Science.gov

Sample records for activation slow deactivation

  1. Tyrosine Residues from the S4-S5 Linker of Kv11.1 Channels Are Critical for Slow Deactivation.

    PubMed

    Ng, Chai-Ann; Gravel, Andrée E; Perry, Matthew D; Arnold, Alexandre A; Marcotte, Isabelle; Vandenberg, Jamie I

    2016-08-12

    Slow deactivation of Kv11.1 channels is critical for its function in the heart. The S4-S5 linker, which joins the voltage sensor and pore domains, plays a critical role in this slow deactivation gating. Here, we use NMR spectroscopy to identify the membrane-bound surface of the S4S5 linker, and we show that two highly conserved tyrosine residues within the KCNH subfamily of channels are membrane-associated. Site-directed mutagenesis and electrophysiological analysis indicates that Tyr-542 interacts with both the pore domain and voltage sensor residues to stabilize activated conformations of the channel, whereas Tyr-545 contributes to the slow kinetics of deactivation by primarily stabilizing the transition state between the activated and closed states. Thus, the two tyrosine residues in the Kv11.1 S4S5 linker play critical but distinct roles in the slow deactivation phenotype, which is a hallmark of Kv11.1 channels. PMID:27317659

  2. Mechanotransduction in neutrophil activation and deactivation.

    PubMed

    Ekpenyong, Andrew E; Toepfner, Nicole; Chilvers, Edwin R; Guck, Jochen

    2015-11-01

    Mechanotransduction refers to the processes through which cells sense mechanical stimuli by converting them to biochemical signals and, thus, eliciting specific cellular responses. Cells sense mechanical stimuli from their 3D environment, including the extracellular matrix, neighboring cells and other mechanical forces. Incidentally, the emerging concept of mechanical homeostasis,long term or chronic regulation of mechanical properties, seems to apply to neutrophils in a peculiar manner, owing to neutrophils' ability to dynamically switch between the activated/primed and deactivated/deprimed states. While neutrophil activation has been known for over a century, its deactivation is a relatively recent discovery. Even more intriguing is the reversibility of neutrophil activation and deactivation. We review and critically evaluate recent findings that suggest physiological roles for neutrophil activation and deactivation and discuss possible mechanisms by which mechanical stimuli can drive the oscillation of neutrophils between the activated and resting states. We highlight several molecules that have been identified in neutrophil mechanotransduction, including cell adhesion and transmembrane receptors, cytoskeletal and ion channel molecules. The physiological and pathophysiological implications of such mechanically induced signal transduction in neutrophils are highlighted as a basis for future work. This article is part of a Special Issue entitled: Mechanobiology. PMID:26211453

  3. Temperature (de)activated patchy colloidal particles

    NASA Astrophysics Data System (ADS)

    de las Heras, Daniel; Telo da Gama, Margarida M.

    2016-06-01

    We present a new model of patchy particles in which the interaction sites can be activated or deactivated by varying the temperature of the system. We study the thermodynamics of the system by means of Wertheim’s first order perturbation theory, and use Flory–Stockmayer theory of polymerization to analyse the percolation threshold. We find a very rich phase behaviour including lower critical points and reentrant percolation.

  4. Temperature (de)activated patchy colloidal particles.

    PubMed

    de Las Heras, Daniel; da Gama, Margarida M Telo

    2016-06-22

    We present a new model of patchy particles in which the interaction sites can be activated or deactivated by varying the temperature of the system. We study the thermodynamics of the system by means of Wertheim's first order perturbation theory, and use Flory-Stockmayer theory of polymerization to analyse the percolation threshold. We find a very rich phase behaviour including lower critical points and reentrant percolation. PMID:27115118

  5. 10 CFR 218.2 - Activation/Deactivation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Activation/Deactivation. 218.2 Section 218.2 Energy DEPARTMENT OF ENERGY OIL STANDBY MANDATORY INTERNATIONAL OIL ALLOCATION General Provisions § 218.2 Activation/Deactivation. (a) This rule shall take effect providing: (1) The International Energy Program has been activated; and, (2) The President...

  6. 10 CFR 218.2 - Activation/Deactivation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Activation/Deactivation. 218.2 Section 218.2 Energy DEPARTMENT OF ENERGY OIL STANDBY MANDATORY INTERNATIONAL OIL ALLOCATION General Provisions § 218.2 Activation/Deactivation. (a) This rule shall take effect providing: (1) The International Energy Program has...

  7. 10 CFR 218.2 - Activation/Deactivation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Activation/Deactivation. 218.2 Section 218.2 Energy DEPARTMENT OF ENERGY OIL STANDBY MANDATORY INTERNATIONAL OIL ALLOCATION General Provisions § 218.2 Activation/Deactivation. (a) This rule shall take effect providing: (1) The International Energy Program has...

  8. 10 CFR 218.2 - Activation/Deactivation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Activation/Deactivation. 218.2 Section 218.2 Energy DEPARTMENT OF ENERGY OIL STANDBY MANDATORY INTERNATIONAL OIL ALLOCATION General Provisions § 218.2 Activation/Deactivation. (a) This rule shall take effect providing: (1) The International Energy Program has...

  9. 10 CFR 218.2 - Activation/Deactivation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Activation/Deactivation. 218.2 Section 218.2 Energy DEPARTMENT OF ENERGY OIL STANDBY MANDATORY INTERNATIONAL OIL ALLOCATION General Provisions § 218.2 Activation/Deactivation. (a) This rule shall take effect providing: (1) The International Energy Program has...

  10. Activation-deactivation of self-healing in supramolecular rubbers

    NASA Astrophysics Data System (ADS)

    Corte, Laurent; Maes, Florine; Montarnal, Damien; Cantournet, Sabine; Tournilhac, Francois; Leibler, Ludwik; Mines-Paristech Cnrs (Umr7633) Team; Espci-Paristech Cnrs (Umr7167) Team

    2011-03-01

    Self-healing materials have the ability to restore autonomously their structural integrity after damage. Such a remarkable property was obtained recently in supramolecular rubbers formed by a network of small molecules associated via hydrogen bonds. Here we explore this self-healing through an original tack experiment where two parts of supramolecular rubber are brought into contact and then separated. These experiments reveal that a strong self-healing ability is activated by damage even though the surfaces of a molded part are weakly self-adhesive. In our testing conditions, a five minute contact between crack faces is sufficient to recover most mechanical properties of the bulk while days are required to obtain such adhesion levels with melt-pressed surfaces. We show that the deactivation of this self-healing ability seems unexpectedly slow as compared to the predicted dynamics of supramolecular networks. Fracture faces stored apart at room temperature still self-heal after days but are fully deactivated within hours by annealing. Combining these results with microstructural observations gives us a deeper insight into the mechanisms involved in this self-healing process.

  11. An optogenetic gene expression system with rapid activation and deactivation kinetics

    PubMed Central

    Motta-Mena, Laura B.; Reade, Anna; Mallory, Michael J.; Glantz, Spencer; Weiner, Orion D.; Lynch, Kristen W.; Gardner, Kevin H.

    2013-01-01

    Optogenetic gene expression systems can control transcription with spatial and temporal detail unequaled with traditional inducible promoter systems. However, current eukaryotic light-gated transcription systems are limited by toxicity, dynamic range, or slow activation/deactivation. Here we present an optogenetic gene expression system that addresses these shortcomings and demonstrate its broad utility. Our approach utilizes an engineered version of EL222, a bacterial Light-Oxygen-Voltage (LOV) protein that binds DNA when illuminated with blue light. The system has a large (>100-fold) dynamic range of protein expression, rapid activation (< 10 s) and deactivation kinetics (< 50 s), and a highly linear response to light. With this system, we achieve light-gated transcription in several mammalian cell lines and intact zebrafish embryos with minimal basal gene activation and toxicity. Our approach provides a powerful new tool for optogenetic control of gene expression in space and time. PMID:24413462

  12. C-Linker Accounts for Differential Sensitivity of ERG1 and ERG2 K+ Channels to RPR260243-Induced Slow Deactivation

    PubMed Central

    Gardner, Alison

    2015-01-01

    Compounds can activate human ether-à-go-go–related gene 1 (hERG1) channels by several different mechanisms, including a slowing of deactivation, an increase in single channel open probability, or a reduction in C-type inactivation. The first hERG1 activator to be discovered, RPR260243 ((3R,4R)-4-[3-(6-methoxyquinolin-4-yl)-3-oxo-propyl]-1-[3-(2,3,5-trifluorophenyl)-prop-2-ynyl]-piperidine-3-carboxylic acid) (RPR) induces a pronounced, voltage-dependent slowing of hERG1 deactivation. The putative binding site for RPR, previously mapped to a hydrophobic pocket located between two adjacent subunits, is fully conserved in the closely related rat ether-à-go-go–related gene 2 (rERG2), yet these channels are relatively insensitive to RPR. Here, we use site-directed mutagenesis and heterologous expression of channels in Xenopus oocytes to characterize the structural basis for the differential sensitivity of hERG1 and rERG2 channels to RPR. Analysis of hERG1-rERG2 chimeric channels indicated that the structural determinant of channel sensitivity to RPR was located within the cytoplasmic C-terminus. Analysis of a panel of mutant hERG1 and rERG2 channels further revealed that seven residues, five in the C-linker and two in the adjacent region of the cyclic nucleotide-binding homology domain, can fully account for the differential sensitivity of hERG1 and rERG2 channels to RPR. These findings provide further evidence that the C-linker is a key structural component of slow deactivation in ether-à-go-go–related gene channels. PMID:25888115

  13. De-Alerting and De-Activating Strategic Nuclear Weapons

    SciTech Connect

    KARAS, THOMAS H.

    2001-04-01

    Despite the end of the Cold War, the US and Russia continue to maintain their ICBMs and many SLBMs in a highly alerted state--they are technically prepared to launch the missiles within minutes of a command decision to do so. Some analysts argue that, particularly in light of the distressed condition of the Russian military, these high alert conditions are tantamount to standing on the edge of a nuclear cliff from which we should now step back. They have proposed various bilateral ''de-alerting'' measures, to be taken prior to and outside the context of the formal strategic arms reduction treaty (START) process. This paper identifies several criteria for a stable de-alerting regime, but fails to find de-alerting measures that convincingly satisfy the criteria. However, some de-alerting measures have promise as de-activation measures for systems due for elimination under the START II and prospective START III treaties. Moreover, once these systems are deactivated, a considerable part of the perceived need to keep nuclear forces on high alert as a survivability hedge will be reduced. At the same time, the U.S. and Russia could consider building on their earlier cooperative actions to reduce the risk of inadvertent nuclear war by enhancing their communications links and possibly joining in efforts to improve early warning systems.

  14. Activation and deactivation of high concentration arsenic with some evidence of precipitation

    SciTech Connect

    Rousseau, P.M.; Griffin, P.B.; Plummer, J.D.; Carey, P.G.

    1992-12-29

    Using box-shaped profiles created by laser melt annealing, the authors investigate the kinetics of arsenic activation and deactivation. They find deactivation shows no history effects, which can be consistent either with clustering or precipitation for the cases considered. For activation, they notice it occurs on very short time scales, followed by a slower deactivation process. This is suggestive evidence that at least some precipitation occurs.

  15. Attention, Emotion, and Deactivation of Default Activity in Inferior Medial Prefrontal Cortex

    ERIC Educational Resources Information Center

    Geday, Jacob; Gjedde, Albert

    2009-01-01

    Attention deactivates the inferior medial prefrontal cortex (IMPC), but it is uncertain if emotions can attenuate this deactivation. To test the extent to which common emotions interfere with attention, we measured changes of a blood flow index of brain activity in key areas of the IMPC with positron emission tomography (PET) of labeled water…

  16. Accelerating deactivation

    SciTech Connect

    FISHBACK, K.M.

    1999-02-01

    In recent years, the focus of the U.S. Department of Energy (DOE) complex has shifted from defense production to facility stabilization, decommissioning, and environmental restoration. This shift from production to cleanup requires a parallel shift from operations-focused management to project-focused management for an efficient facility deactivation. In the operation-focused management organization, activities are planned and executed based on production goals and are typically repetitive and cyclic. In the project-focused management environment, activities are based on a defined scope/end objective, start date, and completion date. Since the workforce used to perform production operations is also usually relied onto perform facility deactivation, it is important to shift from an operations management approach to a project management approach. It is best if the transition is accomplished quickly so the project can move forward and workers don't spend a lot of energy anticipating change. Therefore, it is essential that managers, planners, and other workers understand the key elements associated with planning a deactivation project. This paper describes a planning approach that has been used successfully to plan deactivation projects consistent with the requirements provided in DOE Order 430.1A Life Cycle Asset Management and the companion Deactivation Implementation Guide, G430. 1A-3, while exceeding schedule expectations and reducing costs. Although the planning of a deactivation project closely mirrors the classic project planning for construction projects, there are unique variations associated with facility deactivation. The key elements of planning a deactivation project are discussed relative to scope, schedule, and cost. Management tools such as project metrics and histograms are discussed as desired outputs from the planning process. In addition, lessons learned from planning deactivation projects across the DOE complex are discussed relative to making the

  17. Glut, war slow Mideast activity

    SciTech Connect

    Not Available

    1984-07-20

    Oilpatch activity in the Middle East has been on the slow side recently, and with a heated-up war between Iran and Iraq throwing off violent sparks around the Arabian Gulf, it's difficult to keep one's mind on business-as-usual. The article deals with the rising cost of insurance for shipping because of the war and the effects on drilling, production and the environment (oil spills). The development and production of offshore oil and gas in Egypt, Saudi Arabia, and the United Arab Emirates is also discussed.

  18. Spread of activation and deactivation in the brain: does age matter?

    PubMed Central

    Gordon, Brian A.; Tse, Chun-Yu; Gratton, Gabriele; Fabiani, Monica

    2014-01-01

    Cross-sectional aging functional MRI results are sometimes difficult to interpret, as standard measures of activation and deactivation may confound variations in signal amplitude and spread, which however, may be differentially affected by age-related changes in various anatomical and physiological factors. To disentangle these two types of measures, here we propose a novel method to obtain independent estimates of the peak amplitude and spread of the BOLD signal in areas activated (task-positive) and deactivated (task-negative) by a Sternberg task, in 14 younger and 28 older adults. The peak measures indicated that, compared to younger adults, older adults had increased activation of the task-positive network, but similar levels of deactivation in the task-negative network. Measures of signal spread revealed that older adults had an increased spread of activation in task-positive areas, but a starkly reduced spread of deactivation in task-negative areas. These effects were consistent across regions within each network. Further, there was greater variability in the anatomical localization of peak points in older adults, leading to reduced cross-subject overlap. These results reveal factors that may confound the interpretation of studies of aging. Additionally, spread measures may be linked to local connectivity phenomena and could be particularly useful to analyze age-related deactivation patterns, complementing the results obtained with standard peak and region of interest analyses. PMID:25360115

  19. Working Memory Encoding and Maintenance Deficits in Schizophrenia: Neural Evidence for Activation and Deactivation Abnormalities

    PubMed Central

    Anticevic, Alan; Repovs, Grega; Barch, Deanna M.

    2013-01-01

    Substantial evidence implicates working memory (WM) as a core deficit in schizophrenia (SCZ), purportedly due to primary deficits in dorsolateral prefrontal cortex functioning. Recent findings suggest that SCZ is also associated with abnormalities in suppression of certain regions during cognitive engagement—namely the default mode system—that may further contribute to WM pathology. However, no study has systematically examined activation and suppression abnormalities across both encoding and maintenance phases of WM in SCZ. Twenty-eight patients and 24 demographically matched healthy subjects underwent functional magnetic resonance imaging at 3T while performing a delayed match-to-sample WM task. Groups were accuracy matched to rule out performance effects. Encoding load was identical across subjects to facilitate comparisons across WM phases. We examined activation differences using an assumed model approach at the whole-brain level and within meta-analytically defined WM areas. Despite matched performance, we found regions showing less recruitment during encoding and maintenance for SCZ subjects. Furthermore, we identified 2 areas closely matching the default system, which SCZ subjects failed to deactivate across WM phases. Lastly, activation in prefrontal regions predicted the degree of deactivation for healthy but not SCZ subjects. Current results replicate and extend prefrontal recruitment abnormalities across WM phases in SCZ. Results also indicate deactivation abnormalities across WM phases, possibly due to inefficient prefrontal recruitment. Such regional deactivation may be critical for suppressing sources of interference during WM trace formation. Thus, deactivation deficits may constitute an additional source of impairments, which needs to be further characterized for a complete understanding of WM pathology in SCZ. PMID:21914644

  20. Deactivation model for the adsorption of trichloroethylene vapor on an activated carbon bed

    SciTech Connect

    Suyadal, Y.; Erol, M.; Oguz, H.

    2000-03-01

    In this work, the adsorption of trichloroethylene (TCE) vapor was investigated in a laboratory-scale packed-bed adsorber by using granular activated carbon (GAC) at constant pressure (101.3 kPa). The packed-bed adsorber (PBA) was operated batchwise with the charges of GAC particles in the ranges of 2.5--10.0 g for obtaining TCE breakthrough curves. Experiments were carried out at different temperatures (25.6 {le} T({degree}C) {le} 35.8) and TCE feedstock concentrations (6,350 {le} C (ppm TCE) {le} 7,950) within the range of space velocity (5,000 {le} {var_theta} (h{sup {minus}1}) {le} 17,000). The effects of TCE inlet concentration, operating temperature, and mass of adsorbent (m{sub Ads}) on the TCE breakthrough curves were investigated, respectively. The deactivation model (DM) was tested for these curves by using the analogy between the adsorption of TCE and the deactivation of catalyst particles. Observed adsorption rate constants (k{sub S}) and first-order deactivation rate constants (k{sub d}) were obtained from the model. It was found that the deactivation model describes the experimental breakthrough curves more accurately compared to the adsorption isotherms given in the literature.

  1. Catalytic deactivation of methane steam reforming catalysts. I. Activation

    SciTech Connect

    Agnelli, M.E.; Demicheli, M.C.; Ponzi, E.N.

    1987-08-01

    An alumina-supported catalyst was studied both in its original state and after activation and sintering. Chemical composition and textural properties were determined, and crystalline compounds were identified. Active-phase and support transformations occurring during activation were determined by differential thermoanalysis (DTA), temperature-programmed reduction (TPR), and X-ray diffraction. The catalyst activated by means of various procedures was characterized by measuring crystallite size.

  2. Causes of Activation and Deactivation of Modified Nanogold Catalysts during Prolonged Storage and Redox Treatments.

    PubMed

    Kolobova, Ekaterina; Kotolevich, Yulia; Pakrieva, Ekaterina; Mamontov, Grigory; Farías, Mario H; Bogdanchikova, Nina; Cortés Corberán, Vicente; Pestryakov, Alexey

    2016-01-01

    The catalytic properties of modified Au/TiO₂ catalysts for low-temperature CO oxidation are affected by deactivation and reactivation after long-term storage and by redox treatments. The effect of these phenomena on the catalysts was studied by HRTEM, BET, SEM, FTIR CO, XPS and H₂ TPR methods. The main cause for the deactivation and reactivation of catalytic properties is the variation in the electronic state of the supported gold, mainly, the proportion of singly charged ions Au⁺. The most active samples are those with the highest proportion of singly charged gold ions, while catalysts with a high content of trivalent gold ions are inactive at low-temperatures. Active states of gold, resistant to changes caused by the reaction process and storage conditions, can be stabilized by modification of the titanium oxide support with transition metals oxides. The catalyst modified with lanthanum oxide shows the highest stability and activity. PMID:27089310

  3. Activation and deactivation of vibronic channels in intact phycocyanin rods

    NASA Astrophysics Data System (ADS)

    Nganou, C.; David, L.; Meinke, R.; Adir, N.; Maultzsch, J.; Mkandawire, M.; Pouhè, D.; Thomsen, C.

    2014-02-01

    We investigated the excitation modes of the light-harvesting protein phycocyanin (PC) from Thermosynechococcus vulcanus in the crystalline state using UV and near-infrared Raman spectroscopy. The spectra revealed the absence of a hydrogen out-of-plane wagging (HOOP) mode in the PC trimer, which suggests that the HOOP mode is activated in the intact PC rod, while it is not active in the PC trimer. Furthermore, in the PC trimer an intense mode at 984 cm-1 is assigned to the C-C stretching vibration while the mode at 454 cm-1 is likely due to ethyl group torsion. In contrast, in the similar chromophore phytochromobilin the C5,10,15-D wag mode at 622 cm-1 does not come from a downshift of the HOOP. Additionally, the absence of modes between 1200 and 1300 cm-1 rules out functional monomerization. A correlation between phycocyanobilin (PCB) and phycoerythrobilin (PEB) suggests that the PCB cofactors of the PC trimer appear in a conformation similar to that of PEB. The conformation of the PC rod is consistent with that of the allophycocyanin (APC) trimer, and thus excitonic flow is facilitated between these two independent light-harvesting compounds. This excitonic flow from the PC rod to APC appears to be modulated by the vibration channels during HOOP wagging, C = C stretching, and the N-H rocking in-plan vibration.

  4. Decoupling HZSM-5 catalyst activity from deactivation during upgrading of pyrolysis oil vapors.

    PubMed

    Wan, Shaolong; Waters, Christopher; Stevens, Adam; Gumidyala, Abhishek; Jentoft, Rolf; Lobban, Lance; Resasco, Daniel; Mallinson, Richard; Crossley, Steven

    2015-02-01

    The independent evaluation of catalyst activity and stability during the catalytic pyrolysis of biomass is challenging because of the nature of the reaction system and rapid catalyst deactivation that force the use of excess catalyst. In this contribution we use a modified pyroprobe system in which pulses of pyrolysis vapors are converted over a series of HZSM-5 catalysts in a separate fixed-bed reactor controlled independently. Both the reactor-bed temperature and the Si/Al ratio of the zeolite are varied to evaluate catalyst activity and deactivation rates independently both on a constant surface area and constant acid site basis. Results show that there is an optimum catalyst-bed temperature for the production of aromatics, above which the production of light gases increases and that of aromatics decrease. Zeolites with lower Si/Al ratios give comparable initial rates for aromatics production, but far more rapid catalyst deactivation rates than those with higher Si/Al ratios. PMID:25504857

  5. Deactivation of the inferior colliculus by cooling demonstrates intercollicular modulation of neuronal activity

    PubMed Central

    Orton, Llwyd D.; Poon, Paul W. F.; Rees, Adrian

    2012-01-01

    The auditory pathways coursing through the brainstem are organized bilaterally in mirror image about the midline and at several levels the two sides are interconnected. One of the most prominent points of interconnection is the commissure of the inferior colliculus (CoIC). Anatomical studies have revealed that these fibers make reciprocal connections which follow the tonotopic organization of the inferior colliculus (IC), and that the commissure contains both excitatory and, albeit fewer, inhibitory fibers. The role of these connections in sound processing is largely unknown. Here we describe a method to address this question in the anaesthetized guinea pig. We used a cryoloop placed on one IC to produce reversible deactivation while recording electrophysiological responses to sounds in both ICs. We recorded single units, multi-unit clusters and local field potentials (LFPs) before, during and after cooling. The degree and spread of cooling was measured with a thermocouple placed in the IC and other auditory structures. Cooling sufficient to eliminate firing was restricted to the IC contacted by the cryoloop. The temperature of other auditory brainstem structures, including the contralateral IC and the cochlea were minimally affected. Cooling below 20°C reduced or eliminated the firing of action potentials in frequency laminae at depths corresponding to characteristic frequencies up to ~8 kHz. Modulation of neural activity also occurred in the un-cooled IC with changes in single unit firing and LFPs. Components of LFPs signaling lemniscal afferent input to the IC showed little change in amplitude or latency with cooling, whereas the later components, which likely reflect inter- and intra-collicular processing, showed marked changes in form and amplitude. We conclude that the cryoloop is an effective method of selectively deactivating one IC in guinea pig, and demonstrate that auditory processing in the IC is strongly influenced by the other. PMID:23248587

  6. β-Arrestin biosensors reveal a rapid, receptor-dependent activation/deactivation cycle.

    PubMed

    Nuber, Susanne; Zabel, Ulrike; Lorenz, Kristina; Nuber, Andreas; Milligan, Graeme; Tobin, Andrew B; Lohse, Martin J; Hoffmann, Carsten

    2016-03-31

    (β-)Arrestins are important regulators of G-protein-coupled receptors (GPCRs). They bind to active, phosphorylated GPCRs and thereby shut off 'classical' signalling to G proteins, trigger internalization of GPCRs via interaction with the clathrin machinery and mediate signalling via 'non-classical' pathways. In addition to two visual arrestins that bind to rod and cone photoreceptors (termed arrestin1 and arrestin4), there are only two (non-visual) β-arrestin proteins (β-arrestin1 and β-arrestin2, also termed arrestin2 and arrestin3), which regulate hundreds of different (non-visual) GPCRs. Binding of these proteins to GPCRs usually requires the active form of the receptors plus their phosphorylation by G-protein-coupled receptor kinases (GRKs). The binding of receptors or their carboxy terminus as well as certain truncations induce active conformations of (β-)arrestins that have recently been solved by X-ray crystallography. Here we investigate both the interaction of β-arrestin with GPCRs, and the β-arrestin conformational changes in real time and in living human cells, using a series of fluorescence resonance energy transfer (FRET)-based β-arrestin2 biosensors. We observe receptor-specific patterns of conformational changes in β-arrestin2 that occur rapidly after the receptor-β-arrestin2 interaction. After agonist removal, these changes persist for longer than the direct receptor interaction. Our data indicate a rapid, receptor-type-specific, two-step binding and activation process between GPCRs and β-arrestins. They further indicate that β-arrestins remain active after dissociation from receptors, allowing them to remain at the cell surface and presumably signal independently. Thus, GPCRs trigger a rapid, receptor-specific activation/deactivation cycle of β-arrestins, which permits their active signalling. PMID:27007855

  7. Catalyst activation, deactivation, and degradation in palladium-mediated Negishi cross-coupling reactions.

    PubMed

    Böck, Katharina; Feil, Julia E; Karaghiosoff, Konstantin; Koszinowski, Konrad

    2015-03-27

    Pd-mediated Negishi cross-coupling reactions were studied by a combination of kinetic measurements, electrospray-ionization (ESI) mass spectrometry, (31)P NMR and UV/Vis spectroscopy. The kinetic measurements point to a rate-determining oxidative addition. Surprisingly, this step seems to involve not only the Pd catalyst and the aryl halide substrate, but also the organozinc reagent. In this context, the ESI-mass spectrometric observation of heterobimetallic Pd-Zn complexes [L2 PdZnR](+) (L=S-PHOS, R=Bu, Ph, Bn) is particularly revealing. The inferred presence of these and related neutral complexes with a direct Pd-Zn interaction in solution explains how the organozinc reagent can modulate the reactivity of the Pd catalyst. Previous theoretical calculations by González-Pérez et al. (Organometallics- 2012, 31, 2053) suggest that the complexation by the organozinc reagent lowers the activity of the Pd catalyst. Presumably, a similar effect also causes the rate decrease observed upon addition of ZnBr2 . In contrast, added LiBr apparently counteracts the formation of Pd-Zn complexes and restores the high activity of the Pd catalyst. At longer reaction times, deactivation processes due to degradation of the S-PHOS ligand and aggregation of the Pd catalyst come into play, thus further contributing to the appreciable complexity of the title reaction. PMID:25709062

  8. Fast and slow activation kinetics of voltage-gated sodium channels in molluscan neurons.

    PubMed

    Gilly, W F; Gillette, R; McFarlane, M

    1997-05-01

    Whole cell patch-clamp recordings of Na current (I(Na)) were made under identical experimental conditions from isolated neurons from cephalopod (Loligo, Octopus) and gastropod (Aplysia, Pleurobranchaea, Doriopsilla) species to compare properties of activation gating. Voltage dependence of peak Na conductance (gNa) is very similar in all cases, but activation kinetics in the gastropod neurons studied are markedly slower. Kinetic differences are very pronounced only over the voltage range spanned by the gNa-voltage relation. At positive and negative extremes of voltage, activation and deactivation kinetics of I(Na) are practically indistinguishable in all species studied. Voltage-dependent rate constants underlying activation of the slow type of Na channel found in gastropods thus appear to be much more voltage dependent than are the equivalent rates in the universally fast type of channel that predominates in cephalopods. Voltage dependence of inactivation kinetics shows a similar pattern and is representative of activation kinetics for the two types of Na channels. Neurons with fast Na channels can thus make much more rapid adjustments in the number of open Na channels at physiologically relevant voltages than would be possible with only slow Na channels. This capability appears to be an adaptation that is highly evolved in cephalopods, which are well known for their high-speed swimming behaviors. Similarities in slow and fast Na channel subtypes in molluscan and mammalian neurons are discussed. PMID:9163364

  9. Nonlinear analysis and modeling of cortical activation and deactivation patterns in the immature fetal electrocorticogram

    NASA Astrophysics Data System (ADS)

    Schwab, Karin; Groh, Tobias; Schwab, Matthias; Witte, Herbert

    2009-03-01

    An approach combining time-continuous nonlinear stability analysis and a parametric bispectral method was introduced to better describe cortical activation and deactivation patterns in the immature fetal electroencephalogram (EEG). Signal models and data-driven investigations were performed to find optimal parameters of the nonlinear methods and to confirm the occurrence of nonlinear sections in the fetal EEG. The resulting measures were applied to the in utero electrocorticogram (ECoG) of fetal sheep at 0.7 gestation when organized sleep states were not developed and compared to previous results at 0.9 gestation. Cycling of the nonlinear stability of the fetal ECoG occurred already at this early gestational age, suggesting the presence of premature sleep states. This was accompanied by cycling of the time-variant biamplitude which reflected ECoG synchronization effects during premature sleep states associated with nonrapid eye movement sleep later in gestation. Thus, the combined nonlinear and time-variant approach was able to provide important insights into the properties of the immature fetal ECoG.

  10. Psychosocial versus physiological stress - Meta-analyses on deactivations and activations of the neural correlates of stress reactions.

    PubMed

    Kogler, Lydia; Müller, Veronika I; Chang, Amy; Eickhoff, Simon B; Fox, Peter T; Gur, Ruben C; Derntl, Birgit

    2015-10-01

    Stress is present in everyday life in various forms and situations. Two stressors frequently investigated are physiological and psychosocial stress. Besides similar subjective and hormonal responses, it has been suggested that they also share common neural substrates. The current study used activation-likelihood-estimation meta-analysis to test this assumption by integrating results of previous neuroimaging studies on stress processing. Reported results are cluster-level FWE corrected. The inferior frontal gyrus (IFG) and the anterior insula (AI) were the only regions that demonstrated overlapping activation for both stressors. Analysis of physiological stress showed consistent activation of cognitive and affective components of pain processing such as the insula, striatum, or the middle cingulate cortex. Contrarily, analysis across psychosocial stress revealed consistent activation of the right superior temporal gyrus and deactivation of the striatum. Notably, parts of the striatum appeared to be functionally specified: the dorsal striatum was activated in physiological stress, whereas the ventral striatum was deactivated in psychosocial stress. Additional functional connectivity and decoding analyses further characterized this functional heterogeneity and revealed higher associations of the dorsal striatum with motor regions and of the ventral striatum with reward processing. Based on our meta-analytic approach, activation of the IFG and the AI seems to indicate a global neural stress reaction. While physiological stress activates a motoric fight-or-flight reaction, during psychosocial stress attention is shifted towards emotion regulation and goal-directed behavior, and reward processing is reduced. Our results show the significance of differentiating physiological and psychosocial stress in neural engagement. Furthermore, the assessment of deactivations in addition to activations in stress research is highly recommended. PMID:26123376

  11. Novel method demonstrates differential ligand activation and phosphatase-mediated deactivation of insulin receptor tyrosine-specific phosphorylation.

    PubMed

    Cieniewicz, Anne M; Cooper, Philip R; McGehee, Jennifer; Lingham, Russell B; Kihm, Anthony J

    2016-08-01

    Insulin receptor signaling is a complex cascade leading to a multitude of intracellular functional responses. Three natural ligands, insulin, IGF1 and IGF2, are each capable of binding with different affinities to the insulin receptor, and result in variable biological responses. However, it is likely these affinity differences alone cannot completely explain the myriad of diverse cellular outcomes. Ligand binding initiates activation of a signaling cascade resulting in phosphorylation of the IR itself and other intracellular proteins. The direct catalytic activity along with the temporally coordinated assembly of signaling proteins is critical for insulin receptor signaling. We hypothesized that determining differential phosphorylation among individual tyrosine sites activated by ligand binding or dephosphorylation by phosphatases could provide valuable insight into insulin receptor signaling. Here, we present a sensitive, novel immunoassay adapted from Meso Scale Discovery technology to quantitatively measure changes in site-specific phosphorylation levels on endogenous insulin receptors from HuH7 cells. We identified insulin receptor phosphorylation patterns generated upon differential ligand activation and phosphatase-mediated deactivation. The data demonstrate that insulin, IGF1 and IGF2 elicit different insulin receptor phosphorylation kinetics and potencies that translate to downstream signaling. Furthermore, we show that insulin receptor deactivation, regulated by tyrosine phosphatases, occurs distinctively across specific tyrosine residues. In summary, we present a novel, quantitative and high-throughput assay that has uncovered differential ligand activation and site-specific deactivation of the insulin receptor. These results may help elucidate some of the insulin signaling mechanisms, discriminate ligand activity and contribute to a better understanding of insulin receptor signaling. We propose this methodology as a powerful approach to characterize

  12. GlialCAM, a CLC-2 Cl(-) channel subunit, activates the slow gate of CLC chloride channels.

    PubMed

    Jeworutzki, Elena; Lagostena, Laura; Elorza-Vidal, Xabier; López-Hernández, Tania; Estévez, Raúl; Pusch, Michael

    2014-09-01

    GlialCAM, a glial cell adhesion molecule mutated in megalencephalic leukoencephalopathy with subcortical cysts, targets the CLC-2 Cl(-) channel to cell contacts in glia and activates CLC-2 currents in vitro and in vivo. We found that GlialCAM clusters all CLC channels at cell contacts in vitro and thus studied GlialCAM interaction with CLC channels to investigate the mechanism of functional activation. GlialCAM slowed deactivation kinetics of CLC-Ka/barttin channels and increased CLC-0 currents opening the common gate and slowing its deactivation. No functional effect was seen for common gate deficient CLC-0 mutants. Similarly, GlialCAM targets the common gate deficient CLC-2 mutant E211V/H816A to cell contacts, without altering its function. Thus, GlialCAM is able to interact with all CLC channels tested, targeting them to cell junctions and activating them by stabilizing the open configuration of the common gate. These results are important to better understand the physiological role of GlialCAM/CLC-2 interaction. PMID:25185546

  13. GlialCAM, a CLC-2 Cl- Channel Subunit, Activates the Slow Gate of CLC Chloride Channels

    PubMed Central

    Jeworutzki, Elena; Lagostena, Laura; Elorza-Vidal, Xabier; López-Hernández, Tania; Estévez, Raúl; Pusch, Michael

    2014-01-01

    GlialCAM, a glial cell adhesion molecule mutated in megalencephalic leukoencephalopathy with subcortical cysts, targets the CLC-2 Cl- channel to cell contacts in glia and activates CLC-2 currents in vitro and in vivo. We found that GlialCAM clusters all CLC channels at cell contacts in vitro and thus studied GlialCAM interaction with CLC channels to investigate the mechanism of functional activation. GlialCAM slowed deactivation kinetics of CLC-Ka/barttin channels and increased CLC-0 currents opening the common gate and slowing its deactivation. No functional effect was seen for common gate deficient CLC-0 mutants. Similarly, GlialCAM targets the common gate deficient CLC-2 mutant E211V/H816A to cell contacts, without altering its function. Thus, GlialCAM is able to interact with all CLC channels tested, targeting them to cell junctions and activating them by stabilizing the open configuration of the common gate. These results are important to better understand the physiological role of GlialCAM/CLC-2 interaction. PMID:25185546

  14. Regulation of Transcription through Light-Activation and Light-Deactivation of Triplex-Forming Oligonucleotides in Mammalian Cells

    PubMed Central

    Govan, Jeane M.; Uprety, Rajendra; Hemphill, James; Lively, Mark O.

    2012-01-01

    Triplex-forming oligonucleotides (TFOs) are efficient tools to regulate gene expression through the inhibition of transcription. Here, nucleobase-caging technology was applied to the first temporal regulation of transcription through light-activated TFOs. Through site-specific incorporation of caged thymidine nucleotides, the TFO:DNA triplex formation is blocked, rendering the TFO inactive. However, after a brief UV irradiation, the caging groups are removed, activating the TFO, and leading to the inhibition of gene transcription. Furthermore, the synthesis and site-specific incorporation of caged deoxycytidine nucleotides within TFO inhibitor sequences was developed, and allows for the light-deactivation of TFO function and thus photochemical activation of gene expression. After UV-induced removal of the caging groups, the TFO forms a DNA dumbbell structure, rendering it inactive, releasing it from the DNA, and activating transcription. These are the first examples of light-regulated TFOs and their application in the photochemical activation and deactivation of gene expression. In addition, hairpin loop structures were found to significantly increase the efficacy of phosphodiester DNA-based TFOs in tissue culture. PMID:22540192

  15. Regulation of transcription through light-activation and light-deactivation of triplex-forming oligonucleotides in mammalian cells.

    PubMed

    Govan, Jeane M; Uprety, Rajendra; Hemphill, James; Lively, Mark O; Deiters, Alexander

    2012-07-20

    Triplex-forming oligonucleotides (TFOs) are efficient tools to regulate gene expression through the inhibition of transcription. Here, nucleobase-caging technology was applied to the temporal regulation of transcription through light-activated TFOs. Through site-specific incorporation of caged thymidine nucleotides, the TFO:DNA triplex formation is blocked, rendering the TFO inactive. However, after a brief UV irradiation, the caging groups are removed, activating the TFO and leading to the inhibition of transcription. Furthermore, the synthesis and site-specific incorporation of caged deoxycytidine nucleotides within TFO inhibitor sequences was developed, allowing for the light-deactivation of TFO function and thus photochemical activation of gene expression. After UV-induced removal of the caging groups, the TFO forms a DNA dumbbell structure, rendering it inactive, releasing it from the DNA, and activating transcription. These are the first examples of light-regulated TFOs and their application in the photochemical activation and deactivation of gene expression. In addition, hairpin loop structures were found to significantly increase the efficacy of phosphodiester DNA-based TFOs in tissue culture. PMID:22540192

  16. The Orosomucoid 1 protein is involved in the vitamin D – mediated macrophage de-activation process

    SciTech Connect

    Gemelli, Claudia; Martello, Andrea; Montanari, Monica; Zanocco Marani, Tommaso; Salsi, Valentina; Zappavigna, Vincenzo; Parenti, Sandra; Vignudelli, Tatiana; Selmi, Tommaso; Ferrari, Sergio; Grande, Alexis

    2013-12-10

    Orosomucoid 1 (ORM1), also named Alpha 1 acid glycoprotein A (AGP-A), is an abundant plasma protein characterized by anti-inflammatory and immune-modulating properties. The present study was designed to identify a possible correlation between ORM1 and Vitamin D3 (1,25(OH)2D3), a hormone exerting a widespread effect on cell proliferation, differentiation and regulation of the immune system. In particular, the data described here indicated that ORM1 is a 1,25(OH)2D3 primary response gene, characterized by the presence of a VDRE element inside the 1 kb sequence of its proximal promoter region. This finding was demonstrated with gene expression studies, Chromatin Immunoprecipitation and luciferase transactivation experiments and confirmed by VDR full length and dominant negative over-expression. In addition, several experiments carried out in human normal monocytes demonstrated that the 1,25(OH)2D3 – VDR – ORM1 pathway plays a functional role inside the macrophage de-activation process and that ORM1 may be considered as a signaling molecule involved in the maintenance of tissue homeostasis and remodeling. - Highlights: • ORM1 is a Vitamin D primary response gene. • VD and its receptor VDR are involved in the de-activation process mediated by human resident macrophages. • The signaling pathway VD-VDR-ORM1 plays an important role in the control of macrophage de-activation process. • ORM1 may be defined as a signaling molecule implicated in the maintenance of tissue homeostasis and remodeling.

  17. Laminar analysis of slow wave activity in humans

    PubMed Central

    Csercsa, Richárd; Dombovári, Balázs; Fabó, Dániel; Wittner, Lucia; Erőss, Loránd; Entz, László; Sólyom, András; Rásonyi, György; Szűcs, Anna; Kelemen, Anna; Jakus, Rita; Juhos, Vera; Grand, László; Magony, Andor; Halász, Péter; Freund, Tamás F.; Maglóczky, Zsófia; Cash, Sydney S.; Papp, László; Karmos, György; Halgren, Eric

    2010-01-01

    Brain electrical activity is largely composed of oscillations at characteristic frequencies. These rhythms are hierarchically organized and are thought to perform important pathological and physiological functions. The slow wave is a fundamental cortical rhythm that emerges in deep non-rapid eye movement sleep. In animals, the slow wave modulates delta, theta, spindle, alpha, beta, gamma and ripple oscillations, thus orchestrating brain electrical rhythms in sleep. While slow wave activity can enhance epileptic manifestations, it is also thought to underlie essential restorative processes and facilitate the consolidation of declarative memories. Animal studies show that slow wave activity is composed of rhythmically recurring phases of widespread, increased cortical cellular and synaptic activity, referred to as active- or up-state, followed by cellular and synaptic inactivation, referred to as silent- or down-state. However, its neural mechanisms in humans are poorly understood, since the traditional intracellular techniques used in animals are inappropriate for investigating the cellular and synaptic/transmembrane events in humans. To elucidate the intracortical neuronal mechanisms of slow wave activity in humans, novel, laminar multichannel microelectrodes were chronically implanted into the cortex of patients with drug-resistant focal epilepsy undergoing cortical mapping for seizure focus localization. Intracortical laminar local field potential gradient, multiple-unit and single-unit activities were recorded during slow wave sleep, related to simultaneous electrocorticography, and analysed with current source density and spectral methods. We found that slow wave activity in humans reflects a rhythmic oscillation between widespread cortical activation and silence. Cortical activation was demonstrated as increased wideband (0.3–200 Hz) spectral power including virtually all bands of cortical oscillations, increased multiple- and single-unit activity and

  18. Laminar analysis of slow wave activity in humans.

    PubMed

    Csercsa, Richárd; Dombovári, Balázs; Fabó, Dániel; Wittner, Lucia; Eross, Loránd; Entz, László; Sólyom, András; Rásonyi, György; Szucs, Anna; Kelemen, Anna; Jakus, Rita; Juhos, Vera; Grand, László; Magony, Andor; Halász, Péter; Freund, Tamás F; Maglóczky, Zsófia; Cash, Sydney S; Papp, László; Karmos, György; Halgren, Eric; Ulbert, István

    2010-09-01

    Brain electrical activity is largely composed of oscillations at characteristic frequencies. These rhythms are hierarchically organized and are thought to perform important pathological and physiological functions. The slow wave is a fundamental cortical rhythm that emerges in deep non-rapid eye movement sleep. In animals, the slow wave modulates delta, theta, spindle, alpha, beta, gamma and ripple oscillations, thus orchestrating brain electrical rhythms in sleep. While slow wave activity can enhance epileptic manifestations, it is also thought to underlie essential restorative processes and facilitate the consolidation of declarative memories. Animal studies show that slow wave activity is composed of rhythmically recurring phases of widespread, increased cortical cellular and synaptic activity, referred to as active- or up-state, followed by cellular and synaptic inactivation, referred to as silent- or down-state. However, its neural mechanisms in humans are poorly understood, since the traditional intracellular techniques used in animals are inappropriate for investigating the cellular and synaptic/transmembrane events in humans. To elucidate the intracortical neuronal mechanisms of slow wave activity in humans, novel, laminar multichannel microelectrodes were chronically implanted into the cortex of patients with drug-resistant focal epilepsy undergoing cortical mapping for seizure focus localization. Intracortical laminar local field potential gradient, multiple-unit and single-unit activities were recorded during slow wave sleep, related to simultaneous electrocorticography, and analysed with current source density and spectral methods. We found that slow wave activity in humans reflects a rhythmic oscillation between widespread cortical activation and silence. Cortical activation was demonstrated as increased wideband (0.3-200 Hz) spectral power including virtually all bands of cortical oscillations, increased multiple- and single-unit activity and powerful

  19. Activating AMP-activated protein kinase (AMPK) slows renal cystogenesis.

    PubMed

    Takiar, Vinita; Nishio, Saori; Seo-Mayer, Patricia; King, J Darwin; Li, Hui; Zhang, Li; Karihaloo, Anil; Hallows, Kenneth R; Somlo, Stefan; Caplan, Michael J

    2011-02-01

    Renal cyst development and expansion in autosomal dominant polycystic kidney disease (ADPKD) involves both fluid secretion and abnormal proliferation of cyst-lining epithelial cells. The chloride channel of the cystic fibrosis transmembrane conductance regulator (CFTR) participates in secretion of cyst fluid, and the mammalian target of rapamycin (mTOR) pathway may drive proliferation of cyst epithelial cells. CFTR and mTOR are both negatively regulated by AMP-activated protein kinase (AMPK). Metformin, a drug in wide clinical use, is a pharmacological activator of AMPK. We find that metformin stimulates AMPK, resulting in inhibition of both CFTR and the mTOR pathways. Metformin induces significant arrest of cystic growth in both in vitro and ex vivo models of renal cystogenesis. In addition, metformin administration produces a significant decrease in the cystic index in two mouse models of ADPKD. Our results suggest a possible role for AMPK activation in slowing renal cystogenesis as well as the potential for therapeutic application of metformin in the context of ADPKD. PMID:21262823

  20. Photoluminescence study of time- and spatial-dependent light induced trap de-activation in CH3NH3PbI3 perovskite films.

    PubMed

    Fu, Xiao; Jacobs, Daniel A; Beck, Fiona J; Duong, The; Shen, Heping; Catchpole, Kylie R; White, Thomas P

    2016-08-10

    Organometal halide perovskite-based solar cells have rapidly achieved high efficiency in recent years. However, many fundamental recombination mechanisms underlying the excellent performance are still not well understood. Here we apply confocal photoluminescence microscopy to investigate the time and spatial characteristics of light-induced trap de-activation in CH3NH3PbI3 perovskite films. Trap de-activation is characterized by a dramatic increase in PL emission during continuous laser illumination accompanied by a lateral expansion of the PL enhancement far beyond the laser spot. These observations are attributed to an oxygen-assisted trap de-activation process associated with carrier diffusion. To model this effect, we add a trap de-activation term to the standard semiconductor carrier recombination and diffusion models. With this approach we are able to reproduce the observed temporal and spatial dependence of laser induced PL enhancement using realistic physical parameters. Furthermore, we experimentally investigate the role of trap diffusion in this process, and demonstrate that the trap de-activation is not permanent, with the traps appearing again once the illumination is turned off. This study provides new insights into recombination and trap dynamics in perovskite films that could offer a better understanding of perovskite solar cell performance. PMID:27472263

  1. Propagated infra-slow intrinsic brain activity reorganizes across wake and slow wave sleep

    PubMed Central

    Mitra, Anish; Snyder, Abraham Z; Tagliazucchi, Enzo; Laufs, Helmut; Raichle, Marcus E

    2015-01-01

    Propagation of slow intrinsic brain activity has been widely observed in electrophysiogical studies of slow wave sleep (SWS). However, in human resting state fMRI (rs-fMRI), intrinsic activity has been understood predominantly in terms of zero-lag temporal synchrony (functional connectivity) within systems known as resting state networks (RSNs). Prior rs-fMRI studies have found that RSNs are generally preserved across wake and sleep. Here, we use a recently developed analysis technique to study propagation of infra-slow intrinsic blood oxygen level dependent (BOLD) signals in normal adults during wake and SWS. This analysis reveals marked changes in propagation patterns in SWS vs. wake. Broadly, ordered propagation is preserved within traditionally defined RSNs but lost between RSNs. Additionally, propagation between cerebral cortex and subcortical structures reverses directions, and intra-cortical propagation becomes reorganized, especially in visual and sensorimotor cortices. These findings show that propagated rs-fMRI activity informs theoretical accounts of the neural functions of sleep. DOI: http://dx.doi.org/10.7554/eLife.10781.001 PMID:26551562

  2. Altered processing of acoustic stimuli during sleep: reduced auditory activation and visual deactivation detected by a combined fMRI/EEG study.

    PubMed

    Czisch, Michael; Wetter, Thomas C; Kaufmann, Christian; Pollmächer, Thomas; Holsboer, Florian; Auer, Dorothee P

    2002-05-01

    Although there is evidence that acoustic stimuli are processed differently during sleep and wakefulness, little is known about the underlying neuronal mechanisms. In the present study, the processing of an acoustic stimulus was investigated during different non rapid eye movement (NREM) sleep stages using a combined EEG/fMRI approach in healthy human volunteers: A text stimulus was presented to sleep-deprived subjects prior to and after the onset of sleep, and single-slice silent fMRI were acquired. We found significantly different blood oxygenation level-dependent (BOLD) contrast responses during sleep compared to wakefulness. During NREM sleep stages 1 and 2 and during slow wave sleep (SWS) we observed reduced activation in the auditory cortex and a pronounced negative signal in the visual cortex and precuneus. Acoustic stimulation during sleep was accompanied by an increase in EEG frequency components in the low delta frequency range. Provided that neurovascular coupling is not altered during sleep, the negative transmodal BOLD response which is most pronounced during NREM sleep stages 1 and 2 reflects a deactivation predominantly in the visual cortex suggesting that this decrease in neuronal activity protects the brain from the arousing effects of external stimulation during sleep not only in the primary targeted sensory cortex but also in other brain regions. PMID:11969332

  3. PCB regulations and their application to deactivation and decommissioning activities: Technical assistance project

    SciTech Connect

    1996-04-01

    DOE`s economic development plans involve efforts to deactivate and decommission or refurbish site buildings and operational facilities for other uses. Site personnel must decide on disposition of stored materials, which include increasing numbers of excess and/or unwanted oil-filled equipment (e.g., transformers, hydraulic systems, heat transfer systems) and oil-containing `orphaned` drums. Because oil and these items can also contain polychlorinated biphenyls, it is essential that site personnel become aware of the regulations applicable to PCBs (adherence will minimize DOE hazardous material management liabilities). A recent incident at a DOE facility provides a case in point with important lessons to be learned for all sites within the DOE complex.

  4. Changes in cortical slow wave activity in healthy aging.

    PubMed

    Leirer, Vera Maria; Wienbruch, Christian; Kolassa, Stephan; Schlee, Winfried; Elbert, Thomas; Kolassa, Iris-Tatjana

    2011-09-01

    A number of studies have demonstrated enhanced slow wave activity associated with pathological brain function e.g. in stroke patients, schizophrenia, depression, Morbus Alzheimer, and post-traumatic stress disorder. However, the association between slow wave activity and healthy aging has remained largely unexplored. This study examined whether the frequency at which focal generators of delta waves appear in the healthy cerebral cortex changes with age and whether this measure relates to cognitive performance. We investigated 53 healthy individuals aged 18 to 89 years and assessed MEG during a resting condition. Generators of focal magnetic slow waves were localized. Results showed a significant influence of age: dipole density decreases with increasing age. The relationship between cognitive performance and delta dipole density was not significant. The results suggest that in healthy aging slow waves decrease with aging and emphasize the importance of age-matched control groups for further studies. Increased appearance of slow waves as a marker for pathological stages can only be detected in relation to a control group of the same age. PMID:21698438

  5. Slow Magnetosonic Waves and Fast Flows in Active Region Loops

    NASA Technical Reports Server (NTRS)

    Ofman, L.; Wang, T. J.; Davila, J. M.

    2012-01-01

    Recent extreme ultraviolet spectroscopic observations indicate that slow magnetosonic waves are present in active region (AR) loops. Some of the spectral data were also interpreted as evidence of fast (approx 100-300 km/s) quasiperiodic flows. We have performed three-dimensional magnetohydrodynamic (3D MHD) modeling of a bipolar AR that contains impulsively generated waves and flows in coronal loops. The model AR is initiated with a dipole magnetic field and gravitationally stratified density, with an upflow-driven steadily or periodically in localized regions at the footpoints of magnetic loops. The resulting flows along the magnetic field lines of the AR produce higher density loops compared to the surrounding plasma by injection of material into the flux tubes and the establishment of siphon flow.We find that the impulsive onset of flows with subsonic speeds result in the excitation of damped slow magnetosonic waves that propagate along the loops and coupled nonlinearly driven fast-mode waves. The phase speed of the slow magnetosonic waves is close to the coronal sound speed. When the amplitude of the driving pulses is increased we find that slow shock-like wave trains are produced. When the upflows are driven periodically, undamped oscillations are produced with periods determined by the periodicity of the upflows. Based on the results of the 3D MHD model we suggest that the observed slow magnetosonic waves and persistent upflows may be produced by the same impulsive events at the bases of ARs.

  6. SLOW MAGNETOSONIC WAVES AND FAST FLOWS IN ACTIVE REGION LOOPS

    SciTech Connect

    Ofman, L.; Wang, T. J.; Davila, J. M.

    2012-08-01

    Recent extreme ultraviolet spectroscopic observations indicate that slow magnetosonic waves are present in active region (AR) loops. Some of the spectral data were also interpreted as evidence of fast ({approx}100-300 km s{sup -1}) quasi-periodic flows. We have performed three-dimensional magnetohydrodynamic (3D MHD) modeling of a bipolar AR that contains impulsively generated waves and flows in coronal loops. The model AR is initiated with a dipole magnetic field and gravitationally stratified density, with an upflow-driven steadily or periodically in localized regions at the footpoints of magnetic loops. The resulting flows along the magnetic field lines of the AR produce higher density loops compared to the surrounding plasma by injection of material into the flux tubes and the establishment of siphon flow. We find that the impulsive onset of flows with subsonic speeds result in the excitation of damped slow magnetosonic waves that propagate along the loops and coupled nonlinearly driven fast-mode waves. The phase speed of the slow magnetosonic waves is close to the coronal sound speed. When the amplitude of the driving pulses is increased we find that slow shock-like wave trains are produced. When the upflows are driven periodically, undamped oscillations are produced with periods determined by the periodicity of the upflows. Based on the results of the 3D MHD model we suggest that the observed slow magnetosonic waves and persistent upflows may be produced by the same impulsive events at the bases of ARs.

  7. Spindle activity phase-locked to sleep slow oscillations.

    PubMed

    Klinzing, Jens G; Mölle, Matthias; Weber, Frederik; Supp, Gernot; Hipp, Jörg F; Engel, Andreas K; Born, Jan

    2016-07-01

    The <1Hz slow oscillation (SO) and spindles are hallmarks of mammalian non-rapid eye movement and slow wave sleep. Spindle activity occurring phase-locked to the SO is considered a candidate mediator of memory consolidation during sleep. We used source localization of magnetoencephalographic (MEG) and electroencephalographic (EEG) recordings from 11 sleeping human subjects for an in-depth analysis of the temporal and spatial properties of sleep spindles co-occurring with SOs. Slow oscillations and spindles were identified in the EEG and related to the MEG signal, providing enhanced spatial resolution. In the temporal domain, we confirmed a phase-locking of classical 12-15Hz fast spindle activity to the depolarizing SO up-state and of 9-12Hz slow spindle activity to the up-to-down-state transition of the SO. In the spatial domain, we show a broad spread of spindle activity, with less distinct anterior-posterior separation of fast and slow spindles than commonly seen in the EEG. We further tested a prediction of current memory consolidation models, namely the existence of a spatial bias of SOs over sleep spindles as a mechanism to promote localized neuronal synchronization and plasticity. In contrast to that prediction, a comparison of SOs dominating over the left vs. right hemisphere did not reveal any signs of a concurrent lateralization of spindle activity co-occurring with these SOs. Our data are consistent with the concept of the neocortical SO exerting top-down control over thalamic spindle generation. However, they call into question the notion that SOs locally coordinate spindles and thereby inform spindle-related memory processing. PMID:27103135

  8. Evidence for deactivation of both ectosolic and cytosolic 5'-nucleotidase by adenosine A1 receptor activation in the rat cardiomyocytes.

    PubMed Central

    Kitakaze, M; Hori, M; Minamino, T; Takashima, S; Komamura, K; Node, K; Kurihara, T; Morioka, T; Sato, H; Inoue, M

    1994-01-01

    Adenosine, an important regulator of many cardiac functions, is produced by ectosolic and cytosolic 5'-nucleotidase. The activity of these enzymes is influenced by several ischemia-sensitive metabolic factors, e.g., ATP, ADP, H+, and inorganic phosphate. However, there is no clear evidence that adenosine itself affects 5'-nucleotidase activity. This study tested whether adenosine decreases the activity of ectosolic and cytosolic 5'-nucleotidase. Cardiomyocytes were isolated from adult male Wistar rats and suspended in the modified Hepes-Tyrode buffer solution. After stabilization, isolated cardiomyocytes were incubated with and without adenosine (10(-9) - 10(-4) M). Ectosolic and cytosolic 5'-nucleotidase activity was decreased by exogenous adenosine (ectosolic 5'-nucleotidase activity, 20.6 +/- 2.3 vs. 8.6 +/- 1.6 mumol/min per 10(6) cells [P < 0.05]; cytosolic 5'-nucleotidase activity, 2.47 +/- 0.58 vs. 1.61 +/- 0.54 mumol/min per 10(6) cells [P < 0.05] at 10(-6) M adenosine) after 30 min. The decrease in ectosolic and cytosolic 5'-nucleotidase activity was inhibited by 8-phenyltheophylline and pertussis toxin, and was mimicked by N6-cyclohexyladenosine, an adenosine A1 receptor agonist. Neither CGS21680C, and A2 receptor agonist, nor cycloheximide deactivated ectosolic and cytosolic 5'-nucleotidase. Thus, we conclude that activation of adenosine A1 receptors is coupled to Gi proteins and attenuates ectosolic and cytosolic 5'-nucleotidase activity in rat cardiomyocytes. Images PMID:7989602

  9. ND3, ND1 and 39 kDa subunits are more exposed in the de-active form of bovine mitochondrial complex I

    PubMed Central

    Babot, Marion; Labarbuta, Paola; Birch, Amanda; Kee, Sara; Fuszard, Matthew; Botting, Catherine H.; Wittig, Ilka; Heide, Heinrich; Galkin, Alexander

    2014-01-01

    An intriguing feature of mitochondrial complex I from several species is the so-called A/D transition, whereby the idle enzyme spontaneously converts from the active (A) form to the de-active (D) form. The A/D transition plays an important role in tissue response to the lack of oxygen and hypoxic deactivation of the enzyme is one of the key regulatory events that occur in mitochondria during ischaemia. We demonstrate for the first time that the A/D conformational change of complex I does not affect the macromolecular organisation of supercomplexes in vitro as revealed by two types of native electrophoresis. Cysteine 39 of the mitochondrially-encoded ND3 subunit is known to become exposed upon de-activation. Here we show that even if complex I is a constituent of the I + III2 + IV (S1) supercomplex, cysteine 39 is accessible for chemical modification in only the D-form. Using lysine-specific fluorescent labelling and a DIGE-like approach we further identified two new subunits involved in structural rearrangements during the A/D transition: ND1 (MT-ND1) and 39 kDa (NDUFA9). These results clearly show that structural rearrangements during de-activation of complex I include several subunits located at the junction between hydrophilic and hydrophobic domains, in the region of the quinone binding site. De-activation of mitochondrial complex I results in concerted structural rearrangement of membrane subunits which leads to the disruption of the sealed quinone chamber required for catalytic turnover. PMID:24560811

  10. Increased neural activity during overt and continuous semantic verbal fluency in major depression: mainly a failure to deactivate.

    PubMed

    Backes, Heidelore; Dietsche, Bruno; Nagels, Arne; Stratmann, Mirjam; Konrad, Carsten; Kircher, Tilo; Krug, Axel

    2014-10-01

    Major depression is associated with impairments in semantic verbal fluency (VF). However, the neural correlates underlying dysfunctional cognitive processing in depressed subjects during the production of semantic category members still remain unclear. In the current study, an overt and continuous semantic VF paradigm was used to examine these mechanisms in a representative sample of 33 patients diagnosed with a current episode of unipolar depression and 33 statistically matched healthy controls. Subjects articulated words in response to semantic category cues while brain activity was measured with functional magnetic resonance imaging (fMRI). Compared to controls, patients showed poorer task performance. On the neural level, a group by condition interaction analysis, corrected for task performance, revealed a reduced task-related deactivation in patients in the right parahippocampal gyrus, the right fusiform gyrus, and the right supplementary motor area. An additional and an increased task-related activation in patients were observed in the right precentral gyrus and the left cerebellum, respectively. These results indicate that a failure to suppress potentially interfering activity from inferior temporal regions involved in default-mode network functions and visual imagery, accompanied by an enhanced recruitment of areas implicated in speech initiation and higher-order language processes, may underlie dysfunctional cognitive processing during semantic VF in depression. The finding that patients with depression demonstrated both decreased performance and aberrant brain activation during the current semantic VF task demonstrates that this paradigm is a sensitive tool for assessing brain dysfunctions in clinical populations. PMID:24557502

  11. Modeling place field activity with hierarchical slow feature analysis

    PubMed Central

    Schönfeld, Fabian; Wiskott, Laurenz

    2015-01-01

    What are the computational laws of hippocampal activity? In this paper we argue for the slowness principle as a fundamental processing paradigm behind hippocampal place cell firing. We present six different studies from the experimental literature, performed with real-life rats, that we replicated in computer simulations. Each of the chosen studies allows rodents to develop stable place fields and then examines a distinct property of the established spatial encoding: adaptation to cue relocation and removal; directional dependent firing in the linear track and open field; and morphing and scaling the environment itself. Simulations are based on a hierarchical Slow Feature Analysis (SFA) network topped by a principal component analysis (ICA) output layer. The slowness principle is shown to account for the main findings of the presented experimental studies. The SFA network generates its responses using raw visual input only, which adds to its biological plausibility but requires experiments performed in light conditions. Future iterations of the model will thus have to incorporate additional information, such as path integration and grid cell activity, in order to be able to also replicate studies that take place during darkness. PMID:26052279

  12. Report on First Activations with the Lead Slowing Down Spectrometer

    SciTech Connect

    Warren, Glen A.; Mace, Emily K.; Pratt, Sharon L.; Stave, Sean; Woodring, Mitchell L.

    2011-03-03

    On Feb. 17 and 18 2011, six items were irradiated with neutrons using the Lead Slowing Down Spectrometer. After irradiation, dose measurements and gamma-spectrometry measurements were completed on all of the samples. No contamination was found on the samples, and all but one provided no dose. Gamma-spectroscopy measurements qualitatively agreed with expectations based on the materials, with the exception of silver. We observed activation in the room in general, mostly due to 56Mn and 24Na. Most of the activation was short lived, with half-lives on the scale of hours, except for 198Au which has a half-life of 2.7 d.

  13. Acid phosphatase deactivation by a series mechanism.

    PubMed

    Gianfreda, L; Marrucci, G; Grizzuti, N; Greco, G

    1984-05-01

    Acid phosphatase (E.C.3.1.3.2.) thermal deactivation at pH 3.77 has been investigated by monitoring the enzyme activity as a function of time in the hydrolysis of p-nitrophenyl phosphate. The experimental curves obtained show a two-slope behavior in a log (activity)versus-time plot, which indicates that deactivation occurs via a complex mechanism. From the dependence of the kinetic parameters on both deactivation and hydrolysis temperatures, it is inferred that the deactivation mechanism involves intermediate, temperature-dependent, less-active forms of the enzyme. This interpretation is confirmed by the results of additional tests in which the temperature was suddenly changed during the deactivation process. PMID:18553349

  14. Activation and deactivation of a robust immobilized Cp*Ir-transfer hydrogenation catalyst: a multielement in situ X-ray absorption spectroscopy study.

    PubMed

    Sherborne, Grant J; Chapman, Michael R; Blacker, A John; Bourne, Richard A; Chamberlain, Thomas W; Crossley, Benjamin D; Lucas, Stephanie J; McGowan, Patrick C; Newton, Mark A; Screen, Thomas E O; Thompson, Paul; Willans, Charlotte E; Nguyen, Bao N

    2015-04-01

    A highly robust immobilized [Cp*IrCl2]2 precatalyst on Wang resin for transfer hydrogenation, which can be recycled up to 30 times, was studied using a novel combination of X-ray absorption spectroscopy (XAS) at Ir L3-edge, Cl K-edge, and K K-edge. These culminate in in situ XAS experiments that link structural changes of the Ir complex with its catalytic activity and its deactivation. Mercury poisoning and "hot filtration" experiments ruled out leached Ir as the active catalyst. Spectroscopic evidence indicates the exchange of one chloride ligand with an alkoxide to generate the active precatalyst. The exchange of the second chloride ligand, however, leads to a potassium alkoxide-iridate species as the deactivated form of this immobilized catalyst. These findings could be widely applicable to the many homogeneous transfer hydrogenation catalysts with Cp*IrCl substructure. PMID:25768298

  15. Nanotube-assisted protein deactivation

    NASA Astrophysics Data System (ADS)

    Joshi, Amit; Punyani, Supriya; Bale, Shyam Sundhar; Yang, Hoichang; Borca-Tasciuc, Theodorian; Kane, Ravi S.

    2008-01-01

    Conjugating proteins onto carbon nanotubes has numerous applications in biosensing, imaging and cellular delivery. However, remotely controlling the activity of proteins in these conjugates has never been demonstrated. Here we show that upon near-infrared irradiation, carbon nanotubes mediate the selective deactivation of proteins in situ by photochemical effects. We designed nanotube-peptide conjugates to selectively destroy the anthrax toxin, and also optically transparent coatings that can self-clean following either visible or near-infrared irradiation. Nanotube-assisted protein deactivation may be broadly applicable to the selective destruction of pathogens and cells, and will have applications ranging from antifouling coatings to functional proteomics.

  16. Report on Second Activations with the Lead Slowing Down Spectrometer

    SciTech Connect

    Stave, Sean C.; Mace, Emily K.; Pratt, Sharon L.; Warren, Glen A.

    2012-04-27

    Summary On August 18 and 19 2011, five items were irradiated with neutrons using the Lead Slowing Down Spectrometer (LSDS). After irradiation, dose measurements and gamma-spectrometry measurements were completed on all of the samples. No contamination was found on the samples, and all but one provided no dose. Gamma-spectroscopy measurements qualitatively agreed with expectations based on the materials. As during the first activation run, we observed activation in the room in general, mostly due to 56Mn and 24Na. Most of the activation of the samples was short lived, with half-lives on the scale of hours to days, except for 60Co which has a half-life of 5.3 y.

  17. Sleep slow-wave activity regulates cerebral glycolytic metabolism.

    PubMed

    Wisor, Jonathan P; Rempe, Michael J; Schmidt, Michelle A; Moore, Michele E; Clegern, William C

    2013-08-01

    Non-rapid eye movement sleep (NREMS) onset is characterized by a reduction in cerebral metabolism and an increase in slow waves, 1-4-Hz oscillations between relatively depolarized and hyperpolarized states in the cerebral cortex. The metabolic consequences of slow-wave activity (SWA) at the cellular level remain uncertain. We sought to determine whether SWA modulates the rate of glycolysis within the cerebral cortex. The real-time measurement of lactate concentration in the mouse cerebral cortex demonstrates that it increases during enforced wakefulness. In spontaneous sleep/wake cycles, lactate concentration builds during wakefulness and rapid eye movement sleep and declines during NREMS. The rate at which lactate concentration declines during NREMS is proportional to the magnitude of electroencephalographic (EEG) activity at frequencies of <10 Hz. The induction of 1-Hz oscillations, but not 10-Hz oscillations, in the electroencephalogram by optogenetic stimulation of cortical pyramidal cells during wakefulness triggers a decline in lactate concentration. We conclude that cerebral SWA promotes a decline in the rate of glycolysis in the cerebral cortex. These results demonstrate a cellular energetic function for sleep SWA, which may contribute to its restorative effects on brain function. PMID:22767634

  18. Biochemical characterization of a halotolerant feruloyl esterase from Actinomyces spp.: refolding and activity following thermal deactivation.

    PubMed

    Hunt, Cameron J; Tanksale, Akshat; Haritos, Victoria S

    2016-02-01

    Ferulic acid esterases (FAE, EC. 3.1.1.73) hydrolyse the linkage between hemicellulose and lignin and thus have potential for use in mild enzymatic pretreatment of biomass as an alternative to thermochemical approaches. Here, we report the characterization of a novel FAE (ActOFaeI) obtained from the bacterium, Actinomyces sp. oral which was recombinantly expressed in Escherichia coli BL21 in two forms: with and without its putative signal peptide. The truncated form was found to have <10 % relative activity compared to the full length and was more prone to aggregation after purification. The enzyme with retained peptide demonstrated 2 to 4-fold higher activity against methyl caffeate and methyl p-coumarate, with specific activities of 477.6 and 174.4 U mg(-1) respectively, than the equivalent activities of the benchmark FAE from Aspergillus niger A and B. ActOFaeI retained activity over a broad pH range with a maximum at 9 but >90 % relative activity at pH 6.5 and an optimum reaction temperature of 30 °C. ActOFaeI increased activity by 15% in high salt conditions (1000 mMNaCl) and its thermal unfolding temperature improved from 41.5 °C in standard buffer to 74 °C in the presence of 2500 mM sodium malonate. ActOFaeI also released ferulic acid from destarched wheat bran when combined with a xylanase preparation. After treatment above the thermal denaturation temperature followed by cooling to room temperature, ActOFaeI demonstrated spontaneous refolding into an active state. ActOFaeI displays many useful characteristics for enzymatic pretreatment of lignocellulose and contributes to our understanding of this important family. PMID:26497017

  19. Mechanical deactivation induced by active shortening in isolated muscle fibres of the frog.

    PubMed Central

    Edman, K A

    1975-01-01

    1. The effect of active shortening on the time course and magnitude of isometric tension development during a single twitch and during an incompletely fused tetanus was studied at 0-2-1-2 degres C in isolated semitendinosus muscle fibres of the frog. 2. Active shortening caused a depression of the contractile force without markedly affecting the total duration of the twitch. The depressant effect increased with increasing amounts of sarcomere shortening. Sarcomere shortenings of 0-05 mum and 0-3 mum reduced the twitch force by approximately 5 and 20 percent of the maximal tetanic tension, respectively. 3. A given sarcomere shortening induced the same absolute amount of depression of the contractile strength when the movement was carried out at different times during the initial 200-250 msec after the stimulus. 4. The influence of load and velocity of shortening during the movement phase was studied. Differences in load ranging between zero and 1/3 of the maximal tetanic tension (with concomitant changes in speed of shortening from Vmax to approximately 1/5 of Vmax) did not affect the degree of depression markedly. Underthe conditions studied, the extent of movement appeared to be the only significant determinant of the depressant effect. 5. The reduction in force induced by active shortening persisted for 800-900 msec during an incompletely fused tetanus. 6. It is suggested that the depressant effect is based on a structural change in the myofilament system that is produced as the A and I filaments slide along each other during muscle activity. PMID:1079534

  20. An underwater superoleophobic surface that can be activated/deactivated via external triggers.

    PubMed

    Dunderdale, Gary J; Urata, Chihiro; Hozumi, Atsushi

    2014-11-11

    Poly[(2-dimethylamino)ethyl methacrylate] (pDMAEMA) brush surfaces were prepared using a facile aqueous Activators ReGenerated by Electron Transfer Atom Transfer Radical Polymerization (ARGET-ATRP) protocol at ambient temperature without any need to purge reaction solutions of oxygen. This produced underwater superoleophobic surfaces, which exhibited high advancing (θA, 164-166°) and receding (θR, 153-165°) contact angles (CAs) and low CA hysteresis (1-11°) with a variety of oils. Both in situ spectroscopic ellipsometry and dynamic CA measurements confirmed that pDMAEMA brush surfaces responded to three different external stimuli (pH, ionic strength, and temperature) by changing their thicknesses, degree of hydration, or their chemical composition. Increasing pH resulted in the largest decrease in hydration, followed by increasing temperature, and increasing ionic strength gave the smallest change in hydration. Coincident with these structural changes, stimulus-responsive dynamic dewetting behavior with various oils was observed. Increasing pH or ionic strength drastically reduced the θR values of oil drops and increased CA hysteresis, resulting in a sticky surface on which oil drops were pinned. No noticeable changes in dynamic oleophobicity were observed with increasing temperature. In addition, when oil drops impacted onto the brush surface instead of being gently placed, surfaces did not exhibit stimulus-responsive dewetting properties, being oleophobic under all conditions. PMID:25318101

  1. Active sites, deactivation and stabilization of Fe-ZSM-5 for the selective catalytic reduction (SCR) of NO with NH(3).

    PubMed

    Kröcher, Oliver; Brandenberger, Sandro

    2012-01-01

    Fe-ZSM-5 has been systematically investigated as catalyst for the selective catalytic reduction (SCR) of NO with NH(3), concentrating on the active sites, the deactivation mechanism during hydrothermal aging and the chemical possibilities to stabilize this type of SCR catalyst. Regarding the active SCR sites, it could be shown that monomeric species start to become active at the lowest temperatures (E(a,app) ≈ 36.3 ± 0.2 kJ/mol), followed by dimeric species at intermediate temperatures (E(a,app) ≈ 77 ± 16 kJ/mol) and oligomeric species at high temperatures. Experiments with Fe-ZSM-5 samples, in which the Brønsted acidity was specifically removed, proved that Brønsted acidity is not required for high SCR activity and that NH(3) can also be adsorbed on other acidic sites on the zeolite surface. The hydrothermal deactivation of Fe-ZSM-5 could be explained by the migration of active iron ions from the exchange sites. Parallel to the iron migration dealumination of the zeolite framework occurs, which has to be regarded as an independent process. The migration of iron can be reduced by the targeted reaction of the aluminum hydroxide groups in the lattice with trimethylaluminium followed by calcination. With respect to the application of iron zeolites in the SCR process in diesel vehicles, the most efficient stabilization method would be to switch from the ZSM-5 to the BEA structure type. The addition of NO(2) to the feed gas is another effective measure to increase the activity of even strongly deactivated iron zeolites tremendously. PMID:23211727

  2. PUREX Deactivation Health and Safety documentation

    SciTech Connect

    Dodd, E.N. III

    1995-01-01

    The purpose of the PUREX Deactivation Project is to establish a passively safe and environmentally secure configuration of PUREX at the Hanford Site, and to preserve that configuration for a 10-year horizon. The 10-year horizon is used to predict future maintenance requirements and represents they typical time duration expended to define, authorize, and initiate the follow-on Decontamination and Decommissioning (D&D) activities. This document was prepared to increase attention to worker safety issues during the deactivation project and, as such, identifies the documentation and programs associated with PUREX Deactivation Health and Safety.

  3. Deriving stellar inclination of slow rotators using stellar activity signal

    NASA Astrophysics Data System (ADS)

    Dumusque, Xavier

    2015-01-01

    Stellar inclination is an important parameter for many astrophysical studies. In the context of exoplanets, this allows us to derive the true obliquity of a system if the projected stellar spin-planetary orbit angle can measured via the Rossiter-Mclaughlin effect. Although different techniques allow us to estimate stellar inclination for fast rotators, it becomes much more difficult when stars are rotating slower than 2-2.5 km.s-1. By using the new activity simulation SOAP 2.0 that can reproduce the photometric and spectroscopic variations induced by stellar activity, we are able to fit the activity variation of solar-type stars and derive their inclination. The case of the equator-on star HD189733 will be presented, as well as the case of Alpha Centauri B, which present an inclination of 45+9-19 degrees, implying that the earth-mass orbiting planet is not transiting if aligned with its host star. Other exemples will also demonstrate the power of the technique, that can infer a stellar inclination, even for slow rotators like Alpha Centauri B, that present a projected rotational velocity smaller than 1.15 km.s-1. In addition, the SOAP 2.0 simulation can be used to correct for the effect of activity when one major active region is dominating the RV signal. This could enhance the detection of small mass exoplanets orbiting slightly active stars.This project is funded by ETAEARTH (European Union Seventh Framework Programme (FP7/2007-2013) under Grant Agreement n. 313014), a transnational collaboration between European countries and the US (the Swiss Space Office, the Harvard Origin of Life Initiative, the Scottish Universities Physics Alliance, the University of Geneva, the Smithsonian Astrophysical Observatory, the Italian National Astrophysical Institute, the University of St. Andrews, Queens University Belfast, and the University of Edinburgh) setup to optimize the synergy between space-and ground-based data whose scientific potential for the characterization of

  4. ACTIV: Sandwich Detector Activity from In-Pile Slowing-Down Spectra Experiment

    Energy Science and Technology Software Center (ESTSC)

    2013-08-01

    ACTIV calculates the activities of a sandwich detector, to be used for in-pile measurements in slowing-down spectra below a few keV. The effect of scattering with energy degradation in the filter and in the detectors has been included to a first approximation.

  5. Slow wave activity and slow oscillations in sleepwalkers and controls: effects of 38 h of sleep deprivation.

    PubMed

    Perrault, Rosemarie; Carrier, Julie; Desautels, Alex; Montplaisir, Jacques; Zadra, Antonio

    2013-08-01

    Sleepwalkers have been shown to have an unusually high number of arousals from slow wave sleep and lower slow wave activity (SWA) power during the night than controls. Because sleep deprivation increases the frequency of slow wave sleep (SWS) arousals in sleepwalkers, it may also affect the expression of the homeostatic process to a greater extent than shown previously. We thus investigated SWA power as well as slow wave oscillation (SWO) density in 10 sleepwalkers and nine controls at baseline and following 38 h of sleep deprivation. There was a significant increase in SWA during participants' recovery sleep, especially during their second non-rapid eye movement (NREM) period. SWO density was similarly increased during recovery sleep's first two NREM periods. A fronto-central gradient in SWA and SWO was also present on both nights. However, no group differences were noted on any of the 2 nights on SWA or SWO. This unexpected result may be related to the heterogeneity of sleepwalkers as a population, as well as our small sample size. SWA pressure after extended sleep deprivation may also result in a ceiling effect in both sleepwalkers and controls. PMID:23398262

  6. Mission analysis report - deactivation facilities at Hanford

    SciTech Connect

    Lund, D.P.

    1996-09-27

    This document examines the portion of the Hanford Site Cleanup Mission that deals with facility deactivation. How facilities get identified for deactivation, how they enter EM-60 for deactivation, programmatic alternatives to perform facility deactivation, the deactivation process itself, key requirements and objectives associated with the deactivation process, and deactivation planning are discussed.

  7. Deactivation of photosynthetic activities is triggered by loss of a small amount of water in a desiccation-tolerant cyanobacterium, Nostoc commune.

    PubMed

    Hirai, Manabu; Yamakawa, Ruriko; Nishio, Junko; Yamaji, Takaharu; Kashino, Yasuhiro; Koike, Hiroyuki; Satoh, Kazuhiko

    2004-07-01

    Changes in photosynthetic activities under hypertonic conditions were studied in a terrestrial, highly desiccation-tolerant cyanobacterium, Nostoc commune, and in some desiccation-sensitive cyanobacteria. The amounts of water sustained in the colony matrix outside the N. commune cells and the cellular solute concentration were estimated by measuring the water potential, and the solute concentration was supposed to correspond to around 0.22 M sorbitol. Incubation of the colonies in 0.8 M sorbitol solution inhibited the energy transfer from the phycobilisome (PBS) anchor to PSII core complexes. At higher sorbitol concentrations, light energy absorbed by PSI, PSII, and PBS was dissipated to heat. PSI and cyclic electron flow around PSI was also deactivated by hypertonic treatment. Fv/Fm and (Fm'-F)/Fm' values started to decrease at 0.6 and 0.3 M sorbitol and reached zero at 1.0 and 0.8 M, respectively. Decreases in these two fluorescence parameters corresponded to the decreases in PSII fluorescence (F695) and photosynthetic CO2 fixation, respectively. The intensity of delayed light emission started to decrease at 1.0 M sorbitol and became negligible at 4.0 M. Comparing these changes in N. commune with those in desiccation-sensitive species, we found that N. commune cells actively deactivates photosynthetic systems on sensing water loss. PMID:15295070

  8. Sequential Reinstatement of Neocortical Activity during Slow Oscillations Depends on Cells’ Global Activity

    PubMed Central

    Peyrache, Adrien; Benchenane, Karim; Khamassi, Mehdi; Wiener, Sidney I.; Battaglia, Francesco P.

    2009-01-01

    During Slow Wave Sleep (SWS), cortical activity is dominated by endogenous processes modulated by slow oscillations (0.1–1 Hz): cell ensembles fluctuate between states of sustained activity (UP states) and silent epochs (DOWN states). We investigate here the temporal structure of ensemble activity during UP states by means of multiple single unit recordings in the prefrontal cortex of naturally sleeping rats. As previously shown, the firing rate of each PFC cell peaks at a distinct time lag after the DOWN/UP transition in a consistent order. We show here that, conversely, the latency of the first spike after the UP state onset depends primarily on the session-averaged firing rates of cells (which can be considered as an indirect measure of their intrinsic excitability). This latency can be explained by a simple homogeneous process (Poisson model) of cell firing, with sleep averaged firing rates employed as parameters. Thus, at DOWN/UP transitions, neurons are affected both by a slow process, possibly originating in the cortical network, modulating the time course of firing for each cell, and by a fast, relatively stereotyped reinstatement of activity, related mostly to global activity levels. PMID:20130754

  9. Role of N-Terminal Domain and Accessory Subunits in Controlling Deactivation-Inactivation Coupling of Kv4.2 Channels

    PubMed Central

    Barghaan, Jan; Tozakidou, Magdalini; Ehmke, Heimo; Bähring, Robert

    2008-01-01

    We examined the relationship between deactivation and inactivation in Kv4.2 channels. In particular, we were interested in the role of a Kv4.2 N-terminal domain and accessory subunits in controlling macroscopic gating kinetics and asked if the effects of N-terminal deletion and accessory subunit coexpression conform to a kinetic coupling of deactivation and inactivation. We expressed Kv4.2 wild-type channels and N-terminal deletion mutants in the absence and presence of Kv channel interacting proteins (KChIPs) and dipeptidyl aminopeptidase-like proteins (DPPs) in human embryonic kidney 293 cells. Kv4.2-mediated A-type currents at positive and deactivation tail currents at negative membrane potentials were recorded under whole-cell voltage-clamp and analyzed by multi-exponential fitting. The observed changes in Kv4.2 macroscopic inactivation kinetics caused by N-terminal deletion, accessory subunit coexpression, or a combination of the two maneuvers were compared with respective changes in deactivation kinetics. Extensive correlation analyses indicated that modulatory effects on deactivation closely parallel respective effects on inactivation, including both onset and recovery kinetics. Searching for the structural determinants, which control deactivation and inactivation, we found that in a Kv4.2Δ2–10 N-terminal deletion mutant both the initial rapid phase of macroscopic inactivation and tail current deactivation were slowed. On the other hand, the intermediate and slow phase of A-type current decay, recovery from inactivation, and tail current decay kinetics were accelerated in Kv4.2Δ2–10 by KChIP2 and DPPX. Thus, a Kv4.2 N-terminal domain, which may control both inactivation and deactivation, is not necessary for active modulation of current kinetics by accessory subunits. Our results further suggest distinct mechanisms for Kv4.2 gating modulation by KChIPs and DPPs. PMID:17981906

  10. N Reactor Deactivation Program Plan. Revision 4

    SciTech Connect

    Walsh, J.L.

    1993-12-01

    This N Reactor Deactivation Program Plan is structured to provide the basic methodology required to place N Reactor and supporting facilities {center_dot} in a radiologically and environmentally safe condition such that they can be decommissioned at a later date. Deactivation will be in accordance with facility transfer criteria specified in Department of Energy (DOE) and Westinghouse Hanford Company (WHC) guidance. Transition activities primarily involve shutdown and isolation of operational systems and buildings, radiological/hazardous waste cleanup, N Fuel Basin stabilization and environmental stabilization of the facilities. The N Reactor Deactivation Program covers the period FY 1992 through FY 1997. The directive to cease N Reactor preservation and prepare for decommissioning was issued by DOE to WHC on September 20, 1991. The work year and budget data supporting the Work Breakdown Structure in this document are found in the Activity Data Sheets (ADS) and the Environmental Restoration Program Baseline, that are prepared annually.

  11. Inositol hexaphosphate represses telomerase activity and translocates TERT from the nucleus in mouse and human prostate cancer cells via the deactivation of Akt and PKC{alpha}

    SciTech Connect

    Jagadeesh, Shankar; Banerjee, Partha P. . E-mail: ppb@georgetown.edu

    2006-11-03

    Inositol hexaphosphate (IP6) has anti-proliferative effects on a variety of cancer cells, including prostate cancer. However, the molecular mechanism of anti-proliferative effects of IP6 is not entirely understood. Since the activation of telomerase is crucial for cells to gain immortality and proliferation ability, we examined the role of IP6 in the regulation of telomerase activity in prostate cancer cells. Here, we show that IP6 represses telomerase activity in mouse and human prostate cancer cells dose-dependently. In addition, IP6 prevents the translocation of TERT to the nucleus. Since phosphorylation of TERT by Akt and/or PKC{alpha} is necessary for nuclear translocation, we examined phosphorylation of Akt and PKC{alpha} after IP6 treatments. Our results show that IP6 inhibits phosphorylation of Akt and PKC{alpha}. These results show for the first time that IP6 represses telomerase activity in prostate cancer cells by posttranslational modification of TERT via the deactivation of Akt and PKC{alpha}.

  12. Influence of explosive volcanic events on the activation versus de-activation of a modern turbidite system: the example of the Dohrn canyon-fan in the continental slope of the Campania volcanic district (Naples Bay, Italy - Western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Roca, M.; Budillon, F.; Pappone, G.; Insinga, D.

    2015-12-01

    The interplay between volcanic activity, volcano-clastic yield and activation/deactivation of a turbidite system can be evaluated along the continental margin of Campania region (Tyrrhenian Sea - Italy), an active volcanic area, where three wide canyon-fans occur at short distances one to another. Actually, the Dohrn, Magnaghi and Cuma canyons cut the continental slope and shelf off Ischia and Procida volcanic islands and off the Campania Plain where Phlegraean Field and Mt. Vesuvius active vents are located. This research, partly supported by the Italian Flagship Project Ritmare, is based on single-channel, high-resolution seismic profiles (Sparker-One 16 kJ, 0.5 s twtt), swath-bathymetry and litho- and tephra-stratigraphy of gravity cores. We focused on the stratigraphic constraint of paleo-thalweg features and channel/levees deposits in seismics, debris flow, turbidites and hemipelagites in cores, to learn more on the activation/deactivation stages of the canyon Dohrn, in the frame of relative eustatic sea level variations over the Middle Pleistocene-Holocene time span.Preliminary outcomes suggest that even major volcanic events occurred in the last 300 ky, such as ignimbrite eruptions or large fallouts, have caused the infilling of the canyon head and the cover of pre-existing seabed morphology. As a consequence, the temporary deactivation of the turbidite system has occurred, despite the volcano-clastic overload in the coastal environment. Phases of renewed activities of the thalweg are observed to be in step with falling stages of sea level, which have driven the re-incision of canyon valleys through continuous volcano-clastic debris and turbidites down-flows. Since Holocene, the quiescence of the Dohrn Canyon has been documented, despite the intense volcano-tectonic activity in the area.

  13. PUREX/UO{sub 3} deactivation project management plan

    SciTech Connect

    Washenfelder, D.J.

    1993-12-01

    From 1955 through 1990, the Plutonium-Uranium Extraction Plant (PUREX) provided the United States Department of Energy Hanford Site with nuclear fuel reprocessing capability. It operated in sequence with the Uranium Trioxide (UO{sub 3}) Plant, which converted the PUREX liquid uranium nitrate product to solid UO{sub 3} powder. Final UO{sub 3} Plant operation ended in 1993. In December 1992, planning was initiated for the deactivation of PUREX and UO{sub 3} Plant. The objective of deactivation planning was to identify the activities needed to establish a passively safe, environmentally secure configuration at both plants, and ensure that the configuration could be retained during the post-deactivation period. The PUREX/UO{sub 3} Deactivation Project management plan represents completion of the planning efforts. It presents the deactivation approach to be used for the two plants, and the supporting technical, cost, and schedule baselines. Deactivation activities concentrate on removal, reduction, and stabilization of the radioactive and chemical materials remaining at the plants, and the shutdown of the utilities and effluents. When deactivation is completed, the two plants will be left unoccupied and locked, pending eventual decontamination and decommissioning. Deactivation is expected to cost $233.8 million, require 5 years to complete, and yield $36 million in annual surveillance and maintenance cost savings.

  14. Deriving Stellar Inclination of Slow Rotators Using Stellar Activity

    NASA Astrophysics Data System (ADS)

    Dumusque, X.

    2014-12-01

    Stellar inclination is an important parameter for many astrophysical studies. Although different techniques allow us to estimate stellar inclination for fast rotators, it becomes much more difficult when stars are rotating slower than ~2-2.5 km s-1. By using the new activity simulation SOAP 2.0 which can reproduce the photometric and spectroscopic variations induced by stellar activity, we are able to fit observations of solar-type stars and derive their inclination. For HD 189733, we estimate the stellar inclination to be i=84+6-20 deg, which implies a star-planet obliquity of \\psi =4+18-4 considering previous measurements of the spin-orbit angle. For α Cen B, we derive an inclination of i=45+9-19, which implies that the rotational spin of the star is not aligned with the orbital spin of the α Cen binary system. In addition, assuming that α Cen Bb is aligned with its host star, no transit would occur. The inclination of α Cen B can be measured using 40 radial-velocity measurements, which is remarkable given that the projected rotational velocity of the star is smaller than 1.15 km s-1. Based on observations made with the MOST satellite, the HARPS instrument on the ESO 3.6 m telescope at La Silla Observatory (Chile), and the SOPHIE instrument at the Observatoire de Haute Provence (France).

  15. Deriving stellar inclination of slow rotators using stellar activity

    SciTech Connect

    Dumusque, X.

    2014-12-01

    Stellar inclination is an important parameter for many astrophysical studies. Although different techniques allow us to estimate stellar inclination for fast rotators, it becomes much more difficult when stars are rotating slower than ∼2-2.5 km s{sup –1}. By using the new activity simulation SOAP 2.0 which can reproduce the photometric and spectroscopic variations induced by stellar activity, we are able to fit observations of solar-type stars and derive their inclination. For HD 189733, we estimate the stellar inclination to be i=84{sub −20}{sup +6} deg, which implies a star-planet obliquity of ψ=4{sub −4}{sup +18} considering previous measurements of the spin-orbit angle. For α Cen B, we derive an inclination of i=45{sub −19}{sup +9}, which implies that the rotational spin of the star is not aligned with the orbital spin of the α Cen binary system. In addition, assuming that α Cen Bb is aligned with its host star, no transit would occur. The inclination of α Cen B can be measured using 40 radial-velocity measurements, which is remarkable given that the projected rotational velocity of the star is smaller than 1.15 km s{sup –1}.

  16. A PROPOSED FRAMEWORK FOR PLANNING DEACTIVATION AND DECOMMISSIONING ENGINEERING AND DESIGN ACTIVITIES TO MEET THE REQUIREMENTS OF DOE ORDER 413.3A, PROGRAM AND PROJECT MANAGEMENT FOR THE ACQUISITION OF CAPITAL ASSETS

    SciTech Connect

    Santos, J; John Gladden, J

    2007-11-06

    This paper provides guidance in applying the requirements of DOE O 413.3A to Deactivation and Decommissioning (D&D) projects. A list of 41 engineering and design activities relevant to D&D projects was generated. For several activities in this list, examples of the level of development and/or types of deliverables that might be expected at the completion of the conceptual, preliminary and final project design phases described in the Order are provided.

  17. Deactivation completed at historic Hanford Fuels Laboratory

    SciTech Connect

    Gerber, M.S.

    1994-03-01

    This report discusses deactivation work which was completed as of March 31, 1994 at the 308 Fuels Development Laboratory (FDL) at the Hanford Site near Richland, Washington. The decision to deactivate the structure, formerly known as the Plutonium Fabrication Pilot Plant (PFPP), was driven by a 1980s Department of Energy (DOE) decision that plutonium fuels should not be fabricated in areas near the Site`s boundaries, as well as by changing facility structural requirements. Inventory transfer has been followed by the cleanout and stabilization of plutonium oxide (PuO{sub 2}) and enriched uranium oxide (UO{sub 2}) residues and powders in the facility`s equipment and duct work. The Hanford Site, located in southeastern Washington state, was one of America`s primary arsenals of nuclear defense production for nearly 50 years beginning in World War II. Approximately 53 metric tons of weapons grade plutonium, over half of the national supply and about one quarter of the world`s supply, were produced at Hanford between 1944 and 1989. Today, many Site buildings are undergoing deactivation, a precursor phase to decontamination and decommissioning (D&D). The primary difference between the two activities is that equipment and structural items are not removed or torn down in deactivation. However, utilities are disconnected, and special nuclear materials (SNM) as well as hazardous and pyrophoric substances are removed from structures undergoing this process.

  18. The GTP binding protein-dependent activation and deactivation of cGMP phosphodiesterase in rod photoreceptors

    SciTech Connect

    Yamazaki, Akio.

    1989-01-01

    Cyclic GMP (cGMP) has a crucial role in visual transduction. Recent electrophysiological studies clearly indicate the existence of cGMP-activated conductance in photoreceptor plasma membranes. In darkness, Na{sup +}, Ca{sup ++}, and Mg{sup ++} enter rod outer segments (ROS) through cGMP-activated channels while light closes channels by lowering cGMP concentrations through activation of cGMP phosphodiesterase (PDE). Many excellent reviews reference the mechanism of PDE activation in photoreceptors. However, recent progress in understanding the mechanisms regulating cGMP hydrolysis has raised an important question in the PDE-regulation: how does the three-dimensional movement of a subunit of transducin (retinal G protein) relate to the PDE activation Associated with that question, the mechanism of PDE regulation appears to vary at different stages of evolution, for example, frog and bovine photoreceptors. This review examines recent progress of the cGMP hydrolysis mechanism by focusing on the subunit interactions between transducin and PDE. 36 refs., 2 figs.

  19. A computational method for the detection of activation/deactivation patterns in biological signals with three levels of electric intensity.

    PubMed

    Guerrero, J A; Macías-Díaz, J E

    2014-02-01

    In the present work, we develop a computational technique to approximate the changes of phase in temporal series associated to electric signals of muscles which perform activities at three different levels of intensity. We suppose that the temporal series are samples of independent, normally distributed random variables with mean equal to zero, and variance equal to one of three possible values, each of them associated to a certain degree of electric intensity. For example, these intensity levels may represent a leg muscle at rest, or active during a light activity (walking), or active during a highly demanding performance (jogging). The model is presented as a maximum likelihood problem involving discrete variables. In turn, this problem is transformed into a continuous one via the introduction of continuous variables with penalization parameters, and it is solved recursively through an iterative numerical method. An a posteriori treatment of the results is used in order to avoid the detection of relatively short periods of silence or activity. We perform simulations with synthetic data in order to assess the validity of our technique. Our computational results show that the method approximates well the occurrence of the change points in synthetic temporal series, even in the presence of autocorrelated sequences. In the way, we show that a generalization of a computational technique for the change-point detection of electric signals with two phases of activity (Esquivel-Frausto et al., 2010 [40]), may be inapplicable in cases of temporal series with three levels of intensity. In this sense, the method proposed in the present manuscript improves previous efforts of the authors. PMID:24418009

  20. Outcome of Children with Hyperventilation-Induced High-Amplitude Rhythmic Slow Activity with Altered Awareness

    ERIC Educational Resources Information Center

    Barker, Alexander; Ng, Joanne; Rittey, Christopher D. C.; Kandler, Rosalind H.; Mordekar, Santosh R.

    2012-01-01

    Hyperventilation-induced high-amplitude rhythmic slow activity with altered awareness (HIHARS) is increasingly being identified in children and is thought to be an age-related non-epileptic electrographic phenomenon. We retrospectively investigated the clinical outcome in 15 children (six males, nine females) with HIHARS (mean age 7y, SD 1y 11mo;…

  1. Asymmetric Deactivation of HIV-1 gp41 following Fusion Inhibitor Binding

    PubMed Central

    Kahle, Kristen M.; Steger, H. Kirby; Root, Michael J.

    2009-01-01

    Both equilibrium and nonequilibrium factors influence the efficacy of pharmaceutical agents that target intermediate states of biochemical reactions. We explored the intermediate state inhibition of gp41, part of the HIV-1 envelope glycoprotein complex (Env) that promotes viral entry through membrane fusion. This process involves a series of gp41 conformational changes coordinated by Env interactions with cellular CD4 and a chemokine receptor. In a kinetic window between CD4 binding and membrane fusion, the N- and C-terminal regions of the gp41 ectodomain become transiently susceptible to inhibitors that disrupt Env structural transitions. In this study, we sought to identify kinetic parameters that influence the antiviral potency of two such gp41 inhibitors, C37 and 5-Helix. Employing a series of C37 and 5-Helix variants, we investigated the physical properties of gp41 inhibition, including the ability of inhibitor-bound gp41 to recover its fusion activity once inhibitor was removed from solution. Our results indicated that antiviral activity critically depended upon irreversible deactivation of inhibitor-bound gp41. For C37, which targets the N-terminal region of the gp41 ectodomain, deactivation was a slow process that depended on chemokine receptor binding to Env. For 5-Helix, which targets the C-terminal region of the gp41 ectodomain, deactivation occurred rapidly following inhibitor binding and was independent of chemokine receptor levels. Due to this kinetic disparity, C37 inhibition was largely reversible, while 5-Helix inhibition was functionally irreversible. The fundamental difference in deactivation mechanism points to an unappreciated asymmetry in gp41 following inhibitor binding and impacts the development of improved fusion inhibitors and HIV-1 vaccines. The results also demonstrate how the activities of intermediate state inhibitors critically depend upon the final disposition of inhibitor-bound states. PMID:19956769

  2. Pharmaceutically active compounds: Their removal during slow sand filtration and their impact on slow sand filtration bacterial removal.

    PubMed

    D'Alessio, Matteo; Yoneyama, Bunnie; Kirs, Marek; Kisand, Veljo; Ray, Chittaranjan

    2015-08-15

    Slow sand filtration (SSF) has been widely used as a means of providing potable water due to its efficacy, low cost, and minimal maintenance. Advances in analytical instrumentation have revealed the occurrence of pharmaceutically active compounds (PhACs) in surface water as well as in groundwater. It is unclear if the presence of these compounds in the feed water can interfere with the performances of an SSF unit. The aim of this work was to examine i) the ability of two SSF units to remove six PhACs (caffeine, carbamazepine, 17-β estradiol [E2], estrone [E1], gemfibrozil, and phenazone), and ii) the impact of these PhACs on the removal of bacteria by two SSF units. The presence of PhACs in feed water for SSF can occur in surface waters impacted by wastewater or leakage from sewers and septic tanks, as well as in developing countries where unregulated use and improper disposal are prevalent. Two pilot-scale SSF units were used during the study. Unit B1 was fed with stream water with 1% of primary effluent added, while unit B2 was fed with stream water alone. Although limited removal (<10%) of carbamazepine, gemfibrozil, and phenazone occurred, the complete removal of caffeine, and the partial removal (11-92%) of E2 and E1 were observed in the two SSF units. The results of this study suggest that the occurrence of the selected PhACs, probably estrogens and caffeine, in the feed water at 50 μg L(-1) affected the ability of the schmutzdecke to remove total coliform and Escherichia coli. The bacterial removal achieved within the schmutzdecke dropped from 95% to less than 20% by the end of the study. This decrease in removal may be related to the change in the microbial community within the schmutzdecke. A diverse microbial community, including Bacteroidetes and several classes of Proteobacteria, was replaced by a microbial community in which Gammaproteobacteria was the predominant phylum (99%). Despite the low removal achieved within the schmutzdecke, removal of

  3. Social Exclusion in Middle Childhood: Rejection Events, Slow-wave Neural Activity and Ostracism Distress

    PubMed Central

    Crowley, Michael J.; Wu, Jia; Molfese, Peter J.; Mayes, Linda C.

    2010-01-01

    This study examined neural activity with event-related potentials (ERPs) in middle childhood during a computer-simulated ball-toss game, Cyberball. Experiencing fair play initially, children were ultimately excluded by the other players. We focused specifically on “not my turn” events within fair play and rejection events within social exclusion. Dense-array ERPs revealed that rejection events are perceived rapidly. Condition differences (“not my turn” vs. rejection) were evident in a posterior ERP peaking at 420 ms consistent, with a larger P3 effect for rejection events indicating that in middle childhood rejection events are differentiated in < 500 ms. Condition differences were evident for slow-wave activity (500–900 ms) in the medial frontal cortical region and the posterior occipital-parietal region, with rejection events more negative frontally and more positive posteriorly. Distress from the rejection experience was associated with a more negative frontal slow wave and a larger late positive slow wave, but only for rejection events. Source modeling with Geosouce software suggested that slow wave neural activity in cortical regions previously identified in functional imaging studies of ostracism, including subgenual cortex, ventral anterior cingulate cortex and insula was greater for rejection events vs. “not my turn” events. PMID:20628967

  4. Activating and deactivating mutations in the receptor interaction site of GDF5 cause symphalangism or brachydactyly type A2.

    PubMed

    Seemann, Petra; Schwappacher, Raphaela; Kjaer, Klaus W; Krakow, Deborah; Lehmann, Katarina; Dawson, Katherine; Stricker, Sigmar; Pohl, Jens; Plöger, Frank; Staub, Eike; Nickel, Joachim; Sebald, Walter; Knaus, Petra; Mundlos, Stefan

    2005-09-01

    Here we describe 2 mutations in growth and differentiation factor 5 (GDF5) that alter receptor-binding affinities. They cause brachydactyly type A2 (L441P) and symphalangism (R438L), conditions previously associated with mutations in the GDF5 receptor bone morphogenetic protein receptor type 1b (BMPR1B) and the BMP antagonist NOGGIN, respectively. We expressed the mutant proteins in limb bud micromass culture and treated ATDC5 and C2C12 cells with recombinant GDF5. Our results indicated that the L441P mutant is almost inactive. The R438L mutant, in contrast, showed increased biological activity when compared with WT GDF5. Biosensor interaction analyses revealed loss of binding to BMPR1A and BMPR1B ectodomains for the L441P mutant, whereas the R438L mutant showed normal binding to BMPR1B but increased binding to BMPR1A, the receptor normally activated by BMP2. The binding to NOGGIN was normal for both mutants. Thus, the brachydactyly type A2 phenotype (L441P) is caused by inhibition of the ligand-receptor interaction, whereas the symphalangism phenotype (R438L) is caused by a loss of receptor-binding specificity, resulting in a gain of function by the acquisition of BMP2-like properties. The presented experiments have identified some of the main determinants of GDF5 receptor-binding specificity in vivo and open new prospects for generating antagonists and superagonists of GDF5. PMID:16127465

  5. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres.

    PubMed

    Lin, Jiandie; Wu, Hai; Tarr, Paul T; Zhang, Chen-Yu; Wu, Zhidan; Boss, Olivier; Michael, Laura F; Puigserver, Pere; Isotani, Eiji; Olson, Eric N; Lowell, Bradford B; Bassel-Duby, Rhonda; Spiegelman, Bruce M

    2002-08-15

    The biochemical basis for the regulation of fibre-type determination in skeletal muscle is not well understood. In addition to the expression of particular myofibrillar proteins, type I (slow-twitch) fibres are much higher in mitochondrial content and are more dependent on oxidative metabolism than type II (fast-twitch) fibres. We have previously identified a transcriptional co-activator, peroxisome-proliferator-activated receptor-gamma co-activator-1 (PGC-1 alpha), which is expressed in several tissues including brown fat and skeletal muscle, and that activates mitochondrial biogenesis and oxidative metabolism. We show here that PGC-1 alpha is expressed preferentially in muscle enriched in type I fibres. When PGC-1 alpha is expressed at physiological levels in transgenic mice driven by a muscle creatine kinase (MCK) promoter, a fibre type conversion is observed: muscles normally rich in type II fibres are redder and activate genes of mitochondrial oxidative metabolism. Notably, putative type II muscles from PGC-1 alpha transgenic mice also express proteins characteristic of type I fibres, such as troponin I (slow) and myoglobin, and show a much greater resistance to electrically stimulated fatigue. Using fibre-type-specific promoters, we show in cultured muscle cells that PGC-1 alpha activates transcription in cooperation with Mef2 proteins and serves as a target for calcineurin signalling, which has been implicated in slow fibre gene expression. These data indicate that PGC-1 alpha is a principal factor regulating muscle fibre type determination. PMID:12181572

  6. Histone deacetylase degradation and MEF2 activation promote the formation of slow-twitch myofibers.

    PubMed

    Potthoff, Matthew J; Wu, Hai; Arnold, Michael A; Shelton, John M; Backs, Johannes; McAnally, John; Richardson, James A; Bassel-Duby, Rhonda; Olson, Eric N

    2007-09-01

    Skeletal muscle is composed of heterogeneous myofibers with distinctive rates of contraction, metabolic properties, and susceptibility to fatigue. We show that class II histone deacetylase (HDAC) proteins, which function as transcriptional repressors of the myocyte enhancer factor 2 (MEF2) transcription factor, fail to accumulate in the soleus, a slow muscle, compared with fast muscles (e.g., white vastus lateralis). Accordingly, pharmacological blockade of proteasome function specifically increases expression of class II HDAC proteins in the soleus in vivo. Using gain- and loss-of-function approaches in mice, we discovered that class II HDAC proteins suppress the formation of slow twitch, oxidative myofibers through the repression of MEF2 activity. Conversely, expression of a hyperactive form of MEF2 in skeletal muscle of transgenic mice promotes the formation of slow fibers and enhances running endurance, enabling mice to run almost twice the distance of WT littermates. Thus, the selective degradation of class II HDACs in slow skeletal muscle provides a mechanism for enhancing physical performance and resistance to fatigue by augmenting the transcriptional activity of MEF2. These findings provide what we believe are new insights into the molecular basis of skeletal muscle function and have important implications for possible therapeutic interventions into muscular diseases. PMID:17786239

  7. Histone deacetylase degradation andMEF2 activation promote the formation of slow-twitch myofibers

    PubMed Central

    Potthoff, Matthew J.; Wu, Hai; Arnold, Michael A.; Shelton, John M.; Backs, Johannes; McAnally, John; Richardson, James A.; Bassel-Duby, Rhonda; Olson, Eric N.

    2007-01-01

    Skeletal muscle is composed of heterogeneous myofibers with distinctive rates of contraction, metabolic properties, and susceptibility to fatigue. We show that class II histone deacetylase (HDAC) proteins, which function as transcriptional repressors of the myocyte enhancer factor 2 (MEF2) transcription factor, fail to accumulate in the soleus, a slow muscle, compared with fast muscles (e.g., white vastus lateralis). Accordingly, pharmacological blockade of proteasome function specifically increases expression of class II HDAC proteins in the soleus in vivo. Using gain- and loss-of-function approaches in mice, we discovered that class II HDAC proteins suppress the formation of slow twitch, oxidative myofibers through the repression of MEF2 activity. Conversely, expression of a hyperactive form of MEF2 in skeletal muscle of transgenic mice promotes the formation of slow fibers and enhances running endurance, enabling mice to run almost twice the distance of WT littermates. Thus, the selective degradation of class II HDACs in slow skeletal muscle provides a mechanism for enhancing physical performance and resistance to fatigue by augmenting the transcriptional activity of MEF2. These findings provide what we believe are new insights into the molecular basis of skeletal muscle function and have important implications for possible therapeutic interventions into muscular diseases. PMID:17786239

  8. Lens hexokinase deactivation by near-UV irradiation.

    PubMed

    Tung, W H; Chylack, L T; Andley, U P

    1988-03-01

    Photodamage to lens hexokinase has been investigated by exposing the lenses of rat, rabbit and calf eyes to 300 nm irradiation. Hexokinase activity was diminished by 15.9% +/- 5.4 and 23.4% +/- 5.0 upon irradiation of the isolated rat lens for 1 and 2 hours respectively. Irradiation of the whole eye for 2 hours resulted in hexokinase deactivation of 13.6% +/- 5.8 and 19.2% +/- 6.2 for rat and rabbit lens homogenates and 55% +/- 7 for calf lens capsule plus epithelium. Enzyme deactivation was prevented when the isolated lens was irradiated with the vitreous attached. Glucose, catalase or ascorbate added to the medium prior to irradiation, each had a protective effect on hexokinase deactivation. The results are consistent with a mechanism in which photochemical generation of active species of oxygen, via the photosensitizing action of tryptophan photoproducts, plays a significant role in enzyme deactivation. PMID:3359812

  9. 340 waste handling complex: Deactivation project management plan

    SciTech Connect

    Stordeur, R.T.

    1998-06-25

    This document provides an overview of the strategy for deactivating the 340 Waste Handling Complex within Hanford`s 300 Area. The plan covers the period from the pending September 30, 1998 cessation of voluntary radioactive liquid waste (RLW) transfers to the 340 Complex, until such time that those portions of the 340 Complex that remain active beyond September 30, 1998, specifically, the Retention Process Sewer (RPS), can also be shut down and deactivated. Specific activities are detailed and divided into two phases. Phase 1 ends in 2001 after the core RLW systems have been deactivated. Phase 2 covers the subsequent interim surveillance of deactivated and stand-by components during the period of continued RPS operation, through the final transfer of the entire 340 Complex to the Environmental Restoration Contractor. One of several possible scenarios was postulated and developed as a budget and schedule planning case.

  10. Slow Sleep Spindle Activity, Declarative Memory, and General Cognitive Abilities in Children

    PubMed Central

    Hoedlmoser, Kerstin; Heib, Dominik P.J.; Roell, Judith; Peigneux, Philippe; Sadeh, Avi; Gruber, Georg; Schabus, Manuel

    2014-01-01

    Study Objectives: Functional interactions between sleep spindle activity, declarative memory consolidation, and general cognitive abilities in school-aged children. Design: Healthy, prepubertal children (n = 63; mean age 9.56 ± 0.76 y); ambulatory all-night polysomnography (2 nights); investigating the effect of prior learning (word pair association task; experimental night) versus nonlearning (baseline night) on sleep spindle activity; general cognitive abilities assessed using the Wechsler Intelligence Scale for Children-IV (WISC-IV). Measurements and Results: Analysis of spindle activity during nonrapid eye movement sleep (N2 and N3) evidenced predominant peaks in the slow (11-13 Hz) but not in the fast (13-15 Hz) sleep spindle frequency range (baseline and experimental night). Analyses were restricted to slow sleep spindles. Changes in spindle activity from the baseline to the experimental night were not associated with the overnight change in the number of recalled words reflecting declarative memory consolidation. Children with higher sleep spindle activity as measured at frontal, central, parietal, and occipital sites during both baseline and experimental nights exhibited higher general cognitive abilities (WISC-IV) and declarative learning efficiency (i.e., number of recalled words before and after sleep). Conclusions: Slow sleep spindles (11-13 Hz) in children age 8–11 y are associated with inter-individual differences in general cognitive abilities and learning efficiency. Citation: Hoedlmoser K, Heib DPJ, Roell J, Peigneux P, Sadeh A, Gruber G, Schabus M. Slow sleep spindle activity, declarative memory, and general cognitive abilities in children. SLEEP 2014;37(9):1501-1512. PMID:25142558

  11. Impaired consciousness in temporal lobe seizures: role of cortical slow activity

    PubMed Central

    Englot, Dario J.; Yang, Li; Hamid, Hamada; Danielson, Nathan; Bai, Xiaoxiao; Marfeo, Anthony; Yu, Lissa; Gordon, Aliza; Purcaro, Michael J.; Motelow, Joshua E.; Agarwal, Ravi; Ellens, Damien J.; Golomb, Julie D.; Shamy, Michel C. F.; Zhang, Heping; Carlson, Chad; Doyle, Werner; Devinsky, Orrin; Vives, Kenneth; Spencer, Dennis D.; Spencer, Susan S.; Schevon, Catherine; Zaveri, Hitten P.

    2010-01-01

    Impaired consciousness requires altered cortical function. This can occur either directly from disorders that impair widespread bilateral regions of the cortex or indirectly through effects on subcortical arousal systems. It has therefore long been puzzling why focal temporal lobe seizures so often impair consciousness. Early work suggested that altered consciousness may occur with bilateral or dominant temporal lobe seizure involvement. However, other bilateral temporal lobe disorders do not impair consciousness. More recent work supports a ‘network inhibition hypothesis’ in which temporal lobe seizures disrupt brainstem–diencephalic arousal systems, leading indirectly to depressed cortical function and impaired consciousness. Indeed, prior studies show subcortical involvement in temporal lobe seizures and bilateral frontoparietal slow wave activity on intracranial electroencephalography. However, the relationships between frontoparietal slow waves and impaired consciousness and between cortical slowing and fast seizure activity have not been directly investigated. We analysed intracranial electroencephalography recordings during 63 partial seizures in 26 patients with surgically confirmed mesial temporal lobe epilepsy. Behavioural responsiveness was determined based on blinded review of video during seizures and classified as impaired (complex-partial seizures) or unimpaired (simple-partial seizures). We observed significantly increased delta-range 1–2 Hz slow wave activity in the bilateral frontal and parietal neocortices during complex-partial compared with simple-partial seizures. In addition, we confirmed prior work suggesting that propagation of unilateral mesial temporal fast seizure activity to the bilateral temporal lobes was significantly greater in complex-partial than in simple-partial seizures. Interestingly, we found that the signal power of frontoparietal slow wave activity was significantly correlated with the temporal lobe fast seizure

  12. Impaired consciousness in temporal lobe seizures: role of cortical slow activity.

    PubMed

    Englot, Dario J; Yang, Li; Hamid, Hamada; Danielson, Nathan; Bai, Xiaoxiao; Marfeo, Anthony; Yu, Lissa; Gordon, Aliza; Purcaro, Michael J; Motelow, Joshua E; Agarwal, Ravi; Ellens, Damien J; Golomb, Julie D; Shamy, Michel C F; Zhang, Heping; Carlson, Chad; Doyle, Werner; Devinsky, Orrin; Vives, Kenneth; Spencer, Dennis D; Spencer, Susan S; Schevon, Catherine; Zaveri, Hitten P; Blumenfeld, Hal

    2010-12-01

    Impaired consciousness requires altered cortical function. This can occur either directly from disorders that impair widespread bilateral regions of the cortex or indirectly through effects on subcortical arousal systems. It has therefore long been puzzling why focal temporal lobe seizures so often impair consciousness. Early work suggested that altered consciousness may occur with bilateral or dominant temporal lobe seizure involvement. However, other bilateral temporal lobe disorders do not impair consciousness. More recent work supports a 'network inhibition hypothesis' in which temporal lobe seizures disrupt brainstem-diencephalic arousal systems, leading indirectly to depressed cortical function and impaired consciousness. Indeed, prior studies show subcortical involvement in temporal lobe seizures and bilateral frontoparietal slow wave activity on intracranial electroencephalography. However, the relationships between frontoparietal slow waves and impaired consciousness and between cortical slowing and fast seizure activity have not been directly investigated. We analysed intracranial electroencephalography recordings during 63 partial seizures in 26 patients with surgically confirmed mesial temporal lobe epilepsy. Behavioural responsiveness was determined based on blinded review of video during seizures and classified as impaired (complex-partial seizures) or unimpaired (simple-partial seizures). We observed significantly increased delta-range 1-2 Hz slow wave activity in the bilateral frontal and parietal neocortices during complex-partial compared with simple-partial seizures. In addition, we confirmed prior work suggesting that propagation of unilateral mesial temporal fast seizure activity to the bilateral temporal lobes was significantly greater in complex-partial than in simple-partial seizures. Interestingly, we found that the signal power of frontoparietal slow wave activity was significantly correlated with the temporal lobe fast seizure activity in

  13. Phase advancement and nucleus-specific timing of thalamocortical activity during slow cortical oscillation

    PubMed Central

    Slézia, Andrea; Hangya, Balázs; Ulbert, István; Acsády, László

    2011-01-01

    The exact timing of cortical afferent activity is instrumental for the correct coding and retrieval of internal and external stimuli. Thalamocortical inputs represent the most significant subcortical pathway to the cortex, but the precise timing and temporal variability of thalamocortical activity is not known. To examine this question, we studied the phase of thalamic action potentials relative to cortical oscillations and established correlations among phase, the nuclear location of the thalamocortical neurons and the frequency of cortical activity. The phase of thalamic action potentials depended on the exact frequency of the slow cortical oscillation both on long (minutes) and short (single wave) time scales. Faster waves were accompanied by phase advancement in both cases. Thalamocortical neurons located in different nuclei fired at significantly different phases of the slow waves but were active at similar phase of spindle oscillations. Different thalamic nuclei displayed distinct burst patterns. Bursts with higher number of action potentials displayed progressive phase advancement in a nucleus-specific manner. Thalamic neurons located along nuclear borders were characterized by mixed burst and phase properties. Our data demonstrate that the temporal relationship between cortical and thalamic activity is not fixed but displays dynamic changes during oscillatory activity. The timing depends on the precise location and exact activity of thalamocortical cells and the ongoing cortical network pattern. This variability of thalamic output and its coupling to cortical activity can enable thalamocortical neurons to actively participate in the coding and retrieval of complex cortical signals. PMID:21228169

  14. Coordinated Action of Fast and Slow Reserves for Optimal Sequential and Dynamic Emergency Reserve Activation

    NASA Astrophysics Data System (ADS)

    Salkuti, Surender Reddy; Bijwe, P. R.; Abhyankar, A. R.

    2016-04-01

    This paper proposes an optimal dynamic reserve activation plan after the occurrence of an emergency situation (generator/transmission line outage, load increase or both). An optimal plan is developed to handle the emergency situation, using coordinated action of fast and slow reserves, for secure operation with minimum overall cost. This paper considers the reserves supplied by generators (spinning reserves) and loads (demand-side reserves). The optimal backing down of costly/fast reserves and bringing up of slow reserves in each sub-interval in an integrated manner is proposed. The simulation studies are performed on IEEE 30, 57 and 300 bus test systems to demonstrate the advantage of proposed integrated/dynamic reserve activation plan over the conventional/sequential approach.

  15. Efficacy of antimicrobial activity of slow release silver nanoparticles dressing in post-cardiac surgery mediastinitis.

    PubMed

    Totaro, Pasquale; Rambaldini, Manfredo

    2009-01-01

    We report our preliminary experience in post-cardiac surgery mediastinitis using a recently introduced silver-releasing dressing claiming prompt antibacterial activity. Acticoat, a silver nanoparticles slow release dressing was used in four patients with documented post-cardiac surgery mediastinitis and persistently positive microbiological cultures despite vacuum-assisted closure (VAC) therapy. In all four patients negative cultures were obtained within a maximum of 72 h and patients were discharged within a maximum of 20 days. PMID:18948308

  16. Carbachol-induced rhythmic slow activity (theta) in cat hippocampal formation slices.

    PubMed

    Konopacki, J; Gołebiewski, H; Eckersdorf, B

    1992-04-24

    Application of the cholinergic agonist, carbachol, produced theta-like rhythmical waveforms, recorded in the stratum moleculare of the dentate gyrus in the cat hippocampal formation slices. This effect of carbachol was antagonized by atropine but not D-tubocurarine. These results provide first direct evidence that the hippocampal formation neuronal network in the cat is capable of producing synchronized slow wave activity when isolated from pulsed rhythmic inputs of the medial septum. PMID:1511270

  17. The effect of sorbitol on acid phosphatase deactivation.

    PubMed

    Gianfreda, L; Toscano, G; Pirozzi, D; Greco, G

    1991-12-01

    Acid phosphatase thermal deactivation follows a complex path: an initial decay toward an equilibrium distribution of at least two intermediate structures, mutually at the equilibrium, followed by a final breakdown toward a completely inactive enzyme configuration. The results obtained in the presence of sorbitol have been compared to those produced in the course of purely thermal deactivation of the native enzyme. For any sobitol concentration, an equivalent temperature is calculated that results in exactly the same activity-versus-time profile. This suggests enzyme deactivation to be controlled by a single, unchanging step. Immobilized enzyme runs have been performed, as well, by entrapping acid phosphates within a polymeric network formed onto the upstream surface of an ultrafiltration membrane. The stabilizing effect of entrapment cumulates with that produced by sorbitol. In this case, however, an equivalent temperature cannot be determined, thus indicating that a different deactivation mechanism is followed. PMID:18600710

  18. Prolonged activity evokes potentiation and the "sag" phenomenon in slow motor units of rat soleus.

    PubMed

    Drzymała-Celichowska, Hanna; Raikova, Rositsa; Krutki, Piotr

    2016-01-01

    Slow motor units (MUs) have no sag in their unfused tetani. This study in anesthetized rats shows that the sag can be observed in slow soleus MUs after prolonged activity. Twitches and unfused tetanic contractions were recorded from male (n=35) and female (n=39) MUs before and after the four minutes of the fatigue test (trains of 13 pulses at 40 Hz repeated every second). After this activity twitch contractions potentiated and a shift in the steep part of the force-frequency curve towards lower frequencies was observed in both sexes. Initially no sag was visible in unfused tetani, but after the fatigue test the phenomenon was observed in 77% of male, while in 13% of female MUs, the result consistent with the previously reported higher content of IIa myosin and faster contraction of MUs in male soleus. The decomposition of tetani with sag into trains of twitch-shape responses to consecutive stimuli revealed higher forces of initial decomposed twitches than later. The revealed alterations the force development due to long-lasting activation of slow MUs were sex-related and more pronounced in male soleus. PMID:27373952

  19. A System and Method for Online High-Resolution Mapping of Gastric Slow-Wave Activity

    PubMed Central

    Bull, Simon H.; O’Grady, Gregory; Du, Peng

    2015-01-01

    High-resolution (HR) mapping employs multielectrode arrays to achieve spatially detailed analyses of propagating bioelectrical events. A major current limitation is that spatial analyses must currently be performed “off-line” (after experiments), compromising timely recording feedback and restricting experimental interventions. These problems motivated development of a system and method for “online” HR mapping. HR gastric recordings were acquired and streamed to a novel software client. Algorithms were devised to filter data, identify slow-wave events, eliminate corrupt channels, and cluster activation events. A graphical user interface animated data and plotted electrograms and maps. Results were compared against off-line methods. The online system analyzed 256-channel serosal recordings with no unexpected system terminations with a mean delay 18 s. Activation time marking sensitivity was 0.92; positive predictive value was 0.93. Abnormal slow-wave patterns including conduction blocks, ectopic pacemaking, and colliding wave fronts were reliably identified. Compared to traditional analysis methods, online mapping had comparable results with equivalent coverage of 90% of electrodes, average RMS errors of less than 1 s, and CC of activation maps of 0.99. Accurate slow-wave mapping was achieved in near real-time, enabling monitoring of recording quality and experimental interventions targeted to dysrhythmic onset. This work also advances the translation of HR mapping toward real-time clinical application. PMID:24860024

  20. HEU Measurements of Holdup and Recovered Residue in the Deactivation and Decommissioning Activities of the 321-M Reactor Fuel Fabrication Facility at the Savannah River Site

    SciTech Connect

    DEWBERRY, RAYMOND; SALAYMEH, SALEEM R.; CASELLA, VITO R.; MOORE, FRANK S.

    2005-03-11

    This paper contains a summary of the holdup and material control and accountability (MC&A) assays conducted for the determination of highly enriched uranium (HEU) in the deactivation and decommissioning (D&D) of Building 321-M at the Savannah River Site (SRS). The 321-M facility was the Reactor Fuel Fabrication Facility at SRS and was used to fabricate HEU fuel assemblies, lithium-aluminum target tubes, neptunium assemblies, and miscellaneous components for the SRS production reactors. The facility operated for more than 35 years. During this time thousands of uranium-aluminum-alloy (U-Al) production reactor fuel tubes were produced. After the facility ceased operations in 1995, all of the easily accessible U-Al was removed from the building, and only residual amounts remained. The bulk of this residue was located in the equipment that generated and handled small U-Al particles and in the exhaust systems for this equipment (e.g., Chip compactor, casting furnaces, log saw, lathes A & B, cyclone separator, Freon{trademark} cart, riser crusher, ...etc). The D&D project is likely to represent an important example for D&D activities across SRS and across the Department of Energy weapons complex. The Savannah River National Laboratory was tasked to conduct holdup assays to quantify the amount of HEU on all components removed from the facility prior to placing in solid waste containers. The U-235 holdup in any single component of process equipment must not exceed 50 g in order to meet the container limit. This limit was imposed to meet criticality requirements of the low level solid waste storage vaults. Thus the holdup measurements were used as guidance to determine if further decontamination of equipment was needed to ensure that the quantity of U-235 did not exceed the 50 g limit and to ensure that the waste met the Waste Acceptance Criteria (WAC) of the solid waste storage vaults. Since HEU is an accountable nuclear material, the holdup assays and assays of recovered

  1. Evaluation of serum prolidase activity in patients with slow coronary flow

    PubMed Central

    Nurdag, Abdullah; Polat, Mustafa; Kaya, Hakan; Koroglu, Sedat; Acar, Gurkan; Sezen, Hatice

    2015-01-01

    Introduction Slow coronary flow (SCF) is described as the slow passage of contrast to distal coronaries despite anatomically normal coronary arteries. It has been shown that increased serum prolidase activity (SPA) correlates with collagen turnover. Increased collagen turnover might be associated with the development of atherosclerotic plaques. Aim To investigate the relationship between serum prolidase activity and slow coronary flow. Material and methods This cross-sectional study included 40 SCF patients (mean age: 55.0 ±9.5 years, 20 females) and 40 controls (mean age: 53.9 ±8.2 years, 21 females) with normal coronary anatomy and normal coronary flow. The Thrombolysis in Myocardial Infarction (TIMI) frame-count (TFC) method was used for SCF diagnosis. Serum prolidase activity was measured spectrophotometrically, and the relevant parameters were compared between the groups. Results There were no statistically significant differences between the SCF and control groups in terms of basic demographic, clinical, and laboratory data. However, the SPA was significantly higher in the SCF group compared to the control (702.7 ±13.8 and 683.9 ±13.2 respectively, p<0.001). Serum prolidase activity was significantly correlated with the mean TFC (r=0.463, p<0.001). The overall findings of this study support the predictive accuracy of the serum prolidase activity in our cohort, with a statistically significant ROC value of 681.3. Conclusions Our study showed that SPA was increased in SCF patients. The activity of this enzyme was significantly correlated with the mean TFC. PMID:26677361

  2. [Soil biological activities at maize seedling stage under application of slow/controlled release nitrogen fertilizers].

    PubMed

    Li, Dongpo; Wu, Zhijie; Chen, Lijun; Liang, Chenghua; Zhang, Lili; Wang, Weicheng; Yang, Defu

    2006-06-01

    With pot experiment and simulating field ecological environment, this paper studied the effects of different slow/ controlled release N fertilizers on the soil nitrate - reductase and urease activities and microbial biomass C and N at maize seedling stage. The results showed that granular urea amended with dicyandiamide (DCD) and N-(n-bultyl) thiophosphoric triamide (NBPT) induced the highest soil nitrate-reductase activity, granular urea brought about the highest soil urease activity and microbial biomass C and N, while starch acetate (SA)-coated granular urea, SA-coated granular urea amended with DCD, methyl methacrylate (MMA) -coated granular urea amended with DCD, and no N fertilization gave a higher soil urease activity. Soil microbial C and N had a similar variation trend after applying various kinds of test slow/controlled release N fertilizers, and were the lowest after applying SA-coated granular urea amended with DCD and NBPT. Coated granular urea amended with inhibitors had a stronger effect on soil biological activities than coated granular urea, and MMA-coating had a better effect than SA-coating. PMID:16964940

  3. Deactivator for olefin polymerization catalyst

    SciTech Connect

    Rekers, L.J.; Speca, A.N.; Mayhew, H.W.

    1987-03-10

    A method is described comprising deactivating an olefin polymerization catalyst selected from the group consisting of Ziegler-Natta transition element catalysts and catalysts based on transition metal oxides by contacting the catalyst with a copolymer. The copolymer consists of an alpha-olefin having from 2 to about 12 carbon atoms and an unsaturated ester of a carboxylic acid. The deactivating copolymer is present in an amount such that the molar ratio of the unsaturated ester thereof to the sum of the transition element component of the polymerization catalyst and a cocatalyst for the transition element catalyst is in the range of between about 0.1 and about 6.

  4. Laminar analysis of the slow wave activity in the somatosensory cortex of anesthetized rats.

    PubMed

    Fiáth, Richárd; Kerekes, Bálint Péter; Wittner, Lucia; Tóth, Kinga; Beregszászi, Patrícia; Horváth, Domonkos; Ulbert, István

    2016-08-01

    Rhythmic slow waves characterize brain electrical activity during natural deep sleep and under anesthesia, reflecting the synchronous membrane potential fluctuations of neurons in the thalamocortical network. Strong evidence indicates that the neocortex plays an important role in the generation of slow wave activity (SWA), however, contributions of individual cortical layers to the SWA generation are still unclear. The anatomically correct laminar profiles of SWA were revealed under ketamine/xylazine anesthesia, with combined local field potential recordings, multiple-unit activity (MUA), current source density (CSD) and time-frequency analyses precisely co-registered with histology. The up-state related negative field potential wave showed the largest amplitude in layer IV, the CSD was largest in layers I and III, whereas MUA was maximal in layer V, suggesting spatially dissociated firing and synaptic/transmembrane processes in the rat somatosensory cortex. Up-state related firing could start in virtually any layers (III-VI) of the cortex, but were most frequently initiated in layer V. However, in a subset of experiments, layer IV was considerably active in initiating up-state related MUA even in the absence of somatosensory stimulation. Somatosensory stimulation further strengthened up-state initiation in layer IV. Our results confirm that cortical layer V firing may have a major contribution to the up-state generation of ketamine/xylazine-induced SWA, however, thalamic influence through the thalamorecipient layer IV can also play an initiating role, even in the absence of sensory stimulation. PMID:27177594

  5. Electrical stimulation of the frontal cortex enhances slow-frequency EEG activity and sleepiness.

    PubMed

    D'Atri, A; De Simoni, E; Gorgoni, M; Ferrara, M; Ferlazzo, F; Rossini, P M; De Gennaro, L

    2016-06-01

    Our aim was to enhance the spontaneous slow-frequency EEG activity during the resting state using oscillating transcranial direct currents (tDCS) with a stimulation frequency that resembles the spontaneous oscillations of sleep onset. Accordingly, in this preliminary study, we assessed EEG after-effects of a frontal oscillatory tDCS with different frequency (0.8 vs. 5Hz) and polarity (anodal, cathodal, and sham). Two single-blind experiments compared the after effects on the resting EEG of oscillatory tDCS [Exp. 1=0.8Hz, 10 subjects (26.2±2.5years); Exp. 2=5Hz, 10 subjects (27.4±2.4years)] by manipulating its polarity. EEG signals recorded (28 scalp derivations) before and after stimulation [slow oscillations (0.5-1Hz), delta (1-4Hz), theta (5-7Hz), alpha (8-12Hz), beta 1 (13-15Hz) and beta 2 (16-24Hz)] were compared between conditions as a function of polarity (anodal vs. cathodal vs. sham) and frequency of stimulation (0.8 vs. 5Hz). We found a significant relative enhancement of the delta activity after the anodal tDCS at 5Hz compared to that at 0.8Hz. This increase, even though not reaching the statistical significance compared to sham, is concomitant to a significant increase of subjective sleepiness, as assessed by a visual analog scale. These two phenomena are linearly related with a regional specificity, correlations being restricted to cortical areas perifocal to the stimulation site. We have shown that a frontal oscillating anodal tDCS at 5Hz results in an effective change of both subjective sleepiness and spontaneous slow-frequency EEG activity. These changes are critically associated to both stimulation polarity (anodal) and frequency (5Hz). However, evidence of frequency-dependence seems more unequivocal than evidence of polarity-dependence. PMID:26964682

  6. Prognostic Value of Posteromedial Cortex Deactivation in Mild Cognitive Impairment

    PubMed Central

    Petrella, Jeffrey R.; Prince, Steven E.; Wang, Lihong; Hellegers, Caroline; Doraiswamy, P. Murali

    2007-01-01

    Background Normal subjects deactivate specific brain regions, notably the posteromedial cortex (PMC), during many tasks. Recent cross-sectional functional magnetic resonance imaging (fMRI) data suggests that deactivation during memory tasks is impaired in Alzheimer's disease (AD). The goal of this study was to prospectively determine the prognostic significance of PMC deactivation in mild cognitive impairment (MCI). Methodology/Principal Findings 75 subjects (34 MCI, 13 AD subjects and 28 controls) underwent baseline fMRI scanning during encoding of novel and familiar face-name pairs. MCI subjects were followed longitudinally to determine conversion to AD. Regression and analysis of covariance models were used to assess the effect of PMC activation/deactivation on conversion to dementia as well as in the longitudinal change in dementia measures. At longitudinal follow up of up to 3.5 years (mean 2.5±0.79 years), 11 MCI subjects converted to AD. The proportion of deactivators was significantly different across all groups: controls (79%), MCI-Nonconverters (73%), MCI-converters (45%), and AD (23%) (p<0.05). Mean PMC activation magnitude parameter estimates, at baseline, were negative in the control (−0.57±0.12) and MCI-Nonconverter (−0.33±0.14) groups, and positive in the MCI-Converter (0.37±0.40) and AD (0.92±0.30) groups. The effect of diagnosis on PMC deactivation remained significant after adjusting for age, education and baseline Mini-Mental State Exam (p<0.05). Baseline PMC activation magnitude was correlated with change in dementia ratings from baseline. Conclusion Loss of physiological functional deactivation in the PMC may have prognostic value in preclinical AD, and could aid in profiling subgroups of MCI subjects at greatest risk for progressive cognitive decline. PMID:17971867

  7. Signatures of Slow Solar Wind Streams from Active Regions in the Inner Corona

    NASA Astrophysics Data System (ADS)

    Slemzin, V.; Harra, L.; Urnov, A.; Kuzin, S.; Goryaev, F.; Berghmans, D.

    2013-08-01

    The identification of solar-wind sources is an important question in solar physics. The existing solar-wind models ( e.g., the Wang-Sheeley-Arge model) provide the approximate locations of the solar wind sources based on magnetic field extrapolations. It has been suggested recently that plasma outflows observed at the edges of active regions may be a source of the slow solar wind. To explore this we analyze an isolated active region (AR) adjacent to small coronal hole (CH) in July/August 2009. On 1 August, Hinode/EUV Imaging Spectrometer observations showed two compact outflow regions in the corona. Coronal rays were observed above the active-region coronal hole (ARCH) region on the eastern limb on 31 July by STEREO-A/EUVI and at the western limb on 7 August by CORONAS- Photon/TESIS telescopes. In both cases the coronal rays were co-aligned with open magnetic-field lines given by the potential field source surface model, which expanded into the streamer. The solar-wind parameters measured by STEREO-B, ACE, Wind, and STEREO-A confirmed the identification of the ARCH as a source region of the slow solar wind. The results of the study support the suggestion that coronal rays can represent signatures of outflows from ARs propagating in the inner corona along open field lines into the heliosphere.

  8. Stimulating forebrain communications: Slow sinusoidal electric fields over frontal cortices dynamically modulate hippocampal activity and cortico-hippocampal interplay during slow-wave states.

    PubMed

    Greenberg, Anastasia; Whitten, Tara A; Dickson, Clayton T

    2016-06-01

    Slow-wave states are characterized by the most global physiological phenomenon in the mammalian brain, the large-amplitude slow oscillation (SO; ~1Hz) composed of alternating states of activity (ON/UP states) and silence (OFF/DOWN states) at the network and single cell levels. The SO is cortically generated and appears as a traveling wave that can propagate across the cortical surface and can invade the hippocampus. This cortical rhythm is thought to be imperative for sleep-dependent memory consolidation, potentially through increased interactions with the hippocampus. The SO is correlated with learning and its presumed enhancement via slow rhythmic electrical field stimulation improves subsequent mnemonic performance. However, the mechanism by which such field stimulation influences the dynamics of ongoing cortico-hippocampal communication is unknown. Here we show - using multi-site recordings in urethane-anesthetized rats - that sinusoidal electrical field stimulation applied to the frontal region of the cerebral cortex creates a platform for improved cortico-hippocampal communication. Moderate-intensity field stimulation entrained hippocampal slow activity (likely by way of the temporoammonic pathway) and also increased sharp-wave ripples, the signature memory replay events of the hippocampus, and further increased cortical spindles. Following cessation of high-intensity stimulation, SO interactions in the cortical-to-hippocampal direction were reduced, while the reversed hippocampal-to-cortical communication at both SO and gamma bandwidths was enhanced. Taken together, these findings suggest that cortical field stimulation may function to boost memory consolidation by strengthening cortico-hippocampal and hippocampo-cortical interplay at multiple nested frequencies in an intensity-dependent fashion. PMID:26947518

  9. Family Mode Deactivation Therapy Results and Implications

    ERIC Educational Resources Information Center

    Apsche, Jack A.; Bass, Christopher K.

    2006-01-01

    This article highlights the inclusion of Mode Deactivation Therapy as a treatment modality for families in crisis. As an empirically validated treatment, Mode Deactivation Therapy has been effective in treating a wide variety of psychological issues. Mode Deactivation Therapy, (MDT) was developed to treat adolescents with disorders of conduct…

  10. Slow-wave activity saturation and thalamocortical isolation during propofol anesthesia in humans.

    PubMed

    Ní Mhuircheartaigh, Róisín; Warnaby, Catherine; Rogers, Richard; Jbabdi, Saad; Tracey, Irene

    2013-10-23

    The altered state of consciousness produced by general anesthetics is associated with a variety of changes in the brain's electrical activity. Under hyperpolarizing influences such as anesthetic drugs, cortical neurons oscillate at ~1 Hz, which is measurable as slow waves in the electroencephalogram (EEG). We have administered propofol anesthesia to 16 subjects and found that, after they had lost behavioral responsiveness (response to standard sensory stimuli), each individual's EEG slow-wave activity (SWA) rose to saturation and then remained constant despite increasing drug concentrations. We then simultaneously collected functional magnetic resonance imaging and EEG data in 12 of these subjects during propofol administration and sensory stimulation. During the transition to SWA saturation, the thalamocortical system became isolated from sensory stimuli, whereas internal thalamocortical exchange persisted. Rather, an alternative and more fundamental cortical network (which includes the precuneus) responded to all sensory stimulation. We conclude that SWA saturation is a potential individualized indicator of perception loss that could prove useful for monitoring depth of anesthesia and studying altered states of consciousness. PMID:24154602

  11. Solid-state enzyme deactivation in air and in organic solvents

    SciTech Connect

    Toscano, G.; Pirozzi, D.; Maremonti, M.; Greco, G. Jr. . Dipartimento di Ingegneria Chimica)

    1994-09-05

    Thermal deactivation of solid-state acid phosphatase is analyzed, both in the presence and in the absence of organic solvents. The thermal deactivation profile departs from first order kinetics and shows an unusual, temperature-dependent, asymptotic value of residual activity. The process is described by a phenomenological equation, whose theoretical implications are also discussed. The total amount of buffer salts in the enzyme powder dramatically affects enzyme stability in the range 70 to 105 C. The higher salt/protein ratio increases the rate of thermal deactivation. The deactivation rate is virtually unaffected by the presence of organic solvents, independent of their hydrophilicity.

  12. Hydrothermal activity at slow-spreading ridges: variability and importance of magmatic controls

    NASA Astrophysics Data System (ADS)

    Escartin, Javier

    2016-04-01

    Hydrothermal activity along mid-ocean ridge axes is ubiquitous, associated with mass, chemical, and heat exchanges between the deep lithosphere and the overlying envelopes, and sustaining chemiosynthetic ecosystems at the seafloor. Compared with hydrothermal fields at fast-spreading ridges, those at slow spreading ones show a large variability as their location and nature is controlled or influenced by several parameters that are inter-related: a) tectonic setting, ranging from 'volcanic systems' (along the rift valley floor, volcanic ridges, seamounts), to 'tectonic' ones (rift-bounding faults, oceanic detachment faults); b) the nature of the host rock, owing to compositional heterogeneity of slow-spreading lithosphere (basalt, gabbro, peridotite); c) the type of heat source (magmatic bodies at depth, hot lithosphere, serpentinization reactions); d) and the associated temperature of outflow fluids (high- vs.- low temperature venting and their relative proportion). A systematic review of the distribution and characteristics of hydrothermal fields along the slow-spreading Mid-Atlantic Ridge suggests that long-lived hydrothermal activity is concentrated either at oceanic detachment faults, or along volcanic segments with evidence of robust magma supply to the axis. A detailed study of the magmatically robust Lucky Strike segment suggests that all present and past hydrothermal activity is found at the center of the segment. The association of these fields to central volcanos, and the absence of indicators of hydrothermal activity along the remaining of the ridge segment, suggests that long-lived hydrothermal activity in these volcanic systems is maintained by the enhanced melt supply and the associated magma chamber(s) required to build these volcanic edifices. In this setting, hydrothermal outflow zones at the seafloor are systematically controlled by faults, indicating that hydrothermal fluids in the shallow crust exploit permeable fault zones to circulate. While

  13. Sacks-Evertson Borehole Strainmeters: New Designs, Volcanic Activity and Slow Earthquakes

    NASA Astrophysics Data System (ADS)

    Linde, A. T.; Sacks, S.

    2008-12-01

    The quality of borehole strain data depends on a variety of factors, perhaps the most important being the character of rock in the immediate vicinity of the instrument. In tectonically active areas it is often difficult to find sites that provide suitable geometry for studying the activity and also have strong competent rock with few or no fractures. We have tested new designs, for both dilatometers and 3 component Sacks-Evertson hydraulic strainmeters, and have found that, in sites we would previously have rejected because of rock quality, we now obtain reliable data. The approach depends on two factors: the sensing components of the instruments have always been ~3m in length so that they integrate over that vertical interval of rock and additionally we can now have a weak inclusion so that we minimize the mechanical impedance contrast between rock and cement plus instrument. Our current three component design is radically different from the modified Sakata-type used previously. Numerical modeling of the design shows that the response to strain change is essentially perfect; compared with earlier designs this gives better shear response and avoids strain concentrations in the rock wall. This design also provides good data from a site with very low rock quality. Data recorded in Taiwan from the 'weak' single component system have been critically important in allowing us to identify and model slow earthquakes triggered by typhoons. During a 5 year interval we have observed 20 slow earthquakes (durations of hours to days), 11 of which are coincident with typhoons (30 during that time span). This part of Taiwan (south east) experiences extremely high deformation rates but has a paucity of large earthquakes. Our data and modeling indicate that the stressed region is segmented by slow relief of stress, reducing the likelihood of seismic failure over extended fault lengths. Borehole strain recordings of volcanic activity in Montserrat and in Iceland have been critical in

  14. Acetylene is an active-site-directed, slow-binding, reversible inhibitor of Azotobacter vinelandii hydrogenase

    SciTech Connect

    Hyman, M.R.; Arp, D.J.

    1987-10-06

    The inhibition of purified and membrane-bound hydrogenase from Azotobacter vinelandii by dihydrogen-free acetylene was investigated. The inhibition was a time-dependent process which exhibited first-order kinetics. Both H/sub 2/ and CO protected against the inhibition by acetylene. K/sub protect(app)/ values of 0.41 and 24 ..mu..M were derived for these gases, respectively. Both H/sub 2/-oxidizing activity and the tritium exchange capacity of the purified enzyme were inhibited at the same rate by acetylene. Removal of acetylene reversed the inhibition for both the purified and the membrane-associated form of the enzyme. The purified hydrogenases from both Rhizobium japonicum and Alcaligenes eutrophus H16 were also inhibited by acetylene in a time-dependent fashion. These findings suggest that acetylene is an active-site-directed, slow-binding, reversible inhibitor of some membrane-bound hydrogenases from aerobic bacteria.

  15. A slow-release system of bacterial cellulose gel and nanoparticles for hydrophobic active ingredients.

    PubMed

    Numata, Yukari; Mazzarino, Leticia; Borsali, Redouane

    2015-01-01

    A combination of bacterial cellulose (BC) gel and amphiphilic block copolymer nanoparticles was investigated as a drug delivery system (DDS) for hydrophobic active ingredients. Poly(ethylene oxide)-b-poly(caprolactone) (PEO-b-PCL) and retinol were used as the block copolymer and hydrophobic active ingredient, respectively. The BC gel was capable of incorporating copolymer nanoparticles and releasing them in an acetic acid-sodium acetate buffer solution (pH 5.2) at 37 °C. The percentage of released copolymer reached a maximum value of approximately 60% after 6h and remained constant after 24h. The percentage of retinol released from the copolymer-containing BC gel reached a maximum value at 4h. These results show that the combination of BC gel and nanoparticles is a slow-release system that may be useful in the cosmetic and biomedical fields for skin treatment and preparation. PMID:25840273

  16. Cytoplasm-to-myonucleus ratios and succinate dehydrogenase activities in adult rat slow and fast muscle fibers

    NASA Technical Reports Server (NTRS)

    Tseng, B. S.; Kasper, C. E.; Edgerton, V. R.

    1994-01-01

    The relationship between myonuclear number, cellular size, succinate dehydrogenase activity, and myosin type was examined in single fiber segments (n = 54; 9 +/- 3 mm long) mechanically dissected from soleus and plantaris muscles of adult rats. One end of each fiber segment was stained for DNA before quantitative photometric analysis of succinate dehydrogenase activity; the other end was double immunolabeled with fast and slow myosin heavy chain monoclonal antibodies. Mean +/- S.D. cytoplasmic volume/myonucleus ratio was higher in fast and slow plantaris fibers (112 +/- 69 vs. 34 +/- 21 x 10(3) microns3) than fast and slow soleus fibers (40 +/- 20 vs. 30 +/- 14 x 10(3) microns3), respectively. Slow fibers always had small volumes/myonucleus, regardless of fiber diameter, succinate dehydrogenase activity, or muscle of origin. In contrast, smaller diameter (< 70 microns) fast soleus and plantaris fibers with high succinate dehydrogenase activity appeared to have low volumes/myonucleus while larger diameter (> 70 microns) fast fibers with low succinate dehydrogenase activity always had large volume/myonucleus. Slow soleus fibers had significantly greater numbers of myonuclei/mm than did either fast soleus or fast plantaris fibers (116 +/- 51 vs. 55 +/- 22 and 44 +/- 23), respectively. These data suggest that the myonuclear domain is more limited in slow than fast fibers and in the fibers with a high, compared to a low, oxidative metabolic capability.

  17. Slow Conductances Could Underlie Intrinsic Phase-Maintaining Properties of Isolated Lobster (Panulirus interruptus) Pyloric Neurons

    PubMed Central

    Hooper, Scott L.; Buchman, Einat; Weaver, Adam L.; Thuma, Jeffrey B.; Hobbs, Kevin H.

    2009-01-01

    The rhythmic pyloric network of the lobster stomatogastric system approximately maintains phase (that is, the burst durations and durations between the bursts of its neurons change proportionally) when network cycle period is altered by current injection into the network pacemaker (Hooper, 1997a,b). When isolated from the network and driven by rhythmic hyperpolarizing current pulses, the delay to firing after each pulse of at least one network neuron type (Pyloric, PY) varies in a phase-maintaining manner when cycle period is varied (Hooper, 1998). These variations require PY neurons to have intrinsic mechanisms that respond to changes in neuron activity on time scales at least as long as two seconds. Slowly activating and deactivating conductances could provide such a mechanism. We tested this possibility by building models containing various slow conductances. This work showed that such conductances could indeed support intrinsic phase-maintenance and we show here results for one such conductance, a slow potassium conductance. These conductances supported phase maintenance because their mean activation level changed, hence altering neuron post-inhibition firing delay, when the rhythmic input to the neuron changed. Switching the sign of the dependence of slow conductance activation and deactivation on membrane potential resulted in neuron delays switching to change in an anti-phase maintaining manner. These data suggest that slow conductances or similar slow processes such as changes in intracellular Ca2+ concentration could underlie phase maintenance in pyloric network neurons. PMID:19211890

  18. Axonal conduction slowing induced by spontaneous bursting activity in cortical neurons cultured in a microtunnel device.

    PubMed

    Shimba, Kenta; Sakai, Koji; Isomura, Takuya; Kotani, Kiyoshi; Jimbo, Yasuhiko

    2015-01-01

    Recently, axons have been recognized as computational units in neuronal networks that can change their conduction properties along with their firing. However, little is known about the relationship between spontaneous activity and changes in the conduction velocity due to lack of a suitable method. Here, we studied changes in the conduction velocity during bursting activity using a new microfabricated device and the spike sorting method. The propagating action potentials were recorded from axons, which extended through a microtunnel in our device, comprised of a microfabricated chamber and a microelectrode array. By using waveforms recorded from a series of three electrodes along the bottom of a microtunnel, we achieved a sorting accuracy approximately 8.0% higher than that of the conventional one-electrode waveform method. We then demonstrated for the first time that conduction delays increased by 8.0% in action potentials of a mathematically isolated axon during one burst recorded at 10 days in vitro (DIV). Moreover, 79.4% of all clusters showed this conduction slowing during bursting activity at 10 DIV. Finally, we evaluated the days-in-culture dependence of the properties of bursting activity. These results suggest that our method is suitable for evaluating changes in conduction properties induced by spontaneous activity. PMID:25418582

  19. Deactivation by carbon of iron catalysts for indirect liquefaction

    SciTech Connect

    Bartholomew, C.H.

    1991-01-10

    Although promoted cobalt and iron catalysts for Fischer-Tropsch (FT) synthesis of gasoline feedstock were first developed more than three decades ago, a major technical problem still limiting the commercial use of these catalysts today is carbon deactivation. This report describes recent progress in a fundamental, three-year investigation of carbon formation and its effects on the activity and selectivity of promoted iron catalysts for FT synthesis, the objectives of which are to: determine rates and mechanisms of carbon deactivation of unsupported Fe and Fe/K catalysts during CO hydrogenation over a range of CO concentrations, CO:H{sub 2} ratios, and temperatures; and model the rates of deactivation of the same catalysts in fixed-bed reactors. To accomplish the above objectives, the project is divided into the following tasks: (1) determine the kinetics of reaction and of carbon deactivation during CO hydrogenation on Fe and Fe/K catalysts coated on monolith bodies. (2) Determine the reactivities and types of carbon deposited during reaction on the same catalysts from temperature-programmed-surface-reaction spectroscopy (TPSR) and transmission electron microscopy (TEM). Determine the types of iron carbides formed at various temperatures and H{sub 2}/CO ratios using x-ray diffraction and Moessbauer spectroscopy. (3) Develop mathematical deactivation models which include heat and mass transport contributions for FT synthesis is packed-bed reactors. Progress to date is described. 48 refs., 3 figs., 1 tab.

  20. Slow potentials and spike unit activity of the cerebral cortex of rabbits exposed to microwaves

    SciTech Connect

    Chizhenkova, R.A.

    1988-01-01

    Unanesthetized rabbits exposed to 12.5-cm microwaves at a field intensity of 40 mW/cm/sup 2/ in the region of the head showed an increase in the number of slow waves and spindle-shaped firings in the EEG and a change in the discharge frequency of neurons in the visual cortex in 41-52% of the cases. An enhancement of the evoked response of visual cortex neurons to light was observed in 61% of the cases and a facilitation of the driving response in 80% of all cases. It is concluded that the evoked response is a more sensitive indicator of the microwave effect than background activity. The effects of the fields were most distinctly observed with the driving response.

  1. Skin Sympathetic Nerve Activity is Modulated during Slow Sinusoidal Linear Displacements in Supine Humans.

    PubMed

    Bolton, Philip S; Hammam, Elie; Kwok, Kenny; Macefield, Vaughan G

    2016-01-01

    Low-frequency sinusoidal linear acceleration (0.08 Hz, ±4 mG) modulates skin sympathetic nerve activity (SSNA) in seated subjects (head vertical), suggesting that activation of the utricle in the peripheral vestibular labyrinth modulates SSNA. The aim of the current study was to determine whether SSNA is also modulated by input from the saccule. Tungsten microelectrodes were inserted into the common peroneal nerve to record oligounitary SSNA in 8 subjects laying supine on a motorized platform with the head aligned with the longitudinal axis of the body. Slow sinusoidal (0.08 Hz, 100 cycles) linear acceleration-decelerations (peak ±4 mG) were applied rostrocaudally to predominately activate the saccules, or mediolaterally to predominately activate the utricles. Cross-correlation histograms were constructed between the negative-going sympathetic spikes and the positive peaks of the sinusoidal stimuli. Sinusoidal linear acceleration along the rostrocaudal axis or mediolateral axis both resulted in sinusoidal modulation of SSNA (Median, IQR 27.0, 22-33% and 24.8, 17-39%, respectively). This suggests that both otolith organs act on sympathetic outflow to skin and muscle in a similar manner during supine displacements. PMID:26909019

  2. Suppression of NADPH Oxidase Activity May Slow the Expansion of Osteolytic Bone Metastases.

    PubMed

    McCarty, Mark F; DiNicolantonio, James

    2016-01-01

    Lysophosphatidic acid (LPA), generated in the microenvironment of cancer cells, can drive the proliferation, invasion, and migration of cancer cells by activating G protein-coupled LPA receptors. Moreover, in cancer cells that have metastasized to bone, LPA signaling can promote osteolysis by inducing cancer cell production of cytokines, such as IL-6 and IL-8, which can stimulate osteoblasts to secrete RANKL, a key promoter of osteoclastogenesis. Indeed, in cancers prone to metastasize to bone, LPA appears to be a major driver of the expansion of osteolytic bone metastases. Activation of NADPH oxidase has been shown to play a mediating role in the signaling pathways by which LPA, as well as RANKL, promote osteolysis. In addition, there is reason to suspect that Nox4 activation is a mediator of the feed-forward mechanism whereby release of TGF-beta from bone matrix by osteolysis promotes expression of PTHrP in cancer cells, and thereby induces further osteolysis. Hence, measures which can down-regulate NADPH oxidase activity may have potential for slowing the expansion of osteolytic bone metastases in cancer patients. Phycocyanin and high-dose statins may have utility in this regard, and could be contemplated as complements to bisphosphonates or denosumab for the prevention and control of osteolytic lesions. Ingestion of omega-3-rich flaxseed or fish oil may also have potential for controlling osteolysis in cancer patients. PMID:27571113

  3. Active region plasma outflows as sources of slow/intermediate solar wind

    NASA Astrophysics Data System (ADS)

    van Driel-Gesztelyi, Lidia M.

    2015-08-01

    L. van Driel-Gesztelyi (1,2,3), D. Baker (1), P. Démoulin (2), Culhane, J.L. (1), M.L. DeRosa (4) C.H. Mandrini (5,6), D.H. Brooks (7), A.N. Fazakerley (1), L.K. Harra (1), L. Zhao (7), T.H. Zurbuchen (7), F.A. Nuevo (5,6), A.M. Vásquez (5,6), G.D. Cristiani (5,6) M. Pick (2)1) UCL/MSSL, UK, (2) Paris Observatory, LESIA, CNRS, France, (3) Konkoly Observatory, Hungary, (4) Lockheed Martin Solar and Astrophysics Laboratory, USA, (5) IAFE, CONICET-UBA, Argentina (6) FCEN, UBA, Argentina (7) Dept. of Atmospheric, Oceanic and Earth Sciences, Univ. of Michigan, USAWe analyse plasma upflows of tens of km/s from the edges of solar active regions discovered by Hinode/EIS and investigate whether or not they become outflows, i.e. find their way into the solar wind. We analyse two magnetic configurations: bipolar and quadrupolar and find that the active region plasma may be directly channeled into the solar wind via interchange reconnection at a high-altitude null point above the active region especially when active regions are located besides coronal holes or in a more complex way via multiple reconnections even from under a closed helmet streamer. We relate the solar observations to in-situ slow/intermediate solar wind streams.

  4. Skin Sympathetic Nerve Activity is Modulated during Slow Sinusoidal Linear Displacements in Supine Humans

    PubMed Central

    Bolton, Philip S.; Hammam, Elie; Kwok, Kenny; Macefield, Vaughan G.

    2016-01-01

    Low-frequency sinusoidal linear acceleration (0.08 Hz, ±4 mG) modulates skin sympathetic nerve activity (SSNA) in seated subjects (head vertical), suggesting that activation of the utricle in the peripheral vestibular labyrinth modulates SSNA. The aim of the current study was to determine whether SSNA is also modulated by input from the saccule. Tungsten microelectrodes were inserted into the common peroneal nerve to record oligounitary SSNA in 8 subjects laying supine on a motorized platform with the head aligned with the longitudinal axis of the body. Slow sinusoidal (0.08 Hz, 100 cycles) linear acceleration-decelerations (peak ±4 mG) were applied rostrocaudally to predominately activate the saccules, or mediolaterally to predominately activate the utricles. Cross-correlation histograms were constructed between the negative-going sympathetic spikes and the positive peaks of the sinusoidal stimuli. Sinusoidal linear acceleration along the rostrocaudal axis or mediolateral axis both resulted in sinusoidal modulation of SSNA (Median, IQR 27.0, 22–33% and 24.8, 17–39%, respectively). This suggests that both otolith organs act on sympathetic outflow to skin and muscle in a similar manner during supine displacements. PMID:26909019

  5. PUREX/UO{sub 3} facilities deactivation lessons learned: History

    SciTech Connect

    Gerber, M.S.

    1997-11-25

    In May 1997, a historic deactivation project at the PUREX (Plutonium URanium EXtraction) facility at the Hanford Site in south-central Washington State concluded its activities (Figure ES-1). The project work was finished at $78 million under its original budget of $222.5 million, and 16 months ahead of schedule. Closely watched throughout the US Department of Energy (DOE) complex and by the US Department of Defense for the value of its lessons learned, the PUREX Deactivation Project has become the national model for the safe transition of contaminated facilities to shut down status.

  6. Visualizing in situ translational activity for identifying and sorting slow-growing archaeal−bacterial consortia

    PubMed Central

    Hatzenpichler, Roland; Connon, Stephanie A.; Goudeau, Danielle; Malmstrom, Rex R.; Woyke, Tanja; Orphan, Victoria J.

    2016-01-01

    To understand the biogeochemical roles of microorganisms in the environment, it is important to determine when and under which conditions they are metabolically active. Bioorthogonal noncanonical amino acid tagging (BONCAT) can reveal active cells by tracking the incorporation of synthetic amino acids into newly synthesized proteins. The phylogenetic identity of translationally active cells can be determined by combining BONCAT with rRNA-targeted fluorescence in situ hybridization (BONCAT-FISH). In theory, BONCAT-labeled cells could be isolated with fluorescence-activated cell sorting (BONCAT-FACS) for subsequent genetic analyses. Here, in the first application, to our knowledge, of BONCAT-FISH and BONCAT-FACS within an environmental context, we probe the translational activity of microbial consortia catalyzing the anaerobic oxidation of methane (AOM), a dominant sink of methane in the ocean. These consortia, which typically are composed of anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria, have been difficult to study due to their slow in situ growth rates, and fundamental questions remain about their ecology and diversity of interactions occurring between ANME and associated partners. Our activity-correlated analyses of >16,400 microbial aggregates provide the first evidence, to our knowledge, that AOM consortia affiliated with all five major ANME clades are concurrently active under controlled conditions. Surprisingly, sorting of individual BONCAT-labeled consortia followed by whole-genome amplification and 16S rRNA gene sequencing revealed previously unrecognized interactions of ANME with members of the poorly understood phylum Verrucomicrobia. This finding, together with our observation that ANME-associated Verrucomicrobia are found in a variety of geographically distinct methane seep environments, suggests a broader range of symbiotic relationships within AOM consortia than previously thought. PMID:27357680

  7. Visualizing in situ translational activity for identifying and sorting slow-growing archaeal-bacterial consortia.

    PubMed

    Hatzenpichler, Roland; Connon, Stephanie A; Goudeau, Danielle; Malmstrom, Rex R; Woyke, Tanja; Orphan, Victoria J

    2016-07-12

    To understand the biogeochemical roles of microorganisms in the environment, it is important to determine when and under which conditions they are metabolically active. Bioorthogonal noncanonical amino acid tagging (BONCAT) can reveal active cells by tracking the incorporation of synthetic amino acids into newly synthesized proteins. The phylogenetic identity of translationally active cells can be determined by combining BONCAT with rRNA-targeted fluorescence in situ hybridization (BONCAT-FISH). In theory, BONCAT-labeled cells could be isolated with fluorescence-activated cell sorting (BONCAT-FACS) for subsequent genetic analyses. Here, in the first application, to our knowledge, of BONCAT-FISH and BONCAT-FACS within an environmental context, we probe the translational activity of microbial consortia catalyzing the anaerobic oxidation of methane (AOM), a dominant sink of methane in the ocean. These consortia, which typically are composed of anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria, have been difficult to study due to their slow in situ growth rates, and fundamental questions remain about their ecology and diversity of interactions occurring between ANME and associated partners. Our activity-correlated analyses of >16,400 microbial aggregates provide the first evidence, to our knowledge, that AOM consortia affiliated with all five major ANME clades are concurrently active under controlled conditions. Surprisingly, sorting of individual BONCAT-labeled consortia followed by whole-genome amplification and 16S rRNA gene sequencing revealed previously unrecognized interactions of ANME with members of the poorly understood phylum Verrucomicrobia This finding, together with our observation that ANME-associated Verrucomicrobia are found in a variety of geographically distinct methane seep environments, suggests a broader range of symbiotic relationships within AOM consortia than previously thought. PMID:27357680

  8. Antioxidant Deactivation on Graphenic Nanocarbon Surfaces

    SciTech Connect

    Liu, Xinyuan; Sen, Sujat; Liu, Jingyu; Kulaots, Indrek; Geohegan, David B; Kane, Agnes; Puretzky, Alexander A; Rouleau, Christopher M; More, Karren Leslie; Palmore, G. Tayhas R.; Hurt, Robert H.

    2011-01-01

    This article reports a direct chemical pathway for antioxidant deactivation on the surfaces of carbon nanomaterials. In the absence of cells, carbon nanotubes are shown to deplete the key physiological antioxidant glutathione (GSH) in a reaction involving dissolved dioxygen that yields the oxidized dimer, GSSG, as the primary product. In both chemical and electrochemical experiments, oxygen is only consumed at a significant steady-state rate in the presence of both nanotubes and GSH. GSH deactivation occurs for single- and multi-walled nanotubes, graphene oxide, nanohorns, and carbon black at varying rates that are characteristic of the material. The GSH depletion rates can be partially unified by surface area normalization, are accelerated by nitrogen doping, and suppressed by defect annealing or addition of proteins or surfactants. It is proposed that dioxygen reacts with active sites on graphenic carbon surfaces to produce surface-bound oxygen intermediates that react heterogeneously with glutathione to restore the carbon surface and complete a catalytic cycle. The direct catalytic reaction between nanomaterial surfaces and antioxidants may contribute to oxidative stress pathways in nanotoxicity, and the dependence on surface area and structural defects suggest strategies for safe material design.

  9. Antioxidant deactivation on graphenic nanocarbon surfaces

    PubMed Central

    Liu, Xinyuan; Sen, Sujat; Liu, Jingyu; Kulaots, Indrek; Geohegan, David; Kane, Agnes; Puretzky, Alex A.; Rouleau, Christopher M.; More, Karren L.; Palmore, G. Tayhas R.; Hurt, Robert H.

    2013-01-01

    This article reports a direct chemical pathway for antioxidant deactivation on the surfaces of carbon nanomaterials. In the absence of cells, carbon nanotubes are shown to deplete the key physiological antioxidant glutathione (GSH) in a reaction involving dissolved dioxygen that yields the oxidized dimer, GSSG, as the primary product. In both chemical and electrochemical experiments, oxygen is only consumed at a significant steady-state rate in the presence of both nanotubes and GSH. GSH deactivation occurs for single- and multi-walled nanotubes, graphene oxide, nanohorns, and carbon black at varying rates that are characteristic of the material. The GSH depletion rates can be partially unified by surface area normalization, are accelerated by nitrogen doping, and suppressed by defect annealing or addition of proteins or surfactants. We propose that dioxygen reacts with active sites on graphenic carbon surfaces to produce surface-bound oxygen intermediates that react heterogeneously with glutathione to restore the carbon surface and complete a catalytic cycle. The direct catalytic reaction between nanomaterial surfaces and antioxidants may contribute to oxidative stress pathways in nanotoxicity, and the dependence on surface area and structural defects suggest strategies for safe material design. PMID:21818846

  10. Stoichiometry and kinetics of poly-{beta}-hydroxybutyrate metabolism in aerobic, slow growing, activated sludge cultures

    SciTech Connect

    Beun, J.J.; Paletta, F.; Loosdrecht, M.C.M. Van; Heijnen, J.J.

    2000-02-20

    This paper discusses the poly-{beta}-hydroxybutyrate (PHB) metabolism in aerobic, slow growing, activated sludge cultures, based on experimental data and on a metabolic model. The dynamic conditions which occur in activated sludge processes were simulated in a 2-L sequencing batch reactor (SBR) by subjecting a mixed microbial population to successive periods of external substrate availability (feast period) and no external substrate availability (famine period). Under these conditions intracellular storage and consumption of PHB was observed. It appeared that in the feast period, 66% to almost 100% of the substrate consumed is used for storage of PHB, the remainder is used for growth and maintenance processes. Furthermore, it appeared that at high sludge retention time (SRT) the growth rate in the feast and famine periods was the same. With decreasing SRT the growth rate in the feast period increased relative to the growth rate in the famine period. Acetate consumption and PHB production in the feast period both proceeded with a zero-order rate in acetate and PHB concentration respectively. PHB consumption in the famine period could best be described kinetically with a nth order degradation equation in PHB concentration. The obtained results are discussed in the context of the general activated sludge models.

  11. Simplified greywater treatment systems: Slow filters of sand and slate waste followed by granular activated carbon.

    PubMed

    Zipf, Mariah Siebert; Pinheiro, Ivone Gohr; Conegero, Mariana Garcia

    2016-07-01

    One of the main actions of sustainability that is applicable to residential, commercial, and public buildings is the rational use of water that contemplates the reuse of greywater as one of the main options for reducing the consumption of drinking water. Therefore, this research aimed to study the efficiencies of simplified treatments for greywater reuse using slow sand and slow slate waste filtration, both followed by granular activated carbon filters. The system monitoring was conducted over 28 weeks, using analyses of the following parameters: pH, turbidity, apparent color, biochemical oxygen demand (BOD), chemical oxygen demand (COD), surfactants, total coliforms, and thermotolerant coliforms. The system was run at two different filtration rates: 6 and 2 m(3)/m(2)/day. Statistical analyses showed no significant differences in the majority of the results when filtration rate changed from 6 to 2 m(3)/m(2)/day. The average removal efficiencies with regard to the turbidity, apparent color, COD and BOD were 61, 54, 56, and 56%, respectively, for the sand filter, and 66, 61, 60, and 51%, respectively, for the slate waste filter. Both systems showed good efficiencies in removing surfactants, around 70%, while the pH reached values of around 7.80. The average removal efficiencies of the total and thermotolerant coliforms were of 61 and 90%, respectively, for the sand filter, and 67 and 80%, respectively, for the slate waste filter. The statistical analysis found no significant differences between the responses of the two systems, which attest to the fact that the slate waste can be a substitute for sand. The maximum levels of efficiency were high, indicating the potential of the systems, and suggesting their optimization in order to achieve much higher average efficiencies. PMID:27045540

  12. Seismicity and active tectonic processes in the ultra-slow spreading Lena Trough, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Läderach, C.; Schlindwein, V.; Schenke, H.-W.; Jokat, W.

    2011-03-01

    With its remote location in the ice-covered Fram Strait, Lena Trough is a poorly known segment of the global mid-ocean ridge system. It is a prominent member of the ultra-slow spreading mid-ocean ridges but its spreading mechanisms are not well understood. We relocalized teleseismically recorded earthquakes from the past five decades to identify tectonic processes in Lena Trough and the adjacent Spitsbergen Fracture Zone (FZ). During two cruises with RV Polarstern in 2008 and 2009 we deployed seismic arrays on ice floes to record the local seismicity of Lena Trough. We could identify and localize microseismic events which we assume to be present in the entire rift valley. In contrast, our relocalization of teleseismically recorded earthquakes shows an asymmetric epicentre distribution along Lena Trough with earthquakes occurring predominately along the western valley flanks of Lena Trough. In 2009 February/March, several high-magnitude earthquakes peaking in an Mb 6.6 event occurred in an outside-corner setting of the Spitsbergen FZ. This is the strongest earthquake which has ever been recorded in Fram Strait and its location at the outside-corner high of the ultra-slow spreading ridge is exceptional. Comparing the seismicity with the magnetic anomalies and high-resolution multibeam bathymetry, we divide Lena Trough in a symmetrically spreading northern part and an asymmetrically spreading southern part south of the South Lena FZ. We propose that a complex interaction between the former De Geer Megashear zone, which separated Greenland from Svalbard starting at Late Mesozoic/Early Cenozoic times, and the developing rift in the southern Lena Trough resulted an increasing eastward dislocation towards the Spitsbergen FZ between older spreading axes and the recent active spreading axis which we believe to be located west of the bathymetric rift valley flanks in a wide extensional plain.

  13. High-resolution Mapping of In Vivo Gastrointestinal Slow Wave Activity Using Flexible Printed Circuit Board Electrodes: Methodology and Validation

    PubMed Central

    DU, PENG; O'GRADY, G.; EGBUJI, J. U.; LAMMERS, W. J.; BUDGETT, D.; NIELSEN, P.; WINDSOR, J. A.; PULLAN, A. J.; CHENG, L. K.

    2014-01-01

    High-resolution, multi-electrode mapping is providing valuable new insights into the origin, propagation, and abnormalities of gastrointestinal (GI) slow wave activity. Construction of high-resolution mapping arrays has previously been a costly and time-consuming endeavor, and existing arrays are not well suited for human research as they cannot be reliably and repeatedly sterilized. The design and fabrication of a new flexible printed circuit board (PCB) multi-electrode array that is suitable for GI mapping is presented, together with its in vivo validation in a porcine model. A modified methodology for characterizing slow waves and forming spatiotemporal activation maps showing slow waves propagation is also demonstrated. The validation study found that flexible PCB electrode arrays are able to reliably record gastric slow wave activity with signal quality near that achieved by traditional epoxy resin-embedded silver electrode arrays. Flexible PCB electrode arrays provide a clinically viable alternative to previously published devices for the high-resolution mapping of GI slow wave activity. PCBs may be mass-produced at low cost, and are easily sterilized and potentially disposable, making them ideally suited to intra-operative human use. PMID:19224368

  14. Sustained increase in hippocampal sharp-wave ripple activity during slow-wave sleep after learning

    PubMed Central

    Eschenko, Oxana; Ramadan, Wiâm; Mölle, Matthias; Born, Jan; Sara, Susan J.

    2008-01-01

    High-frequency oscillations, known as sharp-wave/ripple (SPW-R) complexes occurring in hippocampus during slow-wave sleep (SWS), have been proposed to promote synaptic plasticity necessary for memory consolidation. We recorded sleep for 3 h after rats were trained on an odor-reward association task. Learning resulted in an increased number SPW-Rs during the first hour of post-learning SWS. The magnitude of ripple events and their duration were also elevated for up to 2 h after the newly formed memory. Rats that did not learn the discrimination during the training session did not show any change in SPW-Rs. Successful retrieval from remote memory was likewise accompanied by an increase in SPW-R density and magnitude, relative to the previously recorded baseline, but the effects were much shorter lasting and did not include increases in ripple duration and amplitude. A short-lasting increase of ripple activity was also observed when rats were rewarded for performing a motor component of the task only. There were no increases in ripple activity after habituation to the experimental environment. These experiments show that the characteristics of hippocampal high-frequency oscillations during SWS are affected by prior behavioral experience. Associative learning induces robust and sustained (up to 2 h) changes in several SPW-R characteristics, while after retrieval from remote memory or performance of a well-trained procedural aspect of the task, only transient changes in ripple density were induced. PMID:18385477

  15. Anthropogenically-Induced Superficial Seismic Activity Modulated By Slow-Slip Events in Guerrero, Mexico

    NASA Astrophysics Data System (ADS)

    Frank, W.; Shapiro, N.; Husker, A. L.; Kostoglodov, V.; Campillo, M.

    2014-12-01

    We use the data of the MASE seismic experiment operated during 2.5 years in Guerrero, Mexico to create a large catalog of seismic multiplets. This catalog is dominated by families of Low-Frequency Earthquakes (LFE) occurring in vicinity of the main subduction interface. In addition to more than one thousand LFE families, we detected nine repeating seismic event families that are located in the upper crust and are anthropogenically induced (AI) by mining blasts. Analysis of the recurrence of these AI events in time shows that their activity significantly increases during the strong Slow-Slip Event (SSE) in 2006. Modeled static stress perturbations induced by the SSE at the surface are ~5 kPa that is on the same order of magnitude as dynamic stress perturbations observed to trigger other low stress drop phenomena, such as tectonic tremor. We propose therefore that strong SSEs in Guerrero impose an extensional regime throughout the continental crust, modifying the stress field near the surface and increasing AI activity. This modulation of the recurrence of the crustal seismic events by the SSE-induced stress might be related to another recent observation: the SSE-induced reduction of seismic velocities linked to nonlinear elastic effects caused by opening of cracks (Rivet et al., 2011, 2014).

  16. Automated Gastric Slow Wave Cycle Partitioning and Visualization for High-resolution Activation Time Maps

    PubMed Central

    Erickson, Jonathan C.; O’Grady, Greg; Du, Peng; Egbuji, John U.; Pullan, Andrew J.; Cheng, Leo K.

    2014-01-01

    High-resolution (HR) multi-electrode mapping has become an important technique for evaluating gastrointestinal (GI) slow wave (SW) behaviors. However, the application and uptake of HR mapping has been constrained by the complex and laborious task of analyzing the large volumes of retrieved data. Recently, a rapid and reliable method for automatically identifying activation times (ATs) of SWs was presented, offering substantial efficiency gains. To extend the automated data-processing pipeline, novel automated methods are needed for partitioning identified ATs into their propagation cycles, and for visualizing the HR spatiotemporal maps. A novel cycle partitioning algorithm (termed REGROUPS) is presented. REGROUPS employs an iterative REgion GROwing procedure and incorporates a Polynomial-surface-estimate Stabilization step, after initiation by an automated seed selection process. Automated activation map visualization was achieved via an isochronal contour mapping algorithm, augmented by a heuristic 2-step scheme. All automated methods were collectively validated in a series of experimental test cases of normal and abnormal SW propagation, including instances of patchy data quality. The automated pipeline performance was highly comparable to manual analysis, and outperformed a previously proposed partitioning approach. These methods will substantially improve the efficiency of GI HR mapping research. PMID:20927594

  17. Reduction in cortical gamma synchrony during depolarized state of slow wave activity in mice

    PubMed Central

    Hwang, Eunjin; McNally, James M.; Choi, Jee Hyun

    2013-01-01

    EEG gamma band oscillations have been proposed to account for the neural synchronization crucial for perceptual integration. While increased gamma power and synchronization is generally observed during cognitive tasks performed during wake, several studies have additionally reported increased gamma power during sleep or anesthesia, raising questions about the characteristics of gamma oscillation during impaired consciousness and its role in conscious processing. Phase-amplitude modulation has been observed between slow wave activity (SWA, 0.5–4 Hz) and gamma oscillations during ketamine/xylazine anesthesia or sleep, showing increased gamma activity corresponding to the depolarized (ON) state of SWA. Here we divided gamma activity into its ON and OFF (hyperpolarized) state components based on the phase of SWA induced by ketamine/xylazine anesthesia and compared their power and synchrony with wake state levels in mice. We further investigated the state-dependent changes in both gamma power and synchrony across primary motor and primary somatosensory cortical regions and their interconnected thalamic regions throughout anesthesia and recovery. As observed previously, gamma power was as high as during wake specifically during the ON state of SWA. However, the synchrony of this gamma activity between somatosensory-motor cortical regions was significantly reduced compared to the baseline wake state. In addition, the somatosensory-motor cortical synchrony of gamma oscillations was reduced and restored in an anesthetic state-dependent manner, reflecting the changing depth of anesthesia. Our results provide evidence that during anesthesia changes in long-range information integration between cortical regions might be more critical for changes in consciousness than changes in local gamma oscillatory power. PMID:24379760

  18. Asymmetric active seismicity along the ultra-slow spreading Gakkel Ridge

    NASA Astrophysics Data System (ADS)

    Hopper, John R.; Voss, Peter H.; Lavier, Luc L.

    2015-04-01

    Ultra-slow spreading ridges are frequently characterised by spreading segments that are largely magma starved. Spreading along such segments does not occur by crustal creation/accretion processes such as intrusions, diking and volcanism, but rather by mechanical extension of the lithosphere, exposing the mantle to seafloor where it interacts with seawater to form serpentinite. Such exhumation is thought to occur along detachment faults that form concave down surfaces and produce an extensional geometry that is highly asymmetric. A consequence of all models that have been developed to simulate this type of extension is that stress and strain is focused primarily on the footwall block of the spreading system. This would predict that at any given time, only one side of the system should show active seismicity. In 2001, the Gakkel Ridge was extensively sampled by dredging during the AMORE cruise. These samples showed that the ridge is divided into distinct segments that today are either magmatically robust (only basalts recovered) or magmatically starved (dominantly serpentinised peridotite and gabbros recovered). We extracted earthquake data along the Gakkel Ridge from the global catalogs to investigate if these distinct segments exhibit any differences in active seismicity. We show that the western volcanic zone shows symmetric active seismicity, with earthquakes occurring on both sides of the ridge axis along a relatively restricted region. In contrast, the sparsely magmatic zone shows active seismicity dominantly along along the southern half of the ridge, with comparatively little seismicity to the north. These results are consistent with the proposed models for the formation of amagmatic spreading centers.

  19. Slow acting protein extract from fruit pulp of Momordica charantia with insulin secretagogue and insulinomimetic activities.

    PubMed

    Yibchok-anun, Sirintorn; Adisakwattana, Sirichai; Yao, Cheng Yu; Sangvanich, Polkit; Roengsumran, Sophon; Hsu, Walter Haw

    2006-06-01

    The protein from Thai bitter gourd (Momordica charantia) fruit pulp was extracted and studied for its hypoglycemic effect. Subcutaneous administration of the protein extract (5, 10 mg/kg) significantly and markedly decreased plasma glucose concentrations in both normal and streptozotocin-induced diabetic rats in a dose-dependent manner. The onset of the protein extract-induced antihyperglycemia/hypoglycemia was observed at 4 and 6 h in diabetic and normal rats, respectively. This protein extract also raised plasma insulin concentrations by 2 fold 4 h following subcutaneous administration. In perfused rat pancreas, the protein extract (10 microg/ml) increased insulin secretion, but not glucagon secretion. The increase in insulin secretion was apparent within 5 min of administration and was persistent during 30 min of administration. Furthermore, the protein extract enhanced glucose uptake into C2C12 myocytes and 3T3-L1 adipocytes. Time course experiments performed in rat adipocytes revealed that M. charantia protein extract significantly increased glucose uptake after 4 and 6 h of incubation. Thus, the M. charantia protein extract, a slow acting chemical, exerted both insulin secretagogue and insulinomimetic activities to lower blood glucose concentrations in vivo. PMID:16755004

  20. Increased frontal sleep slow wave activity in adolescents with major depression

    PubMed Central

    Tesler, Noemi; Gerstenberg, Miriam; Franscini, Maurizia; Jenni, Oskar G.; Walitza, Susanne; Huber, Reto

    2015-01-01

    Sleep slow wave activity (SWA), the major electrophysiological characteristic of deep sleep, mirrors both cortical restructuring and functioning. The incidence of Major Depressive Disorder (MDD) substantially rises during the vulnerable developmental phase of adolescence, where essential cortical restructuring is taking place. The goal of this study was to assess characteristics of SWA topography in adolescents with MDD, in order to assess abnormalities in both cortical restructuring and functioning on a local level. All night high-density EEG was recorded in 15 patients meeting DSM-5 criteria for MDD and 15 sex- and age-matched healthy controls. The actual symptom severity was assessed using the Children's Depression Rating Scale—Revised (CDRS-R). Topographical power maps were calculated based on the average SWA of the first non-rapid eye movement (NREM) sleep episode. Depressed adolescents exhibited significantly more SWA in a cluster of frontal electrodes compared to controls. SWA over frontal brain regions correlated positively with the CDRS-R subscore “morbid thoughts”. Self-reported sleep latency was significantly higher in depressed adolescents compared to controls whereas sleep architecture did not differ between the groups. Higher frontal SWA in depressed adolescents may represent a promising biomarker tracing cortical regions of intense use and/or restructuring. PMID:26870661

  1. Cells in the monkey ponto-medullary reticular formation modulate their activity with slow finger movements

    PubMed Central

    Soteropoulos, Demetris S; Williams, Elizabeth R; Baker, Stuart N

    2012-01-01

    Recent work has shown that the primate reticulospinal tract can influence spinal interneurons and motoneurons involved in control of the hand. However, demonstrating connectivity does not reveal whether reticular outputs are modulated during the control of different types of hand movement. Here, we investigated how single unit discharge in the pontomedullary reticular formation (PMRF) modulated during performance of a slow finger movement task in macaque monkeys. Two animals performed an index finger flexion–extension task to track a target presented on a computer screen; single units were recorded both from ipsilateral PMRF (115 cells) and contralateral primary motor cortex (M1, 210 cells). Cells in both areas modulated their activity with the task (M1: 87%, PMRF: 86%). Some cells (18/115 in PMRF; 96/210 in M1) received sensory input from the hand, showing a short-latency modulation in their discharge following a rapid passive extension movement of the index finger. Effects in ipsilateral electromyogram to trains of stimuli were recorded at 45 sites in the PMRF. These responses involved muscles controlling the digits in 13/45 sites (including intrinsic hand muscles, 5/45 sites). We conclude that PMRF may contribute to the control of fine finger movements, in addition to its established role in control of more proximal limb and trunk movements. This finding may be especially important in understanding functional recovery after brain lesions such as stroke. PMID:22641776

  2. Cells in the monkey ponto-medullary reticular formation modulate their activity with slow finger movements.

    PubMed

    Soteropoulos, Demetris S; Williams, Elizabeth R; Baker, Stuart N

    2012-08-15

    Recent work has shown that the primate reticulospinal tract can influence spinal interneurons and motoneurons involved in control of the hand. However, demonstrating connectivity does not reveal whether reticular outputs are modulated during the control of different types of hand movement. Here, we investigated how single unit discharge in the pontomedullary reticular formation (PMRF) modulated during performance of a slow finger movement task in macaque monkeys. Two animals performed an index finger flexion–extension task to track a target presented on a computer screen; single units were recorded both from ipsilateral PMRF (115 cells) and contralateral primary motor cortex (M1, 210 cells). Cells in both areas modulated their activity with the task (M1: 87%, PMRF: 86%). Some cells (18/115 in PMRF; 96/210 in M1) received sensory input from the hand, showing a short-latency modulation in their discharge following a rapid passive extension movement of the index finger. Effects in ipsilateral electromyogram to trains of stimuli were recorded at 45 sites in the PMRF. These responses involved muscles controlling the digits in 13/45 sites (including intrinsic hand muscles, 5/45 sites). We conclude that PMRF may contribute to the control of fine finger movements, in addition to its established role in control of more proximal limb and trunk movements. This finding may be especially important in understanding functional recovery after brain lesions such as stroke. PMID:22641776

  3. SCN10A Mutation in a Patient with Erythromelalgia Enhances C-Fiber Activity Dependent Slowing.

    PubMed

    Kist, Andreas M; Sagafos, Dagrun; Rush, Anthony M; Neacsu, Cristian; Eberhardt, Esther; Schmidt, Roland; Lunden, Lars Kristian; Ørstavik, Kristin; Kaluza, Luisa; Meents, Jannis; Zhang, Zhiping; Carr, Thomas Hedley; Salter, Hugh; Malinowsky, David; Wollberg, Patrik; Krupp, Johannes; Kleggetveit, Inge Petter; Schmelz, Martin; Jørum, Ellen; Lampert, Angelika; Namer, Barbara

    2016-01-01

    Gain-of-function mutations in the tetrodotoxin (TTX) sensitive voltage-gated sodium channel (Nav) Nav1.7 have been identified as a key mechanism underlying chronic pain in inherited erythromelalgia. Mutations in TTX resistant channels, such as Nav1.8 or Nav1.9, were recently connected with inherited chronic pain syndromes. Here, we investigated the effects of the p.M650K mutation in Nav1.8 in a 53 year old patient with erythromelalgia by microneurography and patch-clamp techniques. Recordings of the patient's peripheral nerve fibers showed increased activity dependent slowing (ADS) in CMi and less spontaneous firing compared to a control group of erythromelalgia patients without Nav mutations. To evaluate the impact of the p.M650K mutation on neuronal firing and channel gating, we performed current and voltage-clamp recordings on transfected sensory neurons (DRGs) and neuroblastoma cells. The p.M650K mutation shifted steady-state fast inactivation of Nav1.8 to more hyperpolarized potentials and did not significantly alter any other tested gating behaviors. The AP half-width was significantly broader and the stimulated action potential firing rate was reduced for M650K transfected DRGs compared to WT. We discuss the potential link between enhanced steady state fast inactivation, broader action potential width and the potential physiological consequences. PMID:27598514

  4. F-Canyon Suspension and Deactivation Safety Analysis Reports

    SciTech Connect

    LOW, JM

    2004-04-30

    This paper describes Savannah River Site's compliance with the Department of Energy (DOE) direction to suspend current operations, transition to accommodate revised facility missions, and initiate operations to deactivate F-Canyon using a suspension and deactivation safety basis. This paper integrates multiple Workshop theme topics - Lessons Learned from the Safety Analysis Process, Improvements in Documenting Hazard and Accident Analysis, and Closure Issues - Decontamination and Decommissioning. The paper describes the process used to develop safety documentation to support suspension and deactivation activities for F-Canyon. Embodied are descriptive efforts that include development of intermediate and final ''end states'' (e.g., transitional operations), preparation of safety bases documents to support transition, performance of suspension and deactivation activities (e.g. solvent washing, tank/sump flushing, and laboratory waste processing), and downgrade of Safety Class and Safety Significant equipment. The reduction and/or removal of hazards in the facility result in significant risk (frequency times consequence) reduction to the public, site workers, and the environment. Risk reduction then allows the downgrade of safety class and safety significant systems (e.g., ventilation system) and elimination of associated surveillances. The downgrade of safety systems results in significant cost savings.

  5. Slow early growers have more muscle in relation to adult activity: Evidence from Cebu, Philippines

    PubMed Central

    Workman, Megan; McDade, Thomas W.; Adair, Linda S.; Kuzawa, Christopher W.

    2015-01-01

    Background/objectives Adult skeletal muscle mass (SMM) protects against type 2 diabetes but little is known about its developmental antecedents. We examined whether pace of early weight gain predicted adult SMM in a birth cohort from Cebu City, Philippines. Additionally, we examined whether increases in SMM associated with adult muscle-building exercise varied according to early growth. Subjects/methods Data came from 1472 participants of the Cebu Longitudinal Health and Nutrition Survey. Weight was measured at birth and at 6-month intervals through age 24 months. Adult SMM was estimated from anthropometric measurements when participants were 20-22 years old. Interviews provided information on adult exercise/lifestyle habits. Results SMM (mean ± SD) was 20.8 ± 3.9 kg (men) and 13.6 ± 3.4 kg (women). Faster early weight gain predicted higher adult SMM. After adjustment for height and lifestyle factors, strongest associations with SMM were found for 6-12 months growth in men (β=0.17, p=0.001) and for birth weight in women (β=0.14, p=0.001). Individuals who had grown slowly displayed greater SMM in association with adult weight lifting, basketball playing, and physically demanding forms of employment (men) or household chores (women). Conclusions These results suggest heightened sensitivity of activity-induced muscle hypertrophy among adults who were born light or who gained weight slowly as infants. Future research should test this finding by comparing responses of muscle mass to an intervention in slow v. fast early growers. Findings suggest that adults who display reduced SMM following suboptimal early growth may be good candidates for new anti-diabetes interventions that promote muscle-building activities. PMID:25782430

  6. An Active Learning Mammalian Skeletal Muscle Lab Demonstrating Contractile and Kinetic Properties of Fast- and Slow-Twitch Muscle

    ERIC Educational Resources Information Center

    Head, S. I.; Arber, M. B.

    2013-01-01

    The fact that humans possess fast and slow-twitch muscle in the ratio of approximately 50% has profound implications for designing exercise training strategies for power and endurance activities. With the growth of exercise and sport science courses, we have seen the need to develop an undergraduate student laboratory that demonstrates the basic…

  7. Biomagnetic and bioelectric detection of gastric slow wave activity in normal human subjects – a correlation study

    PubMed Central

    Somarajan, S; Muszynski, ND; Obioha, C; Richards, WO; Bradshaw, LA

    2012-01-01

    We measured gastric slow wave activity simultaneously with a Superconducting Quantum Interference Device (SQUID) magnetometer, mucosal electrodes, and cutaneous electrodes in 18 normal human subjects (11 women and 7 men). We processed signals with Fourier spectral analysis and SOBI blind-source separation techniques. We observed a high waveform correlation between mucosal electromyogram (EMG) and multichannel SQUID magnetogastrogram (MGG). There was a lower waveform correlation between mucosal EMG and cutaneous electrogastrogram (EGG), but the correlation improved with application of SOBI. There was also a high correlation between the frequency of the electrical activity recorded in MGG and in mucosal electrodes (r =0.97). We concluded that SQUID magnetometers noninvasively record gastric slow wave activity that is highly correlated with the activity recorded by invasive mucosal electrodes. PMID:22735166

  8. Modeling of slow glutamate diffusion and AMPA receptor activation in the cerebellar glomerulus.

    PubMed

    Saftenku, E E

    2005-06-01

    Synaptic conductances are influenced markedly by the geometry of the space surrounding the synapse since the transient glutamate concentration in the synaptic cleft is determined by this geometry. Our paper is an attempt to understand the reasons for slow glutamate diffusion in the cerebellar glomerulus, a structure situated around the enlarged mossy fiber terminal in the cerebellum and surrounded by a glial sheath. For this purpose, analytical expressions for glutamate diffusion in the glomerulus were considered in models with two-, three-, and fractional two-three-dimensional (2D-3D) geometry with an absorbing boundary. The time course of average glutamate concentration in the synaptic cleft of the mossy fiber-granule cell connection was calculated for both direct release of glutamate from the same synaptic unit, and for cumulative spillover of glutamate from neighboring release sites. Several kinetic schemes were examined, and the parameters of the diffusion models were estimated by identifying theoretical activation of AMPA receptors with direct release and spillover components of published experimental AMPA receptor-mediated EPSCs. For model selection, the correspondence of simulated paired-pulse ratio and EPSC increase after prevention of desensitization to experimental values were also taken into consideration. Our results suggest at least a 7- to 10-fold lower apparent diffusion coefficient of glutamate in the porous medium of the glomerulus than in water. The modeling of glutamate diffusion in the 2D-3D geometry gives the best fit of experimental EPSCs. We show that it could be only partly explained by normal diffusion of glutamate in the complex geometry of the glomerulus. We assume that anomalous diffusion of glutamate occurs in the glomerulus. A good match of experimental estimations and theoretical parameters, obtained in the simulations that use an approximation of anomalous diffusion by a solution for fractional Brownian motion, confirms our

  9. Membrane stretch accelerates activation and slow inactivation in Shaker channels with S3-S4 linker deletions.

    PubMed

    Tabarean, Iustin V; Morris, Catherine E

    2002-06-01

    At low P(open)(V) Shaker exhibits pronounced stretch-activation. Possible explanations for Shaker's sensitivity to tension include 1) Shaker channels are sufficiently distensible that stretch produces novel channel states and 2) Shaker channels expand in the plane of the membrane during voltage gating. For channels expressed in oocytes, we compared effects of patch stretch on Shaker and mutants that retain their voltage-gating ability but activate sluggishly because all or most of the S3-S4 linker has been deleted. Deletants had 10, 5, or 0 amino acid (aa) linkers, whereas wild-type is 31 aa. In deletants, though activation is exceptionally slow, slow inactivation is exceptionally quick; the resulting kinetic match was a bonus that allowed effects of stretch to be followed simultaneously in both processes. With the intact linker, an approximately 3 orders of magnitude mismatch in the two processes makes this impracticable. Standard stretch stimuli increased the rates and extent of activation by about the same degree in wild type and deletants, with effects especially pronounced near the foot of G(V). In deletants (where slow inactivation is strongly coupled to activation) stretch also accelerated slow inactivation. Maximum conductances were unaffected by stretch in all variants. In ramp clamp dose experiments, near-lytic patch stretch acted, for all variants, like a approximately 10 mV hyperpolarizing shift. These results suggested that, whether basal rates were high (wild type) or low (deletants), stretch acted by facilitating voltage-dependent activation. Channel activity was therefore simulated with/without "tension," tension being simulated via rate changes at voltage-dependent closed-closed transitions that might involve in-plane expansion (explanation 2). Simulated Delta P(open) arising from approximately 2 kT of "mechanical gating energy" mimicked experimental effects seen with comfortably sub-lytic stretch. PMID:12023221

  10. Membrane stretch accelerates activation and slow inactivation in Shaker channels with S3-S4 linker deletions.

    PubMed Central

    Tabarean, Iustin V; Morris, Catherine E

    2002-01-01

    At low P(open)(V) Shaker exhibits pronounced stretch-activation. Possible explanations for Shaker's sensitivity to tension include 1) Shaker channels are sufficiently distensible that stretch produces novel channel states and 2) Shaker channels expand in the plane of the membrane during voltage gating. For channels expressed in oocytes, we compared effects of patch stretch on Shaker and mutants that retain their voltage-gating ability but activate sluggishly because all or most of the S3-S4 linker has been deleted. Deletants had 10, 5, or 0 amino acid (aa) linkers, whereas wild-type is 31 aa. In deletants, though activation is exceptionally slow, slow inactivation is exceptionally quick; the resulting kinetic match was a bonus that allowed effects of stretch to be followed simultaneously in both processes. With the intact linker, an approximately 3 orders of magnitude mismatch in the two processes makes this impracticable. Standard stretch stimuli increased the rates and extent of activation by about the same degree in wild type and deletants, with effects especially pronounced near the foot of G(V). In deletants (where slow inactivation is strongly coupled to activation) stretch also accelerated slow inactivation. Maximum conductances were unaffected by stretch in all variants. In ramp clamp dose experiments, near-lytic patch stretch acted, for all variants, like a approximately 10 mV hyperpolarizing shift. These results suggested that, whether basal rates were high (wild type) or low (deletants), stretch acted by facilitating voltage-dependent activation. Channel activity was therefore simulated with/without "tension," tension being simulated via rate changes at voltage-dependent closed-closed transitions that might involve in-plane expansion (explanation 2). Simulated Delta P(open) arising from approximately 2 kT of "mechanical gating energy" mimicked experimental effects seen with comfortably sub-lytic stretch. PMID:12023221

  11. Mild Airflow Limitation during N2 Sleep Increases K-complex Frequency and Slows Electroencephalographic Activity

    PubMed Central

    Nguyen, Chinh D.; Wellman, Andrew; Jordan, Amy S.; Eckert, Danny J.

    2016-01-01

    Study Objectives: To determine the effects of mild airflow limitation on K-complex frequency and morphology and electroencephalogram (EEG) spectral power. Methods: Transient reductions in continuous positive airway pressure (CPAP) during stable N2 sleep were performed to induce mild airflow limitation in 20 patients with obstructive sleep apnea (OSA) and 10 healthy controls aged 44 ± 13 y. EEG at C3 and airflow were measured in 1-min windows to quantify K-complex properties and EEG spectral power immediately before and during transient reductions in CPAP. The frequency and morphology (amplitude and latency of P200, N550 and N900 components) of K-complexes and EEG spectral power were compared between conditions. Results: During mild airflow limitation (18% reduction in peak inspiratory airflow from baseline, 0.38 ± 0.11 versus 0.31 ± 0.1 L/sec) insufficient to cause American Academy of Sleep Medicine-defined cortical arousal, K-complex frequency (9.5 ± 4.5 versus 13.7 ± 6.4 per min, P < 0.01), N550 amplitude (25 ± 3 versus 27 ± 3 μV, P < 0.01) and EEG spectral power (delta: 147 ± 48 versus 230 ± 99 μV2, P < 0.01 and theta bands: 31 ± 14 versus 34 ± 13 μV2, P < 0.01) significantly increased whereas beta band power decreased (14 ± 5 versus 11 ± 4 μV2, P < 0.01) compared to the preceding non flow-limited period on CPAP. K-complex frequency, morphology, and timing did not differ between patients and controls. Conclusion: Mild airflow limitation increases K-complex frequency, N550 amplitude, and spectral power of delta and theta bands. In addition to providing mechanistic insight into the role of mild airflow limitation on K-complex characteristics and EEG activity, these findings may have important implications for respiratory conditions in which airflow limitation during sleep is common (e.g., snoring and OSA). Citation: Nguyen CD, Wellman A, Jordan AS, Eckert DJ. Mild airflow limitation during N2 sleep increases k-complex frequency and slows

  12. Application of decision analysis to forest road deactivation in unstable terrain.

    PubMed

    Allison, Clay; Sidle, Roy C; Tait, David

    2004-02-01

    Resource managers require objective methodologies to optimize decisions related to forest road deactivation and other aspects of road management, especially in steep terrain, where road-related slope failures inflict extensive environmental damage. Decision analysis represents a systematic framework that clearly identifies real options and critical decision points. This framework links current decisions with expected future outcomes and provides advantages such as a common currency to systematically explore the liability consequences of limited budget expenditures to road deactivation and other road-related activities. Furthermore, the decision framework prevents the analysis from becoming hopelessly entangled by the vast number of possibilities generated by the alternative occurrences, magnitudes, and consequences of landslide/debris flow events and provides the information required for the first step of an adaptive management process. Here, a structured analysis of potential environmental risks for a road deactivation project in coastal British Columbia, Canada is presented. The application of decision analysis generates a ranking of the expected benefits of proposed deactivation activities on various road sections. The ranking distinguishes between road sections that offer high expected benefit from those that offer moderate to low expected benefit. Seventeen of 171, 100-m road segments accounted for 18% of the cumulative cost and 98% of the cumulative expected net benefits from road deactivation. Furthermore, the cost of deactivating a section of road is related to the expected benefit from such deactivation, thus providing the basis for more effective resource allocation and budgeting decisions. PMID:15285396

  13. Defining the structural relationship between kainate receptor deactivation and desensitization

    PubMed Central

    Dawe, G. Brent; Musgaard, Maria; Andrews, Elizabeth D.; Daniels, Bryan A.; Aurousseau, Mark R.P.; Biggin, Philip C.; Bowie, Derek

    2016-01-01

    Desensitization is an important mechanism that curtails the activity of ligand-gated ion-channels (LGICs). Although the structural basis of desensitization is not fully resolved, it is thought to be governed by the physicochemical properties of the bound ligand. Here, we show the importance of an allosteric cation binding pocket in controlling transitions between activated and desensitized states of rat kainate-type (KAR) ionotropic glutamate receptors (iGluRs). Tethering a positive charge to this pocket sustains KAR activation, preventing desensitization, whereas mutations that disrupt cation binding eliminate channel gating. These different outcomes explain the structural distinction between deactivation and desensitization. Deactivation occurs when the ligand unbinds before the cation, whereas desensitization proceeds if a ligand is bound without cation pocket occupancy. This sequence of events is absent from AMPA-type iGluRs, identifying cations as gatekeepers of KAR gating, a role unique among even closely-related LGICs. PMID:23955023

  14. Mechanochemical approach for selective deactivation of external surface acidity of ZSM-5 zeolite catalyst.

    PubMed

    Inagaki, Satoshi; Sato, Koki; Hayashi, Shunsuke; Tatami, Junichi; Kubota, Yoshihiro; Wakihara, Toru

    2015-03-01

    The acid sites associated with the external surface of zeolite particles are responsible for undesirable consecutive reactions, such as isomerization, alkylation, and oligomerization, resulting in a lower selectivity to a target product; therefore, the selective modification (deactivation) of the external surface of zeolite particles has been an important issue in zeolite science. Here, a new method for surface deactivation of zeolite catalyst was tested via a mechanochemical approach using powder composer. Postsynthetic mechanochemical treatment of ZSM-5 zeolite causes a selective deactivation of catalytically active sites existing only on the external surface, as a potentially useful catalyst for highly selective production of p-xylene. PMID:25654542

  15. Gamification of Learning Deactivates the Default Mode Network.

    PubMed

    Howard-Jones, Paul A; Jay, Tim; Mason, Alice; Jones, Harvey

    2015-01-01

    We hypothesized that embedding educational learning in a game would improve learning outcomes, with increased engagement and recruitment of cognitive resources evidenced by increased activation of working memory network (WMN) and deactivation of default mode network (DMN) regions. In an fMRI study, we compared activity during periods of learning in three conditions that were increasingly game-like: Study-only (when periods of learning were followed by an exemplar question together with its correct answer), Self-quizzing (when periods of learning were followed by a multiple choice question in return for a fixed number of points) and Game-based (when, following each period of learning, participants competed with a peer to answer the question for escalating, uncertain rewards). DMN hubs deactivated as conditions became more game-like, alongside greater self-reported engagement and, in the Game-based condition, higher learning scores. These changes did not occur with any detectable increase in WMN activity. Additionally, ventral striatal activation was associated with responding to questions and receiving positive question feedback. Results support the significance of DMN deactivation for educational learning, and are aligned with recent evidence suggesting DMN and WMN activity may not always be anti-correlated. PMID:26779054

  16. Gamification of Learning Deactivates the Default Mode Network

    PubMed Central

    Howard-Jones, Paul A.; Jay, Tim; Mason, Alice; Jones, Harvey

    2016-01-01

    We hypothesized that embedding educational learning in a game would improve learning outcomes, with increased engagement and recruitment of cognitive resources evidenced by increased activation of working memory network (WMN) and deactivation of default mode network (DMN) regions. In an fMRI study, we compared activity during periods of learning in three conditions that were increasingly game-like: Study-only (when periods of learning were followed by an exemplar question together with its correct answer), Self-quizzing (when periods of learning were followed by a multiple choice question in return for a fixed number of points) and Game-based (when, following each period of learning, participants competed with a peer to answer the question for escalating, uncertain rewards). DMN hubs deactivated as conditions became more game-like, alongside greater self-reported engagement and, in the Game-based condition, higher learning scores. These changes did not occur with any detectable increase in WMN activity. Additionally, ventral striatal activation was associated with responding to questions and receiving positive question feedback. Results support the significance of DMN deactivation for educational learning, and are aligned with recent evidence suggesting DMN and WMN activity may not always be anti-correlated. PMID:26779054

  17. Novel spider toxin slows down the activation kinetics of P-type Ca2+ channels in Purkinje neurons of rat.

    PubMed

    Fisyunov, Alexander; Pluzhnikov, Kirill; Molyavka, Anton; Grishin, Eugene; Lozovaya, Natalia; Krishtal, Oleg

    2005-02-01

    We have identified a novel polypeptide toxin (Lsp-1) from the venom of the spider Lycosa (LS). Its effect has been examined on the P-type calcium channels in Purkinje neurons, using whole-cell patch-clamp. This toxin (at saturating concentration 7 nM) produces prominent (four-fold) deceleration of the activation kinetics and partial (71+/-6%) decrease of the amplitude of P-current without affecting either deactivation or inactivation kinetics. These effects are not use-dependent. They are partially reversible within a minute upon the wash-out of the toxin. Intracellular perfusion of Purkinje neurons with 100 microM of GDP or 2 microM of GTPgammaS, as well as strong depolarising pre-pulses (+100 mV), do not eliminate the action of Lsp-1 on P-channels indicating that down-modulation via guanine nucleotide-binding proteins (G-proteins) is not involved in the observed phenomenon. In view of extremely high functional significance of P-channels, the toxin can be suggested as a useful pharmacological tool. PMID:15590128

  18. Deactivation behaviors of zeolite and silica-alumina catalysts in the degradation of polyethylene

    SciTech Connect

    Uemichi, Yoshio; Hattori, Masahiko; Itoh, Toshihiro; Nakamura, Junko; Sugioka, Masatoshi

    1998-03-01

    For chemical recycling of waste plastics, HZSM-5, HY, and H-mordenite zeolites and silica-alumina were examined as catalysts for the degradation of polyethylene in a fixed-bed flow reactor system, and their activities and deactivation behaviors caused by coke deposition were studied. HZSM-5 catalyst was fond to be very effective for the production of gasoline-range fuel oils mainly consisting of isoparaffins and aromatics and showed no deactivation due to a very low yield of coke deposited on the catalyst surface, whereas in the degradation of polystyrene a marked deactivation was observed. Silica-alumina gradually deactivated as time on stream increased, but the degree of deactivation was less than expected from the deposition of a significant amount of coke, probably because the coke deposition in the large pores of the catalyst caused no marked influence on the diffusion of the decomposed fragments involved in the reaction. On the other hand, deactivations of HY and H-mordenite were striking; the latter was most abruptly deactivated, resulting in a marked decrease in the liquid yield. From the surface area measurements of the used catalysts, it was suggested that the pores of HY were sufficiently filled out with coke, while pore blocking by coke occurred in the unidimensional channels of H-mordenite.

  19. Series mechanism of enzyme deactivation. Characterization of intermediate forms.

    PubMed

    Gianfreda, L; Marrucci, G; Grizzuti, N; Greco, G

    1985-06-01

    Acid phosphatase (E.C. 3.1.3.2) undergoes complex thermal deactivation phenomena, as revealed by the two-slope pattern of the enzyme logarithmic-specific-activity versus time curves. The native enzyme first decays toward an equilibrium distribution of less, but still active, intermediate structures and these, in turn, undergo a final degradation to a completely inactive form. The effect of the experimental conditions at which the enzyme is kept during the deactivation process on the characteristics of these intermediate enzymatic structures has been investigated. The kinetic parameters of p-nitro-phenyl phosphate hydrolysis, as catalyzed by some of these intermediate forms, have been determined and the results compared to those obtained with the native enzyme. PMID:18553749

  20. Final deactivation project report on the Integrated Process Demonstration Facility, Building 7602 Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1997-09-01

    The purpose of this report is to document the condition of the Integrated Process Demonstration Facility (Building 7602) at Oak Ridge National Laboratory (ORNL) after completion of deactivation activities by the High Ranking Facilities Deactivation Project (HRFDP). This report identifies the activities conducted to place the facility in a safe and environmentally sound condition prior to transfer to the U.S. Department of Energy (DOE) Environmental Restoration EM-40 Program. This report provides a history and description of the facility prior to commencing deactivation activities and documents the condition of the building after completion of all deactivation activities. Turnover items, such as the Post-Deactivation Surveillance and Maintenance (S&M) Plan, remaining hazardous and radioactive materials inventory, radiological controls, Safeguards and Security, and supporting documentation provided in the Office of Nuclear Material and Facility Stabilization Program (EM-60) Turnover package are discussed.

  1. Experimental evidence for shallow, slow-moving landslides activated by a decrease in ground temperature

    NASA Astrophysics Data System (ADS)

    Shibasaki, Tatsuya; Matsuura, Sumio; Okamoto, Takashi

    2016-07-01

    In order to understand the trigger mechanism of slow-moving landslides occurring in the early cold season from late autumn to winter, we investigated the effect of temperature on the shear strength of slip surface soils. Displacement-controlled and shear stress-controlled box shear experiments were performed on undisturbed slip zone soils under residual strength conditions. Test results conducted at temperatures from 9 to 25°C showed remarkable shear strength reductions with decreasing temperature. Creep-like slow shear displacements were induced by a decrease in temperature. These temperature-dependent shear behaviors are attributed to the rheological properties of hydrous smectite that dominantly compose the soil material along the failure surface. Our experimental results imply that ground temperature conditions influence slope instability, especially for shallow landslides occurring in smectite-bearing rock areas.

  2. Odors enhance slow-wave activity in non-rapid eye movement sleep.

    PubMed

    Perl, Ofer; Arzi, Anat; Sela, Lee; Secundo, Lavi; Holtzman, Yael; Samnon, Perry; Oksenberg, Arie; Sobel, Noam; Hairston, Ilana S

    2016-05-01

    Most forms of suprathreshold sensory stimulation perturb sleep. In contrast, presentation of pure olfactory or mild trigeminal odorants does not lead to behavioral or physiological arousal. In fact, some odors promote objective and subjective measures of sleep quality in humans and rodents. The brain mechanisms underlying these sleep-protective properties of olfaction remain unclear. Slow oscillations in the electroencephalogram (EEG) are a marker of deep sleep, and K complexes (KCs) are an EEG marker of cortical response to sensory interference. We therefore hypothesized that odorants presented during sleep will increase power in slow EEG oscillations. Moreover, given that odorants do not drive sleep interruption, we hypothesized that unlike other sensory stimuli odorants would not drive KCs. To test these hypotheses we used polysomnography to measure sleep in 34 healthy subjects (19 women, 15 men; mean age 26.5 ± 2.5 yr) who were repeatedly presented with odor stimuli via a computer-controlled air-dilution olfactometer over the course of a single night. Each participant was exposed to one of four odorants, lavender oil (n = 13), vetiver oil (n = 5), vanillin (n = 12), or ammonium sulfide (n = 4), for durations of 5, 10, and 20 s every 9-15 min. Consistent with our hypotheses, we found that odor presentation during sleep enhanced the power of delta (0.5-4 Hz) and slow spindle (9-12 Hz) frequencies during non-rapid eye movement sleep. The increase was proportionate to odor duration. In addition, odor presentation did not modulate the occurrence of KCs. These findings imply a sleep-promoting olfactory mechanism that may deepen sleep through driving increased slow-frequency oscillations. PMID:26888107

  3. Effects of age on calcium transport activity of sarcoplasmic reticulum in fast- and slow-twitch rat muscle fibres.

    PubMed Central

    Larsson, L; Salviati, G

    1989-01-01

    1. The calcium transport activity of the sarcoplasmic reticulum (SR) was measured in chemically skinned single fast- and slow-twitch muscle fibres from young (3 months) and old (23-24 months) rats. Contractile properties, the myosin heavy chain (MHC) composition and enzyme histochemical features were studied in relation to the SR characteristics. 2. In fast-twitch single motor units, the contraction time of the isometric twitch increased (P less than 0.001) from 13 +/- 1 ms in young animals to 18 +/- 2 ms in old ones. In the slow-twitch soleus, the contraction (P less than 0.001) and half-relaxation (P less than 0.05) times increased from 30 +/- 5 and 45 +/- 10 ms, respectively, in the young animals to 43 +/- 3 and 55 +/- 4 ms in the old ones. The proportion of slow-twitch (type I) fibres increased (P less than 0.05) with age in the soleus from 92 +/- 6 to 98 +/- 2% and the proportion of fast-twitch fibres (type IIA) decreased (P less than 0.01) from 6 +/- 5 to 0 +/- 0%. 3. The Ca2+ accumulation capacity (an index of SR volume), the rate of Ca2+ uptake and the fractional rate of SR filling (an estimate of the specific activity of the Ca2+ pump) were decreased by 18 (P less than 0.05), 32 (P less than 0.01) and 32% (P less than 0.001), respectively, in the old fast-twitch muscle fibres. In the slow-twitch muscle fibres, on the other hand, no significant age-related changes were observed in the Ca2+ transport activity of the SR. Thus, ageing exerts a differential influence on SR volume and function in fast- and slow-twitch fibres. 4. It is concluded that an age-related impairment of intrinsic SR function and a decrease in SR volume are probable factors underlying the decreased speed of contraction of fast-twitch muscle fibres in old age. In the slow-twitch soleus, on the other hand, one or more other mechanisms are responsible for the age-related decrease in the speed of contraction. The loss of fast-twitch muscle fibres in old soleus is one mechanism, but not the

  4. Plasma flux-dependent lipid A deactivation

    NASA Astrophysics Data System (ADS)

    Chang, Hung-Wen; Hsu, Cheng-Che; Ahmed, Musahid; Liu, Suet Yi; Fang, Yigang; Seog, Joonil; Oehrlein, Gottlieb S.; Graves, David B.

    2014-06-01

    This paper reports the influence of gas plasma flux on endotoxin lipid A film deactivation. To study the effect of the flux magnitude of reactive species, a modified low-pressure inductively coupled plasma (ICP) with O radical flux ˜1016 cm-2 s-1 was used. After ICP exposures, it was observed that while the Fourier transform infrared absorbance of fatty chains responsible for the toxicity drops by 80% through the film, no obvious film endotoxin deactivation is seen. This is in contrast to that previously observed under low flux exposure conducted in a vacuum beam system: near-surface only loss of fatty chains led to significant film deactivation. Secondary ion mass spectrometry characterization of changes at the film surface did not appear to correlate with the degree of deactivation. Lipid A films need to be nearly completely removed in order to detect significant deactivation under high flux conditions. Additional high reactive species flux experiments were conducted using an atmospheric pressure helium plasma jet and a UV/ozone device. Exposure of lipid A films to reactive species with these devices showed similar deactivation behaviour. The causes for the difference between low and high flux exposures may be due to the nature of near-surface structural modifications as a function of the rate of film removal.

  5. Default Network Deactivations Are Correlated with Psychopathic Personality Traits

    PubMed Central

    Sheng, Tong; Gheytanchi, Anahita; Aziz-Zadeh, Lisa

    2010-01-01

    Background The posteromedial cortex (PMC) and medial prefrontal cortex (mPFC) are part of a network of brain regions that has been found to exhibit decreased activity during goal-oriented tasks. This network is thought to support a baseline of brain activity, and is commonly referred to as the “default network”. Although recent reports suggest that the PMC and mPFC are associated with affective, social, and self-referential processes, the relationship between these default network components and personality traits, especially those pertaining to social context, is poorly understood. Methodology/Principal Findings In the current investigation, we assessed the relationship between PMC and mPFC deactivations and psychopathic personality traits using fMRI and a self-report measure. We found that PMC deactivations predicted traits related to egocentricity and mPFC deactivations predicted traits related to decision-making. Conclusions/Significance These results suggest that the PMC and mPFC are associated with processes involving self-relevancy and affective decision-making, consistent with previous reports. More generally, these findings suggest a link between default network activity and personality traits. PMID:20830290

  6. Deactivation of metastable single-crystal silicon hyperdoped with sulfur

    SciTech Connect

    Simmons, C. B.; Akey, Austin J.; Sullivan, Joseph T.; Buonassisi, Tonio; Krich, Jacob J.; Recht, Daniel; Aziz, Michael J.

    2013-12-28

    Silicon supersaturated with sulfur by ion implantation and pulsed laser melting exhibits broadband optical absorption of photons with energies less than silicon's band gap. However, this metastable, hyperdoped material loses its ability to absorb sub-band gap light after subsequent thermal treatment. We explore this deactivation process through optical absorption and electronic transport measurements of sulfur-hyperdoped silicon subject to anneals at a range of durations and temperatures. The deactivation process is well described by the Johnson-Mehl-Avrami-Kolmogorov framework for the diffusion-mediated transformation of a metastable supersaturated solid solution, and we find that this transformation is characterized by an apparent activation energy of E{sub A}=1.7 ± 0.1 eV. Using this activation energy, the evolution of the optical and electronic properties for all anneal duration-temperature combinations collapse onto distinct curves as a function of the extent of reaction. We provide a mechanistic interpretation of this deactivation based on short-range thermally activated atomic movements of the dopants to form sulfur complexes.

  7. Conversion of Biomass-Derived Small Oxygenates over HZSM-5 and its Deactivation Mechanism

    SciTech Connect

    Ramasamy, Karthikeyan K.; Gerber, Mark A.; Flake, Matthew D.; Zhang, He; Wang, Yong

    2014-02-28

    HZSM-5 catalyst deactivation was studied using aqueous feed mixtures containing ethanol, ethanol+ acetic acid, ethanol+ethyl acetate, or ethanol+acetaldehyde in a fixed bed reactor at 360°C and 300psig. Compared to ethanol alone experiment, addition of other oxygenates reduced catalyst life in the order of: ethyl acetatedeactivate the catalyst through a pore-blocking mechanism. Acetic acid deactivates the catalyst through an active site poisoning mechanism or strong adsorption of acetate intermediates on the active sites (hydroxyl groups). Ethanol deactivates the catalyst primarily through its pore-blocking mechanism, but the rate of ethanol deactivation is orders of magnitude slower than that of acetaldehyde. Ethyl acetate hydrolyzes to form acetic acid and ethanol which deactivate the catalyst through its respective mechanisms. In addition, each functional group of oxygenates requires different active sites/catalysts and different operating conditions due to competitive adsorptions on active sites for their conversion to the desired products. Therefore, it is necessary to pre-treat the mixture of oxygenates to produce a feed stream containing the same or similar functional group compounds before converting the feed stream to hydrocarbon compounds over HZSM-5 catalyst.

  8. Object category classification of fMRI data using support vector machine combined with deactivation voxel selection

    NASA Astrophysics Data System (ADS)

    Yan, Caifeng; Song, Sutao; Li, Yao; Guo, Xiaojuan

    2012-03-01

    Support Vector Machine (SVM) is an accurate pattern recognition method which has been widely used in functional MRI (fMRI) data classification. Voxel selection is a very important part in classification. In general, voxel selection is based on brain regions associated with activation caused by different experiment conditions or stimulations. However, negative blood oxygenation level-dependent responses (deactivation) which have also been found in humans or animals contribute to the classification of different cognitive tasks. Different from traditional studies which focused merely on the activation voxel selection methods, our aim is to investigate the deactivation voxel selection methods in the classification of fMRI data using SVM. In this study, three different voxel selection methods (deactivation, activation, the combination of deactivation and activation) are applied to decide which voxel is included in SVM classifier with linear kernel in classifying 4-category objects on fMRI data. The average accuracies of deactivation classification were 73.36%(house vs. face), 60.34%(house vs. car), 60.94%(house vs. cat), 71.43%(face vs. car), 63.17%(face vs. cat) and 61.61%(car vs. cat). The classification results of deactivation were significantly above the chance level which implies the deactivation is informative. The accuracies of combination of activation and deactivation method were close to that of activation method, and it was even better for some representative subjects. These results suggest deactivation provides useful information in the object category classification on fMRI data and the method of voxel selection based on both activation and deactivation will be a significant method in classification in the future.

  9. Deactivation of snares by wild chimpanzees.

    PubMed

    Ohashi, Gaku; Matsuzawa, Tetsuro

    2011-01-01

    Snare injuries to chimpanzees (Pan troglodytes) have been reported at many study sites across Africa, and in some cases cause the death of the ensnared animal. However, very few snare injuries have been reported concerning the chimpanzees of Bossou, Guinea. The rarity of snare injuries in this study group warrants further consideration, given the exceptionally close proximity of the Bossou chimpanzees to human settlements and the widespread practice of snare hunting in the area. Herein we report a total of six observations of chimpanzees attempting to break and deactivate snares, successfully doing so on two of these occasions. We observed the behavior in 5 males, ranging in age from juveniles to adults. We argue that such active responses to snares must be contributing to the rarity of injuries in this group. Based on our observations, we suggest that the behavior has transmitted down the group. Our research team at Bossou continues to remove snares from the forest, but the threat of ensnarement still remains. We discuss potential ways to achieve a good balance between human subsistence activities and the conservation of chimpanzees at Bossou, which will increasingly be an area of great concern in the future. PMID:20700626

  10. The interaction of a metal deactivator with metal surfaces

    SciTech Connect

    Schreifels, J.A. ); Morris, R.E.; Turner, N.H.; Mowery, R.L. )

    1990-01-01

    In modern aircraft fuel systems, the fuel is used as a heat transfer medium to dissipate heat from the avionics and hydraulic systems. Under these conditions, the fuel can undergo autooxidations. Autooxidations of net fuel can result in the formation of insoluble gum and sediment which can impair operation of the jet engine. Metal deactivator additives (MDA) were developed to counteract the catalytic activity of dissolved metals. The authors have directed their efforts at ascertaining the various mechanisms by which MDA can act, particularly in accelerated stability testing. One objective of this study was to determine to what extent interactions with metal surfaces of the test apparent govern the effectiveness of metal deactivators. This paper describes an examination of metal surfaces exposed to MDA solutions to determine under what, if any, conditions metal passivation can occur.

  11. Separate activation of fast and slow inhibitory postsynaptic potentials in rat neocortex in vitro.

    PubMed Central

    Benardo, L S

    1994-01-01

    Synaptic inhibition was investigated by stimulating inhibitory neurones with focal microapplications of glutamate, while recording from layer V pyramidal neurones of rat somatosensory cortical slices. One class of inhibitory postsynaptic potentials (IPSPs) thus elicited was characterized as a fast, chloride-mediated, GABAA IPSP in part by its fast time-to-peak (mean 2.5 ms) and brief duration, but primarily on the basis of its reversal potential at -68 mV, and its blockade by picrotoxin. The average peak amplitude for these fast IPSPs was -1.5 mV, measured at -60 mV. The peak conductance calculated for these events was about 10 nS. The conductance change associated with the maximal fast inhibitory postsynaptic potential resulting from electrical stimulation of afferent pathways ranged up to 116 nS. A second class of IPSP was encountered much less frequently. These glutamate-triggered events were characterized as slow, potassium-mediated GABAB IPSPs partly because of their longer times-to-peak (mean, 45 ms) and duration, but especially because of their extrapolated equilibrium potential at about -89 mV and blockade by 2-hydroxysaclofen. The average peak amplitude for these slow IPSPs was -2.3 mV, measured at -60 mV. The peak conductance for these events was about 8 nS. IPSPs resulting from the excitation of individual inhibitory interneurones were elicited by glutamate microapplication at particular locations relative to recording sites. Both fast and slow IPSPs were generated, but these occurred as separate events, and mixed responses were never seen. Thus, the two mechanistically distinct types of IPSPs which result from GABA interaction at GABAA and GABAB receptors on neocortical neurones may be mediated by separate classes of inhibitory neurones. PMID:7913968

  12. Targeting Mortalin by Embelin Causes Activation of Tumor Suppressor p53 and Deactivation of Metastatic Signaling in Human Breast Cancer Cells

    PubMed Central

    Nigam, Nupur; Grover, Abhinav; Goyal, Sukriti; Katiyar, Shashank P.; Bhargava, Priyanshu; Wang, Pi-Chao; Sundar, Durai; Kaul, Sunil C.; Wadhwa, Renu

    2015-01-01

    Embelin, a natural quinone found in the fruits of Embelia ribes, is commonly used in Ayurvedic home medicine for a variety of therapeutic potentials including anti-inflammation, anti-fever, anti-bacteria and anti-cancer. Molecular mechanisms of these activities and cellular targets have not been clarified to-date. We demonstrate that the embelin inhibits mortalin-p53 interactions, and activates p53 protein in tumor cells. We provide bioinformatics, molecular docking and experimental evidence to the binding affinity of embelin with mortalin and p53. Binding of embelin with mortalin/p53 abrogates their complex resulted in nuclear translocation and transcriptional activation function of p53 causing growth arrest in cancer cells. Furthermore, analyses of growth factors and metastatic signaling using antibody membrane array revealed their downregulation in embelin-treated cells. We also found that the embelin causes transcriptional attenuation of mortalin and several other proteins involved in metastatic signaling in cancer cells. Based on these molecular dynamics and experimental data, it is concluded that the anticancer activity of embelin involves targeting of mortalin, activation of p53 and inactivation of metastatic signaling. PMID:26376435

  13. Deactivation of Signal Transducer and Activator of Transcription 3 Reverses Chemotherapeutics Resistance of Leukemia Cells via Down-Regulating P-gp

    PubMed Central

    Zhang, Xulong; Xiao, Weihua; Wang, Lihua; Tian, Zhigang; Zhang, Jian

    2011-01-01

    Multidrug resistance (MDR) caused by overexpression of p-glycoprotein is a major obstacle in chemotherapy of malignant cancer, which usually is characterized by constitutive activation of signal transducer and activator of transcription 3 (STAT3), but their relation between MDR and STAT3 remains unclear. Here, we showed that STAT3 was overexpressed and highly activated in adriamycin-resistant K562/A02 cells compared with its parental K562 cells. Blockade of activation of STAT3 by STAT3 decoy oligodeoxynucleotide (ODN) promoted the accumulation and increased their sensitivity to adriamycin by down-regulating transcription of mdr1 and expression of P-gp, which were further confirmed by using STAT3-specific inhibitor JSI-124. Inhibition of STAT3 could also decrease mdr1 promoter mediated luciferase expression by using mdr1 promoter luciferase reporter construct. Otherwise, activation of STAT3 by STAT3C improved mdr1 transcription and P-gp expression. The ChIP results demonstrated that STAT3 could bind to the potential promoter region of mdr1, and STAT3 decoy depressed the binding. Further mutation assay show +64∼+72 region could be the STAT3 binding site. Our data demonstrate a role of STAT3 in regulation of mdr1 gene expression in myeloid leukemia and suggest that STAT3 may be a promising therapeutic target for overcoming MDR resistance in myeloid leukemia. PMID:21677772

  14. Targeting Mortalin by Embelin Causes Activation of Tumor Suppressor p53 and Deactivation of Metastatic Signaling in Human Breast Cancer Cells.

    PubMed

    Nigam, Nupur; Grover, Abhinav; Goyal, Sukriti; Katiyar, Shashank P; Bhargava, Priyanshu; Wang, Pi-Chao; Sundar, Durai; Kaul, Sunil C; Wadhwa, Renu

    2015-01-01

    Embelin, a natural quinone found in the fruits of Embelia ribes, is commonly used in Ayurvedic home medicine for a variety of therapeutic potentials including anti-inflammation, anti-fever, anti-bacteria and anti-cancer. Molecular mechanisms of these activities and cellular targets have not been clarified to-date. We demonstrate that the embelin inhibits mortalin-p53 interactions, and activates p53 protein in tumor cells. We provide bioinformatics, molecular docking and experimental evidence to the binding affinity of embelin with mortalin and p53. Binding of embelin with mortalin/p53 abrogates their complex resulted in nuclear translocation and transcriptional activation function of p53 causing growth arrest in cancer cells. Furthermore, analyses of growth factors and metastatic signaling using antibody membrane array revealed their downregulation in embelin-treated cells. We also found that the embelin causes transcriptional attenuation of mortalin and several other proteins involved in metastatic signaling in cancer cells. Based on these molecular dynamics and experimental data, it is concluded that the anticancer activity of embelin involves targeting of mortalin, activation of p53 and inactivation of metastatic signaling. PMID:26376435

  15. Dopamine Transporters in Striatum Correlated with Deactivation in the Default Mode Network during Visuospatial Attention

    SciTech Connect

    Tomasi, D.; Fowler, J.; Tomasi, D.; Volkow, N.D.; Wang, R.L.; Telang, F.; Wang, Chang, L.; Ernst, T.; /Fowler, J.S.

    2009-06-01

    Dopamine and dopamine transporters (DAT, which regulate extracellular dopamine in the brain) are implicated in the modulation of attention but their specific roles are not well understood. Here we hypothesized that dopamine modulates attention by facilitation of brain deactivation in the default mode network (DMN). Thus, higher striatal DAT levels, which would result in an enhanced clearance of dopamine and hence weaker dopamine signals, would be associated to lower deactivation in the DMN during an attention task. For this purpose we assessed the relationship between DAT in striatum (measured with positron emission tomography and [{sup 11}C]cocaine used as DAT radiotracer) and brain activation and deactivation during a parametric visual attention task (measured with blood oxygenation level dependent functional magnetic resonance imaging) in healthy controls. We show that DAT availability in caudate and putamen had a negative correlation with deactivation in ventral parietal regions of the DMN (precuneus, BA 7) and a positive correlation with deactivation in a small region in the ventral anterior cingulate gyrus (BA 24/32). With increasing attentional load, DAT in caudate showed a negative correlation with load-related deactivation increases in precuneus. These findings provide evidence that dopamine transporters modulate neural activity in the DMN and anterior cingulate gyrus during visuospatial attention. Our findings suggest that dopamine modulates attention in part by regulating neuronal activity in posterior parietal cortex including precuneus (region involved in alertness) and cingulate gyrus (region deactivated in proportion to emotional interference). These findings suggest that the beneficial effects of stimulant medications (increase dopamine by blocking DAT) in inattention reflect in part their ability to facilitate the deactivation of the DMN.

  16. Pd migration. 1: A possible reason for the deactivation of pyrolysis gasoline partial hydrogenation catalysts

    SciTech Connect

    Lin, T.B.; Chou, T.C. . Dept. of Chemical Engineering)

    1995-01-01

    The catalyst deactivation of the selective hydrogenation of pyrolysis gasoline of a commercial plant was investigated. Both the fresh and the regenerated catalysts, sampled from the commercial plant, were characterized by the palladium wt %, BET surface area, pore volume, the dispersion of Pd/Al[sub 2]O[sub 3], XRD (X-ray diffraction), and EPMA (electron probe microanalyzer). The results indicated that the major factors affecting the catalyst deactivation of the selective hydrogenation of pyrolysis gasoline of a commercial plant are palladium migration and coke deposition, 53.2%, poor palladium dispersion, 37%, and palladium metal loss, 9.8%. However, the pore mouth plugging, loss of surface area, and phase change of support were the minor factors for catalytic deactivation. The first findings of the effect of palladium migration on the catalyst deactivation of the eggshell palladium profile catalyst are meaningful and important for improving the performance of the catalyst with nonuniform active site distribution.

  17. UO3 deactivation end point criteria

    SciTech Connect

    Stefanski, L.D.

    1994-10-01

    The UO{sub 3} Deactivation End Point Criteria are necessary to facilitate the transfer of the UO{sub 3} Facility from the Office of Facility Transition and Management (EM-60) to the office of Environmental Restoration (EM-40). The criteria were derived from a logical process for determining end points for the systems and spaces at the UO{sub 3}, Facility based on the objectives, tasks, and expected future uses pertinent to that system or space. Furthermore, the established criteria meets the intent and supports the draft guidance for acceptance criteria prepared by EM-40, {open_quotes}U.S. Department of Energy office of Environmental Restoration (EM-40) Decontamination and Decommissioning Guidance Document (Draft).{close_quotes} For the UO{sub 3} Facility, the overall objective of deactivation is to achieve a safe, stable and environmentally sound condition, suitable for an extended period, as quickly and economically as possible. Once deactivated, the facility is kept in its stable condition by means of a methodical surveillance and maintenance (S&M) program, pending ultimate decontamination and decommissioning (D&D). Deactivation work involves a range of tasks, such as removal of hazardous material, elimination or shielding of radiation fields, partial decontamination to permit access for inspection, installation of monitors and alarms, etc. it is important that the end point of each of these tasks be established clearly and in advance, for the following reasons: (1) End points must be such that the central element of the deactivation objective - to achieve stability - is unquestionably achieved. (2) Much of the deactivation work involves worker exposure to radiation or dangerous materials. This can be minimized by avoiding unnecessary work. (3) Each task is, in effect, competing for resources with other deactivation tasks and other facilities. By assuring that each task is appropriately bounded, DOE`s overall resources can be used most fully and effectively.

  18. Rational exploration of N-heterocyclic carbene (NHC) palladacycle diversity: a highly active and versatile precatalyst for Suzuki-Miyaura coupling reactions of deactivated aryl and alkyl substrates.

    PubMed

    Peh, Guang-Rong; Kantchev, Eric Assen B; Er, Jun-Cheng; Ying, Jackie Y

    2010-04-01

    As less attention has been focussed on the design of highly efficient palladium precatalysts to ensure the smooth formation of the active catalyst for metal-mediated cross coupling reactions, we herein demonstrate that combining the bulky N-heterocyclic carbene (NHC) 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (IPr) with cyclopalladated acetanilide as the optimal palladium precatalyst leads to superior catalytic activity compared with the state-of-the-art NHC-Pd catalysts. The complex was discovered through the evaluation of a small, rationally designed library of NHC-palladacycles prepared by a novel, practical and atom-economic method, the direct reaction of IPrHCl with palladacycle acetate dimers. PMID:20175159

  19. Sharp wave-associated synchronized inputs from the piriform cortex activate olfactory tubercle neurons during slow-wave sleep

    PubMed Central

    Narikiyo, Kimiya; Manabe, Hiroyuki

    2013-01-01

    During slow-wave sleep, anterior piriform cortex neurons show highly synchronized discharges that accompany olfactory cortex sharp waves (OC-SPWs). The OC-SPW-related synchronized activity of anterior piriform cortex neurons travel down to the olfactory bulb and is thought to be involved in the reorganization of bulbar neuronal circuitry. However, influences of the OC-SPW-related activity on other regions of the central olfactory system are still unknown. Olfactory tubercle is an area of OC and part of ventral striatum that plays a key role in reward-directed motivational behaviors. In this study, we show that in freely behaving rats, olfactory tubercle receives OC-SPW-associated synchronized inputs during slow-wave sleep. Local field potentials in the olfactory tubercle showed SPW-like activities that were in synchrony with OC-SPWs. Single-unit recordings showed that a subpopulation of olfactory tubercle neurons discharged in synchrony with OC-SPWs. Furthermore, correlation analysis of spike activity of anterior piriform cortex and olfactory tubercle neurons revealed that the discharges of anterior piriform cortex neurons tended to precede those of olfactory tubercle neurons. Current source density analysis in urethane-anesthetized rats indicated that the current sink of the OC-SPW-associated input was located in layer III of the olfactory tubercle. These results indicate that OC-SPW-associated synchronized discharges of piriform cortex neurons travel to the deep layer of the olfactory tubercle and drive discharges of olfactory tubercle neurons. The entrainment of olfactory tubercle neurons in the OC-SPWs suggests that OC-SPWs coordinate reorganization of neuronal circuitry across wide areas of the central olfactory system including olfactory tubercle during slow-wave sleep. PMID:24108798

  20. In vivo loss of slow potassium channel activity in individuals with benign familial neonatal epilepsy in remission.

    PubMed

    Tomlinson, Susan E; Bostock, Hugh; Grinton, Bronwyn; Hanna, Michael G; Kullmann, Dimitri M; Kiernan, Matthew C; Scheffer, Ingrid E; Berkovic, Samuel F; Burke, David

    2012-10-01

    Benign familial neonatal epilepsy is a neuronal channelopathy most commonly caused by mutations in KCNQ2, which encodes the K(v)7.2 subunit of the slow K(+) channel. K(v)7.2 is expressed in both central and peripheral nervous systems. Seizures occur in the neonatal period, often in clusters within the first few days of life, and usually remit by 12 months of age. The mechanism of involvement of K(v)7.2 mutations in the process of seizure generation has not been established in vivo. In peripheral axons, K(v)7.2 contributes to the nodal slow K(+) current. The present study aimed to determine whether axonal excitability studies could detect changes in peripheral nerve function related to dysfunction or loss of slow potassium channel activity. Nerve excitability studies were performed on eight adults with KCNQ2 mutations and a history of benign familial neonatal epilepsy, now in remission. Studies detected distinctive changes in peripheral nerve, indicating a reduction in slow K(+) current. Specifically, accommodation to long-lasting depolarizing currents was reduced in mutation carriers by 24% compared with normal controls, and the threshold undershoot after 100 ms depolarizing currents was reduced by 22%. Additional changes in excitability included a reduction in the relative refractory period, an increase in superexcitability and a tendency towards reduced sub-excitability. Modelling of the nerve excitability changes suggested that peripheral nerve hyperexcitability may have been ameliorated by upregulation of other potassium channels. We conclude that subclinical dysfunction of K(v)7.2 in peripheral axons can be reliably detected non-invasively in adulthood. Related alterations in neuronal excitability may contribute to epilepsy associated with KCNQ2 mutations. PMID:23065794

  1. Effects of minimal exposures to atmospheric pressure plasma on the activity of Salmonella Typhimurium: Deactivation of bacterial motility and suppression of host-cell invasion.

    PubMed

    Park, Jin-Sung; Kim, Kijung; Han, Je-Hyun; Gweon, Bomi; Ko, Ung Hyun; Yoo, Suk Jae; Choe, Wonho; Shin, Jennifer H

    2016-09-01

    Atmospheric pressure plasma (APP) has been shown effective in sterilization by reducing the number of viable microbes during surface cleaning, food processing, or human tissue treatment. For safe conduct, the majority of previous research focused on complete abolition of microbes, which may require severe treatments. Our aim is to investigate the minimal treatment conditions necessary for effective inactivation of bacteria in such a manner that the APP treated bacteria would not be able to harm the host cells. For this, we ought to identify the objective criteria to make the bacteria dysfunctional. We choose the motile properties and the host-cell invasion capability as two measures to quantify the pathogenic state of bacteria. In this paper, we investigated how the APP treatment in a minimal dosage affects the activity of Salmonella Typhimurium. At 100 W and 15 kHz for 20 s, the APP treatment effectively suppressed active "run and tumble" type motility and induced formation of abnormally long structures. With 20 s exposure, the bacterial cells failed to cause pyroptosis in the host cells with >90% survival after 12 h of co-incubation. Our results suggest novel measures to evaluate the functional pathogenic state for identifying safe APP treatment conditions. PMID:27345896

  2. Deactivation Mechanisms of Pt/Pd-based Diesel Oxidation Catalysts

    SciTech Connect

    Wiebenga, Michelle H.; Kim, Chang H.; Schmieg, Steven J.; Oh, Se H.; Brown, David B.; Kim, Do Heui; Lee, Jong H.; Peden, Charles HF

    2012-04-30

    Currently precious metal-based diesel oxidation catalysts (DOC) containing platinum (Pt) and palladium (Pd) are most commonly used for the oxidation of hydrocarbon and NO in diesel exhaust hydrocarbon oxidation. The present work has been carried out to investigate the deactivation mechanisms of the DOC from its real-world vehicle operation by coupling its catalytic activity measurements with surface characterization including x-ray diffraction, transmission electron microscopy, and x-ray photoelectron spectroscopy. A production Pt-Pd DOC was obtained after being aged on a vehicle driven for 135,000 miles in order to study its deactivation behavior. The performance of the vehicle-aged part was correlated with that of the simulated hydrothermal lab aged sample assuming that Pt-Pd sintering plays a major role in irreversible catalyst deactivation. In addition to the hydrothermal sintering, the deterioration of hydrocarbon and NO oxidation performance was caused by surface poisoning. The role of the various aging factors in determining long-term performance in mobile applications will be discussed.

  3. Lignocellulosic hydrolysate inhibitors selectively inhibit/deactivate cellulase performance.

    PubMed

    Mhlongo, Sizwe I; den Haan, Riaan; Viljoen-Bloom, Marinda; van Zyl, Willem H

    2015-12-01

    In this study, we monitored the inhibition and deactivation effects of various compounds associated with lignocellulosic hydrolysates on individual and combinations of cellulases. Tannic acid representing polymeric lignin residues strongly inhibited cellobiohydrolase 1 (CBH1) and β-glucosidase 1 (BGL1), but had a moderate inhibitory effect on endoglucanase 2 (EG2). Individual monomeric lignin residues had little or no inhibitory effect on hydrolytic enzymes. However, coniferyl aldehyde and syringaldehyde substantially decreased the activity of CBH1 and deactivated BGL1. Acetic and formic acids also showed strong inhibition of BGL1 but not CBH1 and EG2, whereas tannic, acetic and formic acid strongly inhibited a combination of CBH1 and EG2 during Avicel hydrolysis. Diminishing enzymatic hydrolysis is largely a function of inhibitor concentration and the enzyme-inhibitor relationship, rather than contact time during the hydrolysis process (i.e. deactivation). This suggests that decreased rates of hydrolysis during the enzymatic depolymerisation of lignocellulosic hydrolysates may be imparted by other factors related to substrate crystallinity and accessibility. PMID:26453468

  4. Deactivation of photocatalytically active ZnO nanoparticle and enhancement of its compatibility with organic compounds by surface-capping with organically modified silica

    NASA Astrophysics Data System (ADS)

    Cao, Zhi; Zhang, Zhijun

    2011-02-01

    Tetraethyl orthosilicate (TEOS) and dimethyldiethoxysilane (DEDMS) were used as co-precursors to prepare organically modified silica (ormosil) via sol-gel process. The resultant ormosil was adopted for surface-capping of ZnO nanoparticle, where methyl (organic functional group) and silica (inorganic component) were simultaneously introduced onto the surface of the nanoparticles for realizing dual surface-modification. The ormosil-capped ZnO nanoparticle showed strong hydrophobicity and good compatibility with organic phases, as well as effectively decreased photocatalytic activity and almost unchanged ultraviolet (UV)-shielding ability. More importantly, the comprehensive properties of ormosil-capped ZnO nanoparticle could be manipulated by adjusting the molar ratio of TEOS to DEDMS during sol-gel process. This should help to open a wider window to better utilizing the unique and highly attractive properties such as high UV-shielding ability and high-visible light transparency of ZnO nanoparticle in sunscreen cosmetics.

  5. Zn(2+) modulation of neuronal transient K(+) current: fast and selective binding to the deactivated channels

    PubMed Central

    Kuo, CC; Chen, FP

    1999-01-01

    Modulation of voltage-dependent transient K(+) currents (A type K(+) or K(A) current) by Zn(2+) was studied in rat hippocampal neurons by the whole-cell patch-clamp technique. It is found that Zn(2+) selectively binds to the resting (deactivated or closed) K(A) channels with a dissociation constant (K(d)) of approximately 3 &mgr;M, whereas the affinity between Zn(2+) and the inactivated K(A) channels is 1000-fold lower. Zn(2+) therefore produces a concentration-dependent shift of the K(A) channel inactivation curve and enhances the K(A) current elicited from relatively positive holding potentials. It is also found that the kinetics of Zn(2+) action are fast enough to compete with the transition rates between different gating states of the channel. The rapid and selective binding of Zn(2+) to the closed K(A) channels keeps the channel in the closed state and explains the ion's concentration-dependent slowing effect on the activation of K(A) current. This in turn accounts for the inhibitory effect of Zn(2+) on the K(A) current elicited from hyperpolarized holding potentials. Because the molecular mechanisms underlying these gating changes are kinetic interactions between the binding-unbinding of Zn(2+) and the intrinsic gating processes of the channel, the shift of the inactivation curve and slowing of K(A) channel activation are quantitatively correlated with ambient Zn(2+) over a wide concentration range without "saturation"; i.e., The effects are already manifest in micromolar Zn(2+), yet are not saturated even in millimolar Zn(2+). Because the physiological concentration of Zn(2+) could vary over a similarly wide range according to neural activities, Zn(2+) may be a faithful physiological "fine tuner," controlling and controlled by neural activities through its effect on the K(A) current. PMID:10545356

  6. Mortality salience modulates cortical responses to painful somatosensory stimulation: Evidence from slow wave and delta band activity.

    PubMed

    Valentini, Elia; Koch, Katharina; Nicolardi, Valentina; Aglioti, Salvatore Maria

    2015-10-15

    Social psychology studies show that awareness of one's eventual death profoundly influences human cognition and behaviour by inducing defensive reactions against end-of-life-related anxiety. Much less is known about the impact of reminders of mortality on brain activity. Here we tested whether reminders of mortality can induce a modulation of the slow electroencephalographic activity triggered by somatosensory nociceptive or auditory threatening stimulation and if this modulation is related to mood and anxiety as well as personality traits. We found a specific slow wave (SW) modulation only for nociceptive stimulation and only following mortality salience induction (compared to reminders of an important failed exam). The enhancement of SW negativity at the scalp vertex was associated with increased state anxiety and negative mood, whereas higher self-esteem was associated with reduced SW amplitude. In addition, mortality salience was linked to an increased amplitude of frontal delta band, which was correlated also with increased positive mood and higher self-esteem. The results indicate that SW and delta spectral activity may represent both proximal and distal defences associated with reminders of death and that neurophysiological correlates of somatosensory representation of painful and threatening stimuli may be useful for existential neuroscience studies. PMID:26188186

  7. Effects of slow-release urea fertilizers on urease activity, microbial biomass, and nematode communities in an aquic brown soil.

    PubMed

    Jiao, Xiaoguang; Liang, Wenju; Chen, Lijun; Zhang, Haijun; Li, Qi; Wang, Peng; Wen, Dazhong

    2005-05-01

    A field experiment was carried out at the Shenyang Experimental Station of Ecology (CAS) in order to study the effects of slow-release urea fertilizers high polymer-coated urea (SRU1), SRU1 mixed with dicyandiamide DCD (SRU2), and SRU1 mixed with calcium carbide CaC2 (SRU3) on urease activity, microbial biomass C and N, and nematode communities in an aquic brown soil during the maize growth period. The results demonstrated that the application of slow-release urea fertilizers inhibits soil urease activity and increases the soil NH4+-N content. Soil available N increment could promote its immobilization by microorganisms. Determination of soil microbial biomass N indicated that a combined application of coated urea and nitrification inhibitors increased the soil active N pool. The population of predators/omnivores indicated that treatment with SRU2 could provide enough soil NH4+-N to promote maize growth and increased the food resource for the soil fauna compared with the other treatments. PMID:16089326

  8. PPARδ expression is influenced by muscle activity and induces slow muscle properties in adult rat muscles after somatic gene transfer

    PubMed Central

    Lunde, Ida G; Ekmark, Merete; Rana, Zaheer A; Buonanno, Andres; Gundersen, Kristian

    2007-01-01

    The effects of exercise on skeletal muscle are mediated by a coupling between muscle electrical activity and gene expression. Several activity correlates, such as intracellular Ca2+, hypoxia and metabolites like free fatty acids (FFAs), might initiate signalling pathways regulating fibre-type-specific genes. FFAs can be sensed by lipid-dependent transcription factors of the peroxisome proliferator-activated receptor (PPAR) family. We found that the mRNA for the predominant muscle isoform, PPARδ, was three-fold higher in the slow/oxidative soleus compared to the fast/glycolytic extensor digitorum longus (EDL) muscle. In histological sections of the soleus, the most oxidative fibres display the highest levels of PPARδ protein. When the soleus muscle was stimulated electrically by a pattern mimicking fast/glycolytic IIb motor units, the mRNA level of PPARδ was reduced to less than half within 24 h. In the EDL, a three-fold increase was observed after slow type I-like electrical stimulation. When a constitutively active form of PPARδ was overexpressed for 14 days in normally active adult fibres after somatic gene transfer, the number of I/IIa hybrids in the EDL more than tripled, IIa fibres increased from 14% to 25%, and IIb fibres decreased from 55% to 45%. The level of succinate dehydrogenase activity increased and size decreased, also when compared to normal fibres of the same type. Thus PPARδ can change myosin heavy chain, oxidative enzymes and size locally in muscle cells in the absence of general exercise. Previous studies on PPARδ in muscle have been performed in transgenic animals where the transgene has been present during muscle development. Our data suggest that PPARδ can mediate activity effects acutely in pre-existing adult fibres, and thus is an important link in excitation–transcription coupling. PMID:17463039

  9. Initial deactivation of residue hydrometallation catalysts

    SciTech Connect

    Gualda, G.; Kasztelan, S.

    1995-12-31

    A strong deactivation of residue hydrodemetallization catalysts is usually observed in the first days of a run. We report in this work a comparative study of the deactivation of a NiMo/alumina catalyst with a special pore structure so-called {open_quotes}chestnut burr{close_quotes} by coke and metal+coke deposits. The former set of samples were prepared in batch reactor by varying operating conditions and the latter set of samples were prepared in continuous flow reactor in both cases using a Safaniya atmospheric residue. Various methods were employed to characterize the deposits (TEM, XPS, EPMA, Surface area measurements, porosimetry, etc...) including catalytic tests of the used catalyst with various model reactants, it has been found that metal deposits are responsible for the initial deactivation of the residue hydrodametallation catalyst used in this work.

  10. A slow anion channel in guard cells, activating at large hyperpolarization, may be principal for stomatal closing.

    PubMed

    Linder, B; Raschke, K

    1992-11-16

    Slowly activating anion channel currents were discovered at micromolar 'cytoplasmic' Ca2+ during patch-clamp measurements on guard-cell protoplasts of Vicia faba and Xanthium strumarium. They activated at potentials as low as -200 mV, with time constants between 5 and 60 s, and no inactivation. The broad voltage dependence exhibited a current maximum near -40 mV. The single-channel open time was in the order of seconds, and the unitary conductance was 33 ps, similar to that of the already described 'quick' anion channel of guard cells. Because of its activity at low potentials, the slow anion channel may be essential for the depolarization of the plasmalemma that is required for salt efflux during stomatal closing. PMID:1385219

  11. Deactivation, Decontamination and Decommissioning Project Summaries

    SciTech Connect

    Peterson, David Shane; Webber, Frank Laverne

    2001-07-01

    This report is a compilation of summary descriptions of Deactivation, Decontamination and Decommissioning, and Surveillance and Maintenance projects planned for inactive facilities and sites at the INEEL from FY-2002 through FY-2010. Deactivations of contaminated facilities will produce safe and stable facilities requiring minimal surveillance and maintenance pending further decontamination and decommissioning. Decontamination and decommissioning actions remove contaminated facilities, thus eliminating long-term surveillance and maintenance. The projects are prioritized based on risk to DOE-ID, the public, and the environment, and the reduction of DOE-ID mortgage costs and liability at the INEEL.

  12. Characterization of K-complexes and slow wave activity in a neural mass model.

    PubMed

    Weigenand, Arne; Schellenberger Costa, Michael; Ngo, Hong-Viet Victor; Claussen, Jens Christian; Martinetz, Thomas

    2014-11-01

    NREM sleep is characterized by two hallmarks, namely K-complexes (KCs) during sleep stage N2 and cortical slow oscillations (SOs) during sleep stage N3. While the underlying dynamics on the neuronal level is well known and can be easily measured, the resulting behavior on the macroscopic population level remains unclear. On the basis of an extended neural mass model of the cortex, we suggest a new interpretation of the mechanisms responsible for the generation of KCs and SOs. As the cortex transitions from wake to deep sleep, in our model it approaches an oscillatory regime via a Hopf bifurcation. Importantly, there is a canard phenomenon arising from a homoclinic bifurcation, whose orbit determines the shape of large amplitude SOs. A KC corresponds to a single excursion along the homoclinic orbit, while SOs are noise-driven oscillations around a stable focus. The model generates both time series and spectra that strikingly resemble real electroencephalogram data and points out possible differences between the different stages of natural sleep. PMID:25392991

  13. Characterization of K-Complexes and Slow Wave Activity in a Neural Mass Model

    PubMed Central

    Ngo, Hong-Viet Victor; Claussen, Jens Christian; Martinetz, Thomas

    2014-01-01

    NREM sleep is characterized by two hallmarks, namely K-complexes (KCs) during sleep stage N2 and cortical slow oscillations (SOs) during sleep stage N3. While the underlying dynamics on the neuronal level is well known and can be easily measured, the resulting behavior on the macroscopic population level remains unclear. On the basis of an extended neural mass model of the cortex, we suggest a new interpretation of the mechanisms responsible for the generation of KCs and SOs. As the cortex transitions from wake to deep sleep, in our model it approaches an oscillatory regime via a Hopf bifurcation. Importantly, there is a canard phenomenon arising from a homoclinic bifurcation, whose orbit determines the shape of large amplitude SOs. A KC corresponds to a single excursion along the homoclinic orbit, while SOs are noise-driven oscillations around a stable focus. The model generates both time series and spectra that strikingly resemble real electroencephalogram data and points out possible differences between the different stages of natural sleep. PMID:25392991

  14. Acute Cocaine Induces Fast Activation of D1 Receptor and Progressive Deactivation of D2 Receptor Strial Neurons: In Vivo Optical Microprobe [Ca(superscript)2+]subscript)i Imaging

    SciTech Connect

    Du, C.; Luo, Z.; Volkow, N.D.; Heintz, N.; Pan, Y.; Du, C.

    2011-09-14

    Cocaine induces fast dopamine increases in brain striatal regions, which are recognized to underlie its rewarding effects. Both dopamine D1 and D2 receptors are involved in cocaine's reward but the dynamic downstream consequences of cocaine effects in striatum are not fully understood. Here we used transgenic mice expressing EGFP under the control of either the D1 receptor (D1R) or the D2 receptor (D2R) gene and microprobe optical imaging to assess the dynamic changes in intracellular calcium ([Ca{sup 2+}]{sub i} ) responses (used as marker of neuronal activation) to acute cocaine in vivo separately for D1R- versus D2R-expressing neurons in striatum. Acute cocaine (8 mg/kg, i.p.) rapidly increased [Ca{sup 2+}]{sub i} in D1R-expressing neurons (10.6 {+-} 3.2%) in striatum within 8.3 {+-} 2.3 min after cocaine administration after which the increases plateaued; these fast [Ca{sup 2+}]{sub i} increases were blocked by pretreatment with a D1R antagonist (SCH23390). In contrast, cocaine induced progressive decreases in [Ca{sup 2+}]{sub i} in D2R-expressing neurons (10.4 {+-} 5.8%) continuously throughout the 30 min that followed cocaine administration; these slower [Ca{sup 2+}]{sub i} decreases were blocked by pretreatment with a D2R antagonist (raclopride). Since activation of striatal D1R-expressing neurons (direct-pathway) enhances cocaine reward, whereas activation of D2R expressing neurons suppresses it (indirect-pathway) (Lobo et al., 2010), this suggests that cocaine's rewarding effects entail both its fast stimulation ofD1R (resulting in abrupt activation of direct-pathway neurons) and a slower stimulation of D2R (resulting in longer-lasting deactivation of indirect-pathway neurons). We also provide direct in vivo evidence of D2R and D1R interactions in the striatal responses to acute cocaine administration.

  15. Calcium-activated force responses in fast- and slow-twitch skinned muscle fibres of the rat at different temperatures.

    PubMed Central

    Stephenson, D G; Williams, D A

    1981-01-01

    1. Force responses from mechanically skinned fibres of rat skeletal muscles (extensor digitorum longus and soleus) were measured at different temperatures in the range 3-35 degrees C following sudden changes in Ca2+ concentration in the preparations. 2. At all temperatures there were characteristic differences between the slow- and fast-twitch muscle fibres with respect to the relative steady-state force-[Ca2+] relation: such as a lower [Ca2+] threshold for activation and a less steep force-pCa curve in slow-twitch muscle fibres. 3. At 3-5 degrees C the force changes in both types of muscle fibres lagged considerably behind the estimated changes in [Ca2+] within the preparations and this enabled us to perform a comparative analysis of the Ca2+ kinetics in the process of force development in both muscle fibre types. This analysis suggest that two and six Ca2+ ions are involved in the regulatory unit for contraction of slow- and fast-twitch muscle fibres respectively. 4. The rate of relaxation following a sudden decrease in [Ca2+] was much lower in the slow-twitch than in the fast-twitch muscle at 5 degrees C, suggesting that properties of the contractile apparatus could play an essential role in determining the rate of relaxation in vivo. 5. There was substantial variation in Ca2+ sensitivity between muscle fibres of the same type from different animals at each temperature. However the steepness of the force-[Ca2+] relation was essentially the same for all fibres of the same type. 6. A change in temperature from 5 to 25 degrees C had a statistically significant effect on the sensitivity of the fast-twitch muscle fibres, rendering them less sensitive to Ca2+ by a factor of 2. However a further increase in temperature from 25 to 35 degrees C did not have any statistically significant effect on the force-[Ca2+] relation in fast-twitch muscle fibres. 7. The effect of temperature on the Ca2+ sensitivity of slow-twitch muscle fibres was not statistically significant

  16. Nuclear fuel reprocessing deactivation plan for the Idaho Chemical Processing Plant, Revision 1

    SciTech Connect

    Patterson, M.W.

    1994-10-01

    The decision was announced on April 28, 1992 to cease all United States Department of Energy (DOE) reprocessing of nuclear fuels. This decision leads to the deactivation of all fuels dissolution, solvent extraction, krypton gas recovery operations, and product denitration at the Idaho Chemical Processing Plant (ICPP). The reprocessing facilities will be converted to a safe and stable shutdown condition awaiting future alternate uses or decontamination and decommissioning (D&D). This ICPP Deactivation Plan includes the scope of work, schedule, costs, and associated staffing levels necessary to achieve a safe and orderly deactivation of reprocessing activities and the Waste Calcining Facility (WCF). Deactivation activities primarily involve shutdown of operating systems and buildings, fissile and hazardous material removal, and related activities. A minimum required level of continued surveillance and maintenance is planned for each facility/process system to ensure necessary environmental, health, and safety margins are maintained and to support ongoing operations for ICPP facilities that are not being deactivated. Management of the ICPP was transferred from Westinghouse Idaho Nuclear Company, Inc. (WINCO) to Lockheed Idaho Technologies Company (LITCO) on October 1, 1994 as part of the INEL consolidated contract. This revision of the deactivation plan (formerly the Nuclear Fuel Reprocessing Phaseout Plan for the ICPP) is being published during the consolidation of the INEL site-wide contract and the information presented here is current as of October 31, 1994. LITCO has adopted the existing plans for the deactivation of ICPP reprocessing facilities and the plans developed under WINCO are still being actively pursued, although the change in management may result in changes which have not yet been identified. Accordingly, the contents of this plan are subject to revision.

  17. Reoxidation and deactivation of supported cobalt Fischer-Tropsch catalysts

    SciTech Connect

    Schanke, D.; Hilmen, A.M.; Bergene, E.

    1995-12-01

    The Fischer-Tropsch synthesis is an attractive possibility for conversion of natural gas into high quality liquid fuels. Due to its low water-gas shift activity, good activity/selectivity properties and relatively low price, cobalt is the choice of catalytic metal for natural gas conversion via Fischer-Tropsch synthesis. In the cobalt-catalyzed Fischer-Tropsch reaction, oxygen is mainly rejected as water. In this paper we describe the influence of water on supported cobalt catalysts. The deactivation of supported Co catalysts was studied in a fixed-bed reactor using synthesis gas feeds containing varying concentrations of water vapour.

  18. Effects of pH on myofibrillar ATPase activity in fast and slow skeletal muscle fibers of the rabbit.

    PubMed Central

    Potma, E J; van Graas, I A; Stienen, G J

    1994-01-01

    In permeabilized single fibers of fast (psoas) and slow (soleus) muscle from the rabbit, the effect of pH on isometric myofibrillar ATPase activity and force was studied at 15 degrees C, in the pH range 6.4-7.9. ATPase activity was measured photometrically by enzymatic coupling of the regeneration of ATP to the oxidation of NADH, present in the bathing solution. NADH absorbance at 340 nm was determined inside a measuring chamber. To measure ATP turnover in single soleus fibers accurately, a new measuring chamber (volume 4 microliters) was developed that produced a sensitivity approximately 8 times higher than the system previously used. Under control conditions (pH 7.3), the isometric force was 136 and 115 kN/m2 and the ATP turnover was 0.43 and 0.056 mmol per liter fiber volume per second in psoas and soleus fibers, respectively. Over the pH range studied, isometric force increased monotonically by a factor 1.7 for psoas and 1.2 for soleus fibers. In psoas the isometric ATPase activity remained constant, whereas in soleus it slightly decreased with increasing pH. The pH dependency of relative tension cost (isometric ATPase activity divided by force) was practically identical for psoas and soleus fibers. In both cases it decreased by about a factor 0.57 as pH increased from 6.4 to 7.9. The implications of these findings are discussed in terms of cross-bridge kinetics. For both fiber types, estimates of the reaction rates and the distribution of cross-bridges and of their pH dependencies were obtained. A remarkable similarity was found between fast- and slow-twitch fibers in the effects of pH on the reaction rate constants. PMID:7696480

  19. EDITORIAL: Slow light Slow light

    NASA Astrophysics Data System (ADS)

    Boyd, Robert; Hess, Ortwin; Denz, Cornelia; Paspalakis, Emmanuel

    2010-10-01

    Research into slow light began theoretically in 1880 with the paper [1] of H A Lorentz, who is best known for his work on relativity and the speed of light. Experimental work started some 60 years later with the work of S L McCall and E L Hahn [2] who explored non-linear self-induced transparency in ruby. This field of research has burgeoned in the last 10 years, starting with the work of L Vestergaard Hau and coworkers on slow light via electromagnetically induced transparency in a Bose-Einstein condensate [3]. Many groups are now able to slow light down to a few metres per second or even stop the motion of light entirely [4]. Today, slow light - or more often `slow and fast light' - has become its own vibrant field with a strongly increasing number of publications. In broad scope, slow light research can be categorized in terms of the sort of physical mechanism used to slow down the light. One sort of slow light makes use of material dispersion. This dispersion can be the natural dispersion of the ordinary refractive index or can be the frequency dependence of some nonlinear optical process, such as electromagnetically induced transparency, coherent population oscillations, stimulated light scattering, or four-wave mixing processes. The second sort of slow light makes use of the wavelength dependence of artificially structured materials, such as photonic crystals, optical waveguides, and collections of microresonators. Material systems in which slow light has been observed include metal vapours, rare-earth-doped materials, Raman and Brillioun gain media, photonic crystals, microresonators and, more recently, metamaterials. A common feature of all of these schemes is the presence of a sharp single resonance or multiple resonances produced by an atomic transition, a resonance in a photonic structure, or in a nonlinear optical process. Current applications of slow light include a series of attractive topics in optical information processing, such as optical data

  20. 308 Building deactivation mission analysis report

    SciTech Connect

    Lund, D.P.

    1995-05-24

    This report presents the results of the 308 Building (Fuels Development Laboratory) Deactivation Project mission analysis. Hanford systems engineering (SE) procedures call for a mission analysis. The mission analysis is an important first step in the SE process. The functions and requirements to successfully accomplish this mission, the selected alternatives and products will later be defined using the SE process.

  1. Deactivation efficiency of stabilized bactericidal emulsions.

    PubMed

    Vyhnalkova, Renata; Eisenberg, Adi; van de Ven, Theo G M

    2011-09-20

    Biocide emulsions stabilized with various stabilizing agents were prepared and characterized, and their efficiency in bacteria deactivation was evaluated. A number of stabilizing agents were tested for their stabilizing effect on emulsions of thiocyanomethylthiobenzothiazole (TCMTB) biocide. Two agents, the most successful in stabilizing the biocide, were chosen for further studies: high molecular weight polyethyleneimine (PEI) and an amphiphilic block copolymer of poly(caprolactone)-b-poly(acrylic acid) (PCL(33)-b-PAA(33)). The emulsion droplet sizes varied between 325 and 500 nm. Deactivation of bacteria was studied by exposing E. coli ATCC 11229 bacteria dispersions to emulsions stabilized by positively charged PEI or negatively charged PCL-b-PAA micelles and by measuring their absorbance; E. coli do not grow with time in the presence of biocide emulsions. PEI molecules alone act as biocide and deactivate the bacteria. PCL-b-PAA micelles as stabilizing agent do not affect the growth of the E. coli ; bacteria are deactivated by TCMTB released from the emulsion droplets. The kinetics of emulsion dissolution studies revealed for both stabilizing agents a decrease in droplet size with time while the emulsions were subjected to dialysis. The biocide was released from the emulsions within ∼250 min; the droplet shells consist mostly of PEI or PCL-b-PAA insoluble complexes with the biocide, which do not dissolve during dialysis. SEM images confirm the presence of residual crumbled shells with holes after 24 h of dialysis. PMID:21823610

  2. The Approach of Emotional Deactivation of Prejudice

    ERIC Educational Resources Information Center

    Boucher, Jean-Nil

    2011-01-01

    The aim of the approach of emotional deactivation is to help students reduce the prejudice they may feel towards diverse social groups. Be those groups homosexuals, people living with a disability or immigrants, the victims of prejudice are invited to come into classrooms and to confront the preconceptions that students have in their respect.…

  3. Characteristics of very slow stepping in healthy adults and validity of the activPAL3™ activity monitor in detecting these steps.

    PubMed

    Stansfield, Ben; Hajarnis, Mugdha; Sudarshan, Radhika

    2015-01-01

    The use of activity monitors to objectively measure stepping activity allows the characterisation of free-living daily activity performance. However, they must be fully validated. The characteristics of very slow stepping were examined and the validity of an activity monitor, the activPAL3™ (PAL Technologies Ltd., Glasgow, UK) to detect these steps was assessed. 10M/10F healthy adults (36±10 y) performed a treadmill walking protocol from 1.0m/s down to 0.1m/s (0.1m/s increments) whilst wearing the monitor under video observation (gold standard). Within the 800 stepping periods recorded the proportion of the steps correctly detected by the activPAL3™ was explored against speed and cadence. Below 0.4 m/s walking began to be intermittent, stepping interspersed with stationary postures. At 0.1 m/s almost 90% of walking periods were intermittent. The percentage of steps detected was over 90% for walking speed at or above 0.5m/s and cadence at or above 69 steps/min. However, below these limits % steps detected reduced rapidly with zero steps detected at 0.1m/s and at or below 24 steps/min. When examining the stepping activity of groups with limited stepping cadence the above thresholds of performance should be considered to ensure that outcomes are not misinterpreted and important very slow stepping activity missed. PMID:25455167

  4. Membrane Tension Accelerates Rate-limiting Voltage-dependent Activation and Slow Inactivation Steps in a Shaker Channel

    PubMed Central

    Laitko, Ulrike; Morris, Catherine E.

    2004-01-01

    A classical voltage-sensitive channel is tension sensitive—the kinetics of Shaker and S3–S4 linker deletion mutants change with membrane stretch (Tabarean, I.V., and C.E. Morris. 2002. Biophys. J. 82:2982–2994.). Does stretch distort the channel protein, producing novel channel states, or, more interestingly, are existing transitions inherently tension sensitive? We examined stretch and voltage dependence of mutant 5aa, whose ultra-simple activation (Gonzalez, C., E. Rosenman, F. Bezanilla, O. Alvarez, and R. Latorre. 2000. J. Gen. Physiol. 115:193–208.) and temporally matched activation and slow inactivation were ideal for these studies. We focused on macroscopic patch current parameters related to elementary channel transitions: maximum slope and delay of current rise, and time constant of current decline. Stretch altered the magnitude of these parameters, but not, or minimally, their voltage dependence. Maximum slope and delay versus voltage with and without stretch as well as current rising phases were well described by expressions derived for an irreversible four-step activation model, indicating there is no separate stretch-activated opening pathway. This model, with slow inactivation added, explains most of our data. From this we infer that the voltage-dependent activation path is inherently stretch sensitive. Simulated currents for schemes with additional activation steps were compared against datasets; this showed that generally, additional complexity was not called for. Because the voltage sensitivities of activation and inactivation differ, it was not possible to substitute depolarization for stretch so as to produce the same overall PO time course. What we found, however, was that at a given voltage, stretch-accelerated current rise and decline almost identically—normalized current traces with and without stretch could be matched by a rescaling of time. Rate-limitation of the current falling phase by activation was ruled out. We hypothesize

  5. Membrane tension accelerates rate-limiting voltage-dependent activation and slow inactivation steps in a Shaker channel.

    PubMed

    Laitko, Ulrike; Morris, Catherine E

    2004-02-01

    A classical voltage-sensitive channel is tension sensitive--the kinetics of Shaker and S3-S4 linker deletion mutants change with membrane stretch (Tabarean, I.V., and C.E. Morris. 2002. Biophys. J. 82:2982-2994.). Does stretch distort the channel protein, producing novel channel states, or, more interestingly, are existing transitions inherently tension sensitive? We examined stretch and voltage dependence of mutant 5aa, whose ultra-simple activation (Gonzalez, C., E. Rosenman, F. Bezanilla, O. Alvarez, and R. Latorre. 2000. J. Gen. Physiol. 115:193-208.) and temporally matched activation and slow inactivation were ideal for these studies. We focused on macroscopic patch current parameters related to elementary channel transitions: maximum slope and delay of current rise, and time constant of current decline. Stretch altered the magnitude of these parameters, but not, or minimally, their voltage dependence. Maximum slope and delay versus voltage with and without stretch as well as current rising phases were well described by expressions derived for an irreversible four-step activation model, indicating there is no separate stretch-activated opening pathway. This model, with slow inactivation added, explains most of our data. From this we infer that the voltage-dependent activation path is inherently stretch sensitive. Simulated currents for schemes with additional activation steps were compared against datasets; this showed that generally, additional complexity was not called for. Because the voltage sensitivities of activation and inactivation differ, it was not possible to substitute depolarization for stretch so as to produce the same overall PO time course. What we found, however, was that at a given voltage, stretch-accelerated current rise and decline almost identically--normalized current traces with and without stretch could be matched by a rescaling of time. Rate-limitation of the current falling phase by activation was ruled out. We hypothesize, therefore

  6. Phase coupling between rhythmic slow activity and gamma characterizes mesiotemporal rapid-eye-movement sleep in humans.

    PubMed

    Clemens, Z; Weiss, B; Szucs, A; Eross, L; Rásonyi, G; Halász, P

    2009-09-29

    In the human sleep literature there is much controversy regarding the existence and the characteristics of hippocampal rhythmic slow activity (RSA). Generally the human RSA is believed to occur in short bursts of theta activity. An earlier study, however, reported mesiotemporal RSA during rapid-eye-movement (REM) sleep that instead of theta fell in the delta frequency band. We conjectured that if this RSA activity is indeed a human analogue of the animal hippocampal theta then characteristics associated with the animal theta should also be reflected in the human recordings. Here our aim was to examine possible phase coupling between mesiotemporal RSA and gamma activity during REM sleep. The study relied on nine epilepsy surgery candidates implanted with foramen ovale electrodes. Positive half-waves of the 1.5-3 Hz RSA were identified by an automatic algorithm during REM sleep. High-frequency activity was assessed for 11 consecutive 20 Hz-wide frequency bands between 20 and 240 Hz. Increase in high frequency activity was phase coupled with RSA in most frequency bands and patients. Such a phase coupling closely resembles that seen between theta and gamma in rodents. We consider this commonality to be an additional reason for regarding delta rather than theta as the human analogue of RSA in animals. PMID:19555738

  7. PUREX/UO3 Facilities deactivation lessons learned history

    SciTech Connect

    Gerber, M.S.

    1996-09-19

    Disconnecting the criticality alarm permanently in June 1996 signified that the hazards in the PUREX (plutonium-uranium extraction) plant had been so removed and reduced that criticality was no longer a credible event. Turning off the PUREX criticality alarm also marked a salient point in a historic deactivation project, 1 year before its anticipated conclusion. The PUREX/UO3 Deactivation Project began in October 1993 as a 5-year, $222.5- million project. As a result of innovations implemented during 1994 and 1995, the project schedule was shortened by over a year, with concomitant savings. In 1994, the innovations included arranging to send contaminated nitric acid from the PUREX Plant to British Nuclear Fuels, Limited (BNFL) for reuse and sending metal solutions containing plutonium and uranium from PUREX to the Hanford Site tank farms. These two steps saved the project $36.9- million. In 1995, reductions in overhead rate, work scope, and budget, along with curtailed capital equipment expenditures, reduced the cost another $25.6 million. These savings were achieved by using activity-based cost estimating and applying technical schedule enhancements. In 1996, a series of changes brought about under the general concept of ``reengineering`` reduced the cost approximately another $15 million, and moved the completion date to May 1997. With the total savings projected at about $75 million, or 33.7 percent of the originally projected cost, understanding how the changes came about, what decisions were made, and why they were made becomes important. At the same time sweeping changes in the cultural of the Hanford Site were taking place. These changes included shifting employee relations and work structures, introducing new philosophies and methods in maintaining safety and complying with regulations, using electronic technology to manage information, and, adopting new methods and bases for evaluating progress. Because these changes helped generate cost savings and were

  8. Cathepsin activities and membrane integrity of zebrafish (Danio rerio) oocytes after freezing to -196 degrees C using controlled slow cooling.

    PubMed

    Zhang, T; Rawson, D M; Tosti, L; Carnevali, O

    2008-04-01

    This study investigated enzymatic activity of cathepsins and the membrane integrity of zebrafish (Danio rerio) oocytes after freezing to -196 degrees C using controlled slow cooling. Stage III oocytes (>0.5mm), obtained through dissection of anaesthetised female fish and desegregation of ovarian cumulus, were exposed to 2M methanol or 2M DMSO (both prepared in Hank's medium) for 30min at 22 degrees C before being loaded into 0.5ml plastic straws and placed into a programmable cooler. After controlled slow freezing, samples were plunged into liquid nitrogen (LN) and held for at least 10min, and thawed by immersing straws into a 27 degrees C water bath for 10s. Thawed oocytes were washed twice in Hank's medium. Cathepsin activity and membrane integrity of oocytes were assessed both after cryoprotectant treatment at 22 degrees C and after freezing in LN. Cathepsin B and L colorimetric analyses were performed using substrates Z-Arg-ArgNNap and Z-Phe-Arg-4MbetaNA-HCl, respectively, and 2-naphthylamine and 4-methoxy-2-naphthylamine were used as standards. Cathepsin D activity was performed by analysing the level of hydrolytic action on haemoglobin. Oocytes membrane integrity was assessed using 0.2% Trypan blue staining for 5min. Analysis of cathepsin activities showed that whilst the activity of cathepsin B and D was not affected by 2M DMSO treatment, their activity was lowered when treated with 2M methanol. Following freezing to -196 degrees C, the activity of all cathepsins (B, D and L) was significantly decreased in both 2M DMSO and 2M methanol. Trypan blue staining showed that 63.0+/-11.3% and 72.7+/-5.2% oocytes membrane stayed intact after DMSO and methanol treatment for 30min at 22 degrees C, respectively, whilst 14.9+/-2.6% and 1.4+/-0.8% stayed intact after freezing in DMSO and methanol to -196 degrees C. The results indicate that cryoprotectant treatment and freezing modified the activities of lysosomal enzymes involved in oocyte maturation and yolk

  9. CETSA screening identifies known and novel thymidylate synthase inhibitors and slow intracellular activation of 5-fluorouracil.

    PubMed

    Almqvist, Helena; Axelsson, Hanna; Jafari, Rozbeh; Dan, Chen; Mateus, André; Haraldsson, Martin; Larsson, Andreas; Martinez Molina, Daniel; Artursson, Per; Lundbäck, Thomas; Nordlund, Pär

    2016-01-01

    Target engagement is a critical factor for therapeutic efficacy. Assessment of compound binding to native target proteins in live cells is therefore highly desirable in all stages of drug discovery. We report here the first compound library screen based on biophysical measurements of intracellular target binding, exemplified by human thymidylate synthase (TS). The screen selected accurately for all the tested known drugs acting on TS. We also identified TS inhibitors with novel chemistry and marketed drugs that were not previously known to target TS, including the DNA methyltransferase inhibitor decitabine. By following the cellular uptake and enzymatic conversion of known drugs we correlated the appearance of active metabolites over time with intracellular target engagement. These data distinguished a much slower activation of 5-fluorouracil when compared with nucleoside-based drugs. The approach establishes efficient means to associate drug uptake and activation with target binding during drug discovery. PMID:27010513

  10. CETSA screening identifies known and novel thymidylate synthase inhibitors and slow intracellular activation of 5-fluorouracil

    NASA Astrophysics Data System (ADS)

    Almqvist, Helena; Axelsson, Hanna; Jafari, Rozbeh; Dan, Chen; Mateus, André; Haraldsson, Martin; Larsson, Andreas; Molina, Daniel Martinez; Artursson, Per; Lundbäck, Thomas; Nordlund, Pär

    2016-03-01

    Target engagement is a critical factor for therapeutic efficacy. Assessment of compound binding to native target proteins in live cells is therefore highly desirable in all stages of drug discovery. We report here the first compound library screen based on biophysical measurements of intracellular target binding, exemplified by human thymidylate synthase (TS). The screen selected accurately for all the tested known drugs acting on TS. We also identified TS inhibitors with novel chemistry and marketed drugs that were not previously known to target TS, including the DNA methyltransferase inhibitor decitabine. By following the cellular uptake and enzymatic conversion of known drugs we correlated the appearance of active metabolites over time with intracellular target engagement. These data distinguished a much slower activation of 5-fluorouracil when compared with nucleoside-based drugs. The approach establishes efficient means to associate drug uptake and activation with target binding during drug discovery.

  11. CETSA screening identifies known and novel thymidylate synthase inhibitors and slow intracellular activation of 5-fluorouracil

    PubMed Central

    Almqvist, Helena; Axelsson, Hanna; Jafari, Rozbeh; Dan, Chen; Mateus, André; Haraldsson, Martin; Larsson, Andreas; Molina, Daniel Martinez; Artursson, Per; Lundbäck, Thomas; Nordlund, Pär

    2016-01-01

    Target engagement is a critical factor for therapeutic efficacy. Assessment of compound binding to native target proteins in live cells is therefore highly desirable in all stages of drug discovery. We report here the first compound library screen based on biophysical measurements of intracellular target binding, exemplified by human thymidylate synthase (TS). The screen selected accurately for all the tested known drugs acting on TS. We also identified TS inhibitors with novel chemistry and marketed drugs that were not previously known to target TS, including the DNA methyltransferase inhibitor decitabine. By following the cellular uptake and enzymatic conversion of known drugs we correlated the appearance of active metabolites over time with intracellular target engagement. These data distinguished a much slower activation of 5-fluorouracil when compared with nucleoside-based drugs. The approach establishes efficient means to associate drug uptake and activation with target binding during drug discovery. PMID:27010513

  12. Final Deactivation Project report on the Alpha Powder Facility, Building 3028, at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1997-04-01

    This report documents the condition of the Alpha Powder Facility (APF), Building 3028, after completion of deactivation activities. Activities conducted to place the facility in a safe and environmentally sound condition for transfer to the U.S. Department of Energy (DOE) Office of Environmental Restoration (EM-40) program are outlined. A history and profile of the facility prior to commencing deactivation activities and a profile of the building after completion of deactivation activities are provided. Turnover items, such as the post-deactivation surveillance and maintenance (S&M) plan, remaining hazardous materials, radiological controls, safeguards and security, quality assurance, facility operations, and supporting documentation provided for in the DOE Nuclear Materials and Facility Stabilization Program (EM-60) turnover package are discussed.

  13. Dopaminergic Modulation of Medial Prefrontal Cortex Deactivation in Parkinson Depression.

    PubMed

    Andersen, Anders H; Smith, Charles D; Slevin, John T; Kryscio, Richard J; Martin, Catherine A; Schmitt, Frederick A; Blonder, Lee X

    2015-01-01

    Parkinson's disease (PD) is associated with emotional abnormalities. Dopaminergic medications ameliorate Parkinsonian motor symptoms, but less is known regarding the impact of dopaminergic agents on affective processing, particularly in depressed PD (dPD) patients. The aim of this study was to examine the effects of dopaminergic pharmacotherapy on brain activation to emotional stimuli in depressed versus nondepressed Parkinson disease (ndPD) patients. Participants included 18 ndPD patients (11 men, 7 women) and 10 dPD patients (7 men, 3 women). Patients viewed photographs of emotional faces during functional MRI. Scans were performed while the patient was taking anti-Parkinson medication and the day after medication had been temporarily discontinued. Results indicate that dopaminergic medications have opposite effects in the prefrontal cortex depending upon depression status. DPD patients show greater deactivation in the ventromedial prefrontal cortex (VMPFC) on dopaminergic medications than off, while ndPD patients show greater deactivation in this region off drugs. The VMPFC is in the default-mode network (DMN). DMN activity is negatively correlated with activity in brain systems used for external visual attention. Thus dopaminergic medications may promote increased attention to external visual stimuli among dPD patients but impede normal suppression of DMN activity during external stimulation among ndPD patients. PMID:26793404

  14. Routes for deactivation of different autothermal reforming catalysts

    NASA Astrophysics Data System (ADS)

    Pasel, Joachim; Wohlrab, Sebastian; Kreft, Stefanie; Rotov, Mikhail; Löhken, Katrin; Peters, Ralf; Stolten, Detlef

    2016-09-01

    Fuel cell systems with integrated autothermal reforming units require active and robust catalysts for H2 production. In pursuit of this, an experimental screening of catalysts utilized in the autothermal reforming of commercial diesel fuels is performed. The catalysts incorporate a monolithic cordierite substrate, an oxide support (γ-Al2O3, La-Al2O3, CeO2, Gd-CeO2, ZrO2, Y-ZrO2) and Rh as the active phase. Experiments are run by widely varying the O2/C and H2O/C molar ratios at different gas hourly space velocities. In most cases, this provokes accelerated catalyst deactivation and permits an informative comparison of the catalysts. Fresh and aged catalysts are characterized by temperature-programmed methods, thermogravimetry and transmission electron microscopy to find correlations with catalytic activity and stability. Using this approach, routes for catalyst deactivation are identified, together with causes of different catalytic activities. Suitable reaction conditions can be derived from our results for the operation of reactors for autothermal reforming at steady-state and under transient reaction conditions, which helps improve the efficiency and the stability of fuel cell systems.

  15. Dopaminergic Modulation of Medial Prefrontal Cortex Deactivation in Parkinson Depression

    PubMed Central

    Andersen, Anders H.; Smith, Charles D.; Slevin, John T.; Kryscio, Richard J.; Martin, Catherine A.; Schmitt, Frederick A.; Blonder, Lee X.

    2015-01-01

    Parkinson's disease (PD) is associated with emotional abnormalities. Dopaminergic medications ameliorate Parkinsonian motor symptoms, but less is known regarding the impact of dopaminergic agents on affective processing, particularly in depressed PD (dPD) patients. The aim of this study was to examine the effects of dopaminergic pharmacotherapy on brain activation to emotional stimuli in depressed versus nondepressed Parkinson disease (ndPD) patients. Participants included 18 ndPD patients (11 men, 7 women) and 10 dPD patients (7 men, 3 women). Patients viewed photographs of emotional faces during functional MRI. Scans were performed while the patient was taking anti-Parkinson medication and the day after medication had been temporarily discontinued. Results indicate that dopaminergic medications have opposite effects in the prefrontal cortex depending upon depression status. DPD patients show greater deactivation in the ventromedial prefrontal cortex (VMPFC) on dopaminergic medications than off, while ndPD patients show greater deactivation in this region off drugs. The VMPFC is in the default-mode network (DMN). DMN activity is negatively correlated with activity in brain systems used for external visual attention. Thus dopaminergic medications may promote increased attention to external visual stimuli among dPD patients but impede normal suppression of DMN activity during external stimulation among ndPD patients. PMID:26793404

  16. Slow recovery of tropical old-field rainforest regrowth and the value and limitations of active restoration.

    PubMed

    Shoo, Luke P; Freebody, Kylie; Kanowski, John; Catterall, Carla P

    2016-02-01

    There is current debate about the potential for secondary regrowth to rescue tropical forests from an otherwise inevitable cascade of biodiversity loss due to land clearing and scant evidence to test how well active restoration may accelerate recovery. We used site chronosequences to compare developmental trajectories of vegetation between self-organized (i.e., spontaneous) forest regrowth and biodiversity plantings (established for ecological restoration, with many locally native tree species at high density) in the Australian wet tropics uplands. Across 28 regrowth sites aged 1-59 years, some structural attributes reached reference rainforest levels within 40 years, whereas wood volume and most tested components of native plant species richness (classified by species' origins, family, and ecological functions) reached less than 50% of reference rainforest values. Development of native tree and shrub richness was particularly slow among species that were wind dispersed or animal dispersed with large (>10 mm) seeds. Many species with animal-dispersed seeds were from near-basal evolutionary lineages that contribute to recognized World Heritage values of the study region. Faster recovery was recorded in 25 biodiversity plantings of 1-25 years in which wood volume developed more rapidly; native woody plant species richness reached values similar to reference rainforest and was better represented across all dispersal modes; and species from near-basal plant families were better (although incompletely) represented. Plantings and regrowth showed slow recovery in species richness of vines and epiphytes and in overall resemblance to forest in species composition. Our results can inform decision making about when and where to invest in active restoration and provide strong evidence that protecting old-growth forest is crucially important for sustaining tropical biodiversity. PMID:26310383

  17. Slowing of Hippocampal Activity Correlates with Cognitive Decline in Early Onset Alzheimer's Disease. An MEG Study with Virtual Electrodes.

    PubMed

    Engels, Marjolein M A; Hillebrand, Arjan; van der Flier, Wiesje M; Stam, Cornelis J; Scheltens, Philip; van Straaten, Elisabeth C W

    2016-01-01

    Pathology in Alzheimer's disease (AD) starts in the entorhinal cortex and hippocampus. Because of their deep location, activity from these areas is difficult to record with conventional electro- or magnetoencephalography (EEG/MEG). The purpose of this study was to explore hippocampal activity in AD patients and healthy controls using "virtual MEG electrodes". We used resting-state MEG recordings from 27 early onset AD patients [age 60.6 ± 5.4, 12 females, mini-mental state examination (MMSE) range: 19-28] and 26 cognitively healthy age- and gender-matched controls (age 61.8 ± 5.5, 14 females). Activity was reconstructed using beamformer-based virtual electrodes for 78 cortical regions and 6 hippocampal regions. Group differences in peak frequency and relative power in six frequency bands were identified using permutation testing. For the patients, spearman correlations between the MMSE scores and peak frequency or relative power were calculated. Moreover, receiver operator characteristic curves were plotted to estimate the diagnostic accuracy. We found a lower hippocampal peak frequency in AD compared to controls, which, in the patients, correlated positively with MMSE [r(25) = 0.61; p < 0.01] whereas hippocampal relative theta power correlated negatively with MMSE [r(25) = -0.54; p < 0.01]. Cortical peak frequency was also lower in AD in association areas. Furthermore, cortical peak frequency correlated positively with MMSE [r(25) = 0.43; p < 0.05]. In line with this finding, relative theta power was higher in AD across the cortex, and relative alpha and beta power was lower in more circumscribed areas. The average cortical relative theta power was the best discriminator between AD and controls (sensitivity 82%; specificity 81%). Using beamformer-based virtual electrodes, we were able to detect hippocampal activity in AD. In AD, this hippocampal activity is slowed, and correlates better with cognition than the (slowed) activity in cortical areas. On the other

  18. Mechanisms of amplification, deactivation, and noise reduction in invertebrate photoreceptors.

    PubMed

    Lisman, J; Erickson, M A; Richard, E A; Cote, R H; Bacigalupo, J; Johnson, E; Kirkwood, A

    1992-01-01

    In this review we have discussed the problem of deactivation at both the rhodopsin and G protein levels. Of particular interest is the novel observation that rhodopsin deactivation can be modulated by light. This modulation is likely to play an important role in light adaptation by reducing the gain of transduction. One interesting possibility is that this modulation involves the phosphorylation of an arrestin-like molecule, but this remains to be tested. One of the experimental advantages of Limulus photoreceptors is the large size of the single photon responses and the fact that even single G proteins produce a detectable response. This made possible the observation that nonhydrolyzable GTP analogues produce discrete transient events rather than the step-like events that would be predicted by previous models. This observation led us to a new view of how enzyme deactivation is coupled to GTP hydrolysis on G protein. According to this view, enzymes are activated by G protein, but can be deactivated by processes that are not dependent on G protein or the hydrolysis of GTP. We have conducted several types of experiments, including some on the vertebrate rod system, that strongly support this hypothesis. A second major theme of this review is transduction noise. The available biochemical evidence suggests that both G protein and G protein-activated enzymes are likely to become spontaneously active and generate undesirable noise. Our measurements indicate, however, that this noise is orders of magnitude smaller than would be predicted by simple models, suggesting that special mechanisms must exist for suppressing this noise. We have proposed a specific mechanism by which enzymes regulated allosterically by multiple subunits could act as coincidence detectors to reduce transduction noise. Finally, there is the fundamental question of which second messengers have a direct role in invertebrate phototransduction. After Fesenko et al. (1985) showed that the light

  19. Deactivation of Ni2P/SiO2 catalyst in hydrodechlorination of chlorobenzene

    NASA Astrophysics Data System (ADS)

    Chen, Jixiang; Ci, Donghui; Yang, Qing; Li, Kelun

    2014-11-01

    The deactivation of the Ni2P/SiO2 catalyst in the hydrodechlorination of chlorobenzene was studied. To better illuminate the reasons for the deactivation, the effect of HCl on the structure and activity of Ni2P/SiO2 was investigated. For comparison, the deactivation of the Ni/SiO2 catalyst was also involved. It was found that the Ni2P particles possessed good resistance to HCl poison and to sintering, which is ascribed to the electron-deficiency of Niδ+(0 < δ < 1) site in Ni2P. Acted as the Lewis and Brönsted acid site, the Niδ+ site and the Psbnd OH group on Ni2P/SiO2 catalyzed the formation of the carbonaceous deposit that was difficultly eliminated by hydrogenation. The carbonaceous deposit covered the active sites and might also induce a decrease in the Ni2P crystallinity, subsequently leading to the Ni2P/SiO2 deactivation. Different from Ni2P/SiO2, Ni/SiO2 was mainly deactivated by the chlorine poison and the sintering of nickel crystallites.

  20. A model for the recovery kinetics of rod phototransduction, based on the enzymatic deactivation of rhodopsin.

    PubMed Central

    Laitko, U; Hofmann, K P

    1998-01-01

    We propose a model for the recovery of the retinal rod photoresponse after a short stimulus. The approach describes the enzymatic deactivation of the photoactivated receptor, rhodopsin, by simple enzyme kinetics. An important feature of this description is that the R* deactivation obeys different time laws, depending on the numbers of R* formed per disc membrane and available enzyme molecules. If the enzyme works below substrate saturation, the rate of deactivation depends linearly on the number of R*, whereas for substrate saturation a hyperbolic relation--the well-known Michaelis-Menten equation--applies. This dichotomy is used to explain experimental finding that the relation between the saturation time of the photoresponse after short illumination and the flash strength has two sharply separated branches for low and high flash intensities (up to approximately 10% bleaching). By relating both branches to properties of the enzymatic rhodopsin deactivation, the new model transcends the classical notion of a constant characteristic lifetime of activated rhodopsin. With parameters that are plausible in the light of the available data and the additional information that the deactivating enzyme, rhodopsin kinase, and the signaling G-protein, transducin, compete for the active receptor, the slopes of the saturation function are correctly reproduced. PMID:9533693

  1. Geophysical prospecting of a slow active fault in the Lower Rhine Embayment, NW Germany

    NASA Astrophysics Data System (ADS)

    Streich, R.; Strecker, M.; Lück, E.; Scherbaum, F.; Schäbitz, F.; Spangenberg, U.

    2003-04-01

    The Lower Rhine embayment, Germany, is currently one of the most active sectors of the Cenozoic rift system of western and central Europe. Historical records denote at least 21 earthquakes with epicentral intensities >=7, and instrumental records show a concentration of seismicity at the major bounding Peel Boundary, Erft, Feldbiss and Rurrand faults. Many fault segments were active in the recent past and formed numerous morphologic scarps. However, fault scarps are poorly preserved since low displacement rates are opposed to interference of fluvioglacial with tectonic processes, a dense vegetation cover, high precipitation rates, and human landscape modification. This makes it difficult to determine the exact location, size and geometry of active fault segments in this region and hampers estimation of long-term displacement rates and fault activity. To overcome these difficulties, we applied a combination of morphologic, geophysical, and geological methods. We carried out detailed studies at the Hemmerich site located in the Erft fault system, SE Lower Rhine embayment (6.918oE, 50.758oN). The site is characterized by a topographic scarp, 4 m high and several km long. We placed special emphasis on testing the applicability of fast and simple geophysical prospecting techniques to fault assessment, and on evaluating the scarp as a potential site to excavate the suspected fault. The geophysical methods applied comprise resistivity and chargeability tomography, ground penetrating radar, and shallow seismic reflection, all carried out along profiles perpendicular to the topographic scarp. In addition, electromagnetic and magnetic maps were acquired. Beside geophysical prospecting, we conducted microtopographic levelling and coring. We detected a major break in a shallow radar reflector, and a steep seismic velocity contrast discernible both by seismic refraction tomography and dispersion analysis. These features are in good spatial correlation with each other and with

  2. Peripheral Inflammation is Associated with Altered Substantia Nigra Activity and Psychomotor Slowing in Humans

    PubMed Central

    Brydon, Lena; Harrison, Neil A.; Walker, Cicely; Steptoe, Andrew; Critchley, Hugo D.

    2008-01-01

    Background Systemic infections commonly cause sickness symptoms including psychomotor retardation. Inflammatory cytokines released during the innate immune response are implicated in the communication of peripheral inflammatory signals to the brain. Methods We used functional magnetic resonance brain imaging (fMRI) to investigate neural effects of peripheral inflammation following typhoid vaccination in 16 healthy men, using a double-blind, randomized, crossover-controlled design. Results Vaccination had no global effect on neurovascular coupling but markedly perturbed neural reactivity within substantia nigra during low-level visual stimulation. During a cognitive task, individuals in whom typhoid vaccination engendered higher levels of circulating interleukin-6 had significantly slower reaction time responses. Prolonged reaction times and larger interleukin-6 responses were associated with evoked neural activity within substantia nigra. Conclusions Our findings provide mechanistic insights into the interaction between inflammation and neurocognitive performance, specifically implicating circulating cytokines and midbrain dopaminergic nuclei in mediating the psychomotor consequences of systemic infection. PMID:18242584

  3. Active tectonics, paleoseismology and associated methodological challenges posed by the slow moving Alhama de Murcia fault (SE Iberia)

    NASA Astrophysics Data System (ADS)

    Ferrater, Marta; Ortuño, Maria; Masana, Eulàlia; Pallàs, Raimon; Perea, Hector; Baize, Stephane; García-Meléndez, Eduardo; Martínez-Díaz, José J.; Echeverria, Anna; Rockwell, Thomas; Sharp, Warren D.; Arrowsmith, Ramon; Medialdea, Alicia; Rhodes, Edward

    2016-04-01

    The Alhama de Murcia fault (AMF) is a 87 km-long left-lateral slow moving fault and is responsible for the 5.1 Mw 2011 Lorca earthquake. The characterization of the seismic potential of seismogenic strike-slip slow moving faults is necessary but raises huge methodological challenges, as most paleoseismological and active tectonic techniques have been designed on and for fast moving faults. The AMF is used here as a pilot study area to adapt the traditional geomorphological and trenching analyses, especially concerning the precise quantification of offset channels. We: 1) adapted methodologies to slow moving faults, 2) obtained, for the first time, the slip rate of the AMF, and 3) updated its recurrence period and maximum expected magnitude. Morphotectonic studies aim to use the measured tectonic offset of surface channels to calculate seismic parameters. However, these studies lack a standard criterion to score the analysed features. We improved this by differentiating between subjective and objective qualities, and determining up to three objective parameters (lithological changes, associated morphotectonics and shape, and three shape sub-parameters; all ranging from 0 to 1). By applying this methodology to the AMF, we identified and characterized 138 offset features that we mapped on a high-resolution (0.5 × 0.5 m pixel size) Digital Elevation Model (DEM) from a point cloud acquired in 2013 by airborne light detection and ranging (lidar). The identified offsets, together with the ongoing datings, are going to be used to calculate the lateral slip rate of the AMF. In three-dimensional trenches, we measured the offsets of a buried channel by projecting the far-field tendency of the channel onto the fault. This procedure is inspired by the widespread geomorphological procedure and aims to avoid the diffuse deformation in the fault zone associated with slow moving faults. The calculation of the 3D tendency of the channel and its projection onto the fault permitted

  4. Effects of medial septal stimulation & its blockade with atropine on hippocampal rhythmical slow activity in free-moving rabbits.

    PubMed

    Dhume, R A; Shamayev, N N; Zhuravlev, B V; Sudakov, K V; Sharma, K N

    1990-10-01

    The influence of the medial septal nucleus (MSN) on hippocampal rhythmical slow activity (RSA) was investigated in hunger motivated free-moving rabbits. Single unit activity of 29 CA3 dorsal hippocampal neurones was studied under two paradigms viz., electrical stimulation (3v/1msec/5Hz) and chemical blockade of atropine-sensitive medial septal cells (dose of 5 micrograms in 5 microliters). The analysis of interspike interval sample histograms recorded with Apple II, along with single unit neuronal spikes recorded on polygraph showed bimodal pattern with two peaks; one at bin 10-20 (high frequency) and second at bin 100-300 (theta frequency). On stimulation of MSN, there was total suppression of bin 100-300 with peaks at bin 1-20 and at bin greater than 1000 (very low frequency). Blockade of cholinergic receptors at MSN showed reduction of bin 100-300 and peak at bin 700- greater than 1000; this was followed by gradual decrease of spike's amplitude and thereafter its total abolition. The results indicate that the septal region is not a pacemaker per se in the genesis of hippocampal RSA (theta rhythm), but serves more in the nature of a relay station for a number of inputs and that its influence on the hippocampal electrical activity depends on the integrity of cholinergic inputs, be it from hippocampus proper or from mid-brain reticular formation. PMID:2272674

  5. Slow-Onset Inhibition of the FabI Enoyl Reductase from Francisella tularensis: Residence Time and in Vivo Activity

    SciTech Connect

    Lu, H.; England, K; Ende, C; Truglio, J; Luckner, S; Reddy, B; Marlenee, N; Knudson, S; Knudson, D; et. al.

    2009-01-01

    Francisella tularensis is a highly virulent and contagious Gram-negative intracellular bacterium that causes the disease tularemia in mammals. The high infectivity and the ability of the bacterium to survive for weeks in a cool, moist environment have raised the possibility that this organism could be exploited deliberately as a potential biological weapon. Fatty acid biosynthesis (FAS-II) is essential for bacterial viability and has been validated as a target for the discovery of novel antibacterials. The FAS-II enoyl reductase ftuFabI has been cloned and expressed, and a series of diphenyl ethers have been identified that are subnanomolar inhibitors of the enzyme with MIC90 values as low as 0.00018 ?g mL-1. The existence of a linear correlation between the Ki and MIC values strongly suggests that the antibacterial activity of the diphenyl ethers results from direct inhibition of ftuFabI within the cell. The compounds are slow-onset inhibitors of ftuFabI, and the residence time of the inhibitors on the enzyme correlates with their in vivo activity in a mouse model of tularemia infection. Significantly, the rate of breakdown of the enzyme-inhibitor complex is a better predictor of in vivo activity than the overall thermodynamic stability of the complex, a concept that has important implications for the discovery of novel chemotherapeutics that normally rely on equilibrium measurements of potency.

  6. Coherence between geodetic and seismic deformation in a context of slow tectonic activity (SW Alps, France)

    NASA Astrophysics Data System (ADS)

    Walpersdorf, A.; Sue, C.; Baize, S.; Cotte, N.; Bascou, P.; Beauval, C.; Collard, P.; Daniel, G.; Dyer, H.; Grasso, J.-R.; Hautecoeur, O.; Helmstetter, A.; Hok, S.; Langlais, M.; Menard, G.; Mousavi, Z.; Ponton, F.; Rizza, M.; Rolland, L.; Souami, D.; Thirard, L.; Vaudey, P.; Voisin, C.; Martinod, J.

    2015-04-01

    A dense, local network of 30 geodetic markers covering a 50 × 60 km2 area in the southwestern European Alps (Briançon region) has been temporarily surveyed in 1996, 2006 and 2011 by GPS. The aim is to measure the current deformation in this seismically active area. The study zone is characterized by a majority of extensional and dextral focal mechanisms, along north-south to N160 oriented faults. The combined analysis of the three measurement campaigns over 15 years and up to 16 years of permanent GPS data from the French RENAG network now enables to assess horizontal velocities below 1 mm/year within the local network. The long observation interval and the redundancy of the dense campaign network measurement help to constrain a significant local deformation pattern in the Briançon region, yielding an average E-W extension of 16 ± 11 nanostrain/year. We compare the geodetic deformation field to the seismic deformation rate cumulated over 37 years, and obtain good coherencies both in amplitude and direction. Moreover, the horizontal deformation localized in the Briançon region represents a major part of the Adriatic-European relative plate motion. However, the average uplift of the network in an extensional setting needs the presence of buoyancy forces in addition to plate tectonics.

  7. Final deactivation report on the Radioisotope Production Lab-E, Building 3032, at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1997-09-01

    The purpose of this report is to document the condition of Bldg. 3032, after completion of deactivation activities as outlined by the Department of Energy (DOE) Office of Nuclear Materials and Facility Stabilization Program (EM-60) guidance documentation. This report outlines the activities conducted to place the facility in a safe and environmentally sound condition for transfer to the DOE Office of Environmental Restoration Program (EM-40). This report provides a history and profile of Bldg. 3032 prior to commencing deactivation activities and a profile of the building after completion of deactivation activities. Turnover items, such as the Postdeactivation Surveillance & Maintenance Plan, remaining hazardous materials, radiological controls, Safeguards and Security, quality assurance, facility operations, and supporting documentation provided in the EM-60 turnover package are discussed. Building 3032 will be used as the Health Physics Office for the Isotopes Facilities Deactivation Program area and will require access for these offices and to facilitate required surveillance and maintenance (S&M) activities to maintain the building safety envelope. Bldg. 3032 was stabilized during deactivation so that when transferred to the EM-40 program, only a minimal S&M effort would be required to maintain the building safety envelope. All materials have been removed from the building, and all utility systems, piping, and alarms have been deactivated except electricity and steam needed for the office areas.

  8. Active tectonics and rheology of slow-moving thrusts in the Tibetan foreland of peninsular India

    NASA Astrophysics Data System (ADS)

    Copley, Alex; Mitra, Supriyo; Sloan, Alastair; Gaonkar, Sharad; Avouac, Jean-Philippe; Hollingsworth, James

    2016-04-01

    Peninsular India is cut by active thrust faults that break in earthquakes in response to the compressive force exerted between India and the Tibetan Plateau. The rate of deformation is low, with 2 +/- 1 mm/yr of shortening being accommodated over the entire N-S extent of the Indian sub-continent. However, the large seismogenic thickness in the region (40-50 km), and the long faults, mean that the rare earthquakes that do occur can have magnitudes up to at least 8. This contribution describes studies of two large Indian earthquakes, and their rheological and hazard implications, using a range of techniques. First, the Mw 7.6 Bhuj (Gujarat) earthquake of 2001 is examined using a combination of seismology, InSAR, and levelling data. A slip model for the earthquake will be presented, which allows the material properties of the fault plane to be examined. Second, a Holocene-age earthquake rupture from central India will be discussed. Geomorphic analysis of the scarps produced by the event suggest a magnitude of 7.6 - 8.4. Both of these earthquakes had unusually large stress-drops, amongst the largest recorded for shallow earthquakes. The information provided by these two events will be combined with calculations for the total compressive force being transmitted through the Indian peninsular in order to suggest that the faults are characterised by a low coefficient of friction (approximately 0.1), and that the stress-drops in the earthquakes are close to complete. In turn, these results imply that the majority of the force being transmitted through the Indian plate is supported by the brittle crust. Finally, the along-strike continuation of the faults will be described, with implications for hazard assessment and material properties throughout India.

  9. Photophysical deactivation pathways in adenine oligonucleotides.

    PubMed

    Spata, Vincent A; Matsika, Spiridoula

    2015-12-14

    In this work we study deactivation processes in adenine oligomers after absorption of UV radiation using Quantum Mechanics combined with Molecular Mechanics (QM/MM). Correlated electronic structure methods appropriate for describing the excited states are used to describe a π-stacked dimer of adenine bases incorporated into (dA)20(dT)20. The results of these calculations reveal three different types of excited state minima which play a role in deactivation processes. Within this set of minima there are minima where the excited state is localized on one adenine (monomer-like) as well as minima where the excited state is delocalized on two adenines, forming different types of excimers and bonded excimers of varying but inter-related character. The proximity of their energies reveals that the minima can decay into one another along a flat potential energy surface dependent on the interbase separation. Additionally, analysis of the emissive energies and other physical properties, including theoretical anisotropy calculations, and comparison with fluorescence experiments, provides evidence that excimers play an important role in long-lived signals in adenine oligonucleotides while the subpicosecond decay is attributed to monomer-like minima. The necessity for a close approach of the nucleobases reveals that the deactivation mechanism is tied to macro-molecular motion. PMID:26536353

  10. Synergistic activity of rifampicin and ethambutol against slow-growing nontuberculous mycobacteria is currently of questionable clinical significance.

    PubMed

    van Ingen, Jakko; Hoefsloot, Wouter; Mouton, Johan W; Boeree, Martin J; van Soolingen, Dick

    2013-07-01

    A key issue in the treatment of disease caused by slow-growing nontuberculous mycobacteria is the limited association between in vitro minimum inhibitory concentrations (MICs) of rifampicin and ethambutol alone and the in vivo outcome of treatment with these drugs. Combined susceptibility testing to rifampicin and ethambutol could provide a more realistic view of the efficacy of these drugs. In this study, Mycobacterium avium (n = 5), Mycobacterium chimaera (n = 6), Mycobacterium intracellulare (n = 4), Mycobacterium xenopi (n = 4), Mycobacterium malmoense (n = 3) and Mycobacterium simiae (n = 2) clinical isolates were selected and the MICs of rifampicin and ethambutol alone and in combination were measured using the Middlebrook 7H10 agar dilution method. Synergy was defined as a fractional inhibitory concentration index ≤ 0.5. Rifampicin and ethambutol showed synergistic activity against the majority of M. avium (4/5), M. chimaera (5/6) and M. intracellulare (3/4) isolates and 1 of 2 eligible M. malmoense isolates. No synergistic activity was measured against M. xenopi and M. simiae. Synergy was neither universal for all species nor for all isolates of one species; it thus needs to be tested for rather than assumed. Even if this synergy exists in vivo, it is questionable whether the MICs to the combined drugs can be overcome by the drug exposure attained by current regimens at the recommended dosages. New dosing strategies for rifampicin and ethambutol should be studied to increase the exposure to these drugs and thus maximise their impact. PMID:23664674

  11. ASP4000, a slow-binding dipeptidyl peptidase 4 inhibitor, has antihyperglycemic activity of long duration in Zucker fatty rats.

    PubMed

    Tanaka-Amino, Keiko; Matsumoto, Kazumi; Hatakeyama, Yoshifumi; Takakura, Shoji; Mutoh, Seitaro

    2010-03-01

    ASP4000 ((2S)-1-{[(1R,3S,4S,6R)-6-hydroxy-2-azabicyclo[2.2.1]hept-3-yl]carbonyl}-2-pyrrolidinecarbonitrile hydrochloride) is a novel, potent and selective dipeptidyl peptidase 4 (DPP IV, EC 3.4.14.5) inhibitor (Keiko Tanaka-Amino et al. in Eur J pharmacol 59:444-449, 2008). The aim of the present study was to characterize the kinetic profile of and identify the long duration effect of the antihyperglycemic activity of ASP4000. ASP4000 was found to inhibit human recombinant DPP4 activity with a K(i) of 1.05 nM, a k(on) value of 22.3 x 10(5) M(-1) s(-1), and a k (off) of 2.35 x 10(-3) M(-1) s(-1), with higher affinity than that of vildagliptin. The kinetic studies indicate that both the formation and dissociation of ASP4000/DPP4 complex were faster than those of vildagliptin, and that ASP4000 slow-bindingly inhibits DPP4 with a different mode of inhibition than vildagliptin. In addition, ASP4000 augmented the insulin response and ameliorated the glucose excursion during the oral glucose tolerance test in Zucker fatty rats at 4 h post dosing. ASP4000 is expected to be a promising, long duration DPP4 inhibitor for type 2 diabetes. PMID:19238312

  12. Donor deactivation in silicon nanostructures

    NASA Astrophysics Data System (ADS)

    Björk, Mikael T.; Schmid, Heinz; Knoch, Joachim; Riel, Heike; Riess, Walter

    2009-02-01

    The operation of electronic devices relies on the density of free charge carriers available in the semiconductor; in most semiconductor devices this density is controlled by the addition of doping atoms. As dimensions are scaled down to achieve economic and performance benefits, the presence of interfaces and materials adjacent to the semiconductor will become more important and will eventually completely determine the electronic properties of the device. To sustain further improvements in performance, novel field-effect transistor architectures, such as FinFETs and nanowire field-effect transistors, have been proposed as replacements for the planar devices used today, and also for applications in biosensing and power generation. The successful operation of such devices will depend on our ability to precisely control the location and number of active impurity atoms in the host semiconductor during the fabrication process. Here, we demonstrate that the free carrier density in semiconductor nanowires is dependent on the size of the nanowires. By measuring the electrical conduction of doped silicon nanowires as a function of nanowire radius, temperature and dielectric surrounding, we show that the donor ionization energy increases with decreasing nanowire radius, and that it profoundly modifies the attainable free carrier density at values of the radius much larger than those at which quantum and dopant surface segregation effects set in. At a nanowire radius of 15 nm the carrier density is already 50% lower than in bulk silicon due to the dielectric mismatch between the conducting channel and its surroundings.

  13. Muscle fiber type specific activation of the slow myosin heavy chain 2 promoter by a non-canonical E-box.

    PubMed

    Weimer, Kristina; DiMario, Joseph X

    2016-01-22

    Different mechanisms control skeletal muscle fiber type gene expression at specific times in vertebrate development. Embryonic myogenesis leading to formation of primary muscle fibers in avian species is largely directed by myoblast cell commitment to the formation of diverse fiber types. In contrast, development of different secondary fiber types during fetal myogenesis is partly determined by neural influences. In both primary and secondary chicken muscle fibers, differential expression of the slow myosin heavy chain 2 (MyHC2) gene distinguishes fast from fast/slow muscle fibers. This study focused on the transcriptional regulation of the slow MyHC2 gene in primary myotubes formed from distinct fast/slow and fast myogenic cell lineages. Promoter deletion analyses identified a discrete 86 bp promoter segment that conferred fiber type, lineage-specific gene expression in fast/slow versus fast myoblast derived primary myotubes. Sequence analysis and promoter activity assays determined that this segment contains two functional cis-regulatory elements. One element is a non-canonical E-box, and electromobility shift assays demonstrated that both cis-elements interacted with the E-protein, E47. The results indicate that primary muscle fiber type specific expression of the slow MyHC2 gene is controlled by a novel mechanism involving a transcriptional complex that includes E47 at a non-canonical E-box. PMID:26707643

  14. Reoxidation and deactivation of supported cobalt Fischer-Tropsch catalysts

    SciTech Connect

    Schanke, D.; Bergene, E.; Adnanes, E.

    1995-12-31

    As a result of the highly exothermic nature of the Fischer-Tropsch reaction, heat transfer considerations limit the maximum conversion per pass in fixed-bed processes, whereas slurry reactors can operate at higher conversions. During Fischer-Tropsch synthesis on cobalt catalysts, high conversions will generate high partial pressures of water at the reactor exit, due to the low water gas shift activity of cobalt. In addition, the extensive back-mixing in slurry reactors will give a relatively uniform concentration profile in the reactor, characterized by a high concentration of water and low reactant concentrations. From the commercial iron-catalyzed Fischer-Tropsch synthesis in fixed-bed (Arge) reactors it is known that the catalyst deactivates by oxidation of iron by CO{sub 2} and H{sub 2}O near the exit of the reactor. Although bulk oxidation of cobalt during Fischer-Tropsch synthesis is not thermodynamically favored, it was early speculated that surface oxidation of cobalt could occur during Fischer-Tropsch synthesis. The purpose of the present work is to describe the influence of water on the deactivation behavior of Al{sub 2}O{sub 3} supported cobalt catalysts. The possibility of cobalt oxidation during Fischer-Tropsch synthesis was investigated by model studies.

  15. Substance P and the neurokinin-1 receptor regulate electroencephalogram non-rapid eye movement sleep slow-wave activity locally

    PubMed Central

    Zielinski, Mark R.; Karpova, Svetlana A.; Yang, Xiaomei; Gerashchenko, Dmitry

    2014-01-01

    The neuropeptide substance P is an excitatory neurotransmitter produced by various cells including neurons and microglia that is involved in regulating inflammation and cerebral blood flow—functions that affect sleep and slow-wave activity (SWA). Substance P is the major ligand for the neurokinin-1 receptor (NK-1R), which is found throughout the brain including the cortex. The NK-1R is found on sleep-active cortical neurons expressing neuronal nitric oxide synthase whose activity is associated with SWA. We determined the effects of local cortical administration of a NK-1R agonist (substance P-fragment 1, 7) and a NK-1R antagonist (CP96345) on sleep and SWA in mice. The NK-1R agonist significantly enhanced SWA for several hours when applied locally to the cortex of the ipsilateral hemisphere as the electroencephalogram (EEG) electrode but not after application to the contralateral hemisphere when compared to saline vehicle control injections. In addition, a significant compensatory reduction in SWA was found after the NK-1R agonist-induced enhancements in SWA. Conversely, injections of the NK-1R antagonist into the cortex of the ipsilateral hemisphere of the EEG electrode attenuated SWA compared to vehicle injections but this effect was not found after injections of the NK-1R antagonist into contralateral hemisphere as the EEG electrode. Non-rapid eye movement sleep and rapid eye movement sleep duration responses after NK-1R agonist and antagonist injections were not significantly different from the responses to the vehicle. Our findings indicate that the substance P and the NK-1R are involved in regulating SWA locally. PMID:25301750

  16. Slow modulations of high-frequency activity (40-140-Hz) discriminate preictal changes in human focal epilepsy.

    PubMed

    Alvarado-Rojas, C; Valderrama, M; Fouad-Ahmed, A; Feldwisch-Drentrup, H; Ihle, M; Teixeira, C A; Sales, F; Schulze-Bonhage, A; Adam, C; Dourado, A; Charpier, S; Navarro, V; Le Van Quyen, M

    2014-01-01

    Recent evidence suggests that some seizures are preceded by preictal changes that start from minutes to hours before an ictal event. Nevertheless an adequate statistical evaluation in a large database of continuous multiday recordings is still missing. Here, we investigated the existence of preictal changes in long-term intracranial recordings from 53 patients with intractable partial epilepsy (in total 531 days and 558 clinical seizures). We describe a measure of brain excitability based on the slow modulation of high-frequency gamma activities (40-140 Hz) in ensembles of intracranial contacts. In prospective tests, we found that this index identified preictal changes at levels above chance in 13.2% of the patients (7/53), suggesting that results may be significant for the whole group (p < 0.05). These results provide a demonstration that preictal states can be detected prospectively from EEG data. They advance understanding of the network dynamics leading to seizure and may help develop novel seizure prediction algorithms. PMID:24686330

  17. Self-Related Processing and Deactivation of Cortical Midline Regions in Disorders of Consciousness

    PubMed Central

    Crone, Julia Sophia; Höller, Yvonne; Bergmann, Jürgen; Golaszewski, Stefan; Trinka, Eugen; Kronbichler, Martin

    2013-01-01

    Self-related stimuli activate anterior parts of cortical midline regions, which normally show task-induced deactivation. Deactivation in medial posterior and frontal regions is associated with the ability to focus attention on the demands of the task, and therefore, with consciousness. Studies investigating patients with impaired consciousness, that is, patients in minimally conscious state and patients with unresponsive wakefulness syndrome (formerly vegetative state), demonstrate that these patients show responses to self-related content in the anterior cingulate cortex. However, it remains unclear if these responses are an indication for conscious processing of stimuli or are due to automatic processing. To shed further light on this issue, we investigated responses of cortical midline regions to the own and another name in 27 patients with a disorder of consciousness and compared them to task-induced deactivation. While almost all of the control subjects responding to the own name demonstrated higher activation due to the self-related content in anterior midline regions and additional deactivation, none of the responding patients did so. Differences between groups showed a similar pattern of findings. Despite the relation between behavioral responsiveness in patients and activation in response to the own name, the findings of this study do not provide evidence for a direct association of activation in anterior midline regions and conscious processing. The deficits in processing of self-referential content in anterior midline regions may rather be due to general impairments in cognitive processing and not particularly linked to impaired consciousness. PMID:23986685

  18. Work plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory

    SciTech Connect

    1995-05-01

    The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition; suitable for an extended period of minimum surveillance and maintenance (S&M) and as quickly and economical as possible. Implementation and completion of the deactivation project will further reduce the risks to the environment and to public safety and health. Furthermore, completion of the project will result in significant S&M cost savings in future years. The IFDP work plan defines the project schedule, the cost estimate, and the technical approach for the project. A companion document, the IFDP management plan, has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted the strategy of deactivating the simple facilities first, to reduce the scope of the project and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify the activities that best promote the project mission and result in the largest cost savings. This work plan will be reviewed and revised annually. Deactivation of IFDP facilities was initiated in FY 1994 and will be completed in FY 1999. The schedule for deactivation of facilities is shown. The total cost of the project is estimated to be $36M. The costs are summarized. Upon completion of deactivation, annual S&M costs of these facilities will be reduced from the current level of $5M per year to less than $1M per year.

  19. Work plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1995-08-01

    The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition; suitable for an extended period of minimum surveillance and maintenance (S and M) and as quickly and economical as possible. Implementation and completion of the deactivation project will further reduce the risks to the environment and to public safety and health. Furthermore, completion of the project will result in significant S and M cost savings in future years. The IFDP work plan defines the project schedule, the cost estimate, and the technical approach for the project. A companion document, the EFDP management plan, has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted the strategy of deactivating the simple facilities first, to reduce the scope of the project and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify the activities that best promote the project mission and result in the largest cost savings. This work plan will be reviewed and revised annually. Deactivation of EFDP Facilities was initiated in FY 1994 and will be completed in FY 2000. The schedule for deactivation of facilities is shown. The total cost of the project is estimated to be $51M. The costs are summarized. Upon completion of deactivation, annual S and M costs of these facilities will be reduced from the current level of $5M per year to less than $1M per year.

  20. OBSCURED GOODS ACTIVE GALACTIC NUCLEI AND THEIR HOST GALAXIES AT z < 1.25: THE SLOW BLACK HOLE GROWTH PHASE

    SciTech Connect

    Simmons, B. D.; Urry, C. M.; Van Duyne, J.; Treister, E.; Koekemoer, A. M.; Grogin, N. A.

    2011-06-20

    We compute black hole masses and bolometric luminosities for 87 obscured active galactic nuclei (AGNs) in the redshift range 0.25 {<=} z {<=} 1.25, selected from the GOODS deep multi-wavelength survey fields via their X-ray emission. We fit the optical images and obtain morphological parameters for the host galaxy, separating the galaxy from its central point source, thereby obtaining a four-band optical spectral energy distribution (SED) for each active nucleus. We calculate bolometric luminosities for these AGNs by reddening a normalized mean SED of GOODS broad-line AGNs to match the observed central point-source SED of each obscured AGN. This estimate of L{sub bol} has a smaller spread than simple bolometric corrections to the X-ray luminosity or direct integration of the observed multi-wavelength SED, suggesting it is a better measure. We estimate central black hole masses from the bulge luminosities. The black hole masses span a wide range, 7 x 10{sup 6} M{sub sun} to 6 x 10{sup 9} M{sub sun}; the median black hole mass is 5 x 10{sup 8} M{sub sun}. The majority of these AGNs have L/L{sub Edd} {<=} 0.01, and we detect no significant evolution of the mean Eddington ratio to z = 1.25. This implies that the bulk of black hole growth in these obscured AGNs must have occurred at z {approx}> 1 and that we are observing these AGNs in a slow- or no-growth state.

  1. Computing conformational free energy by deactivated morphing.

    SciTech Connect

    Park, S.; Lau, A. Y.; Roux, B.; Univ. of Chicago

    2008-10-07

    Despite the significant advances in free-energy computations for biomolecules, there exists no general method to evaluate the free-energy difference between two conformations of a macromolecule that differ significantly from each other. A crucial ingredient of such a method is the ability to find a path between different conformations that allows an efficient computation of the free energy. In this paper, we introduce a method called 'deactivated morphing', in which one conformation is morphed into another after the internal interactions are completely turned off. An important feature of this method is the (shameless) use of nonphysical paths, which makes the method robustly applicable to conformational changes of arbitrary complexity.

  2. Deactivation of free and stabilized acid phosphatase by urea.

    PubMed

    Gianfreda, L; Marrucci, G; Greco, G

    1986-11-01

    Tests on acid phosphatase (E.G. 3.1.3.2) deactivation by urea have been performed at two pH values. Two conditions have been used: native enzyme operating batch-wise in dilute solution and stabilized enzyme in continuous flow ultrafiltration membrane reactor. Stabilization is achieved by confining the enzyme within a concentrated solution of a linear chain polymer that forms a polarization layer over the membrane. The results provide significant information on the kinetics and thermodynamics of the complex phenomena taking place during deactivation. Deactivation by urea is also compared with thermal deactivation. PMID:18555278

  3. Surrogate burns in deactivation furnace system.

    PubMed

    Shah, J K

    1999-05-14

    The deactivation furnace system at the Deseret Chemical Depot in Utah is designed for processing explosive components from munitions containing nerve and mustard agents. The system was installed during the period of 1989 through 1993. The Utah Division of Solid and Hazardous Waste (UDSHW) required that trial burns be conducted using surrogate chemicals prior to introducing chemical agents into the system. The selected surrogate chemicals were monochlorobenzene and hexachloroethane based on the criteria established by the UDSHW. Three surrogate runs were conducted in October, 1995. The gaseous emissions and liquid and solid effluents were sampled and analyzed using approved EPA methods. The trial burns demonstrated the desirable destruction and removal efficiency for the selected surrogate chemicals. The pollution abatement system demonstrated the desired scrubbing efficiency for acid gases generated during incineration of chlorinated surrogate chemicals. The particulate removal efficiency during the trial burns was also considerably higher than required by regulations. After comprehensive review of the performance of the deactivation furnace system during the surrogate trial burns, UDSHW approved introduction of GB nerve agent into the system to prepare it for agent trial burns. PMID:10334826

  4. Combined effect of hydrodynamic and interfacial flow parameters on lysozyme deactivation in a stirred tank bioreactor.

    PubMed

    Ghadge, Rajaram S; Patwardhan, Ashwin W; Joshi, Jyeshtharaj B

    2006-01-01

    The dynamic environment within a bioreactor and in the purification equipment is known to affect the activity and yield of enzyme production. The present research focuses on the effect of hydrodynamic flow parameters (average energy dissipation rate, maximum energy dissipation rate, average shear rate, and average normal stress) and the interfacial flow parameters (specific interfacial area and mass transfer coefficient) on the activity of lysozyme. Flow parameters were estimated using CFD simulation based on the k-epsilon approach. Enzyme deactivation was investigated in 0.1, 0.3, 0.57, and 1 m i.d. vessels. Enzyme solution was subjected to hydrodynamic stress using various types of impellers and impeller combinations over a wide range of power consumption (0.03 < P(G)/V < 7, kW/m3). The effects of tank diameter, impeller diameter, blade width, blade angle, and the number of blades on the extent of deactivation were investigated. At equal value of P(G)/V, epsilon(max), and gamma(avg), the extent of deactivation was dramatically different for different impeller types. The extent of deactivation was found to correlate well with the average turbulent normal stress and the mass transfer coefficient. PMID:16739947

  5. Regeneration of commercial selective catalyst reduction catalysts deactivated by Pb and other inorganic elements.

    PubMed

    Yu, Yanke; Wang, Jinxiu; Chen, Jinsheng; He, Xinjiang; Wang, Yujing; Song, Kai; Xie, Zongli

    2016-09-01

    The regeneration of commercial SCR (Selective Catalyst Reduction) catalysts deactivated by Pb and other elements was studied. The deactivated catalyst samples were prepared by chemical impregnation with mixed solution containing K2SO4, Na2SO4, CaSO4, Pb(NO3)2 and NH4H2PO4. A novel method combining Ethylenediaminetetraacetic acid disodium salt (EDTA-2Na) and H2SO4 solution (viz. catalysts treated by dilute EDTA-2Na and H2SO4 solution in sequence) was used to recover the activity of deactivated samples, and the effect was compared with single H2SO4, oxalic acid, acetic acid, EDTA or HNO3 solutions. The surface structure, acidity and reducibility of samples were characterized by N2 adsorption-desorption, inductively coupled plasma optical emission spectrometer (ICP-OES), scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray fluorescence (XRF), H2-temperature programmed section (H2-TPR), NH3-temperature programmed desorption (NH3-TPD) and in situ DRIFTS. Impurities caused a decrease of specific surface area and surface reducibility, as well as Brønsted acid sites, and therefore led to severe deactivation of the SCR catalyst. The use of an acid solution alone possibly eliminated the impurities on the deactivated catalyst to some extent, and also increased the specific surface area and Brønsted acid sites and promoted the surface reducibility, thus recovered the activity partially. The combination of EDTA-2Na and H2SO4 could remove most of the impurities and improve the activity significantly. The removal of Pb should be an important factor for regeneration. Due to a high removal rate for Pb and other impurities, the combination of EDTA-2Na and H2SO4 solutions provided the best efficiency. PMID:27593277

  6. 46 CFR 315.11 - Vessel deactivation procedures.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 8 2011-10-01 2011-10-01 false Vessel deactivation procedures. 315.11 Section 315.11... AGREEMENTS AND APPPOINTMENT OF AGENTS § 315.11 Vessel deactivation procedures. When an Agent is responsible as vessel operator to decommission and deliver a vessel to the NDRF, that Agent shall observe all...

  7. TiO2 Nanotubes with Open Channels as Deactivation-Resistant Photocatalyst for the Degradation of Volatile Organic Compounds.

    PubMed

    Weon, Seunghyun; Choi, Wonyong

    2016-03-01

    We synthesized ordered TiO2 nanotubes (TNT) and compared their photocatalytic activity with that of TiO2 nanoparticles (TNP) film during the repeated cycles of photocatalytic degradation of gaseous toluene and acetaldehyde to test the durability of TNT as an air-purifying photocatalyst. The photocatalytic activity of TNT showed only moderate reduction after the five cycles of toluene degradation, whereas TNP underwent rapid deactivation as the photocatalysis cycles were repeated. Dynamic SIMS analysis showed that carbonaceous deposits were formed on the surface of TNP during the photocatalytic degradation of toluene, which implies that the photocatalyst deactivation should be ascribed to the accumulation of recalcitrant degradation intermediates (carbonaceous residues). In more oxidizing atmosphere (100% O2 under which less carbonaceous residues should form), the photocatalytic activity of TNP still decreased with repeating cycles of toluene degradation, whereas TNT showed no sign of deactivation. Because TNT has a highly ordered open channel structure, O2 molecules can be more easily supplied to the active sites with less mass transfer limitation, which subsequently hinders the accumulation of carbonaceous residues on TNT surface. Contrary to the case of toluene degradation, both TNT and TNP did not exhibit any significant deactivation during the photocatalytic degradation of acetaldehyde, because the generation of recalcitrant intermediates from acetaldehyde degradation is insignificant. The structural characteristics of TNT is highly advantageous in preventing the catalyst deactivation during the photocatalytic degradation of aromatic compounds. PMID:26854616

  8. Initial deactivation of residue hydrodemetallization catalysts

    SciTech Connect

    Gualda, G.; Kasztelan, S.

    1996-06-01

    Used NiMo/alumina residue hydrodemetallization catalysts with bimodal pore size distribution have been prepared in batch and continuous flow reactors using a Safanyia atmospheric residue. The batch reactor provided used catalysts containing carbon deposits with almost no metal deposits (less than 200 ppm V and 4 to 15 wt% C), whereas the continuous flow reactor provided used catalysts containing both metal and carbon deposits (up to 1.3 wt% V and 11 to 14 wt% C). Used catalyst elemental analysis indicates that within experimental uncertainties the carbon deposits have a density of 1.5 {plus_minus} 0.2 g/cm{sup 3} and contain sulfur, nitrogen, and hydrogen, with different H/C ratio, the latter of depending on both the experimental conditions and the amount of carbon. Characterization of the used catalysts by electron probe microanalysis, secondary ion mass spectrometry, X-ray photoelectron spectroscopy. X-ray diffraction, transmission electron microscopy, and porosimetry show that V and C were well distributed in the catalyst grain in most of the samples and that carbon deposits are best described by three-dimensional patches of amorphous carbon (young coke) which generate pore size restrictions. Both carbon and vanadium have a deactivating effect on toluene hydrogenation, cyclohexane isomerization, and thiophene hydrodesulfurization performed on used catalysts under 6 MPa hydrogen pressure. However, a small amount of vanadium well dispersed inside the catalyst grain has been found to be more deactivating than a large amount of carbon. 71 refs., 17 figs., 6 tabs.

  9. Deactivation of the EBR-II complex

    SciTech Connect

    Michelbacher, J.A.; Earle, O.K.; Henslee, S.P.

    1997-12-31

    In January of 1994, the Department of Energy mandated the termination of the Integral Fast Reactor (IFR) Program, effective October 1, 1994. To comply with this decision, Argonne National Laboratory-West (ANL-W) prepared a plan providing detailed requirements to place the Experimental Breeder Reactor-II (EBR-II) in a radiologically and industrially safe condition, including removal of all irradiated fuel assemblies from the reactor plant, and removal and stabilization of the primary and secondary sodium, a liquid metal used to transfer heat within the reactor plant. The ultimate goal of the deactivation process is to place the EBR-II complex in a stable condition until a decontamination and decommissioning (D&D) plan can be prepared, thereby minimizing requirements for maintenance and surveillance and maximizing the amount of time for radioactive decay. The final closure state will be achieved in full compliance with federal, state and local environmental, safety, and health regulations and requirements. The decision to delay the development of a detailed D&D plan has necessitated this current action. The EBR-II is a pool-type reactor. The primary system contains approximately 87,000 gallons of sodium, while the secondary system has 13,000 gallons. In order to properly dispose of the sodium in compliance with the Resource Conservation and Recovery Act (RCRA), a facility has been built to react the sodium to a dry carbonate powder in a two stage process. Deactivation of a liquid metal fast breeder reactor (LMFBR) presents unique concerns. Residual amounts of sodium remaining in the primary and secondary systems must be either reacted or inerted to preclude future concerns with sodium-air reactions that generate explosive mixtures of hydrogen and leave corrosive compounds. Residual amounts of sodium on components will effectively {open_quotes}solder{close_quotes} components in place, making future operation or removal unfeasible.

  10. Fast and slow voltage modulation of apical Cl- permeability in toad skin at high [K+].

    PubMed

    Procopio, J

    1997-08-01

    The influence of voltage on the conductance of toad skin was studied to identify the time course of the activation/deactivation dynamics of voltage-dependent Cl- channels located in the apical membrane of mitochondrion-rich cells in this tissue. Positive apical voltage induced an important conductance inhibition which took a few seconds to fully develop and was instantaneously released by pulse inversion to negative voltage, indicating a short-duration memory of the inhibiting factors. Sinusoidal stimulation at 23.4 mM [Cl-] showed hysteresis in the current versus voltage curves, even at very low frequency, suggesting that the rate of voltage application was also relevant for the inhibition/releasing effect to develop. We conclude that the voltage modulation of apical Cl- permeability is essentially a fast process and the apparent slow components of activation/deactivation obtained in the whole skin are a consequence of a gradual voltage build-up across the apical membrane due to voltage sharing between apical and basolateral membranes. PMID:9361735

  11. Slow Pseudotachylites

    NASA Astrophysics Data System (ADS)

    Pec, M.; Stunitz, H.; Heilbronner, R.

    2011-12-01

    Tectonic pseudotachylites as solidified, friction induced melts are believed to be the only unequivocal evidence for paleo-earthquakes. Earthquakes occur when fast slip (1 - 3 m/s) propagates on a localized failure plane and are always related with stress drops. The mechanical work expended, together with the rock composition and the efficiency of thermal dissipation, controls whether the temperature increase on a localized slip plane will be sufficient to induce fusion. We report the formation of pseudotachylites during steady-state plastic flow at slow bulk shear strain rates (~10^-3 to ~10^-5 /s corresponding to slip rates of ~10^-6 to ~10^-8 m/s) in experiments performed at high confining pressures (500 MPa) and temperatures (300°C) corresponding to a depth of ~15 km. Crushed granitioid rock (Verzasca gneiss), grain size ≤ 200 μm, with 0.2 wt% water added was placed between alumina forcing blocks pre-cut at 45°, weld-sealed in platinum jackets and deformed with a constant displacement rate in a solid medium deformation apparatus (modified Griggs rig). Microstructural observations show the development of a S-C-C' fabric with C' slip zones being the dominant feature. Strain hardening in the beginning of the experiment is accompanied with compaction which is achieved by closely spaced R1 shears pervasively cutting the whole gouge zone and containing fine-grained material (d < 100 nm). The peak strength is achieved at γ ~ 2 at shear stress levels of 1350-1450 MPa when compaction ceases. During further deformation, large local displacements (γ > 10) are localized in less densely spaced, ~10 μm thick C'-C slip zones which develop predominantly in feldspars and often contain micas. In TEM, they appear to have no porosity consisting of partly amorphous material and small crystalline fragments with the average grain size of 20 nm. After the peak strength, the samples weaken by ~20 MPa and continue deforming up to γ ~ 4 without any stress drops. Strain

  12. β-Arrestin-dependent deactivation of mouse melanopsin.

    PubMed

    Cameron, Evan G; Robinson, Phyllis R

    2014-01-01

    In mammals, the expression of the unusual visual pigment, melanopsin, is restricted to a small subset of intrinsically photosensitive retinal ganglion cells (ipRGCs), whose signaling regulate numerous non-visual functions including sleep, circadian photoentrainment and pupillary constriction. IpRGCs exhibit attenuated electrical responses following sequential and prolonged light exposures indicative of an adaptational response. The molecular mechanisms underlying deactivation and adaptation in ipRGCs however, have yet to be fully elucidated. The role of melanopsin phosphorylation and β-arrestin binding in this adaptive process is suggested by the phosphorylation-dependent reduction of melanopsin signaling in vitro and the ubiquitous expression of β-arrestin in the retina. These observations, along with the conspicuous absence of visual arrestin in ipRGCs, suggest that a β-arrestin terminates melanopsin signaling. Here, we describe a light- and phosphorylation- dependent reduction in melanopsin signaling mediated by both β-arrestin 1 and β-arrestin 2. Using an in vitro calcium imaging assay, we demonstrate that increasing the cellular concentration of β-arrestin 1 and β-arrestin 2 significantly increases the rate of deactivation of light-activated melanopsin in HEK293 cells. Furthermore, we show that this response is dependent on melanopsin carboxyl-tail phosphorylation. Crosslinking and co-immunoprecipitation experiments confirm β-arrestin 1 and β-arrestin 2 bind to melanopsin in a light- and phosphorylation- dependent manner. These data are further supported by proximity ligation assays (PLA), which demonstrate a melanopsin/β-arrestin interaction in HEK293 cells and ipRGCs. Together, these results suggest that melanopsin signaling is terminated in a light- and phosphorylation-dependent manner through the binding of a β-arrestin within the retina. PMID:25401926

  13. The effect of fast and slow motor unit activation on whole-muscle mechanical performance: the size principle may not pose a mechanical paradox

    PubMed Central

    Holt, N. C.; Wakeling, J. M.; Biewener, A. A.

    2014-01-01

    The output of skeletal muscle can be varied by selectively recruiting different motor units. However, our knowledge of muscle function is largely derived from muscle in which all motor units are activated. This discrepancy may limit our understanding of in vivo muscle function. Hence, this study aimed to characterize the mechanical properties of muscle with different motor unit activation. We determined the isometric properties and isotonic force–velocity relationship of rat plantaris muscles in situ with all of the muscle active, 30% of the muscle containing predominately slower motor units active or 20% of the muscle containing predominately faster motor units active. There was a significant effect of active motor unit type on isometric force rise time (p < 0.001) and the force–velocity relationship (p < 0.001). Surprisingly, force rise time was longer and maximum shortening velocity higher when all motor units were active than when either fast or slow motor units were selectively activated. We propose this is due to the greater relative effects of factors such as series compliance and muscle resistance to shortening during sub-maximal contractions. The findings presented here suggest that recruitment according to the size principle, where slow motor units are activated first and faster ones recruited as demand increases, may not pose a mechanical paradox, as has been previously suggested. PMID:24695429

  14. Slowing of EEG Background Activity in Parkinson’s and Alzheimer’s Disease with Early Cognitive Dysfunction

    PubMed Central

    Benz, Nina; Hatz, Florian; Bousleiman, Habib; Ehrensperger, Michael M.; Gschwandtner, Ute; Hardmeier, Martin; Ruegg, Stephan; Schindler, Christian; Zimmermann, Ronan; Monsch, Andreas Urs; Fuhr, Peter

    2014-01-01

    Background: Slowing of the electroencephalogram (EEG) is frequent in Parkinson’s (PD) and Alzheimer’s disease (AD) and correlates with cognitive decline. As overlap pathology plays a role in the pathogenesis of dementia, it is likely that demented patients in PD show similar physiological alterations as in AD. Objective: To analyze distinctive quantitative EEG characteristics in early cognitive dysfunction in PD and AD. Methods: Forty patients (20 PD- and 20 AD patients with early cognitive impairment) and 20 normal controls (NC) were matched for gender, age, and education. Resting state EEG was recorded from 256 electrodes. Relative power spectra, median frequency (4–14 Hz), and neuropsychological outcome were compared between groups. Results: Relative theta power in left temporal region and median frequency separated the three groups significantly (p = 0.002 and p < 0.001). Relative theta power was increased and median frequency reduced in patients with both diseases compared to NC. Median frequency was higher in AD than in PD and classified groups significantly (p = 0.02). Conclusion: Increase of theta power in the left temporal region and a reduction of median frequency were associated with presence of AD or PD. PD patients are characterized by a pronounced slowing as compared to AD patients. Therefore, in both disorders EEG slowing might be a useful biomarker for beginning cognitive decline. PMID:25477817

  15. Direct Interaction between the Voltage Sensors Produces Cooperative Sustained Deactivation in Voltage-gated H+ Channel Dimers.

    PubMed

    Okuda, Hiroko; Yonezawa, Yasushige; Takano, Yu; Okamura, Yasushi; Fujiwara, Yuichiro

    2016-03-11

    The voltage-gated H(+) channel (Hv) is a voltage sensor domain-like protein consisting of four transmembrane segments (S1-S4). The native Hv structure is a homodimer, with the two channel subunits functioning cooperatively. Here we show that the two voltage sensor S4 helices within the dimer directly cooperate via a π-stacking interaction between Trp residues at the middle of each segment. Scanning mutagenesis showed that Trp situated around the original position provides the slow gating kinetics characteristic of the dimer's cooperativity. Analyses of the Trp mutation on the dimeric and monomeric channel backgrounds and analyses with tandem channel constructs suggested that the two Trp residues within the dimer are functionally coupled during Hv deactivation but are less so during activation. Molecular dynamics simulation also showed direct π-stacking of the two Trp residues. These results provide new insight into the cooperative function of voltage-gated channels, where adjacent voltage sensor helices make direct physical contact and work as a single unit according to the gating process. PMID:26755722

  16. Catalytic reforming of liquid fuels: Deactivation of catalysts

    SciTech Connect

    Spivey, J.J.; Haynes, D.J.; Berry, D.A.; Shekhawat, Dushyant; Gardner, T.H.

    2007-10-01

    The catalytic reforming of logistic fuels (e.g., diesel) to provide hydrogen-rich gas for various fuel cells is inevitably accompanied by deactivation. This deactivation can be caused by various mechanisms, such as carbon deposition, sintering, and sulfur poisoning. In general, these mechanisms are, not independent—e.g., carbon deposition may affect sulfur poisoning. However, they are typically studied in separate experiments, with relatively little work reported on their interaction at conditions typical of liquid fuel reforming. Recent work at the U.S. Dept. of Energy/NETL and Louisiana State University has shown progress in understanding the interaction of these deactivation processes, and catalysts designed to minimize them.

  17. Frequency dependent activation of a slow N-methyl-D-aspartate-dependent excitatory postsynaptic potential in turtle cerebellum by mossy fibre afferents.

    PubMed

    Larson-Prior, L J; Morrison, P D; Bushey, R M; Slater, N T

    1995-08-01

    The synaptic responses of turtle cerebellar Purkinje cells to stimulation of localized mossy fibre systems have been studied by use of intrasomatic and intradendritic recordings in a brainstem-cerebellum preparation in vitro. Activation of mossy fibre inputs from the spinocerebellar pathway evoked fast, disynaptic postsynaptic potentials which were graded in amplitude with stimulus intensity and elicited at latencies consistent with those reported for peripheral nerve stimulation. Repetitive activation (50-100 Hz, 2-10 stimuli) of both spinocerebellar and trigeminocerebellar pathways evoked a slow, long-lasting excitatory postsynaptic potential regardless of whether single stimuli resulted in excitatory, inhibitory, or no postsynaptic responses. This slow potential was capable of triggering dendritic pacemaker discharges in recorded Purkinje cells in addition to volleys of simple spikes when activated at or near resting membrane potential. The fast excitatory synaptic potentials evoked by spinocerebellar stimulation were blocked by the glutamate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione, consistent with the hypothesis that they are mediated by activation of ionotropic glutamate receptors of the alpha-amino-3-hydroxy-5-methylisox-azole-4-proprionic acid subtype at the mossy fibre-granule cell synapse and the subsequent parallel fibre-Purkinje cell synapse. The slow excitatory synaptic potential evoked by repetitive stimulation of either the spinocerebellar tract or trigeminal nerve was blocked by DL-2-amino-5-phosphonvalerate, indicating that this potential is primarily dependent upon N-methyl-D-aspartate receptors at the mossy fibre-granule cell synapse for its expression. This slow potential was reversibly potentiated by L-2-amino-4-phosphonobutyrate and bicuculline; the metabotropic glutamate antagonist (+)-alpha-methyl-4-carboxyphenylglycine did not block this potentiation. The ability of mossy fibre inputs to drive long, slow excitatory events in

  18. Brief and Rare Mental "Breaks" Keep You Focused: Deactivation and Reactivation of Task Goals Preempt Vigilance Decrements

    ERIC Educational Resources Information Center

    Ariga, Atsunori; Lleras, Alejandro

    2011-01-01

    We newly propose that the vigilance decrement occurs because the cognitive control system fails to maintain active the goal of the vigilance task over prolonged periods of time (goal habituation). Further, we hypothesized that momentarily deactivating this goal (via a switch in tasks) would prevent the activation level of the vigilance goal from…

  19. Deactivation of the Arabidopsis BRI1 receptor kinase by autophosphorylation within the glycine-rich loop involved in ATP binding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The activity of the dual-specificity brassinosteroid receptor kinase, BRI1, reflects the balance between phosphorylation-dependent activation and several potential mechanisms for deactivation of the receptor. In the present report, we identify regions of the juxtamembrane domain that are essential f...

  20. Deactivation mechanism and feasible regeneration approaches for the used commercial NH3-SCR catalysts.

    PubMed

    Yu, Yanke; Meng, Xiaoran; Chen, Jinsheng; Yin, Liqian; Qiu, Tianxue; He, Chi

    2016-01-01

    The deactivation and regeneration of selective catalytic reduction catalysts which have been used for about 37,000 h in a coal power plant are studied. The formation of Al2(SO4)3, surface deposition of K, Mg and Ca are primary reasons for the deactivation of the studied Selective catalytic reduction catalysts. Other factors such as activated V valence alteration also contribute to the deactivation. Reactivation of used catalysts via environment-friendly and finance-feasibly approaches, that is, dilute acid or alkali solution washing, would be of great interest. Three regeneration pathways were studied in the present work, and dilute nitric acid or sodium hydroxide solution could remove most of the contaminants over the catalyst surface and partly recover the catalytic performance. Notably, the acid-alkali combination washing, namely, catalysts treated by dilute sodium hydroxide and nitric acid solutions orderly, was much more effective than single washing approach in recovering the activity, and NO conversion increased from 23.6% to 89.5% at 380°C. The higher removal efficiency of contaminants, the lower dissolution of activated V, and promoting the formation of polymeric vanadate should be the main reason for recovery of the activity. PMID:26323336

  1. Source modeling sleep slow waves

    PubMed Central

    Murphy, Michael; Riedner, Brady A.; Huber, Reto; Massimini, Marcello; Ferrarelli, Fabio; Tononi, Giulio

    2009-01-01

    Slow waves are the most prominent electroencephalographic (EEG) feature of sleep. These waves arise from the synchronization of slow oscillations in the membrane potentials of millions of neurons. Scalp-level studies have indicated that slow waves are not instantaneous events, but rather they travel across the brain. Previous studies of EEG slow waves were limited by the poor spatial resolution of EEGs and by the difficulty of relating scalp potentials to the activity of the underlying cortex. Here we use high-density EEG (hd-EEG) source modeling to show that individual spontaneous slow waves have distinct cortical origins, propagate uniquely across the cortex, and involve unique subsets of cortical structures. However, when the waves are examined en masse, we find that there are diffuse hot spots of slow wave origins centered on the lateral sulci. Furthermore, slow wave propagation along the anterior−posterior axis of the brain is largely mediated by a cingulate highway. As a group, slow waves are associated with large currents in the medial frontal gyrus, the middle frontal gyrus, the inferior frontal gyrus, the anterior cingulate, the precuneus, and the posterior cingulate. These areas overlap with the major connectional backbone of the cortex and with many parts of the default network. PMID:19164756

  2. 1997 project of the year, PUREX deactivation project

    SciTech Connect

    Bailey, R.W.

    1998-02-13

    At the end of 1992, the PUREX and UO{sub 3} plants were deemed no longer necessary for the defense needs of the United States. Although no longer necessary, they were very costly to maintain in their post-operation state. The DOE embarked on a deactivation strategy for these plants to reduce the costs of providing continuous surveillance of the facilities and their hazards. Deactivation of the PUREX and UO{sub 3} plants was estimated to take 5 years and cost $222.5 million and result in an annual surveillance and maintenance cost of $2 million. Deactivation of the PUREX/UO{sub 3} plants officially began on October 1, 1993. The deactivation was 15 months ahead of the original schedule and $75 million under the original cost estimate. The annual cost of surveillance and maintenance of the plants was reduced to less than $1 million.

  3. Deactivation of Pacemakers and Implantable Cardioverter-Defibrillators

    PubMed Central

    Kramer, Daniel B.; Mitchell, Susan L.; Brock, Dan W.

    2013-01-01

    Cardiac implantable electrical devices (CIEDs), including pacemakers (PMs) and implantable cardioverter-defibrillators (ICDs), are the most effective treatment for life-threatening arrhythmias. Patients or their surrogates may request device deactivation to avoid prolongation of the dying process or in other settings, such as after device-related complications or with changes in their health care goals. Despite published guidelines outlining theoretical and practical aspects of this common clinical scenario, significant uncertainty remains for both patients and health care providers regarding the ethical and legal status of CIED deactivation. This review outlines the ethical and legal principles supporting CIED deactivation at patients’ request, centered upon patient autonomy and authority over their own medical treatment. The empirical literature describing stakeholder views and experiences surrounding CIED deactivation is described, along with lessons for future research and practice guidance surrounding the care of patients with CIEDs. PMID:23217433

  4. Effects of fast and slow squat exercises on the muscle activity of the paretic lower extremity in patients with chronic stroke

    PubMed Central

    Choi, Young-Ah; Kim, Jin-Seop; Lee, Dong-Yeop

    2015-01-01

    [Purpose] The purpose of this study was to investigate the effects of the speed of squat exercises on paretic lower extremity muscle activity in patients with hemiplegia following a stroke. [Subjects and Methods] Ten stroke patients performed fast and slow squat exercises for 2 seconds and 8 seconds, respectively. The muscle activities of the paretic and non-paretic sides of the rectus femoris muscle, the biceps femoris muscle, and the tibialis anterior muscle were assessed and compared using surface electromyography. [Results] The paretic side of the rectus femoris muscle showed statistically significant differences in the fast squat exercise group, which demonstrated the highest muscle activity during the rapid return to the upright position. [Conclusion] The rectus femoris muscle showed the highest muscle activity during the return to the upright position during the fast squat exercise, which indicates that the rectus femoris muscle is highly active during the fast squat exercise. PMID:26356385

  5. Preceding seismic activity and slow slip events in the source area of the 2011 Mw 9.0 Tohoku-Oki earthquake: a review

    NASA Astrophysics Data System (ADS)

    Hasegawa, Akira; Yoshida, Keisuke

    2015-12-01

    The 2011 Tohoku-Oki earthquake ruptured a large area of the megathrust east of NE Japan. The earthquake's magnitude was 9.0, substantially larger than predicted. It is important to know what occurred in the source area prior to this great megathrust earthquake to improve understanding of the nucleation processes of large earthquakes and risk assessments in subduction zones. Seafloor observation data revealed the existence of two extremely large slip patches: one just updip of the mainshock hypocenter and the other 80-100 km to the north near the trench axis. For 70-90 years before 2003, M > 6 events and slips of M > c. 7 events on the megathrust occurred in the areas surrounding these two large slip patches. Seismic activity had increased since at least 2003 in the downdip portion of the source area of the Tohoku-Oki earthquake. In addition, long-term accelerated slow slip occurred in this downdip portion of the source area in the decades before the Tohoku-Oki earthquake. About 1 month before the earthquake, a slow slip event (SSE) took place at relatively shallow depths between the two large slip patches, accompanied by foreshock activity. Both the slow slip and foreshocks propagated from north to south toward the southern large slip patch. Two days before the earthquake, an M 7.3 foreshock and an associated postseismic slip began at relatively deep depths in the megathrust between the two large slip patches. In addition, a slow slip type event seems to have occurred approximately half a day after the M 7.3 foreshock near the mainshock hypocenter. This slow slip event and the foreshock activity again propagated from north to south toward the mainshock hypocenter. These long- and short-term preceding seismic and aseismic slip gradually reduced the interplate coupling, increased shear stresses at the two large slip patches (i.e., two strong asperity patches), and finally led to the rupture of the great Tohoku-Oki earthquake.

  6. The catalase–hydrogen peroxide system. Role of sub-units in the thermal deactivation of bacterial catalase in the absence of substrate

    PubMed Central

    Jones, Peter; Suggett, A.

    1968-01-01

    1. Kinetic studies of the thermal deactivation of bacterial catalase in the absence of substrate suggest that the reaction involves a protonation-induced reversible dissociation of catalase into catalatically inactive sub-units, followed by an irreversible transformation of the sub-units into deactivated products. It is possible that the sub-units are mono-haem species. The rate of deactivation decreases with increasing pressure in accordance with the predictions of the proposed model. 2. The results also imply that the addition of hydrogen peroxide substrate induces the re-formation of active catalase. Under appropriate conditions the activity of catalase is found to increase with time in a manner that is quantitatively consistent with the results of deactivation studies. PMID:5673527

  7. Spontaneous Slow Fluctuation of EEG Alpha Rhythm Reflects Activity in Deep-Brain Structures: A Simultaneous EEG-fMRI Study

    PubMed Central

    Omata, Kei; Hanakawa, Takashi; Morimoto, Masako; Honda, Manabu

    2013-01-01

    The emergence of the occipital alpha rhythm on brain electroencephalogram (EEG) is associated with brain activity in the cerebral neocortex and deep brain structures. To further understand the mechanisms of alpha rhythm power fluctuation, we performed simultaneous EEGs and functional magnetic resonance imaging recordings in human subjects during a resting state and explored the dynamic relationship between alpha power fluctuation and blood oxygenation level-dependent (BOLD) signals of the brain. Based on the frequency characteristics of the alpha power time series (APTS) during 20-minute EEG recordings, we divided the APTS into two components: fast fluctuation (0.04–0.167 Hz) and slow fluctuation (0–0.04 Hz). Analysis of the correlation between the MRI signal and each component revealed that the slow fluctuation component of alpha power was positively correlated with BOLD signal changes in the brain stem and the medial part of the thalamus and anterior cingulate cortex, while the fast fluctuation component was correlated with the lateral part of the thalamus and the anterior cingulate cortex, but not the brain stem. In summary, these data suggest that different subcortical structures contribute to slow and fast modulations of alpha spectra on brain EEG. PMID:23824708

  8. Study of the scapular muscle latency and deactivation time in people with and without shoulder impingement.

    PubMed

    Phadke, Vandana; Ludewig, Paula M

    2013-04-01

    Changes in muscle activities are commonly associated with shoulder impingement and theoretically caused by changes in motor program strategies. The purpose of this study was to assess for differences in latencies and deactivation times of scapular muscles between subjects with and without shoulder impingement. Twenty-five healthy subjects and 24 subjects with impingement symptoms were recruited. Glenohumeral kinematic data and myoelectric activities using surface electrodes from upper trapezius (UT), lower trapezius (LT), serratus anterior (SA) and anterior fibers of deltoid were collected as subjects raised and lowered their arm in response to a visual cue. Data were collected during unloaded, loaded and after repetitive arm raising motion conditions. The variables were analyzed using 2 or 3 way mixed model ANOVAs. Subjects with impingement demonstrated significantly earlier contraction of UT while raising in the unloaded condition and an earlier deactivation of SA across all conditions during lowering of the arm. All subjects exhibited an earlier activation and delayed deactivation of LT and SA in conditions with a weight held in hand. The subjects with impingement showed some significant differences to indicate possible differences in motor control strategies. Rehabilitation measures should consider appropriate training measures to improve movement patterns and muscle control. PMID:23137918

  9. Use and disuse and the control of acetylcholinesterase activity in fast and slow twitch muscle of rat

    NASA Technical Reports Server (NTRS)

    Dettbarn, W. D.; Groswald, D.; Gupta, R. C.; Misulis, K. E.

    1985-01-01

    The role of acetylcholinesterase (AChE) in neuromuscular transmission is relatively well established, little is known, however, of the mechanisms that regulate its synthesis and control its specific distribution in fast and slow muscle. Innervation plays an important role in the regulation of AChE and elimination of the influence of the nerve by surgical denervation results in a loss of AChE. The influences of the nerve and how they are mediated was investigated. It is suggested that muscle usage and other factors such as materials carried by axonal transport may participate in the regulation of this enzyme. The mechanisms that regulate AChE and its molecular forms in two functionally different forms are studied.

  10. Pituitary adenylate cyclase-activating polypeptide (PACAP) inhibits the slow afterhyperpolarizing current sIAHP in CA1 pyramidal neurons by activating multiple signaling pathways

    PubMed Central

    Taylor, Ruth DT; Madsen, Marita Grønning; Krause, Michael; Sampedro-Castañeda, Marisol; Stocker, Martin; Pedarzani, Paola

    2014-01-01

    The slow afterhyperpolarizing current (sIAHP) is a calcium-dependent potassium current that underlies the late phase of spike frequency adaptation in hippocampal and neocortical neurons. sIAHP is a well-known target of modulation by several neurotransmitters acting via the cyclic AMP (cAMP) and protein kinase A (PKA)-dependent pathway. The neuropeptide pituitary adenylate cyclase activating peptide (PACAP) and its receptors are present in the hippocampal formation. In this study we have investigated the effect of PACAP on the sIAHP and the signal transduction pathway used to modulate intrinsic excitability of hippocampal pyramidal neurons. We show that PACAP inhibits the sIAHP, resulting in a decrease of spike frequency adaptation, in rat CA1 pyramidal cells. The suppression of sIAHP by PACAP is mediated by PAC1 and VPAC1 receptors. Inhibition of PKA reduced the effect of PACAP on sIAHP, suggesting that PACAP exerts part of its inhibitory effect on sIAHP by increasing cAMP and activating PKA. The suppression of sIAHP by PACAP was also strongly hindered by the inhibition of p38 MAP kinase (p38 MAPK). Concomitant inhibition of PKA and p38 MAPK indicates that these two kinases act in a sequential manner in the same pathway leading to the suppression of sIAHP. Conversely, protein kinase C is not part of the signal transduction pathway used by PACAP to inhibit sIAHP in CA1 neurons. Our results show that PACAP enhances the excitability of CA1 pyramidal neurons by inhibiting the sIAHP through the activation of multiple signaling pathways, most prominently cAMP/PKA and p38 MAPK. Our findings disclose a novel modulatory action of p38 MAPK on intrinsic excitability and the sIAHP, underscoring the role of this current as a neuromodulatory hub regulated by multiple protein kinases in cortical neurons. © 2013 The Authors. Hippocampus Published by Wiley Periodicals, Inc. PMID:23996525

  11. Human Enhancers Are Fragile and Prone to Deactivating Mutations

    PubMed Central

    Li, Shan; Ovcharenko, Ivan

    2015-01-01

    To explore the underlying mechanisms whereby noncoding variants affect transcriptional regulation, we identified nucleotides capable of disrupting binding of transcription factors and deactivating enhancers if mutated (dubbed candidate killer mutations or KMs) in HepG2 enhancers. On average, approximately 11% of enhancer positions are prone to KMs. A comparable number of enhancer positions are capable of creating de novo binding sites via a single-nucleotide mutation (dubbed candidate restoration mutations or RSs). Both KM and RS positions are evolutionarily conserved and tend to form clusters within an enhancer. We observed that KMs have the most deleterious effect on enhancer activity. In contrast, RSs have a smaller effect in increasing enhancer activity. Additionally, the KMs are strongly associated with liver-related Genome Wide Association Study traits compared with other HepG2 enhancer regions. By applying our framework to lymphoblastoid cell lines, we found that KMs underlie differential binding of transcription factors and differential local chromatin accessibility. The gene expression quantitative trait loci associated with the tissue-specific genes are strongly enriched in KM positions. In summary, we conclude that the KMs have the greatest impact on the level of gene expression and are likely to be the causal variants of tissue-specific gene expression and disease predisposition. PMID:25976354

  12. The renaissance of iron-based Fischer-Tropsch synthesis: on the multifaceted catalyst deactivation behaviour.

    PubMed

    de Smit, Emiel; Weckhuysen, Bert M

    2008-12-01

    Iron-based Fischer-Tropsch catalysts, which are applied in the conversion of CO and H2 into longer hydrocarbon chains, are historically amongst the most intensively studied systems in heterogeneous catalysis. Despite this, fundamental understanding of the complex and dynamic chemistry of the iron-carbon-oxygen system and its implications for the rapid deactivation of the iron-based catalysts is still a developing field. Fischer-Tropsch catalysis is characterized by its multidisciplinary nature and therefore deals with a wide variety of fundamental chemical and physical problems. This critical review will summarize the current state of knowledge of the underlying mechanisms for the activation and eventual deactivation of iron-based Fischer-Tropsch catalysts and suggest systematic approaches for relating chemical identity to performance in next generation iron-based catalyst systems (210 references). PMID:19020686

  13. Final deactivation report on the radioisotope production Lab-C, Building 3030, at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1997-08-01

    The purpose of this report is to document the condition of Bldg. 3030 completion of deactivation activities as outlined by the Department of Energy (DOE) Office of Nuclear Materials and Facility Stabilization Program (EM-60) guidance documentation. This report outlines the activities conducted to place the facility in a safe and environmentally sound condition for transfer to DOE`s Office of Environmental Restoration Program (EM-40). This report provides profile of Bldg. 3030 before and after deactivation activities. Turnover items, such as the Postdeactivation Surveillance & Maintenance Plan, remaining hazardous materials, radiological controls, Safeguards and Security, QA, facility operations, and supporting documentation provided in the Office of Nuclear Materials and Facility Stabilization Program (EM-60) Turnover package are discussed. Building 3030 will require access to facilitate required S&M activities to maintain the building safety envelope. Building 3030 was stabilized during deactivation so that when transferred to the EM-40 program, only a minimal S&M effort would be required to maintain the building`s safety envelope. Other than the minimal S&M activities, the building will be unoccupied and the exterior doors locked to prevent unauthorized access. The building will be entered only for required S&M. All materials have been removed from the building and the hot cell, and all utility systems, piping, and alarms have been deactivated.

  14. Mathematics anxiety reduces default mode network deactivation in response to numerical tasks

    PubMed Central

    Pletzer, Belinda; Kronbichler, Martin; Nuerk, Hans-Christoph; Kerschbaum, Hubert H.

    2015-01-01

    Mathematics anxiety is negatively related to mathematics performance, thereby threatening the professional success. Preoccupation with the emotional content of the stimuli may consume working memory resources, which may be reflected in decreased deactivation of areas associated with the default mode network (DMN) activated during self-referential and emotional processing. The common problem is that math anxiety is usually associated with poor math performance, so that any group differences are difficult to interpret. Here we compared the BOLD-response of 18 participants with high (HMAs) and 18 participants with low mathematics anxiety (LMAs) matched for their mathematical performance to two numerical tasks (number comparison, number bisection). During both tasks, we found stronger deactivation within the DMN in LMAs compared to HMAs, while BOLD-response in task-related activation areas did not differ between HMAs and LMAs. The difference in DMN deactivation between the HMA and LMA group was more pronounced in stimuli with additional requirement on inhibitory functions, but did not differ between number magnitude processing and arithmetic fact retrieval. PMID:25954179

  15. A biphasic daily pattern of slow wave activity during a two-day 90-minute sleep wake schedule.

    PubMed

    Duncan, W C; Barbato, G; Fagioli, I; Garcia-Borreguero, D; Wehr, T A

    2009-12-01

    Twenty-four hour sleep patterns were measured in six healthy male volunteers during a 90-minute short sleep-wake (SW 30:60) cycle protocol for 48 hours. Sleep pressure estimates (amount of Slow Wave Sleep [SWS], SWA, and Rate of Synchronization [RoS: the rate of SWA build-up at the beginning of the NREM period]) were compared with the 24-hour patterns of body temperature (Tb24) and sleep propensity. A moderate sleep debt was incurred over the 48 hour study as indicated by decreased levels of 24 hour sleep. On day 1, ultradian patterns of REM and SWS sleep were prominent; on day 2, more prominent were circadian patterns of REM sleep, SWS, Sleep Latency, TST and Tb24. Also on Day 2, biphasic patterns of SWA and RoS were expressed, with peaks occurring during the falling and rising limbs of Tb24. The biphasic peaks in SWA and RoS may be associated with phase-specific interactions of the circadian pacemaker with the sleep homeostat during conditions of moderate sleep pressure. Further research is needed to replicate the finding and to identify biological factors that may underlie the twelve hour pattern in SWA. PMID:20162861

  16. FOXO/DAF-16 Activation Slows Down Turnover of the Majority of Proteins in C. elegans.

    PubMed

    Dhondt, Ineke; Petyuk, Vladislav A; Cai, Huaihan; Vandemeulebroucke, Lieselot; Vierstraete, Andy; Smith, Richard D; Depuydt, Geert; Braeckman, Bart P

    2016-09-13

    Most aging hypotheses assume the accumulation of damage, resulting in gradual physiological decline and, ultimately, death. Avoiding protein damage accumulation by enhanced turnover should slow down the aging process and extend the lifespan. However, lowering translational efficiency extends rather than shortens the lifespan in C. elegans. We studied turnover of individual proteins in the long-lived daf-2 mutant by combining SILeNCe (stable isotope labeling by nitrogen in Caenorhabditiselegans) and mass spectrometry. Intriguingly, the majority of proteins displayed prolonged half-lives in daf-2, whereas others remained unchanged, signifying that longevity is not supported by high protein turnover. This slowdown was most prominent for translation-related and mitochondrial proteins. In contrast, the high turnover of lysosomal hydrolases and very low turnover of cytoskeletal proteins remained largely unchanged. The slowdown of protein dynamics and decreased abundance of the translational machinery may point to the importance of anabolic attenuation in lifespan extension, as suggested by the hyperfunction theory. PMID:27626670

  17. Microtubule organisation, pronuclear formation and embryonic development of mouse oocytes after intracytoplasmic sperm injection or parthenogenetic activation and then slow-freezing with 1, 2-propanediol.

    PubMed

    Li, Dun-Gao; Zhu, Yan; Xing, Feng-Ying; Li, Shan-Gang; Chen, Xue-Jin; Jiang, Man-Xi

    2013-01-01

    The goal of this study was to investigate the effect of cryopreservation on oocytes at different times after intracytoplasmic sperm injection (ICSI) and parthenogenetic activation. The study was performed in mouse oocytes fertilised by ICSI, or in artificially-activated oocytes, which were cryopreserved immediately, one hour or five hours later through slow-freezing. After thawing, the rates of survival, fertilisation-activation, embryonic development of oocytes-zygotes and changes in the cytoskeleton and ploidy were observed. Our results reveal a significant difference in survival rates of 0-, 1- and 5-h cryopreserved oocytes following ICSI and artificial activation. Moreover, significant differences in two pronuclei (PN) development existed between the 0-, 1- and 5-h groups of oocytes frozen after ICSI, while the rates of two-PN development of activated oocytes were different between the 1-h and 5-h groups. Despite these initial differences, there was no difference in the rate of blastocyst formation from two-PN zygotes following ICSI or artificial activation. However, compared with ICSI or artificially-activated oocytes cryopreserved at 5h, many oocytes from the 0- and 1-h cryopreservation groups developed to zygotes with abnormal ploidy; this suggests that too little time before cryopreservation can result in some activated oocytes forming abnormal ploidy. However, our results also demonstrate that spermatozoa can maintain normal fertilisation capacity in frozen ICSI oocytes and the procedure of freeze-thawing did not affect the later development of zygotes. PMID:23594385

  18. Slow earthquakes triggered by typhoons.

    PubMed

    Liu, ChiChing; Linde, Alan T; Sacks, I Selwyn

    2009-06-11

    The first reports on a slow earthquake were for an event in the Izu peninsula, Japan, on an intraplate, seismically active fault. Since then, many slow earthquakes have been detected. It has been suggested that the slow events may trigger ordinary earthquakes (in a context supported by numerical modelling), but their broader significance in terms of earthquake occurrence remains unclear. Triggering of earthquakes has received much attention: strain diffusion from large regional earthquakes has been shown to influence large earthquake activity, and earthquakes may be triggered during the passage of teleseismic waves, a phenomenon now recognized as being common. Here we show that, in eastern Taiwan, slow earthquakes can be triggered by typhoons. We model the largest of these earthquakes as repeated episodes of slow slip on a reverse fault just under land and dipping to the west; the characteristics of all events are sufficiently similar that they can be modelled with minor variations of the model parameters. Lower pressure results in a very small unclamping of the fault that must be close to the failure condition for the typhoon to act as a trigger. This area experiences very high compressional deformation but has a paucity of large earthquakes; repeating slow events may be segmenting the stressed area and thus inhibiting large earthquakes, which require a long, continuous seismic rupture. PMID:19516339

  19. Detecting young, slow-slipping active faults by geologic and multidisciplinary high-resolution geophysical investigations: A case study from the Apennine seismic belt, Italy

    NASA Astrophysics Data System (ADS)

    Improta, L.; Ferranti, L.; de Martini, P. M.; Piscitelli, S.; Bruno, P. P.; Burrato, P.; Civico, R.; Giocoli, A.; Iorio, M.; D'Addezio, G.; Maschio, L.

    2010-11-01

    The Southern Apennines range of Italy presents significant challenges for active fault detection due to the complex structural setting inherited from previous contractional tectonics, coupled to very recent (Middle Pleistocene) onset and slow slip rates of active normal faults. As shown by the Irpinia Fault, source of a M6.9 earthquake in 1980, major faults might have small cumulative deformation and subtle geomorphic expression. A multidisciplinary study including morphological-tectonic, paleoseismological, and geophysical investigations has been carried out across the extensional Monte Aquila Fault, a poorly known structure that, similarly to the Irpinia Fault, runs across a ridge and is weakly expressed at the surface by small scarps/warps. The joint application of shallow reflection profiling, seismic and electrical resistivity tomography, and physical logging of cored sediments has proved crucial for proper fault detection because performance of each technique was markedly different and very dependent on local geologic conditions. Geophysical data clearly (1) image a fault zone beneath suspected warps, (2) constrain the cumulative vertical slip to only 25-30 m, (3) delineate colluvial packages suggesting coseismic surface faulting episodes. Paleoseismological investigations document at least three deformation events during the very Late Pleistocene (<20 ka) and Holocene. The clue to surface-rupturing episodes, together with the fault dimension inferred by geological mapping and microseismicity distribution, suggest a seismogenic potential of M6.3. Our study provides the second documentation of a major active fault in southern Italy that, as the Irpinia Fault, does not bound a large intermontane basin, but it is nested within the mountain range, weakly modifying the landscape. This demonstrates that standard geomorphological approaches are insufficient to define a proper framework of active faults in this region. More in general, our applications have wide

  20. A selective, slow binding inhibitor of factor VIIa binds to a nonstandard active site conformation and attenuates thrombus formation in vivo.

    PubMed

    Olivero, Alan G; Eigenbrot, Charles; Goldsmith, Richard; Robarge, Kirk; Artis, Dean R; Flygare, John; Rawson, Thomas; Sutherlin, Daniel P; Kadkhodayan, Saloumeh; Beresini, Maureen; Elliott, Linda O; DeGuzman, Geralyn G; Banner, David W; Ultsch, Mark; Marzec, Ulla; Hanson, Stephen R; Refino, Canio; Bunting, Stuart; Kirchhofer, Daniel

    2005-03-11

    The serine protease factor VIIa (FVIIa) in complex with its cellular cofactor tissue factor (TF) initiates the blood coagulation reactions. TF.FVIIa is also implicated in thrombosis-related disorders and constitutes an appealing therapeutic target for treatment of cardiovascular diseases. To this end, we generated the FVIIa active site inhibitor G17905, which displayed great potency toward TF.FVIIa (Ki = 0.35 +/- 0.11 nM). G17905 did not appreciably inhibit 12 of the 14 examined trypsin-like serine proteases, consistent with its TF.FVIIa-specific activity in clotting assays. The crystal structure of the FVIIa.G17905 complex provides insight into the molecular basis of the high selectivity. It shows that, compared with other serine proteases, FVIIa is uniquely equipped to accommodate conformational disturbances in the Gln217-Gly219 region caused by the ortho-hydroxy group of the inhibitor's aminobenzamidine moiety located in the S1 recognition pocket. Moreover, the structure revealed a novel, nonstandard conformation of FVIIa active site in the region of the oxyanion hole, a "flipped" Lys192-Gly193 peptide bond. Macromolecular substrate activation assays demonstrated that G17905 is a noncompetitive, slow-binding inhibitor. Nevertheless, G17905 effectively inhibited thrombus formation in a baboon arterio-venous shunt model, reducing platelet and fibrin deposition by approximately 70% at 0.4 mg/kg + 0.1 mg/kg/min infusion. Therefore, the in vitro potency of G17905, characterized by slow binding kinetics, correlated with efficacious antithrombotic activity in vivo. PMID:15632123

  1. Transcranial slow oscillation stimulation during NREM sleep enhances acquisition of the radial maze task and modulates cortical network activity in rats

    PubMed Central

    Binder, Sonja; Rawohl, Julia; Born, Jan; Marshall, Lisa

    2014-01-01

    Slow wave sleep, hallmarked by the occurrence of slow oscillations (SO), plays an important role for the consolidation of hippocampus-dependent memories. Transcranial stimulation by weak electric currents oscillating at the endogenous SO frequency (SO-tDCS) during post-learning sleep was previously shown by us to boost SO activity and improve the consolidation of hippocampus-dependent memory in human subjects. Here, we aimed at replicating and extending these results to a rodent model. Rats were trained for 12 days at the beginning of their inactive phase in the reference memory version of the radial arm maze. In a between subjects design, animals received SO-tDCS over prefrontal cortex (PFC) or sham stimulation within a time frame of 1 h during subsequent non-rapid eye movement (NREM) sleep. Applied over multiple daily sessions SO-tDCS impacted cortical network activity as measured by EEG and behavior: at the EEG level, SO-tDCS enhanced post-stimulation upper delta (2–4 Hz) activity whereby the first stimulations of each day were preferentially affected. Furthermore, commencing on day 8, SO-tDCS acutely decreased theta activity indicating long-term effects on cortical networks. Behaviorally, working memory for baited maze arms was enhanced up to day 4, indicating enhanced consolidation of task-inherent rules, while reference memory errors did not differ between groups. Taken together, we could show here for the first time an effect of SO-tDCS during NREM sleep on cognitive functions and on cortical activity in a rodent model. PMID:24409131

  2. Dopaminergic Suppression of Brain Deactivation Responses during Sequence Learning

    PubMed Central

    Argyelan, Miklos; Carbon, Maren; Ghilardi, Maria-Felice; Feigin, Andrew; Mattis, Paul; Tang, Chengke; Dhawan, Vijay; Eidelberg, David

    2015-01-01

    Cognitive processing is associated with deactivation of the default mode network. The presence of dopaminoceptive neurons in proximity to the medial prefrontal node of this network suggests that this neurotransmitter may modulate deactivation in this region. We therefore used positron emission tomography to measure cerebral blood flow in 15 Parkinson's disease (PD) patients while they performed a motor sequence learning task and a simple movement task. Scanning was conducted before and during intravenous levodopa infusion; the pace and extent of movement was controlled across tasks and treatment conditions. In normal and unmedicated PD patients, learning-related deactivation was present in the ventromedial prefrontal cortex (p < 0.001). This response was absent in the treated condition. Treatment-mediated changes in deactivation correlated with baseline performance (p < 0.002) and with the val158met catechol-O-methyltransferase genotype. Our findings suggest that dopamine can influence prefrontal deactivation during learning, and that these changes are linked to baseline performance and genotype. PMID:18923044

  3. Diagnosis of industrial catalyst deactivation by surface characterization techniques

    SciTech Connect

    Menon, P.G. . Lab. voor Petrochemische Techniek Chalmers Univ. of Technology, Goeteborg . Dept. of Engineering Chemistry)

    1994-06-01

    The exact nature of the catalyst surface and the various ways of catalyst deactivation are subjects of great scientific interest and enormous economic importance. A brief review like the present one has to be very selective, giving only the underlying principles and representative examples. The focus of this review is on industrial catalysts, in particular, on the most commonly used supported metal and mixed-oxide type catalysts. Here again, only typical examples are chosen and cited to illustrate the specific types of problems involved in catalyst deactivation and how these problems wee diagnosed by a judicious application of the experimental techniques available today. Of the types of catalyst deactivation caused by coking, poisoning, and solid-state transformations, the emphasis in this review is on the last type. Changes in the chemical composition of the catalyst surface, restructuring or reconstruction of the surface, phase transformations, gradual enrichment/depletion of a particular catalyst component on/from the catalyst surface, these are the topics of prominence in this review. Even here, emphasis is on normally unexpected or unsuspected types of deactivation and the catalyst metamorphosis produced by the catalytic reaction itself, as distinct from the purely thermal effects at the reaction temperature. This review is aimed to provide some essential background information and possibly to serve as a reference guide for trouble-shooting when a catalyst is deactivated for rather mysterious reasons. 147 refs.

  4. Molecular evolutionary analysis of vertebrate transducins: a role for amino acid variation in photoreceptor deactivation.

    PubMed

    Lin, Yi G; Weadick, Cameron J; Santini, Francesco; Chang, Belinda S W

    2013-12-01

    Transducin is a heterotrimeric G protein that plays a critical role in phototransduction in the rod and cone photoreceptor cells of the vertebrate retina. Rods, highly sensitive cells that recover from photoactivation slowly, underlie dim-light vision, whereas cones are less sensitive, recover more quickly, and underlie bright-light vision. Transducin deactivation is a critical step in photoreceptor recovery and may underlie the functional distinction between rods and cones. Rods and cones possess distinct transducin α subunits, yet they share a common deactivation mechanism, the GTPase activating protein (GAP) complex. Here, we used codon models to examine patterns of sequence evolution in rod (GNAT1) and cone (GNAT2) α subunits. Our results indicate that purifying selection is the dominant force shaping GNAT1 and GNAT2 evolution, but that GNAT2 has additionally been subject to positive selection operating at multiple phylogenetic scales; phylogeny-wide analysis identified several sites in the GNAT2 helical domain as having substantially elevated dN/dS estimates, and branch-site analysis identified several nearby sites as targets of strong positive selection during early vertebrate history. Examination of aligned GNAT and GAP complex crystal structures revealed steric clashes between several positively selected sites and the deactivating GAP complex. This suggests that GNAT2 sequence variation could play an important role in adaptive evolution of the vertebrate visual system via effects on photoreceptor deactivation kinetics and provides an alternative perspective to previous work that focused instead on the effect of GAP complex concentration. Our findings thus further the understanding of the molecular biology, physiology, and evolution of vertebrate visual systems. PMID:24145862

  5. Immobilized glucose oxidase--catalase and their deactivation in a differential-bed loop reactor.

    PubMed

    Prenosil, J E

    1979-01-01

    Glucose oxidase containing catalase was immobilized with a copolymer of phenylenediamine and glutaraldehyde on pumice and titania carrier to study the enzymatic oxidation of glucose in a differential-bed loop reactor. The reaction rate was found to be first order with respect to the concentration of limiting oxygen substrate, suggesting a strong external mass-transfer resistance for all the flow rates used. The partial pressure of oxygen was varied from 21.3 up to 202.6 kPa. The use of a differential-bed loop reactor for the determination of the active enzyme concentration in the catalyst with negligible internal pore diffusion resistance is shown. Catalyst deactivation was studied, especially with respect to the presence of catalase. It is believed that the hydrogen peroxide formed in the oxidation reaction deactivates catalase first; if an excess of catalase is present, the deactivation of glucose oxidase remains small. The mathematical model subsequently developed adequately describes the experimental results. PMID:427262

  6. Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics

    PubMed Central

    Cideciyan, Artur V.; Aleman, Tomas S.; Boye, Sanford L.; Schwartz, Sharon B.; Kaushal, Shalesh; Roman, Alejandro J.; Pang, Ji-jing; Sumaroka, Alexander; Windsor, Elizabeth A. M.; Wilson, James M.; Flotte, Terence R.; Fishman, Gerald A.; Heon, Elise; Stone, Edwin M.; Byrne, Barry J.; Jacobson, Samuel G.; Hauswirth, William W.

    2008-01-01

    The RPE65 gene encodes the isomerase of the retinoid cycle, the enzymatic pathway that underlies mammalian vision. Mutations in RPE65 disrupt the retinoid cycle and cause a congenital human blindness known as Leber congenital amaurosis (LCA). We used adeno-associated virus-2-based RPE65 gene replacement therapy to treat three young adults with RPE65-LCA and measured their vision before and up to 90 days after the intervention. All three patients showed a statistically significant increase in visual sensitivity at 30 days after treatment localized to retinal areas that had received the vector. There were no changes in the effect between 30 and 90 days. Both cone- and rod-photoreceptor-based vision could be demonstrated in treated areas. For cones, there were increases of up to 1.7 log units (i.e., 50 fold); and for rods, there were gains of up to 4.8 log units (i.e., 63,000 fold). To assess what fraction of full vision potential was restored by gene therapy, we related the degree of light sensitivity to the level of remaining photoreceptors within the treatment area. We found that the intervention could overcome nearly all of the loss of light sensitivity resulting from the biochemical blockade. However, this reconstituted retinoid cycle was not completely normal. Resensitization kinetics of the newly treated rods were remarkably slow and required 8 h or more for the attainment of full sensitivity, compared with <1 h in normal eyes. Cone-sensitivity recovery time was rapid. These results demonstrate dramatic, albeit imperfect, recovery of rod- and cone-photoreceptor-based vision after RPE65 gene therapy. PMID:18809924

  7. Jets, Coronal “Puffs,” and a Slow Coronal Mass Ejection Caused by an Opposite-polarity Region within an Active Region Footpoint

    NASA Astrophysics Data System (ADS)

    Alzate, N.; Morgan, H.

    2016-06-01

    During a period of three days beginning 2013 January 17, twelve recurrent reconnection events occur within a small region of opposing flux embedded within one footpoint of an active region, accompanied by flares and jets observed in EUV and fast and faint structureless “puffs” observed by coronagraphs. During the same period a slow structured CME gradually erupts, with one end anchored close to, or within, the jetting region. Four of the jet events occur in pairs—a narrow, primary jet followed within a few tens of minutes by a wider, more massive, jet. All the jets are slow, with an apparent speed of ∼100 km s‑1. The speed of the wide puffs in the coronagraph data is ∼300 km s‑1, and the timing of their appearance rules out a direct association with the EUV jetting material. The jet material propagates along large-scale closed-field loops and does not escape to the extended corona. The rapid reconfiguration of the closed loops following reconnection causes an outwardly propagating disturbance, or wave front, which manifests as puffs in coronagraph data. Furthermore, the newly expanded closed flux tube forms a pressure imbalance, which can result in a secondary jet. The reconnection events, through recurrent field reconfiguration, also leads to the gradual eruption of the structured flux tube appearing as the slow CME. Faint propagating coronal disturbances resulting from flares/jets may be common, but are usually obscured by associated ejections. Occasionally, the associated material ejections are absent, and coronal puffs may be clearly observed.

  8. Slow starch digestion redefined at limit dextrin level by mucosal maltase-glucoamylase and sucrase-isomaltase activities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mucosal maltase-glucoamylase (MGAM) and sucrase-isomaltase (SI) digest free glucose from food starches. Amylase (AMY) amplifies these mucosal activities by production of soluble limit dextrins (LDx). This network of enzyme activities determines rate of LDx entry into either the glycemic or the ferme...

  9. Final deactivation project report on the High Radiation Level Analytical Facility, Building 3019B at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1997-09-01

    The purpose of this report is to document the condition of the High Radiation Level Analytical Facility (Building 3019B) at Oak Ridge National Laboratory (ORNL) after completion of deactivation activities. This report identifies the activities conducted to place the facility in a safe and environmentally sound condition prior to transfer to the Environmental Restoration EM-40 Program. This document provides a history and description of the facility prior to the commencement of deactivation activities and documents the condition of the building after completion of all deactivation activities. Turnover items, such as the Post-Deactivation Surveillance and Maintenance (S&M) Plan, remaining hazardous materials inventory, radiological controls, safeguards and security, quality assurance, facility operations, and supporting documentation provided in the Nuclear Material and Facility Stabilization (EM-60) Turnover package are discussed. Building 3019B will require access to perform required S&M activities to maintain the building safety envelope. Building 3019B was stabilized during deactivation so that when transferred to the EM-40 Program, only a minimal S&M effort would be required to maintain the building safety envelope. Other than the minimal S&M activities the building will be unoccupied and the exterior doors locked to prevent unauthorized access. The building will be entered only to perform the required S&M until decommissioning activities begin.

  10. Retinol Binding Protein-Albumin Domain III Fusion Protein Deactivates Hepatic Stellate Cells

    PubMed Central

    Park, Sangeun; Choi, Soyoung; Lee, Min-Goo; Lim, Chaeseung; Oh, Junseo

    2012-01-01

    Liver fibrosis is characterized by accumulation of extracellular matrix, and activated hepatic stellate cells (HSCs) are the primary source of the fibrotic neomatrix and considered as therapeutic target cells. We previously showed that albumin in pancreatic stellate cells (PSCs), the key cell type for pancreatic fibrogenesis, is directly involved in the formation of vitamin A-containing lipid droplets, inhibiting PSC activation. In this study, we evaluated the anti-fibrotic activity of both albumin and retinol binding protein-albumin domain III fusion protein (R-III), designed for stellate cell-targeted delivery of albumin III, in rat primary HSCs and investigated the underlying mechanism. Forced expression of albumin or R-III in HSCs after passage 2 (activated HSCs) induced lipid droplet formation and deactivated HSCs, whereas point mutations in high-affinity fatty acid binding sites of albumin domain III abolished their activities. Exogenous R-III, but not albumin, was successfully internalized into and deactivated HSC-P2. When HSCs at day 3 after plating (pre-activated HSCs) were cultured in the presence of purified R-III, spontaneous activation of HSCs was inhibited even after passage 2, suggestive of a potential for preventive effect. Furthermore, treatment of HSCs-P2 with R-III led to a significant reduction in both cytoplasmic levels of all-trans retinoic acid and the subsequent retinoic acid signaling. Therefore, our data suggest that albumin deactivates HSCs with reduced retinoic acid levels and that R-III may have therapeutic and preventive potentials on liver fibrosis. PMID:23161170

  11. Movement - uncontrolled or slow

    MedlinePlus

    ... leg movements - uncontrollable; Slow involuntary movements of large muscle groups; Athetoid movements ... The slow twisting movements of muscles (athetosis) or jerky muscle ... including: Cerebral palsy Drug side effects Encephalitis ...

  12. PUREX/UO{sub 3} facilities deactivation lessons learned history

    SciTech Connect

    Hamrick, D.G.; Gerber, M.S.

    1995-01-01

    The Plutonium-Uranium Extraction (PUREX) Facility operated from 1956-1972, from 1983-1988, and briefly during 1989-1990 to produce for national defense at the Hanford Site in Washington State. The Uranium Trioxide (UO{sub 3}) Facility operated at the Hanford Site from 1952-1972, 1984-1988, and briefly in 1993. Both plants were ordered to permanent shutdown by the U.S. Department of Energy (DOE) in December 1992, thus initiating their deactivation phase. Deactivation is that portion of a facility`s life cycle that occurs between operations and final decontamination and decommissioning (D&D). This document details the history of events, and the lessons learned, from the time of the PUREX Stabilization Campaign in 1989-1990, through the end of the first full fiscal year (FY) of the deactivation project (September 30, 1994).

  13. Robot Work Platform for Large Hot Cell Deactivation

    SciTech Connect

    BITTEN, E.J.

    2000-05-01

    The 324 Building, located at the Hanford Site near Richland, Washington, is being deactivated to meet state and federal cleanup commitments. The facility is currently in its third year of a nine-year project to complete deactivation and closure for long-term surveillance and maintenance. The 324 building contains large hot cells that were used for high-radiation, high-contamination chemical process development and demonstrations. A major obstacle for the 324 deactivation project is the inability to effectively perform deactivation tasks within highly radioactive, contaminated environments. Current strategies use inefficient, resource intensive technologies that significantly impact the cost and schedule for deactivation. To meet mandated cleanup commitments, there is a need to deploy rapid, more efficient remote/robot technologies to minimize worker exposure, accelerate work tasks, and eliminate the need for multiple specialized tool design and procurement efforts. This paper describes the functions and performance requirements for a crane-deployed remote/robot Work Platform possessing full access capabilities. The remote/robot Work Platform will deploy commercially available off-the-shelf tools and end effectors to support Project cleanup goals and reduce overall project risk and cost. The intent of this system is to maximize the use of off-the-shelf technologies that minimize additional new, unproven, or novel designs. This paper further describes procurement strategy, the selection process, the selected technology, and the current status of the procurement and lessons learned. Funding, in part, has been provided by the US Department of Energy, Office of Science and Technology, Deactivation and Decommissioning Focus Area.

  14. Effects of allocryptopine on outward potassium current and slow delayed rectifier potassium current in rabbit myocardium

    PubMed Central

    Fu, Yi-Cheng; Zhang, Yu; Tian, Liu-Yang; Li, Nan; Chen, Xi; Cai, Zhong-Qi; Zhu, Chao; Li, Yang

    2016-01-01

    Objective Allocryptopine (ALL) is an effective alkaloid of Corydalis decumbens (Thunb.) Pers. Papaveraceae and has proved to be anti-arrhythmic. The purpose of our study is to investigate the effects of ALL on transmural repolarizing ionic ingredients of outward potassium current (Ito) and slow delayed rectifier potassium current (IKs). Methods The monophasic action potential (MAP) technique was used to record the MAP duration of the epicardium (Epi), myocardium (M) and endocardium (Endo) of the rabbit heart and the whole cell patch clamp was used to record Ito and IKs in cardiomyocytes of Epi, M and Endo layers that were isolated from rabbit ventricles. Results The effects of ALL on MAP of Epi, M and Endo layers were disequilibrium. ALL could effectively reduce the transmural dispersion of repolarization (TDR) in rabbit transmural ventricular wall. ALL decreased the current densities of Ito and IKs in a voltage and concentration dependent way and narrowed the repolarizing differences among three layers. The analysis of gating kinetics showed ALL accelerated the channel activation of Ito in M layers and partly inhibit the channel openings of Ito in Epi, M and Endo cells. On the other hand, ALL mainly slowed channel deactivation of IKs channel in Epi and Endo layers without affecting its activation. Conclusions Our study gives partially explanation about the mechanisms of transmural inhibition of Ito and IKs channels by ALL in rabbit myocardium. These findings provide novel perspective regarding the anti-arrhythmogenesis application of ALL in clinical settings. PMID:27403141

  15. Systems and methods for deactivating a matrix converter

    SciTech Connect

    Ransom, Ray M.

    2013-04-02

    Systems and methods are provided for deactivating a matrix conversion module. An electrical system comprises an alternating current (AC) interface, a matrix conversion module coupled to the AC interface, an inductive element coupled between the AC interface and the matrix conversion module, and a control module. The control module is coupled to the matrix conversion module, and in response to a shutdown condition, the control module is configured to operate the matrix conversion module to deactivate the first conversion module when a magnitude of a current through the inductive element is less than a threshold value.

  16. A slow-slipping active fold and thrust system at the SE corner of the Atacama basin, northern Chile

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Shyu, J. H.; González, G.

    2009-12-01

    The western South American offshore is one of the major active convergent plate boundaries in the world, where the Nazca plate is subducting northeastward beneath the South American plate at a rate of about 84 mm/yr. Despite of this rapid plate convergence, the forearc region of western Andes does not seem to undergo large deformation at present. In order to understand the characteristics and mechanisms of active forearc deformation related to the plate convergence, we investigated tectono-geomorphic features in the area of Tilocalar, near the SE margin of the Atacama Basin in northern Chile, where active structures have been previously identified. To map topographic features produced by active structures, we used a combination of several remote-sensing data sets, including digital elevation models (DEM) made from Shuttle Radar Topographic Mission (SRTM), as well as higher resolution ASTER and QuickBird satellite images. Detailed geomorphic surveys using real time kinematic (RTK) GPS are carried out in the field to obtain high-resolution topographic profiles across these features. We also performed 40Ar/39Ar dating of deformed volcanic rocks in order to determine the long-term slip rates of the active structures. The hyper-aridity of the Atacama Basin results in extremely low erosion and sedimentation rates in the area. As a result, the present relief of land surface is mostly produced by neotectonic activity, and can be used as deformation marker. In the Tilocalar area, several N-S trending ridges are present. These ridges, generally several tens of meters high, are likely formed by asymmetric anticlines or monoclines with steep forelimbs facing east, and these folds are likely fault-propagation folds produced by underlying thrust faults. We suggest that these faults merge at depth to become a major active thrust system. From 40Ar/39Ar plateau ages, we found that the surface ignimbrites mostly deposited in latest Pliocene (2.3~4.3 Ma). If the structures have been

  17. Active upper plate thrust faulting in regions of low plate interface coupling, repeated slow slip events, and coastal uplift: Example from the Hikurangi Margin, New Zealand

    NASA Astrophysics Data System (ADS)

    Mountjoy, Joshu J.; Barnes, Philip M.

    2011-01-01

    Contractional fore-arc faulting and deformation is a characteristic feature of many subduction systems. Definition of the three-dimensional geometry and displacement rates of active, upper plate, out-of-sequence thrust faults along ˜250 km of the upper Hikurangi Margin enables us to examine the relationship between fore-arc deformation and the subduction interface in light of interseismic coupling estimates and distribution of slow slip events, both modeled from GPS measurements. These mid-fore-arc structures include the seaward vergent, outer shelf Lachlan and Ariel faults, with vertical separation rates up to 5 mm/yr, and several other major inner shelf faults with rates that are up to 3.8 mm/yr and comparable with Holocene coastal uplift rates. Seismic reflection imaging and geometric projection of these faults at depth indicate that they splay from the region of the plate interface where geodetic inversions for interseismic coupling and slow slip events suggest that the plate boundary undergoes aseismic slip. This observation may indicate either (1) that frictional properties and interseismic coupling on the plate interface are independent and unrelated to the active splay fault deformation in the inner-middle fore arc or (2) that the active splay faulting reflects long-term mechanical coupling related to higher shear stress, or the relative yield strength of the plate interface to the overriding plate, and that the current pattern of interseismic coupling may not be persistent over geological time scales of 20 ka. We compare structure and processes on the northern Hikurangi and Costa Rican margins and find similarities and significant differences astride these subduction systems.

  18. Neocortical inhibitory activities and long-range afferents contribute to the synchronous onset of silent states of the neocortical slow oscillation.

    PubMed

    Lemieux, Maxime; Chauvette, Sylvain; Timofeev, Igor

    2015-02-01

    During slow-wave sleep, neurons of the thalamocortical network are engaged in a slow oscillation (<1 Hz), which consists of an alternation between the active and the silent states. Several studies have provided insights on the transition from the silent, which are essentially periods of disfacilitation, to the active states. However, the conditions leading to the synchronous onset of the silent state remain elusive. We hypothesized that a synchronous input to local inhibitory neurons could contribute to the transition to the silent state in the cat suprasylvian gyrus during natural sleep and under ketamine-xylazine anesthesia. After partial and complete deafferentation of the cortex, we found that the silent state onset was more variable among remote sites. We found that the transition to the silent state was preceded by a reduction in excitatory postsynaptic potentials and firing probability in cortical neurons. We tested the impact of chloride-mediated inhibition in the silent-state onset. We uncovered a long-duration (100-300 ms) inhibitory barrage occurring about 250 ms before the silent state onset in 3-6% of neurons during anesthesia and in 12-15% of cases during natural sleep. These inhibitory activities caused a decrease in cortical firing that reduced the excitatory drive in the neocortical network. That chain reaction of disfacilitation ends up on the silent state. Electrical stimuli could trigger a network silent state with a maximal efficacy in deep cortical layers. We conclude that long-range afferents to the neocortex and chloride-mediated inhibition play a role in the initiation of the silent state. PMID:25392176

  19. Protection of densely populated excited triplet state ensembles against deactivation by molecular oxygen.

    PubMed

    Filatov, Mikhail A; Baluschev, Stanislav; Landfester, Katharina

    2016-08-22

    This critical review discusses different approaches towards protection of photoactive materials based on triplet excited state ensembles against deactivation by molecular oxygen though quenching and photooxidation mechanisms. Passive protection, based on the application of barrier materials for packaging, sealing, or encapsulation of the active substances, which prevent oxygen molecules from penetration and physical contact with excited states and active protection, based on the application of oxygen scavenging species are compared. Efficiencies of different approaches together with examples and prospects of their applications are outlined. PMID:27277068

  20. Hydrothermal activity along the slow-spreading Lucky Strike ridge segment (Mid-Atlantic Ridge): Distribution, heatflux, and geological controls

    NASA Astrophysics Data System (ADS)

    Escartin, J.; Barreyre, T.; Cannat, M.; Garcia, R.; Gracias, N.; Deschamps, A.; Salocchi, A.; Sarradin, P.-M.; Ballu, V.

    2015-12-01

    We have reviewed available visual information from the seafloor, and recently acquired microbathymetry for several traverses across the Lucky Strike segment, to evaluate the distribution of hydrothermal activity. We have identified a new on-axis site with diffuse flow, Ewan, and an active vent structure ∼1.2 km from the axis, Capelinhos. These sites are minor relative to the Main field, and our total heatflux estimate for all active sites (200-1200 MW) is only slightly higher than previously published estimates. We also identify fossil sites W of the main Lucky Strike field. A circular feature ∼200 m in diameter located on the flanks of a rifted off-axis central volcano is likely a large and inactive hydrothermal edifice, named Grunnus. We find no indicator of focused hydrothermal activity elsewhere along the segment, suggesting that the enhanced melt supply and the associated melt lenses, required to form central volcanoes, also sustain hydrothermal circulation to form and maintain large and long-lived hydrothermal fields. Hydrothermal discharge to the seafloor occurs along fault traces, suggesting focusing of hydrothermal circulation in the shallow crust along permeable fault zones.

  1. Hydrothermal activity in Tertiary Icelandic crust: Implication for cooling processes along slow-spreading mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Pałgan, D.; Devey, C. W.; Yeo, I. A.

    2015-12-01

    Known hydrothermal activity along the Mid-Atlantic Ridge is mostly high-temperature venting, controlled by volcano-tectonic processes confined to ridge axes and neotectonic zones ~15km wide on each side of the axis (e.g. TAG or Snake Pit). However, extensive exploration and discoveries of new hydrothermal fields in off-axis regions (e.g. Lost City, MAR) show that hydrothermalism may, in some areas, be dominated by off-axis venting. Little is known about nature of such systems, including whether low-temperature "diffuse" venting dominates rather than high-temperature black-smokers. This is particularly interesting since such systems may transport up to 90% of the hydrothermal heat to the oceans. In this study we use Icelandic hot springs as onshore analogues for off-shore hydrothermal activity along the MAR to better understand volcano-tectonic controls on their occurrence, along with processes supporting fluid circulation. Iceland is a unique laboratory to study how new oceanic crust cools and suggests that old crust may not be as inactive as previously thought. Our results show that Tertiary (>3.3 Myr) crust of Iceland (Westfjords) has widespread low-temperature hydrothermal activity. Lack of tectonism (indicated by lack of seismicity), along with field research suggest that faults in Westfjords are no longer active and that once sealed, can no longer support hydrothermal circulation, i.e. none of the hot springs in the area occur along faults. Instead, dyke margins provide open and permeable fluid migration pathways. Furthermore, we suggest that the Reykjanes Ridge (south of Iceland) may be similar to Westfjords with hydrothermalism dominated by off-axis venting. Using bathymetric data we infer dyke positions and suggest potential sites for future exploration located away from neotectonic zone. We also emphasise the importance of biological observations in seeking for low-temperature hydrothermal activity, since chemical or optical methods are not sufficient.

  2. Hydrothermal activity along the slow-spreading Lucky Strike ridge segment (Mid-Atlantic Ridge): Distribution, heatflux, and geological controls

    NASA Astrophysics Data System (ADS)

    Escartin, J.; Barreyre, T.; Cannat, M.; Garcia, R.; Gracias, N.; Deschamps, A.; Salocchi, A.; Sarradin, P. M.; Ballu, V.

    2015-12-01

    We have reviewed available visual information from the seafloor, and recently acquired microbathymetry for several traverses across the Lucky Strike segment to evaluate the distribution of hydrothermal activity. The Lucky Strike segment hosts three active hydrothermal fields: Capelinhos, Ewan, and the known Main Lucky Strike Hydrothermal Field (MLSHF). Capelinhos is located 1.3 km E of the axis and the MLSHF, and consists of a ~20 m sulfide mound with black smoker vents. Ewan is located ~1.8 km south from the MLSHF along the axial graben, and displays only diffuse flow along and around scarps of collapse structures associated with fault scarps. At the MLSHF we have identified an inactive site, thus broadening the extent of this field. Heat flux estimates from these new sites are relatively low and correspond to ~10% of the heat flux estimated for the Main field, with an integrated heatflux of 200-1200 MW. Overall, most of the flux (up to 80-90%) is associated with diffuse outflow, with the Ewan site showing solely diffuse flow and Capelinhos mostly focused flow. Microbathymetry also reveals a large, off-axis (~2.4 km) hydrothermal field, similar to the TAG mound in size, on the flanks of a rifted volcano. The association of these fields to a central volcano, and the absence of indicators of hydrothermal activity along the ridge segment, suggest that sustained hydrothermal activity is maintained by the enhanced melt supply and the associated magma chamber(s) required to build central volcanoes. Hydrothermal outflow zones at the seafloor are systematically controlled by faults, indicating that hydrothermal circulation in the shallow crust exploits permeable fault zones. Central volcanoes are thus associated with long-lived hydrothermal activity, and these sites may play a major role in the distribution and biogeography of vent communities.

  3. Can those organic micro-pollutants that are recalcitrant in activated sludge treatment be removed from wastewater by biofilm reactors (slow sand filters)?

    PubMed

    Escolà Casas, Mònica; Bester, Kai

    2015-02-15

    The degradation of seven compounds which are usually recalcitrant in classical activated sludge treatment (e.g., diclofenac, propranolol, iopromide, iohexol, iomeprol tebuconazole and propiconazole) was studied in a biofilm reactor (slow sand filtration). This reactor was used to treat real effluent-wastewater at different flow rates (hydraulic loadings) under aerobic conditions so removal and degradation kinetics of these recalcitrant compounds were calculated. With the hydraulic loading rate of 0.012 m(3)m(2)h(-1) the reactor removed 41, 94, 58, 57 and 85% of diclofenac, propranolol, iopromide, iohexol and iomeprol respectively. For these compounds the removal efficiency was dependent on hydraulic residence-times. Only 59 and 21% of the incoming tebuconazole and propiconazole respectively were removed but their removal did not depend on hydraulic residence time. Biofilm reactors are thus efficient in removing micro-pollutants and could be considered as an option for advanced treatment in small wastewater treatment plants. PMID:25460965

  4. Slowing of Hippocampal Activity Correlates with Cognitive Decline in Early Onset Alzheimer’s Disease. An MEG Study with Virtual Electrodes

    PubMed Central

    Engels, Marjolein M. A.; Hillebrand, Arjan; van der Flier, Wiesje M.; Stam, Cornelis J.; Scheltens, Philip; van Straaten, Elisabeth C. W.

    2016-01-01

    Pathology in Alzheimer’s disease (AD) starts in the entorhinal cortex and hippocampus. Because of their deep location, activity from these areas is difficult to record with conventional electro- or magnetoencephalography (EEG/MEG). The purpose of this study was to explore hippocampal activity in AD patients and healthy controls using “virtual MEG electrodes”. We used resting-state MEG recordings from 27 early onset AD patients [age 60.6 ± 5.4, 12 females, mini-mental state examination (MMSE) range: 19–28] and 26 cognitively healthy age- and gender-matched controls (age 61.8 ± 5.5, 14 females). Activity was reconstructed using beamformer-based virtual electrodes for 78 cortical regions and 6 hippocampal regions. Group differences in peak frequency and relative power in six frequency bands were identified using permutation testing. For the patients, spearman correlations between the MMSE scores and peak frequency or relative power were calculated. Moreover, receiver operator characteristic curves were plotted to estimate the diagnostic accuracy. We found a lower hippocampal peak frequency in AD compared to controls, which, in the patients, correlated positively with MMSE [r(25) = 0.61; p < 0.01] whereas hippocampal relative theta power correlated negatively with MMSE [r(25) = -0.54; p < 0.01]. Cortical peak frequency was also lower in AD in association areas. Furthermore, cortical peak frequency correlated positively with MMSE [r(25) = 0.43; p < 0.05]. In line with this finding, relative theta power was higher in AD across the cortex, and relative alpha and beta power was lower in more circumscribed areas. The average cortical relative theta power was the best discriminator between AD and controls (sensitivity 82%; specificity 81%). Using beamformer-based virtual electrodes, we were able to detect hippocampal activity in AD. In AD, this hippocampal activity is slowed, and correlates better with cognition than the (slowed) activity in cortical areas. On the

  5. Slow earthquakes coincident with episodic tremors and slow slip events.

    PubMed

    Ito, Yoshihiro; Obara, Kazushige; Shiomi, Katsuhiko; Sekine, Shutaro; Hirose, Hitoshi

    2007-01-26

    We report on the very-low-frequency earthquakes occurring in the transition zone of the subducting plate interface along the Nankai subduction zone in southwest Japan. Seismic waves generated by very-low-frequency earthquakes with seismic moment magnitudes of 3.1 to 3.5 predominantly show a long period of about 20 seconds. The seismicity of very-low-frequency earthquakes accompanies and migrates with the activity of deep low-frequency tremors and slow slip events. The coincidence of these three phenomena improves the detection and characterization of slow earthquakes, which are thought to increase the stress on updip megathrust earthquake rupture zones. PMID:17138867

  6. Remote System Technologies for Deactivating Hanford Hot Cells (for WM'03 - abstract included)

    SciTech Connect

    BERLIN, G.T.

    2003-01-28

    Remote system technologies are being deployed by Fluor Hanford to help accelerate the deactivation of highly-radioactive hot cell facilities. This paper highlights the application of several remotely deployed technologies enabling the deactivation tasks.

  7. Extended Catalyst Longevity Via Supercritical Isobutane Regeneration of a Partially Deactivated USY Alkylation Catalyst

    SciTech Connect

    Daniel M. Ginosar; David N. Thompson; Kyle C. Burch; David J. Zalewski

    2005-05-01

    Off-line, in situ activity recovery of a partially deactivated USY zeolite catalyst used for isobutane/butene alkylation was examined in a continuous-flow reaction system employing supercritical isobutane. Catalyst samples were deactivated in a controlled manner by running them to either to a fixed butene conversion level of 95% or a fixed time on stream of three hours, and then exposing the catalyst to supercritical isobutane to restore activity. Activity recovery was determined by comparing alkylation activity before and after the regeneration step. Both single and multiple regenerations were performed. Use of a 95% butene conversion level criterion to terminate the reaction step afforded 86% activity recovery for a single regeneration and provided nine sequential reaction steps for the multiple regeneration studies. Employing a fixed 3 h time on stream criterion resulted in nearly complete activity recovery for a single regeneration, and 24 reaction steps were demonstrated in sequence for the multiple regeneration process, producing only minor product yield declines per step. This resulted in a 12-fold increase in catalyst longevity versus unregenerated catalyst.

  8. Stimulus-specific deactivation of chemotactic factor-induced cyclic AMP response and superoxide generation by human neutrophils.

    PubMed Central

    Simchowitz, L; Atkinson, J P; Spilberg, I

    1980-01-01

    The responses of isolated human peripheral neutrophils to either simultaneous or sequential additions of two chemotactic factors were studied. Simultaneous additions of formyl-methionyl-leucyl-phenylalanine (10-100 nM) and the fifth component of complement, C5a (1-10 microliters/ml), evoked partially additive responses of membrane depolarization as measured by the fluorescent dye 3,3'-dipropyl-thiocarbocyanine, a transient elevation of intracellular cyclic AMP (cAMP), and superoxide (O2-) generation as assessed by ferricytochrome c reduction. Preincubation of the cells with either formyl-methionyl-leucyl-phenylalanine or C5a alone caused dose-dependent inhibition of the depolarization, the cAMP increase, and O2- release induced by a subsequent exposure to an optimal dose of the same stimulus, i.e., deactivation occurred. In contrast, when cells were treated with one chemotactic factor and then exposed to the other stimulus, the cells exhibited a normal response of peak depolarization, the rise in cAMP, and O2-0 production i.e., cross-deactivation failed to occur. The results imply that deactivation of these phenomena is stimulus specific. Further, these observations are consistent with the hypothesis that cross-deactivation of chemotaxis is mediated by one or more processes that are irrelevant to O2- generation, and that occur distal to the depolarization and cAMP steps in the sequence of neutrophil activation: possibly microtubule polymerization and orientation. PMID:6252250

  9. Effect of additions of sodium hydroxide on the catalytic activity of partially deactivated skeletal nickel in reactions of the liquid-phase hydrogenation of sodium maleate in aqueous-organic media

    NASA Astrophysics Data System (ADS)

    Lukin, M. V.; Afineevskii, A. V.

    2015-07-01

    The effect the concentration of sodium hydroxide has on the catalytic activity of skeletal nickel in reactions of the liquid-phase hydrogenation of sodium maleate in ternary methanol-water-sodium hydroxide solutions with a methanol content of 0.11 mole fractions and different concentrations of sodium hydroxide is studied. The key role of the solvent during changes in the activity of skeletal nickel in the hydrogenation reaction of sodium maleate is assumed, based on data on the redistribution of individual forms of adsorbed hydrogen.

  10. FACILITY DEACTIVATION AND DECOMMISSIONING AT THE SAVANNAH RIVER SITE

    SciTech Connect

    Gilmour, J; William Austin, W; Cathy Sizemore, C

    2007-01-31

    In February 2002, the U.S. Department of Energy initiated actions to expedite Cleanup, focus on significant and early risk reduction, and reduce costs at the Savannah River Site (SRS). In response SRS started on a project focused on completing the decommissioning of inactive facilities in T, D, and M Areas, areas that on the perimeter of the Site, by the end of 2006. In June 2003, the Department of Energy Savannah River Operations Office (DOE-SR), the South Carolina Department of Health and Environmental Control (SCDHEC), and the Environmental Protection Agency, Region 4 (EPA-4) endorsed a Memorandum of Agreement (MOA) concerning cleanup at the Savannah River Site (SRS). The vision of the Agreement is that SRS will reduce its operations footprint to establish a buffer zone at the perimeter if the Site, while the central core area of the Site will be reserved for continuing or future long-term operations. DOE-SR, EPA-4, and SCDHEC agreed that establishing this buffer zone and appropriately sequencing environmental restoration and decommissioning activities can lead to greater efficiency and accelerate completion of entire site areas. This vision is embodied in the concept of Area Completion--which integrated operations, deactivation and decommissioning (D&D), and soils and groundwater cleanup into a time-phased approach to completing all the work necessary to address the Cold War legacy. D&D addresses the ''footprint'' of the building or structure, while the soils and groundwater project addresses any environmental remediation that may be required in the underlying and surrounding soils and groundwater. Since then, {approx}250 facilities have been decommissioned at the SRS, ranging from guard stations to nuclear fuel production facilities.

  11. Features of deactivation of industrial catalysts in the Claus process

    SciTech Connect

    Kasumov, F.B.; Dzhafarova, E.M.; Dzhafarova, S.A.; Nadalieva, Yu.R.; Kerimov, I.Ya.

    1993-10-20

    The deactivation degree of samples of industrial alumina Claus catalyst after 3 yr usage has been determined. The samples have been selected from certain layers at four points of the catalyst volume under the continuous converter operation by the specially constructed device.

  12. Mediation Analysis of Mode Deactivation Therapy (Reanalysis and Interpretation)

    ERIC Educational Resources Information Center

    Bass, Christopher K.; Apsche, Jack A.

    2013-01-01

    A key component of Mode Deactivation Therapy (MDT) is the development of self-awareness and regulatory skills by the client with the aim of helping adolescent males with conduct disordered behaviors, including sexually inappropriate behaviors and emotional dysregulation. The goal includes altering specific behaviors to fall within socially…

  13. 49 CFR 192.727 - Abandonment or deactivation of facilities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Abandonment or deactivation of facilities. 192.727 Section 192.727 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS...

  14. 42 CFR 424.540 - Deactivation of Medicare billing privileges.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 3 2013-10-01 2013-10-01 false Deactivation of Medicare billing privileges. 424.540 Section 424.540 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICARE PROGRAM (CONTINUED) CONDITIONS FOR MEDICARE PAYMENT Requirements...

  15. 42 CFR 424.540 - Deactivation of Medicare billing privileges.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false Deactivation of Medicare billing privileges. 424.540 Section 424.540 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICARE PROGRAM CONDITIONS FOR MEDICARE PAYMENT Requirements...

  16. 42 CFR 424.540 - Deactivation of Medicare billing privileges.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 3 2012-10-01 2012-10-01 false Deactivation of Medicare billing privileges. 424.540 Section 424.540 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICARE PROGRAM (CONTINUED) CONDITIONS FOR MEDICARE PAYMENT Requirements...

  17. 42 CFR 424.540 - Deactivation of Medicare billing privileges.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 3 2011-10-01 2011-10-01 false Deactivation of Medicare billing privileges. 424.540 Section 424.540 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICARE PROGRAM CONDITIONS FOR MEDICARE PAYMENT Requirements...

  18. 42 CFR 424.540 - Deactivation of Medicare billing privileges.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 3 2014-10-01 2014-10-01 false Deactivation of Medicare billing privileges. 424.540 Section 424.540 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICARE PROGRAM (CONTINUED) CONDITIONS FOR MEDICARE PAYMENT Requirements...

  19. A Summary of Published Mode Deactivation Therapy Articles

    ERIC Educational Resources Information Center

    Apsche, Jack A.

    2006-01-01

    This article summarizes all of the Mode Deactivation Therapy, (MDT) articles published to date. MDT has shown to be more effective than Cognitive Behavior Therapy, (CBT), Social Skills Training, (SST), and Dialectical Behavior Therapy, (DBT), Apsche, Bass, Jennings, Murphy, Hunter, and Siv, (2005); Apsche & Bass, (2005); Apsche, Bass & Murphy,…

  20. Mode Deactivation Therapy (MDT) Family Therapy: A Theoretical Case Analysis

    ERIC Educational Resources Information Center

    Apsche, J. A.; Ward Bailey, S. R.

    2004-01-01

    This case study presents a theoretical analysis of implementing mode deactivation therapy (MDT) (Apsche & Ward Bailey, 2003) family therapy with a 13 year old Caucasian male. MDT is a form of cognitive behavioral therapy (CBT) that combines the balance of dialectical behavior therapy (DBT) (Linehan, 1993), the importance of perception from…

  1. 200 Area Deactivation Project Facilities Authorization Envelope Document

    SciTech Connect

    DODD, E.N.

    2000-03-28

    Project facilities as required by HNF-PRO-2701, Authorization Envelope and Authorization Agreement. The Authorization Agreements (AA's) do not identify the specific set of environmental safety and health requirements that are applicable to the facility. Therefore, the facility Authorization Envelopes are defined here to identify the applicable requirements. This document identifies the authorization envelopes for the 200 Area Deactivation.

  2. Compassionate deactivation of ventricular assist devices in pediatric patients.

    PubMed

    Hollander, Seth A; Axelrod, David M; Bernstein, Daniel; Cohen, Harvey J; Sourkes, Barbara; Reddy, Sushma; Magnus, David; Rosenthal, David N; Kaufman, Beth D

    2016-05-01

    Despite greatly improved survival in pediatric patients with end-stage heart failure through the use of ventricular assist devices (VADs), heart failure ultimately remains a life-threatening disease with a significant symptom burden. With increased demand for donor organs, liberalizing the boundaries of case complexity, and the introduction of destination therapy in children, more children can be expected to die while on mechanical support. Despite this trend, guidelines on the ethical and pragmatic issues of compassionate deactivation of VAD support in children are strikingly absent. As VAD support for pediatric patients increases in frequency, the pediatric heart failure and palliative care communities must work toward establishing guidelines to clarify the complex issues surrounding compassionate deactivation. Patient, family and clinician attitudes must be ascertained and education regarding the psychological, legal and ethical issues should be provided. Furthermore, pediatric-specific planning documents for use before VAD implantation as well as deactivation checklists should be developed to assist with decision-making at critical points during the illness trajectory. Herein we review the relevant literature regarding compassionate deactivation with a specific focus on issues related to children. PMID:27197773

  3. A low-fat, whole-food vegan diet, as well as other strategies that down-regulate IGF-I activity, may slow the human aging process.

    PubMed

    McCarty, Mark F

    2003-06-01

    A considerable amount of evidence is consistent with the proposition that systemic IGF-I activity acts as pacesetter in the aging process. A reduction in IGF-I activity is the common characteristic of rodents whose maximal lifespan has been increased by a wide range of genetic or dietary measures, including caloric restriction. The lifespans of breeds of dogs and strains of rats tend to be inversely proportional to their mature weight and IGF-I levels. The link between IGF-I and aging appears to be evolutionarily conserved; in worms and flies, lifespan is increased by reduction-of-function mutations in signaling intermediates homologous to those which mediate insulin/IGF-I activity in mammals. The fact that an increase in IGF-I activity plays a key role in the induction of sexual maturity, is consistent with a broader role for-IGF-I in aging regulation. If down-regulation of IGF-I activity could indeed slow aging in humans, a range of practical measures for achieving this may be at hand. These include a low-fat, whole-food, vegan diet, exercise training, soluble fiber, insulin sensitizers, appetite suppressants, and agents such as flax lignans, oral estrogen, or tamoxifen that decrease hepatic synthesis of IGF-I. Many of these measures would also be expected to decrease risk for common age-related diseases. Regimens combining several of these approaches might have a sufficient impact on IGF-I activity to achieve a useful retardation of the aging process. However, in light of the fact that IGF-I promotes endothelial production of nitric oxide and may be of especial importance to cerebrovascular health, additional measures for stroke prevention-most notably salt restriction-may be advisable when attempting to down-regulate IGF-I activity as a pro-longevity strategy. PMID:12699704

  4. Estimation of active faulting in a slow deformation area: Culoz fault as a case study (Jura-Western Alps junction).

    NASA Astrophysics Data System (ADS)

    de La Taille, Camille; Jouanne, Francois; Crouzet, Christian; Jomard, Hervé; Beck, Christian; de Rycker, Koen; van Daele, Maarten; Lebourg, Thomas

    2014-05-01

    The north-western Alps foreland is considered as still experiencing distal effects of Alpine collision, resulting in both horizontal and vertical relative displacements. Based on seismological and geodetic surveys, detailed patterns of active faulting (including subsurface décollements, blind ramps and deeper crustal thrusts have been proposed (Thouvenot et al., 1998), underlining the importance of NW-SE left-lateral strike-slip offsets as along the Vuache and Culoz faults (cf. the 1996 Epagny event: M=5.4; Thouvenot et al., 1998 and the 1822 Culoz event I=VII-VIII; Vogt, 1979). In parallel to this tectonic evolution, the last glaciation-deglaciation cycles contributed to develop large and over-deepened lacustrine basins, such as Lake Le Bourget (Perrier, 1980). The fine grain, post LGM (ie post 18 ky), sedimentary infill gives a good opportunity to evidence late quaternary tectonic deformations. This study focuses on the Culoz fault, extending from the Jura to the West, to the Chautagne swamp and through the Lake Le Bourget to the East. Historical earthquakes are known nearby this fault as ie the 1822 Culoz event. The precise location and geometry of the main fault is illustrated but its Eastern termination still needs to be determined. High resolution seismic sections and side-scan sonar images performed in the 90's (Chapron et al., 1996) showed that the Col du Chat and Culoz faults have locally deformed the quaternary sedimentary infill of the lake. These studies, mainly devoted to paleo-climate analysis were not able to determine neither the geometry of the fault, or to quantify the observed deformations. A new campaign devoted to highlight the fault geometry and associated deformation, has been performed in October 2013. Very tight profiles were performed during this high resolution seismic survey using seistec boomer and sparker sources. In several places the rupture reaches the most recent seismic reflectors underlying that these faults were active during

  5. Multiple representations of information in the primary auditory cortex of cats. I. Stability and change in slow components of unit activity after conditioning with a click conditioned stimulus.

    PubMed

    Woody, C D; Zotova, E; Gruen, E

    2000-06-16

    Recordings of activity were made from 647 single units of the A(I) cortex of awake cats to evaluate behavioral state-dependent changes in the population response to a 70-dB click. Averages of PST histograms of unit activity were used to assess the changes in response. This report focuses on slow components of the responses disclosed by averages employing bin widths of 16 ms. Responses were compared before and after a Pavlovian blink CR was produced by forward pairing of click conditioned stimuli (CSs) with USs. A backward-paired 70-dB hiss was presented as a discriminative stimulus. Studies were also done after backward pairing of the click CSs (backward conditioning) that produced weak sensitization instead of a conditioned response. There were four main findings. First, components of activity elicited 32-160 ms after presenting the hiss decreased significantly after conditioning and after backward conditioning. The decreases after conditioning represented the most pronounced changes in activity evoked by either clicks or hisses in this behavioral state. Second, baseline firing decreased after both conditioning and backward conditioning. The direction of baseline change was opposite that found in adjacent cortical regions and in A(I) cortex after operant conditioning employing an acoustic cue. Third, prior to conditioning, unit activity in response to the hiss declined before the sound of the hiss reached its peak or terminated. This decrease was thought to represent a habituatory adaptation of response to a prolonged acoustic stimulus. This type of habituation to a lengthy stimulus has been recognized, behaviorally, but has not been observed previously in the activity of units of the auditory receptive cortex. Fourth, the percentage of click responsive units did not change significantly after the click was used as a CS for conditioning, and despite the accompanying changes in baseline activity, the absolute levels of activity summed in the first 16 ms after click

  6. Berberine inhibits inflammatory mediators and attenuates acute pancreatitis through deactivation of JNK signaling pathways.

    PubMed

    Choi, Sun-Bok; Bae, Gi-Sang; Jo, Il-Joo; Wang, Shaofan; Song, Ho-Joon; Park, Sung-Joo

    2016-06-01

    Acute pancreatitis (AP) is a life-threatening disease. Berberine (BBR), a well-known plant alkaloid, is reported to have anti-inflammatory activity in many diseases. However, the effects of BBR on AP have not been clearly elucidated. Therefore, the present study aimed to investigate the effects of BBR on cerulein-induced AP in mice. AP was induced by either cerulein or l-arginine. In the BBR treated group, BBR was administered intraperitoneally 1h before the first cerulein or l-arginine injection. Blood samples were obtained to determine serum amylase and lipase activities and nitric oxide production. The pancreas and lung were rapidly removed for examination of histologic changes, myeloperoxidase (MPO) activity, and real-time reverse transcription-polymerase chain reaction. Furthermore, the regulating mechanisms of BBR were evaluated. Treatment of mice with BBR reduced pancreatic injury and activities of amylase, lipase, and pancreatitis-associated lung injury, as well as inhibited several inflammatory parameters such as the expression of pro-inflammatory cytokines and inducible nitric oxide synthesis (iNOS). Furthermore, BBR administration significantly inhibited c-Jun N-terminal kinase (JNK) activation in the cerulein-induced AP. Deactivation of JNK resulted in amelioration of pancreatitis and the inhibition of inflammatory mediators. These results suggest that BBR exerts anti-inflammatory effects on AP via JNK deactivation on mild and severe acute pancreatitis model, and could be a beneficial target in the management of AP. PMID:27148818

  7. Hippocampal rhythmical slow activity following ibotenic acid lesions of the septal region. I. Relations to behavior and effects of atropine and urethane.

    PubMed

    Stewart, D J; Vanderwolf, C H

    1987-10-13

    The effects of intraseptal injections of various concentrations of ibotenic acid on hippocampal electrical activity were studied in freely moving and urethane-anesthetized rats. Ibotenic acid selectively abolished the atropine-sensitive form of hippocampal rhythmical slow activity (RSA) normally seen during urethane anesthesia. Large amplitude irregular activity (LIA) and RSA in the waking state were somewhat depressed as well. Despite this, clear RSA persisted in the waking state in association with locomotion or struggling (Type 1 behavior). As in normal rats, such RSA was resistant to systemic administration of atropine. Analysis of brain sections stained with gallocyanin or for acetylcholinesterase showed that ibotenic acid produced cell loss in the dorsal lateral septal nucleus and the septohippocampal nucleus. Cells in the medial septal and diagonal band nuclei were resistant to ibotenic acid. The results suggest that intrinsic septal circuitry is critically involved in the generation of the atropine-sensitive (presumably cholinergic) form of RSA. The mechanisms by which LIA and the two forms of RSA are generated in the hippocampus is discussed. PMID:3676823

  8. Slow positron studies of hydrogen activation/passivation on SiO sub 2 /Si(100) interfaces

    SciTech Connect

    Lynn, K.G.; Asoka-Kumar, P.

    1991-01-01

    The hydrogen atoms are one of the most common impurity species found in semiconductor systems owing to its large diffusivity, and are easily incorporated either in a controlled process like in ion implantation or in an uncontrolled process like the one at the fabrication stage. Hydrogen can passivate dangling bonds and dislocations in these systems and hence can be used to enhance the electrical properties. In a SiO{sub 2}/Si system, hydrogen can passivate electronic states at the interface and can alter the fixed or mobile charges in the oxide layer. Since hydrogen is present in almost all of the environments of SiO{sub 2}/Si wafer fabrication, the activation energy of hydrogen atoms is of paramount importance to a proper understanding of SiO{sub 2}/Si based devices and has not been measured on the technologically most important Si(100) face. There are no direct, nondestructive methods available to observe hydrogen injection into the oxide layer and subsequent diffusion. This study uses the positrons as a sensitive'', nondestructive probe to observe hydrogen interaction in the oxide layer and the interface region. We also describe a new way of characterizing the changes in the density of the interface states under a low-temperature annealing using positrons. 9 refs., 6 figs.

  9. AZD3293: A Novel, Orally Active BACE1 Inhibitor with High Potency and Permeability and Markedly Slow Off-Rate Kinetics.

    PubMed

    Eketjäll, Susanna; Janson, Juliette; Kaspersson, Karin; Bogstedt, Anna; Jeppsson, Fredrik; Fälting, Johanna; Haeberlein, Samantha Budd; Kugler, Alan R; Alexander, Robert C; Cebers, Gvido

    2016-02-01

    A growing body of pathological, biomarker, genetic, and mechanistic data suggests that amyloid accumulation, as a result of changes in production, processing, and/or clearance of brain amyloid-β peptide (Aβ) concentrations, plays a key role in the pathogenesis of Alzheimer's disease (AD). Beta-secretase 1 (BACE1) mediates the first step in the processing of amyloid-β protein precursor (AβPP) to Aβ peptides, with the soluble N terminal fragment of AβPP (sAβPPβ) as a direct product, and BACE1 inhibition is an attractive target for therapeutic intervention to reduce the production of Aβ. Here, we report the in vitro and in vivo pharmacological profile of AZD3293, a potent, highly permeable, orally active, blood-brain barrier (BBB) penetrating, BACE1 inhibitor with unique slow off-rate kinetics. The in vitro potency of AZD3293 was demonstrated in several cellular models, including primary cortical neurons. In vivo in mice, guinea pigs, and dogs, AZD3293 displayed significant dose- and time-dependent reductions in plasma, cerebrospinal fluid, and brain concentrations of Aβ40, Aβ42, and sAβPPβ. The in vitro potency of AZD3293 in mouse and guinea pig primary cortical neuronal cells was correlated to the in vivo potency expressed as free AZD3293 concentrations in mouse and guinea pig brains. In mice and dogs, the slow off-rate from BACE1 may have translated into a prolongation of the observed effect beyond the turnover rate of Aβ. The preclinical data strongly support the clinical development of AZD3293, and patients with AD are currently being recruited into a combined Phase 2/3 study to test the disease-modifying properties of AZD3293. PMID:26890753

  10. AZD3293: A Novel, Orally Active BACE1 Inhibitor with High Potency and Permeability and Markedly Slow Off-Rate Kinetics

    PubMed Central

    Eketjäll, Susanna; Janson, Juliette; Kaspersson, Karin; Bogstedt, Anna; Jeppsson, Fredrik; Fälting, Johanna; Haeberlein, Samantha Budd; Kugler, Alan R.; Alexander, Robert C.; Cebers, Gvido

    2016-01-01

    A growing body of pathological, biomarker, genetic, and mechanistic data suggests that amyloid accumulation, as a result of changes in production, processing, and/or clearance of brain amyloid-β peptide (Aβ) concentrations, plays a key role in the pathogenesis of Alzheimer’s disease (AD). Beta-secretase 1 (BACE1) mediates the first step in the processing of amyloid-β protein precursor (AβPP) to Aβ peptides, with the soluble N terminal fragment of AβPP (sAβPPβ) as a direct product, and BACE1 inhibition is an attractive target for therapeutic intervention to reduce the production of Aβ. Here, we report the in vitro and in vivo pharmacological profile of AZD3293, a potent, highly permeable, orally active, blood-brain barrier (BBB) penetrating, BACE1 inhibitor with unique slow off-rate kinetics. The in vitro potency of AZD3293 was demonstrated in several cellular models, including primary cortical neurons. In vivo in mice, guinea pigs, and dogs, AZD3293 displayed significant dose- and time-dependent reductions in plasma, cerebrospinal fluid, and brain concentrations of Aβ40, Aβ42, and sAβPPβ. The in vitro potency of AZD3293 in mouse and guinea pig primary cortical neuronal cells was correlated to the in vivo potency expressed as free AZD3293 concentrations in mouse and guinea pig brains. In mice and dogs, the slow off-rate from BACE1 may have translated into a prolongation of the observed effect beyond the turnover rate of Aβ. The preclinical data strongly support the clinical development of AZD3293, and patients with AD are currently being recruited into a combined Phase 2/3 study to test the disease-modifying properties of AZD3293. PMID:26890753

  11. The effect of nanofiber based filter morphology on bacteria deactivation during water filtration

    NASA Astrophysics Data System (ADS)

    Kimmer, Dusan; Vincent, Ivo; Lev, Jaroslav; Kalhotka, Libor; Mikula, Premysl; Korinkova, Radka; Sambaer, Wannes; Zatloukal, Martin

    2013-04-01

    Procedures permitting to prepare homogeneous functionalized nanofibre structures based on polyurethanes modified by phthalocyanines (PCs) by employing a suitable combination of variables during the electrospinning process are presented. Compared are filtration and bacteria deactivation properties of open and planar nanostructures with PCs embedded into polyurethane chain by a covalent bond protecting the release of active organic compound during the filtration process. Finding that the morphology of functionalized nanofibre structures have an effect on bacterial growth was confirmed by microbiological and physico-chemical analyses, such as the inoculation in a nutrient agar culture medium and flow cytometry.

  12. Insight into deactivation of commercial SCR catalyst by arsenic: an experiment and DFT study.

    PubMed

    Peng, Yue; Li, Junhua; Si, Wenzhe; Luo, Jinming; Dai, Qizhou; Luo, Xubiao; Liu, Xin; Hao, Jiming

    2014-12-01

    Fresh and arsenic-poisoned V2O5–WO3/TiO2 catalysts are investigated by experiments and DFT calculations for SCR activity and the deactivation mechanism. Poisoned catalyst (1.40% of arsenic) presents lower NO conversion and more N2O formation than fresh. Stream (5%) could further decrease the activity of poisoned catalyst above 350 °C. The deactivation is not attributed to the loss of surface area or phase transformation of TiO2 at a certain arsenic content, but due to the coverage of the V2O5 cluster and the decrease in the surface acidity: the number of Lewis acid sites and the stability of Brønsted acid sites. Large amounts of surface hydroxyl induced by H2O molecules provide more unreactive As–OH groups and give rise to a further decrease in the SCR activity. N2O is mainly from NH3 unselective oxidation at high temperatures since the reducibility of catalysts and the number of surface-active oxygens are improved by As2O5. Finally, the reaction pathway seems unchanged after poisoning: NH3 adsorbed on both Lewis and Brønsted acid sites is reactive. PMID:25380546

  13. Neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) slows down Alzheimer's disease-like pathology in amyloid precursor protein-transgenic mice

    PubMed Central

    Rat, Dorothea; Schmitt, Ulrich; Tippmann, Frank; Dewachter, Ilse; Theunis, Clara; Wieczerzak, Ewa; Postina, Rolf; van Leuven, Fred; Fahrenholz, Falk; Kojro, Elzbieta

    2011-01-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) has neuroprotective and neurotrophic properties and is a potent α-secretase activator. As PACAP peptides and their specific receptor PAC1 are localized in central nervous system areas affected by Alzheimer's disease (AD), this study aims to examine the role of the natural peptide PACAP as a valuable approach in AD therapy. We investigated the effect of PACAP in the brain of an AD transgenic mouse model. The long-term intranasal daily PACAP application stimulated the nonamyloidogenic processing of amyloid precursor protein (APP) and increased expression of the brain-derived neurotrophic factor and of the antiapoptotic Bcl-2 protein. In addition, it caused a strong reduction of the amyloid β-peptide (Aβ) transporter receptor for advanced glycation end products (RAGE) mRNA level. PACAP, by activation of the somatostatin-neprilysin cascade, also enhanced expression of the Aβ-degrading enzyme neprilysin in the mouse brain. Furthermore, daily PAC1-receptor activation via PACAP resulted in an increased mRNA level of both the PAC1 receptor and its ligand PACAP. Our behavioral studies showed that long-term PACAP treatment of APP[V717I]-transgenic mice improved cognitive function in animals. Thus, nasal application of PACAP was effective, and our results indicate that PACAP could be of therapeutic value in treating AD.—Rat, D., Schmitt, U., Tippmann, F., Dewachter, I., Theunis, C., Wieczerzak, E, Postina, R., van Leuven, F., Fahrenholz, F., Kojro, E. Neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) slows down Alzheimer's disease-like pathology in amyloid precursor protein-transgenic mice. PMID:21593432

  14. Changes in muscle activation and force generation patterns during cycling movements because of low-intensity squat training with slow movement and tonic force generation.

    PubMed

    Tanimoto, Michiya; Arakawa, Hiroshi; Sanada, Kiyoshi; Miyachi, Motohiko; Ishii, Naokata

    2009-11-01

    Our previous studies showed that relatively low-load (approximately 50-60% 1 repetition maximum [1RM]) resistance training with slow movement and tonic force generation (LST) significantly increased muscle size and strength. However, LST is a very specific movement that differs from natural movements associated with sport activities and activities of daily life, and therefore, it might have some unfavorable effects on dynamic sport movement. We investigated the effects of LST on muscle activity and force generation patterns during cycling movement as a representative dynamic sports movement. Twenty-four healthy young men who were not in the habit of bicycle riding and did not have a history of regular resistance training were randomly assigned to the LST (approximately 60% 1RM load, 3-second lifting, and 3-second lowering movement without a relaxing phase: n = 8), a high-intensity exercise at normal speed (HM) group (85% 1RM load, 1-second lifting, 1-second lowering, and 1-second relaxed movement: n = 8), or sedentary control (CON, n = 8) group. Subjects in the training groups performed vertical squats by the assigned method. Exercise sessions consisted of 3 sets and were performed twice a week for 13 weeks. Pre- and posttraining muscle activation and force generation patterns during the cycling movements were evaluated by the coefficient of variation (CV) of the rectified electromyographic (EMG) wave from the vastus lateralis and CV of pedaling force. Both the CV of the rectified EMG and of pedaling force decreased significantly in the LST group (-21 and -18%, p < 0.05, respectively), whereas there were no significant changes in either the HN or the CON group. This decrease in CV in the LST group could mean that muscle activity and force generation during cycling movement have become more tonic. This result following LST may have an unfavorable effect on cycling movement and other dynamic sports movements. PMID:19826286

  15. Study on the thermal deactivation of motorcycle catalytic converters by laboratory aging tests.

    PubMed

    Chen, Yi-Chi; Chen, Lu-Yen; Yu, Yi-Hsien; Jeng, Fu-Tien

    2010-03-01

    Catalytic converters are used to curb exhaust pollution from motorcycles in Taiwan. A number of factors, including the length of time the converter is used for and driving conditions, affect the catalysts' properties during periods of use. The goal of this study is to resolve the thermal deactivation mechanism of motorcycle catalytic converters. Fresh catalysts were treated under different aging conditions by laboratory-scale aging tests to simulate the operation conditions of motorcycle catalytic converters. The aged catalysts were characterized by analytical techniques in order to provide information for investigating deactivation phenomena. The time-dependent data of specific surface areas were subsequently used to construct kinetics of sintering at the specific temperature. According to the analytical results of the catalysts' properties, the increase in aging temperature causes an increase in pore size of the catalysts and a decrease in the specific surface area. The aged catalysts all exhibited lower performances than the fresh ones. The reduction in catalytic activity is consistent with the reduction in the loss of specific surface area. The finding of catalytic properties' dependence on temperature is consistent with the thermally activated theory. In contrast, the effect of the aging time on the specific surface area was only significant during the initial few hours. The high correlation between specific surface areas measured by the Brunauer-Emmett-Teller (BET) method and predicted by the constructed model verifies that the prediction models can predict the sintering rate reasonably under the aging conditions discussed in this study. As compared to automobile catalytic converters, the differences of structures and aging conditions are made less obvious by the deactivation phenomena of motorcycles. PMID:20426275

  16. Learning-dependent, transient increase of activity in noradrenergic neurons of locus coeruleus during slow wave sleep in the rat: brain stem-cortex interplay for memory consolidation?

    PubMed

    Eschenko, Oxana; Sara, Susan J

    2008-11-01

    Memory consolidation during sleep is regaining attention due to a wave of recent reports of memory improvements after sleep or deficits after sleep disturbance. Neuromodulators have been proposed as possible players in this putative off-line memory processing, without much experimental evidence. We recorded neuronal activity in the rat noradrenergic nucleus locus coeruleus (LC) using chronically implanted movable microelectrodes while monitoring the behavioral state via electrocorticogram and online video recording. Extracellular recordings of physiologically identified noradrenergic neurons of LC were made in freely behaving rats for 3 h before and after olfactory discrimination learning. On subsequent days, if LC recording remained stable, additional learning sessions were made within the olfactory discrimination protocol, including extinction, reversals, learning new odors. Contrary to the long-standing dogma about the quiescence of noradrenergic neurons of LC, we found a transient increase in LC activity in trained rats during slow wave sleep (SWS) 2 h after learning. The discovery of learning-dependent engagement of LC neurons during SWS encourages exploration of brain stem-cortical interaction during this delayed phase of memory consolidation and should bring new insights into mechanisms underlying memory formation. PMID:18321875

  17. Facilitation of memory consolidation by post-training electrical stimulation of the medial septal nucleus: is it mediated by changes in rhythmic slow activity?

    PubMed

    Galey, D; Jeantet, Y; Destrade, C; Jaffard, R

    1983-07-01

    Sinusoidal (100 Hz) electrical stimulation was applied at a weak intensity (7.5 muA peak to peak) through bipolar electrodes located in the medial septal nucleus after partial acquisition of an appetitive operant conditioning task in a Skinner box. Analysis of performance in a retention test 24 hr later showed that (i) the presence of stimulation electrodes by itself impaired retention-test performance, and (ii) electrical stimulation applied 30 sec after the end of the acquisition session improves retention; this facilitatory effect disappeared when the treatment was delayed 15 min. Both impairment and facilitation were found to vary (considerably) among subjects. Electrodes located in the center of the medial septal nucleus led to both a greater impairment in unstimulated subjects and a greater facilitation in stimulated subjects than more anterior placements in the vicinity of the diagonal band. Finally, spectral analysis of hippocampal EEG showed that stimulation had no effect on rhythmic slow activity (RSA). These results are discussed in relation to studies showing that RSA is associated with memory-storage processes and our own hypothesis which underlines the importance of activation of septo-hippocampal cholinergic neurons in the early stages of these mnemonic processes. PMID:6314987

  18. Examination of perceptions (intensity, seat comfort, effort) and reaction times (brake and accelerator) during low-frequency vibration in x- or y-direction and biaxial ( xy-) vibration of driver seats with activated and deactivated suspension

    NASA Astrophysics Data System (ADS)

    Schust, Marianne; Blüthner, Ralph; Seidel, Helmut

    2006-12-01

    The optimal design of driver seats with horizontal suspension requires knowledge of human response with respect to the perception of the vibration intensity and seat comfort or of the performance in motor tasks. In an experimental study, 12 male volunteers (body mass 59-97.3 kg) were exposed to whole body vibrations in isolated x- or y-direction (three levels of magnitude) and biaxial xy-direction (combination of the x- and y-exposures on level two) sitting on a driver seat. The suspensions in x- and y-directions were randomly locked or unlocked. A brake and an accelerator foot pedal had to be pressed on demand as fast as possible. The perceptions of the vibration intensity, the seat comfort and the effort to carry out the motor task were judged by cross modality matching (modality: length of a line). The intensity judgements significantly increased with raising vibration magnitude. They were significantly higher for locked suspension. With only some exceptions, the judgements of the seat comfort decreased significantly with increasing magnitude, locked suspension and time. The effort judgements significantly increased with raising magnitude and time and revealed a tendency towards a lower effort with activated suspension. The reaction times showed no significant influences of vibration magnitude, suspension or time, but higher demands seemed to be compensated by enhanced effort. The w d-weighting did not adequately reflect the perceptions for the frequency spectra applied in this study in the x-axis. A modified 'overall vibration total value' determined from the non-weighted accelerations instead of the weighted ones (ISO 2631-1, Article 8.2.3) corresponded with the subjective judgements in case of exposure in x- and xy-directions. A clear definition of 'comfort' or 'discomfort' or the use of 'intensity' instead of these terms is recommendable.

  19. Slow liner fusion

    SciTech Connect

    Shaffer, M.J.

    1997-08-01

    {open_quotes}Slow{close_quotes} liner fusion ({approximately}10 ms compression time) implosions are nondestructive and make repetitive ({approximately} 1 Hz) pulsed liner fusion reactors possible. This paper summarizes a General Atomics physics-based fusion reactor study that showed slow liner feasibility, even with conservative open-line axial magnetic field confinement and Bohm radial transport.

  20. Synchronization Properties of Slow Cortical Oscillations

    NASA Astrophysics Data System (ADS)

    Takekawa, T.; Aoyagi, T.; Fukai, T.

    During slow-wave sleep, the brain shows slow oscillatory activity with remarkable long-range synchrony. Intracellular recordings show that the slow oscillation consists of two phases: an textit{up} state and a textit{down} state. Deriving the phase-response function of simplified neuronal systems, we examine the synchronization properties on slow oscillations between the textit{up} state and the textit{down} state. As a result, the strange interaction functions are found in some parameter ranges. These functions indicate that the states with the smaller phase lag than a critical value are all stable.

  1. Simultaneous deactivation of FAK and Src improves the pathology of hypertrophic scar.

    PubMed

    Su, Linlin; Li, Xiaodong; Wu, Xue; Hui, Bo; Han, Shichao; Gao, Jianxin; Li, Yan; Shi, Jihong; Zhu, Huayu; Zhao, Bin; Hu, Dahai

    2016-01-01

    Hypertrophic scar (HS) is a serious fibrotic skin condition with currently no satisfactory therapy due to undefined molecular mechanism. FAK and Src are two important non-receptor tyrosine kinases that have been indicated in HS pathogenesis. Here we found both FAK and Src were activated in HS vs. normal skin (NS), NS fibroblasts treated with TGF-β1 also exhibited FAK/Src activation. Co-immunoprecipitation and dual-labelled immunofluorescence revealed an enhanced FAK-Src association and co-localization in HS vs. NS. To examine effects of FAK/Src activation and their interplay on HS pathogenesis, site-directed mutagenesis followed by gene overexpression was conducted. Results showed only simultaneous overexpression of non-phosphorylatable mutant FAK Y407F and phosphomimetic mutant Src Y529E remarkably down-regulated the expression of Col I, Col III and α-SMA in cultured HS fibroblasts, alleviated extracellular matrix deposition and made collagen fibers more orderly in HS tissue vs. the effect from single transfection with wild-type or mutational FAK/Src. Glabridin, a chemical found to block FAK-Src complex formation in cancers, exhibited therapeutic effects on HS pathology probably through co-deactivation of FAK/Src which further resulted in FAK-Src de-association. This study suggests FAK-Src complex could serve as a potential molecular target, and FAK/Src double deactivation might be a novel strategy for HS therapy. PMID:27181267

  2. Simultaneous deactivation of FAK and Src improves the pathology of hypertrophic scar

    PubMed Central

    Su, Linlin; Li, Xiaodong; Wu, Xue; Hui, Bo; Han, Shichao; Gao, Jianxin; Li, Yan; Shi, Jihong; Zhu, Huayu; Zhao, Bin; Hu, Dahai

    2016-01-01

    Hypertrophic scar (HS) is a serious fibrotic skin condition with currently no satisfactory therapy due to undefined molecular mechanism. FAK and Src are two important non-receptor tyrosine kinases that have been indicated in HS pathogenesis. Here we found both FAK and Src were activated in HS vs. normal skin (NS), NS fibroblasts treated with TGF-β1 also exhibited FAK/Src activation. Co-immunoprecipitation and dual-labelled immunofluorescence revealed an enhanced FAK-Src association and co-localization in HS vs. NS. To examine effects of FAK/Src activation and their interplay on HS pathogenesis, site-directed mutagenesis followed by gene overexpression was conducted. Results showed only simultaneous overexpression of non-phosphorylatable mutant FAK Y407F and phosphomimetic mutant Src Y529E remarkably down-regulated the expression of Col I, Col III and α-SMA in cultured HS fibroblasts, alleviated extracellular matrix deposition and made collagen fibers more orderly in HS tissue vs. the effect from single transfection with wild-type or mutational FAK/Src. Glabridin, a chemical found to block FAK-Src complex formation in cancers, exhibited therapeutic effects on HS pathology probably through co-deactivation of FAK/Src which further resulted in FAK-Src de-association. This study suggests FAK-Src complex could serve as a potential molecular target, and FAK/Src double deactivation might be a novel strategy for HS therapy. PMID:27181267

  3. Remote System Technologies for Deactivating Hanford Hot Cells

    SciTech Connect

    Berlin, G.; Walton, T.

    2003-02-25

    Remote system technologies are being deployed by Fluor Hanford to help accelerate the deactivation of highly-radioactive hot cell facilities. These technologies offer improved methods for accessing difficult-to-reach spaces and performing tasks such as visual inspection, radiological characterization, decontamination, waste handling, and size reduction. This paper is focused on the application of remote systems in support of deactivation work being performed in several legacy facilities at Hanford (i.e., the 324 and 327 Buildings). These facilities were previously used for fuel fabrication, materials examination, and the development of waste treatment processes. The technologies described in this paper represent significant improvements to Hanford's baseline methods, and may offer benefits to other U.S. Department of Energy (DOE) sites and commercial operations.

  4. On the puzzling deactivation mechanism of thymine after light irradiation

    SciTech Connect

    Gonzalez, Leticia; Gonzalez-Vazquez, Jesus; Samoylova, Elena; Schultz, Thomas

    2008-12-08

    The possible deactivation mechanisms of thymine after UV light irradiation are reviewed in the light of theoretical calculations. Recent experiments reveal that three transient species with lifetimes in the fs, ps, and ns regime are present in thymine. The possibility of ground or excited state tautomerization is explored and discarded. The role of {pi}{sigma}* states, as well as of the proposed minimum of the {pi}{pi}* excited state surface are assessed. In view of the obtained calculations and results available from the literature, the measured time scales can be tentatively attributed to a model involving different conical intersections between the {pi}{pi}*, n{pi}*, and the electronic ground state, as well as deactivation via the triplet states. Time-resolved photoelectron experiments supported by theoretical calculations are proposed to appraise the validity of this model.

  5. Novel C-Ring-Hydroxy-Substituted Controlled Deactivation Cannabinergic Analogues.

    PubMed

    Kulkarni, Shashank; Nikas, Spyros P; Sharma, Rishi; Jiang, Shan; Paronis, Carol A; Leonard, Michael Z; Zhang, Bin; Honrao, Chandrashekhar; Mallipeddi, Srikrishnan; Raghav, Jimit Girish; Benchama, Othman; Järbe, Torbjörn U C; Bergman, Jack; Makriyannis, Alexandros

    2016-07-28

    In pursuit of safer controlled-deactivation cannabinoids with high potency and short duration of action, we report the design, synthesis, and pharmacological evaluation of novel C9- and C11-hydroxy-substituted hexahydrocannabinol (HHC) and tetrahydrocannabinol (THC) analogues in which a seven atom long side chain, with or without 1'-substituents, carries a metabolically labile 2',3'-ester group. Importantly, in vivo studies validated our controlled deactivation approach in rodents and non-human primates. The lead molecule identified here, namely, butyl-2-[(6aR,9R,10aR)-1-hydroxy-9-(hydroxymethyl)-6,6-dimethyl-6a,7,8,9,10,10a-hexahydro-6H-benzo[c]chromen-3-yl]-2-methylpropanoate (AM7499), was found to exhibit remarkably high in vitro and in vivo potency with shorter duration of action than the currently existing classical cannabinoid agonists. PMID:27367336

  6. Stability and deactivation research of RuO2-PdO/Ti electrode in dye water degradation.

    PubMed

    Du, Lin; Wu, Jin; Li, Guiying; Hu, Changwei

    2014-01-01

    RuO2-PdO/Ti electrode was prepared and used for the electro-catalytic degradation of Active Red K-2BP. It was found that the electrode was very stable in the process. A discoloration rate of 96.2% could still be achieved on the electrode after being used for 100 runs. X-ray photoelectron spectroscopy, X-ray diffraction, and scanning electron microscopy characterizations of the electrode were carried out. Results showed that the deactivation of the electrode was caused by the reconstruction and oxidation of titanium substrate as well as by the coverage of the active phases on the surface of the electrode by silicon. The cracks on the coating layer also contributed to the deactivation. PMID:25225920

  7. Mechanism of acetaldehyde-induced deactivation of microbial lipases

    PubMed Central

    2011-01-01

    Background Microbial lipases represent the most important class of biocatalysts used for a wealth of applications in organic synthesis. An often applied reaction is the lipase-catalyzed transesterification of vinyl esters and alcohols resulting in the formation of acetaldehyde which is known to deactivate microbial lipases, presumably by structural changes caused by initial Schiff-base formation at solvent accessible lysine residues. Previous studies showed that several lipases were sensitive toward acetaldehyde deactivation whereas others were insensitive; however, a general explanation of the acetaldehyde-induced inactivation mechanism is missing. Results Based on five microbial lipases from Candida rugosa, Rhizopus oryzae, Pseudomonas fluorescens and Bacillus subtilis we demonstrate that the protonation state of lysine ε-amino groups is decisive for their sensitivity toward acetaldehyde. Analysis of the diverse modification products of Bacillus subtilis lipases in the presence of acetaldehyde revealed several stable products such as α,β-unsaturated polyenals, which result from base and/or amino acid catalyzed aldol condensation of acetaldehyde. Our studies indicate that these products induce the formation of stable Michael-adducts at solvent-accessible amino acids and thus lead to enzyme deactivation. Further, our results indicate Schiff-base formation with acetaldehyde to be involved in crosslinking of lipase molecules. Conclusions Differences in stability observed with various commercially available microbial lipases most probably result from different purification procedures carried out by the respective manufacturers. We observed that the pH of the buffer used prior to lyophilization of the enzyme sample is of utmost importance. The mechanism of acetaldehyde-induced deactivation of microbial lipases involves the generation of α,β-unsaturated polyenals from acetaldehyde which subsequently form stable Michael-adducts with the enzymes. Lyophilization of

  8. Gβ₂ mimics activation kinetic slowing of CaV2.2 channels by noradrenaline in rat sympathetic neurons.

    PubMed

    Hernández-Castellanos, Juan M; Vivas, Oscar; Garduño, Julieta; De la Cruz, Lizbeth; Arenas, Isabel; Elías-Viñas, David; Mackie, Ken; García, David E

    2014-02-28

    Several neurotransmitters and hormones acting through G protein-coupled receptors elicit a voltage-dependent regulation of CaV2.2 channels, having profound effects on cell function and the organism. It has been hypothesized that protein-protein interactions define specificity in signal transduction. Yet it is unknown how the molecular interactions in an intracellular signaling cascade determine the specificity of the voltage-dependent regulation induced by a specific neurotransmitter. It has been suspected that specific effector regions on the Gβ subunits of the G proteins are responsible for voltage-dependent regulation. The present study examines whether a neurotransmitter's specificity can be revealed by simple ion-current kinetic analysis likely resulting from interactions between Gβ subunits and the channel-molecule. Noradrenaline is a neurotransmitter that induces voltage-dependent regulation. By using biochemical and patch-clamp methods in rat sympathetic neurons we examined calcium current modulation induced by each of the five Gβ subunits and found that Gβ2 mimics activation kinetic slowing of CaV2.2 channels by noradrenaline. Furthermore, overexpression of the Gβ2 isoform reproduces the effect of noradrenaline in the willing-reluctant model. These results advance our understanding on the mechanisms by which signals conveying from a variety of membrane receptors are able to display precise homeostatic responses. PMID:24513289

  9. Deactivation mechanism of the green fluorescent chromophore.

    PubMed

    Gepshtein, Rinat; Huppert, Dan; Agmon, Noam

    2006-03-01

    We report time-resolved fluorescence data for the anion of p-hydroxybenzylidene dimethylimidazolinone (p-HBDI), a model chromophore of the green fluorescence protein, in viscous glycerol-water mixtures over a range of temperatures, T. The markedly nonexponential decay of the excited electronic state is interpreted with the aid of an inhomogeneous model possessing a Gaussian coordinate-dependent sink term. A nonlinear least-squares fitting routine enables us to achieve quantitative fits by adjusting a single activation parameter, which is found to depend linearly on 1/T. We derive an analytic expression for the absolute quantum yield, which is compared with the integrated steady-state fluorescence spectra. The microscopic origins of the model are discussed in terms of two-dimensional dynamics, coupling the phenyl-ring rotation to a swinging mode that brings this flexible molecule to the proximity of a conical intersection on its multidimensional potential energy surface. PMID:16509746

  10. Lifecycle baseline summary for ADS 6504IS isotopes facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1995-08-01

    The scope of this Activity Data Sheet (ADS) is to provide a detailed plan for the Isotopes Facilities Deactivation Project (IFDP) at the Oak Ridge National Laboratory (ORNL). This project places the former isotopes production facilities in a safe, stable, and environmentally sound condition suitable for an extended period of minimum surveillance and maintenance (S&M) until the facilities are included in the Decontamination and Decommissioning (D&D) Program. The facilities included within this deactivation project are Buildings 3026-C, 3026-D, 3028, 3029, 3038-AHF, 3038-E, 3038-M, 3047, 3517, 7025, and the Center Circle Facilities (Buildings 3030, 3031, 3032, 3033, 3033-A, 3034, and 3118). The scope of deactivation identified in this Baseline Report include surveillance and maintenance activities for each facility, engineering, contamination control and structural stabilization of each facility, radioluminescent (RL) light removal in Building 3026, re-roofing Buildings 3030, 3118, and 3031, Hot Cells Cleanup in Buildings 3047 and 3517, Yttrium (Y) Cell and Barricades Cleanup in Building 3038, Glove Boxes & Hoods Removal in Buildings 3038 and 3047, and Inventory Transfer in Building 3517. For a detailed description of activities within this Work Breakdown Structure (WBS) element, see the Level 6 and Level 7 Element Definitions in Section 3.2 of this report.

  11. Osmotic Edema Rapidly Increases Neuronal Excitability Through Activation of NMDA Receptor-Dependent Slow Inward Currents in Juvenile and Adult Hippocampus.

    PubMed

    Lauderdale, Kelli; Murphy, Thomas; Tung, Tina; Davila, David; Binder, Devin K; Fiacco, Todd A

    2015-01-01

    Cellular edema (cell swelling) is a principal component of numerous brain disorders including ischemia, cortical spreading depression, hyponatremia, and epilepsy. Cellular edema increases seizure-like activity in vitro and in vivo, largely through nonsynaptic mechanisms attributable to reduction of the extracellular space. However, the types of excitability changes occurring in individual neurons during the acute phase of cell volume increase remain unclear. Using whole-cell patch clamp techniques, we report that one of the first effects of osmotic edema on excitability of CA1 pyramidal cells is the generation of slow inward currents (SICs), which initiate after approximately 1 min. Frequency of SICs increased as osmolarity decreased in a dose-dependent manner. Imaging of real-time volume changes in astrocytes revealed that neuronal SICs occurred while astrocytes were still in the process of swelling. SICs evoked by cell swelling were mainly nonsynaptic in origin and NMDA receptor-dependent. To better understand the relationship between SICs and changes in neuronal excitability, recordings were performed in increasingly physiological conditions. In the absence of any added pharmacological reagents or imposed voltage clamp, osmotic edema induced excitatory postsynaptic potentials and burst firing over the same timecourse as SICs. Like SICs, action potentials were blocked by NMDAR antagonists. Effects were more pronounced in adult (8-20 weeks old) compared with juvenile (P15-P21) mice. Together, our results indicate that cell swelling triggered by reduced osmolarity rapidly increases neuronal excitability through activation of NMDA receptors. Our findings have important implications for understanding nonsynaptic mechanisms of epilepsy in relation to cell swelling and reduction of the extracellular space. PMID:26489684

  12. Osmotic Edema Rapidly Increases Neuronal Excitability Through Activation of NMDA Receptor-Dependent Slow Inward Currents in Juvenile and Adult Hippocampus

    PubMed Central

    Lauderdale, Kelli; Murphy, Thomas; Tung, Tina; Davila, David; Binder, Devin K.

    2015-01-01

    Cellular edema (cell swelling) is a principal component of numerous brain disorders including ischemia, cortical spreading depression, hyponatremia, and epilepsy. Cellular edema increases seizure-like activity in vitro and in vivo, largely through nonsynaptic mechanisms attributable to reduction of the extracellular space. However, the types of excitability changes occurring in individual neurons during the acute phase of cell volume increase remain unclear. Using whole-cell patch clamp techniques, we report that one of the first effects of osmotic edema on excitability of CA1 pyramidal cells is the generation of slow inward currents (SICs), which initiate after approximately 1 min. Frequency of SICs increased as osmolarity decreased in a dose-dependent manner. Imaging of real-time volume changes in astrocytes revealed that neuronal SICs occurred while astrocytes were still in the process of swelling. SICs evoked by cell swelling were mainly nonsynaptic in origin and NMDA receptor-dependent. To better understand the relationship between SICs and changes in neuronal excitability, recordings were performed in increasingly physiological conditions. In the absence of any added pharmacological reagents or imposed voltage clamp, osmotic edema induced excitatory postsynaptic potentials and burst firing over the same timecourse as SICs. Like SICs, action potentials were blocked by NMDAR antagonists. Effects were more pronounced in adult (8–20 weeks old) compared with juvenile (P15–P21) mice. Together, our results indicate that cell swelling triggered by reduced osmolarity rapidly increases neuronal excitability through activation of NMDA receptors. Our findings have important implications for understanding nonsynaptic mechanisms of epilepsy in relation to cell swelling and reduction of the extracellular space. PMID:26489684

  13. Transformer Industry Productivity Slows.

    ERIC Educational Resources Information Center

    Otto, Phyllis Flohr

    1981-01-01

    Annual productivity increases averaged 2.4 percent during 1963-79, slowing since 1972 to 1.5 percent; computer-assisted design and product standardization aided growth in output per employee-hour. (Author)

  14. Slow medical education.

    PubMed

    Wear, Delese; Zarconi, Joseph; Kumagai, Arno; Cole-Kelly, Kathy

    2015-03-01

    Slow medical education borrows from other "slow" movements by offering a complementary orientation to medical education that emphasizes the value of slow and thoughtful reflection and interaction in medical education and clinical care. Such slow experiences, when systematically structured throughout the curriculum, offer ways for learners to engage in thoughtful reflection, dialogue, appreciation, and human understanding, with the hope that they will incorporate these practices throughout their lives as physicians. This Perspective offers several spaces in the medical curriculum where slowing down is possible: while reading and writing at various times in the curriculum and while providing clinical care, focusing particularly on conducting the physical exam and other dimensions of patient care. Time taken to slow down in these ways offers emerging physicians opportunities to more fully incorporate their experiences into a professional identity that embodies reflection, critical awareness, cultural humility, and empathy. The authors argue that these curricular spaces must be created in a very deliberate manner, even on busy ward services, throughout the education of physicians. PMID:25426738

  15. Tyrosine Residue in the TRPV1 Vanilloid Binding Pocket Regulates Deactivation Kinetics.

    PubMed

    Kumar, Rakesh; Hazan, Adina; Basu, Arijit; Zalcman, Nomi; Matzner, Henry; Priel, Avi

    2016-06-24

    Vanilloids are pain evoking molecules that serve as ligands of the "heat and capsaicin receptor" TRPV1. Binding of either endogenous or exogenous vanilloids evokes channel and subsequent neuronal activation, leading to pain sensation. Despite its pivotal physiological role, the molecular basis of TRPV1 activation and deactivation is not fully understood. The highly conserved tyrosine in position 511 (Tyr(511)) of the rat TRPV1 (rTRPV1) was the first residue to be identified as a necessary participant in the vanilloid-mediated response. rTRPV1 cryo-EM structures implicated rotation of this residue in the vanilloids bound state. Therefore, we hypothesize that the rTRPV1 Tyr(511) residue entraps vanilloids in their binding site, prolonging channel activity. To test our hypothesis, we generated an array of rTRPV1 mutants, containing the whole spectrum of Tyr(511) substitutions, and tested their response to both exo- and endovanilloids. Our data show that only substitutions of Tyr(511) to aromatic amino acids were able to mimic, albeit partially, the vanilloid-evoked activation pattern of the wt receptor. Although these substitutions reduced the channel sensitivity to vanilloids, a maximal open-channel lifetime could be achieved. Moreover, whereas their current activation rate remains intact, receptors with Tyr(511) substitutions exhibited a faster current deactivation. Our findings therefore suggest that the duration of channel activity evoked by vanilloids is regulated by the interaction between Tyr(511) and the agonist. To conclude, we suggest that Tyr(511)-mediated anchoring of vanilloids in their binding pocket is pivotal for TRPV1 activation and subsequent pain sensation. PMID:27143360

  16. Polyhydric alcohol protective effect on Rhizomucor miehei lipase deactivation enhanced by pressure and temperature treatment.

    PubMed

    Noël, Marilyne; Lozano, Pedro; Combes, Didier

    2005-10-01

    The influence of polyhydric alcohols (sorbitol, xylitol, erythritol, glycerol) on the thermal stability of Rhizomucor miehei lipase has been studied at high hydrostatic pressure (up to 500 MPa). In the absence of additives, a protective effect (PE) (the ratio between the residual activities determined at 480 MPa for the enzyme in the presence or absence of polyhydric alcohols) of low-applied pressures (from 50 MPa to 350 MPa) against thermal deactivations (at 50 degrees C and 55 degrees C) has been noticed. In the presence of additives, a strong correlation between PE and the total hydroxyl group concentration has been obtained, for the first time, under treatments of combining denaturing temperatures and high hydrostatic pressures. This relationship does not seem to be dependent on the nature polyhydric alcohols as the same effect could be observed with 1 M sorbitol and 2 M glycerol. This PE, against thermal and high pressure combined lipase deactivation, increases with polyhydric alcohol concentrations, and when temperature increases from 25 degrees C to 55 degrees C. PMID:16044285

  17. Uncovering the deactivation mechanism of Au catalyst with operando high spatial resolution IR and X-ray microspectroscopy measurements

    NASA Astrophysics Data System (ADS)

    Gross, Elad

    2016-06-01

    Detecting the reaction mechanism of multistep catalytic transformations is essential for optimization of these complex processes. In this study, the mechanism of catalyst deactivation within a flow reactor was studied under reaction conditions. Spectral mapping of the catalyst and the organic phase along a flow reactor were performed with micrometer-sized synchrotron-based X-ray and IR beams, respectively, with a spatial resolution of 15 μm. Heterogeneous Au catalyst was packed in a flow reactor and activated toward the cascade reaction of pyran formation. X-ray absorption microspectroscopy measurements revealed that the highly oxidized Au(III), which is the catalytically active species, was continuously reduced along the flow reactor. IR microspectroscopy measurements detected a direct correlation between the reduction of the Au catalyst and deactivation of the catalytic process. It was observed that within 1.5 mm from the reactor's inlet all the catalytic reactivity was quenched. Microspectroscopy measurements determined that the reduction of Au(III) was induced by nucleophilic attack of butanol, which is one of the reactants in this reaction. Slower deactivation rates were measured once the reactants concentration was decreased by an order of magnitude. Under these conditions the reaction path within the flow reactor was increased from 1.5 to 6 mm. These results demonstrate the molecular level understanding of reaction mechanism which can be achieved by high spatial resolution microspectroscopy measurements.

  18. Deactivation and cleanout of the 308 Fuels Laboratory and the 232-Z Incinerator at the Hanford site

    SciTech Connect

    Gerber, M.S.; Bliss, R.J.

    1994-12-01

    This paper describes the deactivation and source term reduction activities conducted over the recent past in two plutonium-contaminated Hanford Site buildings: the 308 Fuels Development Laboratory and the 232-Z Incinerator. Both of these facilities belong to the U.S. Department of Energy, and the projects are unique success stories carried out in direct support of EM-60 functions and requirements. In both cases the buildings, for different reasons, contained unacceptable amounts of plutonium, and were stabilized and placed in a safe, pre-D&D (decontamination and decommissioning) mode. The concept of deactivation as the last step in the operating life of a facility will be discussed. The need for and requirements of EM-60 transition between operations and D&D, the costs savings, techniques, regulations and lessons learned also will be discussed. This paper describes the strategies that led to successful source term reduction: accurate characterization, cooperation among different divisions within DOE and the Hanford Site, attention to regulations (especially unique in this case since the 232-Z Incinerator has been nominated as a Historic Structure to the National Register of Historic Places), and stakeholder concerns involving the proximity of the 308 Building to the Columbia River. The paper also weaves in the history, missions, and plutonium accumulation of the two buildings. The lessons learned are cogent to many other present and future deactivation activities across the DOE complex and indeed across the world.

  19. Ligand-specific Deactivation Time Course of GluN1/GluN2D NMDA Receptors

    SciTech Connect

    K Vance; N Simorowski; S Traynelis; H Furukawa

    2011-12-31

    N-methyl-D-aspartate (NMDA) receptors belong to the family of ionotropic glutamate receptors that mediate a majority of excitatory synaptic transmission. One unique property of GluN1/GluN2D NMDA receptors is an unusually prolonged deactivation time course following the removal of L-glutamate. Here we show, using x-ray crystallography and electrophysiology, that the deactivation time course of GluN1/GluN2D receptors is influenced by the conformational variability of the ligand-binding domain (LBD) as well as the structure of the activating ligand. L-glutamate and L-CCG-IV induce significantly slower deactivation time courses compared with other agonists. Crystal structures of the isolated GluN2D LBD in complex with various ligands reveal that the binding of L-glutamate induces a unique conformation at the backside of the ligand-binding site in proximity to the region at which the transmembrane domain would be located in the intact receptors. These data suggest that the activity of the GluN1/GluN2D NMDA receptor is controlled distinctively by the endogenous neurotransmitter L-glutamate.

  20. Selective deactivation of gibberellins below the shoot apex is critical to flowering but not to stem elongation of Lolium.

    PubMed

    King, Rod W; Mander, Lewis N; Asp, Torben; MacMillan, Colleen P; Blundell, Cheryl A; Evans, Lloyd T

    2008-03-01

    Gibberellins (GAs) cause dramatic increases in plant height and a genetic block in the synthesis of GA(1) explains the dwarfing of Mendel's pea. For flowering, it is GA(5) which is important in the long-day (LD) responsive grass, Lolium. As we show here, GA(1) and GA(4) are restricted in their effectiveness for flowering because they are deactivated by C-2 hydroxylation below the shoot apex. In contrast, GA(5) is effective because of its structural protection at C-2. Excised vegetative shoot tips rapidly degrade [14C]GA(1), [14C]GA(4), and [14C]GA(20) (>80% in 6 h), but not [14C]GA(5). Coincidentally, genes encoding two 2beta-oxidases and a putative 16-17-epoxidase were most expressed just below the shoot apex (<3 mm). Further down the immature stem (>4 mm), expression of these GA deactivation genes is reduced, so allowing GA(1) and GA(4) to promote sub-apical stem elongation. Subsequently, GA degradation declines in florally induced shoot tips and these GAs can become active for floral development. Structural changes which stabilize GA(4) confirm the link between florigenicity and restricted GA 2beta-hydroxylation (e.g. 2alpha-hydroxylation and C-2 di-methylation). Additionally, a 2-oxidase inhibitor (Trinexapac Ethyl) enhanced the activity of applied GA(4), as did limiting C-16,17 epoxidation in 16,17-dihydro GAs or after C-13 hydroxylation. Overall, deactivation of GA(1) and GA(4) just below the shoot apex effectively restricts their florigenicity in Lolium and, conversely, with GA(5), C-2 and C-13 protection against deactivation allows its high florigenicity. Speculatively, such differences in GA access to the shoot apex of grasses may be important for separating floral induction from inflorescence emergence and thus could influence their survival under conditions of herbivore predation. PMID:19825541

  1. Randomised clinical trial of the effects of prolonged-release melatonin, temazepam and zolpidem on slow-wave activity during sleep in healthy people.

    PubMed

    Arbon, Emma L; Knurowska, Malgorzata; Dijk, Derk-Jan

    2015-07-01

    Current pharmacological treatments for insomnia include benzodiazepine and non-benzodiazepine hypnotics targeting γ-aminobutyric acid (GABA)A receptors, as well as agonists of the melatonin receptors MT1 and MT2. Melatonin, temazepam and zolpidem are thought to exert their effect through different mechanisms of action, but whether this leads to differential effects on electroencephalogram (EEG) power spectra during sleep in middle-aged people is currently not known. To establish whether the effects of prolonged-release melatonin (2 mg) on the nocturnal sleep EEG are different to those of temazepam (20 mg) and zolpidem (10 mg). Sixteen healthy men and women aged 55-64 years participated in a double-blind, placebo-controlled, four-way cross-over trial. Nocturnal sleep was assessed with polysomnography and spectral analysis of the EEG. The effects of single oral doses of prolonged-release melatonin, temazepam and zolpidem on EEG slow-wave activity (SWA, 0.75-4.5 Hz) and other frequencies during nocturnal non-rapid eye movement (NREM) sleep were compared. In an entire night analysis prolonged-release melatonin did not affect SWA, whereas temazepam and zolpidem significantly reduced SWA compared with placebo. Temazepam significantly reduced SWA compared with prolonged-release melatonin. Prolonged-release melatonin only reduced SWA during the first third of the night compared with placebo. These data show that the effects of prolonged-release melatonin on the nocturnal sleep EEG are minor and are different from those of temazepam and zolpidem; this is likely due to the different mechanisms of action of the medications. PMID:25922426

  2. Slow Movements of Bio-Inspired Limbs

    NASA Astrophysics Data System (ADS)

    Babikian, Sarine; Valero-Cuevas, Francisco J.; Kanso, Eva

    2016-05-01

    Slow and accurate finger and limb movements are essential to daily activities, but the underlying mechanics is relatively unexplored. Here, we develop a mathematical framework to examine slow movements of tendon-driven limbs that are produced by modulating the tendons' stiffness parameters. Slow limb movements are driftless in the sense that movement stops when actuations stop. We demonstrate, in the context of a planar tendon-driven system representing a finger, that the control of stiffness suffices to produce stable and accurate limb postures and quasi-static (slow) transitions among them. We prove, however, that stable postures are achievable only when tendons are pretensioned, i.e., they cannot become slack. Our results further indicate that a non-smoothness in slow movements arises because the precision with which individual stiffnesses need to be altered changes substantially throughout the limb's motion.

  3. Slow Conduction in Cardiac Muscle

    PubMed Central

    Lieberman, Melvyn; Kootsey, J. Mailen; Johnson, Edward A.; Sawanobori, Tohru

    1973-01-01

    Mechanisms of slow conduction in cardiac muscle are categorized and the most likely identified. Propagating action potentials were obtained experimentally from a synthetically grown strand of cardiac muscle (around 50 μm by 30 mm) and theoretically from a one-dimensional cable model that incorporated varying axial resistance and membrane properties along its length. Action potentials propagated at about 0.3 m/s, but in some synthetic strands there were regions (approximately 100 μm in length) where the velocity decreased to 0.002 m/s. The electrophysiological behavior associated with this slow conduction was similar to that associated with slow conduction in naturally occurring cardiac muscle (notches, Wenckebach phenomena, and block). Theoretically, reasonable changes in specific membrane capacitance, membrane activity, and various changes in geometry were insufficient to account for the observed slow conduction velocities. Conduction velocities as low as 0.009 m/s, however, could be obtained by increasing the resistance (ri) of connections between the cells in the cable; velocities as low as 0.0005 m/s could be obtained by a further increase in ri made possible by a reduction in membrane activity by one-fourth, which in itself decreased conduction velocity by only a factor of 1/1.4. As a result of these findings, several of the mechanisms that have been postulated, previously, are shown to be incapable of accounting for delays such as those which occur in the synthetic strand as well as in the atrioventricular (VA) node. ImagesFIGURE 1FIGURE 2FIGURE 3FIGURE 4 PMID:4709519

  4. Deactivation of slurry phase Fischer-Tropsch catalysts

    SciTech Connect

    Gormley, R.J.; Zarochak, M.F.; Deffenbaugh, P.W.; Rao, K.R.P.M.

    1996-12-31

    The influence of the liquid medium on Fischer-Tropsch (F-T) chemistry has received only minimal attention in the literature. The focus of this investigation was to determine the impact of the liquid starting medium on syngas (H{sub 2}+CO) conversion in a 1-liter CSTR. The results of the work indicate a greater deactivation rate for the F-T reaction in heavier starting media, average carbon number {ge}48, versus a medium with an average carbon number of 28.

  5. Rupture loop annex ion exchange RLAIX vault deactivation

    SciTech Connect

    Ham, J.E.; Harris, D.L., Westinghouse Hanford

    1996-08-01

    This engineering report documents the deactivation, stabilization and final conditions of the Rupture Loop Annex Ion Exchange (RLAIX) Vault located northwest of the 309 Building`s Plutonium Recycle Test Reactor (PRTR). Twelve ion exchange columns, piping debris, and column liquid were removed from the vault, packaged and shipped for disposal. The vault walls and floor were decontaminated, and portions of the vault were painted to fix loose contamination. Process piping and drains were plugged, and the cover blocks and rain cover were installed. Upon closure,the vault was empty, stabilized, isolated.

  6. System and method of cylinder deactivation for optimal engine torque-speed map operation

    SciTech Connect

    Sujan, Vivek A; Frazier, Timothy R; Follen, Kenneth; Moon, Suk-Min

    2014-11-11

    This disclosure provides a system and method for determining cylinder deactivation in a vehicle engine to optimize fuel consumption while providing the desired or demanded power. In one aspect, data indicative of terrain variation is utilized in determining a vehicle target operating state. An optimal active cylinder distribution and corresponding fueling is determined from a recommendation from a supervisory agent monitoring the operating state of the vehicle of a subset of the total number of cylinders, and a determination as to which number of cylinders provides the optimal fuel consumption. Once the optimal cylinder number is determined, a transmission gear shift recommendation is provided in view of the determined active cylinder distribution and target operating state.

  7. “That’s Like an Act of Suicide” Patients’ Attitudes Toward Deactivation of Implantable Defibrillators

    PubMed Central

    Mehta, Davendra; Siddiqui, Saima; Teitelbaum, Ezra; Zeidman, Jessica; Singson, Magdelena; Pe, Elena; Bradley, Elizabeth H.; Morrison, R. Sean

    2007-01-01

    Objective To understand potential patient barriers to discussions about implantable cardioverter defibrillator (ICD) deactivation in patients with advanced illness. Design Qualitative focus groups. Participants Fifteen community-dwelling, ambulatory patients with ICDs assigned to focus groups based on duration of time since implantation and whether they had ever received a shock from their device. Approach A physician and a social worker used a predetermined discussion guide to moderate the groups, and each session was audiotaped and subsequently transcribed. Transcripts were analyzed using the method of constant comparison. Results No participant had ever discussed deactivation with their physician nor knew that deactivation was an option. Patients expressed a great deal of anxiety about receiving shocks from their device. Participants discussed why they needed the device and expressed desire for more information about the device; however, they would not engage in conversations about deactivating the ICD. One patient described deactivation “like an act of suicide” and all patients believed that the device was exclusively beneficial. Patients also expressed a desire to have their physician make the decision about deactivation. Conclusions None of the patients in our study knew that they might need to deactivate their ICD as their health worsens. These community-dwelling outpatients were not willing to discuss the issue of ICD deactivation and their attitudes about deactivation might impede patients from engaging in these conversations. These findings are in contrast to findings in other advance care planning research and may be related to the unique nature of the ICD. PMID:18095037

  8. Emotional and cognitive processing of narratives and individual appraisal styles: recruitment of cognitive control networks vs. modulation of deactivations

    PubMed Central

    Benelli, Enrico; Mergenthaler, Erhard; Walter, Steffen; Messina, Irene; Sambin, Marco; Buchheim, Anna; Sim, Eun J.; Viviani, Roberto

    2012-01-01

    Research in psychotherapy has shown that the frequency of use of specific classes of words (such as terms with emotional valence) in descriptions of scenes of affective relevance is a possible indicator of psychological affective functioning. Using functional magnetic resonance imaging (MRI), we investigated the neural correlates of these linguistic markers in narrative texts depicting core aspects of emotional experience in human interaction, and their modulation by individual differences in the propensity to use these markers. Emotional words activated both lateral and medial aspects of the prefrontal cortex, as in previous studies of instructed emotion regulation and in consistence with recruitment of effortful control processes. However, individual differences in the spontaneous use of emotional terms in characterizing the stimulus material were prevalently associated with modulation of the signal in the perigenual cortex, in the retrosplenial cortex and precuneus, and the anterior insula/ventrolateral prefrontal cortex. Modulation of signal by the presence of these textual markers or individual differences mostly involved areas deactivated by the main task, thus further differentiating neural correlates of these appraisal styles from those associated with effortful control. These findings are discussed in the context of reports in the literature of modulations of deactivations, which suggest their importance in orienting attention and generation of response in the presence of emotional information. These findings suggest that deactivations may play a functional role in emotional appraisal and may contribute to characterizing different appraisal styles. PMID:22936905

  9. Deactivation and regeneration of ZSM-5 zeolite in catalytic pyrolysis of plastic wastes

    SciTech Connect

    Lopez, A.

    2011-08-15

    Highlights: > Pyrolysis transforms plastic wastes in valuable liquids and gases useful as fuels or source of chemicals. > The use of ZSM-5 zeolite in pyrolysis favours the production of gases and of lighter and more aromatic liquids. > ZSM-5 zeolite is almost completely deactivated after one plastics pyrolysis experiment. > ZSM-5 zeolite used in plastic wastes pyrolysis can be regenerated by burning the deposited coke in an air stream. > Regenerated ZSM-5 recovers its activity and produces liquids and gases equivalent to those obtained with fresh catalyst. - Abstract: In this work, a study of the regeneration and reuse of ZSM-5 zeolite in the pyrolysis of a plastic mixture has been carried out in a semi-batch reactor at 440 deg. C. The results have been compared with those obtained with fresh-catalyst and in non-catalytic experiments with the same conditions. The use of fresh catalyst produces a significant change in both the pyrolysis yields and the properties of the liquids and gases obtained. Gases more rich in C3-C4 and H{sub 2} are produced, as well as lower quantities of aromatic liquids if compared with those obtained in thermal decomposition. The authors have proved that after one pyrolysis experiment the zeolite loses quite a lot of its activity, which is reflected in both the yields and the products quality; however, this deactivation was found to be reversible since after regeneration heating at 550 deg. C in oxygen atmosphere, this catalyst recovered its initial activity, generating similar products and in equivalent proportions as those obtained with fresh catalyst.

  10. Diagnosis of deactivation sources for vanadium catalysts used in SO 2 oxidation reaction and optimization of vanadium extraction from deactivated catalysts

    NASA Astrophysics Data System (ADS)

    Ksibi, Mohamed; Elaloui, Elimam; Houas, Ammar; Moussa, Noomen

    2003-12-01

    Physico-chemical analysis (X-ray, FTIR) and/or methanol oxidation reaction test were performed on fresh and deactivated vanadium catalysts used in H 2SO 4 manufacturing. It allowed the diagnosis of catalyst deactivation sources, as well as the processes of regenerating and recycling the worn out catalyst in converter. One of these processes is hydrometallurgical method. It consists in treating the deactivated catalyst with alkaline or acidic reagents and forming vanadate solution. A simple and non-costly operation of chemical attack permits the extraction of vanadium from silica in deactivated catalyst. The extracted vanadium can be used for the confection of regenerated catalysts or metallic tools. After optimization, this method can be used for industrial application.

  11. Multichannel Carotenoid Deactivation in Photosynthetic Light Harvesting as Identified by an Evolutionary Target Analysis

    PubMed Central

    Wohlleben, Wendel; Buckup, Tiago; Herek, Jennifer L.; Cogdell, Richard J.; Motzkus, Marcus

    2003-01-01

    A new channel of excitation energy deactivation in bacterial light harvesting was recently discovered, which leads to carotenoid triplet population on an ultrafast timescale. Here we show that this mechanism is also active in LH2 of Rhodopseudomonas acidophila through analysis of transient absorption data with an evolutionary target analysis. The algorithm offers flexible testing of kinetic network models with low a priori knowledge requirements. It applies universally to the simultaneous fitting of target state spectra and rate constants to time-wavelength-resolved data. Our best-fit model reproduces correctly the well-known cooling and decay behavior in the S1 band, but necessitates an additional, clearly distinct singlet state that does not exchange with S1, promotes ultrafast triplet population and participates in photosynthetic energy transfer. PMID:12829499

  12. Deactivation of excitatory neurons in the prelimbic cortex via Cdk5 promotes pain sensation and anxiety.

    PubMed

    Wang, Guo-Qiang; Cen, Cheng; Li, Chong; Cao, Shuai; Wang, Ning; Zhou, Zheng; Liu, Xue-Mei; Xu, Yu; Tian, Na-Xi; Zhang, Ying; Wang, Jun; Wang, Li-Ping; Wang, Yun

    2015-01-01

    The medial prefrontal cortex (mPFC) is implicated in processing sensory-discriminative and affective pain. Nonetheless, the underlying mechanisms are poorly understood. Here we demonstrate a role for excitatory neurons in the prelimbic cortex (PL), a sub-region of mPFC, in the regulation of pain sensation and anxiety-like behaviours. Using a chronic inflammatory pain model, we show that lesion of the PL contralateral but not ipsilateral to the inflamed paw attenuates hyperalgesia and anxiety-like behaviours in rats. Optogenetic activation of contralateral PL excitatory neurons exerts analgesic and anxiolytic effects in mice subjected to chronic pain, whereas inhibition is anxiogenic in naive mice. The intrinsic excitability of contralateral PL excitatory neurons is decreased in chronic pain rats; knocking down cyclin-dependent kinase 5 reverses this deactivation and alleviates behavioural impairments. Together, our findings provide novel insights into the role of PL excitatory neurons in the regulation of sensory and affective pain. PMID:26179626

  13. Slow slip and the transition from fast to slow fronts in the rupture of frictional interfaces

    PubMed Central

    Trømborg, Jørgen Kjoshagen; Sveinsson, Henrik Andersen; Scheibert, Julien; Thøgersen, Kjetil; Amundsen, David Skålid; Malthe-Sørenssen, Anders

    2014-01-01

    The failure of the population of microjunctions forming the frictional interface between two solids is central to fields ranging from biomechanics to seismology. This failure is mediated by the propagation along the interface of various types of rupture fronts, covering a wide range of velocities. Among them are the so-called slow fronts, which are recently discovered fronts much slower than the materials’ sound speeds. Despite intense modeling activity, the mechanisms underlying slow fronts remain elusive. Here, we introduce a multiscale model capable of reproducing both the transition from fast to slow fronts in a single rupture event and the short-time slip dynamics observed in recent experiments. We identify slow slip immediately following the arrest of a fast front as a phenomenon sufficient for the front to propagate further at a much slower pace. Whether slow fronts are actually observed is controlled both by the interfacial stresses and by the width of the local distribution of forces among microjunctions. Our results show that slow fronts are qualitatively different from faster fronts. Because the transition from fast to slow fronts is potentially as generic as slow slip, we anticipate that it might occur in the wide range of systems in which slow slip has been reported, including seismic faults. PMID:24889640

  14. Slow slip and the transition from fast to slow fronts in the rupture of frictional interfaces.

    PubMed

    Trømborg, Jørgen Kjoshagen; Sveinsson, Henrik Andersen; Scheibert, Julien; Thøgersen, Kjetil; Amundsen, David Skålid; Malthe-Sørenssen, Anders

    2014-06-17

    The failure of the population of microjunctions forming the frictional interface between two solids is central to fields ranging from biomechanics to seismology. This failure is mediated by the propagation along the interface of various types of rupture fronts, covering a wide range of velocities. Among them are the so-called slow fronts, which are recently discovered fronts much slower than the materials' sound speeds. Despite intense modeling activity, the mechanisms underlying slow fronts remain elusive. Here, we introduce a multiscale model capable of reproducing both the transition from fast to slow fronts in a single rupture event and the short-time slip dynamics observed in recent experiments. We identify slow slip immediately following the arrest of a fast front as a phenomenon sufficient for the front to propagate further at a much slower pace. Whether slow fronts are actually observed is controlled both by the interfacial stresses and by the width of the local distribution of forces among microjunctions. Our results show that slow fronts are qualitatively different from faster fronts. Because the transition from fast to slow fronts is potentially as generic as slow slip, we anticipate that it might occur in the wide range of systems in which slow slip has been reported, including seismic faults. PMID:24889640

  15. Reducing the deactivation of Ni-metal during the catalytic partial oxidation of a surrogate diesel fuel mixture

    SciTech Connect

    Haynes, Daniel J.; Campos, Andrew; Smith, Mark W.; Berry, David A.; Shekhawat, Dushyant; Spivey, James J.

    2010-09-01

    Ni catalysts are active and selective for the conversion of hydrocarbon into synthesis gas. However, conventional supported Ni catalysts rapidly deactivate at the high temperatures required for partial oxidation of diesel fuel by sintering and metal vaporization, as well as by carbon deposition and sulfur poisoning. Thus, to reduce deactivation Ni (3 wt%) was substituted into the structures of Ba-hexaaluminate (BNHA) and La–Sr–Zr pyrochlore (LSZN), and their activity was compared to a supported Ni/Al2O3 for the catalytic partial oxidation (CPOX) of a surrogate diesel fuel. Characterization by XRD showed a single phase β-alumina for the hexaaluminate, while LSZN had a pyrochlore structure with a defect SrZrO3 perovskite phase. Temperature programmed reduction experiments confirmed Ni was reducible in all catalysts. XANES results confirmed that Ni atoms were substituted into the hexaaluminate and pyrochlore structures, as spectra for each catalyst showed different coordination environments for Ni compared to a NiO standard. During CPOX activity tests (T = 900 °C and WHSV = 50,000 scc/gcat/h), the LSZN pyrochlore produced stable H2 and CO yields in the presence of 5 wt% 1-methylnaphthalene and 50 ppmw dibenzothiophene/n-tetradecane for 2 h, while both Ni/Al2O3 and BNHA catalysts were irreversibly deactivated by this mixture over the same time. Finally, activity loss was strongly linked to carbon formation.

  16. Reversible deactivation of higher-order posterior parietal areas. II. Alterations in response properties of neurons in areas 1 and 2

    PubMed Central

    Goldring, Adam B.; Cooke, Dylan F.; Baldwin, Mary K. L.; Recanzone, Gregg H.; Gordon, Adam G.; Pan, Tingrui; Simon, Scott I.

    2014-01-01

    The role that posterior parietal (PPC) and motor cortices play in modulating neural responses in somatosensory areas 1 and 2 was examined with reversible deactivation by transient cooling. Multiunit recordings from neurons in areas 1 and 2 were collected from six anesthetized adult monkeys (Macaca mulatta) before, during, and after reversible deactivation of areas 5L or 7b or motor cortex (M1/PM), while select locations on the hand and forelimb were stimulated. Response changes were quantified as increases and decreases to stimulus-driven activity relative to baseline and analyzed during three recording epochs: during deactivation (“cool”) and at two time points after deactivation (“rewarm 1,” “rewarm 2”). Although the type of response change observed was variable, for neurons at the recording sites tested >90% exhibited a significant change in response during cooling of 7b while cooling area 5L or M1/PM produced a change in 75% and 64% of sites, respectively. These results suggest that regions in the PPC, and to a lesser extent motor cortex, shape the response characteristics of neurons in areas 1 and 2 and that this kind of feedback modulation is necessary for normal somatosensory processing. Furthermore, this modulation appears to happen on a minute-by-minute basis and may serve as the substrate for phenomena such as somatosensory attention. PMID:25143537

  17. DEACTIVATION AND DECOMMISSIONING PLANNING AND ANALYSIS WITH GEOGRAPHIC INFORMATION SYSTEMS

    SciTech Connect

    Bollinger, J; William Austin, W; Larry Koffman, L

    2007-09-17

    From the mid-1950's through the 1980's, the U.S. Department of Energy's Savannah River Site produced nuclear materials for the weapons stockpile, for medical and industrial applications, and for space exploration. Although SRS has a continuing defense-related mission, the overall site mission is now oriented toward environmental restoration and management of legacy chemical and nuclear waste. With the change in mission, SRS no longer has a need for much of the infrastructure developed to support the weapons program. This excess infrastructure, which includes over 1000 facilities, will be decommissioned and demolished over the forthcoming years. Dispositioning facilities for decommissioning and deactivation requires significant resources to determine hazards, structure type, and a rough-order-of-magnitude estimate for the decommissioning and demolition cost. Geographic information systems (GIS) technology was used to help manage the process of dispositioning infrastructure and for reporting the future status of impacted facilities.

  18. A critical evaluation of migraine trigger site deactivation surgery.

    PubMed

    Mathew, Paul G

    2014-01-01

    Migraine headache trigger site deactivation surgery is a term that encompasses 4 different surgical procedures that are performed based on headache onset location for the preventative treatment of migraine headaches. Multiple studies have demonstrated some efficacy of these procedures, but closer evaluation of the methodology of these studies reveals major flaws in study design. In this article, the author provides an overview of the procedures and presurgical screening tools, as well as a critical evaluation of 2 of the major studies that have been published. In addition, the author provides his opinion on future study designs that may help to better determine the potential efficacy of these experimental procedures and potential headache subtypes (contact point headache, supraorbital neuralgia, and occipital neuralgia) that may respond to peripheral decompression surgery. PMID:24116941

  19. Commercial experience with facility deactivation to safe storage

    SciTech Connect

    Sype, T.T.; Fischer, S.R.; Lee, J.H. Jr.; Sanchez, L.C.; Ottinger, C.A.; Pirtle, G.J.

    1995-09-01

    The Department of Energy (DOE) has shutdown many production reactors; the Department has begun a major effort to also shutdown a wide variety of other nuclear facilities. Because so many facilities are being closed, it is necessary to place many of them into a safe- storage status, i.e., deactivation, before conducting decommissioning- for perhaps as long as 20 years. The challenge is to achieve this safe-storage condition in a cost-effective manner while remaining in compliance with applicable regulations. The DOE Office of Environmental Management, Office of Transition and Management, commissioned a lessons-learned study of commercial experience with safe storage and decommissioning. Although the majority of the commercial experience has been with reactors, many of the lessons learned presented in this document can provide insight into transitioning challenges that Will be faced by the DOE weapons complex.

  20. Deactivation of Escherichia coli by the plasma needle

    NASA Astrophysics Data System (ADS)

    Sladek, R. E. J.; Stoffels, E.

    2005-06-01

    In this paper we present a parameter study on deactivation of Escherichia coli (E. coli) by means of a non-thermal plasma (plasma needle). The plasma needle is a small-sized (1 mm) atmospheric glow sustained by radio-frequency excitation. This plasma will be used to disinfect heat-sensitive objects; one of the intended applications is in vivo deactivation of dental bacteria: destruction of plaque and treatment of caries. We use E. coli films plated on agar dishes as a model system to optimize the conditions for bacterial destruction. Plasma power, treatment time and needle-to-sample distance are varied. Plasma treatment of E. coli films results in formation of a bacteria-free void with a size up to 12 mm. 104-105 colony forming units are already destroyed after 10 s of treatment. Prolongation of treatment time and usage of high powers do not significantly improve the destruction efficiency: short exposure at low plasma power is sufficient. Furthermore, we study the effects of temperature increase on the survival of E. coli and compare it with thermal effects of the plasma. The population of E. coli heated in a warm water bath starts to decrease at temperatures above 40°C. Sample temperature during plasma treatment has been monitored. The temperature can reach up to 60°C at high plasma powers and short needle-to-sample distances. However, thermal effects cannot account for bacterial destruction at low power conditions. For safe and efficient in vivo disinfection, the sample temperature should be kept low. Thus, plasma power and treatment time should not exceed 150 mW and 60 s, respectively.

  1. 17 beta-(N-tert-butylcarbamoyl)-4-aza-5 alpha-androstan-1-en-3-one is an active site-directed slow time-dependent inhibitor of human steroid 5 alpha-reductase 1.

    PubMed

    Tian, G; Stuart, J D; Moss, M L; Domanico, P L; Bramson, H N; Patel, I R; Kadwell, S H; Overton, L K; Kost, T A; Mook, R A

    1994-03-01

    17 beta-(N-tert-butylcarbamoyl)-4-aza-5 alpha-androstan-1-en-3-one (finasteride), which has been approved for treatment of benign prostatic hyperplasia, is shown here to be a slow time-dependent inhibitor of human steroid 5 alpha-reductase isozyme 1. This inhibition is characterized by an initial, fast step where the inhibitor binds to the enzyme followed by a slow step that leads to a final enzyme-inhibitor complex (EI*). No recovery of activity from this EI* complex was observed after dialysis for 3 days. The formation of EI* is diminished in the presence of a competitive, reversible inhibitor, indicating that the inhibition is active site-directed. At 37 degrees C and pH 7.0, the rate constant for the second, slow inhibition step, k3, is (1.40 +/- 0.04) x 10(-3) s-1 and the pseudo-bimolecular rate constant, k3/Ki, is (4.0 +/- 0.3) x 10(3) M-1 s-1. This latter rate constant is less than the value of 2.7 x 10(5) M-1 s-1 determined for the inhibition of 5 alpha-reductase 2 by finasteride [Faller, B., Farley, D., & Nick, H. (1993) Biochemistry 32, 5705-5710].(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8117686

  2. DEACTIVATION AND DECOMMISSIONING ENVIRONMENTAL STRATEGY FOR THE PLUTONIUM FINISHING PLANT COMPLEX, HANFORD NUCLEAR RESERVATION

    SciTech Connect

    Hopkins, A.M.; Heineman, R.; Norton, S.; Miller, M.; Oates, L.

    2003-02-27

    Maintaining compliance with environmental regulatory requirements is a significant priority in successful completion of the Plutonium Finishing Plant (PFP) Nuclear Material Stabilization (NMS) Project. To ensure regulatory compliance throughout the deactivation and decommissioning of the PFP complex, an environmental regulatory strategy was developed. The overall goal of this strategy is to comply with all applicable environmental laws and regulations and/or compliance agreements during PFP stabilization, deactivation, and eventual dismantlement. Significant environmental drivers for the PFP Nuclear Material Stabilization Project include the Tri-Party Agreement; the Resource Conservation and Recovery Act of 1976 (RCRA); the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA); the National Environmental Policy Act of 1969 (NEPA); the National Historic Preservation Act (NHPA); the Clean Air Act (CAA), and the Clean Water Act (CWA). Recent TPA negotiation s with Ecology and EPA have resulted in milestones that support the use of CERCLA as the primary statutory framework for decommissioning PFP. Milestones have been negotiated to support the preparation of Engineering Evaluations/Cost Analyses for decommissioning major PFP buildings. Specifically, CERCLA EE/CA(s) are anticipated for the following scopes of work: Settling Tank 241-Z-361, the 232-Z Incinerator, , the process facilities (eg, 234-5Z, 242, 236) and the process facility support buildings. These CERCLA EE/CA(s) are for the purpose of analyzing the appropriateness of the slab-on-grade endpoint Additionally, agreement was reached on performing an evaluation of actions necessary to address below-grade structures or other structures remaining after completion of the decommissioning of PFP. Remaining CERCLA actions will be integrated with other Central Plateau activities at the Hanford site.

  3. Compensatory Effort Parallels Midbrain Deactivation during Mental Fatigue: An fMRI Study

    PubMed Central

    Nakagawa, Seishu; Sugiura, Motoaki; Akitsuki, Yuko; Hosseini, S. M. Hadi; Kotozaki, Yuka; Miyauchi, Carlos Makoto; Yomogida, Yukihito; Yokoyama, Ryoichi; Takeuchi, Hikaru; Kawashima, Ryuta

    2013-01-01

    Fatigue reflects the functioning of our physiological negative feedback system, which prevents us from overworking. When fatigued, however, we often try to suppress this system in an effort to compensate for the resulting deterioration in performance. Previous studies have suggested that the effect of fatigue on neurovascular demand may be influenced by this compensatory effort. The primary goal of the present study was to isolate the effect of compensatory effort on neurovascular demand. Healthy male volunteers participated in a series of visual and auditory divided attention tasks that steadily increased fatigue levels for 2 hours. Functional magnetic resonance imaging scans were performed during the first and last quarter of the study (Pre and Post sessions, respectively). Tasks with low and high attentional load (Low and High conditions, respectively) were administrated in alternating blocks. We assumed that compensatory effort would be greater under the High-attentional-load condition compared with the Low-load condition. The difference was assessed during the two sessions. The effect of compensatory effort on neurovascular demand was evaluated by examining the interaction between load (High vs. Low) and time (Pre vs. Post). Significant fatigue-induced deactivation (i.e., Pre>Post) was observed in the frontal, temporal, occipital, and parietal cortices, in the cerebellum, and in the midbrain in both the High and Low conditions. The interaction was significantly greater in the High than in the Low condition in the midbrain. Neither significant fatigue-induced activation (i.e., Predeactivation ([PreH – PostH]>[PreE– PostE]) may reflect suppression of the negative feedback system that normally triggers recuperative rest to maintain homeostasis. PMID:23457592

  4. Go, Slow, and Whoa Foods

    MedlinePlus

    ... quick tips for seasonal health, safety and fun Go, Slow, and Whoa Foods Past Issues / Summer 2007 ... of California and Flaghouse, Inc. 2002 Food Group GO Almost anytime foods SLOW Sometimes foods WHOA Once ...

  5. Effect of Au nano-particle aggregation on the deactivation of the AuCl3/AC catalyst for acetylene hydrochlorination.

    PubMed

    Dai, Bin; Wang, Qinqin; Yu, Feng; Zhu, Mingyuan

    2015-01-01

    A detailed study of the valence state and distribution of the AuCl3/AC catalyst during the acetylene hydrochlorination deactivation process is described and discussed. Temperature-programmed reduction and X-ray photoelectron spectral analysis indicate that the active Au(3+) reduction to metallic Au(0) is one reason for the deactivation of AuCl3/AC catalyst. Transmission electron microscopy characterization demonstrated that the particle size of Au nano-particles increases with increasing reaction time. The results indicated that metallic Au(0) exhibits considerable catalytic activity and that Au nano-particle aggregation may be another reason for the AuCl3/AC catalytic activity in acetylene hydrochlorination. PMID:25994222

  6. Effect of Au nano-particle aggregation on the deactivation of the AuCl3/AC catalyst for acetylene hydrochlorination

    PubMed Central

    Dai, Bin; Wang, Qinqin; Yu, Feng; Zhu, Mingyuan

    2015-01-01

    A detailed study of the valence state and distribution of the AuCl3/AC catalyst during the acetylene hydrochlorination deactivation process is described and discussed. Temperature-programmed reduction and X-ray photoelectron spectral analysis indicate that the active Au3+ reduction to metallic Au0 is one reason for the deactivation of AuCl3/AC catalyst. Transmission electron microscopy characterization demonstrated that the particle size of Au nano-particles increases with increasing reaction time. The results indicated that metallic Au0 exhibits considerable catalytic activity and that Au nano-particle aggregation may be another reason for the AuCl3/AC catalytic activity in acetylene hydrochlorination. PMID:25994222

  7. Slow Transit Constipation.

    PubMed

    Wald, Arnold

    2002-08-01

    The diagnosis of slow transit functional constipation is based upon diagnostic testing of patients with idiopathic constipation who responded poorly to conservative measures such as fiber supplements, fluids, and stimulant laxatives. These tests include barium enema or colonoscopy, colonic transit of radio-opaque markers, anorectal manometry, and expulsion of a water-filled balloon. Plain abdominal films can identify megacolon, which can be further characterized by barium or gastrografin studies. Colonic transit of radio-opaque markers identifies patients with slow transit with stasis of markers in the proximal colon. However, anorectal function should be characterized to exclude outlet dysfunction, which may coexist with colonic inertia. Because slow colonic transit is defined by studies during which patients consume a high-fiber diet, fiber supplements are generally not effective, nor are osmotic laxatives that consist of unabsorbed sugars. Stimulant laxatives are considered first-line therapy, although studies often show a diminished colonic motor response to such agents. There is no evidence to suggest that chronic use of such laxatives is harmful if they are used two to three times per week. Polyethylene glycol with or without electrolytes may be useful in a minority of patients, often combined with misoprostol. I prefer to start with misoprostol 200 mg every other morning and increase to tolerance or efficacy. I see no advantage in prescribing misoprostol on a TID or QID basis or even daily because it increases cramping unnecessarily. This drug is not acceptable in young women who wish to become pregnant. An alternative may be colchicine, which is reported to be effective when given as 0.6 mg TID. Long-term efficacy has not been studied. Finally, biofeedback is a risk-free approach that has been reported as effective in approximately 60% of patients with slow transit constipation in the absence of outlet dysfunction. Although difficult to understand

  8. Implementation of a Peltier-based cooling device for localized deep cortical deactivation during in vivo object recognition testing

    NASA Astrophysics Data System (ADS)

    Marra, Kyle; Graham, Brett; Carouso, Samantha; Cox, David

    2012-02-01

    While the application of local cortical cooling has recently become a focus of neurological research, extended localized deactivation deep within brain structures is still unexplored. Using a wirelessly controlled thermoelectric (Peltier) device and water-based heat sink, we have achieved inactivating temperatures (<20 C) at greater depths (>8 mm) than previously reported. After implanting the device into Long Evans rats' basolateral amygdala (BLA), an inhibitory brain center that controls anxiety and fear, we ran an open field test during which anxiety-driven behavioral tendencies were observed to decrease during cooling, thus confirming the device's effect on behavior. Our device will next be implanted in the rats' temporal association cortex (TeA) and recordings from our signal-tracing multichannel microelectrodes will measure and compare activated and deactivated neuronal activity so as to isolate and study the TeA signals responsible for object recognition. Having already achieved a top performing computational face-recognition system, the lab will utilize this TeA activity data to generalize its computational efforts of face recognition to achieve general object recognition.

  9. Silica supported palladium nanoparticles for the decarboxylation of high-acid feedstocks: Design, deactivation and regeneration

    NASA Astrophysics Data System (ADS)

    Ping, Eric Wayne

    2011-12-01

    The major goals of this thesis were to (1) design and synthesize a supported catalyst with well-defined monodisperse palladium nanoparticles evenly distributed throughout an inorganic oxide substrate with tunable porosity characteristics, (2) demonstrate the catalytic activity of this material in the decarboxylation of long chain fatty acids and their derivatives to make diesel-length hydrocarbons, (3) elucidate the deactivation mechanism of supported palladium catalysts under decarboxylation conditions via post mortem catalyst characterization and develop a regeneration methodology thereupon, and (4) apply this catalytic system to a real low-value biofeedstock. Initial catalyst designs were based on the SBA-15 silica support, but in an effort to maximize loading and minimize mass transfer limitations, silica MCF was synthesized as catalyst support. Functionalization with various silane ligands yielded a surface that facilitated even distribution of palladium precursor salts throughout the catalyst particle, and, after reduction, monodisperse palladium nanoparticles approximately 2 nm in diameter. Complete characterization was performed on this Pd-MCF catalyst. The Pd-MCF catalyst showed high one-time activity in the decarboxylation of fatty acids to hydrocarbons in dodecane at 300°C. Hydrogen was found to be an unnecessary reactant in the absence of unsaturations, but was required in their presence---full hydrogenation of the double bonds occurs before any decarboxylation can take place. The Pd-MCF also exhibited good activity for alkyl esters and glycerol, providing a nice hypothetical description of a stepwise reaction pathway for catalytic decarboxylation of acids and their derivatives. As expected, the Pd-MCF catalyst experienced severe deactivation after only one use. Substantial effort was put into elucidating the nature of this deactivation via post mortem catalyst characterization. H2 chemisorption confirmed a loss of active surface area, but TEM and

  10. Slow Scan Telemedicine

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Originally developed under contract for NASA by Ball Bros. Research Corporation for acquiring visual information from lunar and planetary spacecraft, system uses standard closed circuit camera connected to a device called a scan converter, which slows the stream of images to match an audio circuit, such as a telephone line. Transmitted to its destination, the image is reconverted by another scan converter and displayed on a monitor. In addition to assist scans, technique allows transmission of x-rays, nuclear scans, ultrasonic imagery, thermograms, electrocardiograms or live views of patient. Also allows conferencing and consultation among medical centers, general practitioners, specialists and disease control centers. Commercialized by Colorado Video, Inc., major employment is in business and industry for teleconferencing, cable TV news, transmission of scientific/engineering data, security, information retrieval, insurance claim adjustment, instructional programs, and remote viewing of advertising layouts, real estate, construction sites or products.

  11. Properties of slow oscillation during slow-wave sleep and anesthesia in cats.

    PubMed

    Chauvette, Sylvain; Crochet, Sylvain; Volgushev, Maxim; Timofeev, Igor

    2011-10-19

    Deep anesthesia is commonly used as a model of slow-wave sleep (SWS). Ketamine-xylazine anesthesia reproduces the main features of sleep slow oscillation: slow, large-amplitude waves in field potential, which are generated by the alternation of hyperpolarized and depolarized states of cortical neurons. However, direct quantitative comparison of field potential and membrane potential fluctuations during natural sleep and anesthesia is lacking, so it remains unclear how well the properties of sleep slow oscillation are reproduced by the ketamine-xylazine anesthesia model. Here, we used field potential and intracellular recordings in different cortical areas in the cat to directly compare properties of slow oscillation during natural sleep and ketamine-xylazine anesthesia. During SWS cortical activity showed higher power in the slow/delta (0.1-4 Hz) and spindle (8-14 Hz) frequency range, whereas under anesthesia the power in the gamma band (30-100 Hz) was higher. During anesthesia, slow waves were more rhythmic and more synchronous across the cortex. Intracellular recordings revealed that silent states were longer and the amplitude of membrane potential around transition between active and silent states was bigger under anesthesia. Slow waves were mostly uniform across cortical areas under anesthesia, but in SWS, they were most pronounced in associative and visual areas but smaller and less regular in somatosensory and motor cortices. We conclude that, although the main features of the slow oscillation in sleep and anesthesia appear similar, multiple cellular and network features are differently expressed during natural SWS compared with ketamine-xylazine anesthesia. PMID:22016533

  12. Helium POT System for Maintaining Sample Temperature after Cryocooler Deactivation

    NASA Astrophysics Data System (ADS)

    Haid, B. J.

    2006-04-01

    A system for maintaining a sample at a constant temperature below 10 K after deactivating the cooling source is demonstrated. In this system, the cooling source is a 4 K GM cryocooler that is joined with the sample through an extension that consists of a helium pot and a thermal resistance. Upon stopping the cryocooler, the power applied to a heater located on the sample side of the thermal resistance is decreased gradually to maintain an appropriate temperature rise across the thermal resistance as the helium pot warms. The sample temperature is held constant in this manner without the use of solid or liquid cryogens and without mechanically disconnecting the sample from the cooler. Shutting off the cryocooler significantly reduces sample motion that results from vibration and expansion/contraction of the cold-head housing. The reduction in motion permits certain procedures that are very sensitive to sample position stability, but are performed with limited duration. A proof-of-concept system was built and operated with the helium pot pressurized to the cryocooler's charge pressure. A sample with 200 mW of continuous heat dissipation was maintained at 7 K while the cryocooler operated intermittently with a duty cycle of 9.5 minutes off and 20 minutes on.

  13. The effect of feedstock additives on FCC catalyst deactivation

    SciTech Connect

    Hughes, R.; Koon, C.L.; McGhee, B.

    1995-12-31

    Fluid catalytic cracking is a major petroleum refining process and because of this the deactivation of FCC catalysts by coke deposition has been the subject of considerable investigation during the past 50 years. Nevertheless, a lack of understanding of the fundamental understanding of processes leading to coke formation still exists. Basic studies using Zeolites have usually involved excessively high levels of coke deposits compared to normal FCC operation. The present study addresses coke formation at realistic levels of 0.5 to 1.0% w/w using a standard MAT reactor in which concentrations of 1% and 10% of various additives were added to the n-hexadecane feedstock. These additives included, quinoline, phenanthrene, benzofuran, thianaphthene and indene. The coke formed was characterised by mass spectrometry and was significantly aliphatic in nature, the amount formed increasing in the order quinoline, phenanthrene, thianaphthene, benzofuran, indene. Quinoline acts primarily as a poison, whereas the other additives tend to promote coke formation in n-hexadecane cracking.

  14. Integrated Project Management Planning for the Deactivation of the Savannah River Site F-Canyon Complex

    SciTech Connect

    Clark, T.G.

    2000-12-01

    This paper explains the planning process that is being utilized by the Westinghouse Savannah River Company to take the F-Canyon Complex facilities from operations to a deactivated condition awaiting final decommissioning.

  15. Deactivation and decommissioning environmental strategy for the Plutonium Finishing Plant (PFP) Complex Hanford Nuclear Reservation

    SciTech Connect

    HOPKINS, A.M.

    2003-02-01

    The overall goal of this strategy is to comply with all applicable environmental laws and regulations and/or compliance agreements during Plutonium Finishing Plant (PFP) stabilization, deactivation, and eventual dismantlement.

  16. Charge separation technique for metal-oxide-silicon capacitors in the presence of hydrogen deactivated dopants

    SciTech Connect

    Witczak, Steven C.; Winokur, Peter S.; Lacoe, Ronald C.; Mayer, Donald C.

    2000-06-01

    An improved charge separation technique for metal-oxide-silicon (MOS) capacitors is presented which accounts for the deactivation of substrate dopants by hydrogen at elevated irradiation temperatures or small irradiation biases. Using high-frequency capacitance-voltage measurements, radiation-induced inversion voltage shifts are separated into components due to oxide trapped charge, interface traps, and deactivated dopants, where the latter is computed from a reduction in Si capacitance. In the limit of no radiation-induced dopant deactivation, this approach reduces to the standard midgap charge separation technique used widely for the analysis of room-temperature irradiations. The technique is demonstrated on a p-type MOS capacitor irradiated with {sup 60}Co {gamma} rays at 100 degree sign C and zero bias, where the dopant deactivation is significant.(c) 2000 American Institute of Physics.

  17. On the nature of the deactivation of supported palladium nanoparticle catalysts in the decarboxylation of fatty acids.

    SciTech Connect

    Ping, E. W.; Pierson, J.; Wallace, R.; Miller, J. T.; Fuller, T. F.; Jones, C. W.

    2011-04-15

    Supported palladium catalysts are effective catalysts for the hydrogen-free decarboxylation of fatty acids. However, the catalysts deactivate severely after one use. Here, the recyclability of a well-defined, mesoporous silica-supported palladium nanoparticle catalyst is evaluated in the batch decarboxylation of stearic acid at 300 C under inert atmosphere, producing n-heptadecane. The nature of the catalyst deactivation is examined in detail via an array of characterization techniques. X-ray photoelectron spectroscopy (XPS) demonstrates that little palladium surface oxidation occurs over the course of the reaction, and a combination of X-ray absorption spectroscopy and transmission electron microscopy (TEM) suggests negligible particle sintering or agglomeration. Physisorption and chemisorption measurements demonstrate substantial loss in total surface area and porosity as well as accessible palladium surface area with these losses attributed to significant organic deposition on the catalyst, as verified via thermogravimetric analysis. High temperature calcination is applied to combust and remove these residues, but resultant nanoparticle agglomeration is significant. Solid state nuclear magnetic resonance spectroscopy (NMR), Fourier transform infrared spectroscopy (FT-IR) and solid dissolution followed by organic extraction methodologies demonstrate that the carbonaceous deposits are not coke but rather strongly adsorbed reactants and products. Detrimental coke formation, as suggested by prior literature, is verified to be absent, as extraction of the surface-deposited organic species yields nearly complete recovery of the total surface area, pore volume, and active palladium surface area. Furthermore, the regenerated catalyst exhibits a corresponding significant recovery of decarboxylation activity.

  18. Utilization of photocatalytic ZnO nanoparticles for deactivation of safranine dye and their applications for statistical analysis

    NASA Astrophysics Data System (ADS)

    Wahab, Rizwan; Khan, Farheen; Lutfullah; Singh, R. B.; Kaushik, Nagendra Kumar; Ahmad, Javed; Siddiqui, Maqsood A.; Saquib, Quaiser; Ali, Bahy A.; Khan, Shams T.; Musarrat, Javed; Al-Khedhairy, Abdulaziz A.

    2015-05-01

    A soft chemical solution process was used in synthesis of photocatalytic zinc oxide nanoparticles (ZnO-PNPs) at low temperature. The synthesized PNPs were characterized in terms of their crystallinity, morphological, catalytic, spectroscopic and statistical analysis techniques. X-ray powder diffraction patterns (XRD) were used to know the crystalline property of the prepared materials whereas field emission electronic microscopy (FESEM) was employed to observe the morphology of grown NPs. UV-visible spectroscopy was employed to analyze the absorbance of degraded safranine (SA) dye in presence of NPs at desired time interval. Parameters of statistical analysis give necessary information for established analytical procedures to ensure quality and purity of results. With the help of this analytical method, outcomes were calculated in terms of absorbance such as standard deviation (SD), relative standard deviation (RSD), etc. at 95% confidence level. The photocatalytic deactivation/degradation process significantly enhanced the activity of ZnO-PNPs under UV-visible light in presence of SA dye. The effective concentration of used PNPs was optimized and validated via standard analytical procedure, which exhibited greater significance on deactivation process. The absorption spectra of photocatalyzed solution and activity of ZnO-PNPs were compared with those of pure ZnO, obtained by UV-visible spectroscopy.

  19. PLUTONIUM FINISHING PLANT (PFP) 241-Z LIQUID WASTE TREATMENT FACILITY DEACTIVATION AND DEMOLITION

    SciTech Connect

    JOHNSTON GA

    2008-01-15

    Fluor Hanford, Inc. (FH) is proud to submit the Plutonium Finishing Plant (PFP) 241-Z liquid Waste Treatment Facility Deactivation and Demolition (D&D) Project for consideration by the Project Management Institute as Project of the Year for 2008. The decommissioning of the 241-Z Facility presented numerous challenges, many of which were unique with in the Department of Energy (DOE) Complex. The majority of the project budget and schedule was allocated for cleaning out five below-grade tank vaults. These highly contaminated, confined spaces also presented significant industrial safety hazards that presented some of the most hazardous work environments on the Hanford Site. The 241-Z D&D Project encompassed diverse tasks: cleaning out and stabilizing five below-grade tank vaults (also called cells), manually size-reducing and removing over three tons of process piping from the vaults, permanently isolating service utilities, removing a large contaminated chemical supply tank, stabilizing and removing plutonium-contaminated ventilation ducts, demolishing three structures to grade, and installing an environmental barrier on the demolition site . All of this work was performed safely, on schedule, and under budget. During the deactivation phase of the project between November 2005 and February 2007, workers entered the highly contaminated confined-space tank vaults 428 times. Each entry (or 'dive') involved an average of three workers, thus equaling approximately 1,300 individual confined -space entries. Over the course of the entire deactivation and demolition period, there were no recordable injuries and only one minor reportable skin contamination. The 241-Z D&D Project was decommissioned under the provisions of the 'Hanford Federal Facility Agreement and Consent Order' (the Tri-Party Agreement or TPA), the 'Resource Conservation and Recovery Act of 1976' (RCRA), and the 'Comprehensive Environmental Response, Compensation, and Liability Act of 1980' (CERCLA). The

  20. Patient perceptions of implantable cardioverter-defibrillator deactivation discussions: A qualitative study

    PubMed Central

    MacIver, Jane; Tibbles, Alana; Billia, Filio; Ross, Heather

    2016-01-01

    Background: There is a class I recommendation for implantable cardioverter-defibrillator deactivation discussions to occur between physicians and heart failure patients. Few studies have reported the patient’s perspective on the timing of implantable cardioverter-defibrillator deactivation discussions. Aim: To determine patient awareness, preferences and timing of implantable cardioverter-defibrillator deactivation discussions. Design: Grounded theory was used to collect and analyze interview data from 25 heart failure patients with an implantable cardioverter-defibrillator. Setting and participants: Patients with an implantable cardioverter-defibrillator, from the Heart Function Clinic at University Health Network (Toronto, Canada). Results: The sample (n = 25) was predominately male (76%) with an average age of 62 years. Patients identified three stages where they felt implantable cardioverter-defibrillator deactivation should be discussed: (1) prior to implantation, (2) with any significant deterioration but while they were of sound mind to engage in and communicate their preferences and (3) at end of life, where patients wished further review of their previously established preferences and decisions about implantable cardioverter-defibrillator deactivation. Most patients (n = 17, 68%) said they would consider deactivation, six (24%) were undecided and two (8%) were adamant they would never turn it off. Conclusion: The patient preferences identified in this study support the need to include information on implantable cardioverter-defibrillator deactivation at implant, with change in clinical status and within broader discussions about end-of-life treatment preferences. Using this process to help patients determine and communicate their implantable cardioverter-defibrillator deactivation preferences may reduce the number of patients experiencing distressing implantable cardioverter-defibrillator shocks at end of life. PMID:27110361

  1. Regional Slow Waves and Spindles in Human Sleep

    PubMed Central

    Nir, Yuval; Staba, Richard J.; Andrillon, Thomas; Vyazovskiy, Vladyslav V.; Cirelli, Chiara; Fried, Itzhak; Tononi, Giulio

    2011-01-01

    SUMMARY The most prominent EEG events in sleep are slow waves, reflecting a slow (<1 Hz) oscillation between up and down states in cortical neurons. It is unknown whether slow oscillations are synchronous across the majority or the minority of brain regions—are they a global or local phenomenon? To examine this, we recorded simultaneously scalp EEG, intracerebral EEG, and unit firing in multiple brain regions of neurosurgical patients. We find that most sleep slow waves and the underlying active and inactive neuronal states occur locally. Thus, especially in late sleep, some regions can be active while others are silent. We also find that slow waves can propagate, usually from medial prefrontal cortex to the medial temporal lobe and hippocampus. Sleep spindles, the other hallmark of NREM sleep EEG, are likewise predominantly local. Thus, intracerebral communication during sleep is constrained because slow and spindle oscillations often occur out-of-phase in different brain regions. PMID:21482364

  2. Small molecule PZL318: forming fluorescent nanoparticles capable of tracing their interactions with cancer cells and activated platelets, slowing tumor growth and inhibiting thrombosis

    PubMed Central

    Li, Shan; Wang, Yuji; Wang, Feng; Wang, Yaonan; Zhang, Xiaoyi; Zhao, Ming; Feng, Qiqi; Wu, Jianhui; Zhao, Shurui; Wu, Wei; Peng, Shiqi

    2015-01-01

    Low selectivity of chemotherapy correlates with poor outcomes of cancer patients. To improve this issue, a novel agent, N-(1-[3-methoxycarbonyl-4-hydroxyphenyl]-β-carboline-3-carbonyl)-Trp-Lys-OBzl (PZL318), was reported here. The transmission electron microscopy, scanning electron microscopy, and atomic force microscopy images demonstrated that PZL318 can form nanoparticles. Fluorescent and confocal images visualized that PZL318 formed fluorescent nanoparticles capable of targeting cancer cells and tracing their interactions with cancer cells. In vitro, 40 μM of PZL318 inhibited the proliferation of tumorigenic cells, but not nontumorigenic cells. In vivo, 10 nmol/kg of PZL318 slowed the tumor growth of S180 mice and alleviated the thrombosis of ferric chloride-treated ICR mice, while 100 μmol/kg of PZL318 did not injure healthy mice and they exhibited no liver toxicity. By analyzing Fourier transform–mass spectrometry and rotating-frame Overhauser spectroscopy (ROESY) two-dimensional nuclear magnetic resonance spectra, the chemical mechanism of PZL318-forming trimers and nanoparticles was explored. By using mesoscale simulation, a nanoparticle of 3.01 nm in diameter was predicted containing 13 trimers. Scavenging free radicals, downregulating sP-selectin expression and intercalating toward DNA were correlated with the antitumor mechanism of PZL318. PMID:26345234

  3. Small molecule PZL318: forming fluorescent nanoparticles capable of tracing their interactions with cancer cells and activated platelets, slowing tumor growth and inhibiting thrombosis.

    PubMed

    Li, Shan; Wang, Yuji; Wang, Feng; Wang, Yaonan; Zhang, Xiaoyi; Zhao, Ming; Feng, Qiqi; Wu, Jianhui; Zhao, Shurui; Wu, Wei; Peng, Shiqi

    2015-01-01

    Low selectivity of chemotherapy correlates with poor outcomes of cancer patients. To improve this issue, a novel agent, N-(1-[3-methoxycarbonyl-4-hydroxyphenyl]-β-carboline-3-carbonyl)-Trp-Lys-OBzl (PZL318), was reported here. The transmission electron microscopy, scanning electron microscopy, and atomic force microscopy images demonstrated that PZL318 can form nanoparticles. Fluorescent and confocal images visualized that PZL318 formed fluorescent nanoparticles capable of targeting cancer cells and tracing their interactions with cancer cells. In vitro, 40 μM of PZL318 inhibited the proliferation of tumorigenic cells, but not nontumorigenic cells. In vivo, 10 nmol/kg of PZL318 slowed the tumor growth of S180 mice and alleviated the thrombosis of ferric chloride-treated ICR mice, while 100 μmol/kg of PZL318 did not injure healthy mice and they exhibited no liver toxicity. By analyzing Fourier transform-mass spectrometry and rotating-frame Overhauser spectroscopy (ROESY) two-dimensional nuclear magnetic resonance spectra, the chemical mechanism of PZL318-forming trimers and nanoparticles was explored. By using mesoscale simulation, a nanoparticle of 3.01 nm in diameter was predicted containing 13 trimers. Scavenging free radicals, downregulating sP-selectin expression and intercalating toward DNA were correlated with the antitumor mechanism of PZL318. PMID:26345234

  4. Slow frictional waves

    NASA Astrophysics Data System (ADS)

    Viswanathan, Koushik; Sundaram, Narayan; Chandrasekar, Srinivasan

    Stick-slip, manifest as intermittent tangential motion between two dry solid surfaces, is a friction instability that governs diverse phenomena from automobile brake squeals to earthquakes. We show, using high-speed in situ imaging of an adhesive polymer interface, that low velocity stick-slip is fundamentally of three kinds, corresponding to passage of three different surface waves -- separation pulses, slip pulses and the well-known Schallamach waves. These waves, traveling much slower than elastic waves, have clear distinguishing properties. Separation pulses and Schallamach waves involve local interface separation, and propagate in opposite directions while slip pulses are characterized by a sharp stress front and do not display any interface detachment. A change in the stick-slip mode from separation to slip pulse is effected simply by increasing the normal force. Together, these three waves constitute all possible stick-slip modes in adhesive friction and are shown to have direct analogues in muscular locomotory waves in soft bodied invertebrates. A theory for slow wave propagation is also presented which is capable of explaining the attendant interface displacements, velocities and stresses.

  5. Slow inactivation of Na(+) channels.

    PubMed

    Silva, Jonathan

    2014-01-01

    Prolonged depolarizing pulses that last seconds to minutes cause slow inactivation of Na(+) channels, which regulates neuron and myocyte excitability by reducing availability of inward current. In neurons, slow inactivation has been linked to memory of previous excitation and in skeletal muscle it ensures myocytes are able to contract when K(+) is elevated. The molecular mechanisms underlying slow inactivation are unclear even though it has been studied for 50+ years. This chapter reviews what is known to date regarding the definition, measurement, and mechanisms of voltage-gated Na(+) channel slow inactivation. PMID:24737231

  6. Neuronal activity of orexin and non-orexin waking-active neurons during wake-sleep states in the mouse.

    PubMed

    Takahashi, K; Lin, J-S; Sakai, K

    2008-05-15

    Using extracellular single unit recordings alone or in combination with neurobiotin juxtacellular labeling and orexin (hypocretin) immunohistochemistry in the mouse, we have recorded a total of 452 neurons in the orexin neuron field of the posterior hypothalamus. Of these, 76 exhibited tonic discharge highly specific to wakefulness, referred to as waking-active neurons. They showed differences from each other in terms of spike shape, activity profile, and response to an arousing sound stimulus and could be classified into three groups on the basis of spike shape as: 1) biphasic broad; 2) biphasic narrow; and 3) triphasic. Waking-active neurons characterized by biphasic broad spikes were orexin-immunopositive, whereas those characterized by either biphasic narrow or triphasic broad spikes were orexin-immunonegative. Unlike waking-specific histamine neurons, all orexin and non-orexin waking-active neurons exhibited slow (<10 Hz) tonic discharges during wakefulness and ceased firing shortly after the onset of electroencephalogram (EEG) synchronization (deactivation), the EEG sign of sleep (drowsy state). They remained virtually silent during slow-wave sleep, but displayed transient discharges during paradoxical (or rapid eye movement) sleep. During the transition from sleep to wakefulness, both orexin and triphasic non-orexin neurons fired in clusters prior to the onset of EEG activation, the EEG sign of wakefulness, and responded with a short latency to an arousing sound stimulus given during sleep. In contrast, the biphasic narrow non-orexin neurons fired in single spikes either prior to, or after, EEG activation during the same transition and responded to the stimulus with a longer latency. The activity of all waking-active neurons preceded the return of muscle tonus at the transition from paradoxical sleep to wakefulness. These data support the view that the activity of orexin and non-orexin waking-active neurons in the posterior hypothalamus plays an important

  7. Vibrational mode deactivation rates for gaseous discharge-excited nitrogen(2) on selected surfaces measured with coherent anti-Stokes Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Parish, John Walter, Jr.

    2000-09-01

    thus carried out by fitting a well tempered Master Equation Model (MEM) to the data. An examination of witness surfaces with x-ray photoelectron spectroscopy (XPS) revealed that N atoms had bonded at a slow rate. These adatoms eventually impacted the deactivation rates to a measurable extent. This chemical reaction saturates within 20 to 30 hours, depending on the surface composition. Gold did not show any chemical changes although there were small surface topographic changes. These included roughening that would accrue with time that apparently did not contribute to changes in the observed rates. Stainless steel showed the largest deactivation rates of all the selected materials. Titanium and Teflon provided the least deactivation. Together, these suggest that there are numerous small yet effective influences on vibrational energy disposal process at the surface.

  8. Erythromycin, roxithromycin, and clarithromycin: use of slow-binding kinetics to compare their in vitro interaction with a bacterial ribosomal complex active in peptide bond formation.

    PubMed

    Dinos, George P; Connell, Sean R; Nierhaus, Knud H; Kalpaxis, Dimitrios L

    2003-03-01

    In a cell-free system derived from Escherichia coli, it is shown that clarithromycin and roxithromycin, like their parent compound erythromycin, do not inhibit the puromycin reaction (i.e., the peptide bond formation between puromycin and AcPhe-tRNA bound at the P-site of 70S ribosomes programmed with heteropolymeric mRNA). Nevertheless, all three antibiotics compete for binding on the ribosome with tylosin, a 16-membered ring macrolide that behaves as a slow-binding, slowly reversible inhibitor of peptidyltransferase. The mutually exclusive binding of these macrolides to ribosomes is also corroborated by the fact that they protect overlapping sites in domain V of 23S rRNA from chemical modification by dimethyl sulfate. From this competition effect, detailed kinetic analysis revealed that roxithromycin or clarithromycin (A), like erythromycin, reacts rapidly with AcPhe-tRNA.MF-mRNA x 70S ribosomal complex (C) to form the encounter complex CA which is then slowly isomerized to a more tight complex, termed C*A. The value of the overall dissociation constant, K, encompassing both steps of macrolide interaction with complex C, is 36 nM for erythromycin, 20 nM for roxithromycin, and 8 nM for clarithromycin. Because the off-rate constant of C*A complex does not significantly differ among the three macrolides, the superiority of clarithromycin as an inhibitor of translation in E. coli cells and many Gram-positive bacteria may be correlated with its greater rate of association with ribosomes. PMID:12606769

  9. Decontamination and deactivation of the power burst facility at the Idaho National Laboratory.

    PubMed

    Greene, Christy Jo

    2007-05-01

    Successful decontamination and deactivation of the Power Burst Facility located at the Idaho National Laboratory was accomplished through the use of extensive planning, job sequencing, engineering controls, continuous radiological support, and the use of a dedicated group of experienced workers. Activities included the removal and disposal of irradiated fuel, miscellaneous reactor components and debris stored in the canal, removal and disposition of a 15.6 curie Pu:Be start-up source, removal of an irradiated in-pile tube, and the removal of approximately 220,000 pounds of lead that was used as shielding primarily in Cubicle 13. The canal and reactor vessel were drained and water was transferred to an evaporation tank adjacent to the facility. The canal was decontaminated using underwater divers, and epoxy was affixed to the interior surfaces of the canal to contain loose contamination. The support structures and concrete or steel frame walls that form the confinement were left in place. The reactor core was left in place and a carbon steel shielding plate was placed over the reactor core to reduce radiation levels. All low-level waste and mixed low level waste generated as a result of the work activities was characterized and disposed. PMID:17440324

  10. Radioactive air emissions notice of construction for deactivation of the PUREX storage tunnel number 2

    SciTech Connect

    JOHNSON, R.E.

    1999-10-11

    The Plutonium-Uranium Extraction (PUREX) Plant Storage Tunnel Number 2 (hereafter referred to as the PUREX Tunnel) was built in 1964. Since that time, the PUREX Tunnel has been used for storage of radioactive and mixed waste. In 1991, the PUREX Plant ceased operations and was transitioned to deactivation. The PUREX Tunnel continued to receive PUREX Plant waste material for storage during transition activities. Before 1995, a decision was made to store radioactive and mixed waste in the PUREX Tunnel generated from other onsite sources, on a case-by-case basis. This notice of construction (NOC) describes the activities associated with the reactivation of the PUREX Tunnel ventilation system and the transfer of up to 3.5 million curies (MCi) of radioactive waste to the PUREX Tunnel from any location on the Hanford Site. The unabated total effective dose equivalent (TEDE) estimated for the hypothetical offsite maximally exposed individual (MEI) is 5.6 E-2 millirem (mrem). The abated TEDE conservatively is estimated to account for 1.9 E-5 mrem to the MEI. The following text provides information requirements of Appendix A of Washington Administrative Code (WAC) 246-247 (requirements 1 through 18).

  11. Deactivation of the P, C, and R Reactor Disassembly Basins at the SRS

    SciTech Connect

    Pickett, J.B.

    2000-12-06

    The Facilities Disposition Division (FDD) at the Savannah River Site is engaged in planning the deactivation/closure of three of the site's five reactor disassembly basins. Activities are currently underway at 105-R Disassembly Basin and will continue with the 105-P and 105-C disassembly basins. The basins still contain the cooling and shielding water that was present when operations ceased. Low concentrations of radionuclides are present, with tritium, Cs-137, and Sr-90 being the major contributors. Although there is no evidence that any of the basins have leaked, the 50-year-old facilities will eventually contaminate the surrounding groundwaters. The FDD is pursuing a pro-active solution to close the basins in-place and prevent a release to the groundwater. In-situ ion-exchange is currently underway at the R-Reactor Disassembly Basin to reduce the Cs and Sr concentrations to levels that would allow release of the treated water to previously used on-site cooling ponds. A NEPA Environmental Assessment (EA) is being prepared to propose the preferred closure alternative for each of the three basins. The EA will be the primary mechanism to inform the public and gain stakeholder and regulatory approval.

  12. Supplementary motor area deactivation impacts the recovery of hand function from severe peripheral nerve injury

    PubMed Central

    Lu, Ye-chen; Liu, Han-qiu; Hua, Xu-yun; Shen, Yun-dong; Xu, Wen-dong; Xu, Jian-guang; Gu, Yu-dong

    2016-01-01

    Although some patients have successful peripheral nerve regeneration, a poor recovery of hand function often occurs after peripheral nerve injury. It is believed that the capability of brain plasticity is crucial for the recovery of hand function. The supplementary motor area may play a key role in brain remodeling after peripheral nerve injury. In this study, we explored the activation mode of the supplementary motor area during a motor imagery task. We investigated the plasticity of the central nervous system after brachial plexus injury, using the motor imagery task. Results from functional magnetic resonance imaging showed that after brachial plexus injury, the motor imagery task for the affected limbs of the patients triggered no obvious activation of bilateral supplementary motor areas. This result indicates that it is difficult to excite the supplementary motor areas of brachial plexus injury patients during a motor imagery task, thereby impacting brain remodeling. Deactivation of the supplementary motor area is likely to be a serious problem for brachial plexus injury patients in terms of preparing, initiating and executing certain movements, which may be partly responsible for the unsatisfactory clinical recovery of hand function. PMID:27212933

  13. Task deactivation reductions and atrophy within parietal default mode regions are overlapping but only weakly correlated in mild cognitive impairment

    PubMed Central

    Threlkeld, Zachary D.; Jicha, Greg A.; Smith, Charles D.; Gold, Brian T.

    2012-01-01

    Reduced task deactivation within regions of the default mode network (DMN) has been frequently reported in Alzheimer’s disease (AD) and amnestic mild cognitive impairment (aMCI). As task deactivations reductions become increasingly used in the study of early AD states, it is important to understand their relationship to atrophy. To address this issue, the present study compared task deactivation reductions during a lexical decision task and atrophy in aMCI, using a series of parallel voxel-wise and region-wise analyses of fMRI and structural data. Our results identified multiple regions within parietal cortex as convergence areas of task deactivation and atrophy in aMCI. Relationships between parietal regions showing overlapping task deactivation reductions and atrophy in aMCI were then explored. Regression analyses demonstrated minimal correlation between task deactivation reductions and either local or global atrophy in aMCI. In addition, a logistic regression model which combined task deactivation reductions and atrophy in parietal DMN regions showed higher classificatory accuracy of aMCI than separate task deactivation or atrophy models. Results suggest that task deactivation reductions and atrophy in parietal regions provide complementary rather than redundant information in aMCI. Future longitudinal studies will be required to assess the utility of combining task deactivation reductions and atrophy in the detection of early AD. PMID:21860094

  14. DEACTIVATION AND DECOMMISSIONING (D AND D) TECHNOLOGY INTEGRATION

    SciTech Connect

    M.A. Ebadian, Ph.D.

    1999-01-01

    As part of the ongoing task of making Deactivation and Decommissioning (D&D) operations more efficient, this subtask has addressed the need to integrate existing characterization technologies with decontamination technologies in order to provide real-time data on the progress of contamination removal. Specifically, technologies associated with concrete decontamination and/or removal have been examined with the goal of integrating existing technologies and commercializing the resulting hybrid. The Department of Energy (DOE) has estimated that 23 million cubic meters of concrete will require disposition as 1200 buildings undergo the D&D process. All concrete removal to be performed will also necessitate extensive use of characterization techniques. The in-process characterization presents the most potential for improvement and cost-savings as compared to other types. Current methods for in-process characterization usually require cessation of work to allow for radiation surveys to assess the rate of decontamination. Combining together decontamination and characterization technologies would allow for in-process evaluation of decontamination efforts. Since the present methods do not use in-process evaluations for the progress of decontamination, they may allow for ''overremoval'' of materials (removal of contaminated along with non-contaminated materials). Overremoval increases the volume of waste and therefore the costs associated with disposal. Integrating technologies would facilitate the removal of only contaminated concrete and reduce the total volume of radioactive waste, which would be disposed of. This would eventually ensure better productivity and time savings. This project presents a general procedure to integrate the above-mentioned technologies in the form of the Technology Integration Module (TIM) along with combination lists of commercially available decontamination and characterization technologies. The scope of the project has also been expanded by FIU

  15. MALTOTRIOSE, PRODUCT OF ALPHA-AMYLASE STARCH HYDROLYSIS, SUPPRESSES MALTASE-GLUCOAMYLASE ACTIVITY AND SLOWS TERMINAL STARCH DIGESTION 44.5 FOLD

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starches constitute the main caloric source in the average human diet. The digestion of starches is far more complex than sugars and requires six different enzyme activities to produce free glucose before absorption. Salivary and pancreatic alpha-amylase activities initially hydrolyze internal 1-4 g...

  16. Human Gamma Oscillations during Slow Wave Sleep

    PubMed Central

    Valderrama, Mario; Crépon, Benoît; Botella-Soler, Vicente; Martinerie, Jacques; Hasboun, Dominique; Alvarado-Rojas, Catalina; Baulac, Michel; Adam, Claude; Navarro, Vincent; Le Van Quyen, Michel

    2012-01-01

    Neocortical local field potentials have shown that gamma oscillations occur spontaneously during slow-wave sleep (SWS). At the macroscopic EEG level in the human brain, no evidences were reported so far. In this study, by using simultaneous scalp and intracranial EEG recordings in 20 epileptic subjects, we examined gamma oscillations in cerebral cortex during SWS. We report that gamma oscillations in low (30–50 Hz) and high (60–120 Hz) frequency bands recurrently emerged in all investigated regions and their amplitudes coincided with specific phases of the cortical slow wave. In most of the cases, multiple oscillatory bursts in different frequency bands from 30 to 120 Hz were correlated with positive peaks of scalp slow waves (“IN-phase” pattern), confirming previous animal findings. In addition, we report another gamma pattern that appears preferentially during the negative phase of the slow wave (“ANTI-phase” pattern). This new pattern presented dominant peaks in the high gamma range and was preferentially expressed in the temporal cortex. Finally, we found that the spatial coherence between cortical sites exhibiting gamma activities was local and fell off quickly when computed between distant sites. Overall, these results provide the first human evidences that gamma oscillations can be observed in macroscopic EEG recordings during sleep. They support the concept that these high-frequency activities might be associated with phasic increases of neural activity during slow oscillations. Such patterned activity in the sleeping brain could play a role in off-line processing of cortical networks. PMID:22496749

  17. Adsorption and Deactivation Characteristics of Cu/ZnO-Based Catalysts for Methanol Synthesis from Carbon Dioxide

    SciTech Connect

    Natesakhawat, Sittichai; Ohodnicki, Paul R; Howard, Bret H; Lekse, Jonathan W; Baltrus, John P; Matranga, Christopher

    2013-07-09

    The adsorption and deactivation characteristics of coprecipitated Cu/ZnO-based catalysts were examined and correlated to their performance in methanol synthesis from CO₂ hydrogenation. The addition of Ga₂O₃ and Y₂O₃ promoters is shown to increase the Cu surface area and CO₂/H₂ adsorption capacities of the catalysts and enhance methanol synthesis activity. Infrared studies showed that CO₂ adsorbs spontaneously on these catalysts at room temperature as both monoand bi-dentate carbonate species. These weakly bound species desorb completely from the catalyst surface by 200 °C while other carbonate species persist up to 500 °C. Characterization using N₂O decomposition, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM) with energy-dispersive X-ray spectroscopy (EDX) analysis clearly indicated that Cu sintering is the main cause of catalyst deactivation. Ga and Y promotion improves the catalyst stability by suppressing the agglomeration of Cu and ZnO particles under pretreatment and reaction conditions.

  18. Work plan for the High Ranking Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1996-03-01

    The High Ranking Facilities Deactivation Project (HRFDP), commissioned by the US Department of Energy Nuclear Materials and Facility Stabilization Program, is to place four primary high-risk surplus facilities with 28 associated ancillary facilities at Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition as rapidly and economically as possible. The facilities will be deactivated and left in a condition suitable for an extended period of minimized surveillance and maintenance (S and M) prior to decontaminating and decommissioning (D and D). These four facilities include two reactor facilities containing spent fuel. One of these reactor facilities also contains 55 tons of sodium with approximately 34 tons containing activated sodium-22, 2.5 tons of lithium hydride, approximately 100 tons of potentially contaminated lead, and several other hazardous materials as well as bulk quantities of contaminated scrap metals. The other two facilities to be transferred include a facility with a bank of hot cells containing high levels of transferable contamination and also a facility containing significant quantities of uranyl nitrate and quantities of transferable contamination. This work plan documents the objectives, technical requirements, and detailed work plans--including preliminary schedules, milestones, and conceptual FY 1996 cost estimates--for the Oak Ridge National Laboratory (ORNL). This plan has been developed by the Environmental Restoration (ER) Program of Lockheed Martin Energy Systems (Energy Systems) for the US Department of Energy (DOE) Oak Ridge Operations Office (ORO).

  19. Another slow year

    SciTech Connect

    Not Available

    1987-08-01

    This article is a review of the petroleum activity in the Middle East. The article is accompanied by a detailed color map showing the activity in the area. Highlights of the article include the fact that Saudi Arabia's drilling and development activity has sunk to its lowest level in many years. The article also points out that discoveries are increasing production in North and South Yemen as well as in Syria. The article also highlights the fact that Qatar is beginning work on its massive North gas field in the Gulf. Also attention is paid to the effects of the Iranian and Iraq war on each other's oil and gas activities. The article also mentions the drilling activity of Dubai and Oman.

  20. Slow oscillations during sleep coordinate interregional communication in cortical networks.

    PubMed

    Cox, Roy; van Driel, Joram; de Boer, Marieke; Talamini, Lucia M

    2014-12-10

    Large-amplitude sleep slow oscillations group faster neuronal oscillations and are of functional relevance for memory performance. However, relatively little is known about the impact of slow oscillations on functionally coupled networks. Here, we provide a comprehensive view on how human slow oscillatory dynamics influence various measures of brain processing. We demonstrate that slow oscillations coordinate interregional cortical communication, as assessed by phase synchrony in the sleep spindle frequency range and cross-frequency coupling between spindle and beta activity. Furthermore, we show that the organizing role of slow oscillations is restricted to circumscribed topographical areas. These findings add importantly to our basic understanding of the orchestrating role of slow oscillations. In addition, they are of considerable relevance for accounts of sleep-dependent memory reprocessing and consolidation. PMID:25505340

  1. Differential Deactivation during Mentalizing and Classification of Autism Based on Default Mode Network Connectivity

    PubMed Central

    Murdaugh, Donna L.; Shinkareva, Svetlana V.; Deshpande, Hrishikesh R.; Wang, Jing; Pennick, Mark R.; Kana, Rajesh K.

    2012-01-01

    The default mode network (DMN) is a collection of brain areas found to be consistently deactivated during task performance. Previous neuroimaging studies of resting state have revealed reduced task-related deactivation of this network in autism. We investigated the DMN in 13 high-functioning adults with autism spectrum disorders (ASD) and 14 typically developing control participants during three fMRI studies (two language tasks and a Theory-of-Mind (ToM) task). Each study had separate blocks of fixation/resting baseline. The data from the task blocks and fixation blocks were collated to examine deactivation and functional connectivity. Deficits in the deactivation of the DMN in individuals with ASD were specific only to the ToM task, with no group differences in deactivation during the language tasks or a combined language and self-other discrimination task. During rest blocks following the ToM task, the ASD group showed less deactivation than the control group in a number of DMN regions, including medial prefrontal cortex (MPFC), anterior cingulate cortex, and posterior cingulate gyrus/precuneus. In addition, we found weaker functional connectivity of the MPFC in individuals with ASD compared to controls. Furthermore, we were able to reliably classify participants into ASD or typically developing control groups based on both the whole-brain and seed-based connectivity patterns with accuracy up to 96.3%. These findings indicate that deactivation and connectivity of the DMN were altered in individuals with ASD. In addition, these findings suggest that the deficits in DMN connectivity could be a neural signature that can be used for classifying an individual as belonging to the ASD group. PMID:23185536

  2. Breathing - slowed or stopped

    MedlinePlus

    ... can occur with obstructive sleep apnea, for example. Prolonged apnea means a person has stopped breathing. If ... that requires immediate medical attention and first aid. Prolonged apnea with no heart activity in a person ...

  3. IL-1{beta} promotes neurite outgrowth by deactivating RhoA via p38 MAPK pathway

    SciTech Connect

    Temporin, Ko; Tanaka, Hiroyuki Kuroda, Yusuke; Okada, Kiyoshi; Yachi, Koji; Moritomo, Hisao; Murase, Tsuyoshi; Yoshikawa, Hideki

    2008-01-11

    Expression of the pro-inflammatory cytokine interleukin-1 beta (IL-1{beta}) is increased following the nervous system injury. Generally IL-1{beta} induces inflammation, leading to neural degeneration, while several neuropoietic effects have also been reported. Although neurite outgrowth is an important step in nerve regeneration, whether IL-1{beta} takes advantages on it is unclear. Now we examine how it affects neurite outgrowth. Following sciatic nerve injury, expression of IL-1{beta} is increased in Schwann cells around the site of injury, peaking 1 day after injury. In dorsal root ganglion (DRG) neurons and cerebellar granule neurons (CGNs), neurite outgrowth is inhibited by the addition of myelin-associated glycoprotein (MAG), activating RhoA. IL-1{beta} overcomes MAG-induced neurite outgrowth inhibition, by deactivating RhoA. Intracellular signaling experiments reveal that p38 MAPK, and not nuclear factor-kappa B (NF-{kappa}B), mediated this effect. These findings suggest that IL-1{beta} may contribute to nerve regeneration by promoting neurite outgrowth following nerve injury.

  4. Intramolecular deactivation processes in complexes of salicylic acid or glycolic acid with Eu(III)

    NASA Astrophysics Data System (ADS)

    Kuke, S.; Marmodée, B.; Eidner, S.; Schilde, U.; Kumke, M. U.

    2010-04-01

    The complexation of Eu(III) by 2-hydroxy benzoic acid (2HB) or glycolic acid (GL) was investigated using steady-state and time-resolved laser spectroscopy. Experiments were carried out in H 2O as well as in D 2O in the temperature range of 80Kactivation energy for the ligand-specific non-radiative deactivation in Eu(III)-2HB or Eu(III)-GL complexes was determined. It is stressed that ligand-specific quenching processes (other than OH quenching induced by water molecules) need to be determined and considered in detail, in order to extract speciation-relevant information from luminescence data (e.g., estimation of the number of water molecules nO in the first coordination sphere of Eu(III)). In case of 2HB, conclusions drawn from the evaluation of the Eu(III) luminescence are compared with results of a X-ray structure analysis.

  5. [Application of deactivating properties of some sorbents in aquaculture feed production].

    PubMed

    Vasukevich, T A; Nitievskaya, L S

    2014-01-01

    The possibility and effectiveness of application of selective sorbents for fish feed production in aquaculture in the area exposed to the radioactive pollution were studied. The investigations of the fish feed deactivating properties with additives of ferrocyn and potassium alginate, and magnesium on whitefish fry-fingerlings and yearlings were carried out. The study has shown that the ferrocyn performance is greater than 99% regardless of the fish age. 1% ferrocyn addition to feed allows increasing the acceptable concentration of feed compo- nents polluted by the above norm cesium radionuclide up to 20 times. The alginate additives in feed provide almost double decrease in the activity of fish tissues. The optimally effective alginate dose should exceed the calcium concentration in feed up to 4 times. It was found that utilization of the feedstock (fish meal, crops and legumes, oil meal and oil cake) polluted by radionuclides is possible in combined aquaculture feed pro- duction. The application of sorbents in feed will allow increasing the amount permissible for use of the feed components polluted above the norm; ensure the radiation safety of feed and, finally, the protection of aquatic biological resources from radioactive contamination. It is shown that the sorbent additive in feed is also jus- tified in case of fish farming in closed waters affected by radioactive pollution. Feeding by mixed fodder with the sorbent additives prevents fish from radionuclide intake from natural food sources. PMID:25980288

  6. Gambogic acid deactivates cytosolic and mitochondrial thioredoxins by covalent binding to the functional domain.

    PubMed

    Yang, Jing; Li, Chenglin; Ding, Li; Guo, Qinglong; You, Qidong; Jin, Shaohong

    2012-06-22

    Gambogic acid (1) is a cytotoxic caged xanthone derived from the resin of Garcinia hanburyi. Compound 1 selectively induces apoptosis in cancer cells, at least partially, by targeting the stress response to reactive oxygen species (ROS). However, the molecular mechanism of ROS toxicity stimulated by 1 remains poorly understood. In this study, mass spectrometric and biochemical pharmacological approaches were used that resulted in the identification of both cytosolic thioredoxin (TRX-1) and mitochondrial thioredoxin (TRX-2) as the molecular targets of 1. The results obtained showed that 1 deactivates TRX-1/2 proteins by covalent binding to the active cysteine residues in the functional domain via Michael addition reactions. Since both TRX-1 and TRX-2 play key roles in regulating the redox signaling of cancer cells, the present findings may shed light on the relationship between protein binding and cellular ROS accumulation induced by 1. This provides support for the current clinical trials of gambogic acid (1) being conducted alone or in combination with other agents that appear to increase ROS generation in order to selectively kill cancer cells. PMID:22663155

  7. Chemical ablation of the Purkinje system causes early termination and activation rate slowing of long-duration ventricular fibrillation in do

    PubMed Central

    Dosdall, Derek J.; Tabereaux, Paul B.; Kim, Jong J.; Walcott, Gregory P.; Rogers, Jack M.; Killingsworth, Cheryl R.; Huang, Jian; Robertson, Peter G.; Smith, William M.; Ideker, Raymond E.

    2008-01-01

    Endocardial mapping has suggested that Purkinje fibers may play a role in the maintenance of long-duration ventricular fibrillation (LDVF). To determine the influence of Purkinje fibers on LDVF, we chemically ablated the Purkinje system with Lugol solution and recorded endocardial and transmural activation during LDVF. Dog hearts were isolated and perfused, and the ventricular endocardium was exposed and treated with Lugol solution (n = 6) or normal Tyrode solution as a control (n = 6). The left anterior papillary muscle endocardium was mapped with a 504-electrode (21 × 24) plaque with electrodes spaced 1 mm apart. Transmural activation was recorded with a six-electrode plunge needle on each side of the plaque. Ventricular fibrillation (VF) was induced, and perfusion was halted. LDVF spontaneously terminated sooner in Lugol-ablated hearts than in control hearts (4.9 ± 1.5 vs. 9.2 ± 3.2 min, P = 0.01). After termination of VF, both the control and Lugol hearts were typically excitable, but only short episodes of VF could be reinduced. Endocardial activation rates were similar during the first 2 min of LDVF for Lugol-ablated and control hearts but were significantly slower in Lugol hearts by 3 min. In control hearts, the endocardium activated more rapidly than the epicardium after 4 min of LDVF with wave fronts propagating most often from the endocardium to epicardium. No difference in transmural activation rate or wave front direction was observed in Lugol hearts. Ablation of the subendocardium hastens VF spontaneous termination and alters VF activation sequences, suggesting that Purkinje fibers are important in the maintenance of LDVF. PMID:18586887

  8. Slow bars in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Fridman, A. M.; Khoruzhii, O. V.

    2000-11-01

    Here we put forward some arguments in favour of the existence of slow bars. More then a half of spiral galaxies have in their central regions a bar - a structure in the form of triaxial ellipsoid. Historically two models of the bar were developed - those of the so called ``slow'' and ``fast'' bars. In both cases the bar is in some resonance with the galactic disc region near the bar ends - it is the corotation resonance for a fast bar and the inner Lindblad resonance for a slow bar. For the same angular velocity the fast bar would be larger then the slow bar. Alternatively, for the same size the fast bar would have much higher angular velocity, that being the reason for the terminology used. Up till now, the direct measurement of angular velocity of a bar has been an open problem. This is why all arguments on the nature of bar observed in some particular galaxy are inevitably indirect. Despite the fact that the model of slow bars was developed slightly earlier, the main part of attention was focused on the fast bars. Presently many researchers believe in the existence of the fast bars in real galaxies, while discussions on the existence of the slow bars continue so far. In this Letter we demonstrate that the bar detected in the grand design spiral galaxy NGC 157 is the slow bar.

  9. Target-induced nanocatalyst deactivation facilitated by core@shell nanostructures for signal-amplified headspace-colorimetric assay of dissolved hydrogen sulfide.

    PubMed

    Gao, Zhuangqiang; Tang, Dianyong; Tang, Dianping; Niessner, Reinhard; Knopp, Dietmar

    2015-10-01

    Colorimetric assay platforms for dissolved hydrogen sulfide (H2S) have been developed for more than 100 years, but most still suffer from relatively low sensitivity. One promising route out of this predicament relies on the design of efficient signal amplification methods. Herein, we rationally designed an unprecedented H2S-induced deactivation of (gold core)@(ultrathin platinum shell) nanocatalysts (Au@TPt-NCs) as a highly efficient signal amplification method for ultrasensitive headspace-colorimetric assay of dissolved H2S. Upon target introduction, Au@TPt-NCs were deactivated to different degrees dependent on H2S levels, and the degrees could be indicated by using a Au@TPt-NCs-triggered catalytic system as a signal amplifier, thus paving a way for H2S sensing. The combination of experimental studies and density functional theory (DFT) studies revealed that the Au@TPt-NCs with only 2-monolayer equivalents of Pt (θPt = 2) were superior for H2S-induced nanocatalyst deactivation owing to their enhanced peroxidase-like catalytic activity and deactivation efficiency stemmed from the unique synergistic structural/electronic effects between Au nanocores and ultrathin Pt nanoshells. Importantly, our analytical results showed that the designed method was indeed highly sensitive for sensing H2S with a wide linear range of 10-100 nM, a slope of 0.013 in the regression equation, and a low detection limit of 7.5 nM. Also the selectivity, reproducibility, and precision were excellent. Furthermore, the method was validated for the analysis of H2S-spiked real samples, and the recovery in all cases was 91.6-106.7%. With the merits of high sensitivity and selectivity, simplification, low cost, and visual readout with the naked eye, the colorimetric method has the potential to be utilized as an effective detection kit for point-of-care testing. PMID:26327230

  10. Solvent effects on the ultrafast nonradiative deactivation mechanisms of thymine in aqueous solution: Excited-state QM/MM molecular dynamics simulations

    SciTech Connect

    Nakayama, Akira Arai, Gaku; Yamazaki, Shohei; Taketsugu, Tetsuya

    2013-12-07

    On-the-fly excited-state quantum mechanics/molecular mechanics molecular dynamics (QM/MM-MD) simulations of thymine in aqueous solution are performed to investigate the role of solvent water molecules on the nonradiative deactivation process. The complete active space second-order perturbation theory (CASPT2) method is employed for a thymine molecule as the QM part in order to provide a reliable description of the excited-state potential energies. It is found that, in addition to the previously reported deactivation pathway involving the twisting of the C-C double bond in the pyrimidine ring, another efficient deactivation pathway leading to conical intersections that accompanies the out-of-plane displacement of the carbonyl group is observed in aqueous solution. Decay through this pathway is not observed in the gas phase simulations, and our analysis indicates that the hydrogen bonds with solvent water molecules play a key role in stabilizing the potential energies of thymine in this additional decay pathway.

  11. Activation of D2 autoreceptors alters cocaine-induced locomotion and slows down local field oscillations in the rat ventral tegmental area.

    PubMed

    Koulchitsky, Stanislav; Delairesse, Charlotte; Beeken, Thom; Monteforte, Alexandre; Dethier, Julie; Quertemont, Etienne; Findeisen, Rolf; Bullinger, Eric; Seutin, Vincent

    2016-09-01

    Psychoactive substances affecting the dopaminergic system induce locomotor activation and, in high doses, stereotypies. Network mechanisms underlying the shift from an active goal-directed behavior to a "seemingly purposeless" stereotypic locomotion remain unclear. In the present study we sought to determine the relationships between the behavioral effects of dopaminergic drugs and their effects on local field potentials (LFPs), which were telemetrically recorded within the ventral tegmental area (VTA) of freely moving rats. We used the D2/D3 agonist quinpirole in a low, autoreceptor-selective (0.1 mg/kg, i.p.) and in a high (0.5 mg/kg, i.p.) dose, and a moderate dose of cocaine (10 mg/kg, i.p.). In the control group, power spectrum analysis revealed a prominent peak of LFP power in the theta frequency range during active exploration. Cocaine alone stimulated locomotion, but had no significant effect on the peak of the LFP power. In contrast, co-administration of low dose quinpirole with cocaine markedly altered the pattern of locomotion, from goal-directed exploratory behavior to recurrent motion resembling locomotor stereotypy. This behavioral effect was accompanied by a shift of the dominant theta power toward a significantly lower (by ∼15%) frequency. High dose quinpirole also provoked an increased locomotor activity with signs of behavioral stereotypies, and also induced a shift of the dominant oscillation frequency toward the lower range. These results demonstrate a correlation between the LFP oscillation frequency within the VTA and a qualitative aspect of locomotor behavior, perhaps due to a variable level of coherence of this region with its input or output areas. PMID:27130904

  12. SLOW THROMBIN IS ZYMOGEN-LIKE

    PubMed Central

    Huntington, James A.

    2009-01-01

    Summary Blood coagulation is the result of a cascade of zymogen activation events, however, its initiation is allosteric. Factor VIIa circulates in a zymogen-like state and is allosterically activated by binding to tissue factor. Thrombin, the final protease generated in the blood coagulation cascade, has also been shown to exist in a low activity state in the absence of cofactors, and the structural features of this ‘slow’ form has been studied for many years. In this manuscript I will review the general features that render zymogens inactive and how proteolytic cleavage results in activation, but I will also show how this distinction is blurred by zymogens that have activity (protease-like zymogens) and proteases with low activity (zymogen-like proteases). This will then be applied in the analysis of slow thrombin to reveal how allosteric activation of thrombin simply reflects the conversion from a zymogen-like enzyme to an active serine protease. PMID:19630791

  13. Slowed demand ushers in summer season

    SciTech Connect

    1996-07-01

    This article is the June 1996 market summary in uranium market. During this reporting period, there were six deals in the U3O8 spot market and three long-term deals for U3O8. There were four deals for UF6 conversion, and the spot market for uranium separation services had no transactions. This was little change from the previous month`s activities, and this slowness was reflected in the price trends of little or no increase.

  14. Highly controlled nest homeostasis of honey bees helps deactivate phenolics in nectar

    NASA Astrophysics Data System (ADS)

    Liu, Fanglin; He, Jianzhong; Fu, Wenjun

    2005-06-01

    Honey bees have a highly developed nest homeostasis, for example, maintaining low CO2 levels and stable nest temperatures at 35°C.We investigate the role of nest homeostasis in deactivating phenolic compounds present in the nectar of Aloe littoralis. We show that the phenolic content in nectar was reduced (from 0.65% to 0.49%) after nectar was incubated in a nest of Apis cerana, and that it was reduced still more (from 0.65% to 0.37%) if nectar was mixed with hypopharyngeal gland proteins (HGP) of worker bees before being placed inside a nest. HGP had little effect on samples outside a nest, indicating that nest conditions are necessary for HGP to deactivate phenolics in nectar. Consequently, the highly controlled nest homeostasis of honey bees facilitates direct deactivation of phenolics in nectar, and plays a role in the action of HGP as well.

  15. Cellulase deactivation based kinetic modeling of enzymatic hydrolysis of steam-exploded wheat straw.

    PubMed

    Zhang, Yu; Xu, Jing-Liang; Xu, Hui-Juan; Yuan, Zhen-Hong; Guo, Ying

    2010-11-01

    Applying mass action law and quasi-steady-state theory, two cellulase kinetic models namely Eqs. (5) and (8) were developed on the basis of the first and second order reactions of enzyme deactivation, respectively. The two models are compared according to analysis of experimental data from enzymatic hydrolysis steam-exploded wheat straw. Both simulation and prediction results show Eq. (8) has much higher accuracy than Eq. (5). Analysis of initial hydrolysis rate is also in accordance with Eq. (8) and against Eq. (5). Fitted values of k(2) (the rate constant of product formation), k(de2) (the rate constant of enzyme deactivation) and K(e) (the equilibrium constant) determined from Eq. (8) are 0.4732 h(-1), 0.4011 L/(hg), and 16.8597 g/L, respectively. The higher the enzyme concentration is, the larger the deactivation rate. PMID:20594825

  16. Deactivation mechanisms for Pd/Al{sub 2}O{sub 3} acetylene hydrogenation catalysts

    SciTech Connect

    Hall, J.B.; Huggins, B.J.; Meyers, B.L.; Kaminsky, M.P.

    1994-12-31

    The selective hydrogenation of acetylenic impurities to ethylene is a crucial purification step in the production of olefins by steam cracking. This hydrogenation is done catalytically using a Pd/Al{sub 2}O{sub 3} catalyst in a fixed bed reactor. The designed lifetime of the catalyst in a front end acetylene converter is about 4 years. Accelerated catalyst deactivation and thermal runaways caused by loss in catalyst selectivity are common problems which plague acetylene converters. Such problems result in unscheduled shutdowns and increased costs to replace deactivated catalyst. This presentation outlines several deactivation mechanisms of the catalyst and discusses how they affect catalyst lifetime and performance. Catalyst characterization using electron microscopy and CO chemisorption provides information on how poisons deteriorate the catalyst and Pd particle size changes produced by use and regeneration. Thermal gravimetric analysis was also used to determine the extent of coke burn-off using less severe regeneration procedures.

  17. Deactivation kinetics of toluene alkylation with methanol over magnesium-modified ZSM-5

    SciTech Connect

    Sotelo, J.L.; Uguina, M.A.; Valverde, J.L.; Serrano, D.P.

    1996-04-01

    The deactivation kinetics of toluene alkylation with methanol over a Mg-modified ZSM-5 catalyst has been studied. A kinetic model taking into account both the deactivation of the main and the secondary reactions and the influence of the intracrystalline diffusion has been developed. The best fit of the experimental data has been obtained assuming that gaseous hydrocarbons, formed mainly by ethylene, are the coke precursors. The secondary reactions of p-xylene dealkylation, toluene disproportionation, and external p-xylene isomerization deactivate faster than the main reaction, probably due to differences in the strength of the acid sites over which they take place. The paraselectivity corresponding to the primary product decreases with the time on stream as a consequence of the pore blockage by coke, which attenuates the diffusional control of the internal xylene isomerization. Methanol dehydration is the reaction least affected by coke.

  18. Slow motion increases perceived intent.

    PubMed

    Caruso, Eugene M; Burns, Zachary C; Converse, Benjamin A

    2016-08-16

    To determine the appropriate punishment for a harmful action, people must often make inferences about the transgressor's intent. In courtrooms and popular media, such inferences increasingly rely on video evidence, which is often played in "slow motion." Four experiments (n = 1,610) involving real surveillance footage from a murder or broadcast replays of violent contact in professional football demonstrate that viewing an action in slow motion, compared with regular speed, can cause viewers to perceive an action as more intentional. This slow motion intentionality bias occurred, in part, because slow motion video caused participants to feel like the actor had more time to act, even when they knew how much clock time had actually elapsed. Four additional experiments (n = 2,737) reveal that allowing viewers to see both regular speed and slow motion replay mitigates the bias, but does not eliminate it. We conclude that an empirical understanding of the effect of slow motion on mental state attribution should inform the life-or-death decisions that are currently based on tacit assumptions about the objectivity of human perception. PMID:27482091

  19. Slow motion increases perceived intent

    PubMed Central

    Caruso, Eugene M.; Burns, Zachary C.; Converse, Benjamin A.

    2016-01-01

    To determine the appropriate punishment for a harmful action, people must often make inferences about the transgressor’s intent. In courtrooms and popular media, such inferences increasingly rely on video evidence, which is often played in “slow motion.” Four experiments (n = 1,610) involving real surveillance footage from a murder or broadcast replays of violent contact in professional football demonstrate that viewing an action in slow motion, compared with regular speed, can cause viewers to perceive an action as more intentional. This slow motion intentionality bias occurred, in part, because slow motion video caused participants to feel like the actor had more time to act, even when they knew how much clock time had actually elapsed. Four additional experiments (n = 2,737) reveal that allowing viewers to see both regular speed and slow motion replay mitigates the bias, but does not eliminate it. We conclude that an empirical understanding of the effect of slow motion on mental state attribution should inform the life-or-death decisions that are currently based on tacit assumptions about the objectivity of human perception. PMID:27482091

  20. Unilateral deactivation of macaque dorsolateral prefrontal cortex induces biases in stimulus selection.

    PubMed

    Johnston, Kevin; Lomber, Stephen G; Everling, Stefan

    2016-03-01

    Following unilateral brain injury, patients are often unable to detect a stimulus presented in the contralesional field when another is presented simultaneously ipsilesionally. This phenomenon has been referred to as extinction and has been conceptualized as a deficit in selective attention. Although most commonly observed following damage to posterior parietal areas, extinction has been observed following lesions of prefrontal cortex (PFC) in both humans and nonhuman primates. To date, most studies in nonhuman primates have examined lesions of multiple PFC subregions, including the frontal eye fields (FEF). Theoretical accounts of attentional disturbances from human patients, however, also implicate other PFC areas, including the middle frontal gyrus. Here, we investigated the effects of deactivating PFC areas anterior to the FEF on stimulus selection using a free-choice task. Macaque monkeys were presented with two peripheral stimuli appearing either simultaneously, or at varying stimulus onset asynchronies, and their performance was evaluated during unilateral cryogenic deactivation of part of dorsolateral prefrontal cortex or the cortex lining the caudal principal sulcus, the likely homologue of the human middle frontal gyrus. A decreased proportion of saccades was made to stimuli presented in the hemifield contralateral to the deactivated PFC. We also observed increases in reaction times to contralateral stimuli and decreases for stimuli presented in the hemifield ipsilateral to the deactivated hemisphere. In both cases, these results were greatest when both PFC subregions were deactivated. These findings demonstrate that selection biases result from PFC deactivation and support a role of dorsolateral prefrontal subregions anterior to FEF in stimulus selection. PMID:26792881

  1. Deactivation and Decommissioning Planning and Analysis with Geographic Information Systems

    SciTech Connect

    Bollinger, James S.; Koffman, Larry D.; Austin, William E.

    2008-01-15

    From the mid-1950's through the 1980's, the U.S. Department of Energy's Savannah River Site produced nuclear materials for the weapons stockpile, for medical and industrial applications, and for space exploration. Although SRS has a continuing defense-related mission, the overall site mission is now oriented toward environmental restoration and management of legacy chemical and nuclear waste. With the change in mission, SRS no longer has a need for much of the infrastructure developed to support the weapons program. This excess infrastructure, which includes over 1000 facilities, will be decommissioned and demolished over the forthcoming years. Dis-positioning facilities for decommissioning and deactivation requires significant resources to determine hazards, structure type, and a rough-order-of-magnitude estimate for the decommissioning and demolition cost. Geographic information systems (GIS) technology was used to help manage the process of dis-positioning infrastructure and for reporting the future status of impacted facilities. Several thousand facilities of various ages and conditions are present at SRS. Many of these facilities, built to support previous defense-related missions, now represent a potential hazard and cost for maintenance and surveillance. To reduce costs and the hazards associated with this excess infrastructure, SRS has developed an ambitious plan to decommission and demolish unneeded facilities in a systematic fashion. GIS technology was used to assist development of this plan by: providing locational information for remote facilities, identifying the location of known waste units adjacent to buildings slated for demolition, and for providing a powerful visual representation of the impact of the overall plan. Several steps were required for the development of the infrastructure GIS model. The first step involved creating an accurate and current GIS representation of the infrastructure data. This data is maintained in a Computer Aided Design

  2. Small but slow world: How network topology and burstiness slow down spreading

    NASA Astrophysics Data System (ADS)

    Karsai, M.; Kivelä, M.; Pan, R. K.; Kaski, K.; Kertész, J.; Barabási, A.-L.; Saramäki, J.

    2011-02-01

    While communication networks show the small-world property of short paths, the spreading dynamics in them turns out slow. Here, the time evolution of information propagation is followed through communication networks by using empirical data on contact sequences and the susceptible-infected model. Introducing null models where event sequences are appropriately shuffled, we are able to distinguish between the contributions of different impeding effects. The slowing down of spreading is found to be caused mainly by weight-topology correlations and the bursty activity patterns of individuals.

  3. Beyond catalyst deactivation: cross-metathesis involving olefins containing N-heteroaromatics

    PubMed Central

    Lafaye, Kevin; Bosset, Cyril; Nicolas, Lionel

    2015-01-01

    Summary Alkenes containing N-heteroaromatics are known to be poor partners in cross-metathesis reactions, probably due to catalyst deactivation caused by the presence of a nitrogen atom. However, some examples of ring-closing and cross-metathesis involving alkenes that incorporate N-heteroaromatics can be found in the literature. In addition, recent mechanistic studies have focused on the rationalization of nitrogen-induced catalysts deactivation. The purpose of this mini-review is to give a brief overview of successful metathesis reactions involving olefins containing N-heteroaromatics in order to delineate some guidelines for the use of these challenging substrates in metathesis reactions. PMID:26664645

  4. Global intracellular slow-wave dynamics of the thalamocortical system.

    PubMed

    Sheroziya, Maxim; Timofeev, Igor

    2014-06-25

    It is widely accepted that corticothalamic neurons recruit the thalamus in slow oscillation, but global slow-wave thalamocortical dynamics have never been experimentally shown. We analyzed intracellular activities of neurons either from different cortical areas or from a variety of specific and nonspecific thalamic nuclei in relation to the phase of global EEG signal in ketamine-xylazine anesthetized mice. We found that, on average, slow-wave active states started off within frontal cortical areas as well as higher-order and intralaminar thalamus (posterior and parafascicular nuclei) simultaneously. Then, the leading edge of active states propagated in the anteroposterior/lateral direction over the cortex at ∼40 mm/s. The latest structure we recorded within the slow-wave cycle was the anterior thalamus, which followed active states of the retrosplenial cortex. Active states from different cortical areas tended to terminate simultaneously. Sensory thalamic ventral posterior medial and lateral geniculate nuclei followed cortical active states with major inhibitory and weak tonic-like "modulator" EPSPs. In these nuclei, sharp-rising, large-amplitude EPSPs ("drivers") were not modulated by cortical slow waves, suggesting their origin in ascending pathways. The thalamic active states in other investigated nuclei were composed of depolarization: some revealing "driver"- and "modulator"-like EPSPs, others showing "modulator"-like EPSPs only. We conclude that sensory thalamic nuclei follow the propagating cortical waves, whereas neurons from higher-order thalamic nuclei display "hub dynamics" and thus may contribute to the generation of cortical slow waves. PMID:24966387

  5. Enhancement of sleep slow waves: underlying mechanisms and practical consequences

    PubMed Central

    Bellesi, Michele; Riedner, Brady A.; Garcia-Molina, Gary N.; Cirelli, Chiara; Tononi, Giulio

    2014-01-01

    Even modest sleep restriction, especially the loss of sleep slow wave activity (SWA), is invariably associated with slower electroencephalogram (EEG) activity during wake, the occurrence of local sleep in an otherwise awake brain, and impaired performance due to cognitive and memory deficits. Recent studies not only confirm the beneficial role of sleep in memory consolidation, but also point to a specific role for sleep slow waves. Thus, the implementation of methods to enhance sleep slow waves without unwanted arousals or lightening of sleep could have significant practical implications. Here we first review the evidence that it is possible to enhance sleep slow waves in humans using transcranial direct-current stimulation (tDCS) and transcranial magnetic stimulation. Since these methods are currently impractical and their safety is questionable, especially for chronic long-term exposure, we then discuss novel data suggesting that it is possible to enhance slow waves using sensory stimuli. We consider the physiology of the K-complex (KC), a peripheral evoked slow wave, and show that, among different sensory modalities, acoustic stimulation is the most effective in increasing the magnitude of slow waves, likely through the activation of non-lemniscal ascending pathways to the thalamo-cortical system. In addition, we discuss how intensity and frequency of the acoustic stimuli, as well as exact timing and pattern of stimulation, affect sleep enhancement. Finally, we discuss automated algorithms that read the EEG and, in real-time, adjust the stimulation parameters in a closed-loop manner to obtain an increase in sleep slow waves and avoid undesirable arousals. In conclusion, while discussing the mechanisms that underlie the generation of sleep slow waves, we review the converging evidence showing that acoustic stimulation is safe and represents an ideal tool for slow wave sleep (SWS) enhancement. PMID:25389394

  6. Single-Molecule Nanocatalysis Shows In Situ Deactivation of Pt/C Electrocatalysts during the Hydrogen-Oxidation Reaction.

    PubMed

    Zhang, Yuwei; Chen, Tao; Alia, Shaun; Pivovar, Bryan S; Xu, Weilin

    2016-02-24

    By coupling a Pt-catalyzed fluorogenic reaction with the Pt-electrocatalyzed hydrogen-oxidation reaction (HOR), we combine single-molecule fluorescence microscopy with traditional electrochemical methods to study the real-time deactivation kinetics of a Pt/C electrocatalyst at single-particle level during electrocatalytic hydrogen-oxidation reaction. The decay of the catalytic performance of Pt/C could be mainly attributed to the electrocatalysis-induced etching or dissolution of Pt nanoparticles. Spontaneous regeneration of activity and incubation period of the Pt electrocatalyst were also observed at single-particle level. All these new insights are practically useful for the understanding and rational design of highly efficient electrocatalysts for application in fuel cells. PMID:26821777

  7. Deactivation of xenon atoms in the 6s resonant state in collisions with xenon and helium atoms

    SciTech Connect

    Zayarnyi, D A; Semenova, Ludmila V; Ustinovskii, N N; Kholin, I V; Chugunov, A Yu

    1999-02-28

    The absorption probing method was used to investigate collisional deactivation of the 6s[3/2]{sub 1}{sup 0}({sup 3}P{sub 1}) state of the xenon atom in high-pressure He - Xe mixtures with a low xenon concentration. Measurements were made of the rate constants of the following plasma-chemical reactions: Xe* + Xe + He {yields} Xe{sub 2}* + He [(2.1 {+-} 0.2) x 10{sup -32} cm{sup 6}s{sup -1}], Xe* + 2He {yields} HeXe* + He (less than 10{sup -35} cm{sup 6}s{sup -1}), and Xe* + He {yields} products + He (less than 3 x 10{sup -15} cm{sup 3}s{sup -1}). (active media)

  8. Slow earthquakes, preseismic velocity changes, and the origin of slow frictional stick-slip.

    PubMed

    Kaproth, Bryan M; Marone, C

    2013-09-13

    Earthquakes normally occur as frictional stick-slip instabilities, resulting in catastrophic failure and seismic rupture. Tectonic faults also fail in slow earthquakes with rupture durations of months or more, yet their origin is poorly understood. Here, we present laboratory observations of repetitive, slow stick-slip in serpentinite fault zones and mechanical evidence for their origin. We document a transition from unstable to stable frictional behavior with increasing slip velocity, providing a mechanism to limit the speed of slow earthquakes. We also document reduction of P-wave speed within the active shear zone before stick-slip events. If similar mechanisms operate in nature, our results suggest that higher-resolution studies of elastic properties in tectonic fault zones may aid in the search for reliable earthquake precursors. PMID:23950495

  9. Electrical deactivation of interstitial Zn in heteroepitaxial InP by hydrogen and its effect on electronic properties

    NASA Astrophysics Data System (ADS)

    Ringel, S. A.; Chatterjee, B.

    1998-06-01

    Hydrogen passivation of InP layers grown on lattice-mismatched substrates can achieve thermally stable deactivation of dislocation-related deep levels, making this a promising process for improving the performance of heteroepitaxial InP space solar cells. However, in addition to dislocation-related defects, interstitial Zn (Zni) defects that are characteristic of Zn-doped InP and which form deep donor states within the InP band gap, are important considerations for optimizing the electronic quality of these layers. Here, we show that hydrogen forms complexes with and deactivates Zni donor states within Zn-doped InP grown by metalorganic chemical vapor deposition. A combination of photoluminescence (PL), electrochemical capacitance-voltage dopant profiling, secondary ion mass spectroscopy and current-voltage (I-V) measurements are applied to a set of samples receiving systematic hydrogenation and annealing treatments. We find that the deactivation of Zni deep donors, as detected by monitoring the evolution of the donor-acceptor transition using PL measurements, causes an increase of ˜50% in the net acceptor concentration of heavily Zn-doped heteroepitaxial InP by elimination of the acceptor compensation effect due to active Zni donors. Analysis of I-V characteristics indicates that Zni passivation sharply reduces depletion region recombination and shunt currents within heteroepitaxial diodes, causing an increase in the diode turn-on voltage from 680 to 960 mV. Subsequent annealing above 500 °C reactivates the Zni defects, resulting in a systematic increase in doping compensation as well as a decrease in VTO toward the original, as-grown value. A study of the reactivation kinetics for the H-Zni complex reveals a greater thermal stability than that of H-Zn acceptor complexes but less than that of H-dislocation complexes in InP, with an estimated dissociation energy for the H-Zni complex of 2.3 eV. While these effects are observed for both homoepitaxial and

  10. Centrally driven slow oscillating potential of extrathoracic trachea.

    PubMed

    Kondo, T; Kobayashi, I; Hirokawa, Y; Ohta, Y; Yamabayashi, H; Arita, H

    1993-03-01

    Spontaneous electrical activity of extrathoracic trachea was recorded along with force developed by tracheal smooth muscle and phrenic nerve activity in decerebrated, paralyzed, and artificially ventilated dogs with pneumothorax. The tracheal electrical activity exhibited slow oscillating potentials that were coupled with spontaneous phasic contraction of trachea. Both rhythmic changes were synchronous with central respiratory rhythm represented by phrenic burst, independent of the respirator's rhythm. The dominant component of the slow oscillating potentials consisted of sinusoidal waves with large amplitude that occurred shortly after cessation of phrenic burst, i.e., in the postinspiratory phase. The concomitant small change in the slow oscillating potentials began in the late inspiratory phase just before the initiation of the tracheal contraction. This phase relationship was preserved after removal of intrathoracic vagal afferents from lungs. Such slow oscillating potentials were also observed during lung collapse produced by disconnecting the tube attached to the respirator. Transection of recurrent laryngeal nerves abolished the slow oscillating potentials. These results indicate that the slow oscillating potentials of the extrathoracic trachea are generated by a physiological process associated with the central respiratory rhythm. The dominant component of the slow oscillating potentials occurs in the postinspiratory phase. PMID:8482644

  11. Time Slows Down during Accidents

    PubMed Central

    Arstila, Valtteri

    2012-01-01

    The experienced speed of the passage of time is not constant as time can seem to fly or slow down depending on the circumstances we are in. Anecdotally accidents and other frightening events are extreme examples of the latter; people who have survived accidents often report altered phenomenology including how everything appeared to happen in slow motion. While the experienced phenomenology has been investigated, there are no explanations about how one can have these experiences. Instead, the only recently discussed explanation suggests that the anecdotal phenomenology is due to memory effects and hence not really experienced during the accidents. The purpose of this article is (i) to reintroduce the currently forgotten comprehensively altered phenomenology that some people experience during the accidents, (ii) to explain why the recent experiments fail to address the issue at hand, and (iii) to suggest a new framework to explain what happens when people report having experiences of time slowing down in these cases. According to the suggested framework, our cognitive processes become rapidly enhanced. As a result, the relation between the temporal properties of events in the external world and in internal states becomes distorted with the consequence of external world appearing to slow down. That is, the presented solution is a realist one in a sense that it maintains that sometimes people really do have experiences of time slowing down. PMID:22754544

  12. Time Slows Down during Accidents.

    PubMed

    Arstila, Valtteri

    2012-01-01

    The experienced speed of the passage of time is not constant as time can seem to fly or slow down depending on the circumstances we are in. Anecdotally accidents and other frightening events are extreme examples of the latter; people who have survived accidents often report altered phenomenology including how everything appeared to happen in slow motion. While the experienced phenomenology has been investigated, there are no explanations about how one can have these experiences. Instead, the only recently discussed explanation suggests that the anecdotal phenomenology is due to memory effects and hence not really experienced during the accidents. The purpose of this article is (i) to reintroduce the currently forgotten comprehensively altered phenomenology that some people experience during the accidents, (ii) to explain why the recent experiments fail to address the issue at hand, and (iii) to suggest a new framework to explain what happens when people report having experiences of time slowing down in these cases. According to the suggested framework, our cognitive processes become rapidly enhanced. As a result, the relation between the temporal properties of events in the external world and in internal states becomes distorted with the consequence of external world appearing to slow down. That is, the presented solution is a realist one in a sense that it maintains that sometimes people really do have experiences of time slowing down. PMID:22754544

  13. FEL on slow cyclotron wave

    SciTech Connect

    Silivra, A.

    1995-12-31

    A physical mechanism of interaction of fast electromagnetic wave with slow cyclotron wave of relativistic electron beam in a FEL with helical wiggler field is described. It is shown that: (1) interaction is possible for both group of steady state electron trajectories (2) positive gain is achieved within certain interval of guide field strength (3) operation wavelength for group 1 trajectories ({Omega}{sub 0}/{gamma} < k{omega}{upsilon}{parallel}) is shorter than for the conventional FEL synchronism. A nonlinear analysis shows that efficiency of slow cyclotron FEL is restricted mainly by a breakdown of a single electron synchronism due to dependence of (modified) electron cyclotron frequency on an energy of electron. Nevertheless, as numerical simulation shows, typical efficiency of 15 % order is achieved in millimeter wavelength band for the midrelativistic ({gamma}= 3 {divided_by} 4) slow cyclotron wave FEL. Tapering of magnetic field results in a substantial increase of efficiency.

  14. Understanding the mechanism of DNA deactivation in ion therapy of cancer cells: hydrogen peroxide action*

    NASA Astrophysics Data System (ADS)

    Piatnytskyi, Dmytro V.; Zdorevskyi, Oleksiy O.; Perepelytsya, Sergiy M.; Volkov, Sergey N.

    2015-11-01

    Changes in the medium of biological cells under ion beam irradiation has been considered as a possible cause of cell function disruption in the living body. The interaction of hydrogen peroxide, a long-lived molecular product of water radiolysis, with active sites of DNA macromolecule was studied, and the formation of stable DNA-peroxide complexes was considered. The phosphate groups of the macromolecule backbone were picked out among the atomic groups of DNA double helix as a probable target for interaction with hydrogen peroxide molecules. Complexes consisting of combinations including: the DNA phosphate group, H2O2 and H2O molecules, and Na+ counterion, were considered. The counterions have been taken into consideration insofar as under the natural conditions they neutralise DNA sugar-phosphate backbone. The energy of the complexes have been determined by considering the electrostatic and the Van der Waals interactions within the framework of atom-atom potential functions. As a result, the stability of various configurations of molecular complexes was estimated. It was shown that DNA phosphate groups and counterions can form stable complexes with hydrogen peroxide molecules, which are as stable as the complexes with water molecules. It has been demonstrated that the formation of stable complexes of H2O2-Na+-PO4- may be detected experimentally by observing specific vibrations in the low-frequency Raman spectra. The interaction of H2O2 molecule with phosphate group of the double helix backbone can disrupt DNA biological function and induce the deactivation of the cell genetic apparatus. Thus, the production of hydrogen peroxide molecules in the nucleus of living cells can be considered as an additional mechanism by which high-energy ion beams destroy tumour cells during ion beam therapy. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey Solov'yov, Nigel Mason, Gustavo García, Eugene

  15. DEACTIVATION OF H2S OF CR2O2 EMISSION CONTROL CATALYST FORCHLORINATED VOC DESTRUCTION

    EPA Science Inventory

    The paper discusses one aspect of catalyst stability (i.e.,deactivation by poisoning) and the concomitant effects on catalystactivity and selectivity in the destruction of chlorinatedhydrocarbons. he study was initiated because nothing isdocumented of the effect of H2S or the oth...

  16. Influence of process conditions and catalyst properties on catalyst deactivation during hydroprocessing of Kuwait vacuum residue

    SciTech Connect

    Absi-Halabi, M.; Stanislaus, A.

    1995-12-31

    A comprehensive study of catalyst deactivation during hydroprocessing of Kuwait vacuum residue in trickle-bed reactors was carried out. The influence of selected process and catalyst parameters including temperature, hydrogen pressure, liquid hourly space velocity, presulfiding and catalyst pore size on coke and metals deposition was investigated. Increasing reactor temperature increased both coke and metal deposition on the catalyst, while increasing pressure decreased coke deposition. Vanadium deposition on the other hand increased with increasing pressure. Increasing feed flow rates increased the rate of deactivation by metals, but decreased coke deposition. Catalyst pore size distribution had a significant effect on catalyst deactivation. The rate of deactivation by both coke and metals deposition was found to be higher for catalysts having predominantly narrow pores. Presulfiding of the catalyst reduced coking and led to better distribution of foulant metals within the catalyst pellet. The effect of the studied parameters on surface area and pore volume of the catalyst was determined. Mechanistic arguments will be presented to explain the results.

  17. CATALYTIC STEAM REFORMING OF CHLOROCARBONS: CATALYST DEACTIVATION. (R826694C633)

    EPA Science Inventory

    Deactivation of 0.5 wt.% Pt/small gamma, Greek-Al2O3 catalysts during trichloroethylene (TCE)–steam reforming was studied with experiments at 700°C, H

  18. A Treatment Study of Mode Deactivation Therapy in an Out Patient Community Setting

    ERIC Educational Resources Information Center

    Apsche, Jack A.; Bass, Christopher K.; Siv, Alexander

    2006-01-01

    This paper is a review of the outpatient data and recidivism for an 18 month post treatment follow-up of Mode Deactivation Therapy (MDT). The follow up data suggests that effects of MDT generalized for over one-year post treatment in these adolescent conduct disordered males in an inpatient therapeutic setting. This research compared the…

  19. A Treatment Study of Mode Deactivation Therapy in an Out Patient Community Setting

    ERIC Educational Resources Information Center

    Apsche, Jack A.; Bass, Christopher K.

    2006-01-01

    This paper is an outpatient replication of Apsche, Bass, Jennings and Siv (2005) work which examined the effectiveness of Mode Deactivation Therapy (MDT) on adolescent conduct disordered males in an inpatient therapeutic setting. This research compared the effectiveness of MDT and Treatment as Usual (TAU) as treatments on adolescents with conduct…

  20. Deactivation processes of homogeneous Pd catalysts using in situ time resolved spectroscopic techniques.

    PubMed

    Tromp, Moniek; Sietsma, Jelle R A; van Bokhoven, Jeroen A; van Strijdonck, Gino P F; van Haaren, Richard J; van der Eerden, Ad M J; van Leeuwen, Piet W N M; Koningsberger, Diek C

    2003-01-01

    UV-Vis, combined with ED-XAFS shows, for the first time, the evolution of inactive Pd dimers and trimers, that are a possible first stage in the deactivation process of important palladium catalysed reactions, leading to larger palladium clusters and eventually palladium black. PMID:12610999

  1. Boron deactivation in heavily boron-doped Czochralski silicon during rapid thermal anneal: Atomic level understanding

    SciTech Connect

    Gao, Chao; Dong, Peng; Yi, Jun; Ma, Xiangyang E-mail: mxyoung@zju.edu.cn; Yang, Deren; Lu, Yunhao E-mail: mxyoung@zju.edu.cn

    2014-01-20

    The changes in hole concentration of heavily boron (B)-doped Czochralski silicon subjected to high temperature rapid thermal anneal (RTA) and following conventional furnace anneal (CFA) have been investigated. It is found that decrease in hole concentration, namely, B deactivation, is observed starting from 1050 °C and increases with RTA temperature. The following CFA at 300–500 °C leads to further B deactivation, while that at 600–800 °C results in B reactivation. It is supposed that the interaction between B atoms and silicon interstitials (I) thus forming BI pairs leads to the B deactivation during the high temperature RTA, and, moreover, the formation of extended B{sub 2}I complexes results in further B deactivation in the following CFA at 300–500 °C. On the contrary, the dissociation of BI pairs during the following CFA at 600–800 °C enables the B reactivation. Importantly, the first-principles calculation results can soundly account for the above-mentioned supposition.

  2. A One Year Study of Mode Deactivation Therapy: Adolescent Residential Patients with Conduct and Personality Disorders

    ERIC Educational Resources Information Center

    Murphy, Christopher J.; Siv, Alexander M.

    2011-01-01

    This case study is to evaluate the effectiveness of Mode Deactivation Therapy (MDT) implementation in a child and adolescent residential treatment unit and provide preliminary effectiveness data on MDT versus treatment as usual (TAU). This case study compared the efficacy of two treatment methodologies for adolescent males in residential treatment…

  3. Slow Images and Entangled Photons

    SciTech Connect

    Swordy, Simon

    2007-06-20

    I will discuss some recent experiments using slow light and entangled photons. We recently showed that it was possible to map a two dimensional image onto very low light level signals, slow them down in a hot atomic vapor while preserving the amplitude and phase of the images. If time remains, I will discuss some of our recent work with time-energy entangled photons for quantum cryptography. We were able to show that we could have a measurable state space of over 1000 states for a single pair of entangled photons in fiber.

  4. Slow Crack Growth of Germanium

    NASA Technical Reports Server (NTRS)

    Salem, Jon

    2016-01-01

    The fracture toughness and slow crack growth parameters of germanium supplied as single crystal beams and coarse grain disks were measured. Although germanium is anisotropic (A=1.7), it is not as anisotropic as SiC, NiAl, or Cu, as evidence by consistent fracture toughness on the 100, 110, and 111 planes. Germanium does not exhibit significant slow crack growth in distilled water. (n=100). Practical values for engineering design are a fracture toughness of 0.7 MPam and a Weibull modulus of m=6+/-2. For well ground and reasonable handled coupons, fracture strength should be greater than 30 MPa.

  5. Slow shocks around the sun

    NASA Technical Reports Server (NTRS)

    Whang, Y. C.

    1982-01-01

    It is inferred from this study that magnetohydrodynamic slow shocks can exist in the vicinity of the sun. The study uses a two-hole corona model, the sub-Alfvenic streams originating from the edge of the polar open-field regions are forced to turn towards equator in coronal space following the curved boundary of the closed field region. When the streamlines from the opposite poles merge at a neutral point, their directions become parallel to the neutral sheet. An oblique slow shock can develop near or at the neutral point, the shock extends polewards to form a surface of discontinuity around the sun.

  6. Critical Curriculum Theory and Slow Ecopedagogical Activism

    ERIC Educational Resources Information Center

    Payne, Phillip G.

    2015-01-01

    Enacting a critical environmental education curriculum theory with 8- to 9-year-old children in 1978 is now "restoried" in a "history of the present/future" like "case study" for prosecuting five interrelated problems confronting progress in environmental education and its research. They are: the intense heat of the…

  7. Audit of the deactivation, decontamination, and disposal of surplus facilities at the Savannah River Site

    SciTech Connect

    1997-10-23

    Westinghouse Savannah River Company (Westinghouse) is responsible for managing the Department of Energy`s (Department) surplus facilities at the Savannah River Site (Site). In Fiscal Year (FY) 1996, the Site had 162 surplus facilities and anticipated that 118 more would become surplus within the next 5 years. The objective of this audit was to determine whether the Savannah River Operations Office (Operations Office) and Westinghouse had economically and promptly deactivated, decontaminated, and disposed of surplus facilities at the Site. Departmental regulations require that surplus facilities be deactivated, decontaminated, and disposed of economically and promptly. However, Westinghouse only disposed of one facility and did not completely deactivate or decontaminate any of the 162 facilities identified as surplus at the Site in FY 1996. This occurred because the Operations Office did not compile a Site-wide list, establish priorities, or provide sufficient funding for the deactivation, decontamination, and disposal of surplus facilities. As a result, the Department incurred unnecessary costs for the surveillance and maintenance of surplus facilities. For example, the Department could have avoided annual costs of about $1.3 million in surveillance and maintenance costs by spending $1.2 million to perform a deactivation project on the P-Reactor process-water storage tanks. The Operations Office could have funded the project out of its unobligated FY 1996 operating funds. However, it returned the unobligated funds to the Department`s Headquarters at the end of the fiscal year. The Operations Office concurred with the finding and recommendations and initiated corrective action.

  8. Reducing Channel Interaction Through Cochlear Implant Programming May Improve Speech Perception: Current Focusing and Channel Deactivation.

    PubMed

    Bierer, Julie A; Litvak, Leonid

    2016-01-01

    Speech perception among cochlear implant (CI) listeners is highly variable. High degrees of channel interaction are associated with poorer speech understanding. Two methods for reducing channel interaction, focusing electrical fields, and deactivating subsets of channels were assessed by the change in vowel and consonant identification scores with different program settings. The main hypotheses were that (a) focused stimulation will improve phoneme recognition and (b) speech perception will improve when channels with high thresholds are deactivated. To select high-threshold channels for deactivation, subjects' threshold profiles were processed to enhance the peaks and troughs, and then an exclusion or inclusion criterion based on the mean and standard deviation was used. Low-threshold channels were selected manually and matched in number and apex-to-base distribution. Nine ears in eight adult CI listeners with Advanced Bionics HiRes90k devices were tested with six experimental programs. Two, all-channel programs, (a) 14-channel partial tripolar (pTP) and (b) 14-channel monopolar (MP), and four variable-channel programs, derived from these two base programs, (c) pTP with high- and (d) low-threshold channels deactivated, and (e) MP with high- and (f) low-threshold channels deactivated, were created. Across subjects, performance was similar with pTP and MP programs. However, poorer performing subjects (scoring < 62% correct on vowel identification) tended to perform better with the all-channel pTP than with the MP program (1 > 2). These same subjects showed slightly more benefit with the reduced channel MP programs (5 and 6). Subjective ratings were consistent with performance. These finding suggest that reducing channel interaction may benefit poorer performing CI listeners. PMID:27317668

  9. Oral Bacterial Deactivation Using a Low-Temperature Atmospheric Argon Plasma Brush

    PubMed Central

    Yang, Bo; Chen, Jierong; Yu, Qingsong; Li, Hao; Lin, Mengshi; Mustapha, Azlin; Hong, Liang; Wang, Yong

    2010-01-01

    Summary Objectives To study the plasma treatment effects on deactivation effectiveness of oral bacteria. Methods A low temperature atmospheric argon plasma brush were used to study the oral bacterial deactivation effects in terms of plasma conditions, plasma exposure time, and bacterial supporting media. Oral bacteria of Streptococcus mutans and Lactobacillus acidophilus with an initial bacterial population density between 1.0 × 108 and 5.0 × 108 cfu/ml were seeded on various media and their survivability with plasma exposure was examined. Scanning electron microscopy was used to examine the morphological changes of the plasma treated bacteria. Optical absorption was used to determine the leakage of intracellular proteins and DNAs of the plasma treated bacteria. Results The experimental data indicated that the argon atmospheric plasma brush was very effective in deactivating oral bacteria. The plasma exposure time for a 99.9999% cell reduction was less than 15 seconds for S. mutans and within 5 minutes for L. acidophilus. It was found that the plasma deactivation efficiency was also dependent on the bacterial supporting media. With plasma exposure, significant damages to bacterial cell structures were observed with both bacterium species. Leakage of intracellular proteins and DNAs after plasma exposure was observed through monitoring the absorbance peaks at wavelengths of 280nm and 260nm, respectively. Conclusion The experimental results from this study indicated that low temperature atmospheric plasma treatment was very effective in deactivation of oral bacteria and could be a promising technique in various dental clinical applications such as bacterial disinfection and caries early prevention, etc. PMID:20951184

  10. Evaluation of the influence of muscle deactivation on other muscles and joints during gait motion.

    PubMed

    Komura, Taku; Prokopow, Przemyslaw; Nagano, Akinori

    2004-04-01

    When any muscle in the human musculoskeletal system is damaged, other muscles and ligaments tend to compensate for the role of the damaged muscle by exerting extra effort. It is beneficial to clarify how the roles of the damaged muscles are compensated by other parts of the musculoskeletal system from the following points of view: From a clinical point of view, it will be possible to know how the abnormal muscle and joint forces caused by the acute compensations lead to further physical damage to the musculoskeletal system. From the viewpoint of rehabilitation, it will be possible to know how the role of the damaged muscle can be compensated by extra training of the other muscles. A method to evaluate the influence of muscle deactivation on other muscles and joints is proposed in this report. Methodology based on inverse dynamics and static optimization, which is applicable to arbitrary motion was used in this study. The evaluation method was applied to gait motion to obtain matrices representing (1) the dependence of muscle force compensation and (2) the change to bone-on-bone contact forces. These matrices make it possible to evaluate the effects of deactivation of one of the muscles of the musculoskeletal system on the forces exerted by other muscles as well as the change to the bone-on-bone forces when the musculoskeletal system is performing the same motion. Through observation of this matrix, it was found that deactivation of a muscle often results in increment/decrement of force developed by muscles with completely different primary functions and bone-on-bone contact force in different parts of the body. For example, deactivation of the iliopsoas leads to a large reduction in force by the soleus. The results suggest that acute deactivation of a muscle can result in damage to another part of the body. The results also suggest that the whole musculoskeletal system must go through extra retraining in the case of damage to certain muscles. PMID:14996554

  11. Fast wandering of slow birds

    NASA Astrophysics Data System (ADS)

    Toner, John

    2011-12-01

    I study a single slow bird moving with a flock of birds of a different and faster (or slower) species. I find that every species of flocker has a characteristic speed γ≠v0, where v0 is the mean speed of the flock such that if the speed vs of the slow bird equals γ, it will randomly wander transverse to the mean direction of flock motion far faster than the other birds will: Its mean-squared transverse displacement will grow in d=2 with time t like t5/3, in contrast to t4/3 for the other birds. In d=3, the slow bird's mean-squared transverse displacement grows like t5/4, in contrast to t for the other birds. If vs≠γ, the mean-squared displacement of the slow bird crosses over from t5/3 to t4/3 scaling in d=2 and from t5/4 to t scaling in d=3 at a time tc that scales according to tc∝|vs-γ|-2.

  12. Reading and the Slow Learner.

    ERIC Educational Resources Information Center

    Ediger, Marlow

    Advocates of high standards and expectations usually believe that gaps in reading achievement can be eliminated with good teaching, but slow readers need a specially designed reading curriculum. The teacher first needs to use an informal reading inventory to determine the student's reading level. Functioning generally on a higher level than…

  13. Slow extraction at LAMPF II

    SciTech Connect

    Colton, E.P.

    1985-10-01

    Half-integer resonant extraction will be used to slow extract the 45 GeV proton beam from the LAMPF II main ring during a time spread of 1/6 sec. High extraction efficiency is obtained by performing the extraction in a high-beta long straight section and by utilizing an electrostatic wire septum and iron septum.

  14. Slow extraction at LAMPF II

    SciTech Connect

    Colton, E.P.

    1985-01-01

    Half-integer resonant extraction will be used to slow extract the 45 GeV proton beam from the LAMPF II main ring during a time spread of 1/6 sec. High extration efficiency is obtained by performing the extraction in a high-beta long straight section and by utilizing an electrostatic wire septum and iron septum. 3 refs., 4 figs.

  15. Magnesium oxide prepared via metal-chitosan complexation method: Application as catalyst for transesterification of soybean oil and catalyst deactivation studies

    NASA Astrophysics Data System (ADS)

    Almerindo, Gizelle I.; Probst, Luiz F. D.; Campos, Carlos E. M.; de Almeida, Rusiene M.; Meneghetti, Simoni M. P.; Meneghetti, Mario R.; Clacens, Jean-Marc; Fajardo, Humberto V.

    2011-10-01

    A simple method to prepare magnesium oxide catalysts for biodiesel production by transesterification reaction of soybean oil with ethanol is proposed. The method was developed using a metal-chitosan complex. Compared to the commercial oxide, the proposed catalysts displayed higher surface area and basicity values, leading to higher yield in terms of fatty acid ethyl esters (biodiesel). The deactivation of the catalyst due to contact with CO2 and H2O present in the ambient air was verified. It was confirmed that the active catalytic site is a hydrogenocarbonate adsorption site.

  16. IN SITU Device for Real-Time Catalyst Deactivation Measurements

    SciTech Connect

    Fossil Energy Research

    2008-03-31

    SCR catalyst management has become an important operations and maintenance activity for coal-fired utility boilers in the United States. To facilitate this activity, a method to determine Catalyst Activity in situ is being developed. This report describes the methodology and presents the results of a two ozone season demonstration conducted at Alabama Power Company's Gorgas Unit 10 during the 2005 and 2006 ozone seasons. The results showed that the in situ measurements are in good agreement with the laboratory measurements and the technique has some advantages over the traditional laboratory method of determining Catalyst Activity and Reactor Potential. SCR Performance is determined by the overall Reactor Potential (the product of the Catalyst Activity and the available surface area per unit of flue gas). The in situ approach provides a direct measurement of Reactor Potential under actual operating conditions, whereas laboratory measurements of Catalyst Activity need to be coupled with estimates of catalyst pluggage and flue gas flowrate in order to assess Reactor Potential. The project also showed that the in situ activity results can easily be integrated into catalyst management software to aid in making informed catalyst decisions.

  17. Physics and modeling of ion implantation induced transient deactivation and diffusion processes in boron doped silicon

    NASA Astrophysics Data System (ADS)

    Chakravarthi, Srinivasan

    The economics of silicon processing requires predictive modeling capabilities for the continued rapid advancement of semiconductor technology. This is because it has become prohibitively expensive to develop a new process by running a large series of test lots through multi-billion dollar fabrication facilities. Effective process modeling requires an accurate physical understanding of the various interacting processes. The complexity of this problem is compounded by highly non-equilibrium phenomena associated with IC fabrication processes such as implantation annealing. Point defect supersaturations of many orders of magnitude are introduced following ion implantation, which is used to introduce the dopants into silicon. Such supersaturations dramatically alter the diffusion of dopants and reduce the electrical activation during the initial phase of the anneal. Boron is the primary p-type dopant used in silicon and thus understanding and modeling its deactivation/activation and diffusion is critical to predictive process simulation. Since boron is smaller than silicon, boron agglomerates with interstitials becoming electrically inactive. Modeling of boron clusters is complicated, as there is a huge array of potential boron-interstitial cluster compositions. A physical model for boron clustering is derived by identifying dominant clusters and rate limiting steps via atomistic calculations performed at Lawrence Livermore National Labs. The model is then used successfully to match a wide variety of chemical and electrical data. We further apply this model to understand and successfully predict ultra shallow junction formation. We find it is possible to explain some intriguing phenomenon observed during the formation of ultra shallow junctions, like saturation in junction depth despite increasing ramp-up rates. Researchers are exploring novel experimental processing steps like high energy Si pre-implants to produce highly active and shallow B junctions. To understand

  18. Requirement for Drosophila SNMP1 for Rapid Activation and Termination of Pheromone-Induced Activity

    PubMed Central

    Li, Zhengzheng; Ni, Jinfei D.; Huang, Jia; Montell, Craig

    2014-01-01

    Pheromones are used for conspecific communication by many animals. In Drosophila, the volatile male-specific pheromone 11-cis vaccenyl acetate (cVA) supplies an important signal for gender recognition. Sensing of cVA by the olfactory system depends on multiple components, including an olfactory receptor (OR67d), the co-receptor ORCO, and an odorant binding protein (LUSH). In addition, a CD36 related protein, sensory neuron membrane protein 1 (SNMP1) is also involved in cVA detection. Loss of SNMP1 has been reported to eliminate cVA responsiveness, and to greatly increase spontaneous activity of OR67d-expressing olfactory receptor neurons (ORNs). Here, we found the snmp11 mutation did not abolish cVA responsiveness or cause high spontaneous activity. The cVA responses in snmp1 mutants displayed a delayed onset, and took longer to reach peak activity than wild-type. Most strikingly, loss of SNMP1 caused a dramatic delay in signal termination. The profound impairment in signal inactivation accounted for the previously reported “spontaneous activity,” which represented continuous activation following transient exposure to environmental cVA. We introduced the silk moth receptor (BmOR1) in OR67d ORNs of snmp11 flies and found that the ORNs showed slow activation and deactivation kinetics in response to the BmOR1 ligand (bombykol). We expressed the bombykol receptor complex in Xenopus oocytes in the presence or absence of the silk moth SNMP1 (BmSNMP) and found that addition of BmSNMP accelerated receptor activation and deactivation. Our results thus clarify SNMP1 as an important player required for the rapid kinetics of the pheromone response in insects. PMID:25255106

  19. The Role of Phosphorus and Soot on the Deactivation of Diesel Oxidation Catalysts

    SciTech Connect

    Eaton, Scott J; Nguyen, Ke; Bunting, Bruce G; Toops, Todd J

    2009-01-01

    The deactivation of diesel oxidation catalysts (DOCs) by soot contamination and lube-oil derived phosphorus poisoning is investigated. Pt/CeO2/-Al2O3 DOCs aged using three different protocols developed by the authors and six high mileage field-returned DOCs of similar formulation are evaluated for THC and CO oxidation performance using a bench-flow reactor. Collectively, these catalysts exhibit a variety of phosphorus and soot morphologies contributing to performance deactivation. To isolate and examine the contribution of each deactivation mechanism, performance evaluations are carried out for each DOC ''as received'' and after removal of surface carbon in a high-temperature oxidizing environment. In such a manner the deactivation contribution of soot contamination is de-convoluted from that of phosphorus poisoning. It will be shown that this is accomplished while preserving phosphorus (and to a lesser degree sulfur, calcium and zinc) chemistries and concentrations within the washcoat. Washcoat contaminant information and materials changes are characterized using electron-probe microanalysis (EPMA), X-ray diffraction (XRD), scanning electron microscopy and energy dispersive spectroscopy (SEM-EDS), BET surface area, oxygen storage capacity (OSC), X-ray fluorescence (XRF) and inductively coupled plasma (ICP) analysis, from which the relative severity of each mechanism can be quantified. Results show that soot contamination from diesel exhaust severely degrades THC and CO oxidation performance by acting as a catalyst surface diffusion barrier. This results in a considerable increase of light-off temperatures. In contrast, phosphorus poisoning, which is considered a significant deactivation mechanism in three-way catalysts, is shown to have minimal effect on DOC oxidation performance for the conditions studied here. Material changes include the formation of both Ce(III-IV) and aluminum phosphates which do not significantly hinder the THC and CO oxidation in lean

  20. Imaging slow earthquakes in Cascadia using seismic arrays

    NASA Astrophysics Data System (ADS)

    Ghosh, Abhijit

    Slow earthquakes have been observed in major plate boundaries worldwide, and accommodate a significant part of the plate motion through slow slip in the transition zone of the faults. They occur down-dip of the locked zone, where large damaging fast earthquakes nucleate. The physical processes that control slow quakes, however, remain enigmatic. To understand slow earthquakes, I study non-volcanic tremor, a form of seismic radiation associated with slow quakes. It is challenging to detect and locate tremor due to its lack of clear impulsive arrivals. I develop a new beam-backprojection technique to image slow earthquakes in high resolution by detecting and precisely locating tremor using small aperture seismic arrays. This technique can detect more duration of tremor, gives high resolution in tremor locations compared to a conventional envelope cross-correlation method, and also resolve tremor depth. I apply this technique in Cascadia, and show that the majority of tremor is occurring near the plate interface suggesting that they are possibly a result of shear slip on the subduction fault. Transition zone producing tremor appears to be fairly heterogeneous. Three patches down-dip of the transition zone produce majority of the tremor during small to moderate-sized tremor episodes. The patches repeat 10--15 times in 15 months. On the other hand, several up-dip patches are responsible for most of the tremor activity during large slow quakes. Moreover, I find that tremor behavior changes dramatically over different time scales. Over the time scale of several minutes, tremor propagates rapidly sub-parallel to the slip direction of the subduction zone at a velocity of ˜100 km/hr. This quasi-continuous streaking of tremor produces slip-parallel tremor bands over the time scale of several hours. Tremor bands migrate along-strike resulting in the slow rupture propagation at an average velocity of ˜8 km/day. Along-strike slow rupture propagation velocity during a large

  1. Lignin enrichment and enzyme deactivation as the root cause of enzymatic hydrolysis slowdown of steam pretreated sugarcane bagasse.

    PubMed

    Wallace, Joshua; Brienzo, Michel; García-Aparicio, María P; Görgens, Johann F

    2016-05-25

    The enzymatic hydrolysis (EH) rate normally decreases during the hydrolysis, leaving unhydrolyzed material as residue. This phenomenon occurs during the hydrolysis of both cellulose (avicel) and lignocellulosic material, in nature or even pretreated. The progression of EH of steam pretreated sugarcane bagasse was associated with an initial (fast), intermediate (slower) and recalcitrant (slowest) phases, at glucan to glucose conversion yields of 61.7, 81.6 and 86%, respectively. Even though the EH of avicel as a simpler material than steam pretreated sugarcane bagasse, EH slowdown was present. The less thermo-stable endo-xylanase lost 58% of initial enzyme activity, followed by β-glucosidase that lost 16%, culminating in FPase activity loss of 30% in the first 24hours. After 72hours of EH the total loss of FPase activity was 40% compared to the initial activity. Analysis of the solid residue from EH showed that lignin content, phenolic compounds and ash increased while glucan decreased as hydrolysis progressed. During the initial fast phase of EH, the total solid residue surface area consisted predominantly of internal surface area. Thereafter, in the intermediate and recalcitrant phases of EH, the ratio of external:internal surface area increased. The proposed fiber damage and decrease in internal surface area, probably by EH action, was visualized by scanning electron microscopy imagery. The higher lignin/glucan ratio as EH progressed and enzyme deactivation by thermo instability were the main effects observed, respectively to substrate and enzyme. PMID:26820122

  2. Competing reaction processes on a lattice as a paradigm for catalyst deactivation.

    PubMed

    Abad, E; Kozak, J J

    2015-02-01

    We mobilize both a generating function approach and the theory of finite Markov processes to compute the probability of irreversible absorption of a randomly diffusing species on a lattice with competing reaction centers. We consider an N-site lattice populated by a single deep trap, and N-1 partially absorbing traps (absorption probability 0deactivation processes on planar surfaces and on catalyst pellets where only a single catalytic site remains fully active (deep trap), the other sites being only partially active as a result of surface poisoning. The central result of our study is that the predicted dependence of the reaction efficiency on system size N and on s is in qualitative accord with previously reported experimental results, notably catalysts exhibiting selective poisoning due to surface sites that have different affinities for chemisorption of the poisoning agent (e.g., acid zeolite catalysts). Deviations from the efficiency of a catalyst with identical sites are quantified, and we find that such deviations display a significant dependence on the topological details of the surface (for fixed values of N and s we find markedly different results for, say, a planar surface and for the polyhedral surface of a catalyst pellet). Our results highlight the importance of surface topology for the efficiency of catalytic conversion processes on inhomogeneous substrates, and in particular for those aimed at industrial applications. From our exact analysis we extract results for the two limiting cases s≈1

  3. Competing reaction processes on a lattice as a paradigm for catalyst deactivation

    NASA Astrophysics Data System (ADS)

    Abad, E.; Kozak, J. J.

    2015-02-01

    We mobilize both a generating function approach and the theory of finite Markov processes to compute the probability of irreversible absorption of a randomly diffusing species on a lattice with competing reaction centers. We consider an N-site lattice populated by a single deep trap, and N -1 partially absorbing traps (absorption probability 0 deactivation processes on planar surfaces and on catalyst pellets where only a single catalytic site remains fully active (deep trap), the other sites being only partially active as a result of surface poisoning. The central result of our study is that the predicted dependence of the reaction efficiency on system size N and on s is in qualitative accord with previously reported experimental results, notably catalysts exhibiting selective poisoning due to surface sites that have different affinities for chemisorption of the poisoning agent (e.g., acid zeolite catalysts). Deviations from the efficiency of a catalyst with identical sites are quantified, and we find that such deviations display a significant dependence on the topological details of the surface (for fixed values of N and s we find markedly different results for, say, a planar surface and for the polyhedral surface of a catalyst pellet). Our results highlight the importance of surface topology for the efficiency of catalytic conversion processes on inhomogeneous substrates, and in particular for those aimed at industrial applications. From our exact analysis we extract results for the two limiting cases

  4. Idaho Cleanup Project CPP-603A basin deactivation waste management 2007

    SciTech Connect

    Croson, D.V.; Davis, R.H.; Cooper, W.B.

    2007-07-01

    The CPP-603A basin facility is located at the Idaho Nuclear Technology and Engineering Center (INTEC) at the U.S. Department of Energy's (DOE) Idaho National Laboratory (INL). CPP-603A operations are part of the Idaho Cleanup Project (ICP) that is managed by CH2M-WG Idaho, LLC (CWI). Once the inventoried fuel was removed from the basins, they were no longer needed for fuel storage. However, they were still filled with water to provide shielding from high activity debris and contamination, and had to either be maintained so the basins did not present a threat to public or worker health and safety, or be isolated from the environment. The CPP-603A basins contained an estimated 50,000 kg (110,200 lbs) of sludge. The sludge was composed of desert sand, dust, precipitated corrosion products, and metal particles from past cutting operations. The sediment also contained hazardous constituents and radioactive contamination, including cadmium, lead, and U-235. An Engineering Evaluation/Cost Analysis (EE/CA), conducted pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), evaluated the risks associated with deactivation of the basins and the alternatives for addressing those risks. The recommended action identified in the Action Memorandum was to perform interim stabilization of the basins. The sludge in the basins was removed and treated in accordance with the Hazardous Waste Management Act/Resource Conservation and Recovery Act (HWMA/RCRA) and disposed at the INL Radioactive Waste Management Complex (RWMC). A Non-Time Critical Removal Action (NTCRA) was conducted under CERCLA to reduce or eliminate other hazards associated with maintaining the facility. The CERCLA NTCRA included removing a small high-activity debris object (SHADO 1); consolidating and mapping the location of debris objects containing Co-60; removing, treating, and disposing of the basin water; and filling the basins with grout/controlled low strength material (CLSM

  5. Porphyrin Induced Laser Deactivation of Trypsinogen-Trypsin Conversion

    NASA Astrophysics Data System (ADS)

    Perido, Joanna; Brancaleon, Lorenzo

    2015-03-01

    Pancreatitis is caused by the inflammation of the pancreas, where the digestive enzyme trypsin is activated from the precursor enzyme trypsinogen while still in the pancreas. The presence of trypsin in the pancreas causes auto-activation of trypsinogen, resulting in greater inflammation and auto-digestion of the pancreas. In severe cases, this cascade effect can lead to organ failure, diabetes, and pancreatic cancer. Our hypothesis is that if trypsinogen is prevented from auto-activating into trypsin, then this cascade can be stopped. We propose to do this by inducing conformational changes in trypsinogen when bound to a photoactive porphyrin dye. Porphyrins are comprised of four linked heterocyclic groups forming a flat ring, and bind well with proteins such as trypsinogen. In this study we used spectroscopic techniques to probe the binding of meso-tetrakis (4-sulfonatephenyl) porphyrin (TSPP) to trypsinogen in vitro, as a preliminary step to then prompt and characterize conformational changes of trypsinogen through irradiation. If conformational changes are detected the trypsinogen will be tested for trypsin inactivation. This investigation may provide promising initial results to the possible use of porphyrins as an inhibitor of the self-activation of trypsinogen into trypsin, and a potential inhibitor of pancreatitis. MARC*U-STAR.

  6. Slow light and saturable absorption

    NASA Astrophysics Data System (ADS)

    Selden, A. C.

    2009-06-01

    Quantitative analysis of slow light experiments utilising coherent population oscillation (CPO) in a range of saturably absorbing media, including ruby and alexandrite, Er3+:Y2SiO5, bacteriorhodopsin, semiconductor quantum devices and erbium-doped optical fibres, shows that the observations may be more simply interpreted as saturable absorption phenomena. A basic two-level model of a saturable absorber displays all the effects normally associated with slow light, namely phase shift and modulation gain of the transmitted signal, hole burning in the modulation frequency spectrum and power broadening of the spectral hole, each arising from the finite response time of the non-linear absorption. Only where hole-burning in the optical spectrum is observed (using independent pump and probe beams), or pulse delays exceeding the limits set by saturable absorption are obtained, can reasonable confidence be placed in the observation of slow light in such experiments. Superluminal (“fast light”) phenomena in media with reverse saturable absorption (RSA) may be similarly explained.

  7. Activity-dependent acceleration of endocytosis at a central synapse.

    PubMed

    Wu, Wei; Xu, Jianhua; Wu, Xin-Sheng; Wu, Ling-Gang

    2005-12-14

    Accumulated evidence indicates the existence of rapid and slow endocytosis at many synapses. It has been proposed that rapid endocytosis is activated by intense stimulation when vesicle recycling needs to be speeded up to supply vesicles at hippocampal synapses. However, the evidence, as obtained with imaging techniques, which are somewhat indirect in indicating rapid endocytosis, is controversial. Furthermore, a slower time course of endocytosis is often found after more intense nerve activity, casting doubt on the role of rapid endocytosis at synapses. Here, we addressed this issue at a mammalian central synapse, the calyx of Held, using a capacitance measurement technique that provides a higher time resolution than imaging techniques. We found that rapid endocytosis with a time constant of approximately 1-2 s was activated during intense nerve activity. Reducing the presynaptic calcium current or buffering the intracellular calcium with EGTA significantly inhibited rapid endocytosis, suggesting that calcium triggers rapid endocytosis. During intense stimulation, rapid endocytosis retrieved up to approximately eight vesicles per second per active zone, approximately eightfold larger than reported in the hippocampus, and thus played a dominant role during and within 3 s after intense stimulation. Slow endocytosis became dominant 3 s after intense stimulation likely because of the fall of the intracellular calcium level that deactivated rapid endocytosis. These results underscore the importance of calcium-triggered rapid endocytosis, which offers the nerve terminal the plasticity to speed up vesicle cycling during intense nerve activity. PMID:16354926

  8. Mission design for a ballistic slow flyby Comet Encke 1980

    NASA Technical Reports Server (NTRS)

    Farquhar, R. W.; Mccarthy, D. K.; Muhonen, D. P.; Yeomans, D. K.

    1974-01-01

    Preliminary mission analyses for a proposed 1980 slow flyby (7-9 km/s) of comet Encke are presented. Among the topics covered are science objectives, Encke's physical activity and ephemeris accuracy, trajectory and launch-window analysis, terminal guidance, and spacecraft concepts. The nominal mission plan calls for a near-perihelion intercept with two spacecraft launched on a single launch vehicle. Both spacecraft will arrive at the same time, one passing within 500 km from Encke's nucleus on its sunward side, the other cutting through the tail region. By applying a small propulsive correction about three weeks after the encounter, it is possible to retarget both spacecraft for a second Encke intercept in 1984. The potential science return from the ballistic slow flyby is compared with other proposed mission modes for the 1980 Encke flyby mission, including the widely advocated slow flyby using solar-electric propulsion. It is shown that the ballistic slow flyby is superior in every respect.

  9. MTBE, methane, ethylene and regulated exhaust emissions from vehicles with deactivated catalytic converters

    NASA Astrophysics Data System (ADS)

    Poulopoulos, S. G.; Philippopoulos, C. J.

    In the present work, the effect of the gradual deactivation of a three-way catalytic converter on the exhaust emissions was studied. The exhaust gases were analyzed for CO, HC (i.e. total unburned organic compounds), MTBE, methane and ethylene, before and after their catalytic treatment, in a wide range of engine operating conditions. The thermal aging of the catalytic converter resulted in an increase in the required time for the start of its operation and loss of its auto thermal operation. The catalytic efficiency was significantly decreased after each thermal aging step, especially at idle conditions. As a result, CO and especially HC emissions were increased, whereas ethylene and MTBE emissions were multiplied by a factor of 6-7 at 3.81 hp, in the case of the deactivated catalyst.

  10. Quantum chemical investigations on the nonradiative deactivation pathways of cytosine derivatives.

    PubMed

    Nakayama, Akira; Yamazaki, Shohei; Taketsugu, Tetsuya

    2014-10-01

    The nonradiative deactivation pathways of cytosine derivatives (cytosine, 5-fluorocytosine, 5-methylcytosine, and 1-methycytosine) and their tautomers are investigated by quantum chemical calculations, and the substituent effects on the deactivation process are examined. The MS-CASPT2 method is employed in the excited-state geometry optimization and also in the search for conical intersection points, and the potential energy profiles connecting the Franck-Condon point, excited-state minimum energy structures, and the conical intersection points are investigated. Our calculated vertical and adiabatic excitation energies are in quite good agreement with the experimental results, and the relative barrier heights leading to the conical intersections are correlated with the experimentally observed excite-state lifetimes, where the calculated barrier heights are in the order of cytosine < 5-methylcytosine < 5-fluorocytosine. PMID:25178384

  11. Using liquid desiccant as a regenerable filter for capturing and deactivating contaminants

    DOEpatents

    Slayzak, Steven J.; Anderson, Ren S.; Judkoff, Ronald D.; Blake, Daniel M.; Vinzant, Todd B.; Ryan, Joseph P.

    2007-12-11

    A method, and systems for implementing such method, for purifying and conditioning air of weaponized contaminants. The method includes wetting a filter packing media with a salt-based liquid desiccant, such as water with a high concentration of lithium chloride. Air is passed through the wetted filter packing media and the contaminants in are captured with the liquid desiccant while the liquid desiccant dehumidifies the air. The captured contaminants are then deactivated in the liquid desiccant, which may include heating the liquid desiccant. The liquid desiccant is regenerated by applying heat to the liquid desiccant and then removing moisture. The method includes repeating the wetting with the regenerated liquid desiccant which provides a regenerable filtering process that captures and deactivates contaminants on an ongoing basis while also conditioning the air. The method may include filtration effectiveness enhancement by electrostatic or inertial means.

  12. Photocatalytic acceptorless alkane dehydrogenation: scope, mechanism, and conquering deactivation with carbon dioxide.

    PubMed

    Chowdhury, Abhishek Dutta; Julis, Jennifer; Grabow, Kathleen; Hannebauer, Bernd; Bentrup, Ursula; Adam, Martin; Franke, Robert; Jackstell, Ralf; Beller, Matthias

    2015-01-01

    Alkane dehydrogenation is of special interest for basic science but also offers interesting opportunities for industry. The existing dehydrogenation methodologies make use of heterogeneous catalysts, which suffer from harsh reaction conditions and a lack of selectivity, whereas homogeneous methodologies rely mostly on unsolicited waste generation from hydrogen acceptors. Conversely, acceptorless photochemical alkane dehydrogenation in the presence of trans-Rh(PMe3 )2 (CO)Cl can be regarded as a more benign and atom efficient alternative. However, this methodology suffers from catalyst deactivation over time. Herein, we provide a detailed investigation of the trans-Rh(PMe3 )2 (CO)Cl-photocatalyzed alkane dehydrogenation using spectroscopic and theoretical investigations. These studies inspired us to utilize CO2 to prevent catalyst deactivation, which leads eventually to improved catalyst turnover numbers in the dehydrogenation of alkanes that include liquid organic hydrogen carriers. PMID:25346450

  13. Detection of the Recovery Phase of in vivo Gastric Slow Wave Recordings

    PubMed Central

    Paskaranandavadivel, Niranchan; Pan, Xingzheng; Du, Peng; O’Grady, Gregory; Cheng, Leo K.

    2016-01-01

    Gastric motility is coordinated by bio-electrical events known as slow waves. Abnormalities in slow waves are linked to major functional and motility disorders. In recent years, the use of high-resolution (HR) recordings have provided a unique view of spatiotemporal activation profiles of normal and dysrhythmic slow wave activity. To date, in vivo studies of gastric slow wave activity have primarily focused on the activation phase of the slow wave event. In this study, the recovery phase of slow waves was investigated through the use of HR recording techniques. The recovery phase of the slow wave event was detected through the use of the signal derivative, computed via a wavelet transform. The activation to recovery interval (ARi) metric was computed as a difference between the recovery time and activation time. The detection method was validated with synthetic slow wave signals of varying morphologies with the addition of synthetic ventilator and high frequency noise. The methods was then applied to HR experimental porcine gastric slow wave recordings. Ventilator noise more than 10% of the slow wave amplitude affected the estimation of the ARi metric. Signal to noise ratio below 3 dB affected the ARi metric, but with minor deviation in accuracy. Experimental ARi values ranged from 3.7–4.7 s from three data sets, with significant differences across them. PMID:26737682

  14. The proton complex of a diaza-macropentacycle: structure, slow formation, and chirality induction by ion pairing with the optically active 1,1'-binaphthyl-2,2'-diyl phosphate anion.

    PubMed

    Bonnot, Clément; Chambron, Jean-Claude; Espinosa, Enrique; Bernauer, Klaus; Scholten, Ulrich; Graff, Roland

    2008-10-17

    The protonation of a sterically crowded [N2S6] macropentacycle (1) with 1 equiv of CF3SO3H in CDCl3 is slow and gives the singly (oo(+) [1 x H](+)) and doubly (o(+)o(+) [1 x 2H](2+)) protonated forms as kinetic products, the i(+)o form of [1 x H](+) being the thermodynamic product. i(+)o [1 x H](+) is C3 helically chiral in the solid state and in solution. The barrier to racemization (DeltaG(double dagger)) of the [1 x H](+) propeller is >71 kJ mol(-1). The ammonium proton is encapsulated in the tetrahedral coordination sphere provided by the endo (i) nitrogen bridgehead atom and the three proximal thioether sulfurs, which makes [1 x H](+) a proton complex. Use of the optically active acid (R)-(-)- or (S)-(+)-1,1'-binaphthyl-2,2'-diyl hydrogen phosphate (BNPH) in chloroform allowed us to induce a significant diastereomeric excess (24% de), which produced a detectable ICD. The de was decreased in acetone-d6 (10%), suggesting that the sense of chirality of [1 x H](+) is controlled by ion-pair interactions. Detailed NMR studies allowed us to locate the chiral anion on the endo side of [1 x H](+), in the cavity lined by endo t-Bu groups, and to establish that the rate of anion exchange in [1 x H][(S,R)-(+/-)-BNP] was higher than the rate of propeller inversion of [1 x H](+). PMID:18811199

  15. Deactivation of signal amplification by reversible exchange catalysis, progress towards in vivo application.

    PubMed

    Mewis, Ryan E; Fekete, Marianna; Green, Gary G R; Whitwood, Adrian C; Duckett, Simon B

    2015-06-18

    The catalyst which is used in the signal amplification by reversible exchange (SABRE) process facilitates substrate hyperpolarisation while acting to speed up the rate of relaxation. Consequently, the lifetime over which the hyperpolarised contrast agent is visible is drastically reduced. We show that the addition of a chelating ligand, such as bipyridine, rapidly deactivates the SABRE catalyst thereby lengthening the agent's relaxation times and improving the potential of SABRE for diagnostic MRI. PMID:25989727

  16. Chemicals and excess materials disposition during facility deactivation as a means of pollution prevention

    SciTech Connect

    Godfrey, S.D.

    1998-05-28

    This paper presents several innovative and common sense approaches to pollution prevention that have been employed during facility deactivation at the Hanford Site in South Central Washington. It also presents several pollution prevention principles applicable to other projects. Innovative pollution prevention ideas employed at the Hanford site during facility deactivation included: (1) Recycling more than 185,000 gallons of radioactively contaminated nitric acid by sending it to an operating nuclear fuels reprocessing facility in England; (2) Recycling millions of pounds of chemicals and excess materials to other industries for reuse; (3) Evaporating flush water at a low rate and discharging it into the facility exhaust air stream to avoid discharging thousands of gallons of liquid to the soil column; and (4) Decontaminating and disposing of thousands of gallons of radioactively contaminated organic solvent waste to a RCRA licensed, power-producing, commercial incinerator. Common sense pollution prevention ideas that were employed include recycling office furniture, recycling paper from office files, and redeploying tools and miscellaneous process equipment. Additional pollution prevention occurred as the fac