order of magnitude. The isozyme composition varied among the three tissues: >99% BB for brain; 14% MB, 61% MM, and 25% mitochondrial for heart; and 98% MM and 2% mitochondrial for skeletal muscle. The NMR-determined reaction velocities agreed with predicted values from the creatine kinase rate equation. The concentrations of free creatine and cytosolic MgADP, being less than or equal to the dissociation constants for each isozyme, were dominant terms in the creatine kinase rate equation for predicting the in vivo reaction velocity. Thus, they observed that the velocity of the creatine kinase reaction is regulated by total tissue enzyme activity and by the concentrations of creatine and MgADP in a manner that is independent of isozyme distribution.« less

  6. Rates for neutron-capture reactions on tungsten isotopes in iron meteorites. [Abstract only

    NASA Technical Reports Server (NTRS)

    Masarik, J.; Reedy, R. C.

    1994-01-01

    High-precision W isotopic analyses by Harper and Jacobsen indicate the W-182/W-183 ratio in the Toluca iron meteorite is shifted by -(3.0 +/- 0.9) x 10(exp -4) relative to a terrestrial standard. Possible causes of this shift are neutron-capture reactions on W during Toluca's approximately 600-Ma exposure to cosmic ray particles or radiogenic growth of W-182 from 9-Ma Hf-182 in the silicate portion of the Earth after removal of W to the Earth's core. Calculations for the rates of neutron-capture reactions on W isotopes were done to study the first possibility. The LAHET Code System (LCS) which consists of the Los Alamos High Energy Transport (LAHET) code and the Monte Carlo N-Particle(MCNP) transport code was used to numerically simulate the irradiation of the Toluca iron meteorite by galactic-cosmic-ray (GCR) particles and to calculate the rates of W(n, gamma) reactions. Toluca was modeled as a 3.9-m-radius sphere with the composition of a typical IA iron meteorite. The incident GCR protons and their interactions were modeled with LAHET, which also handled the interactions of neutrons with energies above 20 MeV. The rates for the capture of neutrons by W-182, W-183, and W-186 were calculated using the detailed library of (n, gamma) cross sections in MCNP. For this study of the possible effect of W(n, gamma) reactions on W isotope systematics, we consider the peak rates. The calculated maximum change in the normalized W-182/W-183 ratio due to neutron-capture reactions cannot account for more than 25% of the mass 182 deficit observed in Toluca W.

  7. Stress-associated cardiovascular reaction masks heart rate dependence on physical load in mice.

    PubMed

    Andreev-Andrievskiy, A A; Popova, A S; Borovik, A S; Dolgov, O N; Tsvirkun, D V; Custaud, M; Vinogradova, O L

    2014-06-10

    When tested on the treadmill mice do not display a graded increase of heart rate (HR), but rather a sharp shift of cardiovascular indices to high levels at the onset of locomotion. We hypothesized that under test conditions cardiovascular reaction to physical load in mice is masked with stress-associated HR increase. To test this hypothesis we monitored mean arterial pressure (MAP) and heart rate in C57BL/6 mice after exposure to stressful stimuli, during spontaneous locomotion in the open-field test, treadmill running or running in a wheel installed in the home cage. Mice were treated with β1-adrenoblocker atenolol (2mg/kg ip, A), cholinolytic ipratropium bromide (2mg/kg ip, I), combination of blockers (A+I), anxiolytic diazepam (5mg/kg ip, D) or saline (control trials, SAL). MAP and HR in mice increased sharply after handling, despite 3weeks of habituation to the procedure. Under stressful conditions of open field test cardiovascular parameters in mice were elevated and did not depend on movement speed. HR values did not differ in I and SAL groups and were reduced with A or A+I. HR was lower at rest in D pretreated mice. In the treadmill test HR increase over speeds of 6, 12 and 18m/min was roughly 1/7-1/10 of HR increase observed after placing the mice on the treadmill. HR could not be increased with cholinolytic (I), but was reduced after sympatholytic (A) or A+I treatment. Anxiolytic (D) reduced heart rate at lower speeds of movement and its overall effect was to unmask the dependency of HR on running speed. During voluntary running in non-stressful conditions of the home cage HR in mice linearly increased with increasing running speeds. We conclude that in test situations cardiovascular reactions in mice are governed predominantly by stress-associated sympathetic activation, rendering efforts to evaluate HR and MAP reactions to workload unreliable. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Consistent Modeling of GS 1826-24 X-Ray Bursts for Multiple Accretion Rates Demonstrates the Possibility of Constraining rp-process Reaction Rates

    NASA Astrophysics Data System (ADS)

    Meisel, Zach

    2018-06-01

    Type-I X-ray burst light curves encode unique information about the structure of accreting neutron stars and the nuclear reaction rates of the rp-process that powers bursts. Using the first model calculations of hydrogen/helium-burning bursts for a large range of astrophysical conditions performed with the code MESA, this work shows that simultaneous model–observation comparisons for bursts from several accretion rates \\dot{M} are required to remove degeneracies in astrophysical conditions that otherwise reproduce bursts for a single \\dot{M} and that such consistent multi-epoch modeling could possibly limit the 15O(α, γ)19Ne reaction rate. Comparisons to the 1998, 2000, and 2007 bursting epochs of the neutron star GS 1826-24 show that \\dot{M} must be larger than previously inferred and that the shallow heating in this source must be below 0.5 MeV/u, providing a new method to constrain the shallow heating mechanism in the outer layers of accreting neutron stars. Features of the light curve rise are used to demonstrate that a lower limit could likely be placed on the 15O(α, γ) reaction rate, demonstrating the possibility of constraining nuclear reaction rates with X-ray burst light curves.

  9. Atmospheric reactions of methylcyclohexanes with Cl atoms and OH radicals: determination of rate coefficients and degradation products.

    PubMed

    Ballesteros, Bernabé; Ceacero-Vega, Antonio A; Jiménez, Elena; Albaladejo, José

    2015-04-01

    As the result of biogenic and anthropogenic activities, large quantities of chemical compounds are emitted into the troposphere. Alkanes, in general, and cycloalkanes are an important chemical class of hydrocarbons found in diesel, jet and gasoline, vehicle exhaust emissions, and ambient air in urban areas. In general, the primary atmospheric fate of organic compounds in the gas phase is the reaction with hydroxyl radicals (OH). The oxidation by Cl atoms has gained importance in the study of atmospheric reactions because they may exert some influence in the boundary layer, particularly in marine and coastal environments, and in the Arctic troposphere. The aim of this paper is to study of the atmospheric reactivity of methylcylohexanes with Cl atoms and OH radicals under atmospheric conditions (in air at room temperature and pressure). Relative kinetic techniques have been used to determine the rate coefficients for the reaction of Cl atoms and OH radicals with methylcyclohexane, cis-1,4-dimethylcyclohexane, trans-1,4-dimethylcyclohexane, and 1,3,5-trimethylcyclohexane at 298 ± 2 K and 720 ± 5 Torr of air by Fourier transform infrared) spectroscopy and gas chromatography-mass spectrometry (GC-MS) in two atmospheric simulation chambers. The products formed in the reaction under atmospheric conditions were investigated using a 200-L Teflon bag and employing the technique of solid-phase microextraction coupled to a GC-MS. The rate coefficients obtained for the reaction of Cl atoms with the studied compounds are the following ones (in units of 10(-10) cm(3) molecule(-1) s(-1)): (3.11 ± 0.16), (2.89 ± 0.16), (2.89 ± 0.26), and (2.61 ± 0.42), respectively. For the reactions with OH radicals the determined rate coefficients are (in units of 10(-11) cm(3) molecule(-1) s(-1)): (1.18 ± 0.12), (1.49 ± 0.16), (1.41 ± 0.15), and (1.77 ± 0.23), respectively. The reported error is twice the standard deviation. A detailed

  10. Absolute rate of the reaction of Cl(p-2) with molecular hydrogen from 200 - 500 K

    NASA Technical Reports Server (NTRS)

    Whytock, D. A.; Lee, J. H.; Michael, J. V.; Payne, W. A.; Stief, L. J.

    1976-01-01

    Rate constants for the reaction of atomic chlorine with hydrogen are measured from 200 - 500 K using the flash photolysis-resonance fluorescence technique. The results are compared with previous work and are discussed with particular reference to the equilibrium constant for the reaction and to relative rate data for chlorine atom reactions. Theoretical calculations, using the BEBO method with tunneling, give excellent agreement with experiment.

  11. Ab initio thermal rate calculations of HO + HO = O(3P) + H2O reaction and isotopologues.

    PubMed

    Nguyen, Thanh Lam; Stanton, John F

    2013-04-04

    The forward and reverse reactions, HO + HO ⇌ O((3)P) + H2O, which play roles in both combustion and laboratory studies, were theoretically characterized with a master equation approach to compute thermal reaction rate constants at both the low and high pressure limits. Our ab initio k(T) results for the title reaction and two isotopic variants agree very well with experiments (within 15%) over a wide temperature range. The calculated reaction rate shows a distinctly non-Arrhenius behavior and a strong curvature consistent with the experiment. This characteristic behavior is due to effects of positive barrier height and quantum mechanical tunneling. Tunneling is very important and contributes more than 70% of total reaction rate at room temperature. A prereactive complex is also important in the overall reaction scheme.

  12. Rate coefficients from quantum and quasi-classical cumulative reaction probabilities for the S(1D) + H2 reaction

    NASA Astrophysics Data System (ADS)

    Jambrina, P. G.; Lara, Manuel; Menéndez, M.; Launay, J.-M.; Aoiz, F. J.

    2012-10-01

    Cumulative reaction probabilities (CRPs) at various total angular momenta have been calculated for the barrierless reaction S(1D) + H2 → SH + H at total energies up to 1.2 eV using three different theoretical approaches: time-independent quantum mechanics (QM), quasiclassical trajectories (QCT), and statistical quasiclassical trajectories (SQCT). The calculations have been carried out on the widely used potential energy surface (PES) by Ho et al. [J. Chem. Phys. 116, 4124 (2002), 10.1063/1.1431280] as well as on the recent PES developed by Song et al. [J. Phys. Chem. A 113, 9213 (2009), 10.1021/jp903790h]. The results show that the differences between these two PES are relatively minor and mostly related to the different topologies of the well. In addition, the agreement between the three theoretical methodologies is good, even for the highest total angular momenta and energies. In particular, the good accordance between the CRPs obtained with dynamical methods (QM and QCT) and the statistical model (SQCT) indicates that the reaction can be considered statistical in the whole range of energies in contrast with the findings for other prototypical barrierless reactions. In addition, total CRPs and rate coefficients in the range of 20-1000 K have been calculated using the QCT and SQCT methods and have been found somewhat smaller than the experimental total removal rates of S(1D).

  13. Nucleotides as nucleophiles: reactions of nucleotides with phosphoimidazolide activated guanosine

    NASA Technical Reports Server (NTRS)

    Kanavarioti, A.; Rosenbach, M. T.; Hurley, T. B.

    1991-01-01

    An earlier study of the reaction of phosphoimidazolide activated nucleosides (ImpN) in aqueous phosphate buffers indicated two modes of reaction of the phosphate monoanion and dianion. The first mode is catalysis of the hydrolysis of the P-N bond in ImpN's which leads to imidazole and nucleoside 5'-monophosphate. The second represents a nucleophilic substitution of the imidazole to yield the nucleoside 5'-diphosphate. This earlier study thus served as a model for the reaction of ImpN with nucleoside monophosphates (pN) because the latter can be regarded as phosphate derivatives. In the present study we investigated the reaction of guanosine 5'-phosphate-2-methylimidazolide, 2-MeImpG, in the presence of pN (N = guanosine, adenosine and uridine) in the range 6.9 less than or equal to pH less than or equal to 7.7. We observed that pN's do act as nucleophiles to form NppG, and as general base to enhance the hydrolysis of the P-N bond in 2-MeImpG, i.e. pN show the same behavior as inorganic phosphate. The kinetic analysis yields the following rate constants for the dianion pN2-: knpN = 0.17 +/- 0.02 M-1 h-1 for nucleophilic attack and khpN = 0.11 +/- 0.07 M-1 h-1 for general base catalysis of the hydrolysis. These rate constants which are independent of the nucleobase compare with kp.2 = 0.415 M-1 h-1 and khp2. = 0.217 M-1 h-1 for the reactions of HPO4(2-). In addition, this study shows that under conditions where pN presumably form stacks, the reaction mechanism remains unchanged although in quantitative terms stacked pN are somewhat less reactive. Attack by the 2'-OH and 3'-OH groups of the ribose moiety in amounts greater than or equal to 1% is not observed; this is attributed to the large difference in nucleophilicity in the neutral pH range between the phosphate group and the ribose hydroxyls. This nucleophilicity rank is not altered by stacking.

  14. Reaction rates of graphite with ozone measured by etch decoration

    NASA Technical Reports Server (NTRS)

    Hennig, G. R.; Montet, G. L.

    1968-01-01

    Etch-decoration technique of detecting vacancies in graphite has been used to determine the reaction rates of graphite with ozone in the directions parallel and perpendicular to the layer planes. It consists essentially of peeling single atom layers off graphite crystals without affecting the remainder of the crystal.

  15. Reaction Rates Of Olivine Carbonation - An Experimental Study Using Synthetic Fluid Inclusions As Micro-Reactors

    NASA Astrophysics Data System (ADS)

    Sendula, E.; Lamadrid, H. M.; Bodnar, R. J.

    2017-12-01

    Ultramafic and mafic rocks (e.g. peridotites, serpentinites and basalts) are being considered as possible targets for CO2 sequestration via mineral carbonation. The determination of reaction kinetics and the factors that control mineralization are important in order to understand and predict fluid-rock reactions between the injected CO2 and the host rocks. Here we present results of experiments focused on determining the reaction rates of carbonation of olivine as a function of initial CO2 concentration (20 mol% and 11 mol%) in the aqueous solution and temperature (100°C and 50°C). We used a recently developed experimental method (Lamadrid et al., 2017) that uses synthetic fluid inclusions as micro-reactors. The micro-reactor technique coupled with non-destructive Raman spectroscopy allows us to monitor the reaction progress in situ and in real time, by quantifying the amount of CO2 consumed in the reaction as a function of time. Results show a measurable decrease of CO2 density in the fluid inclusions as a result of the reaction between the CO2-bearing aqueous phase and olivine. Magnesite formation begins within several hours at 100°C and most of the CO2 was consumed within two days. At 50°C, however, magnesite nucleation and precipitation required weeks to months to begin, and the reaction rates were about an order of magnitude slower than in the experiments at 100°C. No significant differences were observed in the reaction rates as a function of initial CO2 concentration. The application of the synthetic fluid inclusion technique as micro-reactors coupled with non-destructive analytical techniques is a promising tool to monitor rates of fluid-rock reactions in situ and in real time, allowing detailed micron-scale investigations. The technique can be applied to a wide variety of chemical systems, host minerals, reaction products, fluid densities, temperatures, and different starting fluid compositions.

  16. Changes in muscle activation patterns when running step rate is increased.

    PubMed

    Chumanov, Elizabeth S; Wille, Christa M; Michalski, Max P; Heiderscheit, Bryan C

    2012-06-01

    Running with a step rate 5-10% greater than one's preferred can substantially reduce lower extremity joint moments and powers, and has been suggested as a possible strategy to aid in running injury management. The purpose of this study was to examine how neuromuscular activity changes with an increase in step rate during running. Forty-five injury-free, recreational runners participated in this study. Three-dimensional motion, ground reaction forces, and electromyography (EMG) of 8 muscles (rectus femoris, vastus lateralis, medial gastrocnemius, tibialis anterior, medial and lateral hamstrings, and gluteus medius and maximus) were recorded as each subject ran at their preferred speed for three different step rate conditions: preferred, +5% and +10% of preferred. Outcome measures included mean normalized EMG activity for each muscle at specific periods during the gait cycle. Muscle activities were found to predominantly increase during late swing, with no significant change in activities during the loading response. This increased muscle activity in anticipation of foot-ground contact likely alters the landing posture of the limb and the subsequent negative work performed by the joints during stance phase. Further, the increased activity observed in the gluteus maximus and medius suggests running with a greater step rate may have therapeutic benefits to those with anterior knee pain. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Astrophysical reaction rates from a symmetry-informed first-principles perspective

    NASA Astrophysics Data System (ADS)

    Dreyfuss, Alison; Launey, Kristina; Baker, Robert; Draayer, Jerry; Dytrych, Tomas

    2017-01-01

    With a view toward a new unified formalism for studying bound and continuum states in nuclei, to understand stellar nucleosynthesis from a fully ab initio perspective, we studied the nature of surface α-clustering in 20Ne by considering the overlap of symplectic states with cluster-like states. We compute the spectroscopic amplitudes and factors, α-decay width, and absolute resonance strength - characterizing major contributions to the astrophysical reaction rate through a low-lying 1- resonant state in 20Ne. As a next step, we consider a fully microscopic treatment for the n+4 He system, based on the successful first-principles No-Core Shell Model/Resonating Group Method (NCSM/RGM) for light nuclei, but with the capability to reach intermediate-mass nuclei. The new model takes advantage of the symmetry-based concept central to the Symmetry-Adapted No-Core Shell Model (SA-NCSM) to reduce computational complexity in physically-informed and methodical way, with sights toward first-principles calculations of rates for important astrophysical reactions, such as the 23 Al(p , γ) 24 Si reaction, believed to have a strong influence on X-ray burst light curves. Supported by the U.S. NSF (OCI-0904874, ACI -1516338) and the U.S. DOE (DE-SC0005248), and benefitted from computing resources provided by Blue Waters and the LSU Center for Computation & Technology.

  18. A comprehensive model to determine the effects of temperature and species fluctuations on reaction rates in turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Foy, E.; Ronan, G.; Chinitz, W.

    1982-01-01

    A principal element to be derived from modeling turbulent reacting flows is an expression for the reaction rates of the various species involved in any particular combustion process under consideration. A temperature-derived most-likely probability density function (pdf) was used to describe the effects of temperature fluctuations on the Arrhenius reaction rate constant. A most-likely bivariate pdf described the effects of temperature and species concentrations fluctuations on the reaction rate. A criterion is developed for the use of an "appropriate" temperature pdf. The formulation of models to calculate the mean turbulent Arrhenius reaction rate constant and the mean turbulent reaction rate is considered and the results of calculations using these models are presented.

  19. Activation barriers for series of exothermic homologous reactions. VI. Reactions of lanthanide and transition metal atoms.

    NASA Astrophysics Data System (ADS)

    Blue, Alan S.; Fontijn, Arthur

    2001-09-01

    Semiempirical configuration interaction (SECI) theory to predict activation barriers, E, as given by k(T)=ATn exp(-E(RT), has been applied to homologous series of lanthanide (LN) and transition metal (TM) atom oxidation reactions. This was achieved by considering as homologous series reactions of elements differing only by the number of electrons in one subshell. Comparison between SECI and experimental results leads to an average deviation for the LN+N2O reactions of 0.66 kJ mol-1, and up to 5.5 kJ mol-1 for other series. Thirty-one activation barriers are reported.

  20. Systematic effects on cross section data derived from reaction rates in reactor spectra and a re-analysis of 241Am reactor activation measurements

    NASA Astrophysics Data System (ADS)

    Žerovnik, Gašper; Schillebeeckx, Peter; Becker, Björn; Fiorito, Luca; Harada, Hideo; Kopecky, Stefan; Radulović, Vladimir; Sano, Tadafumi

    2018-01-01

    Methodologies to derive cross section data from spectrum integrated reaction rates were studied. The Westcott convention and some of its approximations were considered. Mostly measurements without and with transmission filter are combined to determine the reaction cross section at thermal energy together with the resonance integral. The accuracy of the results strongly depends on the assumptions that are made about the neutron energy distribution, which is mostly parameterised as a sum of a thermal and an epi-thermal component. Resonance integrals derived from such data can be strongly biased and should only be used in case no other data are available. The cross section at thermal energy can be biased for reaction cross sections which are dominated by low energy resonances. The amplitude of the effect is related to the lower energy limit that is used for the epi-thermal component of the neutron energy distribution. It is less affected by the assumptions on the shape of the energy distribution. When the energy dependence of the cross section is known and information about the neutron energy distribution is available, a method to correct for a bias on the cross section at thermal energy is proposed. Reactor activation measurements to determine the thermal 241Am(n, γ) cross section reported in the literature were reviewed. In case enough information was available, the results were corrected to account for possible biases and included in a least squares fit. These data combined with results of time-of-flight measurements give a capture cross section 720 (14) b for 241Am(n, γ) at thermal energy.

  1. Up-Scaling Geochemical Reaction Rates for Carbon Dioxide (CO2) in Deep Saline Aquifers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, Catherine A

    2013-02-28

    Geochemical reactions in deep subsurface environments are complicated by the consolidated nature and mineralogical complexity of sedimentary rocks. Understanding the kinetics of these reactions is critical to our ability to make long-term predictions about subsurface processes such as pH buffering, alteration in rock structure, permeability changes, and formation of secondary precipitates. In this project, we used a combination of experiments and numerical simulation to bridge the gap between our knowledge of these reactions at the lab scale and rates that are meaningful for modeling reactive transport at core scales. The focus is on acid-driven mineral dissolution, which is specifically relevantmore » in the context of CO2-water-rock interactions in geological sequestration of carbon dioxide. The project led to major findings in three areas. First, we modeled reactive transport in pore-network systems to investigate scaling effects in geochemical reaction rates. We found significant scaling effects when CO2 concentrations are high and reaction rates are fast. These findings indicate that the increased acidity associated with geological sequestration can generate conditions for which proper scaling tools are yet to be developed. Second, we used mathematical modeling to investigate the extent to which SO2, if co-injected with CO2, would acidify formation brines. We found that there exist realistic conditions in which the impact on brine acidity will be limited due to diffusion rate-limited SO2 dissolution from the CO2 phase, and the subsequent pH shift may also be limited by the lack of availability of oxidants to produce sulfuric acid. Third, for three Viking sandstones (Alberta sedimentary basin, Canada), we employed backscattered electron microscopy and energy dispersive X-ray spectroscopy to statistically characterize mineral contact with pore space. We determined that for reactive minerals in sedimentary consolidated rocks, abundance alone is not a good

  2. Effects of reaction-kinetic parameters on modeling reaction pathways in GaN MOVPE growth

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Zuo, Ran; Zhang, Guoyi

    2017-11-01

    In the modeling of the reaction-transport process in GaN MOVPE growth, the selections of kinetic parameters (activation energy Ea and pre-exponential factor A) for gas reactions are quite uncertain, which cause uncertainties in both gas reaction path and growth rate. In this study, numerical modeling of the reaction-transport process for GaN MOVPE growth in a vertical rotating disk reactor is conducted with varying kinetic parameters for main reaction paths. By comparisons of the molar concentrations of major Ga-containing species and the growth rates, the effects of kinetic parameters on gas reaction paths are determined. The results show that, depending on the values of the kinetic parameters, the gas reaction path may be dominated either by adduct/amide formation path, or by TMG pyrolysis path, or by both. Although the reaction path varies with different kinetic parameters, the predicted growth rates change only slightly because the total transport rate of Ga-containing species to the substrate changes slightly with reaction paths. This explains why previous authors using different chemical models predicted growth rates close to the experiment values. By varying the pre-exponential factor for the amide trimerization, it is found that the more trimers are formed, the lower the growth rates are than the experimental value, which indicates that trimers are poor growth precursors, because of thermal diffusion effect caused by high temperature gradient. The effective order for the contribution of major species to growth rate is found as: pyrolysis species > amides > trimers. The study also shows that radical reactions have little effect on gas reaction path because of the generation and depletion of H radicals in the chain reactions when NH2 is considered as the end species.

  3. Activation barriers for series of exothermic homologous reactions. V. Boron group diatomic species reactions

    NASA Astrophysics Data System (ADS)

    Blue, Alan S.; Belyung, David P.; Fontijn, Arthur

    1997-09-01

    Semiempirical configuration interaction (SECI) theory is used to predict activation barriers E, as defined by k(T)=ATn exp(-E/RT). Previously SECI has been applied to homologous series of oxidation reactions of s1, s2, and s2p1 metal atoms. Here it is extended to oxidation reactions of diatomic molecules containing one s2p1 atom. E values are calculated for the reactions of BH, BF, BCl, AlF, AlCl, AlBr, GaF, GaI, InCl, InBr, InI, TlF, TlCl, TlBr, and TlI with O2, CO2, SO2, or N2O. These values correlate with the sums of the ionization potentials and Σ-Π promotion energies of the former minus the electron affinities of the latter. In the earlier work n was chosen somewhat arbitrarily, which affected the absolute values of E. Here it is shown that examination of available experimental and theoretical results allows determination of the best values of n. Using this approach yields n=1.9 for the present series. For the seven reactions which have been studied experimentally, the average deviation of the SECI activation barrier prediction from experiment is 4.0 kJ mol-1. Energy barriers are calculated for another 52 reactions.

  4. Nonequilibrium Contribution to the Rate of Reaction. III. Isothermal Multicomponent Systems

    DOE R&D Accomplishments Database

    Shizgal, B.; Karplus, M.

    1970-10-01

    The nonequilibrium contribution to the reaction rate of an isothermal multicomponent system is obtained by solution of the appropriate Chapman-Enskog equation; the system is composed of reactive species in contact with a heat bath of inert atoms M.

  5. Activation Energy of Tantalum-Tungsten Oxide Thermite Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cervantes, O; Kuntz, J; Gash, A

    2010-02-25

    The activation energy of a high melting temperature sol-gel (SG) derived tantalum-tungsten oxide thermite composite was determined using the Kissinger isoconversion method. The SG derived powder was consolidated using the High Pressure Spark Plasma Sintering (HPSPS) technique to 300 and 400 C to produce pellets with dimensions of 5 mm diameter by 1.5 mm height. A custom built ignition setup was developed to measure ignition temperatures at high heating rates (500-2000 C {center_dot} min{sup -1}). Such heating rates were required in order to ignite the thermite composite. Unlike the 400 C samples, results show that the samples consolidated to 300more » C undergo an abrupt change in temperature response prior to ignition. This change in temperature response has been attributed to the crystallization of the amorphous WO{sub 3} in the SG derived Ta-WO{sub 3} thermite composite and not to a pre-ignition reaction between the constituents. Ignition temperatures for the Ta-WO{sub 3} thermite ranged from approximately 465-670 C. The activation energy of the SG derived Ta-WO{sup 3} thermite composite consolidated to 300 and 400 C were determined to be 37.787 {+-} 1.58 kJ {center_dot} mol{sup -1} and 57.381 {+-} 2.26 kJ {center_dot} mol{sup -1}, respectively.« less

  6. Pore and Continuum Scale Study of the Effect of Subgrid Transport Heterogeneity on Redox Reaction Rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yuanyuan; Liu, Chongxuan; Zhang, Changyong

    2015-08-01

    A micromodel system with a pore structure for heterogeneous flow and transport was used to investigate the effect of subgrid transport heterogeneity on redox reaction rates. Hematite reductive dissolution by injecting a reduced form of flavin mononucleotide (FMNH2) at variable flow rates was used as an example to probe the variations of redox reaction rates in different subgrid transport domains. Experiments, pore-scale simulations, and macroscopic modeling were performed to measure and simulate in-situ hematite reduction and to evaluate the scaling behavior of the redox reaction rates from the pore to macroscopic scales. The results indicated that the measured pore-scale ratesmore » of hematite reduction were consistent with the predictions from a pore scale reactive transport model. A general trend is that hematite reduction followed reductant transport pathways, starting from the advection-dominated pores toward the interior of diffusion-dominated domains. Two types of diffusion domains were considered in the micromodel: a micropore diffusion domain, which locates inside solid grains or aggregates where reactant transport is limited by diffusion; and a macropore diffusion domain, which locates at wedged, dead-end pore spaces created by the grain-grain contacts. The rate of hematite reduction in the advection-dominated domain was faster than those in the diffusion-controlled domains, and the rate in the macropore diffusion domain was faster than that in the micropore domain. The reduction rates in the advection and macropore diffusion domains increased with increasing flow rate, but were affected by different mechanisms. The rate increase in the advection domain was controlled by the mass action effect as a faster flow supplied more reactants, and the rate increase in the macropore domain was more affected by the rate of mass exchange with the advection domain, which increased with increasing flow rate. The hematite reduction rate in the micropore domain was

  7. Monte Carlo analysis of uncertainty propagation in a stratospheric model. 2: Uncertainties due to reaction rates

    NASA Technical Reports Server (NTRS)

    Stolarski, R. S.; Butler, D. M.; Rundel, R. D.

    1977-01-01

    A concise stratospheric model was used in a Monte-Carlo analysis of the propagation of reaction rate uncertainties through the calculation of an ozone perturbation due to the addition of chlorine. Two thousand Monte-Carlo cases were run with 55 reaction rates being varied. Excellent convergence was obtained in the output distributions because the model is sensitive to the uncertainties in only about 10 reactions. For a 1 ppby chlorine perturbation added to a 1.5 ppby chlorine background, the resultant 1 sigma uncertainty on the ozone perturbation is a factor of 1.69 on the high side and 1.80 on the low side. The corresponding 2 sigma factors are 2.86 and 3.23. Results are also given for the uncertainties, due to reaction rates, in the ambient concentrations of stratospheric species.

  8. Clock Reaction: Outreach Attraction

    ERIC Educational Resources Information Center

    Carpenter, Yuen-ying; Phillips, Heather A.; Jakubinek, Michael B.

    2010-01-01

    Chemistry students are often introduced to the concept of reaction rates through demonstrations or laboratory activities involving the well-known iodine clock reaction. For example, a laboratory experiment involving thiosulfate as an iodine scavenger is part of the first-year general chemistry laboratory curriculum at Dalhousie University. With…

  9. Consistent Modeling of GS 1826-24 X-Ray Bursts for Multiple Accretion Rates Demonstrates the Possibility of Constraining rp-process Reaction Rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meisel, Zach

    Type-I X-ray burst light curves encode unique information about the structure of accreting neutron stars and the nuclear reaction rates of the rp-process that powers bursts. Using the first model calculations of hydrogen/helium-burning bursts for a large range of astrophysical conditions performed with the code MESA, this work shows that simultaneous model–observation comparisons for bursts from several accretion ratesmore » $$\\dot{M}$$ are required to remove degeneracies in astrophysical conditions that otherwise reproduce bursts for a single $$\\dot{M}$$ and that such consistent multi-epoch modeling could possibly limit the 15O(α, γ) 19Ne reaction rate. Comparisons to the 1998, 2000, and 2007 bursting epochs of the neutron star GS 1826-24 show that $$\\dot{M}$$ must be larger than previously inferred and that the shallow heating in this source must be below 0.5 MeV/u, providing a new method to constrain the shallow heating mechanism in the outer layers of accreting neutron stars. Lastly, features of the light curve rise are used to demonstrate that a lower limit could likely be placed on the 15O(α, γ) reaction rate, demonstrating the possibility of constraining nuclear reaction rates with X-ray burst light curves.« less

  10. Consistent Modeling of GS 1826-24 X-Ray Bursts for Multiple Accretion Rates Demonstrates the Possibility of Constraining rp-process Reaction Rates

    DOE PAGES

    Meisel, Zach

    2018-06-21

    Type-I X-ray burst light curves encode unique information about the structure of accreting neutron stars and the nuclear reaction rates of the rp-process that powers bursts. Using the first model calculations of hydrogen/helium-burning bursts for a large range of astrophysical conditions performed with the code MESA, this work shows that simultaneous model–observation comparisons for bursts from several accretion ratesmore » $$\\dot{M}$$ are required to remove degeneracies in astrophysical conditions that otherwise reproduce bursts for a single $$\\dot{M}$$ and that such consistent multi-epoch modeling could possibly limit the 15O(α, γ) 19Ne reaction rate. Comparisons to the 1998, 2000, and 2007 bursting epochs of the neutron star GS 1826-24 show that $$\\dot{M}$$ must be larger than previously inferred and that the shallow heating in this source must be below 0.5 MeV/u, providing a new method to constrain the shallow heating mechanism in the outer layers of accreting neutron stars. Lastly, features of the light curve rise are used to demonstrate that a lower limit could likely be placed on the 15O(α, γ) reaction rate, demonstrating the possibility of constraining nuclear reaction rates with X-ray burst light curves.« less

  11. Ozone-Induced Dissociation of Conjugated Lipids Reveals Significant Reaction Rate Enhancements and Characteristic Odd-Electron Product Ions

    NASA Astrophysics Data System (ADS)

    Pham, Huong T.; Maccarone, Alan T.; Campbell, J. Larry; Mitchell, Todd W.; Blanksby, Stephen J.

    2013-02-01

    Ozone-induced dissociation (OzID) is an alternative ion activation method that relies on the gas phase ion-molecule reaction between a mass-selected target ion and ozone in an ion trap mass spectrometer. Herein, we evaluated the performance of OzID for both the structural elucidation and selective detection of conjugated carbon-carbon double bond motifs within lipids. The relative reactivity trends for [M + X]+ ions (where X = Li, Na, K) formed via electrospray ionization (ESI) of conjugated versus nonconjugated fatty acid methyl esters (FAMEs) were examined using two different OzID-enabled linear ion-trap mass spectrometers. Compared with nonconjugated analogues, FAMEs derived from conjugated linoleic acids were found to react up to 200 times faster and to yield characteristic radical cations. The significantly enhanced reactivity of conjugated isomers means that OzID product ions can be observed without invoking a reaction delay in the experimental sequence (i.e., trapping of ions in the presence of ozone is not required). This possibility has been exploited to undertake neutral-loss scans on a triple quadrupole mass spectrometer targeting characteristic OzID transitions. Such analyses reveal the presence of conjugated double bonds in lipids extracted from selected foodstuffs. Finally, by benchmarking of the absolute ozone concentration inside the ion trap, second order rate constants for the gas phase reactions between unsaturated organic ions and ozone were obtained. These results demonstrate a significant influence of the adducting metal on reaction rate constants in the fashion Li > Na > K.

  12. Toward a reaction rate model of condensed-phase RDX decomposition under high temperatures

    NASA Astrophysics Data System (ADS)

    Schweigert, Igor

    2015-06-01

    Shock ignition of energetic molecular solids is driven by microstructural heterogeneities, at which even moderate stresses can result in sufficiently high temperatures to initiate material decomposition and chemical energy release. Mesoscale modeling of these ``hot spots'' requires a reaction rate model that describes the energy release with a sub-microsecond resolution and under a wide range of temperatures. No such model is available even for well-studied energetic materials such as RDX. In this presentation, I will describe an ongoing effort to develop a reaction rate model of condensed-phase RDX decomposition under high temperatures using first-principles molecular dynamics, transition-state theory, and reaction network analysis. This work was supported by the Naval Research Laboratory, by the Office of Naval Research, and by the DoD High Performance Computing Modernization Program Software Application Institute for Multiscale Reactive Modeling of Insensitive Munitions.

  13. Eight-dimensional quantum reaction rate calculations for the H+CH{sub 4} and H{sub 2}+CH{sub 3} reactions on recent potential energy surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yong; Zhang, Dong H., E-mail: zhangdh@dicp.ac.cn

    2014-11-21

    Eight-dimensional (8D) transition-state wave packet simulations have been performed on two latest potential energy surfaces (PES), the Zhou-Fu-Wang-Collins-Zhang (ZFWCZ) PES [Y. Zhou, B. Fu, C. Wang, M. A. Collins, and D. H. Zhang, J. Chem. Phys. 134, 064323 (2011)] and the Xu-Chen-Zhang (XCZ)-neural networks (NN) PES [X. Xu, J. Chen, and D. H. Zhang, Chin. J. Chem. Phys. 27, 373 (2014)]. Reaction rate constants for both the H+CH{sub 4} reaction and the H{sub 2}+CH{sub 3} reaction are calculated. Simulations of the H+CH{sub 4} reaction based on the XCZ-NN PES show that the ZFWCZ PES predicts rate constants with reasonable highmore » accuracy for low temperatures while leads to slightly lower results for high temperatures, in line with the distribution of interpolation error associated with the ZFWCZ PES. The 8D H+CH{sub 4} rate constants derived on the ZFWCZ PES compare well with full-dimensional 12D results based on the equivalent m-ZFWCZ PES, with a maximum relative difference of no more than 20%. Additionally, very good agreement is shown by comparing the 8D XCZ-NN rate constants with the 12D results obtained on the ZFWCZ-WM PES, after considering the difference in static barrier height between these two PESs. The reaction rate constants calculated for the H{sub 2}+CH{sub 3} reaction are found to be in good consistency with experimental observations.« less

  14. Catalytic Activity of μ-Carbido-Dimeric Iron(IV) Octapropylporphyrazinate in the 3,5,7,2',4'-Pentahydroxyflavone Oxidation Reaction with tert-Butyl Hydroperoxide

    NASA Astrophysics Data System (ADS)

    Tyurin, D. V.; Zaitseva, S. V.; Kudrik, E. V.

    2018-05-01

    It is found for the first time that μ-carbido-dimeric iron(IV) octapropylporphyrazinate displays catalytic activity in the oxidation reaction of natural flavonol morin with tert-butyl hydroperoxide, with the catalyst being stable under conditions of the reaction. The kinetics of this reaction are studied. It is shown the reaction proceeds via tentative formation of a complex between the catalyst and the oxidant, followed by O‒O bond homolytic cleavage. The kinetics of the reaction is described in the coordinates of the Michaelis-Menten equation. A linear dependence of the apparent reaction rate constant on the concentration of the catalyst is observed, testifying to its participation in the limiting reaction step. The equilibrium constants and rates of interaction are found. A mechanism is proposed for the reaction on the basis of the experimental data.

  15. Examining the reaction of monetary policy to exchange rate changes: A nonlinear ARDL approach

    NASA Astrophysics Data System (ADS)

    Manogaran, Lavaneesvari; Sek, Siok Kun

    2017-04-01

    Previous studies showed the exchange rate changes can have significant impacts on macroeconomic performance. Over fluctuation of exchange rate may lead to economic instability. Hence, monetary policy rule tends to react to exchange rate changes. Especially, in emerging economies where the policy-maker tends to limit the exchange rate movement through interventions. In this study, we seek to investigate how the monetary policy rule reacts to exchange rate changes. The nonlinear autoregressive distributed lag (NARDL) model is applied to capture the asymmetric effect of exchange rate changes on monetary policy reaction function (interest rate). We focus the study in ASEAN5 countries (Indonesia, Malaysia, Philippines, Thailand and Singapore). The results indicated the existence of asymmetric effect of exchange rates changes on the monetary reaction function for all ASEAN5 countries in the long-run. Where, in majority of the cases the monetary policy is reacting to the appreciation and depreciation of exchange rate by raising the policy rate. This affirms the intervention of policymakers with the `fear of floating' behavior.

  16. Mixing effects on apparent reaction rates and isotope fractionation during denitrification in a heterogeneous aquifer

    USGS Publications Warehouse

    Green, Christopher T.; Böhlke, John Karl; Bekins, Barbara A.; Phillips, Steven P.

    2010-01-01

    Gradients in contaminant concentrations and isotopic compositions commonly are used to derive reaction parameters for natural attenuation in aquifers. Differences between field‐scale (apparent) estimated reaction rates and isotopic fractionations and local‐scale (intrinsic) effects are poorly understood for complex natural systems. For a heterogeneous alluvial fan aquifer, numerical models and field observations were used to study the effects of physical heterogeneity on reaction parameter estimates. Field measurements included major ions, age tracers, stable isotopes, and dissolved gases. Parameters were estimated for the O2 reduction rate, denitrification rate, O2 threshold for denitrification, and stable N isotope fractionation during denitrification. For multiple geostatistical realizations of the aquifer, inverse modeling was used to establish reactive transport simulations that were consistent with field observations and served as a basis for numerical experiments to compare sample‐based estimates of “apparent” parameters with “true“ (intrinsic) values. For this aquifer, non‐Gaussian dispersion reduced the magnitudes of apparent reaction rates and isotope fractionations to a greater extent than Gaussian mixing alone. Apparent and true rate constants and fractionation parameters can differ by an order of magnitude or more, especially for samples subject to slow transport, long travel times, or rapid reactions. The effect of mixing on apparent N isotope fractionation potentially explains differences between previous laboratory and field estimates. Similarly, predicted effects on apparent O2threshold values for denitrification are consistent with previous reports of higher values in aquifers than in the laboratory. These results show that hydrogeological complexity substantially influences the interpretation and prediction of reactive transport.

  17. Carbonylation as a Key Reaction in Anaerobic Acetone Activation by Desulfococcus biacutus

    PubMed Central

    Gutiérrez Acosta, Olga B.; Hardt, Norman

    2013-01-01

    Acetone is activated by aerobic and nitrate-reducing bacteria via an ATP-dependent carboxylation reaction to form acetoacetate as the first reaction product. In the activation of acetone by sulfate-reducing bacteria, acetoacetate has not been found to be an intermediate. Here, we present evidence of a carbonylation reaction as the initial step in the activation of acetone by the strictly anaerobic sulfate reducer Desulfococcus biacutus. In cell suspension experiments, CO was found to be a far better cosubstrate for acetone activation than CO2. The hypothetical reaction product, acetoacetaldehyde, is extremely reactive and could not be identified as a free intermediate. However, acetoacetaldehyde dinitrophenylhydrazone was detected by mass spectrometry in cell extract experiments as a reaction product of acetone, CO, and dinitrophenylhydrazine. In a similar assay, 2-amino-4-methylpyrimidine was formed as the product of a reaction between acetoacetaldehyde and guanidine. The reaction depended on ATP as a cosubstrate. Moreover, the specific activity of aldehyde dehydrogenase (coenzyme A [CoA] acylating) tested with the putative physiological substrate was found to be 153 ± 36 mU mg−1 protein, and its activity was specifically induced in extracts of acetone-grown cells. Moreover, acetoacetyl-CoA was detected (by mass spectrometry) after the carbonylation reaction as the subsequent intermediate after acetoacetaldehyde was formed. These results together provide evidence that acetoacetaldehyde is an intermediate in the activation of acetone by sulfate-reducing bacteria. PMID:23913429

  18. Carbonylation as a key reaction in anaerobic acetone activation by Desulfococcus biacutus.

    PubMed

    Gutiérrez Acosta, Olga B; Hardt, Norman; Schink, Bernhard

    2013-10-01

    Acetone is activated by aerobic and nitrate-reducing bacteria via an ATP-dependent carboxylation reaction to form acetoacetate as the first reaction product. In the activation of acetone by sulfate-reducing bacteria, acetoacetate has not been found to be an intermediate. Here, we present evidence of a carbonylation reaction as the initial step in the activation of acetone by the strictly anaerobic sulfate reducer Desulfococcus biacutus. In cell suspension experiments, CO was found to be a far better cosubstrate for acetone activation than CO2. The hypothetical reaction product, acetoacetaldehyde, is extremely reactive and could not be identified as a free intermediate. However, acetoacetaldehyde dinitrophenylhydrazone was detected by mass spectrometry in cell extract experiments as a reaction product of acetone, CO, and dinitrophenylhydrazine. In a similar assay, 2-amino-4-methylpyrimidine was formed as the product of a reaction between acetoacetaldehyde and guanidine. The reaction depended on ATP as a cosubstrate. Moreover, the specific activity of aldehyde dehydrogenase (coenzyme A [CoA] acylating) tested with the putative physiological substrate was found to be 153 ± 36 mU mg(-1) protein, and its activity was specifically induced in extracts of acetone-grown cells. Moreover, acetoacetyl-CoA was detected (by mass spectrometry) after the carbonylation reaction as the subsequent intermediate after acetoacetaldehyde was formed. These results together provide evidence that acetoacetaldehyde is an intermediate in the activation of acetone by sulfate-reducing bacteria.

  19. A model SN2 reaction ‘on water’ does not show rate enhancement

    NASA Astrophysics Data System (ADS)

    Nelson, Katherine V.; Benjamin, Ilan

    2011-05-01

    Molecular dynamics calculations of the benchmark nucleophilic substitution reaction (SN2) Cl- + CH3Cl are carried out at the water liquid/vapor interface. The reaction free energy profile and the activation free energy are determined as a function of the reactants' location normal to the surface. The activation free energy remains almost constant relative to that in bulk water, despite the fact that the barrier is expected to significantly decrease as the reaction is carried out near the vapor phase. We show that this is due to the combined effects of a clustering of water molecules around the nucleophile and a relatively weak hydration of the transition state.

  20. Toward a reaction rate model of condensed-phase RDX decomposition under high temperatures

    NASA Astrophysics Data System (ADS)

    Schweigert, Igor

    2014-03-01

    Shock ignition of energetic molecular solids is driven by microstructural heterogeneities, at which even moderate stresses can result in sufficiently high temperatures to initiate material decomposition and the release of the chemical energy. Mesoscale modeling of these ``hot spots'' requires a chemical reaction rate model that describes the energy release with a sub-microsecond resolution and under a wide range of temperatures. No such model is available even for well-studied energetic materials such as RDX. In this presentation, I will describe an ongoing effort to develop a reaction rate model of condensed-phase RDX decomposition under high temperatures using first-principles molecular dynamics, transition-state theory, and reaction network analysis. This work was supported by the Naval Research Laboratory, by the Office of Naval Research, and by the DOD High Performance Computing Modernization Program Software Application Institute for Multiscale Reactive Modeling of Insensitive Munitions.

  1. HO + CO reaction rates and H/D kinetic isotope effects: master equation models with ab initio SCTST rate constants.

    PubMed

    Weston, Ralph E; Nguyen, Thanh Lam; Stanton, John F; Barker, John R

    2013-02-07

    Ab initio microcanonical rate constants were computed using Semi-Classical Transition State Theory (SCTST) and used in two master equation formulations (1D, depending on active energy with centrifugal corrections, and 2D, depending on total energy and angular momentum) to compute temperature-dependent rate constants for the title reactions using a potential energy surface obtained by sophisticated ab initio calculations. The 2D master equation was used at the P = 0 and P = ∞ limits, while the 1D master equation with centrifugal corrections and an empirical energy transfer parameter could be used over the entire pressure range. Rate constants were computed for 75 K ≤ T ≤ 2500 K and 0 ≤ [He] ≤ 10(23) cm(-3). For all temperatures and pressures important for combustion and for the terrestrial atmosphere, the agreement with the experimental rate constants is very good, but at very high pressures and T ≤ 200 K, the theoretical rate constants are significantly smaller than the experimental values. This effect is possibly due to the presence in the experiments of dimers and prereactive complexes, which were not included in the model calculations. The computed H/D kinetic isotope effects are in acceptable agreement with experimental data, which show considerable scatter. Overall, the agreement between experimental and theoretical H/D kinetic isotope effects is much better than in previous work, and an assumption of non-RRKM behavior does not appear to be needed to reproduce experimental observations.

  2. Brownian aggregation rate of colloid particles with several active sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nekrasov, Vyacheslav M.; Yurkin, Maxim A.; Chernyshev, Andrei V., E-mail: chern@ns.kinetics.nsc.ru

    2014-08-14

    We theoretically analyze the aggregation kinetics of colloid particles with several active sites. Such particles (so-called “patchy particles”) are well known as chemically anisotropic reactants, but the corresponding rate constant of their aggregation has not yet been established in a convenient analytical form. Using kinematic approximation for the diffusion problem, we derived an analytical formula for the diffusion-controlled reaction rate constant between two colloid particles (or clusters) with several small active sites under the following assumptions: the relative translational motion is Brownian diffusion, and the isotropic stochastic reorientation of each particle is Markovian and arbitrarily correlated. This formula was shownmore » to produce accurate results in comparison with more sophisticated approaches. Also, to account for the case of a low number of active sites per particle we used Monte Carlo stochastic algorithm based on Gillespie method. Simulations showed that such discrete model is required when this number is less than 10. Finally, we applied the developed approach to the simulation of immunoagglutination, assuming that the formed clusters have fractal structure.« less

  3. Rate Coefficients for the OH + (CHO)2 (Glyoxal) Reaction Between 240 and 400 K

    NASA Astrophysics Data System (ADS)

    Feierabend, K. J.; Talukdar, R. K.; Zhu, L.; Ravishankara, A. R.; Burkholder, J. B.

    2006-12-01

    Glyoxal (CHO)2, the simplest dialdehyde, is an end product formed in the atmospheric oxidation of biogenic hydrocarbons, for example, isoprene. As such, glyoxal plays a role in regional air quality and ozone production in certain locations. Glyoxal is lost in the atmosphere via UV photolysis and reaction with OH. However, the currently available rate coefficient data for the OH + glyoxal reaction is limited to a single room- temperature measurement made using the relative rate method. A determination of the rate coefficient temperature dependence is therefore needed for a more complete interpretation of the atmospheric processing of glyoxal. This study reports the rate coefficient for the OH + (CHO)2 reaction measured under pseudo- first-order conditions in OH ([(CHO)2] > 1000 [OH]0). OH radicals were produced using 248 nm pulsed laser photolysis of H2O2 or HNO3 and detected by pulsed laser induced fluorescence. The concentration of glyoxal in the reactor was determined using three independent techniques; gas flow rates as well as in situ UV and IR absorption. The total pressure in the reactor was varied from 40 to 300 Torr (He), and the rate coefficient was found to be independent of pressure over the temperature range studied. The rate coefficient exhibits a negative temperature dependence between 240 and 400 K consistent with the dependence previously observed for many other aldehydes. Our room-temperature rate coefficient is smaller than the relative rate value that is currently recommended for use in atmospheric model calculations. Our measured rate coefficients are discussed with respect to those for other aldehydes. The atmospheric implications of our work will also be discussed.

  4. Method and apparatus for obtaining enhanced production rate of thermal chemical reactions

    DOEpatents

    Tonkovich, Anna Lee Y.; Wang, Yong; Wegeng, Robert S.; Gao, Yufei

    2003-09-09

    Reactors and processes are disclosed that can utilize high heat fluxes to obtain fast, steady-state reaction rates. Porous catalysts used in conjunction with microchannel reactors to obtain high rates of heat transfer are also disclosed. Reactors and processes that utilize short contact times, high heat flux and low pressure drop are described. Improved methods of steam reforming are also provided.

  5. Method and apparatus for obtaining enhanced production rate of thermal chemical reactions

    DOEpatents

    Tonkovich, Anna Lee Y [Pasco, WA; Wang, Yong [Richland, WA; Wegeng, Robert S [Richland, WA; Gao, Yufei [Kennewick, WA

    2006-05-16

    Reactors and processes are disclosed that can utilize high heat fluxes to obtain fast, steady-state reaction rates. Porous catalysts used in conjunction with microchannel reactors to obtain high rates of heat transfer are also disclosed. Reactors and processes that utilize short contact times, high heat flux and low pressure drop are described. Improved methods of steam reforming are also provided.

  6. Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qiaobao; Chen, Huixin; Luo, Langli

    Advanced composite electrodes containing multiple active components are often used in lithium-ion batteries for practical applications. The performance of such heterogeneous composite electrodes can in principle be enhanced by tailoring the concurrent reaction dynamics in multiple active components for promoting their collective beneficial effects. However, the potential of this design principle has remained uncharted to date. Here we develop a composite anode of Cu/Si/Ge nanowire arrays, where each nanowire consists of a core of Cu segments and a Si/Ge bilayer shell. This unique electrode architecture exhibited a markedly improved electrochemical performance over the reference Cu/Si systems, demonstrating a stable capacitymore » retention (81% after 3000 cycles at 2C) and doubled specific capacity at a rate of 16C (1C = 2 A g1). By using in situ transmission electron microscopy and electrochemical testing, we unravel a novel reaction mechanism of dynamic co-lithiation/co-delithiation in the active Si and Ge bilayer, which is shown to effectively alleviate the electrochemically induced mechanical degradation and thus greatly enhance the long-cycle stability of the electrode. Our findings offer insights into a rational design of high-performance lithium-ion batteries via exploiting the concurrent reaction dynamics in the multiple active components of composite electrodes.A composite anode of Cu/Si/Ge nanowire arrays grown on a porous Ni foam enables the outstanding capacity, rate capability and cycle stability of Li-ion batteries.« less

  7. Photochemical parameters of atmospheric source gases: accurate determination of OH reaction rate constants over atmospheric temperatures, UV and IR absorption spectra

    NASA Astrophysics Data System (ADS)

    Orkin, V. L.; Khamaganov, V. G.; Martynova, L. E.; Kurylo, M. J.

    2012-12-01

    The emissions of halogenated (Cl, Br containing) organics of both natural and anthropogenic origin contribute to the balance of and changes in the stratospheric ozone concentration. The associated chemical cycles are initiated by the photochemical decomposition of the portion of source gases that reaches the stratosphere. Reactions with hydroxyl radicals and photolysis are the main processes dictating the compound lifetime in the troposphere and release of active halogen in the stratosphere for a majority of halogen source gases. Therefore, the accuracy of photochemical data is of primary importance for the purpose of comprehensive atmospheric modeling and for simplified kinetic estimations of global impacts on the atmosphere, such as in ozone depletion (i.e., the Ozone Depletion Potential, ODP) and climate change (i.e., the Global Warming Potential, GWP). The sources of critically evaluated photochemical data for atmospheric modeling, NASA/JPL Publications and IUPAC Publications, recommend uncertainties within 10%-60% for the majority of OH reaction rate constants with only a few cases where uncertainties lie at the low end of this range. These uncertainties can be somewhat conservative because evaluations are based on the data from various laboratories obtained during the last few decades. Nevertheless, even the authors of the original experimental works rarely estimate the total combined uncertainties of the published OH reaction rate constants to be less than ca. 10%. Thus, uncertainties in the photochemical properties of potential and current atmospheric trace gases obtained under controlled laboratory conditions still may constitute a major source of uncertainty in estimating the compound's environmental impact. One of the purposes of the presentation is to illustrate the potential for obtaining accurate laboratory measurements of the OH reaction rate constant over the temperature range of atmospheric interest. A detailed inventory of accountable sources of

  8. Alpha-capture reaction rates for 22Ne(alpha,n) via sub-Coulomb alpha-transfer

    NASA Astrophysics Data System (ADS)

    Jayatissa, Heshani; Rogachev, Grigory; Koshchiy, Yevgen; Goldberg, Vladilen; Bedoor, Shadi; Hooker, Joshua; Hunt, Curtis; Magana, Cordero; Roeder, Brian; Saastamoinen, Antti; Spiridon, Alexandria; Upadhyayula, Sriteja

    2016-09-01

    Direct measurements of α-capture reactions at energies relevant to astrophysics is extremely difficult to carry out due to the very small reaction cross section. The large uncertainties introduced when extrapolating direct measurements at high energies down to the Gamow energies can be overcome by measuring the Asymptotic Normalization Coefficients (ANC) of the relevant states using (6Li,d) α-transfer reactions at sub-Coulomb energies to reduce the model dependence. The study of the 22Ne(6Li,d) reaction was carried out at the Cyclotron Institute at Texas A&M University. The α-ANC measurements for the near α-threshold resonances of 26Mg will provide constraints for the reaction rate of the 22Ne(α,n) reaction.

  9. An effective rate equation approach to reaction kinetics in small volumes: theory and application to biochemical reactions in nonequilibrium steady-state conditions.

    PubMed

    Grima, R

    2010-07-21

    Chemical master equations provide a mathematical description of stochastic reaction kinetics in well-mixed conditions. They are a valid description over length scales that are larger than the reactive mean free path and thus describe kinetics in compartments of mesoscopic and macroscopic dimensions. The trajectories of the stochastic chemical processes described by the master equation can be ensemble-averaged to obtain the average number density of chemical species, i.e., the true concentration, at any spatial scale of interest. For macroscopic volumes, the true concentration is very well approximated by the solution of the corresponding deterministic and macroscopic rate equations, i.e., the macroscopic concentration. However, this equivalence breaks down for mesoscopic volumes. These deviations are particularly significant for open systems and cannot be calculated via the Fokker-Planck or linear-noise approximations of the master equation. We utilize the system-size expansion including terms of the order of Omega(-1/2) to derive a set of differential equations whose solution approximates the true concentration as given by the master equation. These equations are valid in any open or closed chemical reaction network and at both the mesoscopic and macroscopic scales. In the limit of large volumes, the effective mesoscopic rate equations become precisely equal to the conventional macroscopic rate equations. We compare the three formalisms of effective mesoscopic rate equations, conventional rate equations, and chemical master equations by applying them to several biochemical reaction systems (homodimeric and heterodimeric protein-protein interactions, series of sequential enzyme reactions, and positive feedback loops) in nonequilibrium steady-state conditions. In all cases, we find that the effective mesoscopic rate equations can predict very well the true concentration of a chemical species. This provides a useful method by which one can quickly determine the

  10. Electron capture rates in stars studied with heavy ion charge exchange reactions

    NASA Astrophysics Data System (ADS)

    Bertulani, C. A.

    2018-01-01

    Indirect methods using nucleus-nucleus reactions at high energies (here, high energies mean ~ 50 MeV/nucleon and higher) are now routinely used to extract information of interest for nuclear astrophysics. This is of extreme relevance as many of the nuclei involved in stellar evolution are short-lived. Therefore, indirect methods became the focus of recent studies carried out in major nuclear physics facilities. Among such methods, heavy ion charge exchange is thought to be a useful tool to infer Gamow-Teller matrix elements needed to describe electron capture rates in stars and also double beta-decay experiments. In this short review, I provide a theoretical guidance based on a simple reaction model for charge exchange reactions.

  11. Combined effect of whole-body vibration and ambient lighting on human discomfort, heart rate, and reaction time.

    PubMed

    Monazzam, Mohammad Reza; Shoja, Esmaeil; Zakerian, Seyed Abolfazl; Foroushani, Abbas Rahimi; Shoja, Mohsen; Gharaee, Masoumeh; Asgari, Amin

    2018-07-01

    This study aimed to investigate the effect of whole-body vibration and ambient lighting, as well as their combined effect on human discomfort, heart rate, and reaction time in laboratory conditions. 44 men were recruited with an average age of 25.4 ± 1.9 years. Each participant was subjected to 12 experimental steps, each step lasting five minutes for four different vibration accelerations in X, Y, and Z axes at a fixed frequency; three different lighting intensities of 50, 500, and 1000 lx were also considered. At each step, a visual computerized reaction test was taken from subjects and their heart rate recorded by pulse oximeter. In addition, the discomfort rate of subjects was measured using Borg scale. Increasing vibration acceleration significantly increased the discomfort rate and heart beat but not the reaction time. Lack of lighting caused more discomfort in the subjects, but there was no significant correlation between lighting intensity with heart rate and reaction time. The results also showed that the combined effect of vibration and lighting had no significant effect on any of the discomfort, heart rate, and reaction time variables. Whole-body vibration is an important factor in the development of human subjective and physiological reactions compared to lighting. Therefore, consideration of the level of vibration to which an individual is exposed in workplaces subject to vibration plays an important role in reducing the level of human discomfort, but its interaction with ambient lighting does not have a significant effect on human subjective and physiological responses.

  12. Self-Consistency of the Theory of Elementary Stage Rates of Reversible Processes and the Equilibrium Distribution of Reaction Mixture Components

    NASA Astrophysics Data System (ADS)

    Tovbin, Yu. K.

    2018-06-01

    An analysis is presented of one of the key concepts of physical chemistry of condensed phases: the theory self-consistency in describing the rates of elementary stages of reversible processes and the equilibrium distribution of components in a reaction mixture. It posits that by equating the rates of forward and backward reactions, we must obtain the same equation for the equilibrium distribution of reaction mixture components, which follows directly from deducing the equation in equilibrium theory. Ideal reaction systems always have this property, since the theory is of a one-particle character. Problems arise in considering interparticle interactions responsible for the nonideal behavior of real systems. The Eyring and Temkin approaches to describing nonideal reaction systems are compared. Conditions for the self-consistency of the theory for mono- and bimolecular processes in different types of interparticle potentials, the degree of deviation from the equilibrium state, allowing for the internal motions of molecules in condensed phases, and the electronic polarization of the reagent environment are considered within the lattice gas model. The inapplicability of the concept of an activated complex coefficient for reaching self-consistency is demonstrated. It is also shown that one-particle approximations for considering intermolecular interactions do not provide a theory of self-consistency for condensed phases. We must at a minimum consider short-range order correlations.

  13. Temperature-dependent rate coefficients and theoretical calculations for the OH+Cl2O reaction.

    PubMed

    Riffault, Véronique; Clark, Jared M; Hansen, Jaron C; Ravishankara, A R; Burkholder, James B

    2010-12-17

    Rate coefficients k for the OH+Cl(2)O reaction are measured as a function of temperature (230-370 K) and pressure by using pulsed laser photolysis to produce OH radicals and laser-induced fluorescence to monitor their loss under pseudo-first-order conditions in OH. The reaction rate coefficient is found to be independent of pressure, within the precision of our measurements at 30-100 Torr (He) and 100 Torr (N(2)). The rate coefficients obtained at 100 Torr (He) showed a negative temperature dependence with a weak non-Arrhenius behavior. A room-temperature rate coefficient of k(1)(297 K)=(7.5±1.1)×10(-12) cm(3) molecule(-1) s(-1) is obtained, where the quoted uncertainties are 2σ and include estimated systematic errors. Theoretical methods are used to examine OH···OCl(2) and OH···ClOCl adduct formation and the potential-energy surfaces leading to the HOCl+ClO (1a) and Cl+HOOCl (1d) products in reaction (1) at the hybrid density functional UMPW1K/6-311++G(2df,p) level of theory. The OH···OCl(2) and OH···ClOCl adducts are found to have binding energies of about 0.2 kcal mol(-1). The reaction is calculated to proceed through weak pre-reactive complexes. Transition-state energies for channels (1a) and (1d) are calculated to be about 1.4 and about 3.3 kcal mol(-1) above the energy of the reactants. The results from the present study are compared with previously reported rate coefficients, and the interpretation of the possible non-Arrhenius behavior is discussed.

  14. Re-evaluating reaction rates relevant to nova nucleosynthesis from a nuclear structure perspective

    NASA Astrophysics Data System (ADS)

    Jenkins, D. G.; Lister, C. J.; Janssens, R. V. F.; Khoo, T. L.; Moore, E. F.; Rehm, K. E.; Seweryniak, D.; Wuosmaa, A. H.; Davinson, T.; Woods, P. J.; Jokinen, A.; Penttila, H.; Martınez-Pinedo, G.; Jose, J.

    2006-03-01

    Conventionally, reaction rates relevant to nova nucleosynthesis are determined by performing the relevant proton capture reactions directly for stable species, or as has become possible more recently in inverse kinematics using short-lived accelerated radioactive beams with recoil separators. A secondary approach is to compile information on the properties of levels in the Gamow window using transfer reactions. We present a complementary technique where the states of interest are populated in a heavy-ion fusion reaction and their gamma decay studied with a state-of-the-art array of high-purity germanium detectors. The advantages of this approach, including the ability to determine resonance energies with high precision and the possibility of determining spins and parities from gamma-ray angular distributions are discussed. Two specific examples related to the 22Na(p,γ) and 30P(p,γ) reactions are presented.

  15. The rate of the reaction between CN and C2H2 at interstellar temperatures.

    PubMed

    Woon, D E; Herbst, E

    1997-03-01

    The rate coefficient for the important interstellar reaction between CN and C2H2 has been calculated as a function of temperature between 10 and 300 K. The potential surface for this reaction has been determined through ab initio quantum chemical techniques; the potential exhibits no barrier in the entrance channel but does show a small exit channel barrier, which lies below the energy of reactants. Phase-space calculations for the reaction dynamics, which take the exit channel barrier into account, show the same unusual temperature dependence as determined by experiment, in which the rate coefficient at first increases as the temperature is reduced below room temperature and then starts to decrease as the temperature drops below 50-100 K. The agreement between theory and experiment provides strong confirmation that the reaction occurs appreciably at cool interstellar temperatures.

  16. Rate constants for the thermal decomposition of ethanol and its bimolecular reactions with OH and D : reflected shock tube and theoretical studies.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivaramakrishnan, R.; Su, M.-C.; Michael, J. V.

    2010-09-09

    and C were studied with variable reaction coordinate transition state theory employing directly determined CASPT2/cc-pvdz interaction energies. Reactions A, D, and E were studied with conventional transition state theory employing QCISD(T)/CBS energies. For the saddle point in reaction A, additional high-level corrections are evaluated. The predicted reaction exo- and endothermicities are in good agreement with the current Active Thermochemical Tables values. The transition state theory predictions for the microcanonical rate coefficients in ethanol decomposition are incorporated in master equation calculations to yield predictions for the temperature and pressure dependences of reactions A-C. With modest adjustments (<1 kcal/mol) to a few key barrier heights, the present experimental and adjusted theoretical results yield a consistent description of both the decomposition (1-3) and abstraction kinetics (4 and 5). The present results are compared with earlier experimental and theoretical work.« less

  17. Reaction Rate Theory in Coordination Number Space: An Application to Ion Solvation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Santanu; Baer, Marcel D.; Mundy, Christopher J.

    2016-04-14

    Understanding reaction mechanisms in many chemical and biological processes require application of rare event theories. In these theories, an effective choice of a reaction coordinate to describe a reaction pathway is essential. To this end, we study ion solvation in water using molecular dynamics simulations and explore the utility of coordination number (n = number of water molecules in the first solvation shell) as the reaction coordinate. Here we compute the potential of mean force (W(n)) using umbrella sampling, predicting multiple metastable n-states for both cations and anions. We find with increasing ionic size, these states become more stable andmore » structured for cations when compared to anions. We have extended transition state theory (TST) to calculate transition rates between n-states. TST overestimates the rate constant due to solvent-induced barrier recrossings that are not accounted for. We correct the TST rates by calculating transmission coefficients using the reactive flux method. This approach enables a new way of understanding rare events involving coordination complexes. We gratefully acknowledge Liem Dang and Panos Stinis for useful discussion. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. SR, CJM, and GKS were supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. MDB was supported by MS3 (Materials Synthesis and Simulation Across Scales) Initiative, a Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory (PNNL). PNNL is a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy.« less

  18. A comprehensive model to determine the effects of temperature and species fluctuations on reaction rates in turbulent reaction flows

    NASA Technical Reports Server (NTRS)

    Magnotti, F.; Diskin, G.; Matulaitis, J.; Chinitz, W.

    1984-01-01

    The use of silane (SiH4) as an effective ignitor and flame stabilizing pilot fuel is well documented. A reliable chemical kinetic mechanism for prediction of its behavior at the conditions encountered in the combustor of a SCRAMJET engine was calculated. The effects of hydrogen addition on hydrocarbon ignition and flame stabilization as a means for reduction of lengthy ignition delays and reaction times were studied. The ranges of applicability of chemical kinetic models of hydrogen-air combustors were also investigated. The CHARNAL computer code was applied to the turbulent reaction rate modeling.

  19. Effect of Abrupt Substitution of Gadobenate Dimeglumine for Gadopentetate Dimeglumine on Rate of Allergic-like Reactions

    PubMed Central

    Dillman, Jonathan R.; Cohan, Richard H.; Hussain, Hero K.; Khalatbari, Shokoufeh; McHugh, Jonathan B.; Ellis, James H.

    2013-01-01

    Purpose: To evaluate the effect of abruptly substituting gadobenate dimeglumine for gadopentetate dimeglumine on allergic-like reactions. Materials and Methods: The institutional review board approved and waived patient consent for this HIPAA-compliant retrospective study. Allergic-like reactions related to gadolinium-based contrast media were assessed 2 years before and 3.5 years after gadobenate dimeglumine was substituted for gadopentetate dimeglumine. Reaction rates and severity were compared by using χ2 tests, Fisher exact tests, odds ratios (ORs), and confidence intervals (CIs). Results: Allergic-like reactions (137 mild, 19 moderate, and six severe) occurred in 162 (0.15%) of 105 607 injections of gadolinium-based contrast media (gadopentetate dimeglumine, 31 540; gadobenate dimeglumine, 66 152; other, 7915). Gadobenate dimeglumine was associated with significantly more overall (0.19% [123 of 66 152] vs 0.08% [24 of 31 540]; OR, 2.4; 95% CI: 1.6, 3.8; P < .0001) and mild (0.16% [107 of 66 152] vs 0.06% [18 of 31 540]; OR, 2.8; 95% CI: 1.7, 4.7; P < .0001) allergic-like reactions than was gadopentetate dimeglumine. The reaction rate for gadobenate dimeglumine peaked (maximum per quarter, 0.38% [16 of 4262]; minimum per quarter, 0.07% [three of 4237]) in the 2nd year after it replaced gadopentetate dimeglumine (maximum per quarter, 0.10% [four of 4122]; minimum per quarter, 0.05% [two of 4222]) and then declined in the 3rd year. The final gadobenate dimeglumine reaction rate (last 3 quarters, 0.12% [17 of 14 387]) did not significantly differ from the original baseline reaction rate with gadopentetate dimeglumine. Conclusion: After gadobenate dimeglumine was substituted for gadopentetate dimeglumine, a significant transient increase occurred in the frequency of reported allergic-like reactions that demonstrated a temporal pattern suggestive of the Weber effect (a transient increase in adverse event reporting that tends to peak in the 2nd year after a new

  20. Development of Theoretical Methods for Predicting Solvent Effects on Reaction Rates in Supercritical Water Oxidation Processes

    DTIC Science & Technology

    2003-06-12

    Raghunath Behera, Belinda Bashore, Richard Jendrejak and Susan C. Tucker*, “How local density enhancements influence solute reaction rates in supercritical...water,” National Meeting of the American Chemical Society, San Diego, CA, April 2001. Raghunath Behera, Belinda Bashore, Richard Jendrejak and... Raghunath Behera, Belinda Bashore, Richard Jendrejak and Susan C. Tucker*, “How local density enhancements influence solute reaction rates in supercritical

  1. Direct Monte Carlo simulation of chemical reaction systems: Simple bimolecular reactions

    NASA Astrophysics Data System (ADS)

    Piersall, Shannon D.; Anderson, James B.

    1991-07-01

    In applications to several simple reaction systems we have explored a ``direct simulation'' method for predicting and understanding the behavior of gas phase chemical reaction systems. This Monte Carlo method, originated by Bird, has been found remarkably successful in treating a number of difficult problems in rarefied dynamics. Extension to chemical reactions offers a powerful tool for treating reaction systems with nonthermal distributions, with coupled gas-dynamic and reaction effects, with emission and adsorption of radiation, and with many other effects difficult to treat in any other way. The usual differential equations of chemical kinetics are eliminated. For a bimolecular reaction of the type A+B→C+D with a rate sufficiently low to allow a continued thermal equilibrium of reactants we find that direct simulation reproduces the expected second order kinetics. Simulations for a range of temperatures yield the activation energies expected for the reaction models specified. For faster reactions under conditions leading to a depletion of energetic reactant species, the expected slowing of reaction rates and departures from equilibrium distributions are observed. The minimum sample sizes required for adequate simulations are as low as 1000 molecules for these cases. The calculations are found to be simple and straightforward for the homogeneous systems considered. Although computation requirements may be excessively high for very slow reactions, they are reasonably low for fast reactions, for which nonequilibrium effects are most important.

  2. Protein A-like activity and streptococcal cross-reactions.

    PubMed Central

    Kingston, D

    1981-01-01

    Recognition of the protein A-like activity of some strains of group A streptococci has thrown doubt on much previous work suggesting antigenic cross-reactions between these streptococci and mammalian tissues. The strains used in our previous studies have now been examined by the mixed reverse passive antiglobulin reaction (MRPAH) for the 'non-specific' absorption of purified Fc portion of human IgG. They were found to have only traces of activity. The strain of Staphylococcus aureus used to control 'non-specific' absorption by bacterial cell walls was strongly positive. Protein A-like material as detected in this way was not therefore responsible for our earlier results. PMID:7039880

  3. The Differential Gibbs Free Energy of Activation and its Implications in the Transition-State of Enzymatic Reactions

    NASA Astrophysics Data System (ADS)

    Maggi, F.; Riley, W. J.

    2016-12-01

    We propose a mathematical framework to introduce the concept of differential free energy of activation in enzymatically catalyzed reactions, and apply it to N uptake by microalgae and bacteria. This framework extends the thermodynamic capabilities of the classical transition-state theory in and harmonizes the consolidated definitions of kinetic parameters with their thermodynamic and physical meaning. Here, the activation energy is assumed to be a necessary energetic level for equilibrium complexation between reactants and activated complex; however, an additional energy contribution is required for the equilibrium activated complex to release reaction products. We call this "differential free energy of activation"; it can be described by a Boltzmann distribution, and corresponds to a free energy level different from that of complexation. Whether this level is above or below the free energy of activation depends on the reaction, and defines energy domains that correspond to "superactivated", "activated", and "subactivated" complexes. The activated complex reaching one of those states will eventually release the products from an energy level different than that of activation. The concept of differential free energy of activation was tested on 57 independent experiments of NH­4+ and NO3- uptake by various microalgae and bacteria at temperatures ranging between 1 and 45oC. Results showed that the complexation equilibrium always favored the activated complex, but the differential energy of activation led to an apparent energy barrier consistent with observations. Temperature affected all energy levels within this framework but did not alter substantially these thermodynamic features. Overall the approach: (1) provides a thermodynamic and mathematical link between Michaelis-Menten and rate constants; (2) shows that both kinetic parameters can be described or approximated by Arrhenius' like equations; (3) describes the likelihood of formation of sub-, super-, and

  4. Rate coefficients of exchange reactions accounting for vibrational excitation of reagents and products

    NASA Astrophysics Data System (ADS)

    Kustova, E. V.; Savelev, A. S.; Kunova, O. V.

    2018-05-01

    Theoretical models for the vibrational state-resolved Zeldovich reaction are assessed by comparison with the results of quasi-classical trajectory (QCT) calculations. An error in the model of Aliat is corrected; the model is generalized taking into account NO vibrational states. The proposed model is fairly simple and can be easily implemented to the software for non-equilibrium flow modeling. It provides a good agreement with the QCT rate coefficients in the whole range of temperatures and reagent/product vibrational states. The developed models are tested in simulations of vibrational and chemical relaxation of air mixture behind a shock wave. The importance of accounting for excitated NO vibrational states and accurate prediction of Zeldovich reactions rates is shown.

  5. Comparison of Methodologies of Activation Barrier Measurements for Reactions with Deactivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Zhenhua; Yan, Binhang; Zhang, Li

    In this work, methodologies of activation barrier measurements for reactions with deactivation were theoretically analyzed. Reforming of ethane with CO 2 was introduced as an example for reactions with deactivation to experimentally evaluate these methodologies. Both the theoretical and experimental results showed that due to catalyst deactivation, the conventional method would inevitably lead to a much lower activation barrier, compared to the intrinsic value, even though heat and mass transport limitations were excluded. In this work, an optimal method was identified in order to provide a reliable and efficient activation barrier measurement for reactions with deactivation.

  6. Comparison of Methodologies of Activation Barrier Measurements for Reactions with Deactivation

    DOE PAGES

    Xie, Zhenhua; Yan, Binhang; Zhang, Li; ...

    2017-01-25

    In this work, methodologies of activation barrier measurements for reactions with deactivation were theoretically analyzed. Reforming of ethane with CO 2 was introduced as an example for reactions with deactivation to experimentally evaluate these methodologies. Both the theoretical and experimental results showed that due to catalyst deactivation, the conventional method would inevitably lead to a much lower activation barrier, compared to the intrinsic value, even though heat and mass transport limitations were excluded. In this work, an optimal method was identified in order to provide a reliable and efficient activation barrier measurement for reactions with deactivation.

  7. Transcriptional dynamics with time-dependent reaction rates

    NASA Astrophysics Data System (ADS)

    Nandi, Shubhendu; Ghosh, Anandamohan

    2015-02-01

    Transcription is the first step in the process of gene regulation that controls cell response to varying environmental conditions. Transcription is a stochastic process, involving synthesis and degradation of mRNAs, that can be modeled as a birth-death process. We consider a generic stochastic model, where the fluctuating environment is encoded in the time-dependent reaction rates. We obtain an exact analytical expression for the mRNA probability distribution and are able to analyze the response for arbitrary time-dependent protocols. Our analytical results and stochastic simulations confirm that the transcriptional machinery primarily act as a low-pass filter. We also show that depending on the system parameters, the mRNA levels in a cell population can show synchronous/asynchronous fluctuations and can deviate from Poisson statistics.

  8. Dioxygen Activation and O–O Bond Formation Reactions by Manganese Corroles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Mian; Lee, Yong-Min; Gupta, Ranjana

    Activation of dioxygen (O 2) in enzymatic and biomimetic reactions has been intensively investigated over the past several decades. More recently, O–O bond formation, which is the reverse of the O 2-activation reaction, has been the focus of current research. Herein, we report the O 2-activation and O–O bond formation reactions by manganese corrole complexes. In the O 2-activation reaction, Mn(V)-oxo and Mn(IV)-peroxo intermediates were formed when Mn(III) corroles were exposed to O 2 in the presence of base (e.g., OH –) and hydrogen atom (H atom) donor (e.g., THF or cyclic olefins); the O 2-activation reaction did not occurmore » in the absence of base and H atom donor. Moreover, formation of the Mn(V)-oxo and Mn(IV)-peroxo species was dependent on the amounts of base present in the reaction solution. The role of the base was proposed to lower the oxidation potential of the Mn(III) corroles, thereby facilitating the binding of O 2 and forming a Mn(IV)-superoxo species. The putative Mn(IV)-superoxo species was then converted to the corresponding Mn(IV)-hydroperoxo species by abstracting a H atom from H atom donor, followed by the O–O bond cleavage of the putative Mn(IV)-hydroperoxo species to form a Mn(V)-oxo species. We have also shown that addition of hydroxide ion to the Mn(V)-oxo species afforded the Mn(IV)-peroxo species via O–O bond formation and the resulting Mn(IV)-peroxo species reverted to the Mn(V)-oxo species upon addition of proton, indicating that the O–O bond formation and cleavage reactions between the Mn(V)-oxo and Mn(IV)-peroxo complexes are reversible. The present paper reports the first example of using the same manganese complex in both O 2-activation and O–O bond formation reactions.« less

  9. Dioxygen Activation and O–O Bond Formation Reactions by Manganese Corroles

    DOE PAGES

    Guo, Mian; Lee, Yong-Min; Gupta, Ranjana; ...

    2017-10-22

    Activation of dioxygen (O 2) in enzymatic and biomimetic reactions has been intensively investigated over the past several decades. More recently, O–O bond formation, which is the reverse of the O 2-activation reaction, has been the focus of current research. Herein, we report the O 2-activation and O–O bond formation reactions by manganese corrole complexes. In the O 2-activation reaction, Mn(V)-oxo and Mn(IV)-peroxo intermediates were formed when Mn(III) corroles were exposed to O 2 in the presence of base (e.g., OH –) and hydrogen atom (H atom) donor (e.g., THF or cyclic olefins); the O 2-activation reaction did not occurmore » in the absence of base and H atom donor. Moreover, formation of the Mn(V)-oxo and Mn(IV)-peroxo species was dependent on the amounts of base present in the reaction solution. The role of the base was proposed to lower the oxidation potential of the Mn(III) corroles, thereby facilitating the binding of O 2 and forming a Mn(IV)-superoxo species. The putative Mn(IV)-superoxo species was then converted to the corresponding Mn(IV)-hydroperoxo species by abstracting a H atom from H atom donor, followed by the O–O bond cleavage of the putative Mn(IV)-hydroperoxo species to form a Mn(V)-oxo species. We have also shown that addition of hydroxide ion to the Mn(V)-oxo species afforded the Mn(IV)-peroxo species via O–O bond formation and the resulting Mn(IV)-peroxo species reverted to the Mn(V)-oxo species upon addition of proton, indicating that the O–O bond formation and cleavage reactions between the Mn(V)-oxo and Mn(IV)-peroxo complexes are reversible. The present paper reports the first example of using the same manganese complex in both O 2-activation and O–O bond formation reactions.« less

  10. Calculation of astrophysical S-factor and reaction rate in 12C(p, γ)13N reaction

    NASA Astrophysics Data System (ADS)

    Moghadasi, A.; Sadeghi, H.; Pourimani, R.

    2018-02-01

    The 12C(p, γ)13N reaction is the first process in the CNO cycle. Also it is a source of low-energy solar neutrinos in various neutrino experiments. Therefore, it is of high interest to gain data of the astrophysical S-factor in low energies. By applying Faddeev's method, we calculated wave functions for the bound state of 13N. Then the cross sections for resonance and non-resonance were calculated through using Breit-Wigner and direct capture cross section formulae, respectively. After that, we calculated the total S-factor and compared it with previous experimental data, revealing a good agreement altogether. Then, we extrapolated the S-factor in zero energy and the result was 1.32 ± 0.19 (keV.b). In the end, we calculated reaction rate and compared it with NACRE data.

  11. Effect of pepper lipoxygenase activity and its linked reactions on pigments of the pepper fruit.

    PubMed

    Jarén-Galán, M; Mínguez-Mosquera, M I

    1999-11-01

    The products formed during the enzymatic reaction catalyzed by the lipoxygenase of pepper (variety Agridulce) have in vitro a strong destructive action on the carotenoid pigments of the fruit. When conditions and proportions of enzyme and pigments are similar to those found in the fruit, and at a reaction temperature of 20 degrees C, almost 30% of the pigments are destroyed after 24 h of reaction. Of this amount, 2.5% is due to autoxidation of pigments, 4. 5% to oxidation induced by the presence of linoleic under saturating conditions, and the remaining 22% to the presence in the medium of reaction products of the lipoxygenase-catalyzed reaction. When the enzyme acts under substrate-saturating conditions, the rate of pigment destruction by lipoxygenase can be considered maximal at the experimental temperature. The fact that in vitro pepper lipoxygenase induces a heavy destruction of pigments and that, in vivo, its activity remains almost constant during over-ripening could explain why up to 40% of the pigment content in some varieties is lost during the postharvest period.

  12. Rate Constants for the Reactions of Hydroxyl Radical with Several Alkanes, Cycloalkanes, and Dimethyl Ether

    NASA Technical Reports Server (NTRS)

    DeMore, W.; Bayes, K.

    1998-01-01

    Relative rate experiements were used to measure rate constants and temperature denpendencies of the reactions of OH with propane, n-butane, n-pentane, n-hexane, cyclopropane, cyclobutane, cyclopentane, and dimethyl ether.

  13. Estimating the effective rate of fast chemical reactions with turbulent mixing of reactants

    NASA Astrophysics Data System (ADS)

    Vorotilin, V. P.; Yanovskii, Yu. G.

    2015-07-01

    On the basis of representation of a turbulent fluid as an aggregation of independent turbulent particles (vortexes), we derive relations for the effective rate of chemical reactions and obtain a closed system of equations describing reactions with turbulent mixing of reactants. A variant of instantaneous reactions is considered that explains the proposed approach simply. In particular, the turbulent mixing events according to this approach are uniquely related to the acts of chemical interaction, which makes it possible to exclude from consideration the mixing of inert impurities-the most difficult point of the theory formulated using classical notions. The obtained system of equations is closed without introducing arbitrarily adopted correlations, by naturally introducing the concept of effective reaction and writing the equations of conservation for both the concentrations of reactants and their volumes.

  14. The effect of toxic carbon source on the reaction of activated sludge in the batch reactor.

    PubMed

    Wu, Changyong; Zhou, Yuexi; Zhang, Siyu; Xu, Min; Song, Jiamei

    2018-03-01

    The toxic carbon source can cause higher residual effluent dissolved organic carbon than easily biodegraded carbon source in activated sludge process. In this study, an integrated activated sludge model is developed as the tool to understand the mechanism of toxic carbon source (phenol) on the reaction, regarding the carbon flows during the aeration period in the batch reactor. To estimate the toxic function of phenol, the microbial cells death rate (k death ) is introduced into the model. The integrated model was calibrated and validated by the experimental data and it was found the model simulations matched the all experimental measurements. In the steady state, the toxicity of phenol can result in higher microbial cells death rate (0.1637 h -1 vs 0.0028 h -1 ) and decay rate coefficient of biomass (0.0115 h -1 vs 0.0107 h -1 ) than acetate. In addition, the utilization-associated products (UAP) and extracellular polymeric substances (EPS) formation coefficients of phenol are higher than that of acetate, indicating that more carbon flows into the extracellular components, such as soluble microbial products (SMP), when degrading toxic organics. In the non-steady state of feeding phenol, the yield coefficient for growth and maximum specific growth rate are very low in the first few days (1-10 d), while the decay rate coefficient of biomass and microbial cells death rate are relatively high. The model provides insights into the difference of the dynamic reaction with different carbon sources in the batch reactor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. (100) facets of γ-Al2O3: the active surfaces for alcohol dehydration reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwak, Ja Hun; Mei, Donghai; Peden, Charles HF

    2011-05-01

    Temperature programmed desorption (TPD) of ethanol, and methanol dehydration reaction were studied on γ-Al2O3 in order to identify the catalytic active sites for alcohol dehydration reactions. Two high temperature (> 473 K) desorption features were observed following ethanol adsorption. Samples calcined at T≤473 K displayed a desorption feature in the 523-533 K temperature range, while those calcined at T ≥ 673 K showed a single desorption feature at 498 K. The switch from the high to low temperature ethanol desorption correlated well with the dehydroxylation of the (100) facets of γ-Al2O3 that was predicted at 550 K DFT calculations. Theoreticalmore » DFT simulations of the mechanism of dehydration. on clean and hydroxylated γ-Al2O3(100) surfaces, find that a concerted elimination of ethylene from an ethanol molecule chemisorbed at an Al3+ pentacoordinated site is the rate limiting step for catalytic cycle on both surfaces. Furthermore, titration of the pentacoordinate Al3+ sites on the (100) facets of γ-Al2O3 by BaO completely turned off the methanol dehydration reaction activity. These results unambiguously demonstrate that only the (100) facets on γ-Al2O3 are the catalytic active surfaces for alcohol dehydration.« less

  16. Correlation between discrete probability and reaction front propagation rate in heterogeneous mixtures

    NASA Astrophysics Data System (ADS)

    Naine, Tarun Bharath; Gundawar, Manoj Kumar

    2017-09-01

    We demonstrate a very powerful correlation between the discrete probability of distances of neighboring cells and thermal wave propagation rate, for a system of cells spread on a one-dimensional chain. A gamma distribution is employed to model the distances of neighboring cells. In the absence of an analytical solution and the differences in ignition times of adjacent reaction cells following non-Markovian statistics, invariably the solution for thermal wave propagation rate for a one-dimensional system with randomly distributed cells is obtained by numerical simulations. However, such simulations which are based on Monte-Carlo methods require several iterations of calculations for different realizations of distribution of adjacent cells. For several one-dimensional systems, differing in the value of shaping parameter of the gamma distribution, we show that the average reaction front propagation rates obtained by a discrete probability between two limits, shows excellent agreement with those obtained numerically. With the upper limit at 1.3, the lower limit depends on the non-dimensional ignition temperature. Additionally, this approach also facilitates the prediction of burning limits of heterogeneous thermal mixtures. The proposed method completely eliminates the need for laborious, time intensive numerical calculations where the thermal wave propagation rates can now be calculated based only on macroscopic entity of discrete probability.

  17. Three Rate-Constant Kinetic Model for Permanganate Reactions Autocatalyzed by Colloidal Manganese Dioxide: The Oxidation of L-Phenylalanine.

    PubMed

    Perez-Benito, Joaquin F; Ferrando, Jordi

    2014-12-26

    The reduction of permanganate ion to MnO(2)-Mn(2)O(3) soluble colloidal mixed oxide by l-phenylalanine in aqueous phosphate-buffered neutral solutions has been followed by a spectrophotometric method, monitoring the decay of permanganate ion at 525 nm and the formation of the colloidal oxide at 420 nm. The reaction is autocatalyzed by the manganese product, and three rate constants have been required to fit the experimental absorbance-time kinetic data. The reaction shows base catalysis, and the values of the activation parameters at different pHs have been determined. A mechanism including both the nonautocatalytic and the autocatalytic reaction pathways, and in agreement with the available experimental data, has been proposed. Some key features of this mechanism are the following: (i) of the two predominant forms of the amino acid, the anionic form exhibits a stronger reducing power than the zwitterionic form; (ii) the nonautocatalytic reaction pathway starts with the transfer of the hydrogen atom in the α position of the amino acid to permanganate ion; and (iii) the autocatalytic reaction pathway involves the reduction of Mn(IV) to Mn(II) by the amino acid and the posterior reoxidation of Mn(II) to Mn(IV) by permanganate ion.

  18. Reacting gas mixtures in the state-to-state approach: The chemical reaction rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kustova, Elena V.; Kremer, Gilberto M.

    2014-12-09

    In this work chemically reacting mixtures of viscous flows are analyzed within the framework of Boltzmann equation. By applying a modified Chapman-Enskog method to the system of Boltzmann equations general expressions for the rates of chemical reactions and vibrational energy transitions are determined as functions of two thermodynamic forces: the velocity divergence and the affinity. As an application chemically reacting mixtures of N{sub 2} across a shock wave are studied, where the first lowest vibrational states are taken into account. Here we consider only the contributions from the first four single quantum vibrational-translational energy transitions. It is shown that themore » contribution to the chemical reaction rate related to the affinity is much larger than that of the velocity divergence.« less

  19. Absolute rate constants of alkoxyl radical reactions in aqueous solution. [Tert-butyl hydroperoxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erben-Russ, M.; Michel, C.; Bors, W.

    1987-04-23

    The pulse radiolysis technique was used to generate the alkoxyl radical derived from tert-butyl hydroperoxide (/sup t/BuOOH) in aqueous solution. The reactions of this radical with 2,2'-azinobis(3-ethyl-6-benzothiazolinesulfonate) (ABTS) and promethazine were monitored by kinetic spectroscopy. The unimolecular decay rate constant of the tert-butoxyl radical (/sup t/BuO) was determined to be 1.4 x 10/sup 6/ s/sup -1/. On the basis of this value, the rate constants for /sup t/BuO attack on quercetin, crocin, crocetin, ascorbate, isoascorbate, trolox c, glutathione, thymidine, adenosine, guanosine, and unsaturated fatty acids were determined. In addition, the reaction of /sup t/BuO with the polyunsaturated fatty acids (PUFA)more » was observed by directly monitoring the formation of the fatty acid pentadienyl radicals. Interestingly, the attack of /sup t/BuO on PUFA was found to be faster by about one order of magnitude as compared to the same reaction in a nonpolar solvent.« less

  20. Shock-activated reaction synthesis and high pressure response of titanium-based ternary carbide and nitride ceramics

    NASA Astrophysics Data System (ADS)

    Jordan, Jennifer Lynn

    The objectives of this study were to (a) investigate the effect of shock activation of precursor powders for solid-state reaction synthesis of Ti-based ternary ceramics and (b) to determine the high pressure phase stability and Hugoniot properties of Ti3SiC2. Dynamically densified compacts of Ti, SiC, and graphite precursor powders and Ti and AlN precursor powders were used to study the shock-activated formation of Ti 3SiC2 and Ti2AlN ternary compounds, respectively, which are considered to be novel ceramics having high stiffness but low hardness. Gas gun and explosive loading techniques were used to obtain a range of loading conditions resulting in densification and activation. Measurements of fraction reacted as a function of time and temperature and activation energies obtained from DTA experiments were used to determine the degree of activation caused by shock compression and its subsequent effect on the reaction mechanisms and kinetics. In both systems, shock activation led to an accelerated rate of reaction at temperatures less than 1600°C and, above that temperature, it promoted the formation of almost 100% of the ternary compound. A kinetics-based mathematical model based on mass and thermal transport was developed to predict the effect of shock activation and reaction synthesis conditions that ensure formation of the ternary compounds. Model predictions revealed a transition temperature above which the reaction is taken over by the "run-away" combustion-type mode. The high pressure phase stability of pre-alloyed Ti 3SiC2 compound was investigated by performing Hugoniot shock and particle velocity measurements using the facilities at the National Institute for Materials Science (Tsukuba, Japan). Experiments performed at pressures of 95--120 GPa showed that the compressibility of Ti3SiC 2 at these pressures deviates from the previously reported compressibility of the material under static high pressure loading. The deviation in compressibility behavior is

  1. Effect of Substrate Character on Heterogeneous Ozone Reaction Rate with Individual PAHs and Their Reaction Mixtures

    NASA Astrophysics Data System (ADS)

    Holmen, B. A.; Stevens, T.

    2009-12-01

    Vehicle exhaust contains many unregulated chemical compounds that are harmful to human health and the natural environment, including polycyclic aromatic hydrocarbons (PAH), a class of organic compounds derived from fuel combustion that can be carcinogenic and mutagenic. PAHs have been quantified in vehicle-derived ultrafine particles (Dp<100nm), which are more toxic than larger particles and are linked to adverse health problems, including respiratory and cardiac disease. Once emitted into the atmosphere, particle-bound PAHs can undergo “aging” reactions with oxidants, such as ozone, to form more polar species. These polar reaction products include species such as quinones that can be more toxic than the parent PAH compounds. Here, 0.4ppm ozone was reacted over a 24-hour period with the 16 EPA priority PAHs plus coronene adsorbed to (i) a quartz fiber filter and (ii) NIST diesel PM. The difference in the PAH/O3 heterogeneous reaction rate resulting from the two substrates will be discussed. The experiments were completed by spiking a known PAH mixture to the solid, reacting the samples with gas-phase ozone, and determining both PAH loss over time and products formed, using thermal-desorption gas chromatography / mass spectrometry (TD-GC/MS). The individual PAHs anthracene, phenanthrene, and fluorene, adsorbed to a QFF were also separately reacted with 0.4 ppm ozone. A volatilization control and the collection of volatilized PAHs using a Tenax-packed thermal desorption vial completed the mass balance and aided determination parent-product relationships. Heterogeneous reaction products analyzed directly without derivatization indicate the formation of 9,10-anthracenedione, 9H-fluoren-9-one, and (1,1’-biphenyl)-2,2’-dicarboxaldehyde from the reaction of ozone with the PAH mix on a QFF, but only 9,10-anthracenedione was detected for the diesel PM reaction. The implications of these results for aging of diesel particulate in urban environments will be discussed.

  2. Discovery of a Significant Acetone•Hydroperoxy Adduct Chaperone Effect and Its Impact on the Determination of Room Temperature Rate Constants for Acetonylperoxy/Hydroperoxy Self-Reactions and Cross Reaction Via Infrared Kinetic Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Grieman, F. J.; Hui, A. O.; Okumura, M.; Sander, S. P.

    2017-12-01

    In order to model the upper troposphere/lower stratosphere in regions containing acetone properly, the kinetics of the acetonylperoxy/hydroperoxy self-reactions and cross reaction have been studied over a wide temperature range using Infrared Kinetic Spectroscopy. We report here the determination of different rate constants for the acetonylperoxy chemistry that we obtained at 298 K compared to currently accepted values. A considerable increase in the observed HO2 self-reaction rate constant due to rate enhancement via the chaperone effect from the reaction between HO2 and the (CH3)2CO•HO2 hydrogen-bonded adduct, even at room temperature, was discovered that was previously ignored. Correct determination of the acetonylperoxy and hydroperoxy kinetics must include this dependence of the HO2 self-reaction rate on acetone concentration. Via excimer laser flash photolysis to create the radical reactants, HO2 absorption was monitored in the infrared by diode laser wavelength modulation detection simultaneously with CH3C(O)CH2O2absorption monitored in the ultraviolet at 300 nm as a function of time. Resulting decay curves were fit concurrently first over a short time scale to obtain the rate constants minimizing subsequent product reactions. Modeling/fitting with a complete reaction scheme was then performed to refine the rate constants and test their veracity. Experiments were carried out over a variety of concentrations of acetone and methanol. Although no effect due to methanol concentration was found at room temperature, the rate constant for the hydroperoxy self-reaction was found to increase linearly with acetone concentration which is interpreted as the adduct being formed and resulting in a chaperone mechanism that enhances the self-reaction rate: (CH3)2CO·HO2 + HO2 → H2O2 + O2 + (CH3)2CO Including this effect, the resulting room temperature rate constants for the cross reaction and the acetonylperoxy self-reaction were found to be 2-3 times smaller than

  3. Spectacular Rate Enhancement of the Diels-Alder Reaction at the Ionic Liquid/n-Hexane Interface.

    PubMed

    Beniwal, Vijay; Manna, Arpan; Kumar, Anil

    2016-07-04

    The use of the ionic liquid/n-hexane interface as a new class of reaction medium for the Diels-Alder reaction gives large rate enhancements of the order of 10(6) to 10(8) times and high stereoselectivity, as compared to homogeneous media. The rate enhancement is attributed to the H-bonding abilities and polarities of the ionic liquids, whereas the hydrophobicity of ionic liquids was considered to be the factor in controlling stereoselectivity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Non-steady state mass action dynamics without rate constants: dynamics of coupled reactions using chemical potentials

    NASA Astrophysics Data System (ADS)

    Cannon, William R.; Baker, Scott E.

    2017-10-01

    Comprehensive and predictive simulation of coupled reaction networks has long been a goal of biology and other fields. Currently, metabolic network models that utilize enzyme mass action kinetics have predictive power but are limited in scope and application by the fact that the determination of enzyme rate constants is laborious and low throughput. We present a statistical thermodynamic formulation of the law of mass action for coupled reactions at both steady states and non-stationary states. The formulation uses chemical potentials instead of rate constants. When used to model deterministic systems, the method corresponds to a rescaling of the time dependent reactions in such a way that steady states can be reached on the same time scale but with significantly fewer computational steps. The relationships between reaction affinities, free energy changes and generalized detailed balance are central to the discussion. The significance for applications in systems biology are discussed as is the concept and assumption of maximum entropy production rate as a biological principle that links thermodynamics to natural selection.

  5. Rate constant for the reaction of atomic chlorine with methane

    NASA Technical Reports Server (NTRS)

    Lin, C. L.; Leu, M. T.; Demore, W. B.

    1978-01-01

    The rate constant and temperature dependence of the Cl + CH4 reaction have been investigated by the techniques of competitive chlorination of CH4/C2H6 mixtures and by discharge-flow/mass spectroscopy. The objectives were to determine an accurate value for the rate constant for use in stratospheric modeling, and to clarify discrepancies in results previously obtained by different techniques. The results deduced from the competitive chlorination study are in good agreement with the absolute values measured by the mass spectrometric method, and at temperatures above 300 K are in good agreement with measurements by other techniques based on resonance fluorescence detection of atomic chlorine. However, in the 220-300 K region, the competitive experiments indicate lower rate constants than those obtained by resonance fluorescence methods, and do not reproduce the curved Arrhenius plots seen in some of those studies.

  6. Rate Coefficient for the (4)Heμ + CH4 Reaction at 500 K: Comparison between Theory and Experiment.

    PubMed

    Arseneau, Donald J; Fleming, Donald G; Li, Yongle; Li, Jun; Suleimanov, Yury V; Guo, Hua

    2016-03-03

    The rate constant for the H atom abstraction reaction from methane by the muonic helium atom, Heμ + CH4 → HeμH + CH3, is reported at 500 K and compared with theory, providing an important test of both the potential energy surface (PES) and reaction rate theory for the prototypical polyatomic CH5 reaction system. The theory used to characterize this reaction includes both variational transition-state (CVT/μOMT) theory (VTST) and ring polymer molecular dynamics (RPMD) calculations on a recently developed PES, which are compared as well with earlier calculations on different PESs for the H, D, and Mu + CH4 reactions, the latter, in particular, providing for a variation in atomic mass by a factor of 36. Though rigorous quantum calculations have been carried out for the H + CH4 reaction, these have not yet been extended to the isotopologues of this reaction (in contrast to H3), so it is important to provide tests of less rigorous theories in comparison with kinetic isotope effects measured by experiment. In this regard, the agreement between the VTST and RPMD calculations and experiment for the rate constant of the Heμ + CH4 reaction at 500 K is excellent, within 10% in both cases, which overlaps with experimental error.

  7. Capture and photonuclear reaction rates involving charged-particles: Impacts of nuclear ingredients and future measurement on ELI-NP

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Goriely, S.; Balabanski, D. L.; Chesnevskaya, S.; Guardo, G. L.; La Cognata, M.; Lan, H. Y.; Lattuada, D.; Luo, W.; Matei, C.

    2018-05-01

    The astrophysical p-process is an important way of nucleosynthesis to produce the stable and proton-rich nuclei beyond Fe which can not be reached by the s- and r-processes. In the present study, the impact of nuclear ingredients, especially the nuclear potential, level density and strength function, to the astrophysical re-action rates of (p,γ), (α,γ), (γ,p), and (γ,α) reactions are systematically studied. The calculations are performed basad on the modern reaction code TALYS for about 3000 stable and proton-rich nuclei with 12≤Z≤110. In particular, both of the Wood-Saxon potential and the microscopic folding potential are taken into account. It is found that both the capture and photonuclear reaction rates are very sensitive to the nuclear potential, thus the better determination of nuclear potential would be important to reduce the uncertainties of reaction rates. Meanwhile, the Extreme Light Infrastructure-Nuclear Physics (ELI-NP) facility is being developed, which will provide the great opportunity to experimentally study the photonuclear reactions in p-process. Simulations of the experimental setup for the measurements of the photonuclear reactions 96Ru(γ,p) and 96Ru(γ,α) are performed. It is shown that the experiments of photonuclear reactions in p-process based on ELI-NP are quite promising.

  8. Development of various reaction abilities and their relationships with favorite play activities in preschool children.

    PubMed

    Miyaguchi, Kazuyoshi; Demura, Shinich; Sugiura, Hiroki; Uchiyama, Masanobu; Noda, Masahiro

    2013-10-01

    This study examines the development of various reaction movements in preschool children and the relationship between reaction times and favorite play activities. The subjects were 167 healthy preschool children aged 4-6 (96 boys and 71 girls). This study focused on the reaction times of the upper limbs (reaction 1: release; reaction 2: press) and the whole body (reaction 3: forward jump). The activities frequently played in preschools are largely divided into dynamic play activities (tag, soccer, gymnastics set, dodge ball, and jump rope) and static play activities (drawing, playing house, reading, playing with sand, and building blocks). The subjects chose 3 of 10 cards picturing their favorite play activities, depicting 10 different activities. All intraclass correlation coefficients of measured reaction times were high (0.73-0.79). In addition, each reaction time shortened with age. Reaction 1 showed a significant and low correlation with reaction 3 (r = 0.37). The effect size of the whole body reaction time was the largest. Whole body reaction movement, which is largely affected by the exercise output function, develops remarkably in childhood. Children who liked "tag" were faster in all reaction times. The children who chose "soccer" were faster in reactions 2 and 3. In contrast, children who liked "playing house" tended to have slower reaction times. Dynamic activities, such as tag and soccer, promote development of reaction speed and agility in movements involving the whole body. Preschool teachers and physical educators should re-examine the effect of tag and use it periodically as one of the exercise programs to avoid unexpected falls and injuries in everyday life.

  9. γ spectroscopy of states in Cl 32 relevant for the S 31 ( p , γ ) Cl 32 reaction rate

    DOE PAGES

    Afanasieva, L.; Blackmon, J. C.; Deibel, C. M.; ...

    2017-09-01

    Background: The 31S(p,gamma) 32Cl reaction becomes important for sulfur production in novae if the P-31(p, alpha)Si-28 reaction rate is somewhat greater than currently accepted. The rate of the S-31(p,gamma) Cl-32 reaction is uncertain, primarily due to the properties of resonances at E-c.m. = 156 and 549 keV. Purpose: We precisely determined the excitation energies of states in Cl-32 through high-resolution. spectroscopy including the two states most important for the S-31(p,gamma) Cl-32 reaction at nova temperatures. Method: Excited states in Cl-32 were populated using the B-10(Mg-24, 2n) Cl-32 reaction with a Mg-24 beam from the ATLAS facility at Argonne National Laboratory.more » The reaction channel of interest was selected using recoils in the Fragment Mass Analyzer, and we determined precise level energies by detecting. rays with Gammasphere. Results: We also observed. rays from the decay of six excited states in Cl-32. The excitation energies for two unbound levels at E-x = 1738.1 (6) keV and 2130.5 (10) keV were determined and found to be in agreement with a previous high-precision measurement of the S-32(He-3, t) Cl-32 reaction [1]. Conclusions: An updated 31S(p,gamma) Cl-32 reaction rate is presented. With the excitation energies of important levels firmly established, the dominant uncertainty in the reaction rate at nova temperatures is due to the strength of the resonance corresponding to the 2131-keV state in Cl-32.« less

  10. Reaction rate constants and mean population percentage for nitrifiers in an alternating oxidation ditch system.

    PubMed

    Mantziaras, I D; Katsiri, A

    2011-01-01

    This paper presents a methodology for the determination of reaction rate constants for nitrifying bacteria and their mean population percentage in biomass in an alternating oxidation ditch system. The method used is based on the growth rate equations of the ASM1 model (IWA) (Henze et al. in Activated sludge models ASM1, ASM2, ASM2d, and ASM3. IWA Scientific and Technical Report no. 9, IWA Publishing, London, UK, 2000) and the application of mass balance equations for nitrifiers and ammonium nitrogen in an operational cycle of the ditch system. The system consists of two ditches operating in four phases. Data from a large-scale oxidation ditch pilot plant with a total volume of 120 m(3) within an experimental period of 8 months was used. Maximum specific growth rate for autotrophs (μ(A)) and the half-saturation constant for ammonium nitrogen (K(NH)) were found to be 0.36 day(-1) and 0.65 mgNH(4)-N/l, respectively. Additionally, the average population percentage of the nitrifiers in the biomass was estimated to be around 3%.

  11. Improvement of ACE inhibitory activity of casein hydrolysate by Maillard reaction with xylose.

    PubMed

    Hong, Xu; Meng, Jun; Lu, Rong-Rong

    2015-01-01

    The Maillard reaction is widely used to improve the functional properties or biological activities of food. The purpose of this study was to investigate the effect of the Maillard reaction on angiotensin I converting enzyme (ACE) inhibitory activity in a casein hydrolysate-xylose system. Two-step hydrolysis was used to prepare casein ACE inhibitory peptides. Maillard reaction products (MRPs) were prepared by heating hydrolyzed casein with xylose at pH 8.0, 110 °C for up to 16 h. The results showed that the content of free amino group decreased (P < 0.05); however, browning intensity and absorbance at 294 nm increased because of the Maillard reaction (P < 0.05). The ACE inhibitory activity improved greatly within 2 h (from 63.48% to 90.23%), which was mainly due to carbonyl ammonia condensation reaction in the MRPs. The study shows that the Maillard reaction under appropriate conditions can improve the ACE inhibitory activity of casein hydrolysate effectively. © 2014 Society of Chemical Industry.

  12. Rate Coefficient Measurements and Theoretical Analysis of the OH + ( E)-CF3CH═CHCF3 Reaction.

    PubMed

    Baasandorj, Munkhbayar; Marshall, Paul; Waterland, Robert L; Ravishankara, A R; Burkholder, James B

    2018-05-04

    Rate coefficients, k, for the gas-phase reaction of the OH radical with ( E)-CF 3 CH═CHCF 3 (( E)-1,1,1,4,4,4-hexafluoro-2-butene, HFO-1336mzz(E)) were measured over a range of temperatures (211-374 K) and bath gas pressures (20-300 Torr; He, N 2 ) using a pulsed laser photolysis-laser-induced fluorescence (PLP-LIF) technique. k 1 ( T) was independent of pressure over this range of conditions with k 1 (296 K) = (1.31 ± 0.15) × 10 -13 cm 3 molecule -1 s -1 and k 1 ( T) = (6.94 ± 0.80) × 10 -13 exp[-(496 ± 10)/ T] cm 3 molecule -1 s -1 , where the uncertainties are 2σ, and the pre-exponential term includes estimated systematic error. Rate coefficients for the OD reaction were also determined over a range of temperatures (262-374 K) at 100 Torr (He). The OD rate coefficients were ∼15% greater than the OH values and showed similar temperature dependent behavior with k 2 ( T) = (7.52 ± 0.44) × 10 -13 exp[-(476 ± 20)/ T] and k 2 (296 K) = (1.53 ± 0.15) × 10 -13 cm 3 molecule -1 s -1 . The rate coefficients for reaction 1 were also measured using a relative rate technique between 296 and 375 K with k 1 (296 K) measured to be (1.22 ± 0.1) × 10 -13 cm 3 molecule -1 s -1 , in agreement with the PLP-LIF results. In addition, the 296 K rate coefficient for the O 3 + ( E)-CF 3 CH═CHCF 3 reaction was determined to be <5.2 × 10 -22 cm 3 molecule -1 s -1 . A theoretical computational analysis is presented to interpret the observed positive temperature dependence for the addition reaction and the significant decrease in OH reactivity compared to the ( Z)-CF 3 CH═CHCF 3 stereoisomer reaction. The estimated atmospheric lifetime of ( E)-CF 3 CH═CHCF 3 , due to loss by reaction with OH, is estimated to be ∼90 days, while the actual lifetime will depend on the location and season of its emission. Infrared absorption spectra of ( E)-CF 3 CH═CHCF 3 were measured and used to estimate the 100 year time horizon global warming potentials (GWP) of 32

  13. Affective Evaluations of and Reactions to Exterior and Interior Vehicle Auditory Quality

    NASA Astrophysics Data System (ADS)

    Västfjäll, D.; Gulbol, M.-A.; Kleiner, M.; Gärling, T.

    2002-08-01

    Affective reactions to and evaluations of auditory stimuli are fundamental components of human perception. In three experiments, participants rated their affective reactions (how pleasant I feel) and preferences for these affective reactions (how much I like the way I feel) as well as affective evaluations (how pleasant the sound is) to interior and exterior binaurally recorded vehicle sounds varying in physical properties. Consistent with previous research, it was found that the orthogonal affect dimensions of valence (unpleasant-pleasant) and arousal or activation (deactivation-activation) discriminated between affective reactions induced by the different qualities of the sounds. Moreover, preference for affective reactions was related to both valence and activation. Affective evaluations (powerful-powerless/passive-active and unpleasant-pleasant) correlated significantly with affective reactions to the same sounds in both within-subjects and between-subjects designs. Standard sound quality metrics derived from the sounds correlated, however, poorly with the affective ratings of interior sounds and only moderately with affective ratings of exterior sounds. Taken together, the results suggest that affect is an important component in product auditory quality optimization.

  14. Cluster states and container picture in light nuclei, and triple-alpha reaction rate

    NASA Astrophysics Data System (ADS)

    Funaki, Yasuro

    2015-04-01

    The excited states in 12C are investigated by using an extended version of the so- called Tohsaki-Horiuchi-Schuck-Röpke (THSR) wave function, where both the 3α condensate and 8Be + α cluster asymptotic configurations are included. We focus on the structures of the “Hoyle band” states, 2+2, and 4+2 states, which are recently observed above the Hoyle state, and of the 0+3 and 0+4 states, which are also quite recently identified in experiment. We show that the Hoyle band is not simply considered to be the 8Be(0+) + α rotation as suggested by previous cluster model calculations, nor to be a rotation of a rigid-body triangle-shaped object composed of the 3α particles. We also discuss the rate of the triple-alpha radiative capture reaction, applyng the imaginary-time method. Results of the triple-alpha reaction rate are consistent with NACRE rate for both high (≈ 109K) and low (≈ 107 K) temperatures. We show that the rate of the imaginary-time calculation in coupled-channels approach has a large enhancement for low temperatures if we truncate the number of channels.

  15. E2C mechanism of elimination reactions. IX. Secondary deuterium isotope effects on rates of bimolecular reactions in alicyclic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, D.

    1976-06-11

    Secondary ..cap alpha..-deuterium isotope effects on the rates of NBu/sub 4/OAc and NBu/sub 4/Cl promoted bimolecular reactions (E2 and SN2) of cyclohexyl tosylate and cyclohexyl bromide have been studied. The E2 reactions, previously categorized as E2C-like, show ..cap alpha..-deuterium isotope effects in the range 1.14--1.22, while the related SN2 reactions give values in the range 1.05--1.08. The discrepancy in the magnitude of the ..cap alpha..-deuterium isotope effect for the E2 and SN2 processes is consistent with the view that E2C-like reactions use ''looser'' transition states than those used in the concurrent SN2 reactions. While the reported ..cap alpha..-d isotope effectsmore » do not provide positive evidence to support the idea that the base interacts with C/sub ..cap alpha../ in the E2 transition states of the reactions studied, neither do they substantiate claims for dismissal of the concept. A comparison of the secondary ..gamma..-deuterium and ..beta..'-deuterium isotope effects arising in the reaction of cyclohexyl tosylate with NBu/sub 4/OAc in acetone indicates the two isotope effects to be of equivalent magnitude (k/sub ..beta..'-d/k/sub ..gamma..-d/ = 0.98). This observation can only be rationalized for this reaction in terms of a transition state structure in which there is extensive double bond development. It provides compelling evidence against the involvement of any transition state structure which accommodates extensive positive charge development at C/sub ..cap alpha../.« less

  16. Calculated rate constants for the reaction ClO + O yields Cl + O2 between 220 and 1000 deg K. [molecular trajectories and stratospheric ozone

    NASA Technical Reports Server (NTRS)

    Jaffee, R. L.

    1978-01-01

    Classical trajectory calculations are presented for the reaction ClO + O yields Cl + O2, a reaction which is an important step in the chlorine-catalyzed destruction of ozone which is thought to occur in the 220 and 1000 K. The calculated rate constant is 4.36 x 10 to the minus 11th power exp (-191/T)cu cm molecule (-1)s(-1) and its value at 300 K is 2.3 plus or minus 10 to the 11th power cu cm molecule (-1)s(-1), about a factor of 2 lower than recent experimental data. The empirical potential energy surface used in the calculations was constructed to fit experimental data for ClO, O2 and ClOO molecules. Other important features of this potential surface, such as the barrier to reaction, were varied systematically and calculations were performed for a range of conditions to determine the best theoretical rate constants. Results demonstrate the utility of classical trajectory methods for determining activation energies and other kinetic data for important atmospheric reactions.

  17. Anisotropic transverse mixing and its effect on reaction rates in multi-scale, 3D heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Engdahl, N. B.

    2016-12-01

    Mixing rates in porous media have been a heavily research topic in recent years covering analytic, random, and structured fields. However, there are some persistent assumptions and common features to these models that raise some questions about the generality of the results. One of these commonalities is the orientation of the flow field with respect to the heterogeneity structure, which are almost always defined to be parallel each other if there is an elongated axis of permeability correlation. Given the vastly different tortuosities for flow parallel to bedding and flow transverse to bedding, this assumption of parallel orientation may have significant effects on reaction rates when natural flows deviate from this assumed setting. This study investigates the role of orientation on mixing and reaction rates in multi-scale, 3D heterogeneous porous media with varying degrees of anisotropy in the correlation structure. Ten realizations of a small flow field, with three anisotropy levels, were simulated for flow parallel and transverse to bedding. Transport was simulated in each model with an advective-diffusive random walk and reactions were simulated using the chemical Langevin equation. The reaction system is a vertically segregated, transverse mixing problem between two mobile reactants. The results show that different transport behaviors and reaction rates are obtained by simply rotating the direction of flow relative to bedding, even when the net flux in both directions is the same. This kind of behavior was observed for three different weightings of the initial condition: 1) uniform, 2) flux-based, and 3) travel time based. The different schemes resulted in 20-50% more mass formation in the transverse direction than the longitudinal. The greatest variability in mass was observed for the flux weights and these were proportionate to the level of anisotropy. The implications of this study are that flux or travel time weights do not provide any guarantee of a fair

  18. Calculations on the rate of the ion-molecule reaction between NH3(+) and H2

    NASA Technical Reports Server (NTRS)

    Herbst, Eric; Defrees, D. J.; Talbi, D.; Pauzat, F.; Koch, W.

    1991-01-01

    The rate coefficient for the ion-molecule reaction NH3(+) + H2 yields NH4(+) + H has been calculated as a function of temperature with the use of the statistical phase space approach. The potential surface and reaction complex and transition state parameters used in the calculation have been taken from ab initio quantum chemical calculations. The calculated rate coefficient has been found to mimic the unusual temperature dependence measured in the laboratory, in which the rate coefficient decreases with decreasing temperature until 50-100 K and then increases at still lower temperatures. Quantitative agreement between experimental and theoretical rate coefficients is satisfactory given the uncertainties in the ab initio results and in the dynamics calculations. The rate coefficient for the unusual three-body process NH3(+) + H2 + He yields NH4(+) + H + He has also been calculated as a function of temperature and the result found to agree well with a previous laboratory determination.

  19. Efficient kinetic Monte Carlo method for reaction-diffusion problems with spatially varying annihilation rates

    NASA Astrophysics Data System (ADS)

    Schwarz, Karsten; Rieger, Heiko

    2013-03-01

    We present an efficient Monte Carlo method to simulate reaction-diffusion processes with spatially varying particle annihilation or transformation rates as it occurs for instance in the context of motor-driven intracellular transport. Like Green's function reaction dynamics and first-passage time methods, our algorithm avoids small diffusive hops by propagating sufficiently distant particles in large hops to the boundaries of protective domains. Since for spatially varying annihilation or transformation rates the single particle diffusion propagator is not known analytically, we present an algorithm that generates efficiently either particle displacements or annihilations with the correct statistics, as we prove rigorously. The numerical efficiency of the algorithm is demonstrated with an illustrative example.

  20. Pulsed laser photolysis and quantum chemical-statistical rate study of the reaction of the ethynyl radical with water vapor

    NASA Astrophysics Data System (ADS)

    Carl, Shaun A.; Minh Thi Nguyen, Hue; Elsamra, Rehab M. I.; Tho Nguyen, Minh; Peeters, Jozef

    2005-03-01

    The rate coefficient of the gas-phase reaction C2H+H2O→products has been experimentally determined over the temperature range 500-825K using a pulsed laser photolysis-chemiluminescence (PLP-CL) technique. Ethynyl radicals (C2H) were generated by pulsed 193nm photolysis of C2H2 in the presence of H2O vapor and buffer gas N2 at 15Torr. The relative concentration of C2H radicals was monitored as a function of time using a CH * chemiluminescence method. The rate constant determinations for C2H+H2O were k1(550K)=(2.3±1.3)×10-13cm3s-1, k1(770cm3s-1, and k1(825cm3s-1. The error in the only other measurement of this rate constant is also discussed. We have also characterized the reaction theoretically using quantum chemical computations. The relevant portion of the potential energy surface of C2H3O in its doublet electronic ground state has been investigated using density functional theory B3LYP /6-311++G(3df,2p) and molecular orbital computations at the unrestricted coupled-cluster level of theory that incorporates all single and double excitations plus perturbative corrections for the triple excitations, along with the 6-311++G(3df,2p) basis set [(U)CCSD(T)/6-311++G(3df,2p)] and using UCCSD(T )/6-31G(d,p) optimized geometries. Five isomers, six dissociation products, and sixteen transition structures were characterized. The results confirm that the hydrogen abstraction producing C2H2+OH is the most facile reaction channel. For this channel, refined computations using (U)CCSD(T)/6-311++G(3df,2p)//(U)CCSD(T)/6-311++G(d,p) and complete-active-space second-order perturbation theory/complete-active-space self-consistent-field theory (CASPT2/CASSCF) [B. O. Roos, Adv. Chem. Phys. 69, 399 (1987)] using the contracted atomic natural orbitals basis set (ANO-L) [J. Almlöf and P. R. Taylor, J. Chem. Phys.86, 4070 (1987)] were performed, yielding zero-point energy-corrected potential energy barriers of 17kJmol-1 and 15kJmol-1, respectively. Transition-state theory rate constant

  1. Confining Domains Lead to Reaction Bursts: Reaction Kinetics in the Plasma Membrane

    PubMed Central

    Kalay, Ziya; Fujiwara, Takahiro K.; Kusumi, Akihiro

    2012-01-01

    Confinement of molecules in specific small volumes and areas within a cell is likely to be a general strategy that is developed during evolution for regulating the interactions and functions of biomolecules. The cellular plasma membrane, which is the outermost membrane that surrounds the entire cell, was considered to be a continuous two-dimensional liquid, but it is becoming clear that it consists of numerous nano-meso-scale domains with various lifetimes, such as raft domains and cytoskeleton-induced compartments, and membrane molecules are dynamically trapped in these domains. In this article, we give a theoretical account on the effects of molecular confinement on reversible bimolecular reactions in a partitioned surface such as the plasma membrane. By performing simulations based on a lattice-based model of diffusion and reaction, we found that in the presence of membrane partitioning, bimolecular reactions that occur in each compartment proceed in bursts during which the reaction rate is sharply and briefly increased even though the asymptotic reaction rate remains the same. We characterized the time between reaction bursts and the burst amplitude as a function of the model parameters, and discussed the biological significance of the reaction bursts in the presence of strong inhibitor activity. PMID:22479350

  2. The Iodine Clock Reaction and Hypothermia.

    ERIC Educational Resources Information Center

    Gennaro, Gene; Munson, Bruce

    1988-01-01

    Explains an activity which can be used to compare the effect of temperature on the rate of chemical reactions to the metabolic reactions that take place within the body. Outlines directions and materials needed to perform the experiment. Lists a number of the body's defenses against extremely low temperatures. (RT)

  3. Rate Constant and Temperature Dependence for the Reaction of Hydroxyl Radicals with 2-Flouropropane (FC-281ea) and Comparison with an Estimated Rate Constant

    NASA Technical Reports Server (NTRS)

    DeMore, W.; Wilson, E., Jr.

    1998-01-01

    Relative rate experiments were used to measure the rate constant and temperature dependence of the reaction of OH radicals with 2-fluoropropane (HFC-281ea), using ethane, propane, ethyl chloride as reference standards.

  4. A comprehensive model to determine the effects of temperature and species fluctuations on reaction rates in turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Chinitz, W.; Foy, E.; Rowan, G.; Goldstein, D.

    1982-01-01

    The use of probability theory to determine the effects of turbulent fluctuations on reaction rates in turbulent combustion systems is briefly reviewed. Results are presented for the effect of species fluctuations in particular. It is found that turbulent fluctuations of species act to reduce the reaction rates, in contrast with the temperature fluctuations previously determined to increase Arrhenius reaction rate constants. For the temperature fluctuations, a criterion is set forth for determining if, in a given region of a turbulent flow field, the temperature can be expected to exhibit ramp like fluctuations. Using the above results, along with results previously obtained, a model is described for testing the effects of turbulent fluctuations of temperature and species on reaction rates in computer programs dealing with turbulent reacting flows. An alternative model which employs three variable probability density functions (temperature and two species) and is currently being formulated is discussed as well.

  5. Rate constant for reaction of vitamin C with protein radicals in γ-irradiated aqueous albumin solution at 295 K

    NASA Astrophysics Data System (ADS)

    Miyazaki, Tetsuo; Yoshimura, Toru; Mita, Kazuya; Suzuki, Keiji; Watanabe, Masami

    1995-02-01

    When an aqueous solution of albumin (0.1 kg dm -3) is irradiated by γ-rays at 295 K, albumin radicals with a long lifetime are observed by ESR. The reaction of vitamin C with the albumin radicals has been studied at 295 K in the albumin solution, which is considered as a model of cells. The rate constant for the reaction of vitamin C with the albumin radicals was measured as 0.014 dm 3 mol -1 s -1, which is much smaller than the reported rate constants (10 6-10 10 dm 3 mol -1 s -1) for the reaction of vitamin C with radicals in a dilute aqueous solution. The small rate constant for the reaction of vitamin C is ascribed to the reaction in polymer coils in the albumin solution, since vitamin C and albumin radicals diffuse very slowly in the coils.

  6. Highly Stable and Active Catalyst for Sabatier Reactions

    NASA Technical Reports Server (NTRS)

    Hu, Jianli; Brooks, Kriston P.

    2012-01-01

    Highly active Ru/TiO2 catalysts for Sabatier reaction have been developed. The catalysts have shown to be stable under repeated shutting down/startup conditions. When the Ru/TiO2 catalyst is coated on the engineered substrate Fe-CrAlY felt, activity enhancement is more than doubled when compared with an identically prepared engineered catalyst made from commercial Degussa catalyst. Also, bimetallic Ru-Rh/TiO2 catalysts show high activity at high throughput.

  7. Mechanistic insight into the hydrazine decomposition on Rh(111): effect of reaction intermediate on catalytic activity.

    PubMed

    Deng, Zhigang; Lu, Xiaoqing; Wen, Zengqiang; Wei, Shuxian; Liu, Yunjie; Fu, Dianling; Zhao, Lianming; Guo, Wenyue

    2013-10-14

    Periodic density functional theory (DFT) calculations have been performed to systematically investigate the effect of reaction intermediate on catalytic activity for hydrazine (N2H4) decomposition on Rh(111). Reaction mechanisms via intramolecular and NH2-assisted N2H4 decompositions are comparatively analyzed, including adsorption configuration, reaction energy and barrier of elementary step, and reaction network. Our results show that the most favorable N2H4 decomposition pathway starts with the initial N-N bond scission to the NH2 intermediate, followed by stepwise H stripping from adsorbed N2Hx (x = 1-4) species, and finally forms the N2 and NH3 products. Comparatively, the stepwise intramolecular dehydrogenation via N2H4→ N2H3→ N2H2→ N2H → N2, and N2H4→ NH2→ NH → N with or without NH2 promotion effect, are unfavorable due to higher energy barriers encountered. Energy barrier analysis, reaction rate constants, and electronic structures are used to identify the crucial competitive route. The promotion effect of the NH2 intermediate is structurally reflected in the weakening of the N-H bond and strengthening of the N-N bond in N2Hx in the coadsorption system; it results intrinsically from the less structural deformation of the adsorbate, and weakening of the interaction between dehydrogenated fragment and departing H in transition state. Our results highlight the crucial effect of reaction intermediate on catalytic activity and provide a theoretical approach to analyze the effect.

  8. Transition metal-catalyzed C-H activation reactions: diastereoselectivity and enantioselectivity.

    PubMed

    Giri, Ramesh; Shi, Bing-Feng; Engle, Keary M; Maugel, Nathan; Yu, Jin-Quan

    2009-11-01

    This critical review discusses historical and contemporary research in the field of transition metal-catalyzed carbon-hydrogen (C-H) bond activation through the lens of stereoselectivity. Research concerning both diastereoselectivity and enantioselectivity in C-H activation processes is examined, and the application of concepts in this area for the development of novel carbon-carbon and carbon-heteroatom bond-forming reactions is described. Throughout this review, an emphasis is placed on reactions that are (or may soon become) relevant in the realm of organic synthesis (221 references).

  9. Effect of micro-stirring on enzymatic reaction kinetics inside a biomimetic container

    NASA Astrophysics Data System (ADS)

    Gozen, Irep; Horowitz, Viva; Chambers, Zachary; Manoharan, Vinothan

    The intracellular environment is dynamic, influenced by the motion of active machinery such as cytoskeleton filaments and molecular motors. To understand whether and how such activity affects the rates of diffusion-limited reactions, we construct a model system consisting of a phospholipid vesicle encapsulating a small number of micro- or nanoparticles, the active motion of which can be induced by chemical or magnetic cues. We aim to determine a relation between active motion of particles and rates of enzymatic reactions in the confined volume. Our findings might illuminate how active motion influences cytoplasmic reaction dynamics, or may have played a role in protocell genetics.

  10. Analysis of activation energy in Couette-Poiseuille flow of nanofluid in the presence of chemical reaction and convective boundary conditions

    NASA Astrophysics Data System (ADS)

    Zeeshan, A.; Shehzad, N.; Ellahi, R.

    2018-03-01

    The motivation of the current article is to explore the energy activation in MHD radiative Couette-Poiseuille flow nanofluid in horizontal channel with convective boundary conditions. The mathematical model of Buongiorno [1] effectively describes the current flow analysis. Additionally, the impact of chemical reaction is also taken in account. The governing flow equations are simplified with the help of boundary layer approximations. Non-linear coupled equations for momentum, energy and mass transfer are tackled with analytical (HAM) technique. The influence of dimensionless convergence parameter like Brownian motion parameter, radiation parameter, buoyancy ratio parameter, dimensionless activation energy, thermophoresis parameter, temperature difference parameter, dimensionless reaction rate, Schmidt number, Brinkman number, Biot number and convection diffusion parameter on velocity, temperature and concentration profiles are discussed graphically and in tabular form. From the results, it is elaborate that the nanoparticle concentration is directly proportional to the chemical reaction with activation energy and the performance of Brownian motion on nanoparticle concentration gives reverse pattern to that of thermophoresis parameter.

  11. Rate processes in gas phase

    NASA Technical Reports Server (NTRS)

    Hansen, C. F.

    1983-01-01

    Reaction-rate theory and experiment are given a critical review from the engineers' point of view. Rates of heavy-particle, collision-induced reaction in gas phase are formulated in terms of the cross sections and activation energies for reaction. The effect of cross section function shape and of excited state contributions to reaction both cause the slope of Arrhenius plots to differ from the true activation energy, except at low temperature. The master equations for chemically reacting gases are introduced, and dissociation and ionization reactions are shown to proceed primarily from excited states about kT from the dissociation or ionization limit. Collision-induced vibration, vibration-rotation, and pure rotation transitions are treated, including three-dimensional effects and conservation of energy, which have usually been ignored. The quantum theory of transitions at potential surface crossing is derived, and results are found to be in fair agreement with experiment in spite of some questionable approximations involved.

  12. Activation cross-section measurement of proton induced reactions on cerium

    NASA Astrophysics Data System (ADS)

    Tárkányi, F.; Hermanne, A.; Ditrói, F.; Takács, S.; Spahn, I.; Spellerberg, S.

    2017-12-01

    In the framework of a systematic study of proton induced nuclear reactions on lanthanides we have measured the excitation functions on natural cerium for the production of 142,139,138m,137Pr, 141,139,137m,137g,135Ce and 133La up to 65 MeV proton energy using the activation method with stacked-foil irradiation technique and high-resolution γ-ray spectrometry. The cross-sections of the investigated reactions were compared with the data retrieved from the TENDL-2014 and TENDL-2015 libraries, based on the latest version of the TALYS code system. No earlier experimental data were found in the literature. The measured cross-section data are important for further improvement of nuclear reaction models and for practical applications in nuclear medicine, other labeling and activation studies.

  13. Stochastic theory of large-scale enzyme-reaction networks: Finite copy number corrections to rate equation models

    NASA Astrophysics Data System (ADS)

    Thomas, Philipp; Straube, Arthur V.; Grima, Ramon

    2010-11-01

    Chemical reactions inside cells occur in compartment volumes in the range of atto- to femtoliters. Physiological concentrations realized in such small volumes imply low copy numbers of interacting molecules with the consequence of considerable fluctuations in the concentrations. In contrast, rate equation models are based on the implicit assumption of infinitely large numbers of interacting molecules, or equivalently, that reactions occur in infinite volumes at constant macroscopic concentrations. In this article we compute the finite-volume corrections (or equivalently the finite copy number corrections) to the solutions of the rate equations for chemical reaction networks composed of arbitrarily large numbers of enzyme-catalyzed reactions which are confined inside a small subcellular compartment. This is achieved by applying a mesoscopic version of the quasisteady-state assumption to the exact Fokker-Planck equation associated with the Poisson representation of the chemical master equation. The procedure yields impressively simple and compact expressions for the finite-volume corrections. We prove that the predictions of the rate equations will always underestimate the actual steady-state substrate concentrations for an enzyme-reaction network confined in a small volume. In particular we show that the finite-volume corrections increase with decreasing subcellular volume, decreasing Michaelis-Menten constants, and increasing enzyme saturation. The magnitude of the corrections depends sensitively on the topology of the network. The predictions of the theory are shown to be in excellent agreement with stochastic simulations for two types of networks typically associated with protein methylation and metabolism.

  14. The reaction H + C4H2 - Absolute rate constant measurement and implication for atmospheric modeling of Titan

    NASA Technical Reports Server (NTRS)

    Nava, D. F.; Mitchell, M. B.; Stief, L. J.

    1986-01-01

    The absolute rate constant for the reaction H + C4H2 has been measured over the temperature (T) interval 210-423 K, using the technique of flash photolysis-resonance fluorescence. At each of the five temperatures employed, the results were independent of variations in C4H2 concentration, total pressure of Ar or N2, and flash intensity (i.e., the initial H concentration). The rate constant, k, was found to be equal to 1.39 x 10 to the -10th exp (-1184/T) cu cm/s, with an error of one standard deviation. The Arrhenius parameters at the high pressure limit determined here for the H + C4H2 reaction are consistent with those for the corresponding reactions of H with C2H2 and C3H4. Implications of the kinetic carbon chemistry results, particularly those at low temperature, are considered for models of the atmospheric carbon chemistry of Titan. The rate of this reaction, relative to that of the analogous, but slower, reaction of H + C2H2, appears to make H + C4H2 a very feasible reaction pathway for effective conversion of H atoms to molecular hydrogen in the stratosphere of Titan.

  15. The effect of addition of primary positive salts, complex salt, on the ionic strength and rate constant at various temperatures by reaction kinetics

    NASA Astrophysics Data System (ADS)

    Kurade, S. S.; Ramteke, A. A.

    2018-05-01

    In this work, we have investigated the rate of reaction by using ionic strength at different temperatures. The main goal of this experiment is to determine the relation between ionic strength with reaction rate, reaction time and rate constant with temperature. It is observed that the addition of positive salt indicate the increasing ionic strength with increase in run time at various temperatures. Thus the temperature affects the speed of reaction and mechanism by which chemical reaction occurs and time variable plays vital role in the progress of reaction at different temperatures.

  16. The Role of Compliance and Reaction Rate in Dehydration Weakening and Frictional Stability of Antigorite

    NASA Astrophysics Data System (ADS)

    Burdette, E.; Okazaki, K.; Hirth, G.

    2017-12-01

    The complicated brittle-ductile rheology of antigorite at subduction zone pressures and temperatures, resulting from its anisotropic mechanical properties, low dehydration temperature, and high water content has made interpretation of dehydration weakening problematic. Recent analyses indicate that antigorite is both ductile and brittle at high temperatures, and follows effective pressure frictional laws while dehydrating. In this study we focus on the role of rig compliance and reaction kinetics on frictional weakening and frictional stability. In addition, we correlate the evolution of mechanical behavior with AE activity at conditions within and above the thermal stability limit of antigorite. We conducted experiments at confining pressures from 0.25 GPa to 1GPa in a Griggs apparatus and modified rig compliance by including compliant components within the loading frame. We also modeled in-situ reaction progress using parameters from Sawai et al. (2013) to quantify relationships between weakening and fluid production. Without modifying the compliance, low pressure runs show stable dehydration weakening. With a modified, low compliance, results were nearly identical to stable weakening at standard compliance at 1 GPa. However, at lower pressures, many acoustic emissions were recorded at peak reaction rates during temperature ramping, with a rapid failure event occurring several minutes afterward (with the caveat that we still need to verify that AEs occur within the sample). No AEs are observed during room temperature experiments in samples that fault, nor were any observed in the high temperature experiments at conditions within the antigorite stability field - consistent with prior studies. Our results demonstrate that understanding in-situ dehydration reaction kinetics and their feedback with rheology and system compliance are key to scaling laboratory antigorite rheology to earth.

  17. Actinometric measurement of solar ultraviolet and development of a weighted solar UV integral. [photochemical reaction rate determination

    NASA Technical Reports Server (NTRS)

    Gupta, A.; Coulbert, C.

    1978-01-01

    An actinometer has been developed to measure outdoor irradiance in the range 295-400 nm. Actinometric measurements of radiation are based on determination of photochemical reaction rates for reactions of known quantum efficiency. Actinometers have the advantage of providing irradiance data over surfaces of difficult accessibility; in addition, actinometrically determined irradiance data are wavelength weighted and therefore provide a useful means of assessing the degradation rates of polymers employed in solar energy systems.

  18. Do π-conjugative effects facilitate SN2 reactions?

    PubMed

    Wu, Chia-Hua; Galabov, Boris; Wu, Judy I-Chia; Ilieva, Sonia; Schleyer, Paul von R; Allen, Wesley D

    2014-02-26

    Rigorous quantum chemical investigations of the SN2 identity exchange reactions of methyl, ethyl, propyl, allyl, benzyl, propargyl, and acetonitrile halides (X = F(-), Cl(-)) refute the traditional view that the acceleration of SN2 reactions for substrates with a multiple bond at Cβ (carbon adjacent to the reacting Cα center) is primarily due to π-conjugation in the SN2 transition state (TS). Instead, substrate-nucleophile electrostatic interactions dictate SN2 reaction rate trends. Regardless of the presence or absence of a Cβ multiple bond in the SN2 reactant in a series of analogues, attractive Cβ(δ(+))···X(δ(-)) interactions in the SN2 TS lower net activation barriers (E(b)) and enhance reaction rates, whereas repulsive Cβ(δ(-))···X(δ(-)) interactions increase E(b) barriers and retard SN2 rates. Block-localized wave function (BLW) computations confirm that π-conjugation lowers the net activation barriers of SN2 allyl (1t, coplanar), benzyl, propargyl, and acetonitrile halide identity exchange reactions, but does so to nearly the same extent. Therefore, such orbital interactions cannot account for the large range of E(b) values in these systems.

  19. Correlation analysis of the progesterone-induced sperm acrosome reaction rate and the fertilisation rate in vitro.

    PubMed

    Jiang, T; Qin, Y; Ye, T; Wang, Y; Pan, J; Zhu, Y; Duan, L; Li, K; Teng, X

    2015-10-01

    In this study, we aimed to investigate whether progesterone-induced acrosome reaction (AR) rate could be an indicator for fertilisation rate in vitro. Twenty-six couples with unexplained infertility and undergoing in vitro fertilisation (IVF) treatment were involved. On the oocytes retrieval day after routine IVF, residual sperm samples were collected to receive progesterone induction (progesterone group) or not (control group). AR rate was calculated and fertilisation rate was recorded. The correlation between progesterone-induced AR and fertilisation rate and between sperm normal morphology and 3PN (tripronuclear) were analysed using the Spearman correlation analysis. The AR rate of progesterone group was statistically higher than that of the control group (15.6 ± 5.88% versus 9.66 ± 5.771%, P < 0.05), but not significantly correlated with fertilisation rate (r = -0.053, P > 0.01) or rate of high-quality embryo development (r = -0.055, P > 0.01). Normal sperm morphology also showed no significant correlation with the amount of 3PN zygotes (r = 0.029, P > 0.01), rate of 3PN zygotes production (r = 0.20, P > 0.01), rate of 3PN embryo development (r = -0.406, P > 0.01), fertilisation rate (r = -0.148, P > 0.01) or progesterone-induced AR rate (r = 0.214, P > 0.01). Progesterone can induce AR in vitro significantly; however, the progesterone-induced AR may not be used to indicate fertilisation rate. © 2014 Blackwell Verlag GmbH.

  20. Breakdown of the reaction-diffusion master equation with nonelementary rates

    NASA Astrophysics Data System (ADS)

    Smith, Stephen; Grima, Ramon

    2016-05-01

    The chemical master equation (CME) is the exact mathematical formulation of chemical reactions occurring in a dilute and well-mixed volume. The reaction-diffusion master equation (RDME) is a stochastic description of reaction-diffusion processes on a spatial lattice, assuming well mixing only on the length scale of the lattice. It is clear that, for the sake of consistency, the solution of the RDME of a chemical system should converge to the solution of the CME of the same system in the limit of fast diffusion: Indeed, this has been tacitly assumed in most literature concerning the RDME. We show that, in the limit of fast diffusion, the RDME indeed converges to a master equation but not necessarily the CME. We introduce a class of propensity functions, such that if the RDME has propensities exclusively of this class, then the RDME converges to the CME of the same system, whereas if the RDME has propensities not in this class, then convergence is not guaranteed. These are revealed to be elementary and nonelementary propensities, respectively. We also show that independent of the type of propensity, the RDME converges to the CME in the simultaneous limit of fast diffusion and large volumes. We illustrate our results with some simple example systems and argue that the RDME cannot generally be an accurate description of systems with nonelementary rates.

  1. Ab initio kinetics of gas phase decomposition reactions.

    PubMed

    Sharia, Onise; Kuklja, Maija M

    2010-12-09

    The thermal and kinetic aspects of gas phase decomposition reactions can be extremely complex due to a large number of parameters, a variety of possible intermediates, and an overlap in thermal decomposition traces. The experimental determination of the activation energies is particularly difficult when several possible reaction pathways coexist in the thermal decomposition. Ab initio calculations intended to provide an interpretation of the experiment are often of little help if they produce only the activation barriers and ignore the kinetics of the decomposition process. To overcome this ambiguity, a theoretical study of a complete picture of gas phase thermo-decomposition, including reaction energies, activation barriers, and reaction rates, is illustrated with the example of the β-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) molecule by means of quantum-chemical calculations. We study three types of major decomposition reactions characteristic of nitramines: the HONO elimination, the NONO rearrangement, and the N-NO(2) homolysis. The reaction rates were determined using the conventional transition state theory for the HONO and NONO decompositions and the variational transition state theory for the N-NO(2) homolysis. Our calculations show that the HMX decomposition process is more complex than it was previously believed to be and is defined by a combination of reactions at any given temperature. At all temperatures, the direct N-NO(2) homolysis prevails with the activation barrier at 38.1 kcal/mol. The nitro-nitrite isomerization and the HONO elimination, with the activation barriers at 46.3 and 39.4 kcal/mol, respectively, are slow reactions at all temperatures. The obtained conclusions provide a consistent interpretation for the reported experimental data.

  2. A reaction-diffusion-based coding rate control mechanism for camera sensor networks.

    PubMed

    Yamamoto, Hiroshi; Hyodo, Katsuya; Wakamiya, Naoki; Murata, Masayuki

    2010-01-01

    A wireless camera sensor network is useful for surveillance and monitoring for its visibility and easy deployment. However, it suffers from the limited capacity of wireless communication and a network is easily overflown with a considerable amount of video traffic. In this paper, we propose an autonomous video coding rate control mechanism where each camera sensor node can autonomously determine its coding rate in accordance with the location and velocity of target objects. For this purpose, we adopted a biological model, i.e., reaction-diffusion model, inspired by the similarity of biological spatial patterns and the spatial distribution of video coding rate. Through simulation and practical experiments, we verify the effectiveness of our proposal.

  3. High School Students' Affective Reaction to English Speaking Activities

    ERIC Educational Resources Information Center

    Jorquera Torres, Oliver Camilo; Mendoza Zapata, Jhon Eliot; Díaz Larenas, Claudio Heraldo

    2017-01-01

    This study aims to measure fifty-two high school students' affective reactions after doing individual and pair-based speaking activities then completing a semantic differential scale of nine bipolar adjectives. Results do not show significant statistical differences between the two types of activities or the schools involved in this study, but…

  4. Hybrid Quantum Mechanical and Molecular Mechanics Study of the SN2 Reaction of CCl4 + OH- in Aqueous Solution: The Potential of Mean Force, Reaction Energetics, and Rate Constants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ting; Yin, Hongyun; Wang, Dunyou

    2012-02-16

    The bimolecular nucleophilic substitution reaction of CCl{sub 4} and OH{sup -} in aqueous solution was investigated on the basis of a combined quantum mechanical and molecular mechanics method. A multilayered representation approach is employed to achieve high accuracy results at the CCSD(T) level of theory. The potential of mean force calculations at the DFT level and CCSD(T) level of theory yield reaction barrier heights of 22.7 and 27.9 kcal/mol, respectively. Both the solvation effects and the solvent-induced polarization effect have significant contributions to the reaction energetics, for example, the solvation effect raises the saddle point by 10.6 kcal/mol. The calculatedmore » rate constant coefficient is 8.6 x 10{sup -28} cm{sup 3} molecule{sup -1} s{sup -1} at the standard state condition, which is about 17 orders magnitude smaller than that in the gas phase. Among the four chloromethanes (CH{sub 3}Cl, CH{sub 2}Cl{sub 2}, CHCl{sub 3}, and CCl{sub 4}), CCl{sub 4} has the lowest free energy activation barrier for the reaction with OH{sup -1} in aqueous solution, confirming the trend that substitution of Cl by H in chloromethanes diminishes the reactivity.« less

  5. The Rate Constant for the Reaction H + C2H5 at T = 295 - 150K

    NASA Technical Reports Server (NTRS)

    Pimentel, Andre S.; Payne, Walter A.; Nesbitt, Fred L.; Cody, Regina J.; Stief, Louis J.

    2004-01-01

    The reaction between the hydrogen atom and the ethyl (C2H3) radical is predicted by photochemical modeling to be the most important loss process for C2H5 radicals in the atmospheres of Jupiter and Saturn. This reaction is also one of the major sources for the methyl radicals in these atmospheres. These two simplest hydrocarbon radicals are the initial species for the synthesis of larger hydrocarbons. Previous measurements of the rate constant for the H + C2H5 reaction varied by a factor of five at room temperature, and some studies showed a dependence upon temperature while others showed no such dependence. In addition, the previous studies were at higher temperatures and generally higher pressures than that needed for use in planetary atmospheric models. The rate constant for the reaction H + C2H5 has been measured directly at T = 150, 202 and 295 K and at P = 1.0 Torr He for all temperatures and additionally at P = 0.5 and 2.0 Torr He at T = 202 K. The measurements were performed in a discharge - fast flow system. The decay of the C2H5 radical in the presence of excess hydrogen was monitored by low-energy electron impact mass spectrometry under pseudo-first order conditions. H atoms and C2H5 radicals were generated rapidly and simultaneously by the reaction of fluorine atoms with H2 and C2H6, respectively. The total rate constant was found to be temperature and pressure independent. The measured total rate constant at each temperature are: k(sub 1)(295K) = (1.02+/-0.24)x10(exp -10), k(sub 1)(202K) = (1.02+/-0.22)x10(exp -10) and k(sub 1)(150K) = (0.93+/-0.21)x10(exp -10), all in units of cu cm/molecule/s. The total rate constant derived from all the combined measurements is k(sub 1) = (l.03+/-0.17)x10(exp -10) cu cm/molecule/s. At room temperature our results are about a factor of two higher than the recommended rate constant and a factor of three lower than the most recently published study.

  6. Ground reaction forces, kinematics, and muscle activations during the windmill softball pitch.

    PubMed

    Oliver, Gretchen D; Plummer, Hillary

    2011-07-01

    The aims of the present study were to examine quantitatively ground reaction forces, kinematics, and muscle activations during the windmill softball pitch, and to determine relationships between knee valgus and muscle activations, ball velocity and muscle activation as well as ball velocity and ground reaction forces. It was hypothesized that there would be an inverse relationship between degree of knee valgus and muscle activation, a direct relationship between ground reaction forces and ball velocity, and non-stride leg muscle activations and ball velocity. Ten female windmill softball pitchers (age 17.6 ± 3.47 years, stature 1.67 ± 0.07 m, weight 67.4 ± 12.2 kg) participated. Dependent variables were ball velocity, surface electromyographic (sEMG), kinematic, and kinetic data while the participant was the independent variable. Stride foot contact reported peak vertical forces of 179% body weight. There were positive relationships between ball velocity and ground reaction force (r = 0.758, n = 10, P = 0.029) as well as ball velocity and non-stride leg gluteus maximus (r = 0.851, n = 10, P = 0.007) and medius (r = 0.760, n = 10, P = 0.029) muscle activity, while there was no notable relationship between knee valgus and muscle activation. As the windmill softball pitcher increased ball velocity, her vertical ground reaction forces also increased. Proper conditioning of the lumbopelvic-hip complex, including the gluteals, is essential for injury prevention. From the data presented, it is evident that bilateral strength and conditioning of the gluteal muscle group is salient in the windmill softball pitch as an attempt to decrease incidence of injury.

  7. Survival behavior in the cyclic Lotka-Volterra model with a randomly switching reaction rate

    NASA Astrophysics Data System (ADS)

    West, Robert; Mobilia, Mauro; Rucklidge, Alastair M.

    2018-02-01

    We study the influence of a randomly switching reproduction-predation rate on the survival behavior of the nonspatial cyclic Lotka-Volterra model, also known as the zero-sum rock-paper-scissors game, used to metaphorically describe the cyclic competition between three species. In large and finite populations, demographic fluctuations (internal noise) drive two species to extinction in a finite time, while the species with the smallest reproduction-predation rate is the most likely to be the surviving one (law of the weakest). Here we model environmental (external) noise by assuming that the reproduction-predation rate of the strongest species (the fastest to reproduce and predate) in a given static environment randomly switches between two values corresponding to more and less favorable external conditions. We study the joint effect of environmental and demographic noise on the species survival probabilities and on the mean extinction time. In particular, we investigate whether the survival probabilities follow the law of the weakest and analyze their dependence on the external noise intensity and switching rate. Remarkably, when, on average, there is a finite number of switches prior to extinction, the survival probability of the predator of the species whose reaction rate switches typically varies nonmonotonically with the external noise intensity (with optimal survival about a critical noise strength). We also outline the relationship with the case where all reaction rates switch on markedly different time scales.

  8. Rate constants for reactions of ClO/x/ of atmospheric interest

    NASA Technical Reports Server (NTRS)

    Watson, R. T.

    1977-01-01

    Chemical kinetics measurements on 82 gas phase reactions of chlorine containing species are reviewed. Recommended rate constants are given. The principal species of interest are Cl, Cl2, ClO, Cl2O, ClOO, OClO, CINO, HCl and halo derivatives of methane and ethane. Absorption spectra are given for 21 species. In addition the chemical kinetics methods used to obtain these data are discussed with regard to their applicability and reliability.

  9. Effects of reaction time variability and age on brain activity during Stroop task performance.

    PubMed

    Tam, Angela; Luedke, Angela C; Walsh, Jeremy J; Fernandez-Ruiz, Juan; Garcia, Angeles

    2015-09-01

    Variability in reaction time during task performance may reflect fluctuations in attention and cause reduced performance in goal-directed tasks, yet it is unclear whether the mechanisms behind this phenomenon change with age. Using fMRI, we tested young and cognitively healthy older adults with the Stroop task to determine whether aging affects the neural mechanisms underlying intra-individual reaction time variability. We found significant between-group differences in BOLD activity modulated by reaction time. In older adults, longer reaction times were associated with greater activity in frontoparietal attentional areas, while in younger adults longer reaction times were associated with greater activity in default mode network areas. Our results suggest that the neural correlates of reaction time variability change with healthy aging, reinforcing the concept of functional plasticity to maintain high cognitive function throughout the lifespan.

  10. The loss rates of O+ in the inner magnetosphere caused by both magnetic field line curvature scattering and charge exchange reactions

    NASA Astrophysics Data System (ADS)

    Ji, Y.; Shen, C.

    2014-03-01

    With consideration of magnetic field line curvature (FLC) pitch angle scattering and charge exchange reactions, the O+ (>300 keV) in the inner magnetosphere loss rates are investigated by using an eigenfunction analysis. The FLC scattering provides a mechanism for the ring current O+ to enter the loss cone and influence the loss rates caused by charge exchange reactions. Assuming that the pitch angle change is small for each scattering event, the diffusion equation including a charge exchange term is constructed and solved; the eigenvalues of the equation are identified. The resultant loss rates of O+ are approximately equal to the linear superposition of the loss rate without considering the charge exchange reactions and the loss rate associated with charge exchange reactions alone. The loss time is consistent with the observations from the early recovery phases of magnetic storms.

  11. Absolute rate constants for the reaction of OH with cyclopentane and cycloheptane from 233 to 351 K.

    PubMed

    Gennaco, Michael A; Huang, Yi-wen; Hannun, Reem A; Dransfield, Timothy J

    2012-12-27

    Absolute rate constant measurements for the reactions of OH with cyclopentane and cycloheptane in the gas phase in 6-8 Torr of nitrogen from 233 to 351 K in the Harvard University High-Pressure Flow System (HPFS) are reported. Hydroxyl concentrations were measured using laser-induced fluorescence, and alkane concentrations were measured using Fourier transform infrared spectroscopy. Results were fit to a modified Arrhenius equation based on transition state theory (ignoring tunneling): k(T) = B e(-E(a)/T)/T(1 - e(-1.44ν(1)/T))(2)(1 - e(-1.44ν(2)/T)), with ν(1) and ν(2) bending frequencies set to 280 and 500 cm(-1) . Results were as follows for E(a) (K) and k (298) (10(-12) cm(3) s(-1)): cyclopentane, 460 ± 32, 4.85; cycloheptane, 319 ± 36, 9.84. This work represents the second absolute temperature-dependent rate constant measurement reported for cycloheptane, and the third absolute temperature-dependent rate constant measurement reported near room temperature for the reaction of OH and cyclopentane. For the title reactions, the reaction barriers reported here are in agreement with the reaction barrier previously reported for cyclohexane and considerably higher than the barrier previously reported for cyclo-octane, a result that is not predicted by our current understanding of hydrocarbon reactivity.

  12. Kinetic Analysis for the Multistep Profiles of Organic Reactions: Significance of the Conformational Entropy on the Rate Constants of the Claisen Rearrangement.

    PubMed

    Sumiya, Yosuke; Nagahata, Yutaka; Komatsuzaki, Tamiki; Taketsugu, Tetsuya; Maeda, Satoshi

    2015-12-03

    The significance of kinetic analysis as a tool for understanding the reactivity and selectivity of organic reactions has recently been recognized. However, conventional simulation approaches that solve rate equations numerically are not amenable to multistep reaction profiles consisting of fast and slow elementary steps. Herein, we present an efficient and robust approach for evaluating the overall rate constants of multistep reactions via the recursive contraction of the rate equations to give the overall rate constants for the products and byproducts. This new method was applied to the Claisen rearrangement of allyl vinyl ether, as well as a substituted allyl vinyl ether. Notably, the profiles of these reactions contained 23 and 84 local minima, and 66 and 278 transition states, respectively. The overall rate constant for the Claisen rearrangement of allyl vinyl ether was consistent with the experimental value. The selectivity of the Claisen rearrangement reaction has also been assessed using a substituted allyl vinyl ether. The results of this study showed that the conformational entropy in these flexible chain molecules had a substantial impact on the overall rate constants. This new method could therefore be used to estimate the overall rate constants of various other organic reactions involving flexible molecules.

  13. Preparation of optically active bicyclodihydrosiloles by a radical cascade reaction

    PubMed Central

    Miyazaki, Koichiro; Yamane, Yu; Yo, Ryuichiro; Uno, Hidemitsu

    2013-01-01

    Summary Bicyclodihydrosiloles were readily prepared from optically active enyne compounds by a radical cascade reaction triggered by tris(trimethylsilyl)silane ((Me3Si)3SiH). The reaction was initiated by the addition of a silyl radical to an α,β-unsaturated ester, forming an α-carbonyl radical that underwent radical cyclization to a terminal alkyne unit. The resulting vinyl radical attacked the silicon atom in an SHi manner to give dihydrosilole. The reaction preferentially formed trans isomers of bicyclosiloles with an approximately 7:3 to 9:1 selectivity. PMID:23946827

  14. Estimation of rate constants of PCB dechlorination reactions using an anaerobic dehalogenation model.

    PubMed

    Karakas, Filiz; Imamoglu, Ipek

    2017-02-15

    This study aims to estimate anaerobic dechlorination rate constants (k m ) of reactions of individual PCB congeners using data from four laboratory microcosms set up using sediment from Baltimore Harbor. Pathway k m values are estimated by modifying a previously developed model as Anaerobic Dehalogenation Model (ADM) which can be applied to any halogenated hydrophobic organic (HOC). Improvements such as handling multiple dechlorination activities (DAs) and co-elution of congeners, incorporating constraints, using new goodness of fit evaluation led to an increase in accuracy, speed and flexibility of ADM. DAs published in the literature in terms of chlorine substitutions as well as specific microorganisms and their combinations are used for identification of pathways. The best fit explaining the congener pattern changes was found for pathways of Phylotype DEH10, which has the ability to remove doubly flanked chlorines in meta and para positions, para flanked chlorines in meta position. The range of estimated k m values is between 0.0001-0.133d -1 , the median of which is found to be comparable to the few available published biologically confirmed rate constants. Compound specific modelling studies such as that performed by ADM can enable monitoring and prediction of concentration changes as well as toxicity during bioremediation. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Statistical analysis of activation and reaction energies with quasi-variational coupled-cluster theory

    NASA Astrophysics Data System (ADS)

    Black, Joshua A.; Knowles, Peter J.

    2018-06-01

    The performance of quasi-variational coupled-cluster (QV) theory applied to the calculation of activation and reaction energies has been investigated. A statistical analysis of results obtained for six different sets of reactions has been carried out, and the results have been compared to those from standard single-reference methods. In general, the QV methods lead to increased activation energies and larger absolute reaction energies compared to those obtained with traditional coupled-cluster theory.

  16. Reaction rate theory: What it was, where is it today, and where is it going?

    NASA Astrophysics Data System (ADS)

    Pollak, Eli; Talkner, Peter

    2005-06-01

    A brief history is presented, outlining the development of rate theory during the past century. Starting from Arrhenius [Z. Phys. Chem. 4, 226 (1889)], we follow especially the formulation of transition state theory by Wigner [Z. Phys. Chem. Abt. B 19, 203 (1932)] and Eyring [J. Chem. Phys. 3, 107 (1935)]. Transition state theory (TST) made it possible to obtain quick estimates for reaction rates for a broad variety of processes even during the days when sophisticated computers were not available. Arrhenius' suggestion that a transition state exists which is intermediate between reactants and products was central to the development of rate theory. Although Wigner gave an abstract definition of the transition state as a surface of minimal unidirectional flux, it took almost half of a century until the transition state was precisely defined by Pechukas [Dynamics of Molecular Collisions B, edited by W. H. Miller (Plenum, New York, 1976)], but even this only in the realm of classical mechanics. Eyring, considered by many to be the father of TST, never resolved the question as to the definition of the activation energy for which Arrhenius became famous. In 1978, Chandler [J. Chem. Phys. 68, 2959 (1978)] finally showed that especially when considering condensed phases, the activation energy is a free energy, it is the barrier height in the potential of mean force felt by the reacting system. Parallel to the development of rate theory in the chemistry community, Kramers published in 1940 [Physica (Amsterdam) 7, 284 (1940)] a seminal paper on the relation between Einstein's theory of Brownian motion [Einstein, Ann. Phys. 17, 549 (1905)] and rate theory. Kramers' paper provided a solution for the effect of friction on reaction rates but left us also with some challenges. He could not derive a uniform expression for the rate, valid for all values of the friction coefficient, known as the Kramers turnover problem. He also did not establish the connection between his approach

  17. Structuring Pd Nanoparticles on 2H-WS2 Nanosheets Induces Excellent Photocatalytic Activity for Cross-Coupling Reactions under Visible Light.

    PubMed

    Raza, Faizan; Yim, DaBin; Park, Jung Hyun; Kim, Hye-In; Jeon, Su-Ji; Kim, Jong-Ho

    2017-10-18

    Effective photocatalysts and their surface engineering are essential for the efficient conversion of solar energy into chemical energy in photocatalyzed organic transformations. Herein, we report an effective approach for structuring Pd nanoparticles (NPs) on exfoliated 2H-WS 2 nanosheets (WS 2 /PdNPs), resulting in hybrids with extraordinary photocatalytic activity in Suzuki reactions under visible light. Pd NPs of different sizes and densities, which can modulate the photocatalytic activity of the as-prepared WS 2 /PdNPs, were effectively structured on the basal plane of 2H-WS 2 nanosheets via a sonic wave-assisted nucleation method without any reductants at room temperature. As the size of Pd NPs on WS 2 /PdNPs increased, their photocatalytic activity in Suzuki reactions at room temperature increased substantially. In addition, it was found that protic organic solvents play a crucial role in activating WS 2 /PdNPs catalysts in photocatalyzed Suzuki reactions, although these solvents are generally considered much less effective than polar aprotic ones in the conventional Suzuki reactions promoted by heterogeneous Pd catalysts. A mechanistic investigation suggested that photogenerated holes are transferred to protic organic solvents, whereas photogenerated electrons are transferred to Pd NPs. This transfer makes the Pd NPs electron-rich and accelerates the rate-determining step, i.e., the oxidative addition of aryl halides under visible light. WS 2 /PdNPs showed the highest turnover frequency (1244 h -1 ) for photocatalyzed Suzuki reactions among previously reported photocatalysts.

  18. Reaction Mechanism Generator: Automatic construction of chemical kinetic mechanisms

    DOE PAGES

    Gao, Connie W.; Allen, Joshua W.; Green, William H.; ...

    2016-02-24

    Reaction Mechanism Generator (RMG) constructs kinetic models composed of elementary chemical reaction steps using a general understanding of how molecules react. Species thermochemistry is estimated through Benson group additivity and reaction rate coefficients are estimated using a database of known rate rules and reaction templates. At its core, RMG relies on two fundamental data structures: graphs and trees. Graphs are used to represent chemical structures, and trees are used to represent thermodynamic and kinetic data. Models are generated using a rate-based algorithm which excludes species from the model based on reaction fluxes. RMG can generate reaction mechanisms for species involvingmore » carbon, hydrogen, oxygen, sulfur, and nitrogen. It also has capabilities for estimating transport and solvation properties, and it automatically computes pressure-dependent rate coefficients and identifies chemically-activated reaction paths. RMG is an object-oriented program written in Python, which provides a stable, robust programming architecture for developing an extensible and modular code base with a large suite of unit tests. Computationally intensive functions are cythonized for speed improvements.« less

  19. Reaction Mechanism Generator: Automatic construction of chemical kinetic mechanisms

    NASA Astrophysics Data System (ADS)

    Gao, Connie W.; Allen, Joshua W.; Green, William H.; West, Richard H.

    2016-06-01

    Reaction Mechanism Generator (RMG) constructs kinetic models composed of elementary chemical reaction steps using a general understanding of how molecules react. Species thermochemistry is estimated through Benson group additivity and reaction rate coefficients are estimated using a database of known rate rules and reaction templates. At its core, RMG relies on two fundamental data structures: graphs and trees. Graphs are used to represent chemical structures, and trees are used to represent thermodynamic and kinetic data. Models are generated using a rate-based algorithm which excludes species from the model based on reaction fluxes. RMG can generate reaction mechanisms for species involving carbon, hydrogen, oxygen, sulfur, and nitrogen. It also has capabilities for estimating transport and solvation properties, and it automatically computes pressure-dependent rate coefficients and identifies chemically-activated reaction paths. RMG is an object-oriented program written in Python, which provides a stable, robust programming architecture for developing an extensible and modular code base with a large suite of unit tests. Computationally intensive functions are cythonized for speed improvements.

  20. Chemical reaction rates of ozone in water infusions of wheat, beech, oak and pine leaves of different ages

    NASA Astrophysics Data System (ADS)

    Potier, Elise; Loubet, Benjamin; Durand, Brigitte; Flura, Dominique; Bourdat-Deschamps, Marjolaine; Ciuraru, Raluca; Ogée, Jérôme

    2017-02-01

    In this study we present results from a laboratory experiment designed to evaluate the first-order chemical reaction rate (k) of ozone in water films on plant leaves occurring during dew or rain events. Ozone deposition to wet cuticles is indeed known to be a significant pathway of ozone deposition, but the underlying processes are not yet well understood. Leaf infusions obtained by infusing plant leaves with water at room temperature were introduced into a wet effluent denuder fed with a flux of ozone-rich air. Ozone, water vapour concentrations and temperature were measured in both inlet and outlet airflows in order to compute ozone reaction rates kr using an ozone reaction-diffusion model in the water film. Ascorbate solutions were used to validate the set up and led to kr = 3.6 107 M-1 s-1 consistent with the literature. Ozone reaction rates were determined for wheat, beech, oak and pine leaves infusions at several developmental stages, as well as for rain samples. Leaf infusions reaction rates were between 240 s-1 and 3.4 105 s-1 depending on species and developmental stage, while k for rain water ranged from 130 to 830 s-1. Wheat leaves solutions showed significantly (P < 0.001) higher kr (median 73800 s-1) compared to the other tree species (median 4560 s-1). Senescing or dead leaves also showed significantly (P < 0.001) larger k (median 21100 s-1) compared to non-senescent leaves (median 3200 s-1). In wheat, k also increased with increasing yellow leaf fraction. Our results are in the range of previously reported ozone deposition on wet leaves in field or chamber studies. Composition of leaves infusions and previous studies on throughfall and dew composition shows that reaction of ozone with inorganic compounds may only explain the smallest measured k. The largest k observed during senescent are most likely due to reaction with organic material. This is confirmed by LC-MS measurements which showed detection of ascorbate and VOCs as well as the reaction

  1. Regulation of lecithin-cholesterol acyltransferase reaction by acyl acceptors and demonstration of its "idling" reaction.

    PubMed

    Czarnecka, H; Yokoyama, S

    1993-09-15

    The mechanism for regulation of cholesterol esterification by lecithin-cholesterol acyltransferase (LCAT) was studied using the highly isolated enzyme from pig plasma. In the reaction with phosphatidylcholine small unilamellar vesicles, cholesterol, water, diacylglycerol, and lysophosphatidylcholine were all potent acceptors of an acyl group cleaved from the sn-2 position of egg phosphatidylcholine, generating cholesteryl ester, free fatty acid, triglyceride, and phosphatidylcholine, respectively. All of these reactions required activation by human apolipoprotein A-I, suggesting that this activation leads to the deacylation of phosphatidylcholine. Those acceptors competed against each other in this vesicle reaction system, and cholesterol was the most potent acyl acceptor. Lysophosphatidylcholine that was endogenously generated by deacylation of phosphatidylcholine in the first step of the LCAT reaction was also a good acyl acceptor, showing that the reaction is always partly "idling." Bovine serum albumin partially inhibited this idling reaction in a concentration-dependent manner up to 80% at 0.60 mM. The above results were essentially reproducible with high density lipoprotein, except that cholesterol is less potent than lysophosphatidylcholine in accepting the acyl group under the condition used. Unlike the apolipoprotein A-I-activated reaction, cholesterol was esterified only slightly by the LCAT reaction on low density lipoprotein and, consequently, did not compete against lysophosphatidylcholine for generation of phosphatidylcholine. Thus, apoB may activate LCAT in a very different manner from apoA-I. The rate of esterification of lysophosphatidylcholine on low density lipoprotein was one-tenth of that on the vesicles and on high density lipoprotein. Thus, LCAT is active on low density lipoprotein but mostly idling as deacylating and reacylating glycerophospholipids.

  2. Probing the Rate-Determining Step of the Claisen-Schmidt Condensation by Competition Reactions

    ERIC Educational Resources Information Center

    Mak, Kendrew K. W.; Chan, Wing-Fat; Lung, Ka-Ying; Lam, Wai-Yee; Ng, Weng-Cheong; Lee, Siu-Fung

    2007-01-01

    Competition experiments are a useful tool for preliminary study of the linear free energy relationship of organic reactions. This article describes a physical organic experiment for upper-level undergraduates to identify the rate-determining step of the Claisen-Schmidt condensation of benzaldehyde and acetophenone by studying the linear free…

  3. Evaluating free vs bound oxygen on ignition of nano-aluminum based energetics leads to a critical reaction rate criterion

    NASA Astrophysics Data System (ADS)

    Zhou, Wenbo; DeLisio, Jeffery B.; Wang, Xizheng; Egan, Garth C.; Zachariah, Michael R.

    2015-09-01

    This study investigates the ignition of nano-aluminum (n-Al) and n-Al based energetic materials (nanothermites) at varying O2 pressures (1-18 atm), aiming to differentiate the effects of free and bound oxygen on ignition and to assess if it is possible to identify a critical reaction condition for ignition independent of oxygen source. Ignition experiments were conducted by rapidly heating the samples on a fine Pt wire at a heating rate of ˜105 °C s-1 to determine the ignition time and temperature. The ignition temperature of n-Al was found to reduce as the O2 pressure increased, whereas the ignition temperatures of nanothermites (n-Al/Fe2O3, n-Al/Bi2O3, n-Al/K2SO4, and n-Al/K2S2O8) had different sensitivities to O2 pressure depending on the formulations. A phenomenological kinetic/transport model was evaluated to correlate the concentrations of oxygen both in condensed and gaseous phases, with the initiation rate of Al-O at ignition temperature. We found that a constant critical reaction rate (5 × 10-2 mol m-2 s-1) for ignition exists which is independent to ignition temperature, heating rate, and free vs bound oxygen. Since for both the thermite and the free O2 reaction the critical reaction rate for ignition is the same, the various ignition temperatures are simply reflecting the conditions when the critical reaction rate for thermal runaway is achieved.

  4. Manual choice reaction times in the rate-domain

    PubMed Central

    Harris, Christopher M.; Waddington, Jonathan; Biscione, Valerio; Manzi, Sean

    2014-01-01

    Over the last 150 years, human manual reaction times (RTs) have been recorded countless times. Yet, our understanding of them remains remarkably poor. RTs are highly variable with positively skewed frequency distributions, often modeled as an inverse Gaussian distribution reflecting a stochastic rise to threshold (diffusion process). However, latency distributions of saccades are very close to the reciprocal Normal, suggesting that “rate” (reciprocal RT) may be the more fundamental variable. We explored whether this phenomenon extends to choice manual RTs. We recorded two-alternative choice RTs from 24 subjects, each with 4 blocks of 200 trials with two task difficulties (easy vs. difficult discrimination) and two instruction sets (urgent vs. accurate). We found that rate distributions were, indeed, very close to Normal, shifting to lower rates with increasing difficulty and accuracy, and for some blocks they appeared to become left-truncated, but still close to Normal. Using autoregressive techniques, we found temporal sequential dependencies for lags of at least 3. We identified a transient and steady-state component in each block. Because rates were Normal, we were able to estimate autoregressive weights using the Box-Jenkins technique, and convert to a moving average model using z-transforms to show explicit dependence on stimulus input. We also found a spatial sequential dependence for the previous 3 lags depending on whether the laterality of previous trials was repeated or alternated. This was partially dissociated from temporal dependency as it only occurred in the easy tasks. We conclude that 2-alternative choice manual RT distributions are close to reciprocal Normal and not the inverse Gaussian. This is not consistent with stochastic rise to threshold models, and we propose a simple optimality model in which reward is maximized to yield to an optimal rate, and hence an optimal time to respond. We discuss how it might be implemented. PMID:24959134

  5. Rate kernel theory for pseudo-first-order kinetics of diffusion-influenced reactions and application to fluorescence quenching kinetics.

    PubMed

    Yang, Mino

    2007-06-07

    Theoretical foundation of rate kernel equation approaches for diffusion-influenced chemical reactions is presented and applied to explain the kinetics of fluorescence quenching reactions. A many-body master equation is constructed by introducing stochastic terms, which characterize the rates of chemical reactions, into the many-body Smoluchowski equation. A Langevin-type of memory equation for the density fields of reactants evolving under the influence of time-independent perturbation is derived. This equation should be useful in predicting the time evolution of reactant concentrations approaching the steady state attained by the perturbation as well as the steady-state concentrations. The dynamics of fluctuation occurring in equilibrium state can be predicted by the memory equation by turning the perturbation off and consequently may be useful in obtaining the linear response to a time-dependent perturbation. It is found that unimolecular decay processes including the time-independent perturbation can be incorporated into bimolecular reaction kinetics as a Laplace transform variable. As a result, a theory for bimolecular reactions along with the unimolecular process turned off is sufficient to predict overall reaction kinetics including the effects of unimolecular reactions and perturbation. As the present formulation is applied to steady-state kinetics of fluorescence quenching reactions, the exact relation between fluorophore concentrations and the intensity of excitation light is derived.

  6. Effects of Water Molecule on CO Oxidation by OH: Reaction Pathways, Kinetic Barriers, and Rate Constants.

    PubMed

    Zhang, Linyao; Yang, Li; Zhao, Yijun; Zhang, Jiaxu; Feng, Dongdong; Sun, Shaozeng

    2017-07-06

    The water dilute oxy-fuel combustion is a clean combustion technology for near-zero emission power; and the presence of water molecule could have both kinetic and dynamic effects on combustion reactions. The reaction OH + CO → CO 2 + H, one of the most important elementary reactions, has been investigated by extensive electronic structure calculations. And the effects of a single water molecule on CO oxidation have been studied by considering the preformed OH(H 2 O) complex reacts with CO. The results show little change in the reaction pathways, but the additional water molecule actually increases the vibrationally adiabatic energy barriers (V a G ). Further thermal rate constant calculations in the temperature range of 200 to 2000 K demonstrate that the total low-pressure limit rate constant for the water assisted OH(H 2 O) + CO → CO 2 + H 2 O + H reaction is 1-2 orders lower than that of the water unassisted one, which is consistent with the change of V a G . Therefore, the hydrated radical OH(H 2 O) would actually slow down the oxidation of CO. Meanwhile, comparisons show that the M06-2X/aug-cc-pVDZ method gives a much better estimation in energy and thus is recommended to be employed for direct dynamics simulations.

  7. Temperature-Dependent Rate Constants and Substituent Effects for the Reactions of Hydroxyl Radicals With Three Partially Fluorinated Ethers

    NASA Technical Reports Server (NTRS)

    Hsu, K.-J.; DeMore, W. B.

    1995-01-01

    Rate constants and temperature dependencies for the reactions of OH with CF3OCH3 (HFOC-143a), CF2HOCF2H (HFOC-134), and CF3OCF2H (HFOC-125) were studied using a relative rate technique in the temperature range 298-393 K. The following absolute rate constants were derived: HFOC-143a, 1.9E-12 exp(-1555/T); HFOC-134, 1.9E-12 exp(-2006/T); HFOC-125, 4.7E-13 exp(-2095/T). Units are cm(exp 3)molecule(exp -1) s(exp -1). Substituent effects on OH abstraction rate constants are discussed, and it is shown that the CF3O group has an effect on the OH rate constants similar to that of a fluorine atom. The effects are related to changes in the C-H bond energies of the reactants (and thereby the activation energies) rather than changes in the preexponential factors. On the basis of a correlation of rate constants with bond energies, the respective D(C-H) bond strengths in the three ethers are found to be 102, 104, and 106 kcal/mol, with an uncertainty of about 1 kcal/mol.

  8. A molecular dynamics study of intramolecular proton transfer reaction of malonaldehyde in solution based upon a mixed quantum-classical approximation. II. Proton transfer reaction in non-polar solvent

    NASA Astrophysics Data System (ADS)

    Kojima, H.; Yamada, A.; Okazaki, S.

    2015-05-01

    The intramolecular proton transfer reaction of malonaldehyde in neon solvent has been investigated by mixed quantum-classical molecular dynamics (QCMD) calculations and fully classical molecular dynamics (FCMD) calculations. Comparing these calculated results with those for malonaldehyde in water reported in Part I [A. Yamada, H. Kojima, and S. Okazaki, J. Chem. Phys. 141, 084509 (2014)], the solvent dependence of the reaction rate, the reaction mechanism involved, and the quantum effect therein have been investigated. With FCMD, the reaction rate in weakly interacting neon is lower than that in strongly interacting water. However, with QCMD, the order of the reaction rates is reversed. To investigate the mechanisms in detail, the reactions were categorized into three mechanisms: tunneling, thermal activation, and barrier vanishing. Then, the quantum and solvent effects were analyzed from the viewpoint of the reaction mechanism focusing on the shape of potential energy curve and its fluctuations. The higher reaction rate that was found for neon in QCMD compared with that found for water solvent arises from the tunneling reactions because of the nearly symmetric double-well shape of the potential curve in neon. The thermal activation and barrier vanishing reactions were also accelerated by the zero-point energy. The number of reactions based on these two mechanisms in water was greater than that in neon in both QCMD and FCMD because these reactions are dominated by the strength of solute-solvent interactions.

  9. A molecular dynamics study of intramolecular proton transfer reaction of malonaldehyde in solution based upon a mixed quantum–classical approximation. II. Proton transfer reaction in non-polar solvent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kojima, H.; Yamada, A.; Okazaki, S., E-mail: okazaki@apchem.nagoya-u.ac.jp

    2015-05-07

    The intramolecular proton transfer reaction of malonaldehyde in neon solvent has been investigated by mixed quantum–classical molecular dynamics (QCMD) calculations and fully classical molecular dynamics (FCMD) calculations. Comparing these calculated results with those for malonaldehyde in water reported in Part I [A. Yamada, H. Kojima, and S. Okazaki, J. Chem. Phys. 141, 084509 (2014)], the solvent dependence of the reaction rate, the reaction mechanism involved, and the quantum effect therein have been investigated. With FCMD, the reaction rate in weakly interacting neon is lower than that in strongly interacting water. However, with QCMD, the order of the reaction rates ismore » reversed. To investigate the mechanisms in detail, the reactions were categorized into three mechanisms: tunneling, thermal activation, and barrier vanishing. Then, the quantum and solvent effects were analyzed from the viewpoint of the reaction mechanism focusing on the shape of potential energy curve and its fluctuations. The higher reaction rate that was found for neon in QCMD compared with that found for water solvent arises from the tunneling reactions because of the nearly symmetric double-well shape of the potential curve in neon. The thermal activation and barrier vanishing reactions were also accelerated by the zero-point energy. The number of reactions based on these two mechanisms in water was greater than that in neon in both QCMD and FCMD because these reactions are dominated by the strength of solute–solvent interactions.« less

  10. Fission Activities of the Nuclear Reactions Group in Uppsala

    NASA Astrophysics Data System (ADS)

    Al-Adili, A.; Alhassan, E.; Gustavsson, C.; Helgesson, P.; Jansson, K.; Koning, A.; Lantz, M.; Mattera, A.; Prokofiev, A. V.; Rakopoulos, V.; Sjöstrand, H.; Solders, A.; Tarrío, D.; Österlund, M.; Pomp, S.

    This paper highlights some of the main activities related to fission of the nuclear reactions group at Uppsala University. The group is involved for instance in fission yield experiments at the IGISOL facility, cross-section measurements at the NFS facility, as well as fission dynamics studies at the IRMM JRC-EC. Moreover, work is ongoing on the Total Monte Carlo (TMC) methodology and on including the GEF fission code into the TALYS nuclear reaction code. Selected results from these projects are discussed.

  11. Temperature and pressure dependence of the absolute rate constant for the reactions of NH2 radicals with acetylene and ethylene

    NASA Technical Reports Server (NTRS)

    Bosco, S. R.; Nava, D. F.; Brobst, W. D.; Stief, L. J.

    1984-01-01

    The absolute rate constants for the reaction between the NH2 free radical and acetylene and ethylene is measured experimentally using a flash photolysis technique. The constant is considered to be a function of temperature and pressure. At each temperature level of the experiment, the observed pseudo-first-order rate constants were assumed to be independent of flash intensity. The results of the experiment indicate that the bimolecular rate constant for the NH2 + C2H2 reaction increases with pressure at 373 K and 459 K but not at lower temperatures. Results near the pressure limit conform to an Arrhenius expression of 1.11 (+ or -) 0.36 x 10 to the -13th over the temperature range from 241 to 459 K. For the reaction NH2 + C2H4, a smaller rate of increase in the bimolecular rate constant was observed over the temperature range 250-465 K. The implications of these results for current theoretical models of NH2 + C2H2 (or H4) reactions in the atmospheres of Jupiter and Saturn are discussed.

  12. Direct and inverse reactions of LiH+ with He(1S) from quantum calculations: mechanisms and rates.

    PubMed

    Tacconi, M; Bovino, S; Gianturco, F A

    2012-01-14

    The gas-phase reaction of LiH(+) (X(2)Σ) with He((1)S) atoms, yielding Li(+)He with a small endothermicity for the rotovibrational ground state of the reagents, is analysed using the quantum reactive approach that employs the Negative Imaginary Potential (NIP) scheme discussed earlier in the literature. The dependence of low-T rates on the initial vibrational state of LiH(+) is analysed and the role of low-energy Feshbach resonances is also discussed. The inverse destruction reaction of LiHe(+), a markedly exothermic process, is also investigated and the rates are computed in the same range of temperatures. The possible roles of these reactions in early universe astrophysical networks, in He droplets environments or in cold traps are briefly discussed.

  13. Reaction Event Counting Statistics of Biopolymer Reaction Systems with Dynamic Heterogeneity.

    PubMed

    Lim, Yu Rim; Park, Seong Jun; Park, Bo Jung; Cao, Jianshu; Silbey, Robert J; Sung, Jaeyoung

    2012-04-10

    We investigate the reaction event counting statistics (RECS) of an elementary biopolymer reaction in which the rate coefficient is dependent on states of the biopolymer and the surrounding environment and discover a universal kinetic phase transition in the RECS of the reaction system with dynamic heterogeneity. From an exact analysis for a general model of elementary biopolymer reactions, we find that the variance in the number of reaction events is dependent on the square of the mean number of the reaction events when the size of measurement time is small on the relaxation time scale of rate coefficient fluctuations, which does not conform to renewal statistics. On the other hand, when the size of the measurement time interval is much greater than the relaxation time of rate coefficient fluctuations, the variance becomes linearly proportional to the mean reaction number in accordance with renewal statistics. Gillespie's stochastic simulation method is generalized for the reaction system with a rate coefficient fluctuation. The simulation results confirm the correctness of the analytic results for the time dependent mean and variance of the reaction event number distribution. On the basis of the obtained results, we propose a method of quantitative analysis for the reaction event counting statistics of reaction systems with rate coefficient fluctuations, which enables one to extract information about the magnitude and the relaxation times of the fluctuating reaction rate coefficient, without a bias that can be introduced by assuming a particular kinetic model of conformational dynamics and the conformation dependent reactivity. An exact relationship is established between a higher moment of the reaction event number distribution and the multitime correlation of the reaction rate for the reaction system with a nonequilibrium initial state distribution as well as for the system with the equilibrium initial state distribution.

  14. Explore the reaction mechanism of the Maillard reaction: a density functional theory study.

    PubMed

    Ren, Ge-Rui; Zhao, Li-Jiang; Sun, Qiang; Xie, Hu-Jun; Lei, Qun-Fang; Fang, Wen-Jun

    2015-05-01

    The mechanism of Maillard reaction has been investigated by means of density functional theory calculations in the gaseous phase and aqueous solution. The Maillard reaction is a cascade of consecutive and parallel reaction. In the present model system study, glucose and glycine were taken as the initial reactants. On the basis of previous experimental results, the mechanisms of Maillard reaction have been proposed, and the possibility for the formation of different compounds have been evaluated through calculating the relative energy changes for different steps of reaction under different pH conditions. Our calculations reveal that the TS3 in Amadori rearrangement reaction is the rate-determining step of Maillard reaction with the activation barriers of about 66.7 and 68.8 kcal mol(-1) in the gaseous phase and aqueous solution, respectively. The calculation results are in good agreement with previous studies and could provide insights into the reaction mechanism of Maillard reaction, since experimental evaluation of the role of intermediates in the Maillard reaction is quite complicated.

  15. The effects of finite-rate reactions at the gas/surface interface in support of thermal protection system design

    NASA Astrophysics Data System (ADS)

    Beerman, Adam Farrell

    2011-12-01

    Gas-surface modeling is dependent on material type and atmospheric reentry conditions. Lower molecular collisions at the low pressure trajectories make it more likely for occurrences of nonequilibrium, or finite-rate, reactions. Equilibrium is often assumed at the surface of a material as it is a subset of nonequilibrium and is easier to compute, though it can lead to overly conservative predictions. A case where a low density material experiences a low pressure trajectory and designed for equilibrium is the Stardust Return Capsule (SRC) with the Phenolic Impregnated Carbon Ablator (PICA) as its heatshield. Post-flight analysis of the recession on the SRC found that the prediction from the equilibrium model can be more than 50% larger than the measured recession. The Modified Park Model was chosen as the finite-rate model as it contains simple four reactions (oxidation, sublimation, and nitridation) and has been previously used to study individual points of the SRC trajectory. The Modified Park Model cannot model equilibrium so a model BFIAT was developed that allows finite-rate reactions to be applied to the surface for a certain length of time. Finite-rate sublimation was determined to be reaction of importance in the Park Model for SRC-like conditions. The predicted recession on the SRC heatshield experienced a reduction in its overprediction; the finite-rate predictions fall with the measurement error of the recession at three points on the heatshield. The recession reduction was driven by a significant reduction in char formation. There was little change in the pyrolysis gas rate. The finite-rate model was also applied to simulations of various arc-jet tests that covered a range of heating conditions on the surface of the PICA material. Comparison to this experimental data further showed the role of finite-rate reactions and sublimation in the Park Model and conditions that favor the nonequilibrium assumption (heating over 1000 W/cm2). For the emerging PICA

  16. Measurement of the 2H(7Be, 6Li)3He reaction rate and its contribution to the primordial lithium abundance

    NASA Astrophysics Data System (ADS)

    Li, Er-Tao; Li, Zhi-Hong; Yan, Sheng-Quan; Su, Jun; Guo, Bing; Li, Yun-Ju; Wang, You-Bao; Lian, Gang; Zeng, Sheng; Chen, Si-Zhe; Ma, Shao-Bo; Li, Xiang-Qing; He, Cao; Sun, Hui-Bin; Liu, Wei-Ping

    2018-04-01

    In the standard Big Bang nucleosynthesis (SBBN) model, the lithium puzzle has attracted intense interest over the past few decades, but still has not been solved. Conventionally, the approach is to include more reactions flowing into or out of lithium, and study the potential effects of those reactions which were not previously considered. 7Be(d, 3He)6Li is a reaction that not only produces 6Li but also destroys 7Be, which decays to 7Li, thereby affecting 7Li indirectly. Therefore, this reaction could alleviate the lithium discrepancy if its reaction rate is sufficiently high. However, there is not much information available about the 7Be(d, 3He)6Li reaction rate. In this work, the angular distributions of the 7Be(d, 3He)6Li reaction are measured at the center of mass energies E cm = 4.0 MeV and 6.7 MeV with secondary 7Be beams for the first time. The excitation function of the 7Be(d, 3He)6Li reaction is first calculated with the computer code TALYS and then normalized to the experimental data, then its reaction rate is deduced. A SBBN network calculation is performed to investigate its influence on the 6Li and 7Li abundances. The results show that the 7Be(d, 3He)6Li reaction has a minimal effect on 6Li and 7Li because of its small reaction rate. Therefore, the 7Be(d, 3He)6Li reaction is ruled out by this experiment as a means of alleviating the lithium discrepancy. Supported by National Natural Science Foundation of China (11375269, 11505117, 11490560, 11475264, 11321064), Natural Science Foundation of Guangdong Province (2015A030310012), 973 program of China (2013CB834406) and National key Research and Development Province (2016YFA0400502)

  17. Upscaling of reaction rates in reactive transport using pore-scale reactive transport model

    NASA Astrophysics Data System (ADS)

    Yoon, H.; Dewers, T. A.; Arnold, B. W.; Major, J. R.; Eichhubl, P.; Srinivasan, S.

    2013-12-01

    Dissolved CO2 during geological CO2 storage may react with minerals in fractured rocks, confined aquifers, or faults, resulting in mineral precipitation and dissolution. The overall rate of reaction can be affected by coupled processes among hydrodynamics, transport, and reactions at the (sub) pore-scale. In this research pore-scale modeling of coupled fluid flow, reactive transport, and heterogeneous reaction at the mineral surface is applied to account for permeability alterations caused by precipitation-induced pore-blocking. This work is motivated by the observed CO2 seeps from a natural analog to geologic CO2 sequestration at Crystal Geyser, Utah. A key observation is the lateral migration of CO2 seep sites at a scale of ~ 100 meters over time. A pore-scale model provides fundamental mechanistic explanations of how calcite precipitation alters flow paths by pore plugging under different geochemical compositions and pore configurations. In addition, response function of reaction rates will be constructed from pore-scale simulations which account for a range of reaction regimes characterized by the Damkohler and Peclet numbers. Newly developed response functions will be used in a continuum scale model that may account for large-scale phenomena mimicking lateral migration of surface CO2 seeps. Comparison of field observations and simulations results will provide mechanistic explanations of the lateral migration and enhance our understanding of subsurface processes associated with the CO2 injection. This work is supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security

  18. Considerations Based on Reaction Rate on Char Gasification Behavior in Two-stage Gasifier for Biomass

    NASA Astrophysics Data System (ADS)

    Taniguchi, Miki; Nishiyama, Akio; Sasauchi, Kenichi; Ito, Yusuke; Akamatsu, Fumiteru

    In order to develop a small-scale gasifier in which biomass can be converted to energy with high efficiency, we planned a gasification process that consists of two parts: pyrolysis part (rotary kiln) and gasification part (downdraft gasifier). We performed fundamental experiments on gasification part and discussed the appropriate conditions such as air supply location, air ratio, air temperature and hearth load. We considered the results by calculating reaction rates of representative reactions on char gasification part and found that water gas reaction is dominant in the reduction area and its behavior gives important information to decide the adequate length of the char layer.

  19. Reaction rate of the 13C(α,n)16O neutron source using the ANC of the -3 keV resonance measured with the THM

    NASA Astrophysics Data System (ADS)

    La Cognata, M.; Spitaleri, C.; Trippella, O.; Kiss, G. G.; Rogachev, G. V.; Mukhamedzhanov, A. M.; Avila, M.; Guardo, G. L.; Koshchiy, E.; Kuchera, A.; Lamia, L.; Puglia, S. M. R.; Romano, S.; Santiago, D.; Spartà, R.

    2016-01-01

    The s-process is responsible of the synthesis of most of the nuclei in the mass range 90 ≤ A ≤ 208. It consists in a series of neutron capture reactions on seed nuclei followed by β-decays, since the neutron accretion rate is slower than the β-decay rate. Such small neutron flux is supplied by the 13C(α,n)16O reaction. It is active inside the helium-burning shell of asymptotic giant branch stars, at temperatures < 108 K, corresponding to an energy interval of 140-230 keV. In this region, the astrophysical S (E)-factor is dominated by the -3 keV sub-threshold resonance due to the 6.356 MeV level in 17O. In this work, we have applied the Trojan Horse Method (THM) to the 13C(6Li,n16O)d quasi-free reaction to extract the 6.356 MeV level resonance parameters, in particular the asymptotic normalization coefficient . A preliminary analysis of a partial data set has lead to , slightly larger than the values in the literature. However, the deduced 13C(α, n)16O reaction rate is in agreement with most results in the literature at ˜ 108 K, with enhanced accuracy thanks to our innovative approach merging together ANC and THM.

  20. Reactivity of fluoroalkanes in reactions of coordinated molecular decomposition

    NASA Astrophysics Data System (ADS)

    Pokidova, T. S.; Denisov, E. T.

    2017-08-01

    Experimental results on the coordinated molecular decomposition of RF fluoroalkanes to olefin and HF are analyzed using the model of intersecting parabolas (IPM). The kinetic parameters are calculated to allow estimates of the activation energy ( E) and rate constant ( k) of these reactions, based on enthalpy and IPM algorithms. Parameters E and k are found for the first time for eight RF decomposition reactions. The factors that affect activation energy E of RF decomposition (the enthalpy of the reaction, the electronegativity of the atoms of reaction centers, and the dipole-dipole interaction of polar groups) are determined. The values of E and k for reverse reactions of addition are estimated.

  1. A comprehensive model to determine the effects of temperature and species fluctuations on reaction rates in turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Chinitz, W.

    1986-01-01

    A computationally-viable model describing the interaction between fluid-mechanical turbulence and finite-rate combustion reactions, principally in high-speed flows was developed. Chemical kinetic mechanisms, complete and global, were developed describing the finite rate reaction of fuels of interest to NASA. These fuels included principally hydrogen and silane, although a limited amount of work involved hydrocarbon fuels as well.

  2. Gas-phase rate coefficients for the OH + n-, i-, s-, and t-butanol reactions measured between 220 and 380 K: non-Arrhenius behavior and site-specific reactivity.

    PubMed

    McGillen, Max R; Baasandorj, Munkhbayar; Burkholder, James B

    2013-06-06

    Butanol (C4H9OH) is a potential biofuel alternative in fossil fuel gasoline and diesel formulations. The usage of butanol would necessarily lead to direct emissions into the atmosphere; thus, an understanding of its atmospheric processing and environmental impact is desired. Reaction with the OH radical is expected to be the predominant atmospheric removal process for the four aliphatic isomers of butanol. In this work, rate coefficients, k, for the gas-phase reaction of the n-, i-, s-, and t-butanol isomers with the OH radical were measured under pseudo-first-order conditions in OH using pulsed laser photolysis to produce OH radicals and laser induced fluorescence to monitor its temporal profile. Rate coefficients were measured over the temperature range 221-381 K at total pressures between 50 and 200 Torr (He). The reactions exhibited non-Arrhenius behavior over this temperature range and no dependence on total pressure with k(296 K) values of (9.68 ± 0.75), (9.72 ± 0.72), (8.88 ± 0.69), and (1.04 ± 0.08) (in units of 10(-12) cm(3) molecule(-1) s(-1)) for n-, i-, s-, and t-butanol, respectively. The quoted uncertainties are at the 2σ level and include estimated systematic errors. The observed non-Arrhenius behavior is interpreted here to result from a competition between the available H-atom abstraction reactive sites, which have different activation energies and pre-exponential factors. The present results are compared with results from previous kinetic studies, structure-activity relationships (SARs), and theoretical calculations and the discrepancies are discussed. Results from this work were combined with available high temperature (1200-1800 K) rate coefficient data and room temperature reaction end-product yields, where available, to derive a self-consistent site-specific set of reaction rate coefficients of the form AT(n) exp(-E/RT) for use in atmospheric and combustion chemistry modeling.

  3. Benchmark experiments at ASTRA facility on definition of space distribution of {sup 235}U fission reaction rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bobrov, A. A.; Boyarinov, V. F.; Glushkov, A. E.

    2012-07-01

    Results of critical experiments performed at five ASTRA facility configurations modeling the high-temperature helium-cooled graphite-moderated reactors are presented. Results of experiments on definition of space distribution of {sup 235}U fission reaction rate performed at four from these five configurations are presented more detail. Analysis of available information showed that all experiments on criticality at these five configurations are acceptable for use them as critical benchmark experiments. All experiments on definition of space distribution of {sup 235}U fission reaction rate are acceptable for use them as physical benchmark experiments. (authors)

  4. Low effective activation energies for oxygen release from metal oxides: evidence for mass-transfer limits at high heating rates.

    PubMed

    Jian, Guoqiang; Zhou, Lei; Piekiel, Nicholas W; Zachariah, Michael R

    2014-06-06

    Oxygen release from metal oxides at high temperatures is relevant to many thermally activated chemical processes, including chemical-looping combustion, solar thermochemical cycles and energetic thermite reactions. In this study, we evaluated the thermal decomposition of nanosized metal oxides under rapid heating (~10(5) K s(-1)) with time-resolved mass spectrometry. We found that the effective activation-energy values that were obtained using the Flynn-Wall-Ozawa isoconversional method are much lower than the values found at low heating rates, indicating that oxygen transport might be rate-determining at a high heating rate. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Electrode Reactions in Slowly Relaxing Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matyushov, Dmitry V.; Newton, Marshall D.

    Here, standard models of reaction kinetics in condensed materials rely on the Boltzmann-Gibbs distribution for the population of reactants at the top of the free energy barrier separating them from the products. While energy dissipation and quantum effects at the barrier top can potentially affect the transmission coefficient entering the rate preexponential factor, much stronger dynamical effects on the reaction barrier are caused by the breakdown of ergodicity for populating the reaction barrier (violation of the Boltzmann-Gibbs statistics). When the spectrum of medium modes coupled to the reaction coordinate includes fluctuations slower than the reaction rate, such nuclear motions dynamicallymore » freeze on the reaction time-scale and do not contribute to the activation barrier. In this paper, we consider the consequences of this scenario for electrode reactions in slowly relaxing media. Changing electrode overpotential speeds electrode electron transfer up, potentially cutting through the spectrum of nuclear modes coupled to the reaction coordinate. The reorganization energy of electrochemical electron transfer becomes a function of the electrode overpotential, switching between the thermodynamic value at low rates to the nonergodic limit at higher rates. The sharpness of this transition depends of the relaxation spectrum of the medium. The reorganization energy experiences a sudden drop with increasing overpotential for a medium with a Debye relaxation, but becomes a much shallower function of the overpotential for media with stretched exponential dynamics. The latter scenario characterizes electron transfer in ionic liquids. The analysis of electrode reactions in room-temperature ionic liquids shows that the magnitude of the free energy of nuclear solvation is significantly below its thermodynamic limit. Finally, this result applies to reaction times faster than microseconds and is currently limited by the available dielectric relaxation data.« less

  6. Electrode Reactions in Slowly Relaxing Media

    DOE PAGES

    Matyushov, Dmitry V.; Newton, Marshall D.

    2017-11-17

    Here, standard models of reaction kinetics in condensed materials rely on the Boltzmann-Gibbs distribution for the population of reactants at the top of the free energy barrier separating them from the products. While energy dissipation and quantum effects at the barrier top can potentially affect the transmission coefficient entering the rate preexponential factor, much stronger dynamical effects on the reaction barrier are caused by the breakdown of ergodicity for populating the reaction barrier (violation of the Boltzmann-Gibbs statistics). When the spectrum of medium modes coupled to the reaction coordinate includes fluctuations slower than the reaction rate, such nuclear motions dynamicallymore » freeze on the reaction time-scale and do not contribute to the activation barrier. In this paper, we consider the consequences of this scenario for electrode reactions in slowly relaxing media. Changing electrode overpotential speeds electrode electron transfer up, potentially cutting through the spectrum of nuclear modes coupled to the reaction coordinate. The reorganization energy of electrochemical electron transfer becomes a function of the electrode overpotential, switching between the thermodynamic value at low rates to the nonergodic limit at higher rates. The sharpness of this transition depends of the relaxation spectrum of the medium. The reorganization energy experiences a sudden drop with increasing overpotential for a medium with a Debye relaxation, but becomes a much shallower function of the overpotential for media with stretched exponential dynamics. The latter scenario characterizes electron transfer in ionic liquids. The analysis of electrode reactions in room-temperature ionic liquids shows that the magnitude of the free energy of nuclear solvation is significantly below its thermodynamic limit. Finally, this result applies to reaction times faster than microseconds and is currently limited by the available dielectric relaxation data.« less

  7. Nuclear Data and Reaction Rate Databases in Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Lippuner, Jonas

    2018-06-01

    Astrophysical simulations and models require a large variety of micro-physics data, such as equation of state tables, atomic opacities, properties of nuclei, and nuclear reaction rates. Some of the required data is experimentally accessible, but the extreme conditions present in many astrophysical scenarios cannot be reproduced in the laboratory and thus theoretical models are needed to supplement the empirical data. Collecting data from various sources and making them available as a database in a unified format is a formidable task. I will provide an overview of the data requirements in astrophysics with an emphasis on nuclear astrophysics. I will then discuss some of the existing databases, the science they enable, and their limitations. Finally, I will offer some thoughts on how to design a useful database.

  8. Ligand Displacement Reaction Paths in a Diiron Hydrogenase Active Site Model Complex.

    PubMed

    Blank, Jan H; Moncho, Salvador; Lunsford, Allen M; Brothers, Edward N; Darensbourg, Marcetta Y; Bengali, Ashfaq A

    2016-08-26

    The mechanism and energetics of CO, 1-hexene, and 1-hexyne substitution from the complexes (SBenz)2 [Fe2 (CO)6 ] (SBenz=SCH2 Ph) (1-CO), (SBenz)2 [Fe2 (CO)5 (η(2) -1-hexene)] (1-(η(2) -1-hexene)), and (SBenz)2 [Fe2 (CO)5 (η(2) -1-hexyne)] (1-(η(2) -1-hexyne)) were studied by using time-resolved infrared spectroscopy. Exchange of both CO and 1-hexyne by P(OEt)3 and pyridine, respectively, proceeds by a bimolecular mechanism. As similar activation enthalpies are obtained for both reactions, the rate-determining step in both cases is assumed to be the rotation of the Fe(CO)2 L (L=CO or 1-hexyne) unit to accommodate the incoming ligand. The kinetic profile for the displacement of 1-hexene is quite different than that for the alkyne and, in this case, both reaction channels, that is, dissociative (SN 1) and associative (SN 2), were found to be competitive. Because DFT calculations predict similar binding enthalpies of alkene and alkyne to the iron center, the results indicate that the bimolecular pathway in the case of the alkyne is lower in free energy than that of the alkene. In complexes of this type, subtle changes in the departing ligand characteristics and the nature of the mercapto bridge can influence the exchange mechanism, such that more than one reaction pathway is available for ligand substitution. The difference between this and the analogous study of (μ-pdt)[Fe(CO)3 ]2 (pdt=S(CH2 )3 S) underscores the unique characteristics of a three-atom S-S linker in the active site of diiron hydrogenases. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Probabilistic models and uncertainty quantification for the ionization reaction rate of atomic Nitrogen

    NASA Astrophysics Data System (ADS)

    Miki, K.; Panesi, M.; Prudencio, E. E.; Prudhomme, S.

    2012-05-01

    The objective in this paper is to analyze some stochastic models for estimating the ionization reaction rate constant of atomic Nitrogen (N + e- → N+ + 2e-). Parameters of the models are identified by means of Bayesian inference using spatially resolved absolute radiance data obtained from the Electric Arc Shock Tube (EAST) wind-tunnel. The proposed methodology accounts for uncertainties in the model parameters as well as physical model inadequacies, providing estimates of the rate constant that reflect both types of uncertainties. We present four different probabilistic models by varying the error structure (either additive or multiplicative) and by choosing different descriptions of the statistical correlation among data points. In order to assess the validity of our methodology, we first present some calibration results obtained with manufactured data and then proceed by using experimental data collected at EAST experimental facility. In order to simulate the radiative signature emitted in the shock-heated air plasma, we use a one-dimensional flow solver with Park's two-temperature model that simulates non-equilibrium effects. We also discuss the implications of the choice of the stochastic model on the estimation of the reaction rate and its uncertainties. Our analysis shows that the stochastic models based on correlated multiplicative errors are the most plausible models among the four models proposed in this study. The rate of the atomic Nitrogen ionization is found to be (6.2 ± 3.3) × 1011 cm3 mol-1 s-1 at 10,000 K.

  10. α -unbound levels in 34Ar from 36Ar(p ,t )34Ar reaction measurements and implications for the astrophysical 30S(α ,p )33Cl reaction rate

    NASA Astrophysics Data System (ADS)

    Long, A. M.; Adachi, T.; Beard, M.; Berg, G. P. A.; Couder, M.; deBoer, R. J.; Dozono, M.; Görres, J.; Fujita, H.; Fujita, Y.; Hatanaka, K.; Ishikawa, D.; Kubo, T.; Matsubara, H.; Namiki, Y.; O'Brien, S.; Ohkuma, Y.; Okamura, H.; Ong, H. J.; Patel, D.; Sakemi, Y.; Shimbara, Y.; Suzuki, S.; Talwar, R.; Tamii, A.; Volya, A.; Wakasa, T.; Watanabe, R.; Wiescher, M.; Yamada, R.; Zenihiro, J.

    2018-05-01

    The 30S(α ,p )33Cl reaction has been identified in several type-1 x-ray burst (XRB) sensitivity studies as a significant reaction within the α p process, possibly influencing not only the abundances of burst ashes but also the bolometric shape of double-peaked light curves coming from certain XRB systems. Given the dearth of experimental data on the 30S(α ,p ) 33Cl reaction at burst temperatures, we have performed high energy-resolution forward-angle 36Ar(p ,t )34Ar measurements in order to identify levels in 34Ar that could appear as resonances in the 30S(α ,p )33Cl reaction. Energies of levels identified in this work, along with model-based assumptions for spin assignments and spectroscopic factors, were then used to determine a rate for the 30S(α ,p )33Cl reaction based on a narrow-resonance formalism. The rates determined in this work are then compared with two standard Hauser-Feshbach model predictions over a range of XRB temperatures.

  11. Ligand reorganization and activation energies in nonadiabatic electron transfer reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu Jianjun; Wang Jianji; Stell, George

    2006-10-28

    The activation energy and ligand reorganization energy for nonadiabatic electron transfer reactions in chemical and biological systems are investigated in this paper. The free energy surfaces and the activation energy are derived exactly in the general case in which the ligand vibration frequencies are not equal. The activation energy is derived by free energy minimization at the transition state. Our formulation leads to the Marcus-Hush [J. Chem. Phys. 24, 979 (1956); 98, 7170 (1994); 28, 962 (1958)] results in the equal-frequency limit and also generalizes the Marcus-Sumi [J. Chem. Phys. 84, 4894 (1986)] model in the context of studying themore » solvent dynamic effect on electron transfer reactions. It is found that when the ligand vibration frequencies are different, the activation energy derived from the Marcus-Hush formula deviates by 5%-10% from the exact value. If the reduced reorganization energy approximation is introduced in the Marcus-Hush formula, the result is almost exact.« less

  12. Ligand reorganization and activation energies in nonadiabatic electron transfer reactions

    NASA Astrophysics Data System (ADS)

    Zhu, Jianjun; Wang, Jianji; Stell, George

    2006-10-01

    The activation energy and ligand reorganization energy for nonadiabatic electron transfer reactions in chemical and biological systems are investigated in this paper. The free energy surfaces and the activation energy are derived exactly in the general case in which the ligand vibration frequencies are not equal. The activation energy is derived by free energy minimization at the transition state. Our formulation leads to the Marcus-Hush [J. Chem. Phys. 24, 979 (1956); 98, 7170 (1994); 28, 962 (1958)] results in the equal-frequency limit and also generalizes the Marcus-Sumi [J. Chem. Phys. 84, 4894 (1986)] model in the context of studying the solvent dynamic effect on electron transfer reactions. It is found that when the ligand vibration frequencies are different, the activation energy derived from the Marcus-Hush formula deviates by 5%-10% from the exact value. If the reduced reorganization energy approximation is introduced in the Marcus-Hush formula, the result is almost exact.

  13. Reaction rates of α-tocopheroxyl radicals confined in micelles and in human plasma lipoproteins.

    PubMed

    Vanzani, Paola; Rigo, Adelio; Zennaro, Lucio; Di Paolo, Maria Luisa; Scarpa, Marina; Rossetto, Monica

    2014-08-01

    α-Tocopherol, the main component of vitamin E, traps highly reactive radicals which otherwise might react with lipids present in plasmatic lipoproteins or in cell membranes. The α-tocopheroxyl radicals generated by this process have also a pro-oxidant action which is contrasted by their reaction with ascorbate or by bimolecular self-reaction (dismutation). The kinetics of this bimolecular self-reaction were explored in solution such as ethanol, and in heterogeneous systems such as deoxycholic acid micelles and in human plasma. According to ESR measurements, the kinetic rate constant (2k(d)) of the bimolecular self-reaction of α-tocopheroxyl radicals in micelles and in human plasma was calculated to be of the order of 10(5) M(-1) s(-1) at 37 °C. This value was obtained considering that the reactive radicals are confined into the micellar pseudophase and is one to two orders of magnitude higher than the value we found in homogeneous phase. The physiological significance of this high value is discussed considering the competition between bimolecular self-reaction and the α-tocopheroxyl radical recycling by ascorbate. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. The dual effects of Maillard reaction and enzymatic hydrolysis on the antioxidant activity of milk proteins.

    PubMed

    Oh, N S; Lee, H A; Lee, J Y; Joung, J Y; Lee, K B; Kim, Y; Lee, K W; Kim, S H

    2013-08-01

    The objective of this study was to determine the enhanced effects on the biological characteristics and antioxidant activity of milk proteins by the combination of the Maillard reaction and enzymatic hydrolysis. Maillard reaction products were obtained from milk protein preparations, such as whey protein concentrates and sodium caseinate with lactose, by heating at 55°C for 7 d in sodium phosphate buffer (pH 7.4). The Maillard reaction products, along with untreated milk proteins as controls, were hydrolyzed for 0 to 3h with commercial proteases Alcalase, Neutrase, Protamex, and Flavorzyme (Novozymes, Bagsværd, Denmark). The antioxidant activity of hydrolyzed Maillard reaction products was determined by reaction with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, their 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity, and the ability to reduce ferric ions. Further characteristics were evaluated by the o-phthaldialdehyde method and sodium dodecyl sulfate-PAGE. The degree of hydrolysis gradually increased in a time-dependent manner, with the Alcalase-treated Maillard reaction products being the most highly hydrolyzed. Radical scavenging activities and reducing ability of hydrolyzed Maillard reaction products increased with increasing hydrolysis time. The combined products of enzymatic hydrolysis and Maillard reaction showed significantly greater antioxidant activity than did hydrolysates or Maillard reaction products alone. The hydrolyzed Maillard reaction products generated by Alcalase showed significantly higher antioxidant activity when compared with the other protease products and the antioxidant activity was higher for the whey protein concentrate groups than for the sodium caseinate groups. These findings indicate that Maillard reaction products, coupled with enzymatic hydrolysis, could act as potential antioxidants in the pharmaceutical, food, and dairy industries. Copyright © 2013 American Dairy Science Association

  15. Identifying the active site in nitrogen-doped graphene for the VO2+/VO2(+) redox reaction.

    PubMed

    Jin, Jutao; Fu, Xiaogang; Liu, Qiao; Liu, Yanru; Wei, Zhiyang; Niu, Kexing; Zhang, Junyan

    2013-06-25

    Nitrogen-doped graphene sheets (NGS), synthesized by annealing graphite oxide (GO) with urea at 700-1050 °C, were studied as positive electrodes in a vanadium redox flow battery. The NGS, in particular annealed at 900 °C, exhibited excellent catalytic performance in terms of electron transfer (ET) resistance (4.74 ± 0.51 and 7.27 ± 0.42 Ω for the anodic process and cathodic process, respectively) and reversibility (ΔE = 100 mV, Ipa/Ipc = 1.38 at a scan rate of 50 mV s(-1)). Detailed research confirms that not the nitrogen doping level but the nitrogen type in the graphene sheets determines the catalytic activity. Among four types of nitrogen species doped into the graphene lattice including pyridinic-N, pyrrolic-N, quaternary nitrogen, and oxidic-N, quaternary nitrogen is verified as a catalytic active center for the [VO](2+)/[VO2](+) couple reaction. A mechanism is proposed to explain the electrocatalytic performance of NGS for the [VO](2+)/[VO2](+) couple reaction. The possible formation of a N-V transitional bonding state, which facilitates the ET between the outer electrode and reactant ions, is a key step for its high catalytic activity.

  16. Why Are Some Reactions Slower at Higher Temperatures?

    ERIC Educational Resources Information Center

    Revell, Laura E.; Williamson, Bryce E.

    2013-01-01

    It is well understood by most chemistry students at advanced undergraduate levels that chemical reactions generally follow the Arrhenius law of temperature dependence with positive activation energies, proceeding faster at elevated temperatures. It is much less widely known that the rates of some Arrhenius-compliant reactions are retarded by…

  17. Activated by Combined Magnrtic Field Gravitropic Reaction Reply on Nanodose of Biologicaly Active Compounds

    NASA Astrophysics Data System (ADS)

    Sheykina, Nadezhda; Bogatina, Nina

    The new science direction nanotechnologies initiated a big jump in the pharmacology and medicine. This leads to the big development of homeopathy. The most interest appeared while investigating of the reaction of biological object on the nano dose of iologically substances. The changing of concentration (in nmol/l) of biologically active material is also possible during weak energy action. For instance, weak combined magnetic field may change a little the concentration of ions that are oriented parallel to the external magnetic field and, by the analogy with said above, lead to the similar effects. Simple estimations give the value for the threshold to the magnetic field by two orders smaller than the geomagnetic field. By this investigation we wanted to understand whether the analogy in the action of nano dose of biologically active substances and weak combined magnetic field presents and whether the action of one of these factors may be replaced by other one. The effect of one of biologically active substances NPA (Naphtyl-Phtalame Acid) solution with the concentration 0.01 mol/l on the gravitropic reaction of cress roots was investigated. It was shown that its effect was the inhibition of cress roots gravitropic reaction. The same inhibition was achieved by the combined magnetic field action on the cress roots, germinated in water. The alternative component of the combined magnetic field coincided formally with the cyclotron frequency of NPA ions. So the analogy in the action of nano dose of biologically active substances and weak combined magnetic field was shown. The combined magnetic field using allows to decrease sufficiently the dose of biologically active substances. This fact can be of great importance in pharmacy and medicine.

  18. Determination of the astrophysical 12N(p,γ)13O reaction rate from the 2H(12N,13O)n reaction and its astrophysical implications

    NASA Astrophysics Data System (ADS)

    Guo, B.; Su, J.; Li, Z. H.; Wang, Y. B.; Yan, S. Q.; Li, Y. J.; Shu, N. C.; Han, Y. L.; Bai, X. X.; Chen, Y. S.; Liu, W. P.; Yamaguchi, H.; Binh, D. N.; Hashimoto, T.; Hayakawa, S.; Kahl, D.; Kubono, S.; He, J. J.; Hu, J.; Xu, S. W.; Iwasa, N.; Kume, N.; Li, Z. H.

    2013-01-01

    The evolution of massive stars with very low-metallicities depends critically on the amount of CNO nuclides which they produce. The 12N(p,γ)13O reaction is an important branching point in the rap processes, which are believed to be alternative paths to the slow 3α process for producing CNO seed nuclei and thus could change the fate of massive stars. In the present work, the angular distribution of the 2H(12N, 13O)n proton transfer reaction at Ec.m.=8.4 MeV has been measured for the first time. Based on the Johnson-Soper approach, the square of the asymptotic normalization coefficient (ANC) for the virtual decay of 13Og.s. → 12N+p was extracted to be 3.92±1.47 fm-1 from the measured angular distribution and utilized to compute the direct component in the 12N(p,γ)13O reaction. The direct astrophysical S factor at zero energy was then found to be 0.39±0.15 keV b. By considering the direct capture into the ground state of 13O, the resonant capture via the first excited state of 13O and their interference, we determined the total astrophysical S factors and rates of the 12N(p,γ)13O reaction. The new rate is two orders of magnitude slower than that from the REACLIB compilation. Our reaction network calculations with the present rate imply that 12N(p,γ)13O will only compete successfully with the β+ decay of 12N at higher (˜2 orders of magnitude) densities than initially predicted.

  19. [Standardization and regulation of the rate of the superoxide-generating adrenaline autoxidation reaction used for evaluation of pro/antioxidant properties of various materials].

    PubMed

    Sirota, T V

    2016-11-01

    The superoxide-generating reaction of adrenaline autoxidation is widely used for determination of the activity of superoxide dismutase and pro/antioxidant properties of various materials. There are two variants of the spectrophotometric registration of the products of this reaction. The first is based on registration of adrenochrome, as adrenaline autooxidation product at 347 nm; the second employs nitro blue tetrazolium (NBT) and registration of diformazan, a product of NBT reduction at 560 nm. In the present work, recommendations for the standardization of the reaction rate in both variants have been proposed. The main approach consists in the use of the pharmaceutical form of 0.1% adrenaline hydrochloride solution. Although each of two adrenaline preparations available in the Russian market has some features in kinetic behavior of its autooxidation; they are applicable in the superoxide generating system based on adrenaline autooxidation. Performing measurements at 560 nm, the reaction rate can be regulated by lowering the concentration of added adrenaline, whereas during spectrophotometric registration at 347 nm, this cannot be done. These features of adrenaline autoxidation may be due to the fact that the intrinsic multistage process of the conversion of adrenaline to adrenochrome, which is recorded at 347 nm, is coupled with the transition of electrons from adrenaline and intermediate products of its oxidation to oxygen, carbon dioxide, and carbonate bicarbonate ions, which is detected in the presence of added NBT.

  20. Microwaves in chemistry: Another way of heating reaction mixtures

    NASA Astrophysics Data System (ADS)

    Berlan, J.

    1995-04-01

    The question of a possible "microwave activation" of chemical reaction is discussed. In fact two cases should be distinguished: homogeneous or heterogeneous reaction mixtures. In homogeneous mixtures there are no (or very low) rate enhancements compared to a conventional heating, but some influence on chemioselectivity has been observed. These effects derive from fast and mass heating of microwaves, and probably, especially under reflux, from different boiling rates and/or overheating. With heterogeneous mixtures non conventional effects probably derive from mass heating and selective overheating. This is illustrated with several reactions: Diels-Alder, naphthalene sulphonation, preparation of cyanuric acid, hydrolysis of nitriles, transposition reaction on solid support.

  1. Chemical Reaction Rates from Ring Polymer Molecular Dynamics: Zero Point Energy Conservation in Mu + H2 → MuH + H.

    PubMed

    Pérez de Tudela, Ricardo; Aoiz, F J; Suleimanov, Yury V; Manolopoulos, David E

    2012-02-16

    A fundamental issue in the field of reaction dynamics is the inclusion of the quantum mechanical (QM) effects such as zero point energy (ZPE) and tunneling in molecular dynamics simulations, and in particular in the calculation of chemical reaction rates. In this work we study the chemical reaction between a muonium atom and a hydrogen molecule. The recently developed ring polymer molecular dynamics (RPMD) technique is used, and the results are compared with those of other methods. For this reaction, the thermal rate coefficients calculated with RPMD are found to be in excellent agreement with the results of an accurate QM calculation. The very minor discrepancies are within the convergence error even at very low temperatures. This exceptionally good agreement can be attributed to the dominant role of ZPE in the reaction, which is accounted for extremely well by RPMD. Tunneling only plays a minor role in the reaction.

  2. Chlorine transfer between glycine, taurine, and histamine: reaction rates and impact on cellular reactivity.

    PubMed

    Peskin, Alexander V; Midwinter, Robyn G; Harwood, David T; Winterbourn, Christine C

    2005-02-01

    Hypochlorous acid formed by activated neutrophils reacts with amines to produce chloramines. Chloramines vary in stability, reactivity, and cell permeability. We have examined whether chloramine exchange occurs between physiologically important amines or amino acids and if this affects interactions of chloramines with cells. We have demonstrated transchlorination reactions between histamine, glycine, and taurine chloramines by measuring chloramine decay rates with mixtures as well as by mass spectrometry. Kinetic analysis suggested the formation of an intermediate complex with a high Km. Apparent second-order rate constants, determined for concentrations activity in cells was measured as an indicator of permeability of the chloramines. When endothelial or Jurkat cells were treated in Hanks' buffer, Gly-Cl inhibited GAPDH, whereas Tau-Cl, which does not penetrate the cells, did not. Adding glycine to Tau-Cl brought about inhibition, whereas taurine mitigated the effect of Gly-Cl. For cells in full medium, high chloramine concentrations were needed to inhibit GAPDH because of scavenging by methionine and other constituents. In methionine-free medium, chlorine exchange resulted in GAPDH inhibition by Tau-Cl, whereas Gly-Cl was less effective than in Hanks' buffer. Thus interchange between chloramines occurs readily and modulates their cellular effects.

  3. Chlorine transfer between glycine, taurine, and histamine: reaction rates and impact on cellular reactivity.

    PubMed

    Peskin, Alexander V; Midwinter, Robyn G; Harwood, David T; Winterbourn, Christine C

    2004-11-15

    Hypochlorous acid formed by activated neutrophils reacts with amines to produce chloramines. Chloramines vary in stability, reactivity, and cell permeability. We have examined whether chloramine exchange occurs between physiologically important amines or amino acids and if this affects interactions of chloramines with cells. We have demonstrated transchlorination reactions between histamine, glycine, and taurine chloramines by measuring chloramine decay rates with mixtures as well as by mass spectrometry. Kinetic analysis suggested the formation of an intermediate complex with a high K(m). Apparent second-order rate constants, determined for concentrations activity in cells was measured as an indicator of permeability of the chloramines. When endothelial or Jurkat cells were treated in Hanks' buffer, Gly-Cl inhibited GAPDH, whereas Tau-Cl, which does not penetrate the cells, did not. Adding glycine to Tau-Cl brought about inhibition, whereas taurine mitigated the effect of Gly-Cl. For cells in full medium, high chloramine concentrations were needed to inhibit GAPDH because of scavenging by methionine and other constituents. In methionine-free medium, chlorine exchange resulted in GAPDH inhibition by Tau-Cl, whereas Gly-Cl was less effective than in Hanks' buffer. Thus interchange between chloramines occurs readily and modulates their cellular effects.

  4. Catalytic activity of Ru-Sn/Al2O3 in reduction reaction of pollutant 4-Nitrophenol

    NASA Astrophysics Data System (ADS)

    Rini, A. S.; Radiman, S.; Yarmo, M. A.

    2018-03-01

    Ru-Sn/Al2O3 bimetallic nanocatalysts have been synthesized by using conventional and microwave impregnation methods. Structure and morphology of the samples were characterized using XRD, XPS, and TEM. XRD and XPS measurement have confirmed the presence of Ru and Sn in the samples. According to TEM results, the morphology of the catalyst strongly depends on the preparation route and stabilizing agent (i.e. PVP). The sample with PVP (polyvinylpyrrolidone) has better nanoparticles distribution over the support. A sample prepared by conventional method has an agglomeration of nanoparticles on the support. Catalytic activities of both samples were examined in the reduction reaction of pollutant, i.e. 4-nitrophenol. Catalytic examination showed that reaction rate of 4-nitrophenol reduction by using microwave-assisted sample has improved 3.5 times faster than conventional impregnation sample.

  5. Reaction rates and kinetic isotope effects of H{sub 2} + OH → H{sub 2}O + H

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meisner, Jan; Kästner, Johannes, E-mail: kaestner@theochem.uni-stuttgart.de

    2016-05-07

    We calculated reaction rate constants including atom tunneling of the reaction of dihydrogen with the hydroxy radical down to a temperature of 50 K. Instanton theory and canonical variational theory with microcanonical optimized multidimensional tunneling were applied using a fitted potential energy surface [J. Chen et al., J. Chem. Phys. 138, 154301 (2013)]. All possible protium/deuterium isotopologues were considered. Atom tunneling increases at about 250 K (200 K for deuterium transfer). Even at 50 K the rate constants of all isotopologues remain in the interval 4 ⋅ 10{sup −20} to 4 ⋅ 10{sup −17} cm{sup 3} s{sup −1}, demonstrating thatmore » even deuterated versions of the title reaction are possibly relevant to astrochemical processes in molecular clouds. The transferred hydrogen atom dominates the kinetic isotope effect at all temperatures.« less

  6. Reactivity of bromoalkanes in reactions of coordinated molecular decay

    NASA Astrophysics Data System (ADS)

    Pokidova, T. S.; Denisov, E. T.

    2016-09-01

    The results from experiments on reactions of the coordinated molecular decay of RBr bromoalkanes on olefin and HBr are analyzed using the model of intersecting parabolas (MIP). Kinetic parameters within the MIP are calculated from the experimental data, enabling calculation of the activation energies ( E) and rate constants ( k) of such reactions, based on the enthalphy of the reaction and the MIP algorithms. The factors affecting the E of the RBr decay reaction are established: the enthalphy of the reaction, triplet repulsion, the energy of radical R• stabilization, the presence of a π bond adjacent to the reaction center, and the dipole-dipole interaction of polar groups. The energy spectrum of the partial energies of activation is constructed for the reaction of coordinated molecular decay of RBr, and the E and k of inverse addition reactions are evaluated.

  7. Upper limits to the reaction rate coefficients of C(n)(-) and C(n)H(-) (n = 2, 4, 6) with molecular hydrogen.

    PubMed

    Endres, Eric S; Lakhmanskaya, Olga; Hauser, Daniel; Huber, Stefan E; Best, Thorsten; Kumar, Sunil S; Probst, Michael; Wester, Roland

    2014-08-21

    In the interstellar medium (ISM) ion–molecule reactions play a key role in forming complex molecules. Since 2006, after the radioastronomical discovery of the first of by now six interstellar anions, interest has grown in understanding the formation and destruction pathways of negative ions in the ISM. Experiments have focused on reactions and photodetachment of the identified negatively charged ions. Hints were found that the reactions of CnH(–) with H2 may proceed with a low (<10(–13) cm(3) s(–1)), but finite rate [Eichelberger, B.; et al. Astrophys. J. 2007, 667, 1283]. Because of the high abundance of molecular hydrogen in the ISM, a precise knowledge of the reaction rate is needed for a better understanding of the low-temperature chemistry in the ISM. A suitable tool to analyze rare reactions is the 22-pole radiofrequency ion trap. Here, we report on reaction rates for Cn(–) and CnH(–) (n = 2, 4, 6) with buffer gas temperatures of H2 at 12 and 300 K. Our experiments show the absence of these reactions with an upper limit to the rate coefficients between 4 × 10(–16) and 5 × 10(–15) cm(3) s(–1), except for the case of C2(–), which does react with a finite rate with H2 at low temperatures. For the cases of C2H(–) and C4H(–), the experimental results were confirmed with quantum chemical calculations. In addition, the possible influence of a residual reactivity on the abundance of C4H(–) and C6H(–) in the ISM were estimated on the basis of a gas-phase chemical model based on the KIDA database. We found that the simulated ion abundances are already unaffected if reaction rate coefficients with H2 were below 10(–14) cm(3) s(–1).

  8. In situ Visualization of Electrocatalytic Reaction Activity at Quantum Dots for Water Oxidation.

    PubMed

    Chen, Ying; Fu, Jiaju; Cui, Chen; Jiang, Dechen; Chen, Zixuan; Chen, Hong-Yuan; Zhu, Jun-Jie

    2018-06-11

    Exploring electrocatalytic reactions on nanomaterial surface can give crucial information for the development of robust catalysts. Here, electrocatalytic reaction activity at single quantum dots (QDs) loaded silica micro-particles involved in water oxidation is visualized using electrochemiluminescence (ECL) microscopy. Under positive potential, the active redox centers at QDs induce the generation of hydroperoxide surface intermediates as coreactant to remarkably enhance ECL emission from luminol derivative for imaging. For the first time, in situ visualization of catalytic activity in water oxidation at QDs catalyst was achieved, supported by a linear relation between ECL intensity and turn over frequency. A very slight diffusion trend attributed to only luminol species proved in situ capture of hydroperoxide surface intermediates at catalytic active sites of QDs. This work provides tremendous potential in on-line imaging of electrocatalytic reaction and visual evaluation of catalyst performance.

  9. Rate coefficient measurements for the ClO radical self-reaction as a function of pressure and temperature

    NASA Astrophysics Data System (ADS)

    Burkholder, J. B.; Feierabend, K.

    2010-12-01

    Halogen chemistry plays an important role in polar stratospheric ozone loss. The ClO dimer (Cl2O2) catalytic ozone destruction cycle accounts for the vast majority of winter/spring polar stratospheric ozone loss. A key step in the dimer catalytic cycle is the pressure and temperature dependent self-reaction of the ClO radical. The rate coefficient for the ClO self-reaction has been measured in previous laboratory studies but uncertainties persist, particularly at atmospherically relevant temperatures and pressures. In this laboratory study, rate coefficients for the ClO self-reaction were measured over a range of temperature (200 - 296 K) and pressure (50 - 600 Torr, He and N2 bath gases). ClO radicals were produced by pulsed laser photolysis of Cl2O at 248 nm. The ClO radical temporal profile was measured using dual wavelength cavity ring-down spectroscopy (CRDS) near 280 nm. The absolute ClO radical concentration was determined using the ClO UV absorption cross sections and their temperature dependence measured as part of this work. The results from this work will be compared with previous studies and the discrepancies discussed. Possible explanations for deviations of the reaction rate coefficient from the simple Falloff kinetic behavior currently recommended for use in atmospheric model calculations will be discussed.

  10. Reactions of OH radicals with 2-methyl-1-butyl, neopentyl and 1-hexyl nitrates. Structure-activity relationship for gas-phase reactions of OH with alkyl nitrates: An update

    NASA Astrophysics Data System (ADS)

    Bedjanian, Yuri; Morin, Julien; Romanias, Manolis N.

    2018-05-01

    The kinetics of the reactions 2-methyl-1-butyl (2M1BNT), neopentyl (NPTNT) and 1-hexyl nitrates (1HXNT) with OH radicals has been studied using a low pressure flow tube reactor combined with a quadrupole mass spectrometer. The rate constants of the title reactions were determined under pseudo-first order conditions from kinetics of OH consumption in excess of nitrates. The overall rate coefficients, k2M1BNT = 1.54 × 10-14 (T/298)4.85 exp (1463/T) (T = 278-538 K), kNPTNT = 1.39 × 10-14 (T/298)4.89 exp (1189/T) (T = 278-500 K) and k1HXNT = 2.23 × 10-13 (T/298)2.83 exp (853/T) cm3molecule-1s-1 (T = 306-538 K) (with conservative 15% uncertainty), were determined at a total pressure of 1 Torr of helium. The yield of trimethylacetaldehyde ((CH3)3CCHO), resulting from the abstraction by OH of an α-hydrogen atom in neopentyl nitrate, followed by α-substituted alkyl radical decomposition, was determined as 0.31 ± 0.06 at T = 298 K. The calculated tropospheric lifetimes of 2M1BNT, NPTNT and 1HXNT indicate that reaction of these nitrates with OH represents an important sink of these compounds in the atmosphere. Based on the available kinetic data, we have updated the structure-activity relationship (SAR) for reactions of alkyl nitrates with OH at T = 298 K. Good agreement (within 20%) is obtained between experimentally measured rate constants (total and that for H-atom abstraction from α carbon) and those calculated from SAR using new substituents factors for almost all the experimental data available.

  11. Absolute rate constant for the reaction of atomic chlorine with hydrogen peroxide vapor over the temperature range 265-400 K

    NASA Technical Reports Server (NTRS)

    Michael, J. V.; Whytock, D. A.; Lee, J. H.; Payne, W. A.; Stief, L. J.

    1977-01-01

    Rate constants for the reaction of atomic chlorine with hydrogen peroxide were measured from 265-400 K using the flash photolysis-resonance fluorescence technique. Analytical techniques were developed to measure H2O2 under reaction conditions. Due to ambiguity in the interpretation of the analytical results, the data combine to give two equally acceptable representations of the temperature dependence. The results are compared to previous work at 298 K and are theoretically discussed in terms of the mechanism of the reaction. Additional experiments on the H + H2O2 reaction at 298 and 359 K are compared with earlier results from this laboratory and give a slightly revised bimolecular rate constant.

  12. Alkali silica reaction (ASR) in cement free alkali activated sustainable concrete.

    DOT National Transportation Integrated Search

    2016-12-19

    This report summarizes the findings of an experimental evaluation into alkali silica : reaction (ASR) in cement free alkali-activated slag and fly ash binder concrete. The : susceptibility of alkali-activated fly ash and slag concrete binders to dele...

  13. syk kinase activation by a src kinase-initiated activation loop phosphorylation chain reaction

    PubMed Central

    El-Hillal, O.; Kurosaki, T.; Yamamura, H.; Kinet, J.-P.; Scharenberg, A. M.

    1997-01-01

    Activation of the syk tyrosine kinase occurs almost immediately following engagement of many types of antigen receptors, including Fc receptors, but the mechanism through which syk is activated is currently unclear. Here we demonstrate that Fc receptor-induced syk activation occurs as the result of phosphorylation of the syk activation loop by both src family kinases and other molecules of activated syk, suggesting that syk activation occurs as the result of a src kinase-initiated activation loop phosphorylation chain reaction. This type of activation mechanism predicts that syk activation would exhibit exponential kinetics, providing a potential explanation for its rapid and robust activation by even weak antigen receptor stimuli. We propose that a similar mechanism may be responsible for generating rapid activation of other cytoplasmic tyrosine kinases, such as those of the Bruton tyrosine kinase/tec family, as well. PMID:9050880

  14. Automated Discovery of New Chemical Reactions and Accurate Calculation of Their Rates

    DTIC Science & Technology

    2015-06-02

    formation of organic acids in reactions of the Criegee intermediate with aldehydes and ketones . Phys. Chem. Chem. Phys. 2013, 15, 16841-16852. [39...dioxolan-3-ol – our second case study - we confirmed that fragmentation of the cyclic peroxide leads to two possible pairs of acid and aldehyde products...Rate Prediction via Group Additivity, Part 2: H-Abstraction from Alkenes, Alkynes, Alcohols, Aldehydes , and Acids by H Atoms. J. Phys. Chem. A 2001, 105

  15. Predicting gaseous reaction rates of short chain chlorinated paraffins with ·OH: overcoming the difficulty in experimental determination.

    PubMed

    Li, Chao; Xie, Hong-Bin; Chen, Jingwen; Yang, Xianhai; Zhang, Yifei; Qiao, Xianliang

    2014-12-02

    Short chain chlorinated paraffins (SCCPs) are under evaluation for inclusion in the Stockholm Convention on persistent organic pollutants. However, information on their reaction rate constants with gaseous ·OH (kOH) is unavailable, limiting the evaluation of their persistence in the atmosphere. Experimental determination of kOH is confined by the unavailability of authentic chemical standards for some SCCP congeners. In this study, we evaluated and selected density functional theory (DFT) methods to predict kOH of SCCPs, by comparing the experimental kOH values of six polychlorinated alkanes (PCAs) with those calculated by the different theoretical methods. We found that the M06-2X/6-311+G(3df,2pd)//B3LYP/6-311 +G(d,p) method is time-effective and can be used to predict kOH of PCAs. Moreover, based on the calculated kOH of nine SCCPs and available experimental kOH values of 22 PCAs with low carbon chain, a quantitative structure-activity relationship (QSAR) model was developed. The molecular structural characteristics determining the ·OH reaction rate were discussed. logkOH was found to negatively correlate with the percentage of chlorine substitutions (Cl%). The DFT calculation method and the QSAR model are important alternatives to the conventional experimental determination of kOH for SCCPs, and are prospective in predicting their persistence in the atmosphere.

  16. The chemistry of bromine in the stratosphere: Influence of a new rate constant for the reaction BrO + HO2

    NASA Technical Reports Server (NTRS)

    Pirre, Michel; Marceau, Francois J.; Lebras, Georges; Maguin, Francoise; Poulet, Gille; Ramaroson, Radiela

    1994-01-01

    The impact of new laboratory data for the reaction BrO + HO2 yields HOBr + O2 in the depletion of global stratospheric ozone has been estimated using a one-dimensional photochemical model taking into account the heterogeneous reaction on sulphate aerosols which converts N2O5 into HNO3. Assuring an aerosol loading 2 times as large as the 'background' and a reaction probability of 0.1 for the above heterogeneous reaction, the 6 fold increase in the measured rate constant for the reaction of BrO with HO2 increases the computed depletion of global ozone produced by 20 ppt of total bromine from 2.01 percent to 2.36 percent. The use of the higher rate constant increases the HOBr mixing ratio and makes the bromine partitioning and the ozone depletion very sensitive to the branching ratio of the potential channel forming HBr in the BrO + HO2 reaction.

  17. The effect of learning models and emotional intelligence toward students learning outcomes on reaction rate

    NASA Astrophysics Data System (ADS)

    Sutiani, Ani; Silitonga, Mei Y.

    2017-08-01

    This research focused on the effect of learning models and emotional intelligence in students' chemistry learning outcomes on reaction rate teaching topic. In order to achieve the objectives of the research, with 2x2 factorial research design was used. There were two factors tested, namely: the learning models (factor A), and emotional intelligence (factor B) factors. Then, two learning models were used; problem-based learning/PBL (A1), and project-based learning/PjBL (A2). While, the emotional intelligence was divided into higher and lower types. The number of population was six classes containing 243 grade X students of SMAN 10 Medan, Indonesia. There were 15 students of each class were chosen as the sample of the research by applying purposive sampling technique. The data were analyzed by applying two-ways analysis of variance (2X2) at the level of significant α = 0.05. Based on hypothesis testing, there was the interaction between learning models and emotional intelligence in students' chemistry learning outcomes. Then, the finding of the research showed that students' learning outcomes in reaction rate taught by using PBL with higher emotional intelligence is higher than those who were taught by using PjBL. There was no significant effect between students with lower emotional intelligence taught by using both PBL and PjBL in reaction rate topic. Based on the finding, the students with lower emotional intelligence were quite hard to get in touch with other students in group discussion.

  18. Acridine orange staining reaction as an index of physiological activity in Escherichia coli

    NASA Technical Reports Server (NTRS)

    McFeters, G. A.; Singh, A.; Byun, S.; Callis, P. R.; Williams, S.

    1991-01-01

    The assumption that the acridine orange (AO) color reaction may be used as an index of physiological activity was investigated in laboratory grown Escherichia coli. Spectrofluorometric observations of purified nucleic acids, ribosomes and the microscopic color of bacteriophage-infected cells stained with AO confirmed the theory that single-stranded nucleic acids emit orange to red fluorescence while those that are double-stranded fluoresce green in vivo. Bacteria growing actively in a rich medium could be distinguished from cells in stationary phase by the AO reaction. Cells from log phase appeared red, whereas those in stationary phase were green. However, this differentiation was not seen when the bacteria were grown in a minimal medium or when a variation of the staining method was used. Also, shifting bacteria in stationary phase to starvation conditions rapidly changed their AO staining reaction. Boiling and exposure to lethal concentrations of azide and formalin resulted in stationary-phase cells that appeared red after staining but bacteria killed with chlorine remained green. These findings indicate that the AO staining reaction may be suggestive of physiological activity under defined conditions. However, variables in staining and fixation procedures as well as uncertainties associated with mixed bacterial populations in environmental samples may produce results that are not consistent with the classical interpretation of this reaction. The importance of validating the putative physiological implications of this staining reaction is stressed.

  19. Rate constants of chemical reactions from semiclassical transition state theory in full and one dimension.

    PubMed

    Greene, Samuel M; Shan, Xiao; Clary, David C

    2016-06-28

    Semiclassical Transition State Theory (SCTST), a method for calculating rate constants of chemical reactions, offers gains in computational efficiency relative to more accurate quantum scattering methods. In full-dimensional (FD) SCTST, reaction probabilities are calculated from third and fourth potential derivatives along all vibrational degrees of freedom. However, the computational cost of FD SCTST scales unfavorably with system size, which prohibits its application to larger systems. In this study, the accuracy and efficiency of 1-D SCTST, in which only third and fourth derivatives along the reaction mode are used, are investigated in comparison to those of FD SCTST. Potential derivatives are obtained from numerical ab initio Hessian matrix calculations at the MP2/cc-pVTZ level of theory, and Richardson extrapolation is applied to improve the accuracy of these derivatives. Reaction barriers are calculated at the CCSD(T)/cc-pVTZ level. Results from FD SCTST agree with results from previous theoretical and experimental studies when Richardson extrapolation is applied. Results from our implementation of 1-D SCTST, which uses only 4 single-point MP2/cc-pVTZ energy calculations in addition to those for conventional TST, agree with FD results to within a factor of 5 at 250 K. This degree of agreement and the efficiency of the 1-D method suggest its potential as a means of approximating rate constants for systems too large for existing quantum scattering methods.

  20. Theory and simulation of the time-dependent rate coefficients of diffusion-influenced reactions.

    PubMed Central

    Zhou, H X; Szabo, A

    1996-01-01

    A general formalism is developed for calculating the time-dependent rate coefficient k(t) of an irreversible diffusion-influenced reaction. This formalism allows one to treat most factors that affect k(t), including rotational Brownian motion and conformational gating of reactant molecules and orientation constraint for product formation. At long times k(t) is shown to have the asymptotic expansion k(infinity)[1 + k(infinity) (pie Dt)-1/2 /4 pie D + ...], where D is the relative translational diffusion constant. An approximate analytical method for calculating k(t) is presented. This is based on the approximation that the probability density of the reactant pair in the reactive region keeps the equilibrium distribution but with a decreasing amplitude. The rate coefficient then is determined by the Green function in the absence of chemical reaction. Within the framework of this approximation, two general relations are obtained. The first relation allows the rate coefficient for an arbitrary amplitude of the reactivity to be found if the rate coefficient for one amplitude of the reactivity is known. The second relation allows the rate coefficient in the presence of conformational gating to be found from that in the absence of conformational gating. The ratio k(t)/k(0) is shown to be the survival probability of the reactant pair at time t starting from an initial distribution that is localized in the reactive region. This relation forms the basis of the calculation of k(t) through Brownian dynamics simulations. Two simulation procedures involving the propagation of nonreactive trajectories initiated only from the reactive region are described and illustrated on a model system. Both analytical and simulation results demonstrate the accuracy of the equilibrium-distribution approximation method. PMID:8913584

  1. Acid-base chemical reaction model for nucleation rates in the polluted atmospheric boundary layer.

    PubMed

    Chen, Modi; Titcombe, Mari; Jiang, Jingkun; Jen, Coty; Kuang, Chongai; Fischer, Marc L; Eisele, Fred L; Siepmann, J Ilja; Hanson, David R; Zhao, Jun; McMurry, Peter H

    2012-11-13

    Climate models show that particles formed by nucleation can affect cloud cover and, therefore, the earth's radiation budget. Measurements worldwide show that nucleation rates in the atmospheric boundary layer are positively correlated with concentrations of sulfuric acid vapor. However, current nucleation theories do not correctly predict either the observed nucleation rates or their functional dependence on sulfuric acid concentrations. This paper develops an alternative approach for modeling nucleation rates, based on a sequence of acid-base reactions. The model uses empirical estimates of sulfuric acid evaporation rates obtained from new measurements of neutral molecular clusters. The model predicts that nucleation rates equal the sulfuric acid vapor collision rate times a prefactor that is less than unity and that depends on the concentrations of basic gaseous compounds and preexisting particles. Predicted nucleation rates and their dependence on sulfuric acid vapor concentrations are in reasonable agreement with measurements from Mexico City and Atlanta.

  2. Studies of the augmentation of reaction rates via laser irradiation in the infrared. Final report, 1 Sep 1973--31 Aug 1976. [H/sub 3/BPF/sub 3/ adduct

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, S.H.; Lory, E.R.; Chien, K.

    1976-10-15

    The objective of this research project, to discover a reaction, involving a sizable substrate (more than three atoms) the rate of which is selectively augmented by infrared laser radiation, has been achieved. A preliminary analysis led to criteria for the selection of an optimum reaction type, and for setting the most suitable experimental parameters. The self-scavenging decomposition was studied for a borane adduct: 2 H/sub 3/BPF/sub 3/ yields B/sub 2/H/sub 6/ + 2PF/sub 3/. The relative photolytic efficiencies of the various lines emitted by a CO2 laser were measured as was also the dependence of the rate on laser power,more » gas pressure and reaction cell temperature. Specificity of vibrational excitation was demonstrated in several ways, most directly by the observed isotope fractionation of H/D and /sup 10/B//sup 11/B ratios. The mechanism of the photoactivation process developed is in quantitative agreement with the observed conversion. A dynamic model (based on a normal mode analysis) was proposed for the selective activation. In a parallel study of borane adducts, we evaluated the thermodynamic and kinetic rate parameters for six exchange and abstraction reactions. Rational structures were proposed for the corresponding transition states. (Author)« less

  3. Early reaction kinetics of contemporary glass-ionomer restorative materials.

    PubMed

    Roberts, Howard W; Berzins, David W

    2015-02-01

    To investigate polyalkenoate reaction rates in conventional glass-ionomer cement (GIC) and resin-modified glass ionomer (RMGI) restorative materials using infrared spectroscopy. Nine conventional GIC and six RMGI restorative materials were prepared according to manufacturer's directions and placed on a FTIR (Fourier transform infrared spectroscopy) diamond ATR (attenuated total reflectance) surface. FTIR spectra (700 to 1800 cm-1) were obtained each minute for 3 h. VLC specimens were light polymerized after 1 min; at 5 min, all samples were covered with gauze saturated with deionized water. Polyalkenoate reaction was determined by measuring area growth (Å/cm-1) between 1375 and 1500 cm-1. Mean peak areas were determined at 5, 15, 30, 90, and 180 min and compared using ANOVA (p = 0.05) RESULTS: For all RMGI materials, VLC polymerization inhibited the polyalkenoate reaction rate. Compared to conventional GIC, RMGI materials demonstrated less polyalkenoate reaction. Compared to dark curing, RMGI light polymerization significantly inhibited the polyalkenoate reaction rate. The addition of resin components to glass-ionomer products significantly retards and impedes the polyalkenoate reaction. The polyalkenoate reaction rate of RMGI products was significantly lower than that of self-curing GIC restorative materials. Furthermore, light activation of RMGI products further retards the polyalkenoate rate. When clinicians require the therapeutic benefit of a polyalkenoate product, perhaps a conventional GIC restorative product should be the first material of choice.

  4. Surface-active ionic liquids in micellar catalysis: impact of anion selection on reaction rates in nucleophilic substitutions† †Electronic supplementary information (ESI) available: Formulae for calculating aggregation parameters and fitting of kinetic constants and copies of NMR spectra. See DOI: 10.1039/c6cp00493h Click here for additional data file.

    PubMed Central

    Cognigni, Alice; Gaertner, Peter; Zirbs, Ronald; Peterlik, Herwig; Prochazka, Katharina; Schröder, Christian

    2016-01-01

    A series of surface-active ionic liquids based on the 1-dodecyl-3-methylimidazolium cation and different anions such as halides and alkylsulfates was synthesized. The aggregation behavior of these ionic liquids in water was characterized by surface tension, conductivity measurements and UV-Vis spectroscopy in order to determine the critical micelle concentration (CMC) and to provide aggregation parameters. The determination of surface activity and aggregation properties of amphiphilic ionic liquids was accompanied by SAXS studies on selected surface-active ionic liquids. The application of these surface-active ionic liquids with different anions was tested in nucleophilic substitution reactions for the degradation of organophosphorus compounds. Kinetic studies via UV-Vis spectrophotometry showed a strong acceleration of the reaction in the micellar system compared to pure water. In addition, an influence of the anion was observed, resulting in a correlation between the anion binding to the micelle and the reaction rate constants, indicating that the careful choice of the surface-active ionic liquid can considerably affect the outcome of reactions. PMID:27121134

  5. Determination of the rate coefficient for the N2/+/ + O reaction in the ionosphere

    NASA Technical Reports Server (NTRS)

    Torr, D. G.; Torr, M. R.; Orsini, N.; Hanson, W. B.; Hoffman, J. H.; Walker, J. C. G.

    1977-01-01

    Using approximately 400 simultaneous measurements of ion and neutral densities and temperatures, and the spectrum of the solar flux measured by the Atmosphere Explorer C satellite, we have determined the rate constant k1 for the reaction between N2(+) and O in the ionosphere for ion temperatures between 600 and 700 K. We find that k1 = 1.1 x 10 to the minus 10th power cu cm per sec, with a standard deviation of + or - 15%. If we use the temperature dependence for this reaction determined in the laboratory then at 300 K we find excellent agreement with the recommended laboratory value.

  6. An Adaptor Domain-Mediated Auto-Catalytic Interfacial Kinase Reaction

    PubMed Central

    Liao, Xiaoli; Su, Jing; Mrksich, Milan

    2010-01-01

    This paper describes a model system for studying the auto-catalytic phosphorylation of an immobilized substrate by a kinase enzyme. This work uses self-assembled monolayers (SAMs) of alkanethiolates on gold to present the peptide substrate on a planar surface. Treatment of the monolayer with Abl kinase results in phosphorylation of the substrate. The phosphorylated peptide then serves as a ligand for the SH2 adaptor domain of the kinase and thereby directs the kinase activity to nearby peptide substrates. This directed reaction is intramolecular and proceeds with a faster rate than does the initial, intermolecular reaction, making this an auto-catalytic process. The kinetic non-linearity gives rise to properties that have no counterpart in the corresponding homogeneous phase reaction: in one example, the rate for phosphorylation of a mixture of two peptides is faster than the sum of the rates for phosphorylation of each peptide when presented alone. This work highlights the use of an adaptor domain in modulating the activity of a kinase enzyme for an immobilized substrate and offers a new approach for studying biochemical reactions in spatially inhomogeneous settings. PMID:19821459

  7. A self-consistent, multivariate method for the determination of gas-phase rate coefficients, applied to reactions of atmospheric VOCs and the hydroxyl radical

    NASA Astrophysics Data System (ADS)

    Shaw, Jacob T.; Lidster, Richard T.; Cryer, Danny R.; Ramirez, Noelia; Whiting, Fiona C.; Boustead, Graham A.; Whalley, Lisa K.; Ingham, Trevor; Rickard, Andrew R.; Dunmore, Rachel E.; Heard, Dwayne E.; Lewis, Ally C.; Carpenter, Lucy J.; Hamilton, Jacqui F.; Dillon, Terry J.

    2018-03-01

    Gas-phase rate coefficients are fundamental to understanding atmospheric chemistry, yet experimental data are not available for the oxidation reactions of many of the thousands of volatile organic compounds (VOCs) observed in the troposphere. Here, a new experimental method is reported for the simultaneous study of reactions between multiple different VOCs and OH, the most important daytime atmospheric radical oxidant. This technique is based upon established relative rate concepts but has the advantage of a much higher throughput of target VOCs. By evaluating multiple VOCs in each experiment, and through measurement of the depletion in each VOC after reaction with OH, the OH + VOC reaction rate coefficients can be derived. Results from experiments conducted under controlled laboratory conditions were in good agreement with the available literature for the reaction of 19 VOCs, prepared in synthetic gas mixtures, with OH. This approach was used to determine a rate coefficient for the reaction of OH with 2,3-dimethylpent-1-ene for the first time; k = 5.7 (±0.3) × 10-11 cm3 molecule-1 s-1. In addition, a further seven VOCs had only two, or fewer, individual OH rate coefficient measurements available in the literature. The results from this work were in good agreement with those measurements. A similar dataset, at an elevated temperature of 323 (±10) K, was used to determine new OH rate coefficients for 12 aromatic, 5 alkane, 5 alkene and 3 monoterpene VOC + OH reactions. In OH relative reactivity experiments that used ambient air at the University of York, a large number of different VOCs were observed, of which 23 were positively identified. Due to difficulties with detection limits and fully resolving peaks, only 19 OH rate coefficients were derived from these ambient air samples, including 10 reactions for which data were previously unavailable at the elevated reaction temperature of T = 323 (±10) K.

  8. Channel specific rate constants for reactions of O(1D) with HCl and HBr

    NASA Technical Reports Server (NTRS)

    Wine, P. H.; Wells, J. R.; Ravishankara, A. R.

    1986-01-01

    The absolute rate coefficients and product yields for reactions of O(1D) with HCl(1) and HBr(2) at 287 K are presently determined by means of the time-resolved resonance fluorescence detection of O(3P) and H(2S) in conjunction with pulsed laser photolysis of O3/HX/He mixtures. Total rate coefficients for O(1D) removal are found to be, in units of 10 to the -10th cu cm/molecule per sec, k(1) = 1.50 + or - 0.18 and k(2) 1.48 + or - 0.16; the absolute accuracy of these rate coefficients is estimated to be + or - 20 percent.

  9. Selected specific rates of reactions of transients from water in aqueous solution. Hydrated electron, supplemental data. [Reactions with transients from water, with inorganic solutes, and with solutes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, A.B.

    1975-06-01

    A compilation of rates of reactions of hydrated electrons with other transients and with organic and inorganic solutes in aqueous solution appeared in NSRDS-NBS 43, and covered the literature up to early 1971. This supplement includes additional rates which have been published through July 1973.

  10. Superior long-term activity for a Pt-Re alloy compared to Pt in methanol oxidation reactions

    NASA Astrophysics Data System (ADS)

    Duke, Audrey S.; Xie, Kangmin; Monnier, John R.; Chen, Donna A.

    2017-03-01

    Pt-Re bimetallic catalysts have shown enhanced activity compared to pure Pt for reactions involving oxidation, but the origins of this improved activity are not fully understood. Methanol oxidation on a Pt-Re alloy surface and pure Pt foil was studied in a microreactor coupled to an ultrahigh vacuum chamber. For reaction at 60 °C, the Pt-Re alloy surface exhibits superior long-term activity over a 24 h reaction period compared to pure Pt. The initial activity of Pt is 10-15% higher than on Pt-Re; however, the Pt surface gradually loses activity after 10 h online, whereas the activity of Pt-Re does not diminish. Post-reaction XPS shows that more carbon accumulates on the Pt than on Pt-Re, and the improved long-term activity is attributed to a greater ability of Pt-Re to oxidize the carbonaceous intermediates that eventually poison active sites. Both Pt and Pt-Re surfaces have almost no activity for methanol oxidation until a minimum coverage of oxygen is achieved from O2 dissociation. A comparison with methanol oxidation studies on Pt and Pt-Re in a pressure regime that is 150 times lower than in this work demonstrates that more carbon and less oxygen accumulate on the surfaces during reaction at the lower pressures.

  11. Heart rate, rate-pressure product, and oxygen uptake during four sexual activities.

    PubMed

    Bohlen, J G; Held, J P; Sanderson, M O; Patterson, R P

    1984-09-01

    Heart rate, rate-pressure product, and VO2 were measured in ten healthy men during four specified sexual activities: coitus with husband on top, coitus with wife on top, noncoital stimulation of husband by wife, and self-stimulation by husband. Foreplay generated slight, but statistically significant, increases above resting baseline in cardiac and metabolic variables. From stimulation through orgasm, average effort was modest for relatively short spans. Maximum exercise values occurred during the brief spans of orgasm, then returned quickly to near baseline levels. The two noncoital activities required lower expenditures than the two coital positions, with man-on-top coitus rating the highest. Large variations among subjects and among activities discourage use of a general equivalent activity for comparison, such as "two flights of stairs," to represent "sexual activity."

  12. Supervisors' attitudes and skills for active listening with regard to working conditions and psychological stress reactions among subordinate workers.

    PubMed

    Mineyama, Sachiko; Tsutsumi, Akizumi; Takao, Soshi; Nishiuchi, Kyoko; Kawakami, Norito

    2007-03-01

    We investigated whether supervisors' listening attitudes and skills were related to working conditions and psychological stress reactions among their subordinates. The subjects included 41 male supervisors and their immediate subordinates (n=203). The supervisors completed a short version of the Active Listening Attitude Scale (ALAS) consisting of two subscales: Listening Attitude and Listening Skill for Active Listening. The subordinates rated working conditions and their psychological stress reactions using selected scales of the Job Content Questionnaire and the Brief Job Stress Questionnaire. Those subordinates who worked under supervisors with a higher score of Listening Attitude and Listening Skill reported a more favorable psychological stress reaction than those who worked under supervisors with a lower score of Listening Attitude and Listening Skill. Those subordinates who worked under supervisors with a higher score of Listening Skill reported higher worksite support than those who worked under supervisors with a lower score of Listening Skill. Those subordinates who worked under supervisors with a higher score of Listening Attitude reported higher job control than those who worked under supervisors with a lower score of Listening Attitude. A supervisor's listening attitude and skill appeared to affect psychological stress reactions predominantly among male subordinates than among female subordinates. Psychological stress reactions were lower among younger subordinates who worked under supervisors with high listening skill, while no statistically difference was observed among older subordinates. These findings suggest that a supervisor's listening attitude and skill have an effect on working conditions and psychological stress reactions among subordinates and that the effects vary according to the subordinates' sex and age.

  13. Arrhenius' law in turbulent media and an equivalent tunnel effect. [in binary exchange chemical reactions

    NASA Technical Reports Server (NTRS)

    Tsuge, S.; Sagara, K.

    1978-01-01

    The indeterminacy inherent to the formal extension of Arrhenius' law to reactions in turbulent flows is shown to be surmountable in the case of a binary exchange reaction with a sufficiently high activation energy. A preliminary calculation predicts that the turbulent reaction rate is invariant in the Arrhenius form except for an equivalently lowered activation energy. This is a reflection of turbulence-augmented molecular vigor, and causes an appreciable increase in the reaction rate. A similarity to the tunnel effect in quantum mechanics is indicated. The anomaly associated with the mild ignition of oxy-hydrogen mixtures is discussed in this light.

  14. Application of an Artificial Neural Network to the Prediction of OH Radical Reaction Rate Constants for Evaluating Global Warming Potential.

    PubMed

    Allison, Thomas C

    2016-03-03

    Rate constants for reactions of chemical compounds with hydroxyl radical are a key quantity used in evaluating the global warming potential of a substance. Experimental determination of these rate constants is essential, but it can also be difficult and time-consuming to produce. High-level quantum chemistry predictions of the rate constant can suffer from the same issues. Therefore, it is valuable to devise estimation schemes that can give reasonable results on a variety of chemical compounds. In this article, the construction and training of an artificial neural network (ANN) for the prediction of rate constants at 298 K for reactions of hydroxyl radical with a diverse set of molecules is described. Input to the ANN consists of counts of the chemical bonds and bends present in the target molecule. The ANN is trained using 792 (•)OH reaction rate constants taken from the NIST Chemical Kinetics Database. The mean unsigned percent error (MUPE) for the training set is 12%, and the MUPE of the testing set is 51%. It is shown that the present methodology yields rate constants of reasonable accuracy for a diverse set of inputs. The results are compared to high-quality literature values and to another estimation scheme. This ANN methodology is expected to be of use in a wide range of applications for which (•)OH reaction rate constants are required. The model uses only information that can be gathered from a 2D representation of the molecule, making the present approach particularly appealing, especially for screening applications.

  15. Photo-thermal reactions of ethanol over Ag/TiO2 catalysts. The role of silver plasmon resonance in the reaction kinetics.

    PubMed

    Nadeem, M A; Idriss, H

    2018-05-17

    Photo-thermal catalytic reactions of ethanol over Ag/TiO2 were conducted in order to probe into the role of plasmonic resonance response in the reaction kinetics. In the 300-500 K temperature domain the increase in reaction rate is found to be mainly due to changes in the activation energy while above this temperature range the increase was due to the pre-exponential factor. These results might be linked to the role of plasmonic Ag particles in polarising the reaction intermediates and therefore increasing the reaction products at temperatures up to about 500 K.

  16. The reaction of peroxy radicals with OH: rate constants and HO2 yields

    NASA Astrophysics Data System (ADS)

    Fittschen, C. M.; Assaf, E.; Schoemaecker, C.; Vereecken, L.

    2017-12-01

    Peroxy radicals, RO2, are key species in the atmosphere. They are formed from a reaction of OH radicals with hydrocarbon: RH + OH + O2 → RO2 + H2O In polluted environments, RO2 radicals react predominantly with NO, leading to formation of NO2 and eventually through photolysis of NO2 to formation of O3. At low NOx concentrations such as in the marine boundary layer or the background troposphere, the lifetime of RO2 radicals increases and other reaction pathways become competitive. Atmospheric chemistry models have considered until recently only the self- and cross reaction with other RO2 radicals or with HO2 radicals as the major fate for RO2 radicals under low NOx conditions. Recently, the rate constants for the reaction of peroxy radicals with OH radicals RO2 + OH → products has been measured for CH3O2 [1, 2] and C2H5O2 [3] and it was shown to become competitive to other sinks [4]. However, in order to evaluate the impact of this so far neglected sink for peroxy radicals on the composition of remote atmospheres, the reaction products must be known. A recently improved experimental set-up combining laser photolysis with two simultaneous cw-CRDS detections in the near IR allowing for a time resolved, absolute quantification of OH and RO2 radicals has been used for a further investigation of this class of reactions. High-repetition rate LIF is used for determining relative OH profiles. For CH3O2 radicals, HO2 has been determined as major product recently [5]. Currently, we study the next larger perxoy, C2H5O2, using different radical precursors (C2H5I, (COCl)2/C2H6, XeF2/C2H6) and also deuterated C2D5I in order to elucidate the product yield. Preliminary results show a much lower HO2 yield for C2H5O2 compared to CH3O2. The most recent results will be presented at the conference. [1] A. Bossolasco, E. Faragó, C. Schoemaecker, and C. Fittschen, CPL, 593, 7, (2014). [2] E. Assaf, B. Song, A. Tomas, C. Schoemaecker, C. Fittschen, JPC A, 120, 8923 (2016) [3] Eszter

  17. Acid–base chemical reaction model for nucleation rates in the polluted atmospheric boundary layer

    PubMed Central

    Chen, Modi; Titcombe, Mari; Jiang, Jingkun; Jen, Coty; Kuang, Chongai; Fischer, Marc L.; Eisele, Fred L.; Siepmann, J. Ilja; Hanson, David R.; Zhao, Jun; McMurry, Peter H.

    2012-01-01

    Climate models show that particles formed by nucleation can affect cloud cover and, therefore, the earth's radiation budget. Measurements worldwide show that nucleation rates in the atmospheric boundary layer are positively correlated with concentrations of sulfuric acid vapor. However, current nucleation theories do not correctly predict either the observed nucleation rates or their functional dependence on sulfuric acid concentrations. This paper develops an alternative approach for modeling nucleation rates, based on a sequence of acid–base reactions. The model uses empirical estimates of sulfuric acid evaporation rates obtained from new measurements of neutral molecular clusters. The model predicts that nucleation rates equal the sulfuric acid vapor collision rate times a prefactor that is less than unity and that depends on the concentrations of basic gaseous compounds and preexisting particles. Predicted nucleation rates and their dependence on sulfuric acid vapor concentrations are in reasonable agreement with measurements from Mexico City and Atlanta. PMID:23091030

  18. Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy.

    PubMed

    Zheng, Jie; Sheng, Wenchao; Zhuang, Zhongbin; Xu, Bingjun; Yan, Yushan

    2016-03-01

    Understanding how pH affects the activity of hydrogen oxidation reaction (HOR) and hydrogen evolution reaction (HER) is key to developing active, stable, and affordable HOR/HER catalysts for hydroxide exchange membrane fuel cells and electrolyzers. A common linear correlation between hydrogen binding energy (HBE) and pH is observed for four supported platinum-group metal catalysts (Pt/C, Ir/C, Pd/C, and Rh/C) over a broad pH range (0 to 13), suggesting that the pH dependence of HBE is metal-independent. A universal correlation between exchange current density and HBE is also observed on the four metals, indicating that they may share the same elementary steps and rate-determining steps and that the HBE is the dominant descriptor for HOR/HER activities. The onset potential of CO stripping on the four metals decreases with pH, indicating a stronger OH adsorption, which provides evidence against the promoting effect of adsorbed OH on HOR/HER.

  19. Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy

    PubMed Central

    Zheng, Jie; Sheng, Wenchao; Zhuang, Zhongbin; Xu, Bingjun; Yan, Yushan

    2016-01-01

    Understanding how pH affects the activity of hydrogen oxidation reaction (HOR) and hydrogen evolution reaction (HER) is key to developing active, stable, and affordable HOR/HER catalysts for hydroxide exchange membrane fuel cells and electrolyzers. A common linear correlation between hydrogen binding energy (HBE) and pH is observed for four supported platinum-group metal catalysts (Pt/C, Ir/C, Pd/C, and Rh/C) over a broad pH range (0 to 13), suggesting that the pH dependence of HBE is metal-independent. A universal correlation between exchange current density and HBE is also observed on the four metals, indicating that they may share the same elementary steps and rate-determining steps and that the HBE is the dominant descriptor for HOR/HER activities. The onset potential of CO stripping on the four metals decreases with pH, indicating a stronger OH adsorption, which provides evidence against the promoting effect of adsorbed OH on HOR/HER. PMID:27034988

  20. A Study of Interactions between Mixing and Chemical Reaction Using the Rate-Controlled Constrained-Equilibrium Method

    NASA Astrophysics Data System (ADS)

    Hadi, Fatemeh; Janbozorgi, Mohammad; Sheikhi, M. Reza H.; Metghalchi, Hameed

    2016-10-01

    The rate-controlled constrained-equilibrium (RCCE) method is employed to study the interactions between mixing and chemical reaction. Considering that mixing can influence the RCCE state, the key objective is to assess the accuracy and numerical performance of the method in simulations involving both reaction and mixing. The RCCE formulation includes rate equations for constraint potentials, density and temperature, which allows taking account of mixing alongside chemical reaction without splitting. The RCCE is a dimension reduction method for chemical kinetics based on thermodynamics laws. It describes the time evolution of reacting systems using a series of constrained-equilibrium states determined by RCCE constraints. The full chemical composition at each state is obtained by maximizing the entropy subject to the instantaneous values of the constraints. The RCCE is applied to a spatially homogeneous constant pressure partially stirred reactor (PaSR) involving methane combustion in oxygen. Simulations are carried out over a wide range of initial temperatures and equivalence ratios. The chemical kinetics, comprised of 29 species and 133 reaction steps, is represented by 12 RCCE constraints. The RCCE predictions are compared with those obtained by direct integration of the same kinetics, termed detailed kinetics model (DKM). The RCCE shows accurate prediction of combustion in PaSR with different mixing intensities. The method also demonstrates reduced numerical stiffness and overall computational cost compared to DKM.

  1. Experimental measurements of low temperature rate coefficients for neutral-neutral reactions of interest for atmospheric chemistry of Titan, Pluto and Triton: reactions of the CN radical.

    PubMed

    Morales, Sébastien B; Le Picard, Sébastien D; Canosa, André; Sims, Ian R

    2010-01-01

    The kinetics of the reactions of cyano radical, CN (X2sigma+) with three hydrocarbons, propane (CH3CH2CH3), propene (CH3CH=CH2) and 1-butyne (CH[triple band]CCH2CH3) have been studied over the temperature range of 23-298 K using a CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme or Reaction Kinetics in Uniform Supersonic Flow) apparatus combined with the pulsed laser photolysis-laser induced fluorescence technique. These reactions are of interest for the cold atmospheres of Titan, Pluto and Triton, as they might participate in the formation of nitrogen and carbon bearing molecules, including nitriles, that are thought to play an important role in the formation of hazes and biological molecules. All three reactions are rapid with rate coefficients in excess of 10(-10) cm3 molecule(-1) s(-1) at the lowest temperatures of this study and show behaviour characteristic of barrierless reactions. Temperature dependences, different for each reaction, are compared to those used in the most recent photochemical models of Titan's atmosphere.

  2. CO + OH --> CO2 + H: The relative reaction rate of five CO isotopologues with OH and OD

    NASA Astrophysics Data System (ADS)

    Feilberg, K. L.; Nielsen, C. J.; Griffith, D. W.; Johnson, M. S.

    2003-04-01

    The reaction of carbon monoxide with the hydroxyl radical (CO + OH) plays a central role in tropospheric chemistry. While the analysis of stable isotope enrichment has been used to refine models of the sources and sinks of atmospheric CO and CO_2, less is known about the mechanism behind the enrichment [T. Röckmann et al., 1998]. We have previously reported the relative reaction rate of five CO isotopologues with OH radicals [K. L. Feilberg et al. 2002]; the present work is an expansion of the previous work in which the relative reaction rate with OD as well as with OH is measured using an improved technique. The hydroxyl radical was generated by the UV photolysis of ozone in the presence of hydrogen gas. The concentrations of the carbon monoxide isotopologues as a function of photolysis time is determined using a global fit of the rovibrationally resolved FTIR spectrum of the gas mixture in a stainless steel smog chamber. The observed inverse kinetic isotope effect is best understood in terms of the effect of isotopic substitution on the relative rate of unimolecular dissociation of the HOCO intermediate to reform reagents versus dissociate to products. In addition, we present the results of a quantum dressed classical mechanics calculation for the reaction CO + OD rightarrow CO_2 + D analogous to a previously published calculation for the reaction CO + OD rightarrow CO_2 + H [K. L. Feilberg et al. 2001]. References T. Röckmann, C. A. M. Brenninkmeijer, G. Saueressig, P. Bergamaschi, J. N. Crowley, H. Fischer and P. J. Crutzen, Science, 1998, 281, 544. K. L. Feilberg, C. J. Nielsen, D. W. T. Griffith and M. S. Johnson, Physical Chemistry Chemical Physics 4, 4687-4693, 2002. K. L. Feilberg, G. D. Billing and M. S. Johnson, Journal of Physical Chemistry A, 105(50), 11171, 2001.

  3. Selected specific rates of reactions of transients from water in aqueous solution. III. Hydroxyl radical and perhydroxyl radical and their radical ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, F; Ross, A B

    1977-01-01

    Rates of reactions of OH and HO/sub 2/ with organic and inorganic molecules, ions and transients in aqueous solution have been tabulated, as well as the rates for the corresponding radical ions in aqueous solution (O/sup -/ and O/sub 2//sup -/). Most of the rates have been obtained by radiation chemistry methods, both pulsed and steady-state; data from photochemistry and thermal methods are also included. Rates for over one thousand reactions are listed.

  4. Shock tube measurements of specific reaction rates in branched chain CH4-CO-O2 system

    NASA Technical Reports Server (NTRS)

    Brabbs, T. A.; Brokaw, R. S.

    1974-01-01

    Rate constants of two elementary bimolecular reactions involved in the oxidation of methane were determined by monitoring the exponential growth of CO flame band emission behind incident shocks in three suitably chosen gas mixtures.

  5. Anticipatory activity in the human thalamus is predictive of reaction times.

    PubMed

    Nikulin, V V; Marzinzik, F; Wahl, M; Schneider, G-H; Kupsch, A; Curio, G; Klostermann, F

    2008-09-09

    Responding to environmental stimuli in a fast manner is a fundamental behavioral capacity. The pace at which one responds is known to be predetermined by cortical areas, but it remains to be shown if subcortical structures also take part in defining motor swiftness. As the thalamus has previously been implicated in behavioral control, we tested if neuronal activity at this level could also predict the reaction time of upcoming movements. To this end we simultaneously recorded electrical brain activity from the scalp and the ventral intermediate nucleus (VIM) of the thalamus in patients undergoing thalamic deep brain stimulation. Based on trial-to-trial analysis of a Go/NoGo task, we demonstrate that both cortical and thalamic neuronal activity prior to the delivery of upcoming Go stimulus correlates with the reaction time. This result goes beyond the demonstration of thalamic activity being associated with but potentially staying invariant to motor performance. In contrast, it indicates that the latencies at which we respond to environmental stimuli are not exclusively related to cortical pre-movement states but are also correlated with anticipatory thalamic activity.

  6. Quantum instanton calculation of rate constant for CH4 + OH → CH3 + H2O reaction: Torsional anharmonicity and kinetic isotope effect

    NASA Astrophysics Data System (ADS)

    Wang, Wenji; Zhao, Yi

    2012-12-01

    Thermal rate constants for the title reaction are calculated by using the quantum instanton approximation within the full dimensional Cartesian coordinates. The results reveal that the quantum effect is remarkable for the reaction at both low and high temperatures, and the obtained rates are in good agreement with experimental measurements at high temperatures. Compared to the harmonic approximation, the torsional anharmonic effect of the internal rotation has a little influence on the rates at low temperatures, however, it enhances the rate by about 20% at 1000 K. In addition, the free energy barriers for the isotopic reactions and the temperature dependence of kinetic isotope effects are also investigated. Generally speaking, for the title reaction, the replacement of OH with OD will reduce the free energy barrier, while substituting D for H (connected to C) will increase the free energy barrier.

  7. Temporal and inter-task consistency of heart rate reactivity during active psychological challenge: a twin study.

    PubMed

    Turner, J R; Carroll, D; Sims, J; Hewitt, J K; Kelly, K A

    1986-01-01

    Heart rate was monitored while 22 pairs of young male monozygotic and 29 pairs of young male dizygotic twins were exposed to a video game and a mental arithmetic task. The heart rate reactions of the monozygotic twins showed much greater concordance than those of the dizygotic twins. Analysis of the data for the 102 individuals demonstrated reliable inter-task consistency of heart rate reaction. In addition, comparison of the heart rate reactions of ten pairs of monozygotic and ten pairs of dizygotic twins who had been tested more than a year earlier and their present reactivities revealed impressive temporal consistency.

  8. A molecular dynamics study of intramolecular proton transfer reaction of malonaldehyde in solutions based upon mixed quantum-classical approximation. I. Proton transfer reaction in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, Atsushi; Kojima, Hidekazu; Okazaki, Susumu, E-mail: okazaki@apchem.nagoya-u.ac.jp

    2014-08-28

    In order to investigate proton transfer reaction in solution, mixed quantum-classical molecular dynamics calculations have been carried out based on our previously proposed quantum equation of motion for the reacting system [A. Yamada and S. Okazaki, J. Chem. Phys. 128, 044507 (2008)]. Surface hopping method was applied to describe forces acting on the solvent classical degrees of freedom. In a series of our studies, quantum and solvent effects on the reaction dynamics in solutions have been analysed in detail. Here, we report our mixed quantum-classical molecular dynamics calculations for intramolecular proton transfer of malonaldehyde in water. Thermally activated proton transfermore » process, i.e., vibrational excitation in the reactant state followed by transition to the product state and vibrational relaxation in the product state, as well as tunneling reaction can be described by solving the equation of motion. Zero point energy is, of course, included, too. The quantum simulation in water has been compared with the fully classical one and the wave packet calculation in vacuum. The calculated quantum reaction rate in water was 0.70 ps{sup −1}, which is about 2.5 times faster than that in vacuum, 0.27 ps{sup −1}. This indicates that the solvent water accelerates the reaction. Further, the quantum calculation resulted in the reaction rate about 2 times faster than the fully classical calculation, which indicates that quantum effect enhances the reaction rate, too. Contribution from three reaction mechanisms, i.e., tunneling, thermal activation, and barrier vanishing reactions, is 33:46:21 in the mixed quantum-classical calculations. This clearly shows that the tunneling effect is important in the reaction.« less

  9. Low Energy Nuclear Reaction Products at Surfaces

    NASA Astrophysics Data System (ADS)

    Nagel, David J.

    2008-03-01

    This paper examines the evidence for LENR occurring on or very near to the surface of materials. Several types of experimental indications for LENR surface reactions have been reported and will be reviewed. LENR result in two types of products, energy and the appearance of new elements. The level of instantaneous power production can be written as the product of four factors: (1) the total area of the surface on which the reactions can occur, (2) the fraction of the area that is active at any time, (3) the reaction rate, that is, the number of reactions per unit active area per second, and (4) the energy produced per reaction. Each of these factors, and their limits, are reviewed. A graphical means of relating these four factors over their wide variations has been devised. The instantaneous generation of atoms of new elements can also be written as the product of the first three factors and the new elemental mass produced per reaction. Again, a graphical means of presenting the factors and their results over many orders of magnitude has been developed.

  10. The role of reaction affinity and secondary minerals in regulating chemical weathering rates at the Santa Cruz Soil Chronosequence, California

    USGS Publications Warehouse

    Maher, K.; Steefel, Carl; White, A.F.; Stonestrom, David A.

    2009-01-01

    In order to explore the reasons for the apparent discrepancy between laboratory and field weathering rates and to determine the extent to which weathering rates are controlled by the approach to thermodynamic equilibrium, secondary mineral precipitation, and flow rates, a multicomponent reactive transport model (CrunchFlow) was used to interpret soil profile development and mineral precipitation and dissolution rates at the 226 ka Marine Terrace Chronosequence near Santa Cruz, CA. Aqueous compositions, fluid chemistry, transport, and mineral abundances are well characterized [White A. F., Schulz M. S., Vivit D. V., Blum A., Stonestrom D. A. and Anderson S. P. (2008) Chemical weathering of a Marine Terrace Chronosequence, Santa Cruz, California. I: interpreting the long-term controls on chemical weathering based on spatial and temporal element and mineral distributions. Geochim. Cosmochim. Acta 72 (1), 36-68] and were used to constrain the reaction rates for the weathering and precipitating minerals in the reactive transport modeling. When primary mineral weathering rates are calculated with either of two experimentally determined rate constants, the nonlinear, parallel rate law formulation of Hellmann and Tisserand [Hellmann R. and Tisserand D. (2006) Dissolution kinetics as a function of the Gibbs free energy of reaction: An experimental study based on albite feldspar. Geochim. Cosmochim. Acta 70 (2), 364-383] or the aluminum inhibition model proposed by Oelkers et al. [Oelkers E. H., Schott J. and Devidal J. L. (1994) The effect of aluminum, pH, and chemical affinity on the rates of aluminosilicate dissolution reactions. Geochim. Cosmochim. Acta 58 (9), 2011-2024], modeling results are consistent with field-scale observations when independently constrained clay precipitation rates are accounted for. Experimental and field rates, therefore, can be reconciled at the Santa Cruz site. Additionally, observed maximum clay abundances in the argillic horizons occur at

  11. Oxidation of CO by N/sub 2/O between 1076 and 1228 K: determination of the rate constant of the exchange reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loirat, H.; Caralp, F.; Destriau, M.

    New measurements of the rate constant of the direct reaction of CO with N/sub 2/O are reported with the principal purpose of removing some of the remaining discrepancies on its value. Experiments were performed at lower temperatures (1076-1228 K) and lower pressure (approx. 15 Torr) than those prevailing in most of previous works, by using a static reactor. It is shown that, under these experimental conditions, the reaction proceeds essentially according to the direct reaction CO + N/sub 2/O ..-->.. CO/sub 2/ + N/sub 2/ (1). The previously proposed wet mechanism is not significant under our experimental conditions. It hasmore » to be taken into account, however, to describe the observed production and consumption of molecular oxygen. The Arrhenius expression derived from these experiments is k/sub 1/ = 10/sup 14.4 +/- 0.3 exp(-(46 +- 2) kcal mol/sup -1/RT) cm/sup 3/ mol/sup -1/ s/sup -1/. A detailed analysis of the results shows that the uncertainties in side reactions do not greatly influence the value of k/sub 1/. A critical discussion of the data reported in the literature is presented. In spite of remaining uncertainties in the reaction mechanism, the present results, obtained in a low-temperature range, show that the low activation energy values of reaction 1, reported in several works performed at higher temperatures, are highly unlikely« less

  12. Light elements burning reaction rates at stellar temperatures as deduced by the Trojan Horse measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamia, L.; Spitaleri, C.; La Cognata, M.

    2015-02-24

    Experimental nuclear astrophysics aims at determining the reaction rates for astrophysically relevant reactions at their Gamow energies. For charged-particle induced reactions, the access to these energies is usually hindered, in direct measurements, by the presence of the Coulomb barrier between the interacting particles or by electron screening effects, which make hard the determination of the bare-nucleus S(E)-factor of interest for astrophysical codes. The use of the Trojan Horse Method (THM) appears as one of the most suitable tools for investigating nuclear processes of interest for astrophysics. Here, in view of the recent TH measurements, the main destruction channels for deuteriummore » ({sup 2}H), for the two lithium {sup 6,7}Li isotopes, for the {sup 9}Be and the one for the two boron {sup 10,11}B isotopes will be discussed.« less

  13. Rate coefficients for the gas-phase reaction of the hydroxyl radical with CH2=CHF and CH2=CF2.

    PubMed

    Baasandorj, Munkhbayar; Knight, Gary; Papadimitriou, Vassileios C; Talukdar, Ranajit K; Ravishankara, A R; Burkholder, James B

    2010-04-08

    Rate coefficients, k, for the gas-phase reaction of the OH radical with CH(2)=CHF (k(1)) and CH(2)=CF(2) (k(2)) were measured under pseudo-first-order conditions in OH using pulsed laser photolysis to produce OH and laser-induced fluorescence (PLP-LIF) to detect it. Rate coefficients were measured over a range of temperature (220-373 K) and bath gas pressure (20-600 Torr; He, N(2)). The rate coefficients were found to be independent of pressure. The measured rate coefficient for reaction 1 at room temperature was k(1)(296 K) = (5.18 +/- 0.50) x 10(-12) cm(3) molecule(-1) s(-1), independent of pressure, and the temperature dependence is given by the Arrhenius expression k(1)(T) = (1.75 +/- 0.20) x 10(-12) exp[(316 +/- 25)/T] cm(3) molecule(-1) s(-1); the rate coefficients for reaction 2 were k(2)(296 K) = (2.79 +/- 0.25) x 10(-12) cm(3) molecule(-1) s(-1) and k(2)(T) = (1.75 +/- 0.20) x 10(-12) exp[(140 +/- 20)/T] cm(3) molecule(-1) s(-1). The quoted uncertainties are 2sigma (95% confidence level) and include estimated systematic errors. The fall-off parameters for reaction 2 of k(infinity) = 3 x 10(-12) cm(3) molecule(-1) s(-1) and k(0)(296 K) = 1.8 x 10(-28) cm(6) molecule(-2) s(-1) with F(c) = 0.6 reproduce the room temperature data obtained in this study combined with the low pressure rate coefficient data from Howard (J. Chem. Phys. 1976, 65, 4771). OH radical formation was observed for reactions 1 and 2 in the presence of O(2), and the mechanism was investigated using (18)OH and OD rate coefficient measurements with CH(2)=CHF and CH(2)=CF(2) over a range of temperature (260-373 K) and pressure (20-100 Torr, He). Quantum chemical calculations using density functional theory (DFT) were used to determine the geometries and energies of the reactants and adducts formed in reactions 1 and 2 and the peroxy radicals formed following the addition of O(2). The atmospheric lifetimes of CH(2)=CHF and CH(2)=CF(2) due to loss by reaction with OH are approximately 2 and 4

  14. Reduction Reaction Activity on Pt-Monolayer-Shell PdIr/Ni-core Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Liang; Vukmirovic, Miomir B.; Adzic, Radoslav R.

    Platinum monolayer oxygen reduction reaction catalysts present promising way of reducing the Pt content without scarifying its fuel cell performance. We present a facile way of preparing Pt monolayer shell PdIr-based core catalysts, which showed much higher activity for oxygen reduction reaction than that of TKK 46.6% Pt/C catalyst. Among tested samples, PtMLPd2Ir/Ni/C performs the best with Pt and Platinum Group Metal mass activity around 9 and 0.25 times higher of that of TKK 46.6% Pt/C. In addition, accelerated aging test indicates its excellent durability.

  15. Reduction Reaction Activity on Pt-Monolayer-Shell PdIr/Ni-core Catalysts

    DOE PAGES

    Song, Liang; Vukmirovic, Miomir B.; Adzic, Radoslav R.

    2018-05-14

    Platinum monolayer oxygen reduction reaction catalysts present promising way of reducing the Pt content without scarifying its fuel cell performance. We present a facile way of preparing Pt monolayer shell PdIr-based core catalysts, which showed much higher activity for oxygen reduction reaction than that of TKK 46.6% Pt/C catalyst. Among tested samples, PtMLPd2Ir/Ni/C performs the best with Pt and Platinum Group Metal mass activity around 9 and 0.25 times higher of that of TKK 46.6% Pt/C. In addition, accelerated aging test indicates its excellent durability.

  16. The Cassini Reaction Wheels: Drag and Spin-Rate Trends from an Aging Interplanetary Spacecraft at Saturn

    NASA Technical Reports Server (NTRS)

    Brown, Todd S.

    2016-01-01

    The purpose of this paper is to provide a summary of the long-term trends of the estimated drag torque and spin-rates of the Cassini reaction wheel assemblies during eleven years of intensive science operations at Saturn..

  17. Structure dependence of the rate coefficients of hydroxyl radical+aromatic molecule reaction

    NASA Astrophysics Data System (ADS)

    Wojnárovits, László; Takács, Erzsébet

    2013-06-01

    The rate coefficients of hydroxyl radical addition to the rings of simple aromatic molecules (kOH) were evaluated based on the literature data. By analyzing the methods of kOH determination and the data obtained the most probable values were selected for the kOH's of individual compounds and thereby the most reliable dataset was created for monosubstituted aromatics and p-substituted phenols. For these compounds the rate coefficients fall in a narrow range between 2×109 mol-1 dm3 s-1 and 1×1010 mol-1 dm3 s-1. Although the values show some regular trend with the electron donating/withdrawing nature of the substituent, the log kOH-σp Hammett substituent constant plots do not give straight lines because these high kOH's are controlled by both, the chemical reactivity and the diffusion. However, the logarithms of the rate coefficients of the chemical reactivity controlled reactions (kchem), are calculated by the equation 1/kOH=1/kchem+1/kdiff, and accepting for the diffusion controlled rate coefficient kdiff=1.1×1010 mol-1 dm3 s-1, show good linear correlation with σp.

  18. Theoretical and experimental study on the effects of particle size and temperature on the reaction kinetics of cubic nano-Cu2O

    NASA Astrophysics Data System (ADS)

    Tang, Huanfeng; Huang, Zaiyin; Xiao, Ming; Liang, Min; Chen, Liying; Tan, XueCai

    2017-09-01

    The activities, selectivities, and stabilities of nanoparticles in heterogeneous reactions are size-dependent. In order to investigate the influencing laws of particle size and temperature on kinetic parameters in heterogeneous reactions, cubic nano-Cu2O particles of four different sizes in the range of 40-120 nm have been controllably synthesized. In situ microcalorimetry has been used to attain thermodynamic data on the reaction of Cu2O with aqueous HNO3 and, combined with thermodynamic principles and kinetic transition-state theory, the relevant reaction kinetic parameters have been evaluated. The size dependences of the kinetic parameters are discussed in terms of the established kinetic model and the experimental results. It was found that the reaction rate constants increased with decreasing particle size. Accordingly, the apparent activation energy, pre-exponential factor, activation enthalpy, activation entropy, and activation Gibbs energy decreased with decreasing particle size. The reaction rate constants and activation Gibbs energies increased with increasing temperature. Moreover, the logarithms of the apparent activation energies, pre-exponential factors, and rate constants were found to be linearly related to the reciprocal of particle size, consistent with the kinetic models. The influence of particle size on these reaction kinetic parameters may be explained as follows: the apparent activation energy is affected by the partial molar enthalpy, the pre-exponential factor is affected by the partial molar entropy, and the reaction rate constant is affected by the partial molar Gibbs energy. [Figure not available: see fulltext.

  19. Effect of foot type on knee valgus, ground reaction force, and hip muscle activation in female soccer players.

    PubMed

    Rath, Meghan E; Stearne, David J; Walker, Cameron R; Cox, Jaime C

    2016-05-01

    The purpose of this study was to determine the degree to which subtalar joint pronation resulting from a supple planus foot affects knee alignment, hip muscle activation and ground reaction force attenuation in female athletes during a broad jump-to-cut maneuver. Twelve National Collegiate Athletic Association (NCAA) Division II female soccer players (age=19.4±1.4 years, height=1.64±0.05 m, mass=64.10±4.8 kg) were identified as having either supple planus (SP) or rigid feet (RF). Participants completed three broad jump-to-cut trials onto a force plate while EMG and motion data were collected. Muscle activation levels (percentage of maximal voluntary contraction [%MVC]) in the gluteus maximus, gluteus medius, biceps femoris, and rectus femoris were calculated, and peak vertical and medial shear force, rate of loading, and valgus angle were collected for each trial. Mann-Whitney U tests revealed no statistical significance between foot-type groups, however, effect size statistics revealed practical significance for between-group %MVC biceps femoris (d=1.107), %MVC gluteus maximus (d=1.069), and vertical ground reaction force (d=1.061). Athletes with a SP foot type may experience decreased hip muscle activation associated with increased vertical ground reaction force during a broad jump-to-cut maneuver. This might result in reduced dynamic stability and neuromuscular control during deceleration, potentially increasing the risk of non-contact ACL injury in female soccer players.

  20. Reaction kinetics of resveratrol with tert-butoxyl radicals

    NASA Astrophysics Data System (ADS)

    Džeba, Iva; Pedzinski, Tomasz; Mihaljević, Branka

    2012-09-01

    The rate constant for the reaction of t-butoxyl radicals with resveratrol was studied under pseudo-first order conditions. The rate constant was determined by measuring the phenoxyl radical formation rate at 390 nm as function of resveratrol concentration in acetonitrile. The rate constant was determined to be 6.5×108 M-1s-1. This high value indicates the high reactivity consistent with the strong antioxidant activity of resveratrol.

  1. Rate constants and temperature dependences for the reactions of hydroxyl radical with several halogenated methanes, ethanes, and propanes by relative rate measurements

    NASA Technical Reports Server (NTRS)

    Hsu, K.-J.; DeMore, W. B.

    1995-01-01

    Rate constants of 15 OH reactions with halogen-substituted alkanes, C1 to C3, were studied using a relative rate technique in the temperature range 283-403 K. Compounds studied were CHF2Cl (22), CHF2Br (22B), CH3F (41), CH2F2 (32), CHF3 (23), CHClFCCl2F (122a), CHCl2CF3 (123), CHClFCF3 (124), CH3CF3 (143a), CH3CH2F (161), CF3CHFCF3 (227ea), CF3CH2CF3 (236fa), CF3CHFCHF2 (236ea), and CHF2CF2CH2F (245ca). Using CH4, CH3CCl3, CF3CF2H, and C2H6 as primary reference standards (JPL 92-20 rate constants), absolute rate constants are derived. Results are in good agreement with previous experimental results for six of the compounds studied, including CHF2Cl, CHF2Br, CH2F2, CH3CF3, CHFClCFCl2, and CF3CHFCF3. For the remainder the relative rate constants are lower than those derived from experiments in which OH loss was used to measure the reaction rate. Comparisons of the derived Arrhenius A factors with previous literature transition-state calculations show order of magnitude agreement in most cases. However, the experimental A factors show a much closer proportionality to the number of H atoms in the molecule than is evident from the transition state calculations. For most of the compounds studied, an A factor of (8 +/- 3)E-13 cm(exp 3)/(molecule s) per C-H bond is observed. A new measurement of the ratio k(CH3CCl3)/k(CH4) is reported that is in good agreement with previous data.

  2. Physicochemical properties influencing denitrification rate and microbial activity in denitrification bioreactors

    NASA Astrophysics Data System (ADS)

    Schmidt, C. A.

    2012-12-01

    The use of N-based fertilizer will need to increase to meet future demands, yet existing applications have been implicated as the main source of coastal eutrophication and hypoxic zones. Producing sufficient crops to feed a growing planet will require efficient production in combination with sustainable treatment solutions. The long-term success of denitrification bioreactors to effectively remove nitrate (NO¬3), indicates this technology is a feasible treatment option. Assessing and quantifying the media properties that affect NO¬3 removal rate and microbial activity can improve predictions on bioreactor performance. It was hypothesized that denitrification rates and microbial biomass would be correlated with total C, NO¬3 concentration, metrics of organic matter quality, media surface area and laboratory measures of potential denitrification rate. NO¬3 removal rates and microbial biomass were evaluated in mesocosms filled with different wood treatments and the unique influence of these predictor variables was determined using a multiple linear regression analysis. NO3 reduction rates were independent of NO¬3 concentration indicating zero order reaction kinetics. Temperature was strongly correlated with denitrification rate (r2=0.87; Q10=4.7), indicating the variability of bioreactor performance in differing climates. Fiber quality, and media surface area were strong (R>0.50), unique predictors of rates and microbial biomass, although C:N ratio and potential denitrification rate did not predict actual denitrification rate or microbial biomass. Utilizing a stepwise multiple linear regression, indicates that the denitrification rate can be effectively (r2=0.56;p<0.0001) predicted if the groundwater temperature, neutral detergent fiber and surface area alone are quantified. These results will assist with the widespread implementation of denitrification bioreactors to achieve significant N load reductions in large watersheds. The nitrate reduction rate as a

  3. Variational Flooding Study of a SN2 Reaction.

    PubMed

    Piccini, GiovanniMaria; McCarty, James J; Valsson, Omar; Parrinello, Michele

    2017-02-02

    We have studied the reaction dynamics of a prototypical organic reaction using a variationally optimized truncated bias to accelerate transitions between educt and product reactant states. The asymmetric S N 2 nucleophilic substitution reaction of fluoromethane and chloromethane CH 3 F + Cl - ⇌ CH 3 Cl + F - is considered, and many independent biased molecular dynamics simulations have been performed at 600, 900, and 1200 K, collecting several hundred transitions at each temperature. The transition times and relative rate constants have been obtained for both reaction directions. The activation energies extracted from an Arrhenius plot compare well with standard static calculations.

  4. Increase of rutin antioxidant activity by generating Maillard reaction products with lysine.

    PubMed

    Zhang, Ru; Zhang, Bian-Ling; He, Ting; Yi, Ting; Yang, Ji-Ping; He, Bin

    2016-06-01

    Rutin exists in medicinal herbs, fruits, vegetables, and a number of plant-derived sources. Dietary sources containing rutin are considered beneficial because of their potential protective roles in multiple diseases related to oxidative stresses. In the present study, the change and antioxidation activity of rutin in Maillard reaction with lysine through a heating process were investigated. There is release of glucose and rhamnose that interact with lysine to give Maillard reaction products (MRPs), while rutin is converted to less-polar quercetin and a small quantity of isoquercitrin. Because of their high cell-membrane permeability, the rutin-lysine MRPs increase the free radical-scavenging activity in HepG2 cells, showing cellular antioxidant activity against Cu(2+)-induced oxidative stress higher than that of rutin. Furthermore, the MRPs significantly increased the Cu/Zn SOD (superoxide dismutase) activity and Cu/Zn SOD gene expression of HepG2 cells, consequently enhancing antioxidation activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. SABER: A computational method for identifying active sites for new reactions

    PubMed Central

    Nosrati, Geoffrey R; Houk, K N

    2012-01-01

    A software suite, SABER (Selection of Active/Binding sites for Enzyme Redesign), has been developed for the analysis of atomic geometries in protein structures, using a geometric hashing algorithm (Barker and Thornton, Bioinformatics 2003;19:1644–1649). SABER is used to explore the Protein Data Bank (PDB) to locate proteins with a specific 3D arrangement of catalytic groups to identify active sites that might be redesigned to catalyze new reactions. As a proof-of-principle test, SABER was used to identify enzymes that have the same catalytic group arrangement present in o-succinyl benzoate synthase (OSBS). Among the highest-scoring scaffolds identified by the SABER search for enzymes with the same catalytic group arrangement as OSBS were l-Ala d/l-Glu epimerase (AEE) and muconate lactonizing enzyme II (MLE), both of which have been redesigned to become effective OSBS catalysts, demonstrated by experiments. Next, we used SABER to search for naturally existing active sites in the PDB with catalytic groups similar to those present in the designed Kemp elimination enzyme KE07. From over 2000 geometric matches to the KE07 active site, SABER identified 23 matches that corresponded to residues from known active sites. The best of these matches, with a 0.28 Å catalytic atom RMSD to KE07, was then redesigned to be compatible with the Kemp elimination using RosettaDesign. We also used SABER to search for potential Kemp eliminases using a theozyme predicted to provide a greater rate acceleration than the active site of KE07, and used Rosetta to create a design based on the proteins identified. PMID:22492397

  6. SABER: a computational method for identifying active sites for new reactions.

    PubMed

    Nosrati, Geoffrey R; Houk, K N

    2012-05-01

    A software suite, SABER (Selection of Active/Binding sites for Enzyme Redesign), has been developed for the analysis of atomic geometries in protein structures, using a geometric hashing algorithm (Barker and Thornton, Bioinformatics 2003;19:1644-1649). SABER is used to explore the Protein Data Bank (PDB) to locate proteins with a specific 3D arrangement of catalytic groups to identify active sites that might be redesigned to catalyze new reactions. As a proof-of-principle test, SABER was used to identify enzymes that have the same catalytic group arrangement present in o-succinyl benzoate synthase (OSBS). Among the highest-scoring scaffolds identified by the SABER search for enzymes with the same catalytic group arrangement as OSBS were L-Ala D/L-Glu epimerase (AEE) and muconate lactonizing enzyme II (MLE), both of which have been redesigned to become effective OSBS catalysts, demonstrated by experiments. Next, we used SABER to search for naturally existing active sites in the PDB with catalytic groups similar to those present in the designed Kemp elimination enzyme KE07. From over 2000 geometric matches to the KE07 active site, SABER identified 23 matches that corresponded to residues from known active sites. The best of these matches, with a 0.28 Å catalytic atom RMSD to KE07, was then redesigned to be compatible with the Kemp elimination using RosettaDesign. We also used SABER to search for potential Kemp eliminases using a theozyme predicted to provide a greater rate acceleration than the active site of KE07, and used Rosetta to create a design based on the proteins identified. Copyright © 2012 The Protein Society.

  7. Classical Wigner method with an effective quantum force: application to reaction rates.

    PubMed

    Poulsen, Jens Aage; Li, Huaqing; Nyman, Gunnar

    2009-07-14

    We construct an effective "quantum force" to be used in the classical molecular dynamics part of the classical Wigner method when determining correlation functions. The quantum force is obtained by estimating the most important short time separation of the Feynman paths that enter into the expression for the correlation function. The evaluation of the force is then as easy as classical potential energy evaluations. The ideas are tested on three reaction rate problems. The resulting transmission coefficients are in much better agreement with accurate results than transmission coefficients from the ordinary classical Wigner method.

  8. Kinetics of Hydrogen Radical Reactions with Toluene Including Chemical Activation Theory Employing System-Specific Quantum RRK Theory Calibrated by Variational Transition State Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, Junwei Lucas; Zheng, Jingjing; Truhlar, Donald G.

    Here, pressure-dependent reactions are ubiquitous in combustion and atmospheric chemistry. We employ a new calibration procedure for quantum Rice–Ramsperger–Kassel (QRRK) unimolecular rate theory within a chemical activation mechanism to calculate the pressure-falloff effect of a radical association with an aromatic ring. The new theoretical framework is applied to the reaction of H with toluene, which is a prototypical reaction in the combustion chemistry of aromatic hydrocarbons present in most fuels. Both the hydrogen abstraction reactions and the hydrogen addition reactions are calculated. Our system-specific (SS) QRRK approach is adjusted with SS parameters to agree with multistructural canonical variational transition statemore » theory with multidimensional tunneling (MS-CVT/SCT) at the high-pressure limit. The new method avoids the need for the usual empirical estimations of the QRRK parameters, and it eliminates the need for variational transition state theory calculations as a function of energy, although in this first application we do validate the falloff curves by comparing SS-QRRK results without tunneling to multistructural microcanonical variational transition state theory (MS-μVT) rate constants without tunneling. At low temperatures, the two approaches agree well with each other, but at high temperatures, SS-QRRK tends to overestimate falloff slightly. We also show that the variational effect is important in computing the energy-resolved rate constants. Multiple-structure anharmonicity, torsional–potential anharmonicity, and high-frequency-mode vibrational anharmonicity are all included in the rate computations, and torsional anharmonicity effects on the density of states are investigated. Branching fractions, which are both temperature- and pressure-dependent (and for which only limited data is available from experiment), are predicted as a function of pressure.« less

  9. Kinetics of Hydrogen Radical Reactions with Toluene Including Chemical Activation Theory Employing System-Specific Quantum RRK Theory Calibrated by Variational Transition State Theory

    DOE PAGES

    Bao, Junwei Lucas; Zheng, Jingjing; Truhlar, Donald G.

    2016-02-03

    Here, pressure-dependent reactions are ubiquitous in combustion and atmospheric chemistry. We employ a new calibration procedure for quantum Rice–Ramsperger–Kassel (QRRK) unimolecular rate theory within a chemical activation mechanism to calculate the pressure-falloff effect of a radical association with an aromatic ring. The new theoretical framework is applied to the reaction of H with toluene, which is a prototypical reaction in the combustion chemistry of aromatic hydrocarbons present in most fuels. Both the hydrogen abstraction reactions and the hydrogen addition reactions are calculated. Our system-specific (SS) QRRK approach is adjusted with SS parameters to agree with multistructural canonical variational transition statemore » theory with multidimensional tunneling (MS-CVT/SCT) at the high-pressure limit. The new method avoids the need for the usual empirical estimations of the QRRK parameters, and it eliminates the need for variational transition state theory calculations as a function of energy, although in this first application we do validate the falloff curves by comparing SS-QRRK results without tunneling to multistructural microcanonical variational transition state theory (MS-μVT) rate constants without tunneling. At low temperatures, the two approaches agree well with each other, but at high temperatures, SS-QRRK tends to overestimate falloff slightly. We also show that the variational effect is important in computing the energy-resolved rate constants. Multiple-structure anharmonicity, torsional–potential anharmonicity, and high-frequency-mode vibrational anharmonicity are all included in the rate computations, and torsional anharmonicity effects on the density of states are investigated. Branching fractions, which are both temperature- and pressure-dependent (and for which only limited data is available from experiment), are predicted as a function of pressure.« less

  10. Kinetics of Hydrogen Radical Reactions with Toluene Including Chemical Activation Theory Employing System-Specific Quantum RRK Theory Calibrated by Variational Transition State Theory.

    PubMed

    Bao, Junwei Lucas; Zheng, Jingjing; Truhlar, Donald G

    2016-03-02

    Pressure-dependent reactions are ubiquitous in combustion and atmospheric chemistry. We employ a new calibration procedure for quantum Rice-Ramsperger-Kassel (QRRK) unimolecular rate theory within a chemical activation mechanism to calculate the pressure-falloff effect of a radical association with an aromatic ring. The new theoretical framework is applied to the reaction of H with toluene, which is a prototypical reaction in the combustion chemistry of aromatic hydrocarbons present in most fuels. Both the hydrogen abstraction reactions and the hydrogen addition reactions are calculated. Our system-specific (SS) QRRK approach is adjusted with SS parameters to agree with multistructural canonical variational transition state theory with multidimensional tunneling (MS-CVT/SCT) at the high-pressure limit. The new method avoids the need for the usual empirical estimations of the QRRK parameters, and it eliminates the need for variational transition state theory calculations as a function of energy, although in this first application we do validate the falloff curves by comparing SS-QRRK results without tunneling to multistructural microcanonical variational transition state theory (MS-μVT) rate constants without tunneling. At low temperatures, the two approaches agree well with each other, but at high temperatures, SS-QRRK tends to overestimate falloff slightly. We also show that the variational effect is important in computing the energy-resolved rate constants. Multiple-structure anharmonicity, torsional-potential anharmonicity, and high-frequency-mode vibrational anharmonicity are all included in the rate computations, and torsional anharmonicity effects on the density of states are investigated. Branching fractions, which are both temperature- and pressure-dependent (and for which only limited data is available from experiment), are predicted as a function of pressure.

  11. Overall adsorption rate of metronidazole, dimetridazole and diatrizoate on activated carbons prepared from coffee residues and almond shells.

    PubMed

    Flores-Cano, J V; Sánchez-Polo, M; Messoud, J; Velo-Gala, I; Ocampo-Pérez, R; Rivera-Utrilla, J

    2016-03-15

    This study analyzed the overall adsorption rate of metronidazole, dimetridazole, and diatrizoate on activated carbons prepared from coffee residues and almond shells. It was also elucidated whether the overall adsorption rate was controlled by reaction on the adsorbent surface or by intraparticle diffusion. Experimental data of the pollutant concentration decay curves as a function of contact time were interpreted by kinetics (first- and second-order) and diffusion models, considering external mass transfer, surface and/or pore volume diffusion, and adsorption on an active site. The experimental data were better interpreted by a first-order than second-order kinetic model, and the first-order adsorption rate constant varied linearly with respect to the surface area and total pore volume of the adsorbents. According to the diffusion model, the overall adsorption rate is governed by intraparticle diffusion, and surface diffusion is the main mechanism controlling the intraparticle diffusion, representing >90% of total intraparticle diffusion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Investigation of the Maillard Reaction between Polysaccharides and Proteins from Longan Pulp and the Improvement in Activities.

    PubMed

    Han, Miao-Miao; Yi, Yang; Wang, Hong-Xun; Huang, Fei

    2017-06-05

    The purpose of this study was to investigate the Maillard reaction between polysaccharides and proteins from longan pulp and the effects of reaction on their in vitro activities. The polysaccharide-protein mixtures of fresh longan pulp (LPPMs) were co-prepared by an alkali extraction-acid precipitation method. They were then dry-heated under controlled conditions for monitoring the characterization of the Maillard reaction by the measurement of the free amino group content, ultraviolet-visible spectrum, Fourier transform infrared spectrum and molecular weight distribution. All the physicochemical analyses indicated the development of the Maillard reaction between polysaccharides and proteins. The in vitro activity evaluation indicated that the Maillard reaction could effectively enhance the antioxidant, antitumor and immunostimulating activities of LPPMs. The enhancement of 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity and ferric reducing antioxidant power displayed both a positive correlation with the reaction time ( p < 0.05). LPPMs dry-heated for three days obtained relatively strong inhibitory activity against HepG2 cells and SGC7901 cells, as well as strong immunostimulating effects on the nitric oxide production and tumor necrosis factor α secretion of macrophages. Maillard-type intermacromolecular interaction is suggested to be an effective and controllable method for improving the functional activities of polysaccharides and proteins from longan pulp.

  13. Enhanced reaction kinetics in biological cells

    NASA Astrophysics Data System (ADS)

    Loverdo, C.; Bénichou, O.; Moreau, M.; Voituriez, R.

    2008-02-01

    The cell cytoskeleton is a striking example of an `active' medium driven out-of-equilibrium by ATP hydrolysis. Such activity has been shown to have a spectacular impact on the mechanical and rheological properties of the cellular medium, as well as on its transport properties: a generic tracer particle freely diffuses as in a standard equilibrium medium, but also intermittently binds with random interaction times to motor proteins, which perform active ballistic excursions along cytoskeletal filaments. Here, we propose an analytical model of transport-limited reactions in active media, and show quantitatively how active transport can enhance reactivity for large enough tracers such as vesicles. We derive analytically the average interaction time with motor proteins that optimizes the reaction rate, and reveal remarkable universal features of the optimal configuration. We discuss why active transport may be beneficial in various biological examples: cell cytoskeleton, membranes and lamellipodia, and tubular structures such as axons.

  14. Estimated congener specific gas-phase atmospheric behavior and fractionation of perfluoroalkyl compounds: rates of reaction with atmospheric oxidants, air-water partitioning, and wet/dry deposition lifetimes.

    PubMed

    Rayne, Sierra; Forest, Kaya; Friesen, Ken J

    2009-08-01

    A quantitative structure-activity model has been validated for estimating congener specific gas-phase hydroxyl radical reaction rates for perfluoroalkyl sulfonic acids (PFSAs), carboxylic acids (PFCAs), aldehydes (PFAls) and dihydrates, fluorotelomer olefins (FTOls), alcohols (FTOHs), aldehydes (FTAls), and acids (FTAcs), and sulfonamides (SAs), sulfonamidoethanols (SEs), and sulfonamido carboxylic acids (SAAs), and their alkylated derivatives based on calculated semi-empirical PM6 method ionization potentials. Corresponding gas-phase reaction rates with nitrate radicals and ozone have also been estimated using the computationally derived ionization potentials. Henry's law constants for these classes of perfluorinated compounds also appear to be reasonably approximated by the SPARC software program, thereby allowing estimation of wet and dry atmospheric deposition rates. Both congener specific gas-phase atmospheric and air-water interface fractionation of these compounds is expected, complicating current source apportionment perspectives and necessitating integration of such differential partitioning influences into future multimedia models. The findings will allow development and refinement of more accurate and detailed local through global scale atmospheric models for the atmospheric fate of perfluoroalkyl compounds.

  15. The role of reaction affinity and secondary minerals in regulating chemical weathering rates at the Santa Cruz Soil Chronosequence, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maher, K.; Steefel, C. I.; White, A.F.

    2009-02-25

    In order to explore the reasons for the apparent discrepancy between laboratory and field weathering rates and to determine the extent to which weathering rates are controlled by the approach to thermodynamic equilibrium, secondary mineral precipitation and flow rates, a multicomponent reactive transport model (CrunchFlow) was used to interpret soil profile development and mineral precipitation and dissolution rates at the 226 ka marine terrace chronosequence near Santa Cruz, CA. Aqueous compositions, fluid chemistry, transport, and mineral abundances are well characterized (White et al., 2008, GCA) and were used to constrain the reaction rates for the weathering and precipitating minerals inmore » the reactive transport modeling. When primary mineral weathering rates are calculated with either of two experimentally determined rate constants, the nonlinear, parallel rate law formulation of Hellmann and Tisser and [2006] or the aluminum inhibition model proposed by Oelkers et al. [1994], modeling results are consistent with field-scale observations when independently constrained clay precipitation rates are accounted for. Experimental and field rates, therefore, can be reconciled at the Santa Cruz site. Observed maximum clay abundances in the argillic horizons occur at the depth and time where the reaction fronts of the primary minerals overlap. The modeling indicates that the argillic horizon at Santa Cruz can be explained almost entirely by weathering of primary minerals and in situ clay precipitation accompanied by undersaturation of kaolinite at the top of the profile. The rate constant for kaolinite precipitation was also determined based on model simulations of mineral abundances and dissolved Al, SiO{sub 2}(aq) and pH in pore waters. Changes in the rate of kaolinite precipitation or the flow rate do not affect the gradient of the primary mineral weathering profiles, but instead control the rate of propagation of the primary mineral weathering fronts and

  16. Immediate reactions to iodinated contrast media.

    PubMed

    Morales-Cabeza, Cristina; Roa-Medellín, Dasha; Torrado, Inés; De Barrio, Manuel; Fernández-Álvarez, Carmen; Montes-Aceñero, Juan Francisco; De La Riva, Inmaculada; Prieto-García, Alicia

    2017-12-01

    Immediate hypersensitivity reactions (IHRs) to iodinated contrast media (ICMs) remain a common clinical concern. Positive skin test and basophil activation test results suggest a specific IgE-mediated mechanism in some cases. Skin test and controlled challenge test (CCT) are useful to manage these patients. To study clinical and allergologic features of IHRs to ICMs in a Spanish tertiary hospital during a 7-year period. Demographic and clinical data concerning the reaction were recorded. Patients treated at the Allergy Department of Hospital General Universitario Gregorio Marañón, Madrid, Spain, underwent skin tests. In those with positive results, CCTs with an alternative skin-test-negative ICM was performed. Global reaction rate was calculated and compared for each ICM. A total of 342 reactions occurred in 329 patients. Cutaneous symptoms were the most common (87.7%). A total of 196 patients underwent an allergy workup, 15 (7.6%) of whom had positive skin test results. Reactions were more severe in patients with positive vs negative skin test results (grade 1, 46.7% vs 73.6%; grade 2, 33.3% vs 20.9%; grade 3, 20% vs 5.46%; P < .05). Three patients had cross-reactivity to 3 ICMs, all including ioversol and iomeprol. Six patients allergic to iopamidol tolerated ioversol and 1 tolerated iomeprol. Four patients allergic to ioversol and 1 allergic to iomeprol tolerated iopamidol. The global reaction rate was 0.2%, differing for each ICM (iopamidol, 0.14%; ioversol, 0.2%; and iomeprol, 0.4%; P < .001). Positive skin test results were found in a low percentage of patients in whom skin test-based CCT identified an alternative non-cross-reactive ICM. Low-grade cross-reactivity was found, especially between iopamidol and ioversol. Reactions were more severe in patients with positive skin test results. The reaction rate was greater for iomeprol compared with iopamidol (reaction rate, 2.8%) and ioversol (reaction rate, 2%). This study identified a possible underlying

  17. Measurements of the O+ plus N2 and O+ plus O2 reaction rates from 300 to 900 K

    NASA Technical Reports Server (NTRS)

    Chen, A.; Johnsen, R.; Biondi, M. A.

    1977-01-01

    Rate coefficients for the O(+) + N2 atom transfer and O(+) + O2 charge transfer reactions are determined at thermal energies between 300 K and 900 K difference in a heated drift tube mass spectrometer apparatus. At 300 K the values K(O(+) + N2) = (1.2 plus or minus 0.1) x 10 to the negative 12 power cubic cm/sec and k(O(+) + O2) = (2.1 plus or minus 0.2) x 10 to the negative 11 power cubic cm/sec were obtained, with a 50% difference decrease in the reaction rates upon heating to 700 K. These results are in good agreement with heated flowing afterglow results, but the O(+) + O2 thermal rate coefficients are systematically lower than equivalent Maxwellian rates inferred by conversion of nonthermal drift tube and flow drift data.

  18. 31Cl beta decay and the 30P31S reaction rate in nova nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Bennett, Michael; Wrede, C.; Brown, B. A.; Liddick, S. N.; Pérez-Loureiro, D.; NSCL e12028 Collaboration

    2016-03-01

    The 30P31S reaction rate is critical for modeling the final isotopic abundances of ONe nova nucleosynthesis, identifying the origin of presolar nova grains, and calibrating proposed nova thermometers. Unfortunately, this rate is essentially experimentally unconstrained because the strengths of key 31S proton capture resonances are not known, due to uncertainties in their spins and parities. Using a 31Cl beam produced at the National Superconducting Cyclotron Laboratory, we have populated several 31S states for study via beta decay and devised a new decay scheme which includes updated beta feedings and gamma branchings as well as multiple states previously unobserved in 31Cl beta decay. Results of this study, including the unambiguous identification due to isospin mixing of a new l = 0 , Jπ = 3 /2+ 31S resonance directly in the middle of the Gamow Window, will be presented, and significance to the evaluation of the 30P31S reaction rate will be discussed. Work supported by U.S. Natl. Sci. Foundation (Grants No. PHY-1102511, PHY-1404442, PHY-1419765, and PHY-1431052); U.S. Dept. of Energy, Natl. Nucl. Security Administration (Award No. DE-NA0000979); Nat. Sci. and Eng. Research Council of Canada.

  19. Very Tiny Rocks: Site-Specific, Size-Dependent Reaction Kinetics at Nanoparticle-Water Interfaces

    NASA Astrophysics Data System (ADS)

    Rustad, J. R.

    2008-12-01

    One of the most fundamental challenges in geochemistry is to be able to understand the rates and mechanisms of elementary reactions that describe chemical processes occurring at mineral-water interfaces. One of the reasons for the primitive conceptual state of reaction kinetics in solid earth geochemistry is that it is very difficult to identify defensible elementary reactions where theoretical predictions can be made and the results can tested experimentally at the same length and time scale of the prediction. For example, the most fundamental predictor of complexation kinetics in aqueous solution is the characteristic water exchange rate, which are well known for the aquo ions and vary by 20 orders of magnitude even for simple trivalent ions. In contrast, for interfacial reactions, it was not even known whether water exchange rates were faster or slower than equivalent metal sites in solution, prohibiting any quantitive understanding of mineral reaction kinetics at the molecular level. Recent advances in synthesis and characterization of materials at nanometer length scales has been able to bridge the gap in scale, and nanometer-sized minerals have given us our first quantitative understanding of elementary reaction rates for fundamental processes involving water and hydroxide exchange reactions. I describe the results of molecular dynamics calculation and experimental measurement of the rates of water, hydroxide, and proton exchange reactions on nanoparticle surfaces. The calculations already show that transition state theory is completely inadequate to understand the rates of even the simplest elementary reactions. Furthermore, the mechanistic implications of rate parameters such as activation volume and activation enthalpy may be different in moving from aquo ions to interfaces. Is a molecular understanding of geochemical processes really needed? One might have asked a biologist at the turn of the century whether studying the structure of proteins would ever

  20. First measurement of the 34S(p ,γ )35Cl reaction rate through indirect methods for presolar nova grains

    NASA Astrophysics Data System (ADS)

    Gillespie, S. A.; Parikh, A.; Barton, C. J.; Faestermann, T.; José, J.; Hertenberger, R.; Wirth, H.-F.; de Séréville, N.; Riley, J. E.; Williams, M.

    2017-08-01

    Sulphur isotopic ratio measurements may help to establish the astrophysical sites in which certain presolar grains were formed. Nova model predictions of the 34S/32S ratio are, however, unreliable due to the lack of an experimental 34S(p ,γ )35Cl reaction rate. To this end, we have measured the 34S(3He,d )35Cl reaction at 20 MeV using a high resolution quadrupole-dipole-dipole-dipole magnetic spectrograph. Twenty-two levels over 6.2 MeV reaction rate has been determined using a Monte Carlo method. Hydrodynamic nova model calculations have been performed using this new reaction rate. These models show that remaining uncertainties in the 34S(p ,γ ) rate affect nucleosynthesis predictions by less than a factor of 1.4, and predict a 34S/32S isotopic ratio of 0.014-0.017. Since recent type II supernova models predict 34S/32S=0.026 -0.053 , the 34S/32S isotopic ratio may be used, in conjunction with other isotopic signatures, to distinguish presolar grains from oxygen-neon nova and type II supernova origin. Our results address a key nuclear physics uncertainty on which recent considerations discounting the nova origin of several grains depend.

  1. Kinetic and Mechanistic Study of the pH-Dependent Activation (Epoxidation) of Prodrug Treosulfan Including the Reaction Inhibition in a Borate Buffer.

    PubMed

    Romański, Michał; Ratajczak, Whitney; Główka, Franciszek

    2017-07-01

    A prodrug treosulfan (T) undergoes a pH-dependent activation to epoxide derivatives. The process seems to involve an intramolecular Williamson reaction (IWR) but clear kinetic evidence is lacking. Moreover, a cis-diol system present in the T structure is expected to promote complexation with boric acid. As a result, the prodrug epoxidation would be inhibited; however, this phenomenon has not been investigated. In this article, the effect of pH on the kinetics of T conversion to its monoepoxide was studied from a mechanistic point of view. Also, the influence of boric acid on the reaction kinetics was examined. The rate constants observed for the activation of T (k obs ) in acetate, phosphate, and carbonate buffers satisfied the equation logk obs  = -7.48 + 0.96 pH. The reaction was inhibited in the excess of boric acid over T, and the k obs decreased with increasing borate buffer concentration. The experimental results were consistent with the inhibition model that included the formation of a tetrahedral, anionic T-boric acid monoester. To conclude, in nonborate buffers, the T activation to (2S,3S)-1,2-epoxybutane-3,4-diol 4-methanesulfonate follows IWR mechanism. A borate buffer changes the reaction kinetics and complicates kinetic analysis. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  2. Rate coefficients for the reaction of formaldehyde with HO2 radicals from fluorescence spectroscopy of HOCH2OO radicals

    NASA Astrophysics Data System (ADS)

    Bunkan, Arne; Amédro, Damien; Crowley, John

    2017-04-01

    The reaction of formaldehyde with HO2 radicals constitutes a minor, but significant sink of formaldehyde in the troposphere as well as a possible interference in other formaldehyde photooxidation experiments. HCHO + HO2 ⇌ HOCH2OO (1) Due to the difficulty of simultaneously monitoring the reactant and product concentrations while preventing interfering secondary chemistry, there is a considerable uncertainty in the literature values for the reaction rate coefficients. We have used two photon, excited fragment spectroscopy (TPEFS), originally developed for monitoring HNO3 formation in kinetic experiments, to monitor the formation of the HOCH2OO radical. Dispersed and single wavelength fluorescence emission following the 193 nm photolysis of HOCH2OO have been recorded and analysed. Characterisation of the method is presented along with rate coefficients for the reaction of HCHO with HO2 radicals at tropospheric temperatures.

  3. Density functional theory study of hydrogen atom abstraction from a series of para-substituted phenols: why is the Hammett σ(p)+ constant able to represent radical reaction rates?

    PubMed

    Yoshida, Tatsusada; Hirozumi, Koji; Harada, Masataka; Hitaoka, Seiji; Chuman, Hiroshi

    2011-06-03

    The rate of hydrogen atom abstraction from phenolic compounds by a radical is known to be often linear with the Hammett substitution constant σ(+), defined using the S(N)1 solvolysis rates of substituted cumyl chlorides. Nevertheless, a physicochemical reason for the above "empirical fact" has not been fully revealed. The transition states of complexes between the 2,2-diphenyl-1-picrylhydrazyl radical (dpph·) and a series of para-substituted phenols were determined by DFT (Density Functional Theory) calculations, and then the activation energy as well as the homolytic bond dissociation energy of the O-H bond and charge distribution in the transition state were calculated. The heterolytic bond dissociation energy of the C-Cl bond and charge distribution in the corresponding para-substituted cumyl chlorides were calculated in parallel. Excellent correlations among σ(+), charge distribution, and activation and bond dissociation energies revealed quantitatively that there is a strong similarity between the two reactions, showing that the electron-deficiency of the π-electron system conjugated with a substituent plays a crucial role in determining rates of the two reactions. The results provide a new insight into and physicochemical understanding of σ(+) in the hydrogen abstraction from substituted phenols by a radical.

  4. A Chemical Activation Study of the Unimolecular Reactions of CD3CD2CHCl2 and CHCl2CHCl2 with Analysis of the 1,1-HCl Elimination Pathway.

    PubMed

    Larkin, Allie C; Nestler, Matthew J; Smith, Caleb A; Heard, George L; Setser, Donald W; Holmes, Bert E

    2016-10-03

    Chemically activated C2D5CHCl2 molecules were generated with 88 kcal mol-1 of vibrational energy by the recombination of C2D5 and CHCl2 radicals in a room temperature bath gas. The competing 2,1-DCl and 1,1-HCl unimolecular reactions were identified by the observation of the CD3CD=CHCl and CD3CD=CDCl products. The initial CD3CD2C-Cl carbene product from 1,1-HCl elimination rearranges to CD3CD=CDCl under the conditions of the experiments. The experimental rate constants were 2.7 x107 and 0.47 x107 s-1 for 2,1-DCl and 1,1-HCl elimination reactions, respectively, which corresponds to branching fractions of 0.84 and 0.16. The experimental rate constants were compared to calculated statistical rate constants to assign threshold energies of 54 and ≈ 66 kcal mol-1 for the 1,2-DCl and 1,1-HCl reactions, respectively. The statistical rate constants were obtained from models developed from electronic-structure calculations for the molecule and its transition states. The rate constant (5.3 x 107 s-1) for the unimolecular decomposition of CHCl2CHCl2 molecules formed with 82 kcal mol-1 of vibrational energy by the recombination of CHCl2 radicals also is reported. Based upon the magnitude of the calculated rate constant, 1,1-HCl elimination must contribute less than 15% to the reaction; 1,2-HCl elimination is the major reaction and the threshold energy is 59 kcal mol-1. Calculations also were done to analyze previously published rate constants for chemically activated CD2Cl-CHCl2 molecules with 86 kcal mol-1 of energy in order to obtain a better overall description of the nature of the 1,1-HCl pathway for 1,1-dichloroalkanes. The interplay of the threshold energies for the 2,1-HCl and 1,1-HCl reactions and the available energy determines the product branching fractions for individual molecules. The unusual nature of the transition state for 1,1-HCl elimination is discussed.

  5. The role of phosphate in a multistep enzymatic reaction: reactions of the substrate and intermediate in pieces.

    PubMed

    Kholodar, Svetlana A; Allen, C Leigh; Gulick, Andrew M; Murkin, Andrew S

    2015-02-25

    Several mechanistically unrelated enzymes utilize the binding energy of their substrate's nonreacting phosphoryl group to accelerate catalysis. Evidence for the involvement of the phosphodianion in transition state formation has come from reactions of the substrate in pieces, in which reaction of a truncated substrate lacking its phosphorylmethyl group is activated by inorganic phosphite. What has remained unknown until now is how the phosphodianion group influences the reaction energetics at different points along the reaction coordinate. 1-Deoxy-D-xylulose-5-phosphate (DXP) reductoisomerase (DXR), which catalyzes the isomerization of DXP to 2-C-methyl-D-erythrose 4-phosphate (MEsP) and subsequent NADPH-dependent reduction, presents a unique opportunity to address this concern. Previously, we have reported the effect of covalently linked phosphate on the energetics of DXP turnover. Through the use of chemically synthesized MEsP and its phosphate-truncated analogue, 2-C-methyl-D-glyceraldehyde, the current study revealed a loss of 6.1 kcal/mol of kinetic barrier stabilization upon truncation, of which 4.4 kcal/mol was regained in the presence of phosphite dianion. The activating effect of phosphite was accompanied by apparent tightening of its interactions within the active site at the intermediate stage of the reaction, suggesting a role of the phosphodianion in disfavoring intermediate release and in modulation of the on-enzyme isomerization equilibrium. The results of kinetic isotope effect and structural studies indicate rate limitation by physical steps when the covalent linkage is severed. These striking differences in the energetics of the natural reaction and the reactions in pieces provide a deeper insight into the contribution of enzyme-phosphodianion interactions to the reaction coordinate.

  6. Free energy landscape for glucose condensation reactions.

    PubMed

    Liu, Dajiang; Nimlos, Mark R; Johnson, David K; Himmel, Michael E; Qian, Xianghong

    2010-12-16

    Ab initio molecular dynamics and metadynamics simulations were used to determine the free energy surfaces (FES) for the acid catalyzed β-D-glucose condensation reaction. Protonation of C1-OH on the β-D-glucose, breakage of the C1-O1 bond, and the formation of C1 carbocation is the rate-limiting step. The effects of solvent on the reaction were investigated by determining the FES both in the absence and presence of solvent water. It was found that water played a critical role in these reactions. The reaction barrier for the proton-catalyzed glucose condensation reaction is solvent induced because of proton's high affinity for water. During these simulations, β-D-glucose conversion to α-d-glucose process via the C1 carbocation was also observed. The associated free energy change and activation barrier for this reaction were determined.

  7. [Inhibition rate of gamma-aminolevulinic acid dehydratase activity in erythrocytes as a reliable index for individual workers of low lead exposure].

    PubMed

    Hirano, H; Omichi, M; Ohishi, H; Ishikawa, K; Hirashima, N

    1983-09-01

    As the delta-aminolevulinic acid dehydratase (ALAD) activity in erythrocytes is decreased by lead exposure, we considered that a net reduction of ALAD activity by lead in blood should be the difference between the activity fully activated with zinc (Zn2+) and dithiothreitol (DTT) and that without activation. The optimal condition of activation of ALAD was found by addition of 0.25 mM of Zn2+ and 10 mM of DTT in the reaction mixture. Judging from our previous results that the amount of inhibition of ALAD activity can be represented as the rate of inhibition and is closely correlated with the dose of lead administered to rabbits, the inhibition rate of ALAD activity and lead content in blood (Pb-B) of lead workers were measured. The scatter diagram obtained from the inhibition rate and lead content in blood has two groups being divided at 50 micrograms/ml of Pb-B. In one group less than 50 micrograms/100 ml of Pb-B, the inhibition rate has been closely related to Pb-B., the regression equation being Y = 1.82 X + 11.7, and the correlation coefficient + 0.926. In another group more than 50 micrograms/100 ml of Pb-B the inhibition rate remained constant at the 90% level. Measurement of the inhibition rate suggests to have practical validity for monitoring lead exposure in workers, and by means of a nomograph lead content in blood can be estimated from the inhibition rate.

  8. Comparison of Nernst-Planck and reaction rate models for multiply occupied channels.

    PubMed Central

    Levitt, D G

    1982-01-01

    The Nernst-Planck continuum equation for a channel that can be occupied by at most two ions is solved for two different physical cases. The first case is for the assumption that the water and ion cannot get around each other anywhere in the channel, so that if there are two ions in the channel the distance between them is fixed by the number of water molecules between them. The second case is for the assumption that there are regions at he ends of the channel where the ions and water can get around each other. For these two cases, the validity of the simple two-site reaction-rate approximation when there is a continuously varying central energy barrier was evaluated by comparing it with the exact Nernst-Planck solution. For the first continuum case, the kinetics for the continuum and reaction-rate models are nearly identical. For the second case, the agreement depends on the strength of the ion-ion interaction energy. For a low interaction energy (large channel diameter) a high ion concentrations, there is a large difference in the flux as a function of voltage for the two models-with the continuum flux becoming more than four times larger at 250 mV. Simple analytical expressions are derived for the two-ion continuum channel for the case where the ends are in equilibrium with the bulk solution and for the case where ion mobility becomes zero when there are two ions in the channel. The implications of these results for biological channels are discussed. PMID:6280783

  9. Electron-transfer reactions of cobalt(III) complexes. 1. The kinetic investigation of the reduction of various surfactant cobalt(III) complexes by iron(II) in surface active ionic liquids

    NASA Astrophysics Data System (ADS)

    Nagaraj, Karuppiah; Senthil Murugan, Krishnan; Thangamuniyandi, Pilavadi; Sakthinathan, Subramanian

    2015-05-01

    The kinetics of outer sphere electron transfer reaction of surfactant cobalt(III) complex ions, cis-[Co(en)2(C12H25NH2)2]3+ (1), cis-[Co(dp)2(C12H25NH2)2]3+ (2), cis-[Co(trien)(C12H25NH2)2]3+ (3), cis-[Co(bpy)2(C12H25NH2)2]3+ (4) and cis-[Co(phen)2(C12H25NH2)2]3+ (5) (en: ethylenediamine, dp: diaminopropane, trien : triethylenetetramine, bpy: 2,2‧-bipyridyl, phen: 1,10-phenanthroline and C12H25NH2 : dodecylamine) have been interrogated by Fe2+ ion in ionic liquid (1-butyl-3-methylimidazoliumbromide) medium at different temperatures (298, 303, 308, 313, 318 and 323 K) by the spectrophotometry method under pseudo first order conditions using an excess of the reductant. Experimentally the reactions were found to be of second order and the electron transfer as outer sphere. The second order rate constant for the electron transfer reaction in ionic liquids was found to increase with increase in the concentration of all these surfactant cobalt(III) complexes. Among these complexes (from en to phen ligand), complex containing the phenanthroline ligand rate is higher compared to other complexes. By assuming the outer sphere mechanism, the results have been explained based on the presence of aggregated structures containing cobalt(III) complexes at the surface of ionic liquids formed by the surfactant cobalt(III) complexes in the reaction medium. The activation parameters (enthalpy of activation ΔH‡ and entropy of activation ΔS‡) of the reaction have been calculated which substantiate the kinetics of the reaction.

  10. Kinetics of the Reaction Between Alcohols and Isocyanates Catalyzed by Ferric Acetylacetonate

    NASA Technical Reports Server (NTRS)

    Schieler, Leroy

    1961-01-01

    The rate and temperature dependence of reaction for the ferric acetylacetonate catalyzed reaction between a-naphthyl, ortho-tolyl, and para-tolyl isocyanates and n-butyl alcohol are investigated. The effect of substituents on the reactivity of isocyanate and hydroxyl group are reported and for substituted isocyanates are correlated by means of the Hammett equation. Several metal chelates were studied and their catalytic activity was compared to that of ferric acetylacetonate. All rate data are interpreted in terms of a mechanism involving simultaneous second-order uncatalyzed and catalyzed reactions between alcohol and isocyanate.

  11. Determination of redox reaction rates and orders by in situ liquid cell electron microscopy of Pd and Au solution growth.

    PubMed

    Sutter, Eli A; Sutter, Peter W

    2014-12-03

    In-situ liquid cell transmission and scanning transmission electron microscopy (TEM/STEM) experiments are important, as they provide direct insight into processes in liquids, such as solution growth of nanoparticles, among others. In liquid cell TEM/STEM redox reaction experiments, the hydrated electrons e(-)aq created by the electron beam are responsible for the reduction of metal-ion complexes. Here we investigate the rate equation of redox reactions involving reduction by e(-)aq generated by the electron beam during in situ liquid TEM/STEM. Specifically we consider the growth of Pd on Au seeds in aqueous solutions containing Pd-chloro complexes. From the quantification of the rate of Pd deposition at different electron beam currents and as a function of distance from a stationary, nanometer-sized exciting beam, we determine that the reaction is first order with respect to the concentration of hydrated electrons, [e(-)aq]. By comparing Pd- and Au-deposition, we further demonstrate that measurements of the local deposition rate on nanoparticles in the solution via real-time imaging can be used to measure not only [e(-)aq] but also the rate of reduction of a metal-ion complex to zerovalent metal atoms in solution.

  12. Applying constraints on model-based methods: Estimation of rate constants in a second order consecutive reaction

    NASA Astrophysics Data System (ADS)

    Kompany-Zareh, Mohsen; Khoshkam, Maryam

    2013-02-01

    This paper describes estimation of reaction rate constants and pure ultraviolet/visible (UV-vis) spectra of the component involved in a second order consecutive reaction between Ortho-Amino benzoeic acid (o-ABA) and Diazoniom ions (DIAZO), with one intermediate. In the described system, o-ABA was not absorbing in the visible region of interest and thus, closure rank deficiency problem did not exist. Concentration profiles were determined by solving differential equations of the corresponding kinetic model. In that sense, three types of model-based procedures were applied to estimate the rate constants of the kinetic system, according to Levenberg/Marquardt (NGL/M) algorithm. Original data-based, Score-based and concentration-based objective functions were included in these nonlinear fitting procedures. Results showed that when there is error in initial concentrations, accuracy of estimated rate constants strongly depends on the type of applied objective function in fitting procedure. Moreover, flexibility in application of different constraints and optimization of the initial concentrations estimation during the fitting procedure were investigated. Results showed a considerable decrease in ambiguity of obtained parameters by applying appropriate constraints and adjustable initial concentrations of reagents.

  13. Adrenergic System Activation Mediates Changes in Cardiovascular and Psychomotoric Reactions in Young Individuals after Red Bull© Energy Drink Consumption

    PubMed Central

    Cavka, Ana; Stupin, Marko; Panduric, Ana; Plazibat, Ana; Cosic, Anita; Rasic, Lidija; Debeljak, Zeljko; Martinovic, Goran; Drenjancevic, Ines

    2015-01-01

    Objectives. To assess the effect of Red Bull© on (1) blood glucose and catecholamine levels, (2) cardiovascular and respiratory function changes before, during, and after exercise, (3) reaction time, (4) cognitive functions, and (5) response to mental stress test and emotions in young healthy individuals (N=38). Methods. Heart rate (HR) and arterial blood pressure (ABP), blood glucose, adrenaline, and noradrenalin plasma levels were measured before and after Red Bull© intake. Participants were subjected to 4 different study protocols by randomized order, before and 30 minutes after consumption of 500 mL of Red Bull©. Results. Mean ABP and HR were significantly increased at rest after Red Bull© intake. Blood glucose level and plasma catecholamine levels significantly increased after Red Bull© consumption. Heart rate, respiration rate, and respiratory flow rate were significantly increased during exercise after Red Bull© consumption compared to control condition. Intake of Red Bull© significantly improved reaction time, performance in immediate memory test, verbal fluency, and subject's attention as well as performance in mental stress test. Conclusion. This study demonstrated that Red Bull© has beneficial effect on some cognitive functions and effect on cardiovascular and respiratory system at rest and during exercise by increasing activity of the sympathetic nervous system. PMID:26124829

  14. Sleeve reaction chamber system

    DOEpatents

    Northrup, M Allen [Berkeley, CA; Beeman, Barton V [San Mateo, CA; Benett, William J [Livermore, CA; Hadley, Dean R [Manteca, CA; Landre, Phoebe [Livermore, CA; Lehew, Stacy L [Livermore, CA; Krulevitch, Peter A [Pleasanton, CA

    2009-08-25

    A chemical reaction chamber system that combines devices such as doped polysilicon for heating, bulk silicon for convective cooling, and thermoelectric (TE) coolers to augment the heating and cooling rates of the reaction chamber or chambers. In addition the system includes non-silicon-based reaction chambers such as any high thermal conductivity material used in combination with a thermoelectric cooling mechanism (i.e., Peltier device). The heat contained in the thermally conductive part of the system can be used/reused to heat the device, thereby conserving energy and expediting the heating/cooling rates. The system combines a micromachined silicon reaction chamber, for example, with an additional module/device for augmented heating/cooling using the Peltier effect. This additional module is particularly useful in extreme environments (very hot or extremely cold) where augmented heating/cooling would be useful to speed up the thermal cycling rates. The chemical reaction chamber system has various applications for synthesis or processing of organic, inorganic, or biochemical reactions, including the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction.

  15. On rates and mechanisms of OH and O3 reactions with isoprene-derived hydroxy nitrates.

    PubMed

    Lee, Lance; Teng, Alex P; Wennberg, Paul O; Crounse, John D; Cohen, Ronald C

    2014-03-06

    Eight distinct hydroxy nitrates are stable products of the first step in the atmospheric oxidation of isoprene by OH. The subsequent chemical fate of these molecules affects global and regional production of ozone and aerosol as well as the location of nitrogen deposition. We synthesized and purified 3 of the 8 isoprene hydroxy nitrate isomers: (E/Z)-2-methyl-4-nitrooxybut-2-ene-1-ol and 3-methyl-2-nitrooxybut-3-ene-1-ol. Oxidation of these molecules by OH and ozone was studied using both chemical ionization mass spectrometry and thermo-dissociation laser induced fluorescence. The OH reaction rate constants at 300 K measured relative to propene at 745 Torr are (1.1 ± 0.2) × 10(-10) cm(3) molecule(-1) s(-1) for both the E and Z isomers and (4.2 ± 0.7) × 10(-11) cm(3) molecule(-1) s(-1) for the third isomer. The ozone reaction rate constants for (E/Z)-2-methyl-4-nitrooxybut-2-ene-1-ol are (2.7 ± 0.5) × 10(-17) and (2.9 ± 0.5) × 10(-17) cm(3) molecule(-1) s(-1), respectively. 3-Methyl-2-nitrooxybut-3-ene-1-ol reacts with ozone very slowly, within the range of (2.5-5) × 10(-19) cm(3) molecule(-1) s(-1). Reaction pathways, product yields, and implications for atmospheric chemistry are discussed. A condensed mechanism suitable for use in atmospheric chemistry models is presented.

  16. Oxygen Reduction Reaction Activity of Platinum Thin Films with Different Densities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ergul, Busra; Begum, Mahbuba; Kariuki, Nancy

    Platinum thin films with different densities were grown on glassy carbon electrodes by high pressure sputtering deposition and evaluated as oxygen reduction reaction catalysts for polymer electrolyte fuel cells using cyclic voltammetry and rotating disk electrode techniques in aqueous perchloric acid electrolyte. The electrochemically active surface area, ORR mass activity (MA) and specific activity (SA) of the thin film electrodes were obtained. MA and SA were found to be higher for low-density films than for high-density film.

  17. Geraniol (2,6-dimethyl-2,6-octadien-8-ol) reactions with ozone and OH radical: Rate constants and gas-phase products

    NASA Astrophysics Data System (ADS)

    Forester, Crystal D.; Ham, Jason E.; Wells, J. R.

    The bimolecular rate constants, kOH+geraniol, (231±58)×10 -12 cm 3 molecule -1 s -1 and k+geraniol, (9.3±2.3)×10 -16 cm 3 molecule -1 s -1, were measured using the relative rate technique for the reaction of the hydroxyl radical (OH) and ozone (O 3) with 2,6-dimethyl-2,6-octadien-8-ol (geraniol) at (297±3) K and 1 atmosphere total pressure. To more clearly define part of geraniol's indoor environment degradation mechanism, the products of the geraniol+OH and geraniol+O 3 reactions were also investigated. The identified geraniol+OH and geraniol+O 3 reaction products were: acetone, hydroxyacetaldehyde (glycolaldehyde, HC( dbnd O)CH 2OH), ethanedial (glyoxal, HC( dbnd O)C( dbnd O)H), and 2-oxopropanal (methylglyoxal, CH 3C( dbnd O)C( dbnd O)H). The use of derivatizing agents O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (PFBHA) and N,O-bis(trimethylsilyl) trifluoroacetamide (BSTFA) were used to propose 4-oxopentanal as the other major geraniol+OH and geraniol+O 3 reaction product. The elucidation of this other reaction product was facilitated by mass spectrometry of the derivatized reaction products coupled with plausible geraniol+OH and geraniol+O 3 reaction mechanisms based on previously published volatile organic compound+OH and volatile organic compound+O 3 gas-phase reaction mechanisms.

  18. Response to the Comment on Paper 'Water vapor Enhancement of Rates of Peroxy Radical Reactions', Int. J. Chem. Kinetics, 47, 395, 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumbhani, Sambhav R.; Cline, Taylor S.; Killian, Marie C.

    Comments provided here aid in understanding the effect of water vapor on the rate of the self-reaction of HOCH2CH2O2 recently reported by Kumbhani et al. [1] Kumbhani et al. asserts that water vapor increases the rate of the HOCH2CH2O2 self-reaction by formation of an HOCH2CH2O2-H2O complex.

  19. Atmospheric reaction of Cl + methacrolein: a theoretical study on the mechanism, and pressure- and temperature-dependent rate constants.

    PubMed

    Sun, Cuihong; Xu, Baoen; Zhang, Shaowen

    2014-05-22

    Methacrolein is a major degradation product of isoprene, the reaction of methacrolein with Cl atoms may play some roles in the degradation of isoprene where these species are relatively abundant. However, the energetics and kinetics of this reaction, which govern the reaction branching, are still not well understood so far. In the present study, two-dimensional potential energy surfaces were constructed to analyze the minimum energy path of the barrierless addition process between Cl and the C═C double bond of methacrolein, which reveals that the terminal addition intermediate is directly formed from the addition reaction. The terminal addition intermediate can further yield different products among which the reaction paths abstracting the aldehyde hydrogen atom and the methyl hydrogen atom are dominant reaction exits. The minimum reaction path for the direct aldehydic hydrogen atom abstraction is also obtained. The reaction kinetics was calculated by the variational transition state theory in conjunction with the master equation method. From the theoretical model we predicted that the overall rate constant of the Cl + methacrolein reaction at 297 K and atmospheric pressure is koverall = 2.3× 10(-10) cm(3) molecule(-1) s(-1), and the branching ratio of the aldehydic hydrogen abstraction is about 12%. The reaction is pressure dependent at P < 10 Torr with the high pressure limit at about 100 Torr. The calculated results could well account for the experimental observations.

  20. Kinetics of Al + H2O reaction: theoretical study.

    PubMed

    Sharipov, Alexander; Titova, Nataliya; Starik, Alexander

    2011-05-05

    Quantum chemical calculations were carried out to study the reaction of Al atom in the ground electronic state with H(2)O molecule. Examination of the potential energy surface revealed that the Al + H(2)O → AlO + H(2) reaction must be treated as a complex process involving two steps: Al + H(2)O → AlOH + H and AlOH + H → AlO + H(2). Activation barriers for these elementary reaction channels were calculated at B3LYP/6-311+G(3df,2p), CBS-QB3, and G3 levels of theory, and appropriate rate constants were estimated by using a canonical variational theory. Theoretical analysis exhibited that the rate constant for the Al + H(2)O → products reaction measured by McClean et al. must be associated with the Al + H(2)O → AlOH + H reaction path only. The process of direct HAlOH formation was found to be negligible at a pressure smaller than 100 atm.

  1. Mutagenicity of heated sugar-casein systems: effect of the Maillard reaction.

    PubMed

    Brands, C M; Alink, G M; van Boekel, M A; Jongen, W M

    2000-06-01

    The formation of mutagens after the heating of sugar-casein model systems at 120 degrees C was examined by the Ames test, using Salmonella typhimurium strain TA100. Several sugars (glucose, fructose, galactose, tagatose, lactose, and lactulose) were compared in their mutagenicities. Mutagenicity could be fully ascribed to Maillard reaction products and strongly varied with the kind of sugar. The differences in mutagenicity among the sugar-casein systems were caused by a difference in reaction rate and a difference in reaction mechanism. Sugars with a comparable reaction mechanism (glucose and galactose) showed a higher mutagenic activity corresponding with a higher Maillard reactivity. Disaccharides showed no mutagenic activity (lactose) or a lower mutagenic activity (lactulose) than their corresponding monosaccharides. Ketose sugars (fructose and tagatose) showed a remarkably higher mutagenicity compared with their aldose isomers (glucose and galactose), which was due to a difference in reaction mechanism.

  2. Effect of Heterogeneous Chemical Reactions on the Köhler Activation of Aqueous Organic Aerosols.

    PubMed

    Djikaev, Yuri S; Ruckenstein, Eli

    2018-05-03

    We study some thermodynamic aspects of the activation of aqueous organic aerosols into cloud droplets considering the aerosols to consist of liquid solution of water and hydrophilic and hydrophobic organic compounds, taking into account the presence of reactive species in the air. The hydrophobic (surfactant) organic molecules on the surface of such an aerosol can be processed by chemical reactions with some atmospheric species; this affects the hygroscopicity of the aerosol and hence its ability to become a cloud droplet either via nucleation or via Köhler activation. The most probable pathway of such processing involves atmospheric hydroxyl radicals that abstract hydrogen atoms from hydrophobic organic molecules located on the aerosol surface (first step), the resulting radicals being quickly oxidized by ubiquitous atmospheric oxygen molecules to produce surface-bound peroxyl radicals (second step). These two reactions play a crucial role in the enhancement of the Köhler activation of the aerosol and its evolution into a cloud droplet. Taking them and a third reaction (next in the multistep chain of relevant heterogeneous reactions) into account, one can derive an explicit expression for the free energy of formation of a four-component aqueous droplet on a ternary aqueous organic aerosol as a function of four independent variables of state of a droplet. The results of numerical calculations suggest that the formation of cloud droplets on such (aqueous hydrophilic/hydrophobic organic) aerosols is most likely to occur as a Köhler activation-like process rather than via nucleation. The model allows one to determine the threshold parameters of the system necessary for the Köhler activation of such aerosols, which are predicted to be very sensitive to the equilibrium constant of the chain of three heterogeneous reactions involved in the chemical aging of aerosols.

  3. Atmospheric chemistry of (Z)-CF3CH═CHCF3: OH radical reaction rate coefficient and global warming potential.

    PubMed

    Baasandorj, Munkhbayar; Ravishankara, A R; Burkholder, James B

    2011-09-29

    Rate coefficients, k, for the gas-phase reaction of the OH radical with (Z)-CF(3)CH═CHCF(3) (cis-1,1,1,4,4,4-hexafluoro-2-butene) were measured under pseudo-first-order conditions in OH using pulsed laser photolysis (PLP) to produce OH and laser-induced fluorescence (LIF) to detect it. Rate coefficients were measured over a range of temperatures (212-374 K) and bath gas pressures (20-200 Torr; He, N(2)) and found to be independent of pressure over this range of conditions. The rate coefficient has a non-Arrhenius behavior that is well-described by the expression k(1)(T) = (5.73 ± 0.60) × 10(-19) × T(2) × exp[(678 ± 10)/T] cm(3) molecule(-1) s(-1) where k(1)(296 K) was measured to be (4.91 ± 0.50) × 10(-13) cm(3) molecule(-1) s(-1) and the uncertainties are at the 2σ level and include estimated systematic errors. Rate coefficients for the analogous OD radical reaction were determined over a range of temperatures (262-374 K) at 100 Torr (He) to be k(2)(T) = (4.81 ± 0.20) × 10(-19) × T(2) × exp[(776 ± 15)/T], with k(2)(296 K) = (5.73 ± 0.50) × 10(-13) cm(3) molecule(-1) s(-1). OH radical rate coefficients were also measured at 296, 345, and 375 K using a relative rate technique and found to be in good agreement with the PLP-LIF results. A room-temperature rate coefficient for the O(3) + (Z)-CF(3)CH═CHCF(3) reaction was measured using an absolute method with O(3) in excess to be <6 × 10(-21) cm(3) molecule(-1) s(-1). The atmospheric lifetime of (Z)-CF(3)CH═CHCF(3) due to loss by OH reaction was estimated to be ~20 days. Infrared absorption spectra of (Z)-CF(3)CH═CHCF(3) measured in this work were used to determine a (Z)-CF(3)CH═CHCF(3) global warming potential (GWP) of ~9 for the 100 year time horizon. A comparison of the OH reactivity of (Z)-CF(3)CH═CHCF(3) with other unsaturated fluorinated compounds is presented.

  4. Constraining the astrophysical 23Mg(p, γ)24Al reaction rate using the 23Na(d,p)24Na reaction

    NASA Astrophysics Data System (ADS)

    Bennett, E. A.; Catford, W. N.; Christian, G.; Dede, S.; Hallam, S.; Lotay, G.; Ota, S.; Saastamoinen, A.; Wilkinson, R.

    2017-09-01

    The 23Mg(p, γ)24Al reaction provides an escape from the Ne-Na cycle in classical novae and is therefore important in understanding nova nucleosynthesis in the A > 20 mass range. Although several resonances may contribute to the overall rate at novae temperatures, the resonance at 475 keV is thought to be dominant. The strength of this resonance has been directly measured using a radioactive 23Mg beam impinging on a windowless H2 gas target; however, recent high-precision 24Al mass measurements have called this result into question. Here we make an indirect measurement using the 23Na(d,p)24Na reaction in inverse kinematics to study the mirror state of the 475 keV resonance in 24Na. The experiment, performed at the Texas A&M Cyclotron Institute, utilized the TIARA silicon array, four HPGe detectors, and the MDM spectrometer to measure the excited states of the 24Na nucleus. Preliminary results from the experiment will be presented along with progress from the ongoing analysis.

  5. Rate constants for the reactions of OH with CH3Cl, CH2Cl2, CHCl3, and CH3Br

    NASA Technical Reports Server (NTRS)

    Hsu, K.-J.; Demore, W. B.

    1994-01-01

    Rate constants for the reactions of OH with CH3Cl, CH2Cl2, CHCl3, and CH3Br have been measured by a relative rate technique in which the reaction rate of each compound was compared to that of HFC-152a (CH3CHF2) and (for CH2Cl2) HFC-161 (CH3CH2F). Using absolute rate constants for HFC-152a and HFC-161, which we have determined relative to those for CH4, CH3CCl3, and C2H6, temperature dependent rate constants of both compounds were derived. The derived rate constant for CH3Br is in good agreement with recent absolute measurements. However, for the chloromethanes all the rate constants are lower at atmospheric temperatures than previously reported, especially for CH2Cl2 where the present rate constant is about a factor of 1.6 below the JPL 92-20 value. The new rate constant appears to resolve a discrepancy between the observed atmospheric concentrations and those calculated from the previous rate constant and estimated release rates.

  6. Determination of the thermal rate coefficient, products, and branching ratios for the reaction of O/+/ /D-2/ with N2

    NASA Technical Reports Server (NTRS)

    Torr, D. G.; Torr, M. R.

    1980-01-01

    Atmosphere Explorer-C satellite measurements are used to determine rate coefficients (RCs) for the following reactions: O(+)(D-2) + N2 yields N2(+) + O (reaction 1), O(+)(D-2) + N2 yields O(+)(S-4) + N2 (reaction 2), and O(+)(D-2) + N2 yields NO(+) + N (reaction 3). Results show the RC for reaction 1 to be 1 (plus 1 or minus 0.5) x 10 to the -10th cu cm per sec, for reaction 2 to be 3 (plus 1 or minus 2) x 10 to the -11th cu cm per sec, and 3 to be less than 5.5 x 10 to the -11th cu cm per sec. It is also found that the reaction of O(+)(D-2) with N2 does not constitute a detectable source of NO(+) ions in the thermosphere.

  7. CONSIDERATION OF REACTION INTERMEDIATES IN STRUCTURE-ACTIVITY RELATIONSHIPS: A KEY TO UNDERSTANDING AND PREDICTION

    EPA Science Inventory

    Consideration of Reaction Intermediates in Structure- Activity Relationships: A Key to Understanding and Prediction

    A structure-activity relationship (SAR) represents an empirical means for generalizing chemical information relative to biological activity, and is frequent...

  8. Uncertainty quantification of reaction mechanisms accounting for correlations introduced by rate rules and fitted Arrhenius parameters

    DOE PAGES

    Prager, Jens; Najm, Habib N.; Sargsyan, Khachik; ...

    2013-02-23

    We study correlations among uncertain Arrhenius rate parameters in a chemical model for hydrocarbon fuel-air combustion. We consider correlations induced by the use of rate rules for modeling reaction rate constants, as well as those resulting from fitting rate expressions to empirical measurements arriving at a joint probability density for all Arrhenius parameters. We focus on homogeneous ignition in a fuel-air mixture at constant-pressure. We also outline a general methodology for this analysis using polynomial chaos and Bayesian inference methods. Finally, we examine the uncertainties in both the Arrhenius parameters and in predicted ignition time, outlining the role of correlations,more » and considering both accuracy and computational efficiency.« less

  9. Monkey primary somatosensory cortical activity during the early reaction time period differs with cues that guide movements.

    PubMed

    Liu, Yu; Denton, John M; Nelson, Randall J

    2008-05-01

    Vibration-related neurons in monkey primary somatosensory cortex (SI) discharge rhythmically when vibratory stimuli are presented. It remains unclear how functional information carried by vibratory inputs is coded in rhythmic neuronal activity. In the present study, we compared neuronal activity during wrist movements in response to two sets of cues. In the first, movements were guided by vibratory cue only (VIB trials). In the second, movements were guided by simultaneous presentation of both vibratory and visual cues (COM trials). SI neurons were recorded extracellularly during both wrist extensions and flexions. Neuronal activity during the instructed delay period (IDP) and the early reaction time period (RTP) were analyzed. A total of 96 cases from 48 neurons (each neuron contributed two cases, one each for extension and flexion) showed significant vibration entrainment during the early RTPs, as determined by circular statistics (Rayleigh test). Of these, 50 cases had cutaneous (CUTA) and 46 had deep (DEEP) receptive fields. The CUTA neurons showed lower firing rates during the IDPs and greater firing rate changes during the early RTPs when compared with the DEEP neurons. The CUTA neurons also demonstrated decreases in activity entrainment during VIB trials when compared with COM trials. For the DEEP neurons, the difference of entrainment between VIB and COM trials was not statistically significant. The results suggest that somatic vibratory input is coded by both the firing rate and the activity entrainment of the CUTA neurons in SI. The results also suggest that when vibratory inputs are required for successful task completion, the activity of the CUTA neurons increases but the entrainment degrades. The DEEP neurons may be tuned before movement initiation for processing information encoded by proprioceptive afferents.

  10. Rate Coefficients for Reactions of Ethynyl Radical (C2H) With HCN and CH3CN: Implications for the Formation of Comples Nitriles on Titan

    NASA Technical Reports Server (NTRS)

    Hoobler, Ray J.; Leone, Stephen R.

    1997-01-01

    Rate coefficients for the reactions of C2H + HCN yields products and C2H + CH3CN yields products have been measured over the temperature range 262-360 K. These experiments represent an ongoing effort to accurately measure reaction rate coefficients of the ethynyl radical, C2H, relevant to planetary atmospheres such as those of Jupiter and Saturn and its satellite Titan. Laser photolysis of C2H2 is used to produce C2H, and transient infrared laser absorption is employed to measure the decay of C2H to obtain the subsequent reaction rates in a transverse flow cell. Rate constants for the reaction C2H + HCN yields products are found to increase significantly with increasing temperature and are measured to be (3.9-6.2) x 10(exp 13) cm(exp 3) molecules(exp -1) s(exp -1) over the temperature range of 297-360 K. The rate constants for the reaction C2H + CH3CN yields products are also found to increase substantially with increasing temperature and are measured to be (1.0-2.1) x 10(exp -12) cm(exp 3) molecules(exp -1) s(exp -1) over the temperature range of 262-360 K. For the reaction C2H + HCN yields products, ab initio calculations of transition state structures are used to infer that the major products form via an addition/elimination pathway. The measured rate constants for the reaction of C2H + HCN yields products are significantly smaller than values currently employed in photochemical models of Titan, which will affect the HC3N distribution.

  11. Neutron Thermal Cross Sections, Westcott Factors, Resonance Integrals, Maxwellian Averaged Cross Sections and Astrophysical Reaction Rates Calculated from the ENDF/B-VII.1, JEFF-3.1.2, JENDL-4.0, ROSFOND-2010, CENDL-3.1 and EAF-2010 Evaluated Data Libraries

    NASA Astrophysics Data System (ADS)

    Pritychenko, B.; Mughabghab, S. F.

    2012-12-01

    We present calculations of neutron thermal cross sections, Westcott factors, resonance integrals, Maxwellian-averaged cross sections and astrophysical reaction rates for 843 ENDF materials using data from the major evaluated nuclear libraries and European activation file. Extensive analysis of newly-evaluated neutron reaction cross sections, neutron covariances, and improvements in data processing techniques motivated us to calculate nuclear industry and neutron physics quantities, produce s-process Maxwellian-averaged cross sections and astrophysical reaction rates, systematically calculate uncertainties, and provide additional insights on currently available neutron-induced reaction data. Nuclear reaction calculations are discussed and new results are presented. Due to space limitations, the present paper contains only calculated Maxwellian-averaged cross sections and their uncertainties. The complete data sets for all results are published in the Brookhaven National Laboratory report.

  12. CH3CO + O2 + M (M = He, N2) Reaction Rate Coefficient Measurements and Implications for the OH Radical Product Yield.

    PubMed

    Papadimitriou, Vassileios C; Karafas, Emmanuel S; Gierczak, Tomasz; Burkholder, James B

    2015-07-16

    The gas-phase CH3CO + O2 reaction is known to proceed via a chemical activation mechanism leading to the formation of OH and CH3C(O)OO radicals via bimolecular and termolecular reactive channels, respectively. In this work, rate coefficients, k, for the CH3CO + O2 reaction were measured over a range of temperature (241-373 K) and pressure (0.009-600 Torr) with He and N2 as the bath gas and used to characterize the bi- and ter-molecular reaction channels. Three independent experimental methods (pulsed laser photolysis-laser-induced fluorescence (PLP-LIF), pulsed laser photolysis-cavity ring-down spectroscopy (PLP-CRDS), and a very low-pressure reactor (VLPR)) were used to characterize k(T,M). PLP-LIF was the primary method used to measure k(T,M) in the high-pressure regime under pseudo-first-order conditions. CH3CO was produced by PLP, and LIF was used to monitor the OH radical bimolecular channel reaction product. CRDS, a complementary high-pressure method, measured k(295 K,M) over the pressure range 25-600 Torr (He) by monitoring the temporal CH3CO radical absorption following its production via PLP in the presence of excess O2. The VLPR technique was used in a relative rate mode to measure k(296 K,M) in the low-pressure regime (9-32 mTorr) with CH3CO + Cl2 used as the reference reaction. A kinetic mechanism analysis of the combined kinetic data set yielded a zero pressure limit rate coefficient, kint(T), of (6.4 ± 4) × 10(-14) exp((820 ± 150)/T) cm(3) molecule(-1) s(-1) (with kint(296 K) measured to be (9.94 ± 1.3) × 10(-13) cm(3) molecule(-1) s(-1)), k0(T) = (7.39 ± 0.3) × 10(-30) (T/300)(-2.2±0.3) cm(6) molecule(-2) s(-1), and k∞(T) = (4.88 ± 0.05) × 10(-12) (T/300)(-0.85±0.07) cm(3) molecule(-1) s(-1) with Fc = 0.8 and M = N2. A He/N2 collision efficiency ratio of 0.60 ± 0.05 was determined. The phenomenological kinetic results were used to define the pressure and temperature dependence of the OH radical yield in the CH3CO + O2 reaction. The

  13. Pulsed EPR measurements on reaction rate constants for addition of photo-generated radicals to double bonds of diethyl fumarate and diethyl maleate

    NASA Astrophysics Data System (ADS)

    Takahashi, Hirona; Hagiwara, Kenta; Kawai, Akio

    2016-11-01

    Addition reaction of photo-generated radicals to double bonds of diethyl fumarate (deF) and diethyl maleate (deM), which are geometrical isomers, was studied by means of time-resolved- (TR-) and pulsed-electron paramagnetic resonance (EPR). Analysis of TR-EPR spectra indicates that adduct radicals from deF and deM should have the same structure. The double bonds of these monomers are converted to single ones by addition reaction, which allows hindered internal rotation to give the same structure of adduct radical. The rate constants for addition reaction of photo-generated radicals were determined by Stern-Volmer analysis of the decay time of electron spin-echo intensity of these radicals measured by the pulsed EPR method. Rate constants for deF were found to be larger than those for deM. This relation is in good consistent with efficiency of polymerisation of deF and deM. Experimentally determined rate constants were evaluated by introducing the addition reaction model on the basis of two important factors enthalpy and polar effects.

  14. Complex Cure Kinetics of the Tertiary Amine activated Reaction in DGEBA Epoxy Hardened with Diethanolamine

    NASA Astrophysics Data System (ADS)

    Ancipink, Windy; McCoy, John; Clarkson, Caitlyn; Kropka, Jamie; Celina, Mathias; Giron, Nicholas; Hailesilassie, Lebelo; Fredj, Narjes

    The curing of a diglycidyl ether of bisphenol-A (DGEBA) epoxy with diethanolamine (DEA) involves a well understood fast amine-epoxide reaction followed by a more complicated slower hydroxyl-epoxide reaction. The time scale of these two reactions are well separated and can be studied independently from one another. The initial amine-epoxide reaction results in a tertiary amine adduct which is a product of the direct reaction of a secondary amine from the DEA reacting with a single DGEBA epoxide. The second hydroxyl-epoxide reaction results in a highly crosslinked glassy epoxy resin. The deviation in the mechanisms between high and low temperatures are discerned through the use of differential scanning calorimetry (DSC), infrared spectroscopy (IR), and isothermal microcalorimetry (IMC) data. Observations of reaction rates at temperatures ranging from 30° C to 110° C have led to the determination that the hydroxyl-epoxide reaction is temperature sensitive. The hydroxyl-epoxide reaction occurs through two different mechanisms: at low temperatures, the reaction is catalyzed by the tertiary amine adduct; at higher temperatures, the reaction does not appear to be catalyzed. Sandia National Laboratories, Albuquerque, NM.

  15. Sum over Histories Representation for Kinetic Sensitivity Analysis: How Chemical Pathways Change When Reaction Rate Coefficients Are Varied

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Shirong; Davis, Michael J.; Skodje, Rex T.

    2015-11-12

    The sensitivity of kinetic observables is analyzed using a newly developed sum over histories representation of chemical kinetics. In the sum over histories representation, the concentrations of the chemical species are decomposed into the sum of probabilities for chemical pathways that follow molecules from reactants to products or intermediates. Unlike static flux methods for reaction path analysis, the sum over histories approach includes the explicit time dependence of the pathway probabilities. Using the sum over histories representation, the sensitivity of an observable with respect to a kinetic parameter such as a rate coefficient is then analyzed in terms of howmore » that parameter affects the chemical pathway probabilities. The method is illustrated for species concentration target functions in H-2 combustion where the rate coefficients are allowed to vary over their associated uncertainty ranges. It is found that large sensitivities are often associated with rate limiting steps along important chemical pathways or by reactions that control the branching of reactive flux« less

  16. Kinetics of low-temperature transitions and a reaction rate theory from non-equilibrium distributions

    PubMed Central

    Aquilanti, Vincenzo; Coutinho, Nayara Dantas

    2017-01-01

    This article surveys the empirical information which originated both by laboratory experiments and by computational simulations, and expands previous understanding of the rates of chemical processes in the low-temperature range, where deviations from linearity of Arrhenius plots were revealed. The phenomenological two-parameter Arrhenius equation requires improvement for applications where interpolation or extrapolations are demanded in various areas of modern science. Based on Tolman's theorem, the dependence of the reciprocal of the apparent activation energy as a function of reciprocal absolute temperature permits the introduction of a deviation parameter d covering uniformly a variety of rate processes, from those where quantum mechanical tunnelling is significant and d < 0, to those where d > 0, corresponding to the Pareto–Tsallis statistical weights: these generalize the Boltzmann–Gibbs weight, which is recovered for d = 0. It is shown here how the weights arise, relaxing the thermodynamic equilibrium limit, either for a binomial distribution if d > 0 or for a negative binomial distribution if d < 0, formally corresponding to Fermion-like or Boson-like statistics, respectively. The current status of the phenomenology is illustrated emphasizing case studies; specifically (i) the super-Arrhenius kinetics, where transport phenomena accelerate processes as the temperature increases; (ii) the sub-Arrhenius kinetics, where quantum mechanical tunnelling propitiates low-temperature reactivity; (iii) the anti-Arrhenius kinetics, where processes with no energetic obstacles are rate-limited by molecular reorientation requirements. Particular attention is given for case (i) to the treatment of diffusion and viscosity, for case (ii) to formulation of a transition rate theory for chemical kinetics including quantum mechanical tunnelling, and for case (iii) to the stereodirectional specificity of the dynamics of reactions strongly hindered by the

  17. Kinetics of low-temperature transitions and a reaction rate theory from non-equilibrium distributions.

    PubMed

    Aquilanti, Vincenzo; Coutinho, Nayara Dantas; Carvalho-Silva, Valter Henrique

    2017-04-28

    This article surveys the empirical information which originated both by laboratory experiments and by computational simulations, and expands previous understanding of the rates of chemical processes in the low-temperature range, where deviations from linearity of Arrhenius plots were revealed. The phenomenological two-parameter Arrhenius equation requires improvement for applications where interpolation or extrapolations are demanded in various areas of modern science. Based on Tolman's theorem, the dependence of the reciprocal of the apparent activation energy as a function of reciprocal absolute temperature permits the introduction of a deviation parameter d covering uniformly a variety of rate processes, from those where quantum mechanical tunnelling is significant and d  < 0, to those where d  > 0, corresponding to the Pareto-Tsallis statistical weights: these generalize the Boltzmann-Gibbs weight, which is recovered for d  = 0. It is shown here how the weights arise, relaxing the thermodynamic equilibrium limit, either for a binomial distribution if d  > 0 or for a negative binomial distribution if d  < 0, formally corresponding to Fermion-like or Boson-like statistics, respectively. The current status of the phenomenology is illustrated emphasizing case studies; specifically (i) the super -Arrhenius kinetics, where transport phenomena accelerate processes as the temperature increases; (ii) the sub -Arrhenius kinetics, where quantum mechanical tunnelling propitiates low-temperature reactivity; (iii) the anti -Arrhenius kinetics, where processes with no energetic obstacles are rate-limited by molecular reorientation requirements. Particular attention is given for case (i) to the treatment of diffusion and viscosity, for case (ii) to formulation of a transition rate theory for chemical kinetics including quantum mechanical tunnelling, and for case (iii) to the stereodirectional specificity of the dynamics of reactions strongly hindered by the

  18. Molecular modeling of the reaction pathway and hydride transfer reactions of HMG-CoA reductase.

    PubMed

    Haines, Brandon E; Steussy, C Nicklaus; Stauffacher, Cynthia V; Wiest, Olaf

    2012-10-09

    HMG-CoA reductase catalyzes the four-electron reduction of HMG-CoA to mevalonate and is an enzyme of considerable biomedical relevance because of the impact of its statin inhibitors on public health. Although the reaction has been studied extensively using X-ray crystallography, there are surprisingly no computational studies that test the mechanistic hypotheses suggested for this complex reaction. Theozyme and quantum mechanical (QM)/molecular mechanical (MM) calculations up to the B3LYP/6-31g(d,p)//B3LYP/6-311++g(2d,2p) level of theory were employed to generate an atomistic description of the enzymatic reaction process and its energy profile. The models generated here predict that the catalytically important Glu83 is protonated prior to hydride transfer and that it acts as the general acid or base in the reaction. With Glu83 protonated, the activation energies calculated for the sequential hydride transfer reactions, 21.8 and 19.3 kcal/mol, are in qualitative agreement with the experimentally determined rate constant for the entire reaction (1 s(-1) to 1 min(-1)). When Glu83 is not protonated, the first hydride transfer reaction is predicted to be disfavored by >20 kcal/mol, and the activation energy is predicted to be higher by >10 kcal/mol. While not involved in the reaction as an acid or base, Lys267 is critical for stabilization of the transition state in forming an oxyanion hole with the protonated Glu83. Molecular dynamics simulations and MM/Poisson-Boltzmann surface area free energy calculations predict that the enzyme active site stabilizes the hemithioacetal intermediate better than the aldehyde intermediate. This suggests a mechanism in which cofactor exchange occurs before the breakdown of the hemithioacetal. Slowing the conversion to aldehyde would provide the enzyme with a mechanism to protect it from solvent and explain why the free aldehyde is not observed experimentally. Our results support the hypothesis that the pK(a) of an active site acidic

  19. Evaporation Rate Study and NDMA Formation from UDMH/NO2 Reaction Products

    NASA Technical Reports Server (NTRS)

    Buchanan, Vanessa D.; Dee, Louis A.; Baker, David L.

    2003-01-01

    Laboratory samples of uns-dimethylhydrazine (UDMH) fuel/oxidizer (nitrogen dioxide) non-combustion reaction products (UFORP) were prepared using a unique permeation tube technology. Also, a synthetic UFORP was prepared from UDMH, N-nitrosodimethylamine (NDMA), dimethylammonium nitrate, sodium nitrite and purified water. The evaporation rate of UFORP and synthetic UFORP was determined under space vacuum (approx 10(exp -3) Torr) at -40 ?C and 0 ?C. The material remaining was analyzed and showed that the UFORP weight and NDMA concentration decreased over time; however, NDMA had not completely evaporated. Over 85% of the weight was removed by subjecting the UFORP to 10(-3) Torr for 7 hours at -40 ?C and 4 hours at 0 ?C. A mixture of dimethylammonium nitrate and sodium nitrite formed NDMA at a rapid rate in a moist air environment. A sample of UFORP residue was analyzed for formation of NDMA under various conditions. It was found that NDMA was not formed unless nitrite was added.

  20. Evaluated activation cross sections of longer-lived radionuclides produced by deuteron induced reactions on natural nickel

    NASA Astrophysics Data System (ADS)

    Takács, S.; Tárkányi, F.; Király, B.; Hermanne, A.; Sonck, M.

    2007-07-01

    Activation cross sections for deuteron induced nuclear reactions on natural nickel target were studied by using a standard stacked foil technique and gamma spectrometry up to 50 MeV deuteron bombarding energy. Reaction products with half life of at least half an hour were studied. Experimental elemental activation cross sections were determined for reactions on nickel resulting in 61,64Cu, 56,57Ni, 55,56,57,58,60,61Co, 52,54,56Mn and 51Cr radionuclides and were compared with earlier measured data.

  1. Radical Abstraction Reactions with Concerted Fragmentation in the Chain Decay of Nitroalkanes

    NASA Astrophysics Data System (ADS)

    Denisov, E. T.; Shestakov, A. F.

    2018-05-01

    Reactions of the type X• + HCR2CH2NO2 → XH + R2C=CH2 + N•O2 are exothermic, due to the breaking of weak C-N bonds and the formation of energy-intensive C=C bonds. Quantum chemistry calculations of the transition state using the reactions of Et• and EtO• with 2-nitrobutane shows that such reactions can be categorized as one-step, due to the extreme instability of the intermediate nitrobutyl radical toward decay with the formation of N•O2. Kinetic parameters that allow us to calculate the energy of activation and rate constant of such a reaction from its enthalpy are estimated using a model of intersecting parabolas. Enthalpies, energies of activation, and rate constants are calculated for a series of reactions with the participation of Et•, EtO•, RO•2, N•O2 radicals on the one hand and a series of nitroalkanes on the other. A new kinetic scheme of the chain decay of nitroalkanes with the participation of abstraction reactions with concerted fragmentation is proposed on the basis of the obtained data.

  2. Solutions to a reduced Poisson–Nernst–Planck system and determination of reaction rates

    PubMed Central

    Li, Bo; Lu, Benzhuo; Wang, Zhongming; McCammon, J. Andrew

    2010-01-01

    We study a reduced Poisson–Nernst–Planck (PNP) system for a charged spherical solute immersed in a solvent with multiple ionic or molecular species that are electrostatically neutralized in the far field. Some of these species are assumed to be in equilibrium. The concentrations of such species are described by the Boltzmann distributions that are further linearized. Others are assumed to be reactive, meaning that their concentrations vanish when in contact with the charged solute. We present both semi-analytical solutions and numerical iterative solutions to the underlying reduced PNP system, and calculate the reaction rate for the reactive species. We give a rigorous analysis on the convergence of our simple iteration algorithm. Our numerical results show the strong dependence of the reaction rates of the reactive species on the magnitude of its far field concentration as well as on the ionic strength of all the chemical species. We also find non-monotonicity of electrostatic potential in certain parameter regimes. The results for the reactive system and those for the non-reactive system are compared to show the significant differences between the two cases. Our approach provides a means of solving a PNP system which in general does not have a closed-form solution even with a special geometrical symmetry. Our findings can also be used to test other numerical methods in large-scale computational modeling of electro-diffusion in biological systems. PMID:20228879

  3. Direct Dynamics Simulation of the Thermal 3CH2 + 3O2 Reaction. Rate Constant and Product Branching Ratios.

    PubMed

    Lakshmanan, Sandhiya; Pratihar, Subha; Machado, Francisco B C; Hase, William L

    2018-05-31

    The reaction of 3 CH 2 with 3 O 2 is of fundamental importance in combustion, and the reaction is complex as a result of multiple extremely exothermic product channels. In the present study, direct dynamics simulations were performed to study the reaction on both the singlet and triplet potential energy surfaces (PESs). The simulations were performed at the UM06/6-311++G(d,p) level of theory. Trajectories were calculated at a temperature of 300 K, and all reactive trajectories proceeded through the carbonyl oxide Criegee intermediate, CH 2 OO, on both the singlet and triplet PESs. The triplet surface leads to only one product channel, H 2 CO + O( 3 P), while the singlet surface leads to eight product channels with their relative importance as CO + H 2 O > CO + OH + H ∼ H 2 CO + O( 1 D) > HCO + OH ∼ CO 2 + H 2 ∼ CO + H 2 + O( 1 D) > CO 2 + H + H > HCO + O( 1 D) + H. The reaction on the singlet PES is barrierless, consistent with experiment, and the total rate constant on the singlet surface is (0.93 ± 0.22) × 10 -12 cm 3 molecule -1 s -1 in comparison to the recommended experimental rate constant of 3.3 × 10 -12 cm 3 molecule -1 s -1 . The simulation product yields for the singlet PES are compared with experiment, and the most significant differences are for H, CO 2 , and H 2 O. The reaction on the triplet surface is also barrierless, inconsistent with experiment. A discussion is given of the need for future calculations to address (1) the barrier on the triplet PES for 3 CH 2 + 3 O 2 → 3 CH 2 OO, (2) the temperature dependence of the 3 CH 2 + 3 O 2 reaction rate constant and product branching ratios, and (3) the possible non-RRKM dynamics of the 1 CH 2 OO Criegee intermediate.

  4. Significance of vapor phase chemical reactions on CVD rates predicted by chemically frozen and local thermochemical equilibrium boundary layer theories

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.

    1988-01-01

    This paper investigates the role played by vapor-phase chemical reactions on CVD rates by comparing the results of two extreme theories developed to predict CVD mass transport rates in the absence of interfacial kinetic barrier: one based on chemically frozen boundary layer and the other based on local thermochemical equilibrium. Both theories consider laminar convective-diffusion boundary layers at high Reynolds numbers and include thermal (Soret) diffusion and variable property effects. As an example, Na2SO4 deposition was studied. It was found that gas phase reactions have no important role on Na2SO4 deposition rates and on the predictions of the theories. The implications of the predictions of the two theories to other CVD systems are discussed.

  5. Study of activation cross-sections of deuteron induced reactions on rhodium up to 40 MeV

    NASA Astrophysics Data System (ADS)

    Ditrói, F.; Tárkányi, F.; Takács, S.; Hermanne, A.; Yamazaki, H.; Baba, M.; Mohammadi, A.; Ignatyuk, A. V.

    2011-09-01

    In the frame of a systematic study of the activation cross-sections of deuteron induced nuclear reactions, excitation functions of the 103Rh(d,x) 100,101,103Pd, 100g,101m,101g,102m,102gRh and 103gRu reactions were determined up to 40 MeV. Cross-sections were measured with the activation method using a stacked foil irradiation technique. Excitation functions of the contributing reactions were calculated using the ALICE-IPPE, EMPIRE-II and TALYS codes. From the measured cross-section data integral production yields were calculated and compared with experimental integral yield data reported in the literature. From the measured cross-sections and previous data, activation curves were deduced to support thin layer activation (TLA) on rhodium and Rh containing alloys.

  6. Phosphoryl transfer is not rate-limiting for the ROCK I-catalyzed kinase reaction.

    PubMed

    Futer, Olga; Saadat, Ahmad R; Doran, John D; Raybuck, Scott A; Pazhanisamy, S

    2006-06-27

    Rho-associated coiled-coil kinase, ROCK, is implicated in Rho-mediated cell adhesion and smooth muscle contraction. Animal models suggest that the inhibition of ROCK can ameliorate conditions, such as vasospasm, hypertension, and inflammation. As part of our effort to design novel inhibitors of ROCK, we investigated the kinetic mechanism of ROCK I. Steady-state bisubstrate kinetics, inhibition kinetics, isotope partition analysis, viscosity effects, and presteady-state kinetics were used to explore the kinetic mechanism. Plots of reciprocals of initial rates obtained in the presence of nonhydrolyzable ATP analogues and the small molecule inhibitor of ROCK, Y-27632, against the reciprocals of the peptide concentrations yielded parallel lines (uncompetitive pattern). This pattern is indicative of an ordered binding mechanism, with the peptide adding first. The staurosporine analogue K252a, however, gave a noncompetitive pattern. When a pulse of (33)P-gamma-ATP mixed with ROCK was chased with excess unlabeled ATP and peptide, 0.66 enzyme equivalent of (33)P-phosphate was incorporated into the product in the first turnover. The presence of ATPase activity coupled with the isotope partition data is a clear evidence for the existence of a viable [E-ATP] complex in the kinase reaction and implicates a random binding mechanism. The k(cat)/K(m) parameters were fully sensitive to viscosity (viscosity effects of 1.4 +/- 0.2 and 0.9 +/- 0.3 for ATP and peptide 5, respectively), and therefore, the barriers to dissociation of either substrate are higher than the barrier for the phosphoryl transfer step. As a consequence, not all the binding steps are at fast equilibrium. The observation of a burst in presteady-state kinetics (k(b) = 10.2 +/- 2.1 s(-)(1)) and the viscosity effect on k(cat) of 1.3 +/- 0.2 characterize the phosphoryl transfer step to be fast and the release of product and/or the enzyme isomerization step accompanying it as rate-limiting at V(max) conditions. From

  7. Chemically Activated Formation of Organic Acids in Reactions of the Criegee Intermediate with Aldehydes and Ketones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jalan, Amrit; Allen, Joshua W.; Green, William H.

    Reactions of the Criegee intermediate (CI, .CH2OO.) are important in atmospheric ozonolysis models. In this work, we compute the rates for reactions between .CH2OO. and HCHO, CH3CHO and CH3COCH3 leading to the formation of secondary ozonides (SOZ) and organic acids. Relative to infinitely separated reactants, the SOZ in all three cases is found to be 48–51 kcal mol-1 lower in energy, formed via 1,3- cycloaddition of .CH2OO. across the CQO bond. The lowest energy pathway found for SOZ decomposition is intramolecular disproportionation of the singlet biradical intermediate formed from cleavage of the O–O bond to form hydroxyalkyl esters. These hydroxyalkylmore » esters undergo concerted decomposition providing a low energy pathway from SOZ to acids. Geometries and frequencies of all stationary points were obtained using the B3LYP/MG3S DFT model chemistry, and energies were refined using RCCSD(T)-F12a/cc-pVTZ-F12 single-point calculations. RRKM calculations were used to obtain microcanonical rate coefficients (k(E)) and the reservoir state method was used to obtain temperature and pressure dependent rate coefficients (k(T, P)) and product branching ratios. At atmospheric pressure, the yield of collisionally stabilized SOZ was found to increase in the order HCHO o CH3CHO o CH3COCH3 (the highest yield being 10-4 times lower than the initial .CH2OO. concentration). At low pressures, chemically activated formation of organic acids (formic acid in the case of HCHO and CH3COCH3, formic and acetic acid in the case of CH3CHO) was found to be the major product channel in agreement with recent direct measurements. Collisional energy transfer parameters and the barrier heights for SOZ reactions were found to be the most sensitive parameters determining SOZ and organic acid yield.« less

  8. Improving the electrocatalytic performance of carbon nanotubes for VO2+/VO2+ redox reaction by KOH activation

    NASA Astrophysics Data System (ADS)

    Dai, Lei; Jiang, Yingqiao; Meng, Wei; Zhou, Huizhu; Wang, Ling; He, Zhangxing

    2017-04-01

    In this paper, carbon nanotubes (CNTs) was activated by KOH treatment at high temperature and investigated as catalyst for VO2+/VO2+ redox reaction for vanadium redox flow battery (VRFB). X-ray photoelectron spectroscopy results suggest that the oxygen-containing groups can be introduced on CNTs by KOH activation. The mass transfer of vanadium ions can be accelerated by chemical etching by KOH activation and improved wettability due to the introduction of hydrophilic groups. The electrochemical properties of VO2+/VO2+ redox reaction can be enhanced by introduced oxygen-containing groups as active sites. The sample treated at 900 °C with KOH/CNTs mass ratio of 3:1 (CNTs-3) exhibits the highest electrocatalytic activity for VO2+/VO2+ redox reaction. The cell using CNTs-3 as positive catalyst demonstrates the smallest electrochemical polarization, the highest capacity and efficiency among the samples. Using KOH-activated CNTs-3 can increase the average energy efficiency of the cell by 4.4%. This work suggests that KOH-activated CNTs is a low-cost, efficient and promising catalyst for VO2+/VO2+ redox reaction for VRFB system.

  9. Alpha-capture reaction rates for 22 Ne (α , n) via sub-Coulomb alpha-transfer and its effect on final abundances of s-process isotopes

    NASA Astrophysics Data System (ADS)

    Jayatissa, Heshani; Rogachev, Grigory; Koshchiy, Yevgeny; Goldberg, Vladilen; Hooker, Joshua; Hunt, Curtis; Magana, Cordero; Roeder, Brian; Saastamoinen, Antti; Spiridon, Alexandria; Upadhyayula, Sriteja; Trippella, Oscar

    2017-09-01

    The 22 Ne (α , n) reaction is a very important neutron source reaction for the slow neutron capture process (s-process) in asymptotic giant branch stars. These direct measurements are very difficult to carry out at the energy regimes of interest for astrophysics (Gamow energies) due to the extremely small reaction cross section. The large uncertainties introduced when extrapolating direct measurements at high energies down to the Gamow energies can be overcome by measuring the Asymptotic Normalization Coefficients (ANC) of the relevant states using α-transfer reactions at sub-Coulomb energies to reduce the optical model dependence. The study of the 22Ne(6Li,d) and 22Ne(7Li,t) reaction was carried out at the Cyclotron Institute at Texas A&M University. The α-ANC measurements for the near α-threshold resonances of 26Mg provide constraints for the 22Ne(α,n) reaction rate. The effect of this reaction rate on the final abundances of the s-process isotopes will be discussed.

  10. Application of the Zero-Order Reaction Rate Model and Transition State Theory to predict porous Ti6Al4V bending strength.

    PubMed

    Reig, L; Amigó, V; Busquets, D; Calero, J A; Ortiz, J L

    2012-08-01

    Porous Ti6Al4V samples were produced by microsphere sintering. The Zero-Order Reaction Rate Model and Transition State Theory were used to model the sintering process and to estimate the bending strength of the porous samples developed. The evolution of the surface area during the sintering process was used to obtain sintering parameters (sintering constant, activation energy, frequency factor, constant of activation and Gibbs energy of activation). These were then correlated with the bending strength in order to obtain a simple model with which to estimate the evolution of the bending strength of the samples when the sintering temperature and time are modified: σY=P+B·[lnT·t-ΔGa/R·T]. Although the sintering parameters were obtained only for the microsphere sizes analysed here, the strength of intermediate sizes could easily be estimated following this model. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Performance evaluation of the sulfur-redox-reaction-activated up-flow anaerobic sludge blanket and down-flow hanging sponge anaerobic/anoxic sequencing batch reactor system for municipal sewage treatment.

    PubMed

    Hatamoto, Masashi; Ohtsuki, Kota; Maharjan, Namita; Ono, Shinya; Dehama, Kazuya; Sakamoto, Kenichi; Takahashi, Masanobu; Yamaguchi, Takashi

    2016-03-01

    A sulfur-redox-reaction-activated up-flow anaerobic sludge blanket (UASB) and down-flow hanging sponge (DHS) system, combined with an anaerobic/anoxic sequencing batch reactor (A2SBR), has been used for municipal sewage treatment for over 2 years. The present system achieved a removal rate of 95±14% for BOD, 74±22% for total nitrogen, and 78±25% for total phosphorus, including low water temperature conditions. Sludge conversion rates during the operational period were 0.016 and 0.218 g-VSS g-COD-removed(-1) for the UASB, and DHS, respectively, which are similar to a conventional UASB-DHS system, which is not used of sulfur-redox-reaction, for sewage treatment. Using the sulfur-redox reaction made advanced treatment of municipal wastewater with minimal sludge generation possible, even in winter. Furthermore, the occurrence of a unique phenomenon, known as the anaerobic sulfur oxidation reaction, was confirmed in the UASB reactor under the winter season. Copyright © 2016. Published by Elsevier Ltd.

  12. Experimental and Estimated Rate Constants for the Reactions of Hydroxyl Radicals with Several Halocarbons

    NASA Technical Reports Server (NTRS)

    DeMore, W.B.

    1996-01-01

    Relative rate experiments are used to measure rate constants and temperature dependencies of the reactions of OH with CH3F (41), CH2FCl (31), CH2BrCl (30B1), CH2Br2 (3OB2), CHBr3 (2OB3), CF2BrCHFCl (123aBl(alpha)), and CF2ClCHCl2 (122). Rate constants for additional compounds of these types are estimated using an empirical rate constant estimation method which is based on measured rate constants for a wide range of halocarbons. The experimental data are combined with the estimated and previously reported rate constants to illustrate the effects of F, Cl, and Br substitution on OH rate constants for a series of 19 halomethanes and 25 haloethanes. Application of the estimation technique is further illustrated for some higher hydrofluorocarbons (HFCs), including CHF2CF2CF2CF2H (338pcc), CF3CHFCHFCF2CF3 (43-10mee), CF3CH2CH2CF3 (356ffa), CF3CH2CF2CH2CF3 (458mfcf), CF3CH2CHF2 (245fa), and CF3CH2CF2CH3 (365mfc). The predictions are compared with literature data for these compounds.

  13. Reaction of SO2 with OH in the atmosphere.

    PubMed

    Long, Bo; Bao, Junwei Lucas; Truhlar, Donald G

    2017-03-15

    The OH + SO 2 reaction plays a critical role in understanding the oxidation of SO 2 in the atmosphere, and its rate constant is critical for clarifying the fate of SO 2 in the atmosphere. The rate constant of the OH + SO 2 reaction is calculated here by using beyond-CCSDT correlation energy calculations for a benchmark, validated density functional methods for direct dynamics, canonical variational transition state theory with anharmonicity and multidimensional tunneling for the high-pressure rate constant, and system-specific quantum RRK theory for pressure effects; the combination of these methods can compete in accuracy with experiments. There has been a long-term debate in the literature about whether the OH + SO 2 reaction is barrierless, but our calculations indicate a positive barrier with an transition structure that has an enthalpy of activation of 0.27 kcal mol -1 at 0 K. Our results show that the high-pressure limiting rate constant of the OH + SO 2 reaction has a positive temperature dependence, but the rate constant at low pressures has a negative temperature dependence. The computed high-pressure limiting rate constant at 298 K is 1.25 × 10 -12 cm 3 molecule -1 s -1 , which agrees excellently with the value (1.3 × 10 -12 cm 3 molecule -1 s -1 ) recommended in the most recent comprehensive evaluation for atmospheric chemistry. We show that the atmospheric lifetime of SO 2 with respect to oxidation by OH depends strongly on altitude (in the range 0-50 km) due to the falloff effect. We introduce a new interpolation procedure for fitting the combined temperature and pressure dependence of the rate constant, and it fits the calculated rate constants over the whole range with a mean unsigned error of only 7%. The present results provide reliable kinetics data for this specific reaction, and also they demonstrate convenient theoretical methods that can be reliable for predicting rate constants of other gas-phase reactions.

  14. Hydrolysis rate constants and activation parameters for phosphate- and phosphonate-bridged phthalonitrile monomers under acid, neutral and alkali conditions.

    PubMed

    Belsky, Kirill S; Sulimov, Artem V; Bulgakov, Boris A; Babkin, Alexandr V; Kepman, Alexey V

    2017-08-01

    Hydrolysis data for Bis(3-(3,4-dicyanophenoxy)phenyl) phenyl phosphate and Bis(3-(3,4-dicyanophenoxy)phenyl) phenylphosphonate under pH 4, 7 and 10 are presented. Conversion/time plots collected by HPLC analysis, typical chromatograms and NMR spectra of the reactions products are given. Pseudo-first order rate constants are determined for both substrates at 25, 50 and 80 °C. Activation parameters were calculated from Arrhenius equation.

  15. Association rate constants for reactions between resonance-stabilized radicals: C 3H 3 + C 3H 3, C 3H 3 + C 3H 5, and C 3H 5 + C 3H 5

    DOE PAGES

    Georgievskii, Yuri; Miller, James A.; Klippenstein, Stephen J.

    2007-05-18

    Reactions between resonance-stabilized radicals play an important role in combustion chemistry. The theoretical prediction of rate coefficients and product distributions for such reactions is complicated by the fact that the initial complex-formation steps and some dissociation steps are barrierless. In this work, direct variable reaction coordinate transition state theory (VRC-TST) is used to predict accurately the association rate constants for the self and cross reactions of propargyl and allyl radicals. For each reaction, a set of multifaceted dividing surfaces is used to account for the multiple possible addition channels. Because of their resonant nature the geometric relaxation of the radicalsmore » is important. Here, the effect of this relaxation is explicitly calculated with the UB3LYP/cc-pvdz method for each mutual orientation encountered in the configurational integrals over the transition state dividing surfaces. The final energies are obtained from CASPT2/cc-pvdz calculations with all π-orbitals in the active space. Evaluations along the minimum energy path suggest that basis set corrections are negligible. The VRC-TST approach was also used to calculate the association rate constant and the corresponding number of states for the C 6H 5 + H → C 6H 6 exit channel of the C 3H 3 + C 3H 3 reaction, which is also barrierless. For this reaction, the interaction energies were evaluated with the CASPT2(2e,2o)/cc-pvdz method and a 1-D correction is included on the basis of CAS+1+2+QC/aug-cc-pvtz calculations for the CH 3 + H reference system. For the C 3H 3 + C 3H 3 reaction, the VRC-TST results for the energy and angular momentum resolved numbers of states in the entrance channels and in the C 6H 5 + H exit channel are incorporated in a master equation simulation to determine the temperature and pressure dependence of the phenomenological rate coefficients. The rate constants for the C 3H 3 + C 3H 3 and C 3H 5 + C 3H 5 self-reactions compare favorably

  16. Kinetics of the reaction between nitrogen dioxide and water vapour

    NASA Astrophysics Data System (ADS)

    Svensson, R.; Ljungström, E.; Lindqvist, O.

    The rate of disappearance of nitrogen dioxide (NO 2) with water vapour and formation of nitrous acid (HONO) in the dark has been investigated in batch experiments. IR spectroscopy was used to determine the concentrations of NO 2, HONO and NO. The reaction is first order both with respect to NO 2 and water vapour and proceeds heterogenously on most unpoisoned surfaces. Initially, the amount of HONO formed is close to half the NO 2 which has disappeared. When the surface in the present reactor (surface to volume ratio = 14 m -1) has reached its limiting state of poisoning, the reaction is still active and the NO 2 disappearance follows the expression: -d[NO 2] /dt = 2k 1[NO 2] [H 2O] where k1 = 4.1 (± 0.8) 10 -8 ppm -1 min -1 (22°C). The S/V ratio dependence of the rate shows that a heterogenous reaction proceeds but the existing evidence is not conclusive about a possible homogenous contribution to the remaining activity. A rate expression which describes the overall reaction at temperatures around 25°C, when the surface present is made passive, is: -d[NO 2] /dt = ( S/V5.6(±0.9)10 -9 + 2.3(±6.5)10 -9)[NO 2][H 2O] .

  17. Absolute rate of the reaction of C l(2P) with methane from 200-500 K

    NASA Technical Reports Server (NTRS)

    Whytock, D. A.; Lee, J. H.; Michael, J. V.; Payne, W. A.; Stief, L. J.

    1976-01-01

    Rate constants for the reaction of atomic chlorine with methane have been measured from 200-500K using the flash photolysis-resonance fluorescence technique. When the results from fourteen equally spaced experimental determinations are plotted in Arrhenius form a definite curvature is noted. The results are compared to previous work and are theoretically discussed.

  18. The rate of the deoxygenation reaction limits myoglobin- and hemoglobin-facilitated O₂ diffusion in cells.

    PubMed

    Endeward, Volker

    2012-05-01

    A mathematical model describing facilitation of O(2) diffusion by the diffusion of myoglobin and hemoglobin is presented. The equations are solved numerically by a finite-difference method for the conditions as they prevail in cardiac and skeletal muscle and in red cells without major simplifications. It is demonstrated that, in the range of intracellular diffusion distances, the degree of facilitation is limited by the rate of the chemical reaction between myglobin or hemoglobin and O(2). The results are presented in the form of relationships between the degree of facilitation and the length of the diffusion path on the basis of the known kinetics of the oxygenation-deoxygenation reactions. It is concluded that the limitation by reaction kinetics reduces the maximally possible facilitated oxygen diffusion in cardiomyoctes by ∼50% and in skeletal muscle fibers by ∼ 20%. For human red blood cells, a reduction of facilitated O(2) diffusion by 36% is obtained in agreement with previous reports. This indicates that, especially in cardiomyocytes and red cells, chemical equilibrium between myoglobin or hemoglobin and O(2) is far from being established, an assumption that previously has often been made. Although the "O(2) transport function" of myoglobin in cardiac muscle cells thus is severely limited by the chemical reaction kinetics, and to a lesser extent also in skeletal muscle, it is noteworthy that the speed of release of O(2) from MbO(2), the "storage function," is not limited by the reaction kinetics under physiological conditions.

  19. New reaction rates for improved primordial D /H calculation and the cosmic evolution of deuterium

    NASA Astrophysics Data System (ADS)

    Coc, Alain; Petitjean, Patrick; Uzan, Jean-Philippe; Vangioni, Elisabeth; Descouvemont, Pierre; Iliadis, Christian; Longland, Richard

    2015-12-01

    Primordial or big bang nucleosynthesis (BBN) is one of the three historically strong evidences for the big bang model. Standard BBN is now a parameter-free theory, since the baryonic density of the Universe has been deduced with an unprecedented precision from observations of the anisotropies of the cosmic microwave background radiation. There is a good agreement between the primordial abundances of 4He, D, 3He, and 7Li deduced from observations and from primordial nucleosynthesis calculations. However, the 7Li calculated abundance is significantly higher than the one deduced from spectroscopic observations and remains an open problem. In addition, recent deuterium observations have drastically reduced the uncertainty on D /H , to reach a value of 1.6%. It needs to be matched by BBN predictions whose precision is now limited by thermonuclear reaction rate uncertainties. This is especially important as many attempts to reconcile Li observations with models lead to an increased D prediction. Here, we reevaluate the d (p ,γ )3He, d (d ,n ) 3H3, and d (d ,p ) 3H reaction rates that govern deuterium destruction, incorporating new experimental data and carefully accounting for systematic uncertainties. Contrary to previous evaluations, we use theoretical ab initio models for the energy dependence of the S factors. As a result, these rates increase at BBN temperatures, leading to a reduced value of D /H =(2.45 ±0.10 )×10-5 (2 σ ), in agreement with observations.

  20. Monkey primary somatosensory cortical activity during the early reaction time period differs with cues that guide movements

    PubMed Central

    Liu, Yu; Denton, John M.; Nelson, Randall J.

    2009-01-01

    Vibration-related neurons in monkey primary somatosensory cortex (SI) discharge rhythmically when vibratory stimuli are presented. It remains unclear how functional information carried by vibratory inputs is coded in rhythmic neuronal activity. In the present study, we compared neuronal activity during wrist movements in response to two sets of cues. In the first, movements were guided by vibratory cue only (VIB trials). In the second, movements were guided by simultaneous presentation of both vibratory and visual cues (COM trials). SI neurons were recorded extracellularly during both wrist extensions and flexions. Neuronal activity during the instructed delay period (IDP) and the early reaction time period (RTP) were analyzed. A total of 96 cases from 48 neurons (each neuron contributed two cases, one each for extension and flexion) showed significant vibration entrainment during the early RTPs, as determined by circular statistics (Rayleigh test). Of these, 50 cases had cutaneous (CUTA) and 46 had deep (DEEP) receptive fields. The CUTA neurons showed lower firing rates during the IDPs and greater firing rate changes during the early RTPs when compared with the DEEP neurons. The CUTA neurons also demonstrated decreases in activity entrainment during VIB trials when compared with COM trials. For the DEEP neurons, the difference of entrainment between VIB and COM trials was not statistically significant. The results suggest that somatic vibratory input is coded by both the firing rate and the activity entrainment of the CUTA neurons in SI. The results also suggest that when vibratory inputs are required for successful task completion, the activity of the CUTA neurons increases but the entrainment degrades. The DEEP neurons may be tuned before movement initiation for processing information encoded by proprioceptive afferents. PMID:18288475

  1. Pulsed Laser-Assisted Focused Electron-Beam-Induced Etching of Titanium with XeF 2 : Enhanced Reaction Rate and Precursor Transport

    DOE PAGES

    Noh, J. H.; Fowlkes, J. D.; Timilsina, R.; ...

    2015-01-28

    We introduce a laser-assisted focused electron-beam-induced etching (LA-FEBIE) process which is a versatile, direct write nanofabrication method that allows nanoscale patterning and editing; we do this in order to enhance the etch rate of electron-beam-induced etching. The results demonstrate that the titanium electron stimulated etch rate via the XeF2 precursor can be enhanced up to a factor of 6 times with an intermittent pulsed laser assist. Moreover, the evolution of the etching process is correlated to in situ stage current measurements and scanning electron micrographs as a function of time. Finally, the increased etch rate is attributed to photothermally enhancedmore » Ti–F reaction and TiF4 desorption and in some regimes enhanced XeF2 surface diffusion to the reaction zone.« less

  2. Kinetic Study of the Aroxyl-Radical-Scavenging Activity of Five Fatty Acid Esters and Six Carotenoids in Toluene Solution: Structure-Activity Relationship for the Hydrogen Abstraction Reaction.

    PubMed

    Mukai, Kazuo; Yoshimoto, Maya; Ishikura, Masaharu; Nagaoka, Shin-Ichi

    2017-08-17

    A kinetic study of the reaction between an aroxyl radical (ArO • ) and fatty acid esters (LHs 1-5, ethyl stearate 1, ethyl oleate 2, ethyl linoleate 3, ethyl linolenate 4, and ethyl arachidonate 5) has been undertaken. The second-order rate constants (k s ) for the reaction of ArO • with LHs 1-5 in toluene at 25.0 °C have been determined spectrophotometrically. The k s values obtained increased in the order of LH 1 < 2 < 3 < 4 < 5, that is, with increasing the number of double bonds included in LHs 1-5. The k s value for LH 5 was 2.93 × 10 -3 M -1 s -1 . From the result, it has been clarified that the reaction of ArO • with LHs 1-5 was explained by an allylic hydrogen abstraction reaction. A similar kinetic study was performed for the reaction of ArO • with six carotenoids (Car-Hs 1-6, astaxanthin 1, β-carotene 2, lycopene 3, capsanthin 4, zeaxanthin 5, and lutein 6). The k s values obtained increased in the order of Car-H 1 < 2 < 3 < 4 < 5 < 6. The k s value for Car-H 6 was 8.4 × 10 -4 M -1 s -1 . The k s values obtained for Car-Hs 1-6 are in the same order as that of the values for LHs 1-5. The results of detailed analyses of the k s values for the above reaction indicated that the reaction was also explained by an allylic hydrogen abstraction reaction. Furthermore, the structure-activity relationship for the reaction was discussed by taking the result of density functional theory calculation reported by Martinez and Barbosa into account.

  3. Computational study of the reactions of methanol with the hydroperoxyl and methyl radicals. 2. Accurate thermal rate constants.

    PubMed

    Alecu, I M; Truhlar, Donald G

    2011-12-29

    Multistructural canonical variational-transition-state theory with multidimensional tunneling (MS-CVT/MT) is employed to calculate thermal rate constants for the abstraction of hydrogen atoms from both positions of methanol by the hydroperoxyl and methyl radicals over the temperature range 100-3000 K. The M08-HX hybrid meta-generalized gradient approximation density functional and M08-HX with specific reaction parameters, both with the maug-cc-pVTZ basis set, were validated in part 1 of this study (Alecu, I. M.; Truhlar, D. G. J. Phys. Chem. A2011, 115, 2811) against highly accurate CCSDT(2)(Q)/CBS calculations for the energetics of these reactions, and they are used here to compute the properties of all stationary points and the energies, gradients, and Hessians of nonstationary points along each considered reaction path. The internal rotations in some of the transition states are found to be highly anharmonic and strongly coupled to each other, and they generate multiple structures (conformations) whose contributions are included in the partition function. It is shown that the previous estimates for these rate constants used to build kinetic models for the combustion of methanol, some of which were based on transition state theory calculations with one-dimensional tunneling corrections and harmonic-oscillator approximations or separable one-dimensional hindered rotor treatments of torsions, are appreciably different than the ones presently calculated using MS-CVT/MT. The rate constants obtained from the best MS-CVT/MT calculations carried out in this study, in which the important effects of corner cutting due to small and large reaction path curvature are captured via a microcanonical optimized multidimensional tunneling (μOMT) treatment, are recommended for future refinement of the kinetic model for methanol combustion. © 2011 American Chemical Society

  4. Enhanced electrocatalytic activity of MoS(x) on TCNQ-treated electrode for hydrogen evolution reaction.

    PubMed

    Chang, Yung-Huang; Nikam, Revannath D; Lin, Cheng-Te; Huang, Jing-Kai; Tseng, Chien-Chih; Hsu, Chang-Lung; Cheng, Chia-Chin; Su, Ching-Yuan; Li, Lain-Jong; Chua, Daniel H C

    2014-10-22

    Molybdenum sulfide has recently attracted much attention because of its low cost and excellent catalytical effects in the application of hydrogen evolution reaction (HER). To improve the HER efficiency, many researchers have extensively explored various avenues such as material modification, forming hybrid structures or modifying geometric morphology. In this work, we reported a significant enhancement in the electrocatalytic activity of the MoSx via growing on Tetracyanoquinodimethane (TCNQ) treated carbon cloth, where the MoSx was synthesized by thermolysis from the ammonium tetrathiomolybdate ((NH4)2MoS4) precursor at 170 °C. The pyridinic N- and graphitic N-like species on the surface of carbon cloth arising from the TCNQ treatment facilitate the formation of Mo(5+) and S2(2-) species in the MoSx, especially with S2(2-) serving as an active site for HER. In addition, the smaller particle size of the MoSx grown on TCNQ-treated carbon cloth reveals a high ratio of edge sites relative to basal plane sites, indicating the richer effective reaction sites and superior electrocatalytic characteristics. Hence, we reported a high hydrogen evolution rate for MoSx on TCNQ-treated carbon cloth of 6408 mL g(-1) cm(-2) h(-1) (286 mmol g(-1) cm(-2) h(-1)) at an overpotential of V = 0.2 V. This study provides the fundamental concepts useful in the design and preparation of transition metal dichalcogenide catalysts, beneficial in the development in clean energy.

  5. Investigation of the thermonuclear 18Ne(α,p)21Na reaction rate via resonant elastic scattering of 21Na + p

    NASA Astrophysics Data System (ADS)

    Zhang, L. Y.; He, J. J.; Parikh, A.; Xu, S. W.; Yamaguchi, H.; Kahl, D.; Kubono, S.; Mohr, P.; Hu, J.; Ma, P.; Chen, S. Z.; Wakabayashi, Y.; Wang, H. W.; Tian, W. D.; Chen, R. F.; Guo, B.; Hashimoto, T.; Togano, Y.; Hayakawa, S.; Teranishi, T.; Iwasa, N.; Yamada, T.; Komatsubara, T.; Zhang, Y. H.; Zhou, X. H.

    2014-01-01

    The 18Ne(α,p)21Na reaction is thought to be one of the key breakout reactions from the hot CNO cycles to the rp process in type I x-ray bursts. In this work, the resonant properties of the compound nucleus 22Mg have been investigated by measuring the resonant elastic scattering of 21Na + p. An 89-MeV 21Na radioactive beam delivered from the CNS Radioactive Ion Beam Separator bombarded an 8.8 mg/cm2 thick polyethylene (CH2)n target. The 21Na beam intensity was about 2×105 pps, with a purity of about 70% on target. The recoiled protons were measured at the center-of-mass scattering angles of θc.m.≈175.2∘, 152.2∘, and 150.5∘ by three sets of ΔE-E telescopes, respectively. The excitation function was obtained with the thick-target method over energies Ex(22Mg)=5.5-9.2 MeV. In total, 23 states above the proton-threshold in 22Mg were observed, and their resonant parameters were determined via an R-matrix analysis of the excitation functions. We have made several new Jπ assignments and confirmed some tentative assignments made in previous work. The thermonuclear 18Ne(α,p)21Na rate has been recalculated based on our recommended spin-parity assignments. The astrophysical impact of our new rate has been investigated through one-zone postprocessing x-ray burst calculations. We find that the 18Ne(α,p)21Na rate significantly affects the peak nuclear energy generation rate, reaction fluxes, and onset temperature of this breakout reaction in these astrophysical phenomena.

  6. Simultaneous observations of reaction kinetics, creep behavior, and AE activities during syndeformational antigorite dehydration at high pressures

    NASA Astrophysics Data System (ADS)

    Kubo, T.; Iwasato, T.; Higo, Y.; Kato, T.; Kaneshima, S.; Uehara, S.; Koizumi, S.; Imamura, M.; Tange, Y.

    2015-12-01

    Intermediate-depth earthquakes are seismic activities in Wadati-Benioff zone at depths from 60 km to 300 km, where subducting plates deform plastically rather than brittle failure. Although it has been reported that unstable faulting occurred during antigorite dehydration even at higher pressures than ~2 GPa (e.g., Jung et al., 2009), the recent study by Chernak and Hirth (2011) revealed that the syndefromational antigorite dehydration does not produces stick-slip instabilities but stable fault slip. In the present study, we newly developed an AE monitoring system for high-pressure reaction-deformation processes combined with D-DIA and synchrotron monochromatic X-ray to observe reaction kinetics, creep behaviors, and AE activities simultaneously. We applied this technique to investigate shear instability during syndeformational antigorite dehydration. High-pressure deformation experiments were conducted up to ~8 GPa, ~1050 K, and strain rates of 3.4-9.2 x 10-5 s-1 in compression using a D-DIA type apparatus installed at BL-04B1, SPring-8. 50 keV mono X-ray were used to measure reaction kinetics and stress-strain data. To monitor shear instabilities by detecting AEs, six piezoelectric devices were positioned between first and second stage anvils of MA 6-6 type system. We used three kinds of starting materials of polycrystalline antigorite, fine-grained forsterite polycrystal, and two-phase mixtures of antigorite and San Carlos olivine (10%, 30%, and 50%atg). Clear contrasts were observed in AE activities between forsterite and antigorite samples. AE activities detected within the forsterite polycrystal suggested (semi) brittle behaviors at low pressures during the cold compression stage.
Almost no AEs were detected within the antigorite samples during any stages of cold compression, ramping, deformation, and syndeformational dehydration although localized deformation textures were observed in recovered samples. Instead, we detected some AEs outside the sample

  7. Cheap but accurate calculation of chemical reaction rate constants from ab initio data, via system-specific, black-box force fields

    NASA Astrophysics Data System (ADS)

    Steffen, Julien; Hartke, Bernd

    2017-10-01

    Building on the recently published quantum-mechanically derived force field (QMDFF) and its empirical valence bond extension, EVB-QMDFF, it is now possible to generate a reliable potential energy surface for any given elementary reaction step in an essentially black box manner. This requires a limited and pre-defined set of reference data near the reaction path and generates an accurate approximation of the reference potential energy surface, on and off the reaction path. This intermediate representation can be used to generate reaction rate data, with far better accuracy and reliability than with traditional approaches based on transition state theory (TST) or variational extensions thereof (VTST), even if those include sophisticated tunneling corrections. However, the additional expense at the reference level remains very modest. We demonstrate all this for three arbitrarily chosen example reactions.

  8. Calculations of Maxwellian-averaged cross sections and astrophysical reaction rates using the ENDF/B-VII.0, JEFF-3.1, JENDL-3.3, and ENDF/B-VI.8 evaluated nuclear reaction data libraries

    NASA Astrophysics Data System (ADS)

    Pritychenko, B.; Mughaghab, S. F.; Sonzogni, A. A.

    2010-11-01

    We have calculated the Maxwellian-averaged cross sections and astrophysical reaction rates of the stellar nucleosynthesis reactions (n, γ), (n, fission), (n, p), (n, α), and (n, 2n) using the ENDF/B-VII.0, JEFF-3.1, JENDL-3.3, and ENDF/B-VI.8 evaluated nuclear reaction data libraries. These four major nuclear reaction libraries were processed under the same conditions for Maxwellian temperatures (kT) ranging from 1 keV to 1 MeV. We compare our current calculations of the s-process nucleosynthesis nuclei with previous data sets and discuss the differences between them and the implications for nuclear astrophysics.

  9. Reaction mechanisms for enhancing carbon dioxide mineral sequestration

    NASA Astrophysics Data System (ADS)

    Jarvis, Karalee Ann

    Increasing global temperature resulting from the increased release of carbon dioxide into the atmosphere is one of the greatest problems facing society. Nevertheless, coal plants remain the largest source of electrical energy and carbon dioxide gas. For this reason, researchers are searching for methods to reduce carbon dioxide emissions into the atmosphere from the combustion of coal. Mineral sequestration of carbon dioxide reacted in electrolyte solutions at 185°C and 2200 psi with olivine (magnesium silicate) has been shown to produce environmentally benign carbonates. However, to make this method feasible for industrial applications, the reaction rate needs to be increased. Two methods were employed to increase the rate of mineral sequestration: reactant composition and concentration were altered independently in various runs. The products were analyzed with complete combustion for total carbon content. Crystalline phases in the product were analyzed with Debye-Scherrer X-ray powder diffraction. To understand the reaction mechanism, single crystals of San Carlos Olivine were reacted in two solutions: (0.64 M NaHCO3/1 M NaCl) and (5.5 M KHCO3) and analyzed with scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), and fluctuation electron microscopy (FEM) to study the surface morphology, atomic crystalline structure, composition and amorphous structure. From solution chemistry studies, it was found that increasing the activity of the bicarbonate ion increased the conversion rate of carbon dioxide to magnesite. The fastest conversion, 60% conversion in one hour, occurred in a solution of 5.5 M KHCO3. The reaction product particles, magnesium carbonate, significantly increased in both number density and size on the coupon when the bicarbonate ion activity was increased. During some experiments reaction vessel corrosion also altered the mineral sequestration mechanism. Nickel ions from vessel

  10. EFFECTS OF PORE STRUCTURE CHANGE AND MULTI-SCALE HETEROGENEITY ON CONTAMINANT TRANSPORT AND REACTION RATE UPSCALING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindquist, W. Brent; Jones, Keith W.; Um, Wooyong

    2013-02-15

    This project addressed the scaling of geochemical reactions to core and field scales, and the interrelationship between reaction rates and flow in porous media. We targeted reactive transport problems relevant to the Hanford site - specifically the reaction of highly caustic, radioactive waste solutions with subsurface sediments, and the immobilization of 90Sr and 129I through mineral incorporation and passive flow blockage, respectively. We addressed the correlation of results for pore-scale fluid-soil interaction with field-scale fluid flow, with the specific goals of (i) predicting attenuation of radionuclide concentration; (ii) estimating changes in flow rates through changes of soil permeabilities; and (iii)more » estimating effective reaction rates. In supplemental work, we also simulated reactive transport systems relevant to geologic carbon sequestration. As a whole, this research generated a better understanding of reactive transport in porous media, and resulted in more accurate methods for reaction rate upscaling and improved prediction of permeability evolution. These scientific advancements will ultimately lead to better tools for management and remediation of DOE’s legacy waste problems. We established three key issues of reactive flow upscaling, and organized this project in three corresponding thrust areas. 1) Reactive flow experiments. The combination of mineral dissolution and precipitation alters pore network structure and the subsequent flow velocities, thereby creating a complex interaction between reaction and transport. To examine this phenomenon, we conducted controlled laboratory experimentation using reactive flow-through columns. Results and Key Findings: Four reactive column experiments (S1, S3, S4, S5) have been completed in which simulated tank waste leachage (STWL) was reacted with pure quartz sand, with and without Aluminum. The STWL is a caustic solution that dissolves quartz. Because Al is a necessary element in the formation

  11. Structural requirements and reaction pathways in dimethyl ether combustion catalyzed by supported Pt clusters.

    PubMed

    Ishikawa, Akio; Neurock, Matthew; Iglesia, Enrique

    2007-10-31

    The identity and reversibility of the elementary steps required for catalytic combustion of dimethyl ether (DME) on Pt clusters were determined by combining isotopic and kinetic analyses with density functional theory estimates of reaction energies and activation barriers to probe the lowest energy paths. Reaction rates are limited by C-H bond activation in DME molecules adsorbed on surfaces of Pt clusters containing chemisorbed oxygen atoms at near-saturation coverages. Reaction energies and activation barriers for C-H bond activation in DME to form methoxymethyl and hydroxyl surface intermediates show that this step is more favorable than the activation of C-O bonds to form two methoxides, consistent with measured rates and kinetic isotope effects. This kinetic preference is driven by the greater stability of the CH3OCH2* and OH* intermediates relative to chemisorbed methoxides. Experimental activation barriers on Pt clusters agree with density functional theory (DFT)-derived barriers on oxygen-covered Pt(111). Measured DME turnover rates increased with increasing DME pressure, but decreased as the O2 pressure increased, because vacancies (*) on Pt surfaces nearly saturated with chemisorbed oxygen are required for DME chemisorption. DFT calculations show that although these surface vacancies are required, higher oxygen coverages lead to lower C-H activation barriers, because the basicity of oxygen adatoms increases with coverage and they become more effective in hydrogen abstraction from DME. Water inhibits reaction rates via quasi-equilibrated adsorption on vacancy sites, consistent with DFT results indicating that water binds more strongly than DME on vacancies. These conclusions are consistent with the measured kinetic response of combustion rates to DME, O2, and H2O, with H/D kinetic isotope effects, and with the absence of isotopic scrambling in reactants containing isotopic mixtures of 18O2-16O2 or 12CH3O12CH3-13CH3O13CH3. Turnover rates increased with Pt

  12. Iterated reaction graphs: simulating complex Maillard reaction pathways.

    PubMed

    Patel, S; Rabone, J; Russell, S; Tissen, J; Klaffke, W

    2001-01-01

    This study investigates a new method of simulating a complex chemical system including feedback loops and parallel reactions. The practical purpose of this approach is to model the actual reactions that take place in the Maillard process, a set of food browning reactions, in sufficient detail to be able to predict the volatile composition of the Maillard products. The developed framework, called iterated reaction graphs, consists of two main elements: a soup of molecules and a reaction base of Maillard reactions. An iterative process loops through the reaction base, taking reactants from and feeding products back to the soup. This produces a reaction graph, with molecules as nodes and reactions as arcs. The iterated reaction graph is updated and validated by comparing output with the main products found by classical gas-chromatographic/mass spectrometric analysis. To ensure a realistic output and convergence to desired volatiles only, the approach contains a number of novel elements: rate kinetics are treated as reaction probabilities; only a subset of the true chemistry is modeled; and the reactions are blocked into groups.

  13. Rate constant for the H˙ + H2O → ˙OH + H2 reaction at elevated temperatures measured by pulse radiolysis.

    PubMed

    Muroya, Y; Yamashita, S; Lertnaisat, P; Sanguanmith, S; Meesungnoen, J; Jay-Gerin, J-P; Katsumura, Y

    2017-11-22

    Maintaining the structural integrity of materials in nuclear power plants is an essential issue associated with safe operation. Hydrogen (H 2 ) addition or injection to coolants is a powerful technique that has been widely applied such that the reducing conditions in the coolant water avoid corrosion and stress corrosion cracking (SCC). Because the radiation-induced reaction of ˙OH + H 2 → H˙ + H 2 O plays a crucial role in these systems, the rate constant has been measured at operation temperatures of the reactors (285-300 °C) by pulse radiolysis, generating sufficient data for analysis. The reverse reaction H˙ + H 2 O → ˙OH + H 2 is negligibly slow at ambient temperature; however, it accelerates considerably quickly at elevated temperatures. Although the reverse reaction reduces the effectiveness of H 2 addition, reliable rate constants have not yet been measured. In this study, the rate constants have been determined in a temperature range of 250-350 °C by pulse radiolysis in an aqueous I - solution.

  14. A new type of power energy for accelerating chemical reactions: the nature of a microwave-driving force for accelerating chemical reactions.

    PubMed

    Zhou, Jicheng; Xu, Wentao; You, Zhimin; Wang, Zhe; Luo, Yushang; Gao, Lingfei; Yin, Cheng; Peng, Renjie; Lan, Lixin

    2016-04-27

    The use of microwave (MW) irradiation to increase the rate of chemical reactions has attracted much attention recently in nearly all fields of chemistry due to substantial enhancements in reaction rates. However, the intrinsic nature of the effects of MW irradiation on chemical reactions remains unclear. Herein, the highly effective conversion of NO and decomposition of H2S via MW catalysis were investigated. The temperature was decreased by several hundred degrees centigrade. Moreover, the apparent activation energy (Ea') decreased substantially under MW irradiation. Importantly, for the first time, a model of the interactions between microwave electromagnetic waves and molecules is proposed to elucidate the intrinsic reason for the reduction in the Ea' under MW irradiation, and a formula for the quantitative estimation of the decrease in the Ea' was determined. MW irradiation energy was partially transformed to reduce the Ea', and MW irradiation is a new type of power energy for speeding up chemical reactions. The effect of MW irradiation on chemical reactions was determined. Our findings challenge both the classical view of MW irradiation as only a heating method and the controversial MW non-thermal effect and open a promising avenue for the development of novel MW catalytic reaction technology.

  15. A new type of power energy for accelerating chemical reactions: the nature of a microwave-driving force for accelerating chemical reactions

    PubMed Central

    Zhou, Jicheng; Xu, Wentao; You, Zhimin; Wang, Zhe; Luo, Yushang; Gao, Lingfei; Yin, Cheng; Peng, Renjie; Lan, Lixin

    2016-01-01

    The use of microwave (MW) irradiation to increase the rate of chemical reactions has attracted much attention recently in nearly all fields of chemistry due to substantial enhancements in reaction rates. However, the intrinsic nature of the effects of MW irradiation on chemical reactions remains unclear. Herein, the highly effective conversion of NO and decomposition of H2S via MW catalysis were investigated. The temperature was decreased by several hundred degrees centigrade. Moreover, the apparent activation energy (Ea’) decreased substantially under MW irradiation. Importantly, for the first time, a model of the interactions between microwave electromagnetic waves and molecules is proposed to elucidate the intrinsic reason for the reduction in the Ea’ under MW irradiation, and a formula for the quantitative estimation of the decrease in the Ea’ was determined. MW irradiation energy was partially transformed to reduce the Ea’, and MW irradiation is a new type of power energy for speeding up chemical reactions. The effect of MW irradiation on chemical reactions was determined. Our findings challenge both the classical view of MW irradiation as only a heating method and the controversial MW non-thermal effect and open a promising avenue for the development of novel MW catalytic reaction technology. PMID:27118640

  16. Search for an explanation for neutralization rates of atomic ion-ion reactions

    NASA Astrophysics Data System (ADS)

    Miller, Thomas M.; Wiens, Justin P.; Shuman, Nicholas S.; Viggiano, Albert A.

    2016-09-01

    We have measured well over a hundred rate coefficients k for cation-anion mutual neutralization reactions at thermal energies. For molecular ions, the k at 300 K tend not to vary more than a factor of two or three, presumably because a great many neutral states cross the incoming Coulombic potential energy curve. Atomic-atomic systems, for which there are few favorable curve crossings between the neutral and Coulombic curves, show variation of at least a factor of 60 in the measured k values at 300 K. For reactions involving the noble-gas cations, we assume that the final state is the lowest excited state of the neutral, plus the ground state of the neutralized anion, because otherwise the crossing distance R is so small that the curve-crossing probability is nil. We plotted measured k values (in cm3/s) vs the distance R (in bohr) at which the neutral and Coulombic curves cross, the found that the data are fairly well fit by a power law for k, 10-4R - 2 . 8 . The question is, is there a physical explanation for the observed dependence on R? We will discuss the data and the expectations of Landau-Zener theory. Supported by Air Force Office of Scientific Research (AFOSR-2303EP).

  17. Deformed transition-state theory: Deviation from Arrhenius behavior and application to bimolecular hydrogen transfer reaction rates in the tunneling regime.

    PubMed

    Carvalho-Silva, Valter H; Aquilanti, Vincenzo; de Oliveira, Heibbe C B; Mundim, Kleber C

    2017-01-30

    A formulation is presented for the application of tools from quantum chemistry and transition-state theory to phenomenologically cover cases where reaction rates deviate from Arrhenius law at low temperatures. A parameter d is introduced to describe the deviation for the systems from reaching the thermodynamic limit and is identified as the linearizing coefficient in the dependence of the inverse activation energy with inverse temperature. Its physical meaning is given and when deviation can be ascribed to quantum mechanical tunneling its value is calculated explicitly. Here, a new derivation is given of the previously established relationship of the parameter d with features of the barrier in the potential energy surface. The proposed variant of transition state theory permits comparison with experiments and tests against alternative formulations. Prescriptions are provided and implemented to three hydrogen transfer reactions: CH 4  + OH → CH 3  + H 2 O, CH 3 Cl + OH → CH 2 Cl + H 2 O and H 2  + CN → H + HCN, widely investigated both experimentally and theoretically. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. A comprehensive model to determine the effects of temperature and species fluctuations on reaction rates in turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Goldstein, D.; Magnotti, F.; Chinitz, W.

    1983-01-01

    Reaction rates in turbulent, reacting flows are reviewed. Assumed probability density functions (pdf) modeling of reaction rates is being investigated in relation to a three variable pdf employing a 'most likely pdf' model. Chemical kinetic mechanisms treating hydrogen air combustion is studied. Perfectly stirred reactor modeling of flame stabilizing recirculation regions was used to investigate the stable flame regions for silane, hydrogen, methane, and propane, and for certain mixtures thereof. It is concluded that in general, silane can be counted upon to stabilize flames only when the overall fuel air ratio is close to or greater than unity. For lean flames, silane may tend to destabilize the flame. Other factors favoring stable flames are high initial reactant temperatures and system pressure.

  19. Theoretical evaluation of the reaction rates for {sup 26}Al(n,p){sup 26}Mg and {sup 26}Al(n,{alpha}){sup 23}Na

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oginni, B. M.; Iliadis, C.; Champagne, A. E.

    2011-02-15

    The reactions that destroy {sup 26}Al in massive stars have significance in a number of astrophysical contexts. We evaluate the reaction rates of {sup 26}Al(n,p){sup 26}Mg and {sup 26}Al(n,{alpha}){sup 23}Na using cross sections obtained from the codes empire and talys. These have been compared to the published rates obtained from the non-smoker code and to some experimental data. We show that the results obtained from empire and talys are comparable to those from non-smoker. We also show how the theoretical results vary with respect to changes in the input parameters. Finally, we present recommended rates for these reactions using themore » available experimental data and our new theoretical results.« less

  20. Trans-methylation reactions in plants: focus on the activated methyl cycle.

    PubMed

    Rahikainen, Moona; Alegre, Sara; Trotta, Andrea; Pascual, Jesús; Kangasjärvi, Saijaliisa

    2018-02-01

    Trans-methylation reactions are vital in basic metabolism, epigenetic regulation, RNA metabolism, and posttranslational control of protein function and therefore fundamental in determining the physiological processes in all living organisms. The plant kingdom is additionally characterized by the production of secondary metabolites that undergo specific hydroxylation, oxidation and methylation reactions to obtain a wide array of different chemical structures. Increasing research efforts have started to reveal the enzymatic pathways underlying the biosynthesis of complex metabolites in plants. Further engineering of these enzymatic machineries offers significant possibilities in the development of bio-based technologies, but necessitates deep understanding of their potential metabolic and regulatory interactions. Trans-methylation reactions are tightly coupled with the so-called activated methyl cycle (AMC), an essential metabolic circuit that maintains the trans-methylation capacity in all living cells. Tight regulation of the AMC is crucial in ensuring accurate trans-methylation reactions in different subcellular compartments, cell types, developmental stages and environmental conditions. This review addresses the organization and posttranslational regulation of the AMC and elaborates its critical role in determining metabolic regulation through modulation of methyl utilization in stress-exposed plants. © 2017 Scandinavian Plant Physiology Society.